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Atsedenik ez drogarik gabe!



Observa con qué facilidad escribes
sobre pdjaros. Pero ; cudntos has palpado
amorosamente con el calor de tus manos ¢

¢ Cudntos han latido realmente
bajo la presion de tus dedos ¢
¢ Acaso los has descrito

sin olvidar detalle como quien
conoce bien un cuerpo amado ?
¢ Los has liberado acaso

del peso de tus palabras ?

Juan Calzadilla
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Resum

L’analisi de seqiiencies d’imatges on apareixen éssers humans permet desenvolupar
multiples aplicacions, pero també comporta moltes dificultats. Aquest ambit de re-
cerca tan complexe s’anonema Human Sequence Evaluation (HSE). Un sistema HSE
generic transforma dades d’imatges en descripcions d’alt nivell, i viceversa. Per a
assolir aquesta abstraccié, descrivim una arquitectura modular per desenvolupar sis-
temes HSE, on cada modul es correspon amb un pas d’abstraccié. Les contribucions
de la investigacié que es presenta a continuacié s’emmarquen dins d’aquesta arquitec-
tura. Per aix0 s’estableix una taxonomia de moviment huma que guii el disseny de
models intermedis que permetin entendre els canvis produits en una escena. Aquesta
taxonomia inclou el concepte d’accid, que es defineix com una seqiiencia predetermi-
nada de postures humanes.

En aquesta Tesi es proposa un nou model d’accions humanes que s’utilitza en
aplicacions on es requereix representar el moviment huma. Les dades d’aprenentatge
es corresponen amb postures humanes, on cada postura es defineix a partir d’un
nou model del cos huma. Utilitzem moltes realitzacions d’'una mateixa accié per con-
struir un espai d’accions humanes, anomenat aSpace, on cada realitzacié es representa
mitjancant una corba parametrica. Un cop calculada la mitjana de totes les realitza-
cions apreses, les postures més caracteristiques de 'accié, anomenades key-frames,
son seleccionades automaticament d’entre totes les postures que hi pertanyen. Els
key-frames s’utilitzen per a construir el model final d’acci6 humana, anomenat p—
action. El p—action és una corba que modelitza ’evolucié temporal de la postura del
cos durant I'execucié prototipica d’una accié i s’utilitza per a implementar algorismes
de reconeixement i sintesi d’accions humanes, aixi com per a analitzar execucions
particulars d’accions. Aixi doncs, en primer lloc, describim un procediment de re-
coneixement, d’accions humanes utilitzant els key-frames de cada model d’accié. En
segon lloc, presentem un metode per a realitzar la sintesi d’accions humanes. Don-
ada unicament la durada de ’accié a sintetitzar, obtenim un moviment huma suau
i realista. Per a aixo0, el model p-action es descriu a partir de la longitud d’arc per
tal d’assolir independéncia respecte a la velocitat d’execucié. A més a més, la repre-
sentacié d’accions humanes permet modelitzar les postures que es corresponen a les
transicions entre accions, sintetitzant aixi activitats. Per ultim, establim un entorn
de comparacié per a analitzar les diferéncies entre realitzacions d’una mateixa accié.
En concret, utilitzem ’aSpace per a establir una caracteritzacié de Uestil de caminar
a partir del genere dels agents.

iii
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Per a concloure aquesta Tesi, afrontem la tasca d’incloure el nostre model d’accions
humanes dins de ’entorn de treball del HSE. Per a aixo0, utilitzem els Situation Graph
Trees (SGTs) per modelitzar el coneixement necessari que ens permet representar el
comportament huma. Adaptant el nostre model d’accié dins de la metodologia SGT,
aconseguim generar descripcions conceptuals sobre el comportament d’un agent a
partir de la informacié quantitativa que s’obté de seqiiencies d’imatges. Finalment,
exemplifiquem com obtenir una descripcié del comportament huma dins d’una escena,
aixi com la creacié de comportaments sintetics per a agents virtuals.



Abstract

The analysis of image sequences involving human agents allows to develop multiple
applications, but it implies also lots of difficulties. This challenging domain is re-
ferred here as Human Sequence Evaluation (HSE). A generic HSE system transforms
image data into conceptual descriptions, and vice versa. This abstraction process is
addressed by describing the HSE framework as a modular scheme, each module con-
cerned to a specific task domain. The contributions of this investigation are discussed
within this framework, and a human motion taxonomy is established to reflect the
minimal abstraction steps required for HSE. This taxonomy includes the action term
which denotes a learnt sequence of human postures.

This Thesis proposes a novel human action model used in different applications
which require a representation for human movements. Several performances of a
given action constitute the training data which is represented as a sequence of hu-
man postures. The learning postures are described using a novel human body model,
and they are used to build a human action space, called aSpace, within which each
human performance is represented as a parametric manifold. As each manifold is
parameterized by the (normalized) temporal variation of the posture, the mean per-
formance can be computed. Subsequently, the most characteristic postures for such
an action, called key-frames, are selected automatically from the postures belonging
to the mean performance. Key-frames are used to build the human action model,
called p—action. A p—action represents the time evolution of the human body posture
during the prototypical performance of a particular action, and is exploited to per-
form human action recognition and synthesis, and performance analysis. Firstly, we
describe a human action recognition procedure by considering the key-frame set of
each action model. Secondly, an algorithm for human action synthesis is presented.
Realistic and smooth human motion is generated given only the temporal duration of
the synthesized action. For this purpose, p—actions are parameterized by arc-length
to achieve invariance to speed. Moreover, our proposed model for human actions is
enhanced to represent postures corresponding to action transitions, thus allowing to
synthesize human activities. Lastly, a comparison framework is established to analyse
the differences between performances of the same action. Specifically, the aSpace rep-
resentation is used to derive a proper characterization of the walking style in terms
of the gender of the walker.

To conclude this investigation, we confront the task of embedding our human
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action model within the HSE framework. For this purpose, Situation Graph Trees
(SGTs) are used to model the knowledge required for human activity and behavior
representation. By adapting our action model to the SGT methodology, we derive
semantic primitives based on the quantitative information obtained from image se-
quences, and we also generate synthetic sequences based on the conceptual informa-
tion embedded in activity and behavior models. We show examples of SGTs which
infer the behavior of actors within a scene, and which generate synthetic behavior for
virtual human agents.
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Chapter 1

Introduction

In the late 19th century, advances in photography and film helped to spur a revolution
in the study and perception of human motion. For the first time, an individual could
slow down time to a speed at which the different phases of a running or jumping
motion were beautifully clear. Two early pioneers in this area were Eadweard James
Muybridge and Etienne Jules Marey.

In 1878, Muybridge produced the first time-series photographs of a horse in mo-
tion. His books of photographs illustrating animal and human locomotion are still
available, and are studied by students of art and science today [100]. While the time-
series photographs taken by Muybridge were revolutionary, they did not afford precise
measurement of motion over time.

Etienne Jules Marey developed a photographic technique to address this problem
in the 1880s [29]. Marey’s camera created multiple exposures of an actor at precisely
timed intervals. Many instants of the motion were captured on the same photographic
plate, so motion over time could be measured from a single photograph. Marey also
used the combination of images and force measurements to address such questions
as how soldiers might march with a heavy pack so as to minimize fatigue. In fact,
Marey’s scientific studies anticipated a rich field of human motion research related to
multiple areas, which continues today.

Not long ago, computer vision research also began to study video sequences. Im-
provement of computer resources in terms of capacity and speed allowed to develop
new algorithms which coped with the required amount of data. As a result, a new
topic of research emerged: the analysis of motion in image sequences.

The analysis of image sequences involving human beings is commonly referred as
dealing with humans. The goal is to develop a suitable human motion description
from image data. This is usually addressed to accomplish two different tasks, namely
human motion synthesis and recognition. On the one hand, the aim is to synthesize
previously stored human motion information by using virtual actors [51, 96]. Exam-
ples of applications are synthetic films, virtual reality interfaces, athletic performance
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analysis, and training of physically disabled persons. On the other hand, the goal is
to generate textual descriptions about a given human body within a scene using rec-
ognized human motion patterns [63]. Typical applications are video surveillance and
security systems, which are currently being used to monitor buildings or parking lots
in order to detect intruders. To this end, textual descriptions about moving humans
can be generated for further reasoning about observed conducts.

However, dealing with humans implies multiple difficulties. Typically, appearance
variability is found in these sequences due to acquisition conditions, clothes, lighting
and posture changes. Consequently, there is a large amount of literature involving
human motion analysis [141]. Moreover, there is no unified framework which can cope
with the particular requirements of both human synthesis and recognition. Human
motion models used in computer animation or motion capture systems are required
to be specific and accurate. The architecture is bottom-up, i.e. the representation
is built from measurements. On the other hand, video surveillance systems require
generic and robust human motion models. Typically, motion information is obtained
from outdoor scenes, which implies to deal with noisy data and segmentation errors.
These systems frequently operate top-down: measurements are obtained with respect
to a predefined model, and the values for the model parameters are usually estimated
using tracking procedures.

As a consequence, the procedures for human motion analysis are designed specifi-
cally considering the final application domain. Instead, we propose an unified frame-
work for human motion analysis which can be successfully applied to confront both
recognition and animation.

1.1 Basic Concepts

We first define the basic terms used throughout the Thesis by describing the knowledge
required to develop a wvideo surveillance application. The term video surveillance is
defined in [36] as describing the actions and interactions of different agents, usually
humans or vehicles, within complex scenes in real-time. This is achieved by means of
event analysis. We consider an event as a noticeable change-of-interest in the scene,
together with the conditions in which these changes are observed. Actually, we assume
that motion analysis is mainly performed based on change detection'.

Due to the complex task to be achieved by video surveillance systems, these are
subdivided into interconnected modules to be robust enough in order to deal with noisy
data and to recover from erroneous intermediate results generated by any module.
Moreover, such a modular structure facilitates the incorporation of those requirements
which are specific of a particular application domain.

As described in [102], video surveillance systems are a particular example for
generic Image Sequence Evaluation. ISE systems accomplish two tasks. First, they

IThis assumption is used basically when the acquisition device (e.g. a camera) remains stationary
with respect to the scene being recorded. This configuration is typical of video surveillance systems.
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transform image data into high-level descriptions. By using the term high-level we
actually imply the existence of an abstraction process, which is reflected in ISE sys-
tems by means of intermediate representations. The second goal is to reason about
these generated descriptions, which leads to system reactions. Generically, such re-
actions take the form of signal processes or conceptual terms. The former implies to
activate different notice or warning signals (such as acoustic alarms, lights, or con-
trol signals to mechanisms of access) depending on the observed patterns of motion.
A conceptual description requires to associate natural language components, such as
verbs, nouns, adjectives, or entire texts, to observations of temporal events. Concep-
tual descriptions are preferred to be built in a suitable way (for example, in terms of
logic representations), so further reasoning becomes feasible by means of algorithmic
inference engines, for example.

As commented before, there is a set of issues which complicates the extraction
of conceptual descriptions. In order to introduce these issues, we need first to define
precisely the domain where our system is going to look for events. A scene is defined as
the restricted portion of the 3-D world recorded by a sensor, commonly a camera, and
it contains moving agents and static components such as buildings or trees. Thus,
the input of our system consists of a sequence or sequences of frames, each frame
comprising the 2-D projection of the recorded scene at a given time. Note that even
before any processing step has been applied, the image data lacks some of the original
information (about depth, for example), and other knowledge becomes unavailable
(for instance, when an agent is being occluded by a tree) or modified (like the real
sizes of the objects within the scene). This fact has to be taken into account as follows.

ISE systems should incorporate some kind of a-priori knowledge in order to correct
such incompleteness of the available data. The a-priori knowledge sources are usually
embedded in models, and they are preferred to be scene-dependent. Thus, knowledge
provides the chance to free generic motion analysis methods from the characteristics of
the specific scene for which these methods are applied. For example, suitable a-priori
knowledge for video surveillance systems consists of:

e camera models to determine the best acquisition configuration,
e agent motion models to track occluded agents,
e scene models to predict occlusions due to static components, and

e calibration models to recover the 3-D positions of the agents and to obtain the
real relative sizes of different objects.

All these scene-specific models help us to understand the requirements and failures
of the system. Also, these models provide constraints and information that allow to
optimize the processing time of the system, and to reduce the complexity of the source
code. As a consequence, the a-priori knowledge should be determined firstly based
on the problem domain and, transferred subsequently in terms of explicit models into
part of the system to be designed.
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In fact, a video surveillance system requires to confront different tasks. First,
agents should be located robustly in the scene. After that, a motion description
is generated for each agent by considering a subsequence of recorded frames. A
sequence of motion descriptions constitutes a pattern to be compared with previously
learned patterns. Moreover, the history® of recognized patterns can help to infer the
developments in the scene. Lastly, a description of recorded developments is generated
using natural language.

Next, an analysis of the problem domain helps to determine the required a-priori
knowledge. First, agents need to be detected from the raw input image data. But
locating agents precisely in outdoor scenes is quite difficult due to different climate
conditions (illumination changes), variable background (structural changes) and oc-
clusions (an agent dis/re-appears suddenly). Background modeling and visual track-
ing algorithms are the techniques commonly applied to supplement the measurements.
In order to help both the locating and tracking processes, a representation of the agent
is usually instantiated.

The next step describes the motion of the agent during several consecutive frames,
which constitutes a pattern of motion. The motion representation is preferred to be
scene-independent and non-ambiguous. Also, it should be general, in order to be able
to represent all the feasible patterns to be reported by our system, and discriminative
enough to enhance the distinctions between different patterns. Subsequently, despite
the selected description, it is obvious that first it has to be clearly defined which
patterns of motion should be reported by the system. These patterns are required to
be represented in a proper way so that they can be recognized in image sequences.
This implies a previous analysis of the pattern characteristics to be recognized in
order to develop a proper representation. Furthermore, in order to achieve motion
recognition, both a comparison measure and a confidence margin should be defined
to select the closest, most similar pattern.

Conceptual descriptions for each agent are inferred from the recognized motion
patterns. Specifically, a correspondence process is attained between the identified
patterns and the knowledge about the task domain, which is called integration®. It
is important to note that understanding a scene (defined as dealing with conceptual
descriptions) requires of knowledge about the task domain, commonly referred to as
context. By means of context, the problem domain is constrained, so interpretations
are restricted to those which are consistent with such knowledge. Thus, only meaning-
ful semantic descriptions are generated. Context can be built up from a combination
of two sources of knowledge [125]: the physical environment (i.e. representation of its
structural properties) and the symbolic world (i.e. representation of rules, preposi-
tions, predicates and algorithms). For instance, the static components of a scene can
be modeled by means of context. Such knowledge is used to help the locating process
(by defining regions of interest), to compute 3-D features of the agents from image

2Here, the term history refers to a temporal sequence comprising both previously and currently
recognized patterns.

3 Integration in the video surveillance domain is defined as the transformation of numerical results
in such a way that they become fully a part of a conceptual description. As discussed later, this
transformation process incorporates uncertainty to the system.
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coordinates (in order to estimate depth information and to instantiate 3-D models),
and to predict and handle occlusions (due to buildings, for example).

In addition to context, inference processes are required, which supervise the states
of the analysis process and the search space for hypotheses. Inference processes
strongly depend on how knowledge base is represented.

There is a final issue not involved with human motion patterns neither with con-
text: to assure a quick response when some abnormal situation occur, for example the
detection of intruders in parking lots or of problems in the traffic flow. Warning notes
generated much too late will interest no one. Consequently, real-time processing is
a critical restriction of these systems, methods to be applied thus should be highly
optimized in terms of processing time?.

An example of ISE is provided in [61], where the patterns of motion of rigid agents
(i.e., cars) in streets are evaluated. The motion description is represented by means of
the car location, speed and orientation. Thus, they can infer conceptual descriptions
such as acceleration, stopping, or driving slowly. Also, they locate the rigid agent
in the 3-D scene, so its spatial relationships with other rigid objects and the static
scene components can be inferred. In fact, by analysing the spatial relationships of
an agent with respect to its environment, one can infer that a car might stop due to
the existence of a halt sign, an intersection, or another car ahead; or one can state
that a car is turning to the left through a lane.

In this Thesis, we are interested in describing the structured motion of an artic-
ulated object (i.e., a human agent, semantically referred to as actor) in terms of its
posture and limb motion, in contrast to analyze solely the location, orientation and
velocity parameters of a single rigid object within the scene. Particular gymnastic
or yoga exercises, but also running, bending or walking provide examples of typical
patterns of motion.

1.2 Human Sequence Evaluation Architecture

As described in [125], at the beginning of chapter 8, "knowledge based scene interpre-
tation is a complex task, systems for performing this task tend to be complex, too”.
We have presented so far the knowledge required to describe motion patterns recog-
nized within a recorded image sequence. Hereafter, we restrict our domain to human
motion analysis: the term Human Sequence Evaluation (HSE) will denote the specific
application domain of Image Sequence Evaluation in which the agents involved are
actors.

However, when dealing with human agents, additional issues should be addressed.
Since the motion of the human body will be described, it is obvious that a human
body model is required. Another issue to be considered is time representation. Time

4However, real-time processing is not a compelling issue which should determine the design of the
system: as soon as the computational expenses decrease, the preconditions change and our approach
might become worthless compared to alternatives.
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Figure 1.1: Modular scheme for Human Sequence Evaluation. See text for details.

should be modeled in order to determine the duration of a pattern, to model changes
of the attitude during a performance and to find temporal relationships between
patterns. Moreover, context should be represented in order to derive plausible in-
terpretations and predict future responses properly. Also, context helps to describe
interactions between actors (such as meet and split, or meet and continue together)
and to distinguish active from passive agents.

All these issues are based on knowledge of different nature. In order to cope with
them, Kanade suggested in [79] to describe these systems by means of a modular
scheme. As a result, an architecture which differentiates between a Picture Domain
and a Scene Domain was first proposed. Following the same strategy and considering
the structure proposed in [102] for ISE, Fig. 1.1 shows the architecture required to
perform HSE °.

The interpretation of human motion is treated as a transformation process be-
tween raw video signals and high-level, qualitative descriptions. This integration is
subdivided into layers and in each layer, both suitable representations and context
are considered. In fact, the combination of knowledge provided by models and con-
text, together with assumptions and restrictions, are exploited at each level to design
robust and useful HSE systems.

Next, we detail the first four layers of the HSE architecture. The first level is
called the Signal Level (SL). This layer provides image data and information about
camera parameters, for example in order to perform calibration. Thus, it is possible to

5The scheme presented in [102] is also an extension of [79)].
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represent the viewing conditions, such as the recording technique, the viewpoint and
the image resolution. The camera configuration can be also modified, thus allowing to
vary the recording conditions (for example, when the camera zooms in on an actor in
the scene). A camera interface is required in this layer to receive and send information
from and to the camera, respectively.

The next level is called the Image Level (IL). Here, a sequence of raw image data,
called low-level image measurements, is processed in order to locate the actors in each
image. As a result, information about moving or foreground regions is provided to
the following layer, the Picture Domain Level (PDL) in the form of moving blobs, for
example.

At the PDL, 2-D representations of the actor are calculated based on the regions
segmented at the Image Level. These representations constitute the Picture Domain
Cues (PDC), for example, the bounding box or the centroid of the blob. Possible
segmentation errors generated at the Image Level should be addressed here by taking
means of tracking. The tracking process computes the estimated geometric represen-
tation (called the state of the agent) of the actor in the image at the next time step.
The tracking process requires a motion model, and the expected state of the actor can
be sent back to the Image Level in order to improve the segmentation process. Fur-
thermore, the picture-based representation of the actor can be enhanced® in order to
model human attitudes in the time domain. Thus, it is possible to model human mo-
tion patterns and, subsequently, to perform picture-based motion recognition. Note
that models and algorithms used at this level are based only on features observed in
the picture, such as line segments, regions, or intensity values.

At the Scene Domain Level (SDL), models and algorithms are based on 3-D con-
figurations of objects in the scene. This level requires a calibration process which can
include two or more cameras’. As a result, actors are treated as 3-D bodies, so the
definition of a predefined 3-D human model is required. These 3-D models, together
with other scene-domain-based features (such as surface orientations, reflectance or
lighting conditions), constitute the so-called Scene Domain Cues (SDC). When time
is involved, we can compute 3-D human motion characteristics of selected limbs and
joints. Consequently, 3-D human motion evaluation is applied at the SDL by using
suitable SDCs. Also, it is possible to perform tracking at this level by using a 3-D
motion model. This process is commonly called motion capture. Extended over time,
the resulting representation allows to perform scene-based human motion recognition,
that is, motion recognition based on configurations of the 3-D human body model over
time. Also at this level, we can use the knowledge about the context (such as the 3-D
model of the scene) in order to improve the pattern recognition rate or to simplify
the instantiation process of the 3-D human body model.

Information about the agent at the PDL is made available to the SDL, and vice

6In the sense of being transformed to a suitable representation which can model temporal varia-
tions of the posture.

7Of course, depending on the restrictions and assumptions of the system (for example, restricted
to an orthographic view or by requiring a previous initialization of the 3-D human body model), the
instantiation process of a 3-D human body model can be simplified.
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versa: a critical issue is the question of how to associate the PDC to the SDC. When
dealing with non-rigid bodies like humans, a correspondence process between compo-
nents of 2-D representations of the Picture Domain, such as edges, and components
of the 3-D human body model at the Scene Domain, such as cylinders, is not straight-
forward®. Commonly, once the 3-D model has been instantiated, it is projected into
the image to assist the extraction of PDCs when self-occlusions of limbs or occlu-
sions of part of the body due to static components of the scene (such as trees) occur.
Subsequently, the projected 3-D human body model can be used to perform motion
recognition at the PDL. This procedure is commonly referred to as 23D [96].

Note that human tracking and human motion recognition can be performed at
both the PDL and the SDL. One advantage of dealing with PDC-based approaches is
that they are easily adapted to different scenes, but the recognition process depends
strongly on the viewpoint of the camera: 2-D single-view representations can turn
out to be ambiguous. SDC-based approaches offer a more accurate description of
human motion, but their computational cost can be prohibitive for a certain type of
applications, such as video surveillance.

The information obtained at the SDL is forwarded to the Conceptual Level (CL)
in order to determine tentative descriptions at each time step. Typically, conceptual
descriptions are characterized using knowledge about the scene and about the actor.
Knowledge about the scene refers to predefined facts concerning a conceptual scene
model. The knowledge about the actor comprises all the facts about an agent which
can be derived from the geometric information obtained at the IL, PDL and SDL,
such as:

e the spatial information of the actor within the scene,
e the relationship of the actor with respect its environment, and

e the recognized motion pattern.

This knowledge is referred to as the situation of a given actor [101]. Integration is
applied at this level: the set of parameter values which determines the configurations
of the human body model over time are associated to a conceptual representation
which should be adequate with respect to a required task. Integration implies the
transition from pattern recognition to descriptive processes. As a consequence, there
exists a data flow in two directions in order to restrict combinatorial explosion of data
and reproduction of errors:

e bottom-up data flow corresponds to potential situation descriptions (i.e. hy-
potheses based on expectations) derived from the motion analysis, and
e top-down data flow is required for hypothesis verification.

That is, the goal is to infer plausible situation hypotheses, but also to verify them.
The Conceptual Layer may require additional information from the SL, IL, PDL, and

8This bridge process is referred as the Physical Layer in [79].
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SDL in order to select the most adequate concept for the current situation, and to
reduce the system uncertainty’ about such a situation. For example, if an actor has
stopped in front of a traffic light, we can implicitly assume that the actor is waiting
to cross. However, we can not verify it: maybe the actor has stopped to ask for a
particular street.

The current situation is fed back to the Behavioral Level (BL). At this level, the
expected temporal evolution of situations are modeled a-priori in order to perform
spatio-temporal reasoning, see [61] for details in the traffic surveillance domain. So,
given a situation, the set of possible successor situations can be determined, thus
allowing the system:

e to reason about the behavior and intention of the actor,

e to provide instantiated situations for description generation using natural lan-
guage text,

e to determine the set of possible successor configurations of the actor in order to
assist the IL, PDL, and SDL at the next time step, and

e to evaluate whether an instantiated situation raises suspicion(s) in an observer.

The fourth issue also implies to determine the system reactions when an specific
situation is instantiated from image data. Three kinds of system reactions are com-
monly considered. First, reactions implemented in terms of control signals. In this
case, they are fed back to the SL in order, for example, to activate warning signals
or to close doors. Second, reactions which produce geometric information related
to the observed actor within the scene. This information is forwarded to the IL,
PDL and SDL in order to assist segmentation and tracking procedures, for example.
Also, such geometric information can be used to re-visualize recognized patterns of
motion. Third, reactions can produce natural language formulations to be reported
to human operators. In this case, system reactions are forwarded to the Language
Level (LL), which associates the situation representation with natural language text.
In other words, the description of the situation is converted into logic and coherent
statements.

To sum up, evaluation embeds two separated tasks: first, to obtain a geometric
description of the scene in terms of quantitative values (task related to the Signal,
Image, Picture Domain, and Scene Domain levels); and second, to associate the geo-
metric description with qualitative concepts within a proper knowledge representation
for conceptual description, synthetic generation and deep reasoning about observed
conducts (task related to the Conceptual, Language, and Behavioral levels). Note that
there is an explicit cooperation between different scientific fields: Pattern Analysis
and Artificial Intelligence.

9A description of an image sequence is a quite arbitrary series of statements, due to the fact that
the system interprets the facts shown by the sequence. The term uncertainty refers to the inability
of categorizing in a precise way a particular instantiation of the situation.
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1.2.1 Sources of Knowledge

Once a modular description of an HSE system has been presented, the required sources
of knowledge will be identified. In analogy to [60], this analysis will determine the re-
quirements of generic HSE systems in order to detect possible lacks of constraints, and
the causes of possible system breakdowns. But even more important, by formulating
the sources of knowledge as explicit models, it is possible to design human motion
analysis procedures which are independent of the scene in which they are applied. In
fact, evaluation in different scenes will imply the substitution of selected models but
not a substantial change in the system architecture. Thus, it is feasible to modify,
substitute, and evaluate each model independently of the rest of the system. Also,
when additional knowledge is required, it is easier to be incorporated by means of an
explicit model.

We here describe generically which would be the required sources of knowledge
for a generic HSE system, and the means by which they are provided.

The Signal Level

A camera model will allow us to change the recording conditions by varying the camera
parameters (for modification of the resolution or the viewpoint, for example). This
can be useful when a human is detected far away in a scene, so a posterior zoom
can provide the system with a more detailed image. A digitizer model is necessary
in order to transform the output signals of the camera to image pixel values (the so-
called measurements). Thus, we determine the format of the image data, such as the
available rank of pixel values (for example, 8 bits per pixel), and whether the image is
gray-level or it contains color information. This model depends on the characteristics
of the camera (infra-red, BW, color, or progressive cameras). Lastly, a decoder model
is required when the image is provided in some encoded format (for example, due to
compression or security requirements).

Moreover, an actuator model can be implemented in order to activate possible
signal-based re-actions of the system, such as generating warning alarms or clos-
ing/opening admittance doors, depending on the current observations within the
scene.

The Image Level

Once the image data is available, the system should detect moving or foreground
regions'®. Motion analysis or a suitable background model are employed, respectively
in order to aid the segmentation process of actor images in digitized video frames.
In both cases, we can use the knowledge about the continuity of lines to find lines;

0Foreground regions are defined with respect to a background model: those regions which do not
correspond to the background model are considered as foreground regions. Thus, there are moving
regions, such as the leaves of a tree due to wind, which can be modeled as background, and motionless
regions, such as an actor stopped in front of a traffic light, which can be detected as foreground.
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the texture primitives for texture classification; the homogeneity of regions to build
areas; or the gray level changes for edge detection.

Also, knowledge about color metrics can be applied to image color transformation
(for example, RGB to HSL), depending on the advantages that color information
provides to the system.

The Picture Domain Level

At this level, image features are manipulated in order to obtain a 2-D representation
of the actor which constitutes the 2-D human body model. The representation relies
on the results of the segmentation process at the Image Level. Silhouettes and blobs
provide examples of 2-D human body models.

The tracking process is performed by using a 2-D human motion model, which is
usually implemented in discrete form by means of difference equations. Thus, we are
able to estimate the expected position of the human body in the image at the next
time step. But also, the human body parts can be tracked separately when a suitable
2-D human body model is used (for example, 2-D models based on sticks or joints).
Note that tracking is based purely on image features.

Once the human is successfully tracked, the set of parameters, which characterize
the model, can be extended over time, thus allowing the analysis of the temporal
evolution of the human body parameters in order to perform motion recognition. A
representation of motion is built using two consecutive frames, which embeds motion
characteristics, or the human pose, or both. As a result, motion patterns represent
the variation of the actor posture during an explicitly defined time value, usually in a
supervised manner. A similarity measure and a confidence margin should be defined
to implement recognition.

Context can provide restrictions which will improve the tracking and motion recog-
nition results, for example by defining regions of interest, by restricting the plausible
human body configurations (by means of dynamic models of human motion), or by
providing information about the projected scene.

The Scene Domain Level

When 3-D knowledge is exploited, the 3-D configuration of the human body can be
recovered and placed in the scene by means of a predefined 3-D human body model.
Consequently, 3-D human motion can be analysed. 3-D human body models can
consist of sticks, but also of polyhedral, ellipsoidal, or cylindrical components.

A correspondence model links the representation in the Scene Domain with image
features in the Picture Domain, usually edges or regions. On the one hand, the corre-
spondence process fits the 3-D person model to the image, by transformation of scene
points to image points. This process can be implemented in terms of chained functions
which transform body part coordinates to image coordinates [139]. Differences be-
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tween the projected model and the image features can be used to calculate corrections
over the parameter values of the 3-D human body model. On the other hand, the
configuration of the 3-D human body model is recovered, or rather estimated, from
image features. Anatomical restrictions about allowed body configurations (for exam-
ple, in terms of kinematic geometry of joint coordinates) can improve this estimation
process.

A calibration process is required to infer 3-D positions within the scene from 2-D
coordinates of the image. Also, we can derive the real sizes of objects in the depicted
scene. Therefore, calibration requires a camera model at the SL.

Tracking is applied to a particular instantiation of the 3-D human body model. As
before, a 3-D human motion model is required to estimate the next expected position
and/or posture of the actor at the next time step. Restrictions due to physically plau-
sible motion of the human body can be incorporated by means of kinematics of human
motion, thus allowing to improve the tracking process in terms of time, accuracy and
reliability issues. A 3-D scene model may be incorporated to detect occlusions due to
the static components of the scene, and to provide context information for whole-body
tracking.

Extension of the human motion analysis to the temporal evolution of 3-D hu-
man body configurations enable motion recognition. The 3-D body representation
is usually simplified by considering a reduced set of body characteristics which will
be used to learn and recognize patterns of motion. For example, if the human body
is described in terms of joints and limbs, we can just analyse the angle variations
of a reduced set of joints in order to best characterize a motion. Similarly to the
PDL, a similarity measure and a confidence margin should be precisely determined
for recognition purposes.

Although the human motion analysis presented in this Thesis is achieved com-
pletely at the SDL, there are publications which project the 3-D human body model
into the image, in order to perform motion recognition at the PDL. These Q%D ap-
proaches usually require the set of possible poses to be defined a-priori.

The Conceptual Level

We assume that interpretations inferred from the actor are characterized by the com-
bination of three sources of knowledge:

e The spatial information of the actor within the scene, such as the position,
velocity and orientation in the floor plane, for example.

e The relationship of the actor with respect to its environment, such as the pres-
ence of other actors nearby or the proximity of static objects represented in a

conceptual scene model.

e The recognized motion pattern which the actor is performing.
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As described before, this knowledge at a given point in time is called situation.
Based on the geometrical information obtained at the SDL, the aim is to apply in-
tegration to associate a conceptual interpretation to the resulting numerical values.
This integration process performs an abstraction step to convert quantitative data
to qualitative knowledge (for example, in terms of logic predicates), which can be
achieved using different strategies.

For example, we can abstract quantitative state parameters by associating con-
cepts like moving, small, left, or briefly with a fuzzy degree of validity characterizing
how good a concept matches the numerical quantity. As a result, quantitative values
are associated to fuzzy attributes.

Also, we can derive spatial relations by considering the position of the actor in
the scene. In this case, a conceptual scene model is required to describe the spatial
coordinates of the actor with respect to static objects, other actors, and specific
locations within the scene. Integration can be implemented by applying a distance
function between the positions of the actors/objects in the scene. Also, a discretization
of the resulting distance value can be obtained by using Fuzzy Logic.

Lastly, we can associate a label to predefined motion patterns. For this purpose,
motion recognition algorithms are addressed to derive the concept associated to a
recognized motion pattern. Therefore, we can provide the label of the recognized
pattern to the CL when such an pattern is finished. Alternatively, we can derive the
label of a tentatively recognized pattern while it is being observed. In this case, several
possible labels can be instantiated at the same time, due to the fact that different
patterns of motion can exhibit some identical features during their performances.

But the situation can also reflect additional information about performance char-
acteristics, such as the style of the detected motion, for example!!. In this case,
integration is required, too.

The Behavioral Level

The temporal evolution of recognized situations are modeled at the Behavior Level
(BL), which addresses three main issues. First, the aim is to infer the situation,
i.e., a qualitative description of observed motion in a temporal and spatial context.
Second, the generation of synthetic motion patterns from previously generated qual-
itative descriptions is also handled here. Third, it is possible to reason about what is
happening in the scene using comprehensible terms. That is, we consider here that
there is human-computer interaction: users can ask the HSE system about the scene,
and the system can generate scene descriptions after reasoning. Fwvaluation, in the
sense of explanation, helps to make easy to understand such systems by non-expert
users.

Context helps to reduce the inherent uncertainty about the currently prevailing
situation. A scene model (2-D or 3-D) provides useful information for spatial reason-

LA style is defined as a manner or way of human performing. In fact, some manners of performing
are typical of particular actors.
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ing, and the position of the agent within the scene can help to infer the conduct and
the goal of such an agent. For example, in order to establish that an actor has come
inside a building, we can model the positions in the scene of visible doors, i.e., our
regions of interest. An actor which disappears at those positions leads to semantic
interpretation. Another example is related to human occlusions by static components
of the scene: occlusions can be predictable, thus improving the tracking process (in
terms of robustness) so interpretation can be achieved.

Also at this level, a knowledge representation language is designed in order to
reason about the motion and intention of actors. Although techniques for evalua-
tion depend on the selected knowledge representation language'?, there are general
requirements to take into account.

A first requirement is the evaluation of the performance of the system. Thus, it
is possible to justify the results of the system reasoning process by controlling the
inference process which is applied. The aim is:

e to trace the computational process which generates the result,
e to determine the internal information requested by the system, and

e to reason about the selection of particular reactions by the system.

Thus, it would become easier to debug the system. Consequently, there is a re-
duction of implementation errors. Also, as a result of this debugging process, the
designer can decide to incorporate extra knowledge (by means of models, restrictions,
and assumptions) in order to improve the performance of the system in terms of re-
liability. So there is an increase of confidence of the users in the results reported by
the HSE system.

Another requirement is the evaluation of the strategies of the system. This issue is
related to the capability of asking about how the system would address the resolution
of a particular problem, in terms of the inference steps to be applied. This capability
asks for the necessity of control algorithms, which determine the inference processes
to be activated in order to answer the user.

A third requirement is the evaluation of the knowledge used by the system. There-
fore, the user can ask about the content of the knowledge base. Thus, it is possible to
obtain a description of what is happening in the scene, and even why: the system can
reason about the availability or no availability of particular knowledge. As context
helps to infer the knowledge of the system, the user is actually learning about the
context, specifications while asking the system: in other words, there is a training
process of the user in the specific task domain in which the system is addressed.

Evaluation of the knowledge deployed by HSE systems can be implemented using
two strategies [7]:

12Tn the literature, semantic networks, logical, and procedural schemes are considered as suitable
knowledge representation languages.
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o let the HSE system generate a synthetic image sequence using the textual de-
scription obtained from a previously recorded image sequence. Both synthetic
and original sequences can be compared to evaluate the HSE system knowledge.

e let the HSE system generate the textual description of the synthetic image
sequence. Subsequently, comparison of the original and the synthetic textual
descriptions can be made to detect deficiencies in the HSE system knowledge.

Situation descriptions generated from image sequences are provided to the last
level, the Language Level (LL).

