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Abstract 
 

The main goal of parallel/distributed applications is to solve the considered problem as fast 

as possible utilizing a certain minimum of the parallel system capacities. In this context, 

the application performance is one of the most important issues. The classical way of 

improving the application performance is based on the analysis of the monitoring 

information obtained from an execution of the application. Developers must search through 

this information for the bottlenecks and optimize the application behavior changing the 

source code manually. This approach requires developers to do many tasks and have a 

great experience about parallel programming. Therefore, the classical application tuning is 

then very difficult especially for non-expert programmers. It is necessary to provide tools 

that automatically carry out these tasks. Moreover, this classical approach is not feasible 

when the applications have a dynamic behavior. Many applications have a different 

behavior according to the input data set or even change their behavior dynamically during 

the execution. In this case, another approach is required to accomplish performance 

expectations. It would be desirable that the performance tuning could be done on the fly by 

modifying the application according to the particular conditions of the execution. 

 

This thesis addresses the problem of automatic and dynamic tuning of parallel and 

distributed applications. Our objective is to help developers in the process of improving the 

application performance. This work presents a whole solution that deals with the issues of 

automatic and dynamic application improvement. In this approach, an application is 

monitored, its performance bottlenecks are detected, solutions are given and the 

application is modified on the fly. All these steps are performed automatically, 

dynamically and continuously during application execution. This approach exempts 

developers from performance analysis and difficult intervention to a source code by 

automatically improving the performance of parallel programs during run-time. The 

dynamic analysis and introduced modifications permits to adapt the behavior of the 

application to dynamic variations. 

 

With this objective we have developed an environment called MATE (Monitoring, 

Analysis and Tuning Environment) that provides dynamic automatic tuning of parallel 

applications. MATE performs dynamic tuning in three basic and continuous phases: 

 V



monitoring, performance analysis and modifications. This environment dynamically and 

automatically instruments and traces a running application to gather information about the 

application behavior. The analysis phase searches for bottlenecks, detects their causes and 

gives solutions on how to overcome them. Finally, the application is dynamically tuned by 

applying given solution. Moreover, while it is being tuned, the application does not need to 

be re-compiled, re-linked and restarted. 

 

Many various practical experiments have been conducted on distributed and parallel 

applications to see if this approach really works. We have proven that it is effective, 

feasible, profitable, and can be used for a real improvement of the program performance. 

Running applications under control of a dynamic tuning system has allowed for adapting 

their behavior to the existing conditions and improving their functionality. 

 

 

 

 VI



Introduction 
 

Chapter 1 

Introduction 
 

In this chapter, we present a general overview of the application performance problem. In 

particular our work focuses on parallel and distributed applications. We show what are the 

goals of this thesis and its contributions. Finally, we present the organization of thesis.  

  

1.1. General overview 
The high performance computation demand increases day by day. In many different fields, 

but in particular scientific, have appeared a strong need of such a computation since each 

time more and more problems must be solved by specially developed applications. This 

situation has taken the evolution of science to a new step called computational science. 

Applications that support computational science facilitate the determining of the human 

genome, computing the atomic interactions in a molecule, simulating the evolution of the 

universe or climate model simulation, to mention only few. So biologists, chemists, 

physicists and many other researchers have become intensive users of applications with 

high performance computing requirements. The usage of such applications requires many 

resources as they become more data intensive and perform more sophisticated calculations. 

Therefore, scientists submit very large applications to powerful systems in order to solve 

the problems and get the results as fast as possible, considering the largest data size and 

taking advantage of all the resources available in the system.  

 

The increasing need of high performance systems has driven scientists towards 

parallel/distributed systems. Parallel systems are computers consisted of a set of processing 

units that work cooperatively in parallel to solve a computational problem. Parallelism is a 

general term used to characterize a variety of simultaneous actions occurring in a 

computer, especially on a parallel computer. Parallel computers offer high potential 

resources like processing speed, memory or disk capacity. Although such systems have 

their performance limits, they are much more powerful than the rest of the computers and 

hence are better for solving scientific problems demanding intensive computation. 
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Therefore, architectures, compilers and operating systems have been developed to extract 

and use as much parallelism as possible in order to speedup computation. 

 

Parallel applications must be developed in a specific way to be able to run on parallel 

systems and utilize their features. First of all such applications must provide the ability to 

perform many different operations at the same time. The main goal of these applications is 

to solve the considered problem as fast as possible utilizing a certain minimum of the 

parallel system resources. In this context, parallel application performance becomes a 

crucial issue. The difference between the expected and real performance should not appear 

as a significant gap. The objective is to reduce this gap as much as possible.  

 

Therefore, programmers of parallel applications are responsible for providing the best 

possible behavior of these applications. Applications will be useless and inappropriate 

when their performance is under acceptable limit. Programmers then face up to many 

problems that must be solved if such applications are to fulfill their promises to obtain the 

highest performance in a due environment. 

 

Once an application has been implemented in parallel, developers must systematically test 

it from the functional point of view to guarantee its correctness. Then, to reach the goal and 

provide the highest performance, programmers are obligated to carry out an application 

optimization process to ensure that there are no performance bottlenecks during the 

application execution. 

 

The optimization process, also known as tuning process, requires a developer to go through 

the application performance analysis and the modification of critical application 

parameters. The tuning process implies then several phases. First, the performance 

measurements must be taken in order to provide information about the application. This 

phase is known as the monitoring – it collects information related to the execution of the 

application. Then, the analysis of this information is performed. Performance analysis finds 

performance bottlenecks, deducts their causes and determines the actions to be taken to 

eliminate these bottlenecks. Finally, appropriate changes must be applied into the 

application code to overcome problems and improve performance. 
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The essential, and at the same time the most complicated task of the tuning process is 

performance analysis. It must be pointed out that, in practice, the causes of performance 

bottlenecks can be found at different levels. For example, a communication problem can 

result from: 

• An erroneous conception of the application that provokes an unnecessary blocking time 

in a receive primitive. 

• Communication library implementation. In many cases, the design or implementation 

of the software layers is generic and is not optimized for a particular system or for 

particular conditions. This implies that the application may behave differently than 

expected. 

• Operating system features. For example, an inappropriate buffer size and the message 

treatment at the protocol level can interfere with application message delivery times. 

• Underlying hardware capabilities. The interconnection network features (latency, 

bandwidth, etc.) or even the contention in the network can seriously slow down the 

application. 

 

As a consequence, the developers are forced to master the application, the involved 

software layers and the distributed system behavior. Moreover, parallel computing evolves 

from homogeneous parallel systems to distributed heterogeneous systems what 

significantly extends difficulties. In many cases the application performance also depends 

on the input data set. This fact implies that a set of potential bottlenecks can vary for 

different executions. All these issues make the performance tuning process difficult and 

costly, especially for non-expert programmers as it requires a high degree of expertise to 

really improve the performance of the application. 

 

To tackle all these problems, user-friendly tools should be available. However, in the area 

of performance optimization, there is still a lack of real useful tools and most of them 

require from the user a deep knowledge about the parallel and distributed systems and 

programming. Therefore, it is necessary to provide tools that automatically carry out tasks 

of the parallel program optimizations what exempts a developer from some of the 

performance-related duties. The required tools include programming environments, 

debugging tools and performance tuning systems. A good, reliable and simple performance 

optimization tool is necessary to provide a developer with appropriate and sufficient 
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information about the application behavior, as well as with possible changes. Such a tool 

could help a programmer to improve the performance of the application. 

 

1.2. Our goals 
The principal objective of this work is to investigate if it is possible to dynamically tune 

performance of distributed parallel programs. In this sense, our idea is to automate all the 

phases that we have distinguished in the performance tuning process and perform them 

dynamically on the running parallel application. Such approach would help programmers 

in the whole process of improving the performance of parallel and distributed applications.  

 

To support developers with dynamic performance tuning and practically evaluate its 

profitability, we would like to create the dynamic tuning environment that facilitates 

monitoring, performance analysis and optimization of parallel applications. All these steps 

should be done automatically, dynamically, and continuously during application execution. 

Therefore, our main idea is to build an environment that is characterized as shown in 

Figure 1.1. The ideal solution would be to construct a tool that is able to automatically 

accelerate the application execution by adapting it to changing conditions. Such a solution 

would relieve developers from the complex manual tuning tasks. Moreover, while 

performing these optimization phases it would be desirable not to require the access to the 

source code, recompilation, nor re-linking and restart. To ensure the profitability of the 

runtime optimizations, we must consider intrusion related issues and try to minimize its 

impact. Therefore, overhead introduced by the tuning tool must be small and not 

significantly interfere the application execution.  

Fig. 1.1. Dynamic tuning approach provided by our environment. 

Analysis

Modifications

Events 

Tuning 

Problem 
Solution 

Suggestions for users 

Monitoring Parallel  
program 
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Another goal of this thesis is practical experimentation with dynamic tuning in order to 

check its effectiveness and profitability. Therefore, we should conduct many tests on 

different real applications in real environment. Only experiments with existing tuning tool 

that permits dynamic optimizations of real applications will provide the complete view of 

the potential benefits obtained when using this approach. 

 

An important issue that should be also investigated is the applicability of the dynamic 

tuning approach. We have to verify in what circumstances dynamic tuning can be applied 

effectively and what conditions must be fulfilled by parallel applications and systems. The 

question to be answered is if dynamic tuning can totally replace other – classical and 

automatic – approaches  to the performance analysis. Is it a solution for all the problems 

that appear in the optimization process? Or is it in some cases limited? If it is the case we 

must define the limits of its usage. 

 

An issue of particular importance is the representation of knowledge that we can utilize 

when optimizing an application. A tuning tool must have built-in such a knowledge to use 

it while analyzing the application behavior, finding bottlenecks and determining solutions. 

Application analysis without knowledge about its internal structures and dynamic 

modifications of unknown application structures is very complicated. It is not realistic to 

assume that any modification on any application in any environment can be done on the 

fly. This knowledge should be specified independently from the tool implementation, in 

order to permit extensibility and the inclusion of new performance problems. It would be 

ideal to provide totally external solution that would support the tuning tool with all the 

required information about the application. 

 

1.3. Contribution 
The main objective of this thesis has been to show that the performance of distributed 

parallel programs can be improved automatically during run-time. Therefore, we have 

investigated this idea and it has given a fruitful results that can be summarized in that this 

approach works, is applicable, effective and useful in certain conditions. We have proved 

that it appears as a powerful technique to accomplish the successful performance of 

applications with dynamic behavior.  
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However, we have encountered some limits of the usage of this approach. Due to 

incomplete application information dynamic tuning of unknown application is 

complicated, hard or sometimes even impossible. In general the performance analysis 

cannot be performed effectively without knowledge about what the application does. 

Dynamic modifications of unknown application structures are complex, may appear as 

dangerous and hence must be done very carefully. Therefore we have distinguished 

different layers of the application that can be tuned: application-specific code, standard and 

custom libraries (API + code), operating system libraries (API + code), hardware. For 

some layers we have many common information and hence we can extract well defined 

bottlenecks representative for many applications and define their solutions. In other case, it 

is required to provide a knowledge about the specific application problems and solutions 

since there is no information about the potential application bottlenecks. We differentiated 

two tuning approaches: automatic and cooperative. In the automatic approach the 

application is treated as a black-box, because no application-specific knowledge is 

provided by the programmer. In the cooperative approach we assume that an application is 

tunable and adaptable as a developer must provide application-specific information and 

prepare an application for the possible changes. 

 

To make the solution homogeneous for both the automatic and cooperative tuning 

approach, we decided that the application should be represented by a set of necessary 

information required for the monitoring, analysis and tuning. We defined that the 

application knowledge consists of measure points (what must be monitored in the 

application), performance model (activating conditions and/or formulas that allow for 

finding the optimal conditions), tuning action/point/synchronization (what, where and 

when can be changed in the application to obtain its better performance).  

 

Another principal contribution of the thesis has been a real functioning tool that supports 

users with automatic and dynamic tuning and relieves them of many complex tasks. 

Moreover, we also wanted to prove experimentally that dynamic tuning is useful, 

beneficial and applicable. For this purpose we have developed MATE – Monitoring, 

Analysis and Tuning Environment. MATE supports three basic functionalities: 

performance monitoring, performance analysis and tuning. All these phases are performed 

automatically and continuously on running parallel distributed applications. The 

environment is based on the computational steering loop concept and exempts a developer 
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from intervention into the tuning process. Conducted experiments showed that MATE is 

able to adapt the application to the dynamic behavior and can be applied to many 

performance bottlenecks that may appear during the application execution. 

  

To perform all phases on the fly, we based our environment on the dynamic 

instrumentation. This technique provides a possibility to manipulate a running program 

without access to its source code. By applying this method, it is possible to monitor and 

tune a parallel program during run-time. Moreover, the program does not need to be re-

compiled, re-linked and restarted while instrumenting and applying changes. MATE is 

based on the DynInst library to provide the performance monitoring (application 

instrumentation and data collection) and tuning (modifying the code of running 

application). 

 

MATE provides both black-box and cooperative tuning. There are some common 

bottlenecks that MATE is able to monitor, detect and solve automatically, but it also 

provides an easy way to add information about other performance problems. The 

environment is based on the knowledge that contains a set of tuning techniques 

representing different problems. To support the analysis of many problems, MATE 

includes the catalog of tuning techniques where each technique solves a particular 

problem. One tuning technique provides information about measure points, performance 

model (analytical model or set of rules) and tuning action/points/synchronization. Such a 

knowledge is provided to MATE via specific libraries called tunlets.  

 

1.4. Organization of thesis 
The work presented in this thesis is divided in chapters as follows.  

 

Chapter 2 introduces the general overview of the classical approach to the performance 

analysis of parallel applications. It describes the measurement techniques used for the 

purposes of this approach. Finally we present a set of tools that support the classical 

performance analysis.  

 

In Chapter 3 we describe the principles of the second approach to the performance 

analysis, namely automatic analysis. We also introduce an extension to this approach 
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which permits dynamic analysis of the parallel application during their execution. Finally, 

we show the set of tools that provide automatic performance analysis. 

 

Chapter 4 is devoted to the dynamic automatic performance tuning approach. We explain 

the fundamental concepts of dynamic optimization and introduce its requirements and 

constraints. This chapter compares dynamic tuning to automatic and dynamic analysis and 

indicates advantages and disadvantages of both approaches. We define our principal 

taxonomy and classification of dynamic tuning and we show at which layers the 

performance tuning is possible. We present our representation of knowledge that is 

required to dynamically optimize an application. This chapter also shows our idea on how 

to facilitate dynamic tuning process. Therefore, we present the design of pattern-based 

framework that provides parallel application specification. We introduce the specific 

library called DynInst, that supports dynamic instrumentation approach what allows us for 

application monitoring and optimization on the fly. We introduce the set of modifications 

that are possible to be applied dynamically. Finally, this chapter presents a set of existing 

tools that are related with the tuning area. 

 

In Chapter 5 we present design and implementation of MATE – Monitoring, Analysis and 

Tuning Environment. We describe our dynamic tuning environment presenting its 

requirements, architecture and design. We show all its modules namely Monitor, Analyzer 

and Tuner together with the implementation aspects. 

 

Chapter 6 presents a catalog of tuning techniques that we studied within our work. Each 

tuning technique is described in a systematic way and consists of a set of sections that 

explain the performance problem the technique addresses, its general applicability, solution 

it applies, the implementation aspects and the conducted experiments. The experimental 

work provides the possibility to see the benefits that we can achieve utilizing MATE to 

improve the application performance. We collected all measurements by tuning synthetic, 

as well as real applications. 

 

Finally, Chapter 7 summarizes and concludes our work, outline open problems and discuss 

directions for future work. 
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Chapter 2 

Classical performance analysis 
 

In this chapter, we present a general overview of the classical performance analysis of 

parallel and distributed applications. Two principal approaches to the classical application 

analysis are described: based on visualization of the execution and based on prediction of 

the behavior. We introduce different existing techniques of performance measurement that 

are utilized in the performance data collection process for the purposes of the application 

behavior analysis. We also present a set of available tools that support classical 

performance analysis of parallel programs. 

 

2.1. Approaches 
The principal goal of parallel and distributed applications is to benefit from the potential 

high computational capabilities of parallel systems. However, obtaining high performance 

of an application running in such a system becomes a hard task. To develop an application 

characterized by adequate performance, programmers must face up the analysis process. 

Therefore, to attend the performance analysis problem and help programmers in the 

application improvement, many tools have been presented. There are two principal 

classical solutions implemented by these tool: the first has been classified as “measure and 

modify”, the second as predictive. 

 

The “measure and modify” approach of the classical analysis of parallel applications is the 

oldest one and is based on the visualization of the program execution. Generally, tools that 

support this approach show the execution of the application in different graphical and 

numerical views. To be able to visualize application behavior, first the classical tools 

requires the usage of monitoring tools to obtain performance data (a.k.a. measurements) 

from the application execution. Then, visualization tools perform measurements and 

generate different graphics of application behavior. As the next step, users must analyze 

generated views selecting the most problematic regions and finally change the application 

source code. This process repeats again until an adequate performance is achieved. In this 

approach two main steps can be identified: monitoring and visualization.  
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On the other hand, the principle of the predictive approach to the classical performance 

analysis is to build a model of the application behavior. Such a model provides a way to 

understand performance problems. The predictive analysis is based on the simulations of 

the application execution. As a result of the performance analysis a user will receive the 

expressions constructed by the tool that model the application performance. Using these 

models benefits in the prediction of the future application behavior. However, the user 

must understand and process the performance analysis results to improve the application. 

 

2.2. Performance monitoring 
The application performance analysis requires performance data gathered from the 

application executions. Therefore, the application must be monitored in order to get such a 

data. The performance monitoring process consists of two main phases: instrumentation 

and measurement collection. The parallel program is executed under control of a 

monitoring tool that allows for measuring and collection of performance data. The main 

purpose of this data is to illustrate specific information about the application execution. To 

generate such a data, some piece of logging code, so called instrumentation, must be 

inserted into the original code of the application. The instrumentation is inserted at all 

points in the application code that are to be monitored. In the classical analysis approach 

the insertion is done by the monitoring tool in preprocessing phase or manually by the 

programmer. Once the application has been instrumented with the specific calls to the 

monitoring code, it must be compiled and linked with appropriate monitoring libraries.  

 

It is also possible to insert the instrumentation dynamically. The principle of dynamic 

instrumentation is to defer program instrumentation until it is in execution and insert, alter 

and delete this instrumentation dynamically during program execution. The program being 

modified is able to continue its execution and does not need to be re-compiled, re-linked, 

or restarted. Dynamic instrumentation is provided by a library called DynInst. Details of 

dynamic instrumentation and the DynInst library will be explained later in Chapter 4. 

 

When the application is being executed and is performing a part of code with inserted 

instrumentation, this instrumentation allows for data measurement and collection. For 

example, to calculate how many times a function is called, the monitoring call must be 

inserted at the beginning of this function. Then, during the application execution, the 
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monitoring code, when invoked, will increment an internal counter. Phases of 

instrumentation and measurement collection in the classical performance analysis are 

shown in Figure 2.1.  

Application 
execution 

function send (…) 
{ 
   monitor (…); 
   ... 
} 
 
function recv (…) 
{ 
   monitor (…); 
   ... 
} 

Instrumented 
application code

function send (…) 
{ 
   ... 
} 
 
function recv (…) 
{ 
   ... 
} 

Original 
application code 

function send (…) 
{ 
   monitor (…); 
   ... 
} 
 
function recv (…) 
{ 
   monitor (…); 
   ... 
} 

Preprocessing 
or  
manual 
modifications 

monitor (...) 
{ 
   counter++; 
} 

Compilation, 
linking with 
monitor 
library, 
execution 

Fig. 2.1. Classical monitoring process that consists of instrumentation and measurement collection.
 

As indicated in [Ree93] there are three basic approaches to performance data capture: 

timing, profiling (counting and sampling) and tracing. Each measurement technique 

represents a different balance between the amount of information, potential perturbation, 

accuracy and implementation complexity. In the following subsections we present a short 

description of different monitoring techniques. 

 

2.2.1. Timing 
This technique relies on a measure of execution time. The measurements are performed by 

specific calls to timing libraries. Such a library may be based on the following timing 

function calls: clock(), times(), gettimeofday(), gethrtime(), getrusage(), 

MPI_Wtime(), Fortran90 qw_time(), system_clock(). Calls to the timing library must 

be inserted into the application code. These calls collect in execution time values that can 

represent execution time of functions, loops, specific block of code or the whole 

application.  

 

Generally, this approach provides summaries of accumulated times. The time is aggregated 

to have an idea about the execution time of requested application parts. Aggregate system 

timing generates data that can identify where a system spends the majority of its time, but 

not when and why. This method is still simple and fast to get preliminary performance 
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data. However, its use for large applications seems to be irrelevant because of the 

enormous amount of instrumentation if every instruction should be timed. An example tool 

is PTR that stands for Portable Timing Routines [L1]. This is a project of the Parallel Tools 

Consortium (Ptools) [L2] that provides efficient timers for many platforms via a 

standardized library interface. 

 

2.2.2. Profiling 
Profiling provides an easy mechanism to collect reduced set of performance data. 

Generally, this technique serves for getting accumulated values of specific part of code. 

Typically, it is used to measure the number of times a given application part such as 

function, loop or code block is invoked. In this approach the profiling library contains 

implementation of the functions that can summarize the application execution and then 

calls to these functions must be inserted into the application code. Profiling provides a user 

with a kind of report about the application execution. It is not a way to locate exactly the 

performance problem, but it gives a general description of the application behavior in 

different categories. For example, it is possible to indicate functions that get a dominating 

percentage of the application execution.  

 

There are two ways to provide profiling:  

• Counting – it records the number of times an event occurred, but not where or why. 

Given both counts and total times, it is possible to accurately compute average 

execution times.  

• Sampling – it allows one to obtain periodically the system state and increment a 

counter that corresponds to the observed state. Standard profiles sample the program at 

fixed time intervals. At each of these intervals program execution is interrupted and 

certain measures are taken and accumulated in the table. The produced histogram or 

table is called the execution profile. Typically, sampling provides information about 

how much CPU time is used by each function or subroutine in a program.  

 

Some example profiling tools are:  

• PAT – Performance Analysis Tool [Gal98] – it is a profiling tool developed by Silicon 

Graphics/Cray Research [L3, L4]. It uses sampling and accesses to hardware 

performance information to obtain an execution time profile for application functions.  
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• Apprentice [Gal98] – it is a successor of PAT profiling tool which usage and 

information are more complex than in PAT. It uses source code instrumentation 

through compiler switches and provides statistics on the level of functions and basic 

blocks.  

• Xprofiler [L5] – this is the X-Windows Performance Profiler developed by IBM 

corporation [L6] that uses procedure-profiling information to construct a graphical 

display of the functions within the application. Xprofiler provides identification of the 

functions that are the most CPU-intensive. 

 

2.2.3. Event tracing 
This technique generates a sequence of event records. Each event is some significant 

activity and is an encoded instance of the action and its attributes. Typical record includes 

what happened in the application, when, where, and in which circumstances. It may 

contain information about what action occurred (e.g. what function was invoked), a 

timestamp, a place in the application (e.g. in which place of the invoked function, source 

code line number) and execution details (such as machine name, process identifier, 

function parameters and circumstantial parameters).  

 

Typically in the classical analysis, the parallel program is executed under control of a 

monitoring tool that generates a trace file. The main purpose of the trace file is to illustrate 

the behavior of the program. Therefore, this trace file includes all the events recorded 

during the execution of the application. To generate such a file instrumentation must be 

inserted into the application at each necessary point. This instrumentation gathers all 

required performance data, creates an event record and allows for saving just created event 

to the file.  

 

One of the possible alternative to the trace file is sending event records directly for the 

performance analysis purposes. In this sense, the analysis can be performed dynamically 

during the application execution and there is no need for saving information on the disk. 

We will explain this kind of performance analysis in Chapter 3. 

 

Once the application has been terminated, the monitoring tool provides the user with a set 

of trace files. Generally, there is a distinct trace file saved locally. One trace file can be 

created for each machine (or processor or process – it depends on the implementation of 
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the monitoring tool). Therefore, all events from all trace files must be merged into one 

global trace file. However, in this point a parallel distributed application cause an 

important problem, namely clock differences of a set of machines. Each event contains a 

timestamp that may be generated concerning time on a local machine. If clocks are 

different on different machines, event timestamps will also differ. In this situation, there is 

a need for timestamp adjustment, because only ordered events can be analyzed correctly.  

 

Event tracing provides a good base for the application performance analysis. This 

technique is the most invasive technique, but it is also the most general and the most 

flexible. The main advantage is the big quantity of information about the application 

execution. A generated global trace file is representative of what really happened in the 

application, hence it allows for the reconstruction of the application execution. The 

disadvantage of tracing is its potential intrusion, the implementation complexity and large 

amount of produced data. The big information quantity causes the storage problem. A trace 

file containing events from an application that has been executed for many hours or even 

days, may occupy huge amount of disk space. Therefore, some precautions are taken into 

account by the developers of tools that monitor the application using tracing method. To 

reduce the amount of generated data, these tools provide for example selective 

instrumentation or binary/compressed trace file format. The well known examples of tools 

that base the monitoring phase on the event tracing are: PICL, Tape/PVM and 

VampirTrace. We explain them later in this chapter. 

 

2.2.4. Hardware counters 
The monitoring type described above is characteristic for the software performance 

monitoring. The application source code is changed in order to obtain information about 

different software segments (e.g. functions, statements). However, we can also distinguish 

a second type of monitoring namely hardware performance monitoring (HPM) [L7]. HPM 

provides statistics of the hardware operations performed by CPU. Generally such a monitor 

is based on the counters and contains a small set of registers that count events, which are 

occurrences of specific signals related to the processor’s functions. The example operations 

are: floating point operations (multiply, add, multiply-add, divide, etc.), integer operations 

or memory operations. Monitoring these events facilitates correlation between the structure 

of the source code and the efficiency of the mapping of that code to the underlying 
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architecture. Software and hardware performance monitors provide complementary 

information.  

 

Some example tools are: 

• PAPI – it stands for Parallel Application Program Interface. This is a standard API for 

obtaining the values of hardware counters available on modern microprocessors [L8]. 

This project forms a part of the working group of a Ptools Consortium.  

• PCL – it is Performance Counter Library [L9] developed Research Centre Juelich in 

Germany [L10]. This is a portable API for accessing hardware counters that provides 

interface for many languages.  

 

2.3. Visualization 
Once the application has been instrumented and performance data is available, the second 

step for the measure and modify approach can be performed. This step visualizes the 

generated trace file. Tools that support this measure and modify method of the classical 

analysis can display post-mortem - after the execution of the program – the trace file. They 

do this usually via different perspectives such as gantt charts, bar charts or pie charts. Most 

of the visualization tools use detailed graphics to show the application execution. The 

displayed information may contain message-passing, collective communication, execution 

of application subroutines, and so on. The next step requires developers (or experts) to 

analyze illustrated information and detect potential problems. Then they must find causes 

that made the bottleneck problems occurred. In the following step a developer has to 

manually relate detected problems to the source code. The last step is to tune the 

application – fix found problems by changing the source code of the program. Then the 

modified program must be re-compiled, re-linked and restarted. Figure 2.2 shows the 

general view of the classical approach to performance analysis. There are many 

visualization tools that try to help the users by providing them with different views of the 

application execution by analyzing gathered trace files. We present the most known 

examples in Section 2.4. They offer fairly evolved interfaces and allow the user to navigate 

amongst the different views providing quite intuitive screens. With these tools, it is 

reasonably easy to see the general behavior of the application. 

 

Although this approach has been used for many years, it still has several drawbacks: 
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• In general terms, it is a very time consuming task that can significantly delay the 

application deployment. The degree of expertise required to carry out this task is very 

high, especially the phase of relating performance bottlenecks to the source code of the 

application and deciding how the application should be optimized. 

• Usually, large applications running for several hours produce a huge amount of data in 

the trace file that is difficult to manage and analyze. Additionally, to collect all the 

required information for the analysis, it may be necessary to heavily instrument the 

application. This instrumentation can provoke a significant level of intrusion and affect 

the real performance of the application. 

Fig. 2.2. The general view of the classical approach to performance analysis. 

Tools 

User Source 
code 

Performance tuning 

Performance analysis 

Trace 
file 

Visualization Monitoring

Execution

Application

 

• Visualization tools do not scale very well. When the number of processes involved is 

high or the execution time is long it is difficult to have a clear picture of the behavior of 

the application, since the visualizations become unreadable. 

• The analysis is based on a single execution of the application. It is suitable for stable 

applications that present the same behavior for different input data sets. However, 

when the application behavior depends on the input data, the modifications based on 

analysis for one particular execution can be inadequate for another execution. 

• When the application behavior varies during the execution from one iteration to 

another (for example, a different number of null elements in a matrix), the useful 

modifications for one particular region of the application can be contradictory with the 

modifications required by other iterations. The problem is that there is a single copy of 

the source code and different iterations require different implementations. 
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• If the target platform is changed (number of processors, processor speed, network 

bandwidth, etc.) the required optimizations may be different. This becomes a 

significant problem in grid systems that exhibit highly dynamic and unexpected 

behavior. 

 

Taking all these facts into account, the classical “measure and modify” approach based on 

visualization tools is only feasible for a reduced set of applications. Such applications 

cannot be very large, must have quite a stable behavior and cannot require a significant 

amount of instrumentation. 

 

2.4. Example tools 
Many monitoring and visualization tools, which try to help the user in the complicated  

application performance analysis and improvement, are available. There are some tools 

that can only generate trace files, some tools that can visualize them and the other tools 

that can do both things together. In the next subsections we present the most popular tools 

in the classical analysis area for monitoring and visualization purposes. 

 

2.4.1. Tape/PVM 
Tape/PVM [Mai95] was developed at LMC-IMAG Laboratory and it is one of the well 

known monitoring tools that generates trace files of PVM applications. It also provides the 

following utilities: library of C functions to easily read the generated traces and tool to 

transform the traces to PICL format. Therefore, Tape/PVM is a good base for other tools 

that can visualize an application execution and provide post-mortem performance analysis. 

It is focused on minimal overhead introduced into traced programs and causally coherent 

event dating using clock synchronization. 

 

This tool uses a special preprocessing phase to insert instrumentation into a source code. 

The preprocessing phase invoked by the user consists in inserting a call to the Tape/PVM 

initialization function and in intercepting calls to the PVM library. For each PVM function 

there is an associated intercepting function which records the trace information before 

passing control to the actual PVM function. After this phase, the modified code must be 

compiled and linked with the Tape/PVM library by the user. Once the instrumented 

program has been launched, the first clock synchronization phase starts to collect 
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differences of clocks from all machines. Once it is finished, a program starts its normal 

execution. Each process of a running instrumented program generates locally its own trace 

file. After execution of the program, TAPE/PVM joins all files into one global trace file 

transforming local timestamps of events into global timestamps. Therefore, events from 

different machines have the same global time reference, are comparable, and causally 

coherent. 

 

Overhead introduced into an application due to the use of a monitoring tool can be 

significant, hence Tape/PVM limits the intrusion using appropriate techniques. It compacts 

the events, reduces the number of exchanged messages, and performs all additional tasks 

(e.g. clock synchronization, global time reference) before/after a program execution. 

 

2.4.2. PICL 
PICL – Portable Instrumented Communication Library [Gei90, L11] is a tool developed at 

Oak Ridge National Laboratory [L12]. PICL serves for portability, ease of programming 

and execution tracing in parallel program. PICL is a subroutine library that can be used to 

develop PVM-based programs that are portable across several platforms. It supplies low-

level communication primitives. However, it also simplifies parallel programming by 

providing a set of high-level communication routines.  

 

The library has a built-in mechanism of trace file generation. Using special routines 

provided by PICL library, it is possible to invoke the tracing of processes, as well as 

control the type and amount of tracing data. Including such tracing routines’ calls in the 

application code, a user requests the PICL library to activate routines that produce time 

stamped records and generate a trace file on each processor. Although the set of tracing 

routines provided by the library is small and easy to use, the recompilation and linking 

phase is required. The user has a possibility to configure tracing data. He/she can choose 

what type of trace records (e.g. user-defined, event, statistics) and what type of event (e.g. 

user-defined, communication, I/O, synchronization, resource allocation) is to be generated. 

Therefore, the number of traced data can be reduced if necessary. The trace file contains 

one record per line, and each record comprises a set of fields that specifies the record type, 

event type, timestamp, processor id, process id, number and description of other data fields 

that are common for a particular event. After the application execution, all generated trace 

files are collected and sorted by time. 
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The PICL library has been evolved to MPICL that provides a mechanism for collecting 

information from MPI-based programs.  

 

2.4.3. ParaGraph 
ParaGraph [Hea95, L13] is the visualization tool developed at University of Illinois for the 

trace files generated by the MPICL library. It provides the dynamic, graphical, and detailed 

animation of the behavior of message-passing based programs (MPI), as well as summaries 

of overall program performance. It replays in a visual form events that happened during 

parallel program execution. ParaGraph provides to a user a set of views that are divided 

into three categories: processor utilization, communication between processes and task 

information. The example view of the process utilization is showed in Figure 2.3. The 

utilization view displays the total number of processors in each of three states (busy, 

overhead and idle).  

Fig. 2.3. View of processor utilization summary and utilization Gantt chart provided by Paragraph.

 

Although ParaGraph takes as an input trace files in the MPICL format, the tool depends 

only on input data. Therefore, it can perform equally well any trace file that has the same 

format and semantics as PICL/MPICL. If other message-passing application is 
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instrumented and generates trace files in PICL format, ParaGraph can process them 

showing the program behavior. 

 

2.4.4. Vampir 
The VAMPIR [Nag96, L14] (Visualization and Analysis of MPI pRograms) is distributed 

by Pallas company [L15], a member of the ExperTeam group. This is the commercial 

visualization tool especially for MPI-based applications. It provides a variety of graphical 

displays that present important aspects of the application behavior (see Figure 2.4). It also 

supplies flexible filter operations to reduce the amount of information to be displayed and 

forward/backward motion in time. Vampir supports evaluation of load balancing, analysis 

of performance of subroutines or code blocks, and identification of communication 

bottlenecks. The tool displays information about communication patterns, parameters and 

performance. 

Fig. 2.4. Different views of the application behavior displayed by Vampir. 
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As all mentioned tools, Vampir also uses trace files to visualize behavior of an application 

after its execution. This tool has its own mechanism to monitor an application, namely 

VAMPIRtrace. It is a library for tracing operations of MPI-based applications. It uses the 

profiling interface of MPI library to record point to point communications, collective 

operations, MPI I/O operations and user-defined procedures. Generally, the trace file 

generation is convenient, because a user does not need to change the source code, only to 

link the application with the VampirTrace library. However, when the user-defined 

procedure is to be traced, the VampirTrace API must be used to modify the application and 

hence the recompilation phase is required. The tool also provides event filtering in a form 

of configuration file read before the application execution. This feature allows for 

collecting only selective events, what can significantly reduce the size of trace file.    

 

2.4.5. Pablo 
The Pablo [Ree93] environment developed at University of Illinois includes application 

performance instrumentation, graphical and sonic representation of the collected data and 

the data amount reduction. It provides a manual application instrumentation as well as a 

graphical interface for interactive specification of instrumentation points. Pablo allows for 

capturing procedure calls, inter-process communication, and input/output operations.  

 

Pablo offers many different graphics (that can include also sound) to the user where 

performance data is constructed as analysis graph [L16]. The example views are presented 

in Figure 2.5. The resulting performance analysis graph can be saved in a compact, 

portable and extendable format. In addition to graph-based analysis, Pablo contains a 

statistical analysis software that can compute and display histograms of specific data 

values. Moreover, this tool supports the captured data visualization by means of a virtual 

world. Pablo has implemented performance data presentation metaphor that shows the 

application execution in the three-dimensional space. 

 

The instrumentation software supports tracing, interval timing, and counting. The tools 

generates its own trace files which contain a set of event in a typical event format (what 

happened, when and where). As majority of the mentioned tools, the Pablo trace library 

has been also designed to reduce perturbations caused by monitoring and dynamically 

altering the number of data to be traced. If the overhead exceeds specified thresholds, the 

 21



Classical performance analysis 
 

instrumentation software will automatically convert more invasive instrumentation e.g., 

event tracing to a lower one e.g., counting.  
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Fig. 2.5. Different views of the application execution provided by Pablo toolkit. 
M 
i94] is a graphical console and monitor for PVM-based programs developed at 

National Laboratory. It is usually integrated with the PVM library. XPVM can 

a graphical environment to manage virtual machine and parallel application. It 

ation and elimination of tasks and machines.  

es also as a monitoring tool. It uses the event collection mechanism integrated 

uring execution of an instrumented program, PVM kernel routes events to 

VM has its own visualization utility, presented in Figure 2.6, hence it is able to 

eived information on-line and display it in “real time”. A very useful feature of 

 the ability to show the communication between processes and the group 

like barrier. XPVM main window contains two parts: configuration of the 
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save events of program execution to a trace file. This trace file can be used as input to the 

visualization process. XPVM may be also used for post-mortem performance analysis. 

Fig. 2.6. Main window of XPVM that displays virtual machine and application behavior. 
 

2.5. Predictive analysis 
A prediction or forecast is the result of an attempt to produce a most likely description or 

estimate of the actual evolution of a variable/system in the future. Predictive analysis of 

application performance is based on the analytical models that are constructed in order to 

predict future application behavior for different conditions. Moreover, these models 

provide the programmers with a feasible expression of the program execution so it is easier 

to draw conclusions about the program performance. The advantage of modeling is that it 

enables the prediction of application performance for different input data, machines and 

problem definition. However, the definition of accurate model is complex and requires 

expert knowledge. To facilitate this task, predictive tools avoid the process of 

understanding the performance details by abstracting them in higher level expressions that 
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are useful for the programmers. In this approach the model construction is automated and 

as an output the user obtains the application behavior model.  

 

In the following sections we present example tools that are based on predictive analysis 

approach.  

 

2.5.1. Lost Cycles Analysis 
Lost Cycles Analysis (LCA) [Cro93] is a toolkit for the performance analysis of the 

parallel applications that was developed at the University of Rochester. The tool automates 

the performance model construction as a function of runtime factors. The analysis is 

divided in two phases: predicate profiling of the application to obtain measurements and 

modeling of those measurements.  

 

During the predicate profiling phase, the empirical measurements must be obtained to 

model the application behavior. The measurements are the lost cycles associated with 

overheads. Overheads are execution delays expressed in seconds and they are divided into 

categories that depend on the source of the wasted time (e.g. time spent in tasks not 

directly related to the computation such as communication or synchronization, delays 

caused by load imbalance). The overhead categories are defined via performance 

predicates, which are logical statements that represent the occurrence conditions of the 

categories. To perform the profiling, first, the user defines the environment variables that 

will affect the application execution. The user samples the valid ranges for each variable 

and the combination of the sampled values defines the parameters that are used in the 

experiments. Typically these parameters are: the number of processors used, the number of 

iterations performed by a specific part of code or data structure dimension. The profiling 

phase ends with execution of the experiments and data collection. In the LCA this phase is 

performed by means of the performance profiler (pp tool).  

 

The modeling phase assigns models to overhead categories. These models are functions of 

environment variables that rule the application's execution. The determined models are 

fittings of the measured data to default models. The modeling contains two steps: one-

dimensional and multi-dimensional model generation. In the first step user generates 

models for each environment variable and each overhead separately (e.g. expression that 

models load imbalance in function of number of processors and data size). Next the tool 
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called lca uses the measurements performed in the profiling phase to parameterize the 

models finding the appropriate coefficients that approximate the reality. The resulting 

models for each category of overhead capture the effects of varying environment 

parameters in isolation. In the second step the user combines one-dimensional models into 

multi-dimensional models with a help with the lca tool. To produce the final performance 

function, the user must add or multiply models of the overhead categories.  

 

The objective of the toolkit is to provide a mathematical representation of the performance 

problems – overheads – found in the application execution. The advantage of such a 

representation is high level view of the execution details. However, the difficulties rely on 

the user that must manage the construction of the application models that accurately reflect 

the reality.  

 

2.5.2. P3T 
P3T, a Parameter-based Performance Prediction Tool [Fah93], is an interactive 

performance estimator that helps users tune scientific Fortran programs. This tool was 

developed in the context of the Vienna Fortran Compilation System (VFCS) [Ben95] 

which enables the estimator to exploit considerable knowledge about the compiler's 

analysis information and code restructuring strategies. The VFCS translates Fortran 

programs into explicitly parallel message-passing programs and P3T guides the interactive 

and automatic restructuring of programs under this system. P3T detects bottlenecks in the 

program, identifies the causes of performance problems, and guides users in selecting 

effective program transformations to gain performance. The tool focuses on the following 

aspects of parallel programs: load balance, data locality, communication, and computation 

overhead. As an input P3T takes a list of performance parameters that are estimated at 

compilation time. The example parameters are: number of transfers, amount of data 

transferred, transfer time, computation time, work distribution and so on. These parameter 

provide the required abstraction to express the performance application quality. All 

parameters can be assigned to blocks of code such as loops or procedures.  

 

The performance analysis is guided via GUI that directs the user to the computational 

bottlenecks that prevent the program from performing well. In addition, P3T allows 

performance data to be filtered and visualized at various levels of detail.  
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2.5.3. Dimemas 
Dimemas [L17] is a tool developed by CEPBA center of Universitat Politècnica de 

Catalunya [L18]. This is a simulation tool for the parametric analysis of the behavior of 

MPI applications. It enables the user to develop and tune parallel applications on a 

workstation, while providing an accurate prediction of their performance on the parallel 

target machine. 

 

First the application must be instrumented in order to obtain trace file. Dimemas 

instrumentation library is based on the profiling VAMPIRTrace tool. This library usually 

records the CPU time consumption, communication primitives and event information such 

as function begin/end, value of variables, value for internal processor registers. Moreover, 

using GUI a user can model the architectural parameters of machines. The simulator allows 

specifying different task to node mappings.  

 

With the records read from the trace files and specified architectural parameters, Dimemas 

will rebuild the time behavior of a parallel application. The tool simulates the application 

execution scaling the time spent in each block according to target CPU speed. As an output 

Dimemas generates trace files that are suitable for the visualization purposes and in 

particular for Vampir tool. The results include global application information: execution 

time and speedup. Additionally, for each process the tool gives information about 

execution time, blocking time, computation time, number of messages sent and received, 

volume of communication data. Moreover, Dimemas is able to determine the critical path 

which returns the longest communication path of the application.  

 

2.6. Conclusions 
As we have seen, the classical analysis tools support a user in performing two phases: 

monitoring and then visualization or prediction of the application behavior. The first phase 

is facilitated by monitoring tools that are generally based on the use of the tracing method. 

The tool that uses this technique to monitor the application, inserts instrumentation into the 

important parts of the application code and generates trace files. Once a trace file has been 

generated, the second phase is performed by visualization or predictive tools.  
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Many monitoring and visualization or predictive tools, which try to help a user in the 

complicated  application performance analysis and improvement, are available. There are 

some tools that can only generate trace files, some tools that can visualize them or predict 

the behavior and the other tools that can do both phases together. Nevertheless, the tools 

that support the classical approach are very similar in their purposes and results provided to 

the user. Using this kind of tools, the user must have a great knowledge of parallel 

applications and experience in developing them in order to improve their behavior.  
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Chapter 3 

Automatic performance analysis 
 

This chapter presents the general idea of the automatic performance analysis of parallel 

and distributed applications. Then, we introduce an extension to the automatic approach, 

namely dynamic performance analysis, that performs the application analysis automatically 

during run time. Finally, we are going to present examples of tools that support both 

automatic and dynamic performance analysis of parallel programs. 

