Chapter 4

Restricted Diffusion

Anisotropic differential operators are widely used for image enhancement and restora-
tion. However the capability of smoothly extending functions to the whole image
domain has been hardly exploited.

As stated in chapter 1, functional extensions are governed by parabolic PDE’s,
which equal that of heat diffusion processes except for the boundary conditions. We
saw that the process has naturally associated a metric, given by the diffusion tensor,
that locally describes the way heat extends or distributes. Thus an anisotropic heat
diffusion is the analytic way of handling a dilation with non-constant elliptic structural
elements. In the context of level sets completion the tensor should degenerate/cancel
in the gradient direction, which might not guarantee existence of solutions of the
associated PDE. In the present chapter, we perform a study of diffusion tensors from
the point of view of differential geometry which provides us with a criterion to decide
when such degenerate tensors still produce solvable PDE’s. We will define a new
family of differential operators that locally restrict diffusion to the tangent spaces of
image level sets. A particular instance of such operators results in an Anisotropic
Contour Closing (ACC) that reduces the completion problem to the definition of a
smooth vector field representing the level sets to be extended.

4.1 Restricted Anisotropic Operators

Any second order partial differential operator, namely L, defines, both, a diffusion
process:
up = Lu  with  u(x,0) = ug(z)

and a functional extension:
Lu=0 with wu,=Ff

for v a curve in the image domain. In both cases, existence and uniqueness (in the
weak sense) of smooth solutions is guaranteed if L is strongly elliptic [23], [72], that
is, when it defines a scalar product on some functional space. However, extensions
focused on level sets continuation should restrict diffusion to a vector field representing
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66 RESTRICTED DIFFUSION

the level sets of the solution. Thus, the hypothesis of strong ellipticity is relaxed and
we must tackle with operators that degenerate on some vector fields.

Let us give some geometric requirements over the non null space of L that ensure
existence of solutions in the case of an operator given in divergence form. In this case,
we have that:

Lu = div(JVu)

for J a symmetric (semi) positive defined tensor (quadratic form). Strong ellipticity
means that all eigenvalues of J are strictly positive, meanwhile tensors having a null
space (kernel) of positive dimension will produce degenerate operators. The fact that
scalar products are given by symmetric (semi) positive defined tensors, motivates
embedding elliptic operators into the framework of Riemmanian geometry to study
the degenerate case. Details regarding results on differential geometry can be found
in [67].

Let (R™, g) be a Riemmanian manifold with the metric, g, given by a tensor J.
Since the matrix J is symmetric, it diagonalizes [44] (considered as linear map) in
an orthonormal basis that completely describes the metric. If @ is the coordinate
change, then we have that, as bilinear form, J = QAQ?, for A the eigenvalue matrix.
In this context, isotropic diffusion corresponds to equal eigenvalues, anisotropic to
distinct and strictly positive and restricted ! to the case of null eigenvalues. That
is, the restricted diffusion is given by a diffusion tensor, .J, defined by the following
eigenvalue matrix:

M - 0 0 --- 0
0 Am 0 0
A= 0 0 0 0
0 0 0 0
Indeed we will only consider the homogeneous case A\; = 1, for all i. Let us deter-
mine under what conditions a degenerated metric makes sense. Let &1,..., &, be the
eigenvectors of positive norm and denote by D = (&1, ..., &) the vector space (distri-

bution) they generate. If such vector space was the tangent space to a sub manifold of
R™ (integral variety of D), then the metric J would be the projection onto its tangent
space. Consequently a diffusion process governed by J would not take place in the
whole space R™ but just on the integral manifolds, namely M, of the distribution. We
claim that this integrability condition and compactness are the only requirements for
a unique solution to:

div(JVu) =0 with w, = f (4.1)

which is as smooth as the boundary function f. We remit the reader to Section 4.3
for rigorous mathematical arguments concerning the above and the next statements.
Let us devote the rest of the Section to intuitive reasonings on the precise meaning

1The word restricted applies to the the fact that diffusion restricts to the manifolds generated by
the vectors of positive eigenvalues
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of equation (4.1), those cases which always satisfy the integrability condition and
applications to image processing.