The Language Level

At this level, natural language text descriptions are generated for situations, which
involves the generation of logic and coherent statements by means of natural language
formulations. A suitable grammar needs to be designed to combine the conceptual
terms of the current situation into meaningful statements.

The situation of an actor describes qualitatively the spatial configuration of such
an actor within the scene, the configuration of the human body (with respect to pose
or motion characteristics), and the goal of the actor. This qualitative information
generated at the CL is used to associate the quantitative and geometric terms obtained
at the SDL with nouns, motion verbs, adverbs and adjectives at the LL.

Furthermore, the temporal and spatial evolution of situations modeled at the BL
will provide information about the relation of manner or quality, place, time, degree,
number, cause, opposition, affirmation, or denial between situations and agents: tem-
poral transitions and spatial relationships between instantiated situations serve to
connect properly the statements by means of adverbs.

Next, the relationships between the Language Level and the previously described
levels will be pointed out. The user interacts!® with the system through the LL.
As a result, inference processes are activated at the BL to reason about instantiated
situations at the CL. Evaluation of additional numerical results provided by the IL,
PDL, and SDL can also be required to handle uncertainty. The result of the inference
process is fed forward to the LL in order to generate a natural language description
embedding the answer of the system.

Since the two main goals of HSE are the description and generation of motion
patterns, integration is required to derive a qualitative description from recognized
motion patterns, and also to generate a synthetic film during which a particular mo-
tion pattern is visualized. This abstraction process is addressed next by establishing
a suitable human motion taxonomy. This taxonomy reflects the intermediate steps
required to implement the transformation of geometric information at the SDL into
conceptual terms at the BL.

13The user can interact with the system through menus or using query languages. A user interface
is required to make this interactive process easy.
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1.2.2 A Human Motion Taxonomy

Literature reviews classify existing approaches based on different taxonomies. Usually,
the classification criteria are based on geometrical or methodological issues. On the
one hand, different reviews focus the problem of defining a taxonomy to organize
existing publications in terms of the geometric representations implemented [1, 33,
51, 96]. On the other hand, previous publications can be classified into categories
by using methodological criteria instead (for example, model-based versus feature-
based), in a similar way to that presented in [141]. Alternatively, the classification
presented in [32] reviews the literature in terms of the models considered.

Since HSE associates geometric information with conceptual statements, we are
interested in establishing a motion taxonomy using knowledge concepts in order to
establish a knowledge-based classification of motion representations which will guide
integration implementation. However, few taxonomies based on knowledge have been
proposed in the literature.

For example, the taxonomy proposed by Nagel in [101] is suitable to perform con-
ceptual description generation. The levels are called change, event, verb, episode, and
history: a change is a discernible difference in a sequence; an event is a change which
is considered as a primitive of more complex descriptions; a verb describes some ac-
tivity; an episode describes complex motions, which may involve several actions; and
a history is an extended sequence of related activities. These terms are more related
to story understanding, because the goal is the generation of conceptual descriptions
by means of natural language. These descriptions are more suitable to perform logic
reasoning about the scene without human intervention and without reliance on do-
main specific knowledge. It is also possible to infer interactions between multiple
objects (both static and moving) by means of their spatial and temporal relation-
ships. However, Nagel’s classification is mainly derived to perform reasoning, so it is
not obvious how to address intermediate representations of complex human motion
patterns according to his taxonomy.

Centered in human agents, different description levels are suggested by Bobick in
[20]. In this paper, several publications are also classified according to the degree of
knowledge required to describe semantically the scene. Bobick described three levels:
movement, activity and action. A movement is a predictable motion that can be de-
fined by a space-time trajectory in a proper feature space, so no knowledge other than
motion is needed. An activity is composed of a sequence of movements. Here, dif-
ferent approaches to model temporal relationships between movements are discussed.
An action involves semantic knowledge related to the context of motion, that means,
inferences rely on domain specific knowledge. This classification is suitable to perform
comparison between existing motion recognition publications. Furthermore, it makes
explicit the requirement of deriving time and causal relations from statistics of image
motion. Reasoning about the scene can only be achieved if perceptual implications
are observed. Therefore, reasoning is mainly restricted to time dependencies between
actions.

In this Thesis, a combination of both taxonomies is used. We want to describe
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our approach as a human motion analysis process embedded in a generic Human
Sequence Evaluation framework. So, on the one hand, Nagel’s classification will assist
our system to generate semantic descriptions suitable to perform deep reasoning.
And, on the other hand, we adopt Bobick’s terms in order to design intermediate
representations appropriate to perform complex human motion analysis. These levels
are called movement, action, activity and behavior, which are described next'.

A movement represents a change of human posture between consecutive frames'®.

No knowledge about the context is required at this point. Human movement analysis
is found to be used as a constraint factor to improve the tracking of human body
parts. So an appropriate human body model is needed to be pre-defined. Also, it
is considered as the lowest stage of more complex human motion descriptions [22]:
movements can be characterized in terms of a space-time function, so different per-
formances of the same movement recorded from the same viewpoint will have similar
characterizations.

We consider a human action as a process of human performing that has a signif-
icance to our system. A process of human performing refers to a predefined pattern
of motion. Significance means that these actions will be learned so afterwards their
recognition can be properly achieved. Using the previous definition of movement,
we define an action as a temporal series of human movements. As a consequence, a
method is required for handling time. This requirement involves a proper way to de-
termine the temporal relationship between these constituent movements. That means,
the temporal order of the movements will actually determine the action which is being
performed. Furthermore, variability in the duration of these movements should also
be considered: the recognition of an action should be independent of its temporal
extent. Typical actions are running, jumping, grasping or bending. Using conceptual
terms, actions can be described by motion verbs. No reference to the context needs
to be addressed in order to characterize an action: the recognition of an action relies
on the recognition of its constitutive movements. It is important to note that, at
this point, the goal of an actor is implicit in the performance of an action, so the
knowledge of the context is required in order to determine such a goal'6.

An activity is composed of a sequence of two or several human actions, plus the
transition between consecutive actions. A transition refers to the variation of the
human posture from one finished action to the next one described by the activity.
A motivating example is the so-called thief sequence [27], in which a ”thief” walks,
stands up straight to look around, bends to pick up (an object), and then runs away.
No reference to the context is applied here: an activity is generically recognized as
the consequence of the recognition of its constitutive actions. An activity can be
expressed in terms of a series of motion verbs.

Lastly, the term behavior refers to one or several activities which acquire a meaning

14These terms can be defined in a different way using different names. Furthermore, additional
levels can be added. But this taxonomy is adequate enough to present the analysis of human motion
to be studied here.

15 A movement can also represent a change of place, for example during jumping actions.

16That means, the goal of an action is the logical consequence of its execution.
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in an specific context. For example, we can model a waving arms activity. Recognizing
such an activity in a football game (ball request) has a different meaning that in
a subway station (help request). That is, the description of the temporal changes
of an actor is combined with the relationship of such an actor with respect to its
environment. Context information will provide the required knowledge necessary
to generate descriptions about the actor in a particular scene and to express the
recognized motion verbs related to the scene components (the static objects and other
actors involved in the activity). Moreover, the context will also help to determine the
goal of the activity. We consider that the goal, if it is not known in advance, can be
inferred from the set of interpretations of the system in a known context. If the goal
is known in advance, the context provides the information required to state whether
the goal has been successfully accomplished.

So the behavior of an actor is characterized by the combination of:

e a description of its motion, i.e. the action which is being performed,

e a description of its spatial configuration within the scene and with respect to
other actors, and

e a description of its goal, known in advanced or inferred from the context.

This knowledge in a single point in time is called situation in [101]. Using this
term in our taxonomy, a behavior corresponds to a temporal sequence of situations.
Therefore, a situation corresponds to a movement which acquire a meaning in a
specific context, and determines the conceptual descriptions to be inferred from image
data.

1.3 Situation Graph Trees

A survey of systems creating high-level descriptions from image sequences is presented
in [32]: several procedures can be chosen to develop a motion understanding system,
depending on the requirements of the discourse domain. Motion understanding sys-
tems rely on knowledge based on the geometry of the scene and the numerical data
obtained from pattern analysis procedures. In our case, additional requirements are
found to be satisfied by analyzing the architecture studied before: we explicitly obey
the modular scheme of HSE.

In this Thesis, our procedure for human action analysis is designed and imple-
mented at the SDL, thus allowing to determine 3-D spatial relationships of actors
and predefined objects. Therefore, we distinguish between the numerical representa-
tions obtained at the SDL and the situations instantiated at the CL. We assume that
the geometrical information obtained at the SDL is provided to the CL uninterrupt-
edly over time. Furthermore, plausible situations should be organized into a temporal
and conceptual hierarchy at the BL in order to generate behavior descriptions.
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The generation of textual descriptions from image sequences is an important re-
quirement. But also, the inversion of this process, i.e. the generation of synthetic
sequences should be feasible by using the conceptual descriptions instantiated at
both CL and BL. Therefore, algorithms for synthetic video generation should rely
on knowledge very similar to the knowledge required for video description. Further-
more, the generation of video sequences should be deterministically defined. That
is to say, the animator should be able to build activity and behavior representations
by establishing which, and in which order, human actions are synthesized. The last
requirement is to support not only the execution, but in addition the diagnosis steps
during the continuous development and test of HSE systems.

Similar requirements can be found in [61], where a system for recognition of traffic
situations is presented. Next, the characteristics of the deterministic formalism used
in such a paper are pointed out.

Based on the geometrical information at the SDL, logic predicates are instantiated
by employing a Fuzzy Metric Temporal Horn Logic (FMTHL). This predicate logic
language treats dynamic occurrences, uncertainties of the state estimation process,
and intrinsic vagueness of conceptual terms in an unified manner, see [126] for details.
As a result, temporally and conceptually isolated logic statements are instantiated for
each frame at the CL.

Subsequently, these statements are embedded into a temporal and conceptual
context by using Situation Graph Trees (SGTs). For this purpose, the concept of
generically_describable_situation presented in [101] is used: a situation consists of an
agent state, together with the potential reactions that such an agent can perform
in such a state. SGTs organize the set of plausible situations into a temporal and
conceptual hierarchy. Thus, on the one hand, SGTs represent the temporal evolution
of situations, and a set of potential successor situations are specified for each situation.
That means, predicate evaluation is performed in a goal-oriented manner: given a
situation, only its successors will be evaluated at the next time step. On the other
hand, each situation can be described in a conceptually more detailed way, thus
allowing to establish conceptual descriptions with a certain level of abstraction and
specificity.

As SGTs are defined using a deterministic formalism, we can establish which
sequence of situations should be investigated during both descriptive and generative
procedures. Furthermore, SGTs can be converted into FMTHL-logic programs. Thus,
the behavioral knowledge and the situation analysis is based on formal logic inference.

Consequently, we will use the SGT formalism for behavior representation at the BL
of the HSE architecture. Therefore, the numerical information obtained at the SDL
should be converted into isolated logic predicates at the CL by applying integration.
SGTs will determine at the BL the sequence of situations, which should be instantiated
over time, in order to perform spatio-temporal reasoning for human behavior analysis.

This implies to address two issues. First, as SGTs are based on logic predicates,
we adapt the terminology used in [61] to be applied in our discourse domain. A
terminology consists of logic-rules and facts which regard the actor itself, the actor
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Figure 1.2: A sequence of frames depicting an athlete throwing a javelin. Training
athletes attempts to reach predetermined attitudes during the action in order to best
execute the throw.

and other actors/objects, the actor and specific scene locations, and the knowledge
about the scene. Also, the terminology should define the possible set of reactions that
any actor can perform in our discourse domain. Second, once a suitable logic-based
terminology is defined, the next step will be centered on defining SGTs which represent
expected behaviors at specific scenes. Subsequently, human behavior description and
generation will be achieved by using the same knowledge representation.

1.4 The Key-frame Approach

The key point of this Thesis consists in defining a proper human action model at the
SDL so that human actions can be learnt and used in different applications, such as
human action recognition and synthesis. In order to accomplish this task, our human
action model will be based on the key-frame concept.

Fig. 1.2 illustrates the idea and motivates the development of this approach. In
this sequence, five attitudes are presented which occur while throwing a javelin. The
goal of this action is to hurl the javelin as far as possible. Thus, training athletes
consists in teaching a throwing technique. This optimum!” technique consists of
reaching predetermined attitudes which will provide the athlete with the greatest
strength at the instant of hurl. So, in order to perform such a complex series of
movements, the prototypical action is decomposed into key postures, as the figure
reflects. Then, the training of the athlete is driven to reach these postures at a
particular phase during the entire process of throwing a javelin in order to be best
positioned for reaching the next posture's.

We derive several conclusions from the previous example. A representation of a
prototypical action should embed the essential attitudes of such an action, in order
to be suitable to be used for learning purposes. The term essential means here that
in order to perform an action, the human body should adopt, at the very least, these
postures. An action is then described in terms of time-ordered essential postures. As
the recognition of these postures during a sequence allows the recognition of the entire

"The term optimum here refers to best execute a given action. Usually, optimum techniques are
usually theoretically described by sport trainers, where the essential postures of the action execution
are established. Then, an action executed optimally can be referred as prototypical.

181p this example, each movement is executed to reach an attitude from which the next movement
can be executed optimally. Concatenation of these optimal movements (or attitudes) will provide
the maximum impulse to the javelin.
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action, these essential attitudes are considered as the reference postures of such an
action. The term reference denotes the idea that these essential postures will become
the means of identification, that is, they will be suitable to be used for recognition
purposes. These postures characterize the action so, given a reference posture, the
next reference posture can be determined, and ezpected.

We consider that in order to optimally execute an action, each movement is goal-
oriented to settle the human posture to be best placed to perform the next move-
ment!®. This effect is also used in human gesture recognition (the end of the current
gesture is influenced by the motion of the gesture planned to be executed next), and is
similar to coarticulation in speech [23]. That means that some kind of prediction can
be applied while executing an action. These characteristics motivate the key-frame
concept and justify such a proposal for action representation: an action is divided
into segments, where the reference attitudes mark the beginning and the end of each
segment. We denote the images of these reference postures as the key-frames®® of an
action.

So an action can be represented by means of a sequence of key-frames or, in other
words, body posture configurations. An obvious extension is to enhance this repre-
sentation with the characteristics of motion transitions between key-frames. Time
is represented by considering the order of the key-frame sequence. We do not use a
quantitative description (for example, the overall number of frames or seconds that an
action lasts) but a qualitative, relative representation. In fact, the key-frames can be
found non uniformly with respect to the overall number of postures which constitute
the performance of an action.

Another advantage of action models based on key-frames is the ability to perform
on-line recognition, that is, an action is recognized while its performance: we are
actually parsing the execution of an action, so recognizing its key-frames will involve
recognizing the action. Strictly speaking, it is possible to hypothesize about the action
currently being executed when recognizing a key-frame. Several action hypotheses
are possible at each time step, and the number of valid hypotheses decreases when
detecting further key-frames. Also, key-frames provide facilities to human action
synthesis, by means of interpolation techniques. This advantage will be exploited
when generating animated sequences of virtual agents.

In this Thesis, we define a procedure for extracting automatically the key-frames
from a sequence. Four issues, already introduced before, will be involved in this
process. First, the selection of a suitable representation of the body posture which will
enhance its anatomical properties in order to maximize variations between different
body postures. Second, a proper algorithm which selects automatically those postures
of an image sequence which are considered as the most characteristic ones according
to predefined criteria. Third, to use the key-frame approach in different applications

19This goal-oriented treatment of movements can be found in many Oriental arts. Tai-Chi is a
nice, motivating example: there are a number of so-called forms which consist of a sequence of
movements. The aim of Tai-Chi is the precise execution of these forms. Many practitioners notice
benefits in terms of correcting poor postural, alignment, or movement patterns which can contribute
to tension or injury.

20This term in the human motion analysis domain was coined by Akita [2].
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which are implemented in order to validate our action model. And lastly, to adapt
the key-frame approach in the SGT methodology in order to perform integration and,
consequently, HSE.

1.5 Contributions and Thesis Outline

The goal of a Human Sequence Evaluation system is to infer the behavior of a human
agent within a scene, and also to validate inferred behavior descriptions. That means,
knowledge about the agent behavior should be represented in a proper way which
permits to generate a description of agent behaviors, and to create a synthetic film in
which a recognized behavior is visualized. Consequently, the transformation between
the geometric information obtained at the SDL and the conceptual terms modeled
in the form of a-priori knowledge representation at the BL should be also addressed
in this Thesis. Specifically, we address the integration process by presenting the
following contributions:

e A human motion taxonomy is established: a hierarchy of human motion terms is
presented, which helps to determine the knowledge required to perform Human
Sequence Evaluation.

e A novel 3-D human body model is defined to properly represent the variation
of the human posture during an action performance.

e A novel human action model is presented in which the human posture variation,
observed during several action performances, can be described in a compact,
accurate and specific manner. This human action model provides facilities to
human action recognition, synthesis, and analysis.

e A human action recognition procedure is described, which assigns an input
posture to the most likely action(s). Therefore, the geometric representation of
the human posture is converted into a conceptual attribute, i.e. the recognized
action label.

e An algorithm for human action and activity synthesis is presented. Automatic
generation of realistic human motion is achieved. Furthermore, transition be-
tween actions can be synthesized in order to visualize activities.

e A comparison framework is introduced in order to describe any action perfor-
mance with respect to its corresponding action model. Also, a synchronization
procedure is presented to derive a characterization of the action style in terms
of the gender of the actor.

e The SGT methodology is adapted to generate textual descriptions from observed
human behavior. Also, the automatic generation of synthetic films using SGTs
is addressed. The goal is to establish a link between the conceptual action
label and its corresponding geometric human action model, thus allowing to
re-visualize recognized behaviors using virtual actors.
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These points look for your considerations, and they are presented within this The-
sis as follows. By obeying our human motion taxonomy, we describe in chapter 2
different papers which address specific issues of HSE. The aim is to examine exist-
ing human motion models, and the tasks which can be accomplished by using such
representations. In chapter 3, we present our novel human action model, called p—
action, which is based on a suitable representation of the human posture. Such an
action model is built upon the most characteristic human body postures found dur-
ing several performances, which are called the key-frames. Subsequently, our human
action model is used in chapter 4 to implement three different applications, namely
human action recognition, human activity synthesis, and human performance analy-
sis. In chapter 5, we confront the task of embedding our human action model within
the HSE framework. Subsequently, we show how to infer behavior descriptions of
agents within a scene, and also how to generate synthetic behaviors for virtual hu-
man agents. Lastly, chapter 6 summarizes the main contributions of this Thesis and
discusses possible avenues of future research.
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Chapter 2

Related Work

As described in the previous chapter, several issues should be contemplated to develop
a Human Sequence Evaluation (HSE) system. This is reflected in the literature: a
huge number of papers confronts some of the levels of the general scheme shown in
Fig. 1.1, but rarely all of them. However, the number of human behavior analysis
algorithms is increasing each day, thus reflecting current significance of HSE systems
in the computer vision community [36]. In this chapter, an overview of papers, which
develop strategies for human motion analysis at different abstraction levels, is pre-
sented to the reader to illustrate integration, or how information can be transformed
from image data to conceptual interpretations.

Literature reviews classify human motion approaches based on different criteria.
Early surveys were centered on methods based only on geometrical models [1, 33,
51, 96]. That means, most referred papers implement human motion analysis at
the Picture and/or Scene Domain Levels. More recently, human motion surveys
began to include papers centered on high-level vision issues, that is, approaches whose
methodology were based on conceptual representations for behavior reasoning [32,
141]. Therefore, both Conceptual and Behavior Levels began to be exploited using
the quantitative information acquired from image sequences.

Following this tendency, we present a survey based on the terms considered for
our human motion taxonomy, namely movement, action, activity, and behavior. In
fact, our taxonomy reflects the minimal abstraction steps required to derive concep-
tual descriptions from pixel values. As the taxonomy explicitly differentiates between
quantitative and qualitative knowledge, we demonstrate the complexity of a generic
HSE system by showing which models, suppositions, and restrictions are usually con-
sidered at each abstraction step.

Next, we survey human motion analysis papers based only on geometrical knowl-
edge. For this purpose, movement and action representations will be described ac-
cording to both the degree of knowledge exploited and the characteristics of the
methodology used.

25
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Subsequently, we revisit different approaches for activity and behavior analysis.
That is to say, we will detail the degree of knowledge used in the literature to represent
the transition between different actions, and to employ the information of the context
in order to assist human behavior modeling, respectively. Despite the fact that some
progress has been made in behavior understanding, the aim is to show that conceptual
interpretation still relies on a proper action representation.

2.1 Movement Descriptions:
Analysis from Consecutive Images

The basic task of HSE systems is centered on the detection of actors within the scene
by means of event analysis, here called movement segmentation. Event detection
generates movement representations between consecutive frames, which are built using
two different approaches. On the one hand, event analysis is applied with respect to
a predefined background model. That is, actors correspond to foreground regions.
On the other hand, event analysis can be based on moving regions. That is, motion
information is extracted from two consecutive frames. Considering both approaches,
information about foreground and moving regions can be combined to enhance the
movement representation.

However, issues like clutter, shadows and changes in illumination conditions are
important sources of noise which should be confronted. Indeed, multiple restrictions
and assumptions are often contemplated in order to reduce the complexity of generic
HSE systems, and to test behavior analysis algorithms based on movement represen-
tations obtained robustly®.

Additionally, tracking procedures are usually incorporated in order to reduce seg-
mentation errors. Tracking techniques embed knowledge about the actor, such as its
observed motion, appearance, or shape. Using this knowledge, a prediction of selected
image features is generated at each time step. Afterwards, a correction criterion is
applied to evaluate such a prediction. Commonly, tracking is used to detect robustly
actors within the scene by applying an human motion model for prediction and a
suitable likelihood function for correction.

As the performance of higher levels of the HSE architecture is strongly depen-
dent on the accuracy of movement segmentation, some human motion understanding
publications prefer to avoid errors in the input data. For example, a typical domain
in which no errors in movement detection can be found is motion capture involving
markers on the body?. Consequently, a human movement model is automatically and
accurately built from image data, and human behavior analysis is applied in scenes
without clutter and well-defined agent silhouettes after automatic segmentation.

LCommonly used assumptions are [96]: no camera motion; only one person in the scene; slow and
continuous movements; movements parallel to the camera-plane; known camera parameters; and
known start pose.

2Moti is th f di li i btai 3-D i f

otion capture 1s the process of recording a live motion event to obtain a 3-D representation o
the performance.
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2.1.1 Movement Segmentation

As commented in [90], segmentation performance evaluation remains subjective: most
papers show few results that ”look good”, without specifying whether they are typical
or the best ones obtained. When reviewing the literature in order to choose and im-
plement the most suitable human movement segmentation algorithm according to our
demands, one should analyze the recording conditions and the characteristics of the
scene. Similar requirements will produce, in principle, similar results. For example,
issues like the size of the agents with respect to the whole field of view; the char-
acteristics used to perform segmentation, for example color or texture information;
the presence or absence of noticeable clutter; the nature of the scene, i.e., outdoor
or indoor scenes; and the degree of refinement required can help to determine the
segmentation algorithm to be developed.

Conventionally, two different approaches are found in the literature, namely, back-
ground modeling and motion detection. The former refers to implement a suitable
background model of the scene to determine foreground regions. Afterwards, the
movement representation is built on two consecutive foreground actors. Alternatively,
motion detection refers to motion information extracted from consecutive foreground
regions, which is usually achieved by applying motion correspondence or optical flow.
As a result, a movement is described in terms of a proper motion characterization.

Background Modeling

This approach defines the foreground regions with respect to a background model: re-
gions which do not correspond to the background model are considered as foreground
regions, or agents-of-interest. The main issue is to determine what is background and
what is foreground by using an explicit (usually adaptative) background model. So we
can keep on locating an actor all the time, even if it is motionless. Consequently, there
are moving regions, such as the leaves of a tree due to wind, which can be modeled
as background, and motionless regions, such as an actor stopped in front of a traffic
light, which can be detected as foreground. However, this approach is very sensitive
to clutter, shadows, illumination conditions, and physical changes in the scene.

Most referred publications use a background modeling-based approach [47, 63,
107, 133, 143]. For example, a probabilistic color-based background model is used in
Pfinder, developed by Wren et al. [143]. An indoor scene is modeled as a textured
surface, where each background pixel is represented using low-order statistics, by
means of a mean color value and a Gaussian distribution about this mean. It is
assumed that a discrepancy with the background is due to a human. However, small
changes in the background pixels color values are allowed, and only one actor, in an
upright standing posture, is assumed to be in the scene at a time.

Haritaoglu et al. [62] presented W*, a real-time system that locates and tracks
people in outdoor scenes. Like Pfinder, W* uses a statistical background model.
Unlike Pfinder, which uses a single Gaussian distribution of color for each pixel,
W* uses a bimodal distribution of intensity for each pixel. Considering a static



28 RELATED WORK

background, the scene is modeled by computing three images: two consisting of the
maximum and minimum intensity values for each pixel of the image during a training
period, and the third one consisting of the maximum difference between consecutive
frames. As a result, foreground regions are represented as blobs of neighboring pixels.

Another method is described by Oliver et al. [107], called Eigenbackground. Unlike
Pfinder and W*, foreground regions are required to be small with respect to the field of
view. First, the mean background image and its covariance matrix is calculated. After
applying Principal Component Analysis (PCA), the background model is represented
by the set of largest eigenvalue eigenvectors. Unlike the previous approaches, which
computes a distribution for each pixel, the scene model corresponds to the entire
background image. Thus, small movements of the camera and the background are
well described. Pixels corresponding to moving regions do not have a significant
contribution to the background model, since they do not appear at the same location
in the image, and they are typically small.

Stauffer et al. in [133] described an adaptive background model, which is an ex-
tension of that used in Pfinder. The intensity or color values that each pixel exhibits
along several frames is modeled by means of an adaptive Mizture of Gaussians dis-
tributions (MoG). Using an adaptation procedure, an actor will be included in the
background model if it remains motionless long enough, and it will be excluded if it
moves. However, how fast the model adapts to changes needs to be determined to
obtain high detection sensitivity®.

In order to achieve high sensitive detection using a model which adapts quickly to
changes, Elgammal et al. in [47] proposed a non-parametric background model which
is well suited for outdoor scenes. The background is not required to be perfectly static,
and shadow suppression is handled. As in [133], the model considers the most recent
pixel values to compute a statistical model. But here, density estimation is achieved
by using a Normal kernel function, which is a generalization of a MoG. However,
several heuristics are established to handle false positives and false negatives. Also,
this approach requires considerably memory resources and processing time.

Summarizing, approaches presented in this section can be used to build a move-
ment, model represented as a consecutive pair of segmented agents. Therefore, such a
model can be extended over time to build an action model represented as a sequence
of segmented postures.

Motion Detection

Motion-based approaches only pay attention to agents in motion, so motionless hu-
mans can not be detected. This approach is consistent with the idea that surveillance
systems is only interested in what is happening in the scene by means of event analy-
sis, where the basis of event analysis is change detection. Commonly, change detection
is assumed to be due to motion, and is segmented by means of temporal differencing

31f the background model adapts too slowly to changes, an inaccurate model will be built. On
the other hand, if the model adapts too quickly, the target will be included in the model.
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or optical flow analysis.

Temporal differencing can be considered as the simplest way to apply change
detection, and it can achieve real-time performance. This approach uses pixel-wise
differences between two [87] or three [118] consecutive image frames. However, only
motion regions are extracted instead of the whole moving object. Thus, it is difficult
to extract agent features from these motion regions. Also, since the difference between
two frames is sensitive to noise, false positives cannot be suppressed effectively. In [87],
for example, temporal differencing is used in outdoor scenes. The absolute difference
between two consecutive images is calculated, and a threshold function determines
movement segmentation. A connected component criterion is used to cluster moving
sections into moving regions. However, this approximation has a very limited ability
to represent variations in the human posture.

On the other hand, optical flow analysis describes coherent motion of points of
image features between frames; for a review, see [13, 95]. Thus, the characteris-
tics of flow vectors of moving objects facilitate the segregation of objects from the
background. For example, Bregler in [30] represents each pixel by its optical flow. Af-
terwards, blobs are built by grouping pixels with similar flow vectors, thus obtaining
blobs having coherent motion. Each blob is represented as a mixture of multivariate
Gaussians, where each single Gaussian encodes the coherent motion of that blob.

An advantage of optical flow algorithms is that moving agents are segmented even
with camera motion. However, it is not feasible for nonrigid object extraction since
the movements of the body parts are different. Also, optical flow is difficult to be
applied in real-time domain, due to its expensive computation. Furthermore, in some
situations, optical flow analysis is very unstable: due to the aperture problem, only
the normal flow (the component parallel to the gradient) can be computed.

Optical flow is actually used in different feature-based tracking papers for motion
correspondence, due to the fact that algorithms based on 2-D features, such as corners,
do not suffer from the aperture problem. Therefore, optical flow is more appropriate
to obtain suitable motion descriptions of image features which can be tracked and
learnt, rather than solely classifying each pixel into motion or motionless regions.

Summarizing, motion information is used to detect predetermined image features
of the human posture, upon which more complex human motion models are built.
Note that these features should embed facilities for human tracking or human action
modeling [31, 48, 68, 81, 122, 146].

2.1.2 Human Tracking

A movement is defined as a noticeable change of human posture or place between
consecutive frames. As described in the preceding section, human movements can
be represented using two consecutive human posture, or a motion characterization of
predetermined features of the human posture, such as the centroid, the silhouette, or
the joints of a predefined stick figure, for example.
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However, segmentation errors can lead to an inaccurate movement description.
Errors due to image noise and partial occlusions of the actor change, possibly in an
extreme way, the observed human posture. Even worst, the actor can be completely
occluded due to static components of the scene or foreground objects. In these cases,
the parameters of the movement model are updated considering erroneous or incom-
plete image information.

Consequently, tracking procedures are incorporated to perform movement seg-
mentation robustly. The goal is to process image data, called measurements, in order
to obtain a minimum error estimate of the state of an agent by utilizing a dynami-
cal model, predefined initial conditions, and assumed statistics of system noises and
measurement errors. This tracking process can be considered as an estimation algo-
rithm over time, also called temporal filtering. Thus, it is possible to maintain the
parameters of the human body model when measurements are unreliable or unavail-
able. The advantage of such estimators relies in the minimization of the estimation
error in a well defined statistical sense. Also, they utilize all measurement data plus
prior knowledge about the system. Potential disadvantages of these methods are their
sensitivity to erroneous a-priori models, and the inherent computational burden.

Several papers already review different human tracking procedures by considering
different geometrical or methodological criteria [1, 32, 33, 51, 96, 140, 141]. Alter-
natively, the aim of this section is centered on describing which knowledge is usually
pre-determined in the literature to perform tracking.

Knowledge for Human Tracking

In recent years, novel tracking techniques are defined based on an hypothesis/validation
principle [39]. Consequently, the tracking process is described using a probabilistic
scheme, which is based on the Bayes’ rule [30, 73, 130, 134]. The goal is to estimate
the state of the agent using a combination of hypothesis generation and validation.
The generation of new hypotheses is modeled using a prior probability distribution
called the human motion model hereafter, and the validation of such hypotheses is
attained using likelihood functions.

Consequently, tracking algorithms require to define [12]: the state of the agent,
which describes the characteristics of the agent being tracked; the human motion
model, which provides a prediction cue for the state of the agent at next time step;
and the likelihood function, which defines the relationship between the state of the
agent and the measurements obtained from input devices, such as cameras. These
topics should be carefully designed in order to develop a tracking procedure specific
for our problem domain.

The state of the agent is a quantitative vector which corresponds to a predeter-
mined set of features derived from the actor being tracked. Such features should
be selected accurately, depending on the functionalities provided by the system: the
state of the agent can rely either on a pre-defined human body model, or on low-level
image characteristics. That means, there is a trade-off between complex high-level
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human body models which supply accurate body posture configurations, and simple
low-level human body representations which can be robustly extracted from noisy
images.

In any case, the state of the agent can not be determined directly in real-world
applications. Instead, a set of measurements of the state of the agent is obtained from
at least one camera. Thus, tracking is posed as an estimation problem, where the
state of the agent is estimated from measurements following two approaches, namely
model-driven and data-driven procedures [51]. The former refers to a predefined body
model which determines the image characteristics to be tracked. The latter refers
to predefined image features and heuristics which represent the actor. Methodologi-
cally speaking, model-driven and data-driven methods can be referred to as top-down
and bottom-up approaches, respectively [147]. Both approaches perform a correspon-
dence measure between measurements and the state of the agent using the prediction
stemmed from the motion model.

The human motion model describes how the agent is moving within the scene, thus
allowing to estimate the next expected position and/or configuration of the human
body at next time step*. The goal is to reduce the set of plausible configurations
of the agent state at next time step, once we have estimated the current agent state
from image measurements.

Commonly, constant velocity and acceleration is assumed, and the human motion
model is implemented in discrete form through difference equations. Using proba-
bilistic terms, these linear dynamical models can be expressed by means of Gaussian
densities. The parameters of such densities are determined during a training step
to describe the motion of a given agent. This learning process can be implemented
off-line, that is, the parameters of the motion model are determined beforehand to
improve the tracking performance. Alternatively, the human motion model can be
learnt on-line by means of automatic learning procedures, for example by using the
principle of mazimum likelihood [17]. Both learning processes search for the optimum
parameters which maximize a predefined likelihood function.

Likelihood functions relate the motion model with the state parameters of the
agent. In fact, these functions can be considered as probability measures, i.e., the
probability that a given state generates a given measurement. This correspondence
measure corrects the predicted state obtained from the human motion model. There-
fore, likelihood functions are determined by the complexity of the state of the agent
and the efficiency of the movement segmentation step.

In data-driven approaches, the validation step is attained by using correlation, dis-
tance measures, or suitable objective functions. Likewise, in model-driven approaches,
the correspondence between measurements and the state is achieved by means of a
matching procedure between image data and model data. Therefore, low-level human
body models are easier to match to image features, and high-level human body models
are more difficult to be compared with image features [1].

4However, in some domains, actors move so erratically that motion is impossible to be modeled
[72]. In such cases, a suitable alternative is data association [12].
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Human Body Models for Video Surveillance

Depending on the application, the human body is represented based on different
criteria. We consider here that such a model is driven to assist video surveillance
applications, that is to say, the interesting parameters of the body model should
allow to infer the presence or non-presence of human actors, the spatial position of
detected actors, and the separation of individuals in the case of multiple humans
tracking. Therefore, tracking requires of a compact representation adequate enough
to deal with locating errors due to occlusions, background clutter and noise.

Commonly, video surveillance does not require an accurate representation of the
human agent, because each additional parameter of the body model increases the
complexity of the tracker. Consequently, data-driven human body models are usually
considered. Based on the final purpose of surveillance systems, the spatial information
about each agent is well-represented using simple image features, such as points, lines,
or regions. However, it is possible to enhance these models with pixel characteristics,
such as color [92, 114], appearance [18, 137], or even their motion [30]. Also, heuristics
can help to determine the agent posture or even its body parts [63]. These low-level
descriptions can be extracted robustly from noisy and incomplete data.

Most popular representations are blobs [30, 74, 86, 143] or sub-features of blobs,
such as the centroid [111], median [63] or bounding box [104]. Blobs are constructed
by grouping pixels having similar characteristics, such as color or coherent flow®.

In [111], pixels corresponding to independently moving objects are detected. These
pixels are then grouped using spatial clustering methods. Tracking is performed
using the centroid of the resulting moving blob. As the centroid is affected by the
large motions of the extremities, the height of the agent is assumed to be constant.
This approach assume only one moving object in the image. Motion field between
successive frames is used to segment and track the actor, detect scale changes and
compensate for translation and scaling. In [63], the median of the resulting segmented
blob is tracked, which is not affected by large motions of the extremities which tend
to influence the centroid significantly. In [120], two points are the features selected
for tracking, which correspond to the two opposite corner of the blob’s bounding box.
Wren et al. [143] represent the human body as a set of blobs, each one described in
terms of spatial and color information. The actor model represents the global aspects
of the shape, and is built by identifying the head, hands and feet locations using 2-D
contour shape analysis. A initialization step is required.

