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PREFACE 

 
Continuos improvement in hardware and software technologies has led to 

an increased interest in distributed systems and their wider use in executing 

large-scale scientific and commercial applications. Distributed systems are 

often used in a non-dedicated way, i.e., the resources constituting the system 

are shared among different user applications.  Additionally, opportunistic 

clusters of machines –a particular type of non-dedicated distributed systems– 

are becoming more popular.  This is because, on the one hand, research and 

development is leading to the appearance of different environments and tools 

in order to facilitate the use of such systems, and, on the other hand, the 

number of computational resources has been growing tremendously.  The 

results of this growth are large, heterogeneous and dynamic computer 

environments.  This work focuses on the use of such opportunistic 

environments, characterized by harnessing idle times of machines for 

executing user jobs. 

Management of the concurrent jobs constituting a parallel application is an 

integral part of such non-dedicated systems. In non-dedicated opportunistic 

environments, the resource manager’s goal is to provide both a reasonable 

execution time (as users are interested in having their job finished as soon as 

possible), and good efficiency, i.e., good resource usage, which is the main 

goal of the system in order to obtain high throughput. 

The development of effective resource management for parallel 

applications running on opportunistic systems involves a great number of 

issues.  In particular, this work deals with three of them: 

• Determining and allocating the number of machines, from the pool of 

machines belonging to the opportunistic system, needed for executing 

an application obtaining both a good execution time and a good 



 2

efficiency. These machines will constitute a variable partition of the 

whole pool of resources that will be allocated to the application in a 

dynamic way.   

• Scheduling application tasks to the assigned computational resources 

(partition). 

• Reducing the negative effects produced on an application when a 

machine belonging to a non-dedicated environment, and allocated to 

the partition given to the application, is reclaimed by its owner, and 

should therefore be released by the task running on it.  

Throughout this work master-worker applications have been considered, 

because many real problems naturally fit into this parallel programming 

paradigm.  In these applications, there is a master that sends tasks to workers 

and collects the results.  This process is repeated over a number of cycles or 

iterations until several bags of tasks have been executed.   

In order to assign tasks belonging to a master-worker application to 

machines belonging to an opportunistic environment, dynamic tasks 

scheduling techniques were used. This was decided upon not only because of 

the changing nature of the executing environment, but also because we do 

not have any a priori information about the execution time of the tasks to be 

executed by the workers. Execution times of the tasks are not known a priori 

and may change from one cycle to another. Considering both the previous 

application behavior and execution environment, static task scheduling 

techniques are not suitable. 

The proposed scheduling policy presented in this work does not need 

information about the execution time of the tasks.  It works by sorting tasks 

according to their average execution time, using the information obtained at 

runtime, that is, by using information related to the execution of previous 

cycles or iterations of the master-worker application.  This policy was first 

evaluated by simulation, taking into account different workloads, in order to 

cover most types of master-worker applications.  The goal of this simulation 
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was to understand how different scheduling policies behave in the best case, 

i.e. when no machine is reclaimed by its owners and all machines are 

homogeneous.  The simulation results showed that the proposed policy 

exhibits a similar behavior with respect to other policies requiring information 

in advance about the execution time of the tasks. 

From the scheduling policy simulation we derived the existence of the ideal 

interval, which corresponds to the interval comprised between the minimum 

and maximum number of machines for executing the application that obtain a 

good trade-off between execution time and efficiency.  At a later stage of this 

discussion we will propose an algorithm for dynamically adjusting the number 

of machines, for executing any master-worker application, to a number of 

machines belonging to the ideal interval. 

Two different self-adjusting strategies were designed and evaluated.  One 

of the strategies used an empirical table in its decision-making process, while 

the second one was able to determine the desirable number of machines in a 

completely dynamic way. This strategy was implemented and evaluated on 

both homogeneous and heterogeneous environments, with a master-worker 

thinning application running on a real opportunistic environment.  Resources 

were managed through the services provided by the Condor batch system, 

and the application was written with MW (Master-Worker tool), a C++ library 

especially suited to the easy development of master-worker applications. 

In an opportunistic environment machines can join and leave the 

computation as they are released or reclaimed by their owners.  When a 

machine is reclaimed, the job running on that machine must be stopped and 

vacated.  If this job belongs to a parallel application, the whole performance 

will be negatively affected.  We evaluate this impact both on the efficiency and 

execution time, and then, in order to alleviate it, propose strategies based on 

using extra machines and task replication. These strategies were first 

evaluated by simulation and then implemented and tested in a real 

environment.   
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This thesis is organized as follows: 

• The first chapter gives an overview of parallel programming paradigms 

and architecture models, introduces the scheduling problem in 

distributed systems and reviews the solutions found in the literature. 

Finally, it presents some example systems. 

• The second chapter describes the master-worker programming model 

which corresponds to the programming model considered throughout 

this work.  Later, it shows the opportunistic execution environment 

model considered in this work, and the systems and tools used in the 

experimentation phases of this work: Condor as resource management 

system, and the MW programming environment. After that, it introduces 

the performance model considered and explains the main challenges of 

executing master-worker applications on opportunistic environments, 

remarking the challenges that will be covered in this work. 

• In chapter three the proposed dynamic scheduling algorithm is 

introduced, and evaluated by simulation.  It is compared to other 

scheduling policies, which differ in the amount of information that they 

handle concerning the application. During the simulations, execution 

time and efficiency are always measured by considering these main 

factors: workload, number of tasks per cycle, number of cycles and the 

variation per cycle of the task execution times.  

• Chapter four contains the proposal and implementation of the self-

adjusting algorithm for dynamically adapting the number of workers 

needed by a master-worker application.  In order to evaluate the 

strategy, a master-worker thinning application is implemented on a real 

opportunistic environment.  The self-adjusting algorithm is first 

evaluated on an opportunistic environment composed of homogeneous 

machines, and is then modified in order to support heterogeneous 

environments. 
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• Chapter five first evaluates the impact of losing a machine that is 

participating in the computation of a parallel application.  Following this, 

we propose strategies for alleviating such an impact.  These strategies 

are based on task replication and on having extra machines.  This 

chapter then evaluates them by simulation, and then subsequently 

comments on their scalability. Finally, mention is made of the results 

obtained when these strategies are implemented on a real 

opportunistic environment and a master-worker PovRay application is 

executed.  

• Chapter six summarizes the main conclusions derived from this thesis, 

outlining, in addition, current and future work. 

• Finally, the complete bibliography is provided. Complementary result 

tables and the master-worker thinning application used to test the 

proposed main ideas are included in the appendices. 
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Chapter 1  
Introduction 

Abstract 

This chapter first gives an overview of parallel programming 

paradigms and architecture models.  Subsequently, the main 

scheduling strategies for distributed systems are surveyed.  

Finally, examples of existing schedulers are briefly described 

for both intranets and internets. 
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1.1 Introduction 

Parallel applications consist of one or more tasks that may communicate 

and cooperate to form a single application.  Scheduling these applications 

involves a number of activities [Ber99]: 

1. Selecting a set of resources on which to schedule the application tasks. 

2. Assigning application tasks to resources. 

3. Distributing data or place data and computation. 

4. Ordering tasks on compute resources. 

5. Ordering communication between tasks. 

In the literature, item 1 is referred as resource location or resource 

discovery.  Item 2 may be called mapping, partitioning or placement.  For data 

parallel programs, load-balancing is often the scheduling policy chosen (item 

3).  Items 1 through 3 are generally termed mapping and focus on the 

allocation of computation and data in space; items 4 and 5, generally termed 

scheduling, deal with the allocation of computation and communication over 

time.  Depending on both the adopted architecture model and the adopted 

programming model, each one of the five items is more or less relevant. 

A scheduling model consists of a scheduling policy, a program model, an 

architecture model and a performance model.  The scheduling policy 

corresponds to the set of rules for producing schedules.  The program and the 

architecture model abstract the sets of programs to be scheduled and the 

underlying system, respectively.  The performance model abstracts the 

behavior of the program on the system considered for the purpose of 

evaluating the candidate schedules.  

In the following sections, we will briefly describe the possibilities for both 

program and architecture models, and will then discuss the alternatives for 
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scheduling in distributed systems. Finally, we will comment on some example 

systems. 

1.2 Parallel Programming Models and Paradigms 

Each programming paradigm is a class of algorithms that has the same 

control structure [Han93], and that can be implemented using a parallel 

programming generic model.  In the following sections we will introduce the 

most important parallel programming models and parallel programming 

paradigms in use.  For the programming models, we will comment on how 

they solve the distribution of code and the interconnection between execution 

units or tasks.  For the programming paradigms, we will describe their basic 

structure. 

1.2.1 Parallel Programming Generic Models 

Generic models for parallel programming are divided into the following 

main classes [VA+94], [Fos95]: 

• Message Passing [AS91]: This is a widely used model.  In this model, 

programmers organize their programs as a collection of processes with 

private local variables and the ability to send and receive data between 

processes by passing messages. PVM [GB+94] and MPI [GL+96] 

constitute examples of libraries supporting the message passing 

programming model.  

• Shared Memory [Ben90]: In this model, programmers view their 

programs as a collection of processes accessing local variables and a 

central pool of shared variables.  Each process accesses the shared 

data by asynchronously reading from or writing to shared variables.  As 

more than one process may access the same shared variables at one 
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time, mechanisms to resolve mutual-exclusion problems need to be 

provided, such as locks or semaphores.  

• Data Parallelism [HS91]: This model is suitable for programs that 

perform the same operation on different data elements.  A typical data 

parallel program consists of a list of certain operations to be carried out 

on a data structure.  From here, each operation on each data element 

can be thought of as an independent task.  High Performance Fortran 

has been widely used for implementing this type of parallelism 

[CMZ94]. 

These parallel programming models can be used in order to implement 

parallel programming paradigms.  In theory, both programming models, that 

is, message passing and shared memory, could serve to implement every 

paradigm, but the performance of each resulting combination will depend on 

the underlying execution model.  In the following section we describe the most 

common paradigms. 

1.2.2 Parallel Programming Paradigms 

There are many high level abstractions that provide support for parallel 

paradigms.  Programming paradigms are a class of algorithms that solve 

different problems but have the same control structure [Han93]. A 

programming skeleton corresponds to the instantiation of a specific parallel 

paradigm, and encapsulates the control and communication primitives of the 

application into a single abstraction. 

In the literature there are many different paradigm classifications such as  

[Pri88],  [Han93], [Wil95] and [Fox89] and [BK+93].  Although not all of these 

contemplate the same set of paradigms, they do not differ greatly. In [Buy99] 

there is a classification that includes the superset of the most habitual 

paradigms: 
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• Master-Workers (or Task-farming): This consists of two entities: the 

master and multiple workers.  The master is responsible for 

decomposing the problem into small tasks, then distributes these tasks 

among the workers and finally collects the partial results in order to 

produce the final computation results.  The workers receive a task, 

process it and send the result back to the master. Figure 1-1 presents a 

schematic representation of this paradigm.  This is the paradigm 

considered throughout this work; therefore in the next chapter it is 

described in more detail. 

Figure 1-1. Basic master-worker structure. 

• Single Program Multiple Data (SPMD): Each process executes the 

same piece of code, but with different data.  This means splitting the 

application data among the available machines participating in the 

computation.  This type of parallelism is also referred to as geometric 

parallelism, domain decomposition or data parallelism.  Figure 1-2 

presents a schematic representation of this paradigm. 

Master 
distributes tasks

Worker 1 Worker 2 Worker 4 Worker 3 

Master  
collects results
and terminates
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 Figure 1-2.  Basic structure of an SPMD program. 

• Data Pipelining: This is based on a functional decomposition approach.  

Each process corresponds to a stage of the pipeline, and is responsible 

for a particular task.  All the processes are executed concurrently and 

the data flows along the stages of the pipeline, as shown in Figure 1-3. 

Figure 1-3.  Data pipeline structure. 

• Divide and Conquer: A problem is divided into several sub-problems.  

Each of these sub-problems is solved independently and their results 

are combined to produce the final result.  If the sub-problems are 

smaller instances of the original problem, then a recursive 

decomposition is produced.  Three generic operations are needed for 

the divide and conquer paradigm: split, compute and join, as shown in 

Figure 1-4. 

Input 
Phase A Phase B Phase C 

Output 

Process 1 Process 3Process 2

Distribute Data 

Collect Results 

Calculate 
Exchange 
Calculate 

Calculate 
Exchange 
Calculate 

Calculate 
Exchange 
Calculate 

Calculate 
Exchange 
Calculate 

Process 1 Process 2 Process 3 Process 4 
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Figure 1-4.  Divide and conquer example structure. 

• Speculative Parallelism: This is used when it is quite difficult to obtain 

parallelism through any one of the previous paradigms.  It includes 

several possibilities such as employing different algorithms for the 

same problem: the one providing the final solution first is then chosen.   

If the problem has complex data dependencies the problem can be 

executed in small parts, some speculation nevertheless being used to 

allow the parallelism. 

Having introduced the different programming models and paradigms, we 

will now review the different possibilities with regard to the underlying 

systems. 

1.3 Architecture Models 

There are many ways in which parallel and distributed machines can be 

constructed.  In this subsection, we present their classification based on 

control mechanisms and address-space organization [CPG99, Fos95]. 

• Distributed Memory Multiple Instruction Multiple Data (MIMD): In this 

model, each processor executes a separate set of instructions on its own 

sub-problems

 join

split

main problem

intermediate 
problems 
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local data.  The memory is distributed throughout the processors, rather 

than being placed in a central location. A network connects processors 

(and their local memories).  Processors exchange data between their 

memories when a remote variable value is required.  Examples of this 

class of machine include the IBM SP, Thinking Machines CM5, Cray T3E, 

SGI Origin2000 and ASCI Red. 

• Shared-Memory MIMD or multiprocessors: In this model all processors 

share access to a common memory.  Users need not be concerned about 

the current place where the data is stored, as all processors access the 

same data space. Examples of this class of machine include the Silicon 

Graphics Challenge, the multiprocessor workstations, Cray J90, Cray 

T90, Digital Alpha and Tera-MTA. 

• Single Instruction Multiple Data (SIMD): In this model, all processors 

execute the same instructions on a different piece of data.  This class of 

parallel machines is suitable for problems presenting a high degree of 

regularity, such as image processing and certain numerical simulations. 

From the perspective of a management model, we introduce four types of 

systems, of increasing scale and complexity as described in [FK99]: 

• The End System: Individual end systems (processors, storage systems 

and other devices) are characterized by a small scale and a high 

decree of homogeneity and integration.  They represent the simplest 

environment, where the operating system has absolute control over the 

resources of the computer.  Resource management must handle 

process creation, operating system signal delivery and operating 

system scheduling.   

• The Cluster: This consists of a collection of computers connected by a 

high-speed local area network. It is controlled by a single administrative 

entity that has complete control over each end system.  Parallel 

process creation and scheduling are the main issues concerning 

resource management at this level. 
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• The Intranet: This comprises a large number of resources that 

nevertheless belong to a single organization, therefore there is no one 

single site for coordination.  It introduces the additional issues of 

heterogeneity and geographical distribution.  Resource management 

should in addition handle resource discovery, signal distribution 

networks and provide high throughput.  Uniform access for computing 

resources can be provided by distributed queuing systems such as 

Condor [LLM88], Codine (recently renamed as the Sun Grid Engine) 

[SGE01] or Load Sharing Facility (LSF) [ZZ+93]. 

• The Internet: Internets lack centralized control and are geographically 

widely distributed (they may cross international borders, for example).  

They use a public network that has variable behavior depending on 

particular time conditions, such as load and routers.  Resource 

management should add brokers, negotiation and trading issues.  

Many internet systems, usually referred as Grids, are nowadays under 

development, and probably the most well-known are Globus [FK97] 

and Legion [GW+94].  

From all the systems described above, throughout this work we will 

consider distributed memory MIMD machines organized in an intranet and 

constituting an opportunistic environment for the users. 

1.4 Scheduling Strategies in Distributed Environments 

In non-dedicated distributed environments, several applications could be 

executed on the same set of available resources.  Scheduling functionality 

can be divided into the external and internal [McL97], also referred as two-

level scheduling [Fei94], or generally termed mapping and scheduling [Ber99]: 

• External Scheduling: This is concerned with the assignment of 

applications to compute resources, i.e., with resource allocation. 
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• Internal Scheduling: This is involved with the assignment of tasks 

belonging to an individual computation to the machines assigned to 

that application, that is, with the use of the resources already allocated.    

As stated in [FR+97], with regard to external scheduling, each job 

belonging to a parallel application is executed in a partition that consists of a 

number of processors.  The size of such a partition may depend on the 

machines available, the application and the load of the machines.  The size of 

the partition of a specific job may change during the job’s lifetime.  Different 

types of partitions can be considered: 

• Fixed:  The partition size is defined by the system administration and 

can be modified only by reboot. 

• Variable: The partition size is determined at job submission time based 

on user request and system capabilities. 

• Adaptive: The partition size is determined by the scheduler at the time 

the job is initiated, based on system load, machine availability and by 

taking user request into account. 

• Dynamic: The partition size may change during the execution of a job, 

to reflect changing requirement and machine availability. 

On the other hand, as [FR+97] explains, from the point of view of job 

flexibility, applications can be characterized as follows: 

• Rigid jobs: The partition assigned to a job is specified external to the 

scheduler (by the user or the system administrator for example), and 

that number of machines is made available to the job throughout its 

execution. 

• Moldable jobs: The partition assigned to a job is determined by the 

scheduler, and the job uses that number of machines throughout its 

execution. 
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• Evolving jobs: The job has different phases that require different 

number of machines, so the number of machines allocated may 

change during the execution of the job in response to job needs. 

• Malleable jobs: The partition assigned to a job may change during the 

job’s execution, as a result of the system giving it additional machines 

or requiring the job to release some of them. 

Once a partition has been assigned to a parallel application, internal 

scheduling is performed in order to assign jobs composing the application to 

the machines belonging to the partition.  Internal scheduling can be divided 

into static and dynamic.   

Static Scheduling consists of assigning all application tasks to compute 

resources before execution begins. Once a task has been assigned to a 

machine, it will finish its execution on that machine, unless the machine in 

question fails.  Static scheduling usually views the application either as a 

static graph with fixed and specified dependencies (commonly known as 

DAG: Directed Acyclic Graph),or as a static graph with fixed and specified 

interaction/communication patterns (commonly known as TIG: Task 

Interaction Graph) [HS+01c]. 

Dynamic Scheduling techniques assign tasks to compute resources as 

tasks are being created or as resources become available, i.e. when either a 

new task appears in the system or a machine becomes idle, then the decision 

of where to execute this task will be taken.  Dynamic scheduling may also 

change the assignment of a task after it has begun its execution.  These 

dynamic techniques can be divided into Load Balancing, Preemptive 

Scheduling and Non-Preemptive Scheduling.  The strategies we now 

introduce are representative and in general, have been proposed in theory or 

in practice either for clusters of machines or MPP (massively parallel 

processors) systems. 

• Load Balancing [SC+01]: This is based on the redistribution of load 

among the processors during execution time, so that each processor 
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would have the same or nearly the same amount of work to do. This 

redistribution is performed by transferring load units from the heavily 

loaded processors to the lightly loaded processors with the aim of 

obtaining the highest possible execution speed [SC+01]. The load units 

that are redistributed are handled as independent elements, without 

there being any relation of dependence or affinity among them. 

• Preemptive Scheduling: Depending on whether jobs may be relocated 

during their execution time, preemptive scheduling is divided into: 

− Local Preemption: Tasks composing a job may be preempted, but 

each task can only be resumed later on the same machine.  This 

kind of preemption does not require any data movement between 

machines. 

− Migratable Preemption: Job tasks may be suspended on one 

machine and subsequently resumed on another. This implies the 

overhead of checkpointing a parallel task and restoring it on other 

machine.   

Examples of preemptive schedulers that can be implemented with or 

without migration are CO-scheduling [Ous82, Fei94] (also known as 

Gang Scheduling) and Handoff Scheduling [Bla90, TSS88].   

CO-scheduling tries to simultaneously schedule tasks that work in 

close coordination with each other during execution.  In doing so, it 

attempts to avoid trashing that could occur if such tasks were not run 

together.  

Handoff Scheduling allows a task to suggest the identity of the task that 

a machine should be given to when that task relinquishes it.  The idea 

is to take benefit from the cache entries built up by the current 

executing task.  A related approach is Affinity Scheduling [SL93], which 

tries to schedule tasks on the same processor on which they most 
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recently ran, under the assumption that this particular processor might 

still have some relevant data in its cache. 

• Non-Preemptive scheduling: Once a task has been assigned to a 

machine, it will remain executing on that machine either until it finishes 

or until the machine leaves the computation (because this machine was 

reclaimed by its owner or because it failed). Self-Scheduling [TY86] 

and Open Shop Scheduling [KSW98] belong to this category.   

Self-Scheduling is used to schedule a set of parallel tasks that are 

independent iterations of a computational loop.  The loop iterations are 

divided into a set of tasks, and these tasks are placed in a single global 

work queue that is available to all machines involved in the 

computation.  When a machine becomes available, it removes tasks 

from the work queue for processing.  This is repeated until the queue is 

empty.  Pure Self-Scheduling is a strategy that assigns a single loop 

iteration to each task in the global work queue.  Chunk-Scheduling 

[KW85] creates a set of equal-sized tasks that contain an arbitrary 

number of loop iterations.  Variants of this method include the “bag-of-

tasks” policy [BS95] and the Piranha Scheduling [GJK93], both of the 

Linda system [Gel95]. Another variant used in Calypso [BDK95] is 

Eager Scheduling. This allows a machine to be assigned a task that 

has already been assigned to other machine if no unassigned tasks 

remain.  In this case, only the results produced by the first machine to 

finish the task will be considered. 

Open Shop Scheduling uses heuristics to produce a schedule for each 

machine (shop) indicating which tasks will be performed and in which 

order.   

Dynamic scheduling strategies in general (both preemptive and non-

preemptive), have the ability to adapt the scheduling they provide to a 

changing set of available resources.   
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A scheduler should provide a performance measure index, which describes 

the performance activity to be optimized.  Possible performance-

measurement indices include [Ber99]:  

• Application completion time: This is the time an application takes to 

execute a task, from start to finish. 

• Efficiency: This represents how well resources are being used.  If there is 

a lot of resource waste, then efficiency will be low.  

• Throughput: This is understood as the executing of a large amount of jobs 

over a larger amount of time. 

• Average Response Time: This corresponds to the amount of time that 

users have to wait until they begin to receive output or results from this 

application. 

• Other performance activities: For example operating system overhead or 

resource fragmentation, among others.   

The performance measure index chosen depends on whether scheduling 

promotes application performance (application-aware) or system performance 

(system-aware).  These goals may conflict with each other.   

This thesis focuses on the problem of dynamic internal scheduling, i.e., 

assigning tasks to the machines available to an application.  It should be 

noted that the number of available machines may dynamically change, 

depending both on the application needs and the number of resources the 

system is able of allocating to an application at a specific time.  In other 

words, we are considering both dynamic partitions and malleable jobs. The 

performance measure index we consider is basically application-aware when 

performing internal scheduling, but introduces system-aware considerations 

when determining the number of machines to be assigned to an application 
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1.5 Example of Existing Schedulers 

We will now review some existing scheduling systems by considering the 

different types of system organization with respect to the scale classification 

discussed in section 1.3. 

1.5.1 Clusters – Intranet  

In spite of their differences, the typical way in which both cluster of 

machines and intranets) are currently used is the following: 

1. The system is divided into partitions consisting of different numbers of 

machines (classified as explained in section 1.4). 

2. A number of queues are established, each one corresponding to a 

specific combination of job characteristics. 

3. Each partition is associated with one or more queues, and its machines 

serve as a pool for those queues.  Whenever machines are free, a job 

belonging to one of the associated queues is executed on the partition. 

In practice load-sharing packages implement this functionality.  A load- 

sharing package in general consists of the following main components 

[Ant97]: 

• Batch Queue System: This allows users to submit jobs to some form of 

queuing system. 

• Scheduler: This places the job on certain machines, with adequate 

resources to run the job, and 

• Job Management Tools: These allow both users and administrators to 

interact with the job queues, status, priorities, etc. 

Examples of these packages include: 
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• Condor [LLM88]: This is a high-throughput computing environment that 

can manage a large collection of computers such as PCs, workstations 

and clusters owned by different individuals.  It harnesses idle computer 

CPU cycles (cycle stealing) and offers resource management for 

parallel and sequential applications. Condor is described in more detail 

in the next chapter, as it is the system used in our experimentation. 

• LoadLeveler [Pre96], Network Queuing Environment (NQE) [NQE00, 

Haz97], Network Queuing System (NQS) [NQS94], Load Sharing 

Facility (LSF) [ZZ+93] and Distributed Queuing System (DQS) 

[DQS00]: These packages present many common features, such as 

being designed for large and heterogeneous systems, and allowing 

users to run jobs by matching their processing needs to available 

resources. As part of their job-management system, they serve as a job 

scheduler and provide a facility for building, submitting and processing 

jobs in a dynamic environment. They support both sequential and 

parallel jobs.  

• Piranha [GK92, CF+95]: This is an execution model for Linda, 

developed to reclaim idle cycles from networked workstations for use in 

executing parallel programs. A Piranha program or job is assigned to a 

collection of workstations by a scheduler.  On each workstation, the job 

has a representative worker process or piranha, which lies dormant 

until the node becomes available for computation.  When the node 

becomes available, the local piranha becomes active and begins 

computing on behalf of the job.  Piranha programs often follow a 

master-worker paradigm.  A master or feeder process outputs tasks 

descriptions representing the work to be done by the job to a Linda 

tuple space. 