Although (4.1) does not coincide with the heat equation for manifolds, the effect of
the operator div(j Vu) may be regarded as diffusing on each of the integral manifolds
separately. For u|p; = upy not only solves an elliptic second order equation in the
manifold M, but also enjoys of the same properties as solutions to the heat equation
in R™:

1.

Maximum Principle: the extreme values of the solution u,; are achieved on the
boundary M N 9. In the particular case of a single generator, £, as M is a
curve, the effect of restricting diffusion is that the final extension changes linearly
along the level lines of £. Figure 4.1 is an example of functional extension in
an image. The function to be extended is a color map defined on the ring of
fig.4.1(a). The vector, &, guiding extension is the sinusoidal of fig.4.1(b) where
the extension scope has been restricted to the area enclosed by the ring. The
linear rate of change of the final extension (fig.4.1(d)) along the £ integral curves
is better visualized in fig.4.2. The mesh representation of fig.4.2(a) is a cut of
the mesh surface of u in the £ direction, the corresponding plot for u,; is in
fig.4.2(b). Because we have not achieved the steady state, the function uy; does
not linearly interpolate the values at the boundary as it happens in the plot of
fig.4.2(d).

Figure 4.1: General Extension: Function to extend (a), extension vector (b), inter-
mediate step (c¢) and final extension (d)

2. Smoothness: the function uys is smooth, provided f)ys is also differentiable. Let

us show the reader that the hypothesis that £ can be integrated (i.e. induces a
foliation) on the domain is essential in order to guarantee convergence to smooth
functions. The vector shown in fig.4.3(a) has a singular point at the center of the
image since all its integral curves meet there. Although the extension process
still exists, it converges to the sharp image of fig.4.3(b), which has a jump
discontinuity at the center of the image as it shows the angular cut of the mesh
of fig.4.3(c).

The integrability condition ensuring existence of solutions is a standard result
on differential manifolds known as the Frobenius Theorem [67]. The latter states
that there exist integral manifolds for a distribution D provided that the vectors
generating D fulfill an algebraic condition (D involutive). That is, a local condition
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Figure 4.2: Rate of change along integral curves: intermediate step (a) with function
plot (b) and final state (c) with function plot (d)

Figure 4.3: Singular Case: vector field (a), extension (b) and angular cut (c)

on the potential tangent spaces ensures that there will exist manifolds having D as
tangent space. To be precise, the integrability condition is given in terms of the Lie
bracket of &1, ..., & and, intuitively, measures whether the integral curves of the fields
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generated by the distribution can form a mesh or not. We note that for k& > 2 the
integral curves of the vectors & will not, in general, tangle into a web. For instance,
& =0, =1(0,1,0) and & = —yd; + 0. = (—y,0, 1) generate the curves of fig.4.4(b),
which as do not knit a mesh will never produce a surface. Meanwhile, the integral
curves of {&; = 0y and & = 20, + 0, form mesh surfaces (fig.4.4(a)) which decompose
the space in layers (leaves of the foliation). An important remark for the foregoing
discussion is that in the case of a single vector £ the integrability condition is always
satisfied.

Figure 4.4: Frobenius Theorem: integrable (a) and non integrable (b) distributions

The instances of the process 4.1 relevant in image processing are the following:

1. Image Restoration

If M is closed and transversal to the foliation and Vf C D=, then the leaves of
the foliation, M, describe the level sets of the extension u, coinciding in the case
of an n — 1 dimensional distribution. This follows from the fact that if Vf 1D,
then we have that 0Q N M C {f = const} and, thus, |y is constant. Besides
if dimD =n —1, as Vf = Vu, our restricted diffusion conforms to the Gestalt
principle that requires that level sets continuation should be differentiable at
boundary junctions. That is, the solutions suit to the idea of reliable image
restoration.