Note that low-level features can not be used to analyze internal features of the ac-
tor, so neither body parts can be tracked nor body pose can be determined accurately.
In order to describe motion patterns with communicative purposes, model-driven pro-
cedures are used instead, which require of a predefined synthetic model, such as stick
figures, 2-D contours, and volumetric models [1, 141]. Usually, a initialization step is
required, and the aim is to maintain and update the parameters of the human body
model using image features. Therefore, a matching process is required to compare

5This procedure is inspired in the investigation about the human visual system performed by the
Gestalt school in the 1930s [82].
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how well the body model fits the human tracked in the image.

Errors due to locating and tracking processes are commonly estimated and cor-
rected without considering the actual behavior of the actor. However, once an action
is recognized, the movement information about such an action could help to deter-
mine the next expected body posture configuration, thus reducing the search space
of the tracking algorithm [19].

2.2 Action Descriptions:
Analysis from Image Sequences

We define a human action as a learnt sequence of human movements. The term learnt
denotes the process during which a predefined sequence of movements is semantically
associated to a verbS. So human actions are described using motion verbs, such as
walking, jumping, or bending. Thus, image sequences can be compared against learnt
motion patterns to describe which verb is being observed. Consequently, human
actions constitute the semantic basis for motion understanding.

In the literature, an action is commonly determined beforehand, that means, su-
pervised learning procedures are used. Therefore, during a learning stage, the sequence
of frames which constitutes a given action is exactly determined”. Movement patterns
are extracted from that sequence, and processed afterwards to develop a suitable ac-
tion model. The term suitability is defined with respect to predefined criteria, such
as:

Compactness : to require few parameters to describe each action, thus improving
the performance and speed of human action evaluation algorithms.

Accuracy : toinclude any movement which is plausible to appear in any performance
of a given action. Accuracy is often poor where not enough training data is
provided.

Specificity : to exclude those movements which are not likely to appear during a
learnt action.

Temporal invariance : to be invariant to nonuniform changes in the speed of any
action performance to be learnt.

Order-preserving : to include the order in which the variation of the movement
has been observed during an action performance.

6Verbs are the most natural, best-understood and most readily accessible way for communicating
motion and time-varying concepts [136].

"When considering cyclic actions such as running or walking for example, repetitive motion de-
tection can help to determine the sequence of frames which constitutes the action to be learnt
[4, 30, 35, 111, 128].



34 RELATED WORK

So the aim is to model properly the variation of the human movement, but also
to design a human action representation useful for HSE purposes. That means that,
on the one hand, the action model should be instantiated from low-level image cues.
But also, the action model should be useful for high-level tasks, such as motion
understanding, human synthesis, or performance analysis, for example.

HSE requires human action models with facilities for motion understanding, which
involves both human action recognition and description. That means, the action
model should maximize existing dissimilarities between their constituents movements.
Also, a comparison measure between action descriptions should be defined to imple-
ment human action classification. Such a comparison depends on the type of features
used to describe motion patterns, and is usually implemented by means of distance
calculations between an action model and an unknown sequence.

Moreover, HSE requires human action descriptions with facilities to motion syn-
thesis and performance analysis. That means, the human action description should
provide both anatomical meaning and accurate measurements. Therefore, video se-
quences involving virtual agents can be generated, during which human action de-
scriptions are re-visualized for evaluation purposes. Also, the accurate analysis of a
particular performance should be addressed to determine "how well” a performance
has been executed with respect to a reference action model, and to derive action
characteristics such as the style, for example.

As commented before, an action model can be built using a sequence of either mo-
tion measurements or human postures. Next, we detail different human body models
which are used in the literature for human action modeling. Subsequently, we survey
different human action models by analyzing the previously described requirements.

2.2.1 Human Body Models for Motion Understanding

As commented in [33], "to properly study human motion, good body models must
be defined”. In fact, human motion is divided into two components: absolute motion
and relative motion. Absolute motion is defined as the global movement of the human
body with respect to the observer, also called locomotion. On the other hand, relative
motion is the movement of one limb with respect to other limbs of the human body,
which is the basis for human motion understanding.

Data-driven human body models are suitable to derive the absolute motion de-
scription of an observed agent. Such models are built based on low-level image fea-
tures, such as points [63, 105, 111, 120, 127] and blobs [66, 72, 114, 143, 147]. But this
set of parameters can be extended over time to model actions. Thus, the temporal
evolution of human movements can be represented by means of motion trajectories.
However, image features do not provide rich descriptions of the human body for rel-
ative motion analysis, though their extraction from images is robust.

In order to analyze the relative motion of an actor, model-driven procedures are
best suited, due to the fact that they are based on high-level body models. Considering
these models, the goal of tracking is to recover the full-body pose of the agent. Most
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referred models are those based on stick figures [2, 21, 35, 45, 49, 59, 80, 110, 144], 2-D
contours [63, 76, 85, 106, 118, 145], and volumetric models [15, 34, 52, 69, 77, 119, 130].
Consequently, human body segments can be represented using lines, 2-D ribbons, and
3-D volumes, respectively.

The stick figure representation consists of segments connected at their endpoints,
and is defined in terms of a set of joints, usually grouped in a hierarchical manner.
The characteristics of stick figures can be summarized as follows:

e The stick figure reflects the anatomical characteristics of the human body. Thus,
facilities for action synthesis are embedded.

e Human body parts can be tracked separately by means of the joints. Angle
predictions and constraints of individual joints can simplify the search space of
tracking procedures.

e The human action can be represented as a sequence of postures, as motion
trajectories of body parts, or as the variation of joint angles over time.

e Depth information can be determined. The stick figure can be set in correspon-
dence with a more realistic and complex three-dimensional human body model.
Thus, three-dimensional tracking can be implemented.

e The human body is modeled using a reduced number of parameters.

e A comparison measure between different human body poses can be established,
due to the hierarchical nature of the stick figure representation.

The stick figure can be built from image data by means of skeletonization tech-
niques. For example, Fujiyoshi et al. selected in [49] a body representation based on
a real-time skeletonization process. Once a foreground object is detected, its centroid
and boundary is computed. The centroid is assumed to lie inside the object boundary.
Subsequently, a function is applied to each border point of the boundary to determine
the distance from the centroid. Local maxima correspond to extremal points of the
boundary, and the skeleton is built by connecting them to the centroid.

Stick figures can be defined a priori, too, by determining the number of joints and
their degrees-of-freedom (DOF') considered for modeling. Cheng and Moura in [35],
for example, represented the human body as a stick figure composed of 12 rigid body
parts (head, torso, plus two primitives of arms and three primitives of legs), which is
built in a hierarchical manner. As their paper is focused on human walking, kinematic
and physical constraints are applied to reduce the human model to 14 DOF, and
dynamic constraints of human walking restrict the search space of plausible motion
parameters. Tracking of body parts is implemented using a gradient-based method.
Furthermore, it is assumed that motion is restricted to a planar walking motion. The
shape, texture and motion of the human are recovered for synthesis purposes.

On the other hand, 2-D contours are set to correspond to the human body pro-
jection in the image plane, so body models are restricted to the camera’s angle. For
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example, a cardboard body model is proposed in [76], in which the limbs of the human
are represented by a set of connected planar patches. The motion of these patches
are parameterized to deal with the analysis of articulated motion of human limbs.
In [85], the outline of the human body is found using coincidence edges, which are
edges common to an edge image and a difference image. Structural constraints, such
as lengths and relations between different joints, are introduced and combined with
shape constraints. A B-spline is used in [14] to represent the shape of the agent.
Shape constraints are introduced, and a set of Kalman filters are used to predict and
smooth the different body model parameters. Davis et al. [42] use a similar technique:
each extracted contour is parameterized using a B-spline. Tracking is implemented
using the Condensation algorithm, which is based on a template hierarchy, and the
likelihood function is based on a multi-feature distance algorithm.

Volumetric models can be modeled as elliptical cylinders [31, 69, 119, 130], cones
[43, 139], or super-quadrics [52, 77]; see [96] for a detailed review. In fact, complex 3-D
volumetric models provide an accurate representation of the body pose, which achieves
independence from the viewpoint, and handles self-occlusions and self-collisions of
limbs.

However, volumetric models involve complex and expensive reconstruction algo-
rithms [143], so kinematic and shape constraints of the human body are highly ex-
ploited. In fact, pose recovery is very unreliable and difficult to perform, so body
model parameters are usually derived from image features. Therefore, a matching
procedure is required to determine how well the model fits the human agent in the
image [26, 35, 80, 110, 129]. This comparison measure is usually performed by means
of a matching process between the three-dimensional model of synthesized data, and
a suitable two-dimensional representation of image data. The goal is to maintain and
update the parameters of the human body model at each time step.

Data-driven models are used to assist the instantiation of the synthetic model, too.
In [59], Guo et al. compute the skeleton of the segmented agent, which is matched
against a stick figure using an energy function. A potential field is introduced to
reduce the complexity of the problem. Angle constraints of individual joints are used
for prediction. In [69], the boundaries of the projected model limbs were compared
to extracted edges in the image. Hard constraints on the motion of the model are
determined. Rohr [119] presented a similar approach, but Kalman filters where used
instead for estimating the pose between time steps. Edges are also considered in [52]
where four calibrated cameras were used to image-model comparison. Wachter and
Nagel [139] exploited edge and region information of the image to establish a matching
process based on the iterative extended Kalman filter.

Model-driven approaches can incorporate known physical constraints of limbs and
extremities of the body to perform location and tracking. In fact, the parts of the
human body can move in quite independent ways, but human actions, such as walk-
ing, running, etc., are very constrained by factors including motion symmetries or
dynamics. So they can be based on physics heuristics. That means, physical restric-
tions about dynamics and human structure can be easily embedded in such models
to restrict the set of plausible postures that an agent can exhibit.



2.2. Action Descriptions: Analysis from Image Sequences 37

2.2.2 Human Action Modeling

As commented before, the basis of motion understanding is action recognition and
description. Therefore, suitable models for human actions should be developed in
order to recognize predefined motion patterns, and to produce high-level descriptions
for the observed action. Typically, action recognition is posed as a time-varying
data matching problem. Therefore, in order to deal with the inherent temporal and
spatial variability of human action performances, suitable analytical methods have
been used in the literature for matching time-varying data. Most referred algorithms
are Dynamic Time Warping, Hidden Markov Models and Neural Networks [33, 141].
Such procedures model how an action description varies during a performance. In
any case, the recognition performance relies mainly on the features used for action
modeling.

Human action models can be built using two strategies, namely, motion-based or
appearance-based approaches [22]. On the one hand, motion-based algorithms charac-
terize the motion itself by encoding the variation over time of selected low-level image
characteristics in a feature vector [33]. Such a vector can correspond to parameter-
ized trajectories of tracked features over time, or to temporal templates built from
image data and matched against stored models of known actions. Therefore, no pose
reconstruction is required. On the other hand, appearance-based approaches describe
motion patterns by considering the sequence of human postures exhibited during sev-
eral action performances. Thus, the aim is to recover the posture of the human body
using a pre-defined human body model, which is usually different from that used for
whole-body tracking: anatomical information of the agent is also modeled, which is
useful for synthesis and analysis purposes.

Human Action Representations based on Motion

Early research on Moving Light Display (MLD) [75] experiments suggested that many
human gestures could be recognized solely by motion information. Therefore, motion-
based action models require of motion extraction®. This process can be achieved by
using two methods [33]: motion correspondence and optical flow. On the one hand,
motion correspondence refers to characteristic features, which are tracked over time.
On the other hand, techniques like optical flow and image differencing, which compute
the displacement of each pixel between frames, are applied to extract human motion
information.

Motion correspondence derives a trajectory from tracked image characteristics.
Therefore, two steps are involved: the detection of predefined tokens in each frame,
and the correspondence of such tokens from one frame to another. Suitable tokens are
those which are distinctive enough for easy detection, and stable enough over time so
they can be tracked. Examples of tokens are edges, corners, points and regions. The
sequence of locations of such tokens can be represented as a motion trajectory, that

8In order to represent the relative motion of the human body, incidental motion is removed, such
as camera motion and agent locomotion [22].
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means, a vector valued function which describes the token location over time. This
problem is computationally expensive, so several heuristics are introduced to limit the
search space. Such qualitative constraints are usually transformed into cost functions
in order to quantitatively determine optimal trajectories.

As parameterization of trajectories is better suited for computations, temporal
trajectories are parameterized in the literature in terms of speed and direction, veloc-
ity, and spatiotemporal curvature [4, 23, 57, 115, 116, 118]. Mainly, parameterization
of trajectories has been applied to gesture representation, but its extension to hu-
man action modeling is straightforward. Bobick and Wilson [23] model a gesture as
a trajectory in X x Y x T space, which is derived from a sequence of spatial hand
positions extracted over time. Thus, once several training gesture trajectories have
been computed, a prototype curve is derived by removing time as an axis, and by
preserving the temporal coherence of the trajectory. Such a prototype curve, which
is parameterized by arc length, is clustered using the k-means algorithm. By using a
suitable distance metric, the cluster centers, called states, correspond to those points
of the curve with most relevant variance of the gesture, independently of the temporal
ordering. Consequently, the gesture is modeled as a sequence of such states. Rao and
Shah in [116] model actions performed by a hand, based on spatiotemporal curvature
of a trajectory. For each frame, the hand is located using skin detection, and its cen-
troid is computed. Subsequently, the trajectory is built by joining the centroids of the
hand of each frame. Next, dynamic instants, which correspond to important changes
in motion characteristics (such as speed, direction, acceleration and curvature), are
identified in the trajectory. The number and locations of such instants are exploited
in both the learning and recognition processes. And this can lead to ambiguity due
to the differences in the knowledge embedded in both models.

Alternatively, two dimensional motion information derived from optical flow anal-
ysis can be used to build more elaborate representations [22, 30, 76, 88, 112, 121].
In [22], Bobick et al. model 18 aerobic exercises by considering the temporal his-
tory of motion at each pixel. Specifically, a temporal template, which is composed
of two components, is built by image differencing for a given viewpoint and a given
action. Such components represent, on the one hand, where there is motion (called
Motion-Energy Image or MEI) and, on the other hand, how motion is moving (called
Motion-History Image or MHI), which implicitly represents the direction of motion.
Both images are computed recursively, and used jointly to improve the recognition
rate. Duration of each aerobic exercise is computed using a backward-looking variable
time window. Ju et al. in [76] represent the walking action using 2-D parameterized
models of optical flow. Human agents are represented using cardboard models, in
which each limb of the model is described by a planar patch. Image motion of each
rigid planar patch is determined through energy functions and represented using tem-
poral curves. Subsequently, a characteristic curve is created for each action and body
part viewed at a given angle using PCA. Thus, the dominant curve components are
captured, which is the basis for action recognition. Polana and Nelson [112] compute
the optical flow field between consecutive frames. Periodic human motion is assumed,
thus allowing to model a single cycle for each action to be learnt. An action is repre-
sented as a spatio-temporal solid composed of X x Y x T cells by partitioning the two
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spatial dimensions into X,Y divisions, and the temporal dimension into 7" divisions.
For each cell, the summed normal flow magnitude is computed. The resulting motion
magnitude values of each cell constitute the high-dimensional vector used for action
recognition.

Typically, motion-based approaches exhibit low computational complexity and
simple implementation for action recognition procedures. However, the variations of
the time interval of the movements influence the resulting action description. Fur-
thermore, these action representations do not embed facilities to synthesis.

Human Action Representations based on Appearance

Appearance-based action models are built upon the sequence of static attitudes which
an agent exhibits while performing a particular action. Such a sequence embeds the
set of human body model configurations exhibited during a predetermined number of
performances of the action to be modeled. Therefore, both a suitable representation
for each human posture, and a procedure for the parameterization of the resulting
sequence should be determined.

As discussed before, each body pose can be represented following two approaches,
namely data-driven and model-driven procedures. The former refers to predefined
image features and heuristics which represent the body model. The latter refers to
a predefined body model which determines the image characteristics to be tracked.
This differentiation is also found when reviewing human action models, too.

On the one hand, each static posture model can be built directly from low-level
image features, such as pixel appearance [40], skeletons [3, 46, 49], body silhouettes
[63, 78, 91, 147] and body contours [2].

For example, each human posture is modeled using skeletonization in [3]. Con-
sidering lateral view, each skeleton is then described in terms of three angles (torso,
upper component of the leg and lower component of the leg). Therefore, an action
is represented as a sequence of skeleton curves, that is, a sequence of three-element
feature vectors.

Haritaoglu et al. [63] use temporal texture templates for action representation.
Specifically, each action is represented as the average normalized horizontal and ver-
tical projection templates computed from 4500 silhouettes of 7 people in 3 different
views. Transitions between different actions are misclassified. Yamato et al. in [147]
model an action as a sequence of feature vectors. Each feature vector is built as fol-
lows: given an image, the agent is first segmented. The resulting binarized image is
divided into meshes. Each mesh size is related to the size of the agent, and the ratio
of pixels corresponding to the agent in each mesh becomes an element of the feature
vector. Subsequently, the feature vector sequence is transformed into a symbol se-
quence by vector quantization. This symbol sequence is used afterwards for human
action learning and recognition.

An approach similar to that described by Bobick in [22] is presented in [91], where
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motion information is calculated using an infinite impulse response filter. The idea is
to represent motion by its recency: for each image of a given sequence, recent motion
is represented brighter than older motion. Unlike [22], an action is represented as a
sequence of normalized feature images, each image capturing the temporal changes
in the sequence up to that image. Subsequently, each action is represented as a
manifold in an eigenspace, whose points correspond to the different feature images
the action goes through. By applying PCA, there is a reduction of dimensionality for
each feature image to be learnt. Also, representing an action as a manifold provides
better discrimination than modeling the action as a single point in eigenspace.

Human Action Representations based on Body Models

Alternatively, predefined human body models can be used instead, for example by
means of stick figures or ribbons [15, 35, 59, 85]. By providing a synthetic body
model, anatomical information and kinematic constraints are incorporated to the
action model, thus allowing to derive rich and useful human motion descriptions.
Such descriptions can be driven to assist different tasks of HSE systems, such as the
tracking of limbs, the synthesis of motion, and the analysis of performances.

In the literature, most human action models are exclusively driven to perform
action recognition. Due to the specificity of the task to be achieved, i.e., classification,
the action model embeds characteristics which are discriminative enough for the set
of actions to be recognized. However, as the qualitative paradigm points out, is
reconstruction really necessary for human action recognition? [5]. That means, by
representing an action as a sequence of body model configurations, additional issues
need to be addressed, such as the segmentation of the agent, and, commonly, the
identification of the individual body parts.

But, if only motion characteristics are embedded in the action model, we limit our
HSE system to a specific application domain, namely action recognition. However,
anatomical characteristics should be incorporated in the body model to perform HSE
which can demand, additionally, action synthesis and performance analysis. For ex-
ample, the stick model described by Cheng and Moura in [35] is used for multimedia
applications, such as synthesis, video manipulation, or indexing.

Consequently, by representing an action as a sequence of parameter values of a
predefined human body model, anatomical features can be included in the action
representation, thus allowing to re-visualize a recognized action. For this purpose, we
can consider different types of action models, depending on the task to be performed,
for example one action model for recognition and one action model for synthesis.
However, this approximation implies to establish a transformation procedure between
both action representations, in order to interconnect both tasks.

Alternatively, we can establish a generic action model which can be used for dif-
ferent application domains, like the human body model presented in this Thesis.
Ben-Aire et al. represent an action in [15] by a sequence of pose and velocity vec-
tors for the major body parts, namely arms, legs and torso. The poses of the body
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parts are described in terms of normalized angles to achieve invariance to body size.
Subsequently, each body part representation is stored in a different hash table, thus
enabling action recognition even when several body parts are occluded. As discussed
before, Cheng and Moura [35] represent the walking action as a sequence of human
postures. Thus, considering the average joint angle time series of several walking
performances, human body part tracking is implemented using a template matching
technique. In [59], human motion patterns are represented as a sequence of stick
figure configurations obtained from the tracking process. Each stick figure vector em-
beds information about the length of the limbs and joint angles. In order to segment
the duration of a given motion pattern, temporal periodicity is exploited. Thus, only
periodic motions are modeled, specifically walking and running.

In the literature, video sequences used for action modeling are usually restricted to
a very limited number of actions, performances, and agents. In fact, current research
on action modeling is just in its infancy [141]. And, since human motion under-
standing highly relies on the performance of the human action recognition algorithm,
procedures for the semantic interpretation of human behaviors are usually defined in
highly constrained domains.

2.3 Activity Descriptions:
Transitions between Actions

As commented in the last section, human action analysis is the basis for motion un-
derstanding. Human actions are associated to verbs, such as walking, jumping, or
bending, so basic conceptual descriptions can be derived. These descriptions are com-
bined/enhanced with the knowledge about the context in order to perform behavior
evaluation or, in other words, deep reasoning about the behavior and intention of
observed agents.

Consequently, there is an explicit relationship between two different fields of re-
search, namely, pattern analysis and artificial intelligence. On the one hand, pattern
analysis applied to the computer vision domain allows to develop different method-
ologies devoted to build a quantitative representation of human agents within the
scene, by using the information obtained from video cameras. On the other hand,
artificial intelligence allows to develop different methodologies devoted to instantiate
and manipulate conceptual predicates for human motion interpretation and reasoning
[123]. As a result, we can qualitatively evaluate what is happening in the scene.

As discussed in chapter 1, a critical issue of HSE is then centered on the integration
process, that is to say, how to associate the quantitative information obtained from
pattern analysis procedures, with the conceptual descriptions used for reasoning. Due
to integration, the numerical information obtained from image sequences can be used
to infer the behavior of an observed agent and, the other way round, conceptual
knowledge can be used to assist action analysis processes.

We introduce integration by first discussing about the concept of activity, defined
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as a sequence of consecutive actions. In fact, human activities embed characteristics
of both action and behavior definitions. On the one hand, each component of a human
activity is a discrete action primitive. On the other hand, a human activity also refers
to the transition between consecutive actions. Therefore, conceptual knowledge is
incorporated to establish a procedure which defines the transformation of the state
parameters of the human agent in order to represent not only the complete sequence
of actions predefined in the activity, but their transitions.

Most research in computer vision is centered on single action evaluation, and the
analysis of continuous activity sequences is still a very recent domain. That means,
activities are not considered as feasible motion patterns to be learnt.

At present, most interest in activity evaluation has been found in papers related
to graphics and animation techniques [10, 93, 108]. In fact, advances in graphics
hardware and rendering software has allowed to build visually rich worlds, creating
possibilities for activity synthesis and analysis.

The creation of synthetic activities exhibiting realistic motion is a challenging is-
sue. Current applications assemble static clips of motion created with traditional
animation techniques such as motion capture or keyframing. Therefore, the assembly
process requires making transitions between motions. These transitions may be dif-
ficult to create, such as a transition between a running and a lying-down action, or
trivial, if the end of an action is identical to the beginning of the next action.

A sequence of actions and transitions between them can be represented as a graph
where the edges are pieces of motions, and the nodes are choice points connecting
motions, also called keyframes. A graph of this type is common in computer games,
and is called motion graph [8, 84] or move tree [93]. Move trees are constructed by
pre-planning actions with similar beginning and end keyframes. An animator then
chooses the exact keyframes where transitions are to occur, and creates the transition
motions.

The computer animation literature provides several procedures to build move
trees. On the one hand, by specifying both an initial and a final body posture con-
figuration, the sequence of intermediate body poses can be automatically found by
using interpolation techniques [142]. In fact, the foundation of most animation is the
interpolation of values, which is used when the animator directly controls how the
object moves. On the other hand, more sophisticated techniques can be applied to
generate motion with a desired degree of physical realism [67, 89]. In this case, the
physical characteristics of the human body help to capture and generate realistic mo-
tion by considering several anatomical constraints and rules [54]. Note, therefore, that
activity modeling involves a trade off between the required level of user-interactivity,
and the physical realism obtained. These two issue are addressed next.

2.3.1 Creating Motion using Interpolation Techniques

Transitions between actions can be posed as an approximation problem, in which the
state parameters of the human agent are interpolated to reach smoothly to a certain
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posture of another action [55]. For this purpose, the term key-frame is applied: a key-
frame is a variable whose value is set at a specific key frame, and from which values
for the intermediate frames are interpolated according to a predefined procedure.

We assume hereafter that the human body consists of rigid segments connected
at their endpoints, and is modeled in terms of a set of joints, usually grouped in a
hierarchical manner. Given an activity model, a key-frame is set to correspond to
the last human posture of a given action, and another key-frame refers to the body
configuration of the initial posture of the next action in temporal order. Interpolation
of the joint parameters of both key-frames will generate the sequence of intermediate
body postures, or in-betweens.

Several issues need to be addressed to implement an interpolation procedure [108]:

Control points : constitute the set of spatial coordinates which describes the curve.
Control points are used to compute a curve which pass through these points,
or rather they are used to control the shape of the curve, so control points are
approximated. The resulting curves are usually implemented using splines, such
as Hermite splines or Cubic B-splines.

Complexity : refers to the underlying equations of the interpolating function. Typ-
ically, cubic polynomials provide smoothness while satisfying the constraints
imposed by the control points. A polynomial whose order is lower than cubic
may not fit smoothly the control points. A higher polynomial order does not
provide any significant advantages and is more costly to evaluate.

Continuity : refers to the number of derivatives of the curve equations, which are
continuous. Zeroth, first, and second-order continuity refers to the positional,
tangential and curvature continuity of the values of the curve, respectively.
Typically, first-order continuity at the control points guarantees the smoothness
of the resulting curve.

Once the joint trajectories establish the sequence of spatial positions which drive
the body to execute smoothly the transition between two consecutive actions, the
speed at which the curve is traced out should be under control, too. For this purpose,
the resulting trajectory curves are commonly parameterized to arc length, that is, the
distance along the curve of interpolation.

Different procedures can be chosen to perform such a parameterization. For ex-
ample, a length function can be computed analytically. However, as the relationship
between the parameterizing variable and the arc length is usually non linear, there ex-
ists no analytical solution. Instead, a table of values can be created, which establishes
the relationship between the parametric value and the arc length at several sampled
points of the interpolated curve.

Once the curve is parameterized by arc length, it is possible to control the speed
at which interpolating curves are traversed by means of distance-time functions. Such
functions relates arc length values to time, which is independent of the form of the
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curve itself. Therefore, we can generate a posture transition between two actions,
which starts quickly, then continues slowly, and ends again quickly, for example.

Note that no anatomical information of the human body has been considered
up to this point. Consequently, interpolation may produce non human-like figures
while generating a transition between very different actions. To avoid these results,
physical restrictions can be embedded into the body model in order to restrict the set
of allowed configurations for the human body pose, as described next.

2.3.2 Creating Motion using Physical Constraints

Action transitions can be posed as a transformation problem, in which the human
body model should adopt a sequence of body configurations in order to reach realisti-
cally to another posture. Incorporating physical knowledge to the body model allows
to guide the motion of articulated figures in a more detailed and realistic way than
using interpolation [108]. Such knowledge can generate movements due to forces, and
avoid self-collisions, for example. Physical constraints are applied to structured body
models, and allow to automatically establish rules of motion.

Rules of motion are defined by suitable kinematic and dynamic models. A kine-
matic model establishes human movements without considering the forces involved
in motion [148]. In addition, dynamic models compute the underlying forces which
produce a desired movement, such as gravity, friction, or collision, for example [10].
Reactions of the body to such forces are established automatically by a set of equations
of motion, thus obtaining physically-based activities.

The human body model is commonly represented as a hierarchical set of linked
rigid segments which correspond to the limbs of the body. Specifically, the body model
is described using a tree-like structure, where the nodes refer to the joint angles of the
body limbs, and the arcs establishes the hierarchical relationship between adjacent
limbs. The term forward kinematics refers to the evaluation of this hierarchy to pro-
duce a human figure which reflects the current setting of the joint parameters. When
dealing with complex articulated figures, such as humans, the analytical computation
of these intermediate configurations can not be addressed by the interpolation tech-
niques described before. Therefore, the evaluation of the sequence of intermediate
body configurations, which drives the body from an initial body posture to the final
desired posture, is often a trial-and-error process

To avoid such a tedious task, inverse kinematics is used instead [25]: given the
initial and ending position of a joint, usually hands or feet, which is called end effec-
tor, the sequence of joint parameters required to attain the ending configuration are
computed for each limb of the body. In this case, motion is incrementally generated
by using the inverse or pseudo-inverse of the Jacobian matrix, where each term of the
Jacobian relates the change of a specific joint to a specific change in the end effector.

Inverse kinematics can generate non human-like motion when multiple body con-
figurations are possible. In fact, inverse kinematics lacks of anatomical restrictions
for producing human-like configurations. In addition to inverse kinematics, we can
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exploit the fact that the joints of the human body have physical limits. For example,
the elbow can bend to approximately 20 degrees and extend to (at most) 160 degrees.
More subtly, joint limits vary with the position of other joints, and further limits
should be imposed to avoid self-collision of limbs.

When a more realistic activity is required, the underlying forces involved in motion
should be incorporated. When applied to humans, forces induce accelerations which
produce changes in the joint velocities. These velocities, in turn, produce changes
in both the spatial position and the pose configuration of the human agent. The
new position and configuration of the human agent give rise to new forces, which are
computed at the next time step by means of the equations of motion.

However, as pointed out in [53], animators who build a particular activity often
want more control over the motion than a total physical simulation model. Conse-
quently, interpolation techniques (still) forms the foundation upon which most com-
puter animation algorithms take place.

2.4 Behavior Descriptions:
Playing with Context

The term behavior refers to one or several activities which acquire a meaning in a
particular context. That means, the motion characteristics of an observed agent are
combined with the knowledge about its environment in order to derive a semantic de-
scription about the recognized human action or activity. This is done by developing
behavior models which operates in an specific domain, thereby restricting hypothe-
sized interpretations to those that are reasonable.

To this end, artificial intelligence and natural language processing algorithms need
to be addressed. Consequently, very few human motion analysis papers address the
goal of human behavior modeling [141]. Only recently, mathematical models have
been used to achieve behavior interpretation from very simply and specific human
motion patterns. Specifically, the basis of motion understanding is (still) centered on
actions, which are described using verbs.

For example, Intille and Bobick propose in [70] an automated annotation system
for sport scenes using belief networks. They exploit visual evidences and temporal
constraints to report the behaviors of moving players. Remagnino et al. present in
[117] an event-based surveillance system which generates text-based descriptions from
actions and interactions in 3D scenes. Alternatively, a state-transition model is used
for generating textual descriptions of human behavior in [9]. The concept of key-frame
is applied here to content-based video compression. Also, Kojima et al. addresses in
[83] the generation of natural language descriptions of human behaviors. Once the
agent is tracked using a model-based procedure, a motion-based human action model
is built. The spatial relationship of the human agent with respect to its environment
is evaluated to select the most suitable verbs for natural language generation.

Next, we describe the integration process between the agent state obtained from
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pattern analysis procedures, and the qualitative predicates which are best-suited for
reasoning. Subsequently, we discuss about the role of the context in HSE systems,
and the knowledge required for behavior description.

2.4.1 Knowledge Integration

As discussed before, integration refers to the semantic gap between the quantitative
information obtained from pattern analysis procedures, and the conceptual descrip-
tions used for reasoning”. As a result of integration, numerical information obtained
from image sequences can be used to instantiate qualitative predicates and, the other
way round, conceptual knowledge can be used to assist pattern analysis processes.
The steps required to achieve integration are detailed in this section.

A set of semantic features is first established, which is derived from the (numer-
ical) state of the agent. Suitable features for HSE are determined by the nature of
the human agent state’s parameters which may refer to dynamical, positional, and
postural properties of the actor. For example, motion verbs, such as accelerating,
could be instantiated by evaluating the history of the spatial and speed parameters
of the agent state.

To this end, the state of the agent is designed based on two different criteria: the
predefined semantic features about the actor are derived from the numerical informa-
tion of the agent state and, on the other hand, the agent state is robustly obtained
by means of pattern analysis procedures. Complex agent states allow to derive com-
plex semantic features, but they are more difficult to be extracted from raw image
sequences.

Since semantic primitives are instantiated using the semantic features of the agent
state, the meaning of a behavior becomes more specific as the number of semantic
primitives increases. The complete set of semantic primitives is referred to as the
terminology of predicates of our HSE system, which constitutes the basis of human
behavior modeling.

Note that semantic interpretation may lead to uncertainty, due to the vagueness
of the semantic concepts utilized, and the incompleteness, errors and noise in the
agent state’s parameters. Therefore, uncertainty prevents of categorizing in a precise
way the integration of the agent state. In order to cope with the uncertainty as-
pects, integration can be learnt using a probabilistic framework: PCA and Mixtures
of Gaussians (MoG) [98], Belief Networks (BN) [71, 117], and Hidden Markov Models
(HMM) [28, 50] provide examples. A survey related to these tools is found in [32].
However, in certain multi-agent domains, the representation of all the possible be-
haviors using these models may become a quite complex process, and the estimation
of the transition probabilities would be unreliable without a large amount of training
data. There is also the question about how such tools would respond to a behavior
which had not been presented to them before.

9Integration is also called the inverse Hollywood problem [83].
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Alternatively, Fuzzy Metric Temporal Logic (FMTL) also copes with the temporal
and uncertainty aspects of integration in a goal-oriented manner [126]. The main
advantage of FMTL over the previously referred algorithms relies on the promise
to support not only the execution, but in addition the diagnosis steps during the
continuous development and test of HSE systems [61]. However, automatic learning
capabilities are reduced.

Once the terminology is established and the uncertainty is modeled using either
a mathematical or logical formalism, the semantic predicates are classified according
to several criteria, such as the specialization relationship [83], the semantic nature
[117] or the temporal order [71] of such predicates. Likewise, a suitable behavior
model should explicitly represent/combine the specialization, temporal, and semantic
relationships of its constituent conceptual predicates [101]. For this purpose, the
semantic primitives involved in a behavior are organized into hierarchical structures,
such as networks [71, 125] or trees [83, 139], which represent the modeled behavior.

To conclude, integration algorithms are incorporated into HSE systems to derive
the set of semantic primitives of the behavior model, which are instantiated during an
input video sequence. This set of instantiated primitives depends on the information
embedded in the agent state, and on the knowledge about the context [125].

2.4.2 Knowledge about the Context

Context is usually defined as the set of all information about the problem domain
which does not depend on time. Therefore, context information can provide the
knowledge required to generate certain conceptual descriptions about an observed
behavior in a particular scene. For example, we can relate the agent state to the
scene components, such as predefined static objects of the scene or other actors.
Also, the context can help to determine the goal of an activity. If the goal is known
in advance, the context provides the information required in order to state if the goal
has been successfully accomplished.

Here, we denote with the term context the set of strategies which attempts to
reduce the computational cost of the search processes inherent in motion perception
and conceptual reasoning. Therefore, the knowledge about the context is supplied
to HSE systems to aid not only motion analysis, but integration. This is done by
developing models which operates in an specific domain, thereby restricting a system’s
hypothesized interpretations to those that are reasonable, given the a-priori knowledge
about that domain. Within a domain, many events are possible, but only a much
smaller subset is truly likely.

As human behavior analysis should confront a variety of semantic topics, different
sources of knowledge should be exploited and integrated. So the main issues are
involved in how knowledge is represented, which knowledge is of relevance to the
system, and how to incorporate such knowledge to the system. As commented in
[61], the challenge is to use uniformly the knowledge of the context, while dealing
with different geometrical representations and inference mechanisms.
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Suitable context information can be established by considering attentional cri-
teria [136]. Attention, defined by competition among hypotheses which chooses the
strongest one to focus on, can operate successfully over a complex hierarchy of seman-
tic primitives, and can eliminate a significant amount of search that a non-attentive
process might otherwise require. To this end, attentional effects on motion are forms
of search optimization.

Based on attention, the knowledge about the context is provided a-priori to assist
low-level HSE processes, such as agent segmentation, human body tracking, or human
action recognition. For this purpose, context should incorporate different selection and
prediction criteria:

Selection : selection of objects, events, and tasks relevant for the problem domain;
selection of detailed sub-regions for analysis; selection of spatial and feature
dimensions of interest; and selection of operating parameters for low-level oper-
ations.

Prediction : prediction in time about where agents might appear; predicting the
temporal sequence of motion patterns; predicting change in appearance over
time; predicting the interactions with other actors; and predicting the gravity
and other forces.

Consequently, the context provides restrictions and assumptions to infer robustly
the agent state parameters from video sequences. Therefore, many authors which
develop motion understanding procedures use the context information to solve easily
low-level tasks, because these tasks are not the focus of the main contribution.

