

Dynamic Tuning
of Parallel/Distributed Applications

Departament d’Informàtica

Unitat d’Arquitectura d’Ordinadors

i Sistemes Operatius

Thesis submitted by Anna Morajko in
fulfillment of the requirements for the
degree of Doctor per la Universitat
Autònoma de Barcelona.

Barcelona, December 18, 2003

Dynamic Tuning
of Parallel/Distributed Applications

Thesis advis

Tomàs Margalef

Barcelona, Decembe
Thesis submitted by Anna Morajko in

fulfillment of the requirements for the

degree of Doctor per la Universitat

Autònoma de Barcelona. This work has

been developed in the Computer

Science department of the Universitat

Autònoma de Barcelona and was

advised by Dr. Tomàs Margalef Burrull.

or

 Burrull

r 18, 2003

Acknowledgements

First of all I want to thank to my advisor, Dr. Tomàs Margalef, for giving me the chance to

make such a work. I thank him for spending with me so much time and helping me with

my research. I appreciate his contribution and suggestions resulting in significant

improvements of my work. Moreover, I really thank him for his encouragement in my

private life during all these years.

I thank to Prof. Emilio Luque for his continuous support, contribution and valuable

criticism and suggestions. Thanks to him I had so many chances to present my work to the

public. His life understanding made that this work has been completed.

I would like to express my thanks to Barton Miller for his ideas and continuous questions

concerning the work. The expert support and so quickly given answers were really

appreciable.

I also want to thank a lot to all people from the CAOS group. They facilitated me every

day of my work. In particular I want to thank to Anna Cortés, Elisa Heymann, Eduardo

César, Remo Suppi, Josep Jorba for their emotional support and disposition at any time.

I thank very much to my family. First of all, my deepest thanks go to my husband, Oleg

Morajko, for the most important thing in my life: for being with me all the time for better

and worse. I thank him for his help, for uncountable advises and suggestions, and for his

really significant technical support. My great thanks go to my parents, I really appreciate

their understanding, constant encouragement and big help at home. Finally, I would like to

give my thanks to my sweet son Dawid for being so good boy what helped me to finish the

work.

Table of contents

ABSTRACT .. V

CHAPTER 1: INTRODUCTION .. 1
1.1. GENERAL OVERVIEW.. 1
1.2. OUR GOALS .. 4
1.3. CONTRIBUTION .. 5
1.4. ORGANIZATION OF THESIS.. 7

CHAPTER 2: CLASSICAL PERFORMANCE ANALYSIS.. 9
2.1. APPROACHES.. 9
2.2. PERFORMANCE MONITORING.. 10

2.2.1. Timing ... 11
2.2.2. Profiling... 12
2.2.3. Event tracing.. 13
2.2.4. Hardware counters... 14

2.3. VISUALIZATION.. 15
2.4. EXAMPLE TOOLS .. 17

2.4.1. Tape/PVM ... 17
2.4.2. PICL .. 18
2.4.3. ParaGraph .. 19
2.4.4. Vampir ... 20
2.4.5. Pablo .. 21
2.4.6. XPVM.. 22

2.5. PREDICTIVE ANALYSIS ... 23
2.5.1. Lost Cycles Analysis ... 24
2.5.2. P3T .. 25
2.5.3. Dimemas.. 26

2.6. CONCLUSIONS .. 26

CHAPTER 3: AUTOMATIC PERFORMANCE ANALYSIS 29
3.1. OVERVIEW ... 29
3.2. DYNAMIC PERFORMANCE ANALYSIS .. 31
3.3. EXAMPLE TOOLS .. 32

3.3.1. KappaPi ... 32
3.3.2. Paradise.. 34
3.3.3. AIMS ... 35
3.3.4. Paradyn .. 37

3.4. CONCLUSIONS .. 38

CHAPTER 4: DYNAMIC PERFORMANCE TUNING... 41
4.1. OVERVIEW ... 41
4.2. REQUIREMENTS AND CONSTRAINTS ... 44

 I

4.2.1. Parallel application control.. 44
4.2.2. Global analysis .. 44
4.2.3. Application knowledge ... 45
4.2.4. Run time monitoring and optimization ... 46
4.2.5. Low intrusion .. 46
4.2.6. Target bottlenecks ... 47

4.3. AUTOMATIC ANALYSIS VS. DYNAMIC TUNING... 47
4.4. CLASSIFICATION OF DYNAMIC PERFORMANCE TUNING .. 49

4.4.1. Tuning layers... 49
4.4.2. Tuning approaches .. 55
4.4.3. Alternative tuning approaches... 56

4.5. APPLICATION ANALYSIS BASED ON KNOWLEDGE ... 57
4.6. DYNAMIC TUNING SUPPORTED BY APPLICATION SPECIFICATION.............................. 59

4.6.1. Definition of parallel patterns and framework .. 60
4.6.2. Parallel pattern-based framework.. 61
4.6.3. Conceptual architecture... 62

4.7. DYNAMIC INSTRUMENTATION.. 63
4.7.1. DynInst overview .. 63
4.7.2. Abstractions... 64
4.7.3. DynInst usage.. 65
4.7.4. Example snippet creation .. 67
4.7.5. DynInst internal issues .. 68
4.7.6. Structural analysis ... 68
4.7.7. Instrumentation management .. 69
4.7.8. DPCL... 70

4.8. DYNAMIC MODIFICATIONS OF AN APPLICATION ... 72
4.9. EXAMPLE TOOLS .. 73

4.9.1. Falcon / MOSS.. 74
4.9.2. SCIRun .. 75
4.9.3. Autopilot.. 76
4.9.4. Active Harmony .. 77
4.9.5. AppLeS.. 79
4.9.6. Mojo, Dynamo .. 80
4.9.7. HotSpot.. 81

4.10. CONCLUSIONS.. 81

CHAPTER 5: MATE.. 83
5.1. MOTIVATION AND GOALS .. 83
5.2. OVERVIEW OF REQUIREMENTS... 85

5.2.1. Target environment ... 85
5.2.2. Users.. 85
5.2.3. Required system characteristics .. 86
5.2.4. Assumptions and dependencies... 87

5.3. FUNCTIONAL REQUIREMENTS .. 88
5.4. DESIGN ISSUES... 90

5.4.1. Control of the execution of the parallel application.. 90
5.4.2. Performance monitoring.. 93
5.4.3. Performance analysis... 98
5.4.4. Tuning ... 103

 II

5.4.5. Overhead minimization ... 105
5.4.6. Portability .. 107
5.4.7. Support for alternative communication libraries ... 107

5.5. MATE ... 107
5.5.1. Architecture ... 108
5.5.2. Application Controller... 109
 Communicator ... 110
 PVM tasker .. 111
 PVM hoster.. 112
 Task Manager .. 114
 Monitor .. 115
 Tuner.. 117
5.5.3. Dynamic monitoring library .. 118
5.5.4. Analyzer .. 121
 Dynamic Tuning API .. 123
 Tunlets ... 128

5.6. RESTRICTIONS AND LIMITATIONS... 129
5.7. CONCLUSIONS .. 130

CHAPTER 6: TUNING TECHNIQUES... 133
6.1. INTRODUCTION .. 133

6.1.1. Catalog organization.. 134
6.1.2. Technique description ... 135
6.1.3. Environment description ... 136

6.2. MESSAGE AGGREGATION ... 137
6.2.1. Motivation ... 137
6.2.2. Applicability and conditions.. 138
6.2.3. Solution.. 139
6.2.4. Implementation.. 141
6.2.5. Experiments ... 143
6.2.6. Conclusions ... 145

6.3. TCP/IP BUFFERS.. 145
6.3.1. Motivation ... 145
6.3.2. Applicability and conditions.. 147
6.3.3. Solution.. 147
6.3.4. Implementation.. 149
6.3.5. Conclusions ... 150

6.4. MEMORY ALLOCATION... 150
6.4.1. Motivation ... 150
6.4.2. Applicability and conditions.. 151
6.4.3. Solution.. 151
6.4.4. Implementation.. 153
6.4.5. Experiments ... 154
6.4.6. Conclusions ... 158

6.5. PVM COMMUNICATION MODE... 159
6.5.1. Motivation ... 159
6.5.2. Applicability and conditions.. 160
6.5.3. Solution.. 161
6.5.4. Implementation.. 162

 III

6.5.5. Experiment 1 ... 162
6.5.6. Experiment 2 ... 164
6.5.7. Conclusions ... 167

6.6. PVM ENCODING MODE.. 167
6.6.1. Motivation ... 167
6.6.2. Applicability and conditions ... 169
6.6.3. Solution ... 170
6.6.4. Implementation.. 171
6.6.5. Experiment 1 ... 171
6.6.6. Experiment 2 ... 174
6.6.7. Conclusions ... 175

6.7. PVM MESSAGE FRAGMENT SIZE.. 176
6.7.1. Motivation ... 176
6.7.2. Applicability and conditions ... 177
6.7.3. Solution ... 178
6.7.4. Implementation.. 180
6.7.5. Experiment 1 ... 181
6.7.6. Experiment 2 ... 184
6.7.7. Conclusions ... 185

6.8. MERGING PVM TUNING TECHNIQUES.. 185
6.9. WORKLOAD BALANCING.. 187

6.9.1. Motivation ... 187
6.9.2. Applicability and conditions ... 189
6.9.3. Solution ... 190
6.9.4. Implementation.. 193
6.9.5. Experiment 1 ... 195
6.9.6. Experiment 2 ... 197
6.9.7. Conclusions ... 201

6.10. NUMBER OF WORKERS ... 202
6.10.1. Motivation ... 202
6.10.2. Applicability and conditions ... 202
6.10.3. Solution ... 203
6.10.4. Conclusions ... 205

CHAPTER 7: CONCLUSIONS AND FUTURE WORK ... 207

7.1. CONCLUSIONS.. 207
7.2. FUTURE WORK ... 210

7.2.1. Global and local analysis... 210
7.2.2. Performance analysis... 211
7.2.3. Metrics... 212
7.2.4. Provision of the application knowledge .. 212
7.2.5. Tuning techniques ... 213
7.2.6. Instrumentation evaluation.. 214
7.2.7. Event record .. 214
7.2.8. Recommendations ... 216
7.2.9. Toward grid ... 216

BIBLIOGRAPHY ... 219

 IV

Abstract

The main goal of parallel/distributed applications is to solve the considered problem as fast

as possible utilizing a certain minimum of the parallel system capacities. In this context,

the application performance is one of the most important issues. The classical way of

improving the application performance is based on the analysis of the monitoring

information obtained from an execution of the application. Developers must search through

this information for the bottlenecks and optimize the application behavior changing the

source code manually. This approach requires developers to do many tasks and have a

great experience about parallel programming. Therefore, the classical application tuning is

then very difficult especially for non-expert programmers. It is necessary to provide tools

that automatically carry out these tasks. Moreover, this classical approach is not feasible

when the applications have a dynamic behavior. Many applications have a different

behavior according to the input data set or even change their behavior dynamically during

the execution. In this case, another approach is required to accomplish performance

expectations. It would be desirable that the performance tuning could be done on the fly by

modifying the application according to the particular conditions of the execution.

This thesis addresses the problem of automatic and dynamic tuning of parallel and

distributed applications. Our objective is to help developers in the process of improving the

application performance. This work presents a whole solution that deals with the issues of

automatic and dynamic application improvement. In this approach, an application is

monitored, its performance bottlenecks are detected, solutions are given and the

application is modified on the fly. All these steps are performed automatically,

dynamically and continuously during application execution. This approach exempts

developers from performance analysis and difficult intervention to a source code by

automatically improving the performance of parallel programs during run-time. The

dynamic analysis and introduced modifications permits to adapt the behavior of the

application to dynamic variations.

With this objective we have developed an environment called MATE (Monitoring,

Analysis and Tuning Environment) that provides dynamic automatic tuning of parallel

applications. MATE performs dynamic tuning in three basic and continuous phases:

 V

monitoring, performance analysis and modifications. This environment dynamically and

automatically instruments and traces a running application to gather information about the

application behavior. The analysis phase searches for bottlenecks, detects their causes and

gives solutions on how to overcome them. Finally, the application is dynamically tuned by

applying given solution. Moreover, while it is being tuned, the application does not need to

be re-compiled, re-linked and restarted.

Many various practical experiments have been conducted on distributed and parallel

applications to see if this approach really works. We have proven that it is effective,

feasible, profitable, and can be used for a real improvement of the program performance.

Running applications under control of a dynamic tuning system has allowed for adapting

their behavior to the existing conditions and improving their functionality.

 VI

Introduction

Chapter 1

Introduction

In this chapter, we present a general overview of the application performance problem. In

particular our work focuses on parallel and distributed applications. We show what are the

goals of this thesis and its contributions. Finally, we present the organization of thesis.

1.1. General overview
The high performance computation demand increases day by day. In many different fields,

but in particular scientific, have appeared a strong need of such a computation since each

time more and more problems must be solved by specially developed applications. This

situation has taken the evolution of science to a new step called computational science.

Applications that support computational science facilitate the determining of the human

genome, computing the atomic interactions in a molecule, simulating the evolution of the

universe or climate model simulation, to mention only few. So biologists, chemists,

physicists and many other researchers have become intensive users of applications with

high performance computing requirements. The usage of such applications requires many

resources as they become more data intensive and perform more sophisticated calculations.

Therefore, scientists submit very large applications to powerful systems in order to solve

the problems and get the results as fast as possible, considering the largest data size and

taking advantage of all the resources available in the system.

The increasing need of high performance systems has driven scientists towards

parallel/distributed systems. Parallel systems are computers consisted of a set of processing

units that work cooperatively in parallel to solve a computational problem. Parallelism is a

general term used to characterize a variety of simultaneous actions occurring in a

computer, especially on a parallel computer. Parallel computers offer high potential

resources like processing speed, memory or disk capacity. Although such systems have

their performance limits, they are much more powerful than the rest of the computers and

hence are better for solving scientific problems demanding intensive computation.

 1

Introduction

Therefore, architectures, compilers and operating systems have been developed to extract

and use as much parallelism as possible in order to speedup computation.

Parallel applications must be developed in a specific way to be able to run on parallel

systems and utilize their features. First of all such applications must provide the ability to

perform many different operations at the same time. The main goal of these applications is

to solve the considered problem as fast as possible utilizing a certain minimum of the

parallel system resources. In this context, parallel application performance becomes a

crucial issue. The difference between the expected and real performance should not appear

as a significant gap. The objective is to reduce this gap as much as possible.

Therefore, programmers of parallel applications are responsible for providing the best

possible behavior of these applications. Applications will be useless and inappropriate

when their performance is under acceptable limit. Programmers then face up to many

problems that must be solved if such applications are to fulfill their promises to obtain the

highest performance in a due environment.

Once an application has been implemented in parallel, developers must systematically test

it from the functional point of view to guarantee its correctness. Then, to reach the goal and

provide the highest performance, programmers are obligated to carry out an application

optimization process to ensure that there are no performance bottlenecks during the

application execution.

The optimization process, also known as tuning process, requires a developer to go through

the application performance analysis and the modification of critical application

parameters. The tuning process implies then several phases. First, the performance

measurements must be taken in order to provide information about the application. This

phase is known as the monitoring – it collects information related to the execution of the

application. Then, the analysis of this information is performed. Performance analysis finds

performance bottlenecks, deducts their causes and determines the actions to be taken to

eliminate these bottlenecks. Finally, appropriate changes must be applied into the

application code to overcome problems and improve performance.

 2

Introduction

The essential, and at the same time the most complicated task of the tuning process is

performance analysis. It must be pointed out that, in practice, the causes of performance

bottlenecks can be found at different levels. For example, a communication problem can

result from:

• An erroneous conception of the application that provokes an unnecessary blocking time

in a receive primitive.

• Communication library implementation. In many cases, the design or implementation

of the software layers is generic and is not optimized for a particular system or for

particular conditions. This implies that the application may behave differently than

expected.

• Operating system features. For example, an inappropriate buffer size and the message

treatment at the protocol level can interfere with application message delivery times.

• Underlying hardware capabilities. The interconnection network features (latency,

bandwidth, etc.) or even the contention in the network can seriously slow down the

application.

As a consequence, the developers are forced to master the application, the involved

software layers and the distributed system behavior. Moreover, parallel computing evolves

from homogeneous parallel systems to distributed heterogeneous systems what

significantly extends difficulties. In many cases the application performance also depends

on the input data set. This fact implies that a set of potential bottlenecks can vary for

different executions. All these issues make the performance tuning process difficult and

costly, especially for non-expert programmers as it requires a high degree of expertise to

really improve the performance of the application.

To tackle all these problems, user-friendly tools should be available. However, in the area

of performance optimization, there is still a lack of real useful tools and most of them

require from the user a deep knowledge about the parallel and distributed systems and

programming. Therefore, it is necessary to provide tools that automatically carry out tasks

of the parallel program optimizations what exempts a developer from some of the

performance-related duties. The required tools include programming environments,

debugging tools and performance tuning systems. A good, reliable and simple performance

optimization tool is necessary to provide a developer with appropriate and sufficient

 3

Introduction

information about the application behavior, as well as with possible changes. Such a tool

could help a programmer to improve the performance of the application.

1.2. Our goals
The principal objective of this work is to investigate if it is possible to dynamically tune

performance of distributed parallel programs. In this sense, our idea is to automate all the

phases that we have distinguished in the performance tuning process and perform them

dynamically on the running parallel application. Such approach would help programmers

in the whole process of improving the performance of parallel and distributed applications.

To support developers with dynamic performance tuning and practically evaluate its

profitability, we would like to create the dynamic tuning environment that facilitates

monitoring, performance analysis and optimization of parallel applications. All these steps

should be done automatically, dynamically, and continuously during application execution.

Therefore, our main idea is to build an environment that is characterized as shown in

Figure 1.1. The ideal solution would be to construct a tool that is able to automatically

accelerate the application execution by adapting it to changing conditions. Such a solution

would relieve developers from the complex manual tuning tasks. Moreover, while

performing these optimization phases it would be desirable not to require the access to the

source code, recompilation, nor re-linking and restart. To ensure the profitability of the

runtime optimizations, we must consider intrusion related issues and try to minimize its

impact. Therefore, overhead introduced by the tuning tool must be small and not

significantly interfere the application execution.

Fig. 1.1. Dynamic tuning approach provided by our environment.

Analysis

Modifications

Events

Tuning

Problem
Solution

Suggestions for users

Monitoring Parallel
program

Measurements

 4

Introduction

Another goal of this thesis is practical experimentation with dynamic tuning in order to

check its effectiveness and profitability. Therefore, we should conduct many tests on

different real applications in real environment. Only experiments with existing tuning tool

that permits dynamic optimizations of real applications will provide the complete view of

the potential benefits obtained when using this approach.

An important issue that should be also investigated is the applicability of the dynamic

tuning approach. We have to verify in what circumstances dynamic tuning can be applied

effectively and what conditions must be fulfilled by parallel applications and systems. The

question to be answered is if dynamic tuning can totally replace other – classical and

automatic – approaches to the performance analysis. Is it a solution for all the problems

that appear in the optimization process? Or is it in some cases limited? If it is the case we

must define the limits of its usage.

An issue of particular importance is the representation of knowledge that we can utilize

when optimizing an application. A tuning tool must have built-in such a knowledge to use

it while analyzing the application behavior, finding bottlenecks and determining solutions.

Application analysis without knowledge about its internal structures and dynamic

modifications of unknown application structures is very complicated. It is not realistic to

assume that any modification on any application in any environment can be done on the

fly. This knowledge should be specified independently from the tool implementation, in

order to permit extensibility and the inclusion of new performance problems. It would be

ideal to provide totally external solution that would support the tuning tool with all the

required information about the application.

1.3. Contribution
The main objective of this thesis has been to show that the performance of distributed

parallel programs can be improved automatically during run-time. Therefore, we have

investigated this idea and it has given a fruitful results that can be summarized in that this

approach works, is applicable, effective and useful in certain conditions. We have proved

that it appears as a powerful technique to accomplish the successful performance of

applications with dynamic behavior.

 5

Introduction

However, we have encountered some limits of the usage of this approach. Due to

incomplete application information dynamic tuning of unknown application is

complicated, hard or sometimes even impossible. In general the performance analysis

cannot be performed effectively without knowledge about what the application does.

Dynamic modifications of unknown application structures are complex, may appear as

dangerous and hence must be done very carefully. Therefore we have distinguished

different layers of the application that can be tuned: application-specific code, standard and

custom libraries (API + code), operating system libraries (API + code), hardware. For

some layers we have many common information and hence we can extract well defined

bottlenecks representative for many applications and define their solutions. In other case, it

is required to provide a knowledge about the specific application problems and solutions

since there is no information about the potential application bottlenecks. We differentiated

two tuning approaches: automatic and cooperative. In the automatic approach the

application is treated as a black-box, because no application-specific knowledge is

provided by the programmer. In the cooperative approach we assume that an application is

tunable and adaptable as a developer must provide application-specific information and

prepare an application for the possible changes.

To make the solution homogeneous for both the automatic and cooperative tuning

approach, we decided that the application should be represented by a set of necessary

information required for the monitoring, analysis and tuning. We defined that the

application knowledge consists of measure points (what must be monitored in the

application), performance model (activating conditions and/or formulas that allow for

finding the optimal conditions), tuning action/point/synchronization (what, where and

when can be changed in the application to obtain its better performance).

Another principal contribution of the thesis has been a real functioning tool that supports

users with automatic and dynamic tuning and relieves them of many complex tasks.

Moreover, we also wanted to prove experimentally that dynamic tuning is useful,

beneficial and applicable. For this purpose we have developed MATE – Monitoring,

Analysis and Tuning Environment. MATE supports three basic functionalities:

performance monitoring, performance analysis and tuning. All these phases are performed

automatically and continuously on running parallel distributed applications. The

environment is based on the computational steering loop concept and exempts a developer

 6

Introduction

from intervention into the tuning process. Conducted experiments showed that MATE is

able to adapt the application to the dynamic behavior and can be applied to many

performance bottlenecks that may appear during the application execution.

To perform all phases on the fly, we based our environment on the dynamic

instrumentation. This technique provides a possibility to manipulate a running program

without access to its source code. By applying this method, it is possible to monitor and

tune a parallel program during run-time. Moreover, the program does not need to be re-

compiled, re-linked and restarted while instrumenting and applying changes. MATE is

based on the DynInst library to provide the performance monitoring (application

instrumentation and data collection) and tuning (modifying the code of running

application).

MATE provides both black-box and cooperative tuning. There are some common

bottlenecks that MATE is able to monitor, detect and solve automatically, but it also

provides an easy way to add information about other performance problems. The

environment is based on the knowledge that contains a set of tuning techniques

representing different problems. To support the analysis of many problems, MATE

includes the catalog of tuning techniques where each technique solves a particular

problem. One tuning technique provides information about measure points, performance

model (analytical model or set of rules) and tuning action/points/synchronization. Such a

knowledge is provided to MATE via specific libraries called tunlets.

1.4. Organization of thesis
The work presented in this thesis is divided in chapters as follows.

Chapter 2 introduces the general overview of the classical approach to the performance

analysis of parallel applications. It describes the measurement techniques used for the

purposes of this approach. Finally we present a set of tools that support the classical

performance analysis.

In Chapter 3 we describe the principles of the second approach to the performance

analysis, namely automatic analysis. We also introduce an extension to this approach

 7

Introduction

which permits dynamic analysis of the parallel application during their execution. Finally,

we show the set of tools that provide automatic performance analysis.

Chapter 4 is devoted to the dynamic automatic performance tuning approach. We explain

the fundamental concepts of dynamic optimization and introduce its requirements and

constraints. This chapter compares dynamic tuning to automatic and dynamic analysis and

indicates advantages and disadvantages of both approaches. We define our principal

taxonomy and classification of dynamic tuning and we show at which layers the

performance tuning is possible. We present our representation of knowledge that is

required to dynamically optimize an application. This chapter also shows our idea on how

to facilitate dynamic tuning process. Therefore, we present the design of pattern-based

framework that provides parallel application specification. We introduce the specific

library called DynInst, that supports dynamic instrumentation approach what allows us for

application monitoring and optimization on the fly. We introduce the set of modifications

that are possible to be applied dynamically. Finally, this chapter presents a set of existing

tools that are related with the tuning area.

In Chapter 5 we present design and implementation of MATE – Monitoring, Analysis and

Tuning Environment. We describe our dynamic tuning environment presenting its

requirements, architecture and design. We show all its modules namely Monitor, Analyzer

and Tuner together with the implementation aspects.

Chapter 6 presents a catalog of tuning techniques that we studied within our work. Each

tuning technique is described in a systematic way and consists of a set of sections that

explain the performance problem the technique addresses, its general applicability, solution

it applies, the implementation aspects and the conducted experiments. The experimental

work provides the possibility to see the benefits that we can achieve utilizing MATE to

improve the application performance. We collected all measurements by tuning synthetic,

as well as real applications.

Finally, Chapter 7 summarizes and concludes our work, outline open problems and discuss

directions for future work.

 8

Classical performance analysis

Chapter 2

Classical performance analysis

In this chapter, we present a general overview of the classical performance analysis of

parallel and distributed applications. Two principal approaches to the classical application

analysis are described: based on visualization of the execution and based on prediction of

the behavior. We introduce different existing techniques of performance measurement that

are utilized in the performance data collection process for the purposes of the application

behavior analysis. We also present a set of available tools that support classical

performance analysis of parallel programs.

2.1. Approaches
The principal goal of parallel and distributed applications is to benefit from the potential

high computational capabilities of parallel systems. However, obtaining high performance

of an application running in such a system becomes a hard task. To develop an application

characterized by adequate performance, programmers must face up the analysis process.

Therefore, to attend the performance analysis problem and help programmers in the

application improvement, many tools have been presented. There are two principal

classical solutions implemented by these tool: the first has been classified as “measure and

modify”, the second as predictive.

The “measure and modify” approach of the classical analysis of parallel applications is the

oldest one and is based on the visualization of the program execution. Generally, tools that

support this approach show the execution of the application in different graphical and

numerical views. To be able to visualize application behavior, first the classical tools

requires the usage of monitoring tools to obtain performance data (a.k.a. measurements)

from the application execution. Then, visualization tools perform measurements and

generate different graphics of application behavior. As the next step, users must analyze

generated views selecting the most problematic regions and finally change the application

source code. This process repeats again until an adequate performance is achieved. In this

approach two main steps can be identified: monitoring and visualization.

 9

Classical performance analysis

On the other hand, the principle of the predictive approach to the classical performance

analysis is to build a model of the application behavior. Such a model provides a way to

understand performance problems. The predictive analysis is based on the simulations of

the application execution. As a result of the performance analysis a user will receive the

expressions constructed by the tool that model the application performance. Using these

models benefits in the prediction of the future application behavior. However, the user

must understand and process the performance analysis results to improve the application.

2.2. Performance monitoring
The application performance analysis requires performance data gathered from the

application executions. Therefore, the application must be monitored in order to get such a

data. The performance monitoring process consists of two main phases: instrumentation

and measurement collection. The parallel program is executed under control of a

monitoring tool that allows for measuring and collection of performance data. The main

purpose of this data is to illustrate specific information about the application execution. To

generate such a data, some piece of logging code, so called instrumentation, must be

inserted into the original code of the application. The instrumentation is inserted at all

points in the application code that are to be monitored. In the classical analysis approach

the insertion is done by the monitoring tool in preprocessing phase or manually by the

programmer. Once the application has been instrumented with the specific calls to the

monitoring code, it must be compiled and linked with appropriate monitoring libraries.

It is also possible to insert the instrumentation dynamically. The principle of dynamic

instrumentation is to defer program instrumentation until it is in execution and insert, alter

and delete this instrumentation dynamically during program execution. The program being

modified is able to continue its execution and does not need to be re-compiled, re-linked,

or restarted. Dynamic instrumentation is provided by a library called DynInst. Details of

dynamic instrumentation and the DynInst library will be explained later in Chapter 4.

When the application is being executed and is performing a part of code with inserted

instrumentation, this instrumentation allows for data measurement and collection. For

example, to calculate how many times a function is called, the monitoring call must be

inserted at the beginning of this function. Then, during the application execution, the

 10

Classical performance analysis

monitoring code, when invoked, will increment an internal counter. Phases of

instrumentation and measurement collection in the classical performance analysis are

shown in Figure 2.1.

Application
execution

function send (…)
{
 monitor (…);
 ...
}

function recv (…)
{
 monitor (…);
 ...
}

Instrumented
application code

function send (…)
{
 ...
}

function recv (…)
{
 ...
}

Original
application code

function send (…)
{
 monitor (…);
 ...
}

function recv (…)
{
 monitor (…);
 ...
}

Preprocessing
or
manual
modifications

monitor (...)
{
 counter++;
}

Compilation,
linking with
monitor
library,
execution

Fig. 2.1. Classical monitoring process that consists of instrumentation and measurement collection.

As indicated in [Ree93] there are three basic approaches to performance data capture:

timing, profiling (counting and sampling) and tracing. Each measurement technique

represents a different balance between the amount of information, potential perturbation,

accuracy and implementation complexity. In the following subsections we present a short

description of different monitoring techniques.

2.2.1. Timing
This technique relies on a measure of execution time. The measurements are performed by

specific calls to timing libraries. Such a library may be based on the following timing

function calls: clock(), times(), gettimeofday(), gethrtime(), getrusage(),

MPI_Wtime(), Fortran90 qw_time(), system_clock(). Calls to the timing library must

be inserted into the application code. These calls collect in execution time values that can

represent execution time of functions, loops, specific block of code or the whole

application.

Generally, this approach provides summaries of accumulated times. The time is aggregated

to have an idea about the execution time of requested application parts. Aggregate system

timing generates data that can identify where a system spends the majority of its time, but

not when and why. This method is still simple and fast to get preliminary performance

 11

Classical performance analysis

data. However, its use for large applications seems to be irrelevant because of the

enormous amount of instrumentation if every instruction should be timed. An example tool

is PTR that stands for Portable Timing Routines [L1]. This is a project of the Parallel Tools

Consortium (Ptools) [L2] that provides efficient timers for many platforms via a

standardized library interface.

2.2.2. Profiling
Profiling provides an easy mechanism to collect reduced set of performance data.

Generally, this technique serves for getting accumulated values of specific part of code.

Typically, it is used to measure the number of times a given application part such as

function, loop or code block is invoked. In this approach the profiling library contains

implementation of the functions that can summarize the application execution and then

calls to these functions must be inserted into the application code. Profiling provides a user

with a kind of report about the application execution. It is not a way to locate exactly the

performance problem, but it gives a general description of the application behavior in

different categories. For example, it is possible to indicate functions that get a dominating

percentage of the application execution.

There are two ways to provide profiling:

• Counting – it records the number of times an event occurred, but not where or why.

Given both counts and total times, it is possible to accurately compute average

execution times.

• Sampling – it allows one to obtain periodically the system state and increment a

counter that corresponds to the observed state. Standard profiles sample the program at

fixed time intervals. At each of these intervals program execution is interrupted and

certain measures are taken and accumulated in the table. The produced histogram or

table is called the execution profile. Typically, sampling provides information about

how much CPU time is used by each function or subroutine in a program.

Some example profiling tools are:

• PAT – Performance Analysis Tool [Gal98] – it is a profiling tool developed by Silicon

Graphics/Cray Research [L3, L4]. It uses sampling and accesses to hardware

performance information to obtain an execution time profile for application functions.

 12

Classical performance analysis

• Apprentice [Gal98] – it is a successor of PAT profiling tool which usage and

information are more complex than in PAT. It uses source code instrumentation

through compiler switches and provides statistics on the level of functions and basic

blocks.

• Xprofiler [L5] – this is the X-Windows Performance Profiler developed by IBM

corporation [L6] that uses procedure-profiling information to construct a graphical

display of the functions within the application. Xprofiler provides identification of the

functions that are the most CPU-intensive.

2.2.3. Event tracing
This technique generates a sequence of event records. Each event is some significant

activity and is an encoded instance of the action and its attributes. Typical record includes

what happened in the application, when, where, and in which circumstances. It may

contain information about what action occurred (e.g. what function was invoked), a

timestamp, a place in the application (e.g. in which place of the invoked function, source

code line number) and execution details (such as machine name, process identifier,

function parameters and circumstantial parameters).

Typically in the classical analysis, the parallel program is executed under control of a

monitoring tool that generates a trace file. The main purpose of the trace file is to illustrate

the behavior of the program. Therefore, this trace file includes all the events recorded

during the execution of the application. To generate such a file instrumentation must be

inserted into the application at each necessary point. This instrumentation gathers all

required performance data, creates an event record and allows for saving just created event

to the file.

One of the possible alternative to the trace file is sending event records directly for the

performance analysis purposes. In this sense, the analysis can be performed dynamically

during the application execution and there is no need for saving information on the disk.

We will explain this kind of performance analysis in Chapter 3.

Once the application has been terminated, the monitoring tool provides the user with a set

of trace files. Generally, there is a distinct trace file saved locally. One trace file can be

created for each machine (or processor or process – it depends on the implementation of

 13

Classical performance analysis

the monitoring tool). Therefore, all events from all trace files must be merged into one

global trace file. However, in this point a parallel distributed application cause an

important problem, namely clock differences of a set of machines. Each event contains a

timestamp that may be generated concerning time on a local machine. If clocks are

different on different machines, event timestamps will also differ. In this situation, there is

a need for timestamp adjustment, because only ordered events can be analyzed correctly.

Event tracing provides a good base for the application performance analysis. This

technique is the most invasive technique, but it is also the most general and the most

flexible. The main advantage is the big quantity of information about the application

execution. A generated global trace file is representative of what really happened in the

application, hence it allows for the reconstruction of the application execution. The

disadvantage of tracing is its potential intrusion, the implementation complexity and large

amount of produced data. The big information quantity causes the storage problem. A trace

file containing events from an application that has been executed for many hours or even

days, may occupy huge amount of disk space. Therefore, some precautions are taken into

account by the developers of tools that monitor the application using tracing method. To

reduce the amount of generated data, these tools provide for example selective

instrumentation or binary/compressed trace file format. The well known examples of tools

that base the monitoring phase on the event tracing are: PICL, Tape/PVM and

VampirTrace. We explain them later in this chapter.

2.2.4. Hardware counters
The monitoring type described above is characteristic for the software performance

monitoring. The application source code is changed in order to obtain information about

different software segments (e.g. functions, statements). However, we can also distinguish

a second type of monitoring namely hardware performance monitoring (HPM) [L7]. HPM

provides statistics of the hardware operations performed by CPU. Generally such a monitor

is based on the counters and contains a small set of registers that count events, which are

occurrences of specific signals related to the processor’s functions. The example operations

are: floating point operations (multiply, add, multiply-add, divide, etc.), integer operations

or memory operations. Monitoring these events facilitates correlation between the structure

of the source code and the efficiency of the mapping of that code to the underlying

 14

Classical performance analysis

architecture. Software and hardware performance monitors provide complementary

information.

Some example tools are:

• PAPI – it stands for Parallel Application Program Interface. This is a standard API for

obtaining the values of hardware counters available on modern microprocessors [L8].

This project forms a part of the working group of a Ptools Consortium.

• PCL – it is Performance Counter Library [L9] developed Research Centre Juelich in

Germany [L10]. This is a portable API for accessing hardware counters that provides

interface for many languages.

2.3. Visualization
Once the application has been instrumented and performance data is available, the second

step for the measure and modify approach can be performed. This step visualizes the

generated trace file. Tools that support this measure and modify method of the classical

analysis can display post-mortem - after the execution of the program – the trace file. They

do this usually via different perspectives such as gantt charts, bar charts or pie charts. Most

of the visualization tools use detailed graphics to show the application execution. The

displayed information may contain message-passing, collective communication, execution

of application subroutines, and so on. The next step requires developers (or experts) to

analyze illustrated information and detect potential problems. Then they must find causes

that made the bottleneck problems occurred. In the following step a developer has to

manually relate detected problems to the source code. The last step is to tune the

application – fix found problems by changing the source code of the program. Then the

modified program must be re-compiled, re-linked and restarted. Figure 2.2 shows the

general view of the classical approach to performance analysis. There are many

visualization tools that try to help the users by providing them with different views of the

application execution by analyzing gathered trace files. We present the most known

examples in Section 2.4. They offer fairly evolved interfaces and allow the user to navigate

amongst the different views providing quite intuitive screens. With these tools, it is

reasonably easy to see the general behavior of the application.

Although this approach has been used for many years, it still has several drawbacks:

 15

Classical performance analysis

• In general terms, it is a very time consuming task that can significantly delay the

application deployment. The degree of expertise required to carry out this task is very

high, especially the phase of relating performance bottlenecks to the source code of the

application and deciding how the application should be optimized.

• Usually, large applications running for several hours produce a huge amount of data in

the trace file that is difficult to manage and analyze. Additionally, to collect all the

required information for the analysis, it may be necessary to heavily instrument the

application. This instrumentation can provoke a significant level of intrusion and affect

the real performance of the application.

Fig. 2.2. The general view of the classical approach to performance analysis.

Tools

User Source
code

Performance tuning

Performance analysis

Trace
file

Visualization Monitoring

Execution

Application

• Visualization tools do not scale very well. When the number of processes involved is

high or the execution time is long it is difficult to have a clear picture of the behavior of

the application, since the visualizations become unreadable.

• The analysis is based on a single execution of the application. It is suitable for stable

applications that present the same behavior for different input data sets. However,

when the application behavior depends on the input data, the modifications based on

analysis for one particular execution can be inadequate for another execution.

• When the application behavior varies during the execution from one iteration to

another (for example, a different number of null elements in a matrix), the useful

modifications for one particular region of the application can be contradictory with the

modifications required by other iterations. The problem is that there is a single copy of

the source code and different iterations require different implementations.

 16

Classical performance analysis

• If the target platform is changed (number of processors, processor speed, network

bandwidth, etc.) the required optimizations may be different. This becomes a

significant problem in grid systems that exhibit highly dynamic and unexpected

behavior.

Taking all these facts into account, the classical “measure and modify” approach based on

visualization tools is only feasible for a reduced set of applications. Such applications

cannot be very large, must have quite a stable behavior and cannot require a significant

amount of instrumentation.

2.4. Example tools
Many monitoring and visualization tools, which try to help the user in the complicated

application performance analysis and improvement, are available. There are some tools

that can only generate trace files, some tools that can visualize them and the other tools

that can do both things together. In the next subsections we present the most popular tools

in the classical analysis area for monitoring and visualization purposes.

2.4.1. Tape/PVM
Tape/PVM [Mai95] was developed at LMC-IMAG Laboratory and it is one of the well

known monitoring tools that generates trace files of PVM applications. It also provides the

following utilities: library of C functions to easily read the generated traces and tool to

transform the traces to PICL format. Therefore, Tape/PVM is a good base for other tools

that can visualize an application execution and provide post-mortem performance analysis.

It is focused on minimal overhead introduced into traced programs and causally coherent

event dating using clock synchronization.

This tool uses a special preprocessing phase to insert instrumentation into a source code.

The preprocessing phase invoked by the user consists in inserting a call to the Tape/PVM

initialization function and in intercepting calls to the PVM library. For each PVM function

there is an associated intercepting function which records the trace information before

passing control to the actual PVM function. After this phase, the modified code must be

compiled and linked with the Tape/PVM library by the user. Once the instrumented

program has been launched, the first clock synchronization phase starts to collect

 17

Classical performance analysis

differences of clocks from all machines. Once it is finished, a program starts its normal

execution. Each process of a running instrumented program generates locally its own trace

file. After execution of the program, TAPE/PVM joins all files into one global trace file

transforming local timestamps of events into global timestamps. Therefore, events from

different machines have the same global time reference, are comparable, and causally

coherent.

Overhead introduced into an application due to the use of a monitoring tool can be

significant, hence Tape/PVM limits the intrusion using appropriate techniques. It compacts

the events, reduces the number of exchanged messages, and performs all additional tasks

(e.g. clock synchronization, global time reference) before/after a program execution.

2.4.2. PICL
PICL – Portable Instrumented Communication Library [Gei90, L11] is a tool developed at

Oak Ridge National Laboratory [L12]. PICL serves for portability, ease of programming

and execution tracing in parallel program. PICL is a subroutine library that can be used to

develop PVM-based programs that are portable across several platforms. It supplies low-

level communication primitives. However, it also simplifies parallel programming by

providing a set of high-level communication routines.

The library has a built-in mechanism of trace file generation. Using special routines

provided by PICL library, it is possible to invoke the tracing of processes, as well as

control the type and amount of tracing data. Including such tracing routines’ calls in the

application code, a user requests the PICL library to activate routines that produce time

stamped records and generate a trace file on each processor. Although the set of tracing

routines provided by the library is small and easy to use, the recompilation and linking

phase is required. The user has a possibility to configure tracing data. He/she can choose

what type of trace records (e.g. user-defined, event, statistics) and what type of event (e.g.

user-defined, communication, I/O, synchronization, resource allocation) is to be generated.

Therefore, the number of traced data can be reduced if necessary. The trace file contains

one record per line, and each record comprises a set of fields that specifies the record type,

event type, timestamp, processor id, process id, number and description of other data fields

that are common for a particular event. After the application execution, all generated trace

files are collected and sorted by time.

 18

Classical performance analysis

The PICL library has been evolved to MPICL that provides a mechanism for collecting

information from MPI-based programs.

2.4.3. ParaGraph
ParaGraph [Hea95, L13] is the visualization tool developed at University of Illinois for the

trace files generated by the MPICL library. It provides the dynamic, graphical, and detailed

animation of the behavior of message-passing based programs (MPI), as well as summaries

of overall program performance. It replays in a visual form events that happened during

parallel program execution. ParaGraph provides to a user a set of views that are divided

into three categories: processor utilization, communication between processes and task

information. The example view of the process utilization is showed in Figure 2.3. The

utilization view displays the total number of processors in each of three states (busy,

overhead and idle).

Fig. 2.3. View of processor utilization summary and utilization Gantt chart provided by Paragraph.

Although ParaGraph takes as an input trace files in the MPICL format, the tool depends

only on input data. Therefore, it can perform equally well any trace file that has the same

format and semantics as PICL/MPICL. If other message-passing application is

 19

Classical performance analysis

instrumented and generates trace files in PICL format, ParaGraph can process them

showing the program behavior.

2.4.4. Vampir
The VAMPIR [Nag96, L14] (Visualization and Analysis of MPI pRograms) is distributed

by Pallas company [L15], a member of the ExperTeam group. This is the commercial

visualization tool especially for MPI-based applications. It provides a variety of graphical

displays that present important aspects of the application behavior (see Figure 2.4). It also

supplies flexible filter operations to reduce the amount of information to be displayed and

forward/backward motion in time. Vampir supports evaluation of load balancing, analysis

of performance of subroutines or code blocks, and identification of communication

bottlenecks. The tool displays information about communication patterns, parameters and

performance.

Fig. 2.4. Different views of the application behavior displayed by Vampir.

 20

Classical performance analysis

As all mentioned tools, Vampir also uses trace files to visualize behavior of an application

after its execution. This tool has its own mechanism to monitor an application, namely

VAMPIRtrace. It is a library for tracing operations of MPI-based applications. It uses the

profiling interface of MPI library to record point to point communications, collective

operations, MPI I/O operations and user-defined procedures. Generally, the trace file

generation is convenient, because a user does not need to change the source code, only to

link the application with the VampirTrace library. However, when the user-defined

procedure is to be traced, the VampirTrace API must be used to modify the application and

hence the recompilation phase is required. The tool also provides event filtering in a form

of configuration file read before the application execution. This feature allows for

collecting only selective events, what can significantly reduce the size of trace file.

2.4.5. Pablo
The Pablo [Ree93] environment developed at University of Illinois includes application

performance instrumentation, graphical and sonic representation of the collected data and

the data amount reduction. It provides a manual application instrumentation as well as a

graphical interface for interactive specification of instrumentation points. Pablo allows for

capturing procedure calls, inter-process communication, and input/output operations.

Pablo offers many different graphics (that can include also sound) to the user where

performance data is constructed as analysis graph [L16]. The example views are presented

in Figure 2.5. The resulting performance analysis graph can be saved in a compact,

portable and extendable format. In addition to graph-based analysis, Pablo contains a

statistical analysis software that can compute and display histograms of specific data

values. Moreover, this tool supports the captured data visualization by means of a virtual

world. Pablo has implemented performance data presentation metaphor that shows the

application execution in the three-dimensional space.

The instrumentation software supports tracing, interval timing, and counting. The tools

generates its own trace files which contain a set of event in a typical event format (what

happened, when and where). As majority of the mentioned tools, the Pablo trace library

has been also designed to reduce perturbations caused by monitoring and dynamically

altering the number of data to be traced. If the overhead exceeds specified thresholds, the

 21

Classical performance analysis

instrumentation software will automatically convert more invasive instrumentation e.g.,

event tracing to a lower one e.g., counting.

2.4.6. XPV
XPVM [Ge

Oak Ridge

be used as

provides cre

XPVM serv

in PVM. D

XPVM. XP

perform rec

the tool is

operations

virtual mac

 22
Fig. 2.5. Different views of the application execution provided by Pablo toolkit.
M
i94] is a graphical console and monitor for PVM-based programs developed at

National Laboratory. It is usually integrated with the PVM library. XPVM can

a graphical environment to manage virtual machine and parallel application. It

ation and elimination of tasks and machines.

es also as a monitoring tool. It uses the event collection mechanism integrated

uring execution of an instrumented program, PVM kernel routes events to

VM has its own visualization utility, presented in Figure 2.6, hence it is able to

eived information on-line and display it in “real time”. A very useful feature of

 the ability to show the communication between processes and the group

like barrier. XPVM main window contains two parts: configuration of the

hine and the state of the application tasks. XPVM provides also possibility to

Classical performance analysis

save events of program execution to a trace file. This trace file can be used as input to the

visualization process. XPVM may be also used for post-mortem performance analysis.