In this case, the restricted diffusion should be regarded as a simultaneous inte-
gration of all manifolds having as tangent space D. This drives (4.1) very close
to the system of PDE’s used by [4] for image in-painting. The main advan-
tage of our formulation is that it admits a simple implementation using a finite
difference Euler scheme for a non-linear heat equation.

2. Image Enhancement and Filtering

The time-dependent parabolic equation associated to the restricted diffusion:
uy = divgn (JVu)

with initial condition, u(x,0) = ug(x) an arbitrary image, is an image filtering
operator, provided that the vector £ is a smooth approximation of the image
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level sets. Because diffusion is performed along image level sets, image features
are enhanced, in the sense that they are of uniform gray-level in the final image.
Although this version of (4.1) resembles the diffusion of [9], there are some
relevant differences. First of all, the degenerate differential operator:

1
Up = ——=—=1
it vap

used in [9] can not be interpreted as a diffusion restricted to the integral curves of
¢. This follows because, given a function v = u(x1,...,z,) on R™ its divergence
on a manifold embedded in R™ is given by:

(4.2)

divas(JVu) = Z(Vu,§m>M ~divar(&m) + me«vuafm)M) =

m

=Y g, - divar(Em) + Y e + Y (Vi Enlém))

for wug,,¢,. the second derivative in the direction &,,. It follows that even in
the case of div(&,,) = 0, the equation (4.2) can either be written in divergence
form nor interpreted as diffusing the function just on the integral curves of &.
Meanwhile the development of (4.1):

diven (JVu) = Y (Vu,&n)ar - diven (6n) + D En((Va Em)ar)

m

is a second order operator on the integral manifolds, which coincides with a heat
kernel in the case of null divergence.

Besides lacking of a geometric interpretation, it is not guaranteed that steady
states of (4.2) are non trivial. This fact forces adding the usual close-to-data
constraint [62] or relying on a given number of iterations to ensure preservation
of the image most relevant features. Its geometric nature makes our restricted
diffusion evolution equation converge to a non trivial image that preserves the
original image main features as curves of uniform gray level.

. Contour Closing

If the manifold M is included in one of the leaves of the foliation associated to
D and f|p; = const, the restricted diffusion corresponds to curve continuation
and surface gap filling. This is the case we will focus on.

4.2 Anisotropic Contour Closing

We model the contour completion process as follows. Denote by 7 the set of points
to connect. Let us assume that £ is a unitary vector field defined on a band around
the curve in the image domain that smoothly extends the curve unit tangent. If we
consider a metric J with eigenvectors n = &+ and ¢ and eigenvalues A\; = 0 and
A2 = 1, then equation (1.6) tells us that closed contours of the initial image are
preserved during the evolution. Meanwhile for incomplete level curves, the effect of
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Figure 4.5: Gap filling: clover (a), ridges of its mask extension (b), (c), image graph
of uncomplete clover (d), intermediate step (e) and closing (f).

distributing heat only in the tangent direction, makes these curves evolve towards a
closed contour of uniform gray level.

Therefore if we use this restricted anisotropic operator to extend a binary map
of a unconnected curve (i.e. its characteristic function), the final state will be a
binary map of a closed model of the uncomplete initial contour. This process is the
Anisotropic Completion of Contours we suggest:

uy = div(JVu) (4.3)
Uly = Uo

with ug the characteristic function of the opened contours, ., and the diffusion tensor
J as described in the previous paragraph. Figure 4.5 illustrates the different stages
in the process of gap filling for an incomplete clover (fig.4.8(a)). Ridges of the final
characteristic function (fig.4.8(f)) correspond to the reconstructed complete contour
(fig.4.8(c)).

From the above considerations, computation of an extension conforming to the
image reduces to giving a smooth vector field representing its level curves.