Moreover, context information can be applied to assist high-level tasks of HSE,
such as human behavior reasoning. To this end, knowledge about the context pro-
vides HSE systems with conceptual models which characterize the scene, the semantic
primitives, the task domain, the agent and its motion, and other commonsense knowl-
edge [139]. These models are defined to restrict the vast amount of hypotheses which
are plausible given only the state of the agent. Also, the context provides restrictions
and assumptions to reason about the behavior inferred from quantitative data. All
this knowledge should be integrated in the behavior model to generate comprehensive
behavior descriptions.

For illustrative purposes, we discuss briefly the goals of the knowledge required
to assist three particular application domains of HSE, namely, natural language de-
scription, synthetic video generation, and system performance evaluation. We refer
the reader to [125] for different examples of application domains.

Most referred motion understanding papers generate textual descriptions from
observed behavior of humans in a temporal and spatial context [71, 83, 117]. That
is to say, natural language sentences are built upon the instantiated primitives of
the behavior model. The most suitable sentence, which best explains the conceptual
predicates instantiated so far, is generated. In this case, the context should help to
derive the relationship between a (recognized) verb and its gramatical attributes, such
as the subject, the object, and the goal.
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Also, behavior models may allow the generation of synthetic video sequences,
based on previously generated conceptual descriptions [7]. In fact, this process can be
considered as an inversion of the natural language generation process: the behavior
model generates a sequence of semantic primitives associated to (time-varying) geo-
metric human body configurations. These body configurations are visualized using
standard computer graphic procedures. For this purpose, the context should help to
identify the semantic concepts of a particular behavior description in order to derive
the semantic primitives.

An important requirement of HSE systems is the evaluation of the system perfor-
mance itself [71, 101, 125]. That is, users can ask the system about the scene, and
the system can generate natural language descriptions plus information about the
reasoning process. For this purpose, we can combine the knowledge required for the
generation of textual descriptions, with the knowledge required for the generation of
synthetic sequences [7, 138]. Consequently, we can detect failures and lacks in the
knowledge used for behavior modeling. System ewvaluation, in the sense of explana-
tion, helps to make easy to understand HSE systems by non-expert users, and also
to validate the generated behavior descriptions.

Without context, that is, without specific knowledge to guide processing, HSE in
the general case has exponential complexity. So context turns out to be a powerful
heuristic to limit search and make the overall problem tractable. However, assump-
tions used for HSE should avoid the fact that it is now almost universal to assume
the unreasonable [136].

2.5 Conclusions

Reviewed motion understanding approaches rely on a proper human action model
which commonly embeds facilities for recognition. In fact, the design/selection of
the action model usually depends on the application domain. Most referred action
representations are designed both at the PDL and/or SDL. Subsequently, semantic
primitives are designed at the CL in order to cope with human behavior evaluation.

As behavior evaluation relies on the action model, HSE is implemented by design-
ing an action model suitable for human action recognition and synthesis, and human
performance analysis. To this end, an action should be represented as a predefined
sequence of human postures, where each posture is defined in terms of a proper human
body model with anatomical information.

We can avoid explicitly all the issues involved for movement segmentation by using
automatic motion capture. Thus, integration can be addressed independently of the
application domain. That means also that human activity and behavior modeling at
the BL should rely on the knowledge embedded in the action representation. If such
an action model is designed at the SDL, 3-D information can be incorporated, thus
allowing to derive rich conceptual descriptions when integration.
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Chapter 3

Human Action Modeling

We next describe our proposal on human action modeling. For this purpose, three
main issues will be discussed and implemented.

First, we define a proper human body model which embeds facilities for both hu-
man posture description and human action synthesis. Our proposed body posture
representation maximizes the differences between human postures, thus allowing ac-
tion recognition. On the other hand, the body model reflects the anatomical structure
of the human beings, thus embodying facilities to synthesis of actions.

Secondly, a human action space, called aSpace, is presented in order to show
how the posture variation can be learnt and represented in a compact, specific, and
accurate manner. The basic idea is to represent each performance, i.e., a predefined
sequence of postures, as a parametric manifold. This space models the principal
modes of variation of the posture exhibited during several action performances.

Lastly, a human action representation, called p—action, will be presented. Such a
model is based on the most characteristic human body postures found during several
action performances. These postures are found automatically by means of a predefined
distance function, and are called key-frames. By using key-frames, p—actions represent
the prototypical performance for a given action.

As demonstrated in the next chapter, the proposed model also allows to perform
action recognition and synthesis, and human performance analysis by using an unified
framework. Furthermore, the action model will constitute an important queue for
integration within the HSE framework.

3.1 Procedure for Data Acquisition

Motion capture is the process of recording live movement and translating it into usable
mathematical terms by tracking a number of key points or regions/segments in space
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over time and combining them to obtain a three-dimensional representation of the
performance [109].

There are different ways of capturing movement. Some systems use electromag-
netic fields or ultrasound to track a group of sensors. Also mechanical systems are
available, which are based on linked structures or armatures that use potentiometers
to determine the rotation of each link. Others use cameras which digitize different
views of the movement, which are then used to put together the position of the key
points or markers, normally reflective.

Unfortunately, all the above systems are invasive with the agent which is perform-
ing the movement. Electromechanical suits are very invasive, and the systems have a
low sampling rate. Magnetic trackers have also a low sampling rate, and performers
are constrained by cables in most cases. Optical systems include minimal reflective
markers which should be used to recover the relative motion of the agent. Despite the
fact that optical systems are economically expensive, these have a higher frequency of
capture, resulting in more samples per second. Also, the capture area is larger than
the performance area of magnetic or electromechanical systems. By using reflective
markers on the body, optical data is extremely accurate, and the performer is not
constrained by cables.

Therefore, an optical system is used to provide real training data to our algo-
rithms. This system is based on six synchronized video cameras to record images.
The optical system incorporates all the elements and equipment necessary for the
automatic control of cameras and lights during the capture process. It also includes
an advanced software pack for the reconstruction of movements and the effective
treatment of occlusions.

In our experiments, the subject first placed a set of 19 reflective markers on the
joints and other characteristic points of the body, see Fig. 3.1.(a) and (b). These
markers are small round pieces of plastic covered in reflective material. Subsequently,
the agent is placed in a controlled environment (i.e., controlled illumination and re-
flective noise), where the capture will be carried out, see Fig. 3.1.(c).

As a result, the accurate 3-D positions of the markers are obtained for each
recorded frame, 30 frames per second. In our experiments, not all the 18 markers
are considered to model human actions. In fact, we only process those markers which
correspond to the joints of a predefined human body model. This model is presented
next, and constitutes the basis of our proposed human action model.

3.2 Human Body Modeling

As an action is represented as a sequence of postures, a proper body model is required.
In our experiments, the human body model considered is composed of twelve rigid
body parts (hip, torso, shoulder, neck, two thighs, two legs, two arms and two fore-
arms) and fifteen joints, see Fig. 3.2.(a). These joints are structured in a hierarchical
manner, where the root is located at the hip, see Fig. 3.2.(b).
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Figure 3.1: Procedure for data acquisition. Figs. (a) and (b) shows the agent with
the 19 markers on the joints and other characteristic points of its body. Figure (c)
shows the scene where the motion capture system acquired the training samples.

Initially, each training sample ps corresponds to the human body model defined
as an ordered tuple of fifteen 3-D end-point coordinates of the twelve limbs listed
above, each limb [ defined by its end-points (x;, y;, z;) and (z;,y;,2;):

Ps = (#1,Y1,21, - T15, Y15, 215) - (3.1)

The variation of the human body is then represented as the sequence of human
postures exhibited by the agent during an action performance, each posture defined as
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Figure 3.2: (a) Generic human body model represented using a stick figure similar
to [35], here composed of twelve limbs and fifteen joints. (b) Hierarchy of the joints
of the human body model. Once the 3-D position of these joints are obtained from
a motion capture system, the human body representation is built conforming to this
hierarchy.

in Eq. (3.1). However, this human body representation depends on the limb lengths
of each recorded agent. Also, Cartesian coordinates are not ideal when considering
linear approaches for posture variation modeling. These approches, which are based
on linear statistics such as PCA, imply that only linear variations of the joints can
be modeled independently [64]. Therefore, joints which exhibit non-linear variations,
such as bending or pivoting, require of the combination of two or more linear modes
of variation to be represented. As human body joints may exhibit complex non-linear
variations, another body representation should be addressed.

Actually, coordinate systems which measure locations in terms of angles can cope
with these non-linearities. For example, Figs. 3.3.(a) and (b) show the spherical and
polar space coordinate systems respectively, which are more natural to be used for
limb movement description [11]. Consequently, we define the human posture in terms
of the angles of the limbs.

First, the spherical coordinate system is considered. A mapping function is used
to transform the Cartesian coordinates of each limb [ into spherical angles, namely
elevation ¢; and orientation 6;:

Yi — Yj

V@i —2))* + (2 — )°
a,:tml(ﬁ;ﬁy (3.2)

Zi — Zj

)

o = tan™!
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Figure 3.3: 3D coordinate systems suitable for limb movement description. (a)
The spherical coordinate system describes a limb in terms of its elevation ¢; and
orientation 6;. (b) The polar space coordinate system describes a limb in terms of
the elevation ¢;, latitude 6;, and longitude ;.

where denominators are prevented to be equal to zero. Elevation values are within
[-Z,Z]. However, orientation values lie between the range of [—m, 7] (considering
a bipolar range), and the angle discontinuity problem should be confronted. This
is because a limb returns to the same position after each revolution of orientation.
For example, we show in Fig. 3.4.(a) the orientation values corresponding to the left
wrist during a bending performance. During this performance, the left arm hangs
performing a circular swing. Despite of the fact that elevation values are stabilized
near — 3, orientation values jump between —7 and w. This discontinuity in the angle-
time curve is not acceptable because it can cause problems in the computation of the
human action model.

Fig. 3.4.(b) shows the resulting angle values by avoiding discontinuity jumps.
However, note that the resulting continuous angle values are not restricted to lie
between any determined range: a specific limb orientation can be mapped to several
angle values (0;,276;,476;,...). As the aim is to model angle variations over time,
the range of training angle values should be limited.

Alternatively, a mapping to a higher dimensional space can be used to solve the
discontinuity problem. That is, we model the limb orientation by using two different
angles: we consider the polar space coordinate system which describes the orientation
of a limb in terms of its latitude and longitude, see again Fig.3.3.(b). As a result,
the twelve independently moving limbs in the 3-D polar space have a total of thirty-
six rotational DOF's which correspond to thirty-six absolute angles (w.r.t. the world
coordinate system). So we compute the 3-D polar angles of a limb (i.e., elevation ¢y,
latitude 6;, and longitude ;) as:

Yi — Yj

V@i— )7 + (i - 2))?

o = tan™!

)
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(a) (b)

Figure 3.4: Orientation values per frame during a bending performance. (a) As
angle values lie between the range of [—m, 7], the angle discontinuity problem should
be confronted. (b) Resulting angle values by avoiding discontinuity jumps.

0, = tan~! i
Vi —u)? + (i - 2)°
b = tan! L , (3.3)

\/(Sﬂz' — ;)" + (g — ;)

where denominators are also prevented to be equal to zero. Using this description,
angle values lie between the range of [—%, %], and the angle discontinuity problem is
avoided, see Figs. 3.5.(a) and (b).

The polar space representation may also include the length of each limb [11].
However, the size of the limbs is not a compelling issue when developing human
action models. As a posture is described using angles, the human body model is
independent of the size of the agent, thus generalizing our human action model to
agents of different proportions.

Note that human actions are constrained movement patterns which involve to
move the limbs of the body in a particular manner. That means, there is a relationship
between the movement of different limbs while performing an action. In order to
incorporate this relationship into the human action representation, we consider the
hierarchy of Fig. 3.2.(b) in order to describe each limb with respect to its parent.
That means, the relative angles between two adjacent limbs are next computed using
the absolute angles of Eq. (3.3), see Fig. 3.6. Consequently, by describing the the
human body using the relative angles of the limbs, we actually model the body as a
hierarchical and articulated figure.

As a result, the model of the human body consists of thirty-six relative angles:
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Figure 3.5: Latitude 6; (a) and longitude v; (b) values per frame corresponding to
the orientation value displayed in Fig. 3.4. As angle values lie between the range of

[—%, %], the angle discontinuity problem is avoided.

Figure 3.6: Our human body model is defined in terms of relative angles, following
the hierarchy presented in this section.

As = (¢I17 I17¢17¢I250,27¢éa---7¢,12701125¢12)T‘ (34)

Using this definition, we measure the relative motion of the human body. In
order to measure the global motion of the agent within the scene, the variation of the
height of the hip us over time is included in the model definition. In general, the
spatial situation of the human body within the scene does not affect the execution
of a performance. However, the variation of the height of the hip during an action
performance can provide significant information about such an action, for example
during jumping or tumbling. Thus, the real height value of the hip is normalized for
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Figure 3.7: Given the hierarchy and the relative angles of the human body model,
the absolute angle ¢; of each limb can be computed. The function £ transforms
relative to absolute angles.

each captured agent in order to measure only the height variation.

Summarizing, our final human body model is defined in terms of thirty-six pa-
rameters and the variation of the height of the hip!:

x, = (uy, A,)T. (3.5)

Table 3.1 reviews the complete human body modeling algorithm.

To conclude, we address how to build a graphical representation of the human
body data. As the body model has been defined as a hierarchical tree, with the root
located at the hip, we can compute incrementally the positions of the joints by using
the relative angles of adjacent limbs. As shown in Fig. 3.7, the absolute angle values
(¢7,0;,%;) which defines the limb j, are calculated using the relative angles of both
the limb j and its parent j — 1, as defined in the body model hierarchy. Subsequently,
the Cartesian coordinates (x;v1,¥yit1,2i+1) of the end-point 7 + 1 of the limb j is
computed using the end-point ¢ of the limb parent j — 1:

Ti41 = I; + Tj sin ¢j,
Yir1 = yi+r; sinb;,
Zit1 = zi+rj sinyg;, (3.6)

where r; is the (predefined) length of the limb j, and (z;, y;, 2;) refers to the end-point
coordinates of the limb parent j —1, i.e., the Cartesian coordinates of the joint 7 which
links both limbs.

IThe following scheme can be enhanced to incorporate movement measurements of body joints
as well.
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Table 3.1: Human Body Modeling Algorithm
Input:

e Each training sample ps, defined as an ordered tuple of fifteen 3-D end-point co-
ordinates of the twelve limbs, ps = (21,¥1, 21, ..., T15, Y15, 215) ., where each limb
[ is defined by its end-points (z;,y;, 2;) and (z;,y;,2;), according to the hierarchy
of Fig. 3.2.(b).

Algorithm:

1. Compute the 3-D polar absolute angles (elevation ¢;, latitude 6;, and longitude ;)
of each limb [ of the body model:

o = tan~! Yi — Yj
- )
V@i— ) + (i - )
0, = tan™! Ti 2
[ 2 2 )
Vi —9)* + (i - 2)
1/11 = tan~' 5 )

2 2
V=) + i —wy)
where denominators are prevented to be equal to zero.

2. Embed the resulting absolute angles into a vector which represents the configuration
of the human body model: (¢1,61,v1, ¢2,02,%2, ..., 12,012, ¥12).

3. Compute the 3-D relative angles for each limb, according to the hierarchy of Fig.
32(b) AS = ( 11,011,1/11,¢)I2,9I2,’(/}é, "'7¢112’0I12’¢i2)T'

4. Compute the variation of the height of the hip, ug, which represents the absolute

motion of the human body.
Output:

e The human body model, x; = (uy, A,)7.
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In our experiments, we represent each human posture as a stick figure. This
representation has the benefit of reflecting the anatomical structure of the human
body. Therefore, the stick figure is a suitable representation to synthesize human
movement. Furthermore, the stick figure allows to attain speed and simplicity of the
computational processes activated for its evaluation.

3.3 Action Spaces: aSpaces

In order to design a human action model, several issues should be considered. The
model should be compact, that is, it should be able to capture most of the variance of
the training examples in a small number of parameters. Also, as dealing with non-rigid
agents, non-linearities (due to non-linear movements of the limbs) should be handled.
Furthermore, the model should be accurate, that is, the set of plausible postures that
a human body can exhibit while performing the action should be modeled. However,
the model of an action should be specific, in other words, a human action model should
not generate postures which are not likely to be adopted during the performance of
the action.

These requirements are also found in the literature when dealing with shape vari-
ability [64, 14, 26], which can be represented by means of Point Distribution Models
(PDM) [38]. These statistical models are compact because they are based on PCA.
PCA computes an orthogonal basis of the samples, the so-called eigenvectors. There-
fore, the training data can be described as a linear combination of this basis. Usually,
few eigenvectors are required, so a reduced dimensionality representation, compared
with the dimensionality of the input data, is achieved. The distance between two
points in the eigenspace can be considered as a measure of similarity. Actually, this
distance corresponds to a measure of correlation between original samples [99]. Also,
only plausible samples are generated by modifying, within limits, the principal modes
of variation. These limits, related to the variance explained by each eigenvector, pre-
vent the model to generate unallowable samples. PDM are suitable to be determined
by automated training, because the training examples are not required to be either
accurate or carefully selected. For further details on PDMs, see Appendix A.

Consequently, the PDM is a model which describes shape variability within a set of
aligned shapes in a well-defined statistical manner. Adapting the procedure described
in [64], each training sample of the PDM actually corresponds to the human body
model as defined by Eq. (3.5). Only the variation of the normalized height of the hip
will remain in the Cartesian domain. Using the motion capture system, we obtain the
data samples of the PDM accurately, in order to develop our human action model by
avoiding errors in the training data which would corrupt the reliability of the proposed
action representation.

In our experiments, we have considered nine different elementary action types,
which have been supplied to the system during a training process in a supervised
manner. We named these actions as:
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1. aBend,
2. aJump,
3. aKick,
4. aRun,
5. aSit,

6. aSkip,
7. aSquat,
8. aTumble,

9. aWalk,

and an activity called the thief sequence [27], which is a concatenation of aWalk,
aBend and aRun. Also, we define the aStand action as the human body posture
adopting an standing attitude.

In order to provide a proper learning set which is generic enough, the same action
was performed five times (on average) by nine actors of different sizes. Note that each
performance sequence is not compulsory to contain the same number of frames, that
is, the duration of each performance may be different from that of other performances.
As a result, approximately 45 performances per action were recorded. Taking into
account that the acquisition rate is 30 fps, and that each performance lasts 5 sec-
onds on average, we have acquired approximately seven thousand frames per action.
Therefore, all actions embed 60 thousand posture configurations or training samples.

Each action, A, is modeled using r different sequences, A = {H;,H,,...,H,.},
where each sequence H; of f; human postures corresponds to a performance of such
an action. Therefore, each H; is composed of a set of body posture configurations
H; = {xi,x2,...,xy, }, where each x; has dimensionality n x 1 and is defined using
the 37 parameters of Eq. (3.5).

The next step is concerned in building the action space 24 by means of PCA, in
which the action A will be represented. We denote such a feature space as aSpace.
So given an action,

A = {x1,%X2,...,Xs}, (3.7)

where f refers to the overall number of training postures for this action:

f= _Z £ (3.8)

Afterwards, we compute the mean posture for that action,



62 HUMAN ACTION MODELING

1 f
X == X, (39)
2>

which is subtracted from each sample:

~

A ={x; —x,..,x; —x}. (3.10)

Thus, it is guaranteed that the eigenvector with the largest eigenvalue corresponds
to the dimension where the variance is maximum in a correlation sense. Next, the
covariance matrix is computed as:

f
Y= Z(xi —x)(x; —x)T. (3.11)

|

The eigenvalues A\ and eigenvectors e, of ¥ are calculated by solving the eigen-
vector decomposition equation:

)\kek = Eek, (312)

where each eigenvector, ey, corresponds to a mode of variation, and its corresponding
eigenvalue A is related to the variance explained by the eigenvector. In our case,
note that each eigenvector reflects a mode of variation of the human posture during
such an action.

We preserve major linear correlations by considering the eigenvectors correspond-
ing to the largest eigenvalues. By selecting the first m eigenvectors, {eq,es,...,e,},
we determine the dimensions of the action eigenspace. If we consider all n eigenvec-
tors (the original size of the samples), the postures are exactly represented. When
we just select m < n, a reduction in the dimensionality of the representation space
is achieved, which involves a reconstruction error. So a critical issue is related to the
choice of a proper number of dimensions of the eigenspace in order to retain the major
variance of the input data or, in other words, when the squared reconstruction error
decays and tends to become similar to the observation noise variance.

The value for m is commonly determined by eigenvalue thresholding. Consider
the overall variance of the training samples, computed as the sum of the eigenvalues:

n

Ar = Mg (3.13)

k=1

If we need to guarantee that the first m eigenvectors actually model, for example,
95% of the overall variance of the samples, we should choose m so that:

m
Ak
i M s g5 (3.14)
AT
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(a) (b) (c)

Figure 3.8: Variation of the human posture while performing the aBend (a), aJump
(b) and aTumble (c) actions. These figures are generated by modifying the eigen-
vector associated with the largest eigenvalue of each aSpace.

Consequently, the smallest number m of eigenvalues which explains a large pro-
portion of the total variance of the sequence of postures is chosen. As a result of Eq.
(3.14), each modeled posture % is found as a combination of:

% = % + Eb, (3.15)

where E = (ey, ..., e,,) corresponds to the selected m eigenvectors, and b = (by, ..., by,) 7
is a vector of weights. Each weight is computed within suitable limits to generate new
acceptable postures, similar to those in the training set. The limits are related to the
variance of each variation mode, so each weight by, is restricted to lie within:

—3v/Ak < b < 3V/Ak. (3.16)

Consequently, all invalid postures are excluded automatically by obeying these
limits. That is, the aSpace can be restricted to model only plausible human posture
variations. Moreover, as the training data is obtained from a motion capture system,
a realistic model of variation is provided.

Fig. 3.8 shows the principal modes of variation of the posture during the aBend,
aJump, and aTumble actions, respectively. Once an aSpace is built for each action,
these figures are generated by varying the vector of weights of Eq. (3.15) within
the limits given by Eq. (3.16), corresponding to the largest eigenvalue. These fig-
ures demonstrate that each posture of a given action can be expressed in terms of a
combination of the eigenvectors of the corresponding aSpace and a vector of weights.
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Figure 3.9: An example of an aSpace. Each point corresponds to the projection y;
of a posture configuration x; presented during several aRun performances. Only the
three eigenvectors associated with the three largest eigenvalues are displayed.

Furthermore, the eigenvectors with the largest eigenvalues are associated to the most
important modes of variation of the human posture during an action.

Summarizing, we consider our human action space as the compact representation
which consists of the orthogonal matrix E of eigenvectors, the diagonal matrix A of
eigenvalues, and the mean posture X of a given action:

Q4 = (E, A, %). (3.17)

3.4 Human Performance Representation

Using our action model, each performance is represented as a set of points in an
eigenspace, each point corresponding to a human posture projection. This is achieved
by projecting each learning posture x; to the action space:

yi = ler, ---;em]T(Xi - X). (3.18)

Thus, we obtain a set of discrete points y; in the action space that represents the
action class Q4, see Fig. 3.9. By projecting the set of human postures of a perfor-
mance, we obtain a cloud of points wich corresponds to the projections of the postures
exhibited during such a performance. As the acquisition rate of the camera is large
enough to record smooth changes of the posture during consecutive frames, succeed-
ing human postures become strongly correlated and, therefore, their projections into
aSpace become close to one another.
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()

Figure 3.10: aSpace representation of the aWalk action. Only the three most
prominent dimensions are displayed. (a) Manifold g;(p) obtained by interpolation
between the projections (black dots) of the postures of a single performance. (b)
Manifolds obtained by interpolation between the projections of the postures of several
performances. Each manifold corresponds to a performance. (c¢) Manifold g(p)
obtained by interpolation between the means of pose distributions.

Consequently, a smoothly varying manifold in the aSpace can be computed [24, 99].
Therefore, we consider the projections y; of a given a performance H; as the control
values for an interpolating curve g;(p), which is computed using a standard cubic-
spline interpolation algorithm [113], see Fig. 3.10.(a). The parameter p refers to the
temporal variation of the posture, which is normalized for each performance, that is,
p € [0,1]. Thus, p = 0 refers to the beginning of a performance, and p = 1 refers
to its termination. Usually, p is given in percentage: for example, p = 50% refers
to the human body posture configuration at the middle of an action performance.
Thus, by varying p, we actually move along the manifold. The idea of describing the
time evolution of the action model by using the normalized pose has been also used
to parameterize the walking action in [35].
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As a result of interpolation, the manifold is described in terms of four matrices
(namely, Bg,, Cg;, Dg, and Fg;) of dimensionality m x 1:

gj(p) = Bg,p® + Cg,p” + Dg,p+ Fyg,, p €[0,1]. (3.19)

Thus, each value of the parametric variable p € [0, 1] determines the m coordi-
nates g;(p) = (y1,...,ym)" of the corresponding projection into aSpace. This process
is repeated for each performance of the learning set, thus obtaining r manifolds.
These manifolds are parameterized by the temporal variation of the posture, see Fig.
3.10.(b):

gi(p), pel0,1],j=1,...,r (3.20)

As points lying in the manifold g;(p) are indexed by their parameter p, it is
possible to compute the mean postures of the r performances for each index p. First,
we calculate:

_ 1¢
&(p) =~ > gilp), pelo1]. (3.21)
j=1
Afterwards, the mean manifold is obtained by interpolating between these means:

g(p) = ng3 + Cgp2 + Dgp + Fga pE [0: 1]- (3-22)

Fig. 3.10.(c) shows the point clouds in the aSpace corresponding to the aWalk
action and its interpolated parametric curve g(p).

This performance representation is not influenced by its duration, expressed in
seconds or number of frames. It is obvious that the posture configurations presented
during a performance do not change with any variations of speed. So only the tem-
poral variation of the human posture is modeled: our action model is centered on
establishing how the human posture evolves to perform an action, instead of deter-
mining how much time a performance lasts.

Unfortunately, this resulting parametric manifold is influenced by the fact that
any subject performs an action in the way he or she is used to. Furthermore, it is
highly unlikely that the same actor performs the same action in an identical manner
at different times. These problems affect the mean calculation for each index p. As a
result, the manifold may comprise abrupt changes of direction. This rough property
of the manifold is a direct consequence of the extreme variability of human posture
configurations recorded during different performances of the same action.

So we need to determine how a prototypical performance representation can be
derived by considering individual and highly variable performances as the learning
set. And this is possible, since people can distinguish a given action despite of the
performer. Therefore, our strategy is not centered on modeling the complete set of
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Figure 3.11: Eadweard Muybridge, The Human Figure in Motion, frame extracted
from Plate 23: Man running [100]. The action can be easily identified as someone
running.

feasible postures which an actor could adopt while performing an action, because
any new subject can include posture configurations not presented during the previous
learnt performances.

A similar problem can be found in the computer animation domain, where the goal
is to generate virtual figures exhibiting smooth and realistic movement. Commonly,
animators define and draw a set of specific frames, called key frames or extremes,
which assist the task of drawing the intermediate frames of the animated sequence.
According to this procedure, we next analyze the key frame concept to incorporate it
into our human action modeling approach.

3.5 Keyframing

In computer animation, the term key-frame has been generalized to apply to any vari-
able whose value is set at specific frames and from which values for the intermediate
frames are interpolated according to some prescribed procedure [108]. Key-frames are
created by specifying the appropriate set of parameter values at a given time. The
intermediate frames, called in-betweens, are obtained by smoothly interpolating the
key-frames themselves when rendering.

Animators represent an action by means of a reduced set of postures which are
characteristic enough. The concept characteristic is applied in the sense that these
postures identify such an action, so they distinguish an action from all other actions.
Within an action sequence there are few frames which contain most information about
that action and whose combination provide the rest of the postures of the sequence.
That means, there are postures which give enough information to state, by only
considering these reduced group of postures, which action is being performed. As
example, a single posture is shown in Fig. 3.11. Even with only one posture, one can
recognize the action as someone running. This is due to the fact that such a posture
is quite characteristic for a running action. Furthermore, this posture is not likely
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to be found in other actions such as bending, waving arms, sitting or walking, for
example. Thus, they can be used to discriminate between actions.

We have defined an action as a sequence of time-ordered body posture configura-
tions. If one considers the complete set of body postures for an action sequence, it is
obvious that the sequence contains redundant information: several postures are found
to be repeated or quite similar in a correlation sense. A posterior analysis determines
that there exists a more reduced group of frames that do not appear as frequently
as the previous ones. Furthermore, these frames tend to correspond to transitions
between groups of highly correlated frames. Also, they are found to identify that
action.

Such capabilities argue for representing an action by selecting few frames from
the entire sequence. Recently, an increasing number of papers which attempt to
perform human action tracking and recognition by only considering few poses can
be found in the literature. In [2], human movement tracking is applied during a
gymnastic exercise which is known in advance. Tracking is performed by using a set
of key-frames for each exercise, which are computed beforehand. Also in [15], few
body poses are considered to achieve human action recognition. No criteria is used
to select the key-frames, which are found randomly. In [135], human action tracking
and recognition is performed by considering a set of stored key-frames. However,
it is not clear how many key-frames are required for a given tennis stroke, due to
the fact that they are provided beforehand. In [78], key-frames are called ezemplars,
which are selected from a sequence of frames using the k-means algorithm based on
an error distortion measure. Exemplars are used to recognize humans from walking
action sequences. Only equally spaced frames of a given sequence are considered in
[91] to perform picture-based action recognition, so their human action model is not
well-suited for synthesis purposes.

Alternatively, we present an algorithm which determines automatically not only
the minimal number of postures, but also which are the most suitable postures for
action representation. Consequently, only few human posture configurations will pro-
vide the basis of our final human action representation, which will constitute the
key-frame set for that action.

3.6 Human Action Representation: p—action

Given an action A, our goal consists in the extraction of the most characteristic body
posture configurations which will correspond to the set of key-frames for that action.

From a probabilistic point of view, we define characteristic postures as the least
likely body postures exhibited during the action performances. As discussed before,
quite a few characteristic body postures can be found when an action sequence is
analyzed. This fact is simply a consequence of the very reduced number of frames
where these postures appear.

So we need to represent the action in terms of a probability distribution in order
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to compute the likelihood that a sample x; is an instance of the action class Q4,
that is, P(xj|QA). Low values actually correspond to less repetitive samples, that is,
very characteristic postures for that action. Thus, by selecting those samples that are
(locally) least likely, we assure that they provide high entropy of such an action class.
On the other hand, similar samples correspond to repetitive frames and, therefore,
exhibit high likelihood values.

As the aSpace is built based on PCA, such a space can also be used to compute the
action class conditional density P(x;|2). We assume that the Mahalanobis distance
is a sufficient statistic for characterizing the likelihood:

d(x;) = (x; — %)7S(x; — %). (3.23)

where x corresponds to the mean posture defined by Eq. (3.9) and ¥ to the covariance
matrix defined by Eq. (3.11). Due to the diagonalized form of X, after finding its
eigenvectors and eigenvalues, the previous expression can be computed as:

dx;) =S 4 (3.24)

where each y; corresponds to the sample x; projected to the action space and each
A; is the i-th eigenvalue associated with the i-th eigenvector onto which the sample
x; is projected.

In order to build a prototypical action representation, we use the mean manifold
which defines the mean performance. Once the mean manifold g(p) is established,
we compute the likelihood values for the sequence of pose-ordered projections that lie
in such a manifold [24, 97, 99]. Thus, extreme projections of the mean manifold are
determined by computing the distance between each projection and the mean posture.
That is, we apply Eq. (3.24) for each component of the manifold g(p). As a result, a
distance measurement versus parameterized posture p is obtained, which is related to
the likelihood of each projected posture. Note that this distance measurement is also
related to important changes of direction of the mean manifold: since the elongation
of each variation mode is taken into account, the distance function is also related to
the curvature of the mean manifold.

For example, the graphic for the distance measure of the points belonging to the
mean manifold computed in the aBend aSpace is shown in Fig. 3.12. Local Maxima
of this function correspond to locally maximal distances or, in other words, to the
least likely samples. These samples constitute the key-frames due to the fact that
they correspond to the most characteristic postures of the action and, consequently,
they provide most information about the action.

So each maximum of the distance function corresponds to a key-frame k;, where
i =1,..,k, and the number of key-frames k is determined by the number of maxima.
Thus, we obtain the set of time-ordered key-frames for the action A:
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Figure 3.12: Distance measure after pose ordering applied to the points of the
manifold in the aBend aSpace. Maxima (i.e., the key-frames) also correspond to
important changes of direction of the manifold.

%4 %S

Figure 3.13: Postures corresponding to the peaks of the distance function for the
aBend (a) and aRun (b) actions.

K = {k;, ks, ..., ki }, k; € g(p). (3.25)

Examples of key-frames obtained from the manifolds computed in the aBend and
aRun aSpaces are shown in Fig. 3.13.
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2

Figure 3.14: The variation of the selected key-frames over the aSpace dimensionality
is shown for aTumble (a), aSit (b), and aRun (c) actions. Dots represent the key-
frames, i.e., the maxima of the distance function defined in Eq. (3.24).

In order to address a possible dimensionality reduction, due to the fact that not
all the body parts move when an action is being executed, Fig. 3.14 shows the
selected key-frames for the a Tumble, aSit, and aRun mean manifolds by varying the
dimensionality m of their corresponding aSpaces. Note that the key-frame selection
process stabilizes in high dimensions. However, this stabilization is not achieved
by considering an unique number of eigenvectors for all the modeled aSpaces. This
is because the minimal number of eigenvectors required to represent a given action
depends on the complexity of such an action, i.e., the variation of its constituent
postures. For example, a complex action such as aTumble requires of 15 eigenvectors
to capture the 95% of the overall variance of the training postures. On the other
hand, the aRun aSpace is well-represented by considering only 9 dimensions.

Once the key-frames have been selected for a given action, K4, the prototypical
performance representation is built as follows. By interpolating between the peaks
of the distance function, a new manifold is computed within the aSpace. This new
interpolated parametric curve is also parameterized by the pose p:
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(a) (b)

Figure 3.15: Interpolation (blue solid curve) of the mean manifold (red dot curve)
for aSit (a) and aJump (b) actions. Black dots represent the peaks of the distance
function, i.e., the control points for interpolation.

£4(p) = BAp® + Cp? + Dp + F4, pel0,1], (3.26)

which, as shown in Fig. 3.15, represents a manifold which smooths the manifold g(p):
by using interpolation, we attain a reduction of the roughness inherited from the
learning set. Thus, the posture variation over time is achieved to occur smoothly.

The projections of the key-frames found before correspond to k break points of
this manifold, that is, K4 € f4(p). Consequently, the curve is made up of transitions
between key-frames, which represents how the body posture evolves from one key-
frame to its next in temporal order.

We consider the manifold £4(p) as the prototypical performance of the action A.
That means, p-ordered points belonging to such a manifold represent time-ordered
postures exhibited during the prototypical performance of the action. We denote,
therefore, £4(p) as the prototypical action representation or p—action, see Fig. 3.16.

To conclude, our final human action representation I'* is defined as the combina-
tion of the aSpace, the key-frames and the p—action manifold:

' = (Q4, K4 ). (3.27)

Table 3.2 reviews the complete human action modeling algorithm.

Once the human action model has been defined, its capabilities should be dis-
cussed. Consequently, the next chapter exploits the aSpace and p—action represen-
tations to implement procedures for human action recognition and synthesis, and
performance analysis.
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(d)

Figure 3.16: p-—actions computed in the aRun (a), aBend (b), aSquat (c) and
aJump (d) aSpaces: by varying the parameter pose p, we actually move along the
manifold £*(p), thus obtaining the temporal evolution of the human body posture
during the prototypical performance of any learnt action.

73
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Table 3.2: Human Action Modeling Algorithm

Input:

e Action A to be modeled, A = {H;,H,, ..., H,} = {x1,X2,...,xy}, where each

performance H; is composed of a sequence of f; postures, each posture x; of n x 1

dimensionality and defined by equation (3.5).