• Hector [RF+96]: The Hector parallel run-time environment is designed 

to run MPI-based parallel programs while actively maintaining a 

balanced load and returning workstations to their owners.  Hector is a 
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complete job-scheduling and parallel run-time environment, intended to 

present to the user many features both to parallel and sequential jobs, 

including dynamic load balancing, checkpointing, near-real-time 

resource awareness, and transparency. 

1.5.2 Internet 

There are some low-level environments built with the aim of providing basic 

infrastructure for the grid, i.e., in order to obtain dependable, consistent, 

pervasive and inexpensive access to high-end computational capabilities 

[FK99]. On top of these users can develop their schedulers, in accordance 

with their needs.  These schedulers should be more than extensions to MPP 

or intranet schedulers because, in an internet, the resource pool changes 

dynamically and the scheduler is not in control of all resources.  Globus and 

Legion are examples of well-know systems that provide infrastructure for the 

grid. 

• Globus [FK97]: The Globus system is intended to achieve a vertically 

integrated treatment of applications, middleware, and network.  A low-

level toolkit provides basic mechanisms such as communication, 

authentication, network information and data access. These 

mechanisms are used to construct various higher-level metacomputing 

services, such as parallel programming tools and schedulers.  The long 

term goal of the Globus project is to build an Adaptive Wide Area 

Resource Environment, that is, an integrated set of higher-level 

services that enable applications to adapt to heterogeneous and 

dynamically-changing metacomputing environments. 

• Legion [GW+94]: This is a metasystem project developed at the 

University of Virginia, designed to present users with a transparent 

interface to the available resources, both at the programming interface 

level as well as at user level.  Legion addresses issues such as 

parallelism, fault tolerance, security, autonomy, heterogeneity, resource 



 25

management, and access transparency in a multi-language 

environment. 

In addition to the above systems that provide basic services for accessing 

the grid, there are many problem-solving environments, which are oriented to 

particular applications.  Examples of these environments include:  

• AppLeS (Application-Level Scheduling) [BW+96, BW97]: This focuses 

on the development of scheduling agents for parallel metacomputing 

applications. Each agent is written on a case-by-case basis and each 

agent will perform the mapping of the user’s parallel application 

[SWB98]. To determine schedules, the agent must consider the 

requirements of the application and the predicted load and availability 

of the system resources at scheduling time. Agents use the services 

offered by the NWS (Network Weather Service) [WSH99] to monitor 

the varying performance of available resources. AppLeS includes 

templates for master-worker applications and parameter sweep 

studies.  

• NetSolve [CD97, CD98]: This is a client-agent-server system, which 

enables the user to solve complex scientific problems remotely. The 

NetSolve agent does the scheduling by searching for those resources 

that offer the best performance in a network. The applications need to 

be built using one of the API’s provided by NetSolve in order to perform 

RPC-like computations. There is an API for creating task farms 

[CK+99] but it is targeted at very simple farming applications that can 

be decomposed by a single bag of tasks.  

• Nimrod/G [AF+97, AGK00] is a resource management and scheduling 

system that focuses on the management of computations over dynamic 

resources scattered geographically over wide-area networks.  It is 

targeted at scientific applications based on the “exploration of a range 

of parameterized scenarios”, which is similar to our definition of master-

worker applications, although our definition allows a more generalized 
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scheme of farming applications. The scheduling schemes under 

development in Nimrod/G are based on the concept of computational 

economy developed in the previous implementation of Nimrod, where 

the system tries to complete the assigned work within a given deadline 

and cost. The deadline represents a time by which the user requires 

the result, and the cost represents an abstract measure of what the 

user is willing to pay if the system completes the job within the 

deadline. Artificial costs are used in its current implementation to find 

sufficient resources for meeting the user’s deadline.  

• Ninf [SS+96, NSS99]: This is a client-server based network 

infrastructure for global computing.  It allows access to multiple remote 

compute and database servers. The system schedules accesses from 

a client application to the remote library, with the goal of optimizing 

application performance. 

• PUNCH [KF99]: This infrastructure consists of a collection of 

technologies and services that allow seamless management of 

applications, data and machines distributed across wide-area networks. 

Punch employs non-preemptive, decentralized, adaptive scheduling. 

Other systems providing schedulers for internet found in the literature are: 

Prophet [WZ97] and Dome [AB95] for SPMD programs, VDCE [TH+97] for 

programs composed of tasks from mathematical task libraries, IOS [BRS97] 

for realtime, iterative automatic target recognition applications, SEA [SM97] 

for dataflow-style program dependence graphs, I-SOFT [FG+98] for 

applications that couple supercomputers, remote instruments, immersive 

environments and data systems, and MARS [GR96] for phased message-

passing programs. 
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1.6 Discussion 

In the light of the literature available, it is clear that scheduling of parallel 

applications on distributed systems is a highly varied subject, and includes 

works that tackle it from different perspectives, many having very different 

(sometimes contradictories) assumptions. Nevertheless, in view of what has 

been discussed in this chapter, our work is focused not only on the 

development of application-aware scheduling strategies but also on taking 

into account system-aware considerations, for malleable parallel applications 

that follow the master-worker paradigm.  In this respect our work adopts 

similar assumptions to those made by certain problem-solving environments 

for internets, such as AppLeS and NetSolve. However, these scheduling 

techniques will be adapted to the features of typical Load Sharing Packages 

for intranet systems, such as Condor, which is characterized by using 

available idle resources, thereby providing a set of resources that can be seen 

as a dynamic partition. 
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Chapter 2  
Master-Worker Programming Model 

and Problem Description 
Abstract 

This chapter first introduces the simple master-worker 
programming model and then presents the generalized 
master-worker model considered throughout this work.  
Subsequently, the fundamental aspects of the execution 
environment in which the applications will be executed 
are described. We then detail the features of the 
systems used in the development phase –Condor and 
MW— which are an example of opportunistic systems. 
Finally, the problem of scheduling master-worker 
applications on such environments is introduced.  
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2.1 Introduction 

In this chapter we will introduce and explain the relevance of the 

programming model that has been considered in this work, specifically, the 

master-worker parallel programming model. We will describe the main 

characteristics of this adopted programming model. We begin with a basic 

description of the simplest formulation of the model, and later present a 

generalized master-worker model.  

The execution environment considered in this work was an opportunistic 

environment of heterogeneous resources. Such environments are composed 

of a variable number of machines, and machines can join or leave a 

computation dynamically (at run time).  We used Condor as resource 

manager, and master-workers applications were implemented using MW  

(Master-Worker Tool), a set of libraries that simplifies the process of writing 

master-worker applications, in comparison to directly using C plus PVM or 

MPI.  In fact, MW has been modified in order to support the requirements of 

the proposals of this work. 

Once we have introduced both the programming model and the execution 

environment, we present the problems arising when executing applications 

following that programming model on such environments, and, in particular we 

introduce the problem that we are interested in, namely, the scheduling of 

master-worker applications on distributively-owned machines belonging to an 

opportunistic environment.  Different problems arise due to the nature of the 

scheduling problem itself, and due to the opportunistic and heterogeneous 

environment considered. 
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2.2 Master-Worker Programming Model 

In this section the simple master-worker paradigm is first presented, 

followed by the generalized version of this paradigm.   

The master-worker model is used in many scientific, engineering and 

commercial applications, such as: software building and testing, sensitivity 

analysis, parameter space exploration, image and movie rendering, high 

energy physics event reconstruction, the processing of optical DNA 

sequencing, neural networks training and stochastic optimization among 

others [Can98, WW95, AI98]. 

2.2.1 Simple Master-Worker Model 

As was described in the first chapter, the basic master-worker 

programming model consists of two entities: the master and multiple workers.  

The master is responsible for decomposing the problem into tasks and 

distributing these tasks among a farm of workers, as well as for gathering the 

partial results in order to produce the final computation result.  The workers 

execute in a very simple cycle: receive a message with the task (input), 

process the task, and send the result back to the master (output).  Usually 

communication only takes place between the master and the workers. 

We will now show a detailed graphical example of how the simple master-

worker paradigm works. First of all the master has a bag of tasks that can be 

understood logically  by using the parbegin-parend constructors, as is shown 

in Figure 2-1. The main features of this high-level structure are, on the one 

hand, that there is a strong synchronization point (parend) and, on the other 

hand, that there are no communications among tasks. The corresponding 

algorithmic representation of this paradigm is shown in Figure 2-2. In practice, 

when working at a level of processes, this structure can be decomposed into 

master and workers processes communicating task descriptions and task 

results by messages, as is exemplified in Figure 2-3, which depicts one 
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Master process and three Worker processes (worker1, worker2 and worker3).  

In this example, initially (as shown in Figure 2-3a) task T1 to T8 are ready to 

be executed. 

 

 

 

 

 

 

 

 
 

Figure 2-1.  High-level structure corresponding to the master-worker paradigm. 

 

 

 

 

 

Figure 2-2. Simple Master-Worker algorithm 
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The master then sends one task to each of the available workers (Figure 

2-3b). In this case, it sends the first three ready tasks that are ready in the 

task list (T1, T2 and T3) to worker1, worker2 and worker3 respectively.  The 

Next Task to be Scheduled (NTS) pointer represents the next task in the task 

list to be executed when a worker finishes the current task being executed; in 

this example T4 is the next task to be executed. 

Each time a worker finishes, it sends the results back to the master and the 

master sends it a new task (Figure 2-3c).  In this case, the execution of T1 

and T3 finish, and the master receives those results (R1 and R3), and sends 

tasks T4 and T5, respectively, to those workers.  As a consequence, the next 

task to be executed is T6. 

This process is repeated until all tasks have been completed (Figure 2-3d), 

in particular in this example, until the results of the eight tasks R1 to R8 have 

been received by the master. 
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Figure 2-3b 

 

Figure 2-3c 
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Figure 2-3d 

Figure 2-3. Basic master-worker model 

2.2.2 Generalized Master-Worker Paradigm 

In contrast to the simple master-worker model in which the master solves 

one single set of tasks, the generalized master-worker model can be used to 

solve problems that require the execution of several batches of tasks. Figure 

2-4 shows an algorithmic view of this paradigm, and Figure 2-5 shoes its 

corresponding representation using the parbegin-parend constructors. 

 

 

 

Figure 2-4.  Generalized Master-Worker algorithm 
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Figure 2-5. Parbegin-parend  structure corresponding to the generalized master-
worker paradigm. 

A master process will solve the N tasks of a given batch by looking for 

Worker processes that can run them. The master process may carry out 

certain intermediate computations with the results obtained from each worker 

as well as some final computations (that cannot be parallelized), when all the 

tasks of a given batch are completed. After this a new batch of tasks is 

assigned to the master and this process is repeated several times until 

completion of the problem (K cycles, which are later referred to as iterations). 

Workers execute Function (task) and PartialResult is collected by the master. 

The completion of a given batch induces a synchronization point in the 

iteration loop, followed by the execution of a sequential body.  

This paradigm is very attractive, first because it is very easy to program 

and second, because there are many problems that can be naturally mapped 

onto it. N-body simulations [GF96], genetic algorithms [Ban98], Monte Carlo 

simulations [BRL99] and material science simulations [PL96] are just a few 

parbegin

parend 

Task 1 Task 2 Task 3 Task N ... 

new task set 



 38

examples of natural computations that fit into this generalized master-worker 

paradigm. 

 It also has another attractive characteristic: it has a central control point 

(the master), a fact that will be exploited by the scheduling mechanism.  In 

addition to these characteristics, empirical evidence has shown that, for a 

range of applications, the execution of each task in successive iterations 

tends to behave similarly, so that the measurements taken for a particular 

iteration are good predictors of near-future behavior [PL96]. This means that 

this kind of applications have a high degree of predictability and, therefore, it 

would be possible to take advantage of it in deciding both the use of the 

available resources and the allocation of tasks to workers in a dynamic and 

adaptive way. There are other works in the literature [BG96, NVZ96] whose 

experimental results also confirm that iterative parallel applications usually 

exhibit regular behaviors that can be used by an adaptive scheduler. 

2.3 Parallel Execution Environment for Master-Worker 
Applications 

According to the characteristics of the applications that follow a master-

worker model, its natural manner of execution would be on a 

parallel/distributed environment, in such a way that the different workers 

execute tasks simultaneously.  

The master-worker paradigm is an example of malleable applications that 

can adapt their execution to a changing number of machines. We will now 

comment on how the master-worker applications would be executed 

depending on the type of partition considered in the parallel environment: 

• Fixed: If the number of machines is equal to or greater than the number of 

tasks, the master-worker application would be executed using the same 

number of machines as number of tasks, therefore assigning a worker to 

each machine.  This constitutes the ideal case guaranteeing the minimal 
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possible execution time, if the communication time between master and 

workers is small compared to each task’s computation time.  If the 

number of machines is less than the number of tasks, the tasks will be 

executed according to the order determined by the master process. 

In the case of the size of the partition being known before the scheduling 

of the tasks, this value could be taken into account in order to distribute 

those tasks in a balanced way.  

• Variable and Adaptive: In this case, for each execution of the same 

master-worker application, a different fixed number of machines would be 

used.  Under this approach, it would be necessary either to distribute 

tasks at the beginning of the execution, once the number of machines 

constituting the partition assigned to the application was known, or to 

carry out a dynamic assignment as tasks are finished. 

• Dynamic  (opportunistic environments): This is the more complex case.  

The number of machines may change during the execution of the 

application.  This requires dynamic task management that also includes 

the capacity to react to machine losses throughout execution time.  

In the two former cases a single application that used the services provided 

by a message-passing library such as PVM or MPI, would be sufficient.  In the 

third case, it would be necessary, in addition, to join the application with the 

services provided by an opportunistic resource management system. 

An example of this union was shown in [PL96] where the Condor 

opportunistic environment was used close to PVM applications, allowing the 

development of any generic parallel application that uses opportunistic 

resources.  Recently the MW tool was proposed in order to simplify the 

construction of master-worker applications on opportunistic environments. 

Initially, MW supported the execution of a bag of tasks, so MW was modified 

to support the proposed generalized master-worker model. The schematic 

vision of the main components used is shown in Figure 2-6, where the master 

process (or Driver) is executed on the owner’s machine, and the worker 
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process are executed on the remaining machines belonging to a Condor pool.  

Communication and resource management services are provided by PVM 

and Condor respectively. 

The following subsections briefly describe the structure of a general 

resource management system for opportunistic environments, Condor and 

MW. 

Figure 2-6.  Executing and Programming Environment 

2.3.1 General Structure of Opportunistic Resource Management 
Systems 

When considering an opportunistic environment, resource management 

(RM) is a basic point.  The principal layers of a resource management system 

proposed by Livny and Raman [FK99] are show in Figure 2-7 and are briefly 

explained below.   
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2. Owner layer: This represents the interest of the resource owner.  It 

provides access control mechanisms to the resource, that is, it 

implements the owner policy for a particular resource, for example, so 

that the machine aows10.uab.es with Memory=500 and 

KFlops=150000 (resource) could be accessed from 2pm to 10am 

(when) by users belonging to the friend_research group (to 

whom). 

 

Figure 2-7.  Layers of an RMS 
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3. System layer: This represents the global resource allocation layer. 

Here, the matching policy is implemented in order to match resource 

offers and resource requests in such a way that the constraints of both 

are satisfied.  For example, a match is done with the request of user 

David and machine aows10.uab.es. 

4. Customer layer: This layer represents the interest of the resource 

management system users, for example, that user David belonging to 

the friend_research group needs a machine with Memory>250 

and Kflops>100000. The duties of this layer are handling the users’ 

resource requests and interacting with the system layer by sending it 

those requests, by considering a priority scheme.  

5. Application RM layer: This is responsible for establishing the 

application task runtime environment on the claimed machines. For 

example, the environment for running David’s job is set up on 

machine aows10.uab.es. This layer also supports adaptive 

applications that grow when more resources become available. 

6. Application layer: This represents user application tasks.  These tasks 

use the resource given by the application RM layer. In the example, 

David’s job is now executed on machine aows10.uab.es. If this 

job subsequently needs another machine, then a request to the 

application RM layer will be generated.   

2.3.2 Condor Overview  

Condor [LB+97] is a software system that runs on a cluster of workstations 

to harness wasted CPU cycles.  It was initially developed at the University of 

Wisconsin-Madison in 1986. Condor was first developed for Unix systems, 

and can currently be executed on a wide range of machines.  A Condor pool 

consists of any number of machines, possibly of heterogeneous architecture 

and that may or may not have different operating systems, which are 
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connected by a network.  One machine, the central manager, keeps track of 

all the resources and jobs in the pool.  

Condor allows High Throughput Computing (HTC) to be attained, that is, 

large amounts of processing capacity sustained over long time periods. The 

resources, i.e. hardware, middleware and software, are large, dynamic and 

heterogeneous.  Tasks are usually loosely coupled or independent, and the 

goal is to use processor cycles from idle machines.  In an HTC the resource 

manager is only aware of the current state of resources (all resources are 

opportunistic), and therefore no future planning can be done. 

  The most relevant mechanisms included in the Condor system are 

[Con99]: 

• Queue Management: When a user submits a job, it goes to the local job 

queue in the submitting machine. 

• Priority Schemes: There are priorities assigned to each user.  Machines 

are allocated to users according to that user’s priority.  In addition, Condor 

provides the user with the capability of assigning priorities to each 

submitted job.  These job priorities are local to each queue. 

• Matchmaking: This enables requests for services and resource owners to 

find each other.  This is accomplished via the ClassAd mechanism, which 

works in a similar way to newspaper classified advertising.  All machines 

in the Condor pool advertise their resource properties, such as available 

RAM memory, CPU type, CPU speed, operating system, current load 

average and other properties, into a “resource offer” ad.  In the same way, 

when submitting a job, the “resource request” ad contains the required set 

of resources to run the job.  Condor matches resources and requests 

thereby satisfying both parts.  

• Checkpointing: Condor only uses idle machines to compute jobs.  If the 

user returns when his machine is being used by a Condor job, the job 

being executed there leaves that machine.  This job is checkpointed, i.e. 
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all the work it has already performed is saved, so the job can be moved 

onto another machine and continue executing in the new allocated 

machine.  Checkpointing avoids waste of computational resources, and is 

the base for supporting dynamic process migration and fault tolerance. 

Checkpointing has certain limitations, such as not being able to be used in 

message-passing parallel applications, the process cannot use certain 

system calls (fork for example), and processes are subjected to limitations 

in the use of sockets. 

• Remote I/O: Jobs executing on a remote site can access their local data, 

that is, in the environment from which the job was submitted. This allows 

crossing administrative domains.  In order to use this service, users must 

link their application with the Condor libraries. 

• Flocking:  This allows jobs to be executed on more than one pool. Users 

would submit their jobs from their local machine, and if there are not 

enough machines available in their pool, and if the authorization rights are 

properly set, their jobs can be executed on remote pools. 

• Enables management of dynamic resources (opportunistic ones).  Condor 

handles machines that are joining and leaving the pool of available 

machines. 

A machine belonging to a Condor pool could act as: 

• Central Manager: There is only one Central Manager per pool.  This 

machine is the collector of information, and it is where the match between 

resources and requests takes place.   

• Execute Machine: This role corresponds to machines that will execute 

jobs in the pool. 

• Submit Machine: This role corresponds to machines allowed to submit 

jobs in the pool. 
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• Ckeckpoint Server: The pool may have a centralized point to store all the 

ckecpoint files for the jobs submitted in the pool. 

Most machines usually play more than one simultaneous role in a Condor 

pool. 

This functionality is implemented by means of five daemons 

(condor_master, condor_startd, condor_starter, condor_schedd and 

condor_shadow).  These daemons and their interactions are shown in Figure 

2-8, which depicts the situation of a pool with N machines plus a Central 

Manager in which a job submitted on machine 2 is running on machine N: 

Figure 2-8.  Architecture of a Condor Pool. 

• condor_master:  This daemon is responsible for keeping the rest of the 

Condor daemons running on each machine in the pool.  It spawns the 

other daemons, and if any of them crashes, it restarts them. 
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condor_master is executed on every machine in the pool, regardless of 

the role each machine is playing.  For the sake of simplicity, this daemon 

is not shown in Figure 2-8. 

• condor_startd: This daemon represents a resource, i.e. a machine 

capable of running jobs.  It advertises certain attributes concerning the 

resources being used to match it with pending resource requests.  It will 

run on any machine of the pool that is able to execute jobs.  When the 

condor_startd is ready to execute a job, it spawns the 

condor_starter. 

• condor_starter:  This program spawns the remote Condor job on a 

given machine, and monitors it once it is running.  When a job is 

completed, condor_starter sends back any status information to the 

submitting machine and exits. 

• condor_schedd:  This daemon represents resource requests to the 

Condor pool.  It will run on any machine that is able to submit jobs.  When 

a job is submitted, condor_schedd stores it in the “job queue”. 

Condor_schedd advertises  these jobs.  Once one of these has been 

matched with a given resource, it spawns a condor_shadow. 

• condor_shadow:  This program runs on the machine where a given 

request was submitted, and acts as the resource manager for the request.  

It handles remote system calls: any system call performed on the remote- 

execute machine is sent over the network back to the condor_shadow, 

which performs the system call locally, and the result is sent back to the 

remote job. 

• condor_collector: This daemon collects all the information about the 

status of the pool.  It only runs at the Central Manager. 

• condor_negotiator: This daemon is responsible for all the 

matchmaking within the system.  It also only runs at the Central Manager. 
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2.3.3 Overview of MW 

MW [GK+00] is a programming framework, composed of a set of C++ 

abstract classes, which allows fast and easy development of master-worker 

applications.  With MW, users need not address issues such as fault 

tolerance, while interprocess communication is simplified for users. In this 

way, MW provides an API for implementing simple master-worker 

applications.  In this work, we have extended MW in order to support the 

generalized master-worker model. 

MW uses Condor as a resource manager. A resource manager in this 

context includes: resource request and detection, infrastructure querying, fault 

detection and remote execution. 

 As regards communications, there are MW versions that perform 

communications by using PVM, the file system and sockets.   In this work, 

MW was used with PVM [GB+94].  MW workers are independent jobs 

spawned as PVM programs. 

An application in MW has three base components: Driver, Tasks and 

Workers.  The Driver is the master, who manages a set of user-defined tasks 

and a pool of workers.  The Workers execute Tasks.  To create a parallel 

application, the programmer needs to implement some pure virtual functions 

for each component. 

Driver:  This is a layer that sits above the program’s resource management 

and message passing mechanisms. (Condor and PVM, respectively in the 

implementation used).  The Driver uses Condor services for getting machines 

to execute the workers and to get information about the state of those 

machines. It creates the tasks to be executed by the workers, sends tasks to 

workers and receives the results. It handles workers joining and leaving the 

computation and rematches running tasks when workers are lost. To create 

the Driver, the user needs to implement the following pure virtual functions: 

• get_userinfo():  Processes arguments and does initial setup. 
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• setup_initial_tasks():  Creates the tasks to be executed by the workers. 

• pack_worker_init_data(): Packs the initial data to be sent to the worker 

upon startup. 

• act_on_completed_task(): This is called every time a task finishes. 

Task: This is the unit of work to be done.  It contains the data describing the 

tasks (inputs) and the results (outputs) computed by the worker.  The 

programmer needs to implement functions for sending and receiving this data 

between the master and the worker.  The functions are the following: 

• pack_work(): Packs the work to be sent to the workers. 

• unpack_work(): Unpacks the work to be done. 

• pack_results(): Packs the results obtained. 

• unpack_results(): Unpacks the results received. 

Worker:  This executes the tasks sent to it by the master.  The programmer 

needs to implement the following functions:  

• unpack_init_data():  Unpacks the initialization data passed in the Driver 

pack_worker_init_data() function. 

• execute_task():  Computes the results for a given task. 

Figure 2-9 shows a simplified view of the MW Driver and MW Worker that 

includes the order in which the virtual functions completed by the user are 

executed.  Appendix C shows an example of the implementation of the virtual 

function, corresponding to the Driver, Worker and Task for an image-thinning 

application. 
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Figure 2-9.  MW virtual functions. 

Applications running on top of MW are fault tolerant in the presence of the 

failures of machines that run worker processes.  If a worker does not finish a 

task because it failed, the driver will re-send this task to other available 

worker.  In order to make computations reliable with respect to driver failures, 

 

                Driver 
 main { 
  get_userinfo(); 
  setup_initial_tasks(); 
  while (not all tasks executed) { 
     receive (&message); 
     switch (message) { 
          case INIT_WORKER: 
                pack_worker_init_data(); 
          case RESULTS: 
                unpack_results(&readyTask); 
                act_on_completed_task(); 
      }  
      pack_work(&nextTask); 
      send(); // nextTask     }} 
 

 

Worker1 
main { 
   send (INIT_WORKER); 
   unpack_init_data(); 
   while (not END) { 
       receive(); // task 
       unpack_work(&task); 
       execute_task(); 
       pack_results(&task); 
       send (RESULTS);}} 

 

WorkerN 
main { 
   send (INIT_WORKER); 
   unpack_init_data(); 
   while (not END) { 
       receive(); // task 
       unpack_work(&task); 
       execute_task(); 
       pack_results(&task); 
       send (RESULTS);}} 
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users can implement functions for writing and reading the state contained in 

the application master and tasks.  This constitutes checkpointing and is 

performed in a user-defined frequency.   

 

 

 

 

 

 

 

 

 

Figure 2-10.  MW components. 

With respect to task scheduling the Driver internally manages a list of 

workers and certain lists of tasks. Figure 2-10 depicts a Driver, 3 Workers and 

8 Tasks (T1, T2, ..., T8).  The ToDo list contains the tasks that are ready to be 

executed.  The Done list contains the tasks that have already been executed, 

and the Running list contains the tasks that are currently being executed. 