4.2.1 Coherence Vector Fields

This section is devoted to the computation of a extension, £, of the unit tangent of an
unconnected curve vy smooth in a band surrounding the curve. Following the ideas
presented in [26], we will use the Structure Tensor, St, upon a suitable function to
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compute the vector field £. Notice that since orientations do not play any role in the
diffusion process, the eigenvectors of St serve to design diffusion tensors [72].

The Structure Tensor is usually employed to determine the direction of maximum
contrast change of an image u in a robust way [72]. Given an integration scale, p, it
is defined as the mean of the projection matrices, P(Vu,), onto a regularized image
gradient:

St, =G, * P(Vu,) = G, * (Vu, @ Vu,) = G, * (Vu,Vul)

where G, denotes a centered gaussian of variance p and Vu, = G, * Vu. The
eigenvector of minimum eigenvalue, &, (coherence direction) corresponds to the level
sets unit tangent direction.

Since by convolving with a gaussian we obtain solutions to the heat equation, we
have that the Structure Tensor benefits from the regularizing and extension properties
of diffusion processes. The matrix St, is the solution to the heat equation with initial
condition the projection matrix onto the image gradient vector space. This implies
that the coherence direction, £, is a infinitely differentiable field [24] that regularizes
and extends the level curves unit tangent space. This property is the key point for the
definition of the different Coherence Vector Fields. We will note by 7y the contour to
be closed and by tg its tangent space.
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Figure 4.6: LVF extension (a) of tangent vector at a gap (b)

1. Linear Vector Fields (LVF).

They are the coherence direction of the Structure Tensor compute over the
characteristic function x.,. By the above properties, £ is a smooth vector field
defined (i.e. non zero) in a neighborhood of 7y that correctly matches tq at gap
boundaries and coincides with it at other points. Figure 4.6 shows the gradient
of x-, (fig.4.6 (b)) used to compute the vector £ of fig.4.6 (a). Since £ scope may
not be large enough as to fill all gaps, it must be updated during the extension
process. Intuitively, this dynamic process yields closed shapes that resemble
the one we would get if we drew the tangent at the boundary points of the
original curve and intersected the lines. This might lead to undesirable wrong
models (fig.4.8 (b)) when the angle between the unit tangent of two consecutive
pieces is too acute as the vector field becomes singular (fig.4.8 (a)). Besides, this
pathology of the vector guiding the extension difficulties stopping the process.
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Figure 4.8: Corners Extension: LVF (a), LVF closure (b), DVF (c) and closure (d)

Note that LVF is nothing but the coherence direction of the convolution G *X~,,
which level sets might be regarded as a propagation of the original curve. The
fact that geometric flows are the natural way of propagating and deforming
shapes leads to:

2. Distance Vector Fields (DVF).

Let u be a function representing the evolution of 7y under a monotonous ge-
ometric flow, v, = 87, with 3 > 0. That is, the level sets, v = ¢, coincide
with the evolution of vy at time ¢ = ¢. Notice that at a suitable time/scale, p,
(gap dependent) the level curves of this distance map have only two connected
components that model a closure of vy (fig.4.7(a)). It follows that the coherence
direction, &, models a closure of 7y (fig.4.7(c)) that smoothly interpolates tq at
gaps and is not singular at corners (fig.4.8(c)). The shapes obtained are smooth
models (fig.4.8(d)) of the original shape based on the principle of minimum dis-
tance for joining boundary points. Although, this is a desirable property, in the
particular case of a distance between contours smaller than the gap size, LCV
is preferable, as DVF closed models do not conform to the shape yielded by
our visual system. For instance, DVF reconstruction of the broken lines of fig.
4.9(a) are not two straight lines, as expected, but the curves of fig.4.9 (b). We
remit the reader to the experiments in chapter 5.2 for illustrative examples on
the choice of the coherence vector field in practical applications