Algorithm:

1. Compute the mean posture, X = %Zle X;.

2. Compute the covariance matrix, £ = + S (xi—®)(x —%)T.

3. Obtain the eigenvalues \; and eigenvectors e; of ¥ by applying the eigenvector
decomposition equation, \;e; = Ye;.

4. Select the dimensionality of the aSpace, i.e., an m value so that E:L:—I; > 0.95.

i=1 "7

5. Define the aSpace of dimensionality m as Q4 = (E, A, %).

6. Project each learning sample x; in the aSpace, thus obtaining the projection
yi = [e1,....,en]’ (x; — X).

7. Compute a manifold g;(p) for each performance H; by interpolating its projections,
8j(p) = Bg;p® + Cg;p* + Dg;p + Fy,.

8. Calculate the mean posture for each pose p, g(p) = % Z§:1 g;(p)-

9. Using interpolation between the mean postures of g(p), compute the mean manifold
glp) = ng3 + Cgp2 + Dgp + Fg.

10. By applying the distance function of Eq. (3.24), select the key-frame set of g(p),
KA = {kl,kQ, ey kk}
11. Interpolate between the key-frame set to obtain the prototypical action representa-
tion, or p-action, f4(p) = BAp® + CAp? + D4p + FA.
Output:

e The action model, T4 = (Q4 K4, f4).




Chapter 4

Applications

Last, chapter focused on building a human action space, called aSpace, within which
human actions are modeled as parametric manifolds, or p—actions. A p-action rep-
resents the temporal evolution of the human body posture during the prototypical
performance of a modeled action.

The benefits of the aSpace and p—action representation are exploited by imple-
menting three generic applications. First, we adapt the key-frame set to perform
human action recognition. We present a procedure which compares manifolds using
a proper distance measure and a suitable classification criteria. Second, the p—action
representation is used to synthesize virtual sequences which reproduce a human ac-
tion and a human activity. Due to the interpolation nature of p—actions, synthetic
sequences exhibit smooth and realistic movement. Moreover, the variation of the hu-
man posture between consecutive actions is also synthesized. Lastly, we address the
analysis of human actions by comparing different performances of the same action.
By attaining independence from the speed at which performances are played, the style
of human walking is analysed by establishing differences between a male and a female
walkers.

4.1 Human Action Recognition

Once our human action representation has been established, we next present an ap-
proximation to human action recognition, here considered as a classification problem.
In fact, we require an unique feature space to perform comparison between different
actions. Therefore, all learnt human actions will be modeled as parametric manifolds
in an unique aSpace, called UaSpace, following the procedure presented in chapter 3.

Subsequently, a human action recognition algorithm is presented, which classifies
an unknown input sequence as belonging to an action class. We follow the method
presented in [91], where recognition is achieved by comparing the manifold of a test
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action with a set of reference manifolds. Lastly, experimental results are shown by
comparing three different classification criteria.

4.1.1 The Universal aSpace or UaSpace

In order to represent all the learnt actions within the same reduced space, an universal
aSpace is built, namely QU or UaSpace. In the UaSpace, each learnt action A; is
represented as a manifold f4¢ which has been obtained by interpolation of its key-
frame set K¢, as described in the previous chapter. Next, the procedure is described.

The training data AY is composed of the set of actions U = {A;, As,...,A,} to
be learnt, that is, AV comprises r sequences of different actions:

AY = {H,,H,,... H,}. (4.1)

Each sequence H; of f; frames corresponds to a performance of an action, which
is composed of a sequence of human body configurations:

H; = {x1,x2,...,xy, }, (4.2)

where each x; of dimensionality n x 1 corresponds to the 37 values of the human
body model described in the last chapter. Let f be the number of body posture
configurations of AU:

T
=31 (4.3)
=1
Thus, the training data comprises a sequence of f body posture configurations:

AU = {x1,%2,...,xs}. (4.4)

Once the mean human posture XV (see Fig. 4.1) and the covariance matrix £V of
AU are computed as described in the last chapter, the eigenvalues AV and eigenvectors
eV of 2V are calculated by solving the eigenvector decomposition equation.

However, not all the resulting eigenvectors contribute to model the variation of the
training data. Next, we determine the number of eigenvectors mY which capture most
of the variation. Fig. 4.2.(a) shows the individual contribution of each eigenvector,
which is computed as:

AU
—t — i=1,..,n (4.5)
Zk:l Allc]

It can be seen that past the 20th eigenvector, the contribution is less than 0.5%. On
the other hand, Fig. 4.2.(b) shows the cumulative contribution of each eigenvector,
calculated as:
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!

Figure 4.1: Two different views of the mean posture XU of the UaSpace QY. Red
and blue colors refer to the left and right side of the human body, respectively.
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Figure 4.2: Contribution of each eigenvector in the UaSpace. The individual con-
tribution of each eigenvector is shown in (a). The cumulative contribution is shown
in (b).

Y AN
== = i=1,...,n (4.6)
Zk:l AkU

The curve increases rapidly during the first eigenvectors. It can be seen that the
first 20 eigenvectors associated to the 20 largest eigenvalue capture more than 95% of
the variation. Consequently, mY is set to 20.

The resulting mean posture XV, the orthogonal matrix EV of mU eigenvectors,
and the diagonal matrix AY of mY eigenvalues of AU constitute the UaSpace repre-
sentation:

QV = (EV, AV 1Y), (4.7)
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(a) (b) (c)

Figure 4.3: Modes of variation of UaSpace. Only the three eigenvectors associated
to the three largest eigenvalues are shown. See text for details.

Fig. 4.3 displays the most important modes of variation of the human posture in
the UaSpace. As expected, these modes of variation are found repeated for different
learnt actions. Thus, Fig. 4.3.(a) reflects the variation of the posture exhibited during
the aBend, aSit, and aSquat actions. Note that the most important variation mode
corresponds to the inclination of the torso. Also, a smooth bending variation of the
legs and thighs characterizes such actions. Fig. 4.3.(b) shows that the variation of
the height of the hip is also modeled. In fact, this variation of the posture is exhibited
in different actions, such as aSit, aSquat, and aTumble actions, during which folded
legs and thighs are present. Fig. 4.3.(c) correspond to the third mode of variation
which correspond to the movement of legs and arms recorded in the a Walk, aSit and
aJump actions.

In the UaSpace, all the actions are represented as parametric manifolds, following
the procedure described in chapter 3. First, for each action A;, its corresponding
mean performance manifold g#i(p) is computed. Once the key-frame set K4 is
established for each mean manifold, the prototypical performance or p-action £4i(p)
is derived.

Note that each p—action manifold can be described in terms of a sequence of ¢
projections y“i:

£4(p) = [y;,ysts oyl (4.8)

where each y;‘i = [yi4 , y;‘i, - y;i"U]T is composed of the mY coefficients of the eigen-
vectors defined in U, and corresponds to a human body posture projected in the
UaSpace. Such projections actually represent the p—action manifold sampled at spe-

cific p = {p1,p2, ...,y }, each p € [0,1].
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(b)

Figure 4.4: Parametric curves or p-actions in the UaSpace. Only the three eigen-
vectors associated to the three largest eigenvalues are displayed.

To conclude, the representation of an action A; is modeled within the UaSpace
as:

r4 = (QV K4 ). (4.9)

Fig. 4.4 shows the set of manifolds in the UaSpace, each manifold corresponding to
a specific action. If the manifolds of two actions intersect, the intersection corresponds
to very similar human postures of both actions. In fact, the distance between two
points can be considered as a measure of similarity between human postures, as
described in the next section.
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4.1.2 Procedure for Human Action Recognition

Once the UaSpace is built, two issues need to be addressed in order to perform recog-
nition following a pattern matching approach: on the one hand, to define a proper
distance measure and, on the other hand, to establish a suitable comparison procedure
for classification based on the selected distance measure.

Consider a new performance of an unknown action A7 to be recognized. We build
its corresponding human performance representation:

r4r = (QV KAr A1), (4.10)
that is, the manifold 47 obtained by interpolation between the projections of A7 in
the QU UaSpace, and the key-frame set KAT.

First, we describe the distance measure between two manifolds, namely f4¢ and
fA7. Each manifold is described as a sequence of projections, that is:

. A; A .
f4p) = yiLys .y ],
A7) = yi™ya e yer ], (4.11)

where ¢; and qr refer to the number of projections in the UaSpace of the reference
and the test manifolds, respectively, which will be considered for comparison.

In fact, the distance between two projections in UaSpace is a measure of correlation
between their corresponding human postures: the closer the points are, the more
highly correlated are the postures [99]. Therefore, correlation is used very often as a
measure of similarity between samples.

Thus, the distance between two manifolds is taken as the mean minimum distance
between their correspondent normalized projections:

Ai A 1 qz yi y;"
d(f?, £97) = — min — — . (4.12)
g <o ||y Tl
To ensure symmetry, the final distance measure is defined as:
1
D(f4 f47) = 5 (d(f4, £47) + d(FAT, £47)) (4.13)

This distance measure is a variant of the Hausdorff metric (we use the mean of
minima instead of the maximum of minima), and is invariant to temporal shifts; for
further details, see [91].

We compute the distance measure of the new manifold with respect all learnt
actions. Subsequently, the test manifold is classified as belonging to the action with



4.1. Human Action Recognition 81

the nearest projections. Note that recognition only involves to compute a number of
distances D equal to the number of action classes.

The previously defined distance measure will be computed over only few points of
the manifold. However, different criteria can be established in order to select auto-
matically these samples. For example, only equally spaced projections are considered
in [91] to perform human action classification. Also, a human action recognition
procedure is presented in [15], which is based on randomly selected projections. Al-
ternatively, we propose to consider the key-frame set K4i as those samples used for
classification. Next, we compare these different selection criteria.

Using the distance measure of Eq. (4.13), three different classifiers are considered:

Minimum Distance to Equally-spaced Projections (MDEP) : For each ref-
erence manifold, only equally spaced projections are considered to compute the
distance function, as proposed in [91]. Thus, we choose p¢ = {p1,p2, ..., pr } of
an action manifold f4¢, so that each p; and pj41 are equally spaced:

£ (p°) = [yi, v oyl oy e £ (p). (4.14)

In our experiments, the number of projections is equal to the number of key-
frames.

Minimum Distance to Randomly-spaced Projections (MDRP) : we apply
the distance measure to randomly selected projections, as proposed in [15].
For each action manifold f4¢, we establish a sequence of p” = {p1,p2, ..., Pk }, SO
that each p; is randomly selected. As a result, an action manifold is represented
as:

; A; A; A; A; i
fAl (pr) = [Y1 7Y2 9ty Yk ]7 Yj € fA (p) (415)
We select as many projections as the number of key-frames.

Minimum Distance to Key-frames (MDK) : only the key-frame set, that is,
K™ = {ki' k3, ...k} is considered for comparison. Therefore, the set of
projections used for comparison, p¥, embeds those p; of the projections selected
as key-frames:

44 (p*) = [k kM, ki), ke £ (p). (4.16)

4.1.3 Experimental Results

Considering the universal data set, composed of 405 video sequences, we used the
samples of two performances for each action and subject for training (162 video se-
quences). This leaves a test data of 243 video sequences. The training instances were
used to obtain the mean performance for each action and, subsequently, to compute
the set of p—actions and the UaSpace.
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Figure 4.5: Recognition performance by varying the dimensionality of the UaSpace,
specifically for m” = 5 (a), m” =10 (b), mY = 15 (c), mY = 20 (d), m" = 25
(e), and mY =30 (f).

Fig. 4.5 shows the recognition rate for these different classifiers, by varying the
number of eigenvectors mU considered to model the UaSpace. As mU increases,
the recognition rate improves and stabilizes past the 20th eigenvector. In higher
dimensions, MDEP performance approaches to MDK results. This fact supports
current tendency of selecting few (temporally) spaced postures for action recognition?.

'However, MDEP may not provide those postures which best characterize an action sequence,
that is to say, the postures which are best suited to be used for action synthesis and performance
analysis.
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Action aBend aJump aSkip aRun aWalk aKick aSquat aSit aTumble

aBend 0 0 0 0 0 0 0 0
aJump 25 2 0
aSkip 27
aRun
aWalk
aKick
aSquat
aSit
aTumble
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Table 4.1: Confusion Matrix

aBend aJump aSkip aRun aWalk aKick aSquat aSit aTumble

Agent 1
Agent 2 3

Agent 3 4.4
Agent 4 3

Agent 5
Agent 6
Agent 7 8

Agent 8 9 7
Agent 9 9,9

Table 4.2: Misclassified actions for each subject: the numbers indicate those actions
chosen incorrectly (1: aBend, 9: aTumble)

MDK performance is slightly higher than MDEP, due to the fact that the most
characteristic frames were used for comparison. At mY = 20, the recognition rate
using MDK reaches 96%, and it stabilizes. Therefore, by incorporating a selection
criteria based on likelihood, recognition rate is increased. On the other hand, the
MDRP criteria provides low recognition rates: the random selection of samples pro-
duces abrupt changes in the recognition rate, while the MDRP performance is about
10% and 30% below than using the MDK criterion.

In order to analyze why the recognition rate does not reach 100%, the confusion
matrix is shown in Table 4.1 for mY = 20 and using the MDK classifier. Misclassified
actions were aJump, aSkip, aSquat and aWalk. Worst results were obtained by the
aSquat action. This is due to the fact that such an action shares many similar postures
with the aSit and aTumble actions.

Misclassified actions are shown per agent in Table 4.2 to demonstrate the singu-
larity and variability of human performances. Three main conclusions can be derived.
First, an action can be performed in a different way by the same agent. Consequently,
there are misclassified performances per agent and action. Second, an action is per-
formed in a different way by different agents. For example, two performances of the
aSquat action are mistaken for Agent7 and Agent8 with the aSit and a Tumble actions,
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Figure 4.6: Recognition performance by considering the first three choices, and by
varying the dimensionality of the UaSpace, specifically for m” = 5 (a), m"” = 10
(b), mY =15 (c), m" =20 (d), mY =25 (e), and m" = 30 (f).

respectively. Lastly, performances of a given action may exhibit postures very similar
to another action, even whether such performances are performed by different agents.
Thus, three aSquat performances of Agent8 and Agent9 are mistaken with aTumble.
Also, two aJump performances of Agent2 and Agent4 are mistaken with aSkip.

When the correct action class is allowed to be within the first three choices, the
recognition rate obviously increases. Fig. 4.6 shows the recognition performance for
the three different classifiers, by varying the number of eigenvectors m¥. At mV = 20,
the recognition rate using MDK reaches 100%, and it stabilizes for higher dimensions.
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To conclude, a balanced trade-off between recognition rate and reconstruction er-
ror is found by considering 20 eigenvectors for modeling the UaSpace. Moreover, this
dimensionality reduction provides a human action representation which is computa-
tionally efficient.

4.2 Human Action Synthesis

Commonly, two steps are required for human animation [108]. First, the goal is to
generate a rough version of the action required by the animator, which is independent
of the animated character. As a result, a prototypical action is synthesized. Subse-
quently, the task of the animator is to refine the resulting sequence by adding small
movement details and other corrections, in order to incorporate specific features for a
given virtual character, such as realism or grace. Thus, different synthetic actors will
exhibit different movements while performing the same action.

In this section, we confront the first task of generating a rough, primal sketch of
an animated sequence, during which any (previously learnt) action is automatically
synthesized. For this purpose, the human action model developed in the last chapter
is exploited.

In order to design a human action synthesis procedure, we consider the aSpace
of the action to be synthesized, and the human body postures of the prototypical
performance of the action. This information is already embedded in our human action
model T'4, which defines the aSpace, the key-frames, and the p—action manifold of the
action A:

' = (Q4 K4, 4. (4.17)

Note that this representation embeds benefits for animation purposes. As the p—
action is based on characteristic postures, i.e., the key-frame set, we guarantee that the
viewer can recognize which action is being animated. Also, the interpolation nature of
the p—action provides smoothness to the variation of the synthesized human posture.
Moreover, the p—action is parameterized by the pose p, thus attaining a mechanism of
control over our action representation. In fact, the parameter p specifies the temporal
order of the postures during a new animated sequence.

However, in order to cope with the temporal variability inherent in action per-
formances, the speed at which the parameter p is increased should be under control.
This is not straightforward due to the unknown relationship between a change in p
and the corresponding change in distance along the curve f4. Thus, an algorithm for
stepping along the curve in equal increments is required, but also for speeding up and
slowing down.

Next, we enhance our action model I'* by incorporating existing animation strate-
gies which allow to control the speed at which synthetic performances are generated.
Once the speed of the action performance is established, we describe a procedure
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based on the p—action, which synthesizes a virtual agent performing an specific ac-
tion. Lastly, we exploit the UaSpace representation in order to synthesize activities,
that is, actions plus the transitions between consecutive actions. Within the UaSpace,
interpolation between action manifolds will generate smooth and realistic transitional
human postures.

4.2.1 Arc Length Parameterization of p—actions

As described before, by varying the parameter p of 4 by a constant amount does not
mean that the resulting values will vary in a constant amount. Thus, if the human
body posture is being interpolated by varying p at a constant rate, the human body
postures generated will not necessarily represent a constant speed.

The control of this speed of interpolation is very important in creating effective
animation. In fact, the speed of the interpolation may be non-linear, so that the
change begins slowly, speeds up, and slows down into the next key-frame, for example.

Speed control is achieved by considering the distance along the curve of interpo-
lation or, in other words, by establishing a reparameterization of the p—action by arc
length [58]. Thus, the animator can specify the relative velocities at which the body
posture variation occurs. For example, stepping along the curve at equally spaced
intervals of arc length will result in a synthetic action at a constant speed.

So consider the manifold f4(p) of an action model T'. We require a reparameteri-
zation in terms of the arc length s. Usually, this step is difficult or impossible for many
types of curves, so several approximation techniques have been developed; see [108]
for details. For our purposes, to establish the relationship between parametric values
and arc length is enough. That is, it is not worth to require an arc length parame-
terization where a unit change in the parameter value results in a unit change in the
curve length [124]. By describing how the length varies with the parametric variable,
we could determine afterwards from that curve an arc length parameterization.

The easiest way for establishing the correspondence between p and s is to sample
the curve at a multitude of parametric values p. Subsequently, their corresponding
arc length values are then estimated by computing the length of the curve between
adjacent points, as described next.

The length s of a curve from a point p; to p» is found by evaluating the arc length

integral:
p2 de
s = — | dp, (4.18)
/pl dp
where:
dfA A 2 A A
— =3B"p"+2C"p+ D", p € [0,1]. (4.19)

dp
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(a) (b)

Figure 4.7: Manifolds parameterized by arc length (parametric value p vs. arc
length s). Left figure (a) represents several performances parameterized by arc length
(blue solid lines). The red dashed curve represents the p—action, with a reduced
total length due to the interpolation process between key-frames. Right figure (b)
represents the manifold £ (p) (red dashed line), a performance (blue solid line), and
the same performance sampled at a different speed (black dotted line).

Consequently, the total length s.,4 of the curve is derived as:

1
Send = /
0

Therefore, consider p = {p1,p2,...,Pn},Pi € [0,1] the parametric values to be
sampled and selected in increasing order. For each p;, its corresponding arc length
s; € [0, Sena] is calculated using Eq. 4.18. This calculation is achieve recursively
[108, 124]:

dft

= dp. 4.2
a | (4.20)

S1 = 0,

df 4 (p;
Si—1 + ‘7@ )

Si (pi —pi-1),  i=2,.,n. (4.21)

dp

As this is done, a table 7(i) =< p;, s; > is built up of arc lengths indexed by para-
metric values. Note that the arc length is a strictly monotonically increasing function
of p, and when p, =1, then s, = s¢pq. Fig. 4.7.(a) represents several performances
parameterized by arc length. Variation of the total arc length of such performances is
due to the different postures exhibited. The red dashed curve represents the p—action,
with a reduced total length due to the interpolation process between key-frames: the
p—action manifold is smoother than any performance manifold.

The table 7 is then searched in order to obtain the arc length s; given a parametric
value p;. If the parametric value is not present in this table, the searched s for
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(a) (b)

Figure 4.8: Comparison of both parameterizations (parametric value p and arc
length s) for the aBend p—action. Left figure (a) represents the variation of the angle
of the left lower arm when the p-action is sampled using p (blue dotted line) and s
(red solid line) as parametric value. Right figure (b) corresponds to the angle of the
left lower leg.

arc length value is interpolated between the arc lengths corresponding to entries on
either side of the given parametric value. The reverse situation, i.e. how to obtain
the parametric value corresponding to a given an arc length, is handled in a similar
manner.

Once the p—action has been parameterized by arc length, it is possible to control
the speed at which the curve is traversed. Fig. 4.7.(b) shows a new performance
sampled at different speeds (blue solid and black dotted lines). For example, sampling
at equally spaced values of arc length will evolve to constant-velocity movement.

In order to compare both parameterizations, arc length values are normalized to
a range of unit length by applying:

(4.22)

which will be still referred to as arc length. Fig. 4.8 shows the elevation values
of the left lower arm and left lower leg during the aBend p—action, as a result of
choosing equally spaced samples using p and s parameterizations. By considering
the pose parameterization, the temporal evolution of the posture depends on the
speed at which the performances have been recorded. By considering the arc length
parameterization, the temporal evolution of the posture is achieved to occur at any
user-specified speed.

However, speed is defined in the time space, which differs from the curve space.
So it is required to relate arc length with time, that is, to produce a distance-time
function n(t),
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Figure 4.9: Sample distance-time functions. Left figure (a) represents a perfor-
mance which starts and ends abruptly. Right figure (b) shows a performance which
smoothly starts and stops.

nCT—)S, T:{O,---,tend}a
S = {0, ..., senal}. (4.23)

Therefore, given the temporal instant ¢,, the corresponding distance traveled along
the space curve, i.e. 4, is obtained using n(t,). Subsequently, using the arc length
table computed before, the final parametric value p, is found.

Usually, distance-time functions are built analytically or by using a curve-editing
tool. However, several assumptions are required to be contemplated [108]. For exam-
ple, any distance-time function should be monotonic in ¢ and continuous. In addition,
it is commonly assumed that the entire arc length of the curve should be traversed
during the given total time. This means that:

n(0) = 0,
n(tend) = Send, (424)

where Seng = 1 due to the normalization step described above, and te,q = 1.
Obeying these normalization steps involves that distance-time curves can be reused
with other p—action curves.

Examples of analytical distance-time functions are shown in Fig. 4.9. Abrupt
starts and terminations correspond to discontinuities in speed or vertical tangents at
the distance-time functions. Likewise, smooth starts and terminations correspond to
horizontal tangents. Note that standard interpolation techniques can be used to aid
the generation of distance-time curves.

For our experiments, we assume a constant increasing distance-time function or,
in other words, a constant speed for synthesized performances.



90 APPLICATIONS

4.2.2 Procedure for Human Action Synthesis

Many animation techniques are based on key-frames, in which animators define the
key frames of the sequence to be animated [108]. In hand-drawn animation, the
intermediate frames are drawn by mentally inferring the action between the keys. In
computer animation, the term key-frame is applied to any variable whose value is
set at specific key frames and from which values for the intermediate frames, called
in-betweens, are obtained by smoothly interpolating the key-frames themselves when
rendering.

Likewise, our human action model I'* embeds the key-frame set K4. As key-
frames correspond to the most characteristic body postures for a given action, inter-
polation between key-frames results in a manifold which represent the prototypical
action performance or p—action. As a result, the break points of this manifold within
the aSpace correspond to the projections of the key-frames, and the manifold is made
up of several segments. Each segment represents how the body posture evolves from
one key-frame to its next in temporal order. Thus, the p—action consists of the key-
frames plus the transition between these key-frames, i.e., the in-betweens.

As the in-betweens of the p—action have been obtained by interpolation, we achieve
smooth variation of the body posture from one time step to the next. Thus, the
action is synthesized in a realistic and visually pleasing manner. Also, as in-betweens
actually lie in the p—action, the action is satisfactorily synthesized by moving along
that manifold. And this is possible, due to the fact that the p—action is parameterized
by the pose p. Thus, the temporal order of the synthetic postures during a new
animated sequence can be established.

At this point, the speed at which synthetic actions are synthesized should be
addressed. As the arc length parameterization allows speed control, a distance-time
function will determine the sampling rate of the p—action manifold in terms of arc
length.

So, given a human action model T'4 = (24, K4, f4), the idea is to sample the
manifold f4 at different p = {pi,p2,....,pn},pi € [0,1]. This set is obtained by
considering the entries s = {sy, s2, ..., sp} of the arc length table 7(i) =< p;,s; >,
where each s; has been obtained using the distance-time function 7(¢;),i = 1, ...n. As
a result, a sequence of projections are obtained, each projection y; corresponding to
a point of the p—action manifold:

fA(P) - [y17Y27 "'7Yn]7 yi € fA(p)a (425)
where each projection correspond to a human posture configuration x;:
m
Xi =Y ejyi; +%,  i=1,.,n, (4.26)

Jj=1

where E = (eq, ..., e,,) and x are defined in Q4. Therefore, the i-th frame of the new
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Figure 4.10: Stick figure models generated by varying the arc length s in the aSquat
aSpace. Due to the cubic-spline interpolation step, the posture variation over time is
achieved to occur smoothly.

sequence A synthesizes the i-th human posture configuration:

A ={x,..,x,}. (4.27)

To conclude, a 3D human body representation can be built from each resulting x;
in order to generate the synthetic sequence, see Fig. 4.10. The complete algorithm is
shown in Table 4.3.
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Table 4.3: Human Action Synthesis Algorithm
Input:

e Action to be synthesized, i.e. A.

e Number of frames of the synthetic sequence, n.

e Selected distance-time function 7(t).

e Arc length table .

e Action model T'4 = (24, K4, f4).
Algorithm:

1. Generate a sequence of temporal instants t = {t1, ..., %, } in increasing order, where
ty =0and t, = 1.

2. Obtain their corresponding arc length value s = {s1, ..., s, }, where s; = n(t;).

3. Compute their corresponding posture-variation parameter p = {p1,...,p,}, using
the arc length table,
T(l) =< Dpi, 8 >, S; € 8.
4. Obtain their corresponding projection coordinates in the aSpace @4, by using
]T

Yi = fA(pl)7 Yi = [yh e Ym), i = 17 ey 1.

5. Calculate the original human posture configuration x;, as follows:
m
X; = 5 e;yi; +X, 1=1,..,n,
i=1

where E and % are defined in Q4.
Output:

e The sequence of synthetic human body posture configurations, A = {X1,.yXn }
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Note that the p-action represents a generic human action performance, which
embeds the most characteristic postures obtained from several performances of dif-
ferent agents. Consequently, specific action characteristics of individual performers
are removed. However, we can restrict our action representation to model only those
actions performed by a given agent, thus obtaining specific action patterns for that
agent. That means, we can compute a different aSpace for each agent. Therefore, we
could be able to synthesize several agents which exhibit differences while performing
the same actions.

4.2.3 Procedure for Human Activity Synthesis

An activity is defined as a performance involving two or more actions, plus the transi-
tions between consecutive actions. In order to synthesize activities, two issues should
be addressed. On the one hand, to represent all the actions involved in the activity in
an unique feature space. On the other hand, to generate those human postures which
correspond to the transitions between consecutive actions. Note, however, that these
transitional postures are not present in the learning set.

To confront these issues, we exploit the UaSpace representation presented before.
Thus, all the actions involved in any activity sequence are represented in an unique
feature space as parametric manifolds. Subsequently, interpolation between two pro-
jections of different action manifolds constitutes a path along which the human posture
varies from a posture belonging to an action to another posture belonging to the next
action of the activity sequence. Next, the procedure is described.

The training data AY corresponds to the f human postures of the complete set
of actions U = {A;, Ao, ..., A,} to be learnt:

AY = {x1,%x2,..,xs}, (4.28)

where each x; corresponds to a human posture configuration. No learning samples
corresponding to action transitions are included. Once the UaSpace is computed,
QU = (EY, AV xY), each action A; is modeled within the UaSpace as:

r4 = (QV K4 £4). (4.29)

Each modeled posture x is found as a combination of:

x =xY + EUb, (4.30)

where b = (by,...,b,,,v)7 is a vector of weights. Each weight is computed within
suitable limits in order to generate new acceptable postures, similar to those in the
training set. These limits are related to the variance of each variation mode, so each
weight by, is restricted to lie within:

—34/AU < b, < 34/0T. (4.31)
k k
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(a) (b)

Figure 4.11: The manifold corresponding to an activity (composed of aRun, aJump,
and aRun again) is presented (solid curve). Figure (a) shows the resulting manifold
by varying the arc length s from s = 0% to s = 50%, and figure (b) shows the
variation of s from s = 50% to s = 90%. Due to the interpolation step, transitions
between actions occur smoothly.

All invalid postures are excluded automatically by obeying these limits. That
is, the UaSpace can be restricted to model only plausible human posture variations.
Moreover, as the training data is obtained from a motion capture system, a realistic
model of variation is provided.

Consequently, interpolation between two different postures within the UaSpace will
generate a physically meaningful body posture variation only if Eq. (4.31) is obeyed.
In other words, despite the fact that no postures corresponding to action transitions
have been included in the training data AV, interpolation involves that the human
posture variation from one action to another can be smoothly and automatically
synthesized.

Two actions in the UaSpace are presented as dot curves in Fig. 4.11. Once the
key-frames are selected, interpolation between these key-frames provides the body
posture to vary smoothly from one action to the next in temporal order. Consequently,
transitions between actions are feasible in a continuous and realistic manner.

Obeying the constraints described before, an activity V composed of M actions
V ={A;,A,, ..., Ay} is synthesized by considering the temporal-ordered set of key-
frames K" of the actions of V:

K" = {k;, ks, ..., ki },  k; € f4. (4.32)

These selected key-frames represent the core of the new activity sequence. Specif-
ically, they constitute the control points of a new manifold f¥ which represents the
sequence of human postures of the prototypical performance of the activity. This
manifold, i.e. the in-betweens of the activity sequence, is generated by interpolation
between key-frames.
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Figure 4.12: Activity synthesis: by varying the arc length s of an activity manifold
in the UaSpace, the sequence of human postures exhibited during several mixed
actions is generated. First row corresponds to aBend, second row to aJump, third
row to aRun, and fourth row to aTumble. Note that s = 20%, s = 50% and s = 70%

correspond to postures of transitions between actions.

To summarize, the activity model is defined as:

rV = (" K" ).

95
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§ = 65T & = T
§ = Sy 5 = Q&
(4.33)

The algorithm described in Table 4.3 is applied here, too, to perform human
activity synthesis by providing the activity model I'V'. The prototypical performance
of an activity is shown in Fig. 4.12, which is composed of four different actions,
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namely aBend, aJump, aRun and aTumble. Note that transition postures between
consecutive actions, which were not learnt, are synthesized due to the interpolation
nature of the activity manifold computation.

4.3 Human Action Analysis

There are several applications which are interested in human movement analysis.
Training of physically disabled persons and athletic performance analysis, for example,
require of a similarity measure between different performances of the same action in
order to improve the efficiency of its execution. In other words, human movement
analysis is considered here as a comparison framework which helps to determine ”how
well” a performance has been executed with respect to a reference action model.

Using our human action model, a synchronization algorithm is first presented
to establish a comparison framework between the p-action representation and any
performance of the same action. For this purpose, we require to attain independence
from the speed at which performances are played.

Synchronization of performances allows to compare the variation of the angles of
specific joints during several performances. Thus, the evolution of harmed articula-
tions, like the knee or the elbow, can be studied during rehabilitation processes, for
example. For this purpose, we describe lastly an analysis procedure applied to the
walking action.

4.3.1 Human Performance Synchronization

The idea of synchronization arises from the assumption that any performance of a
given action should present the key-frames of such an action. Therefore, the key-frame
set is considered as the reference postures in order to adjust or synchronize any new
performance to our action model. By considering the arc length parameterization,
the aim is to sample the new performance and the p-action so that the key-frames
are equally spaced in both manifolds.

Consider a performance H of a given action A. Such a performance is composed
of a sequence of fg human postures, H = {x1,Xs,...,Xs, }, to be synchronized with
respect, to the A action model:

' = (Q4, K4 ). (4.34)

We first build the human performance representation for H:

' = (@4, K ), (4.35)

that is, the key-frame set K obtained by applying the key-frame selection criterion
defined in the last chapter, and the manifold £ obtained by interpolation between
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Figure 4.13: The selected key-frames of a single performance is shown for the aJump
(a) and aSkip (b) actions. Dots represent the key-frames, i.e., the maxima of the
distance function defined in chapter 3, by varying the aSpace dimensionality.

the key-frames.

Unfortunately, to determine the key-frame set K by using only the postures
of a single performance is highly unstable. For example, the key-frames selected
for an aJump and an aSkip performances are shown in Fig. 4.13 by varying the
aSpace dimensionality. Due to the high degree of variability inherent in individual
action performances, random key-frames can be found due to noisy movements. Thus,
despite of the fact that some key-frames remain stable over dimensionality, additional
key-frames appear isolated. Consequently, the key-frame selection criterion used in
the last chapter will not be applied to single performances.

Alternatively, we can exploit the fact that we already know which action has been
performed. So we next utilize the information embedded in the action model ' in
order to select the key-frame set K. For this purpose, we adapt the human action
recognition procedure presented before in order to find the key-frames K4 in the
performance manifold ff. Thus, we define the distance between a key-frame k! of
K“, and a projection yf of the performance manifold f¥ as:

(4.36)

(3

Kk vy
d(kA,yf):H J il

i
Ik

As the distance between two projections in the aSpace is a measure of correla-
tion, the nearest projection yfl = fH(plg) to the i-th key-frame of the p—action kf‘
determines the i-th key-frame of the performance manifold k!:

(3

P = argmjind(k“,yf), j € [1,h],
i=1,...k (4.37)
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Figure 4.14: Selected key-frames are shown for two aSkip performances in (a)
and (b), and for two aTumble performances in (c) and (d). Dots represent the
key-frames, i.e., those projections in the performance manifold, whose distance is
minimum to the key-frame set of the action model.

where pg refers to the pose parameter value which determines the i-th characteristic
posture k¥ in the performance manifold 2.

Fig. 4.14 shows the pose values of the selected key-frames for the aSkip, and
aTumble performances by varying the dimensionality m of their corresponding aS-
paces. As expected, the key-frame identification process stabilizes in high dimensions.
The parametric value p is not normalized here to illustrate that the position of the
key-frames within a performance sequence is highly variable.

Once the set of key-frame projections is established:

7 (py) = {k{", K, . ki), (4.38)

we compute the arc lengths corresponding to the key-frames found in the performance
manifold:
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() (b)

Figure 4.15: Synchronization of a new performance with the aBend p—action £ (p).
The variation of the elevation angles for the right arm (a) and for the right upper
leg (b) during a new performance (dotted line) and during the p-action (solid line)
is shown. By adjusting the key-frames (dots), the correspondence for both manifolds
is established.

SkH = {SkHlaskHZa-'-aska}a (439)

The next step is centered on determining the arc length values slf which correspond
to the pose parameter values p]f of the key-frame set K# in the p-action £4:

Sic = {5ic,» Siey -+ 5, ) (4.40)

Subsequently, we generate a sequence of consecutive arc length values in the new

performance so that sf be equally spaced as s]f. That is, a sequence of r consecu-

tive equally spaced arc length values is taken between s]fl_ and s]fiﬂ. Similarly, by

considering r consecutive equally spaced arc length values between skH and sg Lo We
are actually sampling the new performance manifold so that the key-frames of both
manifolds are time-coincident.

Fig. 4.15 shows an example of synchronization between a new performance and
the aBend p—action. The variation of the angles of specific limbs of the human body
model during a performance can be compared with respect to the p—action. Once the
key-frames establish the correspondences for both manifolds, we modify the speed
at which a performance is sampled so that its key-frames coincide in time with the
key-frames of the p—action.

As a result of such a synchronization process, differences between a performance
and the prototypical action can be derived by analyzing the resulting angle variation
curves. Such differences can be associated with natural language terms related to
speed, naturalness, or suddenness, for example. These terms can be used to enhance
the description of a recognized action, as discussed next.
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4.3.2 Analysis of Human Walking

Computational models of action style are relevant to several important application
areas [41]. On the one hand, it helps to enhance the qualitative description pro-
vided by the human action recognition module. Thus, for example, it is important to
generate style descriptions which best characterize an specific agent for identification
purposes. Also, the style of a performance can help to establish ergonomic evalua-
tion and athletic training procedures. Another application domain is to enhance the
human action library by training different action models for different action styles,
using the data acquired from a motion capture system. Thus, it should be possible
to re-synthesize human performances exhibiting different postures.