Task scheduling is performed by assigning the first task in the ToDo list to the 

first idle worker in the worker list.  In the Driver, the user can specify the way 

the task list will be ordered.  By default, the worker list is ordered by using the 

KFLOPS information, provided in our case by Condor.  The user can also 

specify a benchmark task to be executed on each worker when it joins the 

computation.  If this is carried out, machines will be ordered by the benchmark 

factor. 
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2.4 Performance Model for Master-Worker Applications on 
Opportunistic Environments 

In the case of master-worker applications, the overhead incurred in 

discovering and allocating new resources can be significantly alleviated by not 

releasing the resource once the task has been completed. Workers will be 

kept alive at the resource, waiting for a new task. However, by doing so, an 

undesirable scenario may arise in which some workers may be idle while 

other workers are busy. This situation will result in a poor utilization of the 

available resources in which all the allocated workers are not kept usefully 

busy and, therefore, application efficiency will be low. In this case, efficiency 

may be improved by restricting the number of allocated workers. 

If we consider execution time, a different criterion will guide the allocation of 

workers as the more workers allocated for the application the lower its total 

execution time. The speedup of the application then directly depends on the 

allocation of as many workers as possible. 

In general, the execution of a master-worker application implies a trade-off 

between the speedup and the efficiency achieved. On the one hand, our aim 

is to improve the speedup of the application as new workers are allocated. On 

the other hand, we also want to achieve high efficiency by keeping all the 

allocated workers usefully busy.  

In this work we consider the problem of maximizing the speedup and  

efficiency of a master-worker application through both the allocation of the 

number of processors on which it runs and the scheduling of tasks to 

processors during runtime. 

Scheduling strategies are evaluated by measuring the efficiency and total 

execution time of the application. 

Resource efficiency (E) for n workers is defined as the ratio between the 

amount of time workers spent doing useful work and the amount of time 

workers were able to perform work. 
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n: Number of workers. 

Twork,i: Amount of time that worker i spent doing useful work. 

Tup,i: Time elapsed since worker i is alive until it ends. 

Tsusp,i: Amount of time that worker i is suspended, that is, when it cannot do 

any work for the application. 

 

Execution Time (ETn) is defined as the time elapsed from when the 

application begins its execution until it finishes. 

                                        ET = Tfinish - Tbegin 

Tfinish,n: Time of the ending of the application, measured as the time at 

which the master finishes. 

Tbegin,n: Time of the beginning of the application, measured as the time at 

which the master begins. 

 

In agreement with [EZL89], we view efficiency as an indication of benefit 

(the higher the efficiency, the higher the benefit), and execution time as an 

indication of cost (the higher the execution time, the higher the cost). The 

implied system objective is to achieve the efficient usage of each processor, 

while taking into account the cost to users. It is important to know, or at least 

to estimate, the number of processors that yield the point at which the ratio 

between execution time and efficiency is minimized, that is, optimized. This 

would represent the desired allocation of processors to each job.  
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More formally, we define the Execution-Efficiency Ratio as: 

)(Re
)()(

iciencysourceEffi
iimeExecutionTiEER =  

EER(i): Execution-Efficiency Ratio for i machines. 

Execution Time (i): Application execution time when i machines are used.  

Resource Efficiency (i): Efficiency achieved when i machines are used. 

Releasing under-utilized processors could be beneficial both for the whole 

system and for the particular user. From the system perspective, released 

processors could be allocated to other users that, in turn, will improve overall 

cluster throughput. A particular user will also benefit because cluster job 

managers normally make use of priority and aging mechanisms in their 

allocation policies. Every user has a priority and the job manager uses that 

priority to directly decide how many resources are going to be allocated to that 

given user. The better the priority, the more resources the user will get. The 

aging mechanism assigns a lower priority to users when they have already 

been allocated resources for a long time. This mechanism will ensure that 

resources will be fairly allocated to all users through time. Therefore, user 

priority for allocating resources will be more negatively affected when their 

applications are running on a set of under-utilized resources. 

2.5 Challenges of Master-Worker Applications Running on 
Opportunistic Environments 

Up to now, we have seen both the programming model, the execution 

environment and the performance model that we have adopted in this work.  

Despite the conceptual simplicity of the master-worker paradigm, it presents 

some interesting challenges.  Some challenges are related to functioning such 

as master and worker fault tolerance.  If either the master or any worker fails 

the application will either never finish or will produce incorrect results.  The 
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failure of a worker can be detected and the task that it was executing can be 

re-executed on another worker, increasing the execution time of the whole 

application.  Master failures can be handled by periodically checkpointing the 

whole master-worker application, which can be very hard to perform, 

depending on the exact state of the application that we wish to store.  For 

example, it is easier to save the state of tasks already executed, and the 

pending task list, than to save the exact state of every component 

participating in the computation.  Fault tolerance aspects are partially covered 

by MW. 

There are many other challenges related to improving the performance of 

master-worker applications running on opportunistic environments: 

• The role played by the master: This may or may not execute certain tasks; 

or in the case of a hierarchy, this could be a worker from another master. 

• If messages are large in comparison to task computation time, the way 

tasks are sent to workers may depend on the network considered.  Packs 

of tasks could be sent to workers located far away (belonging to a 

computational grid, for example), in order to minimize the network 

overhead.  If workers are close to the master, a possibility is to send a task 

as soon as one is ready to be executed and as soon as there is a worker 

ready to execute them. 

• Task scheduling: The way in which tasks are assigned to workers for their 

execution.  This offers many possibilities, including random, FIFO, or 

policies that use a predictive model of task execution time.  The amount of 

information used in this prediction differs throughout policies.  

• Selecting the number of workers to participate in a computation.  Some of 

the possibilities are: 

− One worker per task. 

− One worker per machine allocated by the master. 

− A variable number of workers, depending on the behavior of the tasks. 
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• The impact of preemption: In an opportunistic environment machines can 

appear (resource occupied by their owner can become available without 

any advance notice) and disappear (available resources can be reclaimed 

at any time).  When users reclaim their machine, the worker executing a 

task there has to leave this machine immediately.  This is a special case of 

worker failure (as it is not longer available), and the performance of the 

whole application will be affected.  

• Dealing with heterogeneous machines, from the point of view of both 

reliability and performance.  Even homogeneous machines could 

demonstrate different performance due to the load they have at a particular 

moment.  Both the assignment of tasks to workers, and the number of 

worker that should be used, depends on the relative performance of the 

workers. 

From all the challenges described above, we have studied in this work the 

task scheduling problem, the selection of the number of workers that will 

participate in the execution of the master-worker application and also the 

impact of machine reclaim.  Specifically, our study is focused on giving 

answers to the following questions: 

− How can tasks be assigned to workers? When the execution time 

incurred by the tasks of a single iteration is not the same, the total 

time incurred in completing a batch of tasks strongly depends on 

the order in which tasks are assigned to workers.  Theoretical work 

has proved that simple scheduling strategies based on list-

scheduling can achieve good performance [Hall97]. 

− How many workers should be allocated to the application? A simple 

approach would consist of allocating as many workers as tasks are 

generated by the application, at each iteration. However, this policy 

will generally result in poor resource utilization (low efficiency) 

because some workers may be idle if they are assigned a short 
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task while other workers may be busy if they are assigned long 

tasks. 

− How is the whole performance of an application affected by a 

machine leaving the computation, and what can be done to 

alleviate this effect? 

   Both homogeneous and heterogeneous environments were considered, 

and we also assumed that communications take much less time than 

computations. 

Taking into account the layered structure of a Resource Management 

System (see Figure 2-7),  

Figure 2-11 depicts the extended version of such a Resource 

Management System according to our goals.  In italics we show the particular 

elements that this work is focused on, and its location within the layered 

structure of the Resource Management System, in particular scheduling, 

dynamically determining and adjusting the number of workers involved in a 

computation and finally the strategies to alleviate the impact of machine 

reclaim. 

The scheduling agent determines the way resources obtained will be used 

by the application tasks.  The Adjust Component determines the number of 

machines suitable for getting good resource usage and reasonable execution 

time.  Finally, the Replication Agent provides the mechanisms for reducing the 

impact produced when a machine participating in a computation is lost. 
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Figure 2-11.  Extended layers of an RMS. 
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Chapter 3  
Scheduling of Master-Worker Applications 

on Homogeneous and Dedicated Clusters 

Abstract 

This chapter first states the scheduling problem for 
master-worker applications on a cluster of dedicated 
homogenous machines.  Then the Random & Average 
scheduling strategy is introduced and studied by 
simulation through comparing it with other scheduling 
policies. 
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3.1 Introduction 

In chapter 2, we introduced the programming model, the execution 

environment and briefly described the problems to be studied.  This chapter 

focuses on the scheduling of master-worker applications on dedicated and 

homogeneous clusters, which constitute our departure point.  In the following 

chapters this formulation will be extended. 

The scheduling problem in question is equivalent to the minimum 

makespan problem, for which multiple solutions exist in the literature.  Most of 

these solutions have the main drawback of starting from very simple 

assumptions where, for example, the execution time of the tasks are known a 

priori, and do not have any variability.  In our study, we will adopt 

assumptions, such as the variability of the task execution times, that bring the 

study closer to more realistic situations. 

First, the Random & Average proposed scheduling policy is introduced. 

This scheduling strategy dynamically measures task execution times to 

control the assignment of tasks to workers. The effectiveness of the proposed 

strategy was assessed by means of simulation experiments in which several 

scheduling policies were compared. In the comparison, we considered a large 

set of different factors in modeling the behavior of master-worker applications. 

From these experiments, we have observed that the proposed strategy 

obtains similar results to other strategies that use a priori information about 

the application.  

3.2 Problem Statement  

The way in which tasks forming a parallel application are assigned to 

machines to be executed, and the number of machines that are to be used 

have a significant influence on both the execution time and the efficiency 
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exhibited by the application.  Let us suppose we have four tasks with different 

execution times, as shown in Figure 3-1:  

 

 

 

 

 

 

Figure 3-1. Task execution times. 

If we decide to have as many machines (that is, workers) as tasks, we 

obtain an efficiency of 0.56 and an execution time of 8 units, as shown in 

Figure 3-2. 

 

 

 

 

 

Figure 3-2.  Assigning the tasks using 4 workers. 

By choosing a different number of machines, two for example (see Figure 

3-3), we get the maximal efficiency, namely 1, and an execution time of 9 

units, that is, slightly larger than that obtained with as many machines as 

tasks. 
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Figure 3-3.  Assigning the tasks using 2 workers. 

Now let us see an example of how the order in which tasks are assigned to 

machines (or workers) for execution also affect both execution time and 

efficiency.  Consider the same four tasks for  

Figure 3-1 and two machines. If tasks are assigned carelessly, as in Figure 

3-4a, the first worker is idle 6 units of time, therefore efficiency is 0.75. In the 

second case, shown in Figure 3-4b, the amount of time workers spent doing 

useful work is equal to the amount of time workers had been able to execute 

work, therefore efficiency is 1, and the execution time is 9 units. 
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Figure 3-4.  Assigning tasks to workers (a) carelessly (b) carefully.  
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In the master-worker model we consider, the exact execution time of the 

tasks is not known in advance.  There is variability in task execution times 

from one cycle to another.  Tasks will be executed for several cycles, until the 

completion of the problem. This end condition can be met after a fixed number 

of cycles, or until a convergence criterion is reached.   There is one worker 

running per machine, so when we decide the number of workers to be 

considered for executing the application, we are deciding the number of 

machines.  Both terms are used interchangeably.  In this chapter, we consider 

clusters of homogeneous dedicated machines.  In the next chapter, 

heterogeneous machines are considered, and in chapter 5, the assumption of 

dedicated machines is relaxed. 

In next subsection, the scheduling problem is more formally introduced.  

The problem of determining the number of workers or machines is studied in 

chapter 4. 

3.2.1 Scheduling Problem  

The basic scheduling problem consists of assigning a set of n jobs 

J1, J2, ..., Jn to a set of m identical machines M1, M2, ...Mm [Gra66].  Each 

job Jj must be processed without interruption for a time pj > 0 on one of the m 

machines, each of which can process, at most, one job at a time.  The 

objective is to reduce the total execution time, that is, minimizing makespan in 

an identical parallel machine environment. This well-known minimum 

makespan problem is NP-hard [Hoc97].  This means that there is no known 

efficient algorithm for solving the problem.  Usually NP-hard problems are 

treated with heuristics. 

Heuristics correspond to simple polynomial algorithms, which provide 

solutions quickly.  The quality of the solution provided is bounded by using the 

concept of approximation algorithms [GGU72]. 

An approximation algorithm is polynomial, and is evaluated by the worst- 

case possible relative error over all possible instances of the problem.  An 
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algorithm is δ-approximation for a minimization problem if for every instance 

of that problem, it delivers a solution that is at most δ times the optimum.  The 

closer δ is to 1, the better the solution. 

Returning to the scheduling problem, different heuristics have been 

developed [Gra66]:   

• The heuristic of assigning any job as soon as any machine becomes 

available, that is, assigning a random job, is a 2-approximation 

algorithm.  This strategy is known as List Scheduling. 

• LPTF (Largest Processing Time First): The heuristic that assigns the 

longest-remaining job to the first available machine is a 4/3-

approximation algorithm. 

• The complementary strategy, known as SPT assigns jobs from the 

shortest to largest processing times.  This rule is optimal when 

minimizing the average for all job completion times. 

3.2.2 Scheduling in Clusters of Distributed Machines  

In load-sharing environments, where applications share resources, both 

applications and system components must be scheduled to achieve good 

performance.  In [FK99] a classification of schedulers that contemplates 

different performance goals is presented: 

• High-Throughput Schedulers: These are concerned with improving the 

performance of the system by optimizing the number of jobs that it 

executes in large amounts of time. 

• Resource Schedulers: Their main goal is to coordinate access to a 

particular resource.  This can be done by satisfying all the requirements 

to the resource (fairness criteria), or by optimizing the amount of 

resources used.  In chapter 4, an algorithm for adjusting the number of 

workers to a particular master-worker application is presented.  It is a 
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resource scheduler with the goal of achieving good efficiency, that is, 

good usage of the machine resource. 

• High-Performance Schedulers: These promote the performance of 

individual applications by optimizing performance measures such as 

minimal execution time, speedup, etc.  In section 3.3, a high-

performance scheduling policy is presented, with the objective of 

minimizing application execution time on the available machines.  The 

following subsection contains details about high-performance 

schedulers. 

3.2.3 High Performance Schedulers 

High-Performance schedulers determine an assignment of tasks, ordered 

in time, based on the rules of a scheduling policy, with the goal of optimizing 

application performance. 

The first step for a high-performance scheduler for applications that are 

executed on load-sharing environments consists of selecting a set of 

resources on which to schedule application tasks. The number of machines 

that will be required of the resource discover is determined in the next 

chapter. The goal is to obtain a good efficiency without damaging execution 

time.  Once the application has obtained machines, the scheduler then 

assigns application tasks to the computing resources. 

3.3 Scheduling Policy 

A considerable collection of scheduling algorithms has been proposed, with 

a practically infinite number of variants. Considering a homogeneous and 

dedicated environment, schedulers can be classified as follows: 
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• With precise a-priori information: Schedulers that use exact 

information on the execution time of the tasks or jobs before they are 

executed.  These can be subdivided into:  

• Adaptive: The information used is obtained for each particular set 

of tasks. LPTF is an example of a strategy that uses information 

on task execution time to create a list of tasks sorted from the 

largest to the smallest.  With this model, in our master-worker 

model with cycles, the execution time of the tasks should be 

known in advance before the execution of each cycle.  

• Non-Adaptive: In this case, the information is obtained once and 

used at each cycle.  An example of this is when users supply a list 

with the order in which they want tasks to be executed. 

• Without precise a-priori information: In this case, the scheduler does 

not have any a-priori information about task execution times.  These 

are subdivided into: 

• Adaptive: These strategies use information collected and 

processed at execution time.  They attempt to predict the behavior 

of tasks in the next iterations, taking into account the execution 

time obtained in previous iterations.  The scheduling strategy that 

was simulated and compared with other policies falls into this 

category. 

• Non-Adaptive:  The scheduler acts without considering the results 

obtained in previous executions.  Random is an example of these 

strategies. 

The kind of master-worker applications we are considering has a high 

degree of predictability, even though a wider set of cases was considered in 

the simulation study.  It is possible to take advantage of this predictability in 

deciding the allocation of tasks to workers. 
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The proposed adaptive without precise a-priori information scheduling 

strategy employs a heuristic-based method that uses historical data on the 

behavior of the application.  In particular, it dynamically collects statistics on 

the average execution time of each task and uses this information to 

determine the order in which tasks are assigned to processors. Tasks are 

sorted in decreasing order of their average execution time. They are then 

assigned to workers according to that order. At the beginning of the 

application execution, as no data is available regarding the average execution 

time of tasks, tasks are assigned randomly. This adaptive strategy has been 

called Random & Average, although the random assignment is only carried 

out once, when no historical data is yet available. 

The next section presents the evaluation of the Random & Average policy 

by simulation, focusing on clusters of homogeneous machines that are 

available to the application the whole time. 

3.4 Simulation Study  

In this section, the performance of several scheduling strategies are 

evaluated with respect to the efficiency and execution time obtained when 

applied to scheduling master-worker applications on homogeneous systems. 

As we have stated in previous sections, we focus our study on a set of 

applications that are supposed to exhibit a highly regular and predictable 

behavior. We will test different scheduling strategies including both non-

adaptive strategies that do not take into account any runtime information and 

adaptive strategies that try to learn from application behavior.  

As a principal result from these simulation experiments, we aim to obtain 

information about how the studied strategies perform on average, and to 

ascertain certain bounds for the worst-case situations. For these reasons, it 

has been considered throughout the simulations that the number of 

processors is available over the whole application execution time (i.e. this 
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would be the ideal case in which no machine suspensions occurs). This only 

implies a change in the expression used to evaluate the efficiency from that 

presented in chapter 2: 

n being the number of workers, 

Twork,i being the amount of time that worker i spent doing useful work. 

Tup,i being the time elapsed since worker i is alive until it ends. 

 In a real scenario, if worker suspensions occurs, the efficiency of all 

policies will worsen, as will be shown in chapter 4. 

3.4.1 Description of the Policies 

The set of scheduling strategies used in the comparison were the following: 

• LPTF (Largest Processing Time First): This is a pseudo-optimal 

policy used for comparison purposed, easy to implement and fast in 

execution time.  For each iteration, this policy first assigns the tasks 

with largest execution time.  Before an iteration begins, tasks are 

sorted decreasingly by execution time.  Then, each time a worker is 

ready to receive work, the master sends the next task on the list, that 

is, the task with the largest execution time.  It is well known that LPTF 

is at least 4/3 of the optimum [Hall97]. This policy needs to know the 

exact execution time of the tasks in advance, which is not generally 

possible in a real situation, therefore it is only used as a sort of upper-

bound in the performance achievable by the other strategies. 

• LPTF on Expectation: This works in the same way as LPTF, but tasks 

are initially sorted decreasingly by the expected execution time. In each 
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iteration, tasks are assigned in that predefined order. If there is no 

variation in the execution time of the tasks, the behavior of this policy is 

the same as LPTF.  This policy is non-adaptive, and represents the 

case in which the user has an approximately good knowledge of the 

application behavior, and wants to control the execution of the tasks in 

the order that he specifies. Obviously, it is possible for a user to have 

an accurate estimation of the distribution of times between the 

application tasks, but in practice, small variations will affect the overall 

efficiency because the order of assignment is fixed by the user at the 

beginning.  

• Random:  For each iteration, each time a worker is ready to get work, 

a random task is assigned. This strategy represents the case of a non-

adaptive method that does not know anything about the application. In 

principle, it would obtain the worst performance of all the strategies 

presented here, therefore it will be used as a lower bound in the 

performance achievable by other strategies, as this strategy is a 2-

approximation algorithm. 

Table 3-1 shows a summary of the strategies considered and their main 

characteristics: 

  Strategy Dynamics 
  Adaptive Non-Adaptive 

Accurate LPTF LPTF on 
Expectation Information 

a-priori Non-accurate Random & 
Average Random 

Table 3-1.  Classification of the studied scheduling strategies 

3.4.2 Simulation Framework 

Figure 3-5 shows a simplified block diagram of the simulation framework 

implemented in this study. The simulator models a cluster of machines or 
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processors (workers) with equal performance, a master-worker application 

and the scheduling algorithms previously mentioned.  

 

Figure 3-5. Simulation framework. 

A master-worker application submitted to the cluster of workers consists of 

a Basic Batch of Tasks with a fixed distribution of times (or Workload). We 

simulated the execution on L iterations of the master-worker application. For 

each iteration, an Actual Batch of Tasks was generated by applying a certain 

variation (D) of time to each basic batch task. Tasks were scheduled to 
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workers according to the order of the Sorted List generated by each policy. 

The information used to generate the list was different in every case. The 

LPTF policy used the execution times derived from the Actual Batch (which 

corresponds to having a perfect knowledge of task execution times). The 

LPTF on Expectation strategy used the task times derived from the Basic 

Batch, i.e. it generated a single list that was used for the L iterations. Random 

& Average collected the task execution times once the execution of the Actual 

Batch was simulated, averaging task times and sorting the list according to 

these averages. The Random strategy generated the list in a random way for 

each Actual Batch. All tasks in the Sorted List were assigned to processors, 

as they become idle. Once a processor was assigned a task, it was marked 

as busy for a simulation time equal to the time of the assigned task. The 

execution of the Actual Batch was simulated for all scheduling policies before 

a new Actual Batch was generated. As an overall result from the simulation of 

a given master-worker application with a given scheduling policy, we obtained 

overall execution time and the efficiency for a given Basic Batch. 

All described scheduling policies have been systematically simulated, to 

obtain efficiency and execution time, with all the possible number of workers 

ranging from 1 to as many workers as numbers of tasks, considering the 

following factors: 

• Workload (W): The total amount of work (TotalW) is divided 

throughout the number of tasks that compose the batch, with the 

following scheme: 20% of the tasks contain W% of the total load, and 

the remaining 80% of the tasks contain (TotalW-W)% of the load.  

Workload values of 30%, 40%, 50%, 60%, 78% 80% and 90% were 

considered. A 30% workload would correspond to highly-balanced 

applications in which nearly all the tasks exhibit a similar execution 

time. On the contrary, a 90% workload would correspond to 

applications in which a small number of tasks are responsible for the 

largest amount of work. Moreover, the 20% tasks can have similar or 

different execution times. The same happens to the other 80% of tasks.  
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For each workload value, we have undertaken simulations with the four 

possibilities, shown in Table 3-2: 

20% tasks Remaining 
80% of tasks 

Notation in 
Figures (i-i) 

Similar  (0)  Similar (0) 0-0 

Similar  (0) Different (1) 0-1 

Different (1) Similar (0) 1-0 

Different (1)  Different (1) 1-1 

Table 3-2. Distribution of task times for a given workload. 

Figure 3-6 shows the absolute execution times and cumulative execution 

times for 30 tasks with a workload of 60%, considering the 4 possibilities of 

Table 3-2. The absolute and cumulative execution times for a workload of 

30% and 90% can be found in appendix A. The cumulative execution time for 

n machines shows the work percentage carried out when executing the n first 

tasks, sorted according the order in which they were generated.  

 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Figure 3-6. Workload distribution and workload cumulative percentages. (a) 60% 0-0, 
(b) 60% 0-1, (c) 60% 1-0, (d) 60% 1-1. 

• Iterations (L): This represents the number of batches of tasks that are 

will be executed. The following values have been considered: 10, 35, 

50 and 100.  
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• Variation (D): From the workload factor, we determine the base 

execution times for the tasks.  For each iteration a variation is then 

applied to each task’s base execution time.  Variations of 0%, 10%, 

30%, 60% and 100% have been considered. When a 0% variation was 

used, the times of the tasks were constant over the different iterations. 

This case would correspond to very regular applications where task 

execution times are nearly the same in successive iterations. When a 

100% variation was used, tasks exhibit significant changes in their 

execution time in successive iterations, corresponding to applications 

with highly irregular behavior.  With a 100% variation, a task may 

double its execution time or become very small (but never have an 

execution time of 0, which would mean that this task disappears). 

• Number of Tasks (T): We have considered applications with 30, 100 

and 300 tasks. These represent systems with a small, medium or large 

amount of tasks, respectively.  

For each simulation scenario (fixing a certain value for workload, iterations 

and variation) efficiency and execution time have been obtained using all the 

possible values of workers from 1 to Number of Tasks. 

3.4.3 Simulation Results 

Although tests for all the commented values have been conducted, only 

those results that are the most relevant are presented in this section. The 

results for 30 tasks will be illustrated with figures, since they prove to be 

representative enough for the results obtained with a larger number of tasks. 

Moreover, those results with 30%, 60% and 100% deviation are emphasized, 

representing high, medium and low degrees of regularity.  In real applications 

100% deviation is not expected, but it nevertheless allows us to evaluate the 

strategies under the worst case scenario. 
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In the following subsections, some relevant result figures for both efficiency 

and execution time are presented.  The X-axis always contains the number of 

workers. The Y-axis contains the efficiency and the execution time for 

efficiency figures and execution time figures, respectively. Five values (W, i-i, 

D, T and L) appear at the top of each graph. W stands for the workload, i-i 

describes the similarity of tasks according to Table 3-2, D stands for variation 

applied to task execution times at each iteration, T stands for the number of 

tasks and L for the number of iterations (cycles). We review the most relevant 

results obtained from the simulations.  Appendix B presents the simulation 

results considering all the factors taken in account. 