  

3.1. Overview 
Although visualization tools based on the traditional approach are often very helpful, 

developer must have a great knowledge of parallel systems and experience in performance 

analysis in order to improve the application behavior. To overcome difficulties of the 

“classical approach” it would be very important to offer to the users tools that would guide 

them in the tuning process. It would allow them to avoid the degree of expertise required 

by the visualization tools. Such tools should introduce some automatic features. Carrying 

out some steps of the application performance analysis automatically, the participation of 

the user could be reduced.  

 

To decrease developers’ efforts, especially to relieve them of duties such as analysis of 

graphical information and determination of performance problems, an automatic parallel 

program analysis has been proposed. Tools using this type of analysis are based on two 

principles. First, they use collection of measurements gathered from the application 

execution and provided by a monitoring tool. The application is instrumented before it is 

put into the execution and instrumentation is inserted into all necessary points. Second, 

they are based on the knowledge of performance problems. Once measurements have been 

collected, the automatic analysis process can be performed. This process is a search for 

performance problems within the information obtained from the execution. The principal 

question here is how to detect performance bottlenecks. Experience with parallel 

applications has shown that many of them have well-recognized performance problems. To 

search for a performance problem, a tool should be then supported with the information 

 29



Automatic performance analysis 
 

about possible bottlenecks and how to find them. The objective is to comprise information 

about both application and parallel system features. Potential bottlenecks can be 

represented as a knowledge provided to a tool. Such a knowledge may contain 

performance models that provide a way for understanding performance problems. Using a 

good analytical model, the application behavior might be predicted, bottlenecks can be 

found, as well as their causes and optimizations can be deduced and provided to the user. 

Unfortunately, the creation of models is not an easy task and usually it is a compromise 

between simplicity and accuracy.  

 

Each tool then has built-in performance model for typical kinds of applications, hence it is 

able to identify critical bottlenecks and help in optimizing applications by automatically 

giving suggestions to developers. These hints or recommendations expose the performance 

problems showing the parts of the application, which are performing poorly. Figure 3.1 

shows the general parts of automatic analysis tool that support a user in analyzing and 

improving application performance. There are several tools available that support this 

approach such as KappaPi, Paradise or AIMS. We will talk about them later in this chapter. 

Suggestions 
for user 

Tools 

User Source 
code 

Performance tuning 

Performance 
analysis 

Trace 
file 

Monitoring

Execution

Application

Fig. 3.1. The general view of the automatic approach to performance analysis. 

 

In this approach the performance bottleneck search is still based on trace files. This 

automatic analysis can be called static since is done post mortem – after the application 

finishes its execution. The visualizations are replaced with automatic analysis and direct 

recommendations about detected problems. These tools significantly reduce the amount of 

time spent by developers in performance analysis, since they are supported with more 

automation in the whole tuning process and receive information that is more accurate. 

Generally, given hints are representative and useful for only one application behavior. The 
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tool analyzes a trace file generated for one application execution. If the application is 

executed again and has different input data or changes the behavior during the execution, 

the previously performed analysis can be inadequate. Therefore, tools are more adequate 

for the same input data and stable applications. 

 

3.2. Dynamic performance analysis 
Although analysis is facilitated in the presented automatic analysis approach, the developer 

must manually perform the application tuning. In addition, some of the drawbacks 

mentioned above with respect to the visualization approach are still present in this 

automatic performance analysis: 

• Fully instrumented application. 

• Trace file based analysis. 

• Single run of the application in a given environment. 

• Stable behavior required. 

 
Therefore, the automatic analysis approach was extended from the static version to the 

dynamic automatic analysis. In this case, performance analysis is done on the fly, during 

the execution of the application in a fully automatic manner and avoid the need for the 

manual instrumentation.. It implies the necessity for the on line monitoring, where the 

principal advantage is that any trace file is no more needed for analysis. Figure 3.2 presents 

basic view of the dynamic performance analysis. 
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for user 
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Fig. 3.2. Basic scheme of the dynamic and automatic performance analysis. 

 

This approach allows for control of the amount of instrumentation inserted in the 

application by applying dynamic instrumentation techniques. The monitoring can start with 

a very simple instrumentation and when some particular conditions are detected, the 

additional instrumentation can be introduced. When the conditions disappear, it is possible 
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to eliminate the extra instrumentation. In this approach, the analysis must be done during 

the execution of the application what implies some extra overhead. Therefore, the analysis 

must be relatively simple so as to reduce the overhead as much as possible. The principal 

and most known tool that provides dynamic performance analysis is Paradyn. We present it 

later in this chapter (see Section 3.3.4). 

 

By using a dynamic analysis tool, the problems can be identified significantly faster than in 

a post-mortem approach. The dynamic approach is best suited for iterative programs and 

can handle long-running applications with high data volumes. However, to solve the 

detected problems, it is necessary to stop the application, modify, recompile and rerun it. 

This implies that the work carried out is aborted and a new execution is launched. 

Similarly to static analysis, the dynamic analysis is based on a single run of the application. 

When the application behavior depends on the input data or on the iteration of the 

execution, the suggested recommendations can be inadequate for a further run of the 

application. 

  

3.3. Example tools 
In the next subsections we present tools that support the user with automatic and dynamic 

analysis during the application performance improvement. All these tools have provided 

successful results. 

 

3.3.1. KappaPi 
KappaPi [Esp98] stands for a Knowledge-based Automatic Parallel Program Analyzer for 

Performance Improvement. This tool was developed at Universitat Autònoma de 

Barcelona. KappaPi is a static automatic performance analysis tool based on a trace file 

post-mortem analysis and a knowledge base that includes the main bottlenecks found in 

message passing applications. The tool helps the user in the performance improvement 

process by detecting the main performance bottlenecks, analyzing the causes of those 

problems, and relating the causes to the source code of the application. KappaPi provides 

also some suggestions about the detected bottlenecks and the way to avoid them.  

 

In the preliminary step the application must be executed with Tape/PVM monitoring tool 

in order to get the trace file that will be then analyzed by the KappaPi analyzer [Esp00]. 
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Once the trace has been generated, KappaPi tool can be invoked. In a first step, KappaPi 

makes a general overview of the application performance by measuring the efficiency of 

the different processors of the system. KappaPi considers as performance inefficiencies 

those intervals where processors are not doing any useful work; they are just blocked 

waiting for some message. So, the efficiency of a processor is considered as the percentage 

of time where it is doing useful work. When there are idle time intervals, these time 

intervals should be avoided in order to improve the performance of the application. The 

best situation would be to have all the processors completely busy doing useful work 

during the execution of the application. In this first step the user gets some information 

about the overall behavior of the application, but without any idea about the bottlenecks 

and their causes. 

 

After this initial classification, KappaPi starts the deep analysis looking for performance 

bottlenecks. KappaPi takes chunks from the trace file and classifies the performance 

inefficiencies detected in that chunk. It must be pointed that several inefficiencies can 

correspond to the same performance bottleneck, because in many cases the inefficiencies 

are repeated along the execution of the application. The detected bottlenecks are classified 

in a table according to the inefficiency time incurred. After analyzing the first chunk, the 

second chunk is analyzed and a new table is built and joint to the initial one in such a way 

that the new inefficiency time of the same bottleneck is added to the first one. The process 

is repeated for all the chunks and finally KappaPi provides a sorted table with the worst 

performance bottlenecks. 

 

The next stage in the KappaPi analysis is the classification of the most important 

inefficiencies. For that purpose, the tool relates these inefficiencies with some existing 

behavior categories using a rule-based knowledge system. From this point, the 

inefficiencies are transformed into specific performance problems that must be studied to 

build up some hints to the users. To carry out this classification, KappaPi tool takes the 

trace file events as input and applies the set of rules deducing a list of behaviors. The initial 

list of events is the starting point for the detection algorithm. These events are the base for 

the detection of higher order facts. The just deduced facts are kept in a list (accumulated 

list) so that, in the next iteration of the algorithm, higher order rules apply to them. The 

process will finish when no more facts are deduced. 
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After the performance problem has been identified when fitting in one of the categories of 

the rule-based system the query process is finished. The next step in the analysis is to take 

advantage of the problem type information to carry out a deeper analysis that determines 

the causes of the performance bottleneck with the objective of building an explanation of 

this problem to the user. 

 

Figure 3.3 represents the KappaPi graphical user interface. The main program window 

provides to the user very useful information. It contains the following parts: statistics with 

general list of efficiency values per processor, hints about the actual quality of the 

application performance together with recommendations about what changes can be 

applied in order to improve the performance, source code view with highlighted critical 

lines and Gantt chart representing execution visualization. 

Fig. 3.3. Final view provided by KappaPi when analyzing master/worker application. 

 

3.3.2. Paradise 
Paradise [Kri96] stands for PARallel programming ADvISEr. The tool was developed at 

University of Illinois and provides automation to the parallel application optimization 

using post mortem analysis. It not only finds performance bottlenecks, but also presents 
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solutions to problems found. This is a framework that analyzes trace files building an 

event-graph representation of the program's execution. In this tool the behavior of 

applications and systems are modeled as a set of objects that have certain functionalities 

and interact with each other. These objects and their interactions can simulate the events 

that are generated during the application execution. Then the tool determines 

characteristics of this application and uses heuristics to find possible solutions to optimize 

application performance. Finally, Paradise generates hints saving them to a file. In general, 

Paradise represents similar approach to the one described in KappaPi. However, in 

comparison to KappaPi, Paradise is not able to combine performance problems with an 

application source code. 

 

Paradise works in cooperation with a run time system that uses generated hints to 

parameterize optimizations and select between different alternate optimization strategies. 

The whole project is based on the parallel object-oriented language Charm++ [Kal93] 

which is an extension of C++. It enables the benefits of object-orientation to be applied to 

the problems of parallel programming. The basic work unit in Charm++ is a chare, which 

is a concurrent C++ object. A chare type is a C++ class that contains data and functions 

which may be triggered by the arrival of messages. 

 

Once the application has been written in Charm++, it can be run and monitored to obtain 

trace files with necessary performance data. The application execution is represented as an 

event graph, which is a task graph constructed using generated trace files. The event graph 

constructed by Paradise consists of vertices representing entry-function executions, edges 

representing messages between entry functions and edges for dependences between 

methods (these dependences must be specified in the language or generated by the 

compiler). Analyzing trace files Paradise intents to discover the characteristics of the 

application by searching for common bottleneck patterns. The characteristics and possible 

optimizations researched in Paradise are for static and dynamic object placement, 

scheduling, granularity control and communication reduction. Once a bottleneck has been 

found, the tool gives suggestions to the user. 

 

3.3.3. AIMS 
AIMS [Yan96, L19] stands for an Automated Instrumentation and Monitoring System. 

This tool was developed at NASA AMES institute [L20]. The tool provides utilities of 
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measurement and performance analysis for message-passing programs written in Intel’s 

NX, PVM or TMC’s CMMD communication libraries. AIMS consists of four main 

components: a source code instrumentor – which automatically inserts instrumentation into 

the application; a run-time performance-monitoring library which collects performance 

data; two tools that process the performance data – trace file animation and analysis 

toolkit; a trace post-processor that removes overhead introduced by monitor. 

 

Instrumentor provides graphical user interface to insert instrumentation into subroutines 

invocations, synchronization operations and message-passing supporting different 

communication libraries. It also generates two key data structures: an application database 

that stores static information about the application source code (e.g. file names and line 

numbers of instrumented points) and enabling profile that contains information about 

inserted instrumentation. After the use of instrumentor, instrumented source code must be 

recompiled and linked with the monitoring library. The monitor reads the profile at the 

beginning of the execution and hence it can generate trace files. For each processing node, 

monitor writes events to the buffer. If the buffer is full or the application has finished, 

monitor flushes the buffer to the file. The buffer size can be controlled and  configurable 

by the user.  

 

After the application execution, trace file can be analyzed and displayed by the 

visualization toolkit (see Figure 3.4). AIMS provides a set of detailed and animated views 

Fig. 3.4. Detailed execution analysis presented by AIMS visualization toolkit. 
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indicating certain constructions of the execution in time. It also collects and tabulates 

statistics that reflect the cumulative activity of the program. AIMS generates a list of 

resources-utilization statistics what can help a user to find inefficient code sections. The 

tool has also capability to map an event displayed on a view to the corresponding 

application source code. AIMS contains a trace file post-processor that removes as much 

intrusion as possible from a trace file. 

 

3.3.4. Paradyn 
Paradyn [Mil95, Par03, L21] is a performance tool for large-scale parallel applications 

which was developed at University of Wisconsin [L22]. It provides monitoring and 

automatic analysis “on the fly”. This tool does not require any trace file of the application 

execution. It takes advantages of a special monitoring technique called dynamic 

instrumentation that defers instrumenting the program until it is in execution. Therefore, 

Paradyn is able to insert and modify instrumentation during run-time without any changes 

of the program source code.  

 

Paradyn also provides automatic performance analysis of the running application. While 

the main objective is to do the monitoring and analysis phases during run-time, Paradyn is 

able to make decisions and give results dynamically. It automatically identifies these parts 

of the application that consume most resources. Paradyn searches for performance 

problems using the W3 search model (why, where and when) [Hol93]. This model is based 

on answering three separate questions: why is the application performing poorly, where is 

the bottleneck and when does the problem occur. Such approach allows for quickly and 

precisely isolating a performance problem without having to examine a large amount of 

information.  

 

To minimize the intrusion inserted into the application and perform more precise analysis, 

Paradyn supports the changes of the instrumentation during run-time. It provides a user 

with possibility to control data collection manually. However, the tool also contains a 

special module called Performance Consultant that liberates the user from making such 

decisions. Performance Consultant looks for performance problems, decides what data 

must be collected and when, and applies the instrumentation changes automatically during 

the application execution showing information to the user. The example of displayed 

results created during the searching phase is presented in Figure 3.5. 
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From the implementation point of view, Paradyn is divided into three parts: the Paradyn 

controller, the Paradyn daemons, and the application processes. The Paradyn controller 

performs searches for performance bottlenecks and supports the user interface to the rest of 

the system. The Paradyn daemon isolates all machine specific dependencies and serves as a 

stage between controller and application processes. Each application process is controlled 

by the Paradyn daemon and has the dynamically inserted instrumentation.  

Fig. 3.5. Search history graph in Paradyn. 

 

Although graphical representation is not a primary goal of Paradyn, it also contains a tool 

to display the results. Performance Visualizations can provide explanations of the program 

performance and since Paradyn is designed to work during run-time, visualized data is 

displayed “on the fly” as well.  

 

3.4. Conclusions 
Both approaches presented in this chapter provide automatic performance analysis of 

applications. The most important objective of these tools is to automate the performance 

analysis process and hence facilitate a developer the application performance 

improvement. Tools that support it use the collection of measurements gathered from the 

monitoring phase. Such tools are able to analyze collected performance data of the 

 38



Automatic performance analysis 
 

application behavior and explain to the user what happened during the application 

execution.  

 

Static analysis provides post mortem analysis of the generated trace files, while dynamic 

analysis defines and processes the performance measurements and analysis at run-time. 

The second case is superior to the first one in that the trace files are no needed and the 

instrumentation can be added or removed automatically according to the actual program 

behavior. The instrumentation overhead can therefore be reduced and controlled. However, 

dynamic analysis as performed together with the application, might introduce more 

intrusion into the application execution. 

 

Both kinds of tools present certain problems when the application behavior depends on the 

input data set or a studied application has dynamic behavior during execution. It can be 

noted that the recommendations and further code modifications for one run may not be 

useful for another. 
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Chapter 4 

Dynamic performance tuning 
 

This chapter introduces the background for automatic and dynamic performance tuning of 

parallel and distributed applications. We explain the fundamental concepts of dynamic 

optimization and introduce its requirements, constraints and applicability. Then, we 

compare the tuning approach to the automatic performance analysis. Next part determines 

our principal classification of the dynamic tuning approach. We describe the application 

knowledge problem while analyzing the performance and demonstrate our representation 

of the knowledge. We also extend dynamic tuning by the design of pattern-based 

framework that provides parallel application specification and can facilitate optimizations. 

We introduce the specific library called DynInst, that supports us with dynamic 

instrumentation. We describe the set of modifications that are possible to be applied 

dynamically. Finally, we describe available tools that were developed basing on the 

concept of computational steering loop and tools that support dynamic performance tuning 

of parallel programs. 

 

4.1. Overview 
Taking both kinds of performance analysis (classical and automatic) into consideration, we 

see the superiority and advantages of automatic analysis. However, none of these 

approaches exempts developer from the analysis of the output information nor intervention 

to a source code. Each solution that has been mentioned above requires developer to 

analyze generated results, combine them with application source code, change appropriate 

part of the source code, re-compile, re-link, and finally restart the program. The presented 

approaches requires a developer to have a high degree of the expert knowledge about the 

parallel application performance. Moreover, most of them needs a trace file either to 

visualize a program execution or to make an automatic analysis. When a post-mortem 

tuning is used it must be considered that the tuning for a particular run can be useless for 

another execution of the application. The application can depend on input data and for 

different data it can behave in different ways presenting different bottlenecks. Therefore, 
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the results of analysis and offered optimization suggestions that are provided from one 

application execution might be inadequate for another one.  

 

It can be concluded then that when there are dynamic conditions, such as variable behavior 

depending on the input data and/or variable behavior throughout the application execution, 

the tuning of distributed applications should be carried out dynamically. Moreover, the 

application can be executed on different hardware configurations. For example, a user can 

have a PC LINUX cluster with different numbers of PCs or can decide to add new PCs to 

the cluster, or change the old PCs for new more powerful ones, and so on. The application 

developer cannot guarantee that performance tuning for a particular system will provide 

the best possible performance when the system conditions are changed. 

 

For all these reason, a new idea has arisen. The very convenient solution for developers 

would be to replace post-mortem analysis with automatic real-time optimization of a 

program performance. Instead of manual changes of a source code, it could be very 

profitable and beneficial to provide a developer with an automatic tuning of a parallel 

program during run-time. This approach would require neither a developer intervention nor 

even access to the source code of the application. The running parallel application would 

be automatically monitored, analyzed and tuned on the fly without need to re-compile, re-

link and restart. The current application behavior would be considered and analyzed 

finding appropriate bottlenecks and possible optimizations. Therefore, if application had 

different behavior during different execution, dynamic tuning would adapt it taking into 

account changes of the behavior in current execution. Running applications under control 

of the dynamic tuning system would also allow the adaptation of their behavior to the 

changing environment and hardware conditions.  

 

Figure 4.1 presents the model of the dynamic tuning approach. All the optimization phases 

are done during the application execution. The performance bottleneck search is not based 

on trace files, as the dynamic monitoring collecting necessary measurements provides them 

directly for the analysis process. While performing tuning, there is no need for manual 

application source code changes, because a tool that supports this kind of approach 

manipulates the application execution on the fly.  
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Fig. 4.1. The general view of the dynamic performance tuning approach. 

Investigating dynamic tuning approach we have determined that dynamic and automatic 

optimization system should be based on the steering loop as the application behavior must 

be modified at run-time. Steering loop was defined as the capacity to control the execution 

of long-running, resource-intensive programs [Gu94]. Tools that support this approach 

allow users to study the behavior of the running application and manually change key 

application variables on the fly. We present some tools that are based on the computational 

steering loop later in this chapter.  

 

Dynamic tuning system should provide the following services that cooperate among 

themselves during runtime:  

• dynamic monitoring of the execution of a parallel program. This service provides the 

measurements collected from the application execution. It can be based on any of the 

performance monitoring technique: timing, profiling, event tracing. However, because 

of the goal to reduce the user intervention, instrumentation should be done 

automatically by the system. This service will relieve a developer of the manual code 

instrumentation and exempts from the invoking all these phases that must be carried 

out when the application source code has been changed (recompilation, re-linking and 

re-running). The measurement records are passed directly for the analysis.  

• automatic performance analysis “on the fly”. This service analyzes coming 

measurements, finds bottlenecks and gives solutions on how to overcome them. This 

service will replace the classical post-mortem analysis. To find problems and determine 

how to improve the performance, the analysis should have built-in performance 

knowledge about bottlenecks that are representative for the parallel applications. To be 

useful it should also include provision of detected problems and suggestions for a user. 
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• automatic program tuning during run-time. This service utilizes solutions given by the 

analysis process and automatically modifies a parallel application during the execution. 

It does need neither access a source code nor program recompilation, re-linking, 

restarting. Dynamic tuning will relieve the developer of the source code modification 

duties since the application execution is modified automatically “on the fly”.  

 

4.2. Requirements and constraints 
Investigating the performance tuning approach we have encountered many issues that must 

be taken into consideration. In this section we present the requirements and constraints that 

we must face up.  

 

4.2.1. Parallel application control 
In general, the parallel application environment is usually executed in a distributed 

environment that includes several computers. A parallel application consists of several 

intercommunicating tasks that solve a common problem. Tasks are mapped on a set of 

computers and hence each task may be physically executed on a different machine. 

Therefore, we must be able to control and optimize all the tasks on all the machines. To 

achieve this goal, dynamic tuning services must be distributed and executed on all the 

machines where the application tasks are running. In particular parts responsible for the 

monitoring and tuning are distributed since they work directly with the application tasks. 

Only in this way we will not loose any task and we will be able to provide the information 

about the entire application execution as well as tune any required task.  

 

4.2.2. Global analysis 
The parallel application distribution also means that it is not enough to improve tasks 

separately without considering the global application view. To improve the performance of 

entire application, we need to analyze globally the application performance. It implies the 

access to the information about all tasks on all machines. We must collect all the 

information extracted from the application execution at a central location. The analysis 

performed at this location considers all tasks and hence global application improvement is 

supported. The global analysis however, may be time-consuming due to the information 

collection and the performance analysis of this information searching for bottlenecks. 

Moreover, the application execution time can significantly increase especially if both – the 
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analysis and the application - are running on the same machine. Many precaution then 

must be taken while developing the global analysis.  

 

The global analysis approach is feasible for environments with a relatively small number 

of nodes and serves for the inter-node bottlenecks. If we consider performance problems 

related only to a given node without taking into account other nodes, there is no need for 

the global analysis. Additionally, to minimize the intrusion of the application execution, 

the analysis process should be executed on a dedicated and distinct machine. However, the 

dedicated machine processing the analysis becomes a bottleneck if the number of nodes 

gets higher. Both problems, the scalability and the local bottleneck can be solved by 

distributing the analysis process. For example, local analysis could be performed 

individually by all the nodes considering only the locally available information, while 

global analysis could resolve problems caused by inter-node relationships. In the scope of 

this work we consider only the global analysis. We do not present local analysis solutions 

and examples, but it can be a good extension for the future work. 

 

4.2.3. Application knowledge 
The fact that dynamic performance tuning is carried out at run-time implies one basic and 

specific constraint to be considered: the analysis and the modifications must be kept 

simple. A programmer can develop any application that might present variety of 

bottlenecks and hence the analysis and the modifications might be extremely difficult. 

Decisions have to be taken in a short time in order to be effective in the execution of the 

program. The changes cannot affect the correct functioning of the application or crash it. 

Therefore, the performed modifications must be carried out carefully to ensure that the 

application correctly continues its execution. The modifications must not involve a high 

degree of complexity because obviously, it cannot be assumed that any changes on any 

application in any environment can be performed without taking any precautions. All these 

factors limit the application of dynamic tuning.  

 

For all these reasons, evaluation and modifications cannot be very complex. Since all the 

tuning must be done in execution time, it is very difficult to carry this out without previous 

knowledge of the structure and functionality of the application. As the programmer can 

develop any kind of program, the potential bottlenecks search can therefore be 

complicated. If knowledge of the application is not available, the applicability and 
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effectiveness of this approach might be significantly reduced. To avoid many limitations it 

would be profitable to provide specific information about the application and how to detect 

and overcome its bottlenecks. It implies the description of what should be measured, how 

to analyze the application behavior and what to change. Therefore, we must take into 

consideration the problem of the application knowledge definition and provision. We also 

must determine what is possible to change in an unknown application. 

 

4.2.4. Run time monitoring and optimization 
As we have already mentioned, all phases of improving the application performance must 

be done “on the fly”. The important issue here is to determine how to insert 

instrumentation and apply changes to the running program without accessing the source 

code. To be able to dynamically instrument the application, the code insertion must be 

defer till the application is launched. Runtime code modification cannot require the source 

code recompilation nor restart and hence it must be performed directly on the memory of 

the running application. To fulfill this requirements a special novel technique called 

dynamic instrumentation should be used. This technique permits the insertions of a piece 

of code into a running program and changes of current behavior. The advantage of the 

dynamic approach is that the instrumentation can be added or removed automatically 

according to the actual program behavior. The instrumentation overhead can therefore be 

reduced and controlled. For example, the on-line analysis can focus on the specific 

execution aspect and start with an initial instrumentation. Next, when some thresholds are 

exceeded, an additional instrumentation can be introduced to obtain more detailed 

information. Finally, when the problem is solved, the required measurements can be 

reduced.  

 

This approach is implemented by a library called DynInst. We analyzed this library and we 

saw that it is possible to manipulate a running application and manage the instrumentation 

insertion/deletion. DynInst is appropriate for two purposes: first to dynamically monitor an 

application, second to apply modifications to optimize performance during run time. We 

present this library in Section 4.8. 

 

4.2.5. Low intrusion 
The intrusion must be minimized. Besides classical instrumentation intrusion, in “dynamic 

performance tuning” there are certain additional overheads due to monitoring 
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communication, performance analysis and program modifications as all these tasks are 

performed in parallel to executing application. Dynamic tuning system should minimize 

the overhead it implies itself since it controls and changes the application. In particular the 

performance analysis should not be computationally intensive. The instrumentation used 

for monitoring should minimize or gracefully handle large volume of information. The 

dynamic instrumentation approach allows management of the instrumentation amount 

inserted into the application. Therefore, dynamic tuning system must provide this kind of 

instrumentation management.  

 

4.2.6. Target bottlenecks 
The process of measurement, measurement refinement, analysis and actuation takes itself 

certain amount of time. It may happen that when a solution is available, the bottleneck has 

already finished. Therefore, this approach is feasible for problems that appear many times 

during the execution. The system, although it misses the first occurrences, is able to adapt 

and prepare the application for the next time it enters a problematic code region. This fact 

may appear as a very hard constraint, because the bottlenecks that appear only once are not 

solved. However, when thinking about applications running for several hours there are 

certain code regions that are executed many times (iterations). Consequently, the main 

performance bottlenecks are those that appear many times during the execution. 

 

4.3. Automatic analysis vs. dynamic tuning 
On one hand, the two described possibilities – automatic analysis (static or dynamic) and 

dynamic tuning – can appear as opposite approaches. They provide a user with different 

possibilities and results. They cover different application ranges. However, from the other 

point of view, the last reason causes that they can be considered as complementary. 

Together can provide analysis of wider range of applications. There are also several 

methodologies that are common for both approaches, especially concerning performance 

model used for analysis purposes. 

 

The static approach has the advantage when the applications have a regular and stable 

behavior. They can be tuned and once the tuning process has been completed, the 

application can be executed as many times as necessary without introducing any intrusion 

during the application execution. 
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However, there are many applications that do not have such a stable behavior and change 

from run to run according to the input data or even change their behavior during one single 

run due to the data evolution. If application had different behavior during different 

execution depending for instance on input data, the hints provided by a tool that supports 

post-mortem analysis could be improper for another execution. In this situation, the 

dynamic approach allows following the application behavior on the fly. However, similarly 

to static analysis, the dynamic analysis is based on a single run of the application. When 

the application behavior depends on the input data or on the iteration of the execution, the 

suggested recommendations can be inadequate for a further run of the application. 

Therefore, in such a case the most appropriate approach is dynamic optimization of the 

application as it tunes the particular run. These characteristics make the dynamic tuning 

approach relevant to grid systems, where applications are executed in highly dynamic 

environments. 

 

On the other hand however, dynamic analysis and tuning requires a continuous intrusion 

into the program that is not necessary when applying post-mortem analysis to the stable 

behavior application. Moreover, if the analysis is carried out on the fly during the 

execution of the application, the information available and the time spent on the analysis is 

considerably restricted. It is caused by the need to inform the user about the bottlenecks 

quickly and modify the application efficiently in this particular run. 

 

Next issue is related to the monitoring phase. Monitoring tools that generate trace files can 

create enormous files due to the execution of a real application that takes some hours or 

days. Therefore, files can be difficult to manage and analyze post-mortem in order to find 

the performance bottlenecks. Moreover, the use of a single trace file to tune the application 

is not completely significant, especially when the application behavior depends on the 

input data set. In this case, the modifications done to overcome some bottleneck present in 

one run may be inadequate for another run of the application. This problem could be 

solved by selecting a representative set of runs, but provided suggestions would not be 

specific for a particular run then. In this case, we see the advantage of dynamic tuning 

approach, which does not need trace files when analyzing the application behavior.  

 

Dynamic tuning introduces much more intrusion into the application, what is reduced in 

the case of post-mortem and even dynamic analysis. However, automatic analysis (static as 
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well as dynamic) providing only recommendations requires the user to participate in the 

tuning phase manually and to have more experience and knowledge developing parallel 

applications. In opposite the dynamic tuning approach reduces significantly the 

participation of the user improving the performance on the fly. The user can then be 

exempted from the hard and complex tuning task. 

 

For all these reasons, we can see that each approach has its advantages and disadvantages 

depending on the features of the application, generated results and user obligations.   

 

4.4. Classification of dynamic performance tuning 
The most useful dynamic tuning is the one that can be used to successfully optimize the 

broad range of different applications. It would be desirable to be able to tune any 

application even though its source code and application-specific knowledge is not 

available. However due to incomplete application information this kind of tuning is very 

challenging and at the same time the most limited. 

 

The key question is what can be really tuned in an “unknown” application? 

 

This section presents our classification of dynamic performance tuning. We show tuning 

layers which can be optimized in the application. We also classify dynamic tuning 

approaches.  

 

4.4.1. Tuning layers 
The answer to the key question can be found by investigating how an application is built. 

In general, each application consists of the following layers as it is shown in Figure 4.2: 

• Application-specific code 

• Standard and custom libraries (API + code) 

• Operating system libraries (API + code)  

• Hardware 

 

An application is based on a set of services provided by the operating system. The 

operating system is responsible for managing the hardware (CPU, memory, I/O devices 

and network) and software components of a computer system. These components 
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constitute the resources of the system. Operating system provides a set of libraries so that 

the users of the system see it as a functional unit without having to be concerned with the 

low-level hardware details. The application uses the system calls (OS API) to request the 

operating system (kernel) to do a hardware/system-specific or privileged operation. For 

example, the UNIX system provides a large number of functions (about 60) that address 

broad range of basic functionalities such as I/O, file handling, memory management, 

process management, inter-process communication (IPC), time functions, and so on.  

Fig. 4.2. Layers the application is built-on.

Operating System  
code 

OS API 

Libraries 
code 

API

Application code

Hardware 

 

Besides that, the C/C++ applications use standard C/C++ libraries that support them with a 

variety of additional functions.  This includes higher level I/O functions (i.e. buffered I/O), 

mathematical functions, string manipulation functions, time and date functions and other 

utilities. The implementation of some of these functions is based on OS services (i.e. 

system calls such as open (), read ()). Concerning C++ specific libraries, there is even 

wider set of provided functions that cover I/O streams, and standard class templates 

including vectors, queues, lists, strings, sets, maps.  

 

Additionally, the application may use custom or third-party libraries that provide problem-

specific functionality. They range from communication and message passing libraries (e.g. 

PVM [Gei94], MPI [MPI94]), database access libraries (OCI [L26]), numerical methods 

(ScaLAPACK [Bla97, L23], BLAS [Don88, L24], PETSc [Bal97, L25]) to  programming 

frameworks (ACE [Sch94]). These libraries are developed to insulate the programmer from 

the low level details as they offer a higher level of abstraction and facilitate the design and 

development of high performance applications. 
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Finally, each application contains an application-specific implementation and consists of a 

number of modules that solve a particular problem in a given domain. An application 

supports different paradigms, its code uses variety of different data structures, functions, 

libraries, implements specific problem-domain algorithms. For example, to provide a 

matrix multiplication, a developer can build a parallel application on the top of PVM and 

C/C++ libraries and basing on the Master-Worker paradigm. Moreover, it can represent a 

data in a specific structure (e.g. as 2 dimensional vectors or lists) and an algorithm to data 

distribution and calculation must be used. For instance, having N workers, a total matrix is 

divided into N parts and distributed among the workers from the beginning or a matrix is 

divided into M parts and distribution is on demand when a worker finishes the partial 

calculation. The code might be written without functions, or encapsulated into variety of C 

function or C++ classes and methods.  

 

To accomplish the performance expectations, a developer must tune the application 

choosing the best polices considering application requirements and the environment. Such 

tuning process requires a deep and detailed knowledge of the presented layers that is not 

necessary for developing applications. Moreover, these adaptations do not depend only on 

the application features, but also on the input data or on the dynamically changing 

conditions of the application execution. Therefore, it is very hard to take into account all 

these variable conditions when developing applications. It is necessary then to tune the 

application and its different layers on the fly during the execution. 

 

We have distinguished 4 principal layers: application, libraries, operating system and 

hardware.  All these different application layers may present different bottlenecks and 

hence may require dynamic tuning. The scope of this thesis does not include the hardware 

level, we consider only software optimizations. 

 

Operating system performance issues commonly involve process management, memory 

management, file I/O and communication. We have identified two different methods that 

enable OS tuning in the context of a single process. The first method is the adjustment of  

particular parameters of OS kernel implementation to application needs and 

environment conditions. However, from the user-application point of view (i.e. user mode) 

it is possible only when there are adequate OS system calls that allow for such adjustment. 

Lower-level kernel code dynamic modifications would require to use dynamic kernel 
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instrumentation techniques (such as KernINST [Tam99]), but this is out of the scope of 

this work. A good example for OS kernel parameter adjustment is the bunch of TCP/IP 

socket options. These options allow a user-application to tune the TCP stack behavior to 

particular needs of the application by means of setsockopt() system call. For example the 

application may enable or disable the Nagle’s algorithm (TCP_NODELAY option) that 

decides if small messages should be grouped together before sending. This is beneficial for 

WAN networks with high latency, but typically slows down LAN communication.  

 

The second method focuses on tuning the code that inefficiently uses the underlying 

libraries. This may refer to both the application-specific code and standard/custom library 

code that inefficiently use the OS functions. For example reading a big file with very small 

I/O requests (i.e. using non-buffered read() call) is a well known performance bottleneck 

and it is considered a bad usage pattern. In this case, the dynamic tuning system could 

detect this pattern by calculating read() call statistics and could tune the application by 

changing the request size (if possible) or dynamically insert buffering code.   

 

Investigating the case of standard C libraries, we see many points that may be a cause of a 

bottleneck and hence may be good for optimizations. We can see that depending on the 

application needs, the library can be used in a bad or inefficient way. A well known 

problem while using the standard C library is the memory management. A performance 

bottleneck may occur when in an application there is a tendency to create quite large 

numbers of small objects. The memory allocations are usually based on the C heap 

allocator (malloc()/realloc()/free()). The C heap allocator is focused on medium- to 

large-sized objects (hundreds to thousands of bytes) and not on small chunk allocations. 

The solution is to rely on custom small-objects allocators – specialized allocators that are 

more efficient for dealing with small memory blocks (tens to hundreds of bytes). 

 

Concerning STL standard C++ library there is a number of tunable options. One of the 

most common programmer’s mistakes that may significantly affect the performance is to 

use the default capacity of dynamic containers (e.g std::vector). Default settings may be 

not well adjusted for different applications and their needs.  

 

The next level of the application development is a custom specific-problem library. Such a 

library offers a higher level of abstraction, but is developed in a general way to be useful 
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for a wide range of applications. This work focuses on improving the use of the library, not 

on modifying the library source code. The code modifications imply the recompilation 

process and our approach considers only dynamic and automatic changes done on the fly. 

For example, concerning common communication libraries as PVM or MPI, there are 

various possibilities to tune their usage as invoking or not the synchronization phase, 

eliminating the redundant synchronization, grouping or not messages sent to the receptor. 

Moreover, a parameter in a library function call can be switched according to the variable 

environment conditions. As an example we can put here the PVM function 

pvm_initsend() which contains a parameter that sets the encoding mode. By default 

PVM encodes data using XDR standard, because it cannot know if there are heterogeneous 

machines. If the messages are exchanged between homogeneous machines, the encoding 

phase can be skipped what allows for avoiding the encoding costs. Other possibilities to 

tune a custom library are selection of the most adequate policy or adjustment of a policy. 

For instance Adaptive Communication Environment (ACE [Sch94]) implements a set of 

design patterns that simplify the development of communication software. It provides C++ 

wrappers, frameworks or classes categories that perform common communication tasks as 

event demultiplexing, connection establishment, dynamic configuration of application 

services. ACE comes with a set of configurable services, but typically they are selected 

statically at startup, for example, a number of threads per request or a number of threads in 

pool.  

 

Till now we can see that in these layers the optimization process may be based on the well 

known features characteristic for the operating system and libraries. Investigating 

operating systems and libraries it is possible to find their potential drawbacks. Some of the 

problems found can be tuned simply adjusting specific parameters (in case a function that 

adjusts them is available), other by tuning the bad and inefficient usage. All these tuning 

options are possible, because we can take advantage of operating system features and 

library implementation knowledge. We can focus on a set of problems related to paradigms 

used to implement the application that are common to many applications. For each 

drawback then the set of specific information can be determined to improve the application 

performance, such as measure points, performance model and tuning 

points/actions/synchronization. Problem that occurs due to the drawback of operating 

system’s or libraries’ layers can be eliminated, since such a problem is well known for any 

application that uses them. The developers can concentrate on designing and developing an 
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application, and submit it with the input data. Once the application has been developed, the 

dynamic tuning can ensure a good performance. It takes care of controlling the application 

execution and optimizes different options according to the application and environment 

needs. 

 

Tuning the application code is the most complex, due to the lack of problem-specific 

knowledge. Each application-specific implementation can be totally different and there 

might be no parts common for many applications event though they provide the same 

functionality. The application can be tuned using different techniques (parameter 

adjustment or algorithm selection) but only if there is a knowledge about its internal 

structure. Therefore, to optimize the application layer, dynamic tuning should be supported 

in some way with all necessary information about the application such as measure points, 

performance model and tuning points/actions/synchronization There are a number of 

application-independent code optimization techniques, but all of them operate at the lower 

level. The examples include dynamic function inlining (as it is provided by Java HotSpot 

[L27]), static code reordering (e.g. moving error handling code to the last else statement), 

static data rearrangement and so on. However, this kind of changes is out of the scope of 

our work.  

 

One of the well known parallel application optimization technique is function call 

reordering. For example, in the PVM application function one of the problem may appear 

when one process blocks a message to be sent as it is waiting for a result from other 

process. Therefore, function pvm_send() could be invoked before pvm_recv() and hence 

the blocking would be eliminated. However, this change can be performed only if there is 

no data dependence. This phenomenon occurs when two memory accesses may refer to the 

same memory location and one of the references is a write. If these operations are forced to 

run in parallel, they may cause incorrect execution, as variables used for calculations may 

be utilized before they are updated. The example data dependence is shown in the 

following code: 
for (i=1; i<=n; i++)   

{ 

      a[i] = b[i] + 2; 

      c[i] = a[i+1] + d[i]; 

} 
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Concerning the previous PVM example, pvm_send() can be invoked before pvm_recv() 

only if a content of a message to be about to sent does not depend on a result that will be 

received. If so, the function call cannot be reordered because it would cause an incorrect 

functioning. We see, that application tuning cannot affect the correct functioning of the 

application or crash it. Modifications performed on the fly must be carried out carefully to 

ensure that the application correctly continues its execution.  

 

Summarizing, we presented different layers on which an application is built. Looking at 

Figure 4.2 the upper the layer is, the more specific information about the application is 

required. The lower the layer is, the more generic information is available. If we consider 

for example the operating system layer, it has many well-known information that can be 

used for any application. Such issues do not depend on the application structure, they are 

general. The library layer is already not so generic, but it also contains generic and 

common information that can be extracted without dependencies on the application. 

However, an application can be implemented in different ways, data dependence can occur 

and hence it is obvious that it does not have common and generic solutions. 

 

4.4.2. Tuning approaches 
Additionally to the answer to the key tuning question given by the tuning layers, the 

complementary answer can be found by investigating how an application is given. The 

classification we present in this section considers the available application knowledge. In 

our work we defined 2 principal approaches:  

• Automatic 

• Cooperative 

 

In the automatic approach, an application is treated as a black-box, because no application-

specific knowledge is provided by the programmer. This approach attempts to tune any 

application and does not require the developer to prepare it for the tuning (no changes are 

introduced into the source code). In this approach, the key question is what can be changed 

in an unknown application. The automatic approach is more suitable for the tuning layers 

such as operating system and libraries. We can find there many general tuning options 

common to many applications. We can focus then on a set of problems related to paradigm 

used to implement the application as well as low-level functionality. For each particular 
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problem, all the necessary information such as what should be measured, in what manner 

analyzed, what and when should be changed can be provided automatically.  

 

In the cooperative approach, we assume that an application is tunable and adaptable. This 

means that developers must prepare the application for the possible changes. A 

programmer could prepare the application for tuning, for example by providing different 

implementations of certain algorithms and letting the tuning system select the most suitable 

one for the existing conditions. Moreover, developers must define an application-specific 

knowledge that describes what should be measured in the application, what model should 

be used to evaluate the performance, and finally what can be changed to obtain better 

performance.  

 

Another alternative is the application framework that hides all the communication 

mechanisms and provides tuning-aware implementation [Ces02]. This alternative allows 

the programmer to concentrate on codifying the application-related issues, hiding the low-

level details. Moreover, it facilitates the dynamic performance tuning, providing all 

necessary information about the developed application. We present this idea in the Section 

4.6. The cooperative approach is suitable for the application tuning layer as this is the less 

generic layers and many information should be known about the internal construction.  

 

4.4.3. Alternative tuning approaches 
As we have seen, our approach considers 2 different application treatment: as black box or 

as adaptive to be tuned. Both take use of the available knowledge (provided automatically 

or by the developer) and use a performance model-based analysis. Another approach to 

provide a dynamic tuning is dynamic feedback [Din97]. This is a technique that produces 

different versions of the same source code and each version uses a different optimization 

policy. The generated code alternately performs sampling phases and production phases. 

Each sampling phase measures the overhead of each version in the current environment. 

Each production phase uses the version with the least overhead in the previous sampling 

phase. The computation periodically resamples to adjust dynamically to changes in the 

environment. Dynamic feedback is used in Active Harmony [Tap02] described later in this 

chapter. This project bases on integration of different libraries with the same functionality. 

To finding the best solution, Active Harmony uses a heuristic algorithm. A similar solution 
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is applied in RAS (Runtime Algorithm Selection) [Bor03] that provides an algorithm 

selection web service and meta-scheduler services during runtime.    