Fig. 2.6. Main window of XPVM that displays virtual machine and application behavior.

2.5. Predictive analysis
A prediction or forecast is the result of an attempt to produce a most likely description or

estimate of the actual evolution of a variable/system in the future. Predictive analysis of

application performance is based on the analytical models that are constructed in order to

predict future application behavior for different conditions. Moreover, these models

provide the programmers with a feasible expression of the program execution so it is easier

to draw conclusions about the program performance. The advantage of modeling is that it

enables the prediction of application performance for different input data, machines and

problem definition. However, the definition of accurate model is complex and requires

expert knowledge. To facilitate this task, predictive tools avoid the process of

understanding the performance details by abstracting them in higher level expressions that

 23

Classical performance analysis

are useful for the programmers. In this approach the model construction is automated and

as an output the user obtains the application behavior model.

In the following sections we present example tools that are based on predictive analysis

approach.

2.5.1. Lost Cycles Analysis
Lost Cycles Analysis (LCA) [Cro93] is a toolkit for the performance analysis of the

parallel applications that was developed at the University of Rochester. The tool automates

the performance model construction as a function of runtime factors. The analysis is

divided in two phases: predicate profiling of the application to obtain measurements and

modeling of those measurements.

During the predicate profiling phase, the empirical measurements must be obtained to

model the application behavior. The measurements are the lost cycles associated with

overheads. Overheads are execution delays expressed in seconds and they are divided into

categories that depend on the source of the wasted time (e.g. time spent in tasks not

directly related to the computation such as communication or synchronization, delays

caused by load imbalance). The overhead categories are defined via performance

predicates, which are logical statements that represent the occurrence conditions of the

categories. To perform the profiling, first, the user defines the environment variables that

will affect the application execution. The user samples the valid ranges for each variable

and the combination of the sampled values defines the parameters that are used in the

experiments. Typically these parameters are: the number of processors used, the number of

iterations performed by a specific part of code or data structure dimension. The profiling

phase ends with execution of the experiments and data collection. In the LCA this phase is

performed by means of the performance profiler (pp tool).

The modeling phase assigns models to overhead categories. These models are functions of

environment variables that rule the application's execution. The determined models are

fittings of the measured data to default models. The modeling contains two steps: one-

dimensional and multi-dimensional model generation. In the first step user generates

models for each environment variable and each overhead separately (e.g. expression that

models load imbalance in function of number of processors and data size). Next the tool

 24

Classical performance analysis

called lca uses the measurements performed in the profiling phase to parameterize the

models finding the appropriate coefficients that approximate the reality. The resulting

models for each category of overhead capture the effects of varying environment

parameters in isolation. In the second step the user combines one-dimensional models into

multi-dimensional models with a help with the lca tool. To produce the final performance

function, the user must add or multiply models of the overhead categories.

The objective of the toolkit is to provide a mathematical representation of the performance

problems – overheads – found in the application execution. The advantage of such a

representation is high level view of the execution details. However, the difficulties rely on

the user that must manage the construction of the application models that accurately reflect

the reality.

2.5.2. P3T
P3T, a Parameter-based Performance Prediction Tool [Fah93], is an interactive

performance estimator that helps users tune scientific Fortran programs. This tool was

developed in the context of the Vienna Fortran Compilation System (VFCS) [Ben95]

which enables the estimator to exploit considerable knowledge about the compiler's

analysis information and code restructuring strategies. The VFCS translates Fortran

programs into explicitly parallel message-passing programs and P3T guides the interactive

and automatic restructuring of programs under this system. P3T detects bottlenecks in the

program, identifies the causes of performance problems, and guides users in selecting

effective program transformations to gain performance. The tool focuses on the following

aspects of parallel programs: load balance, data locality, communication, and computation

overhead. As an input P3T takes a list of performance parameters that are estimated at

compilation time. The example parameters are: number of transfers, amount of data

transferred, transfer time, computation time, work distribution and so on. These parameter

provide the required abstraction to express the performance application quality. All

parameters can be assigned to blocks of code such as loops or procedures.

The performance analysis is guided via GUI that directs the user to the computational

bottlenecks that prevent the program from performing well. In addition, P3T allows

performance data to be filtered and visualized at various levels of detail.

 25

Classical performance analysis

2.5.3. Dimemas
Dimemas [L17] is a tool developed by CEPBA center of Universitat Politècnica de

Catalunya [L18]. This is a simulation tool for the parametric analysis of the behavior of

MPI applications. It enables the user to develop and tune parallel applications on a

workstation, while providing an accurate prediction of their performance on the parallel

target machine.

First the application must be instrumented in order to obtain trace file. Dimemas

instrumentation library is based on the profiling VAMPIRTrace tool. This library usually

records the CPU time consumption, communication primitives and event information such

as function begin/end, value of variables, value for internal processor registers. Moreover,

using GUI a user can model the architectural parameters of machines. The simulator allows

specifying different task to node mappings.

With the records read from the trace files and specified architectural parameters, Dimemas

will rebuild the time behavior of a parallel application. The tool simulates the application

execution scaling the time spent in each block according to target CPU speed. As an output

Dimemas generates trace files that are suitable for the visualization purposes and in

particular for Vampir tool. The results include global application information: execution

time and speedup. Additionally, for each process the tool gives information about

execution time, blocking time, computation time, number of messages sent and received,

volume of communication data. Moreover, Dimemas is able to determine the critical path

which returns the longest communication path of the application.

2.6. Conclusions
As we have seen, the classical analysis tools support a user in performing two phases:

monitoring and then visualization or prediction of the application behavior. The first phase

is facilitated by monitoring tools that are generally based on the use of the tracing method.

The tool that uses this technique to monitor the application, inserts instrumentation into the

important parts of the application code and generates trace files. Once a trace file has been

generated, the second phase is performed by visualization or predictive tools.

 26

Classical performance analysis

Many monitoring and visualization or predictive tools, which try to help a user in the

complicated application performance analysis and improvement, are available. There are

some tools that can only generate trace files, some tools that can visualize them or predict

the behavior and the other tools that can do both phases together. Nevertheless, the tools

that support the classical approach are very similar in their purposes and results provided to

the user. Using this kind of tools, the user must have a great knowledge of parallel

applications and experience in developing them in order to improve their behavior.

 27

Automatic performance analysis

Chapter 3

Automatic performance analysis

This chapter presents the general idea of the automatic performance analysis of parallel

and distributed applications. Then, we introduce an extension to the automatic approach,

namely dynamic performance analysis, that performs the application analysis automatically

during run time. Finally, we are going to present examples of tools that support both

automatic and dynamic performance analysis of parallel programs.

3.1. Overview
Although visualization tools based on the traditional approach are often very helpful,

developer must have a great knowledge of parallel systems and experience in performance

analysis in order to improve the application behavior. To overcome difficulties of the

“classical approach” it would be very important to offer to the users tools that would guide

them in the tuning process. It would allow them to avoid the degree of expertise required

by the visualization tools. Such tools should introduce some automatic features. Carrying

out some steps of the application performance analysis automatically, the participation of

the user could be reduced.

To decrease developers’ efforts, especially to relieve them of duties such as analysis of

graphical information and determination of performance problems, an automatic parallel

program analysis has been proposed. Tools using this type of analysis are based on two

principles. First, they use collection of measurements gathered from the application

execution and provided by a monitoring tool. The application is instrumented before it is

put into the execution and instrumentation is inserted into all necessary points. Second,

they are based on the knowledge of performance problems. Once measurements have been

collected, the automatic analysis process can be performed. This process is a search for

performance problems within the information obtained from the execution. The principal

question here is how to detect performance bottlenecks. Experience with parallel

applications has shown that many of them have well-recognized performance problems. To

search for a performance problem, a tool should be then supported with the information

 29

Automatic performance analysis

about possible bottlenecks and how to find them. The objective is to comprise information

about both application and parallel system features. Potential bottlenecks can be

represented as a knowledge provided to a tool. Such a knowledge may contain

performance models that provide a way for understanding performance problems. Using a

good analytical model, the application behavior might be predicted, bottlenecks can be

found, as well as their causes and optimizations can be deduced and provided to the user.

Unfortunately, the creation of models is not an easy task and usually it is a compromise

between simplicity and accuracy.

Each tool then has built-in performance model for typical kinds of applications, hence it is

able to identify critical bottlenecks and help in optimizing applications by automatically

giving suggestions to developers. These hints or recommendations expose the performance

problems showing the parts of the application, which are performing poorly. Figure 3.1

shows the general parts of automatic analysis tool that support a user in analyzing and

improving application performance. There are several tools available that support this

approach such as KappaPi, Paradise or AIMS. We will talk about them later in this chapter.

Suggestions
for user

Tools

User Source
code

Performance tuning

Performance
analysis

Trace
file

Monitoring

Execution

Application

Fig. 3.1. The general view of the automatic approach to performance analysis.

In this approach the performance bottleneck search is still based on trace files. This

automatic analysis can be called static since is done post mortem – after the application

finishes its execution. The visualizations are replaced with automatic analysis and direct

recommendations about detected problems. These tools significantly reduce the amount of

time spent by developers in performance analysis, since they are supported with more

automation in the whole tuning process and receive information that is more accurate.

Generally, given hints are representative and useful for only one application behavior. The

 30

Automatic performance analysis

tool analyzes a trace file generated for one application execution. If the application is

executed again and has different input data or changes the behavior during the execution,

the previously performed analysis can be inadequate. Therefore, tools are more adequate

for the same input data and stable applications.

3.2. Dynamic performance analysis
Although analysis is facilitated in the presented automatic analysis approach, the developer

must manually perform the application tuning. In addition, some of the drawbacks

mentioned above with respect to the visualization approach are still present in this

automatic performance analysis:

• Fully instrumented application.

• Trace file based analysis.

• Single run of the application in a given environment.

• Stable behavior required.

Therefore, the automatic analysis approach was extended from the static version to the

dynamic automatic analysis. In this case, performance analysis is done on the fly, during

the execution of the application in a fully automatic manner and avoid the need for the

manual instrumentation.. It implies the necessity for the on line monitoring, where the

principal advantage is that any trace file is no more needed for analysis. Figure 3.2 presents

basic view of the dynamic performance analysis.

Suggestions
for user

Tools

User Source
code

Performance tuning

Performance
analysis

Monitoring

Execution

Application

Fig. 3.2. Basic scheme of the dynamic and automatic performance analysis.

This approach allows for control of the amount of instrumentation inserted in the

application by applying dynamic instrumentation techniques. The monitoring can start with

a very simple instrumentation and when some particular conditions are detected, the

additional instrumentation can be introduced. When the conditions disappear, it is possible

 31

Automatic performance analysis

to eliminate the extra instrumentation. In this approach, the analysis must be done during

the execution of the application what implies some extra overhead. Therefore, the analysis

must be relatively simple so as to reduce the overhead as much as possible. The principal

and most known tool that provides dynamic performance analysis is Paradyn. We present it

later in this chapter (see Section 3.3.4).

By using a dynamic analysis tool, the problems can be identified significantly faster than in

a post-mortem approach. The dynamic approach is best suited for iterative programs and

can handle long-running applications with high data volumes. However, to solve the

detected problems, it is necessary to stop the application, modify, recompile and rerun it.

This implies that the work carried out is aborted and a new execution is launched.

Similarly to static analysis, the dynamic analysis is based on a single run of the application.

When the application behavior depends on the input data or on the iteration of the

execution, the suggested recommendations can be inadequate for a further run of the

application.

3.3. Example tools
In the next subsections we present tools that support the user with automatic and dynamic

analysis during the application performance improvement. All these tools have provided

successful results.

3.3.1. KappaPi
KappaPi [Esp98] stands for a Knowledge-based Automatic Parallel Program Analyzer for

Performance Improvement. This tool was developed at Universitat Autònoma de

Barcelona. KappaPi is a static automatic performance analysis tool based on a trace file

post-mortem analysis and a knowledge base that includes the main bottlenecks found in

message passing applications. The tool helps the user in the performance improvement

process by detecting the main performance bottlenecks, analyzing the causes of those

problems, and relating the causes to the source code of the application. KappaPi provides

also some suggestions about the detected bottlenecks and the way to avoid them.

In the preliminary step the application must be executed with Tape/PVM monitoring tool

in order to get the trace file that will be then analyzed by the KappaPi analyzer [Esp00].

 32

Automatic performance analysis

Once the trace has been generated, KappaPi tool can be invoked. In a first step, KappaPi

makes a general overview of the application performance by measuring the efficiency of

the different processors of the system. KappaPi considers as performance inefficiencies

those intervals where processors are not doing any useful work; they are just blocked

waiting for some message. So, the efficiency of a processor is considered as the percentage

of time where it is doing useful work. When there are idle time intervals, these time

intervals should be avoided in order to improve the performance of the application. The

best situation would be to have all the processors completely busy doing useful work

during the execution of the application. In this first step the user gets some information

about the overall behavior of the application, but without any idea about the bottlenecks

and their causes.

After this initial classification, KappaPi starts the deep analysis looking for performance

bottlenecks. KappaPi takes chunks from the trace file and classifies the performance

inefficiencies detected in that chunk. It must be pointed that several inefficiencies can

correspond to the same performance bottleneck, because in many cases the inefficiencies

are repeated along the execution of the application. The detected bottlenecks are classified

in a table according to the inefficiency time incurred. After analyzing the first chunk, the

second chunk is analyzed and a new table is built and joint to the initial one in such a way

that the new inefficiency time of the same bottleneck is added to the first one. The process

is repeated for all the chunks and finally KappaPi provides a sorted table with the worst

performance bottlenecks.

The next stage in the KappaPi analysis is the classification of the most important

inefficiencies. For that purpose, the tool relates these inefficiencies with some existing

behavior categories using a rule-based knowledge system. From this point, the

inefficiencies are transformed into specific performance problems that must be studied to

build up some hints to the users. To carry out this classification, KappaPi tool takes the

trace file events as input and applies the set of rules deducing a list of behaviors. The initial

list of events is the starting point for the detection algorithm. These events are the base for

the detection of higher order facts. The just deduced facts are kept in a list (accumulated

list) so that, in the next iteration of the algorithm, higher order rules apply to them. The

process will finish when no more facts are deduced.

 33

Automatic performance analysis

After the performance problem has been identified when fitting in one of the categories of

the rule-based system the query process is finished. The next step in the analysis is to take

advantage of the problem type information to carry out a deeper analysis that determines

the causes of the performance bottleneck with the objective of building an explanation of

this problem to the user.

Figure 3.3 represents the KappaPi graphical user interface. The main program window

provides to the user very useful information. It contains the following parts: statistics with

general list of efficiency values per processor, hints about the actual quality of the

application performance together with recommendations about what changes can be

applied in order to improve the performance, source code view with highlighted critical

lines and Gantt chart representing execution visualization.

Fig. 3.3. Final view provided by KappaPi when analyzing master/worker application.

3.3.2. Paradise
Paradise [Kri96] stands for PARallel programming ADvISEr. The tool was developed at

University of Illinois and provides automation to the parallel application optimization

using post mortem analysis. It not only finds performance bottlenecks, but also presents

 34

Automatic performance analysis

solutions to problems found. This is a framework that analyzes trace files building an

event-graph representation of the program's execution. In this tool the behavior of

applications and systems are modeled as a set of objects that have certain functionalities

and interact with each other. These objects and their interactions can simulate the events

that are generated during the application execution. Then the tool determines

characteristics of this application and uses heuristics to find possible solutions to optimize

application performance. Finally, Paradise generates hints saving them to a file. In general,

Paradise represents similar approach to the one described in KappaPi. However, in

comparison to KappaPi, Paradise is not able to combine performance problems with an

application source code.

Paradise works in cooperation with a run time system that uses generated hints to

parameterize optimizations and select between different alternate optimization strategies.

The whole project is based on the parallel object-oriented language Charm++ [Kal93]

which is an extension of C++. It enables the benefits of object-orientation to be applied to

the problems of parallel programming. The basic work unit in Charm++ is a chare, which

is a concurrent C++ object. A chare type is a C++ class that contains data and functions

which may be triggered by the arrival of messages.

Once the application has been written in Charm++, it can be run and monitored to obtain

trace files with necessary performance data. The application execution is represented as an

event graph, which is a task graph constructed using generated trace files. The event graph

constructed by Paradise consists of vertices representing entry-function executions, edges

representing messages between entry functions and edges for dependences between

methods (these dependences must be specified in the language or generated by the

compiler). Analyzing trace files Paradise intents to discover the characteristics of the

application by searching for common bottleneck patterns. The characteristics and possible

optimizations researched in Paradise are for static and dynamic object placement,

scheduling, granularity control and communication reduction. Once a bottleneck has been

found, the tool gives suggestions to the user.

3.3.3. AIMS
AIMS [Yan96, L19] stands for an Automated Instrumentation and Monitoring System.

This tool was developed at NASA AMES institute [L20]. The tool provides utilities of

 35

Automatic performance analysis

measurement and performance analysis for message-passing programs written in Intel’s

NX, PVM or TMC’s CMMD communication libraries. AIMS consists of four main

components: a source code instrumentor – which automatically inserts instrumentation into

the application; a run-time performance-monitoring library which collects performance

data; two tools that process the performance data – trace file animation and analysis

toolkit; a trace post-processor that removes overhead introduced by monitor.

Instrumentor provides graphical user interface to insert instrumentation into subroutines

invocations, synchronization operations and message-passing supporting different

communication libraries. It also generates two key data structures: an application database

that stores static information about the application source code (e.g. file names and line

numbers of instrumented points) and enabling profile that contains information about

inserted instrumentation. After the use of instrumentor, instrumented source code must be

recompiled and linked with the monitoring library. The monitor reads the profile at the

beginning of the execution and hence it can generate trace files. For each processing node,

monitor writes events to the buffer. If the buffer is full or the application has finished,

monitor flushes the buffer to the file. The buffer size can be controlled and configurable

by the user.

After the application execution, trace file can be analyzed and displayed by the

visualization toolkit (see Figure 3.4). AIMS provides a set of detailed and animated views

Fig. 3.4. Detailed execution analysis presented by AIMS visualization toolkit.

 36

Automatic performance analysis

indicating certain constructions of the execution in time. It also collects and tabulates

statistics that reflect the cumulative activity of the program. AIMS generates a list of

resources-utilization statistics what can help a user to find inefficient code sections. The

tool has also capability to map an event displayed on a view to the corresponding

application source code. AIMS contains a trace file post-processor that removes as much

intrusion as possible from a trace file.

3.3.4. Paradyn
Paradyn [Mil95, Par03, L21] is a performance tool for large-scale parallel applications

which was developed at University of Wisconsin [L22]. It provides monitoring and

automatic analysis “on the fly”. This tool does not require any trace file of the application

execution. It takes advantages of a special monitoring technique called dynamic

instrumentation that defers instrumenting the program until it is in execution. Therefore,

Paradyn is able to insert and modify instrumentation during run-time without any changes

of the program source code.

Paradyn also provides automatic performance analysis of the running application. While

the main objective is to do the monitoring and analysis phases during run-time, Paradyn is

able to make decisions and give results dynamically. It automatically identifies these parts

of the application that consume most resources. Paradyn searches for performance

problems using the W3 search model (why, where and when) [Hol93]. This model is based

on answering three separate questions: why is the application performing poorly, where is

the bottleneck and when does the problem occur. Such approach allows for quickly and

precisely isolating a performance problem without having to examine a large amount of

information.

To minimize the intrusion inserted into the application and perform more precise analysis,

Paradyn supports the changes of the instrumentation during run-time. It provides a user

with possibility to control data collection manually. However, the tool also contains a

special module called Performance Consultant that liberates the user from making such

decisions. Performance Consultant looks for performance problems, decides what data

must be collected and when, and applies the instrumentation changes automatically during

the application execution showing information to the user. The example of displayed

results created during the searching phase is presented in Figure 3.5.

 37

Automatic performance analysis

From the implementation point of view, Paradyn is divided into three parts: the Paradyn

controller, the Paradyn daemons, and the application processes. The Paradyn controller

performs searches for performance bottlenecks and supports the user interface to the rest of

the system. The Paradyn daemon isolates all machine specific dependencies and serves as a

stage between controller and application processes. Each application process is controlled

by the Paradyn daemon and has the dynamically inserted instrumentation.

Fig. 3.5. Search history graph in Paradyn.

Although graphical representation is not a primary goal of Paradyn, it also contains a tool

to display the results. Performance Visualizations can provide explanations of the program

performance and since Paradyn is designed to work during run-time, visualized data is

displayed “on the fly” as well.

3.4. Conclusions
Both approaches presented in this chapter provide automatic performance analysis of

applications. The most important objective of these tools is to automate the performance

analysis process and hence facilitate a developer the application performance

improvement. Tools that support it use the collection of measurements gathered from the

monitoring phase. Such tools are able to analyze collected performance data of the

 38

Automatic performance analysis

application behavior and explain to the user what happened during the application

execution.

Static analysis provides post mortem analysis of the generated trace files, while dynamic

analysis defines and processes the performance measurements and analysis at run-time.

The second case is superior to the first one in that the trace files are no needed and the

instrumentation can be added or removed automatically according to the actual program

behavior. The instrumentation overhead can therefore be reduced and controlled. However,

dynamic analysis as performed together with the application, might introduce more

intrusion into the application execution.

Both kinds of tools present certain problems when the application behavior depends on the

input data set or a studied application has dynamic behavior during execution. It can be

noted that the recommendations and further code modifications for one run may not be

useful for another.

 39

Dynamic performance tuning

Chapter 4

Dynamic performance tuning

This chapter introduces the background for automatic and dynamic performance tuning of

parallel and distributed applications. We explain the fundamental concepts of dynamic

optimization and introduce its requirements, constraints and applicability. Then, we

compare the tuning approach to the automatic performance analysis. Next part determines

our principal classification of the dynamic tuning approach. We describe the application

knowledge problem while analyzing the performance and demonstrate our representation

of the knowledge. We also extend dynamic tuning by the design of pattern-based

framework that provides parallel application specification and can facilitate optimizations.

We introduce the specific library called DynInst, that supports us with dynamic

instrumentation. We describe the set of modifications that are possible to be applied

dynamically. Finally, we describe available tools that were developed basing on the

concept of computational steering loop and tools that support dynamic performance tuning

of parallel programs.

4.1. Overview
Taking both kinds of performance analysis (classical and automatic) into consideration, we

see the superiority and advantages of automatic analysis. However, none of these

approaches exempts developer from the analysis of the output information nor intervention

to a source code. Each solution that has been mentioned above requires developer to

analyze generated results, combine them with application source code, change appropriate

part of the source code, re-compile, re-link, and finally restart the program. The presented

approaches requires a developer to have a high degree of the expert knowledge about the

parallel application performance. Moreover, most of them needs a trace file either to

visualize a program execution or to make an automatic analysis. When a post-mortem

tuning is used it must be considered that the tuning for a particular run can be useless for

another execution of the application. The application can depend on input data and for

different data it can behave in different ways presenting different bottlenecks. Therefore,

 41

Dynamic performance tuning

the results of analysis and offered optimization suggestions that are provided from one

application execution might be inadequate for another one.

It can be concluded then that when there are dynamic conditions, such as variable behavior

depending on the input data and/or variable behavior throughout the application execution,

the tuning of distributed applications should be carried out dynamically. Moreover, the

application can be executed on different hardware configurations. For example, a user can

have a PC LINUX cluster with different numbers of PCs or can decide to add new PCs to

the cluster, or change the old PCs for new more powerful ones, and so on. The application

developer cannot guarantee that performance tuning for a particular system will provide

the best possible performance when the system conditions are changed.

For all these reason, a new idea has arisen. The very convenient solution for developers

would be to replace post-mortem analysis with automatic real-time optimization of a

program performance. Instead of manual changes of a source code, it could be very

profitable and beneficial to provide a developer with an automatic tuning of a parallel

program during run-time. This approach would require neither a developer intervention nor

even access to the source code of the application. The running parallel application would

be automatically monitored, analyzed and tuned on the fly without need to re-compile, re-

link and restart. The current application behavior would be considered and analyzed

finding appropriate bottlenecks and possible optimizations. Therefore, if application had

different behavior during different execution, dynamic tuning would adapt it taking into

account changes of the behavior in current execution. Running applications under control

of the dynamic tuning system would also allow the adaptation of their behavior to the

changing environment and hardware conditions.

Figure 4.1 presents the model of the dynamic tuning approach. All the optimization phases

are done during the application execution. The performance bottleneck search is not based

on trace files, as the dynamic monitoring collecting necessary measurements provides them

directly for the analysis process. While performing tuning, there is no need for manual

application source code changes, because a tool that supports this kind of approach

manipulates the application execution on the fly.

 42

Dynamic performance tuning

Application
memory

User Application

Execution

Monitoring Performance
analysis

Performance tuning

Source
code

Tools
Suggestions

for user

Fig. 4.1. The general view of the dynamic performance tuning approach.

Investigating dynamic tuning approach we have determined that dynamic and automatic

optimization system should be based on the steering loop as the application behavior must

be modified at run-time. Steering loop was defined as the capacity to control the execution

of long-running, resource-intensive programs [Gu94]. Tools that support this approach

allow users to study the behavior of the running application and manually change key

application variables on the fly. We present some tools that are based on the computational

steering loop later in this chapter.

Dynamic tuning system should provide the following services that cooperate among

themselves during runtime:

• dynamic monitoring of the execution of a parallel program. This service provides the

measurements collected from the application execution. It can be based on any of the

performance monitoring technique: timing, profiling, event tracing. However, because

of the goal to reduce the user intervention, instrumentation should be done

automatically by the system. This service will relieve a developer of the manual code

instrumentation and exempts from the invoking all these phases that must be carried

out when the application source code has been changed (recompilation, re-linking and

re-running). The measurement records are passed directly for the analysis.

• automatic performance analysis “on the fly”. This service analyzes coming

measurements, finds bottlenecks and gives solutions on how to overcome them. This

service will replace the classical post-mortem analysis. To find problems and determine

how to improve the performance, the analysis should have built-in performance

knowledge about bottlenecks that are representative for the parallel applications. To be

useful it should also include provision of detected problems and suggestions for a user.

 43

Dynamic performance tuning

• automatic program tuning during run-time. This service utilizes solutions given by the

analysis process and automatically modifies a parallel application during the execution.

It does need neither access a source code nor program recompilation, re-linking,

restarting. Dynamic tuning will relieve the developer of the source code modification

duties since the application execution is modified automatically “on the fly”.

4.2. Requirements and constraints
Investigating the performance tuning approach we have encountered many issues that must

be taken into consideration. In this section we present the requirements and constraints that

we must face up.

4.2.1. Parallel application control
In general, the parallel application environment is usually executed in a distributed

environment that includes several computers. A parallel application consists of several

intercommunicating tasks that solve a common problem. Tasks are mapped on a set of

computers and hence each task may be physically executed on a different machine.

Therefore, we must be able to control and optimize all the tasks on all the machines. To

achieve this goal, dynamic tuning services must be distributed and executed on all the

machines where the application tasks are running. In particular parts responsible for the

monitoring and tuning are distributed since they work directly with the application tasks.

Only in this way we will not loose any task and we will be able to provide the information

about the entire application execution as well as tune any required task.

4.2.2. Global analysis
The parallel application distribution also means that it is not enough to improve tasks

separately without considering the global application view. To improve the performance of

entire application, we need to analyze globally the application performance. It implies the

access to the information about all tasks on all machines. We must collect all the

information extracted from the application execution at a central location. The analysis

performed at this location considers all tasks and hence global application improvement is

supported. The global analysis however, may be time-consuming due to the information

collection and the performance analysis of this information searching for bottlenecks.

Moreover, the application execution time can significantly increase especially if both – the

 44

Dynamic performance tuning

analysis and the application - are running on the same machine. Many precaution then

must be taken while developing the global analysis.

The global analysis approach is feasible for environments with a relatively small number

of nodes and serves for the inter-node bottlenecks. If we consider performance problems

related only to a given node without taking into account other nodes, there is no need for

the global analysis. Additionally, to minimize the intrusion of the application execution,

the analysis process should be executed on a dedicated and distinct machine. However, the

dedicated machine processing the analysis becomes a bottleneck if the number of nodes

gets higher. Both problems, the scalability and the local bottleneck can be solved by

distributing the analysis process. For example, local analysis could be performed

individually by all the nodes considering only the locally available information, while

global analysis could resolve problems caused by inter-node relationships. In the scope of

this work we consider only the global analysis. We do not present local analysis solutions

and examples, but it can be a good extension for the future work.

4.2.3. Application knowledge
The fact that dynamic performance tuning is carried out at run-time implies one basic and

specific constraint to be considered: the analysis and the modifications must be kept

simple. A programmer can develop any application that might present variety of

bottlenecks and hence the analysis and the modifications might be extremely difficult.

Decisions have to be taken in a short time in order to be effective in the execution of the

program. The changes cannot affect the correct functioning of the application or crash it.

Therefore, the performed modifications must be carried out carefully to ensure that the

application correctly continues its execution. The modifications must not involve a high

degree of complexity because obviously, it cannot be assumed that any changes on any

application in any environment can be performed without taking any precautions. All these

factors limit the application of dynamic tuning.

For all these reasons, evaluation and modifications cannot be very complex. Since all the

tuning must be done in execution time, it is very difficult to carry this out without previous

knowledge of the structure and functionality of the application. As the programmer can

develop any kind of program, the potential bottlenecks search can therefore be

complicated. If knowledge of the application is not available, the applicability and

 45

Dynamic performance tuning

effectiveness of this approach might be significantly reduced. To avoid many limitations it

would be profitable to provide specific information about the application and how to detect

and overcome its bottlenecks. It implies the description of what should be measured, how

to analyze the application behavior and what to change. Therefore, we must take into

consideration the problem of the application knowledge definition and provision. We also

must determine what is possible to change in an unknown application.

4.2.4. Run time monitoring and optimization
As we have already mentioned, all phases of improving the application performance must

be done “on the fly”. The important issue here is to determine how to insert

instrumentation and apply changes to the running program without accessing the source

code. To be able to dynamically instrument the application, the code insertion must be

defer till the application is launched. Runtime code modification cannot require the source

code recompilation nor restart and hence it must be performed directly on the memory of

the running application. To fulfill this requirements a special novel technique called

dynamic instrumentation should be used. This technique permits the insertions of a piece

of code into a running program and changes of current behavior. The advantage of the

dynamic approach is that the instrumentation can be added or removed automatically

according to the actual program behavior. The instrumentation overhead can therefore be

reduced and controlled. For example, the on-line analysis can focus on the specific

execution aspect and start with an initial instrumentation. Next, when some thresholds are

exceeded, an additional instrumentation can be introduced to obtain more detailed

information. Finally, when the problem is solved, the required measurements can be

reduced.

This approach is implemented by a library called DynInst. We analyzed this library and we

saw that it is possible to manipulate a running application and manage the instrumentation

insertion/deletion. DynInst is appropriate for two purposes: first to dynamically monitor an

application, second to apply modifications to optimize performance during run time. We

present this library in Section 4.8.

4.2.5. Low intrusion
The intrusion must be minimized. Besides classical instrumentation intrusion, in “dynamic

performance tuning” there are certain additional overheads due to monitoring

 46

Dynamic performance tuning

communication, performance analysis and program modifications as all these tasks are

performed in parallel to executing application. Dynamic tuning system should minimize

the overhead it implies itself since it controls and changes the application. In particular the

performance analysis should not be computationally intensive. The instrumentation used

for monitoring should minimize or gracefully handle large volume of information. The

dynamic instrumentation approach allows management of the instrumentation amount

inserted into the application. Therefore, dynamic tuning system must provide this kind of

instrumentation management.

4.2.6. Target bottlenecks
The process of measurement, measurement refinement, analysis and actuation takes itself

certain amount of time. It may happen that when a solution is available, the bottleneck has

already finished. Therefore, this approach is feasible for problems that appear many times

during the execution. The system, although it misses the first occurrences, is able to adapt

and prepare the application for the next time it enters a problematic code region. This fact

may appear as a very hard constraint, because the bottlenecks that appear only once are not

solved. However, when thinking about applications running for several hours there are

certain code regions that are executed many times (iterations). Consequently, the main

performance bottlenecks are those that appear many times during the execution.

4.3. Automatic analysis vs. dynamic tuning
On one hand, the two described possibilities – automatic analysis (static or dynamic) and

dynamic tuning – can appear as opposite approaches. They provide a user with different

possibilities and results. They cover different application ranges. However, from the other

point of view, the last reason causes that they can be considered as complementary.

Together can provide analysis of wider range of applications. There are also several

methodologies that are common for both approaches, especially concerning performance

model used for analysis purposes.

The static approach has the advantage when the applications have a regular and stable

behavior. They can be tuned and once the tuning process has been completed, the

application can be executed as many times as necessary without introducing any intrusion

during the application execution.

 47

Dynamic performance tuning

However, there are many applications that do not have such a stable behavior and change

from run to run according to the input data or even change their behavior during one single

run due to the data evolution. If application had different behavior during different

execution depending for instance on input data, the hints provided by a tool that supports

post-mortem analysis could be improper for another execution. In this situation, the

dynamic approach allows following the application behavior on the fly. However, similarly

to static analysis, the dynamic analysis is based on a single run of the application. When

the application behavior depends on the input data or on the iteration of the execution, the

suggested recommendations can be inadequate for a further run of the application.

Therefore, in such a case the most appropriate approach is dynamic optimization of the

application as it tunes the particular run. These characteristics make the dynamic tuning

approach relevant to grid systems, where applications are executed in highly dynamic

environments.

On the other hand however, dynamic analysis and tuning requires a continuous intrusion

into the program that is not necessary when applying post-mortem analysis to the stable

behavior application. Moreover, if the analysis is carried out on the fly during the

execution of the application, the information available and the time spent on the analysis is

considerably restricted. It is caused by the need to inform the user about the bottlenecks

quickly and modify the application efficiently in this particular run.

Next issue is related to the monitoring phase. Monitoring tools that generate trace files can

create enormous files due to the execution of a real application that takes some hours or

days. Therefore, files can be difficult to manage and analyze post-mortem in order to find

the performance bottlenecks. Moreover, the use of a single trace file to tune the application

is not completely significant, especially when the application behavior depends on the

input data set. In this case, the modifications done to overcome some bottleneck present in

one run may be inadequate for another run of the application. This problem could be

solved by selecting a representative set of runs, but provided suggestions would not be

specific for a particular run then. In this case, we see the advantage of dynamic tuning

approach, which does not need trace files when analyzing the application behavior.

Dynamic tuning introduces much more intrusion into the application, what is reduced in

the case of post-mortem and even dynamic analysis. However, automatic analysis (static as

 48

Dynamic performance tuning

well as dynamic) providing only recommendations requires the user to participate in the

tuning phase manually and to have more experience and knowledge developing parallel

applications. In opposite the dynamic tuning approach reduces significantly the

participation of the user improving the performance on the fly. The user can then be

exempted from the hard and complex tuning task.

For all these reasons, we can see that each approach has its advantages and disadvantages

depending on the features of the application, generated results and user obligations.

4.4. Classification of dynamic performance tuning
The most useful dynamic tuning is the one that can be used to successfully optimize the

broad range of different applications. It would be desirable to be able to tune any

application even though its source code and application-specific knowledge is not

available. However due to incomplete application information this kind of tuning is very

challenging and at the same time the most limited.

The key question is what can be really tuned in an “unknown” application?

This section presents our classification of dynamic performance tuning. We show tuning

layers which can be optimized in the application. We also classify dynamic tuning

approaches.

4.4.1. Tuning layers
The answer to the key question can be found by investigating how an application is built.

In general, each application consists of the following layers as it is shown in Figure 4.2:

• Application-specific code

• Standard and custom libraries (API + code)

• Operating system libraries (API + code)

• Hardware

An application is based on a set of services provided by the operating system. The

operating system is responsible for managing the hardware (CPU, memory, I/O devices

and network) and software components of a computer system. These components

 49

Dynamic performance tuning

constitute the resources of the system. Operating system provides a set of libraries so that

the users of the system see it as a functional unit without having to be concerned with the

low-level hardware details. The application uses the system calls (OS API) to request the

operating system (kernel) to do a hardware/system-specific or privileged operation. For

example, the UNIX system provides a large number of functions (about 60) that address

broad range of basic functionalities such as I/O, file handling, memory management,

process management, inter-process communication (IPC), time functions, and so on.

Fig. 4.2. Layers the application is built-on.

Operating System
code

OS API

Libraries
code

API

Application code

Hardware

Besides that, the C/C++ applications use standard C/C++ libraries that support them with a

variety of additional functions. This includes higher level I/O functions (i.e. buffered I/O),

mathematical functions, string manipulation functions, time and date functions and other

utilities. The implementation of some of these functions is based on OS services (i.e.

system calls such as open (), read ()). Concerning C++ specific libraries, there is even

wider set of provided functions that cover I/O streams, and standard class templates

including vectors, queues, lists, strings, sets, maps.

Additionally, the application may use custom or third-party libraries that provide problem-

specific functionality. They range from communication and message passing libraries (e.g.

PVM [Gei94], MPI [MPI94]), database access libraries (OCI [L26]), numerical methods

(ScaLAPACK [Bla97, L23], BLAS [Don88, L24], PETSc [Bal97, L25]) to programming

frameworks (ACE [Sch94]). These libraries are developed to insulate the programmer from

the low level details as they offer a higher level of abstraction and facilitate the design and

development of high performance applications.

 50

Dynamic performance tuning

Finally, each application contains an application-specific implementation and consists of a

number of modules that solve a particular problem in a given domain. An application

supports different paradigms, its code uses variety of different data structures, functions,

libraries, implements specific problem-domain algorithms. For example, to provide a

matrix multiplication, a developer can build a parallel application on the top of PVM and

C/C++ libraries and basing on the Master-Worker paradigm. Moreover, it can represent a

data in a specific structure (e.g. as 2 dimensional vectors or lists) and an algorithm to data

distribution and calculation must be used. For instance, having N workers, a total matrix is

divided into N parts and distributed among the workers from the beginning or a matrix is

divided into M parts and distribution is on demand when a worker finishes the partial

calculation. The code might be written without functions, or encapsulated into variety of C

function or C++ classes and methods.

To accomplish the performance expectations, a developer must tune the application

choosing the best polices considering application requirements and the environment. Such

tuning process requires a deep and detailed knowledge of the presented layers that is not

necessary for developing applications. Moreover, these adaptations do not depend only on

the application features, but also on the input data or on the dynamically changing

conditions of the application execution. Therefore, it is very hard to take into account all

these variable conditions when developing applications. It is necessary then to tune the

application and its different layers on the fly during the execution.

We have distinguished 4 principal layers: application, libraries, operating system and

hardware. All these different application layers may present different bottlenecks and

hence may require dynamic tuning. The scope of this thesis does not include the hardware

level, we consider only software optimizations.

Operating system performance issues commonly involve process management, memory

management, file I/O and communication. We have identified two different methods that

enable OS tuning in the context of a single process. The first method is the adjustment of

particular parameters of OS kernel implementation to application needs and

environment conditions. However, from the user-application point of view (i.e. user mode)

it is possible only when there are adequate OS system calls that allow for such adjustment.

Lower-level kernel code dynamic modifications would require to use dynamic kernel

 51

Dynamic performance tuning

instrumentation techniques (such as KernINST [Tam99]), but this is out of the scope of

this work. A good example for OS kernel parameter adjustment is the bunch of TCP/IP

socket options. These options allow a user-application to tune the TCP stack behavior to

particular needs of the application by means of setsockopt() system call. For example the

application may enable or disable the Nagle’s algorithm (TCP_NODELAY option) that

decides if small messages should be grouped together before sending. This is beneficial for

WAN networks with high latency, but typically slows down LAN communication.

The second method focuses on tuning the code that inefficiently uses the underlying

libraries. This may refer to both the application-specific code and standard/custom library

code that inefficiently use the OS functions. For example reading a big file with very small

I/O requests (i.e. using non-buffered read() call) is a well known performance bottleneck

and it is considered a bad usage pattern. In this case, the dynamic tuning system could

detect this pattern by calculating read() call statistics and could tune the application by

changing the request size (if possible) or dynamically insert buffering code.

Investigating the case of standard C libraries, we see many points that may be a cause of a

bottleneck and hence may be good for optimizations. We can see that depending on the

application needs, the library can be used in a bad or inefficient way. A well known

problem while using the standard C library is the memory management. A performance

bottleneck may occur when in an application there is a tendency to create quite large

numbers of small objects. The memory allocations are usually based on the C heap

allocator (malloc()/realloc()/free()). The C heap allocator is focused on medium- to

large-sized objects (hundreds to thousands of bytes) and not on small chunk allocations.

The solution is to rely on custom small-objects allocators – specialized allocators that are

more efficient for dealing with small memory blocks (tens to hundreds of bytes).

Concerning STL standard C++ library there is a number of tunable options. One of the

most common programmer’s mistakes that may significantly affect the performance is to

use the default capacity of dynamic containers (e.g std::vector). Default settings may be

not well adjusted for different applications and their needs.

The next level of the application development is a custom specific-problem library. Such a

library offers a higher level of abstraction, but is developed in a general way to be useful

 52

Dynamic performance tuning

for a wide range of applications. This work focuses on improving the use of the library, not

on modifying the library source code. The code modifications imply the recompilation

process and our approach considers only dynamic and automatic changes done on the fly.

For example, concerning common communication libraries as PVM or MPI, there are

various possibilities to tune their usage as invoking or not the synchronization phase,

eliminating the redundant synchronization, grouping or not messages sent to the receptor.

Moreover, a parameter in a library function call can be switched according to the variable

environment conditions. As an example we can put here the PVM function

pvm_initsend() which contains a parameter that sets the encoding mode. By default

PVM encodes data using XDR standard, because it cannot know if there are heterogeneous

machines. If the messages are exchanged between homogeneous machines, the encoding

phase can be skipped what allows for avoiding the encoding costs. Other possibilities to

tune a custom library are selection of the most adequate policy or adjustment of a policy.

For instance Adaptive Communication Environment (ACE [Sch94]) implements a set of

design patterns that simplify the development of communication software. It provides C++

wrappers, frameworks or classes categories that perform common communication tasks as

event demultiplexing, connection establishment, dynamic configuration of application

services. ACE comes with a set of configurable services, but typically they are selected

statically at startup, for example, a number of threads per request or a number of threads in

pool.

Till now we can see that in these layers the optimization process may be based on the well

known features characteristic for the operating system and libraries. Investigating

operating systems and libraries it is possible to find their potential drawbacks. Some of the

problems found can be tuned simply adjusting specific parameters (in case a function that

adjusts them is available), other by tuning the bad and inefficient usage. All these tuning

options are possible, because we can take advantage of operating system features and

library implementation knowledge. We can focus on a set of problems related to paradigms

used to implement the application that are common to many applications. For each

drawback then the set of specific information can be determined to improve the application

performance, such as measure points, performance model and tuning

points/actions/synchronization. Problem that occurs due to the drawback of operating

system’s or libraries’ layers can be eliminated, since such a problem is well known for any

application that uses them. The developers can concentrate on designing and developing an

 53

Dynamic performance tuning

application, and submit it with the input data. Once the application has been developed, the

dynamic tuning can ensure a good performance. It takes care of controlling the application

execution and optimizes different options according to the application and environment

needs.

Tuning the application code is the most complex, due to the lack of problem-specific

knowledge. Each application-specific implementation can be totally different and there

might be no parts common for many applications event though they provide the same

functionality. The application can be tuned using different techniques (parameter

adjustment or algorithm selection) but only if there is a knowledge about its internal

structure. Therefore, to optimize the application layer, dynamic tuning should be supported

in some way with all necessary information about the application such as measure points,

performance model and tuning points/actions/synchronization There are a number of

application-independent code optimization techniques, but all of them operate at the lower

level. The examples include dynamic function inlining (as it is provided by Java HotSpot

[L27]), static code reordering (e.g. moving error handling code to the last else statement),

static data rearrangement and so on. However, this kind of changes is out of the scope of

our work.

One of the well known parallel application optimization technique is function call

reordering. For example, in the PVM application function one of the problem may appear

when one process blocks a message to be sent as it is waiting for a result from other

process. Therefore, function pvm_send() could be invoked before pvm_recv() and hence

the blocking would be eliminated. However, this change can be performed only if there is

no data dependence. This phenomenon occurs when two memory accesses may refer to the

same memory location and one of the references is a write. If these operations are forced to

run in parallel, they may cause incorrect execution, as variables used for calculations may

be utilized before they are updated. The example data dependence is shown in the

following code:
for (i=1; i<=n; i++)

{

 a[i] = b[i] + 2;

 c[i] = a[i+1] + d[i];

}

 54

Dynamic performance tuning

Concerning the previous PVM example, pvm_send() can be invoked before pvm_recv()

only if a content of a message to be about to sent does not depend on a result that will be

received. If so, the function call cannot be reordered because it would cause an incorrect

functioning. We see, that application tuning cannot affect the correct functioning of the

application or crash it. Modifications performed on the fly must be carried out carefully to

ensure that the application correctly continues its execution.

Summarizing, we presented different layers on which an application is built. Looking at

Figure 4.2 the upper the layer is, the more specific information about the application is

required. The lower the layer is, the more generic information is available. If we consider

for example the operating system layer, it has many well-known information that can be

used for any application. Such issues do not depend on the application structure, they are

general. The library layer is already not so generic, but it also contains generic and

common information that can be extracted without dependencies on the application.

However, an application can be implemented in different ways, data dependence can occur

and hence it is obvious that it does not have common and generic solutions.

