

Effective Resource Management for
Master-Worker Applications in
Opportunistic Environments

Departament d’Informàtica
Unitat d’Arquitectura d’Ordinadors

i Sistemes Operatius

Thesis submitted by Elisa Heymann
Pignolo in fulfillment of the requirements
for the degree of Doctor per la Universitat
Autònoma de Barcelona.

Barcelona (Spain), September 3rd 2001

Effective Resource Management for Master-Worker
Applications in Opportunistic Environments

Thesis submitted by Elisa Heymann
Pignolo in fulfillment of the
requirements for the degree of Doctor
per la Universitat Autònoma de
Barcelona. This work has been
developed in the Computer Science
Department of the Universitat
Autònoma de Barcelona and was
advised by Dr. Miquel Ángel Senar
Rosell,

Bellaterra September 3rd, 2001

Thesis Advisor

Miquel Ángel Senar Rosell

To Eduardo and our children, David and Ruth.
To my parents, Ezra and Sara

ACKNOWLEDGEMENTS

A lot of people have made this thesis possible. I wish to express my sincere

gratitude to them all for being there, for working with me and for helping me.

First of all I would like to thank Miquel Ángel Senar for being my advisor

throughout this work, for spending so much time and effort on it, and for his

constant advice and never-ending encouragement.

Special thanks to Emilio Luque for all his support throughout the

development of this work, for his valuable advice and for his opportune

comments.

I would like to express my special gratitude to Miron Livny for his ideas

regarding this work, as well as for his inestimable contribution to its

development.

My deepest thanks go to Eduardo Cesar for being there at all times, for his

support and affection. How could I have undertaken this work without

everything he has done?

Thanks to Crisos Lopez who collaborated in the implementation of some of

the programs related to this work.

I would also like to thank Anna Cortés, Tomàs Margallef, Dani Franco and

Juan Carlos Moure for their encouragement and friendship.

I am grateful to the rest of my colleagues from the Computer Architecture

and Operating Systems Group as well as to those who have passed through

the Group during the gestation and preparation periods of this work.

I would also like to thank the members of the Condor Team at the

University of Wisconsin-Madison, for their support with respect to my Condor

doubts and problems, and for the good times I shared with them while I was

working in Madison.

Special thanks to Barton Miller and his family for making us feel at home in

Madison.

Last, but decidedly not least, I would like to thank my family for their

support throughout this period, and especially my son David and my daughter

Ruth for their understanding while mum was “at work”.

 i

Contents

PREFACE...1

CHAPTER 1

INTRODUCTION ..7

1.1 INTRODUCTION ... 9

1.2 PARALLEL PROGRAMMING MODELS AND PARADIGMS 10

1.2.1 Parallel Programming Generic Models .. 10

1.2.2 Parallel Programming Paradigms.. 11

1.3 ARCHITECTURE MODELS .. 14

1.4 SCHEDULING STRATEGIES IN DISTRIBUTED ENVIRONMENTS 16

1.5 EXAMPLE OF EXISTING SCHEDULERS.. 22

1.5.1 Clusters – Intranet... 22

1.5.2 Internet .. 24

1.6 DISCUSSION .. 27

CHAPTER 2

MASTER-WORKER PROGRAMMING MODEL AND PROBLEM
DESCRIPTION ...29

2.1 INTRODUCTION ... 31

2.2 MASTER-WORKER PROGRAMMING MODEL .. 32

2.2.1 Simple Master-Worker Model ... 32

2.2.2 Generalized Master-Worker Paradigm... 36

2.3 PARALLEL EXECUTION ENVIRONMENT FOR M-W APPLICATIONS 38

 ii

2.3.1 General Structure of Opportunistic Resource Management Systems.... 40

2.3.2 Condor Overview .. 42

2.3.3 Overview of MW.. 47

2.4 PERFORMANCE MODEL FOR MASTER-WORKER APPLICATIONS ON

OPPORTUNISTIC ENVIRONMENTS .. 51

2.5 CHALLENGES OF MASTER-WORKER APPLICATIONS RUNNING ON

OPPORTUNISTIC ENVIRONMENTS .. 53

CHAPTER 3

SCHEDULING OF MASTER-WORKER APPLICATION ON
HOMOGENEOUS AND DEDICATED CLUSTERS60

3.1 INTRODUCTION ... 61

3.2 PROBLEM STATEMENT .. 61

3.2.1 Scheduling Problem .. 64

3.2.2 Scheduling in Clusters of Distributed Machines 65

3.2.3 High Performance Schedulers... 66

3.3 SCHEDULING POLICY .. 66

3.4 SIMULATION STUDY.. 68

3.4.1 Description of the Policies .. 69

3.4.2 Simulation Framework.. 70

3.4.3 Simulation Results ... 76
3.4.3.1 Effects on Efficiency ..76
3.4.3.2 Effects on Execution Time ...83

3.4.4 Discussion ... 89

CHAPTER 4

SELF-ADJUSTING SCHEDULING FOR MASTER-WORKER
APPLICATIONS ...91

4.1 INTRODUCTION ... 93

 iii

4.2 SELF-ADJUSTING ALGORITHM FOR HOMOGENEOUS ENVIRONMENTS 97

4.2.1 Self-Adjusting Algorithm with Static Tables.. 97

4.2.2 Experimental Evaluation with a Fibonacci Application 101
4.2.2.1 Extended version of MW..101
4.2.2.2 Experimentation Framework ..104
4.2.2.3 Evaluation of the Self-Adjusting Strategy with Static Tables107
4.2.2.4 Comparison of Random and Random & Average Scheduling Policies.....109

4.2.3 Self-Adjusting Strategy with Dynamic Information............................. 111

4.2.4 Experimental Evaluation with an Image Thinning Application 116

4.3 SELF-ADJUSTING ALGORITHM FOR HETEROGENEOUS ENVIRONMENTS 123

4.3.1 Modifications to the Self-Adjusting Strategy 123

4.3.2 Experimental Evaluation with an Image Thinning Application 127
4.3.2.1 Evaluation of the Self-Adjusting Algorithm with and without Applying

 the Normalization Factor..128
4.3.2.2 Comparison of Self-Adjusting and Non Self-Adjusting Strategies on

Heterogeneous Environments..133

CHAPTER 5

SCHEDULING IN THE PRESENCE OF MACHINE LOSS......................139

5.1 INTRODUCTION ... 141

5.2 BACKGROUND TO THE PROBLEM .. 143

5.3 IMPACT OF MACHINE RECLAIM... 146

5.4 STRATEGIES FOR REDUCING THE IMPACT OF MACHINE LOSS 150

5.4.1. Impact of Machine Loss with the Perfect Number of Machines 151

5.4.2 Impact of Machine Loss with any Number of Machines...................... 156

5.5 ON THE SCALABILITY OF THE STRATEGIES FOR REDUCING THE IMPACT OF

MACHINE LOSS ... 159

5.6 STUDY OF THE STRATEGIES WITH DIFFERENT PROBABILITIES OF LOSING

MACHINES... 162

5.7 EXPERIMENTAL EVALUATION ON A REAL PLATFORM................................. 165

5.7.1 Implementation of Strategies... 166

5.7.2 Experimentation on a Real Platform, and Results 167

 iv

CHAPTER 6

CONCLUSIONS AND FUTURE WORK ..171

6.1 CONCLUSIONS... 173

6.2 CURRENT AND FUTURE WORK.. 178

REFERENCES..181

APPENDIX A

Workload Distributions..A-1

APPENDIX B

Simulation Results of the Scheduling Policies....................................B-1

APPENDIX C

Master-Worker Thinning Application...C-1

APPENDIX D

Effect of Losing a Machine ..D-1

APPENDIX E

Simulation Results of Strategies for Reducing the Impact of
Machine Loss..E-1

 1

PREFACE

Continuos improvement in hardware and software technologies has led to

an increased interest in distributed systems and their wider use in executing

large-scale scientific and commercial applications. Distributed systems are

often used in a non-dedicated way, i.e., the resources constituting the system

are shared among different user applications. Additionally, opportunistic

clusters of machines –a particular type of non-dedicated distributed systems–

are becoming more popular. This is because, on the one hand, research and

development is leading to the appearance of different environments and tools

in order to facilitate the use of such systems, and, on the other hand, the

number of computational resources has been growing tremendously. The

results of this growth are large, heterogeneous and dynamic computer

environments. This work focuses on the use of such opportunistic

environments, characterized by harnessing idle times of machines for

executing user jobs.

Management of the concurrent jobs constituting a parallel application is an

integral part of such non-dedicated systems. In non-dedicated opportunistic

environments, the resource manager’s goal is to provide both a reasonable

execution time (as users are interested in having their job finished as soon as

possible), and good efficiency, i.e., good resource usage, which is the main

goal of the system in order to obtain high throughput.

The development of effective resource management for parallel

applications running on opportunistic systems involves a great number of

issues. In particular, this work deals with three of them:

• Determining and allocating the number of machines, from the pool of

machines belonging to the opportunistic system, needed for executing

an application obtaining both a good execution time and a good

 2

efficiency. These machines will constitute a variable partition of the

whole pool of resources that will be allocated to the application in a

dynamic way.

• Scheduling application tasks to the assigned computational resources

(partition).

• Reducing the negative effects produced on an application when a

machine belonging to a non-dedicated environment, and allocated to

the partition given to the application, is reclaimed by its owner, and

should therefore be released by the task running on it.

Throughout this work master-worker applications have been considered,

because many real problems naturally fit into this parallel programming

paradigm. In these applications, there is a master that sends tasks to workers

and collects the results. This process is repeated over a number of cycles or

iterations until several bags of tasks have been executed.

In order to assign tasks belonging to a master-worker application to

machines belonging to an opportunistic environment, dynamic tasks

scheduling techniques were used. This was decided upon not only because of

the changing nature of the executing environment, but also because we do

not have any a priori information about the execution time of the tasks to be

executed by the workers. Execution times of the tasks are not known a priori

and may change from one cycle to another. Considering both the previous

application behavior and execution environment, static task scheduling

techniques are not suitable.

The proposed scheduling policy presented in this work does not need

information about the execution time of the tasks. It works by sorting tasks

according to their average execution time, using the information obtained at

runtime, that is, by using information related to the execution of previous

cycles or iterations of the master-worker application. This policy was first

evaluated by simulation, taking into account different workloads, in order to

cover most types of master-worker applications. The goal of this simulation

 3

was to understand how different scheduling policies behave in the best case,

i.e. when no machine is reclaimed by its owners and all machines are

homogeneous. The simulation results showed that the proposed policy

exhibits a similar behavior with respect to other policies requiring information

in advance about the execution time of the tasks.

From the scheduling policy simulation we derived the existence of the ideal

interval, which corresponds to the interval comprised between the minimum

and maximum number of machines for executing the application that obtain a

good trade-off between execution time and efficiency. At a later stage of this

discussion we will propose an algorithm for dynamically adjusting the number

of machines, for executing any master-worker application, to a number of

machines belonging to the ideal interval.

Two different self-adjusting strategies were designed and evaluated. One

of the strategies used an empirical table in its decision-making process, while

the second one was able to determine the desirable number of machines in a

completely dynamic way. This strategy was implemented and evaluated on

both homogeneous and heterogeneous environments, with a master-worker

thinning application running on a real opportunistic environment. Resources

were managed through the services provided by the Condor batch system,

and the application was written with MW (Master-Worker tool), a C++ library

especially suited to the easy development of master-worker applications.

In an opportunistic environment machines can join and leave the

computation as they are released or reclaimed by their owners. When a

machine is reclaimed, the job running on that machine must be stopped and

vacated. If this job belongs to a parallel application, the whole performance

will be negatively affected. We evaluate this impact both on the efficiency and

execution time, and then, in order to alleviate it, propose strategies based on

using extra machines and task replication. These strategies were first

evaluated by simulation and then implemented and tested in a real

environment.

 4

This thesis is organized as follows:

• The first chapter gives an overview of parallel programming paradigms

and architecture models, introduces the scheduling problem in

distributed systems and reviews the solutions found in the literature.

Finally, it presents some example systems.

• The second chapter describes the master-worker programming model

which corresponds to the programming model considered throughout

this work. Later, it shows the opportunistic execution environment

model considered in this work, and the systems and tools used in the

experimentation phases of this work: Condor as resource management

system, and the MW programming environment. After that, it introduces

the performance model considered and explains the main challenges of

executing master-worker applications on opportunistic environments,

remarking the challenges that will be covered in this work.

• In chapter three the proposed dynamic scheduling algorithm is

introduced, and evaluated by simulation. It is compared to other

scheduling policies, which differ in the amount of information that they

handle concerning the application. During the simulations, execution

time and efficiency are always measured by considering these main

factors: workload, number of tasks per cycle, number of cycles and the

variation per cycle of the task execution times.

• Chapter four contains the proposal and implementation of the self-

adjusting algorithm for dynamically adapting the number of workers

needed by a master-worker application. In order to evaluate the

strategy, a master-worker thinning application is implemented on a real

opportunistic environment. The self-adjusting algorithm is first

evaluated on an opportunistic environment composed of homogeneous

machines, and is then modified in order to support heterogeneous

environments.

 5

• Chapter five first evaluates the impact of losing a machine that is

participating in the computation of a parallel application. Following this,

we propose strategies for alleviating such an impact. These strategies

are based on task replication and on having extra machines. This

chapter then evaluates them by simulation, and then subsequently

comments on their scalability. Finally, mention is made of the results

obtained when these strategies are implemented on a real

opportunistic environment and a master-worker PovRay application is

executed.

• Chapter six summarizes the main conclusions derived from this thesis,

outlining, in addition, current and future work.

• Finally, the complete bibliography is provided. Complementary result

tables and the master-worker thinning application used to test the

proposed main ideas are included in the appendices.

 7

Chapter 1
Introduction

Abstract

This chapter first gives an overview of parallel programming

paradigms and architecture models. Subsequently, the main

scheduling strategies for distributed systems are surveyed.

Finally, examples of existing schedulers are briefly described

for both intranets and internets.

 8

 9

1.1 Introduction

Parallel applications consist of one or more tasks that may communicate

and cooperate to form a single application. Scheduling these applications

involves a number of activities [Ber99]:

1. Selecting a set of resources on which to schedule the application tasks.

2. Assigning application tasks to resources.

3. Distributing data or place data and computation.

4. Ordering tasks on compute resources.

5. Ordering communication between tasks.

In the literature, item 1 is referred as resource location or resource

discovery. Item 2 may be called mapping, partitioning or placement. For data

parallel programs, load-balancing is often the scheduling policy chosen (item

3). Items 1 through 3 are generally termed mapping and focus on the

allocation of computation and data in space; items 4 and 5, generally termed

scheduling, deal with the allocation of computation and communication over

time. Depending on both the adopted architecture model and the adopted

programming model, each one of the five items is more or less relevant.

A scheduling model consists of a scheduling policy, a program model, an

architecture model and a performance model. The scheduling policy

corresponds to the set of rules for producing schedules. The program and the

architecture model abstract the sets of programs to be scheduled and the

underlying system, respectively. The performance model abstracts the

behavior of the program on the system considered for the purpose of

evaluating the candidate schedules.

In the following sections, we will briefly describe the possibilities for both

program and architecture models, and will then discuss the alternatives for

 10

scheduling in distributed systems. Finally, we will comment on some example

systems.

1.2 Parallel Programming Models and Paradigms

Each programming paradigm is a class of algorithms that has the same

control structure [Han93], and that can be implemented using a parallel

programming generic model. In the following sections we will introduce the

most important parallel programming models and parallel programming

paradigms in use. For the programming models, we will comment on how

they solve the distribution of code and the interconnection between execution

units or tasks. For the programming paradigms, we will describe their basic

structure.

1.2.1 Parallel Programming Generic Models

Generic models for parallel programming are divided into the following

main classes [VA+94], [Fos95]:

• Message Passing [AS91]: This is a widely used model. In this model,

programmers organize their programs as a collection of processes with

private local variables and the ability to send and receive data between

processes by passing messages. PVM [GB+94] and MPI [GL+96]

constitute examples of libraries supporting the message passing

programming model.

• Shared Memory [Ben90]: In this model, programmers view their

programs as a collection of processes accessing local variables and a

central pool of shared variables. Each process accesses the shared

data by asynchronously reading from or writing to shared variables. As

more than one process may access the same shared variables at one

 11

time, mechanisms to resolve mutual-exclusion problems need to be

provided, such as locks or semaphores.

• Data Parallelism [HS91]: This model is suitable for programs that

perform the same operation on different data elements. A typical data

parallel program consists of a list of certain operations to be carried out

on a data structure. From here, each operation on each data element

can be thought of as an independent task. High Performance Fortran

has been widely used for implementing this type of parallelism

[CMZ94].

These parallel programming models can be used in order to implement

parallel programming paradigms. In theory, both programming models, that

is, message passing and shared memory, could serve to implement every

paradigm, but the performance of each resulting combination will depend on

the underlying execution model. In the following section we describe the most

common paradigms.

1.2.2 Parallel Programming Paradigms

There are many high level abstractions that provide support for parallel

paradigms. Programming paradigms are a class of algorithms that solve

different problems but have the same control structure [Han93]. A

programming skeleton corresponds to the instantiation of a specific parallel

paradigm, and encapsulates the control and communication primitives of the

application into a single abstraction.

In the literature there are many different paradigm classifications such as

[Pri88], [Han93], [Wil95] and [Fox89] and [BK+93]. Although not all of these

contemplate the same set of paradigms, they do not differ greatly. In [Buy99]

there is a classification that includes the superset of the most habitual

paradigms:

 12

• Master-Workers (or Task-farming): This consists of two entities: the

master and multiple workers. The master is responsible for

decomposing the problem into small tasks, then distributes these tasks

among the workers and finally collects the partial results in order to

produce the final computation results. The workers receive a task,

process it and send the result back to the master. Figure 1-1 presents a

schematic representation of this paradigm. This is the paradigm

considered throughout this work; therefore in the next chapter it is

described in more detail.

Figure 1-1. Basic master-worker structure.

• Single Program Multiple Data (SPMD): Each process executes the

same piece of code, but with different data. This means splitting the

application data among the available machines participating in the

computation. This type of parallelism is also referred to as geometric

parallelism, domain decomposition or data parallelism. Figure 1-2

presents a schematic representation of this paradigm.

Master
distributes tasks

Worker 1 Worker 2 Worker 4 Worker 3

Master
collects results
and terminates

 13

 Figure 1-2. Basic structure of an SPMD program.

• Data Pipelining: This is based on a functional decomposition approach.

Each process corresponds to a stage of the pipeline, and is responsible

for a particular task. All the processes are executed concurrently and

the data flows along the stages of the pipeline, as shown in Figure 1-3.

Figure 1-3. Data pipeline structure.

• Divide and Conquer: A problem is divided into several sub-problems.

Each of these sub-problems is solved independently and their results

are combined to produce the final result. If the sub-problems are

smaller instances of the original problem, then a recursive

decomposition is produced. Three generic operations are needed for

the divide and conquer paradigm: split, compute and join, as shown in

Figure 1-4.

Input
Phase A Phase B Phase C

Output

Process 1 Process 3Process 2

Distribute Data

Collect Results

Calculate
Exchange
Calculate

Calculate
Exchange
Calculate

Calculate
Exchange
Calculate

Calculate
Exchange
Calculate

Process 1 Process 2 Process 3 Process 4

 14

Figure 1-4. Divide and conquer example structure.

• Speculative Parallelism: This is used when it is quite difficult to obtain

parallelism through any one of the previous paradigms. It includes

several possibilities such as employing different algorithms for the

same problem: the one providing the final solution first is then chosen.

If the problem has complex data dependencies the problem can be

executed in small parts, some speculation nevertheless being used to

allow the parallelism.

Having introduced the different programming models and paradigms, we

will now review the different possibilities with regard to the underlying

systems.

1.3 Architecture Models

There are many ways in which parallel and distributed machines can be

constructed. In this subsection, we present their classification based on

control mechanisms and address-space organization [CPG99, Fos95].

• Distributed Memory Multiple Instruction Multiple Data (MIMD): In this

model, each processor executes a separate set of instructions on its own

sub-problems

 join

split

main problem

intermediate
problems

 15

local data. The memory is distributed throughout the processors, rather

than being placed in a central location. A network connects processors

(and their local memories). Processors exchange data between their

memories when a remote variable value is required. Examples of this

class of machine include the IBM SP, Thinking Machines CM5, Cray T3E,

SGI Origin2000 and ASCI Red.

• Shared-Memory MIMD or multiprocessors: In this model all processors

share access to a common memory. Users need not be concerned about

the current place where the data is stored, as all processors access the

same data space. Examples of this class of machine include the Silicon

Graphics Challenge, the multiprocessor workstations, Cray J90, Cray

T90, Digital Alpha and Tera-MTA.

• Single Instruction Multiple Data (SIMD): In this model, all processors

execute the same instructions on a different piece of data. This class of

parallel machines is suitable for problems presenting a high degree of

regularity, such as image processing and certain numerical simulations.

From the perspective of a management model, we introduce four types of

systems, of increasing scale and complexity as described in [FK99]:

• The End System: Individual end systems (processors, storage systems

and other devices) are characterized by a small scale and a high

decree of homogeneity and integration. They represent the simplest

environment, where the operating system has absolute control over the

resources of the computer. Resource management must handle

process creation, operating system signal delivery and operating

system scheduling.

• The Cluster: This consists of a collection of computers connected by a

high-speed local area network. It is controlled by a single administrative

entity that has complete control over each end system. Parallel

process creation and scheduling are the main issues concerning

resource management at this level.

 16

• The Intranet: This comprises a large number of resources that

nevertheless belong to a single organization, therefore there is no one

single site for coordination. It introduces the additional issues of

heterogeneity and geographical distribution. Resource management

should in addition handle resource discovery, signal distribution

networks and provide high throughput. Uniform access for computing

resources can be provided by distributed queuing systems such as

Condor [LLM88], Codine (recently renamed as the Sun Grid Engine)

[SGE01] or Load Sharing Facility (LSF) [ZZ+93].

• The Internet: Internets lack centralized control and are geographically

widely distributed (they may cross international borders, for example).

They use a public network that has variable behavior depending on

particular time conditions, such as load and routers. Resource

management should add brokers, negotiation and trading issues.

Many internet systems, usually referred as Grids, are nowadays under

development, and probably the most well-known are Globus [FK97]

and Legion [GW+94].

From all the systems described above, throughout this work we will

consider distributed memory MIMD machines organized in an intranet and

constituting an opportunistic environment for the users.

1.4 Scheduling Strategies in Distributed Environments

In non-dedicated distributed environments, several applications could be

executed on the same set of available resources. Scheduling functionality

can be divided into the external and internal [McL97], also referred as two-

level scheduling [Fei94], or generally termed mapping and scheduling [Ber99]:

• External Scheduling: This is concerned with the assignment of

applications to compute resources, i.e., with resource allocation.

 17

• Internal Scheduling: This is involved with the assignment of tasks

belonging to an individual computation to the machines assigned to

that application, that is, with the use of the resources already allocated.

As stated in [FR+97], with regard to external scheduling, each job

belonging to a parallel application is executed in a partition that consists of a

number of processors. The size of such a partition may depend on the

machines available, the application and the load of the machines. The size of

the partition of a specific job may change during the job’s lifetime. Different

types of partitions can be considered:

• Fixed: The partition size is defined by the system administration and

can be modified only by reboot.

• Variable: The partition size is determined at job submission time based

on user request and system capabilities.

• Adaptive: The partition size is determined by the scheduler at the time

the job is initiated, based on system load, machine availability and by

taking user request into account.

• Dynamic: The partition size may change during the execution of a job,

to reflect changing requirement and machine availability.

On the other hand, as [FR+97] explains, from the point of view of job

flexibility, applications can be characterized as follows:

• Rigid jobs: The partition assigned to a job is specified external to the

scheduler (by the user or the system administrator for example), and

that number of machines is made available to the job throughout its

execution.

• Moldable jobs: The partition assigned to a job is determined by the

scheduler, and the job uses that number of machines throughout its

execution.

 18

• Evolving jobs: The job has different phases that require different

number of machines, so the number of machines allocated may

change during the execution of the job in response to job needs.

• Malleable jobs: The partition assigned to a job may change during the

job’s execution, as a result of the system giving it additional machines

or requiring the job to release some of them.

Once a partition has been assigned to a parallel application, internal

scheduling is performed in order to assign jobs composing the application to

the machines belonging to the partition. Internal scheduling can be divided

into static and dynamic.

Static Scheduling consists of assigning all application tasks to compute

resources before execution begins. Once a task has been assigned to a

machine, it will finish its execution on that machine, unless the machine in

question fails. Static scheduling usually views the application either as a

static graph with fixed and specified dependencies (commonly known as

DAG: Directed Acyclic Graph),or as a static graph with fixed and specified

interaction/communication patterns (commonly known as TIG: Task

Interaction Graph) [HS+01c].

Dynamic Scheduling techniques assign tasks to compute resources as

tasks are being created or as resources become available, i.e. when either a

new task appears in the system or a machine becomes idle, then the decision

of where to execute this task will be taken. Dynamic scheduling may also

change the assignment of a task after it has begun its execution. These

dynamic techniques can be divided into Load Balancing, Preemptive

Scheduling and Non-Preemptive Scheduling. The strategies we now

introduce are representative and in general, have been proposed in theory or

in practice either for clusters of machines or MPP (massively parallel

processors) systems.

• Load Balancing [SC+01]: This is based on the redistribution of load

among the processors during execution time, so that each processor

 19

would have the same or nearly the same amount of work to do. This

redistribution is performed by transferring load units from the heavily

loaded processors to the lightly loaded processors with the aim of

obtaining the highest possible execution speed [SC+01]. The load units

that are redistributed are handled as independent elements, without

there being any relation of dependence or affinity among them.

• Preemptive Scheduling: Depending on whether jobs may be relocated

during their execution time, preemptive scheduling is divided into:

− Local Preemption: Tasks composing a job may be preempted, but

each task can only be resumed later on the same machine. This

kind of preemption does not require any data movement between

machines.

− Migratable Preemption: Job tasks may be suspended on one

machine and subsequently resumed on another. This implies the

overhead of checkpointing a parallel task and restoring it on other

machine.

Examples of preemptive schedulers that can be implemented with or

without migration are CO-scheduling [Ous82, Fei94] (also known as

Gang Scheduling) and Handoff Scheduling [Bla90, TSS88].

CO-scheduling tries to simultaneously schedule tasks that work in

close coordination with each other during execution. In doing so, it

attempts to avoid trashing that could occur if such tasks were not run

together.

Handoff Scheduling allows a task to suggest the identity of the task that

a machine should be given to when that task relinquishes it. The idea

is to take benefit from the cache entries built up by the current

executing task. A related approach is Affinity Scheduling [SL93], which

tries to schedule tasks on the same processor on which they most

 20

recently ran, under the assumption that this particular processor might

still have some relevant data in its cache.

• Non-Preemptive scheduling: Once a task has been assigned to a

machine, it will remain executing on that machine either until it finishes

or until the machine leaves the computation (because this machine was

reclaimed by its owner or because it failed). Self-Scheduling [TY86]

and Open Shop Scheduling [KSW98] belong to this category.

Self-Scheduling is used to schedule a set of parallel tasks that are

independent iterations of a computational loop. The loop iterations are

divided into a set of tasks, and these tasks are placed in a single global

work queue that is available to all machines involved in the

computation. When a machine becomes available, it removes tasks

from the work queue for processing. This is repeated until the queue is

empty. Pure Self-Scheduling is a strategy that assigns a single loop

iteration to each task in the global work queue. Chunk-Scheduling

[KW85] creates a set of equal-sized tasks that contain an arbitrary

number of loop iterations. Variants of this method include the “bag-of-

tasks” policy [BS95] and the Piranha Scheduling [GJK93], both of the

Linda system [Gel95]. Another variant used in Calypso [BDK95] is

Eager Scheduling. This allows a machine to be assigned a task that

has already been assigned to other machine if no unassigned tasks

remain. In this case, only the results produced by the first machine to

finish the task will be considered.

Open Shop Scheduling uses heuristics to produce a schedule for each

machine (shop) indicating which tasks will be performed and in which

order.

Dynamic scheduling strategies in general (both preemptive and non-

preemptive), have the ability to adapt the scheduling they provide to a

changing set of available resources.

 21

A scheduler should provide a performance measure index, which describes

the performance activity to be optimized. Possible performance-

measurement indices include [Ber99]:

• Application completion time: This is the time an application takes to

execute a task, from start to finish.

• Efficiency: This represents how well resources are being used. If there is

a lot of resource waste, then efficiency will be low.

• Throughput: This is understood as the executing of a large amount of jobs

over a larger amount of time.

• Average Response Time: This corresponds to the amount of time that

users have to wait until they begin to receive output or results from this

application.

• Other performance activities: For example operating system overhead or

resource fragmentation, among others.

The performance measure index chosen depends on whether scheduling

promotes application performance (application-aware) or system performance

(system-aware). These goals may conflict with each other.

This thesis focuses on the problem of dynamic internal scheduling, i.e.,

assigning tasks to the machines available to an application. It should be

noted that the number of available machines may dynamically change,

depending both on the application needs and the number of resources the

system is able of allocating to an application at a specific time. In other

words, we are considering both dynamic partitions and malleable jobs. The

performance measure index we consider is basically application-aware when

performing internal scheduling, but introduces system-aware considerations

when determining the number of machines to be assigned to an application

 22

1.5 Example of Existing Schedulers

We will now review some existing scheduling systems by considering the

different types of system organization with respect to the scale classification

discussed in section 1.3.

1.5.1 Clusters – Intranet

In spite of their differences, the typical way in which both cluster of

machines and intranets) are currently used is the following:

1. The system is divided into partitions consisting of different numbers of

machines (classified as explained in section 1.4).

2. A number of queues are established, each one corresponding to a

specific combination of job characteristics.

3. Each partition is associated with one or more queues, and its machines

serve as a pool for those queues. Whenever machines are free, a job

belonging to one of the associated queues is executed on the partition.