 

4.5. Application analysis based on knowledge 
Once we have classified dynamic tuning and presented examples of optimizations, we can 

focus on the problem of how to improve the performance analyzing applications. The 

purpose of the analysis is to examine application behavior basing on the collected 

measurements, identify performance bottlenecks, and give concrete solutions that 

overcome these problems. The analysis requires many information that allows for the 

application behavior determination and detection of the performance problems among 

coming measurements.  

 

The application behavior can be characterized by an analytical performance model. A 

performance model helps to determine a minimal execution time of the entire application 

as it allows for prediction of the performance of that application. There are other 

possibilities to analyze the application behavior and improve its performance, as for 

example heuristics approaches. In such solution, some special parameters may be 

controlled, determined automatically by searching the parameter value space using 

heuristic algorithm and finally changed during run time. Heuristic algorithms neither 

determine nor predict the optimal application behavior. The goal while using them is to test 

the application behavior and find the best one changing the value of parameters. Our work 

concentrates on the analysis based on the performance model and rules.  

 

Such a model can contain formulas and/or conditions that facilitate the calculations and 

determination of the optimal behavior. These formulas need as an input a set of 

information – measurements extracted from the application execution. Basing on the 

measurements and applying adequate formula, the performance model can provide the 

optimal behavior of the application, for example the optimal value of some parameter. 

Finally, the application can be tuned changing an appropriate parameter and its 

performance is supposed to be improved immediately.  

 

For example, in the Master/Worker paradigm, the well known bottleneck is the number of 

workers involved in the work processing. Determining the performance model of such an 
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application, it is possible to find an adequate number of workers. The performance model 

can require to measure the time taken by each worker when processing the data and the 

time when the master is waiting for results. Analyzing the measurements, the idle time of 

the master process can be detected. This situation means that the master process is mostly 

waiting for the results. Applying the formula to calculate the number of workers, the 

analysis can give as a result the optimal number. If this number is to increase, the 

application parameter that represents the number of workers must be tuned.  

  

As we have described in Section 4.4.2, we distinguish two tuning approaches: automatic 

and cooperative. On the one hand, we consider as an effective solution automatic 

extraction of as much well known information as possible from the unknown application. It 

can be done only if there are well known problems and the performance model can be 

automatically determined. On the other hand, the provision of the application-specific 

knowledge is done cooperatively with a user. In this case, the developer determines a 

performance model of the application.  

 

To make these two approaches homogeneous and to provide possible and effective 

optimization on the fly we decided that the application should be represented by a set of 

clearly defined information required for the monitoring, analysis and tuning. We assume 

the following principal terms and definitions: 

• measure points – they determine what must be monitored in the application; a point 

tells where the instrumentation must be inserted to provide measurements. 

• performance model – it helps to determine an optimal execution time of the entire 

application. It consists of activating conditions (conditions in the application behavior 

considered to be a bottleneck) and/or formulas that allow for finding the optimal 

conditions.  

• tuning points, tuning actions, synchronization – they determine what and when can 

be changed in the application to obtain its better performance; tuning points are the 

elements that may be changed to improve application performance; tuning action 

represents the action to be performed on a tuning point. The synchronization specifies 

how and when the tuning action must be invoked to ensure the correctness of an 

application. 
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Figure 4.3. shows the concept of the dynamic tuning supported by the application 

knowledge in the form of measure points, performance model and tuning 

points/actions/synchronization. 

Application code 

Fig. 4.3. Dynamic performance tuning and application knowledge. 

Tuning 
points/actions/sync

Performane 
model

Mesure 
points Tuning 

Performance 
analysis 

Monitoring 

Application 

Development phase Run-time phase 

User

Tool

 

4.6. Dynamic tuning supported by application specification 
As we have mentioned before, dynamic and automatic tuning implies the analysis and 

optimization to be simple and effective. It is very hard to do it without a previous 

knowledge about the structure and functionality of the application. A good solution would 

be to know the application specification. Therefore, we propose an application 

development framework based on parallel patterns that provides our dynamic tuning with 

information about the internal structures of application [Ces02]. Moreover, the framework 

facilitates the programmers in design and development phases of their application. The 

users are constrained to use a set of programming patterns, but by using them they skip the 

details related to the low level parallel programming. All low level details of the 

communication library are hidden to the programmer. In this sense, using our framework 

API the programmers just have to fill those methods that are related to the particular 

application being implemented. They must indicate the computation that each process has 

to perform, specify data that must be computed and determine communication 

relationships of the processes. The whole conceptual loop, namely application design tool 

together with the dynamic performance tuning, allows the programmer to concentrate on 

the application design without taking into account low level details of the implementation 

and not to worry about the program performance. 
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4.6.1. Definition of parallel patterns and framework 
For the purposes of this document we assume the following terms [Gam95]: 

• Design pattern – is a problem/solution pair in a context. It can address design problems 

at many levels (however usually at low-level design issues). Pattern emphasizes reuse 

of design rather than reuse of code. It captures the static and dynamic structures and 

collaborations of successful solutions that distinguish them from poor ones when 

building applications in particular domain. Typically pattern provides description in a 

common notation together with design and advice for developers for better 

implementation of an application that will contain this pattern.  

• Framework – addresses overall program organization. It contains a set of components 

that collaborate to provide a reusable architecture for the family of related applications. 

It tends to be more detailed and domain-specific providing a range of particular low-

level functions. It emphasizes reuse of code as well as design. Generally, framework is 

a semi-complete application.  

 

The programmers use a framework in order to build a complete domain-specific 

application. They provide implementation of only some particular components (classes, 

methods, functions) that are required for specific application functionality. The conceptual 

model of the framework is shown in Figure 4.4. 

Fig.4.4. Conceptual model of a framework. 

Application specific code Framework 

Master::Calc (…) 
{ 
   … 
   for (i=0; i<100;i++) 
 j++; 
}

class Master (...) 
{ 
   Calc (…); 
} 
 
main (...) 
{ 
   Master m; 
   m.Calc (…); 
} 

 

Our research area is parallel programming, so we are focused on parallel patterns. The 

most known parallel patterns are [Vli95, L28]:  

• Master-Worker – the pattern describes this kind of algorithms that are formed of a 

master process and some number of identical workers. It is used to describe concurrent 

execution by a set of independent tasks. Parallel applications that implement this 
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pattern are called embarrassingly parallel because once the tasks have been defined, 

the potential concurrency is obvious. 

• Pipeline – the pattern is used for algorithms in which data flows through a sequence of 

tasks or stages.  

• SPMD (single program, multiple data) – the pattern describes an algorithm where a 

number of tasks execute the same program in parallel, but each task operates on its 

"own" data.  

• Divide & Conquer – this pattern is used for parallel applications based on the well-

known divide-and-conquer strategy. Concurrency is obtained by solving concurrently 

the subproblems into which the strategy splits the problem. 

 

4.6.2. Parallel pattern-based framework 
Our proposed parallel pattern-based framework supports a user during the parallel 

application development phase. It provides an API that is based on the object oriented 

methodology and implements patterns encapsulating their behavior, and the 

communication details. When a developer builds the application in our environment, 

he/she can choose what kind of parallel pattern is to be implemented in the application. 

Apart from the general structure of the application, the developer must indicate the 

computation done by all application parts, the data structures to be processed, and 

communication relationships. To develop the complete application, programmers use the 

API of the framework and provide their own implementation of particular classes and/or 

methods. The framework builds the application adding low level details of the 

implementation that are generated automatically depending on the chosen pattern.  

 

All these parallel patterns that are implemented by the framework, their structures, 

behavior and possible performance bottlenecks are well investigated. Therefore, we can 

take a use of the research results and determine very useful information for dynamic tuning 

purposes. For each kind of application created in our framework, we analyze its specific 

problems basing on well-known parallel pattern bottlenecks. We are able to determine 

these application parts that from the one hand, can cause problems and from the other 

hand, can be changed in order to improve the performance. The framework can provide 

then the dynamic tuning with measure points, performance model and tuning 

points/action/synchronization. Using this knowledge, the dynamic performance tuning is 
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simplified, because the set of performance bottlenecks to be analyzed and tuned are well 

known and related to the parallel patterns offered to the user. 

 

4.6.3. Conceptual architecture 
Even though the dynamic performance tuning is supported by the application framework, 

its the conceptual loop does not change. There are still three parts responsible for program 

optimization: monitoring, analysis and tuning. However, these parts have now significant 

amount of information about the application provided by the framework. Figure 4.5 

presents the interactions and data flow in dynamic tuning while supported by application 

specification framework. The main components are:  

1. Application Framework – it provides an API that offers support to the user during the 

application development phase. For an application based on chosen pattern, the 

framework generates for dynamic tuning all important and necessary information: 

measure points, performance model and tuning points. 

2. Monitoring – it inserts the instrumentation into specified by the framework measure 

points.  

3. Analysis – this part analyses parallel application using received events and the 

knowledge given by the framework. It knows performance model of the analyzed 

application. Therefore, it can directly start the analysis focusing on well-known 

bottlenecks of a given model, instead of wasting time on performing the initial search 

of the problem space. 

Application specific 
code 

Fig. 4.5. Dynamic tuning environment supported by application specification framework. 
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4. Tuning – this part uses the solution given by the analysis and the tuning points and 

actions provided by the framework. Then it automatically manipulates the running 

application applying a given action on a given point.  

 

4.7. Dynamic instrumentation 
“The normal cycle of developing a program is to edit source code, compile it, and then 

execute the resulting binary. However, sometimes this cycle can be too restrictive. We may 

wish to change the program while it is executing, and not have to re-compile, re-link, or 

even re-execute the program to change the binary.“ [L10] 

 

We have already described the general overview of the dynamic tuning approach as well as 

our principal definitions and classifications that we determined investigating this area. 

Now we will focus on a dynamic instrumentation technique that we decided to use to 

support our optimization approach. This section presents an overview of DynInst, an API 

for run time code generation. DynInst supports dynamic instrumentation and permits the 

insertion of code into a running program. We describe the API introducing its features, 

used abstractions and how to insert instrumentation into the application during run time. 

Then we show the small example of DynInst usage and we briefly describe the internal 

implementation issues of the library. Finally we present a commercial application of 

DynInst called DPCL developed by IBM.  

 

4.7.1. DynInst overview 
The principle of dynamic instrumentation is to defer program instrumentation until it is in 

execution and insert, alter and delete this instrumentation dynamically during program 

execution. This approach was firstly used in Paradyn tool that we have described in 

Chapter 3. In order to build an efficient automatic analysis tool, the Paradyn group 

developed a special API that supports dynamic instrumentation. The result of their work is 

called DynInst [Buc00, L30]. DynInst is an API (Application Program Interface) for 

runtime code patching. It provides a C++ class library for machine independent program 

instrumentation during application execution. DynInst API supports a programmer when 

building the application that will instrument another application during run time. The API 

is based on object-oriented technology and provides a set of classes and methods that allow 

a user to:  
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• attach to an already running process or starting a new process 

• create a new piece of code 

• access and use existing code and data structures 

• insert created code into the running process 

• remove inserted code from the running program 

 

The next time the instrumented program executes the block of code that has been modified, 

the new code is executed. Moreover, the program being modified is able to continue its 

execution and does not need to be re-compiled, re-linked, or restarted. DynInst manipulates 

the address-space image of the running program and thus this library needs access only to a 

running program, not to its source code. A very important issue is debug information. 

DynInst can manipulate a program during run time, but with one condition: it requires that 

the instrumented program contain debug information. The API needs symbolic debug 

information to be able to locate procedures and variables in the instrumented application. 

Therefore the instrumented program must be compiled with appropriate option to enable 

this information. 

 

The goal of this API is to provide a machine independent interface. This allows the same 

instrumentation code to be used on different platforms. The newest version of DynInst 4.0 

supports the following platforms: Sparc Solaris, x86 Solaris, x86 Windows NT, x86 Linux, 

Alpha (Tru64 UNIX), MIPS IRIX, Power/PowerPC (AIX). 

 

4.7.2. Abstractions 
The DynInst API is based on the following abstractions: 

• mutatee or application – a program to be instrumented. 

• mutator – a separate program that modifies an application process via DynInst. 

• point – a location in a mutatee where a new code can be inserted, i.e. function entry, 

function exit, subroutine, long jump. 

• snippet – a representation of a piece of executable code to be inserted into a program at 

a point; a snippet must be build as an Abstract Syntax Tree (AST). It can include 

conditionals, function calls, loops, etc. 

• thread – a thread of execution (it means process or a lightweight-thread). 
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• image – it refers to the static representation of a program on a disk. Each thread is 

associated with exactly one image. 

 

Abstractions used by DynInst and their relationships to each other are presented in Figure 

4.6.  

App exec 
(image) 

Application Mutator 

Run time library 

Snippets 

DynInst code 

API 

Mutator application 

(snippet creation) 

... 
function foo1 
{ 
   int i; 
   for (i=0;i<10;i++) 
      foo2 (i); 
} 
... Thread 

Points 

Disk 
Fig. 4.6. Abstraction used in DynInst. 

 

To be clear, we present definition of the Abstract Syntax Tree [L31]: the Abstract Syntax 

Tree (AST) is the hierarchical representation of the semantic features of a program based 

on its abstract syntax. The abstract syntax defines only what is done rather than how it is 

done. The goal of the abstract syntax tree is to store intermediate representation of input 

between multiple passes of the compiler. AST has the "same semantics as the source 

language they represent." This is an advantage over the byte-code so that it is possible to 

quickly establish the intention of the program at every level.  

 

4.7.3. DynInst usage 
To insert instrumentation dynamically, a user of the DynInst library must do the following 

steps in the development phase: 

1. A mutatee executable file must be available. There is no need for the source code of the 

application, neither special compiler nor linker options set (only debug information is 

required).  

2. A mutator must be implemented in a special way: using appropriate DynInst classes. 

3. The mutator must implement snippets (instrumentation) using DynInst classes. 

4. The mutator is compiled and linked with DynInst library (all these issues are described 

in the DynInst guide [Hol03]). 
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5. Then the mutator is started.  

 

Then the following steps are performed automatically by DynInst library during run time: 

6. The DynInst library is dynamically loaded to the mutator address space. 

7. The mutator, via DynInst, creates an application process (or attaches to an already 

running one).  

8. DynInst automatically attaches its run time library and snippet code to the address 

space of mutatee process.  

9. At all specified points of the mutatee, DynInst inserts calls to the snippet code.  

10. When the function has a snippet call inserted at the entry and is being executed, first a 

snippet code, then an original function code are performed. 

 

Figure 4.7 presents all described before steps that are performed during a development 

phase and run time phase in order to insert instrumentation dynamically into the 

application via DynInst. 
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{ 
// create app 
 ... 
// insertSnippet
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func send(…) 
{ 
   ... 
} 
 
func recv(…) 
{ 
    ... 
} 

… 
Bpatch bpatch; 
BPatch_thread...
BPatch_image... 
… 
// snippet     
// creation 
… 
insertSnippet 

Mutator 

snippet() 
{ 
  i = i+1; 
} 

Compilation, 
linking with 

DynInst library 

Mutator execution Application execution 

Development phase Run time phase 

Fig. 4.7. Steps of the application instrumentation when using DynInst library. 

 

Creating snippets is the most difficult part when using the DynInst library. Therefore, we 

have focused on the instrumentation creation. However, DynInst also allows a programmer 

to disable and remove the instrumentation. It is also possible to alter a semantic of a 

program changing a call to specified function to be a call to another one. In order to 

perform these operations, the developer utilizes appropriate corresponding methods of 

library classes. For example, if the instrumentation must be removed from the process, the 
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developer invokes only one method and DynInst automatically during run time removes 

snippet calls from the specified points.  

 

The API is organized as a collection of C++ classes. Each class provides a set of methods 

that can be invoked by the user of the library. In this document we do not present the 

classes and their methods. Listing of all classes, methods, parameters and descriptions is 

available in the “DynInst API Programmer’s Guide” [Hol03]. 

 

4.7.4. Example snippet creation 
Here we present the creation of an example snippet. If we wished to record the number of 

times a given function was invoked during the application execution, we would define a 

point and a snippet in this way:  

• point – first instruction in a given function (e.g. function: pvm_send(), location: entry) 

• snippet – a statement to increment a counter 
 

Generally, to increment a variable a programmer would generate (in C): 

int var; 
var = var + 1; 

 

However, a snippet must be implement as AST. Figure 4.8 shows two views of AST: a 

conceptual and by means of DynInst classes.  

Bpatch_arithExpr 

Bpatch_arithExpr 

Bpatch_constExpr (0)Bpatch_variableExpr

Bpatch_plus 

Bpatch_variableExpr

Bpatch_assign 

1 var 

+ var 

= 

Fig. 4.8. Abstract Syntax Tree (conceptual and using DynInst classes) representing the arithmetical snippet that
increments variable var.   
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Basing on the view of AST with DynInst classes, we present an implementation of the 

snippet that increments a counter. The code we write is: 

BPatch_variableExpr counter = appThread->malloc ("int");
 
BPatch_arithExpr addOne ( 

BPatch_assign,  
counter, 
BPatch_arithExpr ( 

BPatch_plus,  
counter,  
BPatch_constExpr (1) 

) 
); 
appThread.insertSnippet (addOne, points); 

 

First we allocate the memory in the mutatee address space for the integer variable 

(BPatch_variableExpr counter) which will be incremented. Then the object addOne of 

the class BPatch_arithExpr is created. This object represents an arithmetical expression 

and assigns (BPatch_assign) to the variable counter the result of another arithmetical 

expression (BPatch_arithExpr) that adds (BPatch_plus) to the variable counter a 

constant expression (BPatch_constExpr) with value 1. The last step inserts the defined 

snippet into thread at all specified points.  

 

4.7.5. DynInst internal issues 
In order to instrument an application during run time, DynInst library must perform special 

operations on the application executable file before the application start. Implementation of 

DynInst includes structural analysis of the binary searching for the possible points in the 

program and instrumentation management that allows code to be inserted and removed 

from the running program. In the following sections we briefly describe how DynInst 

performs these operations. The detailed description can be found in the technical 

documentation of DynInst [Hol97].  

 

4.7.6. Structural analysis 
Before a new process creation (or attaching to the already running one), DynInst library 

performs a structural analysis to identify instrumentation points in the application. DynInst 

extracts necessary information from the symbol table and by scanning the binary image. It 

generates a list of all possible points for each function where the instrumentation can be 

inserted. Each point is annotated with important information such as: point address, 

 68



Dynamic performance tuning 
 

original instruction at the point. For each function DynInst defines weather the function 

represents a leaf or it creates a new stack frame.    

 

An executable file is processed in several steps. First, DynInst maps the memory to the 

executable file and processes the symbol table to get the size and address of the code and 

data segments. It generates the following information: pointers to the code and data 

segments, list of symbols (functions and data objects) with name, type, starting address, 

size, etc. When the information about all functions is available, DynInst searches for 

instrumented points (entry, exit, call sites) for each function. The entry point of the 

function is the starting address obtained from the symbol table. The other instrumentation 

points are defined scanning the function code and searching for instruction that implements 

calls (call instruction) or exit (e.g. return).   

 

4.7.7. Instrumentation management 
In order to instrument a code during run time, DynInst generates instrumentation codes 

translating snippets into machine language codes. Then it places them into trampolines that 

reside in dynamically allocated areas in the application address space. Trampolines provide 

a way to invoke instead of the original code the newly generated code.  

 

Dynamically allocated areas are provided by a dynamic linked library of DynInst. It 

contains utility functions and two large arrays loaded into the application address space. 

Both arrays are used for dynamically allocated regions of memory. One is used for 

instrumentation variables, and the other to hold instrumentation code (on many platforms 

instructions and data are kept in separate regions of memory). 

 

Once the code is generated and placed in trampolines, DynInst must tie it with the 

application. Carefully modifying the code to branch into the newly generated code is the 

most difficult part of inserting instrumentation. To tie the generated code with the 

application, DynInst stops the application process and installs the code into the required 

point in the application address space. DynInst employs the same basic operating system 

services as used by debuggers (proc filesystem, ptrace). These services provide a way 

to control process execution, and to read and write the address space of the application. 

proc is a filesystem that provides access to the image of each active process in the system. 

ptrace allows a parent process to control the execution of a child process. 
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DynInst extracts appropriate instructions from the instrumented point of the application 

and relocates them into the reserved space. The original code is modified to jump to the 

base trampoline. The base trampoline contains the relocated original instructions, 

instructions to save and restore registers, slots where jumps to mini-trampolines can be 

inserted and jump to return to the application. The mini trampoline contains the 

instrumented code (snippet) and jump to return to the base trampoline. Figure 4.9 presents 

the structure of the base and mini trampolines and its relationship to the instrumentation 

point.  

Fig. 4.9. Structure of the base and mini trampolines. 

Func foo:
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4.7.8. DPCL 
DPCL stands for Dynamic Probe Class Library and it is the library that simplifies building 

tools for application performance analysis [Pas98]. It provides an infrastructure to reduce 

the cost of writing instrumentation. DPCL was developed by IBM Corporation [L6] in 

1998. The library takes advantage of dynamic instrumentation provided by DynInst. DPCL 

is C++ class library build on the top of the DynInst. DPCL encapsulates DynInst 

functionality providing a programmer with possibility to use the higher-level abstractions 

comparing to DynInst ones. 

 

Programmers build their end-user tools using DPCL library classes and methods. Then 

during run time they can establish connection with the application to be analyzed and 

manage the application instrumentation – insertion and deletion. DPCL is implemented as 

a distributed, asynchronous system that contains special daemons for providing services. 

When a tool based on DPCL is executing, it requests services from daemons via library 

calls (it calls methods of the classes from the DPCL library). The daemon translates those 

requests into actions and interfaces with the DynInst library to instrument and manage user 
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processes. The instrumentation sends performance data back to the tool through the 

daemon. When the message is received it activates a callback function supplied by the tool 

for that purpose.  

 

Instrumentation is defined by the user tool as a combination of probe expressions and 

probe modules. Probe expression is represented as an Abstract Syntax Tree, while probe 

modules are collections of functions written in a standard language (for example C) and 

compiled into object files, that are loaded into the application and called from a probe 

expression. The Figure 4.10 shows the conceptual tool architecture when using DPCL. 

DPCL 
DaemonDPCL 

library 

 
  

User 
tool 
code 

Application

Client machine Server machine

Run time phase 

Fig. 4.10. A tool communication with a daemon through the DPCL library. 

 

DPCL provides similar to DynInst services. We present only few of them: 

• application and process management - create an application/process, connect to and 

disconnect from a running application/process (in this case application contains 

multiple processes); suspend, resume, terminate application; read/write application 

memory; open/close/read/write/seek application file 

• instrumentation management – select/identify instrumentation; create/install/remove 

probe expression; activate/deactivate  probe expression; periodically activate 

instrumentation 

• communication between probes and tools in order to send data back to the client tool 

 

All available classes and their methods are described in [Rob98]. DPCL library is working 

only on the IBM machines, namely RS/6000 Scalable POWERparallel Systems (SP – a 

scalable system arranged in various physical configurations, that provides a high-powered 

computing environment). As operating system, IBM uses its licensed version of the UNIX, 

namely AIX – Abbreviation for Advanced Interactive Executive [L32].  
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4.8. Dynamic modifications of an application 
Once we know how we can change an application during run time, the next question is 

what we can change in a given application. As we have mentioned in Section 3.5 we define 

terms as tuning actions, tuning points and synchronization. Considering the possibilities of 

DynInst, we determine a set of tuning actions that can be applied on tuning points. A 

tuning point can be any point found by this library in the application executable, as 

function entry, function exit, call places. We consider the following tuning actions: 

• Function replacement – in this method, all calls to a given function are replaced with 

a call to another function with an identical signature. The implementation of a new 

function can already exist in the application or operating system or it can be provided 

by our dynamic tuning in a dynamic library loaded to the process. The example tuning 

option is inside the memory management. When the standard C library function 

malloc() is not efficient in some circumstances, then all calls to this function can be 

replaced (if possible) with the calls to the custom function.  

• Function invocation – an additional function call is inserted into the application at a 

specified point. From that moment on, each time this point is reached, the inserted 

function will be invoked. Function implementation is delivered as in the previous point. 

In general this kind of action is used for monitoring purposes, as the instrumentation 

must be inserted into the application to generate the information about application 

execution. As an example we can consider multithreaded application. To modify a 

shared variable, a thread must use a critical section (e.g. mutex) to synchronize access. 

This may become very costly if the operations of locking and unlocking are repeatedly 

executed inside a loop. In some circumstances (e.g. recursive mutex), it is beneficial to 

insert a mutex lock/unlock function calls before/after the loop. These additional calls 

amortize a cost of locking/unlocking inside the loop and reduce the synchronization 

overhead. 

• One-time function invocation – a specified function is invoked just once. Function 

implementation is delivered as in the previous point. For example, if message buffering 

causes inefficiency, the Nagle’s algorithm might be disabled through the 

TCP_NODELAY socket option. This action can be applied just once when establishing 

the TCP connection. Therefore, function call setsockopt(socket, IPPROTO_TCP, 

TCP_NODELAY, optionValue, optionLength) should be invoked just once to sets 

the option. 
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• Function call elimination – a specified function call is eliminated. It can be performed 

to remove unnecessary function calls. Obviously, it is required that such a removal 

does not affect the correct functioning of the program. This action can be used for 

example to eliminate redundant synchronization calls. Another example is removal of 

debug print() or flush() statements if their costs are considered to high.   

• Function parameter changes – the value of an input parameter is modified before the 

function body is executed. As we have mentioned before, PVM uses for example 

special encoding while sending messages. The encoding is set by the PVM function 

call pvm_initsend(encoding). If the encoding process can be avoided, this function 

should be always called with the appropriate parameter value 

(pvm_initsend(PvmDataRaw)). 

• Variable changes – the value of a particular variable in the application is modified. 

The application should be aware that the variable is mutable. As an example we can put 

here the number of workers. The application must have special outside-known variable 

that represents a number of workers. If the variable has been changed, the application 

must be aware of that and apply the modification correctly.   

 

The synchronization specifies when the tuning action can be invoked to ensure the 

correctness of an application. For example, to avoid reentrancy problems, race hazards or 

other unexpected behavior, a breakpoint can be inserted into the application at the specific 

location. When the execution reaches the breakpoint, the actual tuning action is performed. 

For example, the tuning action may include one-time function invocation 

pvm_setopt(what, value) that sets options of the PVM library. This function should be 

invoked before the message is sent. It cannot be called when the message is being sent, 

because it can cause reentrancy problems in PVM library implementation. Therefore, 

invocation must be synchronized with the application execution. The breakpoint can be 

inserted at the entry of function pvm_send(). When it activates, first pvm_setopt() call 

and then the actual pvm_send() call are performed. 

 

4.9. Example tools 
Dynamic optimization tools have the flexibility to adapt program execution to changing 

scenarios and differing hardware configurations. They provide the possibility to tune a 
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program execution during run time, hence dynamic adaptation has been applied in many 

scientific domains. 

 

First, several tools were developed basing on the concept of computational steering loop. 

Such tools allow users to study the behavior of the application under execution and 

manually change key application variables (e.g. resource allocations, program state, 

computational methods, data output). They have built-in the components for computation 

modeling, scientific simulations and visualizations. However, most of these tools are 

designed to allow the application semantics to be changed. They serve a user as a problem-

solving environment (PSE), rather than performance tuning. Tools that are based on the 

concept of interactive computational steering are for example Falcon/MOSS, SCIRun 

[Par95], PPFS [Ree96].  

 

In the dynamic tuning area, there are already a few projects that go toward automated 

performance optimizations and adapt applications to changing conditions automatically 

during run time. Based on measurements and analysis, the tool can improve the application 

performance during run time solving problems and adjusting them to better match resource 

requests. The most known tools are: Autopilot, Active Harmony and AppLeS. We present 

the most significant features of these tools indicating also their differences to our dynamic 

tuning approach. 

 

4.9.1. Falcon / MOSS 
Falcon was developed at Georgia Institute of Technology and it is a set of tools that 

collectively support on-line monitoring and steering of parallel and distributed applications 

[Gu95, L33]. It allows users to improve program performance by changing its attributes 

during run time, to experiment with different program configurations, to play “what if” 

games. It consisted of four major components: a monitoring specification mechanism, on-

line information capture and  analysis, program steering and graphical displays of 

monitoring information.  

 

Using Falcon’s monitoring specification language, programmers define specific sensors for 

capturing information. Users can express program attributes – ranging from single 

variables to application state – that will be monitored and on which steering will be 

performed. During execution Falcon permits users to capture specific information by the 
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inserted sensors and analyze it. The Falcon project focuses on the monitoring with low 

latency and perturbation and hence the monitored information is performed before it is 

displayed to the user. The graphical user interface, the graphical displays and steering 

mechanism interact with the run time system to obtain processed monitoring information. 

Application can be steered by human users or algorithmically. Once steering decision is 

made, changes to the program attributes and state are performed by the steering 

mechanism. 

 

The Falcon software was applied to scientific applications, especially in physics and 

atmospheric area. However, it is no longer an active research project. The group stopped 

the work under the FALCON project and started to create next-generation system MOSS 

that stands for Mirror Object Steering System [L34]. MOSS does not use traditional event 

flow and introduces a higher-level object-based abstraction into the monitoring and 

steering (Mirror Object Model). 

 

4.9.2. SCIRun 
SCIRun stands for Scientific Computing and Imaging [Par95, L35] and has been 

developed at University of Utah. This is a Problem Solving Environment (PSE), and a 

computational steering system in which large scale simulations can be processed. SCIRun 

allows a scientist or engineer to interactively steer a computation changing parameters, re-

computing, and then re-visualizing. SCIRun allows computational steering to be applied to 

the broad range of advanced scientific computations, e.g. in medicine, physics.  

 

SCIRun contains several built-in tools to close the loop and provide computational 

steering. First, this is a framework in which a simulation can be composed. A user can 

design and modify the simulation via a visual programming interface to a dataflow 

network. Then, such a simulation can be executed, controlled and tuned by interacting with 

the end user via a graphical user interface. Finally, SCIRun can display information using 

3D graphics (see Figure 4.11).    

 

Over past years, the group has developed two additional problem solving environments 

that extends SCIRun capabilities: BioPSE and Uintah [L36]. BioPSE adds modules and 

functionality for bioelectric field problems. Uintah targets large-scale simulations running 

on distributed memory supercomputers. 
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Fig. 4.11. Graphical user interface of the SCIRun environment. 

 

4.9.3. Autopilot 
The Autopilot [Rib98, L37] project developed at University of Illinois realizes adaptive 

control of parallel and distributed application. Autopilot bases on closed loop control and 

allows applications to be adapted in an automated way. It automatically chooses and 

configures resource management algorithms based on application request patterns and 

observed system performance. The Autopilot infrastructure is built on the experience and 

software from Pablo tool that was developed at the same university.  

 

Autopilot provides a set of performance sensors, decision procedures and policy actuators. 

The toolkit uses distributed sensors to gather quantitative and qualitative performance data 

from executing applications. Every sensor has a set of properties defined when the sensor 

is created. These include name, type, identifier, network IP address and user-defined 

attribute-value pairs. Sensors can gather data using two methods. First, a sensor records 

data in response to procedure calls that have been inserted into the application manually by 

the programmer. Second, separate thread periodically awakes, reads application variables 

and returns to sleep. Sensors provide performance data for decision making and can 
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transmit data using a variety of policies (e.g. transmit on demand, periodic update). The 

toolkit includes fuzzy logic engine that accepts performance sensor inputs and selects 

resource management policies based on observed application behaviour. Autopilot relies 

on fuzzy sets and use a set of IF-THEN production rules that map the sensor input values 

to the actuator output space. Finally, it realizes the results activating remote actuators. 

Actuators are remotely controlled functions that enable to invoke local functions or modify 

the values of application variables. Such actuator can change for example parameter values 

or resource management policies (e.g. file caching policy).   

 

Moreover, Autopilot also provides mechanisms to manage local and remote tasks. The 

toolkit contains sensor / actuator manager and set of remote clients. Manager serves as a 

network distributed name server and supports registration by remote sensors and actuators. 

A client controls both sensors and actuators in associated tasks, receives data from sensors, 

and invokes actuators.  

 

Autopilot contains a control interface to allow steering of infrastructure policies and 

application interactively or via automated decision procedures. The programmer can 

decide what sensors/actuators are necessary and then manually inserts them into the 

application source code. Autopilot contains a library of runtime components needed to 

build an adaptive application. 

 

The approach applied in the Autopilot project is similar to our cooperative approach. 

However, it differs from the black-box approach where necessary measure and tuning 

points are decided and inserted dynamically and automatically by the tuning system. The 

Autopilot uses fuzzy logic to automate the decision-making process, while we decided to 

use simple, conventional rules and performance models. Moreover, in our case monitoring 

is based on the dynamic instrumentation where measure and tuning points are inserted on 

the fly. Using Autopilot a developer must prepare application inserting sensors and 

actuators manually into the source code.  

 

4.9.4. Active Harmony 
Active Harmony is an automated runtime tuning system [Tap02] that has been developed 

at University of Maryland. This is a framework that allows an application for dynamic 

adaptation to network and resource capacities. In particular, Active Harmony permits 
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automatic adaptation of algorithms, data distribution, and load balancing during a single 

application execution based on the observed performance. The application must be 

Harmony-aware, that is, a programmer must apply changes in the source code and use the 

API provided by the system [L38].  

 

Active Harmony focuses on the selection of the most appropriate algorithm. The system 

provides Library Specification Layer with uniform API. This layer integrates different 

libraries with the same or similar functionality. The user develops an application using this 

API, and hence the application contains a set of libraries with different algorithms and 

tunable parameters to be changed. During runtime Active Harmony monitors underlying 

library execution and manages the values of the different parameters. The system is able to 

select more efficient library and change tunable parameters to improve the application 

performance. 

 

Active Harmony integrates two mechanisms that permit for automatic tuning. First, it 

exports a metric interface to applications, allowing them to access processor, network, and 

operating system parameters. This interface supports provision of data about the 

application performance and execution. Second, Active Harmony requires applications to 

export tuning options back to the system. A tuning option defines the expected utilization 

of one or more resources. The system can then use such a parameter to automatically 

optimize resource allocation basing on observed performance and changing conditions. 

Metrics and tuning options are specified as the part of Library Specification Layer.  

 

The main part of the Harmony system is the Adaptation Controller. This component must 

gather information about the application execution, manage tuning options, propose the 

best changes, predict the effects of given modifications, and finally change appropriate 

parameters to improve the performance. Active Harmony automatically determines good 

values for tunable parameters by searching the parameter value space using heuristic 

algorithm. Better performance is represented by a smaller value of the performance 

function, and the goal of the system is to minimize the function. They base their 

minimization algorithm on the simplex method.  

 

Active Harmony also includes graphic console that is shown in Figure 4.12. The console 

allows the user to manually optimize the application. The user can tune the values of the 
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tuning parameters that are exported by this application. Moreover, user interface shows the 

performance function and the history of values. 

Fig. 4.12. Active Harmony user interface.
 

The Active Harmony system is conceptually similar to our cooperative approach. 

However, it differs from the automatic method that treats applications as black-boxes and 

does not require them to be prepared for tuning. Moreover, our dynamic tuning approach is 

based on the concept of measure points, performance model and tuning points. Such 

information can be defined by the user, but we also provides a dynamic tuning with certain 

predefined sets. Instrumentation is inserted into the application automatically during run 

time. Harmony bases on integration of different libraries with the same functionality. We 

use a distinct approach to finding the best solution. We do not use a heuristic algorithm, 

but performance models that provide conditions and formulas that describe the application 

behavior and allow the system to find the optimal values of the tunable parameters. 

 

4.9.5. AppLeS 
The AppLeS [Ber96] project from University of California has developed an application-

level scheduling approach. This project combines dynamic system performance 
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information with application-specific models and user specified parameters to provide 

better schedules. The programmer is supplied information via user interface about the 

computing environment and is given a library to facilitate reactions to changes in available 

resources. Each application then selects the resources and determines an efficient schedule, 

trying to improve its own performance without considering other applications.  

 

AppLeS (Application Level Scheduler) is developed on agent-base methodology. Each 

application has its own AppLeS agent. Each agent contains static and dynamic information 

about the available resources and its function is to determine an application-specific 

schedule and implement that schedule on the distributed resources on metacomputers. An 

agents has built-in four subsystem and one single active agent called Coordinator. First, 

Coordinator takes resource information from the user via UI. Then, Resource Selector 

filters and chooses promising resources. Next, Planner generates schedule for a given 

resource configuration and Performance Estimator evaluates performance for candidate 

schedules. Finally, Actuator implements a chosen schedule on the target configuration in 

the resource management system. AppLeS is not a resource management system. It relies 

on the system as Globus or Legion and serves as middleware dynamically coordinating a 

customized schedule for the application.  

 

Our approach is similar to AppLeS in that it is based on the automatic closed 

computational loop and it tries to maximize the performance of a single application. 

However, it focuses on the efficiency of resource utilization and performance bottlenecks 

that occur during the application execution rather than on resource scheduling.  

 

4.9.6. Mojo, Dynamo 
There are also dynamic optimization systems as: Dynamo [Bal00] – developed at Hewlett-

Packard Laboratory and Mojo [Che00] – developed by Microsoft Research stuff. However, 

they approach to dynamic tuning differs from our one. These tools perform the run time 

optimization, but of a native instruction stream. The program binary is not instrumented 

and is left untouched during the system operation. This approach uses very low-level 

techniques of optimization.  

 

 

 

 80



Dynamic performance tuning 
 

4.9.7. HotSpot 
The Java HotSpot [L27] is a product that has been developed by Sun Microsystem to 

provide the highest possible performance for Java applications. Traditionally, bytecodes 

are generated from Java programs and then interpreted during execution by Java Virtual 

Machine. To improve the program performance, Just-in-time (JIT) fast compilers are used 

that translate the Java bytecodes into native machine code on the fly. A JIT running on the 

end user's machine executes the bytecodes and compiles each method the first time it is 

executed. 

 

The Java HotSpot VM provides adaptive optimization. It does not compile method by 

method, but it runs the program immediately traditionally using an interpreter. Then the 

HotSpot VM gather information about program hot spots (important optimization 

bottleneck) analyzing the code. Once it detects the critical hot spots in the program, they 

are compiled into native code and made inline (no function calls – code is inserted directly 

into the place where the function call is). The hot spot monitoring is continued dynamically 

during program execution. By avoiding compilation of infrequently executed code (most of 

the program), the Java HotSpot compiler can focus more on the performance-critical parts 

of the program, without necessarily increasing the overall compilation time. An example 

hot spot is frequency of virtual method invocation.  

 

4.10. Conclusions 
Parallel application tuning is very difficult and complex process if one wants to do it 

automatically and dynamically. There are many requirements that must be taken into 

consideration. They must be taken into account especially when developing efficient, 

useful and really helpful system. Moreover, it must be pointed out, that there is no 

possibility to apply dynamic tuning to any application in any environment. Solution based 

on the on the fly optimization generates several precautions and limits. The biggest effort 

must be put into the good definition of how the application can be tuned and what can be 

tuned there. We have seen the classification of dynamic tuning. We presented different 

layers on which an application is built and what is possibly to tune on each of them. It was 

clearly pointed out that the upper the layer, the more specific information about the 

application is required. We determined what exactly must be known about the application 

and how it can be treated, prepared for the optimizations and tuned.  
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Because of the complexity of the solution, there are not many tools that support application 

optimization during run time. Many of the existing tools go toward automated tuning, but 

require certain changes in the application. A real tuning tool should take into consideration 

the important issues as application analysis without knowledge about its internal structures 

and dynamic modifications of unknown application structures. However, such a solution is 

hard and complex. Investigating tuning area we have decided to develop our own dynamic 

tuning environment that supports cooperative approach of the application optimizations but 

it also goes toward the automatic tuning.  

 

In this chapter we have also presented the novel, powerful technique called dynamic 

instrumentation provided by the DynInst library. We described the possibilities provided 

by the library proven with examples. The research on this technique and efforts put into the 

library development brought successful results. Dynamic instrumentation allows the 

flexibility in gathering data and offers the chance to significantly reduce measurement 

overhead. DynInst is a very efficient library available for many platforms and intrusion 

included into the running application is very small.  
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Chapter 5 

MATE 
 

This chapter presents an overview of MATE – Monitoring, Analysis and Tuning 

Environment. First we introduce motivation and goals of our environment. Next we present 

requirements that we have to take into consideration building dynamic tuning system. In 

continuation we describe issues of the MATE design and motivate decisions taken while 

designing. Finally, we present the system architecture and describe in details all system 

modules, their construction, functionalities and limitations. 

 

5.1. Motivation and goals 
We have seen that programmers of parallel applications must provide the best possible 

behavior of their applications if such an application is to fulfill a promise of the highest 

performance. Applications will be useless and inappropriate when their performance is 

under acceptable limit. However, programmers face up to many problems when improving 

a parallel application. Performance improvement is a complex and time-consuming task, 

and not feasible if it must be carried out manually by a developer. We have shown that one 

of the very promising approach is dynamic automatic tuning. It allows for the application 

performance improvement on the fly. Therefore, it is very beneficial to accomplish the 

performance expectations by using an automatic tuning environment.  

 

Investigating the area we have seen that the proper solution would be to construct a tool 

that is able to automatically accelerate the application execution on the fly by adapting it to 

changing conditions. Such a tool would be really profitable especially when a parallel 

application is characterized by dynamic conditions, such as variable behavior depending on 

the input data and/or variable behavior throughout the application execution. A tool based 

on this approach would relieve developers from the complex manual tuning process.  

 

In Chapter 4 we have indicated requirements for dynamic tuning in general, we have 

presented the classification, possible tuning techniques and examples. We can assume that 

all these techniques work also in practice and the application performance is improved. 
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However, it would be only theoretical dynamic tuning that would not present a real 

profitability. Without the practical probes we are not really sure if a tuning technique can 

be efficiently applied since we do not know for example, the intrusion of run time 

optimization or changing environment conditions (e.g. network load, machine load). Only 

experiments with existing software that permits dynamic tuning of applications will 

provide the total view of the dynamic tuning applicability. Therefore, many various 

practical experiments should be conducted on parallel applications to see if this approach 

really works, is effective, feasible, profitable, and can be used for a real improvement of 

the program performance. To perform practical experiments with different tuning 

techniques, we need a tool that will allow us to modify the parallel distributed programs 

during run-time.  

 

We have defined detailed requirements and functionality that such a tool should provide. 

We have investigated existing tuning tools but we have missed there many important 

aspects. None of them treats applications as black-box because each tool requires an 

application to be prepared for tuning. There is no tool that would provide all the tuning 

phases simultaneously in a dynamic way. The performance analysis is usually based on the 

heuristic algorithms rather than on the concrete models that provide prediction of the 

application behavior. Therefore, we have decided to develop our own environment that 

will provide all required by us functionalities.  