4.4.2. Tuning approaches
Additionally to the answer to the key tuning question given by the tuning layers, the

complementary answer can be found by investigating how an application is given. The

classification we present in this section considers the available application knowledge. In

our work we defined 2 principal approaches:

• Automatic

• Cooperative

In the automatic approach, an application is treated as a black-box, because no application-

specific knowledge is provided by the programmer. This approach attempts to tune any

application and does not require the developer to prepare it for the tuning (no changes are

introduced into the source code). In this approach, the key question is what can be changed

in an unknown application. The automatic approach is more suitable for the tuning layers

such as operating system and libraries. We can find there many general tuning options

common to many applications. We can focus then on a set of problems related to paradigm

used to implement the application as well as low-level functionality. For each particular

 55

Dynamic performance tuning

problem, all the necessary information such as what should be measured, in what manner

analyzed, what and when should be changed can be provided automatically.

In the cooperative approach, we assume that an application is tunable and adaptable. This

means that developers must prepare the application for the possible changes. A

programmer could prepare the application for tuning, for example by providing different

implementations of certain algorithms and letting the tuning system select the most suitable

one for the existing conditions. Moreover, developers must define an application-specific

knowledge that describes what should be measured in the application, what model should

be used to evaluate the performance, and finally what can be changed to obtain better

performance.

Another alternative is the application framework that hides all the communication

mechanisms and provides tuning-aware implementation [Ces02]. This alternative allows

the programmer to concentrate on codifying the application-related issues, hiding the low-

level details. Moreover, it facilitates the dynamic performance tuning, providing all

necessary information about the developed application. We present this idea in the Section

4.6. The cooperative approach is suitable for the application tuning layer as this is the less

generic layers and many information should be known about the internal construction.

4.4.3. Alternative tuning approaches
As we have seen, our approach considers 2 different application treatment: as black box or

as adaptive to be tuned. Both take use of the available knowledge (provided automatically

or by the developer) and use a performance model-based analysis. Another approach to

provide a dynamic tuning is dynamic feedback [Din97]. This is a technique that produces

different versions of the same source code and each version uses a different optimization

policy. The generated code alternately performs sampling phases and production phases.

Each sampling phase measures the overhead of each version in the current environment.

Each production phase uses the version with the least overhead in the previous sampling

phase. The computation periodically resamples to adjust dynamically to changes in the

environment. Dynamic feedback is used in Active Harmony [Tap02] described later in this

chapter. This project bases on integration of different libraries with the same functionality.

To finding the best solution, Active Harmony uses a heuristic algorithm. A similar solution

 56

Dynamic performance tuning

is applied in RAS (Runtime Algorithm Selection) [Bor03] that provides an algorithm

selection web service and meta-scheduler services during runtime.

4.5. Application analysis based on knowledge
Once we have classified dynamic tuning and presented examples of optimizations, we can

focus on the problem of how to improve the performance analyzing applications. The

purpose of the analysis is to examine application behavior basing on the collected

measurements, identify performance bottlenecks, and give concrete solutions that

overcome these problems. The analysis requires many information that allows for the

application behavior determination and detection of the performance problems among

coming measurements.

The application behavior can be characterized by an analytical performance model. A

performance model helps to determine a minimal execution time of the entire application

as it allows for prediction of the performance of that application. There are other

possibilities to analyze the application behavior and improve its performance, as for

example heuristics approaches. In such solution, some special parameters may be

controlled, determined automatically by searching the parameter value space using

heuristic algorithm and finally changed during run time. Heuristic algorithms neither

determine nor predict the optimal application behavior. The goal while using them is to test

the application behavior and find the best one changing the value of parameters. Our work

concentrates on the analysis based on the performance model and rules.

Such a model can contain formulas and/or conditions that facilitate the calculations and

determination of the optimal behavior. These formulas need as an input a set of

information – measurements extracted from the application execution. Basing on the

measurements and applying adequate formula, the performance model can provide the

optimal behavior of the application, for example the optimal value of some parameter.

Finally, the application can be tuned changing an appropriate parameter and its

performance is supposed to be improved immediately.

For example, in the Master/Worker paradigm, the well known bottleneck is the number of

workers involved in the work processing. Determining the performance model of such an

 57

Dynamic performance tuning

application, it is possible to find an adequate number of workers. The performance model

can require to measure the time taken by each worker when processing the data and the

time when the master is waiting for results. Analyzing the measurements, the idle time of

the master process can be detected. This situation means that the master process is mostly

waiting for the results. Applying the formula to calculate the number of workers, the

analysis can give as a result the optimal number. If this number is to increase, the

application parameter that represents the number of workers must be tuned.

As we have described in Section 4.4.2, we distinguish two tuning approaches: automatic

and cooperative. On the one hand, we consider as an effective solution automatic

extraction of as much well known information as possible from the unknown application. It

can be done only if there are well known problems and the performance model can be

automatically determined. On the other hand, the provision of the application-specific

knowledge is done cooperatively with a user. In this case, the developer determines a

performance model of the application.

To make these two approaches homogeneous and to provide possible and effective

optimization on the fly we decided that the application should be represented by a set of

clearly defined information required for the monitoring, analysis and tuning. We assume

the following principal terms and definitions:

• measure points – they determine what must be monitored in the application; a point

tells where the instrumentation must be inserted to provide measurements.

• performance model – it helps to determine an optimal execution time of the entire

application. It consists of activating conditions (conditions in the application behavior

considered to be a bottleneck) and/or formulas that allow for finding the optimal

conditions.

• tuning points, tuning actions, synchronization – they determine what and when can

be changed in the application to obtain its better performance; tuning points are the

elements that may be changed to improve application performance; tuning action

represents the action to be performed on a tuning point. The synchronization specifies

how and when the tuning action must be invoked to ensure the correctness of an

application.

 58

Dynamic performance tuning

Figure 4.3. shows the concept of the dynamic tuning supported by the application

knowledge in the form of measure points, performance model and tuning

points/actions/synchronization.

Application code

Fig. 4.3. Dynamic performance tuning and application knowledge.

Tuning
points/actions/sync

Performane
model

Mesure
points Tuning

Performance
analysis

Monitoring

Application

Development phase Run-time phase

User

Tool

4.6. Dynamic tuning supported by application specification
As we have mentioned before, dynamic and automatic tuning implies the analysis and

optimization to be simple and effective. It is very hard to do it without a previous

knowledge about the structure and functionality of the application. A good solution would

be to know the application specification. Therefore, we propose an application

development framework based on parallel patterns that provides our dynamic tuning with

information about the internal structures of application [Ces02]. Moreover, the framework

facilitates the programmers in design and development phases of their application. The

users are constrained to use a set of programming patterns, but by using them they skip the

details related to the low level parallel programming. All low level details of the

communication library are hidden to the programmer. In this sense, using our framework

API the programmers just have to fill those methods that are related to the particular

application being implemented. They must indicate the computation that each process has

to perform, specify data that must be computed and determine communication

relationships of the processes. The whole conceptual loop, namely application design tool

together with the dynamic performance tuning, allows the programmer to concentrate on

the application design without taking into account low level details of the implementation

and not to worry about the program performance.

 59

Dynamic performance tuning

4.6.1. Definition of parallel patterns and framework
For the purposes of this document we assume the following terms [Gam95]:

• Design pattern – is a problem/solution pair in a context. It can address design problems

at many levels (however usually at low-level design issues). Pattern emphasizes reuse

of design rather than reuse of code. It captures the static and dynamic structures and

collaborations of successful solutions that distinguish them from poor ones when

building applications in particular domain. Typically pattern provides description in a

common notation together with design and advice for developers for better

implementation of an application that will contain this pattern.

• Framework – addresses overall program organization. It contains a set of components

that collaborate to provide a reusable architecture for the family of related applications.

It tends to be more detailed and domain-specific providing a range of particular low-

level functions. It emphasizes reuse of code as well as design. Generally, framework is

a semi-complete application.

The programmers use a framework in order to build a complete domain-specific

application. They provide implementation of only some particular components (classes,

methods, functions) that are required for specific application functionality. The conceptual

model of the framework is shown in Figure 4.4.

Fig.4.4. Conceptual model of a framework.

Application specific code Framework

Master::Calc (…)
{
 …
 for (i=0; i<100;i++)
 j++;
}

class Master (...)
{
 Calc (…);
}

main (...)
{
 Master m;
 m.Calc (…);
}

Our research area is parallel programming, so we are focused on parallel patterns. The

most known parallel patterns are [Vli95, L28]:

• Master-Worker – the pattern describes this kind of algorithms that are formed of a

master process and some number of identical workers. It is used to describe concurrent

execution by a set of independent tasks. Parallel applications that implement this

 60

Dynamic performance tuning

pattern are called embarrassingly parallel because once the tasks have been defined,

the potential concurrency is obvious.

• Pipeline – the pattern is used for algorithms in which data flows through a sequence of

tasks or stages.

• SPMD (single program, multiple data) – the pattern describes an algorithm where a

number of tasks execute the same program in parallel, but each task operates on its

"own" data.

• Divide & Conquer – this pattern is used for parallel applications based on the well-

known divide-and-conquer strategy. Concurrency is obtained by solving concurrently

the subproblems into which the strategy splits the problem.

4.6.2. Parallel pattern-based framework
Our proposed parallel pattern-based framework supports a user during the parallel

application development phase. It provides an API that is based on the object oriented

methodology and implements patterns encapsulating their behavior, and the

communication details. When a developer builds the application in our environment,

he/she can choose what kind of parallel pattern is to be implemented in the application.

Apart from the general structure of the application, the developer must indicate the

computation done by all application parts, the data structures to be processed, and

communication relationships. To develop the complete application, programmers use the

API of the framework and provide their own implementation of particular classes and/or

methods. The framework builds the application adding low level details of the

implementation that are generated automatically depending on the chosen pattern.

All these parallel patterns that are implemented by the framework, their structures,

behavior and possible performance bottlenecks are well investigated. Therefore, we can

take a use of the research results and determine very useful information for dynamic tuning

purposes. For each kind of application created in our framework, we analyze its specific

problems basing on well-known parallel pattern bottlenecks. We are able to determine

these application parts that from the one hand, can cause problems and from the other

hand, can be changed in order to improve the performance. The framework can provide

then the dynamic tuning with measure points, performance model and tuning

points/action/synchronization. Using this knowledge, the dynamic performance tuning is

 61

Dynamic performance tuning

simplified, because the set of performance bottlenecks to be analyzed and tuned are well

known and related to the parallel patterns offered to the user.

4.6.3. Conceptual architecture
Even though the dynamic performance tuning is supported by the application framework,

its the conceptual loop does not change. There are still three parts responsible for program

optimization: monitoring, analysis and tuning. However, these parts have now significant

amount of information about the application provided by the framework. Figure 4.5

presents the interactions and data flow in dynamic tuning while supported by application

specification framework. The main components are:

1. Application Framework – it provides an API that offers support to the user during the

application development phase. For an application based on chosen pattern, the

framework generates for dynamic tuning all important and necessary information:

measure points, performance model and tuning points.

2. Monitoring – it inserts the instrumentation into specified by the framework measure

points.

3. Analysis – this part analyses parallel application using received events and the

knowledge given by the framework. It knows performance model of the analyzed

application. Therefore, it can directly start the analysis focusing on well-known

bottlenecks of a given model, instead of wasting time on performing the initial search

of the problem space.

Application specific
code

Fig. 4.5. Dynamic tuning environment supported by application specification framework.

Tuning
point/action/sync

Performance
model

Mesure
points

Tuning

Performance
analysis

Monitoring

Application
framework

API

Low level
details

Application

Development phase Run-time phase

User

Tool

 62

Dynamic performance tuning

4. Tuning – this part uses the solution given by the analysis and the tuning points and

actions provided by the framework. Then it automatically manipulates the running

application applying a given action on a given point.

4.7. Dynamic instrumentation
“The normal cycle of developing a program is to edit source code, compile it, and then

execute the resulting binary. However, sometimes this cycle can be too restrictive. We may

wish to change the program while it is executing, and not have to re-compile, re-link, or

even re-execute the program to change the binary.“ [L10]

We have already described the general overview of the dynamic tuning approach as well as

our principal definitions and classifications that we determined investigating this area.

Now we will focus on a dynamic instrumentation technique that we decided to use to

support our optimization approach. This section presents an overview of DynInst, an API

for run time code generation. DynInst supports dynamic instrumentation and permits the

insertion of code into a running program. We describe the API introducing its features,

used abstractions and how to insert instrumentation into the application during run time.

Then we show the small example of DynInst usage and we briefly describe the internal

implementation issues of the library. Finally we present a commercial application of

DynInst called DPCL developed by IBM.

4.7.1. DynInst overview
The principle of dynamic instrumentation is to defer program instrumentation until it is in

execution and insert, alter and delete this instrumentation dynamically during program

execution. This approach was firstly used in Paradyn tool that we have described in

Chapter 3. In order to build an efficient automatic analysis tool, the Paradyn group

developed a special API that supports dynamic instrumentation. The result of their work is

called DynInst [Buc00, L30]. DynInst is an API (Application Program Interface) for

runtime code patching. It provides a C++ class library for machine independent program

instrumentation during application execution. DynInst API supports a programmer when

building the application that will instrument another application during run time. The API

is based on object-oriented technology and provides a set of classes and methods that allow

a user to:

 63

Dynamic performance tuning

• attach to an already running process or starting a new process

• create a new piece of code

• access and use existing code and data structures

• insert created code into the running process

• remove inserted code from the running program

The next time the instrumented program executes the block of code that has been modified,

the new code is executed. Moreover, the program being modified is able to continue its

execution and does not need to be re-compiled, re-linked, or restarted. DynInst manipulates

the address-space image of the running program and thus this library needs access only to a

running program, not to its source code. A very important issue is debug information.

DynInst can manipulate a program during run time, but with one condition: it requires that

the instrumented program contain debug information. The API needs symbolic debug

information to be able to locate procedures and variables in the instrumented application.

Therefore the instrumented program must be compiled with appropriate option to enable

this information.

The goal of this API is to provide a machine independent interface. This allows the same

instrumentation code to be used on different platforms. The newest version of DynInst 4.0

supports the following platforms: Sparc Solaris, x86 Solaris, x86 Windows NT, x86 Linux,

Alpha (Tru64 UNIX), MIPS IRIX, Power/PowerPC (AIX).

4.7.2. Abstractions
The DynInst API is based on the following abstractions:

• mutatee or application – a program to be instrumented.

• mutator – a separate program that modifies an application process via DynInst.

• point – a location in a mutatee where a new code can be inserted, i.e. function entry,

function exit, subroutine, long jump.

• snippet – a representation of a piece of executable code to be inserted into a program at

a point; a snippet must be build as an Abstract Syntax Tree (AST). It can include

conditionals, function calls, loops, etc.

• thread – a thread of execution (it means process or a lightweight-thread).

 64

Dynamic performance tuning

• image – it refers to the static representation of a program on a disk. Each thread is

associated with exactly one image.

Abstractions used by DynInst and their relationships to each other are presented in Figure

4.6.

App exec
(image)

Application Mutator

Run time library

Snippets

DynInst code

API

Mutator application

(snippet creation)

...
function foo1
{
 int i;
 for (i=0;i<10;i++)
 foo2 (i);
}
... Thread

Points

Disk
Fig. 4.6. Abstraction used in DynInst.

To be clear, we present definition of the Abstract Syntax Tree [L31]: the Abstract Syntax

Tree (AST) is the hierarchical representation of the semantic features of a program based

on its abstract syntax. The abstract syntax defines only what is done rather than how it is

done. The goal of the abstract syntax tree is to store intermediate representation of input

between multiple passes of the compiler. AST has the "same semantics as the source

language they represent." This is an advantage over the byte-code so that it is possible to

quickly establish the intention of the program at every level.

4.7.3. DynInst usage
To insert instrumentation dynamically, a user of the DynInst library must do the following

steps in the development phase:

1. A mutatee executable file must be available. There is no need for the source code of the

application, neither special compiler nor linker options set (only debug information is

required).

2. A mutator must be implemented in a special way: using appropriate DynInst classes.

3. The mutator must implement snippets (instrumentation) using DynInst classes.

4. The mutator is compiled and linked with DynInst library (all these issues are described

in the DynInst guide [Hol03]).

 65

Dynamic performance tuning

5. Then the mutator is started.

Then the following steps are performed automatically by DynInst library during run time:

6. The DynInst library is dynamically loaded to the mutator address space.

7. The mutator, via DynInst, creates an application process (or attaches to an already

running one).

8. DynInst automatically attaches its run time library and snippet code to the address

space of mutatee process.

9. At all specified points of the mutatee, DynInst inserts calls to the snippet code.

10. When the function has a snippet call inserted at the entry and is being executed, first a

snippet code, then an original function code are performed.

Figure 4.7 presents all described before steps that are performed during a development

phase and run time phase in order to insert instrumentation dynamically into the

application via DynInst.

9

8

7

6

5

4

3

2

1

Application

executable file

DynInst library

function main()
{
// create app
 ...
// insertSnippet
}

Disk

func send(…)
{
 ...
}

func recv(…)
{
 ...
}

…
Bpatch bpatch;
BPatch_thread...
BPatch_image...
…
// snippet
// creation
…
insertSnippet

Mutator

snippet()
{
 i = i+1;
}

Compilation,
linking with

DynInst library

Mutator execution Application execution

Development phase Run time phase

Fig. 4.7. Steps of the application instrumentation when using DynInst library.

Creating snippets is the most difficult part when using the DynInst library. Therefore, we

have focused on the instrumentation creation. However, DynInst also allows a programmer

to disable and remove the instrumentation. It is also possible to alter a semantic of a

program changing a call to specified function to be a call to another one. In order to

perform these operations, the developer utilizes appropriate corresponding methods of

library classes. For example, if the instrumentation must be removed from the process, the

 66

Dynamic performance tuning

developer invokes only one method and DynInst automatically during run time removes

snippet calls from the specified points.

The API is organized as a collection of C++ classes. Each class provides a set of methods

that can be invoked by the user of the library. In this document we do not present the

classes and their methods. Listing of all classes, methods, parameters and descriptions is

available in the “DynInst API Programmer’s Guide” [Hol03].

4.7.4. Example snippet creation
Here we present the creation of an example snippet. If we wished to record the number of

times a given function was invoked during the application execution, we would define a

point and a snippet in this way:

• point – first instruction in a given function (e.g. function: pvm_send(), location: entry)

• snippet – a statement to increment a counter

Generally, to increment a variable a programmer would generate (in C):

int var;
var = var + 1;

However, a snippet must be implement as AST. Figure 4.8 shows two views of AST: a

conceptual and by means of DynInst classes.

Bpatch_arithExpr

Bpatch_arithExpr

Bpatch_constExpr (0)Bpatch_variableExpr

Bpatch_plus

Bpatch_variableExpr

Bpatch_assign

1 var

+ var

=

Fig. 4.8. Abstract Syntax Tree (conceptual and using DynInst classes) representing the arithmetical snippet that
increments variable var.

 67

Dynamic performance tuning

Basing on the view of AST with DynInst classes, we present an implementation of the

snippet that increments a counter. The code we write is:

BPatch_variableExpr counter = appThread->malloc ("int");

BPatch_arithExpr addOne (

BPatch_assign,
counter,
BPatch_arithExpr (

BPatch_plus,
counter,
BPatch_constExpr (1)

)
);
appThread.insertSnippet (addOne, points);

First we allocate the memory in the mutatee address space for the integer variable

(BPatch_variableExpr counter) which will be incremented. Then the object addOne of

the class BPatch_arithExpr is created. This object represents an arithmetical expression

and assigns (BPatch_assign) to the variable counter the result of another arithmetical

expression (BPatch_arithExpr) that adds (BPatch_plus) to the variable counter a

constant expression (BPatch_constExpr) with value 1. The last step inserts the defined

snippet into thread at all specified points.

4.7.5. DynInst internal issues
In order to instrument an application during run time, DynInst library must perform special

operations on the application executable file before the application start. Implementation of

DynInst includes structural analysis of the binary searching for the possible points in the

program and instrumentation management that allows code to be inserted and removed

from the running program. In the following sections we briefly describe how DynInst

performs these operations. The detailed description can be found in the technical

documentation of DynInst [Hol97].

4.7.6. Structural analysis
Before a new process creation (or attaching to the already running one), DynInst library

performs a structural analysis to identify instrumentation points in the application. DynInst

extracts necessary information from the symbol table and by scanning the binary image. It

generates a list of all possible points for each function where the instrumentation can be

inserted. Each point is annotated with important information such as: point address,

 68

Dynamic performance tuning

original instruction at the point. For each function DynInst defines weather the function

represents a leaf or it creates a new stack frame.

An executable file is processed in several steps. First, DynInst maps the memory to the

executable file and processes the symbol table to get the size and address of the code and

data segments. It generates the following information: pointers to the code and data

segments, list of symbols (functions and data objects) with name, type, starting address,

size, etc. When the information about all functions is available, DynInst searches for

instrumented points (entry, exit, call sites) for each function. The entry point of the

function is the starting address obtained from the symbol table. The other instrumentation

points are defined scanning the function code and searching for instruction that implements

calls (call instruction) or exit (e.g. return).

4.7.7. Instrumentation management
In order to instrument a code during run time, DynInst generates instrumentation codes

translating snippets into machine language codes. Then it places them into trampolines that

reside in dynamically allocated areas in the application address space. Trampolines provide

a way to invoke instead of the original code the newly generated code.

Dynamically allocated areas are provided by a dynamic linked library of DynInst. It

contains utility functions and two large arrays loaded into the application address space.

Both arrays are used for dynamically allocated regions of memory. One is used for

instrumentation variables, and the other to hold instrumentation code (on many platforms

instructions and data are kept in separate regions of memory).

Once the code is generated and placed in trampolines, DynInst must tie it with the

application. Carefully modifying the code to branch into the newly generated code is the

most difficult part of inserting instrumentation. To tie the generated code with the

application, DynInst stops the application process and installs the code into the required

point in the application address space. DynInst employs the same basic operating system

services as used by debuggers (proc filesystem, ptrace). These services provide a way

to control process execution, and to read and write the address space of the application.

proc is a filesystem that provides access to the image of each active process in the system.

ptrace allows a parent process to control the execution of a child process.

 69

Dynamic performance tuning

DynInst extracts appropriate instructions from the instrumented point of the application

and relocates them into the reserved space. The original code is modified to jump to the

base trampoline. The base trampoline contains the relocated original instructions,

instructions to save and restore registers, slots where jumps to mini-trampolines can be

inserted and jump to return to the application. The mini trampoline contains the

instrumented code (snippet) and jump to return to the base trampoline. Figure 4.9 presents

the structure of the base and mini trampolines and its relationship to the instrumentation

point.

Fig. 4.9. Structure of the base and mini trampolines.

Func foo:

Mini trampolineBase trampoline

Snippet code

Relocated

instructions(s)

Post instrument.

Restore regs.

Pre instrument.

Save regs.

Application

4.7.8. DPCL
DPCL stands for Dynamic Probe Class Library and it is the library that simplifies building

tools for application performance analysis [Pas98]. It provides an infrastructure to reduce

the cost of writing instrumentation. DPCL was developed by IBM Corporation [L6] in

1998. The library takes advantage of dynamic instrumentation provided by DynInst. DPCL

is C++ class library build on the top of the DynInst. DPCL encapsulates DynInst

functionality providing a programmer with possibility to use the higher-level abstractions

comparing to DynInst ones.

Programmers build their end-user tools using DPCL library classes and methods. Then

during run time they can establish connection with the application to be analyzed and

manage the application instrumentation – insertion and deletion. DPCL is implemented as

a distributed, asynchronous system that contains special daemons for providing services.

When a tool based on DPCL is executing, it requests services from daemons via library

calls (it calls methods of the classes from the DPCL library). The daemon translates those

requests into actions and interfaces with the DynInst library to instrument and manage user

 70

Dynamic performance tuning

processes. The instrumentation sends performance data back to the tool through the

daemon. When the message is received it activates a callback function supplied by the tool

for that purpose.

Instrumentation is defined by the user tool as a combination of probe expressions and

probe modules. Probe expression is represented as an Abstract Syntax Tree, while probe

modules are collections of functions written in a standard language (for example C) and

compiled into object files, that are loaded into the application and called from a probe

expression. The Figure 4.10 shows the conceptual tool architecture when using DPCL.

DPCL
DaemonDPCL

library

User
tool
code

Application

Client machine Server machine

Run time phase

Fig. 4.10. A tool communication with a daemon through the DPCL library.

DPCL provides similar to DynInst services. We present only few of them:

• application and process management - create an application/process, connect to and

disconnect from a running application/process (in this case application contains

multiple processes); suspend, resume, terminate application; read/write application

memory; open/close/read/write/seek application file

• instrumentation management – select/identify instrumentation; create/install/remove

probe expression; activate/deactivate probe expression; periodically activate

instrumentation

• communication between probes and tools in order to send data back to the client tool

All available classes and their methods are described in [Rob98]. DPCL library is working

only on the IBM machines, namely RS/6000 Scalable POWERparallel Systems (SP – a

scalable system arranged in various physical configurations, that provides a high-powered

computing environment). As operating system, IBM uses its licensed version of the UNIX,

namely AIX – Abbreviation for Advanced Interactive Executive [L32].

 71

Dynamic performance tuning

4.8. Dynamic modifications of an application
Once we know how we can change an application during run time, the next question is

what we can change in a given application. As we have mentioned in Section 3.5 we define

terms as tuning actions, tuning points and synchronization. Considering the possibilities of

DynInst, we determine a set of tuning actions that can be applied on tuning points. A

tuning point can be any point found by this library in the application executable, as

function entry, function exit, call places. We consider the following tuning actions:

• Function replacement – in this method, all calls to a given function are replaced with

a call to another function with an identical signature. The implementation of a new

function can already exist in the application or operating system or it can be provided

by our dynamic tuning in a dynamic library loaded to the process. The example tuning

option is inside the memory management. When the standard C library function

malloc() is not efficient in some circumstances, then all calls to this function can be

replaced (if possible) with the calls to the custom function.

• Function invocation – an additional function call is inserted into the application at a

specified point. From that moment on, each time this point is reached, the inserted

function will be invoked. Function implementation is delivered as in the previous point.

In general this kind of action is used for monitoring purposes, as the instrumentation

must be inserted into the application to generate the information about application

execution. As an example we can consider multithreaded application. To modify a

shared variable, a thread must use a critical section (e.g. mutex) to synchronize access.

This may become very costly if the operations of locking and unlocking are repeatedly

executed inside a loop. In some circumstances (e.g. recursive mutex), it is beneficial to

insert a mutex lock/unlock function calls before/after the loop. These additional calls

amortize a cost of locking/unlocking inside the loop and reduce the synchronization

overhead.

• One-time function invocation – a specified function is invoked just once. Function

implementation is delivered as in the previous point. For example, if message buffering

causes inefficiency, the Nagle’s algorithm might be disabled through the

TCP_NODELAY socket option. This action can be applied just once when establishing

the TCP connection. Therefore, function call setsockopt(socket, IPPROTO_TCP,

TCP_NODELAY, optionValue, optionLength) should be invoked just once to sets

the option.

 72

Dynamic performance tuning

• Function call elimination – a specified function call is eliminated. It can be performed

to remove unnecessary function calls. Obviously, it is required that such a removal

does not affect the correct functioning of the program. This action can be used for

example to eliminate redundant synchronization calls. Another example is removal of

debug print() or flush() statements if their costs are considered to high.

• Function parameter changes – the value of an input parameter is modified before the

function body is executed. As we have mentioned before, PVM uses for example

special encoding while sending messages. The encoding is set by the PVM function

call pvm_initsend(encoding). If the encoding process can be avoided, this function

should be always called with the appropriate parameter value

(pvm_initsend(PvmDataRaw)).

• Variable changes – the value of a particular variable in the application is modified.

The application should be aware that the variable is mutable. As an example we can put

here the number of workers. The application must have special outside-known variable

that represents a number of workers. If the variable has been changed, the application

must be aware of that and apply the modification correctly.

The synchronization specifies when the tuning action can be invoked to ensure the

correctness of an application. For example, to avoid reentrancy problems, race hazards or

other unexpected behavior, a breakpoint can be inserted into the application at the specific

location. When the execution reaches the breakpoint, the actual tuning action is performed.

For example, the tuning action may include one-time function invocation

pvm_setopt(what, value) that sets options of the PVM library. This function should be

invoked before the message is sent. It cannot be called when the message is being sent,

because it can cause reentrancy problems in PVM library implementation. Therefore,

invocation must be synchronized with the application execution. The breakpoint can be

inserted at the entry of function pvm_send(). When it activates, first pvm_setopt() call

and then the actual pvm_send() call are performed.

4.9. Example tools
Dynamic optimization tools have the flexibility to adapt program execution to changing

scenarios and differing hardware configurations. They provide the possibility to tune a

 73

Dynamic performance tuning

program execution during run time, hence dynamic adaptation has been applied in many

scientific domains.

First, several tools were developed basing on the concept of computational steering loop.

Such tools allow users to study the behavior of the application under execution and

manually change key application variables (e.g. resource allocations, program state,

computational methods, data output). They have built-in the components for computation

modeling, scientific simulations and visualizations. However, most of these tools are

designed to allow the application semantics to be changed. They serve a user as a problem-

solving environment (PSE), rather than performance tuning. Tools that are based on the

concept of interactive computational steering are for example Falcon/MOSS, SCIRun

[Par95], PPFS [Ree96].

In the dynamic tuning area, there are already a few projects that go toward automated

performance optimizations and adapt applications to changing conditions automatically

during run time. Based on measurements and analysis, the tool can improve the application

performance during run time solving problems and adjusting them to better match resource

requests. The most known tools are: Autopilot, Active Harmony and AppLeS. We present

the most significant features of these tools indicating also their differences to our dynamic

tuning approach.

4.9.1. Falcon / MOSS
Falcon was developed at Georgia Institute of Technology and it is a set of tools that

collectively support on-line monitoring and steering of parallel and distributed applications

[Gu95, L33]. It allows users to improve program performance by changing its attributes

during run time, to experiment with different program configurations, to play “what if”

games. It consisted of four major components: a monitoring specification mechanism, on-

line information capture and analysis, program steering and graphical displays of

monitoring information.

Using Falcon’s monitoring specification language, programmers define specific sensors for

capturing information. Users can express program attributes – ranging from single

variables to application state – that will be monitored and on which steering will be

performed. During execution Falcon permits users to capture specific information by the

 74

Dynamic performance tuning

inserted sensors and analyze it. The Falcon project focuses on the monitoring with low

latency and perturbation and hence the monitored information is performed before it is

displayed to the user. The graphical user interface, the graphical displays and steering

mechanism interact with the run time system to obtain processed monitoring information.

Application can be steered by human users or algorithmically. Once steering decision is

made, changes to the program attributes and state are performed by the steering

mechanism.

The Falcon software was applied to scientific applications, especially in physics and

atmospheric area. However, it is no longer an active research project. The group stopped

the work under the FALCON project and started to create next-generation system MOSS

that stands for Mirror Object Steering System [L34]. MOSS does not use traditional event

flow and introduces a higher-level object-based abstraction into the monitoring and

steering (Mirror Object Model).

4.9.2. SCIRun
SCIRun stands for Scientific Computing and Imaging [Par95, L35] and has been

developed at University of Utah. This is a Problem Solving Environment (PSE), and a

computational steering system in which large scale simulations can be processed. SCIRun

allows a scientist or engineer to interactively steer a computation changing parameters, re-

computing, and then re-visualizing. SCIRun allows computational steering to be applied to

the broad range of advanced scientific computations, e.g. in medicine, physics.

SCIRun contains several built-in tools to close the loop and provide computational

steering. First, this is a framework in which a simulation can be composed. A user can

design and modify the simulation via a visual programming interface to a dataflow

network. Then, such a simulation can be executed, controlled and tuned by interacting with

the end user via a graphical user interface. Finally, SCIRun can display information using

3D graphics (see Figure 4.11).

Over past years, the group has developed two additional problem solving environments

that extends SCIRun capabilities: BioPSE and Uintah [L36]. BioPSE adds modules and

functionality for bioelectric field problems. Uintah targets large-scale simulations running

on distributed memory supercomputers.

 75

Dynamic performance tuning

Fig. 4.11. Graphical user interface of the SCIRun environment.

4.9.3. Autopilot
The Autopilot [Rib98, L37] project developed at University of Illinois realizes adaptive

control of parallel and distributed application. Autopilot bases on closed loop control and

allows applications to be adapted in an automated way. It automatically chooses and

configures resource management algorithms based on application request patterns and

observed system performance. The Autopilot infrastructure is built on the experience and

software from Pablo tool that was developed at the same university.

Autopilot provides a set of performance sensors, decision procedures and policy actuators.

The toolkit uses distributed sensors to gather quantitative and qualitative performance data

from executing applications. Every sensor has a set of properties defined when the sensor

is created. These include name, type, identifier, network IP address and user-defined

attribute-value pairs. Sensors can gather data using two methods. First, a sensor records

data in response to procedure calls that have been inserted into the application manually by

the programmer. Second, separate thread periodically awakes, reads application variables

and returns to sleep. Sensors provide performance data for decision making and can

 76

Dynamic performance tuning

transmit data using a variety of policies (e.g. transmit on demand, periodic update). The

toolkit includes fuzzy logic engine that accepts performance sensor inputs and selects

resource management policies based on observed application behaviour. Autopilot relies

on fuzzy sets and use a set of IF-THEN production rules that map the sensor input values

to the actuator output space. Finally, it realizes the results activating remote actuators.

Actuators are remotely controlled functions that enable to invoke local functions or modify

the values of application variables. Such actuator can change for example parameter values

or resource management policies (e.g. file caching policy).

Moreover, Autopilot also provides mechanisms to manage local and remote tasks. The

toolkit contains sensor / actuator manager and set of remote clients. Manager serves as a

network distributed name server and supports registration by remote sensors and actuators.

A client controls both sensors and actuators in associated tasks, receives data from sensors,

and invokes actuators.

Autopilot contains a control interface to allow steering of infrastructure policies and

application interactively or via automated decision procedures. The programmer can

decide what sensors/actuators are necessary and then manually inserts them into the

application source code. Autopilot contains a library of runtime components needed to

build an adaptive application.

The approach applied in the Autopilot project is similar to our cooperative approach.

However, it differs from the black-box approach where necessary measure and tuning

points are decided and inserted dynamically and automatically by the tuning system. The

Autopilot uses fuzzy logic to automate the decision-making process, while we decided to

use simple, conventional rules and performance models. Moreover, in our case monitoring

is based on the dynamic instrumentation where measure and tuning points are inserted on

the fly. Using Autopilot a developer must prepare application inserting sensors and

actuators manually into the source code.

4.9.4. Active Harmony
Active Harmony is an automated runtime tuning system [Tap02] that has been developed

at University of Maryland. This is a framework that allows an application for dynamic

adaptation to network and resource capacities. In particular, Active Harmony permits

 77

Dynamic performance tuning

automatic adaptation of algorithms, data distribution, and load balancing during a single

application execution based on the observed performance. The application must be

Harmony-aware, that is, a programmer must apply changes in the source code and use the

API provided by the system [L38].

Active Harmony focuses on the selection of the most appropriate algorithm. The system

provides Library Specification Layer with uniform API. This layer integrates different

libraries with the same or similar functionality. The user develops an application using this

API, and hence the application contains a set of libraries with different algorithms and

tunable parameters to be changed. During runtime Active Harmony monitors underlying

library execution and manages the values of the different parameters. The system is able to

select more efficient library and change tunable parameters to improve the application

performance.

Active Harmony integrates two mechanisms that permit for automatic tuning. First, it

exports a metric interface to applications, allowing them to access processor, network, and

operating system parameters. This interface supports provision of data about the

application performance and execution. Second, Active Harmony requires applications to

export tuning options back to the system. A tuning option defines the expected utilization

of one or more resources. The system can then use such a parameter to automatically

optimize resource allocation basing on observed performance and changing conditions.

Metrics and tuning options are specified as the part of Library Specification Layer.

The main part of the Harmony system is the Adaptation Controller. This component must

gather information about the application execution, manage tuning options, propose the

best changes, predict the effects of given modifications, and finally change appropriate

parameters to improve the performance. Active Harmony automatically determines good

values for tunable parameters by searching the parameter value space using heuristic

algorithm. Better performance is represented by a smaller value of the performance

function, and the goal of the system is to minimize the function. They base their

minimization algorithm on the simplex method.

Active Harmony also includes graphic console that is shown in Figure 4.12. The console

allows the user to manually optimize the application. The user can tune the values of the

 78

Dynamic performance tuning

tuning parameters that are exported by this application. Moreover, user interface shows the

performance function and the history of values.

Fig. 4.12. Active Harmony user interface.

The Active Harmony system is conceptually similar to our cooperative approach.

However, it differs from the automatic method that treats applications as black-boxes and

does not require them to be prepared for tuning. Moreover, our dynamic tuning approach is

based on the concept of measure points, performance model and tuning points. Such

information can be defined by the user, but we also provides a dynamic tuning with certain

predefined sets. Instrumentation is inserted into the application automatically during run

time. Harmony bases on integration of different libraries with the same functionality. We

use a distinct approach to finding the best solution. We do not use a heuristic algorithm,

but performance models that provide conditions and formulas that describe the application

behavior and allow the system to find the optimal values of the tunable parameters.

4.9.5. AppLeS
The AppLeS [Ber96] project from University of California has developed an application-

level scheduling approach. This project combines dynamic system performance

 79

Dynamic performance tuning

information with application-specific models and user specified parameters to provide

better schedules. The programmer is supplied information via user interface about the

computing environment and is given a library to facilitate reactions to changes in available

resources. Each application then selects the resources and determines an efficient schedule,

trying to improve its own performance without considering other applications.

AppLeS (Application Level Scheduler) is developed on agent-base methodology. Each

application has its own AppLeS agent. Each agent contains static and dynamic information

about the available resources and its function is to determine an application-specific

schedule and implement that schedule on the distributed resources on metacomputers. An

agents has built-in four subsystem and one single active agent called Coordinator. First,

Coordinator takes resource information from the user via UI. Then, Resource Selector

filters and chooses promising resources. Next, Planner generates schedule for a given

resource configuration and Performance Estimator evaluates performance for candidate

schedules. Finally, Actuator implements a chosen schedule on the target configuration in

the resource management system. AppLeS is not a resource management system. It relies

on the system as Globus or Legion and serves as middleware dynamically coordinating a

customized schedule for the application.

Our approach is similar to AppLeS in that it is based on the automatic closed

computational loop and it tries to maximize the performance of a single application.

However, it focuses on the efficiency of resource utilization and performance bottlenecks

that occur during the application execution rather than on resource scheduling.

4.9.6. Mojo, Dynamo
There are also dynamic optimization systems as: Dynamo [Bal00] – developed at Hewlett-

Packard Laboratory and Mojo [Che00] – developed by Microsoft Research stuff. However,

they approach to dynamic tuning differs from our one. These tools perform the run time

optimization, but of a native instruction stream. The program binary is not instrumented

and is left untouched during the system operation. This approach uses very low-level

techniques of optimization.

 80

Dynamic performance tuning

4.9.7. HotSpot
The Java HotSpot [L27] is a product that has been developed by Sun Microsystem to

provide the highest possible performance for Java applications. Traditionally, bytecodes

are generated from Java programs and then interpreted during execution by Java Virtual

Machine. To improve the program performance, Just-in-time (JIT) fast compilers are used

that translate the Java bytecodes into native machine code on the fly. A JIT running on the

end user's machine executes the bytecodes and compiles each method the first time it is

executed.

The Java HotSpot VM provides adaptive optimization. It does not compile method by

method, but it runs the program immediately traditionally using an interpreter. Then the

HotSpot VM gather information about program hot spots (important optimization

bottleneck) analyzing the code. Once it detects the critical hot spots in the program, they

are compiled into native code and made inline (no function calls – code is inserted directly

into the place where the function call is). The hot spot monitoring is continued dynamically

during program execution. By avoiding compilation of infrequently executed code (most of

the program), the Java HotSpot compiler can focus more on the performance-critical parts

of the program, without necessarily increasing the overall compilation time. An example

hot spot is frequency of virtual method invocation.

4.10. Conclusions
Parallel application tuning is very difficult and complex process if one wants to do it

automatically and dynamically. There are many requirements that must be taken into

consideration. They must be taken into account especially when developing efficient,

useful and really helpful system. Moreover, it must be pointed out, that there is no

possibility to apply dynamic tuning to any application in any environment. Solution based

on the on the fly optimization generates several precautions and limits. The biggest effort

must be put into the good definition of how the application can be tuned and what can be

tuned there. We have seen the classification of dynamic tuning. We presented different

layers on which an application is built and what is possibly to tune on each of them. It was

clearly pointed out that the upper the layer, the more specific information about the

application is required. We determined what exactly must be known about the application

and how it can be treated, prepared for the optimizations and tuned.

 81

Dynamic performance tuning

Because of the complexity of the solution, there are not many tools that support application

optimization during run time. Many of the existing tools go toward automated tuning, but

require certain changes in the application. A real tuning tool should take into consideration

the important issues as application analysis without knowledge about its internal structures

and dynamic modifications of unknown application structures. However, such a solution is

hard and complex. Investigating tuning area we have decided to develop our own dynamic

tuning environment that supports cooperative approach of the application optimizations but

it also goes toward the automatic tuning.

In this chapter we have also presented the novel, powerful technique called dynamic

instrumentation provided by the DynInst library. We described the possibilities provided

by the library proven with examples. The research on this technique and efforts put into the

library development brought successful results. Dynamic instrumentation allows the

flexibility in gathering data and offers the chance to significantly reduce measurement

overhead. DynInst is a very efficient library available for many platforms and intrusion

included into the running application is very small.

 82

MATE

Chapter 5

MATE

This chapter presents an overview of MATE – Monitoring, Analysis and Tuning

Environment. First we introduce motivation and goals of our environment. Next we present

requirements that we have to take into consideration building dynamic tuning system. In

continuation we describe issues of the MATE design and motivate decisions taken while

designing. Finally, we present the system architecture and describe in details all system

modules, their construction, functionalities and limitations.

5.1. Motivation and goals
We have seen that programmers of parallel applications must provide the best possible

behavior of their applications if such an application is to fulfill a promise of the highest

performance. Applications will be useless and inappropriate when their performance is

under acceptable limit. However, programmers face up to many problems when improving

a parallel application. Performance improvement is a complex and time-consuming task,

and not feasible if it must be carried out manually by a developer. We have shown that one

of the very promising approach is dynamic automatic tuning. It allows for the application

performance improvement on the fly. Therefore, it is very beneficial to accomplish the

performance expectations by using an automatic tuning environment.

Investigating the area we have seen that the proper solution would be to construct a tool

that is able to automatically accelerate the application execution on the fly by adapting it to

changing conditions. Such a tool would be really profitable especially when a parallel

application is characterized by dynamic conditions, such as variable behavior depending on

the input data and/or variable behavior throughout the application execution. A tool based

on this approach would relieve developers from the complex manual tuning process.

In Chapter 4 we have indicated requirements for dynamic tuning in general, we have

presented the classification, possible tuning techniques and examples. We can assume that

all these techniques work also in practice and the application performance is improved.

 83

MATE

However, it would be only theoretical dynamic tuning that would not present a real

profitability. Without the practical probes we are not really sure if a tuning technique can

be efficiently applied since we do not know for example, the intrusion of run time

optimization or changing environment conditions (e.g. network load, machine load). Only

experiments with existing software that permits dynamic tuning of applications will

provide the total view of the dynamic tuning applicability. Therefore, many various

practical experiments should be conducted on parallel applications to see if this approach

really works, is effective, feasible, profitable, and can be used for a real improvement of

the program performance. To perform practical experiments with different tuning

techniques, we need a tool that will allow us to modify the parallel distributed programs

during run-time.

We have defined detailed requirements and functionality that such a tool should provide.

We have investigated existing tuning tools but we have missed there many important

aspects. None of them treats applications as black-box because each tool requires an

application to be prepared for tuning. There is no tool that would provide all the tuning

phases simultaneously in a dynamic way. The performance analysis is usually based on the

heuristic algorithms rather than on the concrete models that provide prediction of the

application behavior. Therefore, we have decided to develop our own environment that

will provide all required by us functionalities.

Our goal is not only investigation of dynamic tuning area for parallel distributed

applications and presenting its applicability and effectiveness by means of only theoretical

tuning techniques, but also the development of an environment that will support dynamic

automatic tuning. Our goal is to help a user providing as much automation as possible

reducing a degree of expert knowledge and user intervention. We want to prove that

running distributed parallel applications under control of a dynamic tuning system would

allow for the adaptation of their behavior to the existing conditions and for the

improvement of their functionality. To support developers with dynamic performance

tuning and prove its profitability we have created an environment that facilitates

monitoring, performance analysis and optimization of parallel applications automatically

during run time.

 84

MATE

5.2. Overview of requirements
The goal of the tuning system is to improve the application performance and minimize the

execution time by adapting the application to the available environment. To optimize the

application during run time, to be efficient, useful and easy to extend, the tuning system

must take into consideration many issues.

5.2.1. Target environment
Our investigation area is targeted to parallel and distributed scientific applications.

Typically these applications are developed in PVM or MPI and they are executed in

parallel environment that usually include several computers connected by network. A

parallel application consists of several intercommunicating processes (a.k.a. tasks) that

solve a common problem. These tasks are mapped on a set of computers and hence each

task may be physically executed on a different machine.

Therefore, a tuning system that improves the overall performance of a parallel program

must be able to control all its individual tasks on all machines. Moreover, as discussed in

Chapter 4, it is not enough to optimize tasks separately but the global application view

must be considered. This implies that a tuning system itself must be a distributed system.

It must control individual processes of the tuned application and it must be able to gather

global information about all associated tasks on all machines.