In practice load-sharing packages implement this functionality. A load-

sharing package in general consists of the following main components

[Ant97]:

• Batch Queue System: This allows users to submit jobs to some form of

queuing system.

• Scheduler: This places the job on certain machines, with adequate

resources to run the job, and

• Job Management Tools: These allow both users and administrators to

interact with the job queues, status, priorities, etc.

Examples of these packages include:

 23

• Condor [LLM88]: This is a high-throughput computing environment that

can manage a large collection of computers such as PCs, workstations

and clusters owned by different individuals. It harnesses idle computer

CPU cycles (cycle stealing) and offers resource management for

parallel and sequential applications. Condor is described in more detail

in the next chapter, as it is the system used in our experimentation.

• LoadLeveler [Pre96], Network Queuing Environment (NQE) [NQE00,

Haz97], Network Queuing System (NQS) [NQS94], Load Sharing

Facility (LSF) [ZZ+93] and Distributed Queuing System (DQS)

[DQS00]: These packages present many common features, such as

being designed for large and heterogeneous systems, and allowing

users to run jobs by matching their processing needs to available

resources. As part of their job-management system, they serve as a job

scheduler and provide a facility for building, submitting and processing

jobs in a dynamic environment. They support both sequential and

parallel jobs.

• Piranha [GK92, CF+95]: This is an execution model for Linda,

developed to reclaim idle cycles from networked workstations for use in

executing parallel programs. A Piranha program or job is assigned to a

collection of workstations by a scheduler. On each workstation, the job

has a representative worker process or piranha, which lies dormant

until the node becomes available for computation. When the node

becomes available, the local piranha becomes active and begins

computing on behalf of the job. Piranha programs often follow a

master-worker paradigm. A master or feeder process outputs tasks

descriptions representing the work to be done by the job to a Linda

tuple space.

• Hector [RF+96]: The Hector parallel run-time environment is designed

to run MPI-based parallel programs while actively maintaining a

balanced load and returning workstations to their owners. Hector is a

 24

complete job-scheduling and parallel run-time environment, intended to

present to the user many features both to parallel and sequential jobs,

including dynamic load balancing, checkpointing, near-real-time

resource awareness, and transparency.

1.5.2 Internet

There are some low-level environments built with the aim of providing basic

infrastructure for the grid, i.e., in order to obtain dependable, consistent,

pervasive and inexpensive access to high-end computational capabilities

[FK99]. On top of these users can develop their schedulers, in accordance

with their needs. These schedulers should be more than extensions to MPP

or intranet schedulers because, in an internet, the resource pool changes

dynamically and the scheduler is not in control of all resources. Globus and

Legion are examples of well-know systems that provide infrastructure for the

grid.

• Globus [FK97]: The Globus system is intended to achieve a vertically

integrated treatment of applications, middleware, and network. A low-

level toolkit provides basic mechanisms such as communication,

authentication, network information and data access. These

mechanisms are used to construct various higher-level metacomputing

services, such as parallel programming tools and schedulers. The long

term goal of the Globus project is to build an Adaptive Wide Area

Resource Environment, that is, an integrated set of higher-level

services that enable applications to adapt to heterogeneous and

dynamically-changing metacomputing environments.

• Legion [GW+94]: This is a metasystem project developed at the

University of Virginia, designed to present users with a transparent

interface to the available resources, both at the programming interface

level as well as at user level. Legion addresses issues such as

parallelism, fault tolerance, security, autonomy, heterogeneity, resource

 25

management, and access transparency in a multi-language

environment.

In addition to the above systems that provide basic services for accessing

the grid, there are many problem-solving environments, which are oriented to

particular applications. Examples of these environments include:

• AppLeS (Application-Level Scheduling) [BW+96, BW97]: This focuses

on the development of scheduling agents for parallel metacomputing

applications. Each agent is written on a case-by-case basis and each

agent will perform the mapping of the user’s parallel application

[SWB98]. To determine schedules, the agent must consider the

requirements of the application and the predicted load and availability

of the system resources at scheduling time. Agents use the services

offered by the NWS (Network Weather Service) [WSH99] to monitor

the varying performance of available resources. AppLeS includes

templates for master-worker applications and parameter sweep

studies.

• NetSolve [CD97, CD98]: This is a client-agent-server system, which

enables the user to solve complex scientific problems remotely. The

NetSolve agent does the scheduling by searching for those resources

that offer the best performance in a network. The applications need to

be built using one of the API’s provided by NetSolve in order to perform

RPC-like computations. There is an API for creating task farms

[CK+99] but it is targeted at very simple farming applications that can

be decomposed by a single bag of tasks.

• Nimrod/G [AF+97, AGK00] is a resource management and scheduling

system that focuses on the management of computations over dynamic

resources scattered geographically over wide-area networks. It is

targeted at scientific applications based on the “exploration of a range

of parameterized scenarios”, which is similar to our definition of master-

worker applications, although our definition allows a more generalized

 26

scheme of farming applications. The scheduling schemes under

development in Nimrod/G are based on the concept of computational

economy developed in the previous implementation of Nimrod, where

the system tries to complete the assigned work within a given deadline

and cost. The deadline represents a time by which the user requires

the result, and the cost represents an abstract measure of what the

user is willing to pay if the system completes the job within the

deadline. Artificial costs are used in its current implementation to find

sufficient resources for meeting the user’s deadline.

• Ninf [SS+96, NSS99]: This is a client-server based network

infrastructure for global computing. It allows access to multiple remote

compute and database servers. The system schedules accesses from

a client application to the remote library, with the goal of optimizing

application performance.

• PUNCH [KF99]: This infrastructure consists of a collection of

technologies and services that allow seamless management of

applications, data and machines distributed across wide-area networks.

Punch employs non-preemptive, decentralized, adaptive scheduling.

Other systems providing schedulers for internet found in the literature are:

Prophet [WZ97] and Dome [AB95] for SPMD programs, VDCE [TH+97] for

programs composed of tasks from mathematical task libraries, IOS [BRS97]

for realtime, iterative automatic target recognition applications, SEA [SM97]

for dataflow-style program dependence graphs, I-SOFT [FG+98] for

applications that couple supercomputers, remote instruments, immersive

environments and data systems, and MARS [GR96] for phased message-

passing programs.

 27

1.6 Discussion

In the light of the literature available, it is clear that scheduling of parallel

applications on distributed systems is a highly varied subject, and includes

works that tackle it from different perspectives, many having very different

(sometimes contradictories) assumptions. Nevertheless, in view of what has

been discussed in this chapter, our work is focused not only on the

development of application-aware scheduling strategies but also on taking

into account system-aware considerations, for malleable parallel applications

that follow the master-worker paradigm. In this respect our work adopts

similar assumptions to those made by certain problem-solving environments

for internets, such as AppLeS and NetSolve. However, these scheduling

techniques will be adapted to the features of typical Load Sharing Packages

for intranet systems, such as Condor, which is characterized by using

available idle resources, thereby providing a set of resources that can be seen

as a dynamic partition.

 28

INTRODUCTION

CHAPTER 1..7

1.1 INTRODUCTION ... 9

1.2 PARALLEL PROGRAMMING MODELS AND PARADIGMS 10

1.2.1 Parallel Programming Generic Models .. 10

1.2.2 Parallel Programming Paradigms.. 11

1.3 ARCHITECTURE MODELS .. 14

1.4 SCHEDULING STRATEGIES IN DISTRIBUTED ENVIRONMENTS 16

1.5 EXAMPLE OF EXISTING SCHEDULERS.. 22

1.5.1 Clusters – Intranet... 22

1.5.2 Internet .. 24

1.6 DISCUSSION .. 27

 29

Chapter 2
Master-Worker Programming Model

and Problem Description
Abstract

This chapter first introduces the simple master-worker
programming model and then presents the generalized
master-worker model considered throughout this work.
Subsequently, the fundamental aspects of the execution
environment in which the applications will be executed
are described. We then detail the features of the
systems used in the development phase –Condor and
MW— which are an example of opportunistic systems.
Finally, the problem of scheduling master-worker
applications on such environments is introduced.

 30

 31

2.1 Introduction

In this chapter we will introduce and explain the relevance of the

programming model that has been considered in this work, specifically, the

master-worker parallel programming model. We will describe the main

characteristics of this adopted programming model. We begin with a basic

description of the simplest formulation of the model, and later present a

generalized master-worker model.

The execution environment considered in this work was an opportunistic

environment of heterogeneous resources. Such environments are composed

of a variable number of machines, and machines can join or leave a

computation dynamically (at run time). We used Condor as resource

manager, and master-workers applications were implemented using MW

(Master-Worker Tool), a set of libraries that simplifies the process of writing

master-worker applications, in comparison to directly using C plus PVM or

MPI. In fact, MW has been modified in order to support the requirements of

the proposals of this work.

Once we have introduced both the programming model and the execution

environment, we present the problems arising when executing applications

following that programming model on such environments, and, in particular we

introduce the problem that we are interested in, namely, the scheduling of

master-worker applications on distributively-owned machines belonging to an

opportunistic environment. Different problems arise due to the nature of the

scheduling problem itself, and due to the opportunistic and heterogeneous

environment considered.

 32

2.2 Master-Worker Programming Model

In this section the simple master-worker paradigm is first presented,

followed by the generalized version of this paradigm.

The master-worker model is used in many scientific, engineering and

commercial applications, such as: software building and testing, sensitivity

analysis, parameter space exploration, image and movie rendering, high

energy physics event reconstruction, the processing of optical DNA

sequencing, neural networks training and stochastic optimization among

others [Can98, WW95, AI98].

2.2.1 Simple Master-Worker Model

As was described in the first chapter, the basic master-worker

programming model consists of two entities: the master and multiple workers.

The master is responsible for decomposing the problem into tasks and

distributing these tasks among a farm of workers, as well as for gathering the

partial results in order to produce the final computation result. The workers

execute in a very simple cycle: receive a message with the task (input),

process the task, and send the result back to the master (output). Usually

communication only takes place between the master and the workers.

We will now show a detailed graphical example of how the simple master-

worker paradigm works. First of all the master has a bag of tasks that can be

understood logically by using the parbegin-parend constructors, as is shown

in Figure 2-1. The main features of this high-level structure are, on the one

hand, that there is a strong synchronization point (parend) and, on the other

hand, that there are no communications among tasks. The corresponding

algorithmic representation of this paradigm is shown in Figure 2-2. In practice,

when working at a level of processes, this structure can be decomposed into

master and workers processes communicating task descriptions and task

results by messages, as is exemplified in Figure 2-3, which depicts one

 33

Master process and three Worker processes (worker1, worker2 and worker3).

In this example, initially (as shown in Figure 2-3a) task T1 to T8 are ready to

be executed.

Figure 2-1. High-level structure corresponding to the master-worker paradigm.

Figure 2-2. Simple Master-Worker algorithm

parbegin

parend

Task 1 Task 2 Task 3 Task N ...

 Initialization
 For task = 1 to N
 PartialResult = + Function (task)

 end
 act_on_tasks_complete()

Worker
Tasks

Master
Tasks

 34

The master then sends one task to each of the available workers (Figure

2-3b). In this case, it sends the first three ready tasks that are ready in the

task list (T1, T2 and T3) to worker1, worker2 and worker3 respectively. The

Next Task to be Scheduled (NTS) pointer represents the next task in the task

list to be executed when a worker finishes the current task being executed; in

this example T4 is the next task to be executed.

Each time a worker finishes, it sends the results back to the master and the

master sends it a new task (Figure 2-3c). In this case, the execution of T1

and T3 finish, and the master receives those results (R1 and R3), and sends

tasks T4 and T5, respectively, to those workers. As a consequence, the next

task to be executed is T6.

This process is repeated until all tasks have been completed (Figure 2-3d),

in particular in this example, until the results of the eight tasks R1 to R8 have

been received by the master.

Figure 2-3a

 worker1 worker3

worker2

master
T8T7T6T5T3 T4T2T1

NTS

 35

Figure 2-3b

Figure 2-3c

 worker1 worker3 worker2

 master

T2 T3

T8T7

T1

T6T5T3T2T1 T4

NTS

worker1 worker3 worker2

master

T2T4

T8T7

T5

T6T5T2

R1 R3

T3T1 T4

NTS

 36

Figure 2-3d

Figure 2-3. Basic master-worker model

2.2.2 Generalized Master-Worker Paradigm

In contrast to the simple master-worker model in which the master solves

one single set of tasks, the generalized master-worker model can be used to

solve problems that require the execution of several batches of tasks. Figure

2-4 shows an algorithmic view of this paradigm, and Figure 2-5 shoes its

corresponding representation using the parbegin-parend constructors.

Figure 2-4. Generalized Master-Worker algorithm

worker1 worker3

R1 R2

worker2

T3T1

R3 R4 R5 R6 R7 R8

T2 T4 T5 T6 T7 T8

master

Initialization
Do
 For task = 1 to N
 PartialResult = + Function (task)

 end
 act_on_bach_complete()
while (end condition not met).

Worker
Tasks

Master
Tasks

 37

Figure 2-5. Parbegin-parend structure corresponding to the generalized master-
worker paradigm.

A master process will solve the N tasks of a given batch by looking for

Worker processes that can run them. The master process may carry out

certain intermediate computations with the results obtained from each worker

as well as some final computations (that cannot be parallelized), when all the

tasks of a given batch are completed. After this a new batch of tasks is

assigned to the master and this process is repeated several times until

completion of the problem (K cycles, which are later referred to as iterations).

Workers execute Function (task) and PartialResult is collected by the master.

The completion of a given batch induces a synchronization point in the

iteration loop, followed by the execution of a sequential body.

This paradigm is very attractive, first because it is very easy to program

and second, because there are many problems that can be naturally mapped

onto it. N-body simulations [GF96], genetic algorithms [Ban98], Monte Carlo

simulations [BRL99] and material science simulations [PL96] are just a few

parbegin

parend

Task 1 Task 2 Task 3 Task N ...

new task set

 38

examples of natural computations that fit into this generalized master-worker

paradigm.

 It also has another attractive characteristic: it has a central control point

(the master), a fact that will be exploited by the scheduling mechanism. In

addition to these characteristics, empirical evidence has shown that, for a

range of applications, the execution of each task in successive iterations

tends to behave similarly, so that the measurements taken for a particular

iteration are good predictors of near-future behavior [PL96]. This means that

this kind of applications have a high degree of predictability and, therefore, it

would be possible to take advantage of it in deciding both the use of the

available resources and the allocation of tasks to workers in a dynamic and

adaptive way. There are other works in the literature [BG96, NVZ96] whose

experimental results also confirm that iterative parallel applications usually

exhibit regular behaviors that can be used by an adaptive scheduler.

2.3 Parallel Execution Environment for Master-Worker
Applications

According to the characteristics of the applications that follow a master-

worker model, its natural manner of execution would be on a

parallel/distributed environment, in such a way that the different workers

execute tasks simultaneously.

The master-worker paradigm is an example of malleable applications that

can adapt their execution to a changing number of machines. We will now

comment on how the master-worker applications would be executed

depending on the type of partition considered in the parallel environment:

• Fixed: If the number of machines is equal to or greater than the number of

tasks, the master-worker application would be executed using the same

number of machines as number of tasks, therefore assigning a worker to

each machine. This constitutes the ideal case guaranteeing the minimal

 39

possible execution time, if the communication time between master and

workers is small compared to each task’s computation time. If the

number of machines is less than the number of tasks, the tasks will be

executed according to the order determined by the master process.

In the case of the size of the partition being known before the scheduling

of the tasks, this value could be taken into account in order to distribute

those tasks in a balanced way.

• Variable and Adaptive: In this case, for each execution of the same

master-worker application, a different fixed number of machines would be

used. Under this approach, it would be necessary either to distribute

tasks at the beginning of the execution, once the number of machines

constituting the partition assigned to the application was known, or to

carry out a dynamic assignment as tasks are finished.

• Dynamic (opportunistic environments): This is the more complex case.

The number of machines may change during the execution of the

application. This requires dynamic task management that also includes

the capacity to react to machine losses throughout execution time.

In the two former cases a single application that used the services provided

by a message-passing library such as PVM or MPI, would be sufficient. In the

third case, it would be necessary, in addition, to join the application with the

services provided by an opportunistic resource management system.

An example of this union was shown in [PL96] where the Condor

opportunistic environment was used close to PVM applications, allowing the

development of any generic parallel application that uses opportunistic

resources. Recently the MW tool was proposed in order to simplify the

construction of master-worker applications on opportunistic environments.

Initially, MW supported the execution of a bag of tasks, so MW was modified

to support the proposed generalized master-worker model. The schematic

vision of the main components used is shown in Figure 2-6, where the master

process (or Driver) is executed on the owner’s machine, and the worker

 40

process are executed on the remaining machines belonging to a Condor pool.

Communication and resource management services are provided by PVM

and Condor respectively.

The following subsections briefly describe the structure of a general

resource management system for opportunistic environments, Condor and

MW.

Figure 2-6. Executing and Programming Environment

2.3.1 General Structure of Opportunistic Resource Management
Systems

When considering an opportunistic environment, resource management

(RM) is a basic point. The principal layers of a resource management system

proposed by Livny and Raman [FK99] are show in Figure 2-7 and are briefly

explained below.

1. Local RM layer: This provides basic RM services for processes

executing within the domain of that resource. It could be, for example,

an operating system.

 Master

Workers

Condor PoolExtended
MW Driver

Message
Passing
PVM

Resource
Mngmt.

CONDOR

 41

2. Owner layer: This represents the interest of the resource owner. It

provides access control mechanisms to the resource, that is, it

implements the owner policy for a particular resource, for example, so

that the machine aows10.uab.es with Memory=500 and

KFlops=150000 (resource) could be accessed from 2pm to 10am

(when) by users belonging to the friend_research group (to

whom).

Figure 2-7. Layers of an RMS

claiming

resource
access

runtime RM
services

runtime RM
services

matches

Global Resource Management

Interrequest RM

Intertask RM

Access Control

Local RM

Resource

Interrequest RM

Intertask RM

Access Control

Local RM

Resource

Application layer

Owner layer

Local RM layer

System layer

Customer layer

Application RM layer

runtime RM
requirements

runtime RM
requirements

resource
requests

matches resource
offers

local system
services

Application tasks

RM library

Application tasks

RM library

 42

3. System layer: This represents the global resource allocation layer.

Here, the matching policy is implemented in order to match resource

offers and resource requests in such a way that the constraints of both

are satisfied. For example, a match is done with the request of user

David and machine aows10.uab.es.

4. Customer layer: This layer represents the interest of the resource

management system users, for example, that user David belonging to

the friend_research group needs a machine with Memory>250

and Kflops>100000. The duties of this layer are handling the users’

resource requests and interacting with the system layer by sending it

those requests, by considering a priority scheme.

5. Application RM layer: This is responsible for establishing the

application task runtime environment on the claimed machines. For

example, the environment for running David’s job is set up on

machine aows10.uab.es. This layer also supports adaptive

applications that grow when more resources become available.

6. Application layer: This represents user application tasks. These tasks

use the resource given by the application RM layer. In the example,

David’s job is now executed on machine aows10.uab.es. If this

job subsequently needs another machine, then a request to the

application RM layer will be generated.

2.3.2 Condor Overview

Condor [LB+97] is a software system that runs on a cluster of workstations

to harness wasted CPU cycles. It was initially developed at the University of

Wisconsin-Madison in 1986. Condor was first developed for Unix systems,

and can currently be executed on a wide range of machines. A Condor pool

consists of any number of machines, possibly of heterogeneous architecture

and that may or may not have different operating systems, which are

 43

connected by a network. One machine, the central manager, keeps track of

all the resources and jobs in the pool.

Condor allows High Throughput Computing (HTC) to be attained, that is,

large amounts of processing capacity sustained over long time periods. The

resources, i.e. hardware, middleware and software, are large, dynamic and

heterogeneous. Tasks are usually loosely coupled or independent, and the

goal is to use processor cycles from idle machines. In an HTC the resource

manager is only aware of the current state of resources (all resources are

opportunistic), and therefore no future planning can be done.

 The most relevant mechanisms included in the Condor system are

[Con99]:

• Queue Management: When a user submits a job, it goes to the local job

queue in the submitting machine.

• Priority Schemes: There are priorities assigned to each user. Machines

are allocated to users according to that user’s priority. In addition, Condor

provides the user with the capability of assigning priorities to each

submitted job. These job priorities are local to each queue.

• Matchmaking: This enables requests for services and resource owners to

find each other. This is accomplished via the ClassAd mechanism, which

works in a similar way to newspaper classified advertising. All machines

in the Condor pool advertise their resource properties, such as available

RAM memory, CPU type, CPU speed, operating system, current load

average and other properties, into a “resource offer” ad. In the same way,

when submitting a job, the “resource request” ad contains the required set

of resources to run the job. Condor matches resources and requests

thereby satisfying both parts.

• Checkpointing: Condor only uses idle machines to compute jobs. If the

user returns when his machine is being used by a Condor job, the job

being executed there leaves that machine. This job is checkpointed, i.e.

 44

all the work it has already performed is saved, so the job can be moved

onto another machine and continue executing in the new allocated

machine. Checkpointing avoids waste of computational resources, and is

the base for supporting dynamic process migration and fault tolerance.

Checkpointing has certain limitations, such as not being able to be used in

message-passing parallel applications, the process cannot use certain

system calls (fork for example), and processes are subjected to limitations

in the use of sockets.

• Remote I/O: Jobs executing on a remote site can access their local data,

that is, in the environment from which the job was submitted. This allows

crossing administrative domains. In order to use this service, users must

link their application with the Condor libraries.

• Flocking: This allows jobs to be executed on more than one pool. Users

would submit their jobs from their local machine, and if there are not

enough machines available in their pool, and if the authorization rights are

properly set, their jobs can be executed on remote pools.

• Enables management of dynamic resources (opportunistic ones). Condor

handles machines that are joining and leaving the pool of available

machines.

A machine belonging to a Condor pool could act as:

• Central Manager: There is only one Central Manager per pool. This

machine is the collector of information, and it is where the match between

resources and requests takes place.

• Execute Machine: This role corresponds to machines that will execute

jobs in the pool.

• Submit Machine: This role corresponds to machines allowed to submit

jobs in the pool.

 45

• Ckeckpoint Server: The pool may have a centralized point to store all the

ckecpoint files for the jobs submitted in the pool.

Most machines usually play more than one simultaneous role in a Condor

pool.

This functionality is implemented by means of five daemons

(condor_master, condor_startd, condor_starter, condor_schedd and

condor_shadow). These daemons and their interactions are shown in Figure

2-8, which depicts the situation of a pool with N machines plus a Central

Manager in which a job submitted on machine 2 is running on machine N:

Figure 2-8. Architecture of a Condor Pool.

• condor_master: This daemon is responsible for keeping the rest of the

Condor daemons running on each machine in the pool. It spawns the

other daemons, and if any of them crashes, it restarts them.

Central Manager

Negotiator Startd

 Collector Schedd

Machine 1

 Startd

 Schedd

Machine 2

 Startd

 Schedd

 Shadow

Machine N

 Startd

 Schedd

 Starter

 User Job Communication

Process spawn

 46

condor_master is executed on every machine in the pool, regardless of

the role each machine is playing. For the sake of simplicity, this daemon

is not shown in Figure 2-8.

• condor_startd: This daemon represents a resource, i.e. a machine

capable of running jobs. It advertises certain attributes concerning the

resources being used to match it with pending resource requests. It will

run on any machine of the pool that is able to execute jobs. When the

condor_startd is ready to execute a job, it spawns the

condor_starter.

• condor_starter: This program spawns the remote Condor job on a

given machine, and monitors it once it is running. When a job is

completed, condor_starter sends back any status information to the

submitting machine and exits.

• condor_schedd: This daemon represents resource requests to the

Condor pool. It will run on any machine that is able to submit jobs. When

a job is submitted, condor_schedd stores it in the “job queue”.

Condor_schedd advertises these jobs. Once one of these has been

matched with a given resource, it spawns a condor_shadow.

• condor_shadow: This program runs on the machine where a given

request was submitted, and acts as the resource manager for the request.

It handles remote system calls: any system call performed on the remote-

execute machine is sent over the network back to the condor_shadow,

which performs the system call locally, and the result is sent back to the

remote job.

• condor_collector: This daemon collects all the information about the

status of the pool. It only runs at the Central Manager.

• condor_negotiator: This daemon is responsible for all the

matchmaking within the system. It also only runs at the Central Manager.

 47

2.3.3 Overview of MW

MW [GK+00] is a programming framework, composed of a set of C++

abstract classes, which allows fast and easy development of master-worker

applications. With MW, users need not address issues such as fault

tolerance, while interprocess communication is simplified for users. In this

way, MW provides an API for implementing simple master-worker

applications. In this work, we have extended MW in order to support the

generalized master-worker model.

MW uses Condor as a resource manager. A resource manager in this

context includes: resource request and detection, infrastructure querying, fault

detection and remote execution.

 As regards communications, there are MW versions that perform

communications by using PVM, the file system and sockets. In this work,

MW was used with PVM [GB+94]. MW workers are independent jobs

spawned as PVM programs.

An application in MW has three base components: Driver, Tasks and

Workers. The Driver is the master, who manages a set of user-defined tasks

and a pool of workers. The Workers execute Tasks. To create a parallel

application, the programmer needs to implement some pure virtual functions

for each component.

Driver: This is a layer that sits above the program’s resource management

and message passing mechanisms. (Condor and PVM, respectively in the

implementation used). The Driver uses Condor services for getting machines

to execute the workers and to get information about the state of those

machines. It creates the tasks to be executed by the workers, sends tasks to

workers and receives the results. It handles workers joining and leaving the

computation and rematches running tasks when workers are lost. To create

the Driver, the user needs to implement the following pure virtual functions:

• get_userinfo(): Processes arguments and does initial setup.

 48

• setup_initial_tasks(): Creates the tasks to be executed by the workers.

• pack_worker_init_data(): Packs the initial data to be sent to the worker

upon startup.

• act_on_completed_task(): This is called every time a task finishes.

Task: This is the unit of work to be done. It contains the data describing the

tasks (inputs) and the results (outputs) computed by the worker. The

programmer needs to implement functions for sending and receiving this data

between the master and the worker. The functions are the following:

• pack_work(): Packs the work to be sent to the workers.

• unpack_work(): Unpacks the work to be done.

• pack_results(): Packs the results obtained.

• unpack_results(): Unpacks the results received.

Worker: This executes the tasks sent to it by the master. The programmer

needs to implement the following functions:

• unpack_init_data(): Unpacks the initialization data passed in the Driver

pack_worker_init_data() function.

• execute_task(): Computes the results for a given task.

Figure 2-9 shows a simplified view of the MW Driver and MW Worker that

includes the order in which the virtual functions completed by the user are

executed. Appendix C shows an example of the implementation of the virtual

function, corresponding to the Driver, Worker and Task for an image-thinning

application.

 49

Figure 2-9. MW virtual functions.

Applications running on top of MW are fault tolerant in the presence of the

failures of machines that run worker processes. If a worker does not finish a

task because it failed, the driver will re-send this task to other available

worker. In order to make computations reliable with respect to driver failures,

 Driver
 main {
 get_userinfo();
 setup_initial_tasks();
 while (not all tasks executed) {
 receive (&message);
 switch (message) {
 case INIT_WORKER:
 pack_worker_init_data();
 case RESULTS:
 unpack_results(&readyTask);
 act_on_completed_task();
 }
 pack_work(&nextTask);
 send(); // nextTask }}

Worker1
main {
 send (INIT_WORKER);
 unpack_init_data();
 while (not END) {
 receive(); // task
 unpack_work(&task);
 execute_task();
 pack_results(&task);
 send (RESULTS);}}

WorkerN
main {
 send (INIT_WORKER);
 unpack_init_data();
 while (not END) {
 receive(); // task
 unpack_work(&task);
 execute_task();
 pack_results(&task);
 send (RESULTS);}}

 50

users can implement functions for writing and reading the state contained in

the application master and tasks. This constitutes checkpointing and is

performed in a user-defined frequency.

Figure 2-10. MW components.

With respect to task scheduling the Driver internally manages a list of

workers and certain lists of tasks. Figure 2-10 depicts a Driver, 3 Workers and

8 Tasks (T1, T2, ..., T8). The ToDo list contains the tasks that are ready to be

executed. The Done list contains the tasks that have already been executed,

and the Running list contains the tasks that are currently being executed.

Task scheduling is performed by assigning the first task in the ToDo list to the

first idle worker in the worker list. In the Driver, the user can specify the way

the task list will be ordered. By default, the worker list is ordered by using the

KFLOPS information, provided in our case by Condor. The user can also

specify a benchmark task to be executed on each worker when it joins the

computation. If this is carried out, machines will be ordered by the benchmark

factor.

 Driver

 Worker2
T2

 Worker1
T4

 Worker3
T5

To Do T8T7T6 ...

T5T2 T4Running

T1 T3Done Global
Data

Wid1
Wid2

Wid3

 51

2.4 Performance Model for Master-Worker Applications on
Opportunistic Environments

In the case of master-worker applications, the overhead incurred in

discovering and allocating new resources can be significantly alleviated by not

releasing the resource once the task has been completed. Workers will be

kept alive at the resource, waiting for a new task. However, by doing so, an

undesirable scenario may arise in which some workers may be idle while

other workers are busy. This situation will result in a poor utilization of the

available resources in which all the allocated workers are not kept usefully

busy and, therefore, application efficiency will be low. In this case, efficiency

may be improved by restricting the number of allocated workers.

If we consider execution time, a different criterion will guide the allocation of

workers as the more workers allocated for the application the lower its total

execution time. The speedup of the application then directly depends on the

allocation of as many workers as possible.

In general, the execution of a master-worker application implies a trade-off

between the speedup and the efficiency achieved. On the one hand, our aim

is to improve the speedup of the application as new workers are allocated. On

the other hand, we also want to achieve high efficiency by keeping all the

allocated workers usefully busy.

In this work we consider the problem of maximizing the speedup and

efficiency of a master-worker application through both the allocation of the

number of processors on which it runs and the scheduling of tasks to

processors during runtime.

Scheduling strategies are evaluated by measuring the efficiency and total

execution time of the application.