 

Our goal is not only investigation of dynamic tuning area for parallel distributed 

applications and presenting its applicability and effectiveness by means of only theoretical 

tuning techniques, but also the development of an environment that will support dynamic 

automatic tuning. Our goal is to help a user providing as much automation as possible 

reducing a degree of expert knowledge and user intervention. We want to prove that 

running distributed parallel applications under control of a dynamic tuning system would 

allow for the adaptation of their behavior to the existing conditions and for the 

improvement of their functionality. To support developers with dynamic performance 

tuning and prove its profitability we have created an environment that facilitates 

monitoring, performance analysis and optimization of parallel applications automatically 

during run time. 
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5.2. Overview of requirements 
The goal of the tuning system is to improve the application performance and minimize the 

execution time by adapting the application to the available environment. To optimize the 

application during run time, to be efficient, useful and easy to extend, the tuning system 

must take into consideration many issues. 

 

5.2.1. Target environment 
Our investigation area is targeted to parallel and distributed scientific applications. 

Typically these applications are developed in PVM or MPI and they are executed in 

parallel environment that usually include several computers connected by network. A 

parallel application consists of several intercommunicating processes (a.k.a. tasks) that 

solve a common problem. These tasks are mapped on a set of computers and hence each 

task may be physically executed on a different machine.  

 

Therefore, a tuning system that improves the overall performance of a parallel program 

must be able to control all its individual tasks on all machines. Moreover, as discussed in 

Chapter 4, it is not enough to optimize tasks separately but the global application view 

must be considered.  This implies that a tuning system itself must be a distributed system. 

It must control individual processes of the tuned application and it must be able to gather 

global information about all associated tasks on all machines.   

 

Frequently, the parallel environments used to execute the scientific applications are 

networked clusters of workstations or grid environments that connect various individual 

clusters and supercomputing centers. These environments are typically characterized by 

dynamic behavior (i.e. changing availability of resources, varying network load, etc.). The 

performance of applications even with static behavior may vary in these conditions. We 

think that it might be necessary to apply dynamic tuning in order to achieve satisfactory 

performance and hence we target our tuning system to this kind of environments.  

 

5.2.2. Users 
Parallel applications are able to provide high performance computing characteristics. They 

are used for solving many scientific problems such as the atomic interactions in a 

molecule, the simulation of the universe evolution or climate modeling. So biologists, 

 85



MATE 
 

chemists, physicists and many other researchers have become intensive users of parallel 

applications. Typically, these users are not experts in performance optimization. They 

would need a tool that facilitates them the performance tuning process. Therefore, our 

tuning system is targeted to the users of parallel applications, especially to the non experts. 

 

As it has been indicated in Chapter 4, our work studies two basic dynamic tuning 

approaches: automatic and cooperative. In the automatic approach, the tuning system 

attempts to optimize an unknown parallel application and does not require its end-user to 

prepare it for the tuning. The programmer develops the application and then its user can 

execute it under control of the tuning system without any changes in the source code. In 

this case, the end-user is not required to provide any additional knowledge and he/she does 

not have to be a programmer.  

 

In the cooperative approach, a parallel application must be tunable and adaptable. This 

means that developers must prepare the application for the possible changes, in some cases 

by modifying its source code. They must provide the system with the knowledge that 

describes what should be measured in the application, what model should be used to 

evaluate the performance, and finally what can be changed in the application. Then the 

tuning system helps them to optimize their applications online. However, to provide the 

required knowledge a user must know the potential performance problem as well as the 

way of its detection and solution. Moreover, he/she must be able to implement an 

appropriate bit of code that allows the tuning system to tune the application. In this case 

the degree of user participation and expertise is much higher than in the black box 

approach and thus the group of the users of the tuning environment might be reduced. 

 

5.2.3. Required system characteristics 
The dynamic tuning system should have the following characteristics: 

• Online monitoring, analysis and tuning – it is required that all phases of performance 

optimization are performed online, i.e. during application execution. 

• No source code, no recompile, no relink – the source code of the application is not 

required for dynamic tuning. The application does not have to be recompiled nor linked 

with any additional libraries.   

• On-the-fly instrumentation – the tuning system should be able to add/remove 

instrumentation code for monitoring and tuning during run-time.  
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• Safe tuning – the tuning methods should be kept simple. The changes cannot affect the 

correct functioning of the application. We cannot assume that an application can be 

modified without taking any precautions. 

• Black-box and cooperative tuning – to experiment with both approaches, we require 

the system to support both methods. Concerning tuning layers that we presented in 

Chapter 4, we focus our work on the following layers: usage of operating system, usage 

of custom specific-problem library and application. The system must be able to adjust 

parameters, change algorithm and tune the code that inefficiently uses underlying 

libraries. Therefore, we require it to provide the set of tuning actions described in 

Chapter 4: function replacement, function invocation, one time function invocation, 

function call elimination, function parameter changes, variable value changes. 

• Low intrusion – the goal of the tuning system is to improve the execution time of the 

program. Therefore its implementation should minimize the overhead it implies itself 

by controlling and changing the tuned application. The instrumentation used for 

monitoring should minimize or gracefully handle large volume of information.  

• Lightweight analysis – the performance analysis process should be lightweight and 

not computationally intensive. It is recommended to keep the analysis simple to be able 

to take decisions in required time-frames.  

• Global application view – the tuning techniques that affect the functioning of the 

parallel application may require the tuning system to base its decision on global 

knowledge of the tuned application.  

• Open and extendable – the tuning system should be open and allow the developers to 

integrate new tuning techniques.  

• Easy to use – from the user perspective, the tuning system must be easy to use. In the 

automatic (black-box) approach, the best option would be to simply execute the 

parallel program under control of the tuning system and let it do its work.  

• Portability – due to variety of platforms used to execute the parallel applications, it 

should be possible to port the tuning system to different operating systems and support 

different communication libraries.  

 

5.2.4. Assumptions and dependencies 
As we have already mentioned, all phases of improving the application performance must 

be done on-the-fly. To fulfill this requirements we decided to use a novel technique called 
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dynamic instrumentation. This technique permits the generation and the insertion of a 

piece of code into running program without accessing its source code. We assumed to use 

the DynInst API [L29], a library that provides platform-independent dynamic 

instrumentation. We have presented this library in Chapter 4. We use DynInst library for 

two purposes:  

• dynamic monitoring – to provide the dynamic instrumentation phase. It is possible to 

manage (add and remove) a code (instrumentation) that collects information about the 

application behavior. 

• dynamic tuning – to provide the dynamic modification phase. It is possible to change 

the code of the running application in order to improve its performance.  

 

The DynInst library implementation is directed to applications written in C/C++ languages. 

Moreover there is a large number of scientific applications written in these languages that 

use PVM or MPI communication libraries. Therefore for the purpose of our work we 

assume to target our tuning system to C/C++ parallel applications based on PVM 

communication library. However, we require that the design of the system is open and 

could be extended to support applications that use other message passing communication 

libraries (for example MPI). 

 

Finally we decided to implement the tuning system on the UNIX platform, because it is 

the de facto standard platform for scientific parallel application. However, the 

implementation should minimize platform specific dependencies to enable its port to 

different operating systems.  

 

5.3. Functional requirements 
Our environment is required to perform dynamic tuning. From the functional point of view 

we can distinguish three basic and continuous phases: monitoring, performance analysis 

and optimizations. All of these phases must be performed continuously, dynamically and 

automatically while the program is running. The environment should be based on the 

computational steering loop concept and should exempt a developer from intervention into 

the tuning process. Our tuning system should dynamically and automatically instrument 

and monitor a running application to gather information about the application behavior. 

The analysis phase should search for performance inefficiencies, detect their causes, give 
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solutions on how to overcome them. Finally, the optimization (tuning) phase should 

dynamically modify the application by applying given solution. Moreover, during 

application execution, the environment cannot require access to the application source 

code. The running parallel application should be automatically monitored, analyzed and 

tuned without the need to re-compile, re-link and restart.  

 

An issue of particular importance is the representation of knowledge that can be used to 

drive the dynamic tuning of the parallel application. This knowledge should be specified 

independently from the environment implementation, in order to enable the extensibility 

and the inclusion of new performance problems and their tuning techniques. We require 

the environment to provide a solution to this problem and specify the representation form 

for measure points, performance model and tuning points/actions/synchronization (see 

Chapter 4 for definition of these terms).  

 

In the following sections we summarize the functional requirements of our environment:  

• Control the execution of the parallel application 

o Start the parallel application 

o Attach to the running application 

o Control startup and exit of individual application processes 

• Automatically control application performance monitoring 

o Decide what monitoring data is necessary 

o Decide where and how the required information should be collected 

o Request insertion/removal of instrumentation code 

• Perform application monitoring online 

o Generate new piece of instrumentation code 

o Insert instrumentation code to the individual process at a specified location 

o Remove previously inserted code 

• Collect monitored data for analysis online 

o Gather data generated by inserted instrumentation code from the individual 

application processes 

o Deliver performance monitoring data for analysis 

• Analyze application performance online 
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o Use externally provided knowledge (measure points, performance model, 

tuning points/actions/synchronization) to drive the analysis 

o Evaluate performance using collected monitoring data 

o Find performance problems 

o Decide if tuning is necessary 

• Control application performance tuning online 

o Find out what should be changed in the application 

o Decide where, how and when the tuning should be performed 

o Request the execution of application modifications 

• Perform application tuning online 

o Generate or load tuning code to individual application processes 

o Perform modifications 

o Synchronize the modifications with the application execution to ensure the 

correct functioning of the application 

o Undo tuning when considered necessary 

• Evaluate the profitability of performed tuning 

o Measure the performance monitoring cost 

o Measure the tuning cost 

o Evaluate the impact of modifications on the overall application performance 

 

5.4. Design issues 
The following statements explain the thinking behind the decisions taken during the design 

of our tuning environment. In order to build an efficient environment that provides all 

required services for dynamic tuning, we had to consider carefully many aspects. Here we 

describe each of them indicating main decisions, problems and techniques that were 

considered while designing and implementing them. 

 

5.4.1. Control of the execution of the parallel application 
As indicated previously, the current version of our environment is dedicated to PVM-based 

parallel applications. The PVM application consists of several tasks (processes) that 

cooperate to solve a common problem. These tasks are distributed on a set of machines that 

form a virtual machine. To provide a communication service between all the tasks, PVM 

runs on each machine a process called PVM daemon (pvmd). The daemon controls the 
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creation of tasks and their communication on the machine it is running and it also 

communicates with other daemons. Figure 5.1 shows an example of the distribution of 

application tasks in a PVM virtual machine.  

Machine 3 

Task4 

Machine 2 

Task2

master 

pvmd 

Task1

Task7

Task3

slave 

pvmd 

slave

pvmd 

Task6

Task5

Machine 1 

Fig. 5.1. Distribution of application tasks in the PVM virtual machine. 

 

PVM daemons form Master/Slave structure. For each machine one PVM daemon is 

executed. If PVM is running, there is always one master daemon executed as a first 

daemon in the virtual machine, the rest of daemons serve as slaves. Master daemon 

controls the whole virtual machine. When a new machine is to be added, a new slave 

daemon must be created on that machine. This request comes to master daemon and it runs 

a new slave daemon on a specified machine. When application spawns a new process, 

appropriate request comes to the master daemon. Then master daemon creates the process 

on a local machine or redirects this request to remote slave daemon if process is to be 

created on a remote machine. PVM spawns new processes on all available machines of the 

virtual machine using the round robin technique (a circular queue is kept). 

 

If virtual machine already contains a number of machines or a new machine is added 

dynamically to the virtual machine, it is obvious that PVM may run processes there. 

Therefore, to control the execution of the PVM application, our tuning environment must 

take control over all processes on all these machines where they are running. To provide 

these capabilities the tuning system must control the creation of a new PVM task and the 

start of a new PVM slave daemon. In order to take control over the PVM application, there 
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are two main problems to be resolved. First, the tuning system must use two special 

services provided by PVM, namely tasker and hoster. Next, it is necessary to distribute the 

modules of the tuning environment to all machines where the tasks are running. Therefore 

we created the Application Controller (AC) program that is responsible for controlling 

the execution of the parallel application by means of the tasker and hoster services. This 

program is automatically executed on all machines that form the virtual machine.  

 

The tasker service allows the Application Controller to receive the request when a new 

PVM process must be created on a given machine. A PVM daemon is exempted from the 

process creation; all necessary steps must be performed by the AC. The hoster service 

handles the creation of a new PVM daemon on a remote machine. This service allows the 

AC to receive the request when a new PVM daemon must be created. Master PVM 

daemon is relieved from the slave daemon creation duty; all tasks required to create a new 

daemon must be done by the AC. 

 

Each instance of the Application Controller provides the tasker service what permits to 

control a new process creation on the local machine. When starting a new process on a 

local machine, we are supported by the DynInst library. In order to create a new 

application process, we use a special method of the library that automatically takes care of 

the process creation phase. This solution is very reasonable, because via DynInst we have 

the process control and we can easily monitor and tune this process inserting and removing 

the instrumentation code. 

 

To support a creation of a new application process on a remote machine, the Application 

Controller must be able to distribute itself to the remote machines. However only a single 

AC can run the hoster service (there might be only one hoster in PVM). Therefore we must 

identify the Master Application Controller that runs the hoster and a set of Slave 

Application Controllers. The first executed AC is considered the master and it controls 

the distribution of Slave ACs as well as the local task creation. Slave ACs are distributed 

all over the PVM virtual machine (one process per host) and each one supports tasker 

service controlling all the application tasks on its local machine.  

 

All these design decisions are dedicated to PVM-based applications. Another library, such 

as MPI 1.0 does not provide dynamic task creation. An application is static since no 
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processes can be added to or deleted from an application after it has been started. Therefore 

in this case the application control gets much simpler. New functionalities supported by 

MPI 2.0 consider dynamically created tasks, but this is out of the scope of our work.  

 

5.4.2. Performance monitoring 
The performance monitoring is responsible for the instrumentation of a parallel application 

and collection of information about application behavior. The application 

instrumentation and data collection must be done dynamically during run time without 

accessing the  application source code. As stated previously, the performance monitoring is 

based on the DynInst library that enables the application address space manipulations and 

dynamic insertion and removal of monitoring code. We have also mentioned before, that 

we distinguished in our environment the Application Controller that is responsible for 

controlling the PVM application execution. Since this program is distributed and already 

has access to each individual PVM application task (it creates all tasks via DynInst 

library), we decided to include in it the performance monitoring module as well. The 

Application Controller uses DynInst to generate the appropriate monitoring code (i.e. 

snippets). Then during run time, the AC inserts the snippets into or remove them from the 

running task. In this way all tasks of the parallel application can be monitored. 

 

One of the principal goals of the performance monitoring is to provide an information 

about the application execution during run time. To collect such an information, the 

application must be instrumented. The instrumentation must be inserted into the original 

program execution at points needed to detect performance problems (concerning the 

application knowledge our environment is based on a.k.a. measure points), then it must 

generate necessary information and finally, this information must be sent for analysis. We 

decided to drive dynamic monitoring basing on event tracing. There are two basic types of 

events: 

• Entry of function call – an event is generated when the execution reaches an entry of a 

particular function. Typically, the selected function parameters are attached as event 

parameters. 

• Exit of function call – an event is generated before the function returns the execution to 

its caller. Typically, this event is not associated with additional parameters. Instead it is 

used to measure execution time of a function.  
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Optionally, other types of events may be considered, for example block-level events such 

as loop entry or exit. 

 

This event tracing technique is frequently considered invasive one since large amount of 

data can be produced. However, in the same time it is the most precise and the most 

flexible as events contain the detailed information about what happened, when, where and 

in which circumstances. Our environment inserts the instrumentation only when needed. 

This allows for provision of the precise information about the application behavior, but at 

the same time it also controls the intrusion introduced into the application and network. 

The complementary solution that could allow for minimizing the intrusion is profiling. It 

allows one to periodically obtain the statistical (aggregated) information about selected 

performance metrics and hence significantly reduce the amount of information to be 

transferred. In our work we decided to focus on the event collection technique, leaving the 

dynamically insertable metrics as possible extension.  

 

Event tracing requires the precise definition of data associated with an event. Typically, 

each recorded event includes a set of attributes: 

• What – what action occurred (event identifier or/and function name) 

• When – the time when the event occurred (timestamp) 

• Where – the location where the event occurred (e.g. host, task, line number, source file 

name) 

• Parameters – additional event-type dependent custom parameters (e.g. function 

parameter)  

 

Taking advantage of the experience gained from working with available monitoring tools, 

we intended to create generic event representation format that includes all mentioned 

attributes. It must be pointed out that events collected in a similar format can be widely 

applied by other analysis tools. We have already discussed that some of the monitoring 

tools generate events in the PICL format and there are analysis tools that take as input trace 

files in this format. Therefore, we designed the event format to be easily adapted to the 

PICL format.  
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As we have indicated previously, the online monitoring consists of two principal phases: 

instrumentation and collection. Our design assumption is event-based monitoring and 

analysis and hence the instrumentation must generate events that happen during the 

execution and deliver them for analysis. The application instrumentation includes 

generation of code to be inserted and insertion of this code. In the collection phase, there is 

gathering of events generated by inserted instrumentation code, and delivering them for 

analysis. The performance monitoring is based on the DynInst library that provides the 

possibilities to create an instrumentation code and manage it: insert into or remove from 

the specified points manipulating on the running process. By means of DynInst library, the 

monitoring service is then able to manage the instrumentation that will generate the 

information about the application execution.  

 

For example, if a function foo() is invoked, appropriate event with all necessary 

information that we indicated previously must be generated and sent for analysis. To 

instrument an application via DynInst we have to create in the monitoring module a special 

code called snippet that will be able to collect all necessary information from the specified 

function. Next the collected event data is delivered for analysis. Then during run time the 

snippet will be inserted into the memory of the running process at all specified point/points 

that are needed to discover performance problems (e.g. entry of the function foo()). Each 

time when the function foo() is invoked and a location with inserted snippet is reached, 

the snippet code will be performed. However, creation of such snippets is not a trivial task, 

since basically, creation of snippets is done by means of the AST (see Chapter 4). The AST 

for this kind of snippets is quite complex and hard to manage. Therefore, we use a special 

service provided by the DynInst library that facilitates snippet creation. 

 

DynInst library provides the method to load library dynamically to the application 

(mutatee) process. This dynamic library is attached to the memory of the process during 

the execution. The loading process of the monitoring library is shown on Figure 5.2. 

Instead of writing complex snippets based on AST that generate events, we have the 

possibility to write the code in C language. In the library we implement functions to be 

performed when event is being generated during the application monitoring, namely collect 

event data and deliver it for analysis. The code of the monitoring module provides only 

creation of snippets that are build as AST, but are simple. This kind of snippet only 

invokes the call/calls to the appropriate C function/functions from the run time monitoring 
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library passing to it/them all necessary parameters taken from the function the snippet is 

inserted. Dynamic library is loaded for each process separately, it means that each 

application process has its own copy of the dynamic library in the memory address space. 

Deliver for analysis

Monitor  
run time library

DynInst library 

void main (…) 
{ 
   // create app 
   // load run time lib 
   // create snippets 
   // insert snippets 
} 

int send (…) 
{ 
   ... 
} 

Snippets 

Monitor execution Application execution 

Run time phase 

Fig. 5.2. Monitoring run time library loaded into the memory of the running process. 

 

Application distribution and event-based performance analysis cause important problem, 

namely clock differences of a set of machines. In order to analyze the application 

behavior, in some circumstances, it is required to provide events with precise, global clock 

information (i.e. casual ordering). Therefore, events are annotated with timestamps 

generated on the time references. Virtual machine contains a set of machines and it is not 

ensure that their clocks are exactly the same. If clocks are different on different machines, 

event timestamps can differ significantly, and hence the analysis will not be correct. Each 

process performs its work and inserted instrumentation generates events. Events of each 

process are annotated with timestamp from the local machine, and although they are 

ordered for the process (partial event order), they can be globally unordered for the whole 

application. The analysis may require the casual event ordering (e.g. the send ends before 

the associated receive ends) and therefore the events must be preprocessed. This problem is 

illustrated on Figure 5.3. Generally, when event timestamps are not global time referenced, 

the ordering operation might be complex because of the determination of correct event 

order and the need for timestamps modifications after the event generation.  

 

We took the problem of time differences into consideration and we decided to provide 

global timestamps approach. In this case all events must be annotated with timestamps 

referenced to one machine. To provide such a timestamp the clock synchronization must be 

performed. All machines must agree on time and synchronize their local time with a time 
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on a reference machine. After this operation events can contain global timestamp and 

hence are time coherent.  

T1

Fig. 5.3. Partial and total event order. 
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Our environment distributes the Application Controller all over the PVM virtual machine 

and since it resides on each machine, it has access to the local machine clock. Therefore, 

this program can be also responsible for the clock synchronization. The synchronization 

performed by the Application Controller is illustrated on Figure 5.4. In order to provide the 

synchronization service, we chose as a referenced machine the one where the Master AC is 

running. The Master AC runs the separate time server process that waits for the requests.   

Each Slave AC must then synchronize the local clock with the master machine. Therefore, 

once the Slave AC starts on a remote machine, it sends requests to the time server. Then 

the Slave AC calculates and stores the clock difference. When an event is generated, it is 

logged automatically with the correct timestamp (adding/subtracting the difference to/from 

the local timestamp) and hence the clock desynchronization is minimized. Therefore, when 

the events are sent for the analysis module, it will receive events with adjusted timestamp. 

Then by applying casual ordering the analyzer can achieve the required ordering level.  

 

Clock synchronization is a very complex issue and it is difficult to implement it efficiently 

and reliably [Par98]. The main problem is to provide precisely defined difference between 

clocks of two machines. Many aspects must be taken into consideration when determining 

the exact clock difference, for example network load, time required to send and receive the 

time through the network, processing of the time request, etc. The well known and 

effective, but complex solution is described in [Rab97]. This method is used in the 

Tape/PVM, the monitoring tool that we have presented in Chapter 2. In the current version 

of our environment, we use simple method of synchronization. Although the method is 

simple, it provides us with the well-approximated clock differences. Taking into account 
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the existence of better method, the design of the AC is well prepared for the changes of the 

synchronization method. It can be easily adapted for the new, more efficient and reliable 

implementation of the clock synchronization. 

Time diffTime diff 

Master AC 

17:55:02 18:10:44

18:07:36

Time server 

Slave AC Slave AC 

Machine 3 

 

Machine 2Machine 1 

Synchronize 

Fig. 5.4. Clock synchronization.  

 

5.4.3. Performance analysis 
The analysis is responsible for the automatic performance analysis of a parallel application 

“on the fly”. It is able to examine application behavior, identify performance bottlenecks, 

and give concrete solutions that overcome these problems. In general, the analysis process 

must be performed in continuous parallel computational loop: application monitoring, core 

performance analysis in order to detect the problem and finally solving or minimizing the 

impact of the problem by applying tuning actions. The analysis process continues until the 

application terminates. 

 

The analysis must be done globally with taking into consideration behavior of entire 

application. For this purpose we distinguished a distinct module that will be responsible for 

monitoring data collection and its analysis. We suppose the performance analysis to be 

time-consuming. To minimize the intrusion introduced into the application execution, the 

analysis module should be performed on a dedicated and distinct machine (the 

performance “optimizer” machine). In Chapter 4 we talked about the scalability of such 

solution and the possibility to perform some parts of analysis locally, but this is future 

work and this is out of the scope of the design. 
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The analysis defines and processes the performance measurements at run-time. The on-line 

analysis can focus on specific execution aspects (i.e. most severe problems), selectively 

refining its measurements in light of the previous results. Therefore, the instrumentation 

can be added or removed automatically according to the actual program behavior. The 

application can start with generic initial instrumentation and then this instrumentation can 

be selectively changed by requesting more or less detailed  information. This leads to a 

reduction in the amount of measurement data. 

 

Performance analysis (i.e. problem detection) can be performed using a number of 

different methods, for example analytical performance model, rules or probabilistic model. 

An analytical model describes behavior of an application and determines how to improve 

the current settings and in consequence how to find the optimal execution time. In this 

case, the performance model must contain a set of related tuning actions. The analysis 

based on such an analytical model and included mathematical formulas receives the 

monitoring data and calculates the actual and optimal setting. If it decides that some 

settings may be changed to improve the performance, an action should be applied on 

parameters related with these settings. Other analysis method is based on a set of rules. 

During the performance analysis, the input monitoring data is applied to the rules. If the 

result is positive, then an appropriate action must be invoked. In this sense, such method 

must contain a set of related tuning actions, as well. There is also other analysis method 

based on models, but in this case this is the probabilistic model. In such solution, a 

parameter under control is adapted by calculating its value space using heuristic algorithm. 

This method is a method of probes and errors. The parameter is set to a new value and it is 

continuously controlled if the applied change was successful or only make the performance 

worse.  

 

Each analysis method has its advantages and disadvantages, it depends on a particular case 

which one is better. We want to investigate many model and not limit us to only one. 

Therefore, we have to provide the tuning environment easy to extend and to apply different 

analysis methods. However, for the purposes of this work we concentrate on the analysis 

based on the performance model.  

 

Each performance model contains a set of input data that it requires for calculations, as 

well as a set of output data that represents how the application should be changed to 
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improve its performance. Moreover, in Chapter 4 we described that tuning system, to be 

possible and effective, must be provided with the application knowledge. We correlated 

these two issues and we based the analysis on application knowledge of possible problems 

and their solutions. We specified the knowledge as measure points, performance model (as 

formulas and conditions) and tuning points/action/synchronization.  

 

The knowledge that is provided to our environments contains a set of different problems 

that can be monitored, detected and solved. All required information and processing related 

to each problem is called tuning technique. To support the analysis of many problems, the 

tuning system includes the catalog of tuning techniques where each technique solves a 

particular problem. Initially, we decided to start with an approach that treats all provided 

techniques separately. The analysis simply runs a number of techniques simultaneously 

and when a particular technique detects the problem it activates the tuning. In future it 

would be interesting to investigate another approach as for example analysis based on 

hierarchy of problems. In this case the tuning system has a hierarchical catalog of 

performance problems where each problem is associated with an optimization technique. 

Such approach of problem searching and refining is used in Paradyn [Hol93].  

 

From the one side, we decided that a tuning technique can be provided by our tuning 

environment or by the developer that utilizes our environment. First provision method will 

support black box approach of tuning since there is no intervention of a developer side. 

Second one will be cooperative tuning as developers must prepare all required information 

and adapt their application to be aware of possible dynamic modifications. Although we 

distinguished two approaches, we want our environment to support one and uniform 

knowledge inclusion mechanism. Therefore, we looked for a one solution of tuning 

technique provision adequate for both of them. 

 

From the other side, an application knowledge cannot be hard coded within the tuning 

environment, because the system would not be easy to extend. The environment must 

provide the possibility to add new tuning techniques. One of the good solution would be to 

declare such a technique externally (using a declarative language) and then interpret it. 

However, performance models can have heterogeneous forms (e.g. mathematical formulas, 

complex conditions) and it is really difficult to declare them. Therefore, the most flexible 
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solution is to provide a tuning technique using programming language. To add such a 

technique to the environment we need a kind of component that is easily loadable.  

 

For both reasons, we decided to provide an external, compact module in the form of 

dynamically loaded shared library. One library represents one particular performance 

bottleneck and is able to cooperate with the tuning environment. Such a library is called 

tunlet. Each tunlet contains specific information related to a bottleneck that can occur in 

the application. A single tunlet addresses one concrete performance problem by 

implementing a particular tuning technique. To be able to cooperate with the environment, 

the tunlet implementation is based on the Dynamic Tuning API provided by the analysis 

module.  

 

A tunlet must be prepared for a particular problem. All necessary information is 

determined by the investigation of the possible bottlenecks in the operating system, 

problem-specific library implementation or application. The tunlet must decide what is 

needed to detect a problem (measure points) and what must be changed to improve the 

performance (tuning points/action/synchronization). To perform the analysis it must 

receive meta data about the application model and monitoring data generated by the 

instrumentation. The tunlet hence must cooperate with the analysis service of our 

environment. Therefore, we decided to include an API for the tunlets. The analysis module 

of our environment must provide this API, its implementation carried out communication 

with the rest modules of our environment and finally a container of the tunlets. Figure 5.5 

shows the performance analysis based on the catalog of tuning techniques implemented in 

the form of tunlets. 

 

The tunlet must provide the analysis with the measure points that represents what should 

be instrument in the application in order to find a bottleneck. The analysis service then 

broadcasts required measure points to all ACs modules responsible for the application 

performance monitoring. When an application is running, the searching-bottleneck phase 

starts. The analysis service is responsible to continuously collect events generated by 

different processes. When a meta data of the application model or event records come they 

are sent to the appropriate tunlet for analysis. The tunlet evaluates the performance model 

using collected event records and checks if a bottleneck occurs. If it is the case, it finds 
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what should be changed and its optimal settings. It also decides if the changes must be 

performed in the whole application or in the particular task/tasks. 

. . . 
Tuning 

point/action/sync 

Performance model 

Measure points 

TunletN

Tuning 
point/action/sync 

Performance model 

Measure points 

Tunlet1 

requestsrequests 

Dynamic Tuning API 

Task1

Task3

events 

ACAC 

Task2

Machine 2 Machine 1 

Machine 3 

Fig. 5.5. Performance analysis based on knowledge provided as tunlets. 

 

For example, when considering performance inefficiencies, we can define that the 

efficiency of a process is considered as the percentage of time that it is doing useful work. 

The analysis can search those intervals where processes are not doing any useful work 

(they are simply blocked, waiting for a message). Concerning PVM applications, we can 

measure it inserting the instrumentation into entry and exit of function pvm_recv(). The 

idle time is calculated as the difference time between the entry and exit. When idle-time 

intervals exceed the limits of threshold values, these intervals should be minimized in order 

to improve the performance of the application. If the evaluated behavior is not considered 

satisfactory, its causes are determined. A cause may be, for example, non-optimal work 

size being assigned to slave processes. The model is then used to calculate the optimal 

settings and to decide what tuning actions should be performed. 

 

Finally, the tunlet searches for the appropriate tuning modifications that should be invoked 

in the particular process or in the whole application. It notifies an analysis service, which 

in turn sends appropriate request to the AC, that a given tuning action should be invoked at 

a given point in a given process. The information how to synchronize the changes with the 

process execution is passed as well. For example, in a particular Master-Worker 
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application, if the analysis determines that a number of worker parameter should be 

changed in a master process, the following information is sent to the AC: the process 

identifier, the name of a variable together with its new value, and synchronization point.  

 

The analysis process continues until the application terminates. Obviously, all this time the 

monitoring data is sent for analysis. In certain cases, the tunlet may need more information 

about program execution to determine the causes of a particular problem. In other cases 

when the problem has been already detected, the tunlet may not need any more monitoring 

data. It can therefore request the analysis service (that in turn sends appropriate request to 

AC) to change the instrumentation dynamically, depending on the necessity to detect 

performance problems. Dynamic changes of monitoring data can decrease the intrusion 

introduced into the application execution.  

 

5.4.4. Tuning 
The performance tuning is responsible for automatic modifications of a running parallel 

application. It is based on decisions given by the performance analysis. When a problem 

has been detected and the solution has been indicated by the analysis, the performance 

tuning service receives the solution and automatically applies it changing the running task. 

The application of solution is done by means of DynInst library since this operation must 

be done during run time without source code, recompilation and rerunning the program.  

 

When applying specified code modifications, the task memory is manipulated by invoking 

appropriate changes. Therefore, access to the corresponding task is required and hence 

performance tuning service must be distributed all over the PVM virtual machine where 

application tasks are running. As stated previously, we distinguished the Application 

Controller responsible for controlling the PVM application execution. Since this program 

has access to each individual PVM application task, we decided to include in the AC the 

performance tuning module as well. 

 

The tuning methods must be kept simple and well determined since all the changes 

performed on an application cannot affect its correct functioning. When changing running 

application, the tuning module must be provided with exact information about what to 

change, where and finally when. Therefore, the solution to be applied that comes from the 

analysis contains all required information, namely a target task, tuning action (what), 
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tuning point (where), and synchronization (when). Moreover, in Chapter 4 we 

distinguished the set of possible modifications that concern DynInst library functionality. 

Therefore, we carefully determined tuning actions that can be applied on the running 

process. We decided to include in the performance tuning a set of predefined modifications 

that are performed on tuning points and can be activated by the performance analysis.  

 

We consider the following tuning actions: 

• function replacement – replaces all calls to one function with calls to a new one. The 

implementation of a new function must already reside in the application memory.   

• function invocation – inserts a new function invocation code with a specified attributes 

at a given location. The implementation of a new function must already reside in the 

application memory.  

• one time function invocation – inserts a new function invocation code with a specified 

attributes and invokes it only once. The implementation of a new function must already 

reside in the application memory.  

• function call elimination – removes calls to a specified function from a given point. 

• function parameter changes – sets the value of an input parameter of a specified 

function. 

• variable value changes – modifies a value of a specified variable. 

 

When one of these actions is activated, the performance tuning module generates the 

corresponding instrumentation. Then it inserts the generated code at the specified point and 

if necessary synchronizes its invocation with the application. The tuning instrumentation 

can be generated in two ways:  

• a snippet code directly calls appropriate DynInst library method to invoke the tuning 

action – such a snippet is simply and does not require to perform many operations. For 

example, in the case of the I/O bottlenecks caused by flushing, the tuning action can 

eliminate the flush() function call. To perform this action a snippet simply invokes 

BPath_thread::removeFunctionCall() method from DynInst library. 

• a snippet code invokes appropriate method from the run time tuning library – a snippet 

is created as in the case of monitoring instrumentation and it simply calls a function 

from the run time tuning library previously loaded to the process memory. A snippet is 

simple but it requires a code of additional function provided by the loaded library. For 
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example, when the analysis module decides to incorporate custom memory allocator, a 

new allocation function must be called. The tuning action then replaces all calls to the 

standard function e.g. malloc() with a call to the new one. The new function must 

reside in the process memory and hence is provided in the run time tuning library. To 

perform this action a snippet invokes BPath_thread::replaceFunction() method 

from DynInst library. 

 

The changes made by performance tuning module will be invoked the next time the 

application reaches that point. The methodology can only be applied to problems that 

appear several times during the execution of the application. This fact might appear to be a 

constraint. However, as it has been already pointed out, the main performance problems of 

parallel distributed application are those that appear many times during the execution of 

the application.  

 

5.4.5. Overhead minimization 
One of the fundamental issues for the tuning system in achieving the profitability is the 

minimization of intrusion. Obviously the tuning system must guarantee that the intrusion is 

much smaller than expected benefits. Therefore, it is necessary to minimize the overhead 

introduced by the existence and functioning of all the components of the tuning system. To 

achieve that we must take into consideration some precautions such as intrusion preventive 

actions, efficient implementation techniques, and code optimizations.  

 

The first source of intrusion is the necessity of distributing processes of the tuning system 

to all computers when the application processes are running. Therefore we designed the 

Monitor/Tuner process to be small and resource conservative. Moreover, as described in 

the previous section, there is only one process running per host. In the normal conditions, 

the process remains idle and does not affect the functioning of the application processes 

until there is a request to be served. 

 

The next source of intrusion is the requirement to manage the startup/exit of each 

individual application process. This is performed by means of DynInst API and requires 

the image of the application process to be parsed before the process is executed. Typically 

this operation takes about several seconds (in function of the image size). Although this 

operation can be considered irrelevant when performed before application start, the cost 
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associated with frequent task creation during application execution may be more 

significant.  

 

Next, each modification of the application process triggered by the necessity to insert or 

remove monitoring or tuning code comes at a cost. In particular each dynamic 

instrumentation requires the temporal suspense of the application execution, the 

completion of modifications, and the restoration of the execution. Naturally, the new code 

inserted into the application causes additional overhead that mainly depends on the 

complexity of the introduced code. Therefore it is important to keep the instrumentation 

simple.  

 

The principle of the dynamic instrumentation is that the instrumentation code needs only to 

reside in running application as long as it is needed to gather data. So the idea is to insert it 

as late as possible, and remove it as soon as possible. Therefore, in our tuning system the 

instrumentation can be added or removed automatically according to the actual program 

behavior. Instrumentation can be inserted only when a specific performance problem in the 

analyzed application is suspected. For example, the running program can be measured with 

an initial set of instrumentation. Next, when some thresholds are exceeded, an additional 

instrumentation might be introduced to obtain more detailed information. Finally, when the 

problem has been solved, the required measurements can be reduced or even removed. The 

instrumentation overhead can therefore be dynamically reduced and controlled. We avoid 

the constant overhead as it would be in the case of classical profiling that requires all the 

functions to be instrumented during the entire execution of the application. 

 

The next source of intrusion results from the need to have a global application view to 

perform the global analysis. Due to physical distribution of modules of the tuning system, 

it is necessary to intercommunicate them. This may affect the network performance and 

hence we need to minimize the frequency and the number of exchanged messages. The 

communication between modules of our tool cannot delay the communication between 

tasks of the tuned application. For example, in the case of the monitoring module, we 

decided to use compact, binary message format and event buffering mechanism to reduce 

the number of generated messages. 
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Finally, the performance analysis process cannot be too expensive. It should be lightweight 

and not computationally intensive. Moreover it must react to changes in the application 

behavior and make adequate decisions in a timely manner (in required short time-frames). 

Therefore we consider important to keep the analysis process simple. 

 

5.4.6. Portability 
Considering hardware available in our laboratories, we decided to implement our tuning 

environment for SPARC Sun Solaris platform. However, as we have mentioned the 

environment does not have any platform-specific dependencies and is kept compatible with 

POSIX standard. Our tuning system depends on PVM and DynInst, but both libraries are 

available for many different platforms (UNIX, Windows). Therefore, the environment can 

be easily ported to different platforms.  

 

5.4.7. Support for alternative communication libraries 
The current version of our dynamic tuning environment is implemented in C++ language 

and is dedicated to PVM-based applications. However, it can be adapted to support 

applications that use other message passing communication libraries. The most significant 

dependencies are related to the application control and to communication library-

dependent tuning techniques. To make the environment extensible and easy to maintain, it 

has been designed using object-oriented methodology and we have intended to simplify 

possible extensions providing the code reusability. Therefore, to provide for example MPI 

support, only selected, isolated classes should be reimplemented and others (such as tasker, 

hoster services) disabled. Some of the tuning techniques are dedicated to concrete libraries, 

e.g. PVM and they cannot be used with MPI applications. It would necessary to identify 

other MPI-specific tuning techniques and implement them as tunlets.  

 

5.5. MATE 
We propose a novel environment called MATE (Monitoring, Analysis and Tuning 

Environment) that enables dynamic performance improvement of distributed parallel 

applications. MATE supports three basic functionalities: performance monitoring, 

performance analysis and tuning. All these phases are performed automatically and 

continuously “on the fly” by our environment.  
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5.5.1. Architecture 
Basically, MATE consists of the following main components that cooperate among 

themselves, controlling and trying to improve the execution of the application: 

• Application Controller (AC) – a daemon-like process that control the execution and 

dynamic instrumentation of individual PVM tasks.  

• Dynamic monitoring library (DMLib) – a shared library that is dynamically loaded 

into application tasks to facilitate the performance monitoring and data collection. 

• Analyzer – a process that carries out the application performance analysis and decides 

on monitoring and tuning.  

 

Figure 5.6 presents the MATE architecture in sample PVM scenario. In this example the 

PVM application consists of 3 tasks distributed on 2 different machines. To start the 

application, MATE distributes the Application Controller processes to both machines to 

control the startup of the tasks. There is one Master AC residing on the machine where 

master PVM daemon is running. The Master AC provides the virtual machine control (i.e. 

dynamic addition of machines to PVM virtual machine), local tasks creation and moreover 

serves as the time server for clock synchronization between hosts. The Slave AC runs on 

another machine. It controls the creation of local tasks and synchronizes the clock with the 

master AC. In order to control the creation of tasks, both ACs communicate with the local 

PVM daemon (pvmd). When a new PVM task is started, the AC loads the shared 
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pvmd 

DMLib 
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Fig. 5.6. Architecture of the MATE dynamic tuning for PVM. 
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monitoring library (DMLib) to the task memory that allows for its instrumentation. During 

execution, the ACs manages the instrumentation of each task. This allows the Analyzer to 

dynamically add/remove events to be traced and apply tuning actions. The shared 

monitoring libraries are responsible for delivering registered events directly to the 

Analyzer. 

 

In the following sections we describe with details all modules of the MATE environment. 

We present their functionality, interfaces and limitations. 

 

5.5.2. Application Controller 
As introduced previously, each Application Controller process manages a set of PVM tasks 

running on its local machine. This process provides the following services: 

• Distributed application control  

o Startup/exit of PVM tasks 

o Startup/exit of new PVM daemons and slave ACs 

o Clock synchronization between ACs on different hosts 

• Application instrumentation management 

o Manage instrumentation of running tasks 

o Allow the Analyzer to remotely add/remove instrumentation 

• Performance monitoring  

o Load shared monitoring library into application task 

o Generate monitoring snippets 

o Insert/remove the snippets 

• Performance tuning  

o Load shared tuning library into application task 

o Generate tuning snippets 

o Insert/remove the snippets 

 

The Application Controller consists of a number of cooperating modules. Figure 5.7 

presents the internal architecture of the Application Controller program and the following 

paragraphs describe in detail each module. 
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Communicator 
This is the central module of the AC that handles the communication with external world 

using TCP/IP protocol. This enables the AC to process the Analyzer requests (i.e. 

add/remove monitoring instrumentation or apply tuning actions) and handle PVM 

notifications (i.e. spawn new PVM task or add new slave host). The Communicator module 

dispatches the incoming messages to be processed by appropriate modules.  

 

Because the communicator must be able to handle both PVM and Analyzer communication 

simultaneously, we have chosen an object-oriented design pattern called Reactor [Gam95] 

to implement this module. This design pattern handles service requests that are delivered 

concurrently to an application by one or more clients. This pattern can be utilized for 

applications that can receive simultaneously many requests from different clients. Reactor 

allows the application to wait for incoming requests, demultiplex them and finally dispatch 

them to the corresponding handlers. For each request application offers a provider that 

handles the request. The reactor implementation uses low-level select() system call. 

When a message arrives, it is demultiplexed and in function of its type it is then dispatched 

to the appropriate AC module. The module receives the message and performs 

corresponding operations. For example, when PVM message (SM_STTASK) arrives, the 

reactor dispatches the message to the PVM tasker module that in turn creates a new PVM 

task.  
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PVM tasker 
According to the PVM foundations, each of the processes of the parallel application while 

performing its computations can spawn new processes. When a PVM task wants to spawn 

a new task, calls the pvm_spawn() function that in turn communicates with the PVM 

daemon and sends it the appropriate request. The local daemon handles the request by 

physically starting a new process. To change the standard behavior of the process creation, 

the AC provides the module that implements the PVM tasker service.  