In the literature, the most studied human action is walking. Human walking is a
complex, structured, and constrained action, which involves to maintain the balance
of the human body while transporting the figure from one place to another. The most
exploited characteristic is the cyclic nature of walking, because it provides uniformity
to the observed performance. In this section, we propose to use our human action
model in the study of the style inherent in human walking performances, such as the
gender, the walking pace, or the effects of carrying load, for example.

Specifically, we use the aSpace representation to establish a characterization of the
walking style in terms of the gender of the walker. Such a characterization consists of
a description of the variation of specific limb angles during performances played by
agents of different gender. The aim is to compare performances to describe differences
between male and female walkers.

Our training data set is composed of r sequences AW = {HIV, HY ..., H" }, each
one corresponding to a cycle or stride of the aWalk action A" . Three males and
three females were recorded, each one walking five times in circles. Each sequence
H;’V of f; frames corresponds to a sequence of human body configurations:

H;/V = {x1,X2, ..., Xy, }, (4.41)

where each x; stands for the 37 values of the human body model described in the
last chapter, which was composed of twelve rigid body parts (hip, torso, shoulder,
neck, two thighs, two legs, two arms and two forearms). Consequently, our human
performance analysis is restricted to be applied to the variation of these twelve limbs.

Once the learning samples are available, we compute the aSpace representation
of the aWalk action. First, the mean human posture x" and the covariance matrix
YW are calculated. Subsequently, the eigenvalues A}V and eigenvectors e}” of =W are
found by solving the eigenvector decomposition equation. The individual contribu-
tion of each eigenvector determines that 95% of the variation of the training data is
captured by the thirteen eigenvectors associated to the thirteen largest eigenvalues.
So the resulting a Walk aSpace is defined as:

Q% = EV AW 7). (4.42)



4.3. Human Action Analysis 101

Figure 4.16: The three most important modes of variation of the a Walk aSpace.

Figure 4.17: Prototypical performance manifold, or p-action, in the a Walk aSpace.
Depicted human postures correspond to the key-frame set.

Fig. 4.16 shows the most relevant modes of variation of the human posture in
the aWalk aSpace, which correspond to the three eigenvectors associated to the three
largest eigenvalues. As expected, these modes of variation are mainly related to the
movement of legs and arms.

Once the training human postures x; are projected in the a Walk aSpace, the key-
frame set K" is found, and the p—action £V is computed by interpolation between
key-frames, see Fig. 4.17. Therefore, the a Walk action model is defined as:



102 APPLICATIONS

(a) (b)

Figure 4.18: Male and female postures projected in the a Walk aSpace, by consid-
ering two (a) and three (b) eigenvectors for the aSpace representation.

v = @" K"V V). (4.43)

In order to compare performances played by male and female agents, we define
two different training sets:

H"w
H""

{X17X27 "'7XfM}7
{X17X27"'7XfF}7 (444)

that is, the set human postures exhibited during several a Walk performances for a
male and a female agent, respectively. In our experiments, near 50 a Walk cycles per
walker have been recorded. As a result, the training data is composed of near 1500
human posture configurations per agent.

Next, we project the human postures of H"™ and H"F in the aWalk aSpace,
as shown in Fig. 4.18. The cyclic nature of the a Walk action explains the resulting
circular clouds of projections. Also, note that both performances do not intersect,
that is, they do not exhibit the same set of human postures. This is due to the high
variability inherent in human performances. Consequently, we can identify a posture
as belonging to a male or female walker.

However, the scope of this section is not centered on determining a discriminative
procedure between generic male and female walkers. Instead, we look for a comparison
procedure to subsequently evaluate the variation of the angles of specific agents while
performing the same action, in order to derive a characterization of the action style.

Following the procedure described in the last chapter, we use the projections of
each walker to compute the performance representation for the male I'"» and female
"7 agents:
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Figure 4.19: Male and female performance representations in the a Walk aSpace.

| REY

(QW7 KWM ) fWM)7
s = (W K"r fVr) (4.45)

where fV» and fW7 refer to the male and female p—actions, respectively. These man-
ifolds have been obtained by interpolation between the key-frames of their respective
key-frame set, i.e., K™ and K"*. These key-frames correspond to those postures
in each manifold, which are most similar to the key-frame set K" of the a Walk model
I'"'. Fig. 4.19 shows the resulting p—action representations in the a Walk aSpace.

In order to compare the human posture variation for both performances, we sample
both p-actions to describe each manifold as a sequence of projections, that is:

v (p) = y™M, yy M,y ],
" (p) = ¥y "y Ly, (4.46)

where qp; and g refer to the number of projections considered for performance com-
parison. However, the sampling rate of both p—actions should be established in order
to attain independence from the speed at which both performances have been played.

Therefore, both p—actions are parameterized by arc length and, subsequently, the
synchronization procedure described in the last section is applied. Synchronization
allows to modify the speed at which both manifolds are sampled so that their key-
frames coincide in time with the key-frame set K" of T'W.

Once the male and female p—actions are synchronized, the angle variation for
different limbs of the human body model can be analysed. Fig. 4.20.(a), (b), (c),
and (d) show the evolution of the elevation angle for four limbs of the human body
model, namely the shoulder, torso, left arm, and right thigh, respectively.
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Figure 4.20: The elevation variation for the shoulder (a), torso (b), left arm (c),
and right thigh (d) limbs are depicted for a male and a female walker.

By comparing the depicted angle variation values of both walkers, several differ-
ences can be observed. The female walker moves her shoulder in a higher degree than
the male shoulder. That is, the swing movement of the shoulder is more accentu-
ated for the female. Also, the female bends the torso in a higher inclination degree.
Therefore, the swing movement of the shoulder and torso for the male agent is less
pronounced. The female walker also exhibits an emphasized swing movement in her
left arm. On the contrary, the male agent does not show a relevant swing movement
for his left arm. As expected, when the left arm swings backward, the right thigh
swings forward, and vice versa. When comparing the angle variation of the right thigh
for both walkers, few dissimilarities can be derived. In fact, most differences between
the male and the female performances have been found in the elevation values of the
limbs corresponding to the upper part of the human body.

Summarizing, a comparison framework has been presented which allows to evalu-
ate the variation of the angles of specific human body limbs for different agents while
performing the same action. This analysis of human actions helps to determine those
human body model parameters which best characterize an specific action style. Con-
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sequently, a suitable characterization of the action style can be built by analyzing the
resulting angle values.

Using the characterization about action styles, human action recognition proce-
dures can be enhanced by deriving style attributes about recognized performances.
Also, we can enhance human action synthesis procedures by incorporating restrictions
about a predefined action style, which the virtual agent should obey while reproducing
the requested action.
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Chapter 5

Towards a Cognitive Vision System

This chapter is focused on the most challenging abstraction process within the Human
Sequence Evaluation framework: to relate qualitative knowledge at the Behavior Level
(BL) with quantitative models at the Scene Domain Level (SDL). For this purpose,
we establish an integration procedure addressed in two directions. The abstraction
process from the SDL to the BL is defined as the generation of textual descriptions at
the BL, based on the numerical results obtained at the SDL. Also, the inversion of this
abstraction process is established as the automatic creation of synthetic sequences at
the SDL, based on the conceptual knowledge modeled at the BL.

To confront such an abstraction task, and following the approach presented in [61],
we use the Situation Graph Tree (SGT) formalism at the BL to model the knowledge
required for human behavior analysis in an specific discourse domain. The basic
component of SGTs is called situation scheme which comprises conceptual knowledge
about a given actor for a given point in time. On the one hand, such a knowledge is
based on a set of predefined conceptual predicates which describe at each time step the
spatial position of the human agent within the scene, and also the posture exhibited.
These qualitative statements are derived at the Conceptual Level (CL) using the
quantitative information obtained at the SDL. On the other hand, situation schemes
also embed conceptual predicates which generate an specific spatial and posture status
for a synthetic agent. These reaction predicates are processed at the CL to derive
the quantitative information required to synthesize motion for a virtual agent at the
SDL.

Therefore, the abstraction process from the SDL to the BL implies to instantiate
descriptive predicates at the CL, based on the information obtained at the SDL, in
order to describe the behavior modeled at the BL. Likewise, the inversion process from
the BL to the SDL implies to instantiate generative predicates at the CL in order to
re-visualize at the SDL the behavior modeled at the BL. Both kinds of conceptual
predicates constitute the a—priori terminology of our specific discourse domain, which
is defined in Appendix B.

107
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Figure 5.1: Each situation scheme is separated into two parts: the state scheme
refers to the logical predicates which should be satisfied to instantiate such a situation;
the reaction scheme refers to those logical predicates which will be generated when
the situation is instantiated.

We show the suitability of SGTs by modeling a human activity and a human
behavior. The human activity which will be described and synthesized using SGTs is
called the thief sequence [27], in which a human agent walks, stands up straight to look
around, bends to pick up an object, and then runs away. Subsequently, the behavior
of an agent in a subway scene is also modeled for description and synthesis purposes.
In this case, knowledge about the context is incorporated into the SGT. Despite the
fact that these examples are quite trivial, the aim is to demonstrate that SGTs can
cope with human behavior modeling, once human motion is properly expressed in
terms of semantic predicates.

As we consider the same knowledge representation to perform both description and
synthesis, i.e. the SGT formalism, evaluation of integration can be addressed using a
two-step procedure [7]. First, a synthetic video is created using the textual descrip-
tions generated for a given input sequence. Therefore, both synthetic and original
image sequences can be compared to evaluate the knowledge used in HSE systems.
Second, a textual description is generated for the resulting synthetic sequence. Con-
sequently, we can compare both original and synthetic textual descriptions to detect
deficiencies in the knowledge representation.

5.1 Using Situation Graph Trees

As commented in chapter 1, Situation Graph Trees (SGTs) provide a deterministic
formalism to represent the knowledge required for human behavior evaluation, where
behavior refers to activities which acquire a meaning in an specific scene.

The basic component of SGTs is the situation scheme, which is separated into
two parts, see Fig. 5.1: the state scheme and the reaction scheme. On the one hand,
the state scheme refers to logic predicates about the state of the agent. On the other
hand, the reaction scheme describes the responses (in terms of logic predicates, too)
that an agent is supposed or expected to perform when the predicates of the state
scheme are satisfied. In this case, the agent is said that instantiates the situation.

Situation schemes are connected by directed edges, called prediction edges, which
define the temporal successor relationship within the sequence. Thus, transitions
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between situations express a temporal change from one situation to another: if an
agent has been recognized to instantiate the situation from which a prediction edge
starts, one probable next situation for that agent could be the situation to which
the edge points. Of course, an agent can persist in a single situation for more than
one time step: those prediction edges from one situation to itself are referred as
self-prediction edges.

Situation Graphs are built by embedding single situation schemes into temporal
sequences of other schemes or, in other words, by linking situation schemes using
prediction edges. Thus, the resulting graph is directed and can comprise cycles. Situ-
ations within situation graphs can be marked as start situation and/or end situation.
Each path from a start situation to an end situation defines a sequence of situations
represented by the situation graph.

Also, situation graphs can particularize superordinate situation schemes by using
particularization edges. These edges allow to describe a situation in a conceptually or
temporally more detailed manner. The situation scheme specialized is called parent
situation scheme of the specializing situation graph. Therefore, situation schemes and
their particularization edges build tree-like structures, which are called the Situation
Graph Trees (SGT), see [7] for details.

An example of SGT is shown in Fig. 5.2. The root graph comprises only
one situation scheme, namely subway_behavior. This scheme is particularized by
another situation graph, comprising three schemes (going_ticket_machine, walk-
ing_towards_ accessing_gate, and entering_subway), whereby the first of these
schemes is marked as start situation and the last one as end situation. Also, the first
scheme is particularized further. Note that multiple particularizations/predictions
are allowed.

SGTs can be used to recognize those situations which can be instantiated for
an observed agent by applying the so called graph traversal [61]. The goal is to
determine the most specialized situation which can be instantiated by considering
the logic predicates generated at the CL at each time step. This traversal of the
SGT is applied by considering the knowledge encoded in the form of prediction and
specialization edges. The procedure is coarsely described as follows.

The recognition of situations is started at the root situation graph. Here, a start
situation is searched for which each logic predicate of the state scheme is satisfied
for the actual inspected point of time. If no such situation scheme can be found, the
traversal fails. Otherwise the agent is instantiating that situation. If this situation
scheme is further specialized by any situation graph, these graphs are again searched
for start situation schemes with state predicates also satisfied in the actual point of
time. Again, if such a situation scheme can be found, it is instantiated by the actor.
Using this procedure, the most special situation scheme which can be instantiated by
the actor is found. In other words, for each point of time, an actor is instantiating
situation schemes on several levels of detail, each on a path from a scheme in the root
graph to the most special case.

Concerning the reaction scheme, two different cases are considered when apply-
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Figure 5.2: Example of SGT. Following the representation proposed in [7], situation
schemes are shown as normal rectangles. Thin arrows stand for prediction edges,
while bold arrows represent specialization edges. Circles in the right upper corner
of situation schemes indicate a self-prediction of that scheme. Rounded rectangles
depict situation graphs. Small rectangles to the left or right of the name of the
situation indicate that the scheme is start or end situation, respectively.
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ing the graph traversal: each reaction predicate can be marked as incremental or
non-incremental. Incremental reactions of a situation scheme are executed whenever
this situation scheme lies on a path of schemes being currently instantiated by the
agent. On the other hand, non-incremental reactions are only executed whenever the
situation is the most special one on a path of schemes that an actor is instantiating.

For the next point in time, only those situation schemes, which are connected by
prediction edges to the situation scheme instantiated last, are investigated. Therefore,
only those situation schemes of the same graph are searched. In other words, a
prediction for a situation scheme on the same level of detail is searched. If no scheme
can be instantiated, two different cases are considered. On the one hand, if the
situation scheme last instantiated is an end situation, the failed prediction on this
level is accepted and the traversal continues in the parent situation of the actual
graph. On the other hand, if no end situation was reached in the actual graph, the
traversal fails completely.

The traversal of SGTs is implemented by executing a logic-program obtained by
an automatic translation of the SGT into rules of a Fuzzy Metric Temporal Horn
Logic (FMTHL). By translating the SGT-traversal into a set of fuzzy logic rules, it
is possible to operate with fuzzy truth values, which are essential to cope with the
uncertainty arising in HSE systems. Furthermore, by translating the SGT-traversal
into a set of metric temporal logic rules, it is possible to explicitly reason about time.
These characteristics justify the utilization of SGTs within the HSE framework, which
is addressed as follows.

A quantitative description of the state of the agent is obtained at the SDL for each
time step. In our experiments, we assume that the following information is provided
to the CL:

e The 2-D spatial position pos of the agent Agent in the floor plane, in addition
to the velocity wvel (in kilometers per hour) and the orientation or (in degrees).
These three parameters are called the spatial status of the agent, which is generic
for Image Sequence Evaluation systems. This information is commonly obtained
using visual tracking procedures.

e The action label aLabel which the actor is performing. In addition, the human
posture is also represented by the parameter aPosture. These two parameters
are denoted as the posture status of the actor, which is especific of HSE systems.
In fact, we associate the human action representation described in chapter 3 to
the posture status of the agent. That is, given the aLabel parameter of the agent
state, the p—action representation of the aLabel action is selected. Subsequently,
the aPosture parameter establishes the arc length value of the p—action manifold,
which corresponds to a particular human posture configuration. Therefore,
incrementing the aPosture parameter implies to move along the p—action or, in
other words, to reproduce the aLabel action.

This knowledge is comprised in the following attribute scheme, or state vector of
the agent:
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has_status(Agent, pos, or,vel, aLabel,aPosture). (5.1)

Subsequently, the information embedded in the state of the agent is associated
at the CL with concepts formulated in terms of logic predicates. These temporally
isolated logic statements will be derived from both the state of the human agent
and a predefined conceptual model of the scene, and they refer to three sources of
knowledge:

e The spatial information of the actor within the scene, such as the position,
velocity and orientation in the floor plane.

e The relationship of the actor with respect to its environment, such as the pres-
ence of other actors nearby or the proximity of static objects represented in the
conceptual scene model.

e The action which the actor is performing, which is obtained using a suitable
action recognition procedure. Also, the human posture representation for the
observed actor can be considered.

For this purpose, we enhance the terminology of logic statements used in [61]
to include predicates which describe the spatial information about the human agent
within the scene, the properties of the actor with respect to its environment, and the
action which the actor is performing. Our terminology can be found in Appendix B.

Descriptive predicates allow the instantiation of situation schemes, one situation
per agent and frame. As situation schemes describe the behavior of a given agent
for a single point in time, the graph traversal applied to SGTs involves to instantiate
different situations over time, where the instantiation of each situation is based on
the (temporally isolated) logic predicates derived at the CL.

The sequence of the resulting instantiated situations can be used both for descrip-
tion and synthesis. On the one hand, reaction predicates can be processed at the
Language Level (LL) to formulate a natural language text describing the recognized
behavior within the scene. On the other hand, reaction predicates can be used to
generate video sequences, during which (previously modeled) human behaviors are
automatically synthesized at the SDL. A proper human movement model should be
implemented to modify the state of the agent according to instantiated reaction predi-
cates. Therefore, as the state of the agent changes over time, we will deterministically
predefine which sequence of situations should be instantiated in order to re-visualize
predetermined behaviors.

5.2 Generation of Textual Descriptions

In order to model the behavior of human agents, we first define an a-priori terminology
which consists of logic predicates related to the information to be described about



5.2. Generation of Textual Descriptions 113

the scene. Therefore, the terminology actually restricts the discourse domain, and
consists of logic-rules and facts regarding the state of the agent, its relationship with
the environment, and information about the context. Note that the problem domain
itself provides the knowledge required to design such a terminology.

According to the terminology described in Appendix B, we detail three differ-
ent strategies to associate conceptual descriptions using the quantitative information
of the agent state. Thus, semantic primitives related to three different sources of
knowledge will be instantiated for a given point in time.

Subsequently, an SGT is used to represent a particular human behavior. For this
purpose, it should be established the set of logic predicates which will be embedded
both in the state and reaction schemes of each situation to be modeled. Two examples
are provided to illustrate this process, i.e., a human activity and a human behavior.

We first represent the human activity called the thief sequence. The SGT is com-
posed of predefined situations which define in a temporal (by means of the prediction
edges) and specific (by means of the particularization edges) manner the sequence of
situations which should be instantiated in order to describe such an activity. Each
situation scheme embeds a set of state predicates which the agent should satisfy to
instantiate the situation.

To conclude, an SGT is used to describe the behavior of human agents within
a particular scene. In our experiments, a conceptual scene model of a predefined
subway scene is developed in order to incorporate the knowledge about the context.
In fact, the context helps to determine the relationship of the agent with respect its
environment. We next describe the set of plausible situation schemes which can be
instantiated within a subway station. After that, we organize the set of situations in
a conceptually and temporally more detailed manner, according to the desired degree
of specificity for the inferred textual descriptions.

5.2.1 From Quantitative to Qualitative Knowledge

Based on the quantitative information of the state vector of the agent at the SDL,
the aim is to to associate conceptual interpretations for such numerical data at the
CL. For this purpose, we next address three different strategies to accomplish such
an abstraction process, according to the source of knowledge which is exploited to
generate the qualitative description.

About the spatial information of an actor within a scene : to abstract the
quantitative state parameters by associating concepts like moving, small, left,
or briefly with a fuzzy degree of validity characterizing how good a concept
matches the numerical quantity. As a result, the speed and orientation param-
eters of the state vector will be associated to fuzzy attributes, thus allowing the
instantiation of logic predicates such as:

has_speed(Agent,Value),
has_direction(Agent, Value).
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About the relationship of an actor with respect to its environment :  to
derive spatial relations by considering the positions of the agents and other
static objects in the scene. In this case, a conceptual scene model is required
to describe the spatial coordinates of the agent with respect to static objects,
other agents, and specific locations within the scene. This description is im-
plemented by applying a distance function between the positions of different
agents/objects in the scene. Subsequently, a discretization of the resulting dis-
tance value is obtained by using Fuzzy Logic:

is_alone(Agent, Proximity),
has_distance(Agent, Patiens, Value).

Also, predicates concerning the spatial properties of the agent with respect to
static objects (predefined at the conceptual scene model) can be instantiated.
For example, the predicate:

on_ticket_machine(Agent, T M achine),

checks whether the spatial position of the agent Agent in the scene is inside the
subway segment defined as TMachine.

About the action which an actor is performing : to associate an action label
to the state of the agent, depending on the agent posture configuration. For this
purpose, a variation of the action recognition algorithm proposed in chapter 4
is used, as described next. As a result of recognition, the posture status already
embeds a conceptual term, i.e. the label of the recognized action:

is_per forming(Agent, aLabel).

But the posture status can also reflect additional information about performance
characteristics, such as the style or the relative velocity in which the action is
being played, for example. Thus, a conceptual interpretation using Fuzzy Logic
may be required here, too.

The first two types of qualitative predicates refer to the spatial status of the agent,
and they are generated by discretization of the numerical values of the agent state.
Additionally, these predicates require of a conceptual scene model to relate the spatial
information of the agent with respect to the scene.

The last item refers to those predicates related to the posture status of the agent,
and the abstraction process can be implemented following two different approaches.
On the one hand, we can provide the label of the recognized action at the CL when
such an action is finished. In fact, most action recognition algorithms assign a label
to an unknown input sequence only once the performance is finished'. However, this
is not a compulsory assumption when designing action recognition procedures.

'When dealing with repetitive actions such as aRun or a Walk, the action term is generated when
just a cycle is completed.



5.2. Generation of Textual Descriptions 115

Instead, we derive the label of a tentatively recognized action while the performance
is being executed, i.e., human action recognition is applied to each posture of the
sequence. In this case, several possible labels can be instantiated at the same time,
due to the fact that different actions can exhibit some identical postures during their
performances, for example aSquat and aTumble. The abstraction process for the
posture status is as follows.

Consider a human body posture model x7 defined as in chapter 3, and obtained
from a motion capture system. Subsequently, the projection of x7 in the UaSpace
QY is computed as described in chapter 4. Thus, we obtain yr = [y1,%2, -, Ymv |7,
where mY correspond to the number of eigenvectors considered to represent QU in
our experiments mY = 20. Subsequently, we use the distance measure between two
manifolds in order to compute the nearest key-frame k{‘ to yr:

(kA (5.2)

7yT
Z H [ kA I || yr |l H

Therefore, the nearest key-frame k4 is obtained by considering the minimum
distance measure to all the key-frames of all modeled actions in QU:

k4 = argmind(kf,yT), i=1,...,ky. (5.3)
(3

where k¢ refers to the number of key-frames considered for comparison. The last step
assigns the action label A to the aLabel parameter of the the agent state. Also, the
arc length value which corresponds to k* in the p-action manifold £4 is assigned to
the aPosture parameter of the agent state.

Different action labels can be assigned to the same input posture, due to that fact
that different action manifolds can embed similar postures, like aBend and aSit, for
example. In this case, a description for each possible action is generated at each time
step. In our experiments, at the very most, the three nearest action labels determine
the correct action.

Based on the final purpose of HSE systems, the aim is to infer at each time step
tentatively recognized posture status parameters which can be verified once the action
has finished. So we assume hereafter that the state of the agent is provided by the
SDL to the CL at each time step.

5.2.2 Human Activity Description

Next, we present an SGT which models a human activity. Obeying the terminology,
situation schemes are defined in terms of qualitative predicates which refer to the
spatial position and the posture status of the agent. That means, no reference to the
scene is required to model human activities.
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Figure 5.3: Situation Graph Tree modeling the thief sequence for descriptive pur-
poses.

The SGT depicted in Fig. 5.3 represents the so-called thief sequence, in which a
”thief” approaches an object, stands up straight to look around, bends to pick up the
object, and then runs away.

The root graph comprises only one situation scheme, in which the predicate states
that an agent is presently active, active(Agent). That means, the state vector of
the agent is available at the SDL. This scheme is particularized by another situa-
tion graph, comprising three schemes. The firs scheme (start-situation) is instanti-
ated when the agent is (recognized as) walking, is_performing(Agent,aWalk). Next
situation in temporal order is instantiated when the agent is still, i.e. has no spa-
tial speed, has_speed(Agent,zero). Afterwards, the last scheme, referred to as end-
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situation, is instantiated when the agent is recognized as performing the running
action, is_performing(Agent, aRun).

When the agent exhibits no movement, a particularized situation graph represents
the pick-up or aBend action, is_performing(Agent, aBend). But first, the agent looks
around to check whether someone is near. This process is represented at the SGT
by the start-situation is_standing(Agent), which is particularized further. Note that
different particularizations are allowed.

The first particularized situation graph states that the agent is actually alone:
is-alone (Agent, nearby). The second particularized situation graph checks if another
agent, i.e the patiens, is positioned near enough, is_distance (Agent, Patiens, small).
If this situation is instantiated, the agent should wait until he is alone to pick up the
object on the floor. This is reflected by its self-prediction edge. The end-situation is
instantiated when the patiens has already left its neighborhood.

In this example, no reference to a-priori modeled static objects of the scene has
been required. We only need to determine the relationship between the spatial posi-
tion of observed agents. Next, we show a different example in which the relationship
of the agent with respect to the static components of the scene helps to infer human
behavior.

5.2.3 Human Behavior Description

In this section we show an example of SGT which can be used to describe human
behavior within a subway station. Behavior analysis requires of an explicit reference
to the spatial context, i.e., a conceptual model of the scene. Such a model allows to
infer the relationship of the agent with respect (predefined) static objects of the scene,
and to associate facts to specific locations within the scene. Thus, for example, if the
agent is in front of a ticket machine, we assume that the agent is actually buying a
ticket.

The conceptual scene model used is shown in Fig. 5.4. The scene is divided
into polygonally bounded subway_segments, which describe the possible positions in
which an agent can be found. Each subway_segment has a label which determines the
conceptual description associated to such a segment. Thus, we distinguish (at least)
six different types of segments, namely:

ticket_machine : subway segments placed in front of the ticket machines. If posi-
tioned on these segments, we assume that the agent is buying the ticket.

waiting_line : subway segments placed in front of the ticket_machine segments. The
agent is expected to wait in these segments until a ticket machine is free.

inside_station : subway segments placed at the subway platform.

accessing_gate : subway segments placed at the accessing gates. Agents get into
the subway platform through these segments.
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Figure 5.4: Conceptual subway scene model for human behavior description (see
text for details).

entrance_segment : subway segments placed in front of the accessing gates. Agents
get into the accessing gates through such segments.

sub_seg i : i-th subway segment through which the agent (normally) walks to get to
accessing gates or to ticket machines.

Consequently, we can build predicates which relate the spatial position of the
agent with respect to these segments. Fig. 5.5 depicts an SGT which allows to infer
the behavior of agents within the subway station scene, as detailed next. In our
experiments, four different agents were synthetically generated. Their trajectories in
the subway scene, are depicted in Fig. 5.6.

The root graph comprises only one situation scheme, in which the predicate states
that an agent is presently active (active(Agent)). This scheme is particularized by
another situation graph, comprising four schemes. The start-situation is instantiated
when the agent is not crossing the accessing gates. Therefore, the agent is expected
to buy the subway ticket. The next situation in temporal order is instantiated when
the agent is going to cross through the accessing gates, and the last-situation refers
to the agent on the subway platform.

The start-situation (not-on_entrance_segment(Agent)) is particularized to describe
the purchase of the ticket, which is again divided into four situation schemes:

e First, the agent looks for a ticket machine, not_on_ticket_machine(Agent).
This situation is specialized further to detect when the agent reaches the wait-
ing_line segment: first, the agent is expected to walk towards the waiting
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Figure 5.5: (Part of an) SGT for human behavior description in a subway station.
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(b)

Figure 5.6: Trajectories of the agents within the subway scene. Agents agent_1
and agent_2 are shown in (a). Agents agent_3 and agent_4 are shown in (b).

line (path_towards_waiting_-line (Agent, WLine, WLPath)), where WLine cor-
responds to the waiting_line segment, and WLPath holds the list of subway
segments constituing the path from the agent to WLine. The next situation
in temporal order checks whether the agent is following the list of segments of
WLPath, is_walking-through(Agent, WLPath). The last situation analyses the
behavior of the agent at the waiting_line segment. This is done by considering
two different specialized situation graphs. On the one hand, a free ticket machine
segment is searched, next_free_ticket_machine(Agent, TMPath, TMachine). As
a result, TMPath refers to a sequence of subway segments which lead to the free
ticket machine segment TMachine. On the other hand, if no free ticket machine
segment is found (no_free_ticket_machine(Agent)), the agent should wait. Dur-
ing this waiting period, the agent can move (has_speed(Agent,moving)) or adopt
a standing position, has_speed(Agent,zero).

Once the human agent reaches the ticket machine segment (on_ticket_machine
(Agent, TMachine)), s/he is expected to exhibit no spatial movement only when
the ticket is being bought, has_speed(Agent,zero).

When the agent departs from the ticket machine segment, s/he is expected
to go towards a crossing gate segment. Consequently, a path towards the en-
trance segment is computed (path_towards_entrance_segment (Agent, ESegment,
ESPath)), where ESegment corresponds to the entrance_segment segment, and
ESPath holds the list of subway segments constituting the path from the current
agent position to ESegment.

The next situation in temporal order checks whether the agent is following the
list of segments of ESPath, (is_walking-through(Agent, ESPath).
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Start End Situation

3 41  walking_towards_waiting_line(agent_1,lseg_1).

42 82  walking_towards_waiting_line(agent_1,lseg_2).

83 133  walking_towards_waiting_line(agent_1,]seg_3).

134 176  walking towards_waiting line(agent_1,lseg_4).

177 242  walking_towards_waiting line(agent_1,lseg 6).

243 267  walking_towards_waiting_line(agent_1 lseg_7).

268 287  proceeding_through_waiting_line(agent_1,lseg_15).
288 295  walking_on_ticket_machine_segment(agent_1,lseg_16).
296 538  standing_at_ticket_machine(agent_1,lseg_16).

539 549  walking on_ticket_machine segment(agent_1,lseg_16).
550 569  walking _towards_entrance_segment(agent_1,lseg_15).
570 589  walking_towards_entrance_segment(agent_1,lseg_7).
590 617  walking towards_entrance_segment(agent_1,lseg_6).
618 669 walking towards_entrance_segment(agent_1,lseg_9).
670 770  walking_towards_entrance_segment(agent_1,lseg_11).
771 819  walking on_entrance_segment(agent_1,lseg_14).

820 839 crossing_gate(agent_1,lseg-19).

840 868  walking_inside_subway_platform(agent_1,lseg_20).

Table 5.1: Sequence of textual descriptions generated for agent agent_1 using the
SGT of Fig. 5.5 and the trajectory data of Fig. 5.6.

Start End Situation
201 241  walking_towards_waiting_line(agent_2 lseg_1).
242 289  walking towards_waiting_line(agent_2,lseg_2).
290 324  walking towards_waiting_line(agent_2,lseg_3).
325 424  walking_towards_waiting_line(agent_2,lseg_5).
425 474  walking_towards_waiting_line(agent_2,lseg_8).
475 574  walking_towards_waiting_line(agent_2,lseg_10).
575 625  walking_on_entrance_segment(agent_2 lseg_13).
626 645  crossing_gate(agent_2 lseg_18).
646 675 walking inside_subway_platform(agent_2,lseg_20).

Table 5.2: Sequence of textual descriptions generated for agent agent_2 using the
SGT of Fig. 5.5 and the trajectory data of Fig. 5.6.

The situation on_entrance_segment(Agent,Sseg) is instantiated when the agent
reaches the entrance segment. Then, the agent gets into the subway platform through
a crossing gate, on_crossing_gate(Agent, AGate). Subsequently, the agent is expected
to be placed in the subway platform segment, on_subway_seg(Agent,subway_platform).

The textual descriptions generated for the four agents considered are shown in
Tables 5.1, 5.2, 5.3, and 5.4.
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Start End Situation

101 141  walking_towards_waiting_line(agent_3,lseg_1).
142 147  walking_towards_waiting_line(agent_3,lseg_2).

203 266  walking_towards_waiting_line(agent_3,lseg_4).
267 313  walking_towards_waiting_line(agent_3,lseg_6).
314 347  walking_towards_waiting_line(agent_3,lseg_7).
348 447  proceeding_through_waiting_line(agent_3,lseg_15).

( )
( )
148 202  walking_towards_waiting_line(agent_3,lseg_3).
( )
( )

448 455  walking_on_ticket_machine_segment(agent_3,lseg_17).
456 700 standing at_ticket_machine(agent_3,lseg_17).

701 710  walking_on_ticket_machine_segment(agent_3 lseg_17).
711 731  walking_towards_entrance_segment(agent_3,lseg_15).
732 753  walking_towards_entrance_segment(agent_3,lseg_12).
754 825  walking_towards_entrance_segment(agent_3,lseg_11).
826 867 walking on_entrance_segment(agent_3 lseg_14).

868 880  walking on_entrance_segment(agent_3 lseg_13).

881 901 crossing_gate(agent_3,lseg_18).

902 920 walking_inside_subway_platform(agent_3,lseg-_20).

Table 5.3: Sequence of textual descriptions generated for agent agent_3 using the
SGT of Fig. 5.5 and the trajectory data of Fig. 5.6.

5.3 Generation of Synthetic Image Sequences

In this section, we adapt the process presented in [103], where an inversion of the
abstraction process presented so far is developed. The goal is to generate animated
sequences from elementary conceptual descriptions. We restrict ourselves to develop
an algorithmic approach addressed to build a synthetic sequence during which a vir-
tual agent performs the modeled behavior.

For this purpose, we utilize the SGT-based knowledge representation to model the
synthetic behavior of an agent. Thus, we can deterministically define which, and in
which order, situation schemes should be instantiated to generate a particular behav-
ior. Note that, when a situation is instantiated, reaction predicates are generated. So
we will adapt these reaction predicates to modify the state of the agent according to
the parameters of the agent state itself, and the relationship of the agent with respect
to its environment.

The creation process of video sequences is as follows. Given an initial, quantitative
state of the agent, conceptual terms are associated to the numerical values of such
a state in order to instantiate logic predicates at the CL. Subsequently, the graph
traversal is applied to the SGT modeled at the BL. Thus, the most special starting
situation is searched for which each logic predicate of the state scheme is satisfied for
the first point of time or, in other words, for which the set of logic predicates of the
state scheme is found instantiated at the CL.
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Start End  Situation

141 184  walking_towards_waiting_line(agent_4,1seg_1).

185 250  walking_towards_waiting_line(agent_4 lseg_2).

251 274  walking_towards_waiting_line(agent_4,lseg_3).

275 375  walking _towards_waiting_line(agent_4 lseg 5).

376 424  walking towards_waiting_line(agent_4,1seg_8).

425 442  walking_towards_waiting_line(agent_4,lseg_9).

443 480  walking_towards_waiting_line(agent_4,lseg_11).

481 500  walking_towards_waiting_line(agent_4,1lseg_12).

501 510  proceeding_through_waiting line(agent_4,lseg_15).
511 549  waiting_for_a_free_ticket_machine(agent_4).

550 634  proceeding_through_waiting line(agent_4,lseg_15).
635 650  walking_on_ticket_machine_segment(agent_4,lseg_16).
651 740  standing_at_ticket_machine(agent_4 lseg_16).

741 750  walking_on_ticket_machine_segment(agent_4,lseg_16).
751 770  walking_towards_entrance_segment(agent_4,lseg_15).
771 790  walking _towards_entrance_segment(agent_4,lseg_7).
791 835  walking_towards_entrance_segment(agent_4,1seg_6).
836 885  walking_towards_entrance_segment(agent_4,1seg_9).
886 986  walking_towards_entrance_segment(agent_4,lseg_11).
987 1036 walking on_entrance_segment(agent_4,lseg_14).

1037 1056 crossing_gate(agent_4,lseg_19).

1057 1070  walking_inside_subway_platform(agent_4,lseg_20).

Table 5.4: Sequence of textual descriptions generated for agent agent_4 using the
SGT of Fig. 5.5 and the trajectory data of Fig. 5.6.