Resource efficiency (E) for n workers is defined as the ratio between the

amount of time workers spent doing useful work and the amount of time

workers were able to perform work.

 52

n: Number of workers.

Twork,i: Amount of time that worker i spent doing useful work.

Tup,i: Time elapsed since worker i is alive until it ends.

Tsusp,i: Amount of time that worker i is suspended, that is, when it cannot do

any work for the application.

Execution Time (ETn) is defined as the time elapsed from when the

application begins its execution until it finishes.

 ET = Tfinish - Tbegin

Tfinish,n: Time of the ending of the application, measured as the time at

which the master finishes.

Tbegin,n: Time of the beginning of the application, measured as the time at

which the master begins.

In agreement with [EZL89], we view efficiency as an indication of benefit

(the higher the efficiency, the higher the benefit), and execution time as an

indication of cost (the higher the execution time, the higher the cost). The

implied system objective is to achieve the efficient usage of each processor,

while taking into account the cost to users. It is important to know, or at least

to estimate, the number of processors that yield the point at which the ratio

between execution time and efficiency is minimized, that is, optimized. This

would represent the desired allocation of processors to each job.

∑ ∑

∑

= =

=

−
= n

i

n

i
isuspiup

n

i
iwork

TT

T
E

1 1
,,

1
,

 53

More formally, we define the Execution-Efficiency Ratio as:

)(Re
)()(

iciencysourceEffi
iimeExecutionTiEER =

EER(i): Execution-Efficiency Ratio for i machines.

Execution Time (i): Application execution time when i machines are used.

Resource Efficiency (i): Efficiency achieved when i machines are used.

Releasing under-utilized processors could be beneficial both for the whole

system and for the particular user. From the system perspective, released

processors could be allocated to other users that, in turn, will improve overall

cluster throughput. A particular user will also benefit because cluster job

managers normally make use of priority and aging mechanisms in their

allocation policies. Every user has a priority and the job manager uses that

priority to directly decide how many resources are going to be allocated to that

given user. The better the priority, the more resources the user will get. The

aging mechanism assigns a lower priority to users when they have already

been allocated resources for a long time. This mechanism will ensure that

resources will be fairly allocated to all users through time. Therefore, user

priority for allocating resources will be more negatively affected when their

applications are running on a set of under-utilized resources.

2.5 Challenges of Master-Worker Applications Running on
Opportunistic Environments

Up to now, we have seen both the programming model, the execution

environment and the performance model that we have adopted in this work.

Despite the conceptual simplicity of the master-worker paradigm, it presents

some interesting challenges. Some challenges are related to functioning such

as master and worker fault tolerance. If either the master or any worker fails

the application will either never finish or will produce incorrect results. The

 54

failure of a worker can be detected and the task that it was executing can be

re-executed on another worker, increasing the execution time of the whole

application. Master failures can be handled by periodically checkpointing the

whole master-worker application, which can be very hard to perform,

depending on the exact state of the application that we wish to store. For

example, it is easier to save the state of tasks already executed, and the

pending task list, than to save the exact state of every component

participating in the computation. Fault tolerance aspects are partially covered

by MW.

There are many other challenges related to improving the performance of

master-worker applications running on opportunistic environments:

• The role played by the master: This may or may not execute certain tasks;

or in the case of a hierarchy, this could be a worker from another master.

• If messages are large in comparison to task computation time, the way

tasks are sent to workers may depend on the network considered. Packs

of tasks could be sent to workers located far away (belonging to a

computational grid, for example), in order to minimize the network

overhead. If workers are close to the master, a possibility is to send a task

as soon as one is ready to be executed and as soon as there is a worker

ready to execute them.

• Task scheduling: The way in which tasks are assigned to workers for their

execution. This offers many possibilities, including random, FIFO, or

policies that use a predictive model of task execution time. The amount of

information used in this prediction differs throughout policies.

• Selecting the number of workers to participate in a computation. Some of

the possibilities are:

− One worker per task.

− One worker per machine allocated by the master.

− A variable number of workers, depending on the behavior of the tasks.

 55

• The impact of preemption: In an opportunistic environment machines can

appear (resource occupied by their owner can become available without

any advance notice) and disappear (available resources can be reclaimed

at any time). When users reclaim their machine, the worker executing a

task there has to leave this machine immediately. This is a special case of

worker failure (as it is not longer available), and the performance of the

whole application will be affected.

• Dealing with heterogeneous machines, from the point of view of both

reliability and performance. Even homogeneous machines could

demonstrate different performance due to the load they have at a particular

moment. Both the assignment of tasks to workers, and the number of

worker that should be used, depends on the relative performance of the

workers.

From all the challenges described above, we have studied in this work the

task scheduling problem, the selection of the number of workers that will

participate in the execution of the master-worker application and also the

impact of machine reclaim. Specifically, our study is focused on giving

answers to the following questions:

− How can tasks be assigned to workers? When the execution time

incurred by the tasks of a single iteration is not the same, the total

time incurred in completing a batch of tasks strongly depends on

the order in which tasks are assigned to workers. Theoretical work

has proved that simple scheduling strategies based on list-

scheduling can achieve good performance [Hall97].

− How many workers should be allocated to the application? A simple

approach would consist of allocating as many workers as tasks are

generated by the application, at each iteration. However, this policy

will generally result in poor resource utilization (low efficiency)

because some workers may be idle if they are assigned a short

 56

task while other workers may be busy if they are assigned long

tasks.

− How is the whole performance of an application affected by a

machine leaving the computation, and what can be done to

alleviate this effect?

 Both homogeneous and heterogeneous environments were considered,

and we also assumed that communications take much less time than

computations.

Taking into account the layered structure of a Resource Management

System (see Figure 2-7),

Figure 2-11 depicts the extended version of such a Resource

Management System according to our goals. In italics we show the particular

elements that this work is focused on, and its location within the layered

structure of the Resource Management System, in particular scheduling,

dynamically determining and adjusting the number of workers involved in a

computation and finally the strategies to alleviate the impact of machine

reclaim.

The scheduling agent determines the way resources obtained will be used

by the application tasks. The Adjust Component determines the number of

machines suitable for getting good resource usage and reasonable execution

time. Finally, the Replication Agent provides the mechanisms for reducing the

impact produced when a machine participating in a computation is lost.

 57

Figure 2-11. Extended layers of an RMS.

claiming

resource
access

runtime RM
services

runtime RM
services

matches

Global Resource Management

Interrequest RM

Intertask RM

Access Control

Local RM

Resource

Interrequest RM

Intertask RM

Access Control

Local RM

Resource

Application layer

Owner layer

Local RM layer

System layer

Customer layer

Application RM layer

runtime RM
requirements

runtime RM
requirements

resource
requests

matches resource
offers

local system
services

Application tasks

Scheduling Agent

Adjust Component

RM library

Replication Agent

Application tasks

Scheduling Agent

Adjust Component

RM library

Replication Agent

 58

 59

Master-Worker Programming Model
and Problem Description

CHAPTER 2 ... 29

2.1 INTRODUCTION ... 31
2.2 MASTER-WORKER PROGRAMMING MODEL.. 32

2.2.1 Simple Master-Worker Model .. 32
2.2.2 Generalized Master-Worker Paradigm .. 36

2.3 PARALLEL EXECUTION ENVIRONMENT FOR MASTER-WORKER APPLICATIONS
.. 38

2.3.1 General Structure of Opportunistic Resource Management Systems... 40
2.3.2 Condor Overview.. 42
2.3.3 Overview of MW... 47

2.4 PERFORMANCE MODEL FOR MASTER-WORKER APPLICATIONS ON
OPPORTUNISTIC ENVIRONMENTS .. 51

2.5 CHALLENGES OF MASTER-WORKER APPLICATIONS RUNNING ON
OPPORTUNISTIC ENVIRONMENTS .. 53

 60

Chapter 3
Scheduling of Master-Worker Applications

on Homogeneous and Dedicated Clusters

Abstract

This chapter first states the scheduling problem for
master-worker applications on a cluster of dedicated
homogenous machines. Then the Random & Average
scheduling strategy is introduced and studied by
simulation through comparing it with other scheduling
policies.

 61

3.1 Introduction

In chapter 2, we introduced the programming model, the execution

environment and briefly described the problems to be studied. This chapter

focuses on the scheduling of master-worker applications on dedicated and

homogeneous clusters, which constitute our departure point. In the following

chapters this formulation will be extended.

The scheduling problem in question is equivalent to the minimum

makespan problem, for which multiple solutions exist in the literature. Most of

these solutions have the main drawback of starting from very simple

assumptions where, for example, the execution time of the tasks are known a

priori, and do not have any variability. In our study, we will adopt

assumptions, such as the variability of the task execution times, that bring the

study closer to more realistic situations.

First, the Random & Average proposed scheduling policy is introduced.

This scheduling strategy dynamically measures task execution times to

control the assignment of tasks to workers. The effectiveness of the proposed

strategy was assessed by means of simulation experiments in which several

scheduling policies were compared. In the comparison, we considered a large

set of different factors in modeling the behavior of master-worker applications.

From these experiments, we have observed that the proposed strategy

obtains similar results to other strategies that use a priori information about

the application.

3.2 Problem Statement

The way in which tasks forming a parallel application are assigned to

machines to be executed, and the number of machines that are to be used

have a significant influence on both the execution time and the efficiency

 62

exhibited by the application. Let us suppose we have four tasks with different

execution times, as shown in Figure 3-1:

Figure 3-1. Task execution times.

If we decide to have as many machines (that is, workers) as tasks, we

obtain an efficiency of 0.56 and an execution time of 8 units, as shown in

Figure 3-2.

Figure 3-2. Assigning the tasks using 4 workers.

By choosing a different number of machines, two for example (see Figure

3-3), we get the maximal efficiency, namely 1, and an execution time of 9

units, that is, slightly larger than that obtained with as many machines as

tasks.

8

5
4

1

Efficiency = 0.56
Execution Time = 8

8

5
4

1

3
4

7

 63

Figure 3-3. Assigning the tasks using 2 workers.

Now let us see an example of how the order in which tasks are assigned to

machines (or workers) for execution also affect both execution time and

efficiency. Consider the same four tasks for

Figure 3-1 and two machines. If tasks are assigned carelessly, as in Figure

3-4a, the first worker is idle 6 units of time, therefore efficiency is 0.75. In the

second case, shown in Figure 3-4b, the amount of time workers spent doing

useful work is equal to the amount of time workers had been able to execute

work, therefore efficiency is 1, and the execution time is 9 units.

(a) (b

(b)

(c)

(d)

(e)

 (a) (b)

Figure 3-4. Assigning tasks to workers (a) carelessly (b) carefully.

8

5

4

1

Efficiency = 1
Execution Time = 9

5
4

1

8
6

Efficiency = 0.75
Execution Time = 12

8

5

4

1

Efficiency = 1
Execution Time = 9

 64

In the master-worker model we consider, the exact execution time of the

tasks is not known in advance. There is variability in task execution times

from one cycle to another. Tasks will be executed for several cycles, until the

completion of the problem. This end condition can be met after a fixed number

of cycles, or until a convergence criterion is reached. There is one worker

running per machine, so when we decide the number of workers to be

considered for executing the application, we are deciding the number of

machines. Both terms are used interchangeably. In this chapter, we consider

clusters of homogeneous dedicated machines. In the next chapter,

heterogeneous machines are considered, and in chapter 5, the assumption of

dedicated machines is relaxed.

In next subsection, the scheduling problem is more formally introduced.

The problem of determining the number of workers or machines is studied in

chapter 4.

3.2.1 Scheduling Problem

The basic scheduling problem consists of assigning a set of n jobs

J1, J2, ..., Jn to a set of m identical machines M1, M2, ...Mm [Gra66]. Each

job Jj must be processed without interruption for a time pj > 0 on one of the m

machines, each of which can process, at most, one job at a time. The

objective is to reduce the total execution time, that is, minimizing makespan in

an identical parallel machine environment. This well-known minimum

makespan problem is NP-hard [Hoc97]. This means that there is no known

efficient algorithm for solving the problem. Usually NP-hard problems are

treated with heuristics.

Heuristics correspond to simple polynomial algorithms, which provide

solutions quickly. The quality of the solution provided is bounded by using the

concept of approximation algorithms [GGU72].

An approximation algorithm is polynomial, and is evaluated by the worst-

case possible relative error over all possible instances of the problem. An

 65

algorithm is δ-approximation for a minimization problem if for every instance

of that problem, it delivers a solution that is at most δ times the optimum. The

closer δ is to 1, the better the solution.

Returning to the scheduling problem, different heuristics have been

developed [Gra66]:

• The heuristic of assigning any job as soon as any machine becomes

available, that is, assigning a random job, is a 2-approximation

algorithm. This strategy is known as List Scheduling.

• LPTF (Largest Processing Time First): The heuristic that assigns the

longest-remaining job to the first available machine is a 4/3-

approximation algorithm.

• The complementary strategy, known as SPT assigns jobs from the

shortest to largest processing times. This rule is optimal when

minimizing the average for all job completion times.

3.2.2 Scheduling in Clusters of Distributed Machines

In load-sharing environments, where applications share resources, both

applications and system components must be scheduled to achieve good

performance. In [FK99] a classification of schedulers that contemplates

different performance goals is presented:

• High-Throughput Schedulers: These are concerned with improving the

performance of the system by optimizing the number of jobs that it

executes in large amounts of time.

• Resource Schedulers: Their main goal is to coordinate access to a

particular resource. This can be done by satisfying all the requirements

to the resource (fairness criteria), or by optimizing the amount of

resources used. In chapter 4, an algorithm for adjusting the number of

workers to a particular master-worker application is presented. It is a

 66

resource scheduler with the goal of achieving good efficiency, that is,

good usage of the machine resource.

• High-Performance Schedulers: These promote the performance of

individual applications by optimizing performance measures such as

minimal execution time, speedup, etc. In section 3.3, a high-

performance scheduling policy is presented, with the objective of

minimizing application execution time on the available machines. The

following subsection contains details about high-performance

schedulers.

3.2.3 High Performance Schedulers

High-Performance schedulers determine an assignment of tasks, ordered

in time, based on the rules of a scheduling policy, with the goal of optimizing

application performance.

The first step for a high-performance scheduler for applications that are

executed on load-sharing environments consists of selecting a set of

resources on which to schedule application tasks. The number of machines

that will be required of the resource discover is determined in the next

chapter. The goal is to obtain a good efficiency without damaging execution

time. Once the application has obtained machines, the scheduler then

assigns application tasks to the computing resources.

3.3 Scheduling Policy

A considerable collection of scheduling algorithms has been proposed, with

a practically infinite number of variants. Considering a homogeneous and

dedicated environment, schedulers can be classified as follows:

 67

• With precise a-priori information: Schedulers that use exact

information on the execution time of the tasks or jobs before they are

executed. These can be subdivided into:

• Adaptive: The information used is obtained for each particular set

of tasks. LPTF is an example of a strategy that uses information

on task execution time to create a list of tasks sorted from the

largest to the smallest. With this model, in our master-worker

model with cycles, the execution time of the tasks should be

known in advance before the execution of each cycle.

• Non-Adaptive: In this case, the information is obtained once and

used at each cycle. An example of this is when users supply a list

with the order in which they want tasks to be executed.

• Without precise a-priori information: In this case, the scheduler does

not have any a-priori information about task execution times. These

are subdivided into:

• Adaptive: These strategies use information collected and

processed at execution time. They attempt to predict the behavior

of tasks in the next iterations, taking into account the execution

time obtained in previous iterations. The scheduling strategy that

was simulated and compared with other policies falls into this

category.

• Non-Adaptive: The scheduler acts without considering the results

obtained in previous executions. Random is an example of these

strategies.

The kind of master-worker applications we are considering has a high

degree of predictability, even though a wider set of cases was considered in

the simulation study. It is possible to take advantage of this predictability in

deciding the allocation of tasks to workers.

 68

The proposed adaptive without precise a-priori information scheduling

strategy employs a heuristic-based method that uses historical data on the

behavior of the application. In particular, it dynamically collects statistics on

the average execution time of each task and uses this information to

determine the order in which tasks are assigned to processors. Tasks are

sorted in decreasing order of their average execution time. They are then

assigned to workers according to that order. At the beginning of the

application execution, as no data is available regarding the average execution

time of tasks, tasks are assigned randomly. This adaptive strategy has been

called Random & Average, although the random assignment is only carried

out once, when no historical data is yet available.

The next section presents the evaluation of the Random & Average policy

by simulation, focusing on clusters of homogeneous machines that are

available to the application the whole time.

3.4 Simulation Study

In this section, the performance of several scheduling strategies are

evaluated with respect to the efficiency and execution time obtained when

applied to scheduling master-worker applications on homogeneous systems.

As we have stated in previous sections, we focus our study on a set of

applications that are supposed to exhibit a highly regular and predictable

behavior. We will test different scheduling strategies including both non-

adaptive strategies that do not take into account any runtime information and

adaptive strategies that try to learn from application behavior.

As a principal result from these simulation experiments, we aim to obtain

information about how the studied strategies perform on average, and to

ascertain certain bounds for the worst-case situations. For these reasons, it

has been considered throughout the simulations that the number of

processors is available over the whole application execution time (i.e. this

 69

would be the ideal case in which no machine suspensions occurs). This only

implies a change in the expression used to evaluate the efficiency from that

presented in chapter 2:

n being the number of workers,

Twork,i being the amount of time that worker i spent doing useful work.

Tup,i being the time elapsed since worker i is alive until it ends.

 In a real scenario, if worker suspensions occurs, the efficiency of all

policies will worsen, as will be shown in chapter 4.

3.4.1 Description of the Policies

The set of scheduling strategies used in the comparison were the following:

• LPTF (Largest Processing Time First): This is a pseudo-optimal

policy used for comparison purposed, easy to implement and fast in

execution time. For each iteration, this policy first assigns the tasks

with largest execution time. Before an iteration begins, tasks are

sorted decreasingly by execution time. Then, each time a worker is

ready to receive work, the master sends the next task on the list, that

is, the task with the largest execution time. It is well known that LPTF

is at least 4/3 of the optimum [Hall97]. This policy needs to know the

exact execution time of the tasks in advance, which is not generally

possible in a real situation, therefore it is only used as a sort of upper-

bound in the performance achievable by the other strategies.

• LPTF on Expectation: This works in the same way as LPTF, but tasks

are initially sorted decreasingly by the expected execution time. In each

∑

∑

=

==
n

i
iup

n

i
iwork

T

T
E

1
,

1
,

 70

iteration, tasks are assigned in that predefined order. If there is no

variation in the execution time of the tasks, the behavior of this policy is

the same as LPTF. This policy is non-adaptive, and represents the

case in which the user has an approximately good knowledge of the

application behavior, and wants to control the execution of the tasks in

the order that he specifies. Obviously, it is possible for a user to have

an accurate estimation of the distribution of times between the

application tasks, but in practice, small variations will affect the overall

efficiency because the order of assignment is fixed by the user at the

beginning.

• Random: For each iteration, each time a worker is ready to get work,

a random task is assigned. This strategy represents the case of a non-

adaptive method that does not know anything about the application. In

principle, it would obtain the worst performance of all the strategies

presented here, therefore it will be used as a lower bound in the

performance achievable by other strategies, as this strategy is a 2-

approximation algorithm.

Table 3-1 shows a summary of the strategies considered and their main

characteristics:

 Strategy Dynamics
 Adaptive Non-Adaptive

Accurate LPTF LPTF on
Expectation Information

a-priori Non-accurate Random &
Average Random

Table 3-1. Classification of the studied scheduling strategies

3.4.2 Simulation Framework

Figure 3-5 shows a simplified block diagram of the simulation framework

implemented in this study. The simulator models a cluster of machines or

 71

processors (workers) with equal performance, a master-worker application

and the scheduling algorithms previously mentioned.

Figure 3-5. Simulation framework.

A master-worker application submitted to the cluster of workers consists of

a Basic Batch of Tasks with a fixed distribution of times (or Workload). We

simulated the execution on L iterations of the master-worker application. For

each iteration, an Actual Batch of Tasks was generated by applying a certain

variation (D) of time to each basic batch task. Tasks were scheduled to

Basic Batch
of Tasks

Task Times
Generator

• Variation (D)
• Iterations (L)

Sorted List of
Tasks

Number of
 Workers

Efficiency &
 Execution time

Task
Execution
Times

LPTF

LPTF on
Expectation

Random &
AverageRandom

Number of
Tasks

Actual Batch
of Tasks

Workload
Distribution

(W)

SIMULATION
ENGINE

 72

workers according to the order of the Sorted List generated by each policy.

The information used to generate the list was different in every case. The

LPTF policy used the execution times derived from the Actual Batch (which

corresponds to having a perfect knowledge of task execution times). The

LPTF on Expectation strategy used the task times derived from the Basic

Batch, i.e. it generated a single list that was used for the L iterations. Random

& Average collected the task execution times once the execution of the Actual

Batch was simulated, averaging task times and sorting the list according to

these averages. The Random strategy generated the list in a random way for

each Actual Batch. All tasks in the Sorted List were assigned to processors,

as they become idle. Once a processor was assigned a task, it was marked

as busy for a simulation time equal to the time of the assigned task. The

execution of the Actual Batch was simulated for all scheduling policies before

a new Actual Batch was generated. As an overall result from the simulation of

a given master-worker application with a given scheduling policy, we obtained

overall execution time and the efficiency for a given Basic Batch.

All described scheduling policies have been systematically simulated, to

obtain efficiency and execution time, with all the possible number of workers

ranging from 1 to as many workers as numbers of tasks, considering the

following factors:

• Workload (W): The total amount of work (TotalW) is divided

throughout the number of tasks that compose the batch, with the

following scheme: 20% of the tasks contain W% of the total load, and

the remaining 80% of the tasks contain (TotalW-W)% of the load.

Workload values of 30%, 40%, 50%, 60%, 78% 80% and 90% were

considered. A 30% workload would correspond to highly-balanced

applications in which nearly all the tasks exhibit a similar execution

time. On the contrary, a 90% workload would correspond to

applications in which a small number of tasks are responsible for the

largest amount of work. Moreover, the 20% tasks can have similar or

different execution times. The same happens to the other 80% of tasks.

 73

For each workload value, we have undertaken simulations with the four

possibilities, shown in Table 3-2:

20% tasks Remaining
80% of tasks

Notation in
Figures (i-i)

Similar (0) Similar (0) 0-0

Similar (0) Different (1) 0-1

Different (1) Similar (0) 1-0

Different (1) Different (1) 1-1

Table 3-2. Distribution of task times for a given workload.

Figure 3-6 shows the absolute execution times and cumulative execution

times for 30 tasks with a workload of 60%, considering the 4 possibilities of

Table 3-2. The absolute and cumulative execution times for a workload of

30% and 90% can be found in appendix A. The cumulative execution time for

n machines shows the work percentage carried out when executing the n first

tasks, sorted according the order in which they were generated.

(a)

 74

(b)

(c)

(d)

Figure 3-6. Workload distribution and workload cumulative percentages. (a) 60% 0-0,
(b) 60% 0-1, (c) 60% 1-0, (d) 60% 1-1.

• Iterations (L): This represents the number of batches of tasks that are

will be executed. The following values have been considered: 10, 35,

50 and 100.

 75

• Variation (D): From the workload factor, we determine the base

execution times for the tasks. For each iteration a variation is then

applied to each task’s base execution time. Variations of 0%, 10%,

30%, 60% and 100% have been considered. When a 0% variation was

used, the times of the tasks were constant over the different iterations.

This case would correspond to very regular applications where task

execution times are nearly the same in successive iterations. When a

100% variation was used, tasks exhibit significant changes in their

execution time in successive iterations, corresponding to applications

with highly irregular behavior. With a 100% variation, a task may

double its execution time or become very small (but never have an

execution time of 0, which would mean that this task disappears).

• Number of Tasks (T): We have considered applications with 30, 100

and 300 tasks. These represent systems with a small, medium or large

amount of tasks, respectively.

For each simulation scenario (fixing a certain value for workload, iterations

and variation) efficiency and execution time have been obtained using all the

possible values of workers from 1 to Number of Tasks.

3.4.3 Simulation Results

Although tests for all the commented values have been conducted, only

those results that are the most relevant are presented in this section. The

results for 30 tasks will be illustrated with figures, since they prove to be

representative enough for the results obtained with a larger number of tasks.

Moreover, those results with 30%, 60% and 100% deviation are emphasized,

representing high, medium and low degrees of regularity. In real applications

100% deviation is not expected, but it nevertheless allows us to evaluate the

strategies under the worst case scenario.

 76

In the following subsections, some relevant result figures for both efficiency

and execution time are presented. The X-axis always contains the number of

workers. The Y-axis contains the efficiency and the execution time for

efficiency figures and execution time figures, respectively. Five values (W, i-i,

D, T and L) appear at the top of each graph. W stands for the workload, i-i

describes the similarity of tasks according to Table 3-2, D stands for variation

applied to task execution times at each iteration, T stands for the number of

tasks and L for the number of iterations (cycles). We review the most relevant

results obtained from the simulations. Appendix B presents the simulation

results considering all the factors taken in account.

3.4.3.1 Effects on Efficiency
• Effect of workload (W) and Task Size (i-i): Figures 3-7 through 3-9

show the effect of varying the workload, considering 30% (Figure 3-7),

60% (Figure 3-8) and 90% (Figure 3-9) workload. In all cases, deviation

was 0%, and the four possibilities for the execution times of all the largest

tasks, as well as for all the smallest tasks, were considered (0-0, 0-1, 1-0

and 1-1). As expected, for large workloads, the number of workers that

can usefully be busy is smaller than for small workloads. Moreover, when

the workload is higher, efficiency declines faster. A large workload also

implies a smoother curve in efficiency. It is important to point out that, in

all cases, there is a point from which efficiency continuously declines.

Before that point, small changes in the number of workers may imply

significant and contradictory changes in efficiency, i.e. adding one worker

may imply an improvement or a worsening in efficiency. In general, the

Random policy tends to be insensitive to this change, as it decays in a

constant way. There is an exception in the case of a workload of 90%,

when all the largest and smallest tasks are of the same size (90% 0-0).

For the other policies, this feature is stronger.

With respect to the effect of task size (i-i), it is observed that the 20% of

tasks executing the w% of the total work determine when the drop of

 77

efficiency begins. If they have the same execution time, the decay in

efficiency is delayed. For example, in the case of 30% 0-1 (Figure 3-7b),

efficiency begins to drop after 19 workers, while in the case of 30% 1-0

(Figure 3-7c), efficiency drops after 12 workers. The remaining 80% of

the tasks have less influence, basically determining the smoothness of the

efficiency curve. If the remaining 80% of the tasks have the same

execution times, the efficiency curve has more peaks.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

Ef
fic

ie
nc

y

Machines

EFFICIENCY. 30% 0-0 D=0% T=30 L=35

LPTFRandomLPTF on ExpRand & Avg

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

Ef
fic

ie
nc

y

Machines

EFFICIENCY. 30% 0-1 D=0% T=30 L=35

LPTFRandomLPTF on ExpRand & Avg

 (a) (b)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

Ef
fic

ie
nc

y

Machines

EFFICIENCY. 30% 1-0 D=0% T=30 L=35

LPTFRandomLPTF on ExpRand & Avg

 (c) (d)

Figure 3-7. Effect of varying workload percentage and task size for a W=30%.
(a) 30% 0-0, (b) 30% 0-1, (c) 30% 1-0, (d) 30% 1-1.

 78

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

Ef
fic

ie
nc

y

Machines

EFFICIENCY. 60% 0-0 D=0% T=30 L=35

LPTFRandomLPTF on ExpRand & Avg

 (a) (b)

 (c) (d)

Figure 3-8. Effect of varying workload percentage and task size for a W=60%.
(a) 60% 0-0, (b) 60% 0-1, (c) 60% 1-0, (d) 60% 1-1.

 (a) (b)

 79

 (c) (d)

Figure 3-9. Effect of varying workload percentage and task size for a W=90%.
 (a) 90% 0-0, (b) 90% 0-1, (c) 90% 1-0, (d) 90% 1-1.

• Effect of the number of iterations (L): The number of iterations (L) over

which tasks are executed does not significantly affect efficiency for an

adaptive strategy such as Random & Average. The other three policies

are not affected at all by the number of iterations, as random does not use

any information about previous iterations, and LPTF and LPTF on

expectation use a-priori information that does not depends on the number

of iterations. Figures 3-10 through 3-12 show the effect of varying the

number of iterations, considering 30% (Figure 3-10), 60% (Figure 3-11)

and 90% (Figure 3-12) workloads and 100% deviation. This is the case

when the effect of the number of iterations is most significant. As can be

seen when the number of iterations varies from 10 to 35, the gain in

efficiency is less than 5%. When the number of iterations was greater

than 35, no significant gain in efficiency was observed. The proposed

strategy therefore achieves good efficiency without needing a large

number of iterations to acquire precise knowledge of the application.

 80

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

Ef
fic

ie
nc

y

Machines

EFFICIENCY. 30% 1-1 D=100% T=30 L=10

LPTFRandomLPTF on ExpRand & Avg

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

Ef
fic

ie
nc

y

Machines

EFFICIENCY. 30% 1-1 D=100% T=30 L=35

LPTFRandomLPTF on ExpRand & Avg

 (a) (b)

Figure 3-10. Effect of varying the number of iterations for a W=30%. (a) L=10 (b) L=35

 (a) (b)

Figure 3-11. Effect of varying the number of iterations for a W=60%. (a) L=10 (b) L=35

(a) (b)

Figure 3-12. Effect of varying the number of iterations for a W=90%. (a) L=10 (b) L=35

 81

• Effect of the variation (D): Figures 3-13 through 3-16 show the effect

of varying the deviation for policies of Random (Figure 3-13), Random

& Average (Figure 3-14), LPTF (Figure 3-15) and LPTF on Expectation

(Figure 3-16), in the case of 30% and 90% workload. The presented

graphs show the efficiency values for different deviation values. The X-

axis contains deviation, with the Y-axis containing efficiency. Each

curve shows what happens to efficiency by considering 1, 5, 10, 15, 30

and 30 workers, always having 30 tasks per iteration. This type of chart

simplifies an understanding of the effect of variation, because a lower

number of charts are needed. It is observed that when deviation is

higher, efficiency declines more. But it is worth noting that it does not

decline abruptly even when deviation is 100%. When deviation is

increased, efficiency for the Random & Average policy declines less

than that for the Random policy.