Frequently, the parallel environments used to execute the scientific applications are

networked clusters of workstations or grid environments that connect various individual

clusters and supercomputing centers. These environments are typically characterized by

dynamic behavior (i.e. changing availability of resources, varying network load, etc.). The

performance of applications even with static behavior may vary in these conditions. We

think that it might be necessary to apply dynamic tuning in order to achieve satisfactory

performance and hence we target our tuning system to this kind of environments.

5.2.2. Users
Parallel applications are able to provide high performance computing characteristics. They

are used for solving many scientific problems such as the atomic interactions in a

molecule, the simulation of the universe evolution or climate modeling. So biologists,

 85

MATE

chemists, physicists and many other researchers have become intensive users of parallel

applications. Typically, these users are not experts in performance optimization. They

would need a tool that facilitates them the performance tuning process. Therefore, our

tuning system is targeted to the users of parallel applications, especially to the non experts.

As it has been indicated in Chapter 4, our work studies two basic dynamic tuning

approaches: automatic and cooperative. In the automatic approach, the tuning system

attempts to optimize an unknown parallel application and does not require its end-user to

prepare it for the tuning. The programmer develops the application and then its user can

execute it under control of the tuning system without any changes in the source code. In

this case, the end-user is not required to provide any additional knowledge and he/she does

not have to be a programmer.

In the cooperative approach, a parallel application must be tunable and adaptable. This

means that developers must prepare the application for the possible changes, in some cases

by modifying its source code. They must provide the system with the knowledge that

describes what should be measured in the application, what model should be used to

evaluate the performance, and finally what can be changed in the application. Then the

tuning system helps them to optimize their applications online. However, to provide the

required knowledge a user must know the potential performance problem as well as the

way of its detection and solution. Moreover, he/she must be able to implement an

appropriate bit of code that allows the tuning system to tune the application. In this case

the degree of user participation and expertise is much higher than in the black box

approach and thus the group of the users of the tuning environment might be reduced.

5.2.3. Required system characteristics
The dynamic tuning system should have the following characteristics:

• Online monitoring, analysis and tuning – it is required that all phases of performance

optimization are performed online, i.e. during application execution.

• No source code, no recompile, no relink – the source code of the application is not

required for dynamic tuning. The application does not have to be recompiled nor linked

with any additional libraries.

• On-the-fly instrumentation – the tuning system should be able to add/remove

instrumentation code for monitoring and tuning during run-time.

 86

MATE

• Safe tuning – the tuning methods should be kept simple. The changes cannot affect the

correct functioning of the application. We cannot assume that an application can be

modified without taking any precautions.

• Black-box and cooperative tuning – to experiment with both approaches, we require

the system to support both methods. Concerning tuning layers that we presented in

Chapter 4, we focus our work on the following layers: usage of operating system, usage

of custom specific-problem library and application. The system must be able to adjust

parameters, change algorithm and tune the code that inefficiently uses underlying

libraries. Therefore, we require it to provide the set of tuning actions described in

Chapter 4: function replacement, function invocation, one time function invocation,

function call elimination, function parameter changes, variable value changes.

• Low intrusion – the goal of the tuning system is to improve the execution time of the

program. Therefore its implementation should minimize the overhead it implies itself

by controlling and changing the tuned application. The instrumentation used for

monitoring should minimize or gracefully handle large volume of information.

• Lightweight analysis – the performance analysis process should be lightweight and

not computationally intensive. It is recommended to keep the analysis simple to be able

to take decisions in required time-frames.

• Global application view – the tuning techniques that affect the functioning of the

parallel application may require the tuning system to base its decision on global

knowledge of the tuned application.

• Open and extendable – the tuning system should be open and allow the developers to

integrate new tuning techniques.

• Easy to use – from the user perspective, the tuning system must be easy to use. In the

automatic (black-box) approach, the best option would be to simply execute the

parallel program under control of the tuning system and let it do its work.

• Portability – due to variety of platforms used to execute the parallel applications, it

should be possible to port the tuning system to different operating systems and support

different communication libraries.

5.2.4. Assumptions and dependencies
As we have already mentioned, all phases of improving the application performance must

be done on-the-fly. To fulfill this requirements we decided to use a novel technique called

 87

MATE

dynamic instrumentation. This technique permits the generation and the insertion of a

piece of code into running program without accessing its source code. We assumed to use

the DynInst API [L29], a library that provides platform-independent dynamic

instrumentation. We have presented this library in Chapter 4. We use DynInst library for

two purposes:

• dynamic monitoring – to provide the dynamic instrumentation phase. It is possible to

manage (add and remove) a code (instrumentation) that collects information about the

application behavior.

• dynamic tuning – to provide the dynamic modification phase. It is possible to change

the code of the running application in order to improve its performance.

The DynInst library implementation is directed to applications written in C/C++ languages.

Moreover there is a large number of scientific applications written in these languages that

use PVM or MPI communication libraries. Therefore for the purpose of our work we

assume to target our tuning system to C/C++ parallel applications based on PVM

communication library. However, we require that the design of the system is open and

could be extended to support applications that use other message passing communication

libraries (for example MPI).

Finally we decided to implement the tuning system on the UNIX platform, because it is

the de facto standard platform for scientific parallel application. However, the

implementation should minimize platform specific dependencies to enable its port to

different operating systems.

5.3. Functional requirements
Our environment is required to perform dynamic tuning. From the functional point of view

we can distinguish three basic and continuous phases: monitoring, performance analysis

and optimizations. All of these phases must be performed continuously, dynamically and

automatically while the program is running. The environment should be based on the

computational steering loop concept and should exempt a developer from intervention into

the tuning process. Our tuning system should dynamically and automatically instrument

and monitor a running application to gather information about the application behavior.

The analysis phase should search for performance inefficiencies, detect their causes, give

 88

MATE

solutions on how to overcome them. Finally, the optimization (tuning) phase should

dynamically modify the application by applying given solution. Moreover, during

application execution, the environment cannot require access to the application source

code. The running parallel application should be automatically monitored, analyzed and

tuned without the need to re-compile, re-link and restart.

An issue of particular importance is the representation of knowledge that can be used to

drive the dynamic tuning of the parallel application. This knowledge should be specified

independently from the environment implementation, in order to enable the extensibility

and the inclusion of new performance problems and their tuning techniques. We require

the environment to provide a solution to this problem and specify the representation form

for measure points, performance model and tuning points/actions/synchronization (see

Chapter 4 for definition of these terms).

In the following sections we summarize the functional requirements of our environment:

• Control the execution of the parallel application

o Start the parallel application

o Attach to the running application

o Control startup and exit of individual application processes

• Automatically control application performance monitoring

o Decide what monitoring data is necessary

o Decide where and how the required information should be collected

o Request insertion/removal of instrumentation code

• Perform application monitoring online

o Generate new piece of instrumentation code

o Insert instrumentation code to the individual process at a specified location

o Remove previously inserted code

• Collect monitored data for analysis online

o Gather data generated by inserted instrumentation code from the individual

application processes

o Deliver performance monitoring data for analysis

• Analyze application performance online

 89

MATE

o Use externally provided knowledge (measure points, performance model,

tuning points/actions/synchronization) to drive the analysis

o Evaluate performance using collected monitoring data

o Find performance problems

o Decide if tuning is necessary

• Control application performance tuning online

o Find out what should be changed in the application

o Decide where, how and when the tuning should be performed

o Request the execution of application modifications

• Perform application tuning online

o Generate or load tuning code to individual application processes

o Perform modifications

o Synchronize the modifications with the application execution to ensure the

correct functioning of the application

o Undo tuning when considered necessary

• Evaluate the profitability of performed tuning

o Measure the performance monitoring cost

o Measure the tuning cost

o Evaluate the impact of modifications on the overall application performance

5.4. Design issues
The following statements explain the thinking behind the decisions taken during the design

of our tuning environment. In order to build an efficient environment that provides all

required services for dynamic tuning, we had to consider carefully many aspects. Here we

describe each of them indicating main decisions, problems and techniques that were

considered while designing and implementing them.

5.4.1. Control of the execution of the parallel application
As indicated previously, the current version of our environment is dedicated to PVM-based

parallel applications. The PVM application consists of several tasks (processes) that

cooperate to solve a common problem. These tasks are distributed on a set of machines that

form a virtual machine. To provide a communication service between all the tasks, PVM

runs on each machine a process called PVM daemon (pvmd). The daemon controls the

 90

MATE

creation of tasks and their communication on the machine it is running and it also

communicates with other daemons. Figure 5.1 shows an example of the distribution of

application tasks in a PVM virtual machine.

Machine 3

Task4

Machine 2

Task2

master

pvmd

Task1

Task7

Task3

slave

pvmd

slave

pvmd

Task6

Task5

Machine 1

Fig. 5.1. Distribution of application tasks in the PVM virtual machine.

PVM daemons form Master/Slave structure. For each machine one PVM daemon is

executed. If PVM is running, there is always one master daemon executed as a first

daemon in the virtual machine, the rest of daemons serve as slaves. Master daemon

controls the whole virtual machine. When a new machine is to be added, a new slave

daemon must be created on that machine. This request comes to master daemon and it runs

a new slave daemon on a specified machine. When application spawns a new process,

appropriate request comes to the master daemon. Then master daemon creates the process

on a local machine or redirects this request to remote slave daemon if process is to be

created on a remote machine. PVM spawns new processes on all available machines of the

virtual machine using the round robin technique (a circular queue is kept).

If virtual machine already contains a number of machines or a new machine is added

dynamically to the virtual machine, it is obvious that PVM may run processes there.

Therefore, to control the execution of the PVM application, our tuning environment must

take control over all processes on all these machines where they are running. To provide

these capabilities the tuning system must control the creation of a new PVM task and the

start of a new PVM slave daemon. In order to take control over the PVM application, there

 91

MATE

are two main problems to be resolved. First, the tuning system must use two special

services provided by PVM, namely tasker and hoster. Next, it is necessary to distribute the

modules of the tuning environment to all machines where the tasks are running. Therefore

we created the Application Controller (AC) program that is responsible for controlling

the execution of the parallel application by means of the tasker and hoster services. This

program is automatically executed on all machines that form the virtual machine.

The tasker service allows the Application Controller to receive the request when a new

PVM process must be created on a given machine. A PVM daemon is exempted from the

process creation; all necessary steps must be performed by the AC. The hoster service

handles the creation of a new PVM daemon on a remote machine. This service allows the

AC to receive the request when a new PVM daemon must be created. Master PVM

daemon is relieved from the slave daemon creation duty; all tasks required to create a new

daemon must be done by the AC.

Each instance of the Application Controller provides the tasker service what permits to

control a new process creation on the local machine. When starting a new process on a

local machine, we are supported by the DynInst library. In order to create a new

application process, we use a special method of the library that automatically takes care of

the process creation phase. This solution is very reasonable, because via DynInst we have

the process control and we can easily monitor and tune this process inserting and removing

the instrumentation code.

To support a creation of a new application process on a remote machine, the Application

Controller must be able to distribute itself to the remote machines. However only a single

AC can run the hoster service (there might be only one hoster in PVM). Therefore we must

identify the Master Application Controller that runs the hoster and a set of Slave

Application Controllers. The first executed AC is considered the master and it controls

the distribution of Slave ACs as well as the local task creation. Slave ACs are distributed

all over the PVM virtual machine (one process per host) and each one supports tasker

service controlling all the application tasks on its local machine.

All these design decisions are dedicated to PVM-based applications. Another library, such

as MPI 1.0 does not provide dynamic task creation. An application is static since no

 92

MATE

processes can be added to or deleted from an application after it has been started. Therefore

in this case the application control gets much simpler. New functionalities supported by

MPI 2.0 consider dynamically created tasks, but this is out of the scope of our work.

5.4.2. Performance monitoring
The performance monitoring is responsible for the instrumentation of a parallel application

and collection of information about application behavior. The application

instrumentation and data collection must be done dynamically during run time without

accessing the application source code. As stated previously, the performance monitoring is

based on the DynInst library that enables the application address space manipulations and

dynamic insertion and removal of monitoring code. We have also mentioned before, that

we distinguished in our environment the Application Controller that is responsible for

controlling the PVM application execution. Since this program is distributed and already

has access to each individual PVM application task (it creates all tasks via DynInst

library), we decided to include in it the performance monitoring module as well. The

Application Controller uses DynInst to generate the appropriate monitoring code (i.e.

snippets). Then during run time, the AC inserts the snippets into or remove them from the

running task. In this way all tasks of the parallel application can be monitored.

One of the principal goals of the performance monitoring is to provide an information

about the application execution during run time. To collect such an information, the

application must be instrumented. The instrumentation must be inserted into the original

program execution at points needed to detect performance problems (concerning the

application knowledge our environment is based on a.k.a. measure points), then it must

generate necessary information and finally, this information must be sent for analysis. We

decided to drive dynamic monitoring basing on event tracing. There are two basic types of

events:

• Entry of function call – an event is generated when the execution reaches an entry of a

particular function. Typically, the selected function parameters are attached as event

parameters.

• Exit of function call – an event is generated before the function returns the execution to

its caller. Typically, this event is not associated with additional parameters. Instead it is

used to measure execution time of a function.

 93

MATE

Optionally, other types of events may be considered, for example block-level events such

as loop entry or exit.

This event tracing technique is frequently considered invasive one since large amount of

data can be produced. However, in the same time it is the most precise and the most

flexible as events contain the detailed information about what happened, when, where and

in which circumstances. Our environment inserts the instrumentation only when needed.

This allows for provision of the precise information about the application behavior, but at

the same time it also controls the intrusion introduced into the application and network.

The complementary solution that could allow for minimizing the intrusion is profiling. It

allows one to periodically obtain the statistical (aggregated) information about selected

performance metrics and hence significantly reduce the amount of information to be

transferred. In our work we decided to focus on the event collection technique, leaving the

dynamically insertable metrics as possible extension.

Event tracing requires the precise definition of data associated with an event. Typically,

each recorded event includes a set of attributes:

• What – what action occurred (event identifier or/and function name)

• When – the time when the event occurred (timestamp)

• Where – the location where the event occurred (e.g. host, task, line number, source file

name)

• Parameters – additional event-type dependent custom parameters (e.g. function

parameter)

Taking advantage of the experience gained from working with available monitoring tools,

we intended to create generic event representation format that includes all mentioned

attributes. It must be pointed out that events collected in a similar format can be widely

applied by other analysis tools. We have already discussed that some of the monitoring

tools generate events in the PICL format and there are analysis tools that take as input trace

files in this format. Therefore, we designed the event format to be easily adapted to the

PICL format.

 94

MATE

As we have indicated previously, the online monitoring consists of two principal phases:

instrumentation and collection. Our design assumption is event-based monitoring and

analysis and hence the instrumentation must generate events that happen during the

execution and deliver them for analysis. The application instrumentation includes

generation of code to be inserted and insertion of this code. In the collection phase, there is

gathering of events generated by inserted instrumentation code, and delivering them for

analysis. The performance monitoring is based on the DynInst library that provides the

possibilities to create an instrumentation code and manage it: insert into or remove from

the specified points manipulating on the running process. By means of DynInst library, the

monitoring service is then able to manage the instrumentation that will generate the

information about the application execution.

For example, if a function foo() is invoked, appropriate event with all necessary

information that we indicated previously must be generated and sent for analysis. To

instrument an application via DynInst we have to create in the monitoring module a special

code called snippet that will be able to collect all necessary information from the specified

function. Next the collected event data is delivered for analysis. Then during run time the

snippet will be inserted into the memory of the running process at all specified point/points

that are needed to discover performance problems (e.g. entry of the function foo()). Each

time when the function foo() is invoked and a location with inserted snippet is reached,

the snippet code will be performed. However, creation of such snippets is not a trivial task,

since basically, creation of snippets is done by means of the AST (see Chapter 4). The AST

for this kind of snippets is quite complex and hard to manage. Therefore, we use a special

service provided by the DynInst library that facilitates snippet creation.

DynInst library provides the method to load library dynamically to the application

(mutatee) process. This dynamic library is attached to the memory of the process during

the execution. The loading process of the monitoring library is shown on Figure 5.2.

Instead of writing complex snippets based on AST that generate events, we have the

possibility to write the code in C language. In the library we implement functions to be

performed when event is being generated during the application monitoring, namely collect

event data and deliver it for analysis. The code of the monitoring module provides only

creation of snippets that are build as AST, but are simple. This kind of snippet only

invokes the call/calls to the appropriate C function/functions from the run time monitoring

 95

MATE

library passing to it/them all necessary parameters taken from the function the snippet is

inserted. Dynamic library is loaded for each process separately, it means that each

application process has its own copy of the dynamic library in the memory address space.

Deliver for analysis

Monitor
run time library

DynInst library

void main (…)
{
 // create app
 // load run time lib
 // create snippets
 // insert snippets
}

int send (…)
{
 ...
}

Snippets

Monitor execution Application execution

Run time phase

Fig. 5.2. Monitoring run time library loaded into the memory of the running process.

Application distribution and event-based performance analysis cause important problem,

namely clock differences of a set of machines. In order to analyze the application

behavior, in some circumstances, it is required to provide events with precise, global clock

information (i.e. casual ordering). Therefore, events are annotated with timestamps

generated on the time references. Virtual machine contains a set of machines and it is not

ensure that their clocks are exactly the same. If clocks are different on different machines,

event timestamps can differ significantly, and hence the analysis will not be correct. Each

process performs its work and inserted instrumentation generates events. Events of each

process are annotated with timestamp from the local machine, and although they are

ordered for the process (partial event order), they can be globally unordered for the whole

application. The analysis may require the casual event ordering (e.g. the send ends before

the associated receive ends) and therefore the events must be preprocessed. This problem is

illustrated on Figure 5.3. Generally, when event timestamps are not global time referenced,

the ordering operation might be complex because of the determination of correct event

order and the need for timestamps modifications after the event generation.

We took the problem of time differences into consideration and we decided to provide

global timestamps approach. In this case all events must be annotated with timestamps

referenced to one machine. To provide such a timestamp the clock synchronization must be

performed. All machines must agree on time and synchronize their local time with a time

 96

MATE

on a reference machine. After this operation events can contain global timestamp and

hence are time coherent.

T1

Fig. 5.3. Partial and total event order.

T1T2T3

T4

T3

T2

Total event

order

Partial event

order

Process 2

Process 1

Process 0

Our environment distributes the Application Controller all over the PVM virtual machine

and since it resides on each machine, it has access to the local machine clock. Therefore,

this program can be also responsible for the clock synchronization. The synchronization

performed by the Application Controller is illustrated on Figure 5.4. In order to provide the

synchronization service, we chose as a referenced machine the one where the Master AC is

running. The Master AC runs the separate time server process that waits for the requests.

Each Slave AC must then synchronize the local clock with the master machine. Therefore,

once the Slave AC starts on a remote machine, it sends requests to the time server. Then

the Slave AC calculates and stores the clock difference. When an event is generated, it is

logged automatically with the correct timestamp (adding/subtracting the difference to/from

the local timestamp) and hence the clock desynchronization is minimized. Therefore, when

the events are sent for the analysis module, it will receive events with adjusted timestamp.

Then by applying casual ordering the analyzer can achieve the required ordering level.

Clock synchronization is a very complex issue and it is difficult to implement it efficiently

and reliably [Par98]. The main problem is to provide precisely defined difference between

clocks of two machines. Many aspects must be taken into consideration when determining

the exact clock difference, for example network load, time required to send and receive the

time through the network, processing of the time request, etc. The well known and

effective, but complex solution is described in [Rab97]. This method is used in the

Tape/PVM, the monitoring tool that we have presented in Chapter 2. In the current version

of our environment, we use simple method of synchronization. Although the method is

simple, it provides us with the well-approximated clock differences. Taking into account

 97

MATE

the existence of better method, the design of the AC is well prepared for the changes of the

synchronization method. It can be easily adapted for the new, more efficient and reliable

implementation of the clock synchronization.

Time diffTime diff

Master AC

17:55:02 18:10:44

18:07:36

Time server

Slave AC Slave AC

Machine 3

Machine 2Machine 1

Synchronize

Fig. 5.4. Clock synchronization.

5.4.3. Performance analysis
The analysis is responsible for the automatic performance analysis of a parallel application

“on the fly”. It is able to examine application behavior, identify performance bottlenecks,

and give concrete solutions that overcome these problems. In general, the analysis process

must be performed in continuous parallel computational loop: application monitoring, core

performance analysis in order to detect the problem and finally solving or minimizing the

impact of the problem by applying tuning actions. The analysis process continues until the

application terminates.

The analysis must be done globally with taking into consideration behavior of entire

application. For this purpose we distinguished a distinct module that will be responsible for

monitoring data collection and its analysis. We suppose the performance analysis to be

time-consuming. To minimize the intrusion introduced into the application execution, the

analysis module should be performed on a dedicated and distinct machine (the

performance “optimizer” machine). In Chapter 4 we talked about the scalability of such

solution and the possibility to perform some parts of analysis locally, but this is future

work and this is out of the scope of the design.

 98

MATE

The analysis defines and processes the performance measurements at run-time. The on-line

analysis can focus on specific execution aspects (i.e. most severe problems), selectively

refining its measurements in light of the previous results. Therefore, the instrumentation

can be added or removed automatically according to the actual program behavior. The

application can start with generic initial instrumentation and then this instrumentation can

be selectively changed by requesting more or less detailed information. This leads to a

reduction in the amount of measurement data.

Performance analysis (i.e. problem detection) can be performed using a number of

different methods, for example analytical performance model, rules or probabilistic model.

An analytical model describes behavior of an application and determines how to improve

the current settings and in consequence how to find the optimal execution time. In this

case, the performance model must contain a set of related tuning actions. The analysis

based on such an analytical model and included mathematical formulas receives the

monitoring data and calculates the actual and optimal setting. If it decides that some

settings may be changed to improve the performance, an action should be applied on

parameters related with these settings. Other analysis method is based on a set of rules.

During the performance analysis, the input monitoring data is applied to the rules. If the

result is positive, then an appropriate action must be invoked. In this sense, such method

must contain a set of related tuning actions, as well. There is also other analysis method

based on models, but in this case this is the probabilistic model. In such solution, a

parameter under control is adapted by calculating its value space using heuristic algorithm.

This method is a method of probes and errors. The parameter is set to a new value and it is

continuously controlled if the applied change was successful or only make the performance

worse.

Each analysis method has its advantages and disadvantages, it depends on a particular case

which one is better. We want to investigate many model and not limit us to only one.

Therefore, we have to provide the tuning environment easy to extend and to apply different

analysis methods. However, for the purposes of this work we concentrate on the analysis

based on the performance model.

Each performance model contains a set of input data that it requires for calculations, as

well as a set of output data that represents how the application should be changed to

 99

MATE

improve its performance. Moreover, in Chapter 4 we described that tuning system, to be

possible and effective, must be provided with the application knowledge. We correlated

these two issues and we based the analysis on application knowledge of possible problems

and their solutions. We specified the knowledge as measure points, performance model (as

formulas and conditions) and tuning points/action/synchronization.

The knowledge that is provided to our environments contains a set of different problems

that can be monitored, detected and solved. All required information and processing related

to each problem is called tuning technique. To support the analysis of many problems, the

tuning system includes the catalog of tuning techniques where each technique solves a

particular problem. Initially, we decided to start with an approach that treats all provided

techniques separately. The analysis simply runs a number of techniques simultaneously

and when a particular technique detects the problem it activates the tuning. In future it

would be interesting to investigate another approach as for example analysis based on

hierarchy of problems. In this case the tuning system has a hierarchical catalog of

performance problems where each problem is associated with an optimization technique.

Such approach of problem searching and refining is used in Paradyn [Hol93].

From the one side, we decided that a tuning technique can be provided by our tuning

environment or by the developer that utilizes our environment. First provision method will

support black box approach of tuning since there is no intervention of a developer side.

Second one will be cooperative tuning as developers must prepare all required information

and adapt their application to be aware of possible dynamic modifications. Although we

distinguished two approaches, we want our environment to support one and uniform

knowledge inclusion mechanism. Therefore, we looked for a one solution of tuning

technique provision adequate for both of them.

From the other side, an application knowledge cannot be hard coded within the tuning

environment, because the system would not be easy to extend. The environment must

provide the possibility to add new tuning techniques. One of the good solution would be to

declare such a technique externally (using a declarative language) and then interpret it.

However, performance models can have heterogeneous forms (e.g. mathematical formulas,

complex conditions) and it is really difficult to declare them. Therefore, the most flexible

 100

MATE

solution is to provide a tuning technique using programming language. To add such a

technique to the environment we need a kind of component that is easily loadable.

For both reasons, we decided to provide an external, compact module in the form of

dynamically loaded shared library. One library represents one particular performance

bottleneck and is able to cooperate with the tuning environment. Such a library is called

tunlet. Each tunlet contains specific information related to a bottleneck that can occur in

the application. A single tunlet addresses one concrete performance problem by

implementing a particular tuning technique. To be able to cooperate with the environment,

the tunlet implementation is based on the Dynamic Tuning API provided by the analysis

module.

A tunlet must be prepared for a particular problem. All necessary information is

determined by the investigation of the possible bottlenecks in the operating system,

problem-specific library implementation or application. The tunlet must decide what is

needed to detect a problem (measure points) and what must be changed to improve the

performance (tuning points/action/synchronization). To perform the analysis it must

receive meta data about the application model and monitoring data generated by the

instrumentation. The tunlet hence must cooperate with the analysis service of our

environment. Therefore, we decided to include an API for the tunlets. The analysis module

of our environment must provide this API, its implementation carried out communication

with the rest modules of our environment and finally a container of the tunlets. Figure 5.5

shows the performance analysis based on the catalog of tuning techniques implemented in

the form of tunlets.

The tunlet must provide the analysis with the measure points that represents what should

be instrument in the application in order to find a bottleneck. The analysis service then

broadcasts required measure points to all ACs modules responsible for the application

performance monitoring. When an application is running, the searching-bottleneck phase

starts. The analysis service is responsible to continuously collect events generated by

different processes. When a meta data of the application model or event records come they

are sent to the appropriate tunlet for analysis. The tunlet evaluates the performance model

using collected event records and checks if a bottleneck occurs. If it is the case, it finds

 101

MATE

what should be changed and its optimal settings. It also decides if the changes must be

performed in the whole application or in the particular task/tasks.

. . .
Tuning

point/action/sync

Performance model

Measure points

TunletN

Tuning
point/action/sync

Performance model

Measure points

Tunlet1

requestsrequests

Dynamic Tuning API

Task1

Task3

events

ACAC

Task2

Machine 2 Machine 1

Machine 3

Fig. 5.5. Performance analysis based on knowledge provided as tunlets.

For example, when considering performance inefficiencies, we can define that the

efficiency of a process is considered as the percentage of time that it is doing useful work.

The analysis can search those intervals where processes are not doing any useful work

(they are simply blocked, waiting for a message). Concerning PVM applications, we can

measure it inserting the instrumentation into entry and exit of function pvm_recv(). The

idle time is calculated as the difference time between the entry and exit. When idle-time

intervals exceed the limits of threshold values, these intervals should be minimized in order

to improve the performance of the application. If the evaluated behavior is not considered

satisfactory, its causes are determined. A cause may be, for example, non-optimal work

size being assigned to slave processes. The model is then used to calculate the optimal

settings and to decide what tuning actions should be performed.

Finally, the tunlet searches for the appropriate tuning modifications that should be invoked

in the particular process or in the whole application. It notifies an analysis service, which

in turn sends appropriate request to the AC, that a given tuning action should be invoked at

a given point in a given process. The information how to synchronize the changes with the

process execution is passed as well. For example, in a particular Master-Worker

 102

MATE

application, if the analysis determines that a number of worker parameter should be

changed in a master process, the following information is sent to the AC: the process

identifier, the name of a variable together with its new value, and synchronization point.

The analysis process continues until the application terminates. Obviously, all this time the

monitoring data is sent for analysis. In certain cases, the tunlet may need more information

about program execution to determine the causes of a particular problem. In other cases

when the problem has been already detected, the tunlet may not need any more monitoring

data. It can therefore request the analysis service (that in turn sends appropriate request to

AC) to change the instrumentation dynamically, depending on the necessity to detect

performance problems. Dynamic changes of monitoring data can decrease the intrusion

introduced into the application execution.

5.4.4. Tuning
The performance tuning is responsible for automatic modifications of a running parallel

application. It is based on decisions given by the performance analysis. When a problem

has been detected and the solution has been indicated by the analysis, the performance

tuning service receives the solution and automatically applies it changing the running task.

The application of solution is done by means of DynInst library since this operation must

be done during run time without source code, recompilation and rerunning the program.

When applying specified code modifications, the task memory is manipulated by invoking

appropriate changes. Therefore, access to the corresponding task is required and hence

performance tuning service must be distributed all over the PVM virtual machine where

application tasks are running. As stated previously, we distinguished the Application

Controller responsible for controlling the PVM application execution. Since this program

has access to each individual PVM application task, we decided to include in the AC the

performance tuning module as well.

The tuning methods must be kept simple and well determined since all the changes

performed on an application cannot affect its correct functioning. When changing running

application, the tuning module must be provided with exact information about what to

change, where and finally when. Therefore, the solution to be applied that comes from the

analysis contains all required information, namely a target task, tuning action (what),

 103

MATE

tuning point (where), and synchronization (when). Moreover, in Chapter 4 we

distinguished the set of possible modifications that concern DynInst library functionality.

Therefore, we carefully determined tuning actions that can be applied on the running

process. We decided to include in the performance tuning a set of predefined modifications

that are performed on tuning points and can be activated by the performance analysis.

We consider the following tuning actions:

• function replacement – replaces all calls to one function with calls to a new one. The

implementation of a new function must already reside in the application memory.

• function invocation – inserts a new function invocation code with a specified attributes

at a given location. The implementation of a new function must already reside in the

application memory.

• one time function invocation – inserts a new function invocation code with a specified

attributes and invokes it only once. The implementation of a new function must already

reside in the application memory.

• function call elimination – removes calls to a specified function from a given point.

• function parameter changes – sets the value of an input parameter of a specified

function.

• variable value changes – modifies a value of a specified variable.

When one of these actions is activated, the performance tuning module generates the

corresponding instrumentation. Then it inserts the generated code at the specified point and

if necessary synchronizes its invocation with the application. The tuning instrumentation

can be generated in two ways:

• a snippet code directly calls appropriate DynInst library method to invoke the tuning

action – such a snippet is simply and does not require to perform many operations. For

example, in the case of the I/O bottlenecks caused by flushing, the tuning action can

eliminate the flush() function call. To perform this action a snippet simply invokes

BPath_thread::removeFunctionCall() method from DynInst library.

• a snippet code invokes appropriate method from the run time tuning library – a snippet

is created as in the case of monitoring instrumentation and it simply calls a function

from the run time tuning library previously loaded to the process memory. A snippet is

simple but it requires a code of additional function provided by the loaded library. For

 104

MATE

example, when the analysis module decides to incorporate custom memory allocator, a

new allocation function must be called. The tuning action then replaces all calls to the

standard function e.g. malloc() with a call to the new one. The new function must

reside in the process memory and hence is provided in the run time tuning library. To

perform this action a snippet invokes BPath_thread::replaceFunction() method

from DynInst library.

The changes made by performance tuning module will be invoked the next time the

application reaches that point. The methodology can only be applied to problems that

appear several times during the execution of the application. This fact might appear to be a

constraint. However, as it has been already pointed out, the main performance problems of

parallel distributed application are those that appear many times during the execution of

the application.

5.4.5. Overhead minimization
One of the fundamental issues for the tuning system in achieving the profitability is the

minimization of intrusion. Obviously the tuning system must guarantee that the intrusion is

much smaller than expected benefits. Therefore, it is necessary to minimize the overhead

introduced by the existence and functioning of all the components of the tuning system. To

achieve that we must take into consideration some precautions such as intrusion preventive

actions, efficient implementation techniques, and code optimizations.

The first source of intrusion is the necessity of distributing processes of the tuning system

to all computers when the application processes are running. Therefore we designed the

Monitor/Tuner process to be small and resource conservative. Moreover, as described in

the previous section, there is only one process running per host. In the normal conditions,

the process remains idle and does not affect the functioning of the application processes

until there is a request to be served.

The next source of intrusion is the requirement to manage the startup/exit of each

individual application process. This is performed by means of DynInst API and requires

the image of the application process to be parsed before the process is executed. Typically

this operation takes about several seconds (in function of the image size). Although this

operation can be considered irrelevant when performed before application start, the cost

 105

MATE

associated with frequent task creation during application execution may be more

significant.

Next, each modification of the application process triggered by the necessity to insert or

remove monitoring or tuning code comes at a cost. In particular each dynamic

instrumentation requires the temporal suspense of the application execution, the

completion of modifications, and the restoration of the execution. Naturally, the new code

inserted into the application causes additional overhead that mainly depends on the

complexity of the introduced code. Therefore it is important to keep the instrumentation

simple.

The principle of the dynamic instrumentation is that the instrumentation code needs only to

reside in running application as long as it is needed to gather data. So the idea is to insert it

as late as possible, and remove it as soon as possible. Therefore, in our tuning system the

instrumentation can be added or removed automatically according to the actual program

behavior. Instrumentation can be inserted only when a specific performance problem in the

analyzed application is suspected. For example, the running program can be measured with

an initial set of instrumentation. Next, when some thresholds are exceeded, an additional

instrumentation might be introduced to obtain more detailed information. Finally, when the

problem has been solved, the required measurements can be reduced or even removed. The

instrumentation overhead can therefore be dynamically reduced and controlled. We avoid

the constant overhead as it would be in the case of classical profiling that requires all the

functions to be instrumented during the entire execution of the application.

The next source of intrusion results from the need to have a global application view to

perform the global analysis. Due to physical distribution of modules of the tuning system,

it is necessary to intercommunicate them. This may affect the network performance and

hence we need to minimize the frequency and the number of exchanged messages. The

communication between modules of our tool cannot delay the communication between

tasks of the tuned application. For example, in the case of the monitoring module, we

decided to use compact, binary message format and event buffering mechanism to reduce

the number of generated messages.

 106

MATE

Finally, the performance analysis process cannot be too expensive. It should be lightweight

and not computationally intensive. Moreover it must react to changes in the application

behavior and make adequate decisions in a timely manner (in required short time-frames).

Therefore we consider important to keep the analysis process simple.

5.4.6. Portability
Considering hardware available in our laboratories, we decided to implement our tuning

environment for SPARC Sun Solaris platform. However, as we have mentioned the

environment does not have any platform-specific dependencies and is kept compatible with

POSIX standard. Our tuning system depends on PVM and DynInst, but both libraries are

available for many different platforms (UNIX, Windows). Therefore, the environment can

be easily ported to different platforms.

5.4.7. Support for alternative communication libraries
The current version of our dynamic tuning environment is implemented in C++ language

and is dedicated to PVM-based applications. However, it can be adapted to support

applications that use other message passing communication libraries. The most significant

dependencies are related to the application control and to communication library-

dependent tuning techniques. To make the environment extensible and easy to maintain, it

has been designed using object-oriented methodology and we have intended to simplify

possible extensions providing the code reusability. Therefore, to provide for example MPI

support, only selected, isolated classes should be reimplemented and others (such as tasker,

hoster services) disabled. Some of the tuning techniques are dedicated to concrete libraries,

e.g. PVM and they cannot be used with MPI applications. It would necessary to identify

other MPI-specific tuning techniques and implement them as tunlets.

5.5. MATE
We propose a novel environment called MATE (Monitoring, Analysis and Tuning

Environment) that enables dynamic performance improvement of distributed parallel

applications. MATE supports three basic functionalities: performance monitoring,

performance analysis and tuning. All these phases are performed automatically and

continuously “on the fly” by our environment.

 107

MATE

5.5.1. Architecture
Basically, MATE consists of the following main components that cooperate among

themselves, controlling and trying to improve the execution of the application:

• Application Controller (AC) – a daemon-like process that control the execution and

dynamic instrumentation of individual PVM tasks.

• Dynamic monitoring library (DMLib) – a shared library that is dynamically loaded

into application tasks to facilitate the performance monitoring and data collection.

• Analyzer – a process that carries out the application performance analysis and decides

on monitoring and tuning.

Figure 5.6 presents the MATE architecture in sample PVM scenario. In this example the

PVM application consists of 3 tasks distributed on 2 different machines. To start the

application, MATE distributes the Application Controller processes to both machines to

control the startup of the tasks. There is one Master AC residing on the machine where

master PVM daemon is running. The Master AC provides the virtual machine control (i.e.

dynamic addition of machines to PVM virtual machine), local tasks creation and moreover

serves as the time server for clock synchronization between hosts. The Slave AC runs on

another machine. It controls the creation of local tasks and synchronizes the clock with the

master AC. In order to control the creation of tasks, both ACs communicate with the local

PVM daemon (pvmd). When a new PVM task is started, the AC loads the shared

DMLibDMLib

pvmd

DMLib

Analyzer

Monitor Tuner

Slave AC

Monitor Tuner

Master AC

Fig. 5.6. Architecture of the MATE dynamic tuning for PVM.

Task3Task1 pvmd Task2

Machine 3

Machine 2Machine 1

Change
instr.

Events

Apply
modifications

Change
instr.

Apply
modifications

 108

MATE

monitoring library (DMLib) to the task memory that allows for its instrumentation. During

execution, the ACs manages the instrumentation of each task. This allows the Analyzer to

dynamically add/remove events to be traced and apply tuning actions. The shared

monitoring libraries are responsible for delivering registered events directly to the

Analyzer.

In the following sections we describe with details all modules of the MATE environment.

We present their functionality, interfaces and limitations.

5.5.2. Application Controller
As introduced previously, each Application Controller process manages a set of PVM tasks

running on its local machine. This process provides the following services:

• Distributed application control

o Startup/exit of PVM tasks

o Startup/exit of new PVM daemons and slave ACs

o Clock synchronization between ACs on different hosts

• Application instrumentation management

o Manage instrumentation of running tasks

o Allow the Analyzer to remotely add/remove instrumentation

• Performance monitoring

o Load shared monitoring library into application task

o Generate monitoring snippets

o Insert/remove the snippets

• Performance tuning

o Load shared tuning library into application task

o Generate tuning snippets

o Insert/remove the snippets

The Application Controller consists of a number of cooperating modules. Figure 5.7

presents the internal architecture of the Application Controller program and the following

paragraphs describe in detail each module.

 109

MATE

Analyzer

Start slave AC

Application

task
PVM Tasker

Monitor

Tuner

PV
M

 li
br

ar
y

 D

yn
In

st
 A

PI

PVM Hoster

Task Manager

Communicator

Application Controller

Fig. 5.7 Internal architecture of the Application Controller.

pv
m

d

Communicator
This is the central module of the AC that handles the communication with external world

using TCP/IP protocol. This enables the AC to process the Analyzer requests (i.e.

add/remove monitoring instrumentation or apply tuning actions) and handle PVM

notifications (i.e. spawn new PVM task or add new slave host). The Communicator module

dispatches the incoming messages to be processed by appropriate modules.

Because the communicator must be able to handle both PVM and Analyzer communication

simultaneously, we have chosen an object-oriented design pattern called Reactor [Gam95]

to implement this module. This design pattern handles service requests that are delivered

concurrently to an application by one or more clients. This pattern can be utilized for

applications that can receive simultaneously many requests from different clients. Reactor

allows the application to wait for incoming requests, demultiplex them and finally dispatch

them to the corresponding handlers. For each request application offers a provider that

handles the request. The reactor implementation uses low-level select() system call.

When a message arrives, it is demultiplexed and in function of its type it is then dispatched

to the appropriate AC module. The module receives the message and performs

corresponding operations. For example, when PVM message (SM_STTASK) arrives, the

reactor dispatches the message to the PVM tasker module that in turn creates a new PVM

task.

 110

MATE

PVM tasker
According to the PVM foundations, each of the processes of the parallel application while

performing its computations can spawn new processes. When a PVM task wants to spawn

a new task, calls the pvm_spawn() function that in turn communicates with the PVM

daemon and sends it the appropriate request. The local daemon handles the request by

physically starting a new process. To change the standard behavior of the process creation,

the AC provides the module that implements the PVM tasker service.

The functioning of this module is illustrated on Figure 5.8. The PVM tasker service

connects to the local pvmd and registers itself as a tasker (1). After the registration, the AC

can start the parallel application by creating the application “father” task (2). The father

task usually spawns additional tasks. Therefore, to control their creation, the tasker

registration must be performed before father task starts. When the father is created, the AC

inserts the appropriate instrumentation and then allows the process to execute (3). When

the father process wants to create a new child process, it sends spawn request to a local

PVM daemon (4). The PVM daemon receives the request, checks if there is a registered

tasker and forwards the spawn message SM_STTASK to the tasker that becomes responsible

for a new process creation (5). Next, the tasker creates a new child process extracting all

necessary parameters from the received message (6) and delegating the creation to the

Task Manager module that actually creates the process and automatically inserts the

required instrumentation. (7). Next, the newly created process starts and registers itself

with the PVM daemon as a PVM-task and communicates without any changes with a

father process via PVM daemon. Finally, the tasker duty is to notify the PVM daemon

about the termination of the child process. This is performed by sending the message

SM_TASKX to the pvmd.

instr

Child

7. Instrument

6. Run

3. Instrument

2. Run

instr

4. Spawn

5. Spawn

1. Register

Father

pvmd Tasker

AC

Machine A

Fig. 5.8. An example scenario: AC starts a parallel application.

 111

MATE

PVM hoster
In the PVM, when the father process spawns child processes, they can be distributed all

over the virtual machine (VM). The VM can be configured before the application startup,

but it can also grow dynamically during the parallel application execution. The AC goal is

to monitor all the processes of the application, hence it must be able to control the VM as

well. Therefore, the AC must perform two jobs. First, during startup it must check the

existing configuration of the VM and distribute itself to all hosts the VM consists of before

the monitored application launching. It is illustrated in Figure 5.9. Second, it must take

control over the creation and removal of hosts from the VM since during the monitored

application execution a request to run/remove a remote PVM daemon may appear. In this

situation Master Application Controller must implement the PVM hoster service and

launch a new Slave Application Controller on the indicated remote machine together with

a new PVM daemon. This case is presented in Figure 5.10. Only the solution that we have

just presented supports the control of all PVM processes on all machines.

Add host D

Fig. 5.9. Running a new Slave AC process when a new host is added dynamically to the PVM virtual

machine during the monitored application execution.

Tasker

Slave AC
Slave
pvmd

Machine C

Tasker

Slave AC

Slave
pvmd

Machine D

Tasker

Hoster

Slave AC
Slave
pvmd

Machine B

Tasker

Master AC
Master
pvmd

Machine A

In general, a new machine can be added to the PVM virtual machine in two ways:

programmatically by the application by means of API functions (i.e. pvm_addhosts(),

pvm_delhosts()) or manually by the user who configures the VM from the PVM console.

When the new host must be added, a request is sent to the master PVM daemon. The pvmd

 112

MATE

physically adds the new remote machine and starts the slave PVM daemon there. From this

moment on, all task scheduling requests will also consider the new virtual machine

configuration.

Hoster

Tasker

Master AC

Tasker

Slave AC
Slave
pvmd

Machine C

Tasker

Slave AC
Slave
pvmd

Machine B

Master
pvmd

Machine A

Fig. 5.10. Running a new Slave Application Controller process on all machines of the PVM virtual machine

before the monitored application startup.

To customize this standard behavior of PVM the AC implements PVM hoster service. The

functioning of the hoster service is illustrated on Figure 5.11. The PVM virtual machine

can have only one hoster. Therefore only the Master AC runs this service and must register

with master pvmd (1). When master pvmd receives a request to create a new PVM daemon

(2), it checks if there is a registered hoster and if it is the case, it forwards the SM_STHOST

message to the hoster (3). Next, the hoster extracts all necessary parameters from the

message and starts a new slave PVM daemon process on an indicated remote machine (4).

In order to monitor the application processes that can be spawned in the future on the

5. Run4. Run

Machine A
Master AC

Hoster
Master

pvmd
1. Register

3. Create slave daemon

2. Add host

Fig. 6.1. An example scenario: tasker runs a new application process.

Slave

pvmd

6. Ack

Slave AC

Tasker

Machine B

Fig. 5.11. PVM hoster service creates a slave pvmd and slave AC.

 113

MATE

newly added machine, the hoster creates also a Slave AC process on that machine (5). The

newly started Slave AC does not start the hoster service, but starts the tasker service.

Finally, the hoster must send to the waiting master pvmd the SM_STHOSTACK message (6)

that indicates the status of the slave daemon creation.

The remote creation of both slave pvmd and Slave AC is complicated by the possible

hazards. Master AC must notify the master pvmd that the slave daemon was successfully

started. However, it cannot be done before the Slave AC is completely started and

registered as the tasker. Otherwise, the master pvmd could immediately spawn a new

process on a remote machine and the Slave AC would not be able to control new task. To

solve this problem, we have implemented a new program called Starter. This program is

responsible for starting first the PVM daemon process, and next the Slave AC process. So

when the add host request arrives to the Master AC, it launches the Starter process

remotely by means of the rsh() command. In continuation, the starter creates both

processes and waits for the Slave AC to confirm that it has registered the tasker service.

Next, the Starter acknowledge to the Master AC that the whole process terminated

successfully. Finally, the Master AC can notify the master pvmd without any hazards.

Task Manager
This module is responsible for the creation, management of inserted instrumentation and

termination of application tasks. In order to manage all tasks on a local machine, the Task

Manager (TM) must hold references to each created task. The TM uses DynInst library to

perform the dynamic process creation and instrumentation.

When the TM is requested to create a new process (i.e. by the PVM tasker service), it uses

the BPatch_thread::createProcess() method from DynInst API. When the process

has been started, the TM loads a specified shared library to the application process. By

default the MATE Dynamic Monitoring Library (DMLib) is loaded, but this can be

customized if necessary. Next, any previously defined monitoring instrumentation is being

inserted into the process to enable the Analyzer capturing the information from the very

beginning (the details of the process instrumentation are explained later in this chapter).