We have chosen a non convex contour in order to illustrate the dynamic process
of contour completion in fig.4.10. If gaps are not too large DVF can be computed
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Figure 4.10: Dynamic Closing of Contours

once at the beginning of the process. However, in the general case, in order to get
the maximum accuracy as possible, we recommend updating DVF over the ridges of
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the current image evolution every k iterations. The initial DVF (fig.4.10(a)) closes
the smallest gaps and reduces the length of the gaps in the ridges (fig.4.10(c)) of the
evolved image (fig.4.10(b)). DVF over the distance map of image ridges yields a vector
field (fig.4.10(d)) that closes all gaps with the exception of the largest one (fig.4.10(e),
(f)), which is the most delicate since we must interpolate a piece of high curvature.
The DVF that finally closed this gap is the vector field of (fig.4.10(g)). Ridges of the
final extension (fig.4.10(h)) are the reconstructed shape of fig.4.10(i) and represent a
smooth and accurate completion of the contour regardless of the magnitude of the
curvature.

4.3 Mathematical Issues

This section deals with the mathematical arguments that yield existence of solutions
to the restricted diffusion. In mathematical formal terms, the problem is stated as
follows. Let Q be a compact subset of R™ with a smooth boundary, 92, and let
f = f(z1,...,2,) be a smooth function defined on 9. We seek for solutions to the
following extension problem:

div(JVu) =0 with wpq = f (4.4)
for J the projection matrix onto a distribution D = (&, ...,&;) transversal to 9Q
almost everywhere:

&1

<
I

() e
6.

Because the diffusion tensor cancels on some curves, standard arguments on elliptic
PDE do not apply. One way of proving existence and uniqueness to (4.4) could be
through viscosity solutions [23], [20]. We, instead, will approach the problem from a
differential geometry point of view and show that (4.4) yields a heat equation on the
integral varieties of the distribution D (if it is involutive), which coincides with the
laplacian operator [21] for manifolds provided that the divergence of the fields &; is
zero. Existence of solutions on a generic leave of the folliation suffices to guarantee
existence and uniqueness of functions u = u(x, . . ., u,) solving the restricted diffusion
problem (4.4) in R™.

4.3.1 Solutions to the Problem on Manifolds
In order to show that (4.4) is solvable on a generic leave, M, we will first compute its

expression in local coordinates and, then, construct a solution.

Relation between Restricted Diffusion and the Heat Equation for Mani-
folds

We start with a brief introduction to notations and definitions. For a given Riem-
manian manifold, N, its scalar product will be noted by (-, ), the divergence of a



76 RESTRICTED DIFFUSION

vector field by divy(-), Lie derivatives by L and the Lie bracket by [-,-]. We recall
that if (z1,...,2n) are local coordinates, then the partial derivatives d,, are a basis
of the tangent spaces T), N and its dual, dz;, are a basis of the cotangent (linear forms)
TyN.

It follows that, in local coordinates, a vector field £ equals Y £%0,, , the derivative,
&(f), of any smooth function f: N — R is given by:

)= & f

and the metric by a (symmetric) matrix (g;;);;. Furthermore, if g = det(g;;) is its
determinant, then the volume form equals w = ¢'/2dz; ...dxy. The divergence of a
vector field £ can be defined as the Lie derivative of w along &:

ng = diVN (§)w

The quantity measures the change of a unit of volume along the integral curves of &
(fig. ....). The fact [67] that:

EW(rys- 1 02,)) = (Lew)(Oays -, 0,) = Y w(Oyse s €00, Ouy)

%

yields that the expression of divy () in local coordinates is:
divy (€) = 97 %€(g"%) + D 0. (€) (4.5)

Given a smooth function, f, it has an associated form, df, defined as:

df (&) =) =D & 0u.(f)
The gradient, V f, of such function it is defined [21] as j~1(df), for:
jiTyN = T;N
the isomorphism given by the metric j(£)(n) := (£, n)n. It follows that:

(V.6 =35G7"(df))(E€) = &(f) (4.6)