 

The functioning of this module is illustrated on Figure 5.8. The PVM tasker service 

connects to the local pvmd and registers itself as a tasker (1). After the registration, the AC 

can start the parallel application by creating the application “father” task (2). The father 

task usually spawns additional tasks. Therefore, to control their creation, the tasker 

registration must be performed before father task starts. When the father is created, the AC 

inserts the appropriate instrumentation and then allows the process to execute (3). When 

the father process wants to create a new child process, it sends spawn request to a local 

PVM daemon (4). The PVM daemon receives the request, checks if there is a registered 

tasker and forwards the spawn message SM_STTASK to the tasker that becomes responsible 

for a new process creation (5). Next, the tasker creates a new child process extracting all 

necessary parameters from the received message (6) and delegating the creation to the 

Task Manager module that actually creates the process and automatically inserts the 

required instrumentation. (7). Next, the newly created process starts and registers itself 

with the PVM daemon as a PVM-task and communicates without any changes with a 

father process via PVM daemon. Finally, the tasker duty is to notify the PVM daemon 

about the termination of the child process. This is performed by sending the message 

SM_TASKX to the pvmd.  

instr
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7. Instrument 

6. Run
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2. Run 
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Fig. 5.8. An example scenario: AC starts a parallel application. 
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PVM hoster 
In the PVM, when the father process spawns child processes, they can be distributed all 

over the virtual machine (VM). The VM can be configured before the application startup, 

but it can also grow dynamically during the parallel application execution. The AC goal is 

to monitor all the processes of the application, hence it must be able to control the VM as 

well. Therefore, the AC must perform two jobs. First, during startup it must check the 

existing configuration of the VM and distribute itself to all hosts the VM consists of before 

the monitored application launching. It is illustrated in Figure 5.9. Second, it must take 

control over the creation and removal of hosts from the VM since during the monitored 

application execution a request to run/remove a remote PVM daemon may appear. In this 

situation Master Application Controller must implement the PVM hoster service and 

launch a new Slave Application Controller on the indicated remote machine together with 

a new PVM daemon. This case is presented in Figure 5.10. Only the solution that we have 

just presented supports the control of all PVM processes on all machines. 

Add host D

Fig. 5.9. Running a new Slave AC process when a new host is added dynamically to the PVM virtual 

machine during the monitored application execution. 
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In general, a new machine can be added to the PVM virtual machine in two ways: 

programmatically by the application by means of API functions (i.e. pvm_addhosts(), 

pvm_delhosts()) or manually by the user who configures the VM from the PVM console. 

When the new host must be added, a request is sent to the master PVM daemon. The pvmd 
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physically adds the new remote machine and starts the slave PVM daemon there. From this 

moment on, all task scheduling requests will also consider the new virtual machine 

configuration. 

Hoster 

Tasker 

Master AC  

Tasker

Slave AC 
Slave 
pvmd 

Machine C 

Tasker

Slave AC 
Slave 
pvmd 

Machine B 

Master 
pvmd 

Machine A 

Fig. 5.10. Running a new Slave Application Controller process on all machines of the PVM virtual machine

before the monitored application startup.  

 

To customize this standard behavior of PVM the AC implements PVM hoster service. The 

functioning of the hoster service is illustrated on Figure 5.11. The PVM virtual machine 

can have only one hoster. Therefore only the Master AC runs this service and must register 

with master pvmd (1). When master pvmd receives a request to create a new PVM daemon 

(2), it checks if there is a registered hoster and if it is the case, it forwards the SM_STHOST 

message to the hoster (3). Next, the hoster extracts all necessary parameters from the 

message and starts a new slave PVM daemon process on an indicated remote machine (4). 

In order to monitor the application processes that can be spawned in the future on the 

5. Run4. Run

Machine A
Master AC 

Hoster 
Master

pvmd 
1. Register 

3. Create slave daemon

2. Add host

Fig. 6.1. An example scenario: tasker runs a new application process. 

Slave 

pvmd 

6. Ack 

Slave AC 

Tasker 

Machine B

Fig. 5.11. PVM hoster service creates a slave pvmd and slave AC. 

 113



MATE 
 

newly added machine, the hoster creates also a Slave AC process on that machine (5). The 

newly started Slave AC does not start the hoster service, but starts the tasker service. 

Finally, the hoster must send to the waiting master pvmd the SM_STHOSTACK message (6) 

that indicates the status of the slave daemon creation. 

 

The remote creation of both slave pvmd and Slave AC is complicated by the possible 

hazards. Master AC must notify the master pvmd that the slave daemon was successfully 

started. However, it cannot be done before the Slave AC is completely started and 

registered as the tasker. Otherwise, the master pvmd could immediately spawn a new 

process on a remote machine and the Slave AC would not be able to control new task. To 

solve this problem, we have implemented a new program called Starter. This program is 

responsible for starting first the PVM daemon process, and next the Slave AC process. So 

when the add host request arrives to the Master AC, it launches the Starter process 

remotely by means of the rsh() command. In continuation, the starter creates both 

processes and waits for the Slave AC to confirm that it has registered the tasker service. 

Next, the Starter acknowledge to the Master AC that the whole process terminated 

successfully. Finally, the Master AC can notify the master pvmd without any hazards.  

 

Task Manager 
This module is responsible for the creation, management of inserted instrumentation and 

termination of application tasks. In order to manage all tasks on a local machine, the Task 

Manager (TM) must hold references to each created task. The TM uses DynInst library to 

perform the dynamic process creation and instrumentation.  

 

When the TM is requested to create a new process (i.e. by the PVM tasker service), it uses 

the BPatch_thread::createProcess() method from DynInst API. When the process 

has been started, the TM loads a specified shared library to the application process. By 

default the MATE Dynamic Monitoring Library (DMLib) is loaded, but this can be 

customized if necessary.  Next, any previously defined monitoring instrumentation is being 

inserted into the process to enable the Analyzer capturing the information from the very 

beginning (the details of the process instrumentation are explained later in this chapter).  

 

The TM handles the insertion and removal of prepared instrumentation snippets. However, 

the particular code to be inserted is prepared by other module (i.e. Monitor and Tuner) and 
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the role of the TM is to record the inserted snippets in order to handle their removal on 

request of other modules. The TM also handles the termination of tasks. When a task 

terminates, the TM is notified about this event by means of DynInst callback mechanism. 

The TM is then responsible to finalize the monitoring library. Next, the DynInst library 

automatically unloads the library and from the process memory. Finally, the TM must 

notify the tasker module that in turn notifies the PVM daemon that the process created by 

the tasker has terminated. 

 

Monitor 
This module is responsible for performance monitoring of the execution of a parallel 

application. As stated previously, currently the monitoring is based on the event tracing of 

function calls. The application is instrumented dynamically during run time and the 

inserted instrumentation generates events. Once the AC starts, the Monitor module 

receives from the Analyzer an initial set of events to be traced (these events are 

conceptually called measure points). At application process startup, the Monitor inserts the 

corresponding instrumentation code to record these events. Instrumentation can also vary 

on demand during run-time. If the Analyzer requires more or less information, it can notify 

the Monitor to change the instrumentation dynamically. Consequently, the Monitor 

supports modification of the set of monitored events, i.e., it is able to add new or to remove 

redundant events. The Monitor module offers the following API: 

 

enum InstrPlace { ipFunctionEntry, ipFunctionExit }; 
enum AttrSource { asFuncParamValue, asVarValue, asFuncReturnValue,  

asConstValue }; 
enum ValueType  { vtInteger, vtShort, vtCString, vtFloat, … }; 
 
struct Attribute 
{ 
    AttrSource   source; // source of attribute value 
    ValueType    type;   // type of attribute value 
    char const * id;     // source-dependent object identifier  
}; 
 
void AddEvent (int processId, 

   eventId,  
   char const * functionName,  
   InstrPlace place,   

     int nAttributes, 
     Attribute * attrs); 
 
void RemoveEvent (int processId, int eventId); 
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The API allows the Analyzer to dynamically add a new event to be traced by calling 

AddEvent() function. An individual event is defined as follows: 

• processId – unique application process identifier 

• eventId – unique value used to identify the event 

• functionName –  a name of the C/C++ function to be traced 

• place – instrumentation place determines when the event should be generated: on 

function entry or exit.  

• nAttributes – number of attributes that should be recorded with each event 

• attrs – an array of Attribute structures that define each attribute to be recorded with the 

event. Each attribute can be either a global variable value (asVarValue), a parameter 

value of a called function (asFuncParamValue), a return value of another function 

(asFuncReturnValue) or a given constant value (asConstValue). The attribute has a 

value type (i.e. integer, float, etc.) and an identifier that identifies the variable name, 

function name or a function parameter index. 

The previously added event can be removed during the application execution by calling 

RemoveEvent() function. 

  

To perform dynamic event tracing, the Monitor uses DynInst library to insert the 

instrumentation code that generates events to be traced. For instance the instrumentation 

code may be inserted at the entry and/or the exit of pvm_send() and pvm_recv() 

functions, when it is necessary to monitor the network functions in order to find potential 

communication bottlenecks. To collect these events and deliver them to the Analyzer, the 

Monitor uses the dynamic monitoring library loaded into the task during its startup that 

communicates with the Analyzer using low-level event collection protocol based on 

TCP/IP. 

 

To trace a new event, the Monitor builds dynamically an instrumentation code – so called 

snippet. The snippet collects all necessary event attributes by reading the value of function 

parameters (e.g. tid of a process the message is sent to) or global variables as defined by 

the event attributes. To read a value of parameter of instrumented function, the snippet uses 

DynInst class BPatch_paramExpr. Next, it invokes a recording function from the 

monitoring library (DMLib). The DMLib API is described in detail in the following 

sections. Finally, the snippet is inserted into the appropriate points of the process by means 
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of DynInst Bpatch_thread::insertSnippet() method (e.g. to the entry of the function 

pvm_send()). Each time the instrumented function is executed, the inserted snippet code 

is invoked. The generated event is then passed to the DMLib and later delivered to the 

Analyzer.  

 

Tuner 
This module is responsible for applying tuning actions to a running application task. It 

utilizes solutions given by the Analyzer to modify the program during run-time. The Tuner 

dynamically changes the application execution manipulating in the application process 

memory via DynInst library. The Tuner module offers the following API: 

struct Breakpoint 

{ 

    char const * funcName; InstrPlace place; 
}; 

void LoadLibrary (int processId, char const * libPath); 
 

void SetVariableValue (int processId,  
           char const * varName,  
         char const * varValue,  
                       Breakpoint * brkpt); 
 
void ReplaceFunction (int processId,  

    char const * oldFunc,  
    char const * newFunc,    
    Breakpoint * brkpt); 
 

void InsertFunctionCall (int processId,  
 char const * funcName,  
 int nAttrs, 
 Attribute  * attrs, 
 char const * destFunc, 
 InstrPlace   destPlace, 

   Breakpoint * brkpt); 
 

void OneTimeFunctionCall (int processId,  
  char const * funcName,  
  int nAttrs, 
  Attribute  * attrs, 
  Breakpoint * brkpt); 

 
void RemoveFunctionCall (int processId,  

 char const * funcName, 
          char const * callerFunc, 

 Breakpoint * brkpt); 
 

void FunctionParamChange (int processId,  
  char const * funcName, 

           int paramIdx, 
      int newValue, 
      int * requiredOldValue, 

Breakpoint * brkpt);
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The API allows the Analyzer to perform a limited number of tuning actions: 

• LoadLibrary – loads a specified shared library to a given application process. This 

enables the Analyzer to load any additional code required for the tuning. 

• SetVariableValue – modifies a value of a specified variable in a given application 

process. 

• ReplaceFunction – replaces all calls to function oldFunc with calls to function 

newFunc in a given application process. 

• InsertFunctionCall – inserts a new function invocation code with a specified 

attributes at a given location in an application process. 

• OneTimeFunctionCall – invokes one time a given function in a given application 

process.  

• RemoveFunctionCall – removes all calls to a given function from the given caller 

function. For example this method can be used to remove all flush() function calls 

from a debug() function.  

• FunctionParamChange – sets the value of an input parameter of a given function in a 

given application process. This parameter value is modified before the function body is 

invoked. There is also possible to change the parameter value under condition, namely 

if the parameter has a value equal to requiredOldValue, only then its value is changed 

to new one. If the requiredOldValue is zero, then the value of the parameter is changed 

unconditionally.   

 

The Breakpoint parameter used in all tuning functions is used for synchronization 

purposes. The synchronization specifies when the tuning action can be invoked to ensure 

the correctness of an application. Currently, the tuner supports only the breakpoint-based 

synchronization. A  breakpoint can be inserted into the application at the specific location 

(at the function entry or exit). When the execution reaches the breakpoint, the actual tuning 

action is performed and then the breakpoint is removed. 

  

5.5.3. Dynamic monitoring library 
This module (DMLib) provides the event tracing functionality and is implemented as a 

shared library. The library is loaded dynamically by the AC into the address space of each 

individual process. To load the monitoring run time library into the running process, the 

AC uses DynInst BPatch_thread::loadLibrary() method. The library contains 
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functions that are responsible for registration of events with all required attributes and for 

delivering them for analysis.  

 

The DMLib is developed in C/C++ language and offers the following API:  

void DMLib_InitLogger (int processId,  

      char const * analyzerHost, 

    int analyzerPort, 

long64_t clockDiff); 

void DMLib_OpenEvent (int eventId, int nAttrs);  

void DMLib_AddIntAttr (int value); 

void DMLib_AddFloatAttr (float value); 

void DMLib_AddDoubleAttr (double value); 

void DMLib_AddCharAttr (char value); 

void DMLib_AddStringAttr (char const * value); 

void DMLib_CloseEvent (); 

void DMLib_DoneLogger (); 

 

The function DMLib_InitLogger() initializes the monitoring library by providing it the 

information about the monitored process, location of the analyzing server and the clock 

difference. During initialization the library establish the connection to the Analyzer process 

via TCP/IP protocol, registers itself so that later all generated events can be delivered to the 

Analyzer. The clock difference parameter represents the time difference between the local 

machine and the referenced one what allows for support of the global timestamp. The 

difference value is stored and later used to adjust the timestamp of generated events.  

 

Function DMLib_DoneLogger() finalizes the work of the library. This function should be 

called as the last one. It releases all acquired resources (files, memory), flushes buffered 

events, notifies the Analyzer about the process termination and finally closes the 

connection with this module. When a process is about to terminate, dynamic library is 

automatically unloaded from the memory.  

 

The library contains a set of functions for event registration. The registration consists of 

several steps that are performed in a sequence:  

• Open event – DMLib_OpenEvent() – this action starts recording a new event. The 

following information is recorded:  
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o event identifier – a unique number that indicates what happed, i.e. what 

function was called and at what place (entry or exit).  

o nAttrs – a number of event attributes to be recorded  

• Add attribute – DMLib_AddXXXAttr() – this action should be repeated nAttrs times to 

record values of all necessary event attributes. This method enables the registration of a 

variable number of event attributes, each attribute having a distinct value type There is 

a separate function defined for each distinct value type. For example, if a monitored 

function has signature (int, char) and we want to record both attributes, two function 

calls should be performed from the library: first one to record a value of integer type 

parameter, second one to record a value of char type parameter. To perform these 

actions, the functions Tracer_AddIntParam() and Tracer_AddCharParam() should 

be invoked with the extracted values of the corresponding function parameters. 

• Close Event – DMLib_CloseEvent() – this action indicates that the event recording is 

complete and the data can be delivered for the analysis.  

 

To record a new event, the Monitor module builds and inserts into the application process a 

code snippet at a given location. When the snippet is invoked, it generates the event by 

capturing the required attributes and calling the DMLib functions to register the event. 

Figure 5.12 illustrates this process.  

Deliver
for

analysis

RegEvent (…) 
{ 
   DMLib_OpenEventEvent(…); 
   DMLib_AddIntParam(v); 
   DMLib_AddIntParam(v); 
   DMLib_CloseEvent(); 
} 

... 
bpThread.loadLibrary (“DMLib.so”); 
… 
// create a snippet that calls functions 
// from run time monitoring library 
… 
bpThread.insertSnippet (regEvent,  

foo_1 (...) 
{ 
   pvm_send () 
   ... 
}

DMLib.so 

PVM
library

DMLib_OpenEventEvent(…) {…} 
DMLib_AddIntParam(…) {…} 
DMLib_AddFloatParam(…) {…} 
DMLib_CloseEvent() {…} 

pvm_send (int, int) 
{ 
   ... 
}

// written in C 
DMLib_OpenEventEvent(…) {…} 
DMLib_AddIntParam(…) {…} 
DMLib_AddFloatParam(…) {…} 
DMLib_CloseEvent() {…} 
… 

Application task 
Monitor 

Fig. 5.12. Application instrumentation using the run time monitoring library loaded dynamically to the application. 
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Run time
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 The recorded events are delivered for analysis via simple event collection protocol based 

on TCP/IP. The protocol allows the DMLib to send messages that contain binary encoded 

sets of event records. Each event record is represented by the following data: 

• timestamp – a number based on the system time (gethrtime ()) that indicates when 

an event happened with high precision. As indicated previously the timestamp is 

adjusted to consider the clock differences to the reference machine. 

• event identifier  

• number of attributes   

• set of attribute values – values of attributes recorded with the event 

 

To minimize the network overhead, the DMLib implementation uses the event buffering 

mechanism. Instead of sending each individual event separately, there is an internal buffer 

used to group the events and send them in bigger messages. This allows for reducing the 

number of generated messages and limit the intrusion. One of the problems associated with 

buffering is related to delays that may occur before an individual event is physically sent. 

For example if a single event is registered and then during a period of time no other event 

is generated, the first event remains in the buffer and it is not delivered for the analysis. 

This problem is solved by using timers that automatically flush the buffer after a specified 

amount of time elapses. 

 

5.5.4. Analyzer 
This program carries out the performance analysis of the application, automatically detects 

existing performance problems “on the fly” and requests for appropriate changes to 

improve the application performance. The analysis is driven from the one side by 

application knowledge specified externally and from the other side by the online 

performance monitoring that is based on event tracing.  

 

The operation cycle of the performance analysis process contains the following steps. 

When the Analyzer has been started, it starts the Application Controller. Once the AC is 

distributed all over the PVM virtual machine, the Analyzer receives from it information 

about the configuration of a virtual machine. During application execution, it is informed 

about all the changes in PVM virtual machine  (e.g. a new task has been spawned, a task 

has terminated a host has been added or removed). The Analyzer contains a set of tunlets 
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that in fact provide the performance analysis logic. Tunlets provide the Analyzer with an 

initial set of measure points. Next, the Analyzer forwards them to all ACs. This is done by 

sending the AddEvent() instrumentation requests. Then, the Analyzer requests the Master 

AC to start the application. When the application has started, the Analyzer enters in a 

bottleneck search phase. It continuously receives requested event records generated by 

different processes. When an event record comes, the Analyzer notifies corresponding 

tunlet and this tunlet in turn finds bottlenecks and determines their solutions. By examining 

the set of coming event records, the tunlet extracts measurements and then it evaluates a 

built-in performance model to determine the actual and optimal performance. If the tunlet 

detects a performance bottleneck, it decides if the actual performance can be improved in 

existing conditions. If it is the case, it then request the Analyzer to apply the corresponding 

tuning actions. A request determines what should be changed (tuning 

point/action/synchronization) and it is sent to the appropriate instance of AC, and hence the 

Tuner. For example, when the tunlet determines that in a process a particular PVM 

function should be invoked with a specific parameter value, the name of the function, 

together with a new parameter value, is sent to the Tuner (the function 

FunctionParamChange() must be invoked from the Tuner API).  

 

Obviously, during the analysis, DMLibs are collecting and providing new data to the 

Analyzer. The tunlet may need more information about program execution to determine 

the causes of a particular problem or if a problem is already solved it may need no more a 

specific instrumentation. Therefore, the tunlet notifies about it the Analyzer module, that in 

turn is able to dynamically control the monitoring of the application by requesting more or 

less performance data to be collected. It can therefore request the AC, and hence the 

Monitor to change the instrumentation dynamically (functions AddEvent(), 

RemoveEvent() are invoked from the Monitor API).  

 

The Analyzer program consists of a number of cooperating modules. Figure 5.13 presents 

its internal architecture. From functional point of view, the Analyzer is divided into two 

principal parts: 

• Dynamic Tuning API –  application programming interface for distributed 

performance monitoring and tuning of parallel program 
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• Tunlets – the modules that provide analysis logic and use the API to actually perform 

the dynamic tuning 
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Fig. 5.13. Internal architecture of the Analyzer. 

Analyzer implementation 

 

Dynamic Tuning API 
This API encapsulates all low-level issues related to controlling the execution of the 

parallel application, its performance monitoring and tuning. It is implemented as a 

distributed asynchronous system where: 

• the monitoring instrumentation and tuning service requests are delegated to distributed 

Application Controllers that in turn instrument and tune the application tasks  

• the incoming events (event records sent by DMLibs and meta data sent by ACs) are 

collected and dispatched to registered event handlers.  

In that sense, the architecture of this part of the Analyzer is similar to the DPCL library 

[Pas98].  

 

The Analyzer implementation consists of three main modules: Communicator, Application 

Manager and Event Collector. The Communicator module provides connection with 

external world. The bi-directional communication is established with the Application 

Cotroller. The Analyzer is able to send monitoring and tuning requests to corresponding 

ACs. In turn, the Analyzer receives from ACs meta data about the application model (e.g. 

running tasks, hosts included into the PVM virtual machine). The Analyzer establishes 
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unidirectional communication with DMLibs and it receives event records generated by 

each DMLib. 

 

Since the Analyzer provides the global application analysis, it requires the actual 

information about the application distribution, monitoring events and tuning actions. We 

distinguished the Application Manager module that maintains the application model. It 

keeps the model up to date registering all changes. It actualizes the information about the 

running tasks, hosts where these tasks are running, as well as about the monitored events 

and tuning actions requested for each task. 

 

When the event records arrive from distributed DMLibs, they must be preprocessed before 

they can be passed for analysis to corresponding tunlets. The module responsible for the 

preprocessing is called Event Collector. It stores a moving window of events incoming 

from different processes using a pool of buffers. The maximum size of this event window 

can be configured by the tunlets. Optionally, the Event Collector is able to reorder 

incoming events within the window and assure their global, casual order (e.g. receive 

cannot finish before send finishes). 

 

The Dynamic Tuning API is provided as a collection of C++ classes as illustrated in Figure 

5.14.  
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Figure 5.14. Dynamic Tuning API class diagram (simplified for clarity). 
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The analyzed application is represented by the Application object. The application consists 

of a number of Tasks. The collection of tasks inside the Application object is updated 

automatically to reflect the actual tasks of the running application. Each Task represents an 

individual application process (i.e. PVM task) and contains meta data (properties specific 

to that task (e.g. process identifier, host where the task is running). Each task may have a 

number of events to be monitored. A traced event is represented by the Event object. An 

event contains a set of Attribute objects that define what information should be recorded 

with the event. Each Event object is associated with an event handler that is called each 

time a record of the event occurrence is received by the Analyzer. In addition, the Task 

object contains a history of all tuning actions performed on that task.  

 

The following sections describe in detail the classes and methods supported by the 

Dynamic Tuning API. 

• Application class  

Properties 

o Name – name of the running program  

o NumActiveTasks – number of tasks actually running 

o Tasks – a collection of Task objects 

o Hosts – a collection of Host objects that form the virtual machine 

o MasterTask – references the master task of the application 

o Status – application status information 

o MonitoredEvents – collection of events being monitored in all the tasks 

Methods 

o Start – executes the application 

o AddEvent – adds a definition of  new event to be traced in all running tasks of 

the application 

o RemoveEvent – removes previously added event from all running tasks 

o LoadLibrary – load a shared library to all running tasks 

o UnloadLibrary – removes a previously loaded shared library from all running 

tasks 

o SetVariableValue – modifies a value of a specified variable in a given set of 

tasks 

o ReplaceFunction – replaces all calls to a function with calls to another one in a 

given set of tasks 
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o InsertFunctionCall – inserts a new function invocation code at a given location 

in a given set of tasks 

o InsertOneTimeFunctionCall – inserts a new function invocation code in a given 

set of tasks and calls it once 

o FunctionParameterChange – sets the value of an input parameter of a given 

function in a given set of tasks 

o RemoveFunctionCall – removes all calls to a given function from the given 

caller function in a given set of tasks 

 Callbacks 

o SetTaskHandler – installs a callback function that is called when a new task is 

started or existing one is terminated 

o SetHostHandler – installs a callback function that is called when a new host is 

added to the virtual machine or an existing one is removed 

• Task class 

Properties 

o Id – globally unique task id 

o Name – process name 

o FilePath – file path of the task image  

o Host – reference to the host object this task is running on 

o IsRunning – indicates if the task is still running 

o Status – task status information 

o MonitoredEvents – collection of events being monitored in this tasks 

o TuningActions – a collection of tuning actions performed in this task 

Methods 

o AddEvent – adds a definition of new event to be traced in this task 

o RemoveEvent – removes previously added event from this task 

o LoadLibrary – load a shared library to this task 

o UnloadLibrary – removes a previously loaded shared library from this task  

o SetVariableValue – modifies a value of a specified variable in the running task 

o ReplaceFunction – replaces all calls to a function with calls to another one in 

this task 

o InsertFunctionCall – inserts a new function invocation code at a given location 

in this task 
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o InsertOneTimeFunctionCall – inserts a new function invocation code in this 

task and invokes it once 

o FunctionParameterChange – sets the value of an input parameter of a given 

function in this task 

o RemoveFunctionCall – removes all calls to a given function from the given 

caller function in this task 

Callbacks 

o SetTaskExitHandler – installs a callback function that is called when this task 

terminates 

• Event class 

Properties 

o Id – globally unique event id 

o FunctionName – name of the function this event is associated to 

o InstrPlace – function entry or exit  

o NumAttributes- number of event attributes 

o Attributes – a collection of attributes to be recorded with this event 

Callbacks 

o SetEventHandler – installs a callback function that is called each time a record 

of this event is delivered  

• Attribute class 

Properties 

o Source – indicates source for attribute value (i.e. constant value, function 

parameter value, variable value, function return value) 

o ValueType – data type of the attribute value (i.e. integer, float, etc.) 

o SourceId – identifies the object to be used as a source (i.e. variable name, 

function name to be called, index of function parameter) 

• EventRecord class 

Properties 

o EventId – globally unique event id 

o Event – references event object this record is associated to 

o Timestamp – indicates when the event happened 

o Task – references a task that generated this event 

o AttributeValues – a collection of recorded attribute values 
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• EventHandler class 

Methods 

o HandleEvent – called to handle an event record 

• TaskHandler class 

Methods 

o TaskStarted – called when a new task is started 

o TaskTerminated - called when a task is terminated 

• HostHandler class 

Methods 

o HostAdded – called when a new host is added to the virtual machine 

o HostRemoved – called when a host is removed from the virtual machine  

 

Tunlets  
The Analyzer provides a Tunlets Container (TC) module. This module is responsible for 

managing and running a set of tunlets simultaneously. Technically, each tunlet is a shared 

library that implements a particular tuning technique. Tunlets are assumed to be passive 

modules that drive the analysis by responding to a set of incoming events. The tunlet 

library is required to provide a very simple interface that consist of two standard entry 

points: 

• Initialization – the tunlet library is initialized by the TC after it has been loaded. The 

TC initializes the tunlet by passing it the access to the Dynamic Tuning API.  From this 

moment on, the tunlet is only invoked to handle events.  

• Finalization – this functionality is called when a tunlet library is unloaded from 

memory 

 

During initialization, the tunlet registers callback functions in order to receive events. This 

is performed by calling API functions. For example the tunlet may register handlers to 

receive notifications about changes in task configuration (Application::SetTaskHandler) or 

virtual machine configuration (Application::SetTaskHandler). It may also request to 

monitor the initial set of events (Task::AddEvent) for a particular task. When a record of a 

particular event arrives, it is delivered to the tunlet by calling a registered handler. The 

handler is then responsible to process the event and run analysis logic incrementally. When 

the analysis detects a performance problem it may use the API to change the requested 
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instrumentation (e.g. Task::RemoveEvent) or request to perform a selected tuning action 

(e.g. Task::SetVariableValue). Finally, when the analysis is finished, tunlet is finalized and 

unloaded from memory. Figure 5.15 presents an example interaction diagram that shows 

the sequence of calls between container, tunlet and Dynamic Tuning API. 

Tunlet
Container Tunlet API

 

Application::SetTaskHandler()

Initialize()

TaskAdded()

Application:AddEvent()

HandleEvent()

Task::SetVariableValue()

HandleEvent()

Task::AddEvent()

trace pvm_send function
entry and exit

handle send events

trace pvm_setopt
function calls

change fragsize variable

update average
message size

calculate optimal
fragsize value

Fig. 5.15. Sample interaction diagram between Analyzer modules. 

 

5.6. Restrictions and limitations 
There are several constraints not contemplated in MATE that we consider interesting for 

future investigations. First of all, the performance measurement is based on event tracing. 

This enables the Analyzer to have a very insight view on the behavior of the application, 

however in some circumstances the associated overhead may not be unacceptable. For 

example the cost of collecting individual send/receive calls  may introduce too high 
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network intrusion for communication intensive applications. In such conditions, it would 

be more reasonable to calculate communication statistics such as average message size, 

total communication time, etc. inside the application task rather than collect the events. 

The  dynamic profiling technique based on insertable instrumentation would be in that case 

an interesting, but complementary solution.  

 

Another limitation results from a fixed set of tuning actions in the Dynamic Tuning API. 

Although these actions cover a range of possible application changes, there are situations 

when more flexibility in generating inserted code is required (e.g. conditional tuning 

actions). In that sense, the API could be extended to support dynamic definition of tuning 

code. This could be achieved by defining a rich API (like DPCL) or defining a scripting 

language that allows one to express a generic instrumentation code. 

 

5.7. Conclusions 
One of the principal goals of this work was to create a dynamic tuning environment that is 

able to automatically tune the application performance during run time. We devoted a big 

attention to its creation and our development concluded in the working environment called 

MATE. In general, it includes the monitoring, analysis and tuning of the application on the 

fly without stopping, recompiling or rerunning it. MATE is suitable for the applications 

that do not have a stable behavior and/or change from run to run according for example to 

the input data or to the environment. We determined the set of requirements that such a 

tool should meet and then designed and implemented a software taking into consideration 

all of them. MATE provides a set of facilities to support dynamic monitoring, detection of 

performance bottlenecks and automatic changes of the running application. Moreover, our 

environment provides the programming models that allows for implementation of new 

tuning techniques that solve concrete performance problems. Currently, our environment 

can be treated as the prototype for complete future implementation and there are still many 

aspects that remain for considerations and improvements.  

 

Our approach is based on the closed steering loop. Therefore, MATE is in some sense 

similar to e.g. Falcon or SCIRun as we modify the application behavior at run-time. 

However, MATE is not a Problem Solving Environment, because we focus on the 

performance optimizations of the application. Moreover, the steering is automatic, there is 
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no interaction with a user. MATE detects problems in applications and tunes them on-the-

fly without user intervention.  

 

Our tool is related to Active Harmony and Autopilot. Although, MATE presents similar 

tuning approach to the Harmony and Autopilot, it differs in many assumptions and details. 

The MATE environment provides techniques for cooperative usage where application must 

be prepared for the changes. The same situation appears when using Autopilot or Active 

Harmony. However, MATE also tries to go more into the automatic black box direction 

where all the tuning phases can be done automatically without user intervention. Moreover, 

there are other evident differences as: performance analysis models, instrumentation, and 

development which we have mentioned in the paragraph describing Autopilot and Active 

Harmony projects. 
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Chapter 6 

Tuning techniques 
 

This chapter focuses on the presentation of the catalog of the tuning techniques. First, we 

introduce the organization of the catalog and show the scheme of the tuning technique 

description. Next, we present and justify the software and hardware components that were 

used for practical experiments conducted with the techniques. In continuation, we present a 

set of tuning techniques. Each technique is described in a systematic way giving us a 

global view of the performance problem it addresses, its general applicability, solution it 

applies, experimental results and benefits it gives. Final section summarizes and concludes 

the catalog pointing directions for future work.  

 

6.1. Introduction 
As we have mentioned in Chapter 5, we provide our dynamic tuning environment with an 

application knowledge that represents specific, determined information about performance 

problems that can occur during application execution and solutions to these problems. All 

required information related to one particular problem we called a tuning technique. Each 

tuning technique describes a complete performance optimization scenario, namely:  

• It specifies a potential performance problem of a distributed parallel application 

• It determines what should be measured to detect the problem (set of measure points) 

• Given the measurements, it determines how to detect the problem (performance model) 

• It provides a solution on how to overcome the problem (tuning point/action and 

synchronization).  

A set of tuning techniques forms a catalog. We have organized the catalog in accordance 

with the tuning layer at which tuning occurs. Each particular tuning technique is 

implemented in the MATE environment as a tunlet. The tunlet contains specific code 

related to one concrete bottleneck that can occur in the application and its solution.  

 

Currently, we are focusing on investigating tuning techniques separately. During the 

application execution, MATE attempts to apply all of the optimization scenarios, but each 

one individually. MATE loads available tunlets and each of the incorporated tunlets carries 
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out the application optimization. When the MATE environment starts the application 

execution, each tunlet performs the analysis of a specific problem. It requests to monitor 

the appropriate events, receives event records, and analyses them detecting only the 

addressed problem. When a problem is found and its solution is determined, the tunlet 

requests the tuning actions.  

 

Our goal was to identify and investigate different tuning techniques. Therefore, we focused 

on the effects of individual techniques. However, we do not take into consideration the 

overall performance of the application. For example, if the communication time is very 

low, it may be advisable not to use any of the communication tuning techniques. 

Moreover, in certain conditions it may be necessary to consider dependencies between 

different performance problems and associated tuning techniques. These issues are left for 

further investigations.  

 

In the following sections we present a catalog of individual tuning techniques on which we 

mainly focused our work and that we studied within the MATE environment.  

 

6.1.1. Catalog organization 
We classified the catalog of tuning techniques into two main parts concerning two different 

approaches to the dynamic tuning described in Chapter 4: automatic and cooperative. Both 

of them are consequently divided into 3 subparts, that present different tuning layers, 

namely operating system, library and application. For each subpart we can distinguish 

specific tuning techniques. 

 

We present the following catalog of tuning techniques: 

1. Automatic approach 

• Operating system level – the described tuning techniques focus on the usage of the 

operating system functionality 

o Message aggregation 

o TCP/IP buffers 

• Standard library level – the described tuning technique focuses on the usage of 

the C library functionality 

o Memory allocation 
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• Custom library level – the described tuning techniques focus on the usage of the 

PVM library functionality 

o PVM communication mode 

o PVM encoding mode 

o PVM message fragment size 

2. Cooperative approach 

• Application level – the described tuning techniques focus on the tuning of the 

application-specific problems 

o Workload balancing (factoring) 

o Number of workers 

 

6.1.2. Technique description 
The description that we use to present a tuning technique is based on the description of a 

design pattern written in the Object Oriented Design Patterns book [Gam95]. A design 

pattern contains the following sections that describe it: intent, motivation, applicability, 

consequences, implementation, example/design, known uses, related patterns. We found 

the organization of design patterns very systematic, proper, clear and useful for a good 

problem presentation. Therefore, we intended to follow this model and hence each 

description of a tuning technique has a set of the following sections: 

• Intent – this is a short description (1 sentence) of the performance problem addressed 

by the tuning technique. 

• Motivation – this explains a typical, representative performance problem that a tuning 

technique deals with. It discusses why the presented problem exists in a parallel and 

distributed application and why such a tuning technique is needed.  

• Applicability and conditions – this section describes when a tuning technique can be 

applied and a list of conditions that must be satisfied for the tuning technique to be 

useable. The conditions express criteria that the tuning technique must consider in 

order to improve the performance of an application. 

• Solution – this section gives a solution to the presented problem. It explains how to 

detect the problem in a running application and what should be changed to improve the 

performance. 

• Implementation – it presents details of the tuning technique implementation (tunlet 

implementation). This section details in what way the tunlet cooperates with the MATE 
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environment, what measure points it provides and how it analyses incoming event 

records and detects the problem. Finally, the tuning action is described together with 

the points on which it must be invoked as well as the synchronization mechanism.  

• Experiment – this section presents the results of practical experiments with 

applications and the performance dynamic tuning that we were able to conduct. Each 

presented experiment contains the description of the tested application, as well as the 

execution scenario. Finally, this section shows and discusses measurements and results 

obtained from the conducted experiments. 

• Conclusions – it concludes the presented tuning technique. 

 

6.1.3. Environment description 
All our experiments were conducted in an environment consisting of a cluster of 

workstations connected by LAN network. We used the workstations available in our 

laboratory. The environment contained 5 machines connected by Ethernet 10/100 Mbps 

network. All the machines except Aows10 were equipped with 100Mb/sec Fast Ethernet 

adapter and they could take advantage of the faster network. Detailed configuration of the 

environment is shown in Table 6.1.  

No. Machine name Type of CPU Memory 
size 

Operating 
system 

Relative 
speed Comments 

1. aows10.uab.es Sun UltraSPARC I, 
167 MHz 128 MB Sun Solaris 

2.6 1.00 
Main NFS server, 
10Mb network 
adapter 

2. aows1.uab.es Sun UltraSPARC II, 
440 MHz 128 MB Sun Solaris 

2.8 2.76 100Mb network 
adapter 

3. aows6.uab.es Sun UltraSPARC II, 
440 MHz 128 MB Sun Solaris 

2.8 2.76 100Mb network 
adapter 

4. aows7.uab.es Sun UltraSPARC II, 
440 MHz 128 MB Sun Solaris 

2.7 2.77 100Mb network 
adapter 

5. aows8.uab.es Sun UltraSPARC II, 
440 MHz 128 MB Sun Solaris 

2.7 2.79 100Mb network 
adapter 

 

Table 6.1. Configuration of the experimental environment. 

 

Since our environment comprised machines with different hardware configurations, it 

became necessary to consider their hardware capacities. For obvious reasons, the execution 

time of a program running on a workstation depends directly on the hardware capacities of 

the machine. This time depends not only on processor speed, but also on memory size and 

access time, cache memory parameters, hard disk parameters, to mention the most 

important. While these parameters may give an indication of the machine capabilities, they 

cannot be simply applied to calculate the machine performance, hence another method is 
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necessary. Reliable and accurate performance metrics can be obtained by running 

benchmark programs. Benchmarking measures the time needed to execute a selected 

computing task on many machines hence it allows for making performance comparisons. 

For the purpose of some of our experiments (e.g. workload balancing), we estimated the 

relative workstation speed using Whetstone benchmark [Cur76]. The results are presented 

in the column “Relative speed” in Table 6.1. The primary goal of this benchmark is to 

provide a performance measure of both floating point and integer arithmetic. Therefore, it 

is well suitable for scientific applications and not for general evaluation of efficiency. The 

relative speeds are calculated as the ratio between the MWIPS value (Millions of 

Whetstone Instructions Per Second) measured by the Whetstone benchmark on a given 

workstation and the MWIPS value measured by the same benchmark on a reference 

machine. We used slowest workstation, aows10, as the reference machine. 

 

Finally, it must be pointed out that neither the machines comprising the cluster nor 

interconnection network was completely dedicated to purpose of the experiments. During 

all experiments, the aows10 machine was running mail-server application and Aows1 was 

running web-server application. Moreover, the performance of machines and the LAN 

network could have been affected by other users or programs. We tried to performed 

experiments under very low or no external load conditions avoiding interruptions, i.e. most 

of the experiments were conducted during night-hours when there is the lowest probability 

of the machine usage by other people. Therefore, the measurements we show do not have 

exact precision. To obtain more precise results, each experiment was repeated a number of 

times and the average of the wall clock execution time was calculated. 

 

6.2. Message aggregation 
This tuning technique intents to minimize communication overhead by transparently 

grouping set of small messages into large ones.  

 

6.2.1. Motivation 
Parallel applications usually generate a large amount of messages. If the problem 

decomposition is fine grained, the size of the transmitted messages is usually small. The 

overhead for sending these messages over an interconnection network (LAN) can 

dramatically limit the application speedup because of network latencies. Parallel 
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applications such as event-based simulations or even parallel matrix multiplication 

programs are an area where all possible optimizations on communication are generally 

welcome because these applications typically have a high communication to computation 

ratio.  

In this case, message aggregation technique can transparently increase the granularity of 

the transmitted messages and reduce the communication overhead. The message 

aggregation is based on the idea of grouping set of small messages for the same destination 

into a single larger one [Pha99]. The rational behind message aggregation is that it is 

cheaper to send an M bytes message than to send n times an m bytes message with n * m = 

M. This is true when a network latency is non-zero value and n > 1. 

   
 n * m = M 

  Tcomm1 = Tstartup + M * Tword 

   Tcomm2 = n * (Tstartup +  m * Tword) 

   Tcomm1 < Tcomm2 ? 

 

Tstartup + M * Tword < n * (Tstartup + m * Tword) 

 Tstartup + n * m * Tword < n * (Tstartup + m * Tword) 

Tstartup * (n-1) > 0 

True if n > 1 and Tstartup > 0 
 

There is a trade-off on how long to keep aggregating before sending the message to the 

receiver. It the time is too long, it may produce useless waiting as a side-effect at the 

receiver side. It is certainly not desirable to wait too long, but at the other side too short 

delays may not benefit from aggregation.   

  

6.2.2. Applicability and conditions 
This technique is best suited for applications that use TCP/IP protocol, for example PVM-

based parallel applications or any other communication software that makes use of sockets.  

The message aggregation works best when an application is executed in networks with 

considerable latencies (i.e. LAN or WAN networks) and sends a large number of small 

messages. This optimization can be performed at the low level of the communication 

software (i.e. OS sockets) or in the application at the higher level (e.g. PVM library). In 

our work we focus on socket level optimization. 
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6.2.3. Solution 
To transparently aggregate a set of messages it is necessary to introduce an additional layer 

of code that provides the message buffering mechanism. The mechanism is based on a 

buffer with a sufficient size to store a set of small messages and an aggregation algorithm. 

The following pseudo-code explains the functioning of the aggregation mechanism: 

 
 if (!aggregation)  

  write message with std write call   

return 

 if (curAggrBufIdx + msgSize < AGGR_BUF_SIZE) // message fits 

aggrBuf 

  copy message to aggrBuf 

  set timestamp and flushing alarm 

  curAggrBufIdx += msgSize; 

  return 

 else  // message is larger than aggrBuf 

  if (curAggrBufIdx > 0) // there is data in aggrBuf 

write data from aggrBuf with std write call // flush 

 write message with std write call   

reset flushing alarm 

 curAggrBufIdx = 0; 

 

When a message is sent by the application, it is first intercepted by the aggregation 

mechanism. Next, in function of the message size and free space in the buffer, the 

algorithm decides if the message can be stored in the buffer or it is necessary to flush 

buffer content by sending one large message. Additionally, to avoid the situation when a 

message is stored in a buffer and the receiver waits too long for its reception, it is 

necessary to use time based automatic flushing mechanism. This mechanism ensures that 

all messages stored in a buffer are transmitted after a specified amount of time. 

 

From the performance point of view, the message aggregation mechanism produces a hit 

when a small message is written to the buffer instead of being sent (i.e. it is aggregated) or 

miss when a message does not fit into the buffer. In the first case, the mechanism gives the 

performance gain, because the total number of transmitted messages gets reduced as well 

as the number of system calls. In the case of the miss, the performance is worsen in 

comparison to scenario without aggregation, because there is a cost resulting from flushing 
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the content of the buffer (i.e. previous messages), sending the actual message and the 

overhead introduced by extra layer of code. Therefore it is necessary to analyze the 

sequences of outgoing messages and estimate the possible hit/miss ratio before taking 

decision on applying the aggregation mechanism. 