0

0.2

0.4

0.6

0.8

1

0 10 30 60 100

Ef
fic

ie
nc

y

Standard Deviation

Random W=30% 1-1 T=30 L=35

1 Worker5 Workers 10 Workers15 Workers 20 Workers30 Workers
(a) (b)

Figure 3-13. Effect of varying deviation (D) for the Random policy. (a) W=30%
 (b) W=90%

 82

0

0.2

0.4

0.6

0.8

1

0 10 30 60 100

Ef
fic

ie
nc

y

Standard Deviation

Rand&Avg W=30% 1-1 T=30 L=35

1 Worker5 Workers 10 Workers15 Workers 20 Workers30 Workers
(a) (b)

Figure 3-14. Effect of varying deviation (D) for the Random & Average policy. (a)
W=30% (b) W=90%

(a) (b)

Figure 3-15. Effect of varying deviation (D) for the LPTF policy. (a) W=30% (b)
W=90%

 (a) (b)

Figure 3-16. Effect of varying deviation (D) for the LPTF on Expectation policy.
(a) W=30% (b) W=90%

 83

3.4.3.2 Effects on Execution Time
In all the graphs, execution time is measured in terms of the relative

differences with the execution time for the LPTF policy. The X-axis contains

the number of machines or workers, with the Y-axis containing the percentage

difference for execution time, with respect to the LPTF policy. For example,

the point (X=9, Y=30), for the Random policy, means that with 9 workers,

Random is 30% worse than LPTF.

• Effect of workload (W) and task size (i-i): Figures 3-17 through 3-19

show the effect of varying the workload, considering 30% (Figure 3-17),

60% (Figure 3-18) and 90% (Figure 3-19) workload. In all cases,

deviation was 0%, and we considered the four possibilities for the

execution times, both for all the largest tasks as well as for all the

smallest tasks (0-0, 0-1, 1-0 and 1-1). As can be seen, the Random

policy always exhibits the worst execution time, particularly when an

intermediate number of workers are used. Random & Average and

LPTF on Expectation achieve an execution time comparable to the

LPTF execution time.

In general, the pattern of the graphs is the following: when adding

workers, the percentage difference with respect to the LPTF policy

grows up to a certain point (where this difference is maximal), and then

begins to decrease. The workload determines the number of workers

associated with this point. With 90% 1-1 workload, this point

corresponds to 5 workers, while with 30% 1-1, this point corresponds to

14 workers. The lower the workload, the higher the number of workers

needed to reach this point.

With respect to the effect of task size (i-i), it is observed that the

remaining 80% of tasks determine the smoothness of the percentage

difference curve. If they have the same execution time, then peaks are

more notable. This effect is even stronger in the case of low

workloads.

 84

 (a) (b)

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

Ex
ec

ut
io

n
Ti

m
e

Machines

EXEC TIME. 30% 1-1 D=0% T=30 L=35

RandomLPTF on ExpRand & Avg

 (c) (d)

Figure 3-17. Effect of varying workload percentage and task size for a W=30%.
 (a) 30% 0-0, (b) 30% 0-1, (c) 30% 1-0, (d) 30% 1-1

 (a) (b)

 85

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

Ex
ec

ut
io

n
Ti

m
e

%

Machines

EXEC TIME. 60% 1-1 D=0 T=30 L=35

RandomLPTF on AvgRand & Avg

 (c) (d)

Figure 3-18. Effect of varying workload percentage and task size for a W=60%.
(a) 60% 0-0, (b) 60% 0-1, (c) 60% 1-0, (d) 60% 1-1

 (a) (b)

 (c) (d)

Figure 3-19. Effect of varying workload percentage and task size for a W=90%.
(a) 90% 0-0, (b) 90% 0-1, (c) 90% 1-0, (d) 90% 1-1

 86

• Effect of the number of iterations (L): As for efficiency, the number

of iterations (L) over which tasks are executed does not significantly

affect execution time for an adaptive strategy such as Random &

Average. Figures 3-20 through 3-22 show the effect of varying the

number of iterations, considering 30% (Figure 3-20), 60% (Figure 3-21)

and 90% (Figure 3-22) workload and 100% deviation. This is the case

when the effect of the number of iterations is the most significant. The

execution time for the Random & Average strategy with respect to

LPTF is slightly reduced when having a medium number of workers.

The proposed strategy obtains a good execution time without needing

a large number of iterations to acquire precise knowledge of the

application.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

Ex
ec

ut
io

n
Ti

m
e

Machines

EXEC TIME. 30% 1-1 D=100% T=30 L=35

RandomLPTF on ExpRand & Avg

(a) (b)

Figure 3-20. Effect of varying the number of iterations for a W=30%. (a) L=10 (b) L=35

(a) (b)

Figure 3-21. Effect of varying the number of iterations for a W=60%. (a) L=10 (b) L=35

 87

(a) (b)

Figure 3-22. Effect of varying the number of iterations for a W=90%. (a) L=10 (b) L=35

• Effect of the variation (D): Figures 3-23 through 3-26 show the effect

of varying deviation for the Random (Figure 3-23), Random & Average

(Figure 3-24), LPTF (Figure 3-25) and LPTF on Expectation (Figure

3-26) policies, in the case of 30% and 90% workload. The graphs

presented show the execution time values for different variation values.

The X-axis contains variation, whilst the Y-axis contains execution time.

Each curve shows what occurs to execution time when considering 1,

5, 10, 15, 30 and 30 workers, always with 30 tasks per iteration. It is

observed that when deviation is higher, execution time is greater,

although Random & Average and LPTF on Expectation achieve an

execution time comparable to the execution time of LPTF, even in the

presence of a high variation in the execution time of the tasks.

 (a) (b)

Figure 3-23. Effect of varying deviation (D) for the Random policy. (a) W=30%
 (b) W=90%

 88

0

20000

40000

60000

80000

100000

120000

0 10 30 60 100

Ex
ec

ut
io

n
Ti

m
e

Variation

RAND & AVG. W: 90% 1-1 T=30 L=35

5 Workers10 Workers 15 Workers20 Workers 30 Workers
 (a) (b)

Figure 3-24. Effect of varying deviation (D) for the Random & Average policy. (a)
W=30% (b) W=90%

 (a) (b)

Figure 3-25. Effect of varying deviation (D) for the LPTF policy. (a) W=30% (b)
W=90%

 (a) (b)

Figure 3-26. Effect of varying deviation (D) for the LPTF on Expectation policy.
(a) W=30% (b) W=90%

 89

3.4.4 Discussion

We now summarize the main results that have been derived from all the

simulations.

The number of iterations does not significantly affect either efficiency or

execution time, although the Random & Average strategy needs certain

iterations to learn about application behavior. The behavior of the policies was

basically affected by the variation of execution times of the tasks in different

iterations, by workload and by having significant differences among the

execution times for the 20% of the tasks executing the w% of the total work.

Table 3-3 shows the efficiency bounds obtained for the previously

described scheduling policies, always relative to LPTF policy. The first column

contains the upper bound that is never surpassed in 95% of cases. The

second column shows the upper bound for all cases, which always

corresponded to 30% 0-0 workload with D=100%, that is, tasks without

significant execution time differences and with high variance. As can be seen

in Table 3-3, both LPTF on Expectation and Random & Average in most

cases obtained an efficiency similar to that obtained by a policy such as

LPTF, which uses perfect information about the application. Even in the worst

case (scenarios in which all tasks have a similar execution time but a high

deviation (100%)) loss of efficiency for both strategies was 17%

approximately.

 Efficiency Bound
in 95% of cases

Worst Efficiency
Bound

Random 25,4 % 26,96 %

Random & Average 8,65 % 16,86 %

LPTF on Expectation 8,91 % 17,29 %

Table 3-3. Worst efficiency bounds for scheduling policies.

Similar results were obtained for execution time. Random & Average and

LPTF on Expectation never performed worse than 7% in more than 95% of

 90

cases. Only in the presence of high variations were the differences increased

to 16%, as is shown in Table 3-4.

 Efficiency Bound
in 95% of cases

Worst Efficiency
Bound

Random 29,46 % 35,7 %

Random & Average 7,16 % 16,24 %

LPTF on Expectation 6,85 % 12,33 %

Table 3-4. Worst execution time bounds for scheduling policies.

In 95% of cases, the execution time for the Random policy was always

between 25% and 30% worse than LPTF.

In the light of the simulations carried out, we can conclude that a simple

adaptive strategy such as Random & Average will perform very well, in terms

of efficiency and execution time, in most cases. Even in the presence of highly

irregular applications, overall performance will not significantly worsen. Similar

results have been obtained for the LPTF on Expectation policy, but the use of

this policy requires the user to have a good knowledge of the application.

In general, efficiency is high with a low number of machines but so, too, is

execution time. Having a large number of machines results in a low execution

time, but also in low efficiency. As this is an execution time-efficiency trade-

off, we should therefore determine an adequate number of machines in order

to obtain reasonable values for both execution time and efficiency.

 In the next chapter, the Random & Average scheduling policy is applied in

practice by using Condor and MW. It also contains a strategy, derived from

the simulations, for determining the number of workers that must be allocated

in order to obtain good efficiency as well as good execution time. Both

homogeneous and heterogeneous environments are considered.

 91

Scheduling of Master-Worker Applications on Homogeneous &
Dedicated Clusters

CHAPTER 3 ... 60

3.1 INTRODUCTION ... 61
3.2 PROBLEM STATEMENT.. 61

3.2.1 Scheduling Problem.. 64
3.2.2 Scheduling in Clusters of Distributed Machines 65
3.2.3 High Performance Schedulers.. 66

3.3 SCHEDULING POLICY.. 66
3.4 SIMULATION STUDY ... 68

3.4.1 Description of the Policies ... 69
3.4.2 Simulation Framework ... 70
3.4.3 Simulation Results .. 75

3.4.3.1 Effects on Efficiency ..76
3.4.3.2 Effects on Execution Time ...83

3.4.4 Discussion .. 89

 91

Chapter 4
Self-Adjusting Scheduling for

Master-Worker Applications

Abstract

This chapter presents a self-adjusting algorithm for
dynamically determining the suitable number of workers
for running a master-worker application. An
implementation for homogeneous environments is first
evaluated and its drawbacks are discussed. A second
version that overcomes these drawbacks is later
presented and evaluated, using an image thinning
application. The chapter ends with a study of the
necessary changes that need to be introduced in the
algorithm in order to allow it to also work on
heterogeneous systems, and its corresponding
evaluation with the thinning application.

 92

 93

4.1 Introduction

 The design of the self-adjusting scheduling strategy is based on the

following observation illustrated by Figures 4-1a and 4-1b, which shows the

effect on efficiency and execution time, respectively, of an LPTF (Largest

Processing Time First) policy. In general, the results in the previous chapter

showed that for any given workload distribution, a similar scenario to the one

depicted in Figure 4-1 is found. The Y-axis contains efficiency and execution

time, respectively, and the X-axis contains the number of workers, T, (the

maximum in this example is Max = 50). Three main intervals can be observed

in this figure:

1. Interval [0,a] corresponds to the situation in which the application is

running with a shortage of workers. Consequently, efficiency tends to

be close to 1, but speedup is low. It is also important to point out that,

in this interval, small changes in the number of workers may imply

significant and contradictory changes in efficiency. The particular

distribution of task times exhibited by the application may fit properly

with a given number of workers, but adding more workers puts the task

schedule “out of gear”, and, in some processors, results in more idle

times.

2. Interval [a, b] corresponds to the situation in which the application is

using an ideal number of workers. Efficiency is high and speedup is

also high. All the workers are doing useful work, and the application is

close to its maximum parallelism utilization.

3. Interval [b, Max] corresponds to the scenario in which the application

uses an excess of workers. At this interval, efficiency decays

continuously as new workers are added to the application. Moreover,

speedup is only slightly improved with new workers, because the global

 94

execution time is dominated by the execution time of the largest task in

each batch.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

Ef
fic

ie
nc

y

Machines

EFFICIENCY. W=30% 1-1 T=50

(a)

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20 25 30 35 40 45 50

Ex
ec

ut
io

n
Ti

m
e

Machines

EXECUTION TIME 30% 1-1 T=50

(b)

Figure 4-1. (a) Efficiency and (b) Execution time curves.

More formally, as was introduced in chapter 2, for any given workload

distribution there is an optimal number of machines, denoted as perfect

number, which should be allocated in order to obtain the best ratio between

execution time and resource efficiency (denoted as EER, Execution-Efficiency

Ratio).

a b

a b

 95

)(Re
)()(

iciencysourceEffi
iimeExecutionTiEER =

EER(i): Execution-Efficiency Ratio for i machines.

Execution Time (i): Application execution time when i machines are

used.

Resource Efficiency (i): Efficiency achieved when i machines are used.

The perfect number of machines exhibits the minimum value of that ratio

(perfect number = min (EER(i)), ∀i).

Moreover, if the number of machines is close to the perfect number, the

application still exhibits a good ratio between execution time and efficiency.

The ideal interval [a,b] is the set of machines that exhibits this good ratio.

Specifically, it is defined as the set of machines that have less than 1.1 the

ratio presented by the perfect number of machines.

Figure 4-2 shows the EER curve corresponding to the efficiency and

execution time curves of Figure 4-1.

 IdealInterval = { i, | ni ≤≤1

 }1.1)()(∗≤ berPerfectNumERRiEER

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20 25 30 35 40 45 50

ET
/E

 ra
tio

Machines

Execution Time/Efficiency Ratio W=30% 1-1 T=50

Figure 4-2. EER curve for a 30% workload.

a b

 96

Such a definition for the ideal interval has been adopted because,

according to the experiments, it guarantees that efficiency is above 0.8 and

that execution time is lower than 1.1 the time of executing tasks with as many

machines as tasks. Additionally, most users of a system would consider both

values acceptable for their applications. Obviously, the starting value and

width of the ideal interval strongly depends upon workload distribution.

Figure 4-2 illustrates the meaning of the perfect number and the ideal interval

for a workload distribution in which almost all tasks exhibit a similar execution

time (W=30%), considering 50 tasks (T=50). The perfect number of machines

is 20, which corresponds to the minimum Execution-Efficiency ratio. At this

point, efficiency is 0.9 and execution time is 1.01 the execution time obtained

when each task is executed on a different machine, that is, with as many

machines as tasks. The ideal interval is [18, 22], which corresponds to the

machines that exhibit a ratio not greater than 10% the ratio exhibited by 50

machines.

Table 4-1 shows the number of machines corresponding to the perfect

number, and the ideal interval for the different workloads considered in this

work when there are 50 tasks and both the largest and smallest tasks have

different values (case 1-1).

Workload Perfect Number Ideal Interval
30% 20 18-22
40% 14 13-15
50% 11 10-12
60% 9 8-10
70% 8 7-9
80% 7 6-8
90% 6 6-7

Table 4-1. Perfect number and ideal interval for different workloads.

The above-mentioned characteristics will be used to guide the design of a

self-adjusting strategy. In the next sections, we will describe the design and

 97

implementation of such a strategy and its evaluation both in homogeneous

and heterogeneous environments. The algorithm works in a dynamic way by

adjusting the number of workers to a number belonging to the ideal interval.

We will also describe the changes included into MW to support the self-

adjusting algorithm and the corresponding experimentation that was carried

out with the algorithm on both homogeneous and heterogeneous platforms.

4.2 Self-adjusting algorithm for homogeneous environments

The control of an application in an opportunistic environment implies, first,

deciding in which order tasks will be executed, and, second, determining the

number of machines that will participate in the computation. We will use the

Random & Average scheduling policy described in the previous chapter to

solve the first issue. The simulation results presented in the previous chapter

justify both the need for measuring and recording execution times from

previous iterations, and the need to build and maintain an average execution

time list. In the next section, we present a strategy aimed at solving the

problem of adjusting the number of machines at runtime.

4.2.1 Self-Adjusting Algorithm with Static Tables

The proposed strategy is based on the use of a table derived empirically

from the simulation results presented in the previous chapter. It is also based

on a characteristic common to opportunistic systems: machine allocations are

more time-consuming than machine releases. In an opportunistic

environment, the time cost incurred in the allocation of a machine is not

negligible, because a negotiation protocol is usually carried out until a suitable

machine is found and then allocated to a given application. This implies that

requests for machine allocation will not be served immediately, or not even

completely served at all if insufficient suitable machines are found. On the

 98

other hand, releasing machines back to the system is undertaken

immediately, and essentially with no time cost.

Therefore, at the beginning of the execution of the master-worker

application, as many workers as tasks per iteration (N) are created by the

strategy for the application, that is, the maximum number of workers. Once

the maximum number of machines at the start of an application is requested,

machines are released in the case of the application running on an excess of

machines, rather than obtaining a lower number of machines and then asking

for more.

Then, at the end of each iteration, the adequate number of workers for the

application is determined in a two-step approach. The first step quickly

reduces the number of workers in an attempt to lower the number of workers

to a value of number of machines that belongs to the ideal interval. The

second step carries out a fine correction of that number. If the application

exhibits a regular behavior, the number of workers obtained by the first step in

the initial iterations will not change, and only small corrections will be

undertaken by the second step.

The first step determines the number of workers according to the workload

exhibited by the application. Table 4-2 is an experimental table that has been

obtained from the simulations described in chapter 3. Workload (w) exhibited

by the application is the factor that most influences the number of workers.

Furthermore, the question of whether the 20% of the tasks executing the w%

of the total work are of similar or different size is relevant when determining

the number of workers. The difference in size of the remaining 80% of the

tasks is not influent, nor are the other factors considered in the previous

chapter.

 For each workload distribution, Table 4-2 shows the number of workers

needed in order to have a number of machines pertaining to the ideal interval,

that is, to obtain efficiency greater than 80% and execution time less than 1.1

the execution time, when using N workers. As we have said in the previous

 99

chapter, these values would correspond to a situation in which resources are

busy most of the time, while the execution time is not significantly degraded.

The first column contains the workload, as defined in chapter 3. The

second and third columns contain the worker percentage with respect to the

number of tasks for a given workload (w), in the cases where the 20% of the

tasks that executes the w% of the total work to be done have similar or

different executions times, respectively.

For example, if 20% of the tasks are carrying out 40% of the total work,

then the number of workers to be allocated will either be N*0,48 or N*0,28.

The former value will be used if the 20% of the tasks are similar; otherwise the

later value is applied.

Although having a table like this implies a super-simplification of reality, this

is needed in order to make the algorithm work with manageable parameters.

Workload
%workers needed

(20% tasks of
similar size)

%workers needed
(20% tasks of
different size)

30% 60% 40%
40% 48% 28%
50% 40% 22%
60% 34% 18%
70% 30% 16%
80% 26% 14%
90% 22% 12%

Table 4-2. Percentage of workers with respect to the number of tasks.

The fine correction step is carried out at the end of each iteration when

both the workloads between iterations remain constant, i.e., the application

remains in a same table entry, and the ratio between the last iteration

execution time and the execution time with the current number of workers

given by Table 4-2 is less than 1.1. This last value corresponds to a threshold

of 10% over the execution time obtained with the number of machines

according to the table. This means that the strategy allows variations in the

 100

execution time, when they never surpass 10% of the execution time obtained

with the number of machines given by Table 4-2. The correction consists of

diminishing the number of workers by one, if efficiency is less than 0.8, and

observing the effects on execution time. If it becomes worse, a worker is

added; however, never surpassing the value given by Table 4-2.

In the experimental system considered, the number of machines is handled

cumulatively. This means that when Nworkers machines are requested and

the application has already allocated CurrentNworkers machines, if (Nworkers

> CurrentNworkers), only Nworkers - CurrentNworkers machines will be

added to the application. Otherwise, CurrentNworkers - Nworkers machines

will be released.

The complete algorithm to determine the number of workers that should be

used is shown in Figure 4-3.

1. Nworkers = Ntasks /* We are in the first iteration */

 Workload = ∞, Efficiency = ∞, Execution Time = ∞

/* Next steps are executed at the end of each iteration i */

2. Compute Efficiency, Execution Time, Workload and the Differences of the
execution times of the 20% largest tasks.

3. If (Workload of iteration i != Workload of iteration i-1)
 Set Nworkers = NinitWorkers according to Workload
 and Differences of Table 4-2.

 else

 if (Execution Time of it. i DIV

 Execution Time using NinitWorkers) <= 1.1)

 if (Efficiency of iteration i < 0.8)

 Nworkers = Nworkers – 1

 else

 Nworkers = Nworkers + 1

Figure 4-3. Algorithm to determine Nworkers.

 101

4.2.2 Experimental Evaluation with a Fibonacci Application

This section first describes the changes performed to MW in order to

support both the generalized master-worker paradigm and the self-adjusting

strategy, and then explains the experimentation performed with the aim of

testing the self-adjusting strategy. After that, the results obtained when testing

the effectiveness of the proposed self-adjusting scheduling strategy on a

homogeneous environment are reported. We executed a synthetic master-

worker application that performed the computation of Fibonacci series, which

could serve as representative example of the generalized master-worker

paradigm. The application was run on a platform first composed only of

homogeneous machines.

4.2.2.1 Extended Version of MW
In its original implementation, MW supported one master controlling only

one set of tasks. Therefore, the MW API has been extended to support:

• The proposed master-worker programming model with cycles.

• Scheduling policies. Both Random & Average and Random policies

were included.

• The self-adjusting strategy. Useful information is also collected to allow

dynamic adjusting the number of workers.

Figure 4-4 shows the changes introduced to MW. Components inside

green circles were added. The ToDo queue contains the tasks corresponding

to the current iteration (tasks behind these correspond to the tasks to be

performed in subsequent iterations). This queue is sorted according to the

desired scheduling policy (Sched circle), which in our case implies sorting the

tasks according to the average execution time from previous iterations. The

Adjust circle represents the computation of the number of workers requested.

In order to carry out the adjusting and the scheduling, several statistics have

to be collected (Stats circle). The blue Widx circles represent the information

 102

the master has on the workers participating in the computation. For a

particular iteration, the Running and Done queues contains the tasks that are

currently being executed and the tasks that have already been executed,

respectively.

Figure 4-4. Extensions to MW

To create an MW application, the user has to implement certain virtual

functions. In the Extended MW version, when creating the master process,

the user needs to implement another pure virtual function:

global_task_setup. There are also some changes in the functionality of

certain others pure virtual functions:

• global_task_setup(): This initializes the data structures needed to keep

the intermediate tasks results generated at the end of each iteration. This is

called once, before the execution of the first iteration.

• setup_initial_tasks (iterationNumber): The set of tasks created depends

on the iteration number. Therefore, there are new tasks for each iteration,

and these tasks could depend on values returned by the execution of

Driver

 Worker2
T2

 Worker1
T4

 Worker3
T5

To Do

T5T2 T4Running

T1 T3DoneGlobal
Data

Wid1
Wid2

Wid3

T3T2T1 ...
T3T2T1 ...

T8T7T6 ... Sched

Stats
Adjust

 103

previous tasks. This function is called before each iteration begins, and

creates the tasks to be executed in the iterationNumber iteration.

• get_userinfo(): The functionality of this function remains the same, but the

user needs to call the following initialization functions:

− set_iteration_number (n): This is used to set the number of times tasks

will be created and executed, that is, the number of iterations. If

INFINITY is used to set the iterations number, tasks will then be created

and executed until an end condition (or convergence condition) is

achieved. This condition needs to be set in the function

end_condition(), which is called before creating tasks for a new

iteration.

− set_Ntasks (n): This is used to set the maximum number of tasks to be

executed per iteration.

− set_task_retrive_mode (mode): This function allows the user to select

the scheduling policy. It can be FIFO (GET_FROM_BEGIN), based on a

user key (GET_FROM_KEY), random (GET_RANDOM) or random and

average (GET_RAND_AVG).

• printresults (iterationNumber): This allows the results of the

iterationNumber iteration to be printed.

In addition to the above changes, the MWDriver collects statistics on tasks

execution times, workers’ state (when they are alive, working and

suspended), and on iteration beginning and ending. The new functions

introduced are:

• master_task_begin() and master_task_end(): These are executed

by the master every time a task begins and ends execution

respectively, in order to get tasks execution time with the master clock.

 104

• begin_loop_iteration() and end_loop_iteration(): These are

executed at the beginning and end of each iteration, respectively, in

order to measure the time it took to complete an iteration.

Begin_loop_iteration also prepares all the data structures used to

record all the time in which tasks are executing, suspended and alive.

After calling end_loop_iteration, statistics are performed on the values

recorded.

At the end of each iteration, function UpdateWorkersNumber() is called to

dynamically adjust the number of workers accordingly, with regard to the self-

adjusting algorithm explained in the previous section.

4.2.2.2 Experimentation Framework
Experiments were conducted using a platform composed of a dedicated

Linux cluster running Condor, and a Condor pool of workstations at the

University of Wisconsin. The total number of available machines was around

700 although the experiments were restricted to machines with Linux

architecture (both from the dedicated cluster and the Condor pool). The

execution of the applications was carried out using the services provided by

Condor for resource requesting and detecting, determining information about

resources and fault detecting. The execution of the applications was first

carried out with a set of processors that do not exhibit significant differences

in performance, so that the platform could be considered to be homogeneous.

Figure 4-5 depicts the Condor configuration file part, showing the

requirements imposed on the machines and the basic features of some

machines obtained for an execution of the Fibonacci example. W stands for

the worker, Mem for the memory and LoadAvg for the load average. This

information was provided by Condor.

 105

Universe = PVM

Executable = master-fib

Requirements = ((Arch == "INTEL") && (OpSys == "LINUX")
 && (KFlops > 88000) && (KFlops < 93000))

Machine_count = 1..1

Queue

(a)

W: c20.cs.wisc.edu, KFlops = 89632, Mips = 609,
 Mem = 511, LoadAvg = 0.92

W: c12.cs.wisc.edu, KFlops = 89182, Mips = 608,
 Mem = 920, LoadAvg = 0.75

W: c03.cs.wisc.edu, KFlops = 89573, Mips = 609,
 Mem = 920, LoadAvg = 0.83

W: c23.cs.wisc.edu, KFlops = 89935, Mips = 607,
 Mem = 511, LoadAvg = 1.00

W: c25.cs.wisc.edu, KFlops = 89883, Mips = 609,
 Mem = 511, LoadAvg = 1.01

W: c09.cs.wisc.edu, KFlops = 89205, Mips = 605,
 Mem = 920, LoadAvg = 0.99

W: c24.cs.wisc.edu, KFlops = 89808, Mips = 608,
 Mem = 511, LoadAvg = 1.00

W: c08.cs.wisc.edu, KFlops = 90421, Mips = 607,
 Mem = 920, LoadAvg = 0.85

W: c14.cs.wisc.edu, KFlops = 90702, Mips = 607,
 Mem = 920, LoadAvg = 0.92

W: c21.cs.wisc.edu, KFlops = 89680, Mips = 608,
 Mem = 511, LoadAvg = 0.83

W: c18.cs.wisc.edu, KFlops = 90743, Mips = 606,
 Mem = 511, LoadAvg = 0.94

W: c02.cs.wisc.edu, KFlops = 90224, Mips = 606,
 Mem = 920, LoadAvg = 0.96

W: c20.cs.wisc.edu, KFlops = 89632, Mips = 609,
 Mem = 511, LoadAvg = 1.00

W: c36.cs.wisc.edu, KFlops = 91557, Mips = 605,
 Mem = 511, LoadAvg = 0.92

 106

W: c32.cs.wisc.edu, KFlops = 89431, Mips = 609,
 Mem = 511, LoadAvg = 0.99

W: c41.cs.wisc.edu, KFlops = 90062, Mips = 608,
 Mem = 511, LoadAvg = 0.99

W: c51.cs.wisc.edu, KFlops = 89898, Mips = 608,
 Mem = 511, LoadAvg = 1.00

W: c33.cs.wisc.edu, KFlops = 89847, Mips = 609,
 Mem = 511, LoadAvg = 1.00

W: c54.cs.wisc.edu, KFlops = 89927, Mips = 609,
 Mem = 511, LoadAvg = 1.00

W: c52.cs.wisc.edu, KFlops = 89426, Mips = 609,
 Mem = 511, LoadAvg = 1.00

(b)

Figure 4-5. (a) Condor configuration file, (b) Machines obtained in a sample execution.

The application used in the experiments conducted in order to evaluate the

self-adjusting strategy with static tables was composed of 28 synthetic tasks

at each iteration. The number of iterations was fixed at 35, so that the

application was running in a steady state most of the time. Each synthetic task

performed the computation of a Fibonacci series. The length of the series

computed by each task was randomly fixed at each iteration in such a way

that the variation in execution time of a given task in successive iterations was

30%. Experiments were carried out with two synthetic applications that

exhibited a workload distribution of 30% and 50% approximately. In the

former case, all large tasks exhibited a similar execution time. In the latter

case, the execution time of larger tasks exhibited significant differences.

These two synthetic programs can be representative examples for master-

worker applications with a highly-balanced and medium-balanced distribution

of workload between tasks, respectively. Figure 4-6 shows, for instance, the

average and deviation time for each of the 28 tasks in the master-worker with

a 50% workload.

 107

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Task number

Tasks Average Execution Time

Figure 4-6. Tasks execution times.

Different runs on the same programs generally produced slightly different

final execution times and efficiency results, due to the changing conditions in

the opportunistic environment. Hence, average-case results are reported for

sets of three runs.

4.2.2.3 Evaluation of the Self-Adjusting Strategy with Static
Tables

The goal of this initial experimentation was to validate the effectiveness of

the self-adjusting strategy on a homogeneous environment.