The above formulae (4.5), (4.6) are the only expressions we need to compute (4.4) in
the local coordinates of a generic leave M. If M is a manifold embedded in R™, then
given a coordinate chart:

b UCRF — McCR"
s=(81,--586) +—  (P1(8),...,9"(s)) =2
The vector fields dy, are given by 9, (¢) = (¢3,, ..., %) = ¢}, 0, + -+ - + 2.0, and

857

the scalar product by (gij)ij = ({(Oz,,0z;)rn)ij- In the case that M is an integral
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manifold of a distribution D, its generators £1,...,&, can be expressed in, both, s
and x coordinates with the relation:
Em = Em(T1, . 2p Zgﬂ oy = Em(s1,. o 58) = Y &0, =
k

=3 e (D0l 00) = (3 kol )., (4.7)
k i j k

Equipped with the above tools and notations formula (4.4) writes:
divgn (JVu) = diven ((V, Ep)gn - Em) =
= (Va, E)n - diven (€m) + D &m((Vat, En)en) =

= (Vu,bn)ar - diven (§n) + > &m((Vat, &m) ) (4.8)

where the last equality follows from the relations (4.6) and (4.7) in the case that
divgn (j Vu) is restricted to M. Before deducing from the above expression the equa-
tion in local coordinates that yields existence and uniqueness of solutions to (4.4) on
M, let us show the relation between (4.8) and heat equations on manifolds.

As in the case of R™, heat equations on manifolds are given by divergence operators
divas (JVu), for J a symmetric positive defined 2-form (i.e. a metric). It follows that

if &,...,&, are the unitary vector fields, then:
divar (JV) = 3 (Va, ) ar - divar(Em) + Y Em((Vit, Em) ar) (4.9)

The Laplacian corresponds to the case J = Id.
If the vector fields have null divergence in R™, then the two expressions (4.8) and
(4.9) are equal to:

ng VU, gm ng VU gnz ]R” Zf’m uﬁm

where ug,, is the partial derivative (in R™) in the direction &, (z1,...,2,). This
coincidence of formulations leads to:

Proposition 4.3.1 If divg=(&;) = 0, for all i, then there erists a unique solution
to the problem (4.4) on each integral manifold of D, provided that they are complete
(compact).

Proof. The proof is straightforward by existence of heat kernels in manifolds [21].
O

Remark: We note that, in the 2 dimensional case, it suffices that £ = V f*.

In the general case, we need the expression (4.8) in local coordinates for a suitable
open covering (so that boundary conditions are taken into account) to construct a
solution. Although this constitutes an extra theoretic effort, from the computational
point of view the restricted diffusion has several advantages over the heat equation
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for manifolds. Non existence of an explicit formulation for the heat kernel, makes
that, in any case, both equations (4.8), (4.9) are solved numerically. The best way
of handling equations over manifolds (curves) is via an implicit formulation [65].
A main advantage is that (4.4) provides with a global expression for (4.8) in R™
coordinates which is easily integrated using an explicit Euler scheme for non-linear
heat equations. Besides because the operator (4.8) is of second order it enjoys from
the same smoothing and regularizing properties as (4.9).

Existence of Solutions and Properties

Let us first give the expression in local coordinates. Using the same notations as in
the previous Section, we have that, in a generic local chart (s1,...,s), the operator
is given by:

diven (JVa)jp = Y (Va,&ndar - diven (Gn) + Y En((Vas&n)ar) = Y fin(8)m (u)+
+ Zém(gm(u)) = Z UE & + Z fm(s)fm(u) + <vua gm(gm»lw

where &,,(&,) stands for the vector filed Y, &n(€X)0s,. The second order term
D m Ut e, 1s of elliptic type. In fact, since the vectors & are orthonormal, we have
the following matrix equalities:

(gvljz)lzril(uézs])u(fﬁz)km = (gsy,));cm(usis]')ij (gfn)km = (ugigj)ij

Invariance of traces under linear coordinate changes, yields that > us, s, = >, e ¢, -
It follows that, in local coordinates (4.8) equals:

ZuSwLSnL + Z Fm(8)&m(u) + (Ve € (Em)) v

——
2nd order 1st order

(4.10)

which is an elliptic second order operator. General arguments on elliptic PDE yield
the following result:

Theorem 4.3.1 Let M be a compact Riemmannian manifold embedded in R™ with
boundary OM. If &,, are orthonormal vectors fields and f is a smooth function, then
the following boundary problems have a unique smooth solution:

1. div]Rn(jVu)W[ = f, with ujgpr =0

2. divgn (jVu)|M =0, with uigpr = f

3 up = dian(jVu)‘M, with ujpnr = f and initial condition a smooth function ug.
for J the projection matriz onto (€1, ..., ).

Proof. The operator dian(j V)| will be noted by Lu for short.
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1. dian(jVu)‘M = f, with Ujom = 0

Since M is compact, whatever coordinate covering, it exists a finite sub covering,
U;. Let o, be a partition of unity subordinated to this covering and note fy, =
i f. For any such coordinate set, the equation converts into the elliptic PDE
given by (4.10). It follows that the local problem:

Lui = fUi, U\BUi =0

has a unique smooth solution defined on U;. We claim that the function, wu,
defined as: _
u(p) = > _u'(p)
i

is a solution. First note that it is well defined as the summation is finite. Second,
by linearity of L, we have that:

Lu:ZLui:ZfUi :(Z%‘)f:f

as y_, ¢i(p) = 1. It only remains to check that on the boundary 0M the function
cancels. If V}, is the subset of U; intersecting the boundary, then 0V, NIM is a
covering. It follows that, for any p € M, u(p) = >, u*(p) = 0.

2. dian(jVu)‘M =0, with ujgpr = f

If & solves: B }
divgr (JV@) | = f,  uom =0

for f = Lf. Then v = f — @ solves 2.
3. up = dian(jVu)|M, with ujgp; = f and initial condition ug
It follows by existence of solutions to 2, by general arguments on PDE’s.
|

Solutions enjoy from identical properties than solutions to the problem in Eu-
clidean space:

Proposition 4.3.2 The solution to the extension problems 2 and 8 of Theorem 4.3.1
is infinitely smooth and fulfills the mazimum principle:

max u = maxwu = max f, for the case 2
M oM oM
mtaxu(t) = max(ug, f), for the case 3

Proof. Straightforward since both properties are local and the expressions in local
coordinates given by (4.10) satisfy them. O

Remark: If the boundary function f is not smooth, the solution is C* only on the
interior of the gap.
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Figure 4.11: Extension on coordinate chart: tubular chart (a), function on the
boundary (b), extension (c) and maximum principle (d)

Figure 4.11 illustrates the behavior of a solution to the parabolic problem 3 in a
strip-like coordinate chart joining two pieces of the boundary OM. We note that we
can always assume this kind of covering. This follows because, as M is geodesically
complete (it is compact), for any two points on the boundary there exists a geodesic,
v, achieving the distance between them. Now by the embedding M — R™, this
geodesic is also a curve in R”, where it has a trivial normal bundle. Projecting the
latter onto the distribution, we have that the geodesic normal bundle in M is also
trivial. Any tubular neighborhood associated to a basis, 71, ...,n,—1, of the bundle
yields a strip-shaped coordinate chart:

(S7T17 s ,Tk_:[) = 7(8) + ZT]nJ

joining to pieces of OM. The drawing in fig.1.11(a) outlines the construction of such
strip coordinate chart and the plot of fig.4.11(b) represents the function ¢ f in the case
of a constant boundary function. On such a band around =, the function interpolating
the boundary values (fig.4.11(c)) satisfies the maximum principle and is of hyperbolic
type (fig.4.11(d)) in the two dimensional case. The sum of contributions for all open
charts would yield the constant function on M.
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This Theorem is the basis for the main result of the chapter:

4.3.2 Solutions to the General Problem

The goal of this section is to prove that (4.4) has a unique solution which is as
differentiable as the boundary function f, provided that D is involutive and that for
all integral manifolds, M, the function f is smooth on QN M. We will first prove
existence and uniqueness and, then, approach differentiability of solutions.