Once the first situation scheme is instantiated, its corresponding reaction scheme
is executed. The reaction predicates generated at the BL are processed at the CL
in order to conceptually determine which parameter(s) of the agent state should be
modified and how. For this purpose, a proper human movement model is developed
to (generically) update the state of the human agent according to the reaction predi-
cates activated by the graph traversal. Consequently, the graph traversal generates a
sequence of reaction predicates which are processed by the human movement model in
order to modify the position, orientation, speed, action and posture of the synthetic
human agent.

As the new state of the agent is (possibly) different, a different situation scheme
can be instantiated at next time step. As only those situation schemes, which are
connected by prediction edges to the situation scheme instantiated last, are investi-
gated, we can deterministically define which, and in which order, situation schemes
will be executed by graph traversal. When graph traversal finishes, the resulting se-
quence of states, which has been generated by the human movement model, describes
quantitatively the synthetic behavior of the agent within the scene, as explained next.
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5.3.1 From Qualitative to Quantitative Knowledge

As described in the preceeding section, the state of the human agent is composed
of five fields: position, orientation, speed, action and posture. As the set of possible
reaction predicates should modify these parameters, we establish five types of reaction
predicates, according to the parameter of the agent state which the human action
model modifies:

e Reaction predicates related to both the agent’s position and orientation. For
example, the reaction predicate follow_path(Agent, Subway_seg, Path) modify
the direction of the agent Agent in order to go from Subway_seg towards its next
subway segment in the segment list of Path.

e Reaction predicates related to only the agent’s orientation. For example, the
predicate turn(Agent, Value) modifies the direction of the agent Agent depend-
ing on the orientation value Value. Possible conceptual descriptions of Value
are left, and right.

e Reaction predicates related to the agent’ speed. The predicate accelerate(Agent,
Value), for example, modifies the velocity of the agent by using Agent depending
on the acceleration value Value. Also, the predicate accelerate_to (Agent, Value)
modifies the velocity of the agent Agent in order to reach progressively the
qualitative value of Value. Possible conceptual descriptions of Value are high,
normal, and small.

e Reaction predicates related to the agent’s action. In our experiments, three
predicates were implemented. The predicate go_on_performing(Agent, ALabel)
increments the parameter aPosture of the agent Agent in order to adopt the next
posture described by the action ALabel. Also, the predicate change_performing
(Agent, ANewLabel) increments the posture parameter of the agent Agent in
order to change from the current action to the ANewLabel action. Lastly, the
predicate keep_on_performing(Agent, Duration) keeps the agent Agent perform-
ing cyclic actions, as the a Walk and aRun) actions, during the period determined
by the qualitative value Duration. Possible conceptual descriptions of Duration
are long, normal, and briefly.

e Reaction predicates related to the agent’s posture. The predicate wait (Agent,
Duration) keeps the agent Agent performing the aStand action during the pe-
riod determined by the qualitative value Duration. Also, the reaction predicate
freeze(Agent, Duration) maintains the same posture parameter for the agent
Agent during the period determined by the qualitative value Duration. Possible
conceptual descriptions of Duration are long, normal, and briefly.

These reaction predicates are processed by the human movement model, thus gen-
erating a sequence of synthetic agent states. Next, we present examples of synthetic
sequences generated by these reaction predicates.
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Frame Agent State
935 has_status(agent_1, 16.60, 17.04, 14.93, 0.16, aBend, 0.0).
936 has_status(agent_1, 16.61, 17.04, 14.93, 0.13, aBend, 0.05).
937 has_status(agent_1, 16.61, 17.04, 14.93, 0.11, aBend, 0.1).
938 has status(agent_1, 16.61, 17.04, 14.93, 0.09, aBend, 0.15).

953  has.status(agent_1, 16.61, 17.04, 14.93, 0.00, aBend, 0.9).
954 has status(agent_1, 16.61, 17.04, 14.93, 0.00, aBend, 0.95).
955 has_status(agent_1, 16.61, 17.04, 14.93, 0.00, aFinish, 0.0).

Table 5.5: Sequence of agent states which generates a synthetic aBend action. The
agent state is defined as in (5.1).

Frame Agent State
4 has status(agent_1, 1.04, 2.50, 1.0, 1.91, aWalk, 0.05).
5 has_status(agent_1, 1.08, 2.50, 0.90, 1.83, aWalk, 0.1).
6 has_status(agent_1, 1.11, 2.50, 0.82, 1.77, aWalk, 0.15).
7 has_status(agent_1, 1.15, 2.50, 0.74, 1.72, aWalk, 0.2).

21  hasstatus(agent_1, 1.59, 2.50, 0.18, 1.51, aWalk, 0.9).
22 has_status(agent_1, 1.62, 2.50, 0.16, 1.51, aWalk, 0.95).
23 has_status(agent_1, 1.65, 2.50, 0.15, 1.51, aWalk, 0.0).
24 has_status(agent_1, 1.68, 2.51, 0.13, 1.50, aWalk, 0.05).

Table 5.6: Sequence of agent states which generates a synthetic a Walk action. The
agent state is defined as in (5.1).

Table 5.5 shows the sequence of agent states which describes a synthetic aBend
action. This sequence has been obtained by instantiating the go_on_performing(Agent,
aBend) predicate. Given an action model I'4¢| this predicate increments the aPosture
parameter in order to increasingly sample the corresponding action manifold f4¢ or,
in other words, to re-visualize the variation of the human posture while performing
the selected action. Note that the increment value determines the speed at which the
action is synthesized. When the aPosture parameter value reaches 1.0, the non-cyclic
action manifold has been totally sampled. Consequently, the aLabel parameter value
is set to aFinish.

When a cyclic action is synthesized, such as a Walk or aRun, the human movement
model sets the aPosture parameter to 0.0 when it reaches 1.0. Thus, the cyclic action
manifold is sampled repeatedly and continuously. Table 5.6 shows the sequence of
agent states which generates a synthetic a Walk action. Such a sequence has been
obtained by instantiating the go_on_performing(Agent, a Walk) predicate.

Next, the synthesis of activities is addressed by describing the agent states which
correspond to action transitions. Two different cases are considered, depending on the
cyclic/non-cyclic nature of the currently synthesized action. On the one hand, when
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Frame Agent State

986  hasstatus(agent_1, 14.95, 19.04, 161.03, 5.98, aRum, 0.65).

987  has.status(agent_1, 14.84, 19.07, 161.03, 4.90, aRun2aStand, -0.95).
988  hasstatus(agent_1, 14.74, 19.11, 161.03, 4.01, aRun2aStand, -0.85).
989 has_status(agent_1, 14.67, 19.13, 161.03, 3.28, aRun2aStand, -0.75).

995  has.status(agent_1, 14.43, 19.21, 161.03, 0.98, aRun2aStand, -0.15).
996 has_status(agent_1, 14.41, 19.22, 161.03, 0.81, aRun2aStand, -0.05).
997 has_status(agent_1, 14.39, 19.23, 161.03, 0.66, aStand, 0.0).

Table 5.7: Sequence of agent states which generates a synthetic action transition,
i.e., from aRun to aStand. The agent state is defined as in (5.1).

the agent is performing cyclic actions, the transition to a new action starts when the
situation scheme which holds the reaction predicate go_on_performing(Agent, aWalk)
can not be instantiated at a certain time step, i.e. when the graph traversal fails
in such a situation. Therefore, we can initiate action transitions depending on the
spatial status of the agent. Moreover, we can also determine how long a cyclic action
can last, regardless of the spatial status information. This is achieved by consider-
ing the keep_on_performing(Agent, Duration) predicate, which keeps the agent Agent
performing cyclic actions during the time period determined by the qualitative value
Duration.

Despite the way that action transitions are initiated, these are indicated in the
state vector by using negative aPosture parameter values. An action transition be-
tween two action models I'* and T'4 in the UaSpace is implemented as a manifold
which interpolates between the current posture p; of the manifold f4: and the initial
posture p; = 0.0 of f4i. Thus, we represent the action transition as a interpolated
curve from £4i(p;) to £4i (p;), which is called £4:24i. Consequently, an action tran-
sition manifold obeys that:

DA £4i (p;) if aPosture =—1.0
Ai2A; _ Di), )
f (aPosture) = { £4i (p;), if aPosture = 0.0, (5-4)

and, as before, the action is synthesized by sampling the transition manifold f4:24
by incrementing the (negative) aPosture parameter value. Such an increment value
actually determines the speed at which the action transition is synthesized, whether
the arc length parameterization is applied. Furthermore, the aLabel parameter value
indicates that a transition is being synthesized by establishing the syntax of the
action label as A;2A ;. The sequence of agent states which generates the synthetic
action transition from aRun to aStand is shown in Table 5.7. These agent states have
been generated by instantiating the keep_on_performing(Agent,briefly) predicate, and
subsequently (at frame 987) the change_performing(Agent,aStand) predicate.
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Frame Agent State

253 has_status(agent_1, 4.62, 9.04, 37.26, 0.00, aBend, 0.9).
254 has_status(agent_1, 4.62, 9.04, 37.26, 0.00, aBend, 0.95).
255 has_status(agent_1, 4.62, 9.04, 37.26, 0.00, aFinish, 0.0).
256 has_status(agent_1, 4.63, 9.05, 37.26, 1.09, aFinish2aRun, -0.95).
257 has_status(agent_1, 4.65, 9.05, 42.80, 1.98, aFinish2aRun, -0.85).
258  has.status(agent_1, 4.68, 9.07, 54.78, 2.70, aFinish2aRun, -0.75).

265 has_status(agent_1, 4.80, 9.59, 106.17, 5.18, aFinish2aRun, -0.05).
266 has status(agent_1, 4.77, 9.69, 112.12, 5.33, aRun, 0.0).
267 has_status(agent_1, 4.72, 9.79, 117.12, 5.45, aRun, 0.05).

Table 5.8: Sequence of agent states which generates a synthetic action transition,
i.e., from aBend to aRun. The agent state is defined as in (5.1).

On the other hand, when the agent is currently performing a non-cyclic action,
the transition to a new action begins when the non-clycic action is finished or, in
other words, when the aPosture parameter reaches 1.0 and the aLabel parameter
is set to aFinish. As before, the action transition between an non-cyclic action
A; and a new action A; is indicated in the state vector by using negative aPos-
ture parameter values. Also, we model such an action transition as a interpolated
curve from £4i(1.0) to £49(0.0), also called f4i24i. The sequence of agent states
which generates the synthetic action transition from aeBend to aRun is shown in
Table 5.8. This sequence of agent states have been generated by instantiating the
go_on_performing(Agent,aBend) predicate, and once the aBend action synthesis is
finished (at frame 255), the change_performing(Agent,aRun) predicate is instantiated.

We next address the correspondence between the quantitative information of the
state vector and the geometrical information of the human body model. Given the
aLabel parameter of the agent state, the p—action representation of the aLabel action
is selected. Subsequently, the aPosture value establishes the arc length parameter of
the p—action manifold, which determines a particular human posture. Such a posture
corresponds to the human body model defined in chapter 3. Therefore, incrementing
the aPosture parameter implies to move along the p—action or, in other words, to
synthesize the aLabel action. To conclude, the resulting human body configuration is
visualized using a suitable representation, such as a stick figure.

5.3.2 Human Activity Synthesis

The SGT depicted in Fig. 5.7 generates the so-called thief sequence, in which, as
commented before, a ”thief” approaches an object, stands up straight to look around,
bends to pick up the object, and then runs away.

The root graph comprises only one situation scheme, in which the predicate states
that an agent is presently active, (active(Agent). This scheme is particularized by
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Figure 5.7: Situation Graph Tree (SGT) modeling the thief sequence for synthesis

purposes.
another situation graph comprising seven situation schemes, which define determin-

istically the sequence actions to be performed by a virtual agent.
The first scheme (start-situation) determines the path of subway segments through

which the human agent will perform its activity, path_towards_waiting_line(Agent,

WLine, WLPath). Context predicates are used here for illustrative pruposes, but
contextual primitives are not required for activity modeling. The reaction predicate
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accelerate_to(Agent,small) establishes that the speed value is set to the conceptual
value of small. Therefore, the position of the agent will be updated by the human
movement model according to this value.

The second situation scheme establishes that the agent goes on performing the
a Walk action (go_on_performing(Agent,a Walk)) during the period of time determined
by the conceptual value normal, keep_on_performing(Agent,normal). As a result, the
aPosture parameter increments its value and, as aWalk is a cyclic action, such a
parameter is set to 0.0 when it reaches 1.0. Also, the orientation of the agent
is updated to walk through the list of subway segments of WLPath, follow_path
(Agent,Lseg, WLPtah).

The next situation in temporal order imposes an action transition from the current
action, i.e., aWalk, to the aBend action, change_performing(Agent,aBend). Also, the
predicate accelerate_to(Agent,zero) establishes that the agent diminishes its speed to
reach zero.

The fourth situation shcheme is first instantiated when the action transition to
the aBend action is finished. Therefore, this situation remains instantiated while
the agent performs the aBend action (go-on_performing(Agent,aBend)) or, in other
words, until the aLabel parameter of the agent state is set to aFinish by the human
movement model.

The next two situations generate the transition from the aBend to the aRun action.
First, once the agent has performed the aBend action, has_finished(Agent), s/he starts
the transition to the aRun action, which is implemented by executing the reaction
predicate change_performing(Agent,aRun). Also, the speed of the agent is increased
to generate spatial displacement within the scene, accelerate_to(Agent,normal). Sub-
sequently, the fifth situation generates the transition postures until the first posture
of the aRun manifold is reached, is_ performing_transition(Agent).

The end situation is instantiated while the agent performs the aRun action. As
a result, the aPosture parameter is increased at each time step, and set to 0.0 when
it reaches 1.0, go_on_performing(Agent,aRun). Also, the agent updates its speed
parameter to increasingly reach a high value (accelerate_to(Agent,high)). Lastly, the
orientation parameter of the agent is also modified in order to run through the list of
subway segments established by WLPath, follow_path(Agent,LSeg, WLPath,).

Table 5.9 shows the sequence of synthetic agent states which results of applying a
graph traversal to the SGT of Fig. 5.7. In Fig. 5.8, a set of human postures is shown
in temporal order which reproduces the synthetic thief sequence. At the bottom of
each human posture, its corresponding aLabel and aPosture parameters are displayed.

5.3.3 Human Behavior Synthesis

We present in this section an SGT which models a specific behavior in a subway
station for synthesis purposes. That is, information about the spatial properties of
the agent within the scene can be described with respect to static objects modeled
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Frame Agent State
1235  has_status(agent_1, 6.60, 6.99, 14.93, 1.50, aWalk, 0.0).
1236  has_status(agent_1, 6.46, 7.00, 14.93, 1.50, aWalk, 0.05).
1237  has_status(agent_1, 6.49, 7.01, 14.93, 1.22, aWalk2aBend, -0.95).
1238  has_status(agent_1, 6.51, 7.02, 14.93, 1.00, aWalk2aBend, -0.85).
1239  has_status(agent_1, 6.53, 7.02, 14.93, 0.82, aWalk2aBend, -0.75).

1247  has_status(agent_1, 6.60, 7.04, 14.93, 0.20, aWalk2aBend, -0.05).

1248  has_status(agent_1, 6.61, 7.04, 14.93, 0.16, aBend, 0.0).
1249 has_status(agent_1, 6.61, 7.04, 14.93, 0.13, aBend, 0.05).
1267 has_status(agent_1, 6.62, 7.04, 14.93, 0.00, aBend, 0.95).

(
1268  has_status(agent_1, 6.62, 7.04, 14.93, 0.00, aFinish, 0.0).

1269  has_status(agent_1, 6.62, 7.04, 14.93, 1.09, aFinish2aRun, -0.95).
1270  has_status(agent_1, 6.64, 7.05, 29.56, 1.98, aFinish2aRun, -0.85).

1278  hasstatus(agent_1, 6.79, 7.59, 106.17, 5.18, aFinish2aRun, -0.05).
1279 hasstatus(agent_1, 6.77, 7.69, 112.12, 5.33, aRun, 0.0).
1280  hasstatus(agent_1, 6.72, 7.79, 117.50, 5.45, aRun, 0.05).

Table 5.9: Thief sequence described in terms of the synthetic agent states generated
by the SGT of Fig. 5.7. This sequence is defined as the concatenation of the a Walk,
aBend and aRun actions. The agent state is defined as in (5.1).

at the conceptual subway model. Therefore, we allow to instantiate situations which
characterizes semantically an agent activity by incorporating context information.

Considering the conceptual model of the subway station shown in Fig. 5.4, graph
traversal applied to the SGT will generate a sequence of synthetic agent states, which
synthesize the modeled behavior. Specifically, such a behavior is defined as:

e Given an initial state of a given agent, such an agent is driven to walk towards
the waiting_line segment.

e At the waiting_line segment, the SGT checks for a free ticket machine (i.e., a
ticket_machine segment in which no agent is present). If a free ticket machine
is found, the agent is driven to walk towards the segment which corresponds to
such a ticket machine. If no free ticket machine is found, the agent waits at the
waiting_line segment until a ticket machine is found free.

e The agent stands at the ticket_machine segment during a predefined period.

e Once the agent leaves the ticket_machine segment, the SGT drives such an agent
to walk towards an entrance_segment segment. There, the agent is driven to walk
through its nearest accessing_gate segment, thus entering into the inside_station
segment of the conceptual subway model.
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Figure 5.8: Automatic generation of a synthetic thief sequence. Only a small set of
synthetic human postures is shown here in temporal order.

e At the inside_station segment, the agent performs the aJump action.

First, we describe how this behavior is modeled using SGTs. Subsequently, we
detail the sequence of synthetic agent states for four different agents which will exhibit
such a behavior.

These four synthetic sequences will be generated automatically by the SGT. Fur-
thermore, different sequences of agent states are generated for each agent, due to the
fact that such agents interact themselves at the same time within the subway station.
That is to say, the spatial relationship between different actors is taken into account
at each time step.
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Next, we detail the SGT which represents the particular behavior to be modeled.
In Fig. 5.9, the root graph and the first two particularized situation graphs of the

Figure 5.9: SGT for automatic generation of a synthetic behavior in a subway
resulting SGT are shown.

station.
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The root graph comprises only one situation scheme, in which the logic predi-
cate active(Agent) is instantiated when the agent state is available at the SDL. The
predicate on_lseg(Agent,Lseg) determines the segment Lseg of the conceptual subway
model in which the agent Agent is being placed.

The root scheme is particularized by another situation graph which comprise
five situation schemes. The sit_Before_entrance_segment start-situation is instanti-
ated when the agent is not placed at any entrance_segment segment. Once the agent
has reached an entrance_segment segment, the sit-Where_to_get_in situation is instan-
tiated (on_entrance_segment(Agent,ESegment), and checks for the nearest crossing
gate, next_free_crossing_gate(Agent,AGate,AGPath). As a result, two reaction pred-
icates are instantiated. On the one hand, the go_on_performing(Agent,a Walk) reac-
tion predicate increments the posture parameter of the agent in order to adopt the
next posture described by the aWalk p-action, that means, to increment the arc
length parameter of the p—action corresponding to a Walk. On the other hand, the
follow_path(Agent, Lseg, AGPath) reaction predicate modifies the orientation of the
agent in order to go from the current position of the agent at the Lseg segment to-
wards its next subway segment in the segment list of AGPath, i.e., an accessing_gate
segment. The next situation scheme, which is called sit-Towards_accessing_gate, is
instantiated whether the agent is placed at any entrance_segment segment. Conse-
quently, the orientation, position and aPosture parameters are modified to drive the
agent to walk towards the accessing_gate segment AGate. When the agent reaches
the AGate segment (on_crossing-gate(Agent,AGate)), the fourth situation scheme
(sit_Crossing-accessing_gate) is instantiated. This situation modifies the agent state to
cross such an accessing gate. Lastly, the end-situation sit_Agent_inside is instantiated
when the agent is placed at the inside_station segment, beyond_accessing-gates(Agent).

The start-situation sit_Before_entrance_segment is particularized by another sit-
uation graph which represents the modeled behavior to be synthesized before the
agent reaches any entrance_segment segment, and comprises five situation schemes.
In this particularized graph, the start-situation sit- Towards_ticket_machine is instanti-
ated until the agent reaches a ticket_machine segment, not_on_ticket_machine(Agent).
When this occurs (on-_ticket-machine (Agent, TMachine)), the following situation
scheme (sit_Agent_at_ticket_machine) is instantiated. These two first situation schemes
are particularized by additional situation graphs which will be detailed later.

Once the agent has left the ticket_machine segment, the situation scheme
sit_Leaving_ticket_machine is instantiated whenever the agent walks (is_performing
(Agent, aWalk)) through the waiting_line segment, on_waiting_line(Agent, WLine).
The reaction predicates modifies the velocity (accelerate_to(Agent, very_high)) and
aPosture parameters (go_on_performing(Agent, aWalk)) to drive the synthetic agent
to walk through the wasting_line segment. When the agent leaves the waiting_line
segment, the situation scheme sit- Where_entrance_segment generates a list of sub-
way segments which constitutes the path from the agent’s position to the near-
est entrance_segment subway segment next_free_entrance_segment(Agent, ESegment,
ESPath). Lastly, the situation scheme sit_Towards_entrance_segment is instantiated
whenever the agent walks through the segments of the list AGPath. Consequently,
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Figure 5.10: Automatic generation of a synthetic behavior: the situation scheme

called sit_Towards_ticket_machine.

the state of the synthetic agent is modified at each time step in order to walk
(go_on_performing(Agent, aWalk)) through the segments of ESPath until the agent
reaches the segment ESegment. This is achieved by modifying the orientation of the

agent (follow_path(Agent,Lseq, ESPath)) at each time step.

As commented before, the situation scheme sit_Towards_ticket_machine is particu-
larized further by another situation graph which is shown in Fig. 5.10. This situation
graph comprises three situation schemes which model the behavior of the agent before
reaching a ticket_machine segment. The start-situation is called sit_- Where_waiting_line

which computes a list of subway segments.

This list constitutes the path from

the agent’s position to the waiting_line segment, path_towards_waiting_line(Agent,
WLine, WLPath). The situation scheme sit_ Towards_waiting_-line checks whether
the agent is walking through the list of segments of WLPath towards the segment
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WLine. To synthesize this behavior, the agent state is modified to orientate (fol-
low_path(Agent,Lseg, WLPath)) the agent to walk (go_on_performing(Agent, aWalk))
through the list of segments of WLPath by exhibiting a specific velocity, acceler-
ate_to(Agent,very_high. When the agent reaches the segment WLine (on-waiting_line
(Agent, WLine)), the situation scheme called sit_At_ticket_machine is instantiated.
This situation models three different behaviors, each one represented as a particu-
larized situation graph.

The first particularized graph comprises two situation graphs. The first one, called
sit_Free_ticket_machine, checks for a ticket_machine segment in which no agent is
present, next_free_ticket_machine(Agent, TMachine, TMPath). If a free ticket_machine
segment is found and the agent is walking (is_performing(Agent,aWalk)), the next
situation scheme to be instantiated is called sit-Towards_free_ticket_machine. This
situation checks whether the agent is placed at any segment of the list of segments
TMPath. If so, the agent is driven to walk (go_on_performing(Agent, aWalk)) towards
the segment TMachine by modifying the orientation of the synthesized agent state,
follow_path(Agent,Lseg, TMPath,).

The second particularized graph represents the behavior when both ticket_machine
segments are occupied by another agent. This is represented by one situation scheme,
called sit_No_free_ticket_machine, which is instantiated when no free ticket_machine
segments are found, no_free_ticket_machines(Agent). This situation scheme is partic-
ularized by another situation graph which represents the activity of waiting, modeled
using three situation schemes. The first situation is called sit_Agent_will_wait, which
modifies the aPosture parameter of the agent state to begin the transition towards
the aStand posture, change_performing(Agent,aStand). As a transition has begun,
this situation scheme is instantiated only once. That is, as an action transition is
initiated, the next situation expected to be instantiated is sit_Agent_is_going_to_wait.
This situation checks for an action transition (i.e., a negative value for the aPosture
parameter, and the A;2A; syntax for the aLabel parameter) using the state predicate
is-performing_transition(Agent,aStand). This situation is instantiated until the tran-
sition towards the aStand posture is accomplished or, in other words, while the agent
posture moves from the aWalk p—action to the aStand posture within the UaSpace.
Once the agent exhibits the aStand posture (is_standing(Agent)), the end-situation
scheme sit_Agent_is_waiting is instantiated until a free ticket machine is found.

Lastly, the third particularized graph of sit_At_ticket_machine is sit_Stop_waiting.
In fact, this start-situation is instantiated when a ticket-machine segment is found
free (next_free_ticket_machine(Agent, TMachine, TMPath)), and the agent exhibits a
standing posture, is_standing(Agent). In this case, we assume that the agent was
waiting for a free ticket_machine segment. Therefore, the agent should begin to walk,
change_performing(Agent,aWalk). If so, the situation scheme sit-Towards_new_free_
ticket_machine is instantiated as long as the transition towards the a Walk p—action
is detected in the agent state, is_performing_transition(Agent). Meanwhile, the orien-
tation of the agent is modified in order to face the free ticket_machine segment, fol-
low_path(Agent,Lseg, TM). Also, the velocity parameter of the agent state is increased
to move the agent within the subway scene, accelerate_to(Agent,high). When the ac-
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Figure 5.11: Automatic generation of a synthetic behavior: the situation scheme
called sit_Agent_at_ticket_machine.

tion transition is finished, the agent exhibits the walking action, is_performing(Agent,
aWalk). Therefore, the end-situation sit_Reaching_ticket_machine is instantiated. As
a result of the reaction predicates, the agent is driven to walk (go_on_performing(Agent,
aWalk)) until the agent reaches the segment TMachine. This is achieved by modifying
the orientation of the agent (follow_path(Agent,Lseg, TMPath)) at each time step.

Next, we detail the situation scheme sit_Agent_at_ticket_machine of Fig. 5.9.
Such a situation is shown in Fig. 5.11, and is instantiated when the agent position
is within a ticket_machine segment (on_ticket_machine_segment(Agent, TMachine)).
Subsequently, two particularized situation graphs are implemented in order to dis-
criminate whether the Agent reaches or leaves the ticket_machine segment.

The first particularized graph is composed of three situation schemes, which repre-
sents an agent reaching the segment TMachine. The start-situation sit_Agent_reaches_
ticket_machine is first instantiated when the agent exhibits movement (has_speed(Agent,
moving)). Consequently, the agent is required to change to the aStand posture
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(change_performing (Agent,aStand)), at the same time as setting the velocity param-
eter value progressively to zero (accelerate_to(Agent,zero)). As an action transition is
initiated, the next situation to be instantiated is sit_Agent_stops_walking, because such
a transition is detected in the state of the agent (is_performing_transition(Agent)).
Once the agent posture has finished its transition towards the aStand posture, the
end-situation scheme sit_Agent_stands_at_ticket_machine is instantiated (is_standing
(Agent)). Subsequently, the agent is set to wait motionless (accelerate_to(Agent,zero))
in the standing posture during the period of time defined by the conceptual term long
(wait(Agent,long). When such a period of time is completed, this situation scheme
is not instantiated any more. Consequently, the agent will be driven to leave the
ticket_machine segment, as explained next.

The second particularized graph is also composed of three situation schemes, and
represents an agent leaving the segment TMachine. The start-situation is called
sit_Agent_will_leave_ticket_machine. If the agent exhibits no speed (has_speed(Agent,
zero)), we assume that the agent is going to walk towards the accessing gate. There-
fore, path_towards_entrance_segment(Agent, ESegment, ESPath) computes a list of sub-
way segments which constitutes the path ESPath from the agent’s position to the near-
est entrance_segment subway segment. Furthermore, the reaction predicate change-
performing(Agent,a Walk) initiates the action transition from the aStand posture to
the aWalk p—action. Consequently, the situation scheme sit_Agent_is_going_to_leave_
ticket_machine is instantiated at the next time step (is_performing_transition(Agent).
Also, this situation scheme checks whether the agent walks through the list of segments
of ESPath (is-walking_through(Agent,ESPath)). Reaction predicates modify the ve-
locity (accelerate_to(Agent,small)), orientation (follow_path(Agent,Lseg, ESPath) and
aPosture (change_performing(Agent,aWalk)) parameters of the agent. As a result, a
synthetic sequence of states is generated, during which the agent begin to walk towards
the entrance_segment segment FESegment. When the action transition is finished,
the end-situation scheme sit_Agent_leaves_ticket_machine is instantiated is_performing
(Agent,aWalk)). Consequently, the agent is driven to walk (go_on_performing(Agent,
aWalk)) slowly (accelerate_to(Agent,small)) within the ticket_machine segment to-
wards the entrance_segment segment (follow_path(Agent,Lseg, ESPath)).

To conclude the model of behavior, the agent will perform the aJump action at
the inside_station segment, as detailed next: the particularized situation graph of the
situation scheme sit_Agent_inside is shown in Fig. 5.12. Such a situation graph is com-
posed of three situation schemes, which generates the synthetic sequence of the aJump
action. The start-situation scheme sit_Agent_will_jump initiates the action transition
from the aWalk p—action to the aJump p-action (change_performing(Agent,aJump)).
Consequently, the situation scheme sit_Agent_is_going_to_jump is instantiated at the
next time step (is_performing-transition(Agent)). This situation generates the se-
quence of agent states, which describes the action transition, and is instantiated
until this transition is finished. In this case, the end-situation sit_Agent_is_jumping is
instantiated, because the agent has begun to execute the aJump action (is_performing
(Agent,aJump)). Consequently, the reaction predicate go_on_performing(Agent,
aJump) modifies the aPosture parameter of the agent in order to generate the se-
quence of human postures which correspond to the aJump p—action.



138 TOWARDS A COGNITIVE VISION SYSTEM
P
sl Agent_inside =
Ryl . aCoianeg. ga el S nl
R0 ACT KO PR EDICATIES
|
i " N
R P '
I" lll_.‘l.l"nl__'rlIIIJurnp sit_Ageni_is_geing_te_jemp sin_Agent i< jumping = -
m_pEiurmngiigen, sk} 5 _pearfirirning rans s Agantl _perlormingiger alimpl |
rhange_psriormirapdgentalumpl | phgnge perfoeming Sgemalump ! bsn_on_pariorminglbgandalump b
arreerae_ i sgen umalli acreherats_fold gant wmali arcelerabe_inllge i, Ter
e .

Figure 5.12: Automatic generation of a synthetic behavior: the situation scheme

called sit_Agent_inside.

Tables 5.10, 5.11, 5.12, and 5.11 show the resulting sequences of states for four
synthetic agents, which constitute different characterizations of the behavior modeled
at the previously detailed SGT. Note that these four synthetic sequences are gener-
ated automatically by applying the traversal of such an SGT. Furthermore, different
sequences of states are generated for different agents, due to the fact that such agents
interact themselves at the same time within the subway station.
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Frame Agent State

4 has_status(agent_1, 2.50, 2.00, 0.00, 1.09, aWalk, 0.05).

5 has_status(agent_1, 2.52, 2.00, 1.04, 2.7, aWalk, 0.1).

6 has_status(agent_1, 2.58, 2.00, 1.89, 4.03, aWalk, 0.15).
150 has_status(agent_1, 16.79, 19.02, 160.44, 6.04, aWalk, 0.35).
151 has_status(agent_1, 16.68, 19.06, 160.44, 5.22, aWalk2aStand, -0.95).
152 has status(agent_1, 16.58, 19.09, 160.44, 4.27, aWalk2aStand, -0.85).
160 has_status(agent_1, 16.22, 19.22, 160.44, 0.86, aWalk2aStand, -0.05).
161 has status(agent_1, 16.21, 19.23, 160.44, 0.71, aStand, 0.0).
162 has status(agent_1, 16.21, 19.23, 160.44, 0.58, aStand, 0.0).
261 has_status(agent_1, 16.14, 19.25, 160.44, 0.0, aStand, 0.0).
262 has_status(agent_1, 16.14, 19.25, 160.44, 0.0, aFinish, 0.0).
263 has_status(agent_1, 16.14, 19.25, 160.44, 0.0, aFinish2aWalk, -0.95).
264 has_status(agent_1, 16.14, 19.25, 194.6, 0.27, aFinish2aWalk, -0.85).
272 has status(agent_1, 16.15, 19.14, 318.09, 1.25, aFinish2aWalk, -0.05).
273 has status(agent_1, 16.17, 19.12, 323.84, 1.3, aWalk, 0.0).
274 has_status(agent_1, 16.19, 19.11, 328.57, 1.33, aWalk, 0.05).
428 has_status(agent_1, 42.01, 10.64, 339.99, 10.0, aWalk, 0.7).
429 has_status(agent_1, 42.2, 10.57, 339.99, 8.46, aWalk2aJump, -0.95).
430 has_status(agent_1, 42.36, 10.51, 339.99, 7.2, aWalk2aJump, -0.85).
438 has status(agent_1, 43.05, 10.26, 339.99, 2.65, aWalk2aJump, -0.05).
439  hasstatus(agent_1, 43.1,  10.24, 339.99, 2.44, aJump, 0.0).
440 has_status(agent_1, 43.15, 10.23, 339.99, 2.27, aJump, 0.05).
457 has_status(agent_1, 43.71, 10.02, 339.99, 0.86, aJump, 0.9).
458 has_status(agent_1, 43.73, 10.01, 339.99, 0.15, aJump, 0.95).
459 has_status(agent_1, 43.74, 10.0, 339.99, 0.0, aFinish, 0.0).

Table 5.10: Synthetic agent states generated for agent_1.
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32 has_status(agent_2, 3.0, 0.5, 0.00, 1.09, aWalk, 0.05).
33 has_status(agent_2, 3.02, 0.5, 4.34, 2.7, aWalk, 0.1).
34 has_status(agent_2, 3.08, 0.5, 7.92, 4.03, aWalk, 0.15).
237 has_status(agent_2, 27.5, 19.01, 11.07, 6.0, aWalk, 0.3).
238 has_status(agent_2, 27.62, 19.03, 11.07, 5.18, aWalk2aStand, -0.95).
239 has_status(agent_2, 27.72, 19.05, 11.07, 424, aWalk2aStand, -0.85).
247 has_status(agent_2, 28.09, 19.13, 11.07, 0.86, aWalk2aStand, -0.05).
248 has_status(agent_2, 28.11, 19.13, 11.07, 0.7, aStand, 0.0).
249  hasstatus(agent_2, 28.12, 19.13, 11.07, 0.57, aStand, 0.0).
348 has_status(agent_2, 28.18, 19.14, 11.07, 0.0, aStand, 0.0).
349 has_status(agent_2, 28.18, 19.14, 11.07, 0.0, aFinish, 0.0).
350 has_status(agent_2, 28.18, 19.14, 11.07, 0.0, aFinish2aWalk, -0.95).
359 has_status(agent_2, 28.11, 19.24, 162.0, 1.25, aFinish2aWalk, -0.05).
360  has.status(agent_2, 28.09, 19.25, 167.51, 1.3, aWalk, 0.0).
361  hasstatus(agent_2, 28.07, 19.25, 172.05, 133, aWalk, 0.05).
611  hasstatus(agent_2, 42.15, 10.64, 341.98, 10.0, aWalk, 0.55).
612 has_status(agent_2, 42.34, 10.58, 341.98, 8.46, aWalk2aJump, -0.95).
621 has_status(agent_2, 43.2, 10.3, 341.98, 2.65, aWalk2aJump, -0.05).
622  hasstatus(agent_2, 43.25, 10.28, 341.98, 2.44, aJump, 0.0).
641 has_status(agent_2, 43.89, 10.07, 341.98, 0.15, aJump, 0.95).
642 has_status(agent_2, 43.90, 10.06, 341.98, 0.0, aFinish, 0.0).