Tables 4-3 and 4-4 show the efficiency, execution time (in seconds) and

speedup obtained by the execution of the master-worker application with 50%

and 30% workload, respectively. The results obtained by the self-adjusting

scheduling strategy are shown in bold in both tables. In addition to these

results, the results obtained when a fixed number of processors were used

during the whole execution of the application are shown. In particular, a fixed

number of processors of n=28, n=25, n=20, n=15, n=10, n=5 and n=1 were

tested. In all cases, the order of execution was carried out according to the

sorted list of average execution time (as described in chapter 3 for the

 108

Random & Average policy). The execution time for n=1 was used to compute

the speedup of the other cases.

#Workers 1 5 8 10 15 20 25 28

Efficiency 1 0,94 0,80 0,65 0,43 0,33 0,28 0,22

Exec. Time 80192 16669 12351 12365 13025 12003 12300 12701

Speedup 1 4,81 6,49 6,49 6,16 6,68 6,52 6,31

Table 4-3. Experimental results in the execution of a master-worker application with
50% workload using the Random and Average policy.

#Workers 1 5 10 15 18 20 25 28

Efficiency 1 0,88 0,78 0,79 0,74 0,65 0,65 0,65

Exec. Time 31836 7030 3960 2860 2753 2598 2309 2218

Speedup 1 4,52 8,03 11,13 11,56 12,25 13,78 14,35

Table 4-4. Experimental results in the execution of a master-worker application with
30% workload using the Random & Average policy.

The first results shown in Tables 4-3 and 4-4 are quite significant, as they

prove that the self-adjusting scheduling strategy was able, in general, to

achieve a high efficiency in the use of resources, while speedup was not

significantly degraded. Improvement in efficiency can be explained because

the self-adjusting strategy tends to use a small number of resources with the

aim of avoiding idle time in workers that compute short tasks. In general, the

larger the number of processors, the larger the idle times incurred by workers

in each iteration. This situation is also more remarkable when the application

workload is more unevenly distributed among tasks. Therefore, for a given

number of processors, the largest loss of efficiency was normally obtained in

the application with a 50% workload. All these results were expected, in

accordance to the simulation study described in the previous chapter; we can

therefore affirm that, even with all the simplifications incurred, the simulation

model represents what actually happens in a real environment, when

executing a real application.

 109

It can also be observed in both tables that the self-adjusting scheduling

strategy generally obtained an execution time that was similar or even better

than that obtained with a larger number of processors. This result basically

reflects the opportunistic nature of the resources that were used in the

experiments. The larger the number of processors allocated, the larger the

number of task suspensions and reallocations incurred at run time. The need

to terminate a task prematurely, when the user reclaimed the processor,

normally prevented the benefits in execution time obtained by the use of

additional processors. Therefore, a conclusion from the results is that,

reducing in the number of processors allocated to an application running in an

opportunistic environment is good, not only because it improves overall

efficiency, but also because it avoids side effects on the execution time

caused by suspensions and reallocations of tasks. The cost of losing a

machine during execution time will be evaluated in the next chapter.

As is perhaps to be expected, the best performance was normally obtained

when the largest number of machines were used, although better machine

efficiencies were obtained with a smaller number of machines. These results

may seem to be obvious, but it should be noted that self-adjusting scheduler

strategy only used statistical information collected at runtime, and the

execution of the application is influenced by the effects of resource obtaining,

local suspension of tasks, task reassume and dynamic redistribution of load.

4.2.2.4 Comparison of Random and Random & Average
scheduling policies.

An additional set of experiments was carried out in order to evaluate the

influence on the order of task assignment. The results obtained when master-

worker applications with 50% and 30% workload were scheduled using a

Random policy. In this policy, when a worker becomes idle, a random task

from the list of those pending is chosen and assigned to it. As can be seen in

Table 4-5 and 4-6, the order in which tasks are assigned has a significant

impact when a small number of workers is used. For less than 15 processors,

 110

the Random & Average policy performs significantly better than the Random

policy, both in efficiency and in execution time. When 15 or more processors

are used, differences between both policies were almost negligible. This fact

is because, when the Random policy has a large number of available

processors, the probability of assigning a large task at the beginning is also

large. Therefore, in these situations, the assignments carried out by both

polices are likely to follow a similar order.

Random
#Workers 1 5 10 15 20 25 28

Efficiency 1 0,80 0,56 0,40 0,34 0,26 0,26

Exec. Time 80192 20055 14121 13273 12153 12109 12716

Speedup 1 4,00 5,68 6,04 6,59 6,62 6,31

Random & Average
#Workers 1 5 10 15 20 25 28

Efficiency 1 0,94 0,65 0,43 0,33 0,28 0,22

Exec. Time 80192 16669 12365 13025 12003 12300 12701

Speedup 1 4,81 6,49 6,16 6,68 6,52 6,31

Table 4-5. Experimental results for Random and Random & Average scheduling with a
master-worker application with 50% workload.

Random
#Workers 1 5 10 15 20 25 28

Efficiency 1 0,87 0,82 0,81 0,7 0,66 0,63

Exec. Time 32241 7477 4807 2932 2679 2291 2105

Speedup 1 4,31 6,7 10,99 12,03 14,07 15,31

Random & Average

#Workers 1 5 10 15 20 25 28

Efficiency 1 0,88 0,84 0,82 0,65 0,65 0,65

Exec. Time 31836 7030 3960 2860 2598 2309 2218

Speedup 1 4,52 8,03 11,13 12,25 13,78 14,35

Table 4-6. Experimental results for Random and Random & Average scheduling with a
master-worker application with 30% workload.

 111

With a number of workers close to the number of tasks, both strategies

present a similar behavior, with differences in execution time and efficiency

values that are less than 3%, produced because of the underlying system.

4.2.3 Self-Adjusting Strategy with Dynamic Information

The self-adjusting strategy considered up to now has certain drawbacks:

• First, the computation cost incurred at runtime in evaluating the

workload distribution exhibited by an application, as a means of

determining the appropriate table entry. This implies sorting a list of

task execution times at the end of each iteration.

• Secondly, the sensitivity of the method to small variations in task

execution times in successive iterations. This problem resulted in

scenarios in which some machines were released and immediately

reclaimed, because the application workload was oscillating between

two table entries.

A variation of this strategy, which is described in this section, tries to

overcome the problems related to the allocation of workers by, on the one

hand, being more conservative in releasing machines and, on the other hand,

trying to approach the ideal number of machines in a more gentle way, once

the application runs with a number of machines close to the upper limit of the

ideal interval (b point in Figure 4-1). The assignment of tasks to workers has

not changed from the previous version of the self-adjusting strategy.

At the end of each iteration the Self-Adjusting algorithm (shown in Figure

4-7) computes the number of workers (Nworkers) that should be allocated to

the application using two main criteria. Table 4-7 shows the meaning of the

principal variables used:

 112

Variable Meaning

Nworkers Number of workers to be required in
the next iteration.

asp Application achievable speedup.

ItExecutionTime Execution time obtained in the
previous iteration.

ItEfficiency Efficiency obtained in the previous
iteration.

ItMinTaskExecTime Smallest task execution time in the
previous iteration.

ItMaxTaskExecTime Largest task execution time in the
previous iteration.

Table 4-7. Meaning of the variables used in the self-adjusting algorithm.

1. First, the AdjustBySpeedup function computes Nworkers by evaluating asp

(achievable speedup), defined as the ratio between the execution time of

the whole application (by adding all the time tasks) and the execution time

of the largest task (ItMaxTaskExecTime), obtained in the last iteration.

ETj

ETi
asp

MaxTasks

i
∑

== 1 j, | ∀i MaxTasksi ≤≤1 , ETj >ETi

The upper limit of the ideal number of machines corresponds to asp.

Therefore, the number of workers (Nworkers) is set to asp + 1. We ask

for one machine more than asp, so as to avoid situations in which

machines are released at one iteration and claimed back at the next. If this

represents an excess of machines, the next step in the algorithm will

correct it. This procedure is always used when the application has not

allocated all the machines requested in a previous iteration. It is possible

that the requirement of workers has changed from one iteration to the next.

Therefore, asp is recomputed to check whether the previous requirement of

workers is still valid or not.

 113

2. When the application is running with the number of workers previously

computed in Nworkers, the adjusting criterion to update Nworkers is based

on two metrics: execution time (ItExecutionTime) and efficiency

(ItEfficiency) obtained in the last iteration. If the execution time is greater

than the execution time of the largest task plus a given threshold, then one

more worker is allocated. The threshold has been fixed as the maximum

between the time of the smallest tasks (ItMinTaskExecTime) and 15% of

the largest tasks. This threshold was empirically fixed as it proved able to

detect most of the situations in which the application due to lack of workers

is not exploiting all its parallelism, and it does not yield unstable situations

in which workers are claimed and released too frequently. When the

second metric is applied, a machine is released when efficiency is smaller

than 0.8.

1. In the first iteration Nworkers = Ntasks

For next iterations (While convergence condition is not met) {

2. Compute ItEfficiency, ItExecutionTime, ItMinTaskExecTime,
ItMaxTaskExecTime, CurrentNworkers.

3. if (CurrentNworkers < Nworkers) // We have not got the number of

 workers needed
 Nworkers = AdjustBySpeedup()

 else
 if (ItExecutionTime > (ItMaxTaskExecTime +
 MAX(ItMinTaskExecTime, 15%(ItMaxTaskExecTime))))
 Nworkers = Nworkers + 1
 else
 if (ItEfficiency < 0.8)
 Nworkers = Nworkers – 1
}

Figure 4-7. Algorithm to determine Nworkers

 114

It is important to point out that the criteria described in point 2, above, are

applied only when the application runs during a whole iteration with a stable

number of machines. In this way, metrics obtained under unstable situations

are not considered. This means that when a new machine that was

previously requested is allocated in the middle of an iteration, and used for

executing pending tasks, temporarily contradictory results in efficiency or

execution time metrics may be produced. This refinement is not shown in

Figure 4-7, for the sake of simplicity.

Figure 4-8. Worker allocation. (a) As many workers as tasks, (b) coarse adjust,
(c) fine adjust.

Figure 4-8 shows a simple example considering 7 tasks. The number

inside each box indicates the corresponding task execution time. Initially, as

many workers as tasks per iteration (N) are allocated for the application, as is

Efficiency = 0,51
Execution Time = 8
asp = 28/8 = 3,5 ≅ 4

1

coarse

Efficiency = 0,72
Execution Time = 8

Efficiency = 0,9
Execution Time = 8

fine

22
4

6 6
8

1

2

2
4

6 6
8

1 2
2

4
6 6

8

(a)

(b)

(c)

asp = 4 ⇒
reduction to 5
workers

Efficiency < 0.8 ⇒
reduction to 4 workers

 115

exemplified in Figure 4-8a. Later, at the end of the first iteration, that is, after

obtaining the execution times of the tasks in the previous iteration, the number

of workers is adjusted to the achievable speedup corresponding to the

application (Figure 4-8b). This step is also repeated at the end of every

iteration that finishes without the requested number of machines. When the

application has obtained the requested number of machines, machines are

added if the execution time is high, or released if efficiency is low (Figure

4-8c)

The self-adjusting algorithm is based on two main assumptions:

1. Application parallelism will not exhibit drastic increases over time. This

means that the application will need the largest number of processors at

the initial stages of the execution and, later, that the number will be kept

nearly constant, or will gradually decay. It is assumed that the application

will not exhibit scenarios in which parallelism alternates phases with

significant decreases followed by phases with drastic increases. This

assumption is relevant, given the cost for allocating machines in many

environments such as the opportunistic one used in these experiments:

requests for new machines are not serviced immediately by the system,

while released machines are immediately lost. The negative effect of

parallelism fluctuations could eventually be alleviated by releasing

processors in a more conservative way than that presented in the current

algorithm, in order to anticipate later increases in parallelism.

2. The value of asp obtained after the first iteration will not change

significantly in the near future. This assumption can be violated if the

variation of task times is significantly large, although it may not imply a

change in asp. In practice, the swift reduction carried out initially by our

algorithm may be too drastic. A simple alternative would be to reduce the

initial number of processors in the interval [asp, N], by using a more

gradual technique such as a binary search or a golden sections method

[NVZ96].

 116

The first assumption was never violated in the experiments performed, and

it was also found that the time value of asp was stable before the system

allocated all the initially-requested machines. Therefore, none of the

extensions mentioned above to the basic algorithm were implemented,

although they could be included without difficulty.

Another extension that may easily be included with our strategy could

overlap the scheduling phase computed in the master machine with the

execution of workers. This would compensate time incurred in the

computation of Nworkers when the number of workers is relatively large.

However, in the experiments carried out, this time was negligible and it was

not necessary to include this extension.

4.2.4 Experimental Evaluation with an Image Thinning Application

In this section, the results obtained with the aim of testing the effectiveness

of the improved self-adjusting scheduling strategy on a homogeneous

environment are reported. The environment considered is the same as that

used for the Fibonacci application, described in section 4.2.2.2.

Thinning is the operation performed to an image in order to obtain its

skeleton, that is, the basic lines and possibly an idea of the width of the lines

in the original image. The thinning algorithm for binary images utilized was

adapted from the AFP3 (Fully Parallel Algorithm) described in [GH92]. Figure

4-9 shows an example containing both the original and the resulting images.

 (a) (b) (c)

Figure 4-9. Thinning (a) Original image, (b) 10 iterations later, (c) 36 iterations later.

 117

The application works as shown in Figure 4-10. Initially, the master divides

the image into M horizontal parts. Each part contains the pixels of a piece of

the image, plus border pixels from neighboring parts. One task is created to

compute the thinning operation of one part, which basically consists of

deleting pixels. When tasks are assigned to workers, the thinning operation of

the corresponding part is carried out. At the end of each iteration, workers

send the image back to the master, which updates the border pixels. If there

are no more pixels to delete, the part achieves the local convergence

criterion, and finishes. When all the parts have finished, the global

convergence criterion is then met, the skeleton image is reconstructed by

combining the parts in order, and the application finishes.

Figure 4-10. Image thinning as a master-worker application

This application exhibits two characteristics that make its use attractive for

evaluating a self-adjusting strategy. First, tasks corresponding to different

parts of the application usually exhibit different execution times. Tasks that

are assigned complex parts of the image spend more time than tasks that

deal with simple parts of the image. Therefore, a self-adjusting strategy

should be able to schedule short tasks together to the same worker, and

relinquish spare workers. Secondly, the execution time of each task gradually

Master Process
Divides Image Master Aggregates

Image
Workers Compute

Concurrently

 118

decreases as the image thinning approaches convergence. Again, the self-

adjusting strategy should also be able to reduce the number of workers as the

execution time of converging tasks is close to zero.

The thinning application was run with 3 images: Figures, Letters and

Boy&Ball (shown in Figure 4-11a, 4-11b and 1-11c). Images were initially

divided into 8, 16 and 32 parts, which corresponded to the initial set of tasks

created at the initial iteration. The number of iterations until thinning

convergence was 92, 97 and 105 for the Figures, Boy&Ball and Letters

images, respectively. The size of the images was enlarged so that the

execution time of the largest task was initially in the range of 50 seconds

when images were divided into 8 parts. Communication time was negligible,

with respect to computation time.

Execution times obtained when executing the same program are not the

same because of the opportunistic environment on which they are run.

Therefore average-case results are reported for sets of three runs.

 (a) (b)

(c)

Figure 4-11. Reference images used in the experimentation. (a) Figures (b)Letters
(c) Boy&Ball

 119

The machines used had the featured outlined in Table 4-8. Despite the

differences exhibited, the machines used can be considered homogeneous.

The processor speed (Kflops, MIPS) had fairly similar values, and the

applications did not require high amounts of memory, therefore, differences at

this point did not affect the execution time. Usually, load average highly

affects the performance, but when using Condor, if the Load Average

surpasses a threshold, the machine will not be considered idle and will

therefore not be assigned to any computation.

Feature Minimum Value Maximum Value
KFlops 88793 90735
MIPS 605 612
Memory 442 Mb 859 Mb
Load Average 0.04 1

Table 4-8. Characteristics of the machines used in the experimentation.

Results of efficiency and execution time (in seconds) are shown in Table

4-9 when the thinning application was run both with and without using the self-

adjusting strategy (self-adjusting column and No self-adjusting column,

respectively). When no adaptive scheduling was used, the initial number of

requested workers was equal to the initial number of tasks. Once a task met

the convergence criterion, the corresponding worker was released. In

contrast, in the self-adjusting case, workers were released only in accordance

with the self-adjusting strategy, and no workers were released automatically

on task completion. Tasks were assigned to workers in decreasing order of

average execution time, in both self-adjusting and non self-adjusting cases.

Therefore, the results mainly reflect the effectiveness of the strategy to

dynamically adjust the number of resources.

In addition to the results obtained for both strategies using an initial number

of tasks of 8, 16 and 32, we also include the execution time of a sequential

thinning application (column InitialTasks = 1) for comparative purposes. In the

NworkersAvg rows, the average number of workers used are shown.

 120

 Non Self-Adjusting Self-Adjusting

 InitialTasks 1 8 16 32 8 16 32

Figures 1 5,5 9,12 12,85 2,45 4,17 7,37

Letters 1 5,3 10,36 21,11 3,89 6,55 9,41

Nworkers
 Avg. Boy&Ball 1 5,57 7,02 11,34 2,85 4,01 8,92

Figures 1 0,41 0,41 0,48 0,88 0,89 0,86
Letters 1 0,64 0,59 0,399 0,8 0,82 0,83

Efficiency
Boy&Ball 1 0,59 0,64 0,7 0,88 0,86 0,87

Figures 12746 4141 2634 1533 4473 2648 1703

Letters 12803 3179 1562 1204 3230 1833 1399

 Exec.
Time

(in
seconds) Boy&Ball 10080 2948 1678 1001 3094 1732 1002

Figures 12746 10100 6424,39 3193,75 5082,95 2975,28 1980,23

Letters 12803 4967,18 2647,45 3010 4037,5 2234,36 1685,54

ExecTime/
 Efficiency

 Ratio Boy&Ball 10080 4996,61 2621,87 1430 3515,9 2013,95 1151,72

Table 4-9. Results of the master-worker thinning application

Although 8, 16 and 32 workers were initially claimed by both strategies, a

smaller number of workers were effectively allocated throughout the

computation. The non self-Adjusting strategy simply relinquished workers as

tasks were completed. However, the self-adjusting strategy further reduced

the number of allocated workers, as can be seen in the Nworkers Avg row of

Table 4-9, which contains the average number of workers used from the

beginning to the end of the computation. In general, the strategy saved

between 20% to 55% of workers, compared to the Non Self-Adjusting case.

As can be seen in Table 4-9, self-adjusting obtains efficiency values above

0.8 in all cases, while no self-adjusting obtains efficiency values that are

significantly smaller (between 0.4 and 0.65 in most cases). Execution time

results indicate that the self-adapting strategy leads to a penalty that in most

cases is less than 15% compared to the non self-adjusting case. Only for the

Letters example with 16 and 32 tasks was the difference in execution time

17% and 19%, respectively. In general, the execution time of the application

 121

does not decrease linearly as the image is decomposed into more parts,

because maximum parallelism is only achievable at the initial iterations of the

algorithm. Later, as different parts of the image converge, parallelism decays

and consists only of the tasks that compute the most complex parts of the

images.

As a global index of performance, the last three rows of Table 4-9 show the

index between execution time and efficiency, corresponding to both strategies

(EER). The lower the index, the better the use of resources achieved by a

given strategy. This means that the self-adjusting scheduling strategy

achieves a better trade-off between efficiency and execution time.

Figure 4-12 shows a detailed example of one execution of the thinning

application applied to the Figures image, initially divided into 32 parts. This

example is a representative illustration of the general behavior and

performance achieved by both the Self-Adjusting and the Non Self-Adjusting

algorithms. The information shown is related to number of workers, efficiency

and execution time after iterations 1, 5, 10, 15, and so on. Execution times

are shown in a logarithmic scale.

As can be seen, the allocation of resources is not serviced immediately

after request. This implies, for instance, that the Non Self-Adjusting algorithm

achieves a maximum number of 23 workers in iteration 15. At this time, some

of the tasks have already finished (those corresponding to image borders)

and, therefore, the application does not need the whole set of 32 workers

requested at the beginning. In general, the Self-Adjusting algorithm is able to

tune the number of workers from the initial iterations, fixing the maximum

number of workers to 15 after iteration 10. Significant differences in the

number of workers (and, consequently, in efficiency) are mainly observed at

the central iterations of the computation (from iteration 15 to 75). In these

stages, the execution time for each iteration is slightly better for the Non Self-

Adjusting algorithm, at the expense of sometimes using twice the number of

workers than those used by the Self-Adjusting strategy. Later, the application

 122

is close to the end and the number of workers is very small in both cases, so

efficiency and execution time are very similar for both strategies.

(a)

(b)

(c)

Figure 4-12. (a) Number of workers, (b) efficiency and (c) execution time obtained with
the Figures image divided into 32 parts.

0

5

10

15

20

25

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Iteration Number

N
um

be
r o

f W
or

ke
rs

"Self-Adjusting"
"Non Self-Adjusting"

0

0,2

0,4

0,6

0,8

1

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Iteration Number

Ef
fic

ie
nc

y

"Self-Adjusting"
"Non Self-Adjusting"

1

10

100

1000

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Iteration Number

Ex
ec

. T
im

e
(s

ec
.)

"Self-Adjusting"
"Non Self-Adjusting"

 123

4.3 Self-Adjusting Algorithm for Heterogeneous
Environments

This section first describes the problems that heterogeneous environments

introduce and how the self-adjusting strategy is modified accordingly.

Subsequently, it shows the experimentation performed with the master-worker

image thinning application on heterogeneous environments.

4.3.1 Modifications to the Self-Adjusting Strategy

Results obtained in a homogeneous environment are valid as long as tasks

can be sorted, according to their relative importance, in terms of expected

execution time. Basically, the scheduling mechanism is based on assigning

larger tasks at the beginning and shorter tasks at the end. However, in a

heterogeneous environment, it is not simple to derive actual task importance

form measured wall clock execution time. Wall clock time will reflect both task

importance (in terms of algorithm complexity) and resource performance.

Therefore, a scheduling strategy needs some normalization factor to be

applied to the measured wall clock times when it tries to compare task

execution time averages.

Consider the example of Figure 4-13. Figure 4-13a shows the execution

time of tasks when they are executed on similar machines. Figure 4-13b

shows when these tasks are executed on a heterogeneous set of machines.

In a heterogeneous environment, if only the wall clock times obtained in the

previous iteration are considered, in the next iteration, task 4 will be

considered the largest task and will be the first task executed (as in Figure

4-13c). But that is erroneous, because there are other larger tasks that have

been executed on faster machines, and therefore their wall execution times

are smaller.

 124

Figure 4-13. Worker allocation on heterogeneous machines. (a) Homogeneous
environment, (b) As many workers as tasks, (c) Coarse adjust, (d) Fine adjust.

To prevent this algorithm from operating incorrectly, we introduced the

normalization factor, called α, that directly depends on the architectural

characteristics of each resource. The normalization factor of a given resource

is computed by simply running a short benchmark on it when it joins the

computation. The benchmark is also run in the master machine. A value α=1

is assigned to the master machine. Each worker machine j has the following

αj:

αj =BMmaster/BMworkerj

 α = 4 4 2 1 1 1 1

 α = 4 4 2 1 1

Efficiency = 0,51
Execution Time = 8
asp = 28/8 = 3,5 ≅ 4

122
4

6 6
8

(a)

asp = 4 ⇒
reduction to 5
workers

Efficiency < 0.8 ⇒
reduction to 4 workers

Efficiency = 0,55
Execution Time = 4
Speedup = 15,5/4 = 3,8 ≅ 4

coarse
Efficiency = 0,4
Execution Time = 4

Efficiency = 0,73
Execution Time = 6

4 2
1

1,5 2 23

fine

 α = 4 4 2 1

(b)

(c)

(d)

6

22
0,5
1,5

1 0,25

4
1,5
0,25

1
2

1,5
2

 125

BMmaster and BMworkerj being the times obtained from the execution of the

benchmark task in the master and worker j, respectively.

The factor α is used to normalize the execution times of the tasks. The

absolute execution time of task i is defined as:

AETi = ETi * α(M(i))

ETi being the wall clock execution time of task i, and M(i) being a mapping

function that returns the machine to where task i was executed. α(M(i))

corresponds to the normalization factor of the machine where task i was

executed.

Although the way in which the α normalization factor is computed might

cause inconsistent results when running the same benchmark on the same

machine, producing execution times with significant differences between

them, in practice it has worked quite well. In order to obtain a more precise α

factor we could use the dynamic information provided by Condor to compute

it. Condor periodically runs the well-known benchmarks Linpack and

Dhrystone, to determine the Kflops (floating point performance) and Mips

(integer performance), respectively. Lindpack [Don01] is a collection of

subroutines that analyze and solve linear equations and linear least-squares

problems. Dhrystone [Wei84] is a short synthetic benchmark program

intended to be representative for system (integer) programming, based on

published statistics on the use of programming language features. Despite the

simplicity of our benchmark for computing the α factor, it was a valid

approximation in practice, as our experiments confirm that machines with high

α corresponded to machines for which high values for MIPS and Kflops were

returned by Condor. The machine Load Average is also measured by

periodically executing operating system calls that return this value (for

example uptime and top on Unix).

 126

At the end of each iteration, the wall clock execution times for the tasks are

normalized by using the α factor. After this, tasks are ordered from largest to

smallest by considering the average of the absolute execution times obtained.

Tasks will be assigned to workers in the next iteration according to this order.

Application efficiency is measured by using the wall clock times.

Figure 4-14. Worker allocation on heterogeneous machines. (a) Homogeneous
environment, (b) As many workers as tasks, (c) coarse adjust, (d,e) fine adjust.

Efficiency = 0,51
Execution Time = 8
asp = 28/8 = 3,5 ≅ 4

122
4

6 6
8

(a)

asp = 4 ⇒
reduction to 5
workers

Efficiency < 0.8 ⇒
reduction to 4 workers

 α = 4 4 2 1 1 1 1

Efficiency = 0,55
Execution Time = 4
Speedup = 28/8 = 3,8 ≅ 4

coarse
Efficiency = 0,66
Execution Time = 4

Efficiency = 0,73
Execution Time = 4

4 2
1

1,5 2 23

4
232 1,5

0,5 0,25

fine

 α = 4 4 2 1

fine
Efficiency = 0,97
Execution Time = 3

 α = 4 4 2

32 1,5

0,5 0,25
0,5 1

 α = 4 4 2 1 1

(b)

(c)

(c)

4
32 1,5

0,5

0,25 0,5

(d)

(e)

Efficiency < 0.8 ⇒
reduction to 3 workers

 127

Figure 4-14 shows the corrected example when using normalized task

execution times to determine the next task to be executed.

Once in a heterogeneous environment, the two components of the strategy

are handled in the following way:

• Tasks Scheduling: At the end of each iteration, the wall clock

execution times of the tasks are normalized by using the α factor. After

that, tasks are ordered from largest to smallest by considering the

average of the absolute execution times obtained. Tasks will be

assigned to workers in the next iteration according to this order.

Machines are sorted by the α factor, which means that large tasks will

be scheduled onto better machines and short tasks onto slower

machines.

• Worker Allocation: Application efficiency is measured by using wall

clock times. When releasing a machine, the slowest one participating in

the computation is released. Figure 4-14c shows an example of the

coarse adjust, while Figure 4-14d and 4-14e show the fine adjust. In

the implementation, a more conservative policy was taken when

releasing machines, because if a machine is released but later needed,

it is then possible that a slower machine will be obtained instead, and

the global performance of the application is therefore worsened. This

means that, as with the example of Figure 4-14, the self-adjusting

algorithm will stop when efficiency is above 0.7 (Figure 4-14d).

4.3.2 Experimental Evaluation with an Image Thinning Application

The same master-worker thinning application executed on a homogeneous

environment was executed on a heterogeneous environment. The available

machines from the Condor pool now differed in the KFlops, MIPS, Memory

and Load Average. Consequently, the execution of the application was carried

out in a completely heterogeneous platform with a set of processors that

 128

exhibit significant differences in performance. The minimum and maximum

feature values of the machines obtained can be seen in Table 4-10.

Feature Minimum Value Maximum Value
KFlops 40156 212561
MIPS 220 1049
Memory 220 Mb 1025 Mb
Load Average 0 1

Table 4-10. Characteristics of the machines used in the heterogeneous
experimentation.

We will now validate the need to introduce the α factor into the algorithm

initially designed for homogeneous environments.

4.3.2.1 Evaluation of the Self-Adjusting Algorithm with and
without Applying the Normalization Factor

In the heterogeneous environment, we executed both versions of the self-

adjusting scheduling algorithm: that adapted to the heterogeneous

environment using the α normalization factor, and that which was originally

implemented for homogeneous environments and did not use the

normalization factor. When releasing machines, both versions release the

slowest available, because in both cases the workers list is sorted according

to the α factor. Both versions differ in the way in which task execution times

are used. The homogeneous version uses task wall clock times directly, while

the heterogeneous version uses wall clock times corrected by the α factor as

previously explained.

 In this case, the thinning application was run with the Figures and Letters

images (Figure 4-11a and 4-11b) as examples of applications with tasks of

different and similar sizes respectively. Images were initially divided into 32

parts, which corresponded to the first set of tasks created at the beginning of

the execution. Figures was used as an example of an uneven distribution of

work amongst tasks, while Letters is an example in which most of the tasks

are assigned a similar amount of work (except tasks corresponding to the

border of the images, which are assigned less work).

 129

Results for the executions are shown in Tables 4-11 through 4-14 when the

thinning application was run both using the homogeneous and heterogeneous

self-adjusting scheduling strategy on a heterogeneous environment.

In addition to efficiency and wall clock time, we also measure:

• Pool Performance: An index that characterizes the quality of the

machines used in a particular execution of the application

[GK+00]. This is defined as

∑

∑

=

== NMach

i

NMach

i

i

iii

up

up
PP

1

1
*α

upi being the time that machine i was alive, and αi being the

correction factor for machine i. Higher values of PP correspond to

a better pool of machines.

• Average Number of Workers: This contains the average number

of workers used per cycle.

• Average Number of Suspensions: This corresponds to the

average number of suspensions per cycle.