The TM handles the insertion and removal of prepared instrumentation snippets. However,

the particular code to be inserted is prepared by other module (i.e. Monitor and Tuner) and

 114

MATE

the role of the TM is to record the inserted snippets in order to handle their removal on

request of other modules. The TM also handles the termination of tasks. When a task

terminates, the TM is notified about this event by means of DynInst callback mechanism.

The TM is then responsible to finalize the monitoring library. Next, the DynInst library

automatically unloads the library and from the process memory. Finally, the TM must

notify the tasker module that in turn notifies the PVM daemon that the process created by

the tasker has terminated.

Monitor
This module is responsible for performance monitoring of the execution of a parallel

application. As stated previously, currently the monitoring is based on the event tracing of

function calls. The application is instrumented dynamically during run time and the

inserted instrumentation generates events. Once the AC starts, the Monitor module

receives from the Analyzer an initial set of events to be traced (these events are

conceptually called measure points). At application process startup, the Monitor inserts the

corresponding instrumentation code to record these events. Instrumentation can also vary

on demand during run-time. If the Analyzer requires more or less information, it can notify

the Monitor to change the instrumentation dynamically. Consequently, the Monitor

supports modification of the set of monitored events, i.e., it is able to add new or to remove

redundant events. The Monitor module offers the following API:

enum InstrPlace { ipFunctionEntry, ipFunctionExit };
enum AttrSource { asFuncParamValue, asVarValue, asFuncReturnValue,

asConstValue };
enum ValueType { vtInteger, vtShort, vtCString, vtFloat, … };

struct Attribute
{
 AttrSource source; // source of attribute value
 ValueType type; // type of attribute value
 char const * id; // source-dependent object identifier
};

void AddEvent (int processId,

 eventId,
 char const * functionName,
 InstrPlace place,

 int nAttributes,
 Attribute * attrs);

void RemoveEvent (int processId, int eventId);

 115

MATE

The API allows the Analyzer to dynamically add a new event to be traced by calling

AddEvent() function. An individual event is defined as follows:

• processId – unique application process identifier

• eventId – unique value used to identify the event

• functionName – a name of the C/C++ function to be traced

• place – instrumentation place determines when the event should be generated: on

function entry or exit.

• nAttributes – number of attributes that should be recorded with each event

• attrs – an array of Attribute structures that define each attribute to be recorded with the

event. Each attribute can be either a global variable value (asVarValue), a parameter

value of a called function (asFuncParamValue), a return value of another function

(asFuncReturnValue) or a given constant value (asConstValue). The attribute has a

value type (i.e. integer, float, etc.) and an identifier that identifies the variable name,

function name or a function parameter index.

The previously added event can be removed during the application execution by calling

RemoveEvent() function.

To perform dynamic event tracing, the Monitor uses DynInst library to insert the

instrumentation code that generates events to be traced. For instance the instrumentation

code may be inserted at the entry and/or the exit of pvm_send() and pvm_recv()

functions, when it is necessary to monitor the network functions in order to find potential

communication bottlenecks. To collect these events and deliver them to the Analyzer, the

Monitor uses the dynamic monitoring library loaded into the task during its startup that

communicates with the Analyzer using low-level event collection protocol based on

TCP/IP.

To trace a new event, the Monitor builds dynamically an instrumentation code – so called

snippet. The snippet collects all necessary event attributes by reading the value of function

parameters (e.g. tid of a process the message is sent to) or global variables as defined by

the event attributes. To read a value of parameter of instrumented function, the snippet uses

DynInst class BPatch_paramExpr. Next, it invokes a recording function from the

monitoring library (DMLib). The DMLib API is described in detail in the following

sections. Finally, the snippet is inserted into the appropriate points of the process by means

 116

MATE

of DynInst Bpatch_thread::insertSnippet() method (e.g. to the entry of the function

pvm_send()). Each time the instrumented function is executed, the inserted snippet code

is invoked. The generated event is then passed to the DMLib and later delivered to the

Analyzer.

Tuner
This module is responsible for applying tuning actions to a running application task. It

utilizes solutions given by the Analyzer to modify the program during run-time. The Tuner

dynamically changes the application execution manipulating in the application process

memory via DynInst library. The Tuner module offers the following API:

struct Breakpoint

{

 char const * funcName; InstrPlace place;
};

void LoadLibrary (int processId, char const * libPath);

void SetVariableValue (int processId,
 char const * varName,
 char const * varValue,
 Breakpoint * brkpt);

void ReplaceFunction (int processId,

 char const * oldFunc,
 char const * newFunc,
 Breakpoint * brkpt);

void InsertFunctionCall (int processId,
 char const * funcName,
 int nAttrs,
 Attribute * attrs,
 char const * destFunc,
 InstrPlace destPlace,

 Breakpoint * brkpt);

void OneTimeFunctionCall (int processId,
 char const * funcName,
 int nAttrs,
 Attribute * attrs,
 Breakpoint * brkpt);

void RemoveFunctionCall (int processId,

 char const * funcName,
 char const * callerFunc,

 Breakpoint * brkpt);

void FunctionParamChange (int processId,
 char const * funcName,

 int paramIdx,
 int newValue,
 int * requiredOldValue,

Breakpoint * brkpt);

 117

MATE

The API allows the Analyzer to perform a limited number of tuning actions:

• LoadLibrary – loads a specified shared library to a given application process. This

enables the Analyzer to load any additional code required for the tuning.

• SetVariableValue – modifies a value of a specified variable in a given application

process.

• ReplaceFunction – replaces all calls to function oldFunc with calls to function

newFunc in a given application process.

• InsertFunctionCall – inserts a new function invocation code with a specified

attributes at a given location in an application process.

• OneTimeFunctionCall – invokes one time a given function in a given application

process.

• RemoveFunctionCall – removes all calls to a given function from the given caller

function. For example this method can be used to remove all flush() function calls

from a debug() function.

• FunctionParamChange – sets the value of an input parameter of a given function in a

given application process. This parameter value is modified before the function body is

invoked. There is also possible to change the parameter value under condition, namely

if the parameter has a value equal to requiredOldValue, only then its value is changed

to new one. If the requiredOldValue is zero, then the value of the parameter is changed

unconditionally.

The Breakpoint parameter used in all tuning functions is used for synchronization

purposes. The synchronization specifies when the tuning action can be invoked to ensure

the correctness of an application. Currently, the tuner supports only the breakpoint-based

synchronization. A breakpoint can be inserted into the application at the specific location

(at the function entry or exit). When the execution reaches the breakpoint, the actual tuning

action is performed and then the breakpoint is removed.

5.5.3. Dynamic monitoring library
This module (DMLib) provides the event tracing functionality and is implemented as a

shared library. The library is loaded dynamically by the AC into the address space of each

individual process. To load the monitoring run time library into the running process, the

AC uses DynInst BPatch_thread::loadLibrary() method. The library contains

 118

MATE

functions that are responsible for registration of events with all required attributes and for

delivering them for analysis.

The DMLib is developed in C/C++ language and offers the following API:

void DMLib_InitLogger (int processId,

 char const * analyzerHost,

 int analyzerPort,

long64_t clockDiff);

void DMLib_OpenEvent (int eventId, int nAttrs);

void DMLib_AddIntAttr (int value);

void DMLib_AddFloatAttr (float value);

void DMLib_AddDoubleAttr (double value);

void DMLib_AddCharAttr (char value);

void DMLib_AddStringAttr (char const * value);

void DMLib_CloseEvent ();

void DMLib_DoneLogger ();

The function DMLib_InitLogger() initializes the monitoring library by providing it the

information about the monitored process, location of the analyzing server and the clock

difference. During initialization the library establish the connection to the Analyzer process

via TCP/IP protocol, registers itself so that later all generated events can be delivered to the

Analyzer. The clock difference parameter represents the time difference between the local

machine and the referenced one what allows for support of the global timestamp. The

difference value is stored and later used to adjust the timestamp of generated events.

Function DMLib_DoneLogger() finalizes the work of the library. This function should be

called as the last one. It releases all acquired resources (files, memory), flushes buffered

events, notifies the Analyzer about the process termination and finally closes the

connection with this module. When a process is about to terminate, dynamic library is

automatically unloaded from the memory.

The library contains a set of functions for event registration. The registration consists of

several steps that are performed in a sequence:

• Open event – DMLib_OpenEvent() – this action starts recording a new event. The

following information is recorded:

 119

MATE

o event identifier – a unique number that indicates what happed, i.e. what

function was called and at what place (entry or exit).

o nAttrs – a number of event attributes to be recorded

• Add attribute – DMLib_AddXXXAttr() – this action should be repeated nAttrs times to

record values of all necessary event attributes. This method enables the registration of a

variable number of event attributes, each attribute having a distinct value type There is

a separate function defined for each distinct value type. For example, if a monitored

function has signature (int, char) and we want to record both attributes, two function

calls should be performed from the library: first one to record a value of integer type

parameter, second one to record a value of char type parameter. To perform these

actions, the functions Tracer_AddIntParam() and Tracer_AddCharParam() should

be invoked with the extracted values of the corresponding function parameters.

• Close Event – DMLib_CloseEvent() – this action indicates that the event recording is

complete and the data can be delivered for the analysis.

To record a new event, the Monitor module builds and inserts into the application process a

code snippet at a given location. When the snippet is invoked, it generates the event by

capturing the required attributes and calling the DMLib functions to register the event.

Figure 5.12 illustrates this process.

Deliver
for

analysis

RegEvent (…)
{
 DMLib_OpenEventEvent(…);
 DMLib_AddIntParam(v);
 DMLib_AddIntParam(v);
 DMLib_CloseEvent();
}

...
bpThread.loadLibrary (“DMLib.so”);
…
// create a snippet that calls functions
// from run time monitoring library
…
bpThread.insertSnippet (regEvent,

foo_1 (...)
{
 pvm_send ()
 ...
}

DMLib.so

PVM
library

DMLib_OpenEventEvent(…) {…}
DMLib_AddIntParam(…) {…}
DMLib_AddFloatParam(…) {…}
DMLib_CloseEvent() {…}

pvm_send (int, int)
{
 ...
}

// written in C
DMLib_OpenEventEvent(…) {…}
DMLib_AddIntParam(…) {…}
DMLib_AddFloatParam(…) {…}
DMLib_CloseEvent() {…}
…

Application task
Monitor

Fig. 5.12. Application instrumentation using the run time monitoring library loaded dynamically to the application.

Development phase

Run time
library

Inserted
snippets

Run time

 120

MATE

 The recorded events are delivered for analysis via simple event collection protocol based

on TCP/IP. The protocol allows the DMLib to send messages that contain binary encoded

sets of event records. Each event record is represented by the following data:

• timestamp – a number based on the system time (gethrtime ()) that indicates when

an event happened with high precision. As indicated previously the timestamp is

adjusted to consider the clock differences to the reference machine.

• event identifier

• number of attributes

• set of attribute values – values of attributes recorded with the event

To minimize the network overhead, the DMLib implementation uses the event buffering

mechanism. Instead of sending each individual event separately, there is an internal buffer

used to group the events and send them in bigger messages. This allows for reducing the

number of generated messages and limit the intrusion. One of the problems associated with

buffering is related to delays that may occur before an individual event is physically sent.

For example if a single event is registered and then during a period of time no other event

is generated, the first event remains in the buffer and it is not delivered for the analysis.

This problem is solved by using timers that automatically flush the buffer after a specified

amount of time elapses.

5.5.4. Analyzer
This program carries out the performance analysis of the application, automatically detects

existing performance problems “on the fly” and requests for appropriate changes to

improve the application performance. The analysis is driven from the one side by

application knowledge specified externally and from the other side by the online

performance monitoring that is based on event tracing.

The operation cycle of the performance analysis process contains the following steps.

When the Analyzer has been started, it starts the Application Controller. Once the AC is

distributed all over the PVM virtual machine, the Analyzer receives from it information

about the configuration of a virtual machine. During application execution, it is informed

about all the changes in PVM virtual machine (e.g. a new task has been spawned, a task

has terminated a host has been added or removed). The Analyzer contains a set of tunlets

 121

MATE

that in fact provide the performance analysis logic. Tunlets provide the Analyzer with an

initial set of measure points. Next, the Analyzer forwards them to all ACs. This is done by

sending the AddEvent() instrumentation requests. Then, the Analyzer requests the Master

AC to start the application. When the application has started, the Analyzer enters in a

bottleneck search phase. It continuously receives requested event records generated by

different processes. When an event record comes, the Analyzer notifies corresponding

tunlet and this tunlet in turn finds bottlenecks and determines their solutions. By examining

the set of coming event records, the tunlet extracts measurements and then it evaluates a

built-in performance model to determine the actual and optimal performance. If the tunlet

detects a performance bottleneck, it decides if the actual performance can be improved in

existing conditions. If it is the case, it then request the Analyzer to apply the corresponding

tuning actions. A request determines what should be changed (tuning

point/action/synchronization) and it is sent to the appropriate instance of AC, and hence the

Tuner. For example, when the tunlet determines that in a process a particular PVM

function should be invoked with a specific parameter value, the name of the function,

together with a new parameter value, is sent to the Tuner (the function

FunctionParamChange() must be invoked from the Tuner API).

Obviously, during the analysis, DMLibs are collecting and providing new data to the

Analyzer. The tunlet may need more information about program execution to determine

the causes of a particular problem or if a problem is already solved it may need no more a

specific instrumentation. Therefore, the tunlet notifies about it the Analyzer module, that in

turn is able to dynamically control the monitoring of the application by requesting more or

less performance data to be collected. It can therefore request the AC, and hence the

Monitor to change the instrumentation dynamically (functions AddEvent(),

RemoveEvent() are invoked from the Monitor API).

The Analyzer program consists of a number of cooperating modules. Figure 5.13 presents

its internal architecture. From functional point of view, the Analyzer is divided into two

principal parts:

• Dynamic Tuning API – application programming interface for distributed

performance monitoring and tuning of parallel program

 122

MATE

• Tunlets – the modules that provide analysis logic and use the API to actually perform

the dynamic tuning

Application

Controllers

Tunlet
Tunlet

Tunlet
Tunlet

Communicator

Application Manager

DMLibs

Event Collector

 D
yn

am
ic

 T
un

in
g

AP
I

Tunlets Container

Fig. 5.13. Internal architecture of the Analyzer.

Analyzer implementation

Dynamic Tuning API
This API encapsulates all low-level issues related to controlling the execution of the

parallel application, its performance monitoring and tuning. It is implemented as a

distributed asynchronous system where:

• the monitoring instrumentation and tuning service requests are delegated to distributed

Application Controllers that in turn instrument and tune the application tasks

• the incoming events (event records sent by DMLibs and meta data sent by ACs) are

collected and dispatched to registered event handlers.

In that sense, the architecture of this part of the Analyzer is similar to the DPCL library

[Pas98].

The Analyzer implementation consists of three main modules: Communicator, Application

Manager and Event Collector. The Communicator module provides connection with

external world. The bi-directional communication is established with the Application

Cotroller. The Analyzer is able to send monitoring and tuning requests to corresponding

ACs. In turn, the Analyzer receives from ACs meta data about the application model (e.g.

running tasks, hosts included into the PVM virtual machine). The Analyzer establishes

 123

MATE

unidirectional communication with DMLibs and it receives event records generated by

each DMLib.

Since the Analyzer provides the global application analysis, it requires the actual

information about the application distribution, monitoring events and tuning actions. We

distinguished the Application Manager module that maintains the application model. It

keeps the model up to date registering all changes. It actualizes the information about the

running tasks, hosts where these tasks are running, as well as about the monitored events

and tuning actions requested for each task.

When the event records arrive from distributed DMLibs, they must be preprocessed before

they can be passed for analysis to corresponding tunlets. The module responsible for the

preprocessing is called Event Collector. It stores a moving window of events incoming

from different processes using a pool of buffers. The maximum size of this event window

can be configured by the tunlets. Optionally, the Event Collector is able to reorder

incoming events within the window and assure their global, casual order (e.g. receive

cannot finish before send finishes).

The Dynamic Tuning API is provided as a collection of C++ classes as illustrated in Figure

5.14.

Application

Task

Event

EventRecord

Attribute

EventHandler

1

1 Host1

TuningAction

N

N N

N

Figure 5.14. Dynamic Tuning API class diagram (simplified for clarity).

 124

MATE

The analyzed application is represented by the Application object. The application consists

of a number of Tasks. The collection of tasks inside the Application object is updated

automatically to reflect the actual tasks of the running application. Each Task represents an

individual application process (i.e. PVM task) and contains meta data (properties specific

to that task (e.g. process identifier, host where the task is running). Each task may have a

number of events to be monitored. A traced event is represented by the Event object. An

event contains a set of Attribute objects that define what information should be recorded

with the event. Each Event object is associated with an event handler that is called each

time a record of the event occurrence is received by the Analyzer. In addition, the Task

object contains a history of all tuning actions performed on that task.

The following sections describe in detail the classes and methods supported by the

Dynamic Tuning API.

• Application class

Properties

o Name – name of the running program

o NumActiveTasks – number of tasks actually running

o Tasks – a collection of Task objects

o Hosts – a collection of Host objects that form the virtual machine

o MasterTask – references the master task of the application

o Status – application status information

o MonitoredEvents – collection of events being monitored in all the tasks

Methods

o Start – executes the application

o AddEvent – adds a definition of new event to be traced in all running tasks of

the application

o RemoveEvent – removes previously added event from all running tasks

o LoadLibrary – load a shared library to all running tasks

o UnloadLibrary – removes a previously loaded shared library from all running

tasks

o SetVariableValue – modifies a value of a specified variable in a given set of

tasks

o ReplaceFunction – replaces all calls to a function with calls to another one in a

given set of tasks

 125

MATE

o InsertFunctionCall – inserts a new function invocation code at a given location

in a given set of tasks

o InsertOneTimeFunctionCall – inserts a new function invocation code in a given

set of tasks and calls it once

o FunctionParameterChange – sets the value of an input parameter of a given

function in a given set of tasks

o RemoveFunctionCall – removes all calls to a given function from the given

caller function in a given set of tasks

 Callbacks

o SetTaskHandler – installs a callback function that is called when a new task is

started or existing one is terminated

o SetHostHandler – installs a callback function that is called when a new host is

added to the virtual machine or an existing one is removed

• Task class

Properties

o Id – globally unique task id

o Name – process name

o FilePath – file path of the task image

o Host – reference to the host object this task is running on

o IsRunning – indicates if the task is still running

o Status – task status information

o MonitoredEvents – collection of events being monitored in this tasks

o TuningActions – a collection of tuning actions performed in this task

Methods

o AddEvent – adds a definition of new event to be traced in this task

o RemoveEvent – removes previously added event from this task

o LoadLibrary – load a shared library to this task

o UnloadLibrary – removes a previously loaded shared library from this task

o SetVariableValue – modifies a value of a specified variable in the running task

o ReplaceFunction – replaces all calls to a function with calls to another one in

this task

o InsertFunctionCall – inserts a new function invocation code at a given location

in this task

 126

MATE

o InsertOneTimeFunctionCall – inserts a new function invocation code in this

task and invokes it once

o FunctionParameterChange – sets the value of an input parameter of a given

function in this task

o RemoveFunctionCall – removes all calls to a given function from the given

caller function in this task

Callbacks

o SetTaskExitHandler – installs a callback function that is called when this task

terminates

• Event class

Properties

o Id – globally unique event id

o FunctionName – name of the function this event is associated to

o InstrPlace – function entry or exit

o NumAttributes- number of event attributes

o Attributes – a collection of attributes to be recorded with this event

Callbacks

o SetEventHandler – installs a callback function that is called each time a record

of this event is delivered

• Attribute class

Properties

o Source – indicates source for attribute value (i.e. constant value, function

parameter value, variable value, function return value)

o ValueType – data type of the attribute value (i.e. integer, float, etc.)

o SourceId – identifies the object to be used as a source (i.e. variable name,

function name to be called, index of function parameter)

• EventRecord class

Properties

o EventId – globally unique event id

o Event – references event object this record is associated to

o Timestamp – indicates when the event happened

o Task – references a task that generated this event

o AttributeValues – a collection of recorded attribute values

 127

MATE

• EventHandler class

Methods

o HandleEvent – called to handle an event record

• TaskHandler class

Methods

o TaskStarted – called when a new task is started

o TaskTerminated - called when a task is terminated

• HostHandler class

Methods

o HostAdded – called when a new host is added to the virtual machine

o HostRemoved – called when a host is removed from the virtual machine

Tunlets
The Analyzer provides a Tunlets Container (TC) module. This module is responsible for

managing and running a set of tunlets simultaneously. Technically, each tunlet is a shared

library that implements a particular tuning technique. Tunlets are assumed to be passive

modules that drive the analysis by responding to a set of incoming events. The tunlet

library is required to provide a very simple interface that consist of two standard entry

points:

• Initialization – the tunlet library is initialized by the TC after it has been loaded. The

TC initializes the tunlet by passing it the access to the Dynamic Tuning API. From this

moment on, the tunlet is only invoked to handle events.

• Finalization – this functionality is called when a tunlet library is unloaded from

memory

During initialization, the tunlet registers callback functions in order to receive events. This

is performed by calling API functions. For example the tunlet may register handlers to

receive notifications about changes in task configuration (Application::SetTaskHandler) or

virtual machine configuration (Application::SetTaskHandler). It may also request to

monitor the initial set of events (Task::AddEvent) for a particular task. When a record of a

particular event arrives, it is delivered to the tunlet by calling a registered handler. The

handler is then responsible to process the event and run analysis logic incrementally. When

the analysis detects a performance problem it may use the API to change the requested

 128

MATE

instrumentation (e.g. Task::RemoveEvent) or request to perform a selected tuning action

(e.g. Task::SetVariableValue). Finally, when the analysis is finished, tunlet is finalized and

unloaded from memory. Figure 5.15 presents an example interaction diagram that shows

the sequence of calls between container, tunlet and Dynamic Tuning API.

Tunlet
Container Tunlet API

Application::SetTaskHandler()

Initialize()

TaskAdded()

Application:AddEvent()

HandleEvent()

Task::SetVariableValue()

HandleEvent()

Task::AddEvent()

trace pvm_send function
entry and exit

handle send events

trace pvm_setopt
function calls

change fragsize variable

update average
message size

calculate optimal
fragsize value

Fig. 5.15. Sample interaction diagram between Analyzer modules.

5.6. Restrictions and limitations
There are several constraints not contemplated in MATE that we consider interesting for

future investigations. First of all, the performance measurement is based on event tracing.

This enables the Analyzer to have a very insight view on the behavior of the application,

however in some circumstances the associated overhead may not be unacceptable. For

example the cost of collecting individual send/receive calls may introduce too high

 129

MATE

network intrusion for communication intensive applications. In such conditions, it would

be more reasonable to calculate communication statistics such as average message size,

total communication time, etc. inside the application task rather than collect the events.

The dynamic profiling technique based on insertable instrumentation would be in that case

an interesting, but complementary solution.

Another limitation results from a fixed set of tuning actions in the Dynamic Tuning API.

Although these actions cover a range of possible application changes, there are situations

when more flexibility in generating inserted code is required (e.g. conditional tuning

actions). In that sense, the API could be extended to support dynamic definition of tuning

code. This could be achieved by defining a rich API (like DPCL) or defining a scripting

language that allows one to express a generic instrumentation code.

5.7. Conclusions
One of the principal goals of this work was to create a dynamic tuning environment that is

able to automatically tune the application performance during run time. We devoted a big

attention to its creation and our development concluded in the working environment called

MATE. In general, it includes the monitoring, analysis and tuning of the application on the

fly without stopping, recompiling or rerunning it. MATE is suitable for the applications

that do not have a stable behavior and/or change from run to run according for example to

the input data or to the environment. We determined the set of requirements that such a

tool should meet and then designed and implemented a software taking into consideration

all of them. MATE provides a set of facilities to support dynamic monitoring, detection of

performance bottlenecks and automatic changes of the running application. Moreover, our

environment provides the programming models that allows for implementation of new

tuning techniques that solve concrete performance problems. Currently, our environment

can be treated as the prototype for complete future implementation and there are still many

aspects that remain for considerations and improvements.

Our approach is based on the closed steering loop. Therefore, MATE is in some sense

similar to e.g. Falcon or SCIRun as we modify the application behavior at run-time.

However, MATE is not a Problem Solving Environment, because we focus on the

performance optimizations of the application. Moreover, the steering is automatic, there is

 130

MATE

no interaction with a user. MATE detects problems in applications and tunes them on-the-

fly without user intervention.

Our tool is related to Active Harmony and Autopilot. Although, MATE presents similar

tuning approach to the Harmony and Autopilot, it differs in many assumptions and details.

The MATE environment provides techniques for cooperative usage where application must

be prepared for the changes. The same situation appears when using Autopilot or Active

Harmony. However, MATE also tries to go more into the automatic black box direction

where all the tuning phases can be done automatically without user intervention. Moreover,

there are other evident differences as: performance analysis models, instrumentation, and

development which we have mentioned in the paragraph describing Autopilot and Active

Harmony projects.

 131

Tuning techniques

Chapter 6

Tuning techniques

This chapter focuses on the presentation of the catalog of the tuning techniques. First, we

introduce the organization of the catalog and show the scheme of the tuning technique

description. Next, we present and justify the software and hardware components that were

used for practical experiments conducted with the techniques. In continuation, we present a

set of tuning techniques. Each technique is described in a systematic way giving us a

global view of the performance problem it addresses, its general applicability, solution it

applies, experimental results and benefits it gives. Final section summarizes and concludes

the catalog pointing directions for future work.

6.1. Introduction
As we have mentioned in Chapter 5, we provide our dynamic tuning environment with an

application knowledge that represents specific, determined information about performance

problems that can occur during application execution and solutions to these problems. All

required information related to one particular problem we called a tuning technique. Each

tuning technique describes a complete performance optimization scenario, namely:

• It specifies a potential performance problem of a distributed parallel application

• It determines what should be measured to detect the problem (set of measure points)

• Given the measurements, it determines how to detect the problem (performance model)

• It provides a solution on how to overcome the problem (tuning point/action and

synchronization).

A set of tuning techniques forms a catalog. We have organized the catalog in accordance

with the tuning layer at which tuning occurs. Each particular tuning technique is

implemented in the MATE environment as a tunlet. The tunlet contains specific code

related to one concrete bottleneck that can occur in the application and its solution.

Currently, we are focusing on investigating tuning techniques separately. During the

application execution, MATE attempts to apply all of the optimization scenarios, but each

one individually. MATE loads available tunlets and each of the incorporated tunlets carries

 133

Tuning techniques

out the application optimization. When the MATE environment starts the application

execution, each tunlet performs the analysis of a specific problem. It requests to monitor

the appropriate events, receives event records, and analyses them detecting only the

addressed problem. When a problem is found and its solution is determined, the tunlet

requests the tuning actions.

Our goal was to identify and investigate different tuning techniques. Therefore, we focused

on the effects of individual techniques. However, we do not take into consideration the

overall performance of the application. For example, if the communication time is very

low, it may be advisable not to use any of the communication tuning techniques.

Moreover, in certain conditions it may be necessary to consider dependencies between

different performance problems and associated tuning techniques. These issues are left for

further investigations.

In the following sections we present a catalog of individual tuning techniques on which we

mainly focused our work and that we studied within the MATE environment.

6.1.1. Catalog organization
We classified the catalog of tuning techniques into two main parts concerning two different

approaches to the dynamic tuning described in Chapter 4: automatic and cooperative. Both

of them are consequently divided into 3 subparts, that present different tuning layers,

namely operating system, library and application. For each subpart we can distinguish

specific tuning techniques.

We present the following catalog of tuning techniques:

1. Automatic approach

• Operating system level – the described tuning techniques focus on the usage of the

operating system functionality

o Message aggregation

o TCP/IP buffers

• Standard library level – the described tuning technique focuses on the usage of

the C library functionality

o Memory allocation

 134

Tuning techniques

• Custom library level – the described tuning techniques focus on the usage of the

PVM library functionality

o PVM communication mode

o PVM encoding mode

o PVM message fragment size

2. Cooperative approach

• Application level – the described tuning techniques focus on the tuning of the

application-specific problems

o Workload balancing (factoring)

o Number of workers

6.1.2. Technique description
The description that we use to present a tuning technique is based on the description of a

design pattern written in the Object Oriented Design Patterns book [Gam95]. A design

pattern contains the following sections that describe it: intent, motivation, applicability,

consequences, implementation, example/design, known uses, related patterns. We found

the organization of design patterns very systematic, proper, clear and useful for a good

problem presentation. Therefore, we intended to follow this model and hence each

description of a tuning technique has a set of the following sections:

• Intent – this is a short description (1 sentence) of the performance problem addressed

by the tuning technique.

• Motivation – this explains a typical, representative performance problem that a tuning

technique deals with. It discusses why the presented problem exists in a parallel and

distributed application and why such a tuning technique is needed.

• Applicability and conditions – this section describes when a tuning technique can be

applied and a list of conditions that must be satisfied for the tuning technique to be

useable. The conditions express criteria that the tuning technique must consider in

order to improve the performance of an application.

• Solution – this section gives a solution to the presented problem. It explains how to

detect the problem in a running application and what should be changed to improve the

performance.

• Implementation – it presents details of the tuning technique implementation (tunlet

implementation). This section details in what way the tunlet cooperates with the MATE

 135

Tuning techniques

environment, what measure points it provides and how it analyses incoming event

records and detects the problem. Finally, the tuning action is described together with

the points on which it must be invoked as well as the synchronization mechanism.

• Experiment – this section presents the results of practical experiments with

applications and the performance dynamic tuning that we were able to conduct. Each

presented experiment contains the description of the tested application, as well as the

execution scenario. Finally, this section shows and discusses measurements and results

obtained from the conducted experiments.

• Conclusions – it concludes the presented tuning technique.

6.1.3. Environment description
All our experiments were conducted in an environment consisting of a cluster of

workstations connected by LAN network. We used the workstations available in our

laboratory. The environment contained 5 machines connected by Ethernet 10/100 Mbps

network. All the machines except Aows10 were equipped with 100Mb/sec Fast Ethernet

adapter and they could take advantage of the faster network. Detailed configuration of the

environment is shown in Table 6.1.

No. Machine name Type of CPU Memory
size

Operating
system

Relative
speed Comments

1. aows10.uab.es Sun UltraSPARC I,
167 MHz 128 MB Sun Solaris

2.6 1.00
Main NFS server,
10Mb network
adapter

2. aows1.uab.es Sun UltraSPARC II,
440 MHz 128 MB Sun Solaris

2.8 2.76 100Mb network
adapter

3. aows6.uab.es Sun UltraSPARC II,
440 MHz 128 MB Sun Solaris

2.8 2.76 100Mb network
adapter

4. aows7.uab.es Sun UltraSPARC II,
440 MHz 128 MB Sun Solaris

2.7 2.77 100Mb network
adapter

5. aows8.uab.es Sun UltraSPARC II,
440 MHz 128 MB Sun Solaris

2.7 2.79 100Mb network
adapter

Table 6.1. Configuration of the experimental environment.

Since our environment comprised machines with different hardware configurations, it

became necessary to consider their hardware capacities. For obvious reasons, the execution

time of a program running on a workstation depends directly on the hardware capacities of

the machine. This time depends not only on processor speed, but also on memory size and

access time, cache memory parameters, hard disk parameters, to mention the most

important. While these parameters may give an indication of the machine capabilities, they

cannot be simply applied to calculate the machine performance, hence another method is

 136

Tuning techniques

necessary. Reliable and accurate performance metrics can be obtained by running

benchmark programs. Benchmarking measures the time needed to execute a selected

computing task on many machines hence it allows for making performance comparisons.

For the purpose of some of our experiments (e.g. workload balancing), we estimated the

relative workstation speed using Whetstone benchmark [Cur76]. The results are presented

in the column “Relative speed” in Table 6.1. The primary goal of this benchmark is to

provide a performance measure of both floating point and integer arithmetic. Therefore, it

is well suitable for scientific applications and not for general evaluation of efficiency. The

relative speeds are calculated as the ratio between the MWIPS value (Millions of

Whetstone Instructions Per Second) measured by the Whetstone benchmark on a given

workstation and the MWIPS value measured by the same benchmark on a reference

machine. We used slowest workstation, aows10, as the reference machine.

Finally, it must be pointed out that neither the machines comprising the cluster nor

interconnection network was completely dedicated to purpose of the experiments. During

all experiments, the aows10 machine was running mail-server application and Aows1 was

running web-server application. Moreover, the performance of machines and the LAN

network could have been affected by other users or programs. We tried to performed

experiments under very low or no external load conditions avoiding interruptions, i.e. most

of the experiments were conducted during night-hours when there is the lowest probability

of the machine usage by other people. Therefore, the measurements we show do not have

exact precision. To obtain more precise results, each experiment was repeated a number of

times and the average of the wall clock execution time was calculated.

6.2. Message aggregation
This tuning technique intents to minimize communication overhead by transparently

grouping set of small messages into large ones.

6.2.1. Motivation
Parallel applications usually generate a large amount of messages. If the problem

decomposition is fine grained, the size of the transmitted messages is usually small. The

overhead for sending these messages over an interconnection network (LAN) can

dramatically limit the application speedup because of network latencies. Parallel

 137

Tuning techniques

applications such as event-based simulations or even parallel matrix multiplication

programs are an area where all possible optimizations on communication are generally

welcome because these applications typically have a high communication to computation

ratio.

In this case, message aggregation technique can transparently increase the granularity of

the transmitted messages and reduce the communication overhead. The message

aggregation is based on the idea of grouping set of small messages for the same destination

into a single larger one [Pha99]. The rational behind message aggregation is that it is

cheaper to send an M bytes message than to send n times an m bytes message with n * m =

M. This is true when a network latency is non-zero value and n > 1.

 n * m = M

 Tcomm1 = Tstartup + M * Tword

 Tcomm2 = n * (Tstartup + m * Tword)

 Tcomm1 < Tcomm2 ?

Tstartup + M * Tword < n * (Tstartup + m * Tword)

 Tstartup + n * m * Tword < n * (Tstartup + m * Tword)

Tstartup * (n-1) > 0

True if n > 1 and Tstartup > 0

There is a trade-off on how long to keep aggregating before sending the message to the

receiver. It the time is too long, it may produce useless waiting as a side-effect at the

receiver side. It is certainly not desirable to wait too long, but at the other side too short

delays may not benefit from aggregation.

6.2.2. Applicability and conditions
This technique is best suited for applications that use TCP/IP protocol, for example PVM-

based parallel applications or any other communication software that makes use of sockets.

The message aggregation works best when an application is executed in networks with

considerable latencies (i.e. LAN or WAN networks) and sends a large number of small

messages. This optimization can be performed at the low level of the communication

software (i.e. OS sockets) or in the application at the higher level (e.g. PVM library). In

our work we focus on socket level optimization.

 138

Tuning techniques

6.2.3. Solution
To transparently aggregate a set of messages it is necessary to introduce an additional layer

of code that provides the message buffering mechanism. The mechanism is based on a

buffer with a sufficient size to store a set of small messages and an aggregation algorithm.

The following pseudo-code explains the functioning of the aggregation mechanism:

 if (!aggregation)

 write message with std write call

return

 if (curAggrBufIdx + msgSize < AGGR_BUF_SIZE) // message fits

aggrBuf

 copy message to aggrBuf

 set timestamp and flushing alarm

 curAggrBufIdx += msgSize;

 return

 else // message is larger than aggrBuf

 if (curAggrBufIdx > 0) // there is data in aggrBuf

write data from aggrBuf with std write call // flush

 write message with std write call

reset flushing alarm

 curAggrBufIdx = 0;

When a message is sent by the application, it is first intercepted by the aggregation

mechanism. Next, in function of the message size and free space in the buffer, the

algorithm decides if the message can be stored in the buffer or it is necessary to flush

buffer content by sending one large message. Additionally, to avoid the situation when a

message is stored in a buffer and the receiver waits too long for its reception, it is

necessary to use time based automatic flushing mechanism. This mechanism ensures that

all messages stored in a buffer are transmitted after a specified amount of time.

From the performance point of view, the message aggregation mechanism produces a hit

when a small message is written to the buffer instead of being sent (i.e. it is aggregated) or

miss when a message does not fit into the buffer. In the first case, the mechanism gives the

performance gain, because the total number of transmitted messages gets reduced as well

as the number of system calls. In the case of the miss, the performance is worsen in

comparison to scenario without aggregation, because there is a cost resulting from flushing

 139

Tuning techniques

the content of the buffer (i.e. previous messages), sending the actual message and the

overhead introduced by extra layer of code. Therefore it is necessary to analyze the

sequences of outgoing messages and estimate the possible hit/miss ratio before taking

decision on applying the aggregation mechanism.

To analyze whether the message aggregation should be used, it is necessary to perform a

number of measurements. The goal is to check if the application is sending a big number of

small messages consecutively. This can be achieved by collecting statistics of the number,

sizes, and differences between sizes of consecutive messages being sent during a specified

time window. These statistics must be collected for each individual connection (i.e. socket)

separately as the aggregation is performed per connection. Basically, there are two

conditions that must be met to consider this technique profitable:

• The number of small messages should be significant, i.e. the percent of messages with

size smaller than MinMessageSize exceeds a threshold MinPercentSmallMessages.

• The estimated hist/miss ratio, i.e. probability of occurrence of sets of consecutive small

messages (hits) exceed MinHits.

When these conditions are met for a given time window, there is a certain probability that

if the application does not change radically its behavior, the application of the message

aggregation mechanism can be beneficial for the performance. In that case, the tuning

actions are triggered. The tuning consists of replacing operating system function calls that

transmit data, in particular write() function, with their optimized version with

aggregation mechanism, i.e. aggr_write() function.

The advantage of carrying out the message aggregation at the level of system calls is the

transparency on the receiver side. It is not necessary to introduce any changes on the

receiver, because the mechanism does not affect the data being transmitted (i.e. receiver

gets exactly the same data in the same order). The only difference is on the sender side,

where small messages are copied to the intermediate buffer, the number of system calls

gets reduced, but each call carries more data to be written to the underlying TCP buffer.

This independence enables the transparent usage of the aggregation mechanism with

higher level communication software such as PVM, MPI and other libraries.

 140

Tuning techniques

6.2.4. Implementation
To monitor if the application is sending a big number of small messages consecutively, the

message aggregation tunlet must collect the statistics of the following events:

• socket() – to track file descriptors associated with network sockets. For each opened

socket the tunlet collects the statistics for outgoing messages.

• write(int fd, void * buf, int bufsize) system function call – to calculate the

histogram of number of writes for each data size being written, and also analyze

sequences of consecutive message sizes in order to estimate the hit/miss ratio. These

statistics must be collected separately for each open socket.

• close() – to get notified when the socket is closed

The processing of these measurements allows the tunlet to calculate the following metrics

for a given socket and time-window:

• Histogram of number of writes for each data size written – this permits to estimate if

the number of small messages can be considered significant

• Number of hits and misses – this enables the profitability analysis, i.e. estimation

whether the technique can optimize the performance in a given conditions

When the required conditions are met, the tunlet can then invoke the appropriate tuning

actions. Because of the complexity of the aggregation mechanism, its implementation is

provided as an external shared library that is loaded into the application process on request.

The library provides an API with the following set of functions:

• void aggr_init() – this function initializes the aggregation mechanism (e.g.

variables, alarms, descriptors).

• void aggr_open(int fd) – this function activates the aggregation mechanism for a

given socket.

• void aggr_write(int fd, void const * buf, size_t bufSize) – this function

is used to replace the standard write function and contains the aggregation mechanism.

• void aggr_flush() – this function replaces the standard flush() function. When an

application requests the flushing, it is first necessary to flush the content of the

aggregation buffer.

 141

Tuning techniques

• void aggr_close(int fd) – this function disables the aggregation mechanism for a

given socket. From this moment on, all subsequent calls to aggr_write() will

delegate the work directly to the write() function.

• void aggr_set_flush_timeout(struct timeval * timeout) – this function

simple sets the maximum value of the timeout that may pass to flush the data that

remains in the aggregation buffer.

The library implementation holds an array of data structures for each possible file

descriptor. Those descriptors that are opened for aggregation with the aggr_open() call,

the data structure contains the aggregation buffer and set of auxiliary variables such as

current buffer index, size, timer data and so on. When the aggr_write() function is

called, the code first checks if the file descriptor has the aggregation activated. If it is not

the case, the call is immediately delegated to standard write() function. If the

aggregation is active, first the message size is checked if it fits into the buffer. If this is true

the message is written into the buffer and the call terminates with a hit. Otherwise, the

current buffer content must be flushed with a single write() call and then the current

message is also transmitted immediately. In addition to normal flow, the library

implementation uses alarm-based timers in order to proceed with auto-flush procedure

whenever the oldest message remains in the buffer for more than MaxMessageAge

milliseconds. This prevents the aggregation mechanism from introducing long delays in

message delivery.

The activation of the message aggregation mechanism consists of the following phases:

• The message aggregation library is loaded into the application process. This is

performed by means of LoadLibrary() call from the Tuning API.

• Set of system calls (i.e. write, flush, close) gets replaced with their aggregating

versions. This is performed by means of ReplaceFunction() call from the Tuning

API.

• Then individually for each connection that should use the aggregation it is necessary to

invoke the aggr_open() function call to enable the mechanism for a given socket. This

is performed by means of InsertOneTimeFunctionCall() of the Tuning API.

 142

Tuning techniques

6.2.5. Experiments
In order to evaluate the effectiveness of message aggregation in comparison with

standard message transmission in the TCP/IP protocol, we have developed a simple,

synthetic, socket-based master/slave program that transmits a series of consecutive small

messages. The master task sends a determined amount of work divided into a number of

messages and waits for confirmation from the slave. The slave receives the messages, and

immediately sends the confirmation to the master. There is no computational operations,

the application is strictly based on communication. We executed the program using 4KB

work size. The same work was transmitted using various number of small messages

ranging from 1024 messages with 4 byte size (i.e. one integer) each to 2 messages with

2048 bytes size each. We have performed the experiment in three different configurations:

• Standard write – without message aggregation mechanism

• Aggregate write A – using first aggregated write implementation where the buffer is

not sent till all bytes of the message are acknowledged to be sent. Aggregation buffer

size was 256B and the flushing timeout was set to 500miliseconds.

• Aggregate write B – using another aggregated write implementation in which

additionally to the mode A, aggregation mechanism is also used before the message is

write to the network stream. Aggregation buffer size was set to 256B and the flushing

timeout to 500miliseconds.

All executions were conducted in homogeneous and dedicated scenario (no external load).

In this scenario, we have used two homogeneous machines (aows6, aows7) connected by

100Mb/sec network. During execution of the experiments, all workstations were idle.

Measurements and results

Figure 6.1 presents the comparison of communication performance between different data

transmission configurations: standard write, aggregate write mode A and mode B in the

master/slave application presented above (note that Y scale is logarithmic). The detailed

measurements are listed in Table 6.2.

We can observe that in function of work decomposition (message size and number of

messages) the total time needed to transmit the data differs significantly (from –113% up

to +91%).

 143

Tuning techniques

1

10

100

1000

10000

100000

4 8 16 32 64 128 256 512 1024 2048

Message size [bytes]

w
rit

e
tim

e
[u

se
c]

standard write
aggregated write A
aggregated write B

Fig. 6.1. The comparison of write performance in different configurations.

MsgSize [B] Standard write
time [usec]

Aggregated
 write A [usec]

Benefit
from A

Aggregated
 write B [usec]

Benefit
from B

4 27697 2543 91% 2565 91%
8 14167 2347 83% 1792 87%
16 7428 1771 76% 746 90%
32 4159 1560 62% 582 86%
64 2256 1105 51% 814 64%

128 1122 1061 5% 961 14%
256 645 1024 -59% 933 -45%
512 470 838 -78% 709 -51%
1024 359 766 -113% 619 -72%
2048 336 571 -70% 557 -66%

Table 6.2. The detailed measurements of write performance in 3 different configurations:

standard write and two modes of the aggregated write.

For messages smaller than a cut-point that we estimated to be 156 bytes (see vertical line

on the graph), the performance of the both configurations with message aggregation

overcomes the standard write() system call. This can be explained by the sum of network

latencies (i.e. Tstartup time) associated with each message being sent. Moreover, each

write() system call requires the context switch from user to kernel mode and this also

has its associated cost. When the message size grows and number of transmitted messages

gets reduced, the sum of latencies and write() calls is lower and it is getting closer the

aggregation cost. When the message size exceeds 156 bytes, the aggregation performance

is worse than the standard write() performance. The costs of additional code layer and

 144

Tuning techniques

extra data copy start to overcome the benefits and the technique is no longer profitable. We

may conclude that there is a limitation on the size of aggregated messages for the

technique to be profitable.

For small messages we can see a difference between mode A and B of the aggregation

implementation. This might be caused by the additional aggregation introduced before the

message is written to the network stream.

6.2.6. Conclusions
This tuning technique can improve the communication performance for applications that

frequently exchange sets of consecutive and small messages. The tuning cost is not very

low, because it is necessary to load an additional shared library and then accept the

constant run-time overhead resulting from additional layer of code that encapsulates some

of the system calls (i.e. write() function). However, in networks that are characterized

with not ignorable latencies and applications that send very small messages (e.g. no bigger

than hundreds of bytes), the technique can bring noticeable time savings.

6.3. TCP/IP buffers
This technique intents to maximize the network transmission performance across high-

performance networks using TCP/IP-based protocol. This is achieved by tuning the TCP

socket buffers to an optimal value.