 

To analyze whether the message aggregation should be used, it is necessary to perform a 

number of measurements. The goal is to check if the application is sending a big number of 

small messages consecutively. This can be achieved by collecting statistics of the number, 

sizes, and differences between sizes of consecutive messages being sent during a specified 

time window. These statistics must be collected for each individual connection (i.e. socket) 

separately as the aggregation is performed per connection. Basically, there are two 

conditions that must be met to consider this technique profitable: 

• The number of small messages should be significant, i.e. the percent of messages with 

size smaller than MinMessageSize exceeds a threshold MinPercentSmallMessages.  

• The estimated hist/miss ratio, i.e. probability of occurrence of sets of consecutive small 

messages (hits) exceed MinHits.  

 

When these conditions are met for a given time window, there is a certain probability that 

if the application does not change radically its behavior, the application of the message 

aggregation mechanism can be beneficial for the performance. In that case, the tuning 

actions are triggered. The tuning consists of replacing operating system function calls that 

transmit data, in particular write() function, with their optimized version with 

aggregation mechanism, i.e. aggr_write() function.  

 

The advantage of carrying out the message aggregation at the level of system calls is the  

transparency on the receiver side. It is not necessary to introduce any changes on the 

receiver, because the mechanism does not affect the data being transmitted (i.e. receiver 

gets exactly the same data in the same order). The only difference is on the sender side, 

where small messages are copied to the intermediate buffer, the number of system calls 

gets reduced, but each call carries more data to be written to the underlying TCP buffer. 

This independence enables the transparent usage of the aggregation mechanism with 

higher level communication software such as PVM, MPI and other libraries.  
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6.2.4. Implementation  
To monitor if the application is sending a big number of small messages consecutively, the 

message aggregation tunlet must collect the statistics of the following events: 

• socket() – to track file descriptors associated with network sockets. For each opened 

socket the tunlet collects the statistics for outgoing messages. 

• write(int fd, void * buf, int bufsize) system function call – to calculate the 

histogram of number of writes for each data size being written, and also analyze 

sequences of consecutive message sizes in order to estimate the hit/miss ratio. These 

statistics must be collected separately for each open socket. 

• close() – to get notified when the socket is closed  

 

The processing of these measurements allows the tunlet to calculate the following metrics 

for a given socket and time-window: 

• Histogram of number of writes for each data size written – this permits to estimate if 

the number of small messages can be considered significant 

• Number of hits and misses – this enables the profitability analysis, i.e. estimation 

whether the technique can optimize the performance in a given conditions 

 

When the required conditions are met, the tunlet can then invoke the appropriate tuning 

actions. Because of the complexity of the aggregation mechanism, its implementation is 

provided as an external shared library that is loaded into the application process on request. 

The library provides an API with the following set of functions: 

• void aggr_init() – this function initializes the aggregation mechanism (e.g. 

variables, alarms, descriptors). 

• void aggr_open(int fd) – this function activates the aggregation mechanism for a 

given socket. 

• void aggr_write(int fd, void const * buf, size_t bufSize) – this function 

is used to replace the standard write function and contains the aggregation mechanism. 

• void aggr_flush() – this function replaces the standard flush() function. When an 

application requests the flushing, it is first necessary to flush the content of the 

aggregation buffer.  
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• void aggr_close(int fd) – this function disables the aggregation mechanism for a 

given socket. From this moment on, all subsequent calls to aggr_write() will 

delegate the work directly to the write() function. 

• void aggr_set_flush_timeout(struct timeval * timeout) – this function 

simple sets the maximum value of the timeout that may pass to flush the data that 

remains in the aggregation buffer. 

 

The library implementation holds an array of data structures for each possible file 

descriptor. Those descriptors that are opened for aggregation with the aggr_open() call, 

the data structure contains the aggregation buffer and set of auxiliary variables such as 

current buffer index, size, timer data and so on. When the aggr_write() function is 

called, the code first checks if the file descriptor has the aggregation activated. If it is not 

the case, the call is immediately delegated to standard write() function. If the 

aggregation is active, first the message size is checked if it fits into the buffer. If this is true 

the message is written into the buffer and the call terminates with a hit. Otherwise, the 

current buffer content must be flushed with a single write() call and then the current 

message is also transmitted immediately. In addition to normal flow, the library 

implementation uses alarm-based timers in order to proceed with auto-flush procedure 

whenever the oldest message remains in the buffer for more than MaxMessageAge 

milliseconds. This prevents the aggregation mechanism from introducing long delays in 

message delivery. 

 

The activation of the message aggregation mechanism consists of the following phases: 

• The message aggregation library is loaded into the application process. This is 

performed by means of LoadLibrary() call from the Tuning API. 

• Set of system calls (i.e. write, flush, close) gets replaced with their aggregating 

versions. This is performed by means of ReplaceFunction() call from the Tuning 

API. 

• Then individually for each connection that should use the aggregation it is necessary to 

invoke the aggr_open() function call to enable the mechanism for a given socket. This 

is performed by means of InsertOneTimeFunctionCall() of the Tuning API. 

 

 

 142



Tuning techniques 
 

6.2.5. Experiments 
In order to evaluate the effectiveness of message aggregation in comparison with 

standard message transmission in the TCP/IP protocol, we have developed a simple, 

synthetic, socket-based master/slave program that transmits a series of consecutive small 

messages. The master task sends a determined amount of work divided into a number of 

messages and waits for confirmation from the slave. The  slave receives the messages, and 

immediately sends the confirmation to the master. There is no computational operations, 

the application is strictly based on communication. We executed the program using 4KB 

work size. The same work was transmitted using various number of small messages 

ranging from 1024 messages with 4 byte size (i.e. one integer) each to 2 messages with 

2048 bytes size each. We have performed the experiment in three different configurations: 

• Standard write – without message aggregation mechanism 

• Aggregate write A – using first aggregated write implementation where the buffer is 

not sent till all bytes of the message are acknowledged to be sent. Aggregation buffer 

size was 256B and the flushing timeout was set to 500miliseconds.  

• Aggregate write B – using another aggregated write implementation in which 

additionally to the mode A, aggregation mechanism is also used before the message is 

write to the network stream. Aggregation buffer size was set to 256B and the flushing 

timeout to 500miliseconds.  

 

All executions were conducted in homogeneous and dedicated scenario (no external load). 

In this scenario, we have used two homogeneous machines (aows6, aows7) connected by 

100Mb/sec network. During execution of the experiments, all workstations were idle.  

 

Measurements and results 

Figure 6.1 presents the comparison of communication performance between different data 

transmission configurations: standard write, aggregate write mode A and mode B in the 

master/slave application presented above (note that Y scale is logarithmic). The detailed 

measurements are listed in Table 6.2.  

 

We can observe that in function of work decomposition (message size and number of 

messages) the total time needed to transmit the data differs significantly (from –113% up 

to +91%).  
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Fig. 6.1. The comparison of write performance in different configurations. 
 

MsgSize [B] Standard write 
time [usec] 

Aggregated 
 write A [usec] 

Benefit  
from A 

Aggregated 
 write B [usec] 

Benefit  
from B 

4 27697 2543 91% 2565 91% 
8 14167 2347 83% 1792 87% 
16 7428 1771 76% 746 90% 
32 4159 1560 62% 582 86% 
64 2256 1105 51% 814 64% 

128 1122 1061 5% 961 14% 
256 645 1024 -59% 933 -45% 
512 470 838 -78% 709 -51% 
1024 359 766 -113% 619 -72% 
2048 336 571 -70% 557 -66% 

 

Table 6.2. The detailed measurements of write performance in 3 different configurations:  

standard write and two modes of the aggregated write.  
 

For messages smaller than a cut-point that we estimated to be 156 bytes (see vertical line 

on the graph), the performance of the both configurations with message aggregation 

overcomes the standard write() system call. This can be explained by the sum of network 

latencies (i.e. Tstartup time) associated with each message being sent. Moreover, each 

write() system call requires the context switch from user to kernel mode and this also 

has its associated cost. When the message size grows and number of transmitted messages 

gets reduced, the sum of latencies and write() calls is lower and it is getting closer the 

aggregation cost. When the message size exceeds 156 bytes, the aggregation performance 

is worse than the standard write() performance. The costs of additional code layer and 
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extra data copy start to overcome the benefits and the technique is no longer profitable. We 

may conclude that there is a limitation on the size of aggregated messages for the 

technique to be profitable. 

 

For small messages we can see a difference between mode A and B of the aggregation 

implementation. This might be caused by the additional aggregation introduced before the 

message is written to the network stream.  

 

6.2.6. Conclusions 
This tuning technique can improve the communication performance for applications that 

frequently exchange sets of consecutive and small messages. The tuning cost is not very 

low, because it is necessary to load an additional shared library and then accept the 

constant run-time overhead resulting from additional layer of code that encapsulates some 

of the system calls (i.e. write() function). However, in networks that are characterized 

with not ignorable latencies and applications that send very small messages (e.g. no bigger 

than hundreds of bytes), the technique can bring noticeable time savings.  

 

6.3. TCP/IP buffers 
This technique intents to maximize the network transmission performance across high-

performance networks using TCP/IP-based protocol. This is achieved by tuning the TCP 

socket buffers to an optimal value. 

  

6.3.1. Motivation 
In order to take full advantage of high speed networks and maximize communication 

performance, it is necessary to pay attention to some of the configuration and 

communication tuning issues. In particular, it is necessary to tune TCP/IP protocol to 

achieve high data transmission rate over the fast networks. Some of the issues discussed 

below arise because of the fact that the modern networks have been improved beyond what 

they were when the TCP/IP protocols were initially designed. Although there are some 

high performance extensions that have been proposed and implemented in the TCP/IP 

protocol, these options are sometimes not enabled by default and require the programmers 

to take care of them manually.   
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TCP/IP is a reliable and window-based protocol. Under ideal conditions, best possible 

network performance is achieved when the data pipe between the sender and the receiver is 

kept full. The amount of data that can be transferred in the network, sometimes called 

Bandwidth-Delay-Product (BDP for short), is simply the product of the bottleneck link 

bandwidth and the Round Trip Time (RTT). In a reliable protocol such as TCP/IP, the 

importance of BDP described above is significant as this represents the amount of 

buffering that will be required in the end hosts (sender and receiver).  

 

The largest buffer size in the original TCP/IP (without the high performance options) is 

limited to 64KB. If the BDP is small either because the link is slow or because the RTT is 

small (in a LAN, for example), the default configuration is usually adequate. But for a 

paths that have a large BDP (i.e. "Long Fat Networks"), and hence require large buffers, it 

is necessary to have enabled the high performance options discussed below. 

 

For TCP/IP protocol, the window size option is by far the most important parameter to 

adjust for achieving maximum bandwidth across high-performance networks. Properly 

setting the TCP window size can often more than double the achieved bandwidth. With 

TCP, each segment header contains a field called "advertised window" specifying how 

many additional bytes of data the receiver is prepared to accept. The "advertised window" 

may be interpreted as specifying the receiver's current available buffer size. An important 

fact about TCP is that the sender is not allowed to send more bytes than the advertised 

window. This is TCP's flow control mechanism. To maximize the performance, the sender 

should set its send buffer size and the receiver should set its receive buffer size to no less 

than the capacity of the TCP pipe. As stated before, theoretically this number should be 

equivalent the product of bandwidth and round-trip-time (BDP).  

 

The default values of TCP/IP buffer size (i.e. socket buffer size) differ widely between 

implementations. Older Berkeley-derived implementations would default the TCP send 

and receive buffers to 4KB, but newer systems use larger values (up to 64KB). The new 

TCP extensions support values up to 1 MB or more.  

 

In our work, we intent to set the TCP socket buffers to an optimal value by detecting the 

bandwidth-delay product at connection setup time. The objective is to maximize the data 

transfer rate, even if the default socket buffer size is small. For those connections with a 
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low bandwidth-delay product, we assume to leave the socket buffer size small in order to 

conserve memory usage.  

 

6.3.2. Applicability and conditions 
This technique is best suited for applications that use TCP/IP protocol to realize bulk 

transfers between two end-points in fast networks with large BDP. For example parallel 

applications that transfer large volumes of data between tasks running in GRID 

environments are good candidates for this optimization. The same applies for traditional 

Internet data transfer applications such as FTP clients and servers.  

 

It must be pointed out that the TCP buffer tuning is only possible at TCP connection setup 

time and remains the same within a single TCP session. The mechanism to be effective 

needs that both sender and receiver use the same or at lease similar buffer size value (send 

buffer and receive buffer respectively). Therefore the tuning is more complex because it 

requires to perform modifications on both sides at the same time. 

 

Another limitation of socket buffer tuning is the amount of memory that may be used by an 

application for buffering network data. Some older operating systems limit this value to 

64KB. In a newer UNIX implementation that supports RFC1323 "Large Windows" 

extension, a maximum value for the socket buffer size varies between 128 KB and 1 MB. 

For example the Sun Solaris 2.8 that we used for experiments permits 1MB value.  

 

6.3.3. Solution 
Theoretically the TCP window size should be set to the bandwidth delay product, which 

computes the volume of data that can be in the network between two machines. The 

bandwidth delay product is: 

 
BDP = bottleneck bandwidth * round-trip time 

 

To compute the BDP it is necessary to find out the speed of the slowest link in the path 

between two communicating nodes and the round trip time. The bandwith of a link is 

typically expressed in Mbit/s. The round-trip time (RTT) for a WAN link is typically 

between 10 and 100 milliseconds.  
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Since we set TCP buffer size to the same value as the available bandwidth-delay product, 

the problem is essentially to estimate the available bandwidth and RTT with minimum cost 

of time and traffic and at least a coarse-grained accuracy. To achieve this we use the 

sequence of the steps as described in [L39]: 

• We send out a series of fixed-length ICMP_ECHO packets as fast as possible. Each 

packet is time-stamped and it has an associated unique sequence number.  

• Measure the RTT by comparing the arrival time of the echoed packets with the time-

stamps contained in the packets.  

• Record those packets that arrive in-order (consecutive sequence numbers) and the 

inter-arrival times. The packet length divided by the inter-arrival time is the assumed 

available bandwidth.  

• Determine the bandwidth-delay product (BDP) by multiplying the bandwidth numbers 

by their corresponding RTTs 

• Finally multiply the median of the products by a constant factor (1.0 in our 

implementation) and return it as the result of our measurements.  

 

For example if we send a series of 256 bytes long packets and they are echoed back within 

10 milliseconds, the inter-arrival time is about 0.05 milliseconds, we obtain: 
 

RTT = 10 milliseconds   

 

Bandwidth = 256 bytes / 0.05 milliseconds  

    = 256 bytes * 1000 / 0.05 seconds = ~39Mbps 

(e.g. this can be 100 Mbit/sec Ethernet link under load) 

 

BDP = RTT * Bandwidth * ConstFactor  

    = 10 milliseconds * 39Mbps * 1.0 = ~50KB 

 

Having the solution to estimate the BDP, we are now able to define a tuning procedure. 

Because it is only possible to change the socket buffer sizes before the connection gets 

established, the applicability of this technique is limited to the setup time of a given  

connection. Therefore, it is necessary to intercept the connect() procedure at the sender 

side and the accept() procedure at the receiver side. In both cases, before the connection 

is requested by the sender or accepted by the receiver, it is necessary to invoke BDP 

estimation procedure and use the resulting value to setup the size of socket buffers.  To set 
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these buffers, we invoke setsockopt() system call using the SO_SNDBUF for the sender 

and SO_RCVBUF socket option for the receiver.  

 

It can be observed that this solution differs from other tuning techniques,  because the 

tuning decision must be taken at the application startup time and before any run-time 

knowledge is available at least for the first connection. Although this optimization is 

performed automatically for any socket-based application, it is advisable that the 

programmer decides to use the technique or not for his/her application. This results from 

the limitation of TCP/IP socket API that does not allow to change the buffer sizes for an 

established connection. 

 

6.3.4. Implementation 
The implementation of this tuning technique is divided into the following components: 

• Automatic BDP estimation library – shared library module that is loaded into the 

application during its run-time and provides the functionality that enables the 

estimation of the bandwidth-delay product for an individual connection.  

• Tunlet – executed inside the MATE Analyzer. It uses Tuning API to load the library to 

the application processes (both senders and receivers) and to instrument system calls, 

i.e. connect() and accept()by adding invocations to BDP estimation code. 

 

In particular, the BDP estimation library provides the following interface: 

• int EstimateBDP(char const * remoteHostName) – returns estimated bandwidth-

delay product in bytes for a connection with a given remote host using ICMP based 

method as described in the Solution section.  

• void AutoSetupBuffers(int socket) – automatically sets up the send and receive 

buffers of a given socket by applying the estimated BDP value. This function internally 

invokes the bdp=EstimateBDP() function and then calls setsockopt(socket, 

SOL_SOCKET, SO_SNDBUF, &bdp, len) and setsockopt(socket, SOL_SOCKET, 

SO_RCVBUF, &bdp, len) to setup the buffers.  

 

To use the BDP estimation, the tunlet requests the MATE Application Controllers to insert 

the AutoSetupBuffers(socket) function call into the entry of the connect() function 

and at exit of the accept() function. Because the TCP window size is implemented by 
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send and receive buffers on each end of the connection, this operation must be invoked for 

both ends of the connection. 

 

6.3.5. Conclusions 
This technique tunes the TCP socket send and receive buffers in order to maximize the 

network transmission rate. It is best suited for applications that realize massive data 

transfers between two end-points. The automatic buffer tuning may be very beneficial, 

[L39] reports performance enhancement up to 500% for FTP transmissions (i.e. transfer 

rate improved from 60Kbps up to 420Kbps).  However, the application of this technique is 

limited, because the buffers can only be tuned before the connection is established. It is not 

possible to adapt their size during run-time by analyzing the transmitted data. Therefore it 

is advisable that the programmer decides to apply this technique or not for a particular 

application. 

 

6.4. Memory allocation 
This tuning technique intents to improve the performance by optimizing the memory 

allocations for applications that use big number of small objects.  

 

6.4.1. Motivation 
Machines with large amounts of memory and disks are very common. However, current 

general-purpose memory allocators do not provide sufficient speed or flexibility for 

modern high-performance applications. To achieve high performance, programmers often 

write custom memory allocators from scratch. Many general-purpose memory allocators 

implemented in C and C++ provide good performance for a wide range of applications, but 

using specialized memory allocators that take advantage of application-specific behavior 

can dramatically improve application performance [Ale01].  

 

Typically, the applications use general-purpose memory allocators (i.e. malloc(), 

free()). Standard allocators are known to be inefficient in particular cases, for example 

when using a large number of small objects. C programs usually allocate medium- to large-

sized structures (hundreds to thousands of bytes) and for such behavior malloc() and 

free() are optimized. However, in many applications (especially written in C++), there is 

a tendency to create quite large number of small objects (tens to hundreds of bytes). This 
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can result in the application performance problems. This is not a fault of C++ language, but 

of the inadequacy of the malloc() routines that in fact might be called internally by C++ 

allocators (i.e. operator new). In such conditions, it is very reasonable to use optimized, 

custom-memory allocators that are tuned to deal with small memory blocks.  

 

6.4.2. Applicability and conditions 
Memory allocation tuning technique is beneficial when applied for applications that 

frequently allocate small chunks of memory. If an application does not fulfill these two 

principal conditions – intensive usage of memory and at the same time allocations of small 

blocks – this kind of tuning is unsuitable. The reasoning behind this is that a single 

allocation time is relatively small. For example, in the environment where we conducted 

our experiments a single allocation of 1B of memory done by the standard malloc() 

allocator lasts less than 1 microsecond. Moreover, as we have mentioned standard 

allocators are not optimized for the allocations of small blocks of memory (tens to 

hundreds of bytes).   

 

A feature of custom allocators that might be considered a drawback is the earlier usage of 

larger blocks of memory. For instance, an allocator can obtain large blocks of memory 

from the general-purpose allocator which it divides into a number of small objects. A 

custom allocator might also defer object deallocation, returning objects to the system much 

later than the object’s deletion time. In some cases, allocators may never release memory 

and reuse the allocated blocks until the program is terminated. All these factors may limit 

the applicability of this technique. 

 

6.4.3. Solution 
The solution is to rely on small-objects allocators – specialized allocators that are tuned for 

dealing with small memory blocks (tens to hundreds of bytes). Small-object allocators use 

larger blocks of memory so called chunks and organize them in effective way to reduce the 

total occupied space and decrease total allocation time. There are many custom allocators 

available, but we chose for this tuning technique a pool-based allocator [Ale00]. This 

allocator uses a set of variable-length pool (such as vector or list) to support an efficient 

organization of allocation and deallocation of memory blocks. Each pool consists of an 

integral number of fixed-size chunks. Each chunk is divided into fixed-size blocks for 

storing allocated data. When there are no more data blocks available in the last chunk, the 
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allocator creates a new chunk and appends it to the list of chunks. This design is shown in 

Figure 6.2. 
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Fig. 6.2. Pool allocator based on the mechanism of fixed-size chunks. 

 

In this approach one pool supports only one size for data allocation; chunk are always 

divided into m data blocks where each data block has always the same size n. For example, 

a chunk can has 4KB size and can be divided into 512 blocks for 8B data. If we want to 

consider allocations of other data sizes, then we have to create a new pool with appropriate 

characteristics, e.g. a 4KB chunk divided into 256 blocks to fit 16B data. 

 

To optimize the memory allocation performance, we can track the memory allocation 

requests during application run-time. By monitoring malloc() calls we can collect 

allocation statistics such as histogram of number of allocations and deallocations for 

groups of request sizes. These histograms show memory allocation usage patterns such as 

large number of small requests and so on. For example, if we detect thousands of 

allocations and deallocations of blocks smaller than 4KB, we can conclude that the 

application is memory intensive and can benefit from optimized pool allocations.  

 

We have determined a set of conditions that activate the tuning procedure for a given range 

of sizes (RangeMin, RangeMax):  

• RangeMax is smaller than maximum size of the request that is considered small 

• number of allocations and deallocations exceeds a threshold MinAllocs 
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If the conditions are met, it is necessary to determined the optimal chunk size for a pool 

allocator for a given range of sizes. During our investigations we have observed that the 

particular values of the thresholds should be obtained experimentally. 

 

Finally, we can replace the standard allocator with the optimized pool allocator for a 

particular range of request sizes.  Because the individual allocation times are very short 

(microseconds) we must provide a carefully optimized pool allocator implementation in 

order to obtain real performance benefits. 

 

6.4.4. Implementation  
The implementation of this tuning technique consists of the following components: 

• Optimized pool allocator – implemented as a shared library and loaded to the memory 

of a process by means of LoadLibrary() call from the Tuning API. This library 

provides the following functions:  

o void * pool_alloc(size_t size) – this function replaces malloc() 

implementation and delegates some ranges of requests to the internal pool 

allocator. The other requests are passed to the standard malloc() call. The 

replacement is performed by means of ReplaceFunction() call from the 

Tuning API.  

o void pool_free(void * mem) – it replaces standard free() call and frees 

memory previously allocated with the pool_alloc() or malloc().  
o void pool_activate(size_t minRequestSize, size_t maxRequestSize, 

size_t chunkSize) – activates the pooling allocator for all memory 

allocations that request a size in a specified range. The pool will use chunk with 

the specified size. Invocation of this function is performed by means of 

InsertOneTimeFunctionCall() of the Tuning API. 
o void pool_deactivate(size_t minRequestSize, size_t 

maxRequestSize) – deactivates the pool allocator for a specified range of 

sizes. The function invocation is performed by 

InsertOneTimeFunctionCall() of the Tuning API. 

• Memory allocation tunlet – that is responsible for monitoring the memory allocation 

requests and determining if and for what sizes pool allocator can behave better than the 

standard allocator. 
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When the tunlet is activated, it first requests to instrument the memory allocation routine, 

i.e. malloc(), in order to collect allocation statistics. The tunlet maintains the histogram of 

number of allocations and deallocations for each range of request sizes, for example sizes 

smaller than 16 bytes, 32 bytes, 64 bytes, …, 1KB, 4KB, etc. Periodically, the tunlet 

checks if the number of memory allocations for a given range of sizes exceeds a specified 

allocation threshold (configurable value) and the corresponding number of deallocations 

exceeds a deallocation threshold in a given period of time. In that case, the tunlet chooses 

the best suited size of pool for a given allocation size.  

 

Finally, the tunlet activates the tuning action. This action consists of the following steps: 

• If the procedure is invoked for the first time, the tunlet loads the shared library with the 

pool allocator to a given process. Next, it replaces malloc() and free() calls with 

their pool versions using ReplaceFunction() method from Tuning API. 

• The tunlet invokes the OneTimeCode() function in order to call the 

pool_activate(rangeMin, rangeMax, chunkSize) procedure that activates the 

allocator for a given range. 

 

To replace the allocators at run-time there are several issues to be considered. First, it is 

necessary to replace malloc() and free() standard calls with their optimized substitutes: 

pool_malloc() and pool_free(). The new functions hold a map of sizes to allocators 

and in this way decide what allocator (i.e. pool or standard) should be used to handle a 

request with a particular size. Next issue is related to memory deallocation problem. The 

problem result from the necessity to match the deallocation request with the allocator that 

was used to allocate a freed memory block. For example if the memory was previously 

allocated with the malloc() call it must be freed with free() call. If it was allocated 

with a pool allocator, the pool_free() function must be used to return the memory to the 

pool. This is solved by adding extra bytes for each allocated block from the pool. This 

allows the determination of the appropriate allocator.  

 

6.4.5. Experiments 
We wanted to compare the standard C library allocator (malloc() and free()) to the pool  

allocator that we have just presented. In order to investigate the performance of the 

memory allocations using different allocators, we have developed a synthetic, C++ 
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program that intensively allocates memory. The application does not perform any 

processing, but only allocates memory using a specified configuration. We have executed 

the application using standard allocator and pool allocator with different chunk sizes: 4KB, 

8KB, 16KB, 32KB, and 64KB. We used  two configurations: 

• First, the program has a constant number of allocations and allocates memory for 

different data sizes. We executed the program for various data sizes ranging from 1 to 

65535 bytes and we allocated 1.000.000 times each data size.  

• Second, the program applies different numbers of allocations for different data sizes. In 

this configuration the program was executed for 4B, 8B, 16B and 32B data sizes and 

for each data size we set different numbers of allocations ranging from 1 to more than 

16.000 times. 

All executions were conducted in a dedicated scenario, using a single host with no external 

load.  

 

Measurements and results 

Figure 6.3 presents the comparison of average memory allocation time in a function of 

request size for different allocators: standard and a set of pool allocators with chunk size 

ranging from 4KB to 64KB. The allocations for each data size were performed 1.000.000 

times. 
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Fig 6.3. Average allocation time vs. data size with constant number of allocations. 
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We can observe that there is no single optimal allocator for all different request sizes. The 

optimal strategy would be to use different allocator for different ranges of requests. In 

general, pool allocators perform better than standard allocator for data sizes smaller than 

4KB. The work of the pool allocator is characterized by an expensive first allocation, 

because the whole chunk must be allocated and divided into blocks. The subsequent 

allocations up to the end of the chunk are very cheap and with time they may amortize the 

cost of the expensive allocation. We can notice that different chunk sizes affect the pool 

allocator performance and there is direct dependency between chunk size and request size. 

In particular the 64KB chunk performs the best for bigger data sizes but poorly for small 

requests. The Pool 4KB is the best for small requests, but the worst for big requests.  

 

We can observe that for data sizes equal to 1, 2 and 4 bytes all pool allocators give the 

constant allocation time. The same happens with the standard allocator but for sizes up to 

32 bytes. This can be explained by the memory alignment performed by the allocators. The 

pool allocators use 4-bytes alignment, and we can guess that the standard allocator groups 

all request sizes smaller or equal to 32 bytes (i.e. 1 byte request allocates 32 bytes).  

 

Figure 6.4 presents the average time of the free operation for different allocators (with 

number of deallocations equal to 1.000.000). 
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Fig. 6.4. Average deallocation time vs. data size with constant number of deallocations. 
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We can observe that for all pool allocators the average pool_free() time is almost 

constant and significantly faster (60% - 70%) than standard free() function. The constant 

time results from the nature of the pool – each deallocated memory blocked is simply 

added to free block list and deallocation does not depend on the size. We can also see that 

the standard malloc() function groups requests sizes into blocks: sizes ranging from 1 to 32 

bytes result in 32 bytes allocations, sizes from 64 to 4KB result in 4KB allocations and so 

on, because the corresponding free() calls have constant times for these ranges. 

 

The following graphs (6.5, 6.6, 6.7, 6.8 correspondently) show average allocation time in 

function of number of performed allocations for constant requests sizes: 4, 8, 16, 32 bytes. 

Data size 4B

0,1

1

10

100

1000

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

Alloc number

avg. alloc. time [us]

std
pool 4
pool 8
pool 16
pool 32

Fig. 6.5. Average allocation time vs. different number of allocations for constant 4B data. 
 

All these figures show the minimal number of consecutive allocations that must be 

performed by a given pool allocator in order to overcome the performance of the standard 

allocator. We can observe the bigger data size of the request the smaller number of 

allocations is sufficient to justify the usage of the pool allocator. In general, we can 

conclude that number of allocations ranging from hundreds to thousands can be used as a 

value for the MinAllocs threshold.  
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Fig. 6.6. Average allocation time vs. different number of allocations for constant 8B data. 
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Fig. 6.7. Average allocation time vs. different number of allocations for constant 16B data. 

 

6.4.6. Conclusions 
Programs that make intensive use of memory may benefit from optimized pool-based 

allocators if they perform big number of small object allocations and deallocations. In such 

conditions, the specialized pool allocators perform much better (up to 70%). However, we 

have concluded that development of fully automated tuning technique that is able to 
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automatically find out all necessary threshold values and guarantee the performance gain in 

any conditions is difficult and requires further investigations.  
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Fig. 6.8. Average allocation time vs. different number of allocations for constant 32B data. 

 

6.5. PVM communication mode 
This tuning technique intents to minimize the PVM communication overhead by switching 

the messaging to the faster, point-to-point mode.  

 

6.5.1. Motivation 
The PVM message passing system consists of a daemon process and a set of tasks that use 

communication primitives. The daemons communicate among themselves using UDP/IP 

sockets. PVM tasks have the possibility to establish two communication modes with other 

tasks, the task-to-task mode (called direct) and task-to-daemon-to-daemon-to-task mode 

(called indirect). By default, PVM uses the indirect communication mode so all the 

messages exchanged between PVM tasks are routed through the daemons. In the direct 

mode the tasks bypass the PVM daemon by using direct communication links between 

them. The direct links are based on TCP/IP sockets and all I/O operations are based 

directly on system calls (i.e. read(), write(), select()). A given PVM task may have 

several sockets open at once: one to its local daemon and, optionally, one or more to 

specific tasks with which it is communicating.  
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Although the initial TCP set up time is larger, all subsequent communication between the 

same two tasks is usually faster. This is because the additional routing of each message is 

avoided. The primary drawback of this method is that each TCP socket consumes one 

dedicated file descriptor, and in some cases there is a limit on maximum number of opened 

connections (e.g. some UNIX systems).  

 

PVM provides a clean API to the programmer but the message passing latency is higher 

than the physical network's latency. In many cases the PVM communication library 

achieves only 15%- 20% of the network's theoretical capacity [Sub96]. The indirect mode 

is one of its reasons. Therefore the direct mode, although less scalable, it is a preferred 

transfer method.  

 

We must also point out that in majority of typical environments used to run PVM 

applications (workstation clusters) this mode is available, but rarely used. Another 

situation is when the application contains the hard-coded instructions to set the default 

mode and its source code is not available. Therefore, it is advisable to automatically switch 

the communication to the direct mode whenever possible during application runtime.  

 

6.5.2. Applicability and conditions 
This tuning technique can be applied to all PVM applications that does not explicitly 

control the PVM communication mode. The direct communication mode is available on 

majority of the architectures except a few. For example on shared-memory machines, or 

multiprocessors such as Intel Paragon this mode is not available, because the 

communication between tasks on these machines always uses the native protocol.  

 

Although communication mode tuning is beneficial even when applied for applications 

that infrequently exchange small messages, the biggest impact can be seen for 

communication-intensive applications. This kind of tuning is suitable for problems with 

rather high communication and rare computation. Therefore this technique should be 

applied when communication/computation ratio exceeds selected threshold.  

 

An existing limitation is the maximum number of opened connections (i.e. file descriptors) 

per task. For example some UNIX systems limit this value to 60 per process. So this mode 

is not available for tasks that use more than 60 file descriptors (i.e. files, sockets, etc.). The 
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advantage is that the PVM automatically switches back to indirect mode, when the direct 

mode is not available for any reason.  

  

6.5.3. Solution 
The application can configure the communication mode explicitly, but by default the 

indirect mode is used. To set the direct communication mode PVM API offers a function 

called pvm_setopt(mode, value). This function allows one to modify the PVM library 

options. First parameter defines which option to set, the second one specifies a new value. 

The message communication policy option is called PvmRoute, and it can have the 

following predefined values:  

• PvmDontRoute – do not request or grant connections. This setting on task A sets 

indirect mode and does not allow other tasks to set up direct links to A 

•  PvmAllowDirect – default value – do not request but allow the direct connection. This 

setting on task A allows other tasks to set up direct links to A. 

• PvmRouteDirect – request and allow connections. This setting on task A sets direct 

links to A. Once a direct link is established between tasks, both tasks will use it for 

sending messages and it persists until the application finishes.  

Function pvm_setopt() can be called multiple times during an application execution to 

selectively set up communication links, but typical use is to call it once after the initial call 

to pvm_mytid().  

 

During the execution, we can detect the use of indirect mode by calling 

pvm_getopt(PvmRoute) function and check if it is possible to use the direct mode. This 

mode is available when the environment does not include shared-memory machines and 

the number of PVM tasks is smaller than system-dependent limit. The tuning action 

includes one-time function invocation pvm_setopt(PvmRoute, PvmRouteDirect) that 

activates the mode. One possible complementary variation of this solution is to insert a 

snippet into the entry of the function pvm_setopt() that will modify the value parameter 

to PvmRouteDirect when the mode parameter equals PvmRoute for all subsequent calls to 

that function. Therefore, whenever the function is called, input parameter value is ignored 

and always set to indicate direct communication mode. In that way the application will not 

be able to change the mode back to indirect until the snippet is removed. 
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6.5.4. Implementation  
To monitor what communication mode is used and if it is changed explicitly by the 

application, a snippet is inserted into the pvm_setopt(mode, value) function to each 

individual task. To receive the event record, the tunlet must register appropriate callback 

Event::SetEventHandler. Each time the function pvm_setopt() is called, the tunlet 

receives a corresponding event record that contains the parameters of the function (i.e. 

mode and value). For example the tunlet receives a notification when a task activates the 

direct mode by calling pvm_setopt(PvmRoute, PvmRouteDirect).  

 

The tunlet that implements this technique must be able to verify the configuration of the 

virtual machine. This is possible by handling notifications related to addition and removal 

of tasks and hosts – callbacks Application::SetTaskHandler, 

Application::SetHostHandler (see Chapter 5 Dynamic Tuning API for more details). 

The analysis model for this technique is based on simple rules. If there are no shared-

memory machines and number of tasks does not exceed the system-dependent limit (i.e. 60 

file descriptors) the direct mode is considered available. In that case, for each task that uses 

the indirect mode, the tuning action can be applied. If a task already uses direct mode, 

there is no need to apply any tuning action. 

 

The tuning action includes one-time function invocation pvm_setopt(PvmRoute, 

PvmRouteDirect) that activates the mode. To avoid reentrancy problems in PVM library 

implementation, the tuning action must be synchronized with the application execution. 

For example, if a task is executing the code inside the pvm_send() function, the inserted 

invocation of the pvm_setopt() action may provoke the communication failure, because 

the modification of the communication mode changes the underlying sockets. Therefore, 

first the breakpoint is inserted at the entry of function pvm_send() and when it is activated, 

the actual invocation is performed.  

 

6.5.5. Experiment 1 
In order to compare the communication performance of both PVM communication 

modes, we have developed a simple, synthetic, PVM master-worker program that 

exchanges messages in a ping-pong manner. The master task sends a determined amount of 

work and waits for results. The  worker receives a work, and immediately sends the same 
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amount of work back to the master. There is no computational operations, the application 

is strictly based on communication. We executed the program for various message sizes 

ranging from 1 to 1.000.000 bytes. At startup, the master task configures the selected 

communication mode and later whole communication is performed in that mode.  

 

We have performed the experiment for both direct and indirect communication modes. All 

executions were conducted in homogeneous and dedicated scenario (no external load). In 

this scenario, we have used two homogeneous machines (aows6, aows7) connected by 

100Mb/sec network. We have called this scenario dedicated because we tried to minimize 

the possibility of external influences executing the application when all workstations were 

idle. However, as described before, the cluster was not physically isolated from the 

network and in fact could be accidentally used by other users. 

 

Measurements and results 

Figure 6.9. presents the comparison of communication performance between PVM direct 

and indirect communication modes in the ping pong application presented above (note that 

both scales are logarithmic). The detailed measurements are listed in Table 6.3.  

 

As expected, we can observe that independently on the message size the change from 

indirect to direct mode results in significantly faster communication in all cases (up to 

50%). In particular, the big difference between both modes is noticed for small messages 

when the startup time highly influences the transmission time. The startup time is constant 

and hence it is very notable for small messages when the transmission time is small, in 

opposite it may be almost lost for big messages when more time is required for providing a 

message to the destination. In the case of indirect mode the additional message routing 

task-to-daemon-to-daemon-to-task is performed and at each point the startup time is added 

(3 times, namely from task to pvmd, from pvmd to pvmd on the remote destination 

machine, from that pvmd to destination task). In the direct mode, the startup time 

influences only once (from task to task). For small messages, the benefits can reach even 

50% The bigger a message is, the less the benefits are, but for all presented message sizes 

we see the direct mode profitable, e.g. for 1MB message – 18% of profits.  
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Fig. 6.9. Benefits gathered from changing communication mode in a ping-pong application (logarithmic 

scale). 

 

Moreover, the cost of additional indirect routing is presented since the PVM divides a 

bigger message into a set of fixed-size fragments before sending it to the destination. By 

default the PVM library uses a fragment size of 4KB. Additionally, internally PVM is 

based on the socket communication and uses constant packet size of 32KBytes. Therefore, 

if bigger message is sent, it must be divided in more fragment size and in more socket 

packets. We describe the message fragment size in Section 6.7. 

 
MsgSize [B] Indirect Time [ms] Direct Time [ms] Difference [ms] Average Benefit % 

1 1,08 (±0,04) 0,53 (±0,02) 0,55 (±0,06) 50,72% 
10 1,09 (±0,04) 0,54 (±0,01) 0,55 (±0,05) 50,39% 
100 1,15 (±0,04) 0,61 (±0,02) 0,53 (±0,07) 46,47% 

1000 1,77 (±0,05) 1,18 (±0,03) 0,59 (±0,08) 33,45% 
10000 10,66 (±0,23) 8,51 (±0,21) 2,15 (±0,44) 20,13% 

100000 104,95 (±4,11) 84,17 (±3,91) 20,78 (±8,02) 19,80% 
1000000 1059,64 (±30,08) 861,37 (±39,07) 198,27 (±69,16) 18,71% 

 

Table 6.3. The detailed measurements of PVM communication performance for direct and indirect 

communication modes. 

 

6.5.6. Experiment 2 
The goal of the next experiment was to compare the performance of a real application 

applying tuning of the PVM communication mode. To conduct our experiments, we 
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selected a communication-intensive parallel program. We used Integer Sort (IS) kernel 

benchmark from NAS [L40] Parallel Benchmark suite [Bai94, Bai95]. The IS kernel 

ranks a large array of small integers as fast as possible using a bucket-sort method.  

 

Bucket sort [L41] is the fast sorting methods because it does not perform any key 

comparison. However, there are significant limitations in its usage and it can be applied 

sufficiently only in rare situations. To do a bucket sort, a temporary array must be used in 

which the elements to be sorted are distributed basing on their key fields. If the maximum 

key value in the list is n, then the temporary array should be at least of size n+1. For 

example, if we must sort 2, 9, 6, 5, 1, 7, the temporary array should be at least of size 10. 

To distribute the numbers in the temporary array, this array is first initialize with a flag 

value – a value that cannot be a key field of the sorted numbers, e.g. –1 in the above 

example. Next, each element with a key field n is copied in position n of the temporary 

array. Finally, all non-flag values from the temporary array (i.e. numbers with value 

different than –1) are copied back into the original structure in the order they appear in the 

temporary array. The distribution of n numbers requires n steps and thus, the performance 

of bucket sort is of order n (linear). 

 

Bucket sort works only under very restrictive conditions. These are: 

• The key field must be unique positive integer and not string, float or even negative 

integers. 

• The range of values for the key-field must be relatively small, otherwise, the temporary 

array will be too large.  E.g.  if the key field is ID number (6 digits), then the temporal 

array must contain a place for 999999 elements (which is impossible to store in the 

memory). 

 

The IS NAS benchmark is based on the master-worker paradigm. The main program 

(master) generates a vector of integer data (keys) to be sorted using the pseudorandom 

number generator. The keys are in the range [0, max_keys) and distributed as a Gaussian. 

Gaussian distribution is also know as normal distribution [L42] and it is a family of 

distributions that have the same general shape. They are symmetric with scores more 

concentrated in the middle than in the tails. This distribution can be also described by a 

symmetric bell-shaped curve. The keys to be sorted are performed according to the 

following scheme. The master task divides all existing keys in number of keys / number of 
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nodes parts. Each part must be distributed to one worker. First, the master sends to each 

worker a message with the information that specifies the range and number of the keys. 

Then, it sends a data. A worker receives data from the root node and samples it to arrive at 

a good load balance. It communicates with other workers in order to know their ranges. 

Then it keeps all keys which fall in its range and sends other keys to the appropriate nodes. 

Finally, it sorts all the keys in its range. 

 

The IS NAS kernel tests both integer computation speed and communication performance. 

Communication costs are high (up to about 50% of communication) in this application. 

This is because the benchmark is dominated by all-to-all data exchange messages, since 

each processor sends to all others that data which falls within the range of the recipient.  

 

All executions performed with IS NAS benchmark were conducted in the same 

environment as in the previous experiment described in Section 6.6.5 (homogeneous and 

dedicated). The only change we done was the number of machines incorporated into the 

PVM virtual machine. We were executing the IS NAS benchmark on 4 machines (aows1, 

aows6, aows7, aows8). 

 

Measurements and results 

Table 6.4 presents the results of the IS kernel benchmark experiments in two different 

tuning scenarios. In the first scenario, the application was executed under standard PVM 

3.4 without any tuning. In the second scenario, the PVM communication mode was 

monitored, analyzed and optimized by MATE. The tunlet that was responsible for the 

PVM communication mode decided to use the direct mode as all required conditions were 

accomplished. By default the application used indirect mode and our experiments were 

conducted in a small NOW environment. We can observe a 17,5% benefit in execution 

time caused by this tuning action. Such an improvement can be explained by a high 

computation-communication ratio (1:1). As we have mentioned in the Applicability part, 

this tuning technique is adequate for communication intensive applications. The IS NAS 

benchmark spends up to about 50% of the execution time on the communication and it is 

very profitable to avoid the additional routing caused by the indirect mode. The measured 

intrusion did not exceed 3,5% of the total execution time. We see then that in this case 

tuning is effective and benefits are higher than the overhead introduced into the application 

execution. 