Theorem 4.3.2 Let Q be a compact subset of R™ with a smooth boundary, 02 and
D = (&,...,&) an involutive distribution. If [ is a function defined on O such that
restricted to the integral manifolds od D is smooth, then there is a unique solution to
the restricted diffusion problem given by:

div(JVu) =0 with ujpo = f
where J is the projection matriz onto D.

Proof. As shown in the previous Sections, the differential operator restricts to a
elliptic PDE on each of the integral manifolds, M, of the distribution D, which, by
Theorem 4.3.1, has a unique smooth solution, namely uys, that extends flaonnr to
the whole leave. Now, by Frobenius Theorem these manifolds foliate the whole space,
so that Vp € R”, there exists a unique leave Mp through the point. The function in
R™ defined as u(p) = unp(p) solves the general equation. O

Theorem 4.3.3 Solutions given by Theorem 4.3.2 are as smooth as the boundary
function f is on O0N).

Proof. Because it suffices to check the statement locally, we can assume that we
are in a generic coordinate chart given by the Frobenius theorem, where the leaves
of the distribution D correspond to the hyper-planes {z; = ¢1,...,2p = cu}, for
M = n — k. We will show that for any such neighborhood cutting 052, the solution
u(zy,...,x,) is as differentiable as f. The statement follows by, iteratively, repeating
the argument to the function u restricted to the boundary of the closure of an interior
neighborhood.

Let us assume that f is C™ and that the coordinate system is the one given by
Frobenius. We recall that by compactness of €2, the boundary function f is, indeed,
uniformly smooth and that by Proposition 4.3.2, we already have that u is uniformly
C™ with respect to the coordinates, (zs,...,2,), that define the distribution. In
order to prove differentiability with respect to the other coordinates, we note that
because the distribution is transversal to 992 almost everywhere there are only two
possibilities:

1. All leaves {x1 = ¢1,...,2p = cpr} are transversal to the boundary.

In this case (fig.4.12(a)), modulo a permutation of the last coordinates (x s, . .., zy),
the boundary is given by a graph x,, = ¢(x1,...,x,—1). It follows that in coordi-
nates (Y, X) = (Y1, -, UM EM 41y -+ Tn) = (X1, e o oy CML TN 41y - -+ T, Ty —
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8 Q= {Xn:0} Y=Y

Y=y - !

20
(a) (b)

Figure 4.12: Foliation transverse (a) and tangent (b) to the boundary

d(x1,...,2n-1)), the integral manifolds are given by {Y = const} and the
boundary by 092 = {z,, = 0} 2 {X = 0}. Using this coordinate system, we
have that:

[u(Y1, Xo) — u(Ya, Xo)| < |u(Y1,0) —u(Y1, Xo)| + |u(Y1,0) — u(Yz,0)[+
+ Ju(Y2,0) — u(Y2, Xo)| < |ujar(0) — upns (Xo)| + [£(¥1,0) — f(Y2,0)]+
+ Juar (0) = upar(Xo)| < Curl[Xol| 4+ Cue[| X || + Cy[[Yy — Y|

The last inequality by uniform continuity of both u|y; and f and, holding, for
any partial derivative of u of order less or equal to n. We conclude that the
function u is as smooth as f.

. There is a (single) leave tangent to the boundary as in fig.4.12(b).

As the boundary is not diffeomorphic to any hyper plane defined by the last
n — M coordinates, we can not directly apply the above argument. We claim
that the solution restricted to the axis {z, = 0} D {X = 0} is as smooth as f,
which reduces this case to the previous one. Intuitively, such degree of differ-
entiability follows from the fact that the extension process may be understood
as propagating the values of f along the leaves. The formal proof is a straight
consequence of the argument given in the first case applied to a neighborhood
not containing the tangent leave (like the dotted square of fig.4.12(b)).