6.3.1. Motivation
In order to take full advantage of high speed networks and maximize communication

performance, it is necessary to pay attention to some of the configuration and

communication tuning issues. In particular, it is necessary to tune TCP/IP protocol to

achieve high data transmission rate over the fast networks. Some of the issues discussed

below arise because of the fact that the modern networks have been improved beyond what

they were when the TCP/IP protocols were initially designed. Although there are some

high performance extensions that have been proposed and implemented in the TCP/IP

protocol, these options are sometimes not enabled by default and require the programmers

to take care of them manually.

 145

Tuning techniques

TCP/IP is a reliable and window-based protocol. Under ideal conditions, best possible

network performance is achieved when the data pipe between the sender and the receiver is

kept full. The amount of data that can be transferred in the network, sometimes called

Bandwidth-Delay-Product (BDP for short), is simply the product of the bottleneck link

bandwidth and the Round Trip Time (RTT). In a reliable protocol such as TCP/IP, the

importance of BDP described above is significant as this represents the amount of

buffering that will be required in the end hosts (sender and receiver).

The largest buffer size in the original TCP/IP (without the high performance options) is

limited to 64KB. If the BDP is small either because the link is slow or because the RTT is

small (in a LAN, for example), the default configuration is usually adequate. But for a

paths that have a large BDP (i.e. "Long Fat Networks"), and hence require large buffers, it

is necessary to have enabled the high performance options discussed below.

For TCP/IP protocol, the window size option is by far the most important parameter to

adjust for achieving maximum bandwidth across high-performance networks. Properly

setting the TCP window size can often more than double the achieved bandwidth. With

TCP, each segment header contains a field called "advertised window" specifying how

many additional bytes of data the receiver is prepared to accept. The "advertised window"

may be interpreted as specifying the receiver's current available buffer size. An important

fact about TCP is that the sender is not allowed to send more bytes than the advertised

window. This is TCP's flow control mechanism. To maximize the performance, the sender

should set its send buffer size and the receiver should set its receive buffer size to no less

than the capacity of the TCP pipe. As stated before, theoretically this number should be

equivalent the product of bandwidth and round-trip-time (BDP).

The default values of TCP/IP buffer size (i.e. socket buffer size) differ widely between

implementations. Older Berkeley-derived implementations would default the TCP send

and receive buffers to 4KB, but newer systems use larger values (up to 64KB). The new

TCP extensions support values up to 1 MB or more.

In our work, we intent to set the TCP socket buffers to an optimal value by detecting the

bandwidth-delay product at connection setup time. The objective is to maximize the data

transfer rate, even if the default socket buffer size is small. For those connections with a

 146

Tuning techniques

low bandwidth-delay product, we assume to leave the socket buffer size small in order to

conserve memory usage.

6.3.2. Applicability and conditions
This technique is best suited for applications that use TCP/IP protocol to realize bulk

transfers between two end-points in fast networks with large BDP. For example parallel

applications that transfer large volumes of data between tasks running in GRID

environments are good candidates for this optimization. The same applies for traditional

Internet data transfer applications such as FTP clients and servers.

It must be pointed out that the TCP buffer tuning is only possible at TCP connection setup

time and remains the same within a single TCP session. The mechanism to be effective

needs that both sender and receiver use the same or at lease similar buffer size value (send

buffer and receive buffer respectively). Therefore the tuning is more complex because it

requires to perform modifications on both sides at the same time.

Another limitation of socket buffer tuning is the amount of memory that may be used by an

application for buffering network data. Some older operating systems limit this value to

64KB. In a newer UNIX implementation that supports RFC1323 "Large Windows"

extension, a maximum value for the socket buffer size varies between 128 KB and 1 MB.

For example the Sun Solaris 2.8 that we used for experiments permits 1MB value.

6.3.3. Solution
Theoretically the TCP window size should be set to the bandwidth delay product, which

computes the volume of data that can be in the network between two machines. The

bandwidth delay product is:

BDP = bottleneck bandwidth * round-trip time

To compute the BDP it is necessary to find out the speed of the slowest link in the path

between two communicating nodes and the round trip time. The bandwith of a link is

typically expressed in Mbit/s. The round-trip time (RTT) for a WAN link is typically

between 10 and 100 milliseconds.

 147

Tuning techniques

Since we set TCP buffer size to the same value as the available bandwidth-delay product,

the problem is essentially to estimate the available bandwidth and RTT with minimum cost

of time and traffic and at least a coarse-grained accuracy. To achieve this we use the

sequence of the steps as described in [L39]:

• We send out a series of fixed-length ICMP_ECHO packets as fast as possible. Each

packet is time-stamped and it has an associated unique sequence number.

• Measure the RTT by comparing the arrival time of the echoed packets with the time-

stamps contained in the packets.

• Record those packets that arrive in-order (consecutive sequence numbers) and the

inter-arrival times. The packet length divided by the inter-arrival time is the assumed

available bandwidth.

• Determine the bandwidth-delay product (BDP) by multiplying the bandwidth numbers

by their corresponding RTTs

• Finally multiply the median of the products by a constant factor (1.0 in our

implementation) and return it as the result of our measurements.

For example if we send a series of 256 bytes long packets and they are echoed back within

10 milliseconds, the inter-arrival time is about 0.05 milliseconds, we obtain:

RTT = 10 milliseconds

Bandwidth = 256 bytes / 0.05 milliseconds

 = 256 bytes * 1000 / 0.05 seconds = ~39Mbps

(e.g. this can be 100 Mbit/sec Ethernet link under load)

BDP = RTT * Bandwidth * ConstFactor

 = 10 milliseconds * 39Mbps * 1.0 = ~50KB

Having the solution to estimate the BDP, we are now able to define a tuning procedure.

Because it is only possible to change the socket buffer sizes before the connection gets

established, the applicability of this technique is limited to the setup time of a given

connection. Therefore, it is necessary to intercept the connect() procedure at the sender

side and the accept() procedure at the receiver side. In both cases, before the connection

is requested by the sender or accepted by the receiver, it is necessary to invoke BDP

estimation procedure and use the resulting value to setup the size of socket buffers. To set

 148

Tuning techniques

these buffers, we invoke setsockopt() system call using the SO_SNDBUF for the sender

and SO_RCVBUF socket option for the receiver.

It can be observed that this solution differs from other tuning techniques, because the

tuning decision must be taken at the application startup time and before any run-time

knowledge is available at least for the first connection. Although this optimization is

performed automatically for any socket-based application, it is advisable that the

programmer decides to use the technique or not for his/her application. This results from

the limitation of TCP/IP socket API that does not allow to change the buffer sizes for an

established connection.

6.3.4. Implementation
The implementation of this tuning technique is divided into the following components:

• Automatic BDP estimation library – shared library module that is loaded into the

application during its run-time and provides the functionality that enables the

estimation of the bandwidth-delay product for an individual connection.

• Tunlet – executed inside the MATE Analyzer. It uses Tuning API to load the library to

the application processes (both senders and receivers) and to instrument system calls,

i.e. connect() and accept()by adding invocations to BDP estimation code.

In particular, the BDP estimation library provides the following interface:

• int EstimateBDP(char const * remoteHostName) – returns estimated bandwidth-

delay product in bytes for a connection with a given remote host using ICMP based

method as described in the Solution section.

• void AutoSetupBuffers(int socket) – automatically sets up the send and receive

buffers of a given socket by applying the estimated BDP value. This function internally

invokes the bdp=EstimateBDP() function and then calls setsockopt(socket,

SOL_SOCKET, SO_SNDBUF, &bdp, len) and setsockopt(socket, SOL_SOCKET,

SO_RCVBUF, &bdp, len) to setup the buffers.

To use the BDP estimation, the tunlet requests the MATE Application Controllers to insert

the AutoSetupBuffers(socket) function call into the entry of the connect() function

and at exit of the accept() function. Because the TCP window size is implemented by

 149

Tuning techniques

send and receive buffers on each end of the connection, this operation must be invoked for

both ends of the connection.

6.3.5. Conclusions
This technique tunes the TCP socket send and receive buffers in order to maximize the

network transmission rate. It is best suited for applications that realize massive data

transfers between two end-points. The automatic buffer tuning may be very beneficial,

[L39] reports performance enhancement up to 500% for FTP transmissions (i.e. transfer

rate improved from 60Kbps up to 420Kbps). However, the application of this technique is

limited, because the buffers can only be tuned before the connection is established. It is not

possible to adapt their size during run-time by analyzing the transmitted data. Therefore it

is advisable that the programmer decides to apply this technique or not for a particular

application.

6.4. Memory allocation
This tuning technique intents to improve the performance by optimizing the memory

allocations for applications that use big number of small objects.

6.4.1. Motivation
Machines with large amounts of memory and disks are very common. However, current

general-purpose memory allocators do not provide sufficient speed or flexibility for

modern high-performance applications. To achieve high performance, programmers often

write custom memory allocators from scratch. Many general-purpose memory allocators

implemented in C and C++ provide good performance for a wide range of applications, but

using specialized memory allocators that take advantage of application-specific behavior

can dramatically improve application performance [Ale01].

Typically, the applications use general-purpose memory allocators (i.e. malloc(),

free()). Standard allocators are known to be inefficient in particular cases, for example

when using a large number of small objects. C programs usually allocate medium- to large-

sized structures (hundreds to thousands of bytes) and for such behavior malloc() and

free() are optimized. However, in many applications (especially written in C++), there is

a tendency to create quite large number of small objects (tens to hundreds of bytes). This

 150

Tuning techniques

can result in the application performance problems. This is not a fault of C++ language, but

of the inadequacy of the malloc() routines that in fact might be called internally by C++

allocators (i.e. operator new). In such conditions, it is very reasonable to use optimized,

custom-memory allocators that are tuned to deal with small memory blocks.

6.4.2. Applicability and conditions
Memory allocation tuning technique is beneficial when applied for applications that

frequently allocate small chunks of memory. If an application does not fulfill these two

principal conditions – intensive usage of memory and at the same time allocations of small

blocks – this kind of tuning is unsuitable. The reasoning behind this is that a single

allocation time is relatively small. For example, in the environment where we conducted

our experiments a single allocation of 1B of memory done by the standard malloc()

allocator lasts less than 1 microsecond. Moreover, as we have mentioned standard

allocators are not optimized for the allocations of small blocks of memory (tens to

hundreds of bytes).

A feature of custom allocators that might be considered a drawback is the earlier usage of

larger blocks of memory. For instance, an allocator can obtain large blocks of memory

from the general-purpose allocator which it divides into a number of small objects. A

custom allocator might also defer object deallocation, returning objects to the system much

later than the object’s deletion time. In some cases, allocators may never release memory

and reuse the allocated blocks until the program is terminated. All these factors may limit

the applicability of this technique.

6.4.3. Solution
The solution is to rely on small-objects allocators – specialized allocators that are tuned for

dealing with small memory blocks (tens to hundreds of bytes). Small-object allocators use

larger blocks of memory so called chunks and organize them in effective way to reduce the

total occupied space and decrease total allocation time. There are many custom allocators

available, but we chose for this tuning technique a pool-based allocator [Ale00]. This

allocator uses a set of variable-length pool (such as vector or list) to support an efficient

organization of allocation and deallocation of memory blocks. Each pool consists of an

integral number of fixed-size chunks. Each chunk is divided into fixed-size blocks for

storing allocated data. When there are no more data blocks available in the last chunk, the

 151

Tuning techniques

allocator creates a new chunk and appends it to the list of chunks. This design is shown in

Figure 6.2.

Pool

2

1

2

1

m-2

m-1

m-2

m-1

ChunkSize n x m ChunkSize n x m

Data (size n) m

Data (size n)

Data (size n)

Data (size n)

...
Data (size n)

Data (size n) m

Data (size n)

Data (size n)

Data (size n)

...
Data (size n)

Chunk next Chunk

Fig. 6.2. Pool allocator based on the mechanism of fixed-size chunks.

In this approach one pool supports only one size for data allocation; chunk are always

divided into m data blocks where each data block has always the same size n. For example,

a chunk can has 4KB size and can be divided into 512 blocks for 8B data. If we want to

consider allocations of other data sizes, then we have to create a new pool with appropriate

characteristics, e.g. a 4KB chunk divided into 256 blocks to fit 16B data.

To optimize the memory allocation performance, we can track the memory allocation

requests during application run-time. By monitoring malloc() calls we can collect

allocation statistics such as histogram of number of allocations and deallocations for

groups of request sizes. These histograms show memory allocation usage patterns such as

large number of small requests and so on. For example, if we detect thousands of

allocations and deallocations of blocks smaller than 4KB, we can conclude that the

application is memory intensive and can benefit from optimized pool allocations.

We have determined a set of conditions that activate the tuning procedure for a given range

of sizes (RangeMin, RangeMax):

• RangeMax is smaller than maximum size of the request that is considered small

• number of allocations and deallocations exceeds a threshold MinAllocs

 152

Tuning techniques

If the conditions are met, it is necessary to determined the optimal chunk size for a pool

allocator for a given range of sizes. During our investigations we have observed that the

particular values of the thresholds should be obtained experimentally.

Finally, we can replace the standard allocator with the optimized pool allocator for a

particular range of request sizes. Because the individual allocation times are very short

(microseconds) we must provide a carefully optimized pool allocator implementation in

order to obtain real performance benefits.

6.4.4. Implementation
The implementation of this tuning technique consists of the following components:

• Optimized pool allocator – implemented as a shared library and loaded to the memory

of a process by means of LoadLibrary() call from the Tuning API. This library

provides the following functions:

o void * pool_alloc(size_t size) – this function replaces malloc()

implementation and delegates some ranges of requests to the internal pool

allocator. The other requests are passed to the standard malloc() call. The

replacement is performed by means of ReplaceFunction() call from the

Tuning API.

o void pool_free(void * mem) – it replaces standard free() call and frees

memory previously allocated with the pool_alloc() or malloc().
o void pool_activate(size_t minRequestSize, size_t maxRequestSize,

size_t chunkSize) – activates the pooling allocator for all memory

allocations that request a size in a specified range. The pool will use chunk with

the specified size. Invocation of this function is performed by means of

InsertOneTimeFunctionCall() of the Tuning API.
o void pool_deactivate(size_t minRequestSize, size_t

maxRequestSize) – deactivates the pool allocator for a specified range of

sizes. The function invocation is performed by

InsertOneTimeFunctionCall() of the Tuning API.

• Memory allocation tunlet – that is responsible for monitoring the memory allocation

requests and determining if and for what sizes pool allocator can behave better than the

standard allocator.

 153

Tuning techniques

When the tunlet is activated, it first requests to instrument the memory allocation routine,

i.e. malloc(), in order to collect allocation statistics. The tunlet maintains the histogram of

number of allocations and deallocations for each range of request sizes, for example sizes

smaller than 16 bytes, 32 bytes, 64 bytes, …, 1KB, 4KB, etc. Periodically, the tunlet

checks if the number of memory allocations for a given range of sizes exceeds a specified

allocation threshold (configurable value) and the corresponding number of deallocations

exceeds a deallocation threshold in a given period of time. In that case, the tunlet chooses

the best suited size of pool for a given allocation size.

Finally, the tunlet activates the tuning action. This action consists of the following steps:

• If the procedure is invoked for the first time, the tunlet loads the shared library with the

pool allocator to a given process. Next, it replaces malloc() and free() calls with

their pool versions using ReplaceFunction() method from Tuning API.

• The tunlet invokes the OneTimeCode() function in order to call the

pool_activate(rangeMin, rangeMax, chunkSize) procedure that activates the

allocator for a given range.

To replace the allocators at run-time there are several issues to be considered. First, it is

necessary to replace malloc() and free() standard calls with their optimized substitutes:

pool_malloc() and pool_free(). The new functions hold a map of sizes to allocators

and in this way decide what allocator (i.e. pool or standard) should be used to handle a

request with a particular size. Next issue is related to memory deallocation problem. The

problem result from the necessity to match the deallocation request with the allocator that

was used to allocate a freed memory block. For example if the memory was previously

allocated with the malloc() call it must be freed with free() call. If it was allocated

with a pool allocator, the pool_free() function must be used to return the memory to the

pool. This is solved by adding extra bytes for each allocated block from the pool. This

allows the determination of the appropriate allocator.

6.4.5. Experiments
We wanted to compare the standard C library allocator (malloc() and free()) to the pool

allocator that we have just presented. In order to investigate the performance of the

memory allocations using different allocators, we have developed a synthetic, C++

 154

Tuning techniques

program that intensively allocates memory. The application does not perform any

processing, but only allocates memory using a specified configuration. We have executed

the application using standard allocator and pool allocator with different chunk sizes: 4KB,

8KB, 16KB, 32KB, and 64KB. We used two configurations:

• First, the program has a constant number of allocations and allocates memory for

different data sizes. We executed the program for various data sizes ranging from 1 to

65535 bytes and we allocated 1.000.000 times each data size.

• Second, the program applies different numbers of allocations for different data sizes. In

this configuration the program was executed for 4B, 8B, 16B and 32B data sizes and

for each data size we set different numbers of allocations ranging from 1 to more than

16.000 times.

All executions were conducted in a dedicated scenario, using a single host with no external

load.

Measurements and results

Figure 6.3 presents the comparison of average memory allocation time in a function of

request size for different allocators: standard and a set of pool allocators with chunk size

ranging from 4KB to 64KB. The allocations for each data size were performed 1.000.000

times.

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Data size [B]

Av
er

ag
e

al
lo

ca
tio

n
tim

e
[u

s]

standard alloc
pool 4KB
pool 8KB
pool 16KB
pool 32KB
pool 64KB

Fig 6.3. Average allocation time vs. data size with constant number of allocations.

 155

Tuning techniques

We can observe that there is no single optimal allocator for all different request sizes. The

optimal strategy would be to use different allocator for different ranges of requests. In

general, pool allocators perform better than standard allocator for data sizes smaller than

4KB. The work of the pool allocator is characterized by an expensive first allocation,

because the whole chunk must be allocated and divided into blocks. The subsequent

allocations up to the end of the chunk are very cheap and with time they may amortize the

cost of the expensive allocation. We can notice that different chunk sizes affect the pool

allocator performance and there is direct dependency between chunk size and request size.

In particular the 64KB chunk performs the best for bigger data sizes but poorly for small

requests. The Pool 4KB is the best for small requests, but the worst for big requests.

We can observe that for data sizes equal to 1, 2 and 4 bytes all pool allocators give the

constant allocation time. The same happens with the standard allocator but for sizes up to

32 bytes. This can be explained by the memory alignment performed by the allocators. The

pool allocators use 4-bytes alignment, and we can guess that the standard allocator groups

all request sizes smaller or equal to 32 bytes (i.e. 1 byte request allocates 32 bytes).

Figure 6.4 presents the average time of the free operation for different allocators (with

number of deallocations equal to 1.000.000).

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

data size [B]

av
g.

 fr
ee

 ti
m

e
[u

s]

std free
pool 4KB
pool 8KB
pool 16KB
pool 32KB
pool 64KB

Fig. 6.4. Average deallocation time vs. data size with constant number of deallocations.

 156

Tuning techniques

We can observe that for all pool allocators the average pool_free() time is almost

constant and significantly faster (60% - 70%) than standard free() function. The constant

time results from the nature of the pool – each deallocated memory blocked is simply

added to free block list and deallocation does not depend on the size. We can also see that

the standard malloc() function groups requests sizes into blocks: sizes ranging from 1 to 32

bytes result in 32 bytes allocations, sizes from 64 to 4KB result in 4KB allocations and so

on, because the corresponding free() calls have constant times for these ranges.

The following graphs (6.5, 6.6, 6.7, 6.8 correspondently) show average allocation time in

function of number of performed allocations for constant requests sizes: 4, 8, 16, 32 bytes.

Data size 4B

0,1

1

10

100

1000

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

Alloc number

avg. alloc. time [us]

std
pool 4
pool 8
pool 16
pool 32

Fig. 6.5. Average allocation time vs. different number of allocations for constant 4B data.

All these figures show the minimal number of consecutive allocations that must be

performed by a given pool allocator in order to overcome the performance of the standard

allocator. We can observe the bigger data size of the request the smaller number of

allocations is sufficient to justify the usage of the pool allocator. In general, we can

conclude that number of allocations ranging from hundreds to thousands can be used as a

value for the MinAllocs threshold.

 157

Tuning techniques

Data size 8B

0,1

1

10

100

1000

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

Alloc number

avg. alloc. time [us]

std

pool 4

pool 8

pool 16

pool 32

Fig. 6.6. Average allocation time vs. different number of allocations for constant 8B data.

Data size 16B

0,1

1

10

100

1000

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

Alloc number

avg. alloc. time [us]

std
pool 4
pool 8
pool 16
pool 32

Fig. 6.7. Average allocation time vs. different number of allocations for constant 16B data.

6.4.6. Conclusions
Programs that make intensive use of memory may benefit from optimized pool-based

allocators if they perform big number of small object allocations and deallocations. In such

conditions, the specialized pool allocators perform much better (up to 70%). However, we

have concluded that development of fully automated tuning technique that is able to

 158

Tuning techniques

automatically find out all necessary threshold values and guarantee the performance gain in

any conditions is difficult and requires further investigations.

Data size 32B

0,1

1

10

100
1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

Alloc number

avg. alloc. time [us]

std
pool 4
pool 8
pool 16
pool 32

Fig. 6.8. Average allocation time vs. different number of allocations for constant 32B data.

6.5. PVM communication mode
This tuning technique intents to minimize the PVM communication overhead by switching

the messaging to the faster, point-to-point mode.

6.5.1. Motivation
The PVM message passing system consists of a daemon process and a set of tasks that use

communication primitives. The daemons communicate among themselves using UDP/IP

sockets. PVM tasks have the possibility to establish two communication modes with other

tasks, the task-to-task mode (called direct) and task-to-daemon-to-daemon-to-task mode

(called indirect). By default, PVM uses the indirect communication mode so all the

messages exchanged between PVM tasks are routed through the daemons. In the direct

mode the tasks bypass the PVM daemon by using direct communication links between

them. The direct links are based on TCP/IP sockets and all I/O operations are based

directly on system calls (i.e. read(), write(), select()). A given PVM task may have

several sockets open at once: one to its local daemon and, optionally, one or more to

specific tasks with which it is communicating.

 159

Tuning techniques

Although the initial TCP set up time is larger, all subsequent communication between the

same two tasks is usually faster. This is because the additional routing of each message is

avoided. The primary drawback of this method is that each TCP socket consumes one

dedicated file descriptor, and in some cases there is a limit on maximum number of opened

connections (e.g. some UNIX systems).

PVM provides a clean API to the programmer but the message passing latency is higher

than the physical network's latency. In many cases the PVM communication library

achieves only 15%- 20% of the network's theoretical capacity [Sub96]. The indirect mode

is one of its reasons. Therefore the direct mode, although less scalable, it is a preferred

transfer method.

We must also point out that in majority of typical environments used to run PVM

applications (workstation clusters) this mode is available, but rarely used. Another

situation is when the application contains the hard-coded instructions to set the default

mode and its source code is not available. Therefore, it is advisable to automatically switch

the communication to the direct mode whenever possible during application runtime.

6.5.2. Applicability and conditions
This tuning technique can be applied to all PVM applications that does not explicitly

control the PVM communication mode. The direct communication mode is available on

majority of the architectures except a few. For example on shared-memory machines, or

multiprocessors such as Intel Paragon this mode is not available, because the

communication between tasks on these machines always uses the native protocol.

Although communication mode tuning is beneficial even when applied for applications

that infrequently exchange small messages, the biggest impact can be seen for

communication-intensive applications. This kind of tuning is suitable for problems with

rather high communication and rare computation. Therefore this technique should be

applied when communication/computation ratio exceeds selected threshold.

An existing limitation is the maximum number of opened connections (i.e. file descriptors)

per task. For example some UNIX systems limit this value to 60 per process. So this mode

is not available for tasks that use more than 60 file descriptors (i.e. files, sockets, etc.). The

 160

Tuning techniques

advantage is that the PVM automatically switches back to indirect mode, when the direct

mode is not available for any reason.

6.5.3. Solution
The application can configure the communication mode explicitly, but by default the

indirect mode is used. To set the direct communication mode PVM API offers a function

called pvm_setopt(mode, value). This function allows one to modify the PVM library

options. First parameter defines which option to set, the second one specifies a new value.

The message communication policy option is called PvmRoute, and it can have the

following predefined values:

• PvmDontRoute – do not request or grant connections. This setting on task A sets

indirect mode and does not allow other tasks to set up direct links to A

• PvmAllowDirect – default value – do not request but allow the direct connection. This

setting on task A allows other tasks to set up direct links to A.

• PvmRouteDirect – request and allow connections. This setting on task A sets direct

links to A. Once a direct link is established between tasks, both tasks will use it for

sending messages and it persists until the application finishes.

Function pvm_setopt() can be called multiple times during an application execution to

selectively set up communication links, but typical use is to call it once after the initial call

to pvm_mytid().

During the execution, we can detect the use of indirect mode by calling

pvm_getopt(PvmRoute) function and check if it is possible to use the direct mode. This

mode is available when the environment does not include shared-memory machines and

the number of PVM tasks is smaller than system-dependent limit. The tuning action

includes one-time function invocation pvm_setopt(PvmRoute, PvmRouteDirect) that

activates the mode. One possible complementary variation of this solution is to insert a

snippet into the entry of the function pvm_setopt() that will modify the value parameter

to PvmRouteDirect when the mode parameter equals PvmRoute for all subsequent calls to

that function. Therefore, whenever the function is called, input parameter value is ignored

and always set to indicate direct communication mode. In that way the application will not

be able to change the mode back to indirect until the snippet is removed.

 161

Tuning techniques

6.5.4. Implementation
To monitor what communication mode is used and if it is changed explicitly by the

application, a snippet is inserted into the pvm_setopt(mode, value) function to each

individual task. To receive the event record, the tunlet must register appropriate callback

Event::SetEventHandler. Each time the function pvm_setopt() is called, the tunlet

receives a corresponding event record that contains the parameters of the function (i.e.

mode and value). For example the tunlet receives a notification when a task activates the

direct mode by calling pvm_setopt(PvmRoute, PvmRouteDirect).

The tunlet that implements this technique must be able to verify the configuration of the

virtual machine. This is possible by handling notifications related to addition and removal

of tasks and hosts – callbacks Application::SetTaskHandler,

Application::SetHostHandler (see Chapter 5 Dynamic Tuning API for more details).

The analysis model for this technique is based on simple rules. If there are no shared-

memory machines and number of tasks does not exceed the system-dependent limit (i.e. 60

file descriptors) the direct mode is considered available. In that case, for each task that uses

the indirect mode, the tuning action can be applied. If a task already uses direct mode,

there is no need to apply any tuning action.

The tuning action includes one-time function invocation pvm_setopt(PvmRoute,

PvmRouteDirect) that activates the mode. To avoid reentrancy problems in PVM library

implementation, the tuning action must be synchronized with the application execution.

For example, if a task is executing the code inside the pvm_send() function, the inserted

invocation of the pvm_setopt() action may provoke the communication failure, because

the modification of the communication mode changes the underlying sockets. Therefore,

first the breakpoint is inserted at the entry of function pvm_send() and when it is activated,

the actual invocation is performed.

6.5.5. Experiment 1
In order to compare the communication performance of both PVM communication

modes, we have developed a simple, synthetic, PVM master-worker program that

exchanges messages in a ping-pong manner. The master task sends a determined amount of

work and waits for results. The worker receives a work, and immediately sends the same

 162

Tuning techniques

amount of work back to the master. There is no computational operations, the application

is strictly based on communication. We executed the program for various message sizes

ranging from 1 to 1.000.000 bytes. At startup, the master task configures the selected

communication mode and later whole communication is performed in that mode.

We have performed the experiment for both direct and indirect communication modes. All

executions were conducted in homogeneous and dedicated scenario (no external load). In

this scenario, we have used two homogeneous machines (aows6, aows7) connected by

100Mb/sec network. We have called this scenario dedicated because we tried to minimize

the possibility of external influences executing the application when all workstations were

idle. However, as described before, the cluster was not physically isolated from the

network and in fact could be accidentally used by other users.

Measurements and results

Figure 6.9. presents the comparison of communication performance between PVM direct

and indirect communication modes in the ping pong application presented above (note that

both scales are logarithmic). The detailed measurements are listed in Table 6.3.

As expected, we can observe that independently on the message size the change from

indirect to direct mode results in significantly faster communication in all cases (up to

50%). In particular, the big difference between both modes is noticed for small messages

when the startup time highly influences the transmission time. The startup time is constant

and hence it is very notable for small messages when the transmission time is small, in

opposite it may be almost lost for big messages when more time is required for providing a

message to the destination. In the case of indirect mode the additional message routing

task-to-daemon-to-daemon-to-task is performed and at each point the startup time is added

(3 times, namely from task to pvmd, from pvmd to pvmd on the remote destination

machine, from that pvmd to destination task). In the direct mode, the startup time

influences only once (from task to task). For small messages, the benefits can reach even

50% The bigger a message is, the less the benefits are, but for all presented message sizes

we see the direct mode profitable, e.g. for 1MB message – 18% of profits.

 163

Tuning techniques

0

1

10

100

1000

10000

1 10 100 1000 10000 100000 1000000

Msg size [B]

Time [ms]

Direct
Indirect

Fig. 6.9. Benefits gathered from changing communication mode in a ping-pong application (logarithmic

scale).

Moreover, the cost of additional indirect routing is presented since the PVM divides a

bigger message into a set of fixed-size fragments before sending it to the destination. By

default the PVM library uses a fragment size of 4KB. Additionally, internally PVM is

based on the socket communication and uses constant packet size of 32KBytes. Therefore,

if bigger message is sent, it must be divided in more fragment size and in more socket

packets. We describe the message fragment size in Section 6.7.

MsgSize [B] Indirect Time [ms] Direct Time [ms] Difference [ms] Average Benefit %

1 1,08 (±0,04) 0,53 (±0,02) 0,55 (±0,06) 50,72%
10 1,09 (±0,04) 0,54 (±0,01) 0,55 (±0,05) 50,39%
100 1,15 (±0,04) 0,61 (±0,02) 0,53 (±0,07) 46,47%

1000 1,77 (±0,05) 1,18 (±0,03) 0,59 (±0,08) 33,45%
10000 10,66 (±0,23) 8,51 (±0,21) 2,15 (±0,44) 20,13%

100000 104,95 (±4,11) 84,17 (±3,91) 20,78 (±8,02) 19,80%
1000000 1059,64 (±30,08) 861,37 (±39,07) 198,27 (±69,16) 18,71%

Table 6.3. The detailed measurements of PVM communication performance for direct and indirect

communication modes.

6.5.6. Experiment 2
The goal of the next experiment was to compare the performance of a real application

applying tuning of the PVM communication mode. To conduct our experiments, we

 164

Tuning techniques

selected a communication-intensive parallel program. We used Integer Sort (IS) kernel

benchmark from NAS [L40] Parallel Benchmark suite [Bai94, Bai95]. The IS kernel

ranks a large array of small integers as fast as possible using a bucket-sort method.

Bucket sort [L41] is the fast sorting methods because it does not perform any key

comparison. However, there are significant limitations in its usage and it can be applied

sufficiently only in rare situations. To do a bucket sort, a temporary array must be used in

which the elements to be sorted are distributed basing on their key fields. If the maximum

key value in the list is n, then the temporary array should be at least of size n+1. For

example, if we must sort 2, 9, 6, 5, 1, 7, the temporary array should be at least of size 10.

To distribute the numbers in the temporary array, this array is first initialize with a flag

value – a value that cannot be a key field of the sorted numbers, e.g. –1 in the above

example. Next, each element with a key field n is copied in position n of the temporary

array. Finally, all non-flag values from the temporary array (i.e. numbers with value

different than –1) are copied back into the original structure in the order they appear in the

temporary array. The distribution of n numbers requires n steps and thus, the performance

of bucket sort is of order n (linear).

Bucket sort works only under very restrictive conditions. These are:

• The key field must be unique positive integer and not string, float or even negative

integers.

• The range of values for the key-field must be relatively small, otherwise, the temporary

array will be too large. E.g. if the key field is ID number (6 digits), then the temporal

array must contain a place for 999999 elements (which is impossible to store in the

memory).

The IS NAS benchmark is based on the master-worker paradigm. The main program

(master) generates a vector of integer data (keys) to be sorted using the pseudorandom

number generator. The keys are in the range [0, max_keys) and distributed as a Gaussian.

Gaussian distribution is also know as normal distribution [L42] and it is a family of

distributions that have the same general shape. They are symmetric with scores more

concentrated in the middle than in the tails. This distribution can be also described by a

symmetric bell-shaped curve. The keys to be sorted are performed according to the

following scheme. The master task divides all existing keys in number of keys / number of

 165

Tuning techniques

nodes parts. Each part must be distributed to one worker. First, the master sends to each

worker a message with the information that specifies the range and number of the keys.

Then, it sends a data. A worker receives data from the root node and samples it to arrive at

a good load balance. It communicates with other workers in order to know their ranges.

Then it keeps all keys which fall in its range and sends other keys to the appropriate nodes.

Finally, it sorts all the keys in its range.

The IS NAS kernel tests both integer computation speed and communication performance.

Communication costs are high (up to about 50% of communication) in this application.

This is because the benchmark is dominated by all-to-all data exchange messages, since

each processor sends to all others that data which falls within the range of the recipient.

All executions performed with IS NAS benchmark were conducted in the same

environment as in the previous experiment described in Section 6.6.5 (homogeneous and

dedicated). The only change we done was the number of machines incorporated into the

PVM virtual machine. We were executing the IS NAS benchmark on 4 machines (aows1,

aows6, aows7, aows8).

Measurements and results

Table 6.4 presents the results of the IS kernel benchmark experiments in two different

tuning scenarios. In the first scenario, the application was executed under standard PVM

3.4 without any tuning. In the second scenario, the PVM communication mode was

monitored, analyzed and optimized by MATE. The tunlet that was responsible for the

PVM communication mode decided to use the direct mode as all required conditions were

accomplished. By default the application used indirect mode and our experiments were

conducted in a small NOW environment. We can observe a 17,5% benefit in execution

time caused by this tuning action. Such an improvement can be explained by a high

computation-communication ratio (1:1). As we have mentioned in the Applicability part,

this tuning technique is adequate for communication intensive applications. The IS NAS

benchmark spends up to about 50% of the execution time on the communication and it is

very profitable to avoid the additional routing caused by the indirect mode. The measured

intrusion did not exceed 3,5% of the total execution time. We see then that in this case

tuning is effective and benefits are higher than the overhead introduced into the application

execution.

 166

Tuning techniques

No. Tuning scenario Execution time [sec] Tuning benefits [sec] Intrusion [sec]
1. PVM (no tuning) 732 - -
2. PVM + communication

mode tuning 604 127 (17,5%) 21 (~3,5%)

Table 6.4. The measurements of PVM communication performance when applying dynamic tuning of

communication mode in the IS NAS benchmark.

6.5.7. Conclusions
This tuning technique results beneficial for applications with high communication-

computation ratio that do not explicitly control the PVM communication mode. The tuning

cost is very low, because it is simple to obtain necessary information and the tuning action

has a cost of a breakpoint and a single function call. However, this technique has rather

static nature, because the change is typically performed once during execution of the task.

So if the application source code is available it might be reasonable alternative for the

programmer to modify the source code and recompile the application.

6.6. PVM encoding mode
This tuning technique intents to minimize the PVM encoding overhead by skipping data

encoding/decoding phase.

6.6.1. Motivation
An application running in the PVM environment, can be executed on different machines

that form PVM virtual machine. These machines do not have to be homogeneous, because

the PVM system transparently handles all necessary operations for processing in a

heterogeneous, network environment, e.g. inclusion of heterogeneous machines to the

virtual machine, message routing between all machines, data conversion for incompatible

architectures. To be able to route messages in a heterogeneous environment the PVM

library must apply specific mechanisms. One of them is data format conversion. When

PVM transfers the data, it must convert the data format transparently between machines

that have different architectures. It is achieved by using External Data Representation

(XDR) standard.

XDR [L43] is an encoding of simple and aggregate data types that enables exchanging

information between different systems and programming languages. In order to transmit

data between nodes, first, a data format is translated from the internal data format of the

 167

Tuning techniques

sending node to the XDR encoding (machine-independent format). Then, the XDR

encoded data is sent over the network to a destination. Finally, the receiving node

translates the data from the XDR encoding to its native representation.

The disadvantage of XDR is that the data is necessarily bigger because of the additional

information that permits to read the data correctly. In XDR the representation of data

requires a multiple of four bytes (or 32 bits). The bytes are numbered 0 through n-1. The

bytes are read or written to some byte stream such that byte m always precedes byte m+1.

If the n bytes needed to contain the data are not a multiple of four, then the n bytes are

followed by enough (0 to 3) residual zero bytes, to make the total byte count a multiple of

4. The XDR format must support efficiently different machine architectures and not cause

the memory alignment problems. Therefore, the size of principal XDR unit has a value 4.

For example, in the case of short integer type, in XDR it always consists of 4 bytes, not of

2. In the case of a string, appropriate number of 0s will be added at the end of the string to

make its length divided by 4. Moreover, the string length (4 bytes) is added at the

beginning in the way that byte 0 of the string always follows the length.

Another drawback is caused by additional processing that is needed on both sides, the

sender and the receiver. The sender must include the additional information (encoding) and

the receiver must interpret this information in order to translate the encoded data

(decoding). In the case of integer type, the most and least significant bytes are 0 and 3,

respectively. The XDR encodes integers in big-endian byte-order. If sending and/or

receiving machine has an architecture that supports little-endian order each integer then

must be translated.

By default PVM encodes data using XDR standard, because it cannot know if the user is

going to add a heterogeneous machine before a message is sent. If there is no

heterogeneous machine in the PVM virtual machine or messages are exchanged between

tasks on the same machine, the next message will only be sent to a machine that

understands the native format. The encoding phase therefore, can be skipped, what allows

for reduction of sending data size, avoiding data encoding/decoding costs and in result

reducing execution time.

 168

Tuning techniques

The application may contain the hard-coded instructions to set the default encoding mode

since a developer does not know in what environment an application will be executed.

Moreover, its source code may not be available. Therefore, it can be beneficial to

automatically switch off the default XDR encoding whenever possible during application

runtime.

6.6.2. Applicability and conditions
This tuning technique can be applied to all PVM applications. The applicability of this

tuning technique mainly depends on the architecture of the machines included into a virtual

machine If the virtual machine consists of machines with compatible architectures, then the

XDR encoding can be avoided. Moreover, if the whole application is running only on one

machine or there are at least two processes on one machine that explicitly communicate

among them, then the data raw mode can be used. In the opposite cases, the XDR encoding

must be applied.

It must be pointed out that the encoding mode tuning, similarly to the communication

mode tuning, is beneficial when applied for applications that frequently exchange

messages. It is suitable for communication-intensive applications. If an application does

not exceed selected thresholds of communication/computation ratio, there is no sense to

tune the encoding mode. In such a case, the influence of the encoding phase is not

significant as there are few and/or infrequent messages to be encoded.

Another issue to be mentioned in the case of encoding tuning is the type of exchanged

data. Each data type must be encoded to the XDR format to be machine independent.

However, the time consumed to encode one type may differ significantly from the

encoding phase of other types. For example, integer or float data encoding causes big

amount of time lost on the transformations. Each integer must be encoded according to the

big-endian byte-order. Each float is represented according to a floating-point numbers

standard [IEE85]. String type encoding is not time consuming, since there is no

transformation of the string itself. XDR only adds the maximum of 7 bytes to it (4 bytes

representing the length, 0-3 bytes to make the total byte count a multiple of 4). The

encoded string can be then sent via the network in the comparable time as the string in data

raw format. Summarizing, the tuning technique is more applicable for the data types that

 169

Tuning techniques

required many transformation (integer, float) and/or significant number of bytes is added to

the data (short integer).

6.6.3. Solution
The application can configure the encoding mode explicitly. Before any message can be

sent, function pvm_initsend(encoding) must be invoked. This function clears the default

send buffer and sets the message encoding mode. It packs all data into a message in one of

several encoding formats. PVM predefines five sets of encoders and decoders. The two

most commonly used ones pack data in raw (PvmDataRaw – host native) and default

(PvmDataDefault – XDR) formats. Specifying the PvmDataRaw value indicates that no

data conversion should take place. Inplace encoders pack only descriptors of the data

(pointers to static data), so the message is sent without copying the data to a default send

buffer. There are no inplace decoders. Foo encoders use a machine-independent format that

is simpler than XDR; these encoders are used when communicating with the pvmd. Alien

decoders are installed when a received message can't be unpacked because its encoding

doesn't match the data format of the host. A message in an alien data format can be held or

forwarded, but any attempt to read data from it results in an error.

In this work we focus on tuning the default encoding mode called PvmDataDefault and

changing it to the PvmDataRaw. During the execution, we can detect the use of encoding

mode by inserting a snippet into the entry of the function pvm_initsend() and check if it

is possible to use the data raw encoding mode. This mode is available when all machines

from the PVM virtual machine have the same, homogeneous architecture. The tuning

action includes the insertion of a snippet into the entry of the function pvm_initsend()

that will modify the value of its unique parameter encoding to PvmDataRaw. Therefore,

whenever the function is called, input parameter value is ignored and always set to indicate

data raw encoding mode. In that way the application will not be able to set the encoding

mode until the snippet is removed. Although the function pvm_initsend() is invoked

setting data raw mode, PVM verifies the machines’ homogeneity when the pvm_send()

call is made. If two machines that exchange the message do not have the same architecture,

PVM aborts the transfer of the message.

 170

Tuning techniques

6.6.4. Implementation
To monitor what encoding mode is used, a snippet is inserted to each individual task into

the function pvm_initsend(encoding). Each time this function is called, the tunlet

receives a corresponding event record that contains the parameter of the function (in this

case the encoding mode). To be able to receive event records, the tunlet must register

appropriate callback Event::SetEventHandler.

The application can configure the data encoding mode explicitly, but the most common

one is PvmDataDefault – XDR encoding mode. The MATE environment controls the

addition of hosts to the virtual machine (via hoster service) so it is able to detect if an

application is executed in the homogeneous cluster. The tunlet that implements this

technique must be able to check the configuration of the virtual machine. This is possible

by handling notifications related to addition and removal of tasks and hosts – callbacks

Application::SetTaskHandler and Application::SetHostHandler (see Chapter 5).

The analysis model for this technique is based on simple rules. During the execution the

tunlet can decide to use data raw mode if the condition of hosts’ homogeneity is fulfilled.

The tuning action should be applied only on the tasks that use the function

pvm_initsend() and send messages.

The tuning action includes insertion of instrumentation (entry of pvm_initsend()) that

changes the encoding mode from XDR to data raw (parameter mode is always set to

PvmDataRaw). In this case no synchronization is required, because the tuning action will be

invoked only when the application reaches the pvm_initsend() entry. Moreover, when a

new machine with different architecture is about to be added, the Analyzer module can

request to restore the XDR mode.

6.6.5. Experiment 1
To compare the encoding performance of both PVM encoding modes, we have adapted

a synthetic, PVM master-worker program that was used for purposes of the comparing the

communication performance (see Section 6.5 PVM communication mode). This program

exchanges messages in the same manner as described above and we executed it for the

same various message sizes ranging from 1 to 1.000.000 bytes. At startup, the master task

configures the encoding mode and later whole communication is performed in that mode.

We have performed the experiment for both XDR and DataRaw encoding modes. All

 171

Tuning techniques

executions were conducted in the same environment as in the case of communication mode

(homogeneous and dedicated, aows6, aows7).

Measurements and results

Figure 6.10 contains the comparison of PVM encoding performance. It shows XDR vs.

data raw encoding modes applied in the ping pong application presented above (both axis

X and Y are logarithmic). Additionally, we present the detailed measurements obtained

from the experiments in Table 6.5.

0,1

1

10

100

1000

1 10 10
0

10
00

10
00

0

10
00

00

10
00

00
0

Message size [B]

Time [ms]

XDR
DataRaw

Fig. 6.10. Benefits gathered from changing encoding mode in a ping-pong application (logarithmic scale).

MsgSize [B] XDR Time [ms] Data Raw Time [ms] Difference [ms] Average Benefit %

1 0,53 (±0,02) 0,51 (±0,01) 0,01 (±0,03) 2,25%
10 0,53 (±0,02) 0,52 (±0,01) 0,01 (±0,03) 2,25%
100 0,61 (±0,02) 0,58 (±0,01) 0,03 (±0,03) 4,76%

1000 1,17 (±0,02) 0,98 (±0,01) 0,19 (±0,04) 16,38%
10000 8,53 (±0,30) 3,28 (±0,05) 5,24 (±0,34) 61,49%

100000 84,69 (±4,02) 23,36 (±1,20) 61,33 (±5,22) 72,42%
1000000 873,90 (±40,35) 227,37 (±19,81) 646,52 (±60,16) 73,98%

Table 6.5. The detailed measurements of PVM encoding performance for XDR and DataRaw encoding

modes.

We can observe the significant benefits obtained when executing our benchmark

application in different modes. Changing XDR to data raw encoding mode, we may

achieve up to ~74%. We can see that XDR encoding overhead grows together with the

message size. For message sizes less than 1KB, the difference is low (about 2% - 4%) and

hence not so significant. If bigger amount of data is sent, more time is required for

 172

Tuning techniques

encoding and decoding it. We conclude then that the data raw mode is significantly faster

and preferable in the typical homogeneous clusters.

Moreover, we must pointed out the data types issue. Figure 6.10 and Table 6.5 show the

results of the encoding performance for messages that contain only integer data. The tested

application allocates the array of integers and this array is then exchanged between tasks.

To compare how different data types behave when encoded, we executed the same

benchmark application modifying data type of exchanged messages.