• Number of cycles before having a stable number of machines:

This corresponds to the number of cycles it takes to obtain the

maximum number of machines required.

Homogeneous Self-Adjusting on Heterogeneous Env.
Figures

Execution 1 Execution 2 Execution 3 Execution 4
Efficiency 0,78 0,82 0,82 0,79
Wall Clock Time 3416,2 3229,5 3678,2 3898,2
Pool Performance 1,51 1,15 0,86 0,87
Average N Workers 7 6,19 6,57 5,91
Average Suspensions 0,26 0,29 0,14 0,2
N cycles before stable 3 1 1 3

Table 4-11. Performance Metrics for Figures with the homogeneous version of
self-adjusting (without normalization factor).

 130

Heterogeneous Self-Adjusting on Heterogeneous Env.
Figures

Execution 1 Execution 2 Execution 3 Execution 4
Efficiency 0,80 0,82 0,80 0,82
Wall Clock Time 2492,5 2630,2 2624,6 2839,2
Pool Performance 1,53 2,18 1,13 1,72
Average N workers 8,22 7,64 7,84 7,13
Average Suspensions 0,15 0,24 0,4 0,55
N cycles before stable 1 3 1 2

Table 4-12. Performance metrics for Figures with the heterogeneous version of
self-adjusting (with normalization factor).

Homogeneous Self-Adjusting on Heterogeneous Env.
Letters

Execution 1 Execution 2 Execution 3 Execution 4
Efficiency 0,77 0,79 0,79 0,79
Wall Clock Time 1420,0 1264,5 1657,9 1360,7
Pool Performance 0,9 1,67 1,5 1,22
Average N workers 8,46 8,76 8,13 9,28
Average Suspensions 0,03 0,08 0,7 0
N cycles before stable 4 1 3 1

Table 4-13. Performance metrics for Letters with the homogeneous version of
self-adjusting (without normalization factor).

Heterogeneous Self-Adjusting on Heterogeneous Env.
Letters

Execution 1 Execution 2 Execution 3 Execution 4
Efficiency 0,75 0,77 0,76 0,79
Wall Clock Time 1105,1 1096,4 1138,6 1221,3
Pool Performance 1,59 1,67 1,55 1,57
Average N workers 10,11 10,15 10,5 9,06
Average Suspensions 0 0,48 1,1 0
N cycles before stable 1 1 1 3

Table 4-14. Performance metrics for Letters with the heterogeneous version of
self-adjusting (with normalization factor).

 131

The heterogeneity of the resources used in each run of the application

makes application performance with the homogenous and the heterogeneous

version of the self-adjusting strategy difficult to assess. Application execution

time (measured as a pure wall clock time) depends on several factors in

addition to whether the normalization factor is used or not. However, from

Tables 4-11, 4-12, 4-13 and 4-14, it is observed that both versions of the self-

adjusting strategy always obtain efficiency values above 0.75 (as both

algorithms work by reducing the number of machines until reasonable

efficiency is achieved). The average number of workers used is consistent in

the executions. More workers were used when all the tasks were similar

(Letters), while with the Figures example, there were many short tasks and, in

consequence, the number of workers was less in both versions.

The experiments showed that overall execution time mainly depends on the

latest worker that completes its work, once the application runs in a steady

state with a stable number of workers. This time basically depends on both

the relative importance of tasks assigned to the worker and the relative

performance of the worker. The pure heterogeneous version identifies the

relative importance of each task, thanks to the α normalization factor. It

therefore achieves a stable situation in which the same worker (to which the

same task(s) is assigned in all iterations) is the last one to finish at each

iteration, and the number of workers is reduced in a coherent way, until this

situation is reached.

On the other hand, the homogeneous version does not correctly identify the

relative importance of each task. As a result, tasks are not always assigned to

the same worker to whom they were previously assigned. Additionally, the last

worker to finish is different from one iteration to another. Therefore, the

homogeneous version of the adjusting algorithm reduces the number of

workers using erroneous execution time reference; this leads to using a

number of workers that is slightly less than the number used in the

heterogeneous version of the algorithm.

 132

By using fewer workers than the heterogeneous version, the homogenous

version always achieved a worse overall execution time. The worst case of

the heterogeneous strategy was always better than the best case of the

homogeneous strategy. The consequences of incorrectly identifying the

relative importance of each task are more noticeable in those cases in which

tasks are not similar in terms of execution time. That is why, in the executions

performed with the Figures image, where task execution times are within a

wider range, there are more differences in the final execution time (wall clock

times): because the errors made by the homogeneous version without

normalization factor were more significant. When tasks are similar (as in the

case of the Letters image), the errors produced by not taking the

normalization factor into account are hidden, because there are many

equivalent large tasks.

Wall clock time was not only reduced by using a larger number of workers.

There are other factors that contribute to this reduction: pool performance,

suspensions, the number of cycles elapsed before allocating the desired

number of machines, and the order of worker allocation, although these have

only a minor influence.

In general, for a given set of workers, wall clock time tends to be reduced if

these machines have a better pool performance. It was also observed that the

better the pool performance and the more balanced the relative performance

of individual workers, the better the overall execution time. For the same

number of workers, a higher pool performance decreases execution time,

while a lower pool performance increases it. With a similar pool performance,

a higher number of machines reduces wall clock time, while a lower number

of machines increases it. This rule is not always fulfilled, as it can be seen in

executions 1 and 2, in Table 4-11. This is explained by the effect of other

factors such as the average number of suspensions and the number of cycles

elapsed before allocating the desired number of machines.

A higher number of average suspensions increases execution time, even if

both the number of workers and pool performance are high, because it implies

 133

that some of the iterations take a longer time to finish. The other factors that

influence execution time, in addition to pool performance, include the number

of cycles needed to allocate all the workers requested at the beginning of the

execution and the order in which workers were allocated (best workers might

be allocated at the beginning of the execution or in a later iteration).

Unfortunately, all these factors depend on the execution environment and are

not under the control of the self-adjusting strategy. The next chapter will

discuss some easy ways in which, in one way or another, to alleviate the

effect of losing machines.

4.3.2.2 Comparison of Self-Adjusting and Non Self-Adjusting
Strategies on Heterogeneous Environments

Finally, we will compare the results obtained when executing the image

thinning application, with and without using the heterogeneous self-adjusting

strategy. The non self-adjusting strategy works in the same way as explained

for the non self-adjusting strategy in a homogeneous environment (section

4.2.4); however, normalized execution times were considered, and also

machines were sorted by the α factor. These experiments were performed

with the aim of evaluating the ability to improve the efficiency produced by the

self-adjusting strategy. Tables 4-15 through 4-18 show the results of the

thinning application being executed with the Figures and Letters images.

Non Self-Adjusting
Figures

Execution 1 Execution 2 Execution 3 Execution 4
Efficiency 0,47 0,51 0,48 0,54
Wall Clock Time 2947,5 2744,3 2746,01 2920,6
Pool Performance 4,07 4,44 4,36 3,73
Average N Workers 13,72 14,03 14,33 13,82
Average Suspensions 0 0,4 0 0,23
N cycles before stable 3 6 3 3

Table 4-15. Performance Metrics for Figures with Non Self-Adjusting Scheduling on a
Heterogeneous Environment.

 134

Self-Adjusting
Figures

Execution 1 Execution 2 Execution 3 Execution 4
Efficiency 0,83 0,82 0,83 0,73
Wall Clock Time 2834,09 2777,4 2999,5 2996,3
Pool Performance 4,93 4,28 4,22 4,82
Average N workers 7,23 8,05 7,57 9,7
Average Suspensions 0 0 0,15 1,02
N cycles before stable 1 1 1 1

Table 4-16. Performance Metrics for Figures with Self-Adjusting Scheduling on a
Heterogeneous Environment.

Non Self-Adjusting
Letters

Execution 1 Execution 2 Execution 3 Execution 4
Efficiency 0,52 0,46 0,48 0,54
Wall Clock Time 1125,3 1103,9 1037,2 1088,2
Pool Performance 4,58 3,70 5,07 3,72
Average N workers 19,86 18,4 18,4 18,35
Average Suspensions 0,45 0 0,71 0,39
N cycles before stable 10 2 5 7

Table 4-17. Performance Metrics for Letters with Non Self-Adjusting Scheduling on a
Heterogeneous Environment.

Self-Adjusting
Letters

Execution 1 Execution 2 Execution 3 Execution 4
Efficiency 0,74 0,72 0,7 0,79
Wall Clock Time 1214,6 1278,8 1265,2 1200,2
Pool Performance 4,34 3,9 3,92 4,87
Average N workers 10,39 10,78 11,11 10,65
Average Suspensions 0,51 0 0 0,56
N cycles before stable 1 1 1 1

Table 4-18. Performance Metrics for Letters with Self-Adjusting Scheduling on a
Heterogeneous Environment.

 135

In Tables 4-15 through 4-18, it is observed that pool performance values

are significantly higher than those obtained in the experiments in section

4.3.2.1. The reason for this difference is that the results of Tables 4-15

through 4-18 were obtained by using a poorer master processor, in terms of

its relative performance. Workers machines therefore had a higher

normalization factor, which also implies a higher pool performance.

As the main conclusion from Tables 4-15, 4-16, 4-17 and 4-18, we observe

that the self-adjusting strategy always obtains efficiency values above 0.7 in

all cases, while no self-adjusting obtains efficiency values that are significantly

smaller (between 0.45 and 0.55 in most cases). With the Figures example,

slightly better results in efficiency were achieved by the strategy, as it was

able to schedule a higher number of small tasks so that workers were kept

busier. In all examples, the self-adjusting strategy was able to save more than

40% of the workers in most cases. Moreover, execution-time results indicate

that the self-adjusting strategy has a moderate penalty that, in most cases, is

less than 15%, compared to the non self-adjusting case.

It is also worth pointing out that the effect of the average suspensions over

execution time is more significant in the self-adjusting case than in the non

self-adjusting case, because, in the latter, the suspension can be produced on

a machine that was idle, waiting for another to finish work. In such a case,

efficiency will be improved, since, if a machine is suspended, it is not able to

execute useful work.

In the non self-adjusting case, there are some high values in the number of

cycles elapsed before allocating the maximum number of desired machines.

In many cases, this means that the application was running with 1 or 2

machines less than maximum; therefore, this factor is not very relevant in the

final execution time incurred by the application. The lack of these machines

mainly affected certain medium or short tasks that were scheduled to other

available workers, once they had completed their previously assigned task.

This scheduling was mostly carried out without incurring any penalty on the

overall execution time.

 136

Figure 4-15 shows a detailed example of one execution of the thinning

application applied to the Figures image, initially divided into 32 parts. This

example is a representative illustration of the general behavior and

performance achieved by both the self-adjusting and non self-adjusting

algorithms. We show the information related to number of workers, efficiency

and execution time after iterations 1, 5, 10, 15, and so on. Execution times

are shown in a logarithmic scale.

(a)

(b)

(c)

Figure 4-15. (a) Number of workers, (b) efficiency and (c) execution time obtained with
the Figures image divided into 32 parts.

0
5

10
15
20
25
30
35

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Iteration Number

N
um

be
r o

f W
or

ke
rs

"Self-Adjusting"
"Non Self-Adjusting"

0

0,2

0,4

0,6

0,8

1

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Iteration Number

Ef
fic

ie
nc

y

"Self-Adjusting"
"Non Self-Adjusting"

1

10

100

1000

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Iteration Number

Ex
ec

. T
im

e
(s

ec
.)

"Self-Adjusting"
"Non Self-Adjusting"

 137

Figure 4-15 is nearly equivalent to Figure 4-12 (see section 4.2.4), which

was obtained when the same comparison between a self-adjusting and non

self-adjusting strategy was carried out on a homogeneous environment. As a

result, all the comments made for Figure 4-12 are also applicable to Figure

4-15; namely, that resource allocation is not serviced immediately after

request; that the self-adjusting algorithm is able to tune the number of workers

from the initial iterations, even in the presence of heterogeneous workers (in

the example, using 13 machines in iteration 5); and that the most significant

differences in the number of workers (and, consequently, in efficiency) are

mainly observed at the central iterations of the computation (in this case, from

iteration 5 to 75). In these stages, the execution time of each iteration is

slightly better for the non self-adjusting algorithm, at the expense of

sometimes using twice the number of workers than those used by the self-

adjusting strategy.

 138

SELF-ADJUSTING SCHEDULING FOR MASTER-WORKER
APPLICATIONS

CHAPTER 4 ... 91

4.1 INTRODUCTION ... 93
4.2 SELF-ADJUSTING ALGORITHM FOR HOMOGENEOUS ENVIRONMENTS............. 97

4.2.1 Self-Adjusting Algorithm with Static Tables... 97
4.2.2 Experimental Evaluation with a Fibonacci Application..................... 101

4.2.2.1 Extended Version of MW...101
4.2.2.2 Experimentation Framework ..104
4.2.2.3 Evaluation of the Self-Adjusting Strategy with Static Tables107
4.2.2.4 Comparison of Random and Random & Average scheduling policies.109

4.2.3 Self-Adjusting Strategy with Dynamic Information 111
4.2.4 Experimental Evaluation with an Image Thinning Application.......... 116

4.3 SELF-ADJUSTING ALGORITHM FOR HETEROGENEOUS ENVIRONMENTS...... 123
4.3.1 Modifications to the Self-Adjusting Strategy 123
4.3.2 Experimental Evaluation with an Image Thinning Application.......... 127

4.3.2.1 Evaluation of the Self-Adjusting Algorithm with and without Applying the
Normalization Factor ..128

4.3.2.2 Comparison of Self-Adjusting and Non Self-Adjusting Strategies on
Heterogeneous Environments..133

 139

Chapter 5
Scheduling in the Presence of

Machine Loss

Abstract

This chapter first evaluates the impact of machine
reclaim in an opportunistic environment. Secondly,
strategies to alleviate this effect are proposed and
evaluated by simulation. The scalability of the proposed
strategies is then discussed. Finally, the results of the
implementation of these strategies are commented on.

 140

 141

5.1 Introduction

In the previous chapters, it was assumed that all the machines participating

in the computation were available throughout the entire application execution

time, although temporal machine suspension and loss were experienced in

many of our experiments in a real environment.

In this chapter, the same model of master-worker applications as in the

previous chapters is considered. It is also assumed that such applications are

executed on a non-dedicated cluster, and that they will use the services of a

cluster middleware, which will offer several services for discovering idle CPUs

and allocating them to the application. Allocated CPUs will be used to

complete several batches of tasks. In general, we assume that allocated

resources are not relinquished by the application until the last batch of tasks is

completed. By keeping the resources allocated in this way, the application will

alleviate the overhead incurred by the cluster middleware in the resource

discovery and allocation phases.

We will investigate the scheduling problem that arises in parallel

applications executing on a network of machines by using a mode of cycle-

stealing. In this mode of execution, a parallel application executes its tasks in

several machines whenever they are idle. When the user reclaims the

machine, tasks must relinquish control immediately, which means that it must

be stopped and vacated. In this case, the parallel application has the risk of

losing work currently in progress on reclaimed machines and, therefore, the

total execution time of the parallel application will be affected by the need to

reschedule the pre-empted task.

We intend to provide insight into how machine-owner interference may

degrade the performance of a parallel application running on a non-dedicated

environment. Moreover, we will evaluate the effectiveness of simple strategies

for alleviating the impact of machine loss. One strategy is based on the use of

 142

extra machines, which are added to the common pool of machines used by

the application. The others are based on the use of extra machines that are

used for executing certain replicas of large tasks. The following questions now

arise:

• How many extra machines should be allocated to an application,

running on an opportunistic environment, in order to achieve a

performance equivalent to that achieved in a non-opportunistic

environment?

• Should the allocated extra machines be used for running more

pending tasks or for task replication?

First the impact on the performance of an application is evaluated when it

runs on two different scenarios: a set of N dedicated machines, and a set of N

non-dedicated machines (in which pre-emption may occur). This study shows

that losing machines may have a considerable impact on the application

execution time, and therefore, three simple strategies to alleviate this problem

are proposed and evaluated. All strategies are based on the use of additional

machines, but differ in the way that these extra machines are used. In the first

strategy, additional machines are added to the common pool of machines

used by the application. The other two are based on task replication, in which

the additional machines are used to execute certain tasks that are already

running on other machines.

These strategies have been implemented using Condor, PVM and MW, the

same environment used in previous chapters. In this chapter, we consider the

same model of master-worker applications as in the previous chapters. It is

also assumed that such applications are executed on a non-dedicated cluster,

and that they will use the services of a cluster middleware that will offer

several services to discover idle CPUs and allocate them to the application.

The allocated CPUs will be used to complete several batches of tasks. In

general, we assume that the allocated resources are not relinquished by the

application until the last batch of tasks is completed. By keeping the resources

 143

allocated in this way, the application will alleviate the overhead incurred by the

cluster middleware in the resource discovery and allocation phases.

5.2 Background to the Problem

In a non-dedicated cluster, as in any opportunistic environment, there is no

guarantee that all the machines needed by an application will be available

throughout the whole execution time of the application. We would like to use

an example to illustrate the effect of losing machines, by taking into

consideration a single batch of tasks and assuming a pseudo-optimal

scheduling policy such as LPTF (Largest Processing Time First). At this point,

we are only concerned with the effect of losing machines. Figure 5-1 shows 8

tasks executed on 4 machines, these being the 4 machines available during

the whole computation. Colored boxes represent tasks. The number inside

each task represents its execution time. Dotted boxes containing a number

represent the amount of time that machines are idle but operational, and with

which there is therefore a waste of machine resources. In agreement with the

equation for efficiency introduced in chapter 2, an efficiency of 0.9 is obtained

(machines executed useful work 29 units of time, and 32 units of time were

able to execute work); and the execution time is 8 units (the batch of tasks is

completed in 8 units of time).

 9.0
32

29

8

7778
4

1

==
∑

+++
=

=i

E

 ET = 8

Machines 1 2 3 4

Figure 5-1. Example of efficiency and execution time taking into consideration a fixed
number of machines.

3

2
1 1

8

1

2

4
5 4

1

 144

T1,lost

 8 4 5 4

Work done by
this machine is
lost

The machine is
no longer
available (8)

8

4 5

 3

2

2

4

1

4

 4 3

During the execution of these tasks, in a random time Ti,lost, a random

machine i is lost. Figure 5-2 shows the effect of losing the machine where the

largest task (t) is running at T1,lost=4. This task is rescheduled to machine 4

on which t runs from the beginning again. As task t is the largest of the

pending tasks, it will be rescheduled as soon as a machine becomes idle. In

this case, an efficiency of 0.72 is obtained (machines were 29 units of time

executing useful work, and (12*4)-8=40 units of time able to execute work);

and an execution time is 12 units. Clearly, both efficiency and execution time

are worsened.

 0.72
40

29

1212124

12890
E ==

+++

+++
=

 ET = 12

Machines 1 2 3 4 1 2 3 4

 (a) (b)

Figure 5-2. Example of efficiency and execution time taking into consideration the loss
of one machine during execution time, at time = 4. a) Before loss occurs. b) After loss
occurs.

First, we only consider situations in which one machine is lost at every

cycle and the cycle is completed in a degraded way. Cycle length is not long

enough to recover the machine before the cycle is completed. A new machine

 145

will again be available at the beginning of the next cycle, when the scenario in

which a machine is lost will be repeated.

This formulation is a plausible situation that occurs in real situations, as has

been concluded from an empirical study. Certain experiments using a Condor

[LLM88] pool at the University of Wisconsin have been conducted. The

master-worker application for the computation of Fibonacci series described in

chapter 3 has been executed, with the following characteristics:

• The application was composed of 50 batches.

• 50 and 75 machines were used.

• Execution time incurred in the completion of one cycle (batch of tasks)

was on average 12 minutes.

• Total execution time for the application was on average approximately

10 hours.

• Application workload distribution was 30% approximately.

The application was run at different times of day on different days and it

was determined that, approximately, no machine losses were observed in

55% of the batches, with one machine loss being observed in 40% of the

batches. Losing more than one machine in a given batch only occurred in 5%

of the cases. Some factors that affect the number of machine losses

produced include the priority of the user, the number of machines available,

and the demand on machines belonging to the pool. Figure 5-3 shows the

number of workers during each cycle for a particular execution. In general,

machine losses are distributed in time, that is, they are not grouped around

particular cycles.

 146

Figure 5-3. Number of machines per cycle for a sample execution.

Situations in which more than one machine is lost per cycle are therefore

not considered, because in empirical studies, such situations are less likely to

occur. Only when the completion time of a batch is long enough would more

than one machine be lost. Moreover, the loss of more than one machine is

also accompanied in these situations with the discovery of new machines that

can be allocated to the application before the whole batch is completed. This

scenario therefore gives rise to a more complex analysis, and one which is

beyond the scope of this current work.

5.3 Impact of Machine Reclaim

We now evaluate the impact of losing one machine per cycle with respect

to efficiency and execution time. The results of this evaluation will be used

later in this chapter to compare the effectiveness of different solutions that try

to reduce the negative effects of machine loss. The impact of machine loss

has been quantified by simulation according to the following framework, which

models application and system characteristics.

A system composed of N machines is assumed. During a cycle, a random

machine m is lost at a random time. All machines have the same probability

 147

of being lost. The time at which a machine is lost is uniformly distributed

throughout the total duration of the largest task per cycle. If a task t was

running on m, t must be executed from scratch again on another machine.

In the specification of the application and scenarios, the following

parameters have been considered:

• Number of Task (T): This is the number of tasks that composes a

batch and that must be executed during the cycle. The number of tasks

was 50 for all the simulations in this section. In section 5.4 a higher

number of machines is considered.

• Workload distribution (W% i-i): This is the same as explained in

chapter 2: the total amount of work (TotalW) is divided throughout T

tasks with the following scheme: 20% of the tasks contain W% of the

total load, and the remaining 80% of tasks contain the TotalW-W%

load. Workload values (W%) of 30%, 40%, 50%, 60%, 70%, 80% and

90% have been considered. This section only reports the results

obtained in cases where all 20% of the tasks and the remaining 80% of

the tasks exhibited different execution times (depicted by a label 1-1 in

the figures), because those results were quite similar to the rest of

cases.

To quantify the effect of losing one machine, we have compared the results

obtained having N fixed machines and those obtained when having N

machines and losing one. The worsening percentages have been measured

systematically for efficiency and execution time, using a number of machines

ranging from 2 to Number of Tasks per batch (50). For each simulation

scenario (with a particular workload distribution and a given number of

machines), 100 simulations were carried out, so different machines were lost

at different time instants. Values shown in the graphs are average. The

worsening percentage for both efficiency and execution time are shown in

Figure 5-4 for the cases of a workload of 30% and 90%, respectively. We only

show these cases because they are representative examples of the extreme

 148

situations that can be exhibited by a given workload. The X-axis contains the

number of machines. The Y-axis contains the percentage values. A positive

value v% means that when losing one machine, efficiency or execution time

gets v% worse.

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

W
or

se
ni

ng
 %

Machines

W=30% 1-1 T=50

EfficiencyExecution Time

(a)

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

W
or

se
ni

ng
 %

Machines

W=90% 1-1 T=50

EfficiencyExecution Time

(b)

Figure 5-4. Worsening percentage when one machine is lost per cycle.
a) 30% workload and b) 90% workload.

As Figure 5-4 shows, when the application uses a small number of

machines, that is, below the ideal interval ([18,22] for 30% and [5,7] for 90%),

the effect of losing one machine is significant on execution time because the

 149

completion time of the cycle may be significantly affected. With 3 machines,

the execution time may be 50% worse in both cases. With less than 5

machines, worsening of execution time is greater than 25%. The worsening

index declines to 15% for a workload of 30% before entering the ideal interval.

For a workload of 90%, the worsening percentage in execution time is close to

35% for 6 machines. In general, efficiency using a small number of machines

tends to be high because all machines are busy and no idle periods are

detected. So, when one machine is lost, the remaining machines are still very

busy, and therefore the impact on efficiency is less significant than the effect

on execution time.

With a high number of machines (larger than the ideal interval), the effect of

losing one is not very significant. In this case there are many idle machines

and therefore the execution time achieved by a dedicated system is close to

the optimal, and efficiency is quite low (as Figure 5-4 (a) shows, efficiency for

more than 23 machines falls below 0.8). This situation can be observed for

more than 23 machines with a 30% workload and more than 8 machines for a

90% workload. By losing one machine, computation power will not be

reduced, and efficiency is low even without the loss, because the application

is running in a scenario in which not all machines are doing useful work.

Our main point of interest is focused on the perfect number of machines

and on the surrounding interval of machines at this point (ideal interval),

because, as stated in the previous chapters, the self-adjusting strategy

dynamically adapts the number of machines reaching, a number of machines

belonging to the ideal interval, in an ideal environment without machine loss.

Therefore, we think that this is the desired scenario for the execution of

applications. In the above examples, the perfect number corresponds to 20

and 6 machines for the 30% and 90% cases, respectively. At this point, the

worsening effect in both execution time and efficiency is not negligible.

Execution time is 13% and a 35% worse for a 30% workload and a 90%

workload, respectively. This means that, particularly in the case of unbalanced

workloads, the application will suffer from a significant delay due to machine

 150

losses at every cycle. In the next section, alternatives for reducing such an

impact are evaluated.

5.4 Strategies for Reducing the Impact of Machine Loss

In this work, we have restricted ourselves to solutions that do not use task

migration. This restriction has been adopted because the main interest

concerns solutions that could easily be applied to any opportunistic

environment. In current middleware systems, migration is not always

supported and, when supported, it is not always available. Sometimes, the

system imposes restrictions on the application that preclude the use of

migration. Furthermore, migration may sometimes fail due to pre-emption

deadlines or to limits on resource consumption during pre-emption.

Furthermore, a model of parallel applications that uses a moderate amount of

time in completing each batch of tasks has been considered. This means that

in some cases, the cost of checkpointing and migrating one task could be as

costly as the time needed to reschedule the task from the beginning, on a

different machine.

As a consequence, our focus is on solutions that overcome the impact of

losing a machine, which are conceptually simple, and whose implementation

is not based on any special requirement in the underlying middleware.

As was stated in the introduction to this chapter, a simple and intuitive

solution for reducing the impact of machine loss would consist of using extra

machines (this solution is also referred to as using machines in advance).

With this approach, we look for a solution whereby the use of a cluster of N+X

non-dedicated machines may achieve the performance of a dedicated cluster

with N machines. The use of additional machines for executing replicas is a

solution adopted in fault-tolerant systems with deadlines for terminating tasks

[LC88, OS91, GMM97]. In our case, we adapt this idea to compensate for the

loss of a machine, from the point of view of the application’s global execution.

 151

However, the additional machines can be used in different ways. They can

be used indistinctly from the others or they can be used to run replicas of

certain tasks. In the latter case, the largest tasks are the obvious candidates

for replication. There are also some hybrid solutions in which part of the extra

machines may be used for replication and the other part will be used as

ordinary machines. In this work, only three different cases have been

considered, which nevertheless give sufficient insight into the benefits of each

strategy. The strategies are denoted as:

• NR (No Replication): extra machines are simply added to the

common pool of machines. The effect is that the application runs on

a larger pool.

• SR (Single Replication): only the largest task is replicated in one of

the extra machines.

• CR (Complete Replication): all the extra machines are used to run

a copy of one of the largest application tasks. The largest K tasks

are replicated if K extra machines are added.

In the following subsections, we evaluate the above policies when a perfect

number of machines is used; the study is then generalized to any number of

machines.

5.4.1. Impact of Machine Loss with the Perfect Number of
Machines

For each workload distribution (W%), Table 5-1 shows the worsening

percentage of Execution Time (uppermost number in cell) and Efficiency

(number in lower part of cell), taking into consideration the perfect number of

machines. The first column denotes the workload; the second column

contains the number of machines that constitute the perfect number for each

workload distribution; the third column represents the worsening percentage

of having N machines with 1 loss with respect to having N fixed (this column

corresponds to the situation analyzed in section 3). The remaining columns

 152

show the worsening percentage with respect to N fixed machines when 1, 2

and 3 machines are used in advance and the strategy is either NR, SR or CR.

Notice that SR and CR represent the same strategy when only one machine

is used in advance.

As Table 5-1 shows, there is no best strategy in every case for reducing the

impact of machine loss. The ability of each strategy to reduce such impact

depends on workload distribution. However, certain conclusions can be

reached based on the above table. First, it is clear that the use of extra

machines reduces the impact on execution time of machine loss. The

worsening percentages in execution time in the third column (0 in advance

column, when no extra machines are used) are always larger than the

percentages obtained by any strategy using machines in advance. On the

other hand, efficiency tends to be worse as more machines are used. The use

of one machine in advance obtained a slight reduction in efficiency-worsening

only with a workload of 30%, in comparison with the case of no extra

machines (6.96% and 7.32%, respectively). In general, for any strategy, every

time that one additional machine is used, efficiency experiences a negative

impact that ranging from between 3% and 8% (depending on the workload

distribution). This effect is caused by the addition of more machines into the

pool, thereby increasing the system’s capability to perform more work.

However, total effective work does not increase because the extra resources

are used to execute a replicated task (not contributing as effective work), or to

repeat a task that has been pre-empted (in this case, overall efficiency may

be worse because more machines will be idle, after completing their tasks,

waiting for the completion of the whole cycle).

We also observe that complete task replication is better than single task

replication in nearly all cases. Complete task replication obtains better

execution times than single task replication, while the cost in efficiency is

similar for both strategies. In particular, using three machines in advance, the

CR strategy obtains an execution time that is never worse than 4% compared

to the execution time achieved with N dedicated machines.