3.4.3.1 Effects on Efficiency 
• Effect of workload (W) and Task Size (i-i): Figures 3-7 through 3-9 

show the effect of varying the workload, considering 30% (Figure 3-7), 

60% (Figure 3-8) and 90% (Figure 3-9) workload.  In all cases, deviation 

was 0%, and the four possibilities for the execution times of all the largest 

tasks, as well as for all the smallest tasks, were considered (0-0, 0-1, 1-0 

and 1-1). As expected, for large workloads, the number of workers that 

can usefully be busy is smaller than for small workloads. Moreover, when 

the workload is higher, efficiency declines faster. A large workload also 

implies a smoother curve in efficiency. It is important to point out that, in 

all cases, there is a point from which efficiency continuously declines. 

Before that point, small changes in the number of workers may imply 

significant and contradictory changes in efficiency, i.e. adding one worker 

may imply an improvement or a worsening in efficiency.  In general, the 

Random policy tends to be insensitive to this change, as it decays in a 

constant way.  There is an exception in the case of a workload of 90%, 

when all the largest and smallest tasks are of the same size (90% 0-0).  

For the other policies, this feature is stronger. 

With respect to the effect of task size (i-i), it is observed that the 20% of 

tasks executing the w% of the total work determine when the drop of 
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efficiency begins.  If they have the same execution time, the decay in 

efficiency is delayed.  For example, in the case of 30% 0-1 (Figure 3-7b), 

efficiency begins to drop after 19 workers, while in the case of 30% 1-0 

(Figure 3-7c), efficiency drops after 12 workers.  The remaining 80% of 

the tasks have less influence, basically determining the smoothness of the 

efficiency curve. If the remaining 80% of the tasks have the same 

execution times, the efficiency curve has more peaks. 
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                                (c)                                                          (d) 

Figure 3-7. Effect of varying workload percentage and task size for a W=30%. 
(a) 30% 0-0, (b) 30% 0-1, (c) 30% 1-0, (d) 30% 1-1. 
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                                (a)                                                          (b) 

  
                           (c)                                                         (d) 

Figure 3-8.  Effect of varying workload percentage and task size for a W=60%. 
(a) 60% 0-0, (b) 60% 0-1, (c) 60% 1-0, (d) 60% 1-1. 

 
                                (a)                                                          (b) 
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                                (c)                                                          (d) 

Figure 3-9. Effect of varying workload percentage and task size for a W=90%.   
 (a) 90% 0-0, (b) 90% 0-1, (c) 90% 1-0, (d) 90% 1-1. 

• Effect of the number of iterations (L): The number of iterations (L) over 

which tasks are executed does not significantly affect efficiency for an 

adaptive strategy such as Random & Average.  The other three policies 

are not affected at all by the number of iterations, as random does not use 

any information about previous iterations, and LPTF and LPTF on 

expectation use a-priori information that does not depends on the number 

of iterations.  Figures 3-10 through 3-12 show the effect of varying the 

number of iterations, considering 30% (Figure 3-10), 60% (Figure 3-11) 

and 90% (Figure 3-12) workloads and 100% deviation.  This is the case 

when the effect of the number of iterations is most significant. As can be 

seen when the number of iterations varies from 10 to 35, the gain in 

efficiency is less than 5%. When the number of iterations was greater 

than 35, no significant gain in efficiency was observed. The proposed 

strategy therefore achieves good efficiency without needing a large 

number of iterations to acquire precise knowledge of the application. 
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      (a)          (b) 

Figure 3-10. Effect of varying the number of iterations for a W=30%. (a) L=10 (b) L=35 

 

 
          (a)          (b) 

Figure 3-11. Effect of varying the number of iterations for a W=60%. (a) L=10 (b) L=35 

 
(a) (b) 

Figure 3-12. Effect of varying the number of iterations for a W=90%. (a) L=10 (b) L=35 
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• Effect of the variation (D): Figures 3-13 through 3-16 show the effect 

of varying the deviation for policies of Random (Figure 3-13), Random 

& Average (Figure 3-14), LPTF (Figure 3-15) and LPTF on Expectation 

(Figure 3-16), in the case of 30% and 90% workload.  The presented 

graphs show the efficiency values for different deviation values. The X-

axis contains deviation, with the Y-axis containing efficiency. Each 

curve shows what happens to efficiency by considering 1, 5, 10, 15, 30 

and 30 workers, always having 30 tasks per iteration. This type of chart 

simplifies an understanding of the effect of variation, because a lower 

number of charts are needed.  It is observed that when deviation is 

higher, efficiency declines more.  But it is worth noting that it does not 

decline abruptly even when deviation is 100%. When deviation is 

increased, efficiency for the Random & Average policy declines less 

than that for the Random policy. 
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Figure 3-13. Effect of varying deviation (D) for the Random policy. (a) W=30% 
    (b) W=90% 
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Figure 3-14. Effect of varying deviation (D) for the Random & Average policy.   (a) 
W=30% (b) W=90% 

 
(a) (b) 

Figure 3-15. Effect of varying deviation (D) for the LPTF policy. (a) W=30%         (b) 
W=90% 

  
                                       (a)                                                           (b) 

Figure 3-16. Effect of varying deviation (D) for the LPTF on Expectation policy. 
(a) W=30% (b) W=90% 
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3.4.3.2 Effects on Execution Time 
In all the graphs, execution time is measured in terms of the relative 

differences with the execution time for the LPTF policy.  The X-axis contains 

the number of machines or workers, with the Y-axis containing the percentage 

difference for execution time, with respect to the LPTF policy. For example, 

the point (X=9, Y=30), for the Random policy, means that with 9 workers, 

Random is 30% worse than LPTF.  

• Effect of workload (W) and task size (i-i): Figures 3-17 through 3-19 

show the effect of varying the workload, considering 30% (Figure 3-17), 

60% (Figure 3-18) and 90% (Figure 3-19) workload.  In all cases, 

deviation was 0%, and we considered the four possibilities for the 

execution times, both for all the largest tasks as well as for all the 

smallest tasks (0-0, 0-1, 1-0 and 1-1).  As can be seen, the Random 

policy always exhibits the worst execution time, particularly when an 

intermediate number of workers are used. Random & Average and 

LPTF on Expectation achieve an execution time comparable to the 

LPTF execution time. 

In general, the pattern of the graphs is the following: when adding 

workers, the percentage difference with respect to the LPTF policy 

grows up to a certain point (where this difference is maximal), and then 

begins to decrease.  The workload determines the number of workers 

associated with this point.  With 90% 1-1 workload, this point 

corresponds to 5 workers, while with 30% 1-1, this point corresponds to 

14 workers.  The lower the workload, the higher the number of workers 

needed to reach this point. 

With respect to the effect of task size (i-i), it is observed that the 

remaining 80% of tasks determine the smoothness of the percentage 

difference curve. If they have the same execution time, then peaks are 

more notable.  This effect is even stronger in the case of low 

workloads. 
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     (c)         (d) 

Figure 3-17. Effect of varying workload percentage and task size for a W=30%.  
 (a) 30% 0-0, (b) 30% 0-1, (c) 30% 1-0, (d) 30% 1-1 
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     (c)         (d) 

Figure 3-18. Effect of varying workload percentage and task size for a W=60%.   
(a) 60% 0-0, (b) 60% 0-1, (c) 60% 1-0, (d) 60% 1-1 

 
                               (a)         (b) 

 
      (c)         (d) 

Figure 3-19. Effect of varying workload percentage and task size for a W=90%.   
(a) 90% 0-0, (b) 90% 0-1, (c) 90% 1-0, (d) 90% 1-1 
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• Effect of the number of iterations (L): As for efficiency, the number 

of iterations (L) over which tasks are executed does not significantly 

affect execution time for an adaptive strategy such as Random & 

Average. Figures 3-20 through 3-22 show the effect of varying the 

number of iterations, considering 30% (Figure 3-20), 60% (Figure 3-21) 

and 90% (Figure 3-22) workload and 100% deviation.  This is the case 

when the effect of the number of iterations is the most significant. The 

execution time for the Random & Average strategy with respect to 

LPTF is slightly reduced when having a medium number of workers. 

The proposed strategy obtains a good execution time without needing 

a large number of iterations to acquire precise knowledge of the 

application. 
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(a) (b) 

Figure 3-20. Effect of varying the number of iterations for a W=30%. (a) L=10 (b) L=35 
 

 
(a) (b) 

Figure 3-21. Effect of varying the number of iterations for a W=60%. (a) L=10 (b) L=35 
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(a) (b) 

Figure 3-22. Effect of varying the number of iterations for a W=90%. (a) L=10 (b) L=35 

• Effect of the variation (D): Figures 3-23 through 3-26 show the effect 

of varying deviation for the Random (Figure 3-23), Random & Average 

(Figure 3-24), LPTF (Figure 3-25) and LPTF on Expectation (Figure 

3-26) policies, in the case of 30% and 90% workload.  The graphs 

presented show the execution time values for different variation values. 

The X-axis contains variation, whilst the Y-axis contains execution time. 

Each curve shows what occurs to execution time when considering 1, 

5, 10, 15, 30 and 30 workers, always with 30 tasks per iteration. It is 

observed that when deviation is higher, execution time is greater, 

although Random & Average and LPTF on Expectation achieve an 

execution time comparable to the execution time of LPTF, even in the 

presence of a high variation in the execution time of the tasks. 

 
       (a)         (b) 

Figure 3-23. Effect of varying deviation (D) for the Random policy. (a) W=30% 
 (b) W=90% 
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Figure 3-24. Effect of varying deviation (D) for the Random & Average policy.   (a) 
W=30% (b) W=90% 

 
      (a)         (b) 

Figure 3-25. Effect of varying deviation (D) for the LPTF policy.   (a) W=30%       (b) 
W=90% 

 
    (a)         (b) 

Figure 3-26. Effect of varying deviation (D) for the LPTF on Expectation policy. 
(a) W=30% (b) W=90% 
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3.4.4 Discussion 

We now summarize the main results that have been derived from all the 

simulations. 

The number of iterations does not significantly affect either efficiency or 

execution time, although the Random & Average strategy needs certain 

iterations to learn about application behavior. The behavior of the policies was 

basically affected by the variation of execution times of the tasks in different 

iterations, by workload and by having significant differences among the 

execution times for the 20% of the tasks executing the w% of the total work. 

Table 3-3 shows the efficiency bounds obtained for the previously 

described scheduling policies, always relative to LPTF policy. The first column 

contains the upper bound that is never surpassed in 95% of cases. The 

second column shows the upper bound for all cases, which always 

corresponded to 30% 0-0 workload with D=100%, that is, tasks without 

significant execution time differences and with high variance. As can be seen 

in Table 3-3, both LPTF on Expectation and Random & Average in most 

cases obtained an efficiency similar to that obtained by a policy such as 

LPTF, which uses perfect information about the application. Even in the worst 

case (scenarios in which all tasks have a similar execution time but a high 

deviation (100%)) loss of efficiency for both strategies was 17% 

approximately.  

 Efficiency Bound 
in 95% of cases 

Worst Efficiency 
Bound 

Random 25,4 % 26,96 % 

Random & Average 8,65 % 16,86 % 

LPTF on Expectation 8,91 % 17,29 % 

Table 3-3.  Worst efficiency bounds for scheduling policies. 

Similar results were obtained for execution time. Random & Average and 

LPTF on Expectation never performed worse than 7% in more than 95% of 
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cases. Only in the presence of high variations were the differences increased 

to 16%, as is shown in Table 3-4. 

 Efficiency Bound 
in 95% of cases 

Worst Efficiency 
Bound 

Random 29,46 % 35,7 % 

Random & Average 7,16 % 16,24 % 

LPTF on Expectation 6,85 % 12,33 % 

Table 3-4. Worst execution time bounds for scheduling policies. 

In 95% of cases, the execution time for the Random policy was always 

between 25% and 30% worse than LPTF. 

In the light of the simulations carried out, we can conclude that a simple 

adaptive strategy such as Random & Average will perform very well, in terms 

of efficiency and execution time, in most cases. Even in the presence of highly 

irregular applications, overall performance will not significantly worsen. Similar 

results have been obtained for the LPTF on Expectation policy, but the use of 

this policy requires the user to have a good knowledge of the application. 

In general, efficiency is high with a low number of machines but so, too, is 

execution time.  Having a large number of machines results in a low execution 

time, but also in low efficiency.  As this is an execution time-efficiency trade-

off, we should therefore determine an adequate number of machines in order 

to obtain reasonable values for both execution time and efficiency. 

 In the next chapter, the Random & Average scheduling policy is applied in 

practice by using Condor and MW. It also contains a strategy, derived from 

the simulations, for determining the number of workers that must be allocated 

in order to obtain good efficiency as well as good execution time.  Both 

homogeneous and heterogeneous environments are considered. 
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Chapter 4  
Self-Adjusting Scheduling for            

Master-Worker Applications 

Abstract 

This chapter presents a self-adjusting algorithm for 
dynamically determining the suitable number of workers 
for running a master-worker application.  An 
implementation for homogeneous environments is first 
evaluated and its drawbacks are discussed.  A second 
version that overcomes these drawbacks is later 
presented and evaluated, using an image thinning 
application.  The chapter ends with a study of the 
necessary changes that need to be introduced in the 
algorithm in order to allow it to also work on 
heterogeneous systems, and its corresponding 
evaluation with the thinning application. 
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4.1 Introduction 

 The design of the self-adjusting scheduling strategy is based on the 

following observation illustrated by Figures 4-1a and 4-1b, which shows the 

effect on efficiency and execution time, respectively, of an LPTF (Largest 

Processing Time First) policy. In general, the results in the previous chapter 

showed that for any given workload distribution, a similar scenario to the one 

depicted in Figure 4-1 is found. The Y-axis contains efficiency and execution 

time, respectively, and the X-axis contains the number of workers, T, (the 

maximum in this example is Max = 50). Three main intervals can be observed 

in this figure: 

1. Interval [0,a] corresponds to the situation in which the application is 

running with a shortage of workers. Consequently, efficiency tends to 

be close to 1, but speedup is low. It is also important to point out that, 

in this interval, small changes in the number of workers may imply 

significant and contradictory changes in efficiency. The particular 

distribution of task times exhibited by the application may fit properly 

with a given number of workers, but adding more workers puts the task 

schedule “out of gear”, and, in some processors, results in more idle 

times. 

2. Interval [a, b] corresponds to the situation in which the application is 

using an ideal number of workers. Efficiency is high and speedup is 

also high. All the workers are doing useful work, and the application is 

close to its maximum parallelism utilization. 

3. Interval [b, Max] corresponds to the scenario in which the application 

uses an excess of workers. At this interval, efficiency decays 

continuously as new workers are added to the application. Moreover, 

speedup is only slightly improved with new workers, because the global 
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execution time is dominated by the execution time of the largest task in 

each batch. 
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(b) 

Figure 4-1. (a) Efficiency and (b) Execution time curves. 

More formally, as was introduced in chapter 2, for any given workload 

distribution there is an optimal number of machines, denoted as perfect 

number, which should be allocated in order to obtain the best ratio between 

execution time and resource efficiency (denoted as EER, Execution-Efficiency 

Ratio). 

a b
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EER(i): Execution-Efficiency Ratio for i machines. 

Execution Time (i): Application execution time when i machines are 

used.  

Resource Efficiency (i): Efficiency achieved when i machines are used. 

The perfect number of machines exhibits the minimum value of that ratio 

(perfect number = min (EER(i)), ∀i).  

Moreover, if the number of machines is close to the perfect number, the 

application still exhibits a good ratio between execution time and efficiency. 

The ideal interval [a,b] is the set of machines that exhibits this good ratio. 

Specifically, it is defined as the set of machines that have less than 1.1 the 

ratio presented by the perfect number of machines.                                      

Figure 4-2 shows the EER curve corresponding to the efficiency and 

execution time curves of Figure 4-1. 
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Figure 4-2. EER curve for a 30% workload. 
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Such a definition for the ideal interval has been adopted because, 

according to the experiments, it guarantees that efficiency is above 0.8 and 

that execution time is lower than 1.1 the time of executing tasks with as many 

machines as tasks. Additionally, most users of a system would consider both 

values acceptable for their applications. Obviously, the starting value and 

width of the ideal interval strongly depends upon workload distribution.                                     

Figure 4-2 illustrates the meaning of the perfect number and the ideal interval 

for a workload distribution in which almost all tasks exhibit a similar execution 

time (W=30%), considering 50 tasks (T=50). The perfect number of machines 

is 20, which corresponds to the minimum Execution-Efficiency ratio.  At this 

point, efficiency is 0.9 and execution time is 1.01 the execution time obtained 

when each task is executed on a different machine, that is, with as many 

machines as tasks. The ideal interval is  [18, 22], which corresponds to the 

machines that exhibit a ratio not greater than 10% the ratio exhibited by 50 

machines. 

Table 4-1 shows the number of machines corresponding to the perfect 

number, and the ideal interval for the different workloads considered in this 

work when there are 50 tasks and both the largest and smallest tasks have 

different values (case 1-1). 

Workload Perfect Number Ideal Interval 
30% 20 18-22 
40% 14 13-15 
50% 11 10-12 
60% 9 8-10 
70% 8 7-9 
80% 7 6-8 
90% 6 6-7 

Table 4-1. Perfect number and ideal interval for different workloads. 

The above-mentioned characteristics will be used to guide the design of a 

self-adjusting strategy.  In the next sections, we will describe the design and 
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implementation of such a strategy and its evaluation both in homogeneous 

and heterogeneous environments. The algorithm works in a dynamic way by 

adjusting the number of workers to a number belonging to the ideal interval. 

We will also describe the changes included into MW to support the self-

adjusting algorithm and the corresponding experimentation that was carried 

out with the algorithm on both homogeneous and heterogeneous platforms.  

4.2 Self-adjusting algorithm for homogeneous environments 

The control of an application in an opportunistic environment implies, first, 

deciding in which order tasks will be executed, and, second, determining the 

number of machines that will participate in the computation.  We will use the 

Random & Average scheduling policy described in the previous chapter to 

solve the first issue.  The simulation results presented in the previous chapter 

justify both the need for measuring and recording execution times from 

previous iterations, and the need to build and maintain an average execution 

time list. In the next section, we present a strategy aimed at solving the 

problem of adjusting the number of machines at runtime. 

4.2.1 Self-Adjusting Algorithm with Static Tables 

The proposed strategy is based on the use of a table derived empirically 

from the simulation results presented in the previous chapter. It is also based 

on a characteristic common to opportunistic systems: machine allocations are 

more time-consuming than machine releases. In an opportunistic 

environment, the time cost incurred in the allocation of a machine is not 

negligible, because a negotiation protocol is usually carried out until a suitable 

machine is found and then allocated to a given application. This implies that 

requests for machine allocation will not be served immediately, or not even 

completely served at all if insufficient suitable machines are found. On the 
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other hand, releasing machines back to the system is undertaken 

immediately, and essentially with no time cost. 

Therefore, at the beginning of the execution of the master-worker 

application, as many workers as tasks per iteration (N) are created by the 

strategy for the application, that is, the maximum number of workers.  Once 

the maximum number of machines at the start of an application is requested, 

machines are released in the case of the application running on an excess of 

machines, rather than obtaining a lower number of machines and then asking 

for more. 

Then, at the end of each iteration, the adequate number of workers for the 

application is determined in a two-step approach.  The first step quickly 

reduces the number of workers in an attempt to lower the number of workers 

to a value of number of machines that belongs to the ideal interval. The 

second step carries out a fine correction of that number.  If the application 

exhibits a regular behavior, the number of workers obtained by the first step in 

the initial iterations will not change, and only small corrections will be 

undertaken by the second step. 

The first step determines the number of workers according to the workload 

exhibited by the application. Table 4-2 is an experimental table that has been 

obtained from the simulations described in chapter 3. Workload (w) exhibited 

by the application is the factor that most influences the number of workers.  

Furthermore, the question of whether the 20% of the tasks executing the w% 

of the total work are of similar or different size is relevant when determining 

the number of workers.  The difference in size of the remaining 80% of the 

tasks is not influent, nor are the other factors considered in the previous 

chapter. 

 For each workload distribution, Table 4-2 shows the number of workers 

needed in order to have a number of machines pertaining to the ideal interval, 

that is, to obtain efficiency greater than 80% and execution time less than 1.1 

the execution time, when using N workers.  As we have said in the previous 
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chapter, these values would correspond to a situation in which resources are 

busy most of the time, while the execution time is not significantly degraded. 

The first column contains the workload, as defined in chapter 3.  The 

second and third columns contain the worker percentage with respect to the 

number of tasks for a given workload (w), in the cases where the 20% of the 

tasks that executes the w% of the total work to be done have similar or 

different executions times, respectively.  

For example, if 20% of the tasks are carrying out 40% of the total work, 

then the number of workers to be allocated will either be N*0,48 or N*0,28. 

The former value will be used if the 20% of the tasks are similar; otherwise the 

later value is applied.  

Although having a table like this implies a super-simplification of reality, this 

is needed in order to make the algorithm work with manageable parameters. 

Workload 
%workers needed 

(20% tasks of  
similar size) 

%workers needed 
(20% tasks of 
different size) 

30% 60% 40% 
40% 48% 28% 
50% 40% 22% 
60% 34% 18% 
70% 30% 16% 
80% 26% 14% 
90% 22% 12% 

Table 4-2. Percentage of workers with respect to the number of tasks. 

The fine correction step is carried out at the end of each iteration when 

both the workloads between iterations remain constant, i.e., the application 

remains in a same table entry, and the ratio between the last iteration 

execution time and the execution time with the current number of workers 

given by Table 4-2 is less than 1.1. This last value corresponds to a threshold 

of 10% over the execution time obtained with the number of machines 

according to the table. This means that the strategy allows variations in the 
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execution time, when they never surpass 10% of the execution time obtained 

with the number of machines given by Table 4-2.  The correction consists of 

diminishing the number of workers by one, if efficiency is less than 0.8, and 

observing the effects on execution time.  If it becomes worse, a worker is 

added; however, never surpassing the value given by Table 4-2. 

In the experimental system considered, the number of machines is handled 

cumulatively. This means that when Nworkers machines are requested and 

the application has already allocated CurrentNworkers machines, if (Nworkers 

> CurrentNworkers), only Nworkers - CurrentNworkers machines will be 

added to the application.  Otherwise, CurrentNworkers - Nworkers machines 

will be released. 

The complete algorithm to determine the number of workers that should be 

used is shown in Figure 4-3. 

 
1. Nworkers = Ntasks  /* We are in the first iteration */ 

  Workload = ∞, Efficiency = ∞, Execution Time = ∞ 

/* Next steps are executed at the end of each iteration i */  

2. Compute Efficiency, Execution Time, Workload and the Differences of the 
execution times of the 20% largest tasks. 

3. If (Workload of  iteration i != Workload of iteration i-1) 
  Set Nworkers = NinitWorkers according to Workload 
                     and Differences of Table 4-2. 

  else                        

  if (Execution Time of it. i DIV  

                                  Execution Time using NinitWorkers)  <= 1.1) 

                                   if (Efficiency of iteration i < 0.8) 

                                             Nworkers = Nworkers – 1 

                    else 

                                  Nworkers = Nworkers + 1 
 

Figure 4-3. Algorithm to determine Nworkers. 
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4.2.2 Experimental Evaluation with a Fibonacci Application 

This section first describes the changes performed to MW in order to 

support both the generalized master-worker paradigm and the self-adjusting 

strategy, and then explains the experimentation performed with the aim of 

testing the self-adjusting strategy. After that, the results obtained when testing 

the effectiveness of the proposed self-adjusting scheduling strategy on a 

homogeneous environment are reported. We executed a synthetic master-

worker application that performed the computation of Fibonacci series, which 

could serve as representative example of the generalized master-worker 

paradigm. The application was run on a platform first composed only of 

homogeneous machines.  

4.2.2.1 Extended Version of MW  
In its original implementation, MW supported one master controlling only 

one set of tasks.  Therefore, the MW API has been extended to support: 

• The proposed master-worker programming model with cycles. 

• Scheduling policies.  Both Random & Average and Random policies 

were included.  

• The self-adjusting strategy. Useful information is also collected to allow 

dynamic adjusting the number of workers.   

Figure 4-4 shows the changes introduced to MW. Components inside 

green circles were added.  The ToDo queue contains the tasks corresponding 

to the current iteration (tasks behind these correspond to the tasks to be 

performed in subsequent iterations).  This queue is sorted according to the 

desired scheduling policy (Sched circle), which in our case implies sorting the 

tasks according to the average execution time from previous iterations. The 

Adjust circle represents the computation of the number of workers requested.  

In order to carry out the adjusting and the scheduling, several statistics have 

to be collected (Stats circle). The blue Widx circles represent the information 
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the master has on the workers participating in the computation.  For a 

particular iteration, the Running and Done queues contains the tasks that are 

currently being executed and the tasks that have already been executed, 

respectively.   

Figure 4-4. Extensions to MW 

To create an MW application, the user has to implement certain virtual 

functions.  In the Extended MW version, when creating the master process, 

the user needs to implement another pure virtual function: 

global_task_setup. There are also some changes in the functionality of 

certain others pure virtual functions: 

• global_task_setup(): This initializes the data structures needed to keep 

the intermediate tasks results generated at the end of each iteration. This is 

called once, before the execution of the first iteration. 

• setup_initial_tasks (iterationNumber):  The set of tasks created depends 

on the iteration number.  Therefore, there are new tasks for each iteration, 

and these tasks could depend on values returned by the execution of 
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previous tasks.    This function is called before each iteration begins, and 

creates the tasks to be executed in the iterationNumber iteration. 