 166



Tuning techniques 
 

No. Tuning scenario Execution time [sec] Tuning benefits [sec] Intrusion [sec] 
1. PVM (no tuning) 732 - - 
2. PVM + communication  

mode tuning 604 127 (17,5%) 21 (~3,5%) 

 

Table 6.4. The measurements of PVM communication performance when applying dynamic tuning of 

communication mode in the IS NAS benchmark.  

 

6.5.7. Conclusions 
This tuning technique results beneficial for applications with high communication-

computation ratio that do not explicitly control the PVM communication mode. The tuning 

cost is very low, because it is simple to obtain necessary information and the tuning action  

has a cost of a breakpoint and a single function call. However, this technique has rather 

static nature, because the change is typically performed once during execution of the task. 

So if the application source code is available it might be reasonable alternative for the 

programmer to modify the source code and recompile the application.  

 

6.6. PVM encoding mode 
This tuning technique intents to minimize the PVM encoding overhead by skipping data 

encoding/decoding phase.  

 

6.6.1. Motivation 
An application running in the PVM environment, can be executed on different machines 

that form PVM virtual machine. These machines do not have to be homogeneous, because 

the PVM system transparently handles all necessary operations for processing in a 

heterogeneous, network environment, e.g. inclusion of heterogeneous machines to the 

virtual machine, message routing between all machines, data conversion for incompatible 

architectures. To be able to route messages in a heterogeneous environment the PVM 

library must apply specific mechanisms. One of them is data format conversion. When 

PVM transfers the data, it must convert the data format transparently between machines 

that have different architectures. It is achieved by using External Data Representation 

(XDR) standard.  

 

XDR [L43] is an encoding of simple and aggregate data types that enables exchanging 

information between different systems and programming languages. In order to transmit 

data between nodes, first, a data format is translated from the internal data format of the 
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sending node to the XDR encoding (machine-independent format). Then, the XDR 

encoded data is sent over the network to a destination. Finally, the receiving node 

translates the data from the XDR encoding to its native representation.  

 

The disadvantage of XDR is that the data is necessarily bigger because of the additional 

information that permits to read the data correctly. In XDR the representation of data 

requires a multiple of four bytes (or 32 bits). The bytes are numbered 0 through n-1. The 

bytes are read or written to some byte stream such that byte m always precedes byte m+1. 

If the n bytes needed to contain the data are not a multiple of four, then the n bytes are 

followed by enough (0 to 3) residual zero bytes, to make the total byte count a multiple of 

4. The XDR format must support efficiently different machine architectures and not cause 

the memory alignment problems. Therefore, the size of principal XDR unit has a value 4. 

For example, in the case of short integer type, in XDR it always consists of 4 bytes, not of 

2. In the case of a string, appropriate number of 0s will be added at the end of the string to 

make its length divided by 4. Moreover, the string length (4 bytes) is added at the 

beginning in the way that byte 0 of the string always follows the length.  

 

Another drawback is caused by additional processing that is needed on both sides, the 

sender and the receiver. The sender must include the additional information (encoding) and 

the receiver must interpret this information in order to translate the encoded data 

(decoding). In the case of integer type, the most and least significant bytes are 0 and 3, 

respectively. The XDR encodes integers in big-endian byte-order. If sending and/or 

receiving machine has an architecture that supports little-endian order each integer then 

must be translated. 

  

By default PVM encodes data using XDR standard, because it cannot know if the user is 

going to add a heterogeneous machine before a message is sent. If there is no 

heterogeneous machine in the PVM virtual machine or messages are exchanged between 

tasks on the same machine, the next message will only be sent to a machine that 

understands the native format. The encoding phase therefore, can be skipped, what allows 

for reduction of sending data size, avoiding data encoding/decoding costs and in result 

reducing execution time.  
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The application may contain the hard-coded instructions to set the default encoding mode 

since a developer does not know in what environment an application will be executed. 

Moreover, its source code may not be available. Therefore, it can be beneficial to 

automatically switch off the default XDR encoding whenever possible during application 

runtime. 

 

6.6.2. Applicability and conditions 
This tuning technique can be applied to all PVM applications. The applicability of this 

tuning technique mainly depends on the architecture of the machines included into a virtual 

machine If the virtual machine consists of machines with compatible architectures, then the 

XDR encoding can be avoided. Moreover, if the whole application is running only on one 

machine or there are at least two processes on one machine that explicitly communicate 

among them, then the data raw mode can be used. In the opposite cases, the XDR encoding 

must be applied.  

 

It must be pointed out that the encoding mode tuning, similarly to the communication 

mode tuning, is beneficial when applied for applications that frequently exchange 

messages. It is suitable for communication-intensive applications. If an application does 

not exceed selected thresholds of communication/computation ratio, there is no sense to 

tune the encoding mode. In such a case, the influence of the encoding phase is not 

significant as there are few and/or infrequent messages to be encoded. 

 

Another issue to be mentioned in the case of encoding tuning is the type of exchanged 

data. Each data type must be encoded to the XDR format to be machine independent. 

However, the time consumed to encode one type may differ significantly from the 

encoding phase of other types. For example, integer or float data encoding causes big 

amount of time lost on the transformations. Each integer must be encoded according to the 

big-endian byte-order. Each float is represented according to a floating-point numbers 

standard [IEE85]. String type encoding is not time consuming, since there is no 

transformation of the string itself. XDR only adds the maximum of 7 bytes to it (4 bytes 

representing the length, 0-3 bytes to make the total byte count a multiple of 4). The 

encoded string can be then sent via the network in the comparable time as the string in data 

raw format. Summarizing, the tuning technique is more applicable for the data types that 
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required many transformation (integer, float) and/or significant number of bytes is added to 

the data (short integer). 

 

6.6.3. Solution 
The application can configure the encoding mode explicitly. Before any message can be 

sent, function pvm_initsend(encoding) must be invoked. This function clears the default 

send buffer and sets the message encoding mode. It packs all data into a message in one of 

several encoding formats. PVM predefines five sets of encoders and decoders. The two 

most commonly used ones pack data in raw (PvmDataRaw – host native) and default 

(PvmDataDefault – XDR) formats. Specifying the PvmDataRaw value indicates that no 

data conversion should take place. Inplace encoders pack  only descriptors of the data 

(pointers to static data), so the message is sent without copying the data to a default send 

buffer. There are no inplace decoders. Foo encoders use a machine-independent format that 

is simpler than XDR; these encoders are used when communicating with the pvmd. Alien 

decoders are installed when a received message can't be unpacked because its encoding 

doesn't match the data format of the host. A message in an alien data format can be held or 

forwarded, but any attempt to read data from it results in an error.  

 

In this work we focus on tuning the default encoding mode called PvmDataDefault and 

changing it to the PvmDataRaw. During the execution, we can detect the use of encoding 

mode by inserting a snippet into the entry of the function pvm_initsend() and check if it 

is possible to use the data raw encoding mode. This mode is available when all machines 

from the PVM virtual machine have the same, homogeneous architecture. The tuning 

action includes the insertion of a snippet into the entry of the function pvm_initsend() 

that will modify the value of its unique parameter encoding to PvmDataRaw. Therefore, 

whenever the function is called, input parameter value is ignored and always set to indicate 

data raw encoding mode. In that way the application will not be able to set the encoding 

mode until the snippet is removed. Although the function pvm_initsend() is invoked 

setting data raw mode, PVM verifies the machines’ homogeneity when the pvm_send() 

call is made. If two machines that exchange the message do not have the same architecture, 

PVM aborts the transfer of the message. 
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6.6.4. Implementation  
To monitor what encoding mode is used, a snippet is inserted to each individual task into 

the function pvm_initsend(encoding). Each time this function is called, the tunlet 

receives a corresponding event record that contains the parameter of the function (in this 

case the encoding mode). To be able to receive event records, the tunlet must register 

appropriate callback Event::SetEventHandler. 

 

The application can configure the data encoding mode explicitly, but the most common 

one is PvmDataDefault – XDR encoding mode. The MATE environment controls the 

addition of hosts to the virtual machine (via hoster service) so it is able to detect if an 

application is executed in the homogeneous cluster. The tunlet that implements this 

technique must be able to check the configuration of the virtual machine. This is possible 

by handling notifications related to addition and removal of tasks and hosts – callbacks 

Application::SetTaskHandler and Application::SetHostHandler (see Chapter 5). 

The analysis model for this technique is based on simple rules. During the execution the 

tunlet can decide to use data raw mode if the condition of hosts’ homogeneity is fulfilled. 

The tuning action should be applied only on the tasks that use the function 

pvm_initsend() and send messages. 

 

The tuning action includes insertion of instrumentation (entry of pvm_initsend()) that 

changes the encoding mode from XDR to data raw (parameter mode is always set to 

PvmDataRaw). In this case no synchronization is required, because the tuning action will be 

invoked only when the application reaches the pvm_initsend() entry. Moreover, when a 

new machine with different architecture is about to be added, the Analyzer module can 

request to restore the XDR mode. 

 

6.6.5. Experiment 1 
To compare the encoding performance of both PVM encoding modes, we have adapted 

a synthetic, PVM master-worker program that was used for purposes of the comparing the 

communication performance (see Section 6.5 PVM communication mode). This program 

exchanges messages in the same manner as described above and we executed it for the 

same various message sizes ranging from 1 to 1.000.000 bytes. At startup, the master task 

configures the encoding mode and later whole communication is performed in that mode. 

We have performed the experiment for both XDR and DataRaw encoding modes. All 
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executions were conducted in the same environment as in the case of communication mode 

(homogeneous and dedicated, aows6, aows7).  

 

Measurements and results 

Figure 6.10 contains the comparison of PVM encoding performance. It shows XDR vs. 

data raw encoding modes applied in the ping pong application presented above (both axis 

X and Y are logarithmic). Additionally, we present the detailed measurements obtained 

from the experiments in Table 6.5. 
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Fig. 6.10. Benefits gathered from changing encoding mode in a ping-pong application (logarithmic scale). 

 
MsgSize [B] XDR Time [ms] Data Raw Time [ms] Difference [ms] Average Benefit % 

1 0,53 (±0,02) 0,51 (±0,01) 0,01 (±0,03) 2,25% 
10 0,53 (±0,02) 0,52 (±0,01) 0,01 (±0,03) 2,25% 
100 0,61 (±0,02) 0,58 (±0,01) 0,03 (±0,03) 4,76% 

1000 1,17 (±0,02) 0,98 (±0,01) 0,19 (±0,04) 16,38% 
10000 8,53 (±0,30) 3,28 (±0,05) 5,24 (±0,34) 61,49% 

100000 84,69 (±4,02) 23,36 (±1,20) 61,33 (±5,22) 72,42% 
1000000 873,90 (±40,35) 227,37 (±19,81) 646,52 (±60,16) 73,98% 

 

Table 6.5. The detailed measurements of PVM encoding performance for XDR and DataRaw encoding 

modes. 
 

We can observe the significant benefits obtained when executing our benchmark 

application in different modes. Changing XDR to data raw encoding mode, we may 

achieve up to ~74%. We can see that XDR encoding overhead grows together with the 

message size. For message sizes less than 1KB, the difference is low (about 2% - 4%) and 

hence not so significant. If bigger amount of data is sent, more time is required for 
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encoding and decoding it. We conclude then that the data raw mode is significantly faster 

and preferable in the typical homogeneous clusters.  

 

Moreover, we must pointed out the data types issue. Figure 6.10 and Table 6.5 show the 

results of the encoding performance for messages that contain only integer data. The tested 

application allocates the array of integers and this array is then exchanged between tasks. 

To compare how different data types behave when encoded, we executed the same 

benchmark application modifying data type of exchanged messages.  

 

Figure 6.11 shows the differences in the application execution times when applying 

encoding on float and string (set of chars) data types. The detailed results are listed in 

Table 6.6 and 6.7 for messages with float data and string data, respectively. We can notice 

that XDR encoding has a big influence into the float data type, similarly to the integer data 

type. The benefits from applying data raw mode can reach up to 64% for big messages. In 

the case of integers, we obtained up to 74% of profits. It means that the integer 

transformation to XDR format consumes even more time than for float data.  

 

When exchanging messages consisted of the string data, although we change the encoding 

mode from XDR to data raw, there are no real differences in the transmission time. The 

application execution times for both modes, XDR and data raw are comparable. As we 

could suppose, such a phenomena takes place as the string type data does not require 

significant transformations (we mentioned above that a string itself is not encoded, only 

maximum of 7 bytes is added). The times of exchanging strings are also similar to the 

messages with integer and float data exchanged in data raw mode (Table 6.5 and Table 6.6 

correspondingly). The small differences between all these execution times appear only 

because of our experimental environment in which nor the cluster nor interconnection 

network was completely dedicated and isolated to purpose of the experiments. 
MsgSize [B] XDR Time [ms] Data Raw Time [ms] Average Benefit % 

1 0,56 (±0,02) 0,55 (±0,03) 1,08% 
10 0,54 (±0,03) 0,55 (±0,03) -2,30% 
100 0,64 (±0,03) 0,62 (±0,03) 3,10% 

1000 1,18 (±0,03) 1,00 (±0,03) 15,45% 
10000 6,75 (±0,14) 3,34 (±0,11) 50,50% 

100000 67,68 (±2,7) 26,6 (±2,53) 60,69% 
1000000 690,62 (±40,16) 246,29 (±25,98) 64,34% 

 

Table 6.6. The detailed measurements of PVM encoding performance for XDR and DataRaw encoding 

modes when exchanging floats. 
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Fig. 6.11. Comparison of the PVM encoding performance in a ping-pong application for different data types 

of exchanged messages, float and chars (logarithmic scale). 

 
MsgSize [B] XDR Time [ms] Data Raw Time [ms] Average Benefit % 

1 0,57 (±0,02) 0,57 (±0,02) -0,22% 
10 0,59 (±0,03) 0,57 (±0,03) 3,21% 
100 0,63 (±0,03) 0,63 (±0,03) -0,68% 

1000 1,02 (±0,03) 1,02 (±0,03) 0,11% 
10000 3,44 (±0,1) 3,49 (±0,09) -1,65% 

100000 24,72 (±2,22) 25,01 (±1,96) -1,16% 
1000000 246,18 (±24,45) 248,18 (±25,92) -0,79% 

 

Table 6.7. The detailed measurements of PVM encoding performance for XDR and DataRaw encoding 

modes when exchanging strings. 
 

6.6.6. Experiment 2 
In order to compare the encoding performance applying tuning of the PVM encoding 

mode in a real application, we conducted experiments on the same application as in the 

case of PVM communication tuning. We used Integer Sort (IS) kernel benchmark from 

NAS Parallel Benchmark suite which was described above. All its executions were 

performed in the same as above environment (homogeneous and dedicated using 4 

machines: aows1, aows6, aows7, aows8).  

 

Measurements and results 

Table 6.8 shows the results of the IS kernel benchmark experiments in four different tuning 

scenarios. The first scenario presents the original application execution under standard 

PVM 3.4 without any tuning. In the second scenario, tuning the data encoding mode was 

tried. In this case the tunlet responsible for this optimization did not perform any tuning 
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actions because the required conditions were not accomplished to activate them. It was 

caused by the settings performed in the application. Originally the application already used 

the data-raw encoding mode, so no improvement was possible. PVM encoding mode 

tuning caused in this case the longer application execution time (for about 3,9%). It was 

caused by the intrusion inserted by MATE into the execution, namely application startup 

(task load time, task image parsing time), instrumentation (adding, execution and 

reporting) and analysis. The intrusion reaches up to 2,8% of the total application execution 

time. 

 
No. Tuning scenario Execution time [sec] Tuning benefits [sec] Intrusion [sec] 
1. PVM + DataRaw (original 

execution, no tuning) 732 - - 

2. PVM + DataRaw + tuning 
(wrong decision) 757 -29 (-3,9%) 21 (~2,6%) 

3. PVM + XDR (no tuning) 1432 - - 
4. PVM + XDR + tuning 759 637 (47%) 21 (~2,8%) 

 

Table 6.8. The measurements of PVM communication performance when applying dynamic tuning of 

encoding mode in the NAS IS benchmark.  

 

However, to see what would happen if the application was executed in the XDR mode we 

experimentally run it in this mode. We can observe in the scenario 3 that application 

execution time dramatically increased comparing to original time (in XDR 1432sec, in 

DataRaw 732sec) – about 49% longer. Then, in scenario 4, we run the application in the 

XDR mode but it was tuned by MATE. The improvement caused by the tuning action 

attained 47%. Such benefits were obtained because of two factors. First, the type of the 

application – it is the communication intensive application. We mentioned that this tuning 

technique as focuses on the communication time optimizations is suite for programs that 

communicate a lot. The second factor has the originality in the exchanged data. IS NAS 

benchmark serves for sorting integer numbers, and hence the high volume of messages 

exchanged between tasks contains the integer data.  

 

6.6.7. Conclusions 
This tuning technique can improve the communication performance between two processes 

that are running on machines with the same architecture by eliminating the redundant 

encoding.  The technique is suitable for communication-intensive applications and brings 

benefits in homogenous VM configurations where encoding is unnecessary overhead. The 
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benefits are dependent on the amount of exchanged messages and data types. The 

technique adapts the application to dynamic changes in the environment, because it selects 

the optimal encoding mode whenever VM configuration changes during execution of  

PVM-based applications.  

 

6.7. PVM message fragment size 
This tuning technique intents to choose the optimal size of message fragments to minimize 

the PVM communication time.  

 

6.7.1. Motivation 
In PVM messages exchanged by the tasks are composed without a maximum length. 

Before a message is physically sent, it must be prepared putting all data into the active 

send buffer. This is performed by calling any of the family functions pvm_pack(). The 

pack functions allocate memory in steps and store messages. Internally a message is put 

into a fixed-size data buffer. This buffer is called fragment. PVM uses a default fragment 

size of 4KB. If a message is bigger than 4KB and hence does not fit one fragment, it is 

divided into appropriate number of fragments. Then the pack functions allocate additional 

memory to put there the rest of the fragments. Each fragment is separately sent. When 

sending large messages, a number of fragments must be allocated and then separately sent. 

PVM uses specific data structure to manage the fragments and chain the them together into 

a list. Although underlying services might have lower limits, PVM implementation limits 

the maximum fragment size to 1024KBytes.  

 

Internally, PVM uses sockets for communication purposes. Socket communication is 

packet-based (data to be sent is divided into packets) and has certain limitations concerning 

the packet size (see Section 6.3 for TCP/IP buffers tuning). In different architectures the 

default and maximum settings can differ. In our case (Unix Sun Solaris) by default the 

maximum packet size is set to 32KBytes. PVM sets the packet size to this value and this is 

unchangeable during the application execution.  

 

Such a message division provokes the following situation: a message before it can be sent 

is divided into PVM fragments, then each fragment is put into socket packets. This causes 

high fragmentation what may reduce performance. Therefore, although having constant 
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socket packet size set to 32KBytes, by changing message fragment size, bandwidth can be 

increased significantly. When the fragment size increases, PVM dynamically allocates 

more memory while sending/receiving messages, hence more data is sent/received per 

system call.  

 

As we have mentioned, by default PVM uses 4KB message fragment size. If an application 

does not explicitly change this value or sets it to a specific one, such a situation might 

cause non optimal application behavior. Moreover, the fragment size depends deeply on 

the message size. When a message size varies during the application execution, the 

message fragment size should also be optimized for the existing conditions. We 

experimentally deduced that the optimal fragment size depends on application behavior – 

size of data sent and received. The optimal value can vary during execution (due to 

program phases) and thus it is not enough to calculate it once; it should rather be adapted 

to the application behavior. Additionally, an application source code may not be available. 

For all these reasons, the automatic and dynamic tuning of the message fragment size can 

be beneficial.  

 

6.7.2. Applicability and conditions 
The drawback to this strategy is increased memory usage. If the message fragment size 

must be increased, more memory is required since PVM allocates additional and bigger 

buffers for the exchanging messages. The PVM implementation has a problem related to 

memory allocation. When memory is allocated for buffers for a specific fragment size 

there is no possibility to free memory already allocated for other size. For example, by 

default the 32KB buffers are allocated. When the fragment size is changed to 512KB, 

PVM allocates appropriate buffers, but none of the 32KB buffers is freed (they remain in 

the static buffer pool until the end of the program). Therefore, when the fragment size is 

often changed the whole available memory may be consumed and no space will be left for 

new allocations. One point must be mentioned here. If the fragment size is changed to the 

size that was used before (e.g. back to the 32KB considering the example above), PVM 

utilizes the memory that was already allocated for this size. In this case the message 

packing may be faster since no new allocations are performed (except the case when a 

message does not fit into allocated fragments). However, in general such an approach 

provides to quick resource exhaustion. Therefore it is necessary to limit the number of 

changes with a counter. If the message fragment size was changed n times to different 
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sizes, then no fragment size tuning should be invoked any more. This decision can be 

followed by the appropriate instrumentation removal, un-registration of callbacks and the 

end of the tunlet work.  

 

It must be also pointed out that fragment size tuning is not very effective in indirect 

communication mode, because it is only performed on the application tasks and does not 

affect the behavior of PVM daemons. 

 

As it was in the case of PVM communication and encoding mode tuning, it is reasonable to 

apply this tuning technique for applications that intensively exchange messages. Only if an 

application exceeds selected thresholds of communication/computation ratio, the 

performance improvement can be noticeable. Otherwise, intrusion introduced by the 

dynamic tuning operations might cause the performance deterioration. 

 

6.7.3. Solution 
It is possible that the application configures the PVM message fragment size explicitly, but 

by default the determined size is used – 4KB. To set the message fragment size, the PVM 

library provides a function called pvm_setopt(mode, value). This function has been also 

described in Section 6.5.5 while presenting the tuning technique for PVM communication 

mode. However, this function is more general and serves to set more PVM library options. 

The mode value can be set to PvmFragSize, what means that the function changes the size 

of PVM message fragment. The second parameter will have a value of the size in bytes.  

 

When the application is running, we can check the current PVM message size, and hence 

see if it was changed explicitly by the application by calling pvm_getopt(PvmFragSize) 

function. To choose the optimal value of the message fragment size, we must know the 

sizes of the messages that are exchanged between the tasks. Moreover, we should be able 

to obtain conditions of the application and environment in which it is running as we must 

reflect all conditions related to the message fragment tuning applicability. Basing on this 

knowledge, we have to conclude the activating conditions for fragment size calculations 

and tuning action and moreover, the dependency of the fragment size from the message 

size. There is no specific already-provided mathematical model for this purpose and hence 

we must experimentally determine such a model.  
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To start the new fragment size calculation, first we must check the conditions. The 

application must be executed in direct mode (see Section 6.5 for more details). A special 

pattern must occur – high frequency of messages with size > 4KB. Memory is available 

and it is possible to change the fragment size (a number of changes did not reach the 

maximum). If these conditions are true, then we can calculate the optimal fragment size. 

Currently, to calculate it, we use the experimentally deduced formula: 

 

OptimalFragSize = Average (message size) + Std deviation (message size) 

 

This formula gives a balance between the very small and very large messages. To calculate 

the optimal value, we must gather the number and sizes of exchanged messages. The 

information about the number of sent messages can be obtained by instrumenting 

communication functions (i.e. pvm_send ()). Together with the number of messages, we 

can capture their sizes. It is performed in two steps. First, the function pvm_getsbuf() 

must be called to return the identifier of the message buffer where the sent message was 

put. The second step is to call the function pvm_bufinfo() that returns information about a 

specified message buffer. This information contains the length in bytes of the entire 

message, the message label (tag) and the source of the message. 

 

The optimal fragment size can be calculated and changed according to the given 

performance model. If the optimal fragment size is different from the current one, the 

tuning action must be performed, but only under certain conditions. The action is not 

applied each time the new optimal value is calculated. Instead, the tuning action should be 

triggered when the difference between current and optimal values exceeds a fixed 

threshold, and the estimated communication cost becomes significant.  

 

The tuning action includes one-time invocation of the function 

pvm_setopt(PvmFragSize, size) that changes the PVM fragment size to a given size. In 

this case, similarly to the PVM communication mode tuning, we can apply also 

complementary solution. It may insert a snippet into the entry of the function 

pvm_setopt() that will automatically set the value to size when the parameter equals 

PvmFragSize. If the fragment size has been already set to a specific value, the next time it 

must be changed, the tuning action must be removed and inserted once again setting the 

fragment size to the new value.  
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6.7.4. Implementation  
The tunlet that implements this technique must be able to check the configuration of the 

virtual machine. This is possible by handling notifications related to addition and removal 

of tasks and hosts – callbacks Application::SetTaskHandler, 

Application::SetHostHandler (see Chapter 5 Dynamic Tuning API for more details). 

 

The application can configure the fragment size explicitly, otherwise the default value is 

used. During the execution, we can query the actual size by calling  

pvm_getopt(PvmFragSize) and detect if the application changes this value by 

instrumenting the function pvm_setopt(). To receive event records, the tunlet registers the 

callback Event::SetEventHandler. When the function pvm_setopt() is called, the tunlet 

receives a corresponding event record that contains the parameters of the function (i.e. 

mode and value). For example the tunlet receives a notification when a task explicitly 

changes the fragment size by calling pvm_setopt(PvmFragSize, size). Moreover, this 

event record will also determine if a task changes the communication mode (indirect, 

direct).  

 

To be able to calculate the optimal value of the message fragment size, the tunlet must 

receive appropriate information about a number of messages and their sizes. The tunlet 

then requires the instrumentation of communication calls like pvm_send(), pvm_recv(), 

pvm_mcast(). For receiving the records of each event it registers the callback. When these 

records come, the tunlet preprocesses them to gather statistics about messages: how many 

messages of a given size were sent.  

 

The tunlet checks the conditions that must be passed before the optimal size is calculated. 

If the application uses indirect mode, then the tunlet activates the communication mode 

tuning (as described in Section 6.5). The appropriate tuning action is invoked, and from 

now on the application will be executed in direct mode. Additional condition is the number 

of possible changes. We have experimentally set this value to 3, because more changes 

resulted in out of memory errors. If the fragment size has been already tuned more than 3 

times, the whole technique is deactivated and the inserted instrumentation is removed. 

When event records are received, the tunlet actualizes its statistics. If a task exchanges a 

significant number of messages (NumMessages > NumMsgmin) and their total size exceeds 

SizeMin, then the calculation of the optimal value is triggered.  
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Currently the tunlet implements the formula presented above. Basing on the gathered 

statistics, the tunlet calculates the average message size and its standard deviation. The 

tuning action is activated only when some conditions are fulfilled. In our implementation 

the difference between current and optimal values must reach Diffmin and the 

communication must be significant during the analyzed period (Commmin, e.g. 20%).  

 

The tuning action includes one-time function invocation pvm_setopt(PvmFragSize, 

OptimalFragSize) that changes the current fragment size. The invocation must be 

synchronized with the application execution inserting a breakpoint into the entry of the 

function pvm_send(). It is done in the same way as described in Section 6.5.4 for PVM 

communication mode.  

 

6.7.5. Experiment 1 
To compare the application performance for different PVM message fragment sizes, 

we have prepared a synthetic, PVM master-worker program basing on the same program as 

in the case of comparing both the communication and encoding performance (see Section 

6.5.5 and 6.6.5). This program exchanges messages in the same manner as in the 

experiments described above. We executed it for message sizes ranging from 4KBytes to 

4096KBytes. At startup, the master task configures the PVM message fragment size and 

later whole application execution is performed with this size. We have executed the 

experiment for various message fragment sizes – from 4KBytes to 512KBytes. All tests 

were conducted in the same environment as in the case of communication and encoding 

mode (homogeneous and dedicated, aows6, aows7).  

 

Measurements and results 

All experiments were conducted using the direct communication mode. Table 6.9 proves 

that the default fragment size is the best choice for small message sizes (less than 4KB). 

We can observe that the results from applying fragments sizes bigger than 4KB vary 

slightly (-1.5% to +3.45%). This can be explained by experimental error rather than real 

benefits. The more significant improvements can be noticed when the data size reaches 

4096. This is because the physical message size exceed 4096 (data size + header and other 

data) and it does not fit into the 4KB buffer.  
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FragSize [B] 4096 16386 65536 262144 1048576 
MsgSize [B] Time[ms] Time[ms] Difference Time[ms] Difference Time[ms] Difference Time[ms] Difference

4 0,56 0,56 0,00% 0,56 0,00% 0,56 0,00% 0,57 -1,79% 
8 0,58 0,56 0,00% 0,58 0,00% 0,56 3,45% 0,56 3,45% 

16 0,6 0,59 1,67% 0,59 1,67% 0,58 3,33% 0,58 3,33% 
32 0,6 0,59 1,67% 0,61 -1,67% 0,6 0,00% 0,61 -1,67% 
64 0,64 0,62 3,13% 0,63 1,56% 0,61 4,69% 0,63 1,56% 
128 0,67 0,68 -1,49% 0,67 0,00% 0,67 0,00% 0,68 -1,49% 
256 0,78 0,75 3,85% 0,75 3,85% 0,73 6,41% 0,78 0,00% 
512 0,91 0,9 1,10% 0,9 1,10% 0,9 1,10% 0,92 -1,10% 

1024 1,25 1,23 1,60% 1,24 0,80% 1,23 1,60% 1,25 0,00% 
2048 1,81 1,78 1,66% 1,78 1,66% 1,79 1,10% 1,79 1,10% 
4096 4,8 2,54 47,08% 2,56 46,67% 2,53 47,29% 2,55 46,88% 

 

Table 6.9. Detailed measurements gathered by changing the message fragment size  

in a round trip application for small messages. 

 

We concentrated then on the changing message fragment size for messages bigger than 

4KB. Figure 6.12 presents the benefits gathered by changing the fragment size in our ping-

pong tested application. For a clarity of the figure, we show only sample fragment sizes. 

Detailed measurements of conducted experiments are shown in Table 6.10. The benefits 

detailed in the column “Benefits [%]” for a given fragment size are related to the profits 

gained from changing the default fragment size to a corresponding one.  
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Fig. 6.12. Benefits gathered by changing the message fragment size in a ping-pong application. 

 

We can observe that for bigger messages, the benefits of using larger fragment sizes are 

significant (up to 55%). The performance improvement is generally very notable starting 

from 8KB fragment size (e.g. for 4KB message we gain about 45% changing the fragment 
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size from 4KB to 8KB). The bigger the fragment size is, the bigger improvement we 

obtain. However, the difference of changing the fragment sizes between other than default 

sizes is not so drastic. For example, for 4KB message, we obtain high profits by changing 

from default fragment size to any bigger one. However, once changed, we do not see 

significant differences between 8KB, 16KB, 32KB, and bigger fragment sizes. If a 

message fits the fragment, then no additional operations must be done, it is just sent to the 

receiver. So, there is no real need for a bigger fragment. In general the problem occurs in 

the case when a fragment size is smaller than a message size.  

 

FragSize [B] 4090 8192 16384 32768 65535 
MsgSize 
[B] 

Time 
[ms] 

Time 
[ms] 

Benefits
[%] 

Time 
[ms] 

Benefits
[%] 

Time 
[ms] 

Benefits 
[%] 

Time 
[ms] 

Benefits
[%] 

2048 1,77 1,73 2,28 1,75 1,11 1,77 0,07 1,77 -0,22 
4096 4,54 2,50 45,02 2,51 44,68 2,50 44,84 2,51 44,68 
8192 7,99 6,20 22,43 4,13 48,37 4,12 48,47 4,14 48,16 

16384 15,35 11,13 27,52 9,57 37,63 7,42 51,70 7,47 51,32 
32768 28,93 21,03 27,30 17,85 38,30 16,20 44,00 14,03 51,53 
65536 55,64 41,80 24,88 34,11 38,70 31,22 43,88 29,47 47,03 
131072 110,14 81,31 26,18 67,19 39,00 61,05 44,57 57,54 47,76 
262144 226,45 162,22 28,36 133,08 41,23 119,86 47,07 113,31 49,96 
524288 460,66 323,96 29,67 264,40 42,60 237,86 48,37 224,41 51,28 

1048576 920,62 649,58 29,44 525,61 42,91 472,33 48,69 443,56 51,82 
2097152 1833,94 1348,81 26,45 1036,70 43,47 939,90 48,75 884,42 51,77 
4194304 3730,53 2617,17 29,84 2105,77 43,55 1860,23 50,13 1739,84 53,36 

 
FragSize [B] 4090 131072 262144 524288 

MsgSize 
[B] 

Time 
[ms] 

Time 
[ms] 

Benefits
[%] 

Time 
[ms] 

Benefits
[%] 

Time 
[ms] 

Benefits 
[%] 

2048 1,77 1,75 0,77 1,76 0,34 1,79 -1,45 
4096 4,54 2,50 44,86 2,51 44,80 2,50 44,88 
8192 7,99 4,26 46,76 4,25 46,85 4,12 48,45 

16384 15,35 7,47 51,32 7,47 51,32 7,45 51,47 
32768 28,93 14,03 51,51 13,95 51,79 13,95 51,78 
65536 55,64 27,20 51,12 27,08 51,33 26,85 51,74 
131072 110,14 55,84 49,30 53,40 51,52 52,74 52,11 
262144 226,45 109,70 51,56 107,99 52,31 104,93 53,66 
524288 460,66 217,17 52,86 214,75 53,38 212,99 53,76 

1048576 920,62 432,53 53,02 426,94 53,62 425,02 53,83 
2097152 1833,94 858,37 53,20 846,72 53,83 844,00 53,98 
4194304 3730,53 1688,32 54,74 1666,26 55,33 1657,24 55,58 

 

Table 6.10. Benefits gathered by changing the message fragment size in a round trip application. 

 

It is also notable that the point where the benefit can increment quickly is the point of 

equality of the message size and fragment size. Considering for example 4KB and 8KB 
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message, we can observe the following phenomena: if the fragment size is set from 4KB to 

8KB, we get 45% of benefits for 4KB messages, but only 22% for 8KB messages. This 

situation is caused by the necessity for allocation of additional buffers. 4KB message fills 

the 8KB buffer, but 8KB message does not. Internally, PVM puts additional information 

into the buffer, and hence it must prepare the second buffer to put there the rest of the 8KB 

sending message.      

 

Here we must point out that one can have a sensation that the best way is to put the biggest 

fragment size and each problem will be solved. If it was set in this way, the memory 

resources can be quickly exhausted. Therefore, a good idea is to find a balance between 

available memory and the optimal fragment size. In some cases, it will be more adequate to 

apply smaller fragment size and not use the entire memory, as the benefits from the bigger 

fragment size can be insignificant. For example, the difference between 128KB and 512KB 

fragment size for 4MB message reaches only 0,8%.   

 

6.7.6. Experiment 2 
In order to compare the performance of applying tuning of the PVM message 

fragment size in a real application, we conducted experiments using the Integer Sort 

(IS) kernel benchmark – the same application that was tested for PVM communication 

and encoding mode tuning. All its executions were performed in the same as above 

environment (homogeneous and dedicated using 4 machines: aows1, aows6, aows7, 

aows8).  

 

Measurements and results 

Table 6.11 presents the results of the IS Kernel Benchmark experiments in two different 

tuning scenarios. In the first scenario, the application was executed without any tuning 

under standard PVM 3.4. The second test was performed under PVM, but MATE tuned the 

message fragment size. In this scenario, the tunlet requested the appropriate 

instrumentation in all of the tasks to examine the conditions as well as number and sizes of 

the messages. One of the first actions was to change the communication mode. By default 

the application used indirect mode and since all required conditions were accomplished 

(the experiments were conducted in a small NOW environment), the tunlet decided to 

apply the direct mode. In continuation, the analysis indicated that the default fragment size 

was improper, because each of the tasks sent the series of very small messages (4B and 
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16B) as well as large messages (over 1MB). The requested tuning action increased the 

fragment size. After the change, the application remained stable and no further tuning was 

performed. The benefits are significant – we obtained about 28% better application 

performance.  

 

In this case the intrusion reached 4,9%. It is bigger that in the previous tests (for 

communication and encoding mode tuning). It resulted from further inserted 

instrumentation (more functions were instrumented and more tuning actions were 

performed) and a higher volume of collected measurements (more instrumentation means 

more measurements sent for analysis). Despite the intrusion, the introduced changes 

produced the significant results improving the total execution time of 28%. 

 
No. Tuning scenario Execution time [sec] Tuning benefits [sec] Intrusion [sec] 
1. PVM (no tuning) 732 - - 
4. PVM + message fragment 

size tuning indirect 769 -37 (-5,1%) 27 (3,5%) 

3.  PVM + message fragment 
size tuning direct 523 209 (28,5%) 26 (4,9%) 

 
Table 6.11. The measurements of PVM communication performance when applying dynamic tuning of the 

message fragment size in the NAS IS application.  

 

6.7.7. Conclusions 
This tuning technique tries to minimize the internal PVM message buffers fragmentation 

thus improving the message sending times and in consequence the communication time. 

We have proved that selecting the more optimal message fragment size significantly 

reduced the execution time of communication intensive application. The drawback of this 

technique results from the necessity to calculate the statistics of sizes of sending messages 

what implies higher monitoring intrusion. The technique is considered dynamic since it 

adapts the application to changes in its behavior selecting the optimal message fragment 

size depending on sizes of exchanged message. 

 

6.8. Merging PVM tuning techniques 
We wanted to compare the PVM performance when applying different tuning 

techniques at the same time. To achieve this goal, we focused on the PVM tuning 

techniques and tuned PVM communication mode, PVM encoding mode and PVM message 

 185



Tuning techniques 
 

fragment size. All techniques were applied simultaneously during one application 

execution. We conducted the experiments on NAS Integer Sort kernel benchmark 

(described above). All tests were conducted in the same environment as in the case of all 

PVM tuning techniques (homogeneous and dedicated, aows1, aows6, aows7, aows8).  

 

Measurements and results 

Table 6.12 presents the results of merging different PVM tuning techniques and applying 

them all together on the IS Kernel benchmark. For comparison, we also placed here 

previously described measurements obtained by performing different techniques separately 

on the IS benchmark.  

 

In the first scenario, the application was executed in original version under standard PVM 

3.4 without any tuning and was used as a reference result. The other tests were performed 

under PVM and the MATE environment. The second scenario references the Section 6.5.6 

(a 17,5% benefit in execution time), the third scenario Section 6.6.6 (any tuning actions 

were performed as originally the application used the data-raw encoding mode) and the 

fourth scenario to Section 6.7.6. 

 
No. Tuning scenario Execution time [sec] Tuning benefits [sec] Intrusion [sec] 
1. PVM (no tuning) 732 - - 
2. PVM + communication  

mode tuning 604 127 (17,5%) 21 (~3,5%) 

3. PVM + data encoding 
mode tuning 761 -29 (-3,9%) 21 (~2,8%) 

4. PVM + message fragment 
size tuning 769 -37 (-5,1%) 27 (~3,5%) 

5 PVM + all scenarios 529 203 (27,7%) 28 (~5,3%) 
 

Table 6.12. Comparison of the measurements of PVM performance when applying different tuning 

techniques in the NAS IS application.  

 

Finally, in the fifth scenario, we conducted all the described tuning scenarios in the same 

execution. Both communication mode tuning and fragment size tuning was applied 

successfully. The total intrusion inserted into the application execution was higher in 

comparison to the rest of the scenarios. It reached about 5,3% and resulted from further 

inserted instrumentation and a higher volume of collected measurements. Despite the 

intrusion, the introduced changes produced the best results, improving the total 

execution time up to 27,7%. 
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6.9. Workload balancing 
This tuning technique intents to balance the amount of work that is distributed by the 

master task to each worker task taking into account capacities and load of the machines 

where the application is running. 

 

6.9.1. Motivation 
Dynamic load balancing is a technique which aims to distribute work among the processes 

to avoid some processes being idle while others only wait for work and do nothing. Load 

imbalance is caused by two factors:  

• heterogeneous computing and communication powers 

• varying amount of distributed work 

 

A very important aspect of efficiency is idle time within the processes. The best situation 

would be to have all processes busy doing useful work during the application execution. 

However, slower or overloaded machines and/or incorrect work distribution may 

significantly increase the idle time of processes and influence into the application 

execution time. Our goal is to balance and distribute correctly the work among the 

available processes taking into account capacities and load of the machines the application 

runs on. 

 

Typically, in the master/worker paradigm, a master process in each iteration distributes the 

work among worker processes and waits for their response. When the master receives 

results from the workers, it may distribute the work again. There are many cases the master 

must synchronize all the results from all the workers before the next work distribution. 

This situation might be especially inefficient if we consider heterogeneous environment. It 

causes the following problem: synchronization may affect significantly the execution time 

if there are slower machines because all the processes must wait idle for the slowest ones. 

If the work is distributed in segments that are too large, then the processes on slower 

machines need more time to manage such an amount of data and the rest of the processes 

wait too long doing nothing for the next work distribution. On the other hand, theoretically, 

ignoring the communication overhead, we can minimize the idle time if we distribute the 

work in the smallest possible units. However, in many network environments latency and 

bandwidth might have a significant influence into the unit transfer time. Therefore, if the 
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work is distributed in too small segments, slave processes might wait idle for data when the 

master is occupied sending a big amount of work units. Such a scenario will suffer from 

high communication overheads.  

 

There are many well known algorithms available such as Trapezoid Self Scheduling (TSS) 

[Tze93], Guided Self Scheduling (GSS) [Pol87], Factoring Scheduling [Hum92], and 

many more. For example, one of the most simple solution is fixed chunking of the work to 

be processed. Each chunk (tuple) contains the same amount of work measured by data 

items. The work size can be calculated using the formula: 

 
where N is the total number of data items to be computed, Pi is the estimated processing 

power and P is the number of processes. For example, if N=1000, Pi=1 (all processors of 

equal power), P=10, the optimal tuple size is 100. This formula gives the optimal behavior 

only in the case of specific conditions: homogeneous machines where one process is 

executed on one processor.  

 

For our studies and experimental work we chose the Factoring Scheduling algorithm. The 

work is divided according to a factor into a set of different-size chunks called tuples. 

Obviously, different program input can significantly change the work distribution using the 

same tuple size calculation algorithm. The presence of the real factor (0<f<=1) results then 

in a better adaptation to both input and environment changes (machine load, network load).  

 

The workload balancing goal therefore is to minimize the idle time and calculate the right 

amount of work for each process. In this research the tuning technique considers an 

algorithm to calculate and assign the optimal amount of work for each process considering 

efficiency of machines. Load balancing should be achieved because the fast computers will 

automatically process more amount of work than the slower ones. Moreover, an optimal 

work distribution may also depend on dynamic factors such as input data, network load 

and so on. Before the application execution, developers do not know these parameters, 

hence they cannot distribute the work properly. Therefore, it can be beneficial to 

dynamically tune the work size by adapting it to changing conditions.  
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6.9.2. Applicability and conditions 
To apply this technique in practice, we assume the following requirements. An application 

must be written using M/W paradigm. The application is iteration-based, namely the same 

operations done by the tasks are performed repeatedly in a number of iterations. During 

one iteration the master process distributes the work to all worker processes and then waits 

for the results. It must synchronize the results before the next iteration. Data being 

distributed is independent, namely one must be able to divide data in a separate 

independent set of work units. Moreover, calculation time cannot depend on the data 

content, it may depend only on the data size. Finally, worker processes cannot exchange 

data between themselves to calculate and provide results. 