 Machines in Advance
 0 in

Advance 1 in Advance 2 in Advance 3 in Advance

Workload Perfect
Number

 NR NR SR/CR NR SR CR NR SR CR

ET 13.35% 6.42% 8.49% 5.93% 5.5% 6.27% 8.42% 6.24% 3.91% 30% 20
E 7.32% 6.96% 9.1% 11.02% 10.99% 12% 16.11% 14.94% 14.21%

40% 14 ET
E

13.06%
6.64%

8.91%
9.26%

11.59%
11.85%

9.57%
15.49%

5.6%
13.34%

5.42%
13.73%

8.64%
20.21%

5.56%
18.42%

3.34%
17.6%

50% 11 ET
E

16.43%
7.24%

15.95%
13.8%

11.83%
12.61%

9.14%
16.84%

4.48%
14.42%

4.02%
15.08%

6.24%
21.76%

3.82%
20.34%

2.5%
20.17%

60% 9 ET
E

18.23%
7.6%

9.96%
11.05%

11.46%
13.47%

10.06%
19.34%

5.07%
16.93%

4.26%
17.31%

13.58%
28.27%

6.93%
25.01%

1.2%
22.42%

70% 8 ET
E

23.33%
9.59%

12.85%
13.23%

11.18%
13.62%

11.74%
22.23%

8.02%
20.43%

5.34%
19.43%

12.13%
29.88%

6.81%
27.42%

2.27%
25.36%

80% 7 ET
E

28.53%
12.23%

18.38%
17.12%

16.29%
17.26%

12.31%
24.04%

7.15%
21.61%

7.98%
22.65%

10.82%
31.81%

7.71%
30.34%

2.14%
27.67%

90% 6 ET
E

34.63%
15.06%

22.43%
20.47%

15.86%
17.94%

15.04%
27.47%

10.94%
25.5%

7.55%
24.58%

9.63%
33.56%

4.86%
31.47%

3.08%
31.05%

Table 5-1. Worsening percentage of execution time and efficiency taking into consideration the perfect number of machines.

 154

The positive performance achieved by the complete replication strategy

may be explained in terms of this strategy being the most effective when the

system loses one of the machines executing one of the biggest tasks. In these

cases, the task lost is also running in another machine and, therefore, the

whole cycle is completed as if no machine loss was experienced (i.e. we

achieve the same execution time as in the dedicated system). If the system

loses a machine with a task that is not one of the largest, then this task should

be rescheduled to another machine. However, the length of the task will be

short or moderate and, on average, its impact will not be very significant.

When only the largest task is replicated or there is no replicated task at all, the

benefit of replication is exclusively restricted to the scenario in which the

largest tasks is lost. Unfortunately, losing any other largest task has a

significant and negative effect on the overall execution time, since that task

needs to be executed again from the beginning.

Figure 5-5 shows a graphical example that illustrates the behavior of CR,

SR and NR in accordance with the argument presented above. This example

is based on the example used in section 4.2, but uses 2 extra machines.

Figure 5-5a shows a scenario in which CR is applied and the largest task is

lost at time 4. In this case, total execution time (ET) remains equal to

execution with a dedicated system. Figure 5-5b shows the scenario in which

SR is applied and the second largest task is lost. Consequently, there is

needed to reschedule it, producing a final execution time of ET=9 (one unit

more than in a dedicated system). Finally, Figure 5-5c shows the scenario in

which NR is used and the largest task is lost again at time 4. Here, the total

batch is completed at time ET = 12 (4 units more than in the dedicated

scenario).

 155

 1 2 3 4 5 6 1 2 3 4 5 6
Machines

(a)

1 2 3 4 5 6 1 2 3 4 5 6

Machines

 (b)

1 2 3 4 5 6 1 2 3 4 5 6

Machines

 (c)
Figure 5-5. Examples of Execution Time taking into consideration 2 machines in

advance and a) CR with T1,lost=4, b) SR with T3,lost=4, and c) NR with T1,lost=4.

8

8 4 5 4

2

 3

1

 3

8

2

4

5

4

1 1 2

8
2

 4

 4

ET = 9 E=0.59

8 4

5 4

 3
2

21

445 3
2

2 1

7 8

8

8 8

 4

ET = 12 E = 0.45

8 45 4

85 45 4

32
2 1

8 5

11 2 2

4

ET = 8 E = 0.65

 156

Finally, it is worth pointing out that the use of extra machines without

replication appears to be the most effective strategy only for 30% and 40%

workloads with one extra machine. These workloads exhibit many tasks with

similar execution times, and therefore the benefits of replication are less

visible when only one additional machine is used. When the batch of tasks

contains significantly large tasks or the number of machines used is further

increased, then replication strategies obtain better results, because they avoid

the negative effects related to the loss of the largest tasks.

5.4.2 Impact of Machine Loss with any Number of Machines

The behavior of the above-mentioned strategies using a wider range of

machines has also been evaluated. As was stated above, an application is

expected to run using the perfect number of machines or any number of

machines close to perfect (what was referred to as the ideal interval).

However, applications may not always be able to use this desirable number of

machines. For instance, the system may not find idle machines and therefore

the application must run with a number of machines that is smaller than the

desired. Alternatively, users may be concerned only with execution time and

may not care about resource efficiency. Therefore, their application may be

running with an excess of machines (above the ideal interval). The idea is

now to obtain insight with respect to how many extra machines should be

used when the application runs with a non-ideal number of machines.

Figures 5-6 and 5-7 show the worsening ratio in efficiency and execution

time achieved by the NR and CR strategies, using one and two machines in

advance for 30% and 90% workloads, respectively. They also show the

worsening when no extra machines are used (N curve). All curves start at

X = 3, i.e., at this point the execution and efficiency of a dedicated system

composed of 3 machines is being compared with non-dedicated systems with

3 (N curve), 4 (N+1 curves) and 5 (N+2 curves), respectively. The case of

N+3 machines has not been included in order to maintain clarity in the figures.

The main conclusions can be derived from the curves shown.

 157

-5

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50

W
or

se
ni

ng
 %

Machines

EFFICIENCY W=30% 1-1 T=50

NR (+0)NR (+1)SR (+1)NR (+2)CR (+2)

(a)

-30

-20

-10

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40 45 50

W
or

se
ni

ng
 %

Machines

EXECUTION TIME W=30% 1-1 T=50

NR (+0)NR (+1)SR (+1)NR (+2)CR (+2)

(b)

Figure 5-6. (a) Efficiency and (b) execution time worsening for a 30% workload
distribution.

-5

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50

W
or

se
ni

ng
 %

Machines

EFFICIENCY W=90% 1-1 T=50

NR (+0)NR (+1)SR (+1)NR (+2)CR (+2)

(a)

 158

-30

-20

-10

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40 45 50

W
or

se
ni

ng
 %

Machines

EXECUTION TIME W=90% 1-1 T=50

NR (+0)NR (+1)SR (+1)NR (+2)CR (+2)

(b)

Figure 5-7. (a) Efficiency and (b) execution time worsening for a 90% workload
distribution.

As Figures 5-6 and 5-7 show, when the number of machines used by the

application is small (less than the ideal interval), using as many machines in

advance as possible is the best solution for all workload distributions and

strategies. This means that using two machines in advance is simply better

than using one machine in advance, independently of the particular strategy

adopted to manage the extra machines and the workload distribution. This

effect is because the application is running with an insufficient number of

processors and, therefore, any additional processor will improve execution

time even in the presence of machine loss. However, for a fixed number of

extra machines, NR is slightly better than CR both in terms of execution time

and efficiency. Finally, it is worth mentioning that, when two extra machines

are used, both NR and CR improve the execution time of the application (the

worsening in execution time is negative in both cases).

When the application runs with a large number of machines, task

replication strategies tend to perform slightly better than no replication

strategies, although the percentage difference between the results achieved

by both strategies is always less than 5% for a fixed number of machines in

advance. In this case, applications execute with an excess of machines, i.e., a

similar execution time might be achieved using fewer machines. Therefore, if

machines are added in advance, and if they are used to replicate the largest

 159

tasks, the negative effects of losing these tasks are avoided. In this case,

there is a scenario in which the loss of one of the largest tasks obtains the

same execution time as in a dedicated system (as Figure 5-5a illustrates).

5.5 On the Scalability of Strategies for Reducing the Impact
of Machine Loss

The following question now arises: Are the same results obtained in the

previous sections valid when a larger number of machines are considered?,

i.e., how do those results scale?. In order to get insight into this question the

same experiments were done taking 150 machines into account.

For each workload distribution (W%), Table 5-2 shows the worsening

percentage of Execution Time (uppermost number in cell) and Efficiency

(number in lower part of cell), for 150 tasks per batch, taking into

consideration the perfect number of machines. The first column denotes the

workload; the second column contains the number of machines that

constitutes the perfect number for each workload distribution; the third column

represents the worsening percentage of having N machines with 1 loss with

respect to having N fixed. The remaining columns show the worsening

percentage with respect to N fixed machines when 1, 2 and 3 machines are

used in advance, and the strategy is NR, SR or CR.

As Table 5-2 shows, the effect of losing a machine is less relevant in the

case of 150 tasks than in the case of 50 tasks. This is because even though

the relative difference between largest tasks and smallest tasks is the same in

both cases, the absolute differences is greater in the case of 50 tasks.

The use of extra machines reducing the impact in execution time of

machine losses is still valid, but not so much as in the case of having fewer

machines. The worsening percentages in the NR-0 in advance column are

larger than the percentages obtained by any strategy using machines in

advance, except in the case of 30% workload and one extra machine.

 160

 Machines in Advance

 0 in
Advance 1 in Advance 2 in Advance 3 in Advance

Workload Perfect
Number NR NR SR/CR NR SR CR NR SR CR

30% 57 ET
E

7.18%
4.46%

8.55%
6.96%

7.87%
6.69%

5.8%
6.53%

5.31%
6.39%

5.63%
6.55%

6.23%
8.46%

5.26%
8.09%

4.79%
8.02%

40% 40 ET
E

9.15%
5.32%

7.47%
6.63%

5.95%
5.78%

5.46%
7.42%

4.27%
6.77%

4.59%
7.18%

6.08%
10.01%

5.76%
9.78%

4.2%
9.11%

50% 31 ET
E

12.4%
7.2%

7.54%
6.66%

6.68%
6.72%

7.44%
9.56%

6.28%
9.28%

5.62%
8.05%

6.4%
11.48%

5.85%
11.21%

4.9%
10.67%

60% 26 ET
E

15.77%
9.15%

14.82%
10.78%

11.74%
10.1%

9.71%
10.4%

7.7%
10.28%

8.1%
11.2%

11.12%
15%

10.24%
15.76%

7.14%
13.75%

70% 22 ET
E

16.44%
9.54%

14.88%
11.27%

13.74%
11.19%

14.18%
14.82%

13.74%
14.75%

9.47%
12.15%

13.48%
17.47%

12.74%
16.76%

7.81%
13.93%

80% 19 ET
E

18.76%
10.72%

16.05%
12.92%

16.22%
13.99%

15.46%
16.66%

13.25%
15.5%

12.54%
15.76%

12.88%
19%

10.72%
17.88%

9.42%
17.87%

90% 17 ET
E

24.43%
14.27%

19.35%
15.69%

20.39%
16.95%

17.39%
18.72%

14.04%
17.3%

15.48%
18.67%

16.63%
22.39%

15.01%
21.84%

9.61%
19.35%

Table 5-2. Worsening percentage for execution time and efficiency, considering 150 tasks.

 161

Improvements achieved in execution time are smoothed in the case of 150

tasks because the ratio between extra machines and the perfect number of

machines is lower than the ratio exhibited in the case of 50 tasks. Similarly,

efficiency also worsens in a smooth way for the same reason. However, for a

given workload and equivalent ratios between the number of extra machines

and the perfect number, similar results can normally be observed in the cases

of both 150 and the 50 tasks.

For instance, the negative impact of execution time is reduced in relative

terms in a similar way in the case of 50 tasks with a workload of 30% with 1

machine in advance and in the case of 150 tasks with a workload of 30% with

3 machines in advance. In these cases, the ratios between the number of

extra machines and the perfect number are, respectively, 1/20 and 3/57,

which can be considered equivalent. And the worsening percentage is

reduced from 13.35% to 8.49% (36.4%) and from 7.18% to 4.79% (33.3%),

respectively.

Task replication is the strategy that achieves a better alleviation of machine

loss, but its benefits are mainly noticeable when the number of extra

machines is 3. This fact can again be explained by the relative weight of extra

machines over the total number of machines. As more machines are used in

the case of 150 machines, the number of large tasks that have to be

replicated must be larger than the number used in the case of 50 tasks, in

order to achieve an equivalent reduction in the worsening percentage of

execution time.

Taking into account the results of Tables 5-1 and 5-2, it can be concluded

that the reduction of the negative impact in execution time due to machine

losses can only be achieved at the expense of worsening the overall

efficiency exhibited by the application. In this case, it would depend on how

much each particular user is willing to pay in terms of efficiency in order to

improve application execution time. The more concerned the user is about

execution time, the larger the number of machines that should be used for

task replication. However, according to our simulation results, adding a

 162

number of extra machines between 15% or 20% more than the perfect

number has proved that reasonable improvement in application execution

time can be attained with a moderate worsening in overall efficiency.

5.6 Study of Strategies Considering Different Probabilities of
Losing Machines

In the previous sections, it was assumed that there was a machine lost at

each cycle. In the experimental evaluation, we saw that in real opportunistic

environments machine losses are less frequent. This means that the

probability of losing a machine during a cycle will have a value of between 0

and 1. Obviously, the occurrence or not of a machine loss in a given cycle

cannot be predicted beforehand. This fact implies that the use of extra

machines (either with or without task replication) cannot simply be used as a

policy that is turned on and off on an iteration basis. Extra machines and

eventually task replication must be used in a sort of speculative way. The

master-worker application will benefit from these extra machines only in the

cycles in which a machine is lost, otherwise, the application will be penalized

in its efficiency in cycles in which no machines loss occur. Intuitively, one

would expect that the use of extra machines is worthwhile for “high”

frequencies of machine loss, i.e., when nearly all cycles result in one machine

being lost. For low occurrences of machine losses, the use of extra machines

would not pay off.

In this section, we present the results of a set of simulations that were

carried out in order to determine which frequencies of machine loss it is worth

using extra machines for, and for which frequencies it is not. These results

will also highlight some empirical rules that may be applied in practice in order

to decide when the use of extra machines should be turned on or off.

That is, in this section we evaluate the results obtained when performing

the same simulations, but including a probability of losing a machine in a

 163

cycle. This probability took the following values: 10%, 20%, 30%, 40%, 50%,

60%, 70, 80% and 90%.

The main conclusions of this study can be derived from Figures 5-8 and 5-9

which show the simulation results for worsening percentages of execution

time (ET) and efficiency (E) for different losing probabilities, considering 30%

and 90% workloads, and always assuming the perfect number of machines.

(NR+0) represents the worsening percentage incurred when losing one

machine without having any extra machine, with respect to the case in which

no machines are lost. The other series show the worsening percentage for

the NR and CR strategies when 1, 2 and 3 extra machines are used. The

complete set of values for all workloads and losing probabilities of 10%, 40%,

50%, 60%, 80% and 90% can be seen in Appendix E.

(a) (b)

Figure 5-8. Worsening percentage for a 30% workload. (a) Execution time (ET),
(b) Efficiency (E).

ET (W=30%)

0

2

4

6

8

10

12

10 20 30 40 50 60 70 80 90

Losing probability

W
or

se
ni

ng
 %

NR (+0)
NR (+1)
CR (+1)
NR (+2)
CR (+2)
NR (+3)
CR (+3)

E (W=30%)

0

2

4

6

8

10

12

14

16

10 20 30 40 50 60 70 80 90

Losing probability

W
or

se
ni

ng
 %

 164

 (a) (b)
Figure 5-9. Worsening percentage for a 90% workload. (a) Execution time (ET), (b)

Efficiency (E).

As can be seen in Figures 5-8 and 5-9 and also in Tables E-1 through E-6

of Appendix E, the probability of losing a machine has a linear effect on the

worsening of execution time. The higher the probability of losing a machine,

the higher the worsening percentage. In all cases, the use of additional

machines reduces the worsening of execution time and it is normally

observed that for the same number of extra machines, complete task

replication performs slightly better than no replication. These results agree

with those depicted in previous sections in which the probability of losing a

machine was considered to be 100%. In some cases, Complete Replication

with 2 extra machines is even able to outperform No Replication with 3 extra

machines. It is also worth noting that, for low or even moderate probabilities of

machine loss, the negative impact on application execution time is low or

moderate. For a workload of 30%, the worsening percentage is always less

than 10% for all probabilities. For larger workloads, worsening percentages

above 10% are obtained only for probabilities of loss of 50% or greater.

From point of view of efficiency, every extra machine added to the

application increases the worsening of efficiency by a percentage that

remains nearly constant, independently of the probability of losing machines

E (W=90%)

0

5

10

15

20

25

30

35

40

10 20 30 40 50 60 70 80 90

Losing probability

W
or

se
ni

ng
 %

ET (W=90%)

-5

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90

Losing probability

W
or

se
ni

ng
 %

NR (+0)
NR (+1)
CR (+1)
NR (+2)
CR (+2)
NR (+3)
CR (+3)

 165

and the use made of those machines (either for task replication or not). The

cost of each extra machine ranges, approximately, from 3% with a 30%

workload to 8% for a workload of 90%.

If we take into account the worsening percentages both of execution time

and of efficiency, it seems clear that the use of extra machines (and task

replication) is mainly worthwhile in those cases in which the probability of

losses is moderate or high. The cost to be paid in terms of efficiency is too

high when the probability of losses is less than a 50% in all workload cases.

Obviously, in view of the comments made in the previous section, the use of

task replication might be adopted independently of the probability of loss in

those cases in which reducing the overall execution time is the most important

criterion for a given user, and where overall efficiency is not relevant.

A final observation is related to the fact that task replication exhibits

significant improvement, especially in scenarios with high probabilities of

machine losses. From a practical point of view, this would constitute an

empirical rule by which to automatically trigger the task replication

mechanism. Task replication would be triggered whenever machine

suspension or loss was detected at least once every two cycles. Otherwise,

the application would be executed without using any extra machine.

5.7 Experimental Evaluation on a Real Platform

In this section, we will present a prototype implementation of the CR

strategy, as the results obtained in previous sections have shown that this

strategy proved to be the one that provides the best alleviation for machine

losses in most cases. The section is completed with a brief experimentation in

which the CR and the NR strategies were applied to a PovRay application

[FHK98].

 166

5.7.1 Implementation of Strategies

Although task replication is a conceptually simple strategy, some

extensions had to be included in MW in order to support it. We will describe

these changes below.

As was briefly introduced in chapter 2, MW handles a workers list with

information about workers participating in the computation. It also handles lso

the ToDo list and the Running list for tasks. The former contains all the tasks

pending for execution for a particular iteration, and the later contains the tasks

that are currently being executed.

Support for the CR (Complete Replication) strategy was achieved basically

by adding a mechanism for dealing with replicated tasks in the ToDo list. At

the beginning of each cycle, and after having sorted the ToDo list according to

the Random & Average scheduling policy, the largest X tasks, which

correspond to the first X tasks in the ToDo list, are replicated. They are then

inserted into the ToDo list, keeping the list sorted. X corresponds to the

number of extra machines used.

When a worker becomes idle, it receives another task to be executed if

there are remaining tasks in the ToDo list. It could get either a normal or

replicated task, indistinctly. However, when a machine is lost, different actions

are taken, depending on the strategy considered. In the case of the NR

strategy, the task running on the reclaimed machine is rescheduled, that is, it

is placed in its respective position in the ToDo list. On the other hand, under

the CR strategy, if the task running on the reclaimed machine is or has a

replica, this task is not rescheduled; it is simply lost. But if it is not or does not

have any replica, this task is rescheduled, as in the case of NR.

It is worth pointing out that this technique would work directly in a

heterogeneous environment, because the largest tasks and their replicas

would be executed in the fastest machines.

 167

5.7.2 Experimentation on a Real Platform, and Results

This subsection presents the initial experimentation performed with the

replication strategies.

The experimentation was carried out using a homogeneous cluster of 10

Sun4x Solaris2.5 workstations, at 29 Mips and 72 Mb RAM, interconnected by

Ethernet and running Condor. The PovRay application for rendering graphics

was parallelized following a master-worker paradigm. PovRay creates and/or

animate images by means of a Raytracing algorithm, and falls into the

category of embarrassingly parallel, because it can be decomposed into

independent tasks. The resulting parallel application, MW-PovRay, distributes

different segments of an image (tasks) among the workers available. When

the computation of an image finishes then a cycle is completed, and the

master sorts the pieces of the next image to be completed according to the

results obtained in the previous cycle. It is important to remark that in a

complete image sequence, the differences between one image and that

following it are minimal. Each image was stored in a file, and the set of files

constituted the animation.

In the experimentation, we used the skyvase image, provided with the

PovRay program, and shown in Figure 5-10. All the executions had the

following fixed parameters:

• Image size: 640 x 480 pixels.

• Number of Tasks per cycle (T): In order to perform the computation,

the image was divided into 10 tasks per cycles.

• Cycle Length: The duration of the cycles was approximately 60

seconds on average. The largest and smallest task duration was on

average 56 and 21 seconds, respectively.

• Workload Distribution (W): The workload obtained when dividing the

image into 10 tasks was 33% approximately.

 168

• Perfect Number: The experiments carried out with the skywase

image corresponded to a Perfect Number of 7 machines or workers.

• Number of Iterations or Cycles: This was fixed to a value of between

30 and 50 depending on the probability of loosing a machine, with

the aim of distributing machine loss uniformly among the machines.

Figure 5-10. skyvase image

Our experiments were carried out using a mechanism integrated in the

master process that allowed us to lose machines in a controlled way. At the

beginning of each cycle, machine loss was computed to occur in a pseudo-

random time according to a determined probability. Once the machine to be

lost was determined, the master process killed the corresponding worker at

the specific time. As a consequence, the task that was running in that worker

was automatically reinserted in the ToDo list, waiting for another machine to

execute it. All machines were available again at the beginning of the next

iteration. This mechanism allowed us to repeat and compare results from

different executions, although it did not behave exactly as a pure opportunistic

environment.

Table 5-3 shows the worsening percentage for execution time (ET rows)

and efficiency (E rows) for certain determined probabilities of loss (20%, 50%

and 90%) considering the perfect number of machines. The first column

shows the worsening percentage when having 7 machines (perfect number)

 169

and losing 1, with respect to the case of having 7 machines without losses.

The other two columns show the worsening percentage with respect to 7 fixed

machines when having 7 machines plus 1 extra machine, and 1 machine is

lost at each cycle with losing probability. These columns correspond to the

NR and CR strategy respectively. All measures include the time incurred in

both killing a worker in order to lose it, and in restoring it at the beginning of

the next iteration.

 Perfect
Number 1 Extra Machine

Losing
Probability NR NR CR

ET 6.45% 3.41% 7.47% 20% E 1.6% 10.63% 16.69%
ET 16.73% 8.42% 10.24% 50% E 7.64% 14.01% 16.26%
ET 27.92% 15.77% 17.02% 90% E 12.27% 18.23% 19.74%

Table 5-3. Execution time and efficiency worsening percentage for a 30% workload
application.

When measuring efficiency, it is important to remark that with the NR

strategy, for each cycle, all the work except that performed by the lost worker

is productive work. However, with the CR strategy, if a task t is replicated,

and neither the machine executing t nor the machine executing the replica,

are lost, then only one of these is recorded as useful work.

The results shown in Table 5-3 agree with the simulations that were

previously presented. We can see that with a probability of loss of 50% or

higher, using an extra machine significantly reduces the worsening

percentage for execution time. In these experiments, the NR strategy

exhibited better results than the CR strategy as the application workload was

close to 30%. This means that the execution time for tasks does no present

important differences among them. Consequently, if one task is replicated but

 170

another is lost, then that replication was less useful than just having an

additional machine.

The loss of machines was proportionally more significant in these

experiments because, as was seen in the experimentation regarding

scalability, the application was running with a small perfect number of

machines. However, we observed that both in the simulations and

experimentation, when having one extra machine, the NR strategy reduces

the worsening percentage for execution time by more than a half.

 171

SCHEDULING IN THE PRESENCE OF MACHINE LOSS

CHAPTER 5..139
5.1 INTRODUCTION ... 141
5.2 BACKGROUND TO THE PROBLEM .. 143
5.3 IMPACT OF MACHINE RECLAIM .. 146
5.4 STRATEGIES FOR REDUCING THE IMPACT OF MACHINE LOSS..................... 150

5.4.1. Impact of Machine Loss with the Perfect Number of Machines 151
5.4.2 Impact of Machine Loss with any Number of Machines..................... 156

5.5 ON THE SCALABILITY OF STRATEGIES FOR REDUCING THE IMPACT OF
MACHINE LOSS ... 159

5.6 STUDY OF STRATEGIES CONSIDERING DIFFERENT PROBABILITIES OF LOSING
MACHINES .. 162

5.7 EXPERIMENTAL EVALUATION ON A REAL PLATFORM 165
5.7.1 Implementation of Strategies .. 166
5.7.2 Experimentation on a Real Platform, and Results.............................. 167

 171

Chapter 6
Conclusions and Future Work

Abstract

This chapter presents the conclusions obtained from
this thesis, in addition to work currently being
undertaken and the work plan to be followed in the
future in order to continue research on scheduling
of master-worker applications in opportunistic
environments.

 172

 173

6.1 Conclusions

In this work, we have proposed and developed solutions to certain

challenges in executing master-worker applications within opportunistic

environments. We shall now review each of the main objectives in this work

and comment on how each of these has been attained.

Our work was aimed at developing efficient scheduling algorithms for a

particular class of parallel applications that follow a master-worker paradigm.

The execution environment assumed in our work was opportunistic clusters of

machines, a particular type of non-dedicated distributed systems that are

characterized by harnessing idle machine times for executing user jobs. We

started our work by reviewing the most significant solutions proposed in the

literature, paying attention to the system model, the programming model and

the performance model adopted in each solution. According to the main

families of scheduling solutions found in the literature, our work would be

included within the group of application-aware dynamic scheduling strategies,

including aspects with regard to system-awareness.

We identified the main features that characterize both the generalized

master-worker programming model and the opportunistic set of non-dedicated

heterogeneous machines. Our initial problem was divided into three main sub-

problems. The first was related to the design of a scheduling strategy

responsible for controlling the order in which tasks were assigned to

processors. The second dealt with the allocation of a proper number of

resources to the application. The last sub-problem focussed on the

attenuation of the effect produced by machine pre-emption.

An initial simulation study was carried out in order to evaluate different

scheduling policies by considering a fixed number of homogeneous machines.

This study served to understand what happens in a simple scenario in which

master-worker applications exhibiting a wide range of different characteristics

 174

were scheduled. We developed the Random & Average scheduling policy,

which does not use any a priori information about the behavior of the

application, and works basically by sorting tasks according to their average

execution time, then assigning them in accordance with this order. We

compared this with the LPTF, LPTF on Average and Random policies. All

these strategies exhibited different degrees of dynamic adaptability and a

priori information required of the application. We found that Random &

Average performs similar to other policies, such as LPTF, which are not

applicable in practice because they require precise information beforehand

about the execution time of the application tasks. This study can be found in:

[HS+00a] E. Heymann, M. A. Senar, E. Luque and M. Livny, “Evaluation of an

Adaptive Scheduling Strategy for Master-Worker Applications on

Clusters of Workstations”, Proc. of 7th International Conference in

High Performance Computing (HiPC 2000), Lecture Notes in

Computer Science series, Vol. 1970, pp. 310-319, 2000.

[HSL00a] E. Heymann, M. A. Senar, E. Luque, “Adaptive Scheduling for

Master-Worker Applications on Clusters of Workstations”, in Actas

de las XI Jornadas de Paralelismo (Proceedings of the XI Spanish

Workshop on Parallel Computing), pp. 205-210, Granada, Spain,

September 2000.

[HSL00b] E. Heymann, M. A. Senar, E. Luque, “Gestión dinámica de

aplicaciones master-worker sobre sistemas distribuídos”, in Actas

del VI Congreso Argentino de Ciencias de la Computación

(Proceedings of the VI Argentinian Conference on Computer

Science) CACIC 2000, pp. 1077-1088, October 2000.

 175

From the simulation study mentioned above, we derived the concept of

ideal interval, which corresponds to a number of machines for executing a

master-worker application obtaining both a reasonable execution time and

good efficiency. We developed a self-adjusting strategy that dynamically

attempts to reach a number of machines belonging to the ideal interval. A

preliminary version of the strategy used an empirical table obtained from the

simulations. This method presented certain drawbacks in terms of algorithm

complexity and stability properties, therefore we developed a new version that

performed the adjustment in a completely dynamic way, without the need for

any external table. The decision-making process in this dynamic self-adjusting

strategy is guided only by direct performance information collected from the

application during its execution. According to the execution time and the

efficiency exhibited by the application in each one of its main iterations, the

strategy allocates or releases resources following certain simple rules.

Initially, the algorithm worked on homogeneous environments, but later it

was corrected in order to also be executed on heterogeneous environments.

The use of a normalization factor was included, due to the need for sorting

tasks according to their relative importance in terms of computational

complexity.

As a means of evaluating the self-adjusting strategy, we implemented an

image thinning master-worker application, which was executed on a real

opportunistic system. We compared the execution of the thinning application

both with and without using the self-adjusting strategy in homogeneous as

well as heterogeneous environments. In all cases, by using our self-adjusting

strategy, efficiency was close to 0.8, while execution time was not greater

than 15% of the time obtained when using as many workers as tasks in the

non self-adjusting case. The improvement in efficiency achieved by our

strategy implied that the application was able to save 40% of resources in

most of cases, with only a small degradation in the overall execution time.

 176

The version using static tables, the fully dynamic version of the self-

adjusting strategy and their corresponding experimentation carried out on

homogeneous environments can be found, respectively, in:

[HS+00b] E. Heymann, M. A. Senar, E. Luque and M. Livny, “Adaptive

Scheduling for Master-Worker Applications on the Computational

Grid”, Proceeding of 2000 International Workshop on Grid

Computing (GRID’2000), Lecture Notes in Computer Science

series, Vol. 1971, pp. 214-227, 2000.

[HS+01b] E. Heymann, M. A. Senar, E. Luque and M. Livny, “Self-Adjusting

Scheduling of Master-Worker Applications on Distributed Clusters”.

Proceedings of Euro-Par 2001 Parallel Processing, LNCS series,

Vol. 2150, pp. 742-751, August 2001.