Figure 6.11 shows the differences in the application execution times when applying

encoding on float and string (set of chars) data types. The detailed results are listed in

Table 6.6 and 6.7 for messages with float data and string data, respectively. We can notice

that XDR encoding has a big influence into the float data type, similarly to the integer data

type. The benefits from applying data raw mode can reach up to 64% for big messages. In

the case of integers, we obtained up to 74% of profits. It means that the integer

transformation to XDR format consumes even more time than for float data.

When exchanging messages consisted of the string data, although we change the encoding

mode from XDR to data raw, there are no real differences in the transmission time. The

application execution times for both modes, XDR and data raw are comparable. As we

could suppose, such a phenomena takes place as the string type data does not require

significant transformations (we mentioned above that a string itself is not encoded, only

maximum of 7 bytes is added). The times of exchanging strings are also similar to the

messages with integer and float data exchanged in data raw mode (Table 6.5 and Table 6.6

correspondingly). The small differences between all these execution times appear only

because of our experimental environment in which nor the cluster nor interconnection

network was completely dedicated and isolated to purpose of the experiments.
MsgSize [B] XDR Time [ms] Data Raw Time [ms] Average Benefit %

1 0,56 (±0,02) 0,55 (±0,03) 1,08%
10 0,54 (±0,03) 0,55 (±0,03) -2,30%
100 0,64 (±0,03) 0,62 (±0,03) 3,10%

1000 1,18 (±0,03) 1,00 (±0,03) 15,45%
10000 6,75 (±0,14) 3,34 (±0,11) 50,50%

100000 67,68 (±2,7) 26,6 (±2,53) 60,69%
1000000 690,62 (±40,16) 246,29 (±25,98) 64,34%

Table 6.6. The detailed measurements of PVM encoding performance for XDR and DataRaw encoding

modes when exchanging floats.

 173

Tuning techniques

0,10

1,00

10,00

100,00

1000,00

1 10 100 1000 10000 100000 1000000 Message size [B]

Time [ms]

XDR - float
DataRaw - float
XDR - char
DataRaw - char

Fig. 6.11. Comparison of the PVM encoding performance in a ping-pong application for different data types

of exchanged messages, float and chars (logarithmic scale).

MsgSize [B] XDR Time [ms] Data Raw Time [ms] Average Benefit %

1 0,57 (±0,02) 0,57 (±0,02) -0,22%
10 0,59 (±0,03) 0,57 (±0,03) 3,21%
100 0,63 (±0,03) 0,63 (±0,03) -0,68%

1000 1,02 (±0,03) 1,02 (±0,03) 0,11%
10000 3,44 (±0,1) 3,49 (±0,09) -1,65%

100000 24,72 (±2,22) 25,01 (±1,96) -1,16%
1000000 246,18 (±24,45) 248,18 (±25,92) -0,79%

Table 6.7. The detailed measurements of PVM encoding performance for XDR and DataRaw encoding

modes when exchanging strings.

6.6.6. Experiment 2
In order to compare the encoding performance applying tuning of the PVM encoding

mode in a real application, we conducted experiments on the same application as in the

case of PVM communication tuning. We used Integer Sort (IS) kernel benchmark from

NAS Parallel Benchmark suite which was described above. All its executions were

performed in the same as above environment (homogeneous and dedicated using 4

machines: aows1, aows6, aows7, aows8).

Measurements and results

Table 6.8 shows the results of the IS kernel benchmark experiments in four different tuning

scenarios. The first scenario presents the original application execution under standard

PVM 3.4 without any tuning. In the second scenario, tuning the data encoding mode was

tried. In this case the tunlet responsible for this optimization did not perform any tuning

 174

Tuning techniques

actions because the required conditions were not accomplished to activate them. It was

caused by the settings performed in the application. Originally the application already used

the data-raw encoding mode, so no improvement was possible. PVM encoding mode

tuning caused in this case the longer application execution time (for about 3,9%). It was

caused by the intrusion inserted by MATE into the execution, namely application startup

(task load time, task image parsing time), instrumentation (adding, execution and

reporting) and analysis. The intrusion reaches up to 2,8% of the total application execution

time.

No. Tuning scenario Execution time [sec] Tuning benefits [sec] Intrusion [sec]
1. PVM + DataRaw (original

execution, no tuning) 732 - -

2. PVM + DataRaw + tuning
(wrong decision) 757 -29 (-3,9%) 21 (~2,6%)

3. PVM + XDR (no tuning) 1432 - -
4. PVM + XDR + tuning 759 637 (47%) 21 (~2,8%)

Table 6.8. The measurements of PVM communication performance when applying dynamic tuning of

encoding mode in the NAS IS benchmark.

However, to see what would happen if the application was executed in the XDR mode we

experimentally run it in this mode. We can observe in the scenario 3 that application

execution time dramatically increased comparing to original time (in XDR 1432sec, in

DataRaw 732sec) – about 49% longer. Then, in scenario 4, we run the application in the

XDR mode but it was tuned by MATE. The improvement caused by the tuning action

attained 47%. Such benefits were obtained because of two factors. First, the type of the

application – it is the communication intensive application. We mentioned that this tuning

technique as focuses on the communication time optimizations is suite for programs that

communicate a lot. The second factor has the originality in the exchanged data. IS NAS

benchmark serves for sorting integer numbers, and hence the high volume of messages

exchanged between tasks contains the integer data.

6.6.7. Conclusions
This tuning technique can improve the communication performance between two processes

that are running on machines with the same architecture by eliminating the redundant

encoding. The technique is suitable for communication-intensive applications and brings

benefits in homogenous VM configurations where encoding is unnecessary overhead. The

 175

Tuning techniques

benefits are dependent on the amount of exchanged messages and data types. The

technique adapts the application to dynamic changes in the environment, because it selects

the optimal encoding mode whenever VM configuration changes during execution of

PVM-based applications.

6.7. PVM message fragment size
This tuning technique intents to choose the optimal size of message fragments to minimize

the PVM communication time.

6.7.1. Motivation
In PVM messages exchanged by the tasks are composed without a maximum length.

Before a message is physically sent, it must be prepared putting all data into the active

send buffer. This is performed by calling any of the family functions pvm_pack(). The

pack functions allocate memory in steps and store messages. Internally a message is put

into a fixed-size data buffer. This buffer is called fragment. PVM uses a default fragment

size of 4KB. If a message is bigger than 4KB and hence does not fit one fragment, it is

divided into appropriate number of fragments. Then the pack functions allocate additional

memory to put there the rest of the fragments. Each fragment is separately sent. When

sending large messages, a number of fragments must be allocated and then separately sent.

PVM uses specific data structure to manage the fragments and chain the them together into

a list. Although underlying services might have lower limits, PVM implementation limits

the maximum fragment size to 1024KBytes.

Internally, PVM uses sockets for communication purposes. Socket communication is

packet-based (data to be sent is divided into packets) and has certain limitations concerning

the packet size (see Section 6.3 for TCP/IP buffers tuning). In different architectures the

default and maximum settings can differ. In our case (Unix Sun Solaris) by default the

maximum packet size is set to 32KBytes. PVM sets the packet size to this value and this is

unchangeable during the application execution.

Such a message division provokes the following situation: a message before it can be sent

is divided into PVM fragments, then each fragment is put into socket packets. This causes

high fragmentation what may reduce performance. Therefore, although having constant

 176

Tuning techniques

socket packet size set to 32KBytes, by changing message fragment size, bandwidth can be

increased significantly. When the fragment size increases, PVM dynamically allocates

more memory while sending/receiving messages, hence more data is sent/received per

system call.

As we have mentioned, by default PVM uses 4KB message fragment size. If an application

does not explicitly change this value or sets it to a specific one, such a situation might

cause non optimal application behavior. Moreover, the fragment size depends deeply on

the message size. When a message size varies during the application execution, the

message fragment size should also be optimized for the existing conditions. We

experimentally deduced that the optimal fragment size depends on application behavior –

size of data sent and received. The optimal value can vary during execution (due to

program phases) and thus it is not enough to calculate it once; it should rather be adapted

to the application behavior. Additionally, an application source code may not be available.

For all these reasons, the automatic and dynamic tuning of the message fragment size can

be beneficial.

6.7.2. Applicability and conditions
The drawback to this strategy is increased memory usage. If the message fragment size

must be increased, more memory is required since PVM allocates additional and bigger

buffers for the exchanging messages. The PVM implementation has a problem related to

memory allocation. When memory is allocated for buffers for a specific fragment size

there is no possibility to free memory already allocated for other size. For example, by

default the 32KB buffers are allocated. When the fragment size is changed to 512KB,

PVM allocates appropriate buffers, but none of the 32KB buffers is freed (they remain in

the static buffer pool until the end of the program). Therefore, when the fragment size is

often changed the whole available memory may be consumed and no space will be left for

new allocations. One point must be mentioned here. If the fragment size is changed to the

size that was used before (e.g. back to the 32KB considering the example above), PVM

utilizes the memory that was already allocated for this size. In this case the message

packing may be faster since no new allocations are performed (except the case when a

message does not fit into allocated fragments). However, in general such an approach

provides to quick resource exhaustion. Therefore it is necessary to limit the number of

changes with a counter. If the message fragment size was changed n times to different

 177

Tuning techniques

sizes, then no fragment size tuning should be invoked any more. This decision can be

followed by the appropriate instrumentation removal, un-registration of callbacks and the

end of the tunlet work.

It must be also pointed out that fragment size tuning is not very effective in indirect

communication mode, because it is only performed on the application tasks and does not

affect the behavior of PVM daemons.

As it was in the case of PVM communication and encoding mode tuning, it is reasonable to

apply this tuning technique for applications that intensively exchange messages. Only if an

application exceeds selected thresholds of communication/computation ratio, the

performance improvement can be noticeable. Otherwise, intrusion introduced by the

dynamic tuning operations might cause the performance deterioration.

6.7.3. Solution
It is possible that the application configures the PVM message fragment size explicitly, but

by default the determined size is used – 4KB. To set the message fragment size, the PVM

library provides a function called pvm_setopt(mode, value). This function has been also

described in Section 6.5.5 while presenting the tuning technique for PVM communication

mode. However, this function is more general and serves to set more PVM library options.

The mode value can be set to PvmFragSize, what means that the function changes the size

of PVM message fragment. The second parameter will have a value of the size in bytes.

When the application is running, we can check the current PVM message size, and hence

see if it was changed explicitly by the application by calling pvm_getopt(PvmFragSize)

function. To choose the optimal value of the message fragment size, we must know the

sizes of the messages that are exchanged between the tasks. Moreover, we should be able

to obtain conditions of the application and environment in which it is running as we must

reflect all conditions related to the message fragment tuning applicability. Basing on this

knowledge, we have to conclude the activating conditions for fragment size calculations

and tuning action and moreover, the dependency of the fragment size from the message

size. There is no specific already-provided mathematical model for this purpose and hence

we must experimentally determine such a model.

 178

Tuning techniques

To start the new fragment size calculation, first we must check the conditions. The

application must be executed in direct mode (see Section 6.5 for more details). A special

pattern must occur – high frequency of messages with size > 4KB. Memory is available

and it is possible to change the fragment size (a number of changes did not reach the

maximum). If these conditions are true, then we can calculate the optimal fragment size.

Currently, to calculate it, we use the experimentally deduced formula:

OptimalFragSize = Average (message size) + Std deviation (message size)

This formula gives a balance between the very small and very large messages. To calculate

the optimal value, we must gather the number and sizes of exchanged messages. The

information about the number of sent messages can be obtained by instrumenting

communication functions (i.e. pvm_send ()). Together with the number of messages, we

can capture their sizes. It is performed in two steps. First, the function pvm_getsbuf()

must be called to return the identifier of the message buffer where the sent message was

put. The second step is to call the function pvm_bufinfo() that returns information about a

specified message buffer. This information contains the length in bytes of the entire

message, the message label (tag) and the source of the message.

The optimal fragment size can be calculated and changed according to the given

performance model. If the optimal fragment size is different from the current one, the

tuning action must be performed, but only under certain conditions. The action is not

applied each time the new optimal value is calculated. Instead, the tuning action should be

triggered when the difference between current and optimal values exceeds a fixed

threshold, and the estimated communication cost becomes significant.

The tuning action includes one-time invocation of the function

pvm_setopt(PvmFragSize, size) that changes the PVM fragment size to a given size. In

this case, similarly to the PVM communication mode tuning, we can apply also

complementary solution. It may insert a snippet into the entry of the function

pvm_setopt() that will automatically set the value to size when the parameter equals

PvmFragSize. If the fragment size has been already set to a specific value, the next time it

must be changed, the tuning action must be removed and inserted once again setting the

fragment size to the new value.

 179

Tuning techniques

6.7.4. Implementation
The tunlet that implements this technique must be able to check the configuration of the

virtual machine. This is possible by handling notifications related to addition and removal

of tasks and hosts – callbacks Application::SetTaskHandler,

Application::SetHostHandler (see Chapter 5 Dynamic Tuning API for more details).

The application can configure the fragment size explicitly, otherwise the default value is

used. During the execution, we can query the actual size by calling

pvm_getopt(PvmFragSize) and detect if the application changes this value by

instrumenting the function pvm_setopt(). To receive event records, the tunlet registers the

callback Event::SetEventHandler. When the function pvm_setopt() is called, the tunlet

receives a corresponding event record that contains the parameters of the function (i.e.

mode and value). For example the tunlet receives a notification when a task explicitly

changes the fragment size by calling pvm_setopt(PvmFragSize, size). Moreover, this

event record will also determine if a task changes the communication mode (indirect,

direct).

To be able to calculate the optimal value of the message fragment size, the tunlet must

receive appropriate information about a number of messages and their sizes. The tunlet

then requires the instrumentation of communication calls like pvm_send(), pvm_recv(),

pvm_mcast(). For receiving the records of each event it registers the callback. When these

records come, the tunlet preprocesses them to gather statistics about messages: how many

messages of a given size were sent.

The tunlet checks the conditions that must be passed before the optimal size is calculated.

If the application uses indirect mode, then the tunlet activates the communication mode

tuning (as described in Section 6.5). The appropriate tuning action is invoked, and from

now on the application will be executed in direct mode. Additional condition is the number

of possible changes. We have experimentally set this value to 3, because more changes

resulted in out of memory errors. If the fragment size has been already tuned more than 3

times, the whole technique is deactivated and the inserted instrumentation is removed.

When event records are received, the tunlet actualizes its statistics. If a task exchanges a

significant number of messages (NumMessages > NumMsgmin) and their total size exceeds

SizeMin, then the calculation of the optimal value is triggered.

 180

Tuning techniques

Currently the tunlet implements the formula presented above. Basing on the gathered

statistics, the tunlet calculates the average message size and its standard deviation. The

tuning action is activated only when some conditions are fulfilled. In our implementation

the difference between current and optimal values must reach Diffmin and the

communication must be significant during the analyzed period (Commmin, e.g. 20%).

The tuning action includes one-time function invocation pvm_setopt(PvmFragSize,

OptimalFragSize) that changes the current fragment size. The invocation must be

synchronized with the application execution inserting a breakpoint into the entry of the

function pvm_send(). It is done in the same way as described in Section 6.5.4 for PVM

communication mode.

6.7.5. Experiment 1
To compare the application performance for different PVM message fragment sizes,

we have prepared a synthetic, PVM master-worker program basing on the same program as

in the case of comparing both the communication and encoding performance (see Section

6.5.5 and 6.6.5). This program exchanges messages in the same manner as in the

experiments described above. We executed it for message sizes ranging from 4KBytes to

4096KBytes. At startup, the master task configures the PVM message fragment size and

later whole application execution is performed with this size. We have executed the

experiment for various message fragment sizes – from 4KBytes to 512KBytes. All tests

were conducted in the same environment as in the case of communication and encoding

mode (homogeneous and dedicated, aows6, aows7).

Measurements and results

All experiments were conducted using the direct communication mode. Table 6.9 proves

that the default fragment size is the best choice for small message sizes (less than 4KB).

We can observe that the results from applying fragments sizes bigger than 4KB vary

slightly (-1.5% to +3.45%). This can be explained by experimental error rather than real

benefits. The more significant improvements can be noticed when the data size reaches

4096. This is because the physical message size exceed 4096 (data size + header and other

data) and it does not fit into the 4KB buffer.

 181

Tuning techniques

FragSize [B] 4096 16386 65536 262144 1048576
MsgSize [B] Time[ms] Time[ms] Difference Time[ms] Difference Time[ms] Difference Time[ms] Difference

4 0,56 0,56 0,00% 0,56 0,00% 0,56 0,00% 0,57 -1,79%
8 0,58 0,56 0,00% 0,58 0,00% 0,56 3,45% 0,56 3,45%

16 0,6 0,59 1,67% 0,59 1,67% 0,58 3,33% 0,58 3,33%
32 0,6 0,59 1,67% 0,61 -1,67% 0,6 0,00% 0,61 -1,67%
64 0,64 0,62 3,13% 0,63 1,56% 0,61 4,69% 0,63 1,56%
128 0,67 0,68 -1,49% 0,67 0,00% 0,67 0,00% 0,68 -1,49%
256 0,78 0,75 3,85% 0,75 3,85% 0,73 6,41% 0,78 0,00%
512 0,91 0,9 1,10% 0,9 1,10% 0,9 1,10% 0,92 -1,10%

1024 1,25 1,23 1,60% 1,24 0,80% 1,23 1,60% 1,25 0,00%
2048 1,81 1,78 1,66% 1,78 1,66% 1,79 1,10% 1,79 1,10%
4096 4,8 2,54 47,08% 2,56 46,67% 2,53 47,29% 2,55 46,88%

Table 6.9. Detailed measurements gathered by changing the message fragment size

in a round trip application for small messages.

We concentrated then on the changing message fragment size for messages bigger than

4KB. Figure 6.12 presents the benefits gathered by changing the fragment size in our ping-

pong tested application. For a clarity of the figure, we show only sample fragment sizes.

Detailed measurements of conducted experiments are shown in Table 6.10. The benefits

detailed in the column “Benefits [%]” for a given fragment size are related to the profits

gained from changing the default fragment size to a corresponding one.

FragSize

0

500

1000

1500

2000

2500

3000

3500

4000

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

Message size [B]

Time [ms]

4090
16384
65535
262144
524288

Fig. 6.12. Benefits gathered by changing the message fragment size in a ping-pong application.

We can observe that for bigger messages, the benefits of using larger fragment sizes are

significant (up to 55%). The performance improvement is generally very notable starting

from 8KB fragment size (e.g. for 4KB message we gain about 45% changing the fragment

 182

Tuning techniques

size from 4KB to 8KB). The bigger the fragment size is, the bigger improvement we

obtain. However, the difference of changing the fragment sizes between other than default

sizes is not so drastic. For example, for 4KB message, we obtain high profits by changing

from default fragment size to any bigger one. However, once changed, we do not see

significant differences between 8KB, 16KB, 32KB, and bigger fragment sizes. If a

message fits the fragment, then no additional operations must be done, it is just sent to the

receiver. So, there is no real need for a bigger fragment. In general the problem occurs in

the case when a fragment size is smaller than a message size.

FragSize [B] 4090 8192 16384 32768 65535
MsgSize
[B]

Time
[ms]

Time
[ms]

Benefits
[%]

Time
[ms]

Benefits
[%]

Time
[ms]

Benefits
[%]

Time
[ms]

Benefits
[%]

2048 1,77 1,73 2,28 1,75 1,11 1,77 0,07 1,77 -0,22
4096 4,54 2,50 45,02 2,51 44,68 2,50 44,84 2,51 44,68
8192 7,99 6,20 22,43 4,13 48,37 4,12 48,47 4,14 48,16

16384 15,35 11,13 27,52 9,57 37,63 7,42 51,70 7,47 51,32
32768 28,93 21,03 27,30 17,85 38,30 16,20 44,00 14,03 51,53
65536 55,64 41,80 24,88 34,11 38,70 31,22 43,88 29,47 47,03
131072 110,14 81,31 26,18 67,19 39,00 61,05 44,57 57,54 47,76
262144 226,45 162,22 28,36 133,08 41,23 119,86 47,07 113,31 49,96
524288 460,66 323,96 29,67 264,40 42,60 237,86 48,37 224,41 51,28

1048576 920,62 649,58 29,44 525,61 42,91 472,33 48,69 443,56 51,82
2097152 1833,94 1348,81 26,45 1036,70 43,47 939,90 48,75 884,42 51,77
4194304 3730,53 2617,17 29,84 2105,77 43,55 1860,23 50,13 1739,84 53,36

FragSize [B] 4090 131072 262144 524288

MsgSize
[B]

Time
[ms]

Time
[ms]

Benefits
[%]

Time
[ms]

Benefits
[%]

Time
[ms]

Benefits
[%]

2048 1,77 1,75 0,77 1,76 0,34 1,79 -1,45
4096 4,54 2,50 44,86 2,51 44,80 2,50 44,88
8192 7,99 4,26 46,76 4,25 46,85 4,12 48,45

16384 15,35 7,47 51,32 7,47 51,32 7,45 51,47
32768 28,93 14,03 51,51 13,95 51,79 13,95 51,78
65536 55,64 27,20 51,12 27,08 51,33 26,85 51,74
131072 110,14 55,84 49,30 53,40 51,52 52,74 52,11
262144 226,45 109,70 51,56 107,99 52,31 104,93 53,66
524288 460,66 217,17 52,86 214,75 53,38 212,99 53,76

1048576 920,62 432,53 53,02 426,94 53,62 425,02 53,83
2097152 1833,94 858,37 53,20 846,72 53,83 844,00 53,98
4194304 3730,53 1688,32 54,74 1666,26 55,33 1657,24 55,58

Table 6.10. Benefits gathered by changing the message fragment size in a round trip application.

It is also notable that the point where the benefit can increment quickly is the point of

equality of the message size and fragment size. Considering for example 4KB and 8KB

 183

Tuning techniques

message, we can observe the following phenomena: if the fragment size is set from 4KB to

8KB, we get 45% of benefits for 4KB messages, but only 22% for 8KB messages. This

situation is caused by the necessity for allocation of additional buffers. 4KB message fills

the 8KB buffer, but 8KB message does not. Internally, PVM puts additional information

into the buffer, and hence it must prepare the second buffer to put there the rest of the 8KB

sending message.

Here we must point out that one can have a sensation that the best way is to put the biggest

fragment size and each problem will be solved. If it was set in this way, the memory

resources can be quickly exhausted. Therefore, a good idea is to find a balance between

available memory and the optimal fragment size. In some cases, it will be more adequate to

apply smaller fragment size and not use the entire memory, as the benefits from the bigger

fragment size can be insignificant. For example, the difference between 128KB and 512KB

fragment size for 4MB message reaches only 0,8%.

6.7.6. Experiment 2
In order to compare the performance of applying tuning of the PVM message

fragment size in a real application, we conducted experiments using the Integer Sort

(IS) kernel benchmark – the same application that was tested for PVM communication

and encoding mode tuning. All its executions were performed in the same as above

environment (homogeneous and dedicated using 4 machines: aows1, aows6, aows7,

aows8).

Measurements and results

Table 6.11 presents the results of the IS Kernel Benchmark experiments in two different

tuning scenarios. In the first scenario, the application was executed without any tuning

under standard PVM 3.4. The second test was performed under PVM, but MATE tuned the

message fragment size. In this scenario, the tunlet requested the appropriate

instrumentation in all of the tasks to examine the conditions as well as number and sizes of

the messages. One of the first actions was to change the communication mode. By default

the application used indirect mode and since all required conditions were accomplished

(the experiments were conducted in a small NOW environment), the tunlet decided to

apply the direct mode. In continuation, the analysis indicated that the default fragment size

was improper, because each of the tasks sent the series of very small messages (4B and

 184

Tuning techniques

16B) as well as large messages (over 1MB). The requested tuning action increased the

fragment size. After the change, the application remained stable and no further tuning was

performed. The benefits are significant – we obtained about 28% better application

performance.

In this case the intrusion reached 4,9%. It is bigger that in the previous tests (for

communication and encoding mode tuning). It resulted from further inserted

instrumentation (more functions were instrumented and more tuning actions were

performed) and a higher volume of collected measurements (more instrumentation means

more measurements sent for analysis). Despite the intrusion, the introduced changes

produced the significant results improving the total execution time of 28%.

No. Tuning scenario Execution time [sec] Tuning benefits [sec] Intrusion [sec]
1. PVM (no tuning) 732 - -
4. PVM + message fragment

size tuning indirect 769 -37 (-5,1%) 27 (3,5%)

3. PVM + message fragment
size tuning direct 523 209 (28,5%) 26 (4,9%)

Table 6.11. The measurements of PVM communication performance when applying dynamic tuning of the

message fragment size in the NAS IS application.

6.7.7. Conclusions
This tuning technique tries to minimize the internal PVM message buffers fragmentation

thus improving the message sending times and in consequence the communication time.

We have proved that selecting the more optimal message fragment size significantly

reduced the execution time of communication intensive application. The drawback of this

technique results from the necessity to calculate the statistics of sizes of sending messages

what implies higher monitoring intrusion. The technique is considered dynamic since it

adapts the application to changes in its behavior selecting the optimal message fragment

size depending on sizes of exchanged message.

6.8. Merging PVM tuning techniques
We wanted to compare the PVM performance when applying different tuning

techniques at the same time. To achieve this goal, we focused on the PVM tuning

techniques and tuned PVM communication mode, PVM encoding mode and PVM message

 185

Tuning techniques

fragment size. All techniques were applied simultaneously during one application

execution. We conducted the experiments on NAS Integer Sort kernel benchmark

(described above). All tests were conducted in the same environment as in the case of all

PVM tuning techniques (homogeneous and dedicated, aows1, aows6, aows7, aows8).

Measurements and results

Table 6.12 presents the results of merging different PVM tuning techniques and applying

them all together on the IS Kernel benchmark. For comparison, we also placed here

previously described measurements obtained by performing different techniques separately

on the IS benchmark.

In the first scenario, the application was executed in original version under standard PVM

3.4 without any tuning and was used as a reference result. The other tests were performed

under PVM and the MATE environment. The second scenario references the Section 6.5.6

(a 17,5% benefit in execution time), the third scenario Section 6.6.6 (any tuning actions

were performed as originally the application used the data-raw encoding mode) and the

fourth scenario to Section 6.7.6.

No. Tuning scenario Execution time [sec] Tuning benefits [sec] Intrusion [sec]
1. PVM (no tuning) 732 - -
2. PVM + communication

mode tuning 604 127 (17,5%) 21 (~3,5%)

3. PVM + data encoding
mode tuning 761 -29 (-3,9%) 21 (~2,8%)

4. PVM + message fragment
size tuning 769 -37 (-5,1%) 27 (~3,5%)

5 PVM + all scenarios 529 203 (27,7%) 28 (~5,3%)

Table 6.12. Comparison of the measurements of PVM performance when applying different tuning

techniques in the NAS IS application.

Finally, in the fifth scenario, we conducted all the described tuning scenarios in the same

execution. Both communication mode tuning and fragment size tuning was applied

successfully. The total intrusion inserted into the application execution was higher in

comparison to the rest of the scenarios. It reached about 5,3% and resulted from further

inserted instrumentation and a higher volume of collected measurements. Despite the

intrusion, the introduced changes produced the best results, improving the total

execution time up to 27,7%.

 186

Tuning techniques

6.9. Workload balancing
This tuning technique intents to balance the amount of work that is distributed by the

master task to each worker task taking into account capacities and load of the machines

where the application is running.

6.9.1. Motivation
Dynamic load balancing is a technique which aims to distribute work among the processes

to avoid some processes being idle while others only wait for work and do nothing. Load

imbalance is caused by two factors:

• heterogeneous computing and communication powers

• varying amount of distributed work

A very important aspect of efficiency is idle time within the processes. The best situation

would be to have all processes busy doing useful work during the application execution.

However, slower or overloaded machines and/or incorrect work distribution may

significantly increase the idle time of processes and influence into the application

execution time. Our goal is to balance and distribute correctly the work among the

available processes taking into account capacities and load of the machines the application

runs on.

Typically, in the master/worker paradigm, a master process in each iteration distributes the

work among worker processes and waits for their response. When the master receives

results from the workers, it may distribute the work again. There are many cases the master

must synchronize all the results from all the workers before the next work distribution.

This situation might be especially inefficient if we consider heterogeneous environment. It

causes the following problem: synchronization may affect significantly the execution time

if there are slower machines because all the processes must wait idle for the slowest ones.

If the work is distributed in segments that are too large, then the processes on slower

machines need more time to manage such an amount of data and the rest of the processes

wait too long doing nothing for the next work distribution. On the other hand, theoretically,

ignoring the communication overhead, we can minimize the idle time if we distribute the

work in the smallest possible units. However, in many network environments latency and

bandwidth might have a significant influence into the unit transfer time. Therefore, if the

 187

Tuning techniques

work is distributed in too small segments, slave processes might wait idle for data when the

master is occupied sending a big amount of work units. Such a scenario will suffer from

high communication overheads.

There are many well known algorithms available such as Trapezoid Self Scheduling (TSS)

[Tze93], Guided Self Scheduling (GSS) [Pol87], Factoring Scheduling [Hum92], and

many more. For example, one of the most simple solution is fixed chunking of the work to

be processed. Each chunk (tuple) contains the same amount of work measured by data

items. The work size can be calculated using the formula:

where N is the total number of data items to be computed, Pi is the estimated processing

power and P is the number of processes. For example, if N=1000, Pi=1 (all processors of

equal power), P=10, the optimal tuple size is 100. This formula gives the optimal behavior

only in the case of specific conditions: homogeneous machines where one process is

executed on one processor.

For our studies and experimental work we chose the Factoring Scheduling algorithm. The

work is divided according to a factor into a set of different-size chunks called tuples.

Obviously, different program input can significantly change the work distribution using the

same tuple size calculation algorithm. The presence of the real factor (0<f<=1) results then

in a better adaptation to both input and environment changes (machine load, network load).

The workload balancing goal therefore is to minimize the idle time and calculate the right

amount of work for each process. In this research the tuning technique considers an

algorithm to calculate and assign the optimal amount of work for each process considering

efficiency of machines. Load balancing should be achieved because the fast computers will

automatically process more amount of work than the slower ones. Moreover, an optimal

work distribution may also depend on dynamic factors such as input data, network load

and so on. Before the application execution, developers do not know these parameters,

hence they cannot distribute the work properly. Therefore, it can be beneficial to

dynamically tune the work size by adapting it to changing conditions.

 188

Tuning techniques

6.9.2. Applicability and conditions
To apply this technique in practice, we assume the following requirements. An application

must be written using M/W paradigm. The application is iteration-based, namely the same

operations done by the tasks are performed repeatedly in a number of iterations. During

one iteration the master process distributes the work to all worker processes and then waits

for the results. It must synchronize the results before the next iteration. Data being

distributed is independent, namely one must be able to divide data in a separate

independent set of work units. Moreover, calculation time cannot depend on the data

content, it may depend only on the data size. Finally, worker processes cannot exchange

data between themselves to calculate and provide results.

The application processes the work basing on the scheme of many iterations. To apply

workload balancing the iterations must present two main characteristics: the number of

iterations should be significant and each iteration should last a certain time. From the one

hand, there cannot be only few iterations in the whole application execution because in

such a case it would not be possible to see benefits gained from changing the workload.

This technique is feasible and efficient for problems that appear many times during the

execution. The load balancing may be also time consuming and hence the tuning actions

might be performed after a certain time has passed.

The tuning of workload is supposed to be applied before the iteration starts. So, if there is a

small number of iterations and all are performed, none improved can be reached.

Therefore, more iterations are, better the load balancing may be. From the other hand, one

iteration should not over passed some time thresholds. To calculate the optimal factor, the

network load and machine load are taken into consideration. If one iteration is very large,

then the tuning can be no so efficient since the environment can differ. This issue is more

flexible than the number of iterations. If there are many iterations during the application

execution, each iteration can last more time. The maximal possible iteration time can be

adjustable. Moreover, the algorithm that decides to apply tuning should also consider the

prediction of the environment changes.

To use this tuning technique the application must be prepared. This is performed by

introducing necessary source code changes and recompiling the program. This technique

enters into the set of techniques that are called cooperative. Therefore, although the tunlet

 189

Tuning techniques

provides all the necessary functionality, the application must be adapted and aware of the

possible changes recommended by the tunlet. For example, when modifying the factor

value, the application must be aware of this change and apply in the next iteration a new

modified value for work distribution.

6.9.3. Solution
In our factoring approach, the work is partitioned according to a factor into a set of

different-size tuples. One tuple is distributed by the master task to one worker task. If a

worker task has finished the tuple process and is free, then it receives the next tuple. This

cycle is repeated till all the tuples of the work are processed. In this algorithm the work

divided into tuples is distributed to workers according to the workers’ demand.

In this tuning technique we had to consider distinct issues such as:

• How to calculate work tuples (factoring algorithm)

• How to distribute the work according to the given factor

• How to calculate the optimal factor and what is required to calculate this value.

In the next paragraphs we explain how these issues were solved.

Assuming there are P parallel workers, a threshold T>0 (minimal tuple size) and a

factoring value (0<f<=1), the sizes of factored work tuples are calculated according to the

following algorithm [L44]:

R0 = N (initial work size)

Repeat

For each P

Gi = Ri * f / P // Gi: ith tuple size

Ri+1 = Ri - (P*Gi) // Ri: remaining work size

until Ri < T.

The example tuple sizes calculated according to the presented above factoring algorithm

are shown in Table 6.13.

 190

Tuning techniques

Work size
(N)

Number of workers
(P)

Factor
(f)

Threshold
(T)

Tuples

1000 2 1 1 500,500
1000 2 0.5 1 250,250,125,125,63,63,32,32,16,16,8,8,4,4,2,2,

1,1
1000 2 0.5 16 250, 250, 125, 125, 62, 62, 32, 32, 16, 16, 16,

16
1000 2 0.7 1 350, 350, 105, 105, 31, 31, 10, 10, 3, 3, 1, 1
1000 4 1 1 250, 250, 250, 250
1000 4 0.5 1 125, 125, 125, 125, 62, 62, 62, 62, 32, 32, 32,

32, 16, 16, 16, 16, 8, 8, 8, 8, 4, 4, 4, 4, 2, 2, 2, 2,
1, 1, 1, 1

1000 4 0.5 16 125, 125, 125, 125, 62, 62, 62, 62, 32, 32, 32,
32, 16, 16, 16, 16, 16, 16, 16, 16

1000 4 0.7 1 175, 175, 175, 175, 52, 52, 52, 52, 16, 16, 16,
16, 5, 5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1,

Table 6.13. Examples of tuple sizes for different factors.

As we have mentioned in the applicability section, the application must be prepared for the

tuning actions and hence it must implement adequately the work distribution. For

example, the algorithm of the work distribution can be written as follows:

For each iteration

//according to the factoring algorithm

Calculate work tuples for a given factor

//first work distribution to all workers

 For each worker

 Send corresponding tuple

//if there are still tuples to be processed

While processed tuples < calc number of tuples

 Receive results

 Send corresponding tuple

Next algorithm that is used in this tuning technique calculates the optimal factor value.

The pseudo-code for this algorithm is presented below:

For each processor

Calculate Latency

Calculate Bandwidth

Calculate work unit execution time (i.e. processor speed)

For each factor f (0<f<=1)

Calculate tuples

Calculate application iteration execution time

 191

Tuning techniques

 While there is work left

For each process (using time counter)

 If process is free

 Assign tuple for process

 Time++

Chose the minimal time of application iteration

Set factor value to the minimal factor value

The presented algorithm simulates the execution of the program iteration for each possible

value of factor f. The simulation uses basic measurements such as network latency,

bandwidth and current speed for each processor. The algorithm simulates the complete

iteration by assigning subsequent work tuples to next free processor. It takes into account

the time for sending the work, time for processing the work on the selected processor in

function of its current speed (i.e. capacity and current load), and time for returning the

result. The iteration finishes when all tuples has been processed, and the simulation records

its execution time. The algorithm, after performing iteration for all possible factors, returns

the value f for the iteration with the shortest execution time.

The Figure 6.13 presents a result of an example execution of the simulator for factors f

ranging from 0 to 1 in scenario with TotalWork = 1000, four processors, one 3 times

slower than the others.

Considering the algorithm presented above the tuning technique must receive a set of

metrics to calculate the optimal factor. These metrics are:

• Network bandwidth

• Network latency

• Average worker speed expressed as the work unit processing time

We can monitor the PVM functions responsible for exchanging messages, e.g. pvm_send()

and pvm_recv() during run-time and this enables us to calculate the necessary metrics.

During program execution, the simulation algorithm estimates the optimal values for each

iteration. If the optimal factor value differs significantly from the current value, the tuning

procedure is invoked. The tuning action changes the factor by updating the variable value

 192

Tuning techniques

in the master process. Once it has been modified, the application can recalculate the tuples

in the next iteration.

Fig. 6.13. Simulated iteration time in function of factor f (N=1000, P=4, T=1, relative speeds:

1,3,3,3).

6.9.4. Implementation
The tunlet implementing this technique must check the configuration of the virtual

machine by handling notifications related to tasks and hosts – callbacks

Application::SetTaskHandler, Application::SetHostHandler (see Chapter 5).

During the execution, we can monitor the PVM functions responsible for exchanging

messages, e.g. pvm_send() and pvm_recv(). In particular, by monitoring: send entry/exit,

receive entry/exit events in the master process, and receive entry/exit and send entry/exit in

all worker processes, we are able to perform all necessary measurements. This is illustrated

on Figure 6.14.

To simplify the implementation, we have assumed network latency to be 1ms. Network

bandwidth can be computed using the following formulas:

 193

Tuning techniques

Tcomm = Tlatency + n * Tbandwith

Tbandwith = (Tcomm – Tlatency) / n

Tcomm = receive exit time on master - send entry time on master –

tuple processing time on a worker

send (exit)

send (entry)

Tuple sending
Tuple receiving

Tuple receiving

Tuple sending

receive (exit)

send (entry)

Tuple processing

send (exit)

receive (entry)

receive (entry)

time time

Machine B (worker) Machine A (master)

Fig. 6.14. Tuple processing model.

Work unit processing time is computed as the averaged value of the tuple processing time

divided by number of work units per tuple. This is calculated individually for each worker.

The average is taken for all work units processed during last iteration. This assumes the

total iteration time is not very large and the average can express current machine load. If

the iteration time is long, this should be changed to an average taken for a given time

window. Each iteration updates the work unit processing time value for each worker and

this way we can keep track of dynamic variations in the load of the machines. It must be

pointed out that this approach is suitable only if the work unit processing time depends on

the work unit size and not on its content.

To find the optimal value of the factor the performance model must provide the prediction

of the iteration time. For this purpose we implemented the simulation of the application

iteration time according to the algorithm presented in the previous section.

If a new value of the factor is different than the current one, then the tuning action should

be performed. The tuning action includes the modification of the value of specific

predefined application variable. This variable represents the factor of the work and its

 194

Tuning techniques

name is well known to the tunlet. When a next iteration is performed in the application,

first, the new value of the factor should be applied to recalculate the work tuples, and then

the work can be performed. The variable modification does not need to be synchronized, as

the application will use its value next time the iteration of work processing starts.

6.9.5. Experiment 1
The goal of this experiment was to investigate the workload balancing profitability. To

perform the experimental work we have developed a synthetic master-worker application

based on the requirements presented in Section 6.9.2. In each iteration, the master task

calculates the tuples according to the factor and then sends a determined amount of work to

each worker. When a worker receives a tuple, it processes data and sends the changed data

back to the master. The master task waits for results from any worker and when it receives

them, it checks if there are tuples left. If it is the case, it sends the next tuple to the worker.

In the opposite way, it waits for all results from the rest of the workers and having all

tuples processed it puts them together and goes to the next iteration. By default the factor

had a value 1, what means that the total work is divided into the same number of tuples as

the number of workers. We executed the program with 60 iterations where each iteration

processed the total work of 10.000 integers.

We have conducted our experiments in three scenarios:

• Homogeneous and dedicated machines – fast machines and no external load – in this

scenario, we have used homogeneous machines (aows1, aows6, aows7, aows8) which

built a dedicated environment (i.e. COW cluster). This scenario is the same as in the

case of the previous experiments done with all the PVM tuning techniques (e.g. Section

6.5.5).

• Heterogeneous and dedicated machines – one machine slower and no external load –

in this scenario, we have used heterogeneous machines (aows1, aows6, aows7,aows10)

which built a dedicated COW cluster as has been described in the previous point. The

Aows10 machine is slower in comparison to other workstations what was indicated in

Table 6.1

• Heterogeneous and non-dedicated – one machine slower and external load – in this

scenario, we based on the heterogeneous environment (aows1, aows6, aows7,aows10).

Moreover, we have introduced a controlled, synthetic “external” load. For this purpose

we used our Load Generator tool. As mentioned before, we generated 50% CPU load

 195

Tuning techniques

on a given node for the duration of 20 minutes. In this way, we simulated the real

conditions with multiple users working in the cluster (i.e. NOW cluster).

Measurements and results

We present the comparison of execution times of the synthetic application in Figure 6.15

and detailed measurements in Table 6.14. We show the times obtained for all the three

scenarios in which the application was executed. For each scenario the synthetic

application was executed without and with tuning. We can see that we gathered benefits in

each scenario by balancing the workload.

execution time

6588

2861

6591

2784
34273319

0

1000

2000

3000

4000

5000

6000

7000

1 2 3
scenarios

tim
e

[s
ec

]

No tuning [sec]

Tuning [sec]

Fig. 6.15 Comparison of execution times of the synthetic application in different scenarios.

No. Scenario Original execution
[min]

Tuned execution
[min]

Intrusion
[sec]

Intrusion
[%]

Benefit
[sec]

Benefit
[%]

1. Homogeneous,
dedicated 47,7 46,4 64,8 2,33 77,4 2,71

2. Heterogeneous,
dedicated 109,8 55,3 64,8 1,95 3269 49,63

3. Heterogeneous,
non-dedicated 109,9 57,1 64,6 1,89 3164 48,01

Table 6.14. Detailed measurements of workload balancing of the synthetic application in different scenarios.

In the first scenario, although the application was executed in the homogeneous and

dedicated environment, the tuning was profitable. The benefits were small (~2,7%), but we

see that the workload balancing made the application execution faster. This situation was

caused by the application configuration. We set the application to create 4 workers. As it

 196

Tuning techniques

was executed on 4 homogeneous machines, each machine run 1 worker, but one of the

machines run also master processes (in total 2 processes). In this sense, the initial work

distribution were not ideally balanced, and thus the tuning actions helped to improve the

performance at least in a small percent.

The second scenario presents the highest benefits obtained. The application was executed

in the heterogeneous environment where one machine was significantly slower than others.

We can notice that original application lasted more than 56% (more than an hour) longer

than in the homogeneous environment. Applying the workload balancing in the second

scenario we gained ~49%. This high improvement was reached because of the

heterogeneity of the machines. The faster worker processes had to wait for the slowest one

to receive the next part of the work. Applying workload factoring, the work was divided

into tuple, and hence it could be performed more rapid by the faster workers.

In the third scenario we obtained more or less the same execution times as in the second

scenario for both cases: when executing original application, and when applying tuning. In

the second scenario we had one slow machine (aows10), in this scenario we had the same

slow machine (aows10), but we run additional external load on the fast machine (aows6).

The similarity of the execution times in comparison to the second scenario results in the

influence of the external load. The external load was not so significant that the slowest

machine speed. Faster machine together with the loaded machine performed all the work

faster than the slowest machine. In other words, it required more time to process the

requested tuples than these 3 machines with one externally loaded.

Intrusion time is already included in the time given for tuned execution. In general the

overhead caused by MATE is small – about 2% of the improved execution time. The

intrusion is slightly different in three scenarios. Such a situation is mainly caused by

different number of tuning actions. If the factor must be changed more frequently then

more tuning actions are performed and hence the intrusion is higher.

6.9.6. Experiment 2
The goal of the next experiment was to compare the performance of a real application

applying workload balancing. To conduct our experiments, we selected a computation-

intensive parallel program called Xfire. Forest Fire Propagation application (Xfire)

 197

Tuning techniques

[Jor98] was developed at Universitat Autonoma de Barcelona [L45]. The Xfire application

is a PVM based implementation of the simulation of the fireline propagation. It calculates

the next position of the fireline considering the current fireline position and different

aspects as weather (wind, temperature, moisture), vegetation and topography (terrain). It

was developed for use in any network of workstations.

There are several models in the literature to describe the behavior of forest fire and studies

the movement of the fireline. The Xfire application simulates the fireline propagation

basing on the Andre-Viegas model [And94]. The Xfire defines the fireline as a set of

sections where each section contains a set of points. A section must be desegregated to

calculate the individual progress of each point for a time step. When the progress of all the

points have been calculated, it is necessary to aggregate the new positions of the points to

rebuild the fireline. To simulate the fireline propagation, Xfire divides the fire spread into

two models: global and local. The global model allows for the partitioning of the fireline

into sections and for the aggregation of sections into next fireline position applying

numerical algorithm. While aggregating and calculating a new fireline position, the fireline

can expand and hence in certain circumstances new points can be added. It must be pointed

out that the fireline sections are independent, but the end-points of each section are shared

with its neighboring sections. The local model calculates the movement of each individual

point. While evaluating a point, it uses numerical algorithms and takes into account static

and dynamic conditions (i.e. wind, vegetation, topography) defined as numerical model.

The fireline propagation process can be summarized in the following steps:

1. Subdivision of the fireline)(tφ into a partition of sections),(tPiiφδ , with length

. In this step the model specificity is in the order (0,1,2) of the

sections adopted, and the process of subdivision.

}){.(ii smaxss ∆=∆∆

2. Resolution of a certain Local Problem for each section),(tPiiφδ , giving as result a

particular virtual fireline Φ . The specificity is in the local problem formulated

posed.