• get_userinfo(): The functionality of this function remains the same, but the 

user needs to call the following initialization functions: 

− set_iteration_number (n): This is used to set the number of times tasks 

will be created and executed, that is, the number of iterations.  If 

INFINITY is used to set the iterations number, tasks will then be created 

and executed until an end condition (or convergence condition) is 

achieved.  This condition needs to be set in the function 

end_condition(), which is called before creating tasks for a new 

iteration. 

− set_Ntasks (n): This is used to set the maximum number of tasks to be 

executed per iteration. 

− set_task_retrive_mode (mode): This function allows the user to select 

the scheduling policy.  It can be FIFO (GET_FROM_BEGIN), based on a 

user key (GET_FROM_KEY), random (GET_RANDOM) or random and 

average (GET_RAND_AVG). 

• printresults (iterationNumber): This allows the results of the 

iterationNumber iteration to be printed. 

In addition to the above changes, the MWDriver collects statistics on tasks 

execution times, workers’ state (when they are alive, working and 

suspended), and on iteration beginning and ending.  The new functions 

introduced are: 

• master_task_begin() and  master_task_end():  These are executed 

by the master every time a task begins and ends execution 

respectively, in order to get tasks execution time with the master clock. 
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• begin_loop_iteration() and end_loop_iteration():  These are 

executed at the beginning and end of each iteration, respectively, in 

order to measure the time it took to complete an iteration.  

Begin_loop_iteration also prepares all the data structures used to 

record all the time in which tasks are executing, suspended and alive.  

After calling end_loop_iteration, statistics are performed on the values 

recorded. 

At the end of each iteration, function UpdateWorkersNumber() is called to 

dynamically adjust the number of workers accordingly, with regard to the self-

adjusting algorithm explained in the previous section. 

4.2.2.2 Experimentation Framework 
Experiments were conducted using a platform composed of a dedicated 

Linux cluster running Condor, and a Condor pool of workstations at the 

University of Wisconsin. The total number of available machines was around 

700 although the experiments were restricted to machines with Linux 

architecture (both from the dedicated cluster and the Condor pool). The 

execution of the applications was carried out using the services provided by 

Condor for resource requesting and detecting, determining information about 

resources and fault detecting. The execution of the applications was first 

carried out with a set of processors that do not exhibit significant differences 

in performance, so that the platform could be considered to be homogeneous.  

Figure 4-5 depicts the Condor configuration file part, showing the 

requirements imposed on the machines and the basic features of some 

machines obtained for an execution of the Fibonacci example. W stands for 

the worker, Mem  for the memory and LoadAvg for the load average.  This 

information was provided by Condor.  

 

 

 



 105

 

Universe = PVM 

Executable     = master-fib 

Requirements = ((Arch == "INTEL") && (OpSys == "LINUX") 
             && (KFlops > 88000) && (KFlops < 93000)) 

 

Machine_count = 1..1 

Queue 

 

(a) 

W: c20.cs.wisc.edu, KFlops = 89632, Mips = 609, 
        Mem = 511, LoadAvg = 0.92 

W: c12.cs.wisc.edu, KFlops = 89182, Mips = 608, 
        Mem = 920, LoadAvg = 0.75 

W: c03.cs.wisc.edu, KFlops = 89573, Mips = 609, 
        Mem = 920, LoadAvg = 0.83 

W: c23.cs.wisc.edu, KFlops = 89935, Mips = 607, 
        Mem = 511, LoadAvg = 1.00 

W: c25.cs.wisc.edu, KFlops = 89883, Mips = 609, 
        Mem = 511, LoadAvg = 1.01 

W: c09.cs.wisc.edu, KFlops = 89205, Mips = 605, 
        Mem = 920, LoadAvg = 0.99 

W: c24.cs.wisc.edu, KFlops = 89808, Mips = 608, 
        Mem = 511, LoadAvg = 1.00 

W: c08.cs.wisc.edu, KFlops = 90421, Mips = 607, 
        Mem = 920, LoadAvg = 0.85 

W: c14.cs.wisc.edu, KFlops = 90702, Mips = 607, 
        Mem = 920, LoadAvg = 0.92 

W: c21.cs.wisc.edu, KFlops = 89680, Mips = 608, 
        Mem = 511, LoadAvg = 0.83 

W: c18.cs.wisc.edu, KFlops = 90743, Mips = 606, 
        Mem = 511, LoadAvg = 0.94 

W: c02.cs.wisc.edu, KFlops = 90224, Mips = 606, 
       Mem = 920, LoadAvg = 0.96 

W: c20.cs.wisc.edu, KFlops = 89632, Mips = 609, 
        Mem = 511, LoadAvg = 1.00 

W: c36.cs.wisc.edu, KFlops = 91557, Mips = 605, 
        Mem = 511, LoadAvg = 0.92 
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W: c32.cs.wisc.edu, KFlops = 89431, Mips = 609, 
        Mem = 511, LoadAvg = 0.99 

W: c41.cs.wisc.edu, KFlops = 90062, Mips = 608, 
        Mem = 511, LoadAvg = 0.99 

W: c51.cs.wisc.edu, KFlops = 89898, Mips = 608, 
        Mem = 511, LoadAvg = 1.00 

W: c33.cs.wisc.edu, KFlops = 89847, Mips = 609, 
        Mem = 511, LoadAvg = 1.00 

W: c54.cs.wisc.edu, KFlops = 89927, Mips = 609, 
        Mem = 511, LoadAvg = 1.00 

W: c52.cs.wisc.edu, KFlops = 89426, Mips = 609, 
        Mem = 511, LoadAvg = 1.00 

 

(b) 

Figure 4-5. (a) Condor configuration file, (b) Machines obtained in a sample execution. 

The application used in the experiments conducted in order to evaluate the 

self-adjusting strategy with static tables was composed of 28 synthetic tasks 

at each iteration. The number of iterations was fixed at 35, so that the 

application was running in a steady state most of the time. Each synthetic task 

performed the computation of a Fibonacci series. The length of the series 

computed by each task was randomly fixed at each iteration in such a way 

that the variation in execution time of a given task in successive iterations was 

30%. Experiments were carried out with two synthetic applications that 

exhibited a workload distribution of 30% and 50% approximately.  In the 

former case, all large tasks exhibited a similar execution time. In the latter 

case, the execution time of larger tasks exhibited significant differences. 

These two synthetic programs can be representative examples for master-

worker applications with a highly-balanced and medium-balanced distribution 

of workload between tasks, respectively. Figure 4-6 shows, for instance, the 

average and deviation time for each of the 28 tasks in the master-worker with 

a 50% workload.  
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Figure 4-6. Tasks execution times. 

Different runs on the same programs generally produced slightly different 

final execution times and efficiency results, due to the changing conditions in 

the opportunistic environment. Hence, average-case results are reported for 

sets of three runs. 

4.2.2.3 Evaluation of the Self-Adjusting Strategy with Static 
Tables 

The goal of this initial experimentation was to validate the effectiveness of 

the self-adjusting strategy on a homogeneous environment. 

Tables 4-3 and 4-4 show the efficiency, execution time (in seconds) and 

speedup obtained by the execution of the master-worker application with 50% 

and 30% workload, respectively. The results obtained by the self-adjusting 

scheduling strategy are shown in bold in both tables. In addition to these 

results, the results obtained when a fixed number of processors were used 

during the whole execution of the application are shown. In particular, a fixed 

number of processors of n=28, n=25, n=20, n=15, n=10, n=5 and n=1 were 

tested. In all cases, the order of execution was carried out according to the 

sorted list of average execution time (as described in chapter 3 for the 
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Random & Average policy). The execution time for n=1 was used to compute 

the speedup of the other cases.  

#Workers 1 5 8 10 15 20 25 28 

Efficiency 1 0,94 0,80 0,65 0,43 0,33 0,28 0,22 

Exec. Time 80192 16669 12351 12365 13025 12003 12300 12701 

Speedup 1 4,81 6,49 6,49 6,16 6,68 6,52 6,31 

Table 4-3. Experimental results in the execution of a master-worker application with 
50% workload using the Random and  Average policy. 

 

#Workers 1 5 10 15 18 20 25 28 

Efficiency 1 0,88 0,78 0,79 0,74 0,65 0,65 0,65 

Exec. Time 31836 7030 3960 2860 2753 2598 2309 2218 

Speedup 1 4,52 8,03 11,13 11,56 12,25 13,78 14,35 

Table 4-4.  Experimental results in the execution of a master-worker application with 
30% workload using the Random & Average policy. 

The first results shown in Tables 4-3 and 4-4 are quite significant, as they 

prove that the self-adjusting scheduling strategy was able, in general, to 

achieve a high efficiency in the use of resources, while speedup was not 

significantly degraded. Improvement in efficiency can be explained because 

the self-adjusting strategy tends to use a small number of resources with the 

aim of avoiding idle time in workers that compute short tasks. In general, the 

larger the number of processors, the larger the idle times incurred by workers 

in each iteration. This situation is also more remarkable when the application 

workload is more unevenly distributed among tasks. Therefore, for a given 

number of processors, the largest loss of efficiency was normally obtained in 

the application with a 50% workload.  All these results were expected, in 

accordance to the simulation study described in the previous chapter; we can 

therefore affirm that, even with all the simplifications incurred, the simulation 

model represents what actually happens in a real environment, when 

executing a real application. 
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It can also be observed in both tables that the self-adjusting scheduling 

strategy generally obtained an execution time that was similar or even better 

than that obtained with a larger number of processors. This result basically 

reflects the opportunistic nature of the resources that were used in the 

experiments. The larger the number of processors allocated, the larger the 

number of task suspensions and reallocations incurred at run time. The need 

to terminate a task prematurely, when the user reclaimed the processor, 

normally prevented the benefits in execution time obtained by the use of 

additional processors. Therefore, a conclusion from the results is that, 

reducing in the number of processors allocated to an application running in an 

opportunistic environment is good, not only because it improves overall 

efficiency, but also because it avoids side effects on the execution time 

caused by suspensions and reallocations of tasks.  The cost of losing a 

machine during execution time will be evaluated in the next chapter. 

As is perhaps to be expected, the best performance was normally obtained 

when the largest number of machines were used, although better machine 

efficiencies were obtained with a smaller number of machines. These results 

may seem to be obvious, but it should be noted that self-adjusting scheduler 

strategy only used statistical information collected at runtime, and the 

execution of the application is influenced by the effects of resource obtaining, 

local suspension of tasks, task reassume and dynamic redistribution of load. 

4.2.2.4 Comparison of Random and Random & Average 
scheduling policies. 

An additional set of experiments was carried out in order to evaluate the 

influence on the order of task assignment. The results obtained when master-

worker applications with 50% and 30% workload were scheduled using a 

Random policy. In this policy, when a worker becomes idle, a random task 

from the list of those pending is chosen and assigned to it. As can be seen in 

Table 4-5 and 4-6, the order in which tasks are assigned has a significant 

impact when a small number of workers is used. For less than 15 processors, 



 110

the Random & Average policy performs significantly better than the Random 

policy, both in efficiency and in execution time. When 15 or more processors 

are used, differences between both policies were almost negligible. This fact 

is because, when the Random policy has a large number of available 

processors, the probability of assigning a large task at the beginning is also 

large. Therefore, in these situations, the assignments carried out by both 

polices are likely to follow a similar order.   

Random  
#Workers 1 5 10 15 20 25 28 

Efficiency 1 0,80 0,56 0,40 0,34 0,26 0,26 

Exec. Time 80192 20055 14121 13273 12153 12109 12716 

Speedup 1 4,00 5,68 6,04 6,59 6,62 6,31 

Random & Average 
#Workers 1 5 10 15 20 25 28 

Efficiency 1 0,94 0,65 0,43 0,33 0,28 0,22 

Exec. Time 80192 16669 12365 13025 12003 12300 12701 

Speedup 1 4,81 6,49 6,16 6,68 6,52 6,31 

Table 4-5. Experimental results for Random and Random & Average scheduling with a 
master-worker application with 50% workload. 

 

Random 
#Workers 1 5 10 15 20 25 28 

Efficiency 1 0,87 0,82 0,81 0,7 0,66 0,63 

Exec. Time 32241 7477 4807 2932 2679 2291 2105 

Speedup 1 4,31 6,7 10,99 12,03 14,07 15,31 

Random & Average 

#Workers 1 5 10 15 20 25 28 

Efficiency 1 0,88 0,84 0,82 0,65 0,65 0,65 

Exec. Time 31836 7030 3960 2860 2598 2309 2218 

Speedup 1 4,52 8,03 11,13 12,25 13,78 14,35 

Table 4-6. Experimental results for Random and Random & Average scheduling with a 
master-worker application with 30% workload. 
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With a number of workers close to the number of tasks, both strategies 

present a similar behavior, with differences in execution time and efficiency 

values that are less than 3%, produced because of the underlying system. 

4.2.3 Self-Adjusting Strategy with Dynamic Information 

The self-adjusting strategy considered up to now has certain drawbacks: 

• First, the computation cost incurred at runtime in evaluating the 

workload distribution exhibited by an application, as a means of 

determining the appropriate table entry. This implies sorting a list of 

task execution times at the end of each iteration. 

• Secondly, the sensitivity of the method to small variations in task 

execution times in successive iterations. This problem resulted in 

scenarios in which some machines were released and immediately 

reclaimed, because the application workload was oscillating between 

two table entries. 

A variation of this strategy, which is described in this section, tries to 

overcome the problems related to the allocation of workers by, on the one 

hand, being more conservative in releasing machines and, on the other hand, 

trying to approach the ideal number of machines in a more gentle way, once 

the application runs with a number of machines close to the upper limit of the 

ideal interval (b point in Figure 4-1). The assignment of tasks to workers has 

not changed from the previous version of the self-adjusting strategy. 

At the end of each iteration the Self-Adjusting algorithm (shown in Figure 

4-7) computes the number of workers (Nworkers) that should be allocated to 

the application using two main criteria.  Table 4-7 shows the meaning of the 

principal variables used: 
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Variable Meaning 

Nworkers Number of workers to be required in 
the next iteration. 

asp Application achievable speedup. 

ItExecutionTime Execution time obtained in the 
previous iteration. 

ItEfficiency Efficiency obtained in the previous 
iteration. 

ItMinTaskExecTime Smallest task execution time in the 
previous iteration. 

ItMaxTaskExecTime Largest task execution time in the 
previous iteration. 

Table 4-7. Meaning of the variables used in the self-adjusting algorithm. 

1. First, the AdjustBySpeedup function computes Nworkers by evaluating asp 

(achievable speedup), defined as the ratio between the execution time of 

the whole application (by adding all the time tasks) and the execution time 

of the largest task (ItMaxTaskExecTime), obtained in the last iteration.  

ETj

ETi
asp

MaxTasks

i
∑

== 1    j, | ∀i MaxTasksi ≤≤1 , ETj >ETi 

The upper limit of the ideal number of machines corresponds to asp. 

Therefore, the number of workers (Nworkers) is set to asp  + 1.  We ask 

for one machine more than asp, so as to avoid situations in which 

machines are released at one iteration and claimed back at the next.  If this 

represents an excess of machines, the next step in the algorithm will 

correct it.  This procedure is always used when the application has not 

allocated all the machines requested in a previous iteration. It is possible 

that the requirement of workers has changed from one iteration to the next. 

Therefore, asp is recomputed to check whether the previous requirement of 

workers is still valid or not. 
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2. When the application is running with the number of workers previously 

computed in Nworkers, the adjusting criterion to update Nworkers is based 

on two metrics: execution time (ItExecutionTime) and efficiency 

(ItEfficiency) obtained in the last iteration. If the execution time is greater 

than the execution time of the largest task plus a given threshold, then one 

more worker is allocated. The threshold has been fixed as the maximum 

between the time of the smallest tasks (ItMinTaskExecTime) and 15% of 

the largest tasks. This threshold was empirically fixed as it proved able to 

detect most of the situations in which the application due to lack of workers 

is not exploiting all its parallelism, and it does not yield unstable situations 

in which workers are claimed and released too frequently. When the 

second metric is applied, a machine is released when efficiency is smaller 

than 0.8. 

 
1. In the first iteration Nworkers = Ntasks 

For next iterations (While convergence condition is not met) { 

2. Compute ItEfficiency, ItExecutionTime, ItMinTaskExecTime, 
ItMaxTaskExecTime, CurrentNworkers. 

3. if (CurrentNworkers <  Nworkers )  // We have not got the number of 

                                                                              workers needed 
  Nworkers = AdjustBySpeedup() 

   else                        
    if (ItExecutionTime >  (ItMaxTaskExecTime +  
                               MAX(ItMinTaskExecTime, 15%(ItMaxTaskExecTime)))) 
                    Nworkers = Nworkers + 1 
 else 
                     if (ItEfficiency < 0.8) 
                                             Nworkers = Nworkers – 1 
}  
  

Figure 4-7. Algorithm to determine Nworkers 
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It is important to point out that the criteria described in point 2, above, are 

applied only when the application runs during a whole iteration with a stable 

number of machines. In this way, metrics obtained under unstable situations 

are not considered.  This means that when a new machine that was 

previously requested is allocated in the middle of an iteration, and used for 

executing pending tasks, temporarily contradictory results in efficiency or 

execution time metrics may be produced. This refinement is not shown in 

Figure 4-7, for the sake of simplicity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-8. Worker allocation. (a) As many workers as tasks, (b) coarse adjust,  
(c) fine adjust. 

Figure 4-8 shows a simple example considering 7 tasks.  The number 

inside each box indicates the corresponding task execution time. Initially, as 

many workers as tasks per iteration (N) are allocated for the application, as is 
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exemplified in Figure 4-8a. Later, at the end of the first iteration, that is, after 

obtaining the execution times of the tasks in the previous iteration, the number 

of workers is adjusted to the achievable speedup corresponding to the 

application (Figure 4-8b). This step is also repeated at the end of every 

iteration that finishes without the requested number of machines.  When the 

application has obtained the requested number of machines, machines are 

added if the execution time is high, or released if efficiency is low (Figure 

4-8c) 

The self-adjusting algorithm is based on two main assumptions:  

1. Application parallelism will not exhibit drastic increases over time. This 

means that the application will need the largest number of processors at 

the initial stages of the execution and, later, that the number will be kept 

nearly constant, or will gradually decay. It is assumed that the application 

will not exhibit scenarios in which parallelism alternates phases with 

significant decreases followed by phases with drastic increases. This 

assumption is relevant, given the cost for allocating machines in many 

environments such as the opportunistic one used in these experiments: 

requests for new machines are not serviced immediately by the system, 

while released machines are immediately lost. The negative effect of 

parallelism fluctuations could eventually be alleviated by releasing 

processors in a more conservative way than that presented in the current 

algorithm, in order to anticipate later increases in parallelism. 

2. The value of asp obtained after the first iteration will not change 

significantly in the near future. This assumption can be violated if the 

variation of task times is significantly large, although it may not imply a 

change in asp. In practice, the swift reduction carried out initially by our 

algorithm may be too drastic. A simple alternative would be to reduce the 

initial number of processors in the interval [asp, N], by using a more 

gradual technique such as a binary search or a golden sections method 

[NVZ96]. 



 116

The first assumption was never violated in the experiments performed, and 

it was also found that the time value of asp was stable before the system 

allocated all the initially-requested machines. Therefore, none of the 

extensions mentioned above to the basic algorithm were implemented, 

although they could be included without difficulty.  

Another extension that may easily be included with our strategy could 

overlap the scheduling phase computed in the master machine with the 

execution of workers. This would compensate time incurred in the 

computation of Nworkers when the number of workers is relatively large.  

However, in the experiments carried out, this time was negligible and it was 

not necessary to include this extension. 

4.2.4 Experimental Evaluation with an Image Thinning Application 

In this section, the results obtained with the aim of testing the effectiveness 

of the improved self-adjusting scheduling strategy on a homogeneous 

environment are reported.  The environment considered is the same as that 

used for the Fibonacci application, described in section 4.2.2.2. 

Thinning is the operation performed to an image in order to obtain its 

skeleton, that is, the basic lines and possibly an idea of the width of the lines 

in the original image. The thinning algorithm for binary images utilized was 

adapted from the AFP3 (Fully Parallel Algorithm) described in [GH92]. Figure 

4-9 shows an example containing both the original and the resulting images.  

 
                   (a)      (b)        (c) 

Figure 4-9. Thinning (a) Original image, (b) 10 iterations later, (c) 36 iterations later. 
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The application works as shown in Figure 4-10. Initially, the master divides 

the image into M horizontal parts.  Each part contains the pixels of a piece of 

the image, plus border pixels from neighboring parts. One task is created to 

compute the thinning operation of one part, which basically consists of 

deleting pixels. When tasks are assigned to workers, the thinning operation of 

the corresponding part is carried out. At the end of each iteration, workers 

send the image back to the master, which updates the border pixels. If there 

are no more pixels to delete, the part achieves the local convergence 

criterion, and finishes.  When all the parts have finished, the global 

convergence criterion is then met, the skeleton image is reconstructed by 

combining the parts in order, and the application finishes. 

 

Figure 4-10. Image thinning as a master-worker application 

This application exhibits two characteristics that make its use attractive for 

evaluating a self-adjusting strategy. First, tasks corresponding to different 

parts of the application usually exhibit different execution times. Tasks that 

are assigned complex parts of the image spend more time than tasks that 

deal with simple parts of the image. Therefore, a self-adjusting strategy 

should be able to schedule short tasks together to the same worker, and 

relinquish spare workers. Secondly, the execution time of each task gradually 

Master Process 
Divides Image Master Aggregates 

Image 
Workers Compute 

Concurrently 
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decreases as the image thinning approaches convergence. Again, the self-

adjusting strategy should also be able to reduce the number of workers as the 

execution time of converging tasks is close to zero. 

The thinning application was run with 3 images: Figures, Letters and 

Boy&Ball (shown in Figure 4-11a, 4-11b and 1-11c). Images were initially 

divided into 8, 16 and 32 parts, which corresponded to the initial set of tasks 

created at the initial iteration. The number of iterations until thinning 

convergence was 92, 97 and 105 for the Figures, Boy&Ball and Letters 

images, respectively. The size of the images was enlarged so that the 

execution time of the largest task was initially in the range of 50 seconds 

when images were divided into 8 parts.  Communication time was negligible, 

with respect to computation time.   

Execution times obtained when executing the same program are not the 

same because of the opportunistic environment on which they are run. 

Therefore average-case results are reported for sets of three runs. 

 

 

                              (a)                                                      (b) 

(c) 

Figure 4-11. Reference images used in the experimentation. (a) Figures  (b)Letters  
(c) Boy&Ball  
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The machines used had the featured outlined in Table 4-8.  Despite the 

differences exhibited, the machines used can be considered homogeneous.  

The processor speed (Kflops, MIPS) had fairly similar values, and the 

applications did not require high amounts of memory, therefore, differences at 

this point did not affect the execution time.  Usually, load average highly 

affects the performance, but when using Condor, if the Load Average 

surpasses a threshold, the machine will not be considered idle and will 

therefore not be assigned to any computation. 

Feature Minimum Value Maximum Value 
KFlops 88793 90735 
MIPS 605 612 
Memory 442 Mb 859 Mb 
Load Average 0.04 1 

Table 4-8. Characteristics of the machines used in the experimentation. 

Results of efficiency and execution time (in seconds) are shown in Table 

4-9 when the thinning application was run both with and without using the self-

adjusting strategy (self-adjusting column and No self-adjusting column, 

respectively). When no adaptive scheduling was used, the initial number of 

requested workers was equal to the initial number of tasks. Once a task met 

the convergence criterion, the corresponding worker was released. In 

contrast, in the self-adjusting case, workers were released only in accordance 

with the self-adjusting strategy, and no workers were released automatically 

on task completion. Tasks were assigned to workers in decreasing order of 

average execution time, in both self-adjusting and non self-adjusting cases. 

Therefore, the results mainly reflect the effectiveness of the strategy to 

dynamically adjust the number of resources.  

In addition to the results obtained for both strategies using an initial number 

of tasks of 8, 16 and 32, we also include the execution time of a sequential 

thinning application (column InitialTasks = 1) for comparative purposes. In the 

NworkersAvg rows, the average number of workers used are shown. 
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    Non Self-Adjusting Self-Adjusting 

  InitialTasks    1 8 16 32 8 16 32 

Figures 1 5,5 9,12 12,85 2,45 4,17 7,37 

Letters 1 5,3 10,36 21,11 3,89 6,55 9,41 
  

Nworkers 
  Avg. Boy&Ball 1 5,57 7,02 11,34 2,85 4,01 8,92 

Figures 1 0,41 0,41 0,48 0,88 0,89 0,86 
Letters 1 0,64 0,59 0,399 0,8 0,82 0,83   

Efficiency 
Boy&Ball 1 0,59 0,64   0,7 0,88 0,86 0,87 

Figures 12746 4141 2634 1533 4473 2648 1703 

Letters 12803 3179 1562 1204 3230 1833 1399 

 Exec. 
Time 

(in 
seconds) Boy&Ball 10080 2948 1678 1001 3094 1732 1002 

Figures 12746 10100 6424,39 3193,75 5082,95 2975,28 1980,23 

Letters 12803 4967,18 2647,45 3010 4037,5 2234,36 1685,54 

ExecTime/
 Efficiency

 Ratio  Boy&Ball 10080 4996,61 2621,87 1430 3515,9 2013,95 1151,72 

Table 4-9. Results of the master-worker thinning application 

Although 8, 16 and 32 workers were initially claimed by both strategies, a 

smaller number of workers were effectively allocated throughout the 

computation. The non self-Adjusting strategy simply relinquished workers as 

tasks were completed. However, the self-adjusting strategy further reduced 

the number of allocated workers, as can be seen in the Nworkers Avg row of 

Table 4-9, which contains the average number of workers used from the 

beginning to the end of the computation. In general, the strategy saved 

between 20% to 55% of workers, compared to the Non Self-Adjusting case. 