Table 5.11: Synthetic agent states generated for agent_2.
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122 has_status(agent_3, 3.0, 1.0, 0.00, 1.09, aWalk, 0.05).
123 has_status(agent_3, 3.02, 1.0, 3.34, 2.7, aWalk, 0.1).
245 has_status(agent_3, 17.49, 17.02, 14.81, 10.0, aWalk, 0.2).
246 has_status(agent_3, 17.68, 17.07, 14.81, 8.19, aWalk2aStand, -0.95).
255 has_status(agent_3, 18.41, 17.26, 14.81, 1.35, aWalk2aStand, -0.05).
256 has.status(agent_3, 18.44, 17.27, 14.81, 1.11, aStand, 0.0).
286 has_status(agent_3, 18.56, 17.3, 14.81, 0.0, aStand, 0.0).
287 has_status(agent_3, 18.56, 17.3, 14.81, 0.27, aStand2aWalk, -0.95).
296 has_status(agent_3, 18.49, 17.8, 128.64, 5.05, aStand2aWalk, -0.05).
297 has_status(agent_3, 18.42, 17.8, 133.24, 5.23, aWalk, 0.0).
318 has_status(agent_3, 16.3, 19.03, 158.91, 5.99, aWalk, 0.05).
319 has status(agent_3, 16.18, 19.07, 158.91, 5.17, aWalk2aStand, -0.95).
328 has status(agent_3, 15.74, 19.24, 158.91, 0.86, aWalk2aStand, -0.05).
329 has_status(agent_3, 15.72, 19.25, 158.91, 0.7, aStand, 0.0).
430 has_status(agent_3, 15.65, 19.28, 158.91, 0.0, aFinish, 0.0).
431 has_status(agent_3, 15.65, 19.28, 158.91, 0.0, aFinish2aWalk, -0.95).
440 has status(agent_3, 15.67, 19.17, 318.28, 1.25, aFinish2aWalk, -0.05).
441 has_status(agent_3, 15.69, 19.15, 324.09, 1.3, aWalk, 0.0).
605 has_status(agent_3, 42.11, 10.62, 340.6, 10.0, aWalk, 0.2).
606 has_status(agent_3, 42.3, 10.55, 340.6, 8.46, aWalk2aJump, -0.95).
615  hasstatus(agent_3, 43.16, 10.25, 340.6, 2.65, aWalk2aJump, -0.05).
616 has_status(agent_3, 43.21, 10.23, 340.6, 2.44, aJump, 0.0).
635  has.status(agent_3, 43.84, 10.01, 340.6, 0.15, aJump, 0.95).
636 has_status(agent_3, 43.85, 10.0, 340.6, 0.0, aFinish, 0.0).

Table 5.12: Synthetic agent states generated for agent_3.
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202 has_status(agent_4, 2.5, 2.0, 0.00, 1.09, aWalk, 0.05).
203 has_status(agent_4, 2.52, 2.0, 1.04, 2.7, aWalk, 0.1).
325 has_status(agent_4, 17.67, 17.02, 14.59, 10.0, aWalk, 0.2).
326 has_status(agent_4, 17.86, 17.07, 14.59, 8.19, aWalk2aStand, -0.95).
335 has_status(agent_4, 18.59, 17.26, 14.59, 1.35, aWalk2aStand, -0.05).
336 has_status(agent_4, 18.61, 17.27, 14.59, 1.11, aStand, 0.0).
407 has_status(agent_4, 18.73, 17.3, 14.59, 0.0, aStand, 0.0).
408 has_status(agent_4, 18.73, 17.3, 14.59, 0.27, aStand2aWalk, -0.95).
417 has_status(agent_4, 19.27, 1742, 11.61, 5.05, aStand2aWalk, -0.05).
418 has_status(agent_4, 19.37, 17.44, 11.5, 5.22, aWalk, 0.0).
487 has_status(agent_4, 27.42, 19.0, 10.95, 6.0, aWalk, 0.45).
488 has_status(agent_4, 27.53, 19.02, 10.95, 5.18, aWalk2aStand, -0.95).
497 has_status(agent_4, 28.0, 19.11, 10.95, 0.86, aWalk2aStand, -0.05).
498 has_status(agent_4, 28.02, 19.12, 10.95, 0.7, aStand, 0.0).
599 has_status(agent_4, 28.09, 19.13, 10.95, 0.0, aFinish, 0.0).
600 has_status(agent_4, 28.09, 19.13, 10.95, 0.0, aFinish2aWalk, -0.95).
609 has_status(agent_4, 28.03, 19.23, 162.02, 1.25, aFinish2aWalk, -0.05).
610 has_status(agent_4, 28.0, 19.23, 167.54, 1.3, aWalk, 0.0).
857 has_status(agent_4, 42.03, 10.67, 341.63, 10.0, aWalk, 0.2).
858 has_status(agent_4, 42.22, 10.61, 341.63, 8.46, aWalk2aJump, -0.95).
867 has_status(agent_4, 43.08, 10.32, 341.63, 2.65, aWalk2aJump, -0.05).
868 has_status(agent_4, 43.13, 10.3, 341.63, 2.44, aJump, 0.0).
887  hasstatus(agent_4, 43.77, 10.09, 341.63, 0.15, aJump, 0.95).
888 has_status(agent_4, 43.78, 10.08, 341.63, 0.0, aFinish, 0.0).

Table 5.13: Synthetic agent states generated for agent_4.



Chapter 6

Concluding Remarks

6.1 Conclusions

This Thesis is focused on the problem of human motion modeling within the Human
Sequence Evaluation (HSE) framework. An HSE system transforms image data into
semantic descriptions used for reasoning. This abstraction procedure is also addressed
in this contribution, where the final goal is to evaluate human behaviors.

Several topics should be addressed to develop an HSE system, and this complexity
suggested to describe these systems by means of a modular scheme. Specifically, we
adopted the architecture for Image Sequence Evaluation presented by Nagel in [102].

So we first defined the HSE architecture by establishing several interconnected
levels, each level related to an specific knowledge domain. Generically speaking,
the system architecture embeds two separated goals: first, to obtain a geometric
description of the scene in terms of quantitative values (task related to the Signal,
Image, Picture Domain, and Scene Domain levels); and second, to associate obtained
geometric descriptions with pre-defined semantic primitives, used for reasoning about
observed human behaviors (task related to the Conceptual, Language, and Behavioral
levels).

Subsequently, the sources of knowledge required at each level were analyzed to de-
termine the requirements of HSE systems, and to detect possible lacks of constraints.
Consequently, we studied the transformation process from image data towards se-
mantic concepts, thus establishing the characteristics of each abstraction level. As a
result, a human motion taxonomy based on knowledge concepts was established.

e By considering a knowledge-based classification of human motion representa-
tions, we identify four levels of abstraction which are set to correspond to the
terms embedded in the taxonomy, namely, movement, action, activity, and be-
havior.

143
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e The taxonomy reflects the minimal abstraction steps required to derive concep-
tual descriptions from pixel values.

Based on this taxonomy, we surveyed several human motion analysis papers. Dif-
ferent movement and action representations were described according to the charac-
teristics of the methodology used. Subsequently, we revisited different approaches for
activity and behavior analysis. Specifically, we detailed how to represent the transi-
tion between different actions, and how to employ the knowledge about the context
in order to assist human behavior modeling.

By reviewing related approaches, we stated that the basis of motion understanding
is action recognition and description. Therefore, suitable models for human actions
are required to be designed in order to recognize predefined movement patterns, and
to generate activity and behavior descriptions based on observed actions.

e Degspite the fact that some progress has been made in behavior understanding,
conceptual interpretation still relies on a proper human action representation.

e Since human motion understanding highly relies on the performance of the
human action recognition algorithms, procedures for the semantic interpretation
of human behaviors are usually defined in highly constrained domains.

To this end, we have developed a novel human action model which is exploited in
different applications. The action model is represented as a sequence of body postures,
each posture defined by a novel human body model.

e The human body model embeds facilities for both human posture description
and human action synthesis.

e Specifically, the 3-D human body model presented in this Thesis is composed
of 12 limbs, and is described using 36 relative polar angles and the height of
the hip. The polar space coordinate system has been shown suitable for limb
movement description.

We then defined each action using different sequences of human postures, where
each sequence was set to correspond to a performance of such an action.

e A human action space, called aSpace, was developed to model the principal
modes of variation of the posture exhibited during several action performances.
Each posture is expressed in terms of a combination of the eigenvectors of the
aSpace, and a vector of weights.

e Dimensionality reduction is achieved, due to the fact that not all the body parts
move when an action is being executed. The minimal number of eigenvectors
required to represent a given action depends on the complexity of such an action.
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e The aSpace is restricted to model only plausible human posture variations, be-
cause the training data has been obtained from a motion capture system.

Each performance is represented within the aSpace as a parametric manifold, so the
mean performance can be calculated. Performance representations are not influenced
by their duration, expressed in seconds or number of frames. Based on the mean
performance, our novel human action model, called p—action, was introduced.

e The p—action is based on the most characteristic human body postures found
during several action performances. These postures, called key-frames, are cho-
sen automatically by means of a predefined distance function. In our experi-
ments, the Mahalanobis distance has been proved to be suitable.

e By considering the key-frames, p—actions actually represent the prototypical
performance for a given action. Moreover, as a p—action is parameterized, a
mechanism of control over our action representation is attained.

e By considering a pose parameterization of the p—action, the temporal evolution
of the posture depends on the mean speed at which human performances have
been recorded. By considering an arc length parameterization, the temporal
evolution of the posture is achieved to occur at any user-specified speed.

e QOur strategy is not centered on modeling the complete set of feasible postures
which an actor could adopt while performing an action, because any new subject
can include posture configurations not presented during learning performances.

The benefits of the aSpace and p-action representation were analysed by address-
ing different HSE-related applications, such as human action recognition and synthe-
sis, and performance analysis.

e In order to confront action comparison and activity synthesis, we built an unique
feature space, called UaSpace, within which all learnt human actions are modeled
as parametric manifolds. The modes of variation of the UaSpace are found
repeated for different learnt actions.

e We adapted the key-frame set to perform human action recognition in the UaS-
pace. The distance between two projections in UaSpace is a measure of corre-
lation between their corresponding human postures: the closer the points are,
the more highly correlated the postures are. Three different classifiers were
compared, and the key-frame-based one obtained the best results.

The p—action representation was used to synthesize virtual sequences which repro-
duce any action or activity. As the p—action is based on characteristic postures, i.e.,
the key-frame set, we guarantee that the viewer can recognize which action is being
animated.
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e Due to the interpolation nature of p—actions, synthetic sequences exhibit smooth
and realistic movement. Furthermore, interpolation within the UaSpace allows
activity synthesis. Consequently, transitions between actions, which were not
learnt, are synthesized in a continuous and realistic manner.

A comparison framework was introduced in order to describe any action perfor-
mance with respect to its corresponding action model. To this end, a synchronization
procedure is implemented to compare the variation of the angles of specific joints
during several performances.

e We addressed the analysis of human actions by comparing different perfor-
mances of the same action. This analysis of human actions helps to determine
those human body model parameters which best characterize an specific action
style. Specifically, the style of human walking was analysed by establishing
differences between a male and a female walkers.

To conclude this investigation, we embedded our human action model within the
HSE framework. Specifically, we established an integration procedure addressed in
two directions. First, we derived semantic primitives at the Conceptual and Behavior
levels, based on the numerical results obtained at the Scene Domain Level. Also,
the inversion of this abstraction process was established as the automatic creation
of synthetic sequences at the Scene Domain Level, based on the semantic concepts
instantiated at the Behavior Level.

e Semantic primitives are derived from the state of the agent, and refer to three
different sources of knowledge: the spatial information of the human agent
within the scene; the relationship of the agent with respect to its environment;
and the action which the agent is performing. For integration, we used the
p—action and the knowledge about the context to convert the numerical infor-
mation embedded in the state of the agent into semantic primitives.

We utilized the Situation Graph Tree (SGT) formalism to model the knowledge
required for human behavior analysis in an specific discourse domain. The basic
component of SGTs is called situation scheme which comprises semantic primitives
about a given agent for a given point in time. The set of all semantic primitives
constitute the a—priori terminology of our specific discourse domain.

e SGTs operate with fuzzy truth values, which are essential to cope with the
uncertainty arising in image evaluation systems. Furthermore, it is possible to
explicitly reason about time. Therefore, SGTs provide a deterministic formalism
which copes with human behavior modeling, once the human movement patterns
involved are properly described in terms of semantic predicates.

We enhance the terminology used in [61] to include semantic primitives which
describe the spatial information about the human agent within the scene, the prop-
erties of the actor with respect to its environment, and the action which the actor is
performing.
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e Based on the terminology, we showed the suitability of SGT's for HSE by model-
ing a human activity, called the thief sequence, and a particular human behavior
within a subway station. In the latter case, additional information about the
context was incorporated by means of a conceptual scene model.

e Both human activity and behavior models were used to describe observed de-
velopments, and to generate automatically synthetic sequences involving vir-
tual actors. SGTs deterministically define which, and in which order, situation
schemes should be instantiated to describe or to generate a particular behavior.

e As actors interact themselves within the scene, the spatial relationship between
different actors is taken into account for behavior description and synthesis. For
animation purposes, different synthetic sequences are generated for different vir-
tual actors, and these sequences actually constitute particular characterizations
of the behavior modeled at the SGT.

In order to enhance current capabilities of HSE, we require to place our conclu-
sions into a more abstract framework which is independent of current restrictions of
engineering-based approaches. To this end, philosophy provides generality and cog-
itation for identifying the functional limits of proposed methods. Consequently, we
next describe the philosophical basis of this Thesis in order to establish the most
suitable topics for future research.

6.2 Philosophical Foundations of HSE

Hermeneutics, according to Wilhelm Dilthey, is the art of interpretation of written
documents [44]. The name comes from Hermes, known as the God of travellers,
traders, and thieves, who interpreted the intentions of the Gods to the human beings.
In the 19th century, the art of interpretation became significant in literature, phi-
losophy, theology and jurisprudence. Philosophers as Friedrich Schleiermacher and
W. Dilthey moved the focus of hermeneutical understanding from written texts to all
human productions, such as verbal and nonverbal, historical and current.

For Dilthey, the goal was to respond to the 19th century challenge that all knowl-
edge must follow the model of the physical sciences. He sought to secure for the
humanist and cultural disciplines, such as literature and history (the Geisteswis-
senschaften), a status that was different from that of the physical sciences (the
Naturwissenschaften). To accomplish this task, he formulated the principles of
understanding in each discipline.

In fact, the core difference between the natural and cultural sciences relies on
their respective objects of study (i.e., an object of the world, and another person,
respectively), and in the way we understand such objects. Thus, the physical sciences
explain nature, and the human studies understand expressions of life. He summa-
rized this difference with his categories of explanation (Erklaren) and understanding
(Verstehen).
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Explanation in natural sciences comprehends its object through causal connec-
tions: it knows its object from the outside. The object remains alien to the human
scientist. In contrast, understanding knows its object, a human being or a human
production, from the inside. That is, we can know the inner life of another person
because we also are persons. This is not a knowledge of causal connections, but
rather of a network of meanings, analogous to the network of meanings by which we
understand ourselves.

Likewise, the Human Sequence Evaluation framework described throughout this
Thesis reflects the categories defined by Dilthey. In fact, we consider that explanation
provides a description of the observed movement by means of the state of the agent.
Therefore, explanation is applied to any kind of objects of interest, such as cars
or humans, because we characterize observed movement. Besides, we consider that
understanding performs a conceptual abstraction of the resulting agent state, which
derives semantic primitives for deep reasoning about human behaviors. That means,
since the objects of interest are human beings, we assume that there are semantic
meanings which can be inferred from patterns of movement.

The generation of quantitative descriptions about human movement actually ez-
plains the developments observed within the scene. That means, the Signal, Image,
Picture Domain, and Scene Domain levels generate a geometric description of observed
movement in terms of numerical values. Research on Pattern Analysis provides HSE
with suitable tools to manipulate quantitatively the different representations used at
these levels. As a result of explanation, we characterize where movement is being ob-
served within the scene. Only recently, pattern analysis techniques have been used to
describe what is happening. However, explanation is restricted to describe the causal
connections of human movement patterns, i.e., the actions and activities.

Moreover, the knowledge about the context assists the interpretation of the quan-
titative parameters of the agent state, which allows to understand the explanation of
observed developments. That means, the integration and manipulation of semantic
primitives at the Conceptual, Language, and Behavioral levels provides interpretation
and reasoning about observed human behaviors. Research on Artificial Intelligence
supplies HSE with suitable techniques to manipulate networks of meanings [125].
Consequently, the final challenge is not only to describe what is happening within a
scene, but to reason about why the observed movement is happening. To this end,
human behavior models should incorporate automatic learning capabilities, and in-
telligent agents (i.e., agents with some knowledge about their internal states, plans,
goals and beliefs) should be considered.

6.3 Future Work

The topics covered in this Thesis provides a number of areas of interest which may
worth further investigation. Some of them have been already refereed throughout this
document. We here group these possible lines of research according to the human mo-
tion taxonomy established for HSE. Besides of these lines of research, the algorithms
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proposed here should be validated in different and larger human action databases, as
well as in different contexts.

Among others, it may be interesting to consider the following lines for further
research:

The Human Movement Model

Our representation of the human body is obtained from an optical motion capture
system. However, to obtain accurately the 3-D coordinates of the body limbs within
an uncontrolled environment is (still) unrealistic.

Instead, model-driven tracking procedures should be implemented in order to in-
stantiate the parameters of the 3-D human body model presented in this Thesis, by
using the information embedded in 2-D human body representations designed for
visual surveillance purposes. Furthermore, physical restrictions (in terms of allow-
able degrees-of-freedom, for example) can be incorporated to the body model, thus
reducing the set of angle values plausible for each joint.

However, in real-world applications, it is impossible for a single camera to visually
detect a moving actor within an extended area. A solution to this problem is to use a
network of cameras to cooperatively monitor all the detected actors, also called mul-
tisensor visual surveillance. Moreover, if each sensor incorporates an HSE system,
a cooperative network of HSE systems can be implemented. Thus, the knowledge
and representations obtained from different view-points can be combined to robustly
instantiate a human movement model with both anatomical and accuracy character-
istics.

The Human Action Model

The knowledge embedded in our human action model can be exploited to assist low-
level tasks, such as movement segmentation. Due to the constrained nature of limb
movement during action performances, tracking processes can be designed to predict
the posture of the actor, once the action has been identified. For this purpose, motion
information should be incorporated to the action representation.

As an action is defined as a sequence of movements, and each movement is rep-
resented using a human body model, one important issue remains open: is really
compulsory to consider the 15 joints of the body model proposed in this Thesis to
develop action representations? And the answer is no: since a reduction of dimen-
sionality over the action representation has been attained, it is necessary to determine
the minimal set of joints which actually characterize a given action. In fact, we can
establish different subsets of the joints for each modeled action, depending on those
joints which exhibit the most characteristic movements.

The selection of subsets of joints will optimize HSE procedures. For example, and
according to the above statements, a subset of joints could be selected to address
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human gesture evaluation. In this case, only the variation of the joints corresponding
to the upper part of the body would be considered for action representation.

Based on the aSpace representation, different extensions can be performed, based
on different criteria. For example, future research can be addressed to model the
characteristics of individual performers. Therefore, we may plan to build a single
UaSpace for each person, thus modeling the particular movements of specific actors.
Thus, we can synthesize the same action for different people, where each synthesized
action will reflect the particular characteristics of the actor, which can help to identify
the performer. Therefore, biometric characteristics of human actions are worth to be
exploited. Additionally, different action spaces can be built based on the action
style, in order to perform ergonomic evaluation, to detect fatigue in athletic training
processes, and even as a search query in digital libraries.

By only considering the style and the identity of the actor for each performance, we
can build a quite huge 3-D human action library. Such a library should be organized
in a proper way to provide an easy and fast access to the particular performance
which will be synthesized. Therefore, content-based retrieving procedures should be
developed, which can be designed based on the key-frame sets.

The Human Activity Model

The main challenge is to re-use motion capture data by assembling and combining
learnt actions into an activity sequence. Actions involved in activity sequences should
be linked together in such a way as to create realistic, constant animation. In fact,
future research should obey the requirements of the computer games industry in recent
years, because many games use motion capture technology.

Additionally, several assumptions need to be contemplated when a virtual char-
acter needs to interact with an object in its surroundings. In fact, there are different
ways to interact with the environment, but it is physically impossible to have a learnt
action for each possible way. Therefore, activity representations will be required to
be capable of modifying previously learnt actions on-line in order to implement (real-
time) interaction.

To this end, we plan to implement semantic primitives associated to specific mod-
ifications of action descriptions. These predicates may define the style of the action,
the gender of the actor, and even the interaction with respect to predefined objects
and another actors within the scene. Thus, we can build a suitable SGT which gen-
erates realistic activities exhibiting (conceptually) modified actions.

The Human Behavior Model

Knowledge about the context is the basis of integration, as described throughout
this Thesis. Such knowledge can incorporate learning capabilities. Thus, behavior
representations can be modified according to observed developments, in order to best
evaluate what is happening within the scene. For this purpose, the terminology
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should be automatically updated by identifying new movement patterns (which are
found repeated), together with the (contextual) conditions in which these movement
patterns are observed.

Also, intelligent actors will be considered, that is, human agents with some knowl-
edge about their internal states. This will help to generate complex and rich behavior
descriptions. Also, internal states, if known in advance, may help also to reduce the
uncertainty inherent in integration processes. For this purpose, we need to determine
how the context can derive not only the knowledge required to infer the internal state
of an observed actor, but also its intentions, beliefs, and goals.

Another interesting domain is automatic behavior modeling using textual scripts.
That is to say, the animator writes a natural language text which describes (roughly)
a particular behavior in an specific scene. Subsequently, the input text is processed
so that the situations are identified. These situations are temporally and contextually
described using the input text, so they can be represented using SGTs. By applying
traversal, the synthetic sequence will visualize a rough version of the behavior. Such
sequence contain the sequence of prototypical human movements which will be refined
later, according to the animator’s preferences.

In our opinion, human behavior evaluation constitutes the most challenging and
important area of future research.
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Appendix A

Point Distribution Models

The Point Distribution Model (PDM) [38] is a shape description technique based
on a vectorized representation of shapes. Specifically, PDM estimates a statistical
model for non-rigid shape variation. By modeling this distribution, we can generate
new samples, similar to those in the original training set, and we can also examine
the plausibility of new shapes. This statistical modeling for shape variation, and its
combination with several image processing techniques, has generated an important
number of publications within the HSE domain in the last decade [14, 26, 64].

The construction of an appropriate PDM for a certain type of shape we wish
to learn, requires both the selection of a good representation and of an appropriate
density estimation method for the distribution of shapes within this representation.

For the representation we can use non-linear or linear models. As usual, if we use
a non-linear model we can relax the hypotheses and obtain higher reliability. This
precision has a high cost in the training stage, due to the undeterministic characteristic
of non-linear models, and also in the application stage, due to the fact that non-linear
algorithms are computationally expensive. This is justifiable for a large number of
problems, so several non-linear models have been proposed [65, 131, 132]. However,
a linear representation is still a common choice for their speed and straightforward
interpretability. As a matter of fact, most non-linear representations are applied over
a linear representation which previously performs the dimensionality reduction.

On the other hand, even when the training set generates complex distributions,
a linear representation can be used and complexity charged to the statistical model
[37]. The most successful representation so far is the one obtained through Principal
Component Analysis (PCA). By projecting a shape in a previously learnt PCA space,
a set of coefficients (the principal components) is obtained, which control the variation
along the maximum variance directions. Consequently, we can naturally associate
each principal component to a mode of variation of the shape.

Next, we describe the principal steps required to build a linear PDM. Consider
a set of n shapes S = {s1,ss,...,s,}. Each shape, s;, is described by a vector of p
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coordinate pairs:

Sj = (wlayla“'ampayl))Tﬂ (Al)

which represents the set of Cartesian coordinates of strategically chosen landmarks
specifying that shape in the image. The set of n training vectors should be aligned
(that is, translated, rotated and scaled) using a weighted least-squares algorithm, and
the mean shape is calculated by finding the mean position of each landmark:

s =

S|

The modes of variation are represented by using PCA on the deviation of the
shapes from the mean. So the covariance matrix is computed as:

5 = —S§7, (A.3)

where S = {s; — 8,80 —§,...,8, — S}.

Using eigenvector decomposition:

/\iei = Eei, (A4)

where each eigenvector, e;, corresponds to a mode of variation, and its corresponding
eigenvalue J; is related to the variance explained by the eigenvector.

Commonly, when increasing the number of samples, the covariance matrix becomes
too large for an easy computation of the eigenvectors. Furthermore, when the number
of samples is much smaller than the size of each sample, this calculation is not efficient.
In these cases, the Singular Value Decomposition algorithm [56] is used instead. The
covariance matrix is calculated in a more efficient manner:

o lame
» = —87§, (A.5)
n
thus resulting in a much smaller covariance matrix. Once the eigenvalues X and
eigenvectors &; of X are calculated using Eq. (A.4), the eigenvalues \; and eigenvectors
e; of ¥ are determined as (details are avoided):

>

Ai = 19
ei = A '/°Se;. (A.6)

Subsequently, the smallest number m of eigenvalues which explains a large propor-
tion of the total variance is chosen. This value is commonly determined by eigenvalue
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thresholding. That is, if we need to guarantee that the first m eigenvectors actually
model, for example, 95% of the overall variance of the samples, we should take m so
that:

% > 0.95, (A7)
i=1 "\

where the denominator represents the the overall variance of the training samples.

However, when n is extremely large, not all the eigenvalues can be computed. So
different alternatives can be found in the literature. In [16], a Bayesian treatment
of PCA is presented, reformulated as the maximum likelihood solution of a latent
variable model. The idea is to introduce a Gaussian latent variable. Thus, the n-
dimensional samples can be described as a linear transformation of the m-dimensional
latent variable, where the parameters of this relationship need to be instantiated.
The resulting parameter values determine the best dimensionality m. However, this
process is an iterative, highly time-consuming method. As an extension of this work,
in [94] each possible dimensionality is scored by means of Bayesian model selection,
and the maximum is selected as the optimum dimensionality.

Establishing the dimensionality m implies to determine the m most significant
deformations of the shape. These deformations are found by choosing the eigenvec-
tors corresponding to the m largest eigenvalues. Thus, training data noise can be
discarded. Commonly, m is much smaller than n so a very compact model is built.

Consequently, each deformed shape § is found as a combination of:

§=5+Eb, (A.8)

where E = (eq, ..., e,,,) corresponds to the selected eigenvectors, and b = (by, ..., b,,,)T
is a vector of weights. Each weight is computed within suitable limits in order to
generate new allowable shapes, similar to those in the training set. The limits are
related to the variance of each variation mode, so each weight by, is restricted to lie
within:

—3v/ Ak < b <3v/\p (A.9)

Thus, the model is restricted to plausible shapes, so all invalid shapes are excluded.
Also, if using real-life training data, a realistic model of deformation is obtained.
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Appendix B

Terminology Predicates for
Situation Schemes

In this Appendix, we describe the conceptual predicates used for the Situation Graph
Trees presented in chapter 5, i.e. the thief sequence activity and the subway sta-
tion behavior. Basically, state predicates described here refer to human actions and
interactions with other agents or with modeled static objects within the scene.

B.1 State Predicates Concerning Only the Actor

B.1.1 Spatial Predicates

active(Agent) : this predicate states that the agent Agent is presently active,
which means on the one hand that there is some state information for that
agent and, on the other hand, that this agent is being observed.

has_speed(Agent, Value) : this predicate states that an agent Agent has a speed
which is associated to the conceptual speed value of Value. Acceptable con-
ceptual speed values are zero, small, normal, high, very_high, and mowving.

has_direction(Agent, Value) : the agent Agent is altering its direction in a way
which is associated to the conceptual description Value. Possible conceptual
descriptions are straight, right, left, and not_straight. All these values are inter-
preted in the agent’s ego-centric view.

B.1.2 Posture Predicates

is_performing(Agent, Value) : the agent Agent is performing an action which is
associated with the conceptual description Value. Acceptable conceptual action
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descriptions are aBend, aJump, aKick, aRun, aSit, aSkip, aSquat, a Tumble, and
aWalk.

is_standing(Agent) : the agent Agent is standing in an upright position. Com-
monly (not always), no spatial motion is observed for the agent.

is_performing transition(Agent) : the agent Agent is performing a transition
between two different actions (in the thief sequence, for example, there is a
transition from aBend to aRun).

has_finished(Agent) : the agent Agent has finished to perform a given non-cyclic
action (like aBend or aJump), or the agent has stopped to perform a cyclic
action (like aRun or aWalk).

B.1.3 State Predicates Concerning Another Actor

is_alone(Agent, Proximity) : the agent Agent is alone within a circle centered
on the agent’s position. The radius of the circle is defined by the conceptual
description Proximity. Possible conceptual descriptions are nearby, halfway,
and faraway.

have_distance_change(Agent, Patiens, Value) : the agent Agent and another
agent Patiens are moving in such a way that their distance is changing. The
change of their distances is associated with the conceptual value Value, whose
possible values are constant, diminishing and growing.

have_distance(Agent, Patiens, Value) : the agent Agent and another agent Pa-
tiens are separated by a distance associated with the conceptual value Value,
whose admissible values are small, normal, and high.

B.2 State Predicates Concerning Only a Location
in the Scene

location(Loc, X, Y) : the coordinates (X, Y) are assigned to the abstract location
identifier Loc.

is_free(Subway_seg) : the subway segment Subway_seg is not occupied by any
agent.

agent_on_ticket_machine(Agent, TMachine) : there is an agent Agent on the
subway segment TMachine, which is labeled as a ticket_machine.

agent_on_accessing_gates(Agent, AGate) : there is an agent Agent on the sub-
way segment AGate, which is labeled as an accessing_gate.
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B.3 State Predicates Concerning the Actor and its
Location

path_towards_waiting_line(Agent, WLine, WLPath) : from the position of the
agent Agent, WLine is the next waiting_line segment. Then, WLPath holds
the list of subway segments constituing the path from the agent to WLine. The
last subway segment of WLPath is labeled as a waiting_line segment.

path_towards_entrance_segment(Agent, ESegment, ESPath) : from the po-
sition of the agent Agent, ESegment is the next entrance_segment segment.
Then, ESPath holds the list of lane segments constituing the path from the
agent to ESegment. The last subway segment of ESPath is labeled as an
entrance_segment.

is_walking_through(Agent, Path) : the agent Agent is positioned on a subway
segment, which belongs to the path Path.

not_on_ticket_machine(Agent) : the agent Agent does not reside on a subway
segment, which is labeled as a ticket_machine.

on_ticket_machine(Agent, TMachine) : the agent Agent is positioned on the
subway segment TMachine, which is labeled as a ticket_machine.

standing_at_ticket_machine(Agent, TMachine) : the agent Agent is standing
on the subway segment TMachine which is labeled as a ticket_machine.

next_free_ticket_machine(Agent, TMachine, TMPath) : from the position of
the agent Agent, TMachine is the next subway segment which is not occupied
and labeled as a ticket_machine. Then, TMPath holds the list of subway
segments constituing the path from the agent to that subway segment. The last
subway segment is labeled as a ticket_machine and the second last is labeled as
a waiting_line.

no_free_ticket_machines(Agent) : all subway segments labeled as ticket_machine
segments are being currently occupied by agents.

not_on_waiting_line(Agent) : the agent Agent does not reside on a subway seg-
ment which is labeled as a waiting_line.

on_waiting_line(Agent, WLine) : the agent Agent is positioned on the subway
segment WLine, which is labeled as a waiting_line.

no_obstacle_ahead(Agent, Subway_seg) : the agent Agent can go towards the
subway segment Subway_seg, because such a segment is not being presently
occupied by any agent.

obstacle_ahead(Agent, Patiens, Subway_seg) : the agent Agent can not go to-
wards the subway segment Subway_seg, because the agent Patiens presently
resides on that segment.
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next_free_accessing_gate(Agent, AGate, AGPath) : from the position of the
agent Agent, AGate is the next subway segment which is not occupied and
labeled as an accessing_gate. Then, AGPath holds the list of subway segments
constituing the path from the agent to that subway segment. The last sub-
way segment is labeled as a accessing_gate and the second last is labeled as an
entrance_segment.

not_on_entrance_segment(Agent, AGate_seg) : the agent Agent is not posi-
tioned on the subway segment AGate_seg, which is labeled as an
entrance_segment.

on_entrance_segment(Agent, AGate_seg) : the agent Agent resides on the sub-
way segment AGate_seg, which is labeled as an entrance_segment.

not_on_crossing_gate(Agent, AGate) : the agent Agent is not positioned on the
subway segment AGate, which is labeled as an accessing_gate.

on_crossing_gate(Agent, AGate) : the agent Agent resides on the subway seg-
ment AGate, which is labeled as an accessing_gate.

beyond_accessing_gates(Agent) : the agent Agent is presently positioned on a
subway segment labeled as subway_platform.

on_subway_seg(Agent, Subway_seg) : the agent Agent resides on the subway
segment Subway_seg.

B.4 Reaction Predicates

follow_path(Agent, Subway_seg, Path) : this predicate will modify the direction
of the agent Agent in order to go from Subway_seg towards its next subway
segment in the segment list of Path.

turn(Agent, Value) : this predicate will modify the direction of the agent Agent
depending on the orientation value Value. Possible conceptual descriptions of
Value are left, and right.

accelerate(Agent, Value) : this predicate will modify the velocity of the agent
Agent depending on the acceleration value Value. Possible conceptual de-
scriptions of Value are high, normal, and small.

accelerate_to(Agent, Value) : this predicate will modify the velocity of the agent
Agent in order to reach progressively the qualitative value of Value. Possible
conceptual descriptions of Value are highest, very_high, high, normal, small,
and zero.

go_on_performing(Agent, ALabel) : this predicate will increment the posture
parameter of the agent Agent in order to adopt the next posture described by
the ALabel p—action (that means, to increment the arc length parameter of
the p—action corresponding to ALabel).
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change_performing(Agent, ANewLabel) : this predicate will increment the pos-
ture parameter of the agent Agent in order to change from the current action
to the ANewLabel action. That means, to sample those points belonging to
a spline which interpolates between the current posture parameter and the first
posture of the ANewLabel p—action.

wait(Agent, Duration) : this predicate keeps the agent Agent performing the
aStand action during the period determined by the qualitative value Duration.
Possible conceptual descriptions of Duration are long, normal, and briefly.

keep_on_performing(Agent, Duration) : this predicate keeps the agent Agent
performing cyclic actions (like aWalk and aRun) during the period determined
by the qualitative value Duration. Possible conceptual descriptions of Dura-
tion are long, normal, and briefly.

freeze(Agent, Duration) : this predicate maintains the same posture parameter
for the agent Agent during the period determined by the qualitative value
Duration. Possible conceptual descriptions of Duration are long, normal,
and briefly.

B.5 Defining the Conceptual Scene Model

B.5.1 (Factual) Predicates

point(<z>,<y>,<p>) : the individual <p > is a point in the subway plane with
coordinates < x > and < y >, which are floating point numbers.

line(<pl >, <p2>,<1>) : theindividual <l > constitutes a line between two points,
given as the two individuals <pl > and <p2>.

segment_of_lane(</1>,<[2>,<seg>) : the two lines given by the individuals
<I1> and <12> define a segment which is given by the individual < seg >.

subway_segment (< seg >) : the individual <seg> constitutes a subway segment.
waiting_line(< seg >) : the individual < seg > constitutes a waiting_line segment.

ticket_machine(<seg >) : the individual <seg> is labeled to be a ticket_machine
segment.

entrance_segment(< seg >) : theindividual < seg > constitutes an entrance_segment
segment.

accessing_gate(<seg>) : the individual < seg > is labeled to be an accessing_gate
segment.

subway _platform(<seg>) : the individual < seg > constitute a subway_platform
segment.
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B.5.2 (Factual) Precomputed Predicates

The following predicates define facts which can be precomputed from the defined
subway model. The precomputation is done only for better performance during the
actual SGT-traversal.

not_a_ticket_machine(< seg >) : the subway segment < seg > is not labeled to be
a ticket_machine segment.

not_an_accessing_gate(<seg>) : the subway segment < seg > is not labeled to be
an accessing-gate segment.

not_a_waiting line(< seg>) : the subway segment < seg > is not labeled to be a
waiting_-line segment.

not_an_entrance_segment (< seg>) : the subway segment < seg> is not labeled
to be a entrance_segment segment.

Iseg_beside(< segl >, <seg2>) : the subway segments < segl > and < seg2> lie
next to each other (such that an agent could change from one segment to the
other).

Iseg_in_front(< segl >, <seg2>) : the subway segment < segl > lies in front of the
subway segment < seg2 >.

Iseg_behind(<segl >, <seg2>) : the subway segment < segl > lies behind the
subway segment < seg2 >.

behind_all subway_segments(<seg>) : the subway segment < seg > lies behind
all subway segments, such as the subway_platform segment.
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