)(, tiv ∆

3. Aggregation and coupling of the information inherent to the set { , finally

were resulting in the definition of

}}(, tiv ∆Φ

)(tt ∆+Φ . The specificity is the coupling principle

postulated for group the movement description of the set of sections.

 198

Tuning techniques

The forest fire propagation simulation involves different steps that requires complex

calculations, and hence the fire spread computation can be then time-consuming. First

implementation of the Xfire project was sequential and run on the PC. However, due to

poor performance, the developers of the Xfire decided to implement it in the parallel way.

They utilized data parallelism, i.e. the calculation of the movement of each section (local

model) is done in parallel. The fireline is desegregated into N sections and each section is

performed by distinct processes distributed among the resources of the parallel machine. It

can be done in this way, since the model considers that the sections are independent.

 Xfire is the PVM-based application and it follows a master-worker paradigm. A master

process generates a partition of the fireline and distributes it to the workers. A worker

process calculates the local fireline propagation. The general algorithm of this application

using the master-worker paradigm is the following:

Master process:

1. Get the initial fireline

2. Generate a partition of the fireline (sections) and distribute it to the workers.

3. Wait for the workers answer.

4. If the simulation time has been finished then terminate

else Compose the new fire line, adding points if needed and go to step 2.

Worker process:

1. Get the fireline section sent by the master

2. Calculate the local propagation of each point in the section (to calculate the new

position of a point the model needs to know its left and right neighbors).

3. Return the new section to the master.

All tests with the Xfire application were conducted in the same three scenarios as we

described in the Section 6.9.5 for the experiments with the synthetic application.

Support tools

For purpose of the tests, we have designed and implemented two additional tools that

allowed us to perform the experiments:

• Load Monitor – distributed cluster monitoring tool

• Load Generator – external load generator tool

 199

Tuning techniques

The first tool, Load Monitor, was developed in order to provide detailed load

measurements of all machines in the cluster. It was implemented as a PVM-based program

using master-worker paradigm. The program is implemented as a set of distributed sensors

running on each workstation and one centralized monitor that collected and synchronized

the data. Load Monitor consists of two tasks, namely MasterMon and SlaveMon. The

master task controls the SlaveMon creation (starts/stops the slave task on all nodes of the

virtual machine). The slave task monitors the node and saves information to a file. Using

this tool we were able to obtained detailed information about CPU and process statistics

like CPU idle, kernel, user, wait times, memory consumption, paging statistics, and so on.

The second tool, Load Generator, was created in order to simulate external load conditions.

Load generator was implemented as a simply C++ program. The main program controlled

the generation of external load in the cluster by starting/stopping the computation for a

selected period of time. The program, given a load function, was able to generate the

appropriate usage of CPU. This was done by repeatedly executing the computational loop

and the sleep statement with the millisecond intervals. For example, for constant load

function Load(t)=60% the program occupied 60% of the CPU time during whole

execution.

For all our tests with external load, on a selected node we have configured the tool to

generate Load(t)=50% load during 20 minutes with time start delay of 20 minutes. In

result, the generator waited for 20 minutes sleeping and then generated the 50% CPU load

for 20 minutes. We used this configuration to simulate a real example of multi-user

workload.

Measurements and results

Figure 6.16 presents the comparison of execution times of the Xfire application in different

scenarios. We can see that in each scenario we gathered benefits by adapting the workload

to the changing conditions. Detailed measurements of conducted experiments are shown in

Table 6.15.

 200

Tuning techniques

1967

3919

1885 1953 2071

3768

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3
scenarios

time [sec]

No tuning

Tuning

Fig. 6.16 Comparison of execution times of the synthetic application in different scenarios.

No. Scenario Original execution
[sec]

Tuned execution
[sec]

Benefit
[sec]

Benefit
[%]

1. Homogeneous,
dedicated 1967 1885 82 4,17

2. Heterogeneous,
dedicated 3768 1953 1815 48,17

3. Heterogeneous,
non-dedicated 3919 2071 1848 47,15

Table 6.15. Detailed measurements of workload balancing of the synthetic application in different scenarios.

All presented results have the same tendency as in the case of the results obtained from the

experiments conducted with the synthetic application. As they were performed in the same

scenarios and the application had similar behavior to the previous synthetic application, the

reasoning of the benefits reached here is similar (see Section 6.9.5). In the first scenario,

the profitability was relatively small (~4,17%), but the tuning was worth to apply. In the

second and third scenario we improved the performance by nearly 50%.

6.9.7. Conclusions
Looking at these experiments we can notice that MATE adapted well the applications to

the existing changing conditions. The work factoring and work load balancing gave us

promising benefits. Although it can be applied only to the specific small-range applications

that must accomplish a set of requirements and be prepared for changes, the profits reached

are significant. Moreover, the developer might not know in what kind of environment the

 201

Tuning techniques

application will run and hence it is very desirable to use MATE and adapt dynamically the

application to the changing conditions.

Obviously, the implementation of the factoring algorithm presented here can be improved.

We distinguished many possibilities, as factoring of the work that remains to perform,

better calculations of the latency and bandwidth to predict more adequately the network

behavior or adaptation of the threshold T that represents the minimal tuple size. However,

though simple factoring implementation, it gave us really good profits.

6.10. Number of workers
This tuning technique intents to optimize the number of workers assigned to perform a

specified amount of work in the master/worker application.

6.10.1. Motivation
When considering efficiency and idle times, another point to tune besides the workload

balancing is the number of worker processes in master/worker application. If there are too

many workers, they can be idle waiting for the data from the master. On the other hand,

when there are insufficient worker processes, the master process becomes idle waiting for

results. Therefore, a very important issue is the adequate number of workers in order to

minimize the execution time while maintaining the requested efficiency.

6.10.2. Applicability and conditions
This technique is applicable for applications written using M/W paradigm. The application

structure is similar as it was in the case of workload balancing tuning technique. The

application is based on the iterations where the tasks perform repeatedly all operations.

During each iteration the master distributes the work to a specified number of workers and

then waits for the results. It must synchronize the results before the next iteration. Data

being distributed must be independent one from another, i.e. one must be able to divide

data in a separate independent set of work units. In addition, data processing time cannot

depend on the data content, but only on the data size. Finally, worker processes cannot

exchange data between themselves to calculate and provide results.

 202

Tuning techniques

The condition of the iteration-based application structure implies the existence of the

significant number of iterations. As workload balancing, this tuning technique is beneficial

when the operations are done in many iterations. If there is a small number of repetitions,

the tuning overhead might be high and the improvement might not be seen.

The drawback of this technique is the consumption of resources. If there are new workers

to be spawned, the new machines (processors) are required for them. There is no sense to

run a new worker on the same machine where another worker is already running. In such a

situation we will not gain anything since the CPU time is divided between both workers.

Similarly to the workload balancing, number of worker problem belongs to the cooperative

tuning techniques. The application must be prepared by the developer for the potential

changes. In general the application must contain the special variable that represents the

number of workers. During execution, the application should be aware of the current

number of workers and if it is different from the previous one, the new number must be

applied. If there are workers to be added, the adequate number of workers should be

spawned, otherwise redundant workers should be deleted. Such addition/deletion can be

done only between two iterations because it is hard to change the current work distribution

already being processed. Once the number of worker has been adjusted, the work can be

distributed adequately to all running workers.

6.10.3. Solution
In this solution [Ces03] we will use the following terminology:

• tl, λ. Network parameters (time overhead per message and inverse bandwidth)

• V, vm, vi. Size of task sent to worker i in bytes (vi). Size of results sent back to master

in bytes (vm), and total data volume (V=Σj (vi + vm)).

• n = current number of workers in the application.

• Tt, Tc, tci. Time that each worker spends to process a task (tci), total computing time

(Tc=Σi tci), and total execution time (Tt).

• Nopt = number of workers needed to obtain the minimum Tt (best performance).

To model the behavior of master/worker applications, we can use the performance model

described below:

 203

Tuning techniques

• At the beginning, the master sends one task to each worker, the time spent for this

operation is
n*tl (network overhead) + λ*vi (last task communication time).

• Next, we must add the processing time of one worker, tci (Tc/n).

• In order to evaluate what happens to results sent back to the master we only need to

count the communication time for the last message, which is tl + λ*vm.

• The total iteration time is formed by adding these quantities together, and gives:
Tt = n*tl + λ*vi + Tc/n + tl + λ*vm,

as λ*vm + λ*vi = λ*V/n,

• We obtain:

Tt = (tl*n2 + λ*V + 2*Tc)/n + tl (1)

• If we calculate dTt/dn = 0 for expression (1) we obtain an expression to calculate the

number of workers needed to minimize Tt, which is:
Nopt = sqr((λ*V + Tc) / tl) (2)

It can be seen that the measure points needed for this performance model are:

• tl and λ, which can be calculated at the beginning of the execution.

• Tasks and results size (vi, vm), which can be captured by monitoring communication

functions (pvm_send, pvm_recv)

• The time workers spend on each task to calculate the total computing time (Tc).

The performance functions that have to be evaluated are:

• Expression (1) – to predict the application performance for any number of workers

• Expression (2) – because it indicates what has to be done to obtain the best application

performance under the conditions that hold for a certain time period.

In order to optimize the number of workers, it is necessary to monitor during run-time the

PVM functions responsible for exchanging messages, e.g. pvm_send() and pvm_recv().

In particular, by monitoring: send entry/exit, receive entry/exit events in the master

process, and receive entry/exit and send entry/exit in all worker processes, we are able to

perform all necessary measurements. This is similar to solution presented in section 6.9.4.

The presented performance model is evaluated after each iteration. If the computed optimal

number of workers differs from the current value, the associated tuning procedure is

 204

Tuning techniques

invoked. If the number of workers should be changed, the solution recommends the master

to add new or remove existing worker/workers.

6.10.4. Conclusions
This tuning technique adapts the number of workers assigned to perform a specified

amount of work to changing environment conditions. It requires the application to be

prepared for the possible changes, i.e. adding or removal of worker tasks. Moreover, the

environment where the application executes is required to provide new machines when

they are necessary. When these conditions are met, the technique is able to estimate the

application performance by means of the analytical model, calculate and apply the optimal

number of workers.

 205

Conclusions and future work

Chapter 7

Conclusions and future work

Parallel, distributed and large-scale grid programming offers high computing capabilities

to the users in many scientific research fields. The performance of applications written for

such an environment is one of the crucial issues. The main goal of parallel and distributed

computing then is to obtain the highest performance of the application. Such applications

can be useless and inappropriate if their performance is poor and under acceptable limits.

Developers of parallel applications are responsible of providing their best possible

behaviors but face up to many problems that must be solved. If such applications are to

fulfill their promises, this implies the need for the systematical testing, analysis and

optimization of their behavior. However, these tasks are very complicated when

performing without any automation and especially for non-expert programmers.

It is necessary then to provide good, reliable and easy tools that automatically carry out

tasks of the performance analysis of parallel programs and their behavior optimization.

Such tools could help programmers to improve the performance providing them with

appropriate and sufficient information about the application behavior.

Therefore a new idea has arisen. The very profitable solution is to provide a developer with

automatic real-time tuning of a program. A developer is relieved then from duties of

program behavior analysis and optimization, as well as from intervention into a source

code. Instead of manual changes of a source code, an automatic tuning of a parallel

program is performing during run-time. Such approach does not require a developer

intervention nor access to the source code of the application. The running parallel

application is automatically monitored, analyzed and tuned on the fly without need to re-

compile, re-link and restart it.

7.1. Conclusions
The main objective of this thesis was to show that the performance of distributed parallel

programs can be improved automatically during run-time. Our goal was to investigate this

 207

Conclusions and future work

idea and prove that in general it works, is applicable, effective and useful. We also wanted

to demonstrate that it is possible to support a user with a concrete functioning environment

for automatic dynamic tuning. This thesis had to provide the good basis on how to solve

optimization problems of parallel programs. A conclusion of this thesis is that although the

dynamic tuning is complicated and hard task, not only it is possible, but gives real

improvements of application performance. This methodology appears as a powerful

technique to accomplish the successful performance of applications with dynamic

behavior.

We started our work by researching well-known approaches and techniques for the

application performance measurement, analysis and optimizations. Very important task

was to find out what exactly is in the developer’s hands when using each of these methods.

We reviewed example tools that correspond to different performance measurement

approaches. In order to see how is the performance analysis and optimization problem

solved by others, we analyzed the most popular tools and extracted experiences from their

developments. Once we knew the problem area, we could clearly distinguish that the

conceptual model of the dynamic tuning consists of three main parts, namely monitoring,

analysis and tuning.

Our first idea was to optimize any application without its source code. In this sense, it

would be very challenging, and the work probably would be one of the most successful and

useful. However, with time, we saw that due to incomplete application information this

kind of tuning is extremely hard or even impossible. The performance analysis without

knowledge about what the application does and dynamic modifications of unknown

application structures is very complicated. It is not realistic to assume that any

modification on any application in any environment can be done on the fly. We concluded

then that this is a big limitation of dynamic tuning and the key question when dynamically

optimizing a program is what can be tuned in it.

We distinguished different layers in the application: application-specific code, standard

and custom libraries (API + code), operating system libraries (API + code), hardware. The

lower the layer, the more well known information we can obtain. It means that we can

extract well defined bottlenecks common for many applications and define their solutions.

For such performance problems there is no need for external preparations and all can be

 208

Conclusions and future work

done automatically. The upper the layer, the less information we have about the

application. In this case, it is required to provide a knowledge about the specific

application problems and solutions. Therefore, we differentiated two tuning approaches:

automatic and cooperative. In the automatic approach the application is treated as a black-

box, because no application-specific knowledge is provided by the programmer. In the

cooperative approach we assume that an application is tunable and adaptable since the

developer must provide application-specific information and prepare an application for the

possible changes. To make the solution homogeneous for both the automatic and

cooperative tuning approach, we decided that the application should be represented by a set

of necessary information required for the monitoring, analysis and tuning. We defined that

the application knowledge consists of measure points, performance model, tuning

point/action/synchronization.

Having the conceptual model, different approaches and application knowledge defined, we

focused on the requirements that have to be taken into consideration as well as what

techniques we could use providing dynamic optimizations of parallel applications. The

most important requirements were the parallel application control, the performance on-line

analysis, and the run time monitoring and tuning. The principal technique that we could

use for dynamic tuning purposes was dynamic instrumentation. By applying this method, it

is possible to monitor, analyze and tune a parallel program during run-time. Moreover the

application source code is not required. We have devoted big attention to the dynamic

instrumentation, in particular to know the library called DynInst that supports this

technique. DynInst is an API for run time code generation and permits the changes of code

in a running program. We wanted to know all details about the API features and its

interface provided to the user, as well as how we could use it practically for our purposes.

We implemented many small examples using the DynInst API and probed its

effectiveness. DynInst is a flexible and efficient platform-independent library and intrusion

included into the running application is very small.

We decided to prove experimentally that dynamic tuning is effective and it is very

profitable for users to take advantages of a tool that supports the automatic dynamic

optimization functionalities. We devoted a big attention to design and implementation of

such a tool. Our development concluded in the working environment called MATE. It

includes the monitoring, analysis and modifications of the application on the fly without

 209

Conclusions and future work

stopping, recompiling or rerunning the application. In this way, the MATE environment

tries to adapt the application to the dynamic behavior. MATE can be applied to many

performance bottlenecks that may appear during the execution of these applications.

MATE is suitable for the applications that do not have a stable behavior and change from

run to run according for example to the input data or to the environment they are running

(dynamic characteristics of e.g. heterogeneous non dedicated clusters). If the applications

have a regular and stable behavior, it could be sufficient tuned it once. When the tuning

process has been completed, the application can be manually changed and executed as

many times as necessary without introducing any intrusion during the application

execution.

Currently, our environment can be treated as the prototype for complete future

implementation. There are still many aspects that remain for considerations and

improvements. However, conducting experiments with MATE we showed that it is

possible to dynamically tune applications and obtain benefits. Results of the performed

tests were very promising and indicated that our prototype is applicable and effective.

Obviously, all components of our environment cause intrusion and influence into the

application execution, but we demonstrated that there are many examples where it is

smaller than the profits gained from the performed improvements.

7.2. Future work
Many questions remain open after the work done with dynamic automatic tuning area and

in particular with MATE. During our research, we encountered many opportunities for new

investigation and exploration lines. We also determined possibilities for improvements of

the MATE environment to make it stable, more efficient and really useful. In this section

we briefly present some of these issues.

7.2.1. Global and local analysis
For the purposes of this thesis we assumed the performance analysis based on the global

view of the application, that is taking into consideration all processes of the application and

their interactions. Such analysis is feasible for environments with a relatively small number

of nodes and serves for the inter-processes bottlenecks. The global analysis requires much

 210

Conclusions and future work

information to be sent via network to the analysis component. This becomes a bottleneck if

the number of nodes gets higher. If we consider problems related only to a given process

without looking at other processes, the analysis can be performed locally. Scalability

problem and local bottlenecks can be solved by distributing the analysis process. For

example, a part of the performance analysis could be performed locally considering the

locally available information, while global analysis could resolve problems caused by

inter-node relationships. This approach will require certain changes, such as finding a set

of tuning techniques specific for the local analysis and changes in the MATE

implementation.

7.2.2. Performance analysis
In the current work the performance analysis is based on a tunlet concept. Tunlets contain

the analysis logic to actually perform the dynamic tuning of the potential performance

problems. Each tunlet implements code related to one concrete bottleneck that can occur in

the application: how to detect it, how to overcome it and finally how to actuate inside the

application. In this thesis we were focusing on investigating tuning techniques separately.

However, we do not consider overall performance of the application nor how one tuning

technique can influence on another one. For example, if the communication to computation

ratio is very low, it might be better not to use any of the communication tuning techniques.

The intrusion caused by the tuning techniques may be high and hence the application

performance might be significantly decreased. If the ratio is adequate, then the intrusion

although the same as in the previous case, is not so significant because we obtain high

profitability. Moreover, in certain conditions MATE should take into consideration

dependencies between different performance problems and associated tuning techniques.

One of the possible and interesting investigation lines for this problem would be a different

approach to the run time performance analysis [Mar03]. The analysis could be based on the

hierarchical model of the potential application bottlenecks. In this approach a set of

bottlenecks forms a performance problem catalog. The catalog is not predefined and hard-

coded, but it can be expressed in a declarative manner using e.g. APART Specification

Language (ASL) [Fah00, Fah01]. ASL is a declarative specification language that uses

high-level abstractions called performance properties to represent common performance

problems. One bottleneck is described by one property that expresses the specific types of

performance behavior in a program. Properties are based on conditions dependent upon

 211

Conclusions and future work

certain performance metrics. The existence of properties is associated with some level of

confidence and with severity that estimates their importance.

The performance analysis is based on the detection and evaluation of existing properties.

The most severe properties represent performance problems. The analysis starts with the

selection of top-level properties for all the application processes. The selected properties

are first pre-evaluated in order to determine the required performance metrics. Next, the

measurement collection is performed. When the performance data becomes available, the

selected properties are evaluated and ranked by their severity. The most severe is expanded

and its sub-properties are selected for further evaluation. The process continues the top-

down search until reaching the most specific property. Once the problem is detected, the

problem solution should be invoked by means of tunlets. In this sense, each property can

be associated with one or a set of tuning actions. In this approach, the tool can provide its

performance problem catalog and during the analysis process, must be able to interpret and

evaluate the declared knowledge. This method appears as flexible and extensible so that

expert users can customize or extend the catalog to their specific requirements.

7.2.3. Metrics
One of the possible bottlenecks inside the MATE environment is the event-based analysis.

Although this approach is the most precise and the most flexible as events contain the

detailed information about what happened, when, where and in which circumstances, it is

quite invasive when a number of application processes grows rapidly. The complementary

solution that could allow for minimizing the intrusion is dynamic profiling. It allows one to

periodically obtain the statistical (aggregated) information about selected performance

metrics and hence significantly reduce the amount of information to be transferred. The

dynamic profiling differs from traditional profiling by enabling the insertion and removal

of metrics dynamically during run-time. Profiling works at a function level and supports

basic primitives such as timing and counting statistics. Additionally, the low-level

operating system statistics could be gathered to provide constant general overview of the

application performance (including metrics such as CPU-time, I/O time, memory usage).

7.2.4. Provision of the application knowledge
The MATE environment must provide the possibility to add new tuning techniques.

Current version bases on tunlets that are implemented as dynamically loaded shared

 212

Conclusions and future work

libraries. Such library is quite easy for incorporation into the MATE environment, but the

user must provide a specific C/C++ implementation. Moreover, in this case many problems

with the compiler versions may appear. First solution has been presented in Section 7.2.2

where we have been talking about the new approach to the performance analysis. The

performance problem catalog can be externally provided in a declarative manner using

ASL properties.

If this investigation line is not continue, other good solution would be to declare a tunlet

(with all its required information, namely measure points, performance model, tuning

points/action/synchronization) externally by means of e.g. XML or other custom-

declarative language. The Analyzer module should then interpret such a tunlet declaration

and carry the analysis on basing on the read information. It can be quite difficult, since

there are many issues to consider, but such a solution would be very flexible, extensible

and platform independent.

7.2.5. Tuning techniques
The presented tuning methodology is general and can be applied to improve many

applications. In this work we concentrated on the C/C++ and PVM-based applications.

However, there are many other programming languages as well as custom problem-

specific libraries with plenty of bottlenecks. Therefore, in future we can focus on

investigation of other tuning techniques to cover wider range of applications. The set of

conducted experiments gave us new ideas on future tuning techniques. We present the

examples of some tuning techniques considering different tuning layers:

• Application level

o Work aggregation in pipelining applications

o Automatic selection of the most appropriate algorithm

 Sorting

 Matrix calculations

 Structures’ representations – e.g. linked list vs. arrays

o Other application-specific problems

• Custom library level

o Numerical libraries specific problems

 PETSc (Portable, Extensible Toolkit for Scientific Computation)

[Bal97]

 213

Conclusions and future work

 ScalaPAK [Bla97]

o MPI-specific problems

o PVM

 Patterns of unicast changed for broadcast or multicast

 Inplace data encoding mode

• Operating system level

o I/O operations (read write)

 Prefetch

 Asynchronous vs. synchronous read/write operations

 I/O buffer size

7.2.6. Instrumentation evaluation
Interesting and useful investigation line would be prediction and evaluation of the

application instrumentation. MATE inserts instrumentation code for two purposes:

monitoring and tuning. However, the current version of our environment does not evaluate

how the inserted monitoring code and performed tuning actions influence into the global

application performance. It would be very desirable to investigate the possibility of

instrumentation cost prediction in order to see if performed monitoring and tuning actions

were beneficial. If it was the case, the considering tuning technique would be applied. In

other case it would not, since the cost could be higher than the profits obtained. DynInst

library contains specific methods that allows for an estimation of the number of seconds it

would take to execute the snippet. However, in our approach many snippets serve only for

the invocation of the functions implemented in run time library. DynInst does not provide

the estimation cost of such a function invocation. Therefore, this investigation line could

be very profitable and could make our environment more efficient and more useful.

7.2.7. Event record
As a good implementation extension of MATE, we propose the inclusion of important

information into the event record. Each event record should correlate performance data to

source code (process, module, function). It is required to only add to event records the

information about the source file and line number. This will allow a user of our

environment to indicate the line in the application source code, where the particular event

has occurred. We have already designed this aspect within the MATE environment, but it

is still not implemented. Design as well as implementation is very complex in our case. We

 214

Conclusions and future work

do not have application source code and all steps required to indicate the line number must

be done analyzing the binary image of the application. The DynInst library is very helpful

in performing these steps, however it still does not have the full functionality (direct,

simply methods) when providing a line number of the event.

For example, in order to log event that process A has sent a message to process B, we are

able to insert instrumentation into the entry of the function pvm_send(). It means that

DynInst inserts the instrumentation code as a first operation of the function pvm_send() to

be invoked and the rest operations are reallocated. DynInst provides methods to obtain the

line number of the function body (because snippet is inserted at the entry of the function).

However, we also need to log a line number of a point from where this pvm_send()

function was called during run time. Figure 7.1 illustrates the meaning of the line number

of the function body, as well as the line number of the call point. It is not sufficient provide

for each event only line number of the pvm_send() body. This function was invoked from

a specific point of the application code and to be able to relate the problem with the source

code, we have to know exactly from which code point (known as call point) each event

was provoked.

Fig. 7.1. Line number of the function body and of the call point that we want to log to the event.

PVM library

And the number of this line as well (call point)

We need the number of this line (call point)

function pvm_send(...)
{
 ...
}

function foo_1 (...)
{
 ...
 pvm_send (...)
 ...
}

function foo_2 (...)
{
 ...
 ...
 pvm_send (...)
 ...
}

Application

But not this one (function body).

Instrumentation is inserted here.

In order to provide the line number and source file name, from which the function was

invoked, we need to scan an application image and determine for each file, for each

instrumented function its call points. Then we have to be able to store all these points and

log the line number of the call point together with the event record.

 215

Conclusions and future work

7.2.8. Recommendations
Once the analysis has been performed and tuning invoked, MATE, as a useful tool, should

explain detected application problems. It would be very profitable to provide the user of

our environment with the information about the encountered problems and their causes.

Such a clear explanation of the identified problems, should indicate the most important

bottlenecks and correlate them with the source code. In addition it should provide

overtaken tuning actions that can be treated as potential future solutions (e.g. new optimal

values of variable, settings of some important options). The whole reasoning about the

detected problem could appear as the part of the tunlet. The Analyzer should simply

provide the specific extensions inside the Dynamic Tuning API and each tunlet should use

them to provide recommendations – that is information about the application bottleneck

and how to potentially overcome it.

7.2.9. Toward grid
The rapid evolution of the Internet has brought new possibilities of connecting many

clusters and parallel computers and grouping them together into a single computational

platform called grid. Wide range of applications started to be developed and executed in

these environments. However, developing and running programs that can draw compute

power from globally distributed resources pose new challenges for the computer and

computational science communities. In addition to interoperability and security issues that

are the key concerns for Internet users, applications that use distributed resources as a

unified compute platform must be able to achieve performance levels greater than those

that could be delivered by any single resource alone [Wol02].

Performance tuning of grid application becomes even more complicated than in traditional

environment due to unique grid characteristics such as time varying resource demands,

heterogeneous resources, geographic distribution and network sharing. In fact, grid brings

new class of challenges in performance analysis and tuning making classical approaches to

performance analysis not applicable or less useful. For example post-mortem analysis that

presumes repeatability, typically may not be used as the grid platform is highly dynamic

and rarely repeatable. Therefore new approaches such as dynamic performance analysis

and tuning must be used in order to deliver required performance.

 216

Conclusions and future work

Running the application under control of the dynamic tuning system allows for run-time

adaptation of the application behavior to the changing conditions. If the target platform is

changed (number of processors, processor speed, network bandwidth, etc.) the required

optimizations may be different. These characteristics make the dynamic tuning approach

relevant to grid systems.

Our research has focused on tuning of applications executed on cluster of workstations.

However, for all the presented reasons we can see that it would be desirable to implement a

new version of our MATE environment adapted to work in a grid. The new MATE version

working in a grid environment appears as a very interesting research line.

 217

Bibliography

Bibliography

[Ale01] A. Alexandrescu: Modern C++ Design. Generic Programming and Design Patterns

Applied. Addison-Wesley. 2001.

[And94] J.C.S. Andre, D.X. Viegas: A Strategy to Model the Average Fireline Movement

of a light-to-medium Intensity Surface Forest Fire. Proc. of the 2nd Intemational

Conference on Forest Fire Research, pp. 221-242. Coimbra, Portugal, 1994.

[Bai94] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S.

Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan and S.

Weeratunga: RNR Technical Report. RNR-94-007. March 1994.

[Bai95] D.H. Bailey, T. Harris, W. Saphir, R. Wijngaart, A. Woo, M. Yarrow: The NAS

Parallel Benchmarks 2.0. Report NAS-95-020. December, 1995.

[Bal00] V. Bala, E. Duesterwald, S. Banerja: Dynamo: A Transparent Dynamic

Optimization System. Hewlett-Packard Labs, PLDI. Vancouver, 2000.

[Bal97] S. Balay, W.D. Gropp, L.C. McInnes, B.F. Smith: Efficient Management of

Parallelism in Object Oriented Numerical Software Libraries. Modern Software Tools in

Scientific Computing, pp. 163-202. 1997.

[Ben95] S. Benkner, S. Andel, R. Blasko, P. Brezany, A. Celic, B. Chapman, M. Egg, T.

Fahringer, J. Hulman, Y. Hou, E. Kelc, E. Mehofer, H. Moritsch, M. Paul, K. Sanjari, V.

Sipkova, B. Velkov, B. Wender, and H. Zima: Vienna Fortran Compilation System -

Version 2.0 - User's Guide. October 1995.

[Ber96] F. Berman, R. Wolski: Scheduling From the Perspective of the Application. High

Performance Distributed Computing 1996. Syracuse, NY, USA, August 1996.

 219

Bibliography

[Bla97] L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J.

Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, R.C. Whaley:

ScaLAPACK Users’ Guide, Second Edition. SIAM, Philadelphia, PA. 1997.

[Bor03] P. Bora, C. Ribbens, S. Prabhakar, G. Swaminathan, M. Chinnusamy, A.

Jeyakumar, B. Diaz-Acosta: Issues in Runtime Algorithm Selection for Grid

Environments. International Workshop on Challenges of Large Applications in Distributed

Environments, pp. 80-87. Seattle, Washington, June 2003.

[Buc00] B. Buck, J. K. Hollingsworth: An API for Runtime Code Patching. The

International Journal of High Performance Computing Applications, 14, pp. 317-329.

2000.

[Ces02] E. César, A. Morajko, T. Margalef, J. Sorribes, E. Luque: Dynamic Performance

Tuning Environment Supported by Program Specification. Scientific Programming, 10, pp.

35-44. 2002.

[Ces03] E. Cesar, J.G. Mesa, J. Sorribes, E. Luque: POETRIES: Performance Oriented

Environment for Transparent Resource-Management, Implementing End-User

Parallel/Distributed Applications. LNCS 2790, 141-146. 2003.

[Che00] W. Chen, S. Lerner, R. Chaiken, D. M. Gillies: Mojo: A Dynamic Optimization

System. Microsoft Research. 3rd ACM Workshop on Feedback-Directed and Dynamic

Optimization (FDDO). Monterey, California, December 2000.

[Cro94] M.E. Crovella, T.J. LeBlanc: The Search for Lost Cycles: A New Approach to

Parallel Program Performance Evaluation. Tech. Rep. 479, University of Rochester. 1994.

[Cur76] H.J. Curnow, B.A. Wichmann: A Synthetic Benchmark. The Computer Journal

Vol.19(1), 43-49. February 1976.

[Din97] P. Diniz, M. Rinard: Dynamic Feedback: An Effective Technique for Adaptive

Computing. Proceedings of the ACM SIGPLAN ’97 Conference on Programming

Languages Design and Implementation. May 1997.

 220

Bibliography

[Don88] J.J. Dongarra, J. Du Croz, S. Hammarling, R.J. Hanson: An extended set of

FORTRAN Basic Linear Algebra Subprograms. ACM Trans. Math. Soft., 14, 1988 pp. 1-

17. 1988.

[Esp00] A. Espinosa: Automatic Performance Analysis of Parallel Programs. Universitat

Autònoma de Barcelona, Computer Science Department, Doctor Thesis. September 2000.

[Esp98] A. Espinosa, T. Margalef, E. Luque: Automatic Detection of Parallel Program

Performance Problems. Lecture Notes in Computer Science, vol. 1573, pp. 365-377,

Springer-Verlag. June 1998.

[Fah00] T. Fahringer, M. Gerndt, G. Riley, J. Larsson: Specification of Performance

problems in MPI Programs with ASL. Proceedings of ICPP, pp. 51-58. 2000.

[Fah01] T. Fahringer, M. Gerndt, G. Riley, J.L. Traff: Knowledge Specification for

Automatic Performance Analysis. Tech. report, FZJ-ZAM-IB-2001-08. 2001.

[Fah93] T. Fahringer, H.P. Zima: A Static Parameter based Performance Prediction Tool

for Parallel Programs. 7th ACM International Conference on Supercomputing. Japan, July

1993.

[Gal98] J. Galarowicz, B. Mohr: Analyzing Message Passing Programs on the Cray T3E

with PAT and Vampir. Proc. Of the 4th European Cray-SGI MPP Workshop. Germany,

1998.

[Gam95] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design patterns. Elements of

Reusable Object-Oriented Software. Addison-Wesley Professional Computing, 1995.

[Gei90]. A. Geist, T. M. Heath, B. W. Peyton, P. H. Worley: A User’s Guide to PICL: A

Portable Instrumentation Communication Library. TR TM-11616, Oak Ridge National

Lab. 1990.

 221

Bibliography

[Gei94]. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam: PVM:

Parallel Virtual Machine, A User´s Guide and Tutorial for Network Parallel Computing.

MIT Press. Cambridge, MA, 1994.

[Gu94] W. Gu, J. Vetter, K. Schwan: An Annotated Bibliography of Interactive Program

Steering. Technical Report GIT-CC-94-15, Georgia Institute of Technology College of

Computing. 1994.

[Gu95] W. Gu, G. Eisenhauer, K. Schwan, J. Vetter: Falcon: On-line Monitoring and

Steering of Parallel Programs. 5th Symposium of the Frontiers of Massively Parallel

Computing. McLean, VA, 1995.

[Hea95]. M. Heath, J. Etheridge: Visualizing the Performance of Parallel Programs. IEEE

Computer, vol. 28, pp. 21-28. November 1995.

[Hol03] J.K. Hollingsworth, M. Altinel: Paradyn Parallel Performance Tools, DyninstAPI

Programmer’s Guide. Release 4.0. University of Maryland, Computer Science Department.

May 2003.

[Hol93] J. K. Hollingsworth, B. P. Miller: Dynamic Control of Performance Monitoring on

Large Scale Parallel Systems. International Conference on Supercomputing. Tokyo, July

1993.

[Hol97] J. K. Hollingsworth, B. P. Miller, M. J. R. Goncalves, O. Naim, Z. Xu, L. Zheng:

MDL: A Language and Compiler for Dynamic Program Instrumentation. International

Conference on Parallel Architecture and Compilation Techniques. San Francisco,

November, 1997.

[Hum92] S.F. Hummel, E. Schonberg, L.E. Flynn: Factoring – A Method for Scheduling

Parallel Loops. CACM, Vol., 35, No.8, 90-101. August 1992.

[IEE85] IEEE Computer Society (1985), IEEE Standard for Binary Floating-Point

Arithmetic, IEEE Std 754-1985.

 222

Bibliography

[Jor98] J. Jorba, T. Margalef, E. Luque, J. Andre, D.X. Viegas: Application of Parallel

Computing to the Simulation of Forest Fire Propagation. Proc. 3rd International

Conference in Forest Fire Propagation, Vol. 1, pp. 891-900. Luso, Portugal, November

1998.

[Kal93] L.V. Kale and S. Krishnan: Charm++ : A portable concurrent object oriented

system based on C++. In Proceedings of the Conference on Object Oriented Programming

Systems, Languages and Applications. September 1993.

[Kri96] S. Krishnan, L. V. Kale: Automating Parallel Runtime Optimizations Using Post-

Mortem Analysis. International Conference on Supercomputing, pp. 221-228. 1996.

[Mai95]. E. Maillet: TAPE/PVM an Efficient Performance Monitor for PVM Applications

– User Guide. LMC-IMAG, Grenoble, France, June 1995.

[Mar03] T. Margalef, J. Jorba, O. Morajko, A. Morajko, E. Luque: Different approaches

to automatic performance analysis of distributed applications. Performance Analysis and

Grid Computing, Kluwer Academic Publishers, pp.3-20. 2003.

[Mil95] B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollingswoth, R.B. Irvin, K.L.

Karavanic, K. Kunchithapadam, T. Newhall: The Paradyn Parallel Performance

Measurement Tool. IEEE Computer vol. 28. pp. 37-46. November 1995.

[MPI94] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard.

International Journal of Supercomputer Applications, 8(3/4): 165-414. 1994.

[Nag96]. W. Nagel, A. Arnold, M. Weber, H. Hoppe: VAMPIR: Visualization and

Analysis of MPI Resources. Supercomputer 1 pp. 69-80. 1996.

[Par03] Paradyn Project: Paradyn Parallel Performance Tools, User’s Guide, Release 4.0.

University of Wisconsin, Computer Science Department. May 2003.

[Par95] S.G. Parker, C.R. Johnson: SCIRun: A Scientific Programming Environment for

Computational Steering. SC’95. San Diego, USA, December 1995.

 223

Bibliography

[Par98] J. Parecisa Viladrich: El problema del temps en la monitorizació distribuïda. MsC

Thesis. Universitat Autònoma de Barcelona, Computer Science Department, June 1998.

[Pas98] D. M. Pase: Dynamic ProbeClass Library (DPCL): Tutorial and Reference Guide

version 0.1. IBM Corporation, 1998.

[Pha99] C.Pham, C. Albrecht: Tuning Message Aggregation On High Performance

Clusters For Efficient Parallel Simulations. Parallel Processing Letters, Vol. 9, No. 4

(1999) 521-532. 1999.

[Pol87] C. Polychronopoulos, D. Kuck: Guided Self-Scheduling: A Practical Scheduling

Scheme for Parallel Computers. IEEE Transactions on Computers, C-36, 12, 1425-1439.

December 1987.

[Rab97] R. Rabenseifner: The Controlled Logical Clock – a Global Time for Trace Based

Software Monitoring of Parallel Applications in Workstation Clusters. Parallel and

Distributed Processing, London, 1997.

[Ree93]. D. A. Reed, P. C. Roth, R. A. Aydt, K. A. Shields, L. F. Tavera, R. J. Noe, B. W.

Schwartz: Scalable Performance Analysis: The Pablo Performance Analysis Environment.

Proceeding of Scalable Parallel Libraries Conference, pp. 104-113, IEEE Computer

Society. 1993.

[Ree93]. D. A. Reed: Performance Instrumentation Techniques for Parallel Systems.

University of Illinois, Department of Computer Science. 1993.

[Ree96] D.A. Reed, C.L. Elford, T.M. Madhyastha, E. Smirni, S.E. Lamm: The Next

Frontier: Interactive and Closed Loop Performance Steering. ICPP Workshop on

Challenges for Parallel Processing. August 1996.

[Rib98] R.L. Ribrel, J.S. Vetter, H. Simitci, D.A. Reed: Autopilot: Adaptive Control of

Distributed Applications. High Performance Distributed Computing 1998, pp. 172-179.

Chicago, August 1998.

 224

Bibliography

[Rob98] J. Robb: BPatch Interface Reference version 0.1. IBM Corporation, 1998.

[Sch94] D.C. Schmidt: The ADAPTIVE Communication Environment: An Object-

Oriented Network Programming Components for Developing Client/Server Applications.

Technical Report, 11th and 12th Sun Users Group. 1994.

[Sub96] K.R. Subramaniam, S.C. Kothari, D.E. Heller: A Communication Library Using

Active Messages to Improve Performance of PVM. Journal of Parallel Distributed

Computing, 39(2): 146-152. 1996.

[Tam99] A. Tamches, B.P. Miller: Using Dynamic Kernel Instrumentation for Kernel and

Application Tuning. International Journal of High-Performance Computing Applications

13(3): 263-276. 1999.

[Tap02] C. Tapus, I-H. Chung, J.K. Hollingsworth: Active Harmony: Towards Automated

Performance Tuning. SC’02. November 2002.

[Tze93] T.H. Tzen, L.M. Ni: Trapezoid Self-Scheduling: A Practical Scheduling Scheme

for Parallel Compilers. IEEE Transactions on Parallel and Distributed Systems, pp. 87-98.

1993.

[Vli95] J.M. Vlissides, J.O. Coplien, N.L. Kerth, J. Coplien: Pattern Languages of Program

Design. Addison-Wesley, Reading. MA, 1995.

[Wol02] R. Wolski: Computational Grids: Current Trends in Performance-oriented

Distributed Computing. Society for Industrial and Applied Mathematics. 2002.

[Yan96] J. Yan, S. Sarukhai: Analyzing Parallel Program Performance Using Normalized

Performance Indices and Trace Transformation Techniques. Parallel Computing, vol. 22,

pp. 1215-1237. 1996.

Referenced web links:
[L1] Portable Timing Routines (PTR) http://www.ptools.org//projects/ptr/

[L2] Parallel Tools Consortium (Ptools) http://www.ptools.org/

 225

http://www.ptools.org//projects/ptr/
http://www.ptools.org/

Bibliography

[L3] Silicon Graphics www.cray.com

[L4] Cray Research www.sgi.com

[L5] Xprofiler

http://publib16.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixbman/prftools/xprofiler.ht

m

[L6] IBM www.ibm.com

[L7] Hardware performance monitoring http://www.npaci.edu/online/v3.6/SCAN2.html

[L8] PAPI http://icl.cs.utk.edu/papi/

[L9] PCL http://www.fz-juelich.de/zam/PCL/

[L10] http://www.fz-juelich.de

[L11] PICL tool http://www.epm.ornl.gov/picl/picl2.html

[L12] Oak Ridge National Laboratory http://www.ornl.gov/

[L13] Paragraph tool http://www.csar.uiuc.edu/software/paragraph/

[L14] Vampir tool http://www.pallas.de/pages/vampir.htm

[L15] Pallas company http://www.pallas.de

[L16] Pablo http://www-pablo.cs.uiuc.edu/Project/Pablo/ScalPerfToolsOverview.htm

[L17] Dimemas http://www.cepba.upc.es/dimemas/

[L18] CEPBA http://www.cepba.upc.es/

[L19] AIMS tool http://www.nas.nasa.gov/Groups/Tools/Projects/AIMS

[L20] NASA Ames Research Center http://www.arc.nasa.gov

[L21] Paradyn tool http://www.paradyn.org

[L22] University of Wisconsin – Computer Science Department http://www.cs.wisc.edu

[L23] ScaLAPCK http://www.netlib.org/scalapack

[L24] BLAS http://www.netlib.org/blas/

[L25] PETSc http://www.mcs.anl.gov/petsc

[L26] OCI http://www.ociweb.com/

[L27] Java HotSpot http://java.sun.com/

[L28] Parallel pattern http://www.cise.ufl.edu/research/ParallelPatterns/

[L29] DynInst library http://www.dyninst.org

[L30] University of Maryland – Computer Science Department http://www.cs.umd.edu

[L31] Abstract Syntax Tree http://www.cs.kent.ac.uk/projects/ofa/java-threads/3.html

[L32] IBM – hardware descriptions

www-1.ibm.com/servers/eserver/pseries/library

[L33] FALCON http://www.cc.gatech.edu/systems/projects/FALCON/

 226

http://www.cray.com/
http://www.sgi.com/
http://publib16.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixbman/prftools/xprofiler.htm
http://publib16.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixbman/prftools/xprofiler.htm
http://www.ibm.com/
http://www.npaci.edu/online/v3.6/SCAN2.html
http://icl.cs.utk.edu/papi/
http://www.fz-juelich.de/zam/PCL/
http://www.fz-juelich.de/
http://www.epm.ornl.gov/picl/picl2.html
http://www.ornl.gov/
http://www.csar.uiuc.edu/software/paragraph/
http://www.pallas.de/pages/vampir.htm
http://www.pallas.de/
http://www-pablo.cs.uiuc.edu/Project/Pablo/ScalPerfToolsOverview.htm
http://www.cepba.upc.es/dimemas/
http://www.cepba.upc.es/
http://www.nas.nasa.gov/Groups/Tools/Projects/AIMS
http://www.arc.nasa.gov/
http://www.paradyn.org/
http://www.cs.wisc.edu/
http://www.netlib.org/scalapack
http://www.netlib.org/blas/
http://www.mcs.anl.gov/petsc
http://www.ociweb.com/
http://java.sun.com/
http://www.cise.ufl.edu/research/ParallelPatterns/
http://www.dyninst.org/
http://www.cs.umd.edu/
http://www.cs.kent.ac.uk/projects/ofa/java-threads/3.html
http://www.cc.gatech.edu/systems/projects/FALCON/

Bibliography

[L34] MOSS http://www.cc.gatech.edu/systems/projects/MOSS/

[L35] SCIRun http://www.sci.utah.edu/

[L36] SCI Software http://software.sci.utah.edu/

[L37] Autopilot http://www-pablo.cs.uiuc.edu/Software/Autopilot/autopilot.htm

[L38] Active Harmony http://www.dyninst.org/harmony/

[L39] TCP/IP tuning

http://www.nlanr.net/NLANRPackets/v2.1/autotcpwindowtuning.html

[L40] NAS www.nas.nasa.gov

[L41] Bucket sort http://www.brpreiss.com/books/opus5/html/page512.html

[L42] Gaussian distribution http://davidmlane.com/hyperstat/normal_distribution.html

[L43] XDR encoding http://www.faqs.org/rfcs/rfc1832.html

[L44] Factoring algorithm http://spartan.cis.temple.edu/synergy/user_manual.htm

[L45] Universitat Autónoma de Barcelona www.uab.es

 227

http://www.cc.gatech.edu/systems/projects/MOSS/
http://www.sci.utah.edu/
http://software.sci.utah.edu/
http://www-pablo.cs.uiuc.edu/Software/Autopilot/autopilot.htm
http://www.dyninst.org/harmony/
http://www.nlanr.net/NLANRPackets/v2.1/autotcpwindowtuning.html
http://www.nas.nasa.gov/
http://www.brpreiss.com/books/opus5/html/page512.html
http://davidmlane.com/hyperstat/normal_distribution.html
http://www.faqs.org/rfcs/rfc1832.html
http://spartan.cis.temple.edu/synergy/user_manual.htm
http://www.uab.es/