As can be seen in Table 4-9, self-adjusting obtains efficiency values above 

0.8 in all cases, while no self-adjusting obtains efficiency values that are 

significantly smaller (between 0.4 and 0.65 in most cases). Execution time 

results indicate that the self-adapting strategy leads to a penalty that in most 

cases is less than 15% compared to the non self-adjusting case. Only for the 

Letters example with 16 and 32 tasks was the difference in execution time 

17% and 19%, respectively.  In general, the execution time of the application 
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does not decrease linearly as the image is decomposed into more parts, 

because maximum parallelism is only achievable at the initial iterations of the 

algorithm. Later, as different parts of the image converge, parallelism decays 

and consists only of the tasks that compute the most complex parts of the 

images.  

As a global index of performance, the last three rows of Table 4-9 show the 

index between execution time and efficiency, corresponding to both strategies 

(EER). The lower the index, the better the use of resources achieved by a 

given strategy.  This means that the self-adjusting scheduling strategy 

achieves a better trade-off between efficiency and execution time. 

Figure 4-12 shows a detailed example of one execution of the thinning 

application applied to the Figures image, initially divided into 32 parts. This 

example is a representative illustration of the general behavior and 

performance achieved by both the Self-Adjusting and the Non Self-Adjusting 

algorithms. The information shown is related to number of workers, efficiency 

and execution time after iterations 1, 5, 10, 15, and so on.  Execution times 

are shown in a logarithmic scale. 

As can be seen, the allocation of resources is not serviced immediately 

after request. This implies, for instance, that the Non Self-Adjusting algorithm 

achieves a maximum number of 23 workers in iteration 15. At this time, some 

of the tasks have already finished (those corresponding to image borders) 

and, therefore, the application does not need the whole set of 32 workers 

requested at the beginning. In general, the Self-Adjusting algorithm is able to 

tune the number of workers from the initial iterations, fixing the maximum 

number of workers to 15 after iteration 10. Significant differences in the 

number of workers (and, consequently, in efficiency) are mainly observed at 

the central iterations of the computation (from iteration 15 to 75). In these 

stages, the execution time for each iteration is slightly better for the Non Self-

Adjusting algorithm, at the expense of sometimes using twice the number of 

workers than those used by the Self-Adjusting strategy. Later, the application 
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is close to the end and the number of workers is very small in both cases, so 

efficiency and execution time are very similar for both strategies. 

 

(a) 

(b) 

(c) 

Figure 4-12. (a) Number of workers, (b) efficiency and (c) execution time obtained with 
the Figures image divided into 32 parts. 
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4.3 Self-Adjusting Algorithm for Heterogeneous 
Environments 

This section first describes the problems that heterogeneous environments 

introduce and how the self-adjusting strategy is modified accordingly. 

Subsequently, it shows the experimentation performed with the master-worker 

image thinning application on heterogeneous environments. 

4.3.1 Modifications to the Self-Adjusting Strategy  

Results obtained in a homogeneous environment are valid as long as tasks 

can be sorted, according to their relative importance, in terms of expected 

execution time. Basically, the scheduling mechanism is based on assigning 

larger tasks at the beginning and shorter tasks at the end. However, in a 

heterogeneous environment, it is not simple to derive actual task importance 

form measured wall clock execution time. Wall clock time will reflect both task 

importance (in terms of algorithm complexity) and resource performance. 

Therefore, a scheduling strategy needs some normalization factor to be 

applied to the measured wall clock times when it tries to compare task 

execution time averages.  

Consider the example of Figure 4-13.  Figure 4-13a shows the execution 

time of tasks when they are executed on similar machines. Figure 4-13b 

shows when these tasks are executed on a heterogeneous set of machines. 

In a heterogeneous environment, if only the wall clock times obtained in the 

previous iteration are considered, in the next iteration, task 4 will be 

considered the largest task and will be the first task executed (as in Figure 

4-13c). But that is erroneous, because there are other larger tasks that have 

been executed on faster machines, and therefore their wall execution times 

are smaller. 
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Figure 4-13. Worker allocation on heterogeneous machines. (a) Homogeneous 
environment, (b) As many workers as tasks, (c) Coarse adjust, (d) Fine adjust. 

To prevent this algorithm from operating incorrectly, we introduced the 

normalization factor, called α, that directly depends on the architectural 

characteristics of each resource. The normalization factor of a given resource 

is computed by simply running a short benchmark on it when it joins the 

computation. The benchmark is also run in the master machine. A value α=1 

is assigned to the master machine. Each worker machine j has the following 

αj: 

αj =BMmaster/BMworkerj 
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BMmaster and BMworkerj being the times obtained from the execution of the 

benchmark task in the master and worker j, respectively. 

The factor α is used to normalize the execution times of the tasks. The 

absolute execution time of task i is defined as: 

 

AETi = ETi * α(M(i)) 

 
ETi being the wall clock execution time of task i, and M(i) being a mapping 

function that returns the machine to where task i was executed. α(M(i)) 

corresponds to the normalization factor of the machine where task i was 

executed. 

Although the way in which the α normalization factor is computed might 

cause inconsistent results when running the same benchmark on the same 

machine, producing execution times with significant differences between 

them, in practice it has worked quite well.  In order to obtain a more precise α 

factor we could use the dynamic information provided by Condor to compute 

it.  Condor periodically runs the well-known benchmarks Linpack and 

Dhrystone, to determine the Kflops (floating point performance) and Mips 

(integer performance), respectively. Lindpack [Don01] is a collection of 

subroutines that analyze and solve linear equations and linear least-squares 

problems.  Dhrystone  [Wei84] is a short synthetic benchmark program 

intended to be representative for system (integer) programming, based on 

published statistics on the use of programming language features. Despite the 

simplicity of our benchmark for computing the α factor, it was a valid 

approximation in practice, as our experiments confirm that machines with high 

α corresponded to machines for which high values for MIPS and Kflops were 

returned by Condor. The machine Load Average is also measured by 

periodically executing operating system calls that return this value (for 

example uptime and top on Unix). 
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At the end of each iteration, the wall clock execution times for the tasks are 

normalized by using the α factor.  After this, tasks are ordered from largest to 

smallest by considering the average of the absolute execution times obtained. 

Tasks will be assigned to workers in the next iteration according to this order.  

Application efficiency is measured by using the wall clock times.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-14. Worker allocation on heterogeneous machines. (a) Homogeneous 
environment, (b) As many workers as tasks, (c) coarse adjust, (d,e) fine adjust. 
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Figure 4-14 shows the corrected example when using normalized task 

execution times to determine the next task to be executed. 

Once in a heterogeneous environment, the two components of the strategy 

are handled in the following way: 

• Tasks Scheduling: At the end of each iteration, the wall clock 

execution times of the tasks are normalized by using the α factor. After 

that, tasks are ordered from largest to smallest by considering the 

average of the absolute execution times obtained. Tasks will be 

assigned to workers in the next iteration according to this order.  

Machines are sorted by the α factor, which means that large tasks will 

be scheduled onto better machines and short tasks onto slower 

machines. 

• Worker Allocation: Application efficiency is measured by using wall 

clock times. When releasing a machine, the slowest one participating in 

the computation is released. Figure 4-14c shows an example of the 

coarse adjust, while Figure 4-14d and 4-14e show the fine adjust. In 

the implementation, a more conservative policy was taken when 

releasing machines, because if a machine is released but later needed, 

it is then possible that a slower machine will be obtained instead, and 

the global performance of the application is therefore worsened. This 

means that, as with the example of Figure 4-14, the self-adjusting 

algorithm will stop when efficiency is above 0.7 (Figure 4-14d). 

4.3.2 Experimental Evaluation with an Image Thinning Application 

The same master-worker thinning application executed on a homogeneous 

environment was executed on a heterogeneous environment.  The available 

machines from the Condor pool now differed in the KFlops, MIPS, Memory 

and Load Average. Consequently, the execution of the application was carried 

out in a completely heterogeneous platform with a set of processors that 
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exhibit significant differences in performance. The minimum and maximum 

feature values of the machines obtained can be seen in Table 4-10. 

Feature Minimum Value Maximum Value 
KFlops 40156 212561 
MIPS 220 1049 
Memory 220 Mb 1025 Mb 
Load Average 0 1 

Table 4-10. Characteristics of the machines used in the heterogeneous 
experimentation. 

We will now validate the need to introduce the α factor into the algorithm 

initially designed for homogeneous environments. 

4.3.2.1 Evaluation of the Self-Adjusting Algorithm with and 
without Applying the Normalization Factor 

In the heterogeneous environment, we executed both versions of the self-

adjusting scheduling algorithm: that adapted to the heterogeneous 

environment using the α normalization factor, and that which was originally 

implemented for homogeneous environments and did not use the 

normalization factor. When releasing machines, both versions release the 

slowest available, because in both cases the workers list is sorted according 

to the α factor. Both versions differ in the way in which task execution times 

are used. The homogeneous version uses task wall clock times directly, while 

the heterogeneous version uses wall clock times corrected by the α factor as 

previously explained. 

 In this case, the thinning application was run with the Figures and Letters 

images (Figure 4-11a and 4-11b) as examples of applications with tasks of 

different and similar sizes respectively.  Images were initially divided into 32 

parts, which corresponded to the first set of tasks created at the beginning of 

the execution.  Figures was used as an example of an uneven distribution of 

work amongst tasks, while Letters is an example in which most of the tasks 

are assigned a similar amount of work (except tasks corresponding to the 

border of the images, which are assigned less work).   
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Results for the executions are shown in Tables 4-11 through 4-14 when the 

thinning application was run both using the homogeneous and heterogeneous 

self-adjusting scheduling strategy on a heterogeneous environment.  

In addition to efficiency and wall clock time, we also measure: 

• Pool Performance: An index that characterizes the quality of the 

machines used in a particular execution of the application 

[GK+00]. This is defined as  
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∑
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upi being the time that machine i was alive, and αi being the 

correction factor for machine i.  Higher values of PP correspond to 

a better pool of machines.   

• Average Number of Workers: This contains the average number 

of workers used per cycle. 

• Average Number of Suspensions: This corresponds to the 

average number of suspensions per cycle. 

• Number of cycles before having a stable number of machines: 

This corresponds to the number of cycles it takes to obtain the 

maximum number of machines required. 

Homogeneous Self-Adjusting on Heterogeneous Env. 
Figures 

Execution 1 Execution 2 Execution 3 Execution 4 
Efficiency 0,78 0,82 0,82 0,79 
Wall Clock Time 3416,2 3229,5 3678,2 3898,2 
Pool Performance 1,51 1,15 0,86 0,87 
Average N Workers 7 6,19 6,57 5,91 
Average Suspensions 0,26 0,29 0,14 0,2 
N cycles before stable 3 1 1 3 

Table 4-11. Performance Metrics for Figures with the homogeneous version of  
self-adjusting (without normalization factor). 
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Heterogeneous Self-Adjusting on Heterogeneous Env. 
Figures 

Execution 1 Execution 2 Execution 3 Execution 4 
Efficiency 0,80 0,82 0,80 0,82 
Wall Clock Time 2492,5  2630,2 2624,6 2839,2 
Pool Performance 1,53 2,18 1,13 1,72 
Average N workers 8,22 7,64 7,84 7,13 
Average Suspensions 0,15 0,24 0,4 0,55 
N cycles before stable 1 3 1 2 

Table 4-12. Performance metrics for Figures with the heterogeneous version of  
self-adjusting (with normalization factor). 

Homogeneous Self-Adjusting on Heterogeneous Env. 
Letters 

Execution 1 Execution 2 Execution 3 Execution 4 
Efficiency 0,77 0,79 0,79 0,79 
Wall Clock Time 1420,0 1264,5 1657,9 1360,7 
Pool Performance 0,9 1,67 1,5 1,22 
Average N workers 8,46 8,76 8,13 9,28 
Average Suspensions 0,03 0,08 0,7 0 
N cycles before stable 4 1 3 1 

Table 4-13.  Performance metrics for Letters with the homogeneous version of  
self-adjusting (without normalization factor). 

Heterogeneous Self-Adjusting on Heterogeneous Env. 
Letters 

Execution 1 Execution 2 Execution 3 Execution 4 
Efficiency 0,75 0,77 0,76 0,79 
Wall Clock Time 1105,1 1096,4 1138,6 1221,3 
Pool Performance 1,59 1,67 1,55 1,57 
Average N workers 10,11 10,15 10,5 9,06 
Average Suspensions 0 0,48 1,1 0 
N cycles before stable 1 1 1 3 

Table 4-14. Performance metrics for Letters with the heterogeneous version of  
self-adjusting (with normalization factor). 
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The heterogeneity of the resources used in each run of the application 

makes application performance with the homogenous and the heterogeneous 

version of the self-adjusting strategy difficult to assess. Application execution 

time (measured as a pure wall clock time) depends on several factors in 

addition to whether the normalization factor is used or not. However, from 

Tables 4-11, 4-12, 4-13 and 4-14, it is observed that both versions of the self-

adjusting strategy always obtain efficiency values above 0.75 (as both 

algorithms work by reducing the number of machines until reasonable 

efficiency is achieved). The average number of workers used is consistent in 

the executions. More workers were used when all the tasks were similar 

(Letters), while with the Figures example, there were many short tasks and, in 

consequence, the number of workers was less in both versions.  

The experiments showed that overall execution time mainly depends on the 

latest worker that completes its work, once the application runs in a steady 

state with a stable number of workers. This time basically depends on both 

the relative importance of tasks assigned to the worker and the relative 

performance of the worker. The pure heterogeneous version identifies the 

relative importance of each task, thanks to the α normalization factor. It 

therefore achieves a stable situation in which the same worker (to which the 

same task(s) is assigned in all iterations) is the last one to finish at each 

iteration, and the number of workers is reduced in a coherent way, until this 

situation is reached.  

On the other hand, the homogeneous version does not correctly identify the 

relative importance of each task. As a result, tasks are not always assigned to 

the same worker to whom they were previously assigned. Additionally, the last 

worker to finish is different from one iteration to another. Therefore, the 

homogeneous version of the adjusting algorithm reduces the number of 

workers using erroneous execution time reference; this leads to using a 

number of workers that is slightly less than the number used in the 

heterogeneous version of the algorithm.  
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By using fewer workers than the heterogeneous version, the homogenous 

version always achieved a worse overall execution time. The worst case of 

the heterogeneous strategy was always better than the best case of the 

homogeneous strategy. The consequences of incorrectly identifying the 

relative importance of each task are more noticeable in those cases in which 

tasks are not similar in terms of execution time. That is why, in the executions 

performed with the Figures image, where task execution times are within a 

wider range, there are more differences in the final execution time (wall clock 

times): because the errors made by the homogeneous version without 

normalization factor were more significant. When tasks are similar (as in the 

case of the Letters image), the errors produced by not taking the 

normalization factor into account are hidden, because there are many 

equivalent large tasks. 

Wall clock time was not only reduced by using a larger number of workers. 

There are other factors that contribute to this reduction: pool performance, 

suspensions, the number of cycles elapsed before allocating the desired 

number of machines, and the order of worker allocation, although these have 

only a minor influence. 

In general, for a given set of workers, wall clock time tends to be reduced if 

these machines have a better pool performance. It was also observed that the 

better the pool performance and the more balanced the relative performance 

of individual workers, the better the overall execution time. For the same 

number of workers, a higher pool performance decreases execution time, 

while a lower pool performance increases it. With a similar pool performance, 

a higher number of machines reduces wall clock time, while a lower number 

of machines increases it. This rule is not always fulfilled, as it can be seen in 

executions 1 and 2, in Table 4-11. This is explained by the effect of other 

factors such as the average number of suspensions and the number of cycles 

elapsed before allocating the desired number of machines. 

A higher number of average suspensions increases execution time, even if 

both the number of workers and pool performance are high, because it implies 
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that some of the iterations take a longer time to finish. The other factors that 

influence execution time, in addition to pool performance, include the number 

of cycles needed to allocate all the workers requested at the beginning of the 

execution and the order in which workers were allocated (best workers might 

be allocated at the beginning of the execution or in a later iteration). 

Unfortunately, all these factors depend on the execution environment and are 

not under the control of the self-adjusting strategy. The next chapter will 

discuss some easy ways in which, in one way or another, to alleviate the 

effect of losing machines. 

4.3.2.2 Comparison of Self-Adjusting and Non Self-Adjusting 
Strategies on Heterogeneous Environments 

Finally, we will compare the results obtained when executing the image 

thinning application, with and without using the heterogeneous self-adjusting 

strategy.  The non self-adjusting strategy works in the same way as explained 

for the non self-adjusting strategy in a homogeneous environment (section 

4.2.4); however, normalized execution times were considered, and also 

machines were sorted by the α factor.  These experiments were performed 

with the aim of evaluating the ability to improve the efficiency produced by the 

self-adjusting strategy.  Tables 4-15 through 4-18 show the results of the 

thinning application being executed with the Figures and Letters images. 

Non Self-Adjusting 
Figures 

Execution 1 Execution 2 Execution 3 Execution 4 
Efficiency 0,47 0,51 0,48 0,54 
Wall Clock Time 2947,5 2744,3 2746,01 2920,6 
Pool Performance 4,07 4,44 4,36 3,73 
Average N Workers 13,72 14,03 14,33 13,82 
Average Suspensions 0 0,4 0 0,23 
N cycles before stable 3 6 3 3 

Table 4-15. Performance Metrics for Figures  with Non Self-Adjusting Scheduling on a 
Heterogeneous Environment. 
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Self-Adjusting 
Figures 

Execution 1 Execution 2 Execution 3 Execution 4 
Efficiency 0,83 0,82 0,83 0,73 
Wall Clock Time 2834,09  2777,4 2999,5 2996,3 
Pool Performance  4,93 4,28 4,22 4,82 
Average N workers  7,23 8,05 7,57 9,7 
Average Suspensions  0  0 0,15 1,02 
N cycles before stable 1 1 1 1 

Table 4-16.  Performance Metrics for Figures with Self-Adjusting Scheduling on a 
Heterogeneous Environment. 

Non Self-Adjusting 
Letters 

Execution 1 Execution 2 Execution 3 Execution 4 
Efficiency 0,52 0,46 0,48 0,54 
Wall Clock Time 1125,3 1103,9 1037,2 1088,2 
Pool Performance 4,58 3,70 5,07 3,72 
Average N workers 19,86 18,4 18,4 18,35 
Average Suspensions 0,45 0 0,71 0,39 
N cycles before stable 10 2 5 7 

Table 4-17. Performance Metrics for Letters with Non Self-Adjusting Scheduling on a 
Heterogeneous Environment. 

 

Self-Adjusting 
Letters 

Execution 1 Execution 2 Execution 3 Execution 4 
Efficiency 0,74 0,72 0,7 0,79 
Wall Clock Time 1214,6 1278,8 1265,2 1200,2 
Pool Performance 4,34 3,9 3,92 4,87 
Average N workers 10,39 10,78 11,11 10,65 
Average Suspensions 0,51 0 0 0,56 
N cycles before stable 1 1 1 1 

Table 4-18. Performance Metrics for Letters with Self-Adjusting Scheduling on a 
Heterogeneous Environment. 
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In Tables 4-15 through 4-18, it is observed that pool performance values 

are significantly higher than those obtained in the experiments in section 

4.3.2.1.  The reason for this difference is that the results of Tables 4-15 

through 4-18 were obtained by using a poorer master processor, in terms of 

its relative performance. Workers machines therefore had a higher 

normalization factor, which also implies a higher pool performance.  

As the main conclusion from Tables 4-15, 4-16, 4-17 and 4-18, we observe 

that the self-adjusting strategy always obtains efficiency values above 0.7 in 

all cases, while no self-adjusting obtains efficiency values that are significantly 

smaller (between 0.45 and 0.55 in most cases). With the Figures example, 

slightly better results in efficiency were achieved by the strategy, as it was 

able to schedule a higher number of small tasks so that workers were kept 

busier. In all examples, the self-adjusting strategy was able to save more than 

40% of the workers in most cases. Moreover, execution-time results indicate 

that the self-adjusting strategy has a moderate penalty that, in most cases, is 

less than 15%, compared to the non self-adjusting case. 

It is also worth pointing out that the effect of the average suspensions over 

execution time is more significant in the self-adjusting case than in the non 

self-adjusting case, because, in the latter, the suspension can be produced on 

a machine that was idle, waiting for another to finish work.  In such a case, 

efficiency will be improved, since, if a machine is suspended, it is not able to 

execute useful work. 

In the non self-adjusting case, there are some high values in the number of 

cycles elapsed before allocating the maximum number of desired machines.   

In many cases, this means that the application was running with 1 or 2 

machines less than maximum; therefore, this factor is not very relevant in the 

final execution time incurred by the application. The lack of these machines 

mainly affected certain medium or short tasks that were scheduled to other 

available workers, once they had completed their previously assigned task. 

This scheduling was mostly carried out without incurring any penalty on the 

overall execution time.  
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Figure 4-15 shows a detailed example of one execution of the thinning 

application applied to the Figures image, initially divided into 32 parts. This 

example is a representative illustration of the general behavior and 

performance achieved by both the self-adjusting and non self-adjusting 

algorithms. We show the information related to number of workers, efficiency 

and execution time after iterations 1, 5, 10, 15, and so on.  Execution times 

are shown in a logarithmic scale. 

(a) 

(b) 

(c) 

Figure 4-15. (a) Number of workers, (b) efficiency and (c) execution time obtained with 
the Figures image divided into 32 parts. 
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Figure 4-15 is nearly equivalent to Figure 4-12 (see section 4.2.4), which 

was obtained when the same comparison between a self-adjusting and non 

self-adjusting strategy was carried out on a homogeneous environment. As a 

result, all the comments made for Figure 4-12 are also applicable to Figure 

4-15; namely, that resource allocation is not serviced immediately after 

request; that the self-adjusting algorithm is able to tune the number of workers 

from the initial iterations, even in the presence of heterogeneous workers (in 

the example, using 13 machines in iteration 5); and that the most significant 

differences in the number of workers (and, consequently, in efficiency) are 

mainly observed at the central iterations of the computation (in this case, from 

iteration 5 to 75). In these stages, the execution time of each iteration is 

slightly better for the non self-adjusting algorithm, at the expense of 

sometimes using twice the number of workers than those used by the self-

adjusting strategy.  

 



 138

 

 

SELF-ADJUSTING SCHEDULING FOR MASTER-WORKER 
APPLICATIONS 

 

CHAPTER 4 ......................................................................................................... 91 

4.1 INTRODUCTION ............................................................................................. 93 
4.2 SELF-ADJUSTING ALGORITHM FOR HOMOGENEOUS ENVIRONMENTS............. 97 

4.2.1 Self-Adjusting Algorithm with Static Tables......................................... 97 
4.2.2 Experimental Evaluation with a Fibonacci Application..................... 101 

4.2.2.1 Extended Version of MW.........................................................................101 
4.2.2.2 Experimentation Framework ....................................................................104 
4.2.2.3 Evaluation of the Self-Adjusting Strategy with Static Tables ..................107 
4.2.2.4 Comparison of Random and Random & Average scheduling policies. ....109 

4.2.3 Self-Adjusting Strategy with Dynamic Information ............................ 111 
4.2.4 Experimental Evaluation with an Image Thinning Application.......... 116 

4.3 SELF-ADJUSTING ALGORITHM FOR HETEROGENEOUS ENVIRONMENTS...... 123 
4.3.1 Modifications to the Self-Adjusting Strategy ...................................... 123 
4.3.2 Experimental Evaluation with an Image Thinning Application.......... 127 

4.3.2.1 Evaluation of the Self-Adjusting Algorithm with and without Applying the 
Normalization Factor ................................................................................................128 

4.3.2.2 Comparison of Self-Adjusting and Non Self-Adjusting Strategies on 
Heterogeneous Environments....................................................................................133 

 



 139

Chapter 5  
Scheduling in the Presence of  

Machine Loss 

Abstract 

This chapter first evaluates the impact of machine 
reclaim in an opportunistic environment.  Secondly, 
strategies to alleviate this effect are proposed and 
evaluated by simulation. The scalability of the proposed 
strategies is then discussed.  Finally, the results of the 
implementation of these strategies are commented on. 
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5.1 Introduction 

In the previous chapters, it was assumed that all the machines participating 

in the computation were available throughout the entire application execution 

time, although temporal machine suspension and loss were experienced in 

many of our experiments in a real environment. 

In this chapter, the same model of master-worker applications as in the 

previous chapters is considered.  It is also assumed that such applications are 

executed on a non-dedicated cluster, and that they will use the services of a 

cluster middleware, which will offer several services for discovering idle CPUs 

and allocating them to the application. Allocated CPUs will be used to 

complete several batches of tasks. In general, we assume that allocated 

resources are not relinquished by the application until the last batch of tasks is 

completed. By keeping the resources allocated in this way, the application will 

alleviate the overhead incurred by the cluster middleware in the resource 

discovery and allocation phases.  

We will investigate the scheduling problem that arises in parallel 

applications executing on a network of machines by using a mode of cycle-

stealing. In this mode of execution, a parallel application executes its tasks in 

several machines whenever they are idle. When the user reclaims the 

machine, tasks must relinquish control immediately, which means that it must 

be stopped and vacated.  In this case, the parallel application has the risk of 

losing work currently in progress on reclaimed machines and, therefore, the 

total execution time of the parallel application will be affected by the need to 

reschedule the pre-empted task.  