Our final objective was to consider the effects caused by machine pre-

emption in opportunistic environments. We carried out certain experiments in

order to evaluate the number of machine losses incurred during the execution

of a master-worker application. These results led us to focus on the study of

the cases in which only one machine is lost in an iteration of the application,

as this was the situation that was more likely to occur in practice.

By simulation, we then evaluated the impact of machine reclaim on both

efficiency and execution time, concluding that a noticeable degradation may

be incurred when the application is executed using a number of machines that

belong to the ideal interval and one machine is lost. In order to alleviate this

effect, we proposed strategies, evaluated by simulation, based on both task

replication and on using additional machines. One strategy (denoted as

Complete Replication) used the extra machines to replicate the largest

application tasks. The second strategy (denoted as Single Replication) only

 177

used one of the machines to replicate the largest task. The third strategy

(denoted as No Replication) replicated no task at all.

We evaluated the strategies in order to obtain an understanding of their

scalability properties and their effectiveness in scenarios in which different

probabilities of machine loss were assumed. Our results show that, in general,

Complete Replication performs better than the other two strategies, when the

application uses a number of machines bigger than or equal to the ideal

interval for machines. No Replication tends to perform better when the

application uses a small number of machines (fewer than the ideal interval), or

when the execution time for all tasks is very similar and the number of extra

machines is only one. In general, the results show that the effectiveness of

each strategy basically depends on the temporal characteristics of the tasks

and the number of available machines. However, replication proves to be the

best choice when the system can deliver all the machines to the application

that the application itself requires. If the system cannot provide the application

with all the machines requested, then extra machines should be used as

ordinary machines within the pool.

We also concluded that the number of extra machines that must be

allocated to the application depends on the width of the ideal interval. The

specific number of machines to be added ultimately depends on the degree of

attenuation that we want to achieve in the overall execution time, bearing in

mind that every extra machines implies an fixed penalty in terms of efficiency.

Our simulations with 50 and 150 machines shown that significant attenuation

could be achieved in most cases by using the CR strategy with only three

extra machines. Moreover, we have seen that the attenuation effect of extra

machines is significant when the probability of machine loss is high. No extra

machines should be used when machine loss exhibits a low-to-moderate

frequency.

Finally, an implementation and evaluation of the NR and CR strategies

were carried out in a practical environment using a PovRay master-worker

 178

application. These experiments also confirmed the effectiveness of using

extra machines in reducing the negative impact of machine pre-emptions.

Evaluation of machine reclaim impact and the strategies for alleviating such

impact can be found in the following publications:

[HS+01a] E. Heymann, M. A. Senar, E. Luque and M. Livny, “Evaluation of

Strategies to Reduce the Impact of Machine Reclaim in Cycle-

Stealing Environments”, Proceedings of Cluster Computing and the

Grid Conference (CCGrid2001), IEEE Press, pp. 320-328, 2001.

[HS+01c] E. Heymann, M. A. Senar, E. Luque and M. Livny, “Effective Use of

Resources in Opportunistic Systems”, Proceedings of the 5th

World Multiconference on Systemics, Cybernetics and Informatics

(SCI2001), Vol. XIV, pp. 242-247, July 2001.

The preliminary implementation of strategies for alleviating the impact of

machine loss is described in:

[LH+01] C. López, E. Heymann, M. A. Senar, E. Luque “Estudio de

Estrategias para Aliviar los Efectos de la Pérdida de Máquinas en

Entornos Oportunísticos”, in the Actas de las XI Jornadas de

Paralelismo (Proceedings of the XII Spanish Workshop on Parallel

Computing), pp. 69-74. Valencia, Spain, September 2001.

6.2 Current and Future Work

We now outline current and future lines of work, as well as their present

degree of development.

 179

In chapter 4, we presented the design and results obtained with our self-

adjusting algorithm when it was executed on heterogeneous environments,

both for efficiency and execution time. A new idea would be that of

representing machine heterogeneity by a cost function. Up to now, we have

handled efficiency as a matter of time. It can be more generally redefined as

a measure of cost:

n: Number of workers.

Twork,i: Amount of time that worker i spent doing useful work.

Tup,i: Time elapsed since worker i is alive until it ends.

Tsusp,i: Amount of time that worker i is suspended, that is, when it cannot do

any work.

Costi:The cost associated to machine i.

In accordance with this definition of efficiency, all work done with

homogeneous machines is a particular case corresponding to having

Costi = 1 for all machines.

With regard to the scheduling policy, we used the execution time average

for the previous iterations in determining the order in which tasks will be

executed in the next iteration. More sophisticated prediction models can be

used in order to support a wider range of master-worker applications.

Examples of prediction models include using the last iteration execution times,

the average of the last K iterations (with low values for K), or using complex

prediction models such as those used in the analysis of temporal series

()

() ()∑ ∑

∑

= =

=

−
=

n

i

n

i
iisuspiiup

n

i
iiwork

CostTCostT

CostT
E

1 1
,,

1
,

**

*

 180

(ARIMA models and variants). Selecting a particular predictor would be done

on-line, by analysing the degree of success produced by each one of the

predictors during the initial iterations. Another open line related to this would

be the use of predictors that work only with the position of the tasks in the list,

instead of considering execution times, i.e., that try to predict which task will

be 1st, 2nd, and so on, by taking in account which task was 1st, 2nd, 3rd, etc., in

previous iterations.

In chapter 5, we commented on the initial implementation of the strategies

for reducing the impact of machine losses. We continue working on this, and

observe that, in particular, additional research must is still required in order to

detect, from a practical point of view, the moment at which the scheduling

strategy should change its policy from using no replication to replication.

This work has assumed that workers were not very distant from the master,

and that the amount of data to be moved was significantly small in

comparison to the computation time needed to process it; therefore, the effect

of network delays was not considered. We plan to extend the ideas

presented in this thesis to a grid environment, where workers can be very

distant, perhaps even being located in different continents. In such cases it

would be expensive to send only one task to each worker. A scheduler that

incorporates ideas aimed at data latency reduction should be developed and

tested.

A new line of work would arise if, instead of having a single type of worker,

we had workers with different functionality. Simply by having two different

workers, all the ideas considered up to now would need to be reviewed and

modified. We therefore plan to investigate scheduling strategies in

opportunistic heterogeneous environments, with this new scenario in mind.

 181

Conclusions and Future Work

CHAPTER 6 ... 171

6.1 CONCLUSIONS .. 173
6.2 CURRENT AND FUTURE WORK ... 178

 181

References

 182

 183

[AB95] J. Arabe, A. Beguelin, B. Lowekamp, E. Seligman, M. Starkey, P.

Stephan, “Dome: Parallel programming in a heterogeneous multi-

user environment”, Technical report TR CMU-CS-95-137, Carnegie

Mellon University, Pittsburgh, April 95.

[AD+95] R. H. Arpaci, A.C. Dusseau, A. Vahdat, L. Liu, T. Anderson and D.

Patterson, "The Interaction of Parallel and Sequential Workloads on

a Network of Workstations", Proceedings of SIGMETRICS 95, pp.

267-278, May 1995.

[AD+96] P. Au, J. Darlington, M. Ghanem, Y. Guo, H. To, J. Yang,

“Coordinating heterogeneous parallel computation”, Proceedings of

the 1996 Euro-Par Conference, Lecture Notes in Computer

Science, Berlin: Springer-Verlag, pp. 601-614, 1996.

[AF+97] D. Abramson, I. Foster, J. Giddy, A. Lewis, R. Sosic, R. Sutherst,

“The Nimrod Computational Workbench: A Case Study in Desktop

Metacomputing”, Proceedings of the 20th Australasian Computer

Science Conference, pp. 17-26, Feb. 1997.

[AGK00] D. Abramson, J. Giddy and L. Kotler, “High Performance Parametric

Modeling with Nimrod/G: Killer Application for the Global Grid?”,

Proceedings of International Parallel and Distributed Processing

Symposium (IPDPS), pp. 520- 528, May, 2000.

[AI98] “Wind: The Production Flow Solver of the NPARC Alliance”, AIAA

98-0935, available from http://www.grc.nasa.gov/www/winddocs/

aiaa98/aiaa-98-0935.html.

 [Ant97] M. Antonioletti. “Load Sharing Across Networked Computers”.

Edinburgh Parallel Computing Centre, EPCC-TR1997-06, Available

from http://www.epcc.ed.ac.uk/epcc-tec/documents, December

1997.

[AS+95] D. Abramson, R. Sosic, J. Giddy and B. Hall, “Nimrod: a tool for

performing parameterized simulations using distributed

 184

workstations”, Symposium on High Performance Distributed

Computing, Virginia, pp. 112-121, August 1995.

[AS91] G. Andrews, F. Schneider, “Concepts and Notations for Concurrent

Processing”, Benjamin/Cummings Publishing Company, Inc., 1991.

[Ben90] M. Ben-Ari, “Principles of Concurrent and Distributed Programming”,

Prentice-Hall Publishers, 1990.

[Ber99] F. Berman, “High Performance Schedulers”, in I. Foster, C.

Kesselman (editors). “The Grid. Blueprint for a New Computing

Infrastructure”. Morgan Kaufmann Publishers, Inc, San Francisco,

USA, pp. 279-309,1999.

[BC+97] S. N. Bhatt, F.R. K. Chung, F. T. Leighton and A. L. Rosenberg,

"On Optimal Strategies for Cycle-Stealing in Networks of

Workstations", IEEE Trans. on Computers, Vol. 46, No, 5, pp. 545-

557, 1997.

 [BDK95] A. Baratloo, P. Dasgupta, Z. Kedem, “Calypso: A Novel Software

System for Fault-Tolerant Parallel Processing on Distributed

Platforms”, Proceedings of the 4th IEEE International Symposium

on High Performance Distributed Computing, August 1995.

[BG96] T. B. Brecht and K. Guha, “Using parallel program characteristics in

dynamic processor allocation policies”, Performance Evaluation,

Vol. 27 and 28, pp. 519-539, 1996.

[BK+93] H. Burkhart, C. Korn, S. Gutzwiller, P. Ohnacker, S. Waser. “BACS:

Basel Algorithms Classification Scheme”. Technical Report 93-03,

Univ. Basel, Switzerland, 1993.

[Bla90] D. Black, “Scheduling Support for Concurrency and Parallelism in the

Match Operating System”, IEEE Computer, Vol. 23, No. 5, pp. 35-

43, May 1990.

 185

[BRS97] J. Budenske, R. Ramanujan, H. Siegel, “ On-line use of off-line

derived mappings for iterative automatic target recognition tasks

and a particular class of hardware platforms”, Proceedings of

Heterogeneous Computing Workshop, pp. 96-110. IEEE Computer

Society Press, 1997.

[BRL99] J. Basney, B. Raman and M. Livny, “High throughput Monte Carlo”,

Proceedings of the Ninth SIAM Conference on Parallel Processing

for Scientific Computing, San Antonio Texas, 1999.

[BS95] D. Bakken, R. Schilchting, “Supporting Fault-Tolerant Parallel

Programming in Linda”, IEEE Transactions on Parallel and

Distributed Systems, Vol. 6, No. 3, pp. 287-302, March 1995.

[Buy99] R. Buyya (ed.), “High Performance Cluster Computing: Architectures

and Systems”, Volume 1, Prentice Hall PTR, NJ, USA, 1999.

[BW97] F. Berman, R. Wolski, “The AppLeS Project: A Status Report”,

Proceedings of the 8th NEC Research Symposium, Berlin,

Germany, May 1997.

[BW+96] F. Berman, R. Wolski, S. Figueira, J. Schopf, G. Shao, “Application-

Level Scheduling on Distributed Heterogeneous Networks”, CD-

ROM Proceedings of Supercomputing’96, Pittsburgh, IEEE Society

Press, 1996.

[Can98] E. Cantu-Paz, “Designing efficient master-slave parallel genetic

algorithms”, in J. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M.

Dorigo, D. Fogel, M. Garzon, D. E. Goldberg, H. Iba and R. Riolo,

editors, Genetic Programming: Proceeding of the Third Annual

Conference, San Francisco, Morgan Kaufmann, pp. 455, 1998.

[CD97] H. Casanova, J. Dongarra, “NetSolve: A Network Server for Solving

Computational Science Problems”. International Journal of

Supercomputing Applications and High Performance Computing”,

Vol. 11, No. 3, pp. 212-223,1997.

 186

[CD98] H. Casanova, J. Dongarra, “NetSolve’s Network Enabled Server:

Examples and Applications”, IEEE Computational Science and

Engineering, Vol. 5, No. 3, pp. 57-67, Sept. 1998.

[CF+95] N. Carriero, E. Freeman, D. Gelernter and D. Kaminsky, “Adaptive

Parallelism and Piranha”, IEEE Computer, 28 (1), pp. 40-49, 1995.

[CK+99] H. Casanova, M. Kim, J. S. Plank and J. Dongarra, “Adaptive

scheduling for task farming with Grid middleware”, International

Journal of Supercomputer Applications and High-Performance

Computing, Vol. 13, No. 3, pp. 231-240, 1999.

[CMZ94] B. Chapman, P. Mehrotra, H. Zima, “Extending HPF for advanced

data-parallel applications”, IEEE Parallel and Distributed

Technology, Vol. 2, No. 3, pp. 15-27, 1994.

[Con99] Condor Team, “Condor Version 6.2.0 Manual”, University of

Wisconsin-Madison, 1999.

 [CPG99] D. Culler, J. Pal, A. Gupta, “Parallel Computer Architecture. A

Hardware/Software Approach”, Morgan Kaufmann Publishers, Inc.,

1999.

[DAC96] A. C. Dusseau, R. H. Arpaci and D. E. Culler, "Effective Distributed

Scheduling of Parallel Workloads", Proceedings of SIGMETRICS,

pp. 25-36, 1996.

[DQS00] “Distributed Queuing Systems”, information available from

http://www.scri.fsu.edu/-pasko/dqs.html.

[Don01] J. Dongarra, “Performance of Various Computers Using Standard

Linear Equation Software”, Report available from

http://www.netlib.org/benchmark/performance.ps, July 2001.

[EZL89] D. L. Eager, J. Zahorjan and E. D. Lazowska, “Speedup versus

efficiency in parallel systems”, IEEE Transactions on Computers,

vol. 38, pp. 408-423, 1989.

 187

[Fei94] D. Feitelson. “A Survey of Scheduling in Multiprogrammed Parallel

Systems”. Technical Report RC 19790 (87657), Revised version

from August 1997, IBM Research Division, October 1994.

[FG+98] I. Foster, J. Geisler, W. Nickless, W. Smith, S. Tuecke, “Software

Infrastructure for the I-WAY metacomputing experiment”,

Concurrency: Practice and Experience, Vol. 10, No. 7, pp. 567-581,

June 1998.

[FHK98] B. Freisleben, D. Hartmann, T. Kielmann. “Parallel Incremental

Raytracing of Animations on a Network of Workstations”.

Proceedings of the International Conference on Parallel and

Distributed Processing Technologies and Applications (PDPTA'98),

vol. 3, pp. 1305-1302, July 1998.

[FK97] I. Foster, C. Kesselman, “Globus: A Metacomputing Infrastructure

Toolkit”, International Journal on Supercomputer Applications, Vol.

11, No. 2, pp. 115-128, 1997.

[FK99] I. Foster, C. Kesselman, “Computational Grids”, in I. Foster, C.

Kesselman (editors). “The Grid. Blueprint for a New Computing

Infrastructure”. Morgan Kaufmann Publishers, Inc, San Francisco,

USA, pp. 15-51, 1999.

[Fos95] I. Foster, “Designing and Building Parallel Programs”, Addison-

Wesley, 1995.

[Fox89] G. Fox. “Parallel Computing Comes of Age: Supercomputer Level

Parallel Computations at Caltech”. Concurrency: Practice and

Experience, vol. 1, no. 1, pp. 63-103, September 1989.

[FR+97] D. Feitelson, L. Rudolph, U. Schwiegelshohn, K. Sevcik, P. Wong,

"Theory and Practice in Parallel Job Scheduling", Proceedings of

3rd Workshop on Job Scheduling Strategies for Parallel

Processing, LNCS series, Vol. 1291, pp. 1-34, 1997.

 188

 [GB+94] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V.

Sunderam, “PVM: Parallel Virtual Machine A User’s Guide and

Tutorial for Networked Parallel Computing”, MIT Press, 1994.

[Gel95] D. Gelernter, “Parallel Programming in Linda”, Technical Report

359, Department of Computer Science, Yale University, January

1985.

[GF96] V. Govindan and M. Franklin, “Application Load Imbalance on

Parallel Processors”, in Proceedings of the 10th International

Parallel Processing Symposium (IPPS’96) CD-ROM, IEEE, April

1996.

[GGU72] M. Garey, R. Graham, D. Ullman, “Worst case analysis of memory

allocation algorithms”, Proceedings of the 4th ACM Symposium on

Theory of Computing, pp. 143-150, 1972.

[GH92] Z. Guo and R. Hall. “Fast Fully Parallel Thinning Algorithms”.

CVGIP: Image Understanding. Vol. 55, No. 3, pp. 317-328, May

1992.

[GJK93] D. Gelernter, M. Jourdenais, D. Kaminsky. “Piranha Scheduling:

Strategies and Their Implementation”, Department of Computer

Science, Yale University, CT 06520, Sept. 1993.

[GK92] D. Gelernter, D. Kaminsky. “Supercomputing out of recycled

garbage: preliminary experience with Piranha”. International

Conference on Supercomputing, pp.417-427, June 1992.

[GK+00] J.-P. Goux, S. Kulkarni, J. Linderoth, M. Yoder, , “An enabling

framework for master-worker applications on the computational

grid”, Proceedings of the Ninth IEEE Symposium on High

Performance Distributed Computing (HPDC9), Pittsburgh,

Pennsylvania, pp 43-50, August 2000.

[GL+96] W. Gropp, E. Lusk, N. Doss, A. Skjellum, “A High-Performance,

Portable Implementation of the Message Passing Interface (MPI)

 189

Standard”, Parallel Computing Journal, Vol. 22, No. 6, pp. 789-828,

Sept. 1996.

[Gra66] R.L. Graham. “Bounds for Certain Multiprocessing Anomalies”.

Bell System Technical Journal 45, pp. 1563-1581, 1996.

[GH92] Z. Guo and R. Hall. “Fast Fully Parallel Thinning Algorithms”.

CVGIP: Image Understanding. Vol. 55, No. 3, pp. 317-328, May

1992.

[GMM97] S. Ghosh, R. Melhem, D. Mosse, “Fault-Tolerance through

Scheduling of Aperiodic Tasks in Hard Real-Time Multiprocessor

Systems”, IEEE Transactions on Parallel and Distributed Systems,

Vol. 8, No. 3, 272-284, 1997.

[GR96] J. Gehring, A. Reinefeld, “MARS — a framework for minimizing the

job execution time in a metacomputing environment. Future

Generation Computer Systems, Vol. 12, No. 1, pp. 87-99, 1996.

[GW+94] A. Grimshaw, W. Wulf, J. French, A. Weaver, P. Reynolds, “A

Synopsis of the Legion Project”, Technical Report CS-94-20,

Department of Computer Science, University of Virginia, 1994.

[Hall97] L. A. Hall, “Aproximation algorithms for scheduling”, in Dorit S.

Hochbaum (ed.), “Approximation algorithms for NP-hard problems”,

PWS Publishing Company, pp. 1-45, 1997.

[Han93] P.B. Hansen. “Model Programs for Computational Science: A

Programming Methodology for Multicomputers”. Concurrency:

Practice and Experience, Vol. 5, No. 5, pp. 407-423, 1993.

[Haz97] V. Hazlewood, “Cluster Computing: A Survey and Tutorial”,

published in SysAdmin, March 1997, and available from

http://www.sdsc.edu/projects/production/NQE/SysAdmin/SysAdmin

_Batch.html.

 190

[Hoc97] Dorit S. Hochbaum (ed.), “Approximation algorithms for NP-hard

problems”, PWS Publishing Company, 1997.

[HQ91] P. Hatcher, M. Quinn, “Data-Parallel Programming on MIMD

Computers”, MIT Press, 1991.

[HS+00a] E. Heymann, M. A. Senar, E. Luque and M. Livny, “Evaluation of an

Adaptive Scheduling Strategy for Master-Worker Applications on

Clusters of Workstations”, Proceedings of the 7th International

Conference on High Performance Computing (HiPC’2000), LNCS

series, vol. 1971, pp. 214-227, 2000.

[HS+00b] E. Heymann, M. A. Senar, E. Luque and M. Livny, “Adaptive

Scheduling for Master-Worker Applications on the Computational

Grid”, Proceedings of 2000 International Workshop on Grid

Computing (GRID’2000), LNCS series, vol. 1970, pp. 310-319,

2000.

[HS+01a] E. Heymann, M. A. Senar, E. Luque and M. Livny, “Evaluation of

Strategies to Reduce the Impact of Machine Reclaim in Cycle-

Stealing Environments”, Proceedings of the First Cluster Computing

and the Grid Conference (CCGrid2001), IEEE Press, pp. 320-328,

2001.

[HS+01b] E. Heymann, M. A. Senar, E. Luque and M. Livny, “Self-Adjusting

Scheduling of Master-Worker Applications on Distributed Clusters”.

Proceedings of Euro-Par 2001 Parallel Processing, LNCS series,

Vol. 2150, pp. 742-751, August 2001.

[HS+01c] L. Hluchy, M. A. Senar, M. Dobruchy, T. D. Viet, A. Ripoll, A.

Cortés, “Mapping and Scheduling of Parallel Programs”, in “Parallel

Program Development for Cluster Computing: Methodology, Tools

and Integrated Environments” edited by J. Cunha, P. Kacsuk, S.

Winter, pp. 51-78, Nova Science Publishers, Inc., 2001.

 191

[KF99] N. Kapadia, J. Fortes, “PUNCH: An Architecture for Web-Enabled

Wide-Area Network-Computing”, Cluster Computing: The Journal of

Networks, Software, Tools and Applications, special issue on High

Performance Distributed Computing, pp. 153-164, September 1999.

[KRR88] V. Kumar, K. Ramesh and V. N. Rao, “Parallel best-first search of

state-space graphs: a summary of results”, Proceedings of the

1988 National Conference on Artificial Intelligence, pp. 122-127,

August, 1988.

[KSW98] K. Krüger, Y.N. Sotskov, F. Werner, “Heuristics for Generalized

Shop Scheduling Problems Based on Decomposition”, International

Journal of Production Research Vol. 36, No. 11, pp. 3013-3033,

1998.

[KW85] C. Kruskal, A. Weiss. “Allocation independent subtasks on parallel

processors”. Transactions on Software Engineering. Vol. 11, No.

10, pp. 1001-1016, October 1985.

[LB+97] M. Livny, J. Basney, R. Raman and T. Tannenbaum, “Mechanisms

for high throughput computing”, SPEEDUP, 11, 1997.

[LC88] A. Liestman, R. Campbell, “A Fault-Tolerant Scheduling Problem”,

IEEE Transactions on Software Engineering, Vol. 12, No. 11, pp.

1089-1095, Nov., 1988.

[LLM88] M. Litzkow, M. Livny and M. Mutka, “Condor – A Hunter of Idle

Workstations”, Proc. International Conference on Distributed

Computing Systems, pp. 104-111, June1988.

[LS97] S. T. Leutenegger and X.-H. Sun, “Limitations of Cycle Stealing for

Parallel Processing on a Network of Homogeneous Workstations”,

Journal of Par. and Dist. Computing, Vol. 43, No. 3, pp. 169-178,

1997.

 192

[McL97] D. McLaughlin. “Scheduling Fault Tolerant Parallel Computations in

a Distributed Environment”. PhD Thesis, Arizona State University,

December, 1997.

[NQE00] “Network Queuing Environment“, information available from

http://www.cray.com/products/software/nqe.

[NQS94] “Network Queuing System”, information available from

http://umbc7.umbc.edu/nqs/nqsmain.html.

[NSS99] H. Nakada, M. Sato, S. Sekiguchi, “Design and Implementation of

Ninf: Towards a Global Computing Infrastructure”, Future

Generation Computing Systems, Metacomputing Special Issue, pp.

649-658, October 1999.

[NVZ96] T. D. Nguyen, R. Vaswani and J. Zahorjan, “Maximizing speedup

through self-tuning of processor allocation”, in Proceedings of the

International Parallel Processing Symposium (IPPS’96), CD-ROM,

IEEE, 1996.

[OS91] Y. Oh, S. Son, “Multiprocessor Support for Real-Time Fault Tolerant

Scheduling”, Proceedings of the IEEE 1991 Workshop Architectural

Aspects of Real-Time Systems, pp. 76-80, San Antonio, Texas,

Dec., 1991.

[Ous82] J. Ousterhout, “Scheduling Techniques for Concurrent Systems”,

Proceedings of the 3rd International Conference on Distributed

Computing Systems, pp. 22-30, 1982.

[PL96] J. Pruyne and M. Livny, “Interfacing Condor and PVM to harness the

cycles of workstation clusters”, Journal on Future Generations of

Computer Systems, Vol. 12, 1996.

[Pre96] A. Prenneis, “LoadLeveler: Workload Management form Parallel

and Distributed Computing Environments. 1996. Available form

ftp://ftp.austin.ibm.com/pub/lscftp/papers/supeur.paper.ps.

 193

[Pri88] D. Pritchard. “Mathematical Models of Distributed Computation”.

Proceedings of OUG-7, Parallel Programming on Transputer based

Machines, IOS Press, pp. 25-36, 1998.

[RF+96] S. Russ, B. Flachs, J. Robinson, B. Heckel. “Hector: Automated

Task Allocation for MPI”. 10th International Parallel Processing

Symposium, pp. 344-348, April 1996.

[RH00] K. D. Ryu and J. K. Hollingsworth, "Exploiting Fine-Grained Idle

Periods in Networks of Workstations", IEEE Transactions on

Parallel and Distributed Systems, Vol. 11, No. 7, pp. 683-698, 2000.

[SB99] L. M. Silva and R. Buyya, “Parallel programming models and

paradigms”, in R. Buyya (ed.), “High Performance Cluster

Computing: Architectures and Systems: Volume 2”, Prentice Hall

PTR, NJ, USA, pp. 4-27, 1999.

[SC+01] M. A. Senar, A. Cortés, A. Ripoll, L. Hluchy, J. Astalos, “Dynamic

Load Balancing”, in “Parallel Program Development for Cluster

Computing: Methodology, Tools and Integrated Environments”

edited by J. Cunha, P. Kacsuk, S. Winter, pp. 79-108, Nova

Science Publishers, Inc., 2001.

[SG+94] V. Sunderam, A. Geist, J. Dongarra, R. Manckek, “The PVM

Concurrent Computing System: Evolution, Experiences and

Trends”, Parallel Computing Journal, Vol. 20, No. 4, April 1994.

[SGE01] “Sun Grid Engine”. Information available from

http://www.sun.com/software/gridware.

[SL93] M. Squilante, E. Lazawka. “Using processor-cache affinity

information in shared memory multiprocessor scheduling”. IEEE

Transactions on Parallel and Distributed Systems. Vol. 4, No. 2,

pp. 131-143, Feb 1993.

[SM97] M. Sirbu, D. Marinescu, “A scheduling expert advisor for

heterogeneous environments”, Proceedings on Heterogeneous

 194

Computing Workshop, pages 74-87, IEEE Computer Society Press,

1997.

[SS+96] S. Sekiguchi, M. Sato, H. Nakada, S. Matsuoka, U. Nagashima,

“Ninf: Network Based Information Library for Globally High

Performance Computing”, Proceedings of Parallel Object-Oriented

Methods and Applications (POOMA), Santa Fe, 1996.

[SWB98] G. Shao, R. Wolski and F. Berman, “Performance effects of

scheduling strategies for Master/Slave distributed applications”,

Technical Report TR-CS98-598, University of California, San

Diego, September 1998.

[TH+97] H. Topcuoglu, S. Hariri, W. Furmanski, J. Valente, I. Ra, D. Kim, Y.

Kim, X. Bing, B. Ye, “The software architecture of a virtual

distributed computing environment”, Proceedings on High

Performance Distributed Computing Conference, pp. 40-49, IEEE

Computer Society Press, 1997.

[TSS88] C. Thacker, L. Stewart, E. Satterthwaite, “Firefly: A multiprocessor

workstation”, IEEE Transactions on Computers, Vol. 37, No. 8, pp.

909-920, August 1988.

[TY86] P. Tang, p. Yew, “Processor self-scheduling for multiple-nested

parallel loops”. In proceedings of the International Conference on

Parallel Processing, pp. 528-535, Aug. 1986.

[VA+94] V. Kumar, A. Grama, A. Gupta, G. Karypis, “Introduction to Parallel

Computing. Design and analysis of algorithms”, The

Benjamin/Cummings Publishing Company, Inc., California, USA,

1994.

[Wei84] R. Weicker, "Dhrystone Benchmark Program." Communications of

the ACM, Vol. 27, No. 10, pp. 1013-1030, Oct. 1984.

[Wil95] G. Wilson, “Parallel Programming for Scientists and Engineers”.

MIT Press, Cambridge, MA, 1995.

 195

[WSH99] R. Wolski, N. T. Spring and J. Hayes, “The Network Weather

Service: a distributed resource performance forecasting service for

metacomputing”, Journal of Future Generation Computing

Systems”, Vol. 15, No. 5-6, pp. 757-768, October 1999.

[WW95] K. Williams, S. Williams, “Implementation of an Efficient and

Powerful Parallel Pseudo-random Number Generator”, available

from http://www.cs.reading.ac.uk/cs/CCL/rand.epvm95.html.

[WZ97] J. Weissman, X. Zhao, “Runtime support for scheduling parallel

applications in heterogeneous NOWS”, Proceeding of the Sixth

IEEE Symposium on High Performance Distributed Computing, pp

347-355, 1998.

[ZZ+93] S. Zhou, X. Zheng, J. Wang, P. Delisle. “Utopia: a Load Sharing

Facility for Large, Heterogeneous Distributed Computer Systems”.

Software – Practice and Experience. Vol. 23, No. 12, pp. 1305-

1336, Dec. 1993.