 

The application processes the work basing on the scheme of many iterations. To apply 

workload balancing the iterations must present two main characteristics: the number of 

iterations should be significant and each iteration should last a certain time. From the one 

hand, there cannot be only few iterations in the whole application execution because in 

such a case it would not be possible to see benefits gained from changing the workload. 

This technique is feasible and efficient for problems that appear many times during the 

execution. The load balancing may be also time consuming and hence the tuning actions 

might be performed after a certain time has passed.  

 

The tuning of workload is supposed to be applied before the iteration starts. So, if there is a 

small number of iterations and all are performed, none improved can be reached. 

Therefore, more iterations are, better the load balancing may be. From the other hand, one 

iteration should not over passed some time thresholds. To calculate the optimal factor, the 

network load and machine load are taken into consideration. If one iteration is very large, 

then the tuning can be no so efficient since the environment can differ. This issue is more 

flexible than the number of iterations. If there are many iterations during the application 

execution, each iteration can last more time. The maximal possible iteration time can be 

adjustable. Moreover, the algorithm that decides to apply tuning should also consider the 

prediction of the environment changes.   

 

To use this tuning technique the application must be prepared. This is performed by 

introducing necessary source code changes and recompiling the program. This technique 

enters into the set of techniques that are called cooperative. Therefore, although the tunlet 
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provides all the necessary functionality, the application must be adapted and aware of the 

possible changes recommended by the tunlet. For example, when modifying the factor 

value, the application must be aware of this change and apply in the next iteration a new 

modified value for work distribution. 

 

6.9.3. Solution 
In our factoring approach, the work is partitioned according to a factor into a set of 

different-size tuples. One tuple is distributed by the master task to one worker task. If a 

worker task has finished the tuple process and is free, then it receives the next tuple. This 

cycle is repeated till all the tuples of the work are processed. In this algorithm the work 

divided into tuples is distributed to workers according to the workers’ demand.  

 

In this tuning technique we had to consider distinct issues such as: 

• How to calculate work tuples (factoring algorithm) 

• How to distribute the work according to the given factor 

• How to calculate the optimal factor and what is required to calculate this value.  

 

In the next paragraphs we explain how these issues were solved. 

 

Assuming there are P parallel workers, a threshold T>0 (minimal tuple size) and a 

factoring value (0<f<=1), the sizes of factored work tuples are calculated according to the 

following algorithm [L44]: 

 
R0 = N (initial work size) 

Repeat 

For each P 

Gi = Ri * f / P   // Gi: ith tuple size 

Ri+1 = Ri - (P*Gi)  // Ri: remaining work size 

until Ri < T.  

 

The example tuple sizes calculated according to the presented above factoring algorithm 

are shown in Table 6.13.  
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Work size 
(N) 

Number of workers 
(P) 

Factor  
(f) 

Threshold 
(T)  

Tuples 

1000 2 1 1 500,500 
1000 2 0.5 1 250,250,125,125,63,63,32,32,16,16,8,8,4,4,2,2,

1,1 
1000 2 0.5 16 250, 250, 125, 125, 62, 62, 32, 32, 16, 16, 16, 

16 
1000 2 0.7 1 350, 350, 105, 105, 31, 31, 10, 10, 3, 3, 1, 1 
1000 4 1 1 250, 250, 250, 250 
1000 4 0.5 1 125, 125, 125, 125, 62, 62, 62, 62, 32, 32, 32, 

32, 16, 16, 16, 16, 8, 8, 8, 8, 4, 4, 4, 4, 2, 2, 2, 2, 
1, 1, 1, 1 

1000 4 0.5 16 125, 125, 125, 125, 62, 62, 62, 62, 32, 32, 32, 
32, 16, 16, 16, 16, 16, 16, 16, 16 

1000 4 0.7 1 175, 175, 175, 175, 52, 52, 52, 52, 16, 16, 16, 
16, 5, 5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 

 

Table 6.13. Examples of tuple sizes for different factors. 

 

As we have mentioned in the applicability section, the application must be prepared for the 

tuning actions and hence it must implement adequately the work distribution. For 

example, the algorithm of the work distribution can be written as follows: 

 
For each iteration 

//according to the factoring algorithm 

Calculate work tuples for a given factor 

//first work distribution to all workers 

 For each worker   

  Send corresponding tuple 

//if there are still tuples to be processed 

While processed tuples < calc number of tuples  

  Receive results 

  Send corresponding tuple 

 

Next algorithm that is used in this tuning technique calculates the optimal factor value. 

The pseudo-code for this algorithm is presented below: 

  
For each processor 

Calculate Latency 

Calculate Bandwidth 

Calculate work unit execution time (i.e. processor speed) 

For each factor f (0<f<=1) 

Calculate tuples  

Calculate application iteration execution time 
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 While there is work left  

For each process (using time counter) 

    If process is free  

     Assign tuple for process 

   Time++ 

Chose the minimal time of application iteration 

Set factor value to the minimal factor value 

 

The presented algorithm simulates the execution of the program iteration for each possible 

value of factor f. The simulation uses basic measurements such as network latency, 

bandwidth and current speed for each processor. The algorithm simulates the complete 

iteration by assigning subsequent work tuples to next free processor. It takes into account 

the time for sending the work, time for processing the work on the selected processor in 

function of its current speed (i.e. capacity and current load), and time for returning the 

result. The iteration finishes when all tuples has been processed, and the simulation records 

its execution time. The algorithm, after performing iteration for all possible factors, returns 

the value f for the iteration with the shortest execution time. 

 

The Figure 6.13 presents a result of an example execution of the simulator for factors f 

ranging from 0 to 1 in scenario with TotalWork = 1000, four processors, one 3 times 

slower than the others. 

 

Considering the algorithm presented above the tuning technique must receive a set of 

metrics to calculate the optimal factor. These metrics are:  

• Network bandwidth 

• Network latency 

• Average worker speed expressed as the work unit processing time  

 

We can monitor the PVM functions responsible for exchanging messages, e.g. pvm_send() 

and pvm_recv() during run-time and this enables us to calculate the necessary metrics.  

 

During program execution, the simulation algorithm estimates the optimal values for each 

iteration. If the optimal factor value differs significantly from the current value, the tuning 

procedure is invoked. The tuning action changes the factor by updating the variable value 
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in the master process. Once it has been modified, the application can recalculate the tuples 

in the next iteration.  

 

 
Fig. 6.13. Simulated iteration time in function of factor f (N=1000, P=4, T=1, relative speeds: 

1,3,3,3).  

 

6.9.4. Implementation  
The tunlet implementing this technique must check the configuration of the virtual 

machine by handling notifications related to tasks and hosts – callbacks 

Application::SetTaskHandler, Application::SetHostHandler (see Chapter 5).  

 

During the execution, we can monitor the PVM functions responsible for exchanging 

messages, e.g. pvm_send() and pvm_recv(). In particular, by monitoring: send entry/exit, 

receive entry/exit events in the master process, and receive entry/exit and send entry/exit in 

all worker processes, we are able to perform all necessary measurements. This is illustrated 

on Figure 6.14. 

 

To simplify the implementation, we have assumed network latency to be 1ms. Network 

bandwidth can be computed using the following formulas: 
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Tcomm = Tlatency + n * Tbandwith 

Tbandwith = (Tcomm – Tlatency) / n  

Tcomm = receive exit time on master - send entry time on master – 

tuple processing time on a worker 

send (exit) 

send (entry) 

Tuple sending
Tuple receiving 

Tuple receiving

Tuple sending 

receive (exit) 

send (entry) 

Tuple processing

send (exit) 

receive (entry) 

receive (entry) 

time time

Machine B (worker) Machine A (master) 

Fig. 6.14. Tuple processing model. 

 

Work unit processing time is computed as the averaged value of the tuple processing time 

divided by number of work units per tuple. This is calculated individually for each worker. 

The average is taken for all work units processed during last iteration. This assumes the 

total iteration time is not very large and the average can express current machine load. If 

the iteration time is long, this should be changed to an average taken for a given time 

window. Each iteration updates the work unit processing time value for each worker and 

this way we can keep track of dynamic variations in the load of the machines. It must be 

pointed out that this approach is suitable only if the work unit processing time depends on 

the work unit size and not on its content.  

 

To find the optimal value of the factor the performance model must provide the prediction 

of the iteration time. For this purpose we implemented the simulation of the application 

iteration time according to the algorithm presented in the previous section.  

 

If a new value of the factor is different than the current one, then the tuning action should 

be performed. The tuning action includes the modification of the value of specific 

predefined application variable. This variable represents the factor of the work and its 
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name is well known to the tunlet. When a next iteration is performed in the application, 

first, the new value of the factor should be applied to recalculate the work tuples, and then 

the work can be performed. The variable modification does not need to be synchronized, as 

the application will use its value next time the iteration of work processing starts.  

 

6.9.5. Experiment 1 
The goal of this experiment was to investigate the workload balancing profitability. To 

perform the experimental work we have developed a synthetic master-worker application 

based on the requirements presented in Section 6.9.2. In each iteration, the master task 

calculates the tuples according to the factor and then sends a determined amount of work to 

each worker. When a worker receives a tuple, it processes data and sends the changed data 

back to the master. The master task waits for results from any worker and when it receives 

them, it checks if there are tuples left. If it is the case, it sends the next tuple to the worker. 

In the opposite way, it waits for all results from the rest of the workers and having all 

tuples processed it puts them together and goes to the next iteration. By default the factor 

had a value 1, what means that the total work is divided into the same number of tuples as 

the number of workers. We executed the program with 60 iterations where each iteration 

processed the total work of 10.000 integers.  

 

We have conducted our experiments in three scenarios: 

• Homogeneous and dedicated machines – fast machines and no external load – in this 

scenario, we have used homogeneous machines (aows1, aows6, aows7, aows8) which 

built a dedicated environment (i.e. COW cluster). This scenario is the same as in the 

case of the previous experiments done with all the PVM tuning techniques (e.g. Section 

6.5.5).  

• Heterogeneous and dedicated machines – one machine slower and no external load – 

in this scenario, we have used heterogeneous machines (aows1, aows6, aows7,aows10) 

which built a dedicated COW cluster as has been described in the previous point. The 

Aows10 machine is slower in comparison to other workstations what was indicated in 

Table 6.1 

• Heterogeneous and non-dedicated – one machine slower and external load – in this 

scenario, we based on the heterogeneous environment (aows1, aows6, aows7,aows10). 

Moreover, we have introduced a controlled, synthetic “external” load. For this purpose 

we used our Load Generator tool. As mentioned before, we generated 50% CPU load 
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on a given node for the duration of 20 minutes. In this way, we simulated the real 

conditions with multiple users working in the cluster (i.e. NOW cluster). 

 

Measurements and results 

We present the comparison of execution times of the synthetic application in Figure 6.15 

and detailed measurements in Table 6.14. We show the times obtained for all the three 

scenarios in which the application was executed. For each scenario the synthetic 

application was executed without and with tuning. We can see that we gathered benefits in 

each scenario by balancing the workload.  
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Fig. 6.15 Comparison of execution times of the synthetic application in different scenarios. 

 

No. Scenario Original execution 
[min] 

Tuned execution 
[min] 

Intrusion 
[sec] 

Intrusion 
[%] 

Benefit 
[sec] 

Benefit 
[%] 

1. Homogeneous, 
dedicated 47,7 46,4 64,8 2,33 77,4 2,71 

2. Heterogeneous, 
dedicated 109,8 55,3 64,8 1,95 3269 49,63 

3. Heterogeneous, 
non-dedicated 109,9 57,1 64,6 1,89 3164 48,01 

 

Table 6.14. Detailed measurements of workload balancing of the synthetic application in different scenarios. 

 

In the first scenario, although the application was executed in the homogeneous and 

dedicated environment, the tuning was profitable. The benefits were small (~2,7%), but we 

see that the workload balancing made the application execution faster. This situation was 

caused by the application configuration. We set the application to create 4 workers. As it 
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was executed on 4 homogeneous machines, each machine run 1 worker, but one of the 

machines run also master processes (in total 2 processes). In this sense, the initial work 

distribution were not ideally balanced, and thus the tuning actions helped to improve the 

performance at least in a small percent.  

 

The second scenario presents the highest benefits obtained. The application was executed 

in the heterogeneous environment where one machine was significantly slower than others. 

We can notice that original application lasted more than 56% (more than an hour) longer 

than in the homogeneous environment. Applying the workload balancing in the second 

scenario we gained ~49%. This high improvement was reached because of the 

heterogeneity of the machines. The faster worker processes had to wait for the slowest one 

to receive the next part of the work. Applying workload factoring, the work was divided 

into tuple, and hence it could be performed more rapid by the faster workers. 

 

In the third scenario we obtained more or less the same execution times as in the second 

scenario for both cases: when executing original application, and when applying tuning. In 

the second scenario we had one slow machine (aows10), in this scenario we had the same 

slow machine (aows10), but we run additional external load on the fast machine (aows6). 

The similarity of the execution times in comparison to the second scenario results in the 

influence of the external load. The external load was not so significant that the slowest 

machine speed. Faster machine together with the loaded machine performed all the work 

faster than the  slowest machine. In other words, it required more time to process the 

requested tuples than these 3 machines with one externally loaded.  

 

Intrusion time is already included in the time given for tuned execution. In general the 

overhead caused by MATE is small – about 2% of the improved execution time. The 

intrusion is slightly different in three scenarios. Such a situation is mainly caused by 

different number of tuning actions. If the factor must be changed more frequently then 

more tuning actions are performed and hence the intrusion is higher.  

 

6.9.6. Experiment 2 
The goal of the next experiment was to compare the performance of a real application 

applying workload balancing. To conduct our experiments, we selected a computation-

intensive parallel program called Xfire. Forest Fire Propagation application (Xfire) 
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[Jor98] was developed at Universitat Autonoma de Barcelona [L45]. The Xfire application 

is a PVM based implementation of the simulation of the fireline propagation. It calculates 

the next position of the fireline considering the current fireline position and different 

aspects as weather (wind, temperature, moisture), vegetation and topography (terrain). It 

was developed for use in any network of workstations. 

 

There are several models in the literature to describe the behavior of forest fire and studies 

the movement of the fireline. The Xfire application simulates the fireline propagation 

basing on the Andre-Viegas model [And94]. The Xfire defines the fireline as a set of 

sections where each section contains a set of points. A section must be desegregated to 

calculate the individual progress of each point for a time step. When the progress of all the 

points have been calculated, it is necessary to aggregate the new positions of the points to 

rebuild the fireline. To simulate the fireline propagation, Xfire divides the fire spread into 

two models: global and local. The global model allows for the partitioning of the fireline 

into sections and for the aggregation of sections into next fireline position applying 

numerical algorithm. While aggregating and calculating a new fireline position, the fireline 

can expand and hence in certain circumstances new points can be added. It must be pointed 

out that the fireline sections are independent, but the end-points of each section are shared 

with its neighboring sections. The local model calculates the movement of each individual 

point. While evaluating a point, it uses numerical algorithms and takes into account static 

and dynamic conditions (i.e. wind, vegetation, topography) defined as numerical model. 

 

The fireline propagation process can be summarized in the following steps: 

1. Subdivision of the fireline )(tφ  into a partition of sections ),( tPiiφδ , with length 

. In this step the model specificity is in the order (0,1,2) of the 

sections adopted, and the process of subdivision. 

}){.( ii smaxss ∆=∆∆

2. Resolution of a certain Local Problem for each section ),( tPiiφδ , giving as result a 

particular virtual fireline Φ . The specificity is in the local problem formulated 

posed. 

)(, tiv ∆

3. Aggregation and coupling of the information inherent to the set { , finally 

were resulting in the definition of 

}}(, tiv ∆Φ

)( tt ∆+Φ . The specificity is the coupling principle 

postulated for group the movement description of the set of sections. 
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The forest fire propagation simulation involves different steps that requires complex 

calculations, and hence the fire spread computation can be then time-consuming. First 

implementation of the Xfire project was sequential and run on the PC. However, due to 

poor performance, the developers of the Xfire decided to implement it in the parallel way. 

They utilized data parallelism, i.e. the calculation of the movement of each section (local 

model) is done in parallel. The fireline is desegregated into N sections and each section is 

performed by distinct processes distributed among the resources of the parallel machine. It 

can be done in this way, since the model considers that the sections are independent. 

 Xfire is the PVM-based application and it follows a master-worker paradigm. A master 

process generates a partition of the fireline and distributes it to the workers. A worker 

process calculates the local fireline propagation. The general algorithm of this application 

using the master-worker paradigm is the following: 

 

Master process: 

1. Get the initial fireline   

2. Generate a partition of the fireline (sections) and distribute it to the workers.  

3. Wait for the workers answer. 

4. If the simulation time has been finished then terminate 

else Compose the new fire line, adding points if needed and go to step 2. 

 

Worker process: 

1. Get the fireline section sent by the master 

2. Calculate the local propagation of each point in the section (to calculate the new 

position of a point the model needs to know its left and right neighbors). 

3. Return the new section to the master. 

 

All tests with the Xfire application were conducted in the same three scenarios as we 

described in the Section 6.9.5 for the experiments with the synthetic application.   

 

Support tools 

For purpose of the tests, we have designed and implemented two additional tools that 

allowed us to perform the experiments:  

• Load Monitor – distributed cluster monitoring tool  

• Load Generator – external load generator tool 
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The first tool, Load Monitor, was developed in order to provide detailed load 

measurements of all machines in the cluster. It was implemented as a PVM-based program 

using master-worker paradigm. The program is implemented as a set of distributed sensors 

running on each workstation and one centralized monitor that collected and synchronized 

the data. Load Monitor consists of two tasks, namely MasterMon and SlaveMon. The 

master task controls the SlaveMon creation (starts/stops the slave task on all nodes of the 

virtual machine). The slave task monitors the node and saves information to a file. Using 

this tool we were able to obtained detailed information about CPU and process statistics 

like CPU idle, kernel, user, wait times, memory consumption, paging statistics, and so on. 

 

The second tool, Load Generator, was created in order to simulate external load conditions. 

Load generator was implemented as a simply C++ program. The main program controlled 

the generation of external load in the cluster by starting/stopping the computation for a 

selected period of time. The program, given a load function, was able to generate the 

appropriate usage of CPU. This was done by repeatedly executing the computational loop 

and the sleep statement with the millisecond intervals. For example, for constant load 

function Load(t)=60% the program occupied 60% of the CPU time during whole 

execution.  

 

For all our tests with external load, on a selected node we have configured the tool to 

generate Load(t)=50% load during 20 minutes with time start delay of 20 minutes. In 

result, the generator waited for 20 minutes sleeping and then generated the 50% CPU load 

for 20 minutes. We used this configuration to simulate a real example of multi-user 

workload. 

 

Measurements and results 

Figure 6.16 presents the comparison of execution times of the Xfire application in different 

scenarios. We can see that in each scenario we gathered benefits by adapting the workload 

to the changing conditions. Detailed measurements of conducted experiments are shown in 

Table 6.15.  
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Fig. 6.16 Comparison of execution times of the synthetic application in different scenarios. 

 

No. Scenario Original execution 
[sec] 

Tuned execution
[sec] 

Benefit 
[sec] 

Benefit 
[%] 

1. Homogeneous, 
dedicated 1967 1885 82 4,17 

2. Heterogeneous, 
dedicated 3768 1953 1815 48,17 

3. Heterogeneous, 
non-dedicated 3919 2071 1848 47,15 

 

Table 6.15. Detailed measurements of workload balancing of the synthetic application in different scenarios. 

 

All presented results have the same tendency as in the case of the results obtained from the 

experiments conducted with the synthetic application. As they were performed in the same 

scenarios and the application had similar behavior to the previous synthetic application, the 

reasoning of the benefits reached here is similar (see Section 6.9.5). In the first scenario, 

the profitability was relatively small (~4,17%), but the tuning was worth to apply. In the 

second and third scenario we improved the performance by nearly 50%.  

   

6.9.7. Conclusions 
Looking at these experiments we can notice that MATE adapted well the applications to 

the existing changing conditions. The work factoring and work load balancing gave us 

promising benefits. Although it can be applied only to the specific small-range applications 

that must accomplish a set of requirements and be prepared for changes, the profits reached 

are significant. Moreover, the developer might not know in what kind of environment the 
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application will run and hence it is very desirable to use MATE and adapt dynamically the 

application to the changing conditions. 

 

Obviously, the implementation of the factoring algorithm presented here can be improved. 

We distinguished many possibilities, as factoring of the work that remains to perform, 

better calculations of the latency and bandwidth to predict more adequately the network 

behavior or adaptation of the threshold T that represents the minimal tuple size. However, 

though simple factoring implementation, it gave us really good profits. 

 

6.10. Number of workers 
This tuning technique intents to optimize the number of workers assigned to perform a 

specified amount of work in the master/worker application.  

 

6.10.1. Motivation 
When considering efficiency and idle times, another point to tune besides the workload 

balancing is the number of worker processes in master/worker application. If there are too 

many workers, they can be idle waiting for the data from the master. On the other hand, 

when there are insufficient worker processes, the master process becomes idle waiting for 

results. Therefore, a very important issue is the adequate number of workers in order to 

minimize the execution time while maintaining the requested efficiency.  

 

6.10.2. Applicability and conditions 
This technique is applicable for applications written using M/W paradigm. The application 

structure is similar as it was in the case of workload balancing tuning technique. The 

application is based on the iterations where the tasks perform repeatedly all operations. 

During each iteration the master distributes the work to a specified number of workers and 

then waits for the results. It must synchronize the results before the next iteration. Data 

being distributed must be independent one from another, i.e. one must be able to divide 

data in a separate independent set of work units. In addition, data processing time cannot 

depend on the data content, but only on the data size. Finally, worker processes cannot 

exchange data between themselves to calculate and provide results. 
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The condition of the iteration-based application structure implies the existence of the 

significant number of iterations. As workload balancing, this tuning technique is beneficial 

when the operations are done in many iterations. If there is a small number of repetitions, 

the tuning overhead might be high and the improvement might not be seen.  

 

The drawback of this technique is the consumption of resources. If there are new workers 

to be spawned, the new machines (processors) are required for them. There is no sense to 

run a new worker on the same machine where another worker is already running. In such a 

situation we will not gain anything since the CPU time is divided between both workers.  

 

Similarly to the workload balancing, number of worker problem belongs to the cooperative 

tuning techniques. The application must be prepared by the developer for the potential 

changes. In general the application must contain the special variable that represents the 

number of workers. During execution, the application should be aware of the current 

number of workers and if it is different from the previous one, the new number must be 

applied. If there are workers to be added, the adequate number of workers should be 

spawned, otherwise redundant workers should be deleted. Such addition/deletion can be 

done only between two iterations because it is hard to change the current work distribution 

already being processed. Once the number of worker has been adjusted, the work can be 

distributed adequately to all running workers.  

 

6.10.3. Solution 
In this solution [Ces03] we will use the following terminology: 

• tl, λ. Network parameters (time overhead per message and inverse bandwidth)  

• V, vm, vi.  Size of task sent to worker i in bytes (vi). Size of results sent back to master 

in bytes (vm), and total data volume (V=Σj (vi + vm)). 

• n = current number of workers in the application. 

• Tt, Tc, tci.  Time that each worker spends to process a task (tci), total computing time 

(Tc=Σi tci ), and total execution time (Tt). 

• Nopt = number of workers needed to obtain the minimum Tt (best performance). 

 

To model the behavior of master/worker applications, we can use the performance model 

described below: 
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• At the beginning, the master sends one task to each worker, the time spent for this 

operation is  
n*tl (network overhead) + λ*vi (last task communication time). 

• Next, we must add the processing time of one worker, tci (Tc/n). 

• In order to evaluate what happens to results sent back to the master we only need to 

count the communication time for the last message, which is tl + λ*vm. 

• The total iteration time is formed by adding these quantities together, and gives:   
Tt = n*tl + λ*vi + Tc/n + tl + λ*vm,  

as λ*vm + λ*vi = λ*V/n,  

• We obtain: 

Tt = (tl*n2 + λ*V + 2*Tc)/n + tl (1) 

• If we calculate dTt/dn = 0 for expression (1) we obtain an expression to calculate the 

number of workers needed to minimize Tt, which is: 
Nopt = sqr( (λ*V + Tc) / tl ) (2) 

 

It can be seen that the measure points needed for this performance model are: 

• tl and λ, which can be calculated at the beginning of the execution. 

• Tasks and results size (vi, vm), which can be captured by monitoring communication 

functions (pvm_send, pvm_recv) 

• The time workers spend on each task to calculate the total computing time (Tc). 

 

The performance functions that have to be evaluated are: 

• Expression (1) – to predict the application performance for any number of workers 

• Expression (2) – because it indicates what has to be done to obtain the best application 

performance under the conditions that hold for a certain time period. 

 

In order to optimize the number of workers, it is necessary to monitor during run-time the 

PVM functions responsible for exchanging messages, e.g. pvm_send() and pvm_recv(). 

In particular, by monitoring: send entry/exit, receive entry/exit events in the master 

process, and receive entry/exit and send entry/exit in all worker processes, we are able to 

perform all necessary measurements. This is similar to solution presented in section 6.9.4. 

 

The presented performance model is evaluated after each iteration. If the computed optimal 

number of workers differs from the current value, the associated tuning procedure is 
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invoked. If the number of workers should be changed, the solution recommends the master 

to add new or remove existing worker/workers.  

 

6.10.4. Conclusions 
This tuning technique adapts the number of workers assigned to perform a specified 

amount of work to changing environment conditions. It requires the application to be 

prepared for the possible changes, i.e. adding or removal of worker tasks. Moreover, the 

environment where the application executes is required to provide new machines when 

they are necessary. When these conditions are met, the technique is able to estimate the 

application performance by means of the analytical model, calculate and apply the optimal 

number of workers. 
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Chapter 7 

Conclusions and future work 
 

Parallel, distributed and large-scale grid programming offers high computing capabilities 

to the users in many scientific research fields. The performance of applications written for 

such an environment is one of the crucial issues. The main goal of parallel and distributed 

computing then is to obtain the highest performance of the application. Such applications 

can be useless and inappropriate if their performance is poor and under acceptable limits. 

Developers of parallel applications are responsible of providing their best possible 

behaviors but face up to many problems that must be solved. If such applications are to 

fulfill their promises, this implies the need for the systematical testing, analysis and 

optimization of their behavior. However, these tasks are very complicated when 

performing without any automation and especially for non-expert programmers. 

 

It is necessary then to provide good, reliable and easy tools that automatically carry out 

tasks of the performance analysis of parallel programs and their behavior optimization. 

Such tools could help programmers to improve the performance providing them with 

appropriate and sufficient information about the application behavior.  

 

Therefore a new idea has arisen. The very profitable solution is to provide a developer with 

automatic real-time tuning of a program. A developer is relieved then from duties of 

program behavior analysis and optimization, as well as from intervention into a source 

code. Instead of manual changes of a source code, an automatic tuning of a parallel 

program is performing during run-time. Such approach does not require a developer 

intervention nor access to the source code of the application. The running parallel 

application is automatically monitored, analyzed and tuned on the fly without need to re-

compile, re-link and restart it.  

 

7.1. Conclusions 
The main objective of this thesis was to show that the performance of distributed parallel 

programs can be improved automatically during run-time. Our goal was to investigate this 
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idea and prove that in general it works, is applicable, effective and useful. We also wanted 

to demonstrate that it is possible to support a user with a concrete functioning environment 

for automatic dynamic tuning. This thesis had to provide the good basis on how to solve 

optimization problems of parallel programs. A conclusion of this thesis is that although the 

dynamic tuning is complicated and hard task, not only it is possible, but gives real 

improvements of application performance. This methodology appears as a powerful 

technique to accomplish the successful performance of applications with dynamic 

behavior. 

 

We started our work by researching well-known approaches and techniques for the 

application performance measurement, analysis and optimizations. Very important task 

was to find out what exactly is in the developer’s hands when using each of these methods. 

We reviewed example tools that correspond to different performance measurement 

approaches. In order to see how is the performance analysis and optimization problem 

solved by others, we analyzed the most popular tools and extracted experiences from their 

developments. Once we knew the problem area, we could clearly distinguish that the 

conceptual model of the dynamic tuning consists of three main parts, namely monitoring, 

analysis and tuning.  

 

Our first idea was to optimize any application without its source code. In this sense, it 

would be very challenging, and the work probably would be one of the most successful and 

useful. However, with time, we saw that due to incomplete application information this 

kind of tuning is extremely hard or even impossible. The performance analysis without 

knowledge about what the application does and dynamic modifications of unknown 

application structures is very complicated. It is not realistic to assume that any 

modification on any application in any environment can be done on the fly. We concluded 

then that this is a big limitation of dynamic tuning and the key question when dynamically 

optimizing a program is what can be tuned in it.  

 

We distinguished different layers in the application: application-specific code, standard 

and custom libraries (API + code), operating system libraries (API + code), hardware. The 

lower the layer, the more well known information we can obtain. It means that we can 

extract well defined bottlenecks common for many applications and define their solutions. 

For such performance problems there is no need for external preparations and all can be 
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done automatically. The upper the layer, the less information we have about the 

application. In this case, it is required to provide a knowledge about the specific 

application problems and solutions. Therefore, we differentiated two tuning approaches: 

automatic and cooperative. In the automatic approach the application is treated as a black-

box, because no application-specific knowledge is provided by the programmer. In the 

cooperative approach we assume that an application is tunable and adaptable since the 

developer must provide application-specific information and prepare an application for the 

possible changes. To make the solution homogeneous for both the automatic and 

cooperative tuning approach, we decided that the application should be represented by a set 

of necessary information required for the monitoring, analysis and tuning. We defined that 

the application knowledge consists of measure points, performance model, tuning 

point/action/synchronization.   

  

Having the conceptual model, different approaches and application knowledge defined, we 

focused on the requirements that have to be taken into consideration as well as what 

techniques we could use providing dynamic optimizations of parallel applications. The 

most important requirements were the parallel application control, the performance on-line 

analysis, and the run time monitoring and tuning. The principal technique that we could 

use for dynamic tuning purposes was dynamic instrumentation. By applying this method, it 

is possible to monitor, analyze and tune a parallel program during run-time. Moreover the 

application source code is not required. We have devoted big attention to the dynamic 

instrumentation, in particular to know the library called DynInst that supports this 

technique. DynInst is an API for run time code generation and permits the changes of code 

in a running program. We wanted to know all details about  the API features and its 

interface provided to the user, as well as how we could use it practically for our purposes. 

We implemented many small examples using the DynInst API and probed its 

effectiveness. DynInst is a flexible and efficient platform-independent library and intrusion 

included into the running application is very small. 

 

We decided to prove experimentally that dynamic tuning is effective and it is very 

profitable for users to take advantages of a tool that supports the automatic dynamic 

optimization functionalities. We devoted a big attention to design and implementation of 

such a tool. Our development concluded in the working environment called MATE. It 

includes the monitoring, analysis and modifications of the application on the fly without 
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stopping, recompiling or rerunning the application. In this way, the MATE environment 

tries to adapt the application to the dynamic behavior. MATE can be applied to many 

performance bottlenecks that may appear during the execution of these applications.  

 

MATE is suitable for the applications that do not have a stable behavior and change from 

run to run according for example to the input data or to the environment they are running 

(dynamic characteristics of e.g. heterogeneous non dedicated clusters). If the applications 

have a regular and stable behavior, it could be sufficient tuned it once. When the tuning 

process has been completed, the application can be manually changed and executed as 

many times as necessary without introducing any intrusion during the application 

execution. 

 

Currently, our environment can be treated as the prototype for complete future 

implementation. There are still many aspects that remain for considerations and 

improvements. However, conducting experiments with MATE we showed that it is 

possible to dynamically tune applications and obtain benefits. Results of the performed 

tests were very promising and indicated that our prototype is applicable and effective. 

Obviously, all components of our environment cause intrusion and influence into the 

application execution, but we demonstrated that there are many examples where it is 

smaller than the profits gained from the performed improvements. 

 

7.2. Future work 
Many questions remain open after the work done with dynamic automatic tuning area and 

in particular with MATE. During our research, we encountered many opportunities for new 

investigation and exploration lines. We also determined possibilities for improvements of 

the MATE environment to make it stable, more efficient and really useful. In this section 

we briefly present some of these issues.   

 

7.2.1. Global and local analysis 
For the purposes of this thesis we assumed the performance analysis based on the global 

view of the application, that is taking into consideration all processes of the application and 

their interactions. Such analysis is feasible for environments with a relatively small number 

of nodes and serves for the inter-processes bottlenecks. The global analysis requires much 
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information to be sent via network to the analysis component. This becomes a bottleneck if 

the number of nodes gets higher. If we consider problems related only to a given process 

without looking at other processes, the analysis can be performed locally. Scalability 

problem and local bottlenecks can be solved by distributing the analysis process. For 

example, a part of the performance analysis could be performed locally considering the 

locally available information, while global analysis could resolve problems caused by 

inter-node relationships. This approach will require certain changes, such as finding a set 

of tuning techniques specific for the local analysis and changes in the MATE 

implementation.  

 

7.2.2. Performance analysis 
In the current work the performance analysis is based on a tunlet concept. Tunlets contain 

the analysis logic to actually perform the dynamic tuning of the potential performance 

problems. Each tunlet implements code related to one concrete bottleneck that can occur in 

the application: how to detect it, how to overcome it and finally how to actuate inside the 

application. In this thesis we were focusing on investigating tuning techniques separately. 

However, we do not consider overall performance of the application nor how one tuning 

technique can influence on another one. For example, if the communication to computation 

ratio is very low, it might be better not to use any of the communication tuning techniques. 

The intrusion caused by the tuning techniques may be high and hence the application 

performance might be significantly decreased. If the ratio is adequate, then the intrusion 

although the same as in the previous case, is not so significant because we obtain high 

profitability. Moreover, in certain conditions MATE should take into consideration 

dependencies between different performance problems and associated tuning techniques.  

 

One of the possible and interesting investigation lines for this problem would be a different 

approach to the run time performance analysis [Mar03]. The analysis could be based on the 

hierarchical model of the potential application bottlenecks. In this approach a set of 

bottlenecks forms a performance problem catalog. The catalog is not predefined and hard-

coded, but it can be expressed in a declarative manner using e.g. APART Specification 

Language (ASL) [Fah00, Fah01]. ASL is a declarative specification language that uses 

high-level abstractions called performance properties to represent common performance 

problems. One bottleneck is described by one property that expresses the specific types of 

performance behavior in a program. Properties are based on conditions dependent upon 
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certain performance metrics. The existence of properties is associated with some level of 

confidence and with severity that estimates their importance.  

 

The performance analysis is based on the detection and evaluation of existing properties. 

The most severe properties represent performance problems. The analysis starts with the 

selection of top-level properties for all the application processes. The selected properties 

are first pre-evaluated in order to determine the required performance metrics. Next, the 

measurement collection is performed. When the performance data becomes available, the 

selected properties are evaluated and ranked by their severity. The most severe is expanded 

and its sub-properties are selected for further evaluation. The process continues the top-

down search until reaching the most specific property. Once the problem is detected, the 

problem solution should be invoked by means of tunlets. In this sense, each property can 

be associated with one or a set of tuning actions. In this approach, the tool can provide its 

performance problem catalog and during the analysis process, must be able to interpret and 

evaluate the declared knowledge. This method appears as flexible and extensible so that 

expert users can customize or extend the catalog to their specific requirements.  

 

7.2.3. Metrics 
One of the possible bottlenecks inside the MATE environment is the event-based analysis. 

Although this approach is the most precise and the most flexible as events contain the 

detailed information about what happened, when, where and in which circumstances, it is 

quite invasive when a number of application processes grows rapidly. The complementary 

solution that could allow for minimizing the intrusion is dynamic profiling. It allows one to 

periodically obtain the statistical (aggregated) information about selected performance 

metrics and hence significantly reduce the amount of information to be transferred. The 

dynamic profiling differs from traditional profiling by enabling the insertion and removal 

of metrics dynamically during run-time. Profiling works at a function level and supports 

basic primitives such as timing and counting statistics. Additionally, the low-level 

operating system statistics could be gathered to provide constant general overview of the 

application performance (including metrics such as CPU-time, I/O time, memory usage). 

 

7.2.4. Provision of the application knowledge 
The MATE environment must provide the possibility to add new tuning techniques. 

Current version bases on tunlets that are implemented as dynamically loaded shared 
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libraries. Such library is quite easy for incorporation into the MATE environment, but the 

user must provide a specific C/C++ implementation. Moreover, in this case many problems 

with the compiler versions may appear. First solution has been presented in Section 7.2.2 

where we have been talking about the new approach to the performance analysis. The 

performance problem catalog can be externally provided in a declarative manner using 

ASL properties.  

 

If this investigation line is not continue, other good solution would be to declare a tunlet 

(with all its required information, namely measure points, performance model, tuning 

points/action/synchronization) externally by means of e.g. XML or other custom-

declarative language. The Analyzer module should then interpret such a tunlet declaration 

and carry the analysis on basing on the read information. It can be quite difficult, since 

there are many issues to consider, but such a solution would be very flexible, extensible 

and platform independent.  

 

7.2.5. Tuning techniques 
The presented tuning methodology is general and can be applied to improve many 

applications. In this work we concentrated on the C/C++ and PVM-based applications. 

However, there are many other programming languages as well as custom problem-

specific libraries with plenty of bottlenecks. Therefore, in future we can focus on 

investigation of other tuning techniques to cover wider range of applications. The set of 

conducted experiments gave us new ideas on future tuning techniques. We present the 

examples of some tuning techniques considering different tuning layers: 

• Application level  

o Work aggregation in pipelining applications 

o Automatic selection of the most appropriate algorithm  

 Sorting 

 Matrix calculations 

 Structures’ representations – e.g. linked list vs. arrays 

o Other application-specific problems 

• Custom library level 

o Numerical libraries specific problems 

 PETSc (Portable, Extensible Toolkit for Scientific Computation) 

[Bal97] 
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 ScalaPAK [Bla97] 

o MPI-specific problems 

o PVM 

 Patterns of unicast changed for broadcast or multicast 

 Inplace data encoding mode 

• Operating system level 

o I/O operations (read write) 

 Prefetch 

 Asynchronous vs. synchronous read/write operations 

 I/O buffer size 

 

7.2.6. Instrumentation evaluation 
Interesting and useful investigation line would be prediction and evaluation of the 

application instrumentation. MATE inserts instrumentation code for two purposes: 

monitoring and tuning. However, the current version of our environment does not evaluate 

how the inserted monitoring code and performed tuning actions influence into the global 

application performance. It would be very desirable to investigate the possibility of 

instrumentation cost prediction in order to see if performed monitoring and tuning actions 

were beneficial. If it was the case, the considering tuning technique would be applied. In 

other case it would not, since the cost could be higher than the profits obtained. DynInst 

library contains specific methods that allows for an estimation of the number of seconds it 

would take to execute the snippet. However, in our approach many snippets serve only for 

the invocation of the functions implemented in run time library. DynInst does not provide 

the estimation cost of such a function invocation. Therefore, this investigation line could 

be very profitable and could make our environment more efficient and more useful.  

 

7.2.7. Event record 
As a good implementation extension of MATE, we propose the inclusion of important 

information into the event record. Each event record should correlate performance data to 

source code (process, module, function). It is required to only add to event records the 

information about the source file and line number. This will allow a user of our 

environment to indicate the line in the application source code, where the particular event 

has occurred. We have already designed this aspect within the MATE environment, but it 

is still not implemented. Design as well as implementation is very complex in our case. We 
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do not have application source code and all steps required to indicate the line number must 

be done analyzing the binary image of the application. The DynInst library is very helpful 

in performing these steps, however it still does not have the full functionality (direct, 

simply methods) when providing a line number of the event.  

 

For example, in order to log event that process A has sent a message to process B, we are 

able to insert instrumentation into the entry of the function pvm_send(). It means that 

DynInst inserts the instrumentation code as a first operation of the function pvm_send() to 

be invoked and the rest operations are reallocated. DynInst provides methods to obtain the 

line number of the function body (because snippet is inserted at the entry of the function). 

However, we also need to log a line number of a point from where this pvm_send() 

function was called during run time. Figure 7.1 illustrates the meaning of the line number 

of the function body, as well as the line number of the call point. It is not sufficient provide 

for each event only line number of the pvm_send() body. This function was invoked from 

a specific point of the application code and to be able to relate the problem with the source 

code, we have to know exactly from which code point (known as call point) each event 

was provoked.   

Fig. 7.1. Line number of the function body and of the call point that we want to log to the event. 

PVM library 

And the number of this line as well (call point)

We need the number of this line (call point) 

function pvm_send(...)
{ 
   ... 
} 

function foo_1 (...) 
{ 
   ...   
   pvm_send (...) 
   ... 
} 
 
function foo_2 (...) 
{ 
   ... 
   ... 
   pvm_send (...) 
   ... 
} 

Application 

But not this one (function body). 

Instrumentation is inserted here. 

 

In order to provide the line number and source file name, from which the function was 

invoked, we need to scan an application image and determine for each file, for each 

instrumented function its call points. Then we have to be able to store all these points and 

log the line number of the call point together with the event record.  
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7.2.8. Recommendations 
Once the analysis has been performed and tuning invoked, MATE, as a useful tool, should 

explain detected application problems. It would be very profitable to provide the user of 

our environment with the information about the encountered problems and their causes. 

Such a clear explanation of the identified problems, should indicate the most important 

bottlenecks and correlate them with the source code. In addition it should provide 

overtaken tuning actions that can be treated as potential future solutions (e.g. new optimal 

values of variable, settings of some important options). The whole reasoning about the 

detected problem could appear as the part of the tunlet. The Analyzer should simply 

provide the specific extensions inside the Dynamic Tuning API and each tunlet should use 

them to provide recommendations – that is information about the application bottleneck 

and how to potentially overcome it.  

 

7.2.9. Toward grid 
The rapid evolution of the Internet has brought new possibilities of connecting many 

clusters and parallel computers and grouping them together into a single computational 

platform called grid. Wide range of applications started to be developed and executed in 

these environments. However, developing and running programs that can draw compute 

power from globally distributed resources pose new challenges for the computer and 

computational science communities. In addition to interoperability and security issues that 

are the key concerns for Internet users, applications that use distributed resources as a 

unified compute platform must be able to achieve performance levels greater than those 

that could be delivered by any single resource alone [Wol02]. 

 

Performance tuning of grid application becomes even more complicated than in traditional 

environment due to unique grid characteristics such as time varying resource demands, 

heterogeneous resources, geographic distribution and network sharing. In fact, grid brings 

new class of challenges in performance analysis and tuning making classical approaches to 

performance analysis not applicable or less useful. For example post-mortem analysis that 

presumes repeatability, typically may not be used as the grid platform is highly dynamic 

and rarely repeatable. Therefore new approaches such as dynamic performance analysis 

and tuning must be used in order to deliver required performance. 
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Running the application under control of the dynamic tuning system allows for run-time  

adaptation of the application behavior to the changing conditions. If the target platform is 

changed (number of processors, processor speed, network bandwidth, etc.) the required 

optimizations may be different. These characteristics make the dynamic tuning approach 

relevant to grid systems.  

 

Our research has focused on tuning of applications executed on cluster of workstations. 

However, for all the presented reasons we can see that it would be desirable to implement a 

new version of our MATE environment adapted to work in a grid. The new MATE version 

working in a grid environment appears as a very interesting research line. 
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