We intend to provide insight into how machine-owner interference may 

degrade the performance of a parallel application running on a non-dedicated 

environment. Moreover, we will evaluate the effectiveness of simple strategies 

for alleviating the impact of machine loss. One strategy is based on the use of 
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extra machines, which are added to the common pool of machines used by 

the application. The others are based on the use of extra machines that are 

used for executing certain replicas of large tasks. The following questions now 

arise:  

• How many extra machines should be allocated to an application, 

running on an opportunistic environment, in order to achieve a 

performance equivalent to that achieved in a non-opportunistic 

environment?  

• Should the allocated extra machines be used for running more 

pending tasks or for task replication? 

First the impact on the performance of an application is evaluated when it 

runs on two different scenarios: a set of N dedicated machines, and a set of N 

non-dedicated machines (in which pre-emption may occur). This study shows 

that losing machines may have a considerable impact on the application 

execution time, and therefore, three simple strategies to alleviate this problem 

are proposed and evaluated. All strategies are based on the use of additional 

machines, but differ in the way that these extra machines are used. In the first 

strategy, additional machines are added to the common pool of machines 

used by the application. The other two are based on task replication, in which 

the additional machines are used to execute certain tasks that are already 

running on other machines. 

These strategies have been implemented using Condor, PVM and MW, the 

same environment used in previous chapters.  In this chapter, we consider the 

same model of master-worker applications as in the previous chapters.  It is 

also assumed that such applications are executed on a non-dedicated cluster, 

and that they will use the services of a cluster middleware that will offer 

several services to discover idle CPUs and allocate them to the application. 

The allocated CPUs will be used to complete several batches of tasks. In 

general, we assume that the allocated resources are not relinquished by the 

application until the last batch of tasks is completed. By keeping the resources 
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allocated in this way, the application will alleviate the overhead incurred by the 

cluster middleware in the resource discovery and allocation phases.  

5.2 Background to the Problem 

In a non-dedicated cluster, as in any opportunistic environment, there is no 

guarantee that all the machines needed by an application will be available 

throughout the whole execution time of the application. We would like to use 

an example to illustrate the effect of losing machines, by taking into 

consideration a single batch of tasks and assuming a pseudo-optimal 

scheduling policy such as LPTF (Largest Processing Time First). At this point, 

we are only concerned with the effect of losing machines.  Figure 5-1 shows 8 

tasks executed on 4 machines, these being the 4 machines available during 

the whole computation. Colored boxes represent tasks.  The number inside 

each task represents its execution time.  Dotted boxes containing a number 

represent the amount of time that machines are idle but operational, and with 

which there is therefore a waste of machine resources. In agreement with the 

equation for efficiency introduced in chapter 2, an efficiency of 0.9 is obtained 

(machines executed useful work 29 units of time, and 32 units of time were 

able to execute work); and the execution time is 8 units (the batch of tasks is 

completed in 8 units of time). 
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Figure 5-1.  Example of efficiency and execution time taking into consideration a fixed 
number of machines. 

 

 
3

2 
1 1

8 

1

2

4
5 4

1 



 144

 
T1,lost 

 

 8  4 5 4

Work done by
this machine is
lost 

The machine is 
no longer 
available (8) 

 

 
8 

4 5

 3 

2

2

4 

1 

4

  4  3

During the execution of these tasks, in a random time Ti,lost, a random 

machine i is lost. Figure 5-2 shows the effect of losing the machine where the 

largest task (t) is running at T1,lost=4.  This task is rescheduled to machine 4 

on which t runs from the beginning again.  As task t is the largest of the 

pending tasks, it will be rescheduled as soon as a machine becomes idle. In 

this case, an efficiency of 0.72 is obtained (machines were 29 units of time 

executing useful work, and (12*4)-8=40 units of time able to execute work); 

and an execution time is 12 units.  Clearly, both efficiency and execution time 

are worsened. 
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Figure 5-2.  Example of efficiency and execution time taking into consideration the loss 
of one machine during execution time, at time = 4.  a) Before loss occurs.  b) After loss 
occurs. 

First, we only consider situations in which one machine is lost at every 

cycle and the cycle is completed in a degraded way. Cycle length is not long 

enough to recover the machine before the cycle is completed. A new machine 
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will again be available at the beginning of the next cycle, when the scenario in 

which a machine is lost will be repeated.  

This formulation is a plausible situation that occurs in real situations, as has 

been concluded from an empirical study. Certain experiments using a Condor 

[LLM88] pool at the University of Wisconsin have been conducted. The 

master-worker application for the computation of Fibonacci series described in 

chapter 3 has been executed, with the following characteristics: 

• The application was composed of 50 batches. 

• 50 and 75 machines were used.  

• Execution time incurred in the completion of one cycle (batch of tasks) 

was on average 12 minutes.  

• Total execution time for the application was on average approximately 

10 hours. 

• Application workload distribution was 30% approximately.  

The application was run at different times of day on different days and it 

was determined that, approximately, no machine losses were observed in 

55% of the batches, with one machine loss being observed in 40% of the 

batches. Losing more than one machine in a given batch only occurred in 5% 

of the cases.  Some factors that affect the number of machine losses 

produced include the priority of the user, the number of machines available, 

and the demand on machines belonging to the pool.  Figure 5-3 shows the 

number of workers during each cycle for a particular execution.  In general, 

machine losses are distributed in time, that is, they are not grouped around 

particular cycles.  
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Figure 5-3.  Number of machines per cycle for a sample execution. 

Situations in which more than one machine is lost per cycle are therefore 

not considered, because in empirical studies, such situations are less likely to 

occur. Only when the completion time of a batch is long enough would more 

than one machine be lost. Moreover, the loss of more than one machine is 

also accompanied in these situations with the discovery of new machines that 

can be allocated to the application before the whole batch is completed. This 

scenario therefore gives rise to a more complex analysis, and one which is 

beyond the scope of this current work.  

5.3 Impact of Machine Reclaim  

We now evaluate the impact of losing one machine per cycle with respect 

to efficiency and execution time. The results of this evaluation will be used 

later in this chapter to compare the effectiveness of different solutions that try 

to reduce the negative effects of machine loss. The impact of machine loss 

has been quantified by simulation according to the following framework, which 

models application and system characteristics.  

A system composed of N machines is assumed. During a cycle, a random 

machine m is lost at a random time.  All machines have the same probability 
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of being lost.  The time at which a machine is lost is uniformly distributed 

throughout the total duration of the largest task per cycle. If a task t was 

running on m, t must be executed from scratch again on another machine. 

In the specification of the application and scenarios, the following 

parameters have been considered:  

• Number of Task (T): This is the number of tasks that composes a 

batch and that must be executed during the cycle. The number of tasks 

was 50 for all the simulations in this section.  In section 5.4 a higher 

number of machines is considered. 

• Workload distribution (W% i-i): This is the same as explained in 

chapter 2: the total amount of work (TotalW) is divided throughout T 

tasks with the following scheme: 20% of the tasks contain W% of the 

total load, and the remaining 80% of tasks contain the TotalW-W% 

load.  Workload values (W%) of 30%, 40%, 50%, 60%, 70%, 80% and 

90% have been considered. This section only reports the results 

obtained in cases where all 20% of the tasks and the remaining 80% of 

the tasks exhibited different execution times (depicted by a label 1-1 in 

the figures), because those results were quite similar to the rest of 

cases.  

To quantify the effect of losing one machine, we have compared the results 

obtained having N fixed machines and those obtained when having N 

machines and losing one. The worsening percentages have been measured 

systematically for efficiency and execution time, using a number of machines 

ranging from 2 to Number of Tasks per batch (50). For each simulation 

scenario (with a particular workload distribution and a given number of 

machines), 100 simulations were carried out, so different machines were lost 

at different time instants. Values shown in the graphs are average. The 

worsening percentage for both efficiency and execution time are shown in 

Figure 5-4 for the cases of a workload of 30% and 90%, respectively. We only 

show these cases because they are representative examples of the extreme 
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situations that can be exhibited by a given workload. The X-axis contains the 

number of machines.  The Y-axis contains the percentage values.  A positive 

value v% means that when losing one machine, efficiency or execution time 

gets v% worse.  
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Figure 5-4. Worsening percentage when one machine is lost per cycle.  
a) 30% workload and b) 90% workload. 

As Figure 5-4 shows, when the application uses a small number of 

machines, that is, below the ideal interval ([18,22] for 30% and [5,7] for 90%), 

the effect of losing one machine is significant on execution time because the 
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completion time of the cycle may be significantly affected. With 3 machines, 

the execution time may be 50% worse in both cases. With less than 5 

machines, worsening of execution time is greater than 25%.  The worsening 

index declines to 15% for a workload of 30% before entering the ideal interval. 

For a workload of 90%, the worsening percentage in execution time is close to 

35% for 6 machines. In general, efficiency using a small number of machines 

tends to be high because all machines are busy and no idle periods are 

detected. So, when one machine is lost, the remaining machines are still very 

busy, and therefore the impact on efficiency is less significant than the effect 

on execution time.  

With a high number of machines (larger than the ideal interval), the effect of 

losing one is not very significant.  In this case there are many idle machines 

and therefore the execution time achieved by a dedicated system is close to 

the optimal, and efficiency is quite low (as Figure 5-4 (a) shows, efficiency for 

more than 23 machines falls below 0.8). This situation can be observed for 

more than 23 machines with a 30% workload and more than 8 machines for a 

90% workload. By losing one machine, computation power will not be 

reduced, and efficiency is low even without the loss, because the application 

is running in a scenario in which not all machines are doing useful work.  

Our main point of interest is focused on the perfect number of machines 

and on the surrounding interval of machines at this point (ideal interval), 

because, as stated in the previous chapters, the self-adjusting strategy 

dynamically adapts the number of machines reaching, a number of machines 

belonging to the ideal interval, in an ideal environment without machine loss.   

Therefore, we think that this is the desired scenario for the execution of 

applications.  In the above examples, the perfect number corresponds to 20 

and 6 machines for the 30% and 90% cases, respectively. At this point, the 

worsening effect in both execution time and efficiency is not negligible. 

Execution time is 13% and a 35% worse for a 30% workload and a 90% 

workload, respectively. This means that, particularly in the case of unbalanced 

workloads, the application will suffer from a significant delay due to machine 
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losses at every cycle. In the next section, alternatives for reducing such an 

impact are evaluated. 

5.4 Strategies for Reducing the Impact of Machine Loss 

In this work, we have restricted ourselves to solutions that do not use task 

migration. This restriction has been adopted because the main interest 

concerns solutions that could easily be applied to any opportunistic 

environment. In current middleware systems, migration is not always 

supported and, when supported, it is not always available. Sometimes, the 

system imposes restrictions on the application that preclude the use of 

migration. Furthermore, migration may sometimes fail due to pre-emption 

deadlines or to limits on resource consumption during pre-emption. 

Furthermore, a model of parallel applications that uses a moderate amount of 

time in completing each batch of tasks has been considered. This means that 

in some cases, the cost of checkpointing and migrating one task could be as 

costly as the time needed to reschedule the task from the beginning, on a 

different machine. 

As a consequence, our focus is on solutions that overcome the impact of 

losing a machine, which are conceptually simple, and whose implementation 

is not based on any special requirement in the underlying middleware.  

As was stated in the introduction to this chapter, a simple and intuitive 

solution for reducing the impact of machine loss would consist of using extra 

machines (this solution is also referred to as using machines in advance). 

With this approach, we look for a solution whereby the use of a cluster of N+X 

non-dedicated machines may achieve the performance of a dedicated cluster 

with N machines. The use of additional machines for executing replicas is a 

solution adopted in fault-tolerant systems with deadlines for terminating tasks 

[LC88, OS91, GMM97].  In our case, we adapt this idea to compensate for the 

loss of a machine, from the point of view of the application’s global execution. 
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However, the additional machines can be used in different ways. They can 

be used indistinctly from the others or they can be used to run replicas of 

certain tasks. In the latter case, the largest tasks are the obvious candidates 

for replication. There are also some hybrid solutions in which part of the extra 

machines may be used for replication and the other part will be used as 

ordinary machines. In this work, only three different cases have been 

considered, which nevertheless give sufficient insight into the benefits of each 

strategy. The strategies are denoted as: 

• NR (No Replication): extra machines are simply added to the 

common pool of machines. The effect is that the application runs on 

a larger pool. 

• SR (Single Replication): only the largest task is replicated in one of 

the extra machines. 

• CR (Complete Replication): all the extra machines are used to run 

a copy of one of the largest application tasks. The largest K tasks 

are replicated if K extra machines are added. 

In the following subsections, we evaluate the above policies when a perfect 

number of machines is used; the study is then generalized to any number of 

machines.  

5.4.1. Impact of Machine Loss with the Perfect Number of 
Machines 

For each workload distribution (W%), Table 5-1 shows the worsening 

percentage of Execution Time (uppermost number in cell) and Efficiency 

(number in lower part of cell), taking into consideration the perfect number of 

machines. The first column denotes the workload; the second column 

contains the number of machines that constitute the perfect number for each 

workload distribution; the third column represents the worsening percentage 

of having N machines with 1 loss with respect to having N fixed (this column 

corresponds to the situation analyzed in section 3). The remaining columns 
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show the worsening percentage with respect to N fixed machines when 1, 2 

and 3 machines are used in advance and the strategy is either NR, SR or CR. 

Notice that SR and CR represent the same strategy when only one machine 

is used in advance. 

As Table 5-1 shows, there is no best strategy in every case for reducing the 

impact of machine loss. The ability of each strategy to reduce such impact 

depends on workload distribution. However, certain conclusions can be 

reached based on the above table. First, it is clear that the use of extra 

machines reduces the impact on execution time of machine loss. The 

worsening percentages in execution time in the third column (0 in advance 

column, when no extra machines are used) are always larger than the 

percentages obtained by any strategy using machines in advance. On the 

other hand, efficiency tends to be worse as more machines are used. The use 

of one machine in advance obtained a slight reduction in efficiency-worsening 

only with a workload of 30%, in comparison with the case of no extra 

machines (6.96% and 7.32%, respectively). In general, for any strategy, every 

time that one additional machine is used, efficiency experiences a negative 

impact that ranging from between 3% and 8% (depending on the workload 

distribution). This effect is caused by the addition of more machines into the 

pool, thereby increasing the system’s capability to perform more work. 

However, total effective work does not increase because the extra resources 

are used to execute a replicated task (not contributing as effective work), or to 

repeat a task that has been pre-empted (in this case, overall efficiency may 

be worse because more machines will be idle, after completing their tasks, 

waiting for the completion of the whole cycle).  

We also observe that complete task replication is better than single task 

replication in nearly all cases. Complete task replication obtains better 

execution times than single task replication, while the cost in efficiency is 

similar for both strategies. In particular, using three machines in advance, the 

CR strategy obtains an execution time that is never worse than 4% compared 

to the execution time achieved with N dedicated machines.  



  Machines in Advance 
  0 in 

Advance     1 in Advance         2 in Advance         3 in Advance 

Workload Perfect 
Number 

 NR NR SR/CR NR SR CR  NR SR CR 

ET 13.35% 6.42% 8.49% 5.93% 5.5% 6.27% 8.42% 6.24% 3.91% 30% 20 
E 7.32% 6.96% 9.1% 11.02% 10.99% 12% 16.11% 14.94% 14.21%

40% 14 ET
E

13.06% 
6.64% 

8.91% 
9.26% 

11.59%
11.85%

9.57% 
15.49%

5.6% 
13.34%

5.42% 
13.73%

8.64% 
20.21%

5.56% 
18.42%

3.34% 
17.6% 

50% 11 ET
E

16.43% 
7.24% 

15.95%
13.8% 

11.83%
12.61%

9.14% 
16.84%

4.48% 
14.42%

4.02% 
15.08%

6.24% 
21.76%

3.82% 
20.34%

2.5% 
20.17%

60% 9 ET
E

18.23% 
7.6% 

9.96% 
11.05%

11.46%
13.47%

10.06%
19.34%

5.07% 
16.93%

4.26% 
17.31%

13.58%
28.27%

6.93% 
25.01%

1.2% 
22.42%

70% 8 ET
E

23.33% 
9.59% 

12.85%
13.23%

11.18%
13.62%

11.74%
22.23%

8.02% 
20.43%

5.34% 
19.43%

12.13%
29.88%

6.81% 
27.42%

2.27% 
25.36%

80% 7 ET
E

28.53% 
12.23% 

18.38%
17.12%

16.29%
17.26%

12.31%
24.04%

7.15% 
21.61%

7.98% 
22.65%

10.82%
31.81%

7.71% 
30.34%

2.14% 
27.67%

90% 6 ET
E

34.63% 
15.06% 

22.43%
20.47%

15.86%
17.94%

15.04%
27.47%

10.94%
25.5% 

7.55% 
24.58%

9.63% 
33.56%

4.86% 
31.47%

3.08% 
31.05%

Table 5-1. Worsening percentage of execution time and efficiency taking into consideration the perfect number of machines. 
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The positive performance achieved by the complete replication strategy 

may be explained in terms of this strategy being the most effective when the 

system loses one of the machines executing one of the biggest tasks. In these 

cases, the task lost is also running in another machine and, therefore, the 

whole cycle is completed as if no machine loss was experienced (i.e. we 

achieve the same execution time as in the dedicated system). If the system 

loses a machine with a task that is not one of the largest, then this task should 

be rescheduled to another machine. However, the length of the task will be 

short or moderate and, on average, its impact will not be very significant. 

When only the largest task is replicated or there is no replicated task at all, the 

benefit of replication is exclusively restricted to the scenario in which the 

largest tasks is lost. Unfortunately, losing any other largest task has a 

significant and negative effect on the overall execution time, since that task 

needs to be executed again from the beginning.  

Figure 5-5 shows a graphical example that illustrates the behavior of CR, 

SR and NR in accordance with the argument presented above. This example 

is based on the example used in section 4.2, but uses 2 extra machines. 

Figure 5-5a shows a scenario in which CR is applied and the largest task is 

lost at time 4. In this case, total execution time (ET) remains equal to 

execution with a dedicated system. Figure 5-5b shows the scenario in which 

SR is applied and the second largest task is lost. Consequently, there is 

needed to reschedule it, producing a final execution time of ET=9 (one unit 

more than in a dedicated system). Finally, Figure 5-5c shows the scenario in 

which NR is used and the largest task is lost again at time 4. Here, the total 

batch is completed at time ET = 12 (4 units more than in the dedicated 

scenario). 
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   1        2         3        4        5        6             1        2        3        4        5        6 
Machines 

(a) 

1         2         3         4        5        6              1         2        3         4         5        6 

Machines      

 (b) 

1      2         3         4        5         6              1        2        3         4         5        6 

Machines      

 (c) 
Figure 5-5. Examples of Execution Time taking into consideration 2 machines in 

advance and a) CR with T1,lost=4, b) SR with T3,lost=4, and c) NR with T1,lost=4. 
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Finally, it is worth pointing out that the use of extra machines without 

replication appears to be the most effective strategy only for 30% and 40% 

workloads with one extra machine. These workloads exhibit many tasks with 

similar execution times, and therefore the benefits of replication are less 

visible when only one additional machine is used. When the batch of tasks 

contains significantly large tasks or the number of machines used is further 

increased, then replication strategies obtain better results, because they avoid 

the negative effects related to the loss of the largest tasks.   

5.4.2 Impact of Machine Loss with any Number of Machines 

The behavior of the above-mentioned strategies using a wider range of 

machines has also been evaluated. As was stated above, an application is 

expected to run using the perfect number of machines or any number of 

machines close to perfect (what was referred to as the ideal interval). 

However, applications may not always be able to use this desirable number of 

machines. For instance, the system may not find idle machines and therefore 

the application must run with a number of machines that is smaller than the 

desired. Alternatively, users may be concerned only with execution time and 

may not care about resource efficiency. Therefore, their application may be 

running with an excess of machines (above the ideal interval). The idea is 

now to obtain insight with respect to how many extra machines should be 

used when the application runs with a non-ideal number of machines. 

Figures 5-6 and 5-7 show the worsening ratio in efficiency and execution 

time achieved by the NR and CR strategies, using one and two machines in 

advance for 30% and 90% workloads, respectively. They also show the 

worsening when no extra machines are used (N curve). All curves start at  

X = 3, i.e., at this point the execution and efficiency of a dedicated system 

composed of 3 machines is being compared with non-dedicated systems with 

3 (N curve), 4 (N+1 curves) and 5 (N+2 curves), respectively. The case of 

N+3 machines has not been included in order to maintain clarity in the figures. 

The main conclusions can be derived from the curves shown.  
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Figure 5-6. (a) Efficiency and (b) execution time worsening for a 30% workload 
distribution. 
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Figure 5-7. (a) Efficiency and (b) execution time worsening for a 90% workload 
distribution. 

As Figures 5-6 and 5-7 show, when the number of machines used by the 

application is small (less than the ideal interval), using as many machines in 

advance as possible is the best solution for all workload distributions and 

strategies. This means that using two machines in advance is simply better 

than using one machine in advance, independently of the particular strategy 

adopted to manage the extra machines and the workload distribution. This 

effect is because the application is running with an insufficient number of 

processors and, therefore, any additional processor will improve execution 

time even in the presence of machine loss. However, for a fixed number of 

extra machines, NR is slightly better than CR both in terms of execution time 

and efficiency. Finally, it is worth mentioning that, when two extra machines 

are used, both NR and CR improve the execution time of the application (the 

worsening in execution time is negative in both cases).  

When the application runs with a large number of machines, task 

replication strategies tend to perform slightly better than no replication 

strategies, although the percentage difference between the results achieved 

by both strategies is always less than 5% for a fixed number of machines in 

advance. In this case, applications execute with an excess of machines, i.e., a 

similar execution time might be achieved using fewer machines. Therefore, if 

machines are added in advance, and if they are used to replicate the largest 
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tasks, the negative effects of losing these tasks are avoided.  In this case, 

there is a scenario in which the loss of one of the largest tasks obtains the 

same execution time as in a dedicated system (as Figure 5-5a illustrates). 

5.5 On the Scalability of Strategies for Reducing the Impact 
of Machine Loss 

The following question now arises: Are the same results obtained in the 

previous sections valid when a larger number of machines are considered?, 

i.e., how do those results scale?.  In order to get insight into this question the 

same experiments were done taking 150 machines into account.   

For each workload distribution (W%), Table 5-2 shows the worsening 

percentage of Execution Time (uppermost number in cell) and Efficiency 

(number in lower part of cell), for 150 tasks per batch, taking into 

consideration the perfect number of machines. The first column denotes the 

workload; the second column contains the number of machines that 

constitutes the perfect number for each workload distribution; the third column 

represents the worsening percentage of having N machines with 1 loss with 

respect to having N fixed. The remaining columns show the worsening 

percentage with respect to N fixed machines when 1, 2 and 3 machines are 

used in advance, and the strategy is NR, SR or CR.  

As Table 5-2 shows, the effect of losing a machine is less relevant in the 

case of 150 tasks than in the case of 50 tasks.  This is because even though 

the relative difference between largest tasks and smallest tasks is the same in 

both cases, the absolute differences is greater in the case of 50 tasks.   

The use of extra machines reducing the impact in execution time of 

machine losses is still valid, but not so much as in the case of having fewer 

machines.  The worsening percentages in the NR-0 in advance column are 

larger than the percentages obtained by any strategy using machines in 

advance, except in the case of 30% workload and one extra machine. 
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   Machines in Advance 

   0 in 
Advance     1 in Advance         2 in Advance         3 in Advance 

Workload Perfect 
Number  NR NR SR/CR NR SR CR  NR SR CR 

30% 57 ET
E

7.18% 
4.46% 

8.55% 
6.96% 

7.87% 
6.69% 

5.8% 
6.53% 

5.31% 
6.39% 

5.63% 
6.55% 

6.23% 
8.46% 

5.26% 
8.09% 

4.79% 
8.02% 

40% 40 ET
E

9.15% 
5.32% 

7.47% 
6.63% 

5.95% 
5.78% 

5.46% 
7.42% 

4.27% 
6.77% 

4.59% 
7.18% 

6.08% 
10.01%

5.76% 
9.78% 

4.2% 
9.11% 

50% 31 ET
E

12.4% 
7.2% 

7.54% 
6.66% 

6.68% 
6.72% 

7.44% 
9.56% 

6.28% 
9.28% 

5.62% 
8.05% 

6.4% 
11.48%

5.85% 
11.21%

4.9% 
10.67%

60% 26 ET
E

15.77% 
9.15% 

14.82%
10.78%

11.74%
10.1% 

9.71% 
10.4% 

7.7% 
10.28%

8.1% 
11.2% 

11.12%
15% 

10.24%
15.76%

7.14% 
13.75%

70% 22 ET
E

16.44% 
9.54% 

14.88%
11.27%

13.74%
11.19%

14.18%
14.82%

13.74%
14.75%

9.47% 
12.15%

13.48%
17.47%

12.74%
16.76%

7.81% 
13.93%

80% 19 ET
E

18.76% 
10.72% 

16.05%
12.92%

16.22%
13.99%

15.46%
16.66%

13.25%
15.5% 

12.54%
15.76%

12.88%
19% 

10.72%
17.88%

9.42% 
17.87%

90% 17 ET
E

24.43% 
14.27% 

19.35%
15.69%

20.39%
16.95%

17.39%
18.72%

14.04%
17.3% 

15.48%
18.67%

16.63%
22.39%

15.01%
21.84%

9.61% 
19.35%

Table 5-2. Worsening percentage for execution time and efficiency, considering 150 tasks. 
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Improvements achieved in execution time are smoothed in the case of 150 

tasks because the ratio between extra machines and the perfect number of 

machines is lower than the ratio exhibited in the case of 50 tasks. Similarly, 

efficiency also worsens in a smooth way for the same reason. However, for a 

given workload and equivalent ratios between the number of extra machines 

and the perfect number, similar results can normally be observed in the cases 

of both 150 and the 50 tasks. 

For instance, the negative impact of execution time is reduced in relative 

terms in a similar way in the case of 50 tasks with a workload of 30% with 1 

machine in advance and in the case of 150 tasks with a workload of 30% with 

3 machines in advance. In these cases, the ratios between the number of 

extra machines and the perfect number are, respectively, 1/20 and 3/57, 

which can be considered equivalent. And the worsening percentage is 

reduced from 13.35% to 8.49% (36.4%) and from 7.18% to 4.79% (33.3%), 

respectively.  

Task replication is the strategy that achieves a better alleviation of machine 

loss, but its benefits are mainly noticeable when the number of extra 

machines is 3. This fact can again be explained by the relative weight of extra 

machines over the total number of machines. As more machines are used in 

the case of 150 machines, the number of large tasks that have to be 

replicated must be larger than the number used in the case of 50 tasks, in 

order to achieve an equivalent reduction in the worsening percentage of 

execution time. 

Taking into account the results of Tables 5-1 and 5-2, it can be concluded 

that the reduction of the negative impact in execution time due to machine 

losses can only be achieved at the expense of worsening the overall 

efficiency exhibited by the application. In this case, it would depend on how 

much each particular user is willing to pay in terms of efficiency in order to 

improve application execution time. The more concerned the user is about 

execution time, the larger the number of machines that should be used for 

task replication. However, according to our simulation results, adding a 
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number of extra machines between 15% or 20% more than the perfect 

number has proved that reasonable improvement in application execution 

time can be attained with a moderate worsening in overall efficiency. 

5.6 Study of Strategies Considering Different Probabilities of 
Losing Machines 

In the previous sections, it was assumed that there was a machine lost at 

each cycle.  In the experimental evaluation, we saw that in real opportunistic 

environments machine losses are less frequent. This means that the 

probability of losing a machine during a cycle will have a value of between 0 

and 1.  Obviously, the occurrence or not of a machine loss in a given cycle 

cannot be predicted beforehand.  This fact implies that the use of extra 

machines (either with or without task replication) cannot simply be used as a 

policy that is turned on and off on an iteration basis.  Extra machines and 

eventually task replication must be used in a sort of speculative way. The 

master-worker application will benefit from these extra machines only in the 

cycles in which a machine is lost, otherwise, the application will be penalized 

in its efficiency in cycles in which no machines loss occur.  Intuitively, one 

would expect that the use of extra machines is worthwhile for “high” 

frequencies of machine loss, i.e., when nearly all cycles result in one machine 

being lost.  For low occurrences of machine losses, the use of extra machines 

would not pay off.   

In this section, we present the results of a set of simulations that were 

carried out in order to determine which frequencies of machine loss it is worth 

using extra machines for, and for which frequencies it is not.  These results 

will also highlight some empirical rules that may be applied in practice in order 

to decide when the use of extra machines should be turned on or off. 

That is, in this section we evaluate the results obtained when performing 

the same simulations, but including a probability of losing a machine in a 
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cycle.  This probability took the following values: 10%, 20%, 30%, 40%, 50%, 

60%, 70, 80% and 90%.  

The main conclusions of this study can be derived from Figures 5-8 and 5-9 

which show the simulation results for worsening percentages of execution 

time (ET) and efficiency (E) for different losing probabilities, considering 30% 

and 90% workloads, and always assuming the perfect number of machines. 

(NR+0) represents the worsening percentage incurred when losing one 

machine without having any extra machine, with respect to the case in which 

no machines are lost.  The other series show the worsening percentage for 

the NR and CR strategies when 1, 2 and 3 extra machines are used. The 

complete set of values for all workloads and losing probabilities of 10%, 40%, 

50%, 60%, 80% and 90% can be seen in Appendix E. 

 
(a) (b) 

 
 

Figure 5-8.  Worsening percentage for a 30% workload. (a) Execution time (ET),  
(b) Efficiency (E). 
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     (a)             (b) 
Figure 5-9.  Worsening percentage for a 90% workload. (a) Execution time (ET), (b) 

Efficiency (E). 

 

As can be seen in Figures 5-8 and 5-9 and also in Tables E-1 through E-6 

of Appendix E, the probability of losing a machine has a linear effect on the 

worsening of execution time. The higher the probability of losing a machine, 

the higher the worsening percentage. In all cases, the use of additional 

machines reduces the worsening of execution time and it is normally 

observed that for the same number of extra machines, complete task 

replication performs slightly better than no replication. These results agree 

with those depicted in previous sections in which the probability of losing a 

machine was considered to be 100%. In some cases, Complete Replication 

with 2 extra machines is even able to outperform No Replication with 3 extra 

machines. It is also worth noting that, for low or even moderate probabilities of 

machine loss, the negative impact on application execution time is low or 

moderate. For a workload of 30%, the worsening percentage is always less 

than 10% for all probabilities. For larger workloads, worsening percentages 
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application increases the worsening of efficiency by a percentage that 

remains nearly constant, independently of the probability of losing machines 
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and the use made of those machines (either for task replication or not). The 

cost of each extra machine ranges, approximately, from 3% with a 30% 

workload to 8% for a workload of 90%.  

If we take into account the worsening percentages both of execution time 

and of efficiency, it seems clear that the use of extra machines (and task 

replication) is mainly worthwhile in those cases in which the probability of 

losses is moderate or high. The cost to be paid in terms of efficiency is too 

high when the probability of losses is less than a 50% in all workload cases. 

Obviously, in view of the comments made in the previous section, the use of 

task replication might be adopted independently of the probability of loss in 

those cases in which reducing the overall execution time is the most important 

criterion for a given user, and where overall efficiency is not relevant. 

A final observation is related to the fact that task replication exhibits 

significant improvement, especially in scenarios with high probabilities of 

machine losses. From a practical point of view, this would constitute an 

empirical rule by which to automatically trigger the task replication 

mechanism. Task replication would be triggered whenever machine 

suspension or loss was detected at least once every two cycles. Otherwise, 

the application would be executed without using any extra machine. 

5.7 Experimental Evaluation on a Real Platform  

In this section, we will present a prototype implementation of the CR 

strategy, as the results obtained in previous sections have shown that this 

strategy proved to be the one that provides the best alleviation for machine 

losses in most cases. The section is completed with a brief experimentation in 

which the CR and the NR strategies were applied to a PovRay application 

[FHK98]. 
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5.7.1 Implementation of Strategies 

Although task replication is a conceptually simple strategy, some 

extensions had to be included in MW in order to support it. We will describe 

these changes below.  

As was briefly introduced in chapter 2, MW handles a workers list with 

information about workers participating in the computation. It also handles lso 

the ToDo list and the Running list for tasks. The former contains all the tasks 

pending for execution for a particular iteration, and the later contains the tasks 

that are currently being executed. 

Support for the CR (Complete Replication) strategy was achieved basically 

by adding a mechanism for dealing with replicated tasks in the ToDo list.  At 

the beginning of each cycle, and after having sorted the ToDo list according to 

the Random & Average scheduling policy, the largest X tasks, which 

correspond to the first X tasks in the ToDo list, are replicated. They are then 

inserted into the ToDo list, keeping the list sorted. X corresponds to the 

number of extra machines used.  

When a worker becomes idle, it receives another task to be executed if 

there are remaining tasks in the ToDo list. It could get either a normal or 

replicated task, indistinctly. However, when a machine is lost, different actions 

are taken, depending on the strategy considered.  In the case of the NR 

strategy, the task running on the reclaimed machine is rescheduled, that is, it 

is placed in its respective position in the ToDo list.  On the other hand, under 

the CR strategy, if the task running on the reclaimed machine is or has a 

replica, this task is not rescheduled; it is simply lost.  But if it is not or does not 

have any replica, this task is rescheduled, as in the case of NR. 

It is worth pointing out that this technique would work directly in a 

heterogeneous environment, because the largest tasks and their replicas 

would be executed in the fastest machines. 
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5.7.2 Experimentation on a Real Platform, and Results 

This subsection presents the initial experimentation performed with the 

replication strategies. 

The experimentation was carried out using a homogeneous cluster of 10 

Sun4x Solaris2.5 workstations, at 29 Mips and 72 Mb RAM, interconnected by 

Ethernet and running Condor.  The PovRay application for rendering graphics 

was parallelized following a master-worker paradigm. PovRay creates and/or 

animate images by means of a Raytracing algorithm, and falls into the 

category of embarrassingly parallel, because it can be decomposed into 

independent tasks.  The resulting parallel application, MW-PovRay, distributes 

different segments of an image (tasks) among the workers available. When 

the computation of an image finishes then a cycle is completed, and the 

master sorts the pieces of the next image to be completed according to the 

results obtained in the previous cycle.  It is important to remark that in a 

complete image sequence, the differences between one image and that 

following it are minimal.  Each image was stored in a file, and the set of files 

constituted the animation. 

In the experimentation, we used the skyvase image, provided with the 

PovRay program, and shown in Figure 5-10.  All the executions had the 

following fixed parameters: 

• Image size: 640 x 480 pixels. 

• Number of Tasks per cycle (T): In order to perform the computation, 

the image was divided into 10 tasks per cycles. 

• Cycle Length: The duration of the cycles was approximately 60 

seconds on average.  The largest and smallest task duration was on 

average 56 and 21 seconds, respectively. 

• Workload Distribution (W): The workload obtained when dividing the 

image into 10 tasks was 33% approximately. 
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• Perfect Number: The experiments carried out with the skywase 

image corresponded to a Perfect Number of 7 machines or workers. 

• Number of Iterations or Cycles: This was fixed to a value of between 

30 and 50 depending on the probability of loosing a machine, with 

the aim of distributing machine loss uniformly among the machines. 

 

Figure 5-10. skyvase image 

Our experiments were carried out using a mechanism integrated in the 

master process that allowed us to lose machines in a controlled way.  At the 

beginning of each cycle, machine loss was computed to occur in a pseudo-

random time according to a determined probability. Once the machine to be 

lost was determined, the master process killed the corresponding worker at 

the specific time. As a consequence, the task that was running in that worker 

was automatically reinserted in the ToDo list, waiting for another machine to 

execute it. All machines were available again at the beginning of the next 

iteration. This mechanism allowed us to repeat and compare results from 

different executions, although it did not behave exactly as a pure opportunistic 

environment. 

Table 5-3 shows the worsening percentage for execution time (ET rows) 

and efficiency (E rows) for certain determined probabilities of loss (20%, 50% 

and 90%) considering the perfect number of machines.  The first column 

shows the worsening percentage when having 7 machines (perfect number) 
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and losing 1, with respect to the case of having 7 machines without losses. 

The other two columns show the worsening percentage with respect to 7 fixed 

machines when having 7 machines plus 1 extra machine, and 1 machine is 

lost at each cycle with losing probability.  These columns correspond to the 

NR and CR strategy respectively.  All measures include the time incurred in 

both killing a worker in order to lose it, and in restoring it at the beginning of 

the next iteration. 

 

  Perfect 
Number 1 Extra Machine 

Losing 
Probability  NR NR CR 

ET 6.45% 3.41% 7.47% 20% E 1.6% 10.63% 16.69% 
ET 16.73% 8.42% 10.24% 50% E 7.64% 14.01% 16.26% 
ET 27.92% 15.77% 17.02% 90% E 12.27% 18.23% 19.74% 

Table 5-3.  Execution time and efficiency worsening percentage for a 30% workload 
application. 

When measuring efficiency, it is important to remark that with the NR 

strategy, for each cycle, all the work except that performed by the lost worker 

is productive work.  However, with the CR strategy, if a task t is replicated, 

and neither the machine executing t nor the machine executing the replica, 

are lost, then only one of these is recorded as useful work. 

The results shown in Table 5-3 agree with the simulations that were 

previously presented. We can see that with a probability of loss of 50% or 

higher, using an extra machine significantly reduces the worsening 

percentage for execution time. In these experiments, the NR strategy 

exhibited better results than the CR strategy as the application workload was 

close to 30%.  This means that the execution time for tasks does no present 

important differences among them.  Consequently, if one task is replicated but 
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another is lost, then that replication was less useful than just having an 

additional machine. 

The loss of machines was proportionally more significant in these 

experiments because, as was seen in the experimentation regarding 

scalability, the application was running with a small perfect number of 

machines. However, we observed that both in the simulations and 

experimentation, when having one extra machine, the NR strategy reduces 

the worsening percentage for execution time by more than a half.  

 



 171

 

 

SCHEDULING IN THE PRESENCE OF MACHINE LOSS 

CHAPTER 5..............................................................................................139 
5.1 INTRODUCTION ........................................................................................... 141 
5.2 BACKGROUND TO THE PROBLEM ................................................................ 143 
5.3 IMPACT OF MACHINE RECLAIM .................................................................. 146 
5.4 STRATEGIES FOR REDUCING THE IMPACT OF MACHINE LOSS..................... 150 

5.4.1. Impact of Machine Loss with the Perfect Number of Machines ........ 151 
5.4.2 Impact of Machine Loss with any Number of Machines..................... 156 

5.5 ON THE SCALABILITY OF STRATEGIES FOR REDUCING THE IMPACT OF 
MACHINE LOSS ..................................................................................................... 159 

5.6 STUDY OF STRATEGIES CONSIDERING DIFFERENT PROBABILITIES OF LOSING 
MACHINES ............................................................................................................ 162 

5.7 EXPERIMENTAL EVALUATION ON A REAL PLATFORM ................................ 165 
5.7.1 Implementation of Strategies .............................................................. 166 
5.7.2 Experimentation on a Real Platform, and Results.............................. 167 

 



 171

Chapter 6  
Conclusions and Future Work 

Abstract 

This chapter presents the conclusions obtained from 
this thesis, in addition to work currently being 
undertaken and the work plan to be followed in the 
future in order to continue research on scheduling  
of master-worker applications in opportunistic 
environments. 
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6.1 Conclusions 

In this work, we have proposed and developed solutions to certain 

challenges in executing master-worker applications within opportunistic 

environments.  We shall now review each of the main objectives in this work 

and comment on how each of these has been attained. 

Our work was aimed at developing efficient scheduling algorithms for a 

particular class of parallel applications that follow a master-worker paradigm.  

The execution environment assumed in our work was opportunistic clusters of 

machines, a particular type of non-dedicated distributed systems that are 

characterized by harnessing idle machine times for executing user jobs. We 

started our work by reviewing the most significant solutions proposed in the 

literature, paying attention to the system model, the programming model and 

the performance model adopted in each solution. According to the main 

families of scheduling solutions found in the literature, our work would be 

included within the group of application-aware dynamic scheduling strategies, 

including aspects with regard to system-awareness. 

We identified the main features that characterize both the generalized 

master-worker programming model and the opportunistic set of non-dedicated 

heterogeneous machines. Our initial problem was divided into three main sub-

problems. The first was related to the design of a scheduling strategy 

responsible for controlling the order in which tasks were assigned to 

processors. The second dealt with the allocation of a proper number of 

resources to the application. The last sub-problem focussed on the 

attenuation of the effect produced by machine pre-emption.  

An initial simulation study was carried out in order to evaluate different 

scheduling policies by considering a fixed number of homogeneous machines. 

This study served to understand what happens in a simple scenario in which 

master-worker applications exhibiting a wide range of different characteristics 
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were scheduled.  We developed the Random & Average scheduling policy, 

which does not use any a priori information about the behavior of the 

application, and works basically by sorting tasks according to their average 

execution time, then assigning them in accordance with this order. We 

compared this with the LPTF, LPTF on Average and Random policies.  All 

these strategies exhibited different degrees of dynamic adaptability and a 

priori information required of the application. We found that Random & 

Average performs similar to other policies, such as LPTF, which are not 

applicable in practice because they require precise information beforehand 

about the execution time of the application tasks. This study can be found in: 

 

[HS+00a] E. Heymann, M. A. Senar, E. Luque and M. Livny, “Evaluation of an 

Adaptive Scheduling Strategy for Master-Worker Applications on 

Clusters of Workstations”, Proc. of 7th International Conference in 

High Performance Computing (HiPC 2000), Lecture Notes in 

Computer Science series, Vol. 1970, pp. 310-319, 2000. 

 

[HSL00a] E. Heymann, M. A. Senar, E. Luque, “Adaptive Scheduling for 

Master-Worker Applications on Clusters of Workstations”, in Actas 

de las XI Jornadas de Paralelismo (Proceedings of the XI Spanish 

Workshop on Parallel Computing), pp. 205-210, Granada, Spain, 

September 2000. 

 

[HSL00b] E. Heymann, M. A. Senar, E. Luque, “Gestión dinámica de 

aplicaciones master-worker sobre sistemas distribuídos”, in Actas 

del VI Congreso Argentino de Ciencias de la Computación 

(Proceedings of the VI Argentinian Conference on Computer 

Science) CACIC 2000, pp. 1077-1088, October 2000. 

 



 175

From the simulation study mentioned above, we derived the concept of 

ideal interval, which corresponds to a number of machines for executing a 

master-worker application obtaining both a reasonable execution time and 

good efficiency.  We developed a self-adjusting strategy that dynamically 

attempts to reach a number of machines belonging to the ideal interval. A 

preliminary version of the strategy used an empirical table obtained from the 

simulations.  This method presented certain drawbacks in terms of algorithm 

complexity and stability properties, therefore we developed a new version that 

performed the adjustment in a completely dynamic way, without the need for 

any external table. The decision-making process in this dynamic self-adjusting 

strategy is guided only by direct performance information collected from the 

application during its execution. According to the execution time and the 

efficiency exhibited by the application in each one of its main iterations, the 

strategy allocates or releases resources following certain simple rules. 

Initially, the algorithm worked on homogeneous environments, but later it 

was corrected in order to also be executed on heterogeneous environments.  

The use of a normalization factor was included, due to the need for sorting 

tasks according to their relative importance in terms of computational 

complexity.  

As a means of evaluating the self-adjusting strategy, we implemented an 

image thinning master-worker application, which was executed on a real 

opportunistic system. We compared the execution of the thinning application 

both with and without using the self-adjusting strategy in homogeneous as 

well as heterogeneous environments. In all cases, by using our self-adjusting 

strategy, efficiency was close to 0.8, while execution time was not greater 

than 15% of the time obtained when using as many workers as tasks in the 

non self-adjusting case.  The improvement in efficiency achieved by our 

strategy implied that the application was able to save 40% of resources in 

most of cases, with only a small degradation in the overall execution time. 
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The version using static tables, the fully dynamic version of the self-

adjusting strategy and their corresponding experimentation carried out on 

homogeneous environments can be found, respectively, in: 

 

[HS+00b] E. Heymann, M. A. Senar, E. Luque and M. Livny, “Adaptive 

Scheduling for Master-Worker Applications on the Computational 

Grid”, Proceeding of 2000 International Workshop on Grid 

Computing (GRID’2000), Lecture Notes in Computer Science 

series, Vol. 1971, pp. 214-227, 2000. 

 

[HS+01b] E. Heymann, M. A. Senar, E. Luque and M. Livny, “Self-Adjusting 

Scheduling of Master-Worker Applications on Distributed Clusters”. 

Proceedings of Euro-Par 2001 Parallel Processing, LNCS series, 

Vol. 2150, pp. 742-751, August 2001. 

 

Our final objective was to consider the effects caused by machine pre-

emption in opportunistic environments.  We carried out certain experiments in 

order to evaluate the number of machine losses incurred during the execution 

of a master-worker application. These results led us to focus on the study of 

the cases in which only one machine is lost in an iteration of the application, 

as this was the situation that was more likely to occur in practice. 

By simulation, we then evaluated the impact of machine reclaim on both 

efficiency and execution time, concluding that a noticeable degradation may 

be incurred when the application is executed using a number of machines that 

belong to the ideal interval and one machine is lost.  In order to alleviate this 

effect, we proposed strategies, evaluated by simulation, based on both task 

replication and on using additional machines. One strategy (denoted as 

Complete Replication) used the extra machines to replicate the largest 

application tasks. The second strategy (denoted as Single Replication) only 



 177

used one of the machines to replicate the largest task. The third strategy 

(denoted as No Replication) replicated no task at all.  

We evaluated the strategies in order to obtain an understanding of their 

scalability properties and their effectiveness in scenarios in which different 

probabilities of machine loss were assumed. Our results show that, in general, 

Complete Replication performs better than the other two strategies, when the 

application uses a number of machines bigger than or equal to the ideal 

interval for machines.  No Replication tends to perform better when the 

application uses a small number of machines (fewer than the ideal interval), or 

when the execution time for all tasks is very similar and the number of extra 

machines is only one. In general, the results show that the effectiveness of 

each strategy basically depends on the temporal characteristics of the tasks 

and the number of available machines. However, replication proves to be the 

best choice when the system can deliver all the machines to the application 

that the application itself requires. If the system cannot provide the application 

with all the machines requested, then extra machines should be used as 

ordinary machines within the pool. 

We also concluded that the number of extra machines that must be 

allocated to the application depends on the width of the ideal interval. The 

specific number of machines to be added ultimately depends on the degree of 

attenuation that we want to achieve in the overall execution time, bearing in 

mind that every extra machines implies an fixed penalty in terms of efficiency. 

Our simulations with 50 and 150 machines shown that significant attenuation 

could be achieved in most cases by using the CR strategy with only three 

extra machines. Moreover, we have seen that the attenuation effect of extra 

machines is significant when the probability of machine loss is high. No extra 

machines should be used when machine loss exhibits a low-to-moderate 

frequency. 

Finally, an implementation and evaluation of the NR and CR strategies 

were carried out in a practical environment using a PovRay master-worker 
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application.  These experiments also confirmed the effectiveness of using 

extra machines in reducing the negative impact of machine pre-emptions.  

Evaluation of machine reclaim impact and the strategies for alleviating such 

impact can be found in the following publications: 

 

[HS+01a] E. Heymann, M. A. Senar, E. Luque and M. Livny, “Evaluation of 

Strategies to Reduce the Impact of Machine Reclaim in Cycle-

Stealing Environments”, Proceedings of Cluster Computing and the 

Grid Conference (CCGrid2001), IEEE Press, pp. 320-328, 2001. 

 

[HS+01c]  E. Heymann, M. A. Senar, E. Luque and M. Livny, “Effective Use of 

Resources in Opportunistic Systems”, Proceedings of the 5th 

World Multiconference on Systemics, Cybernetics and Informatics 

(SCI2001), Vol. XIV, pp. 242-247, July 2001. 

 

The preliminary implementation of strategies for alleviating the impact of 

machine loss is described in: 

 

[LH+01]  C. López, E. Heymann, M. A. Senar, E. Luque “Estudio de 

Estrategias para Aliviar los Efectos de la Pérdida de Máquinas en 

Entornos Oportunísticos”, in the Actas de las XI Jornadas de 

Paralelismo (Proceedings of the XII Spanish Workshop on Parallel 

Computing), pp. 69-74. Valencia, Spain, September 2001. 

6.2 Current and Future Work 

We now outline current and future lines of work, as well as their present 

degree of development. 
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In chapter 4, we presented the design and results obtained with our self-

adjusting algorithm when it was executed on heterogeneous environments, 

both for efficiency and execution time. A new idea would be that of 

representing machine heterogeneity by a cost function.  Up to now, we have 

handled efficiency as a matter of time.  It can be more generally redefined as 

a measure of cost: 

 

n: Number of workers. 

Twork,i: Amount of time that worker i spent doing useful work. 

Tup,i: Time elapsed since worker i is alive until it ends. 

Tsusp,i: Amount of time that worker i is suspended, that is, when it cannot do 

any work. 

Costi:The cost associated to machine i. 

 

In accordance with this definition of efficiency, all work done with 

homogeneous machines is a particular case corresponding to having  

Costi  = 1 for all machines. 

With regard to the scheduling policy, we used the execution time average 

for the previous iterations in determining the order in which tasks will be 

executed in the next iteration.  More sophisticated prediction models can be 

used in order to support a wider range of master-worker applications.  

Examples of prediction models include using the last iteration execution times, 

the average of the last K iterations (with low values for K), or using complex 

prediction models such as those used in the analysis of temporal series 
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(ARIMA models and variants). Selecting a particular predictor would be done 

on-line, by analysing the degree of success produced by each one of the 

predictors during the initial iterations.  Another open line related to this would 

be the use of predictors that work only with the position of the tasks in the list, 

instead of considering execution times, i.e., that try to predict which task will 

be 1st, 2nd, and so on, by taking in account which task was 1st, 2nd, 3rd, etc., in 

previous iterations. 

In chapter 5, we commented on the initial implementation of the strategies 

for reducing the impact of machine losses.  We continue working on this, and 

observe that, in particular, additional research must is still required in order to 

detect, from a practical point of view, the moment at which the scheduling 

strategy should change its policy from using no replication to replication. 

This work has assumed that workers were not very distant from the master, 

and that the amount of data to be moved was significantly small in 

comparison to the computation time needed to process it; therefore, the effect 

of network delays was not considered.  We plan to extend the ideas 

presented in this thesis to a grid environment, where workers can be very 

distant, perhaps even being located in different continents.  In such cases it 

would be expensive to send only one task to each worker.  A scheduler that 

incorporates ideas aimed at data latency reduction should be developed and 

tested. 

A new line of work would arise if, instead of having a single type of worker, 

we had workers with different functionality.  Simply by having two different 

workers, all the ideas considered up to now would need to be reviewed and 

modified. We therefore plan to investigate scheduling strategies in 

opportunistic heterogeneous environments, with this new scenario in mind. 
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