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començar... (bé, ho marca la beca que té final definit, 4 anys!) Sort he tingut de tindre
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on no ha funcionat mai bé la calefacció.
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tesi, ja que sense ells no seria qui sóc ni estaria on estic ara.
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Abstract

Optical Flow (OF) is the input of a wide range of decision support systems such as
car driver assistance, UAV guiding or medical diagnose. In these real situations, the
absence of ground truth forces to assess OF quality using quantities computed from
either sequences or the computed optical flow itself. These quantities are generally
known as Confidence Measures, CM. Even if we have a proper confidence measure
we still need a way to evaluate its ability to discard pixels with an OF prone to
have a large error. Current approaches only provide a descriptive evaluation of the
CM performance but such approaches are not capable to fairly compare different
confidence measures and optical flow algorithms. Thus, it is of prime importance
to define a framework and a general road map for the evaluation of optical flow
performance.

This thesis provides a framework able to decide which pairs ”optical flow - con-
fidence measure” (OF-CM) are best suited for optical flow error bounding given a
confidence level determined by a decision support system. To design this framework
we cover the following points:

• Descriptive scores. As a first step, we summarize and analyze the sources of
inaccuracies in the output of optical flow algorithms. Second, we present several
descriptive plots that visually assess CM capabilities for OF error bounding. In
addition to the descriptive plots, given a plot representing OF-CM capabilities to
bound the error, we provide a numeric score that categorizes the plot according
to its decreasing profile, that is, a score assessing CM performance.

• Statistical framework. We provide a comparison framework that assesses
the best suited OF-CM pair for error bounding that uses a two stage cascade
process. First of all we assess the predictive value of the confidence measures by
means of a descriptive plot. Then, for a sample of descriptive plots computed
over training frames, we obtain a generic curve that will be used for sequences
with no ground truth. As a second step, we evaluate the obtained general curve
and its capabilities to really reflect the predictive value of a confidence measure
using the variability across train frames by means of ANOVA.

The presented framework has shown its potential in the application on clinical
decision support systems. In particular, we have analyzed the impact of the different
image artifacts such as noise and decay to the output of optical flow in a cardiac
diagnose system and we have improved the navigation inside the bronchial tree on
bronchoscopy.
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Abstract (català)

L’Optical Flow (OF) és l’input d’una gran varietat de Sistemes de Suport a Decisions
(DSS) com ara assistència a la conducció, guia UAV o diagnosis mèdic. En aquestes
situacions, l’absència de ground truth ens obliga a avaluar la qualitat de l’OF calculat
mitjançant quantitats calculades a partir de les seqüències o bé a partir del mateix
OF. Aquestes quantitats es coneixen generalment com a Mesures de Confiança (CM).
Encara que tinguem una mesura de confiança, necessitem alguna eina per tal d’avaluar
la seva capacitat per descartar ṕıxels de la imatge que tenen tendència a tindre error.
Els mètodes actuals només aporten una avaluació descriptiva del rendiment de les
CM, el problema és que aquests mètodes no són capaços de comparar equitativament
les diferents CM i OF. Aix́ı doncs, necessitem definir una metodologia que avalüı el
rendiment de les tècniques d’OF.

Aquesta tesi aporta la definició d’una metodologia que ens permet decidir quines
parelles ”optical flow - mesura de confiança” (OF-CM) estan millor preparades per a
definir una cota de l’error de l’OF donat un nivell de confiança per a un DSS. Per tal
de definir aquesta metodologia, la tesis engloba els següents punts:

• Marcadors qualificatius. Es presenten 3 gràfiques descriptives que avaluen
de forma visual les capacitats de CM d’acotar l’error de l’OF. A més a més de
les gràfiques descriptives, donada una gràfica representant la parella OF-CM,
donem una qualificació automàtica que categoritza la gràfica donat el tipus de
perfil.

• Metodologia estad́ıstica. Es proporciona una metodologia comparativa que
permet determinar quina és la millor parella OF-CM per a acotar l’error de
l’OF, aquesta metodologia consta de dues parts. Primer s’avalua el valor pre-
dictiu de la CM mitjançant la gràfica descriptiva. Després, per a una mostra
de gràfiques descriptives calculades sobre unes seqüències de training, s’obté
una corba genèrica que es podrà fer servir per a seqüències que no tenen ground
truth. En el segon pas, s’avalua la corba genèrica obtinguda i les seves capacitats
per a reflectir el valor predictiu de la mesura de confiança mitjançant ANOVA’s.

La metodologia presentada mostra el potencial en aplicació cĺınica per a DSS. En
concret, s’ha analitzat l’impacte de diferents artefactes en la imatge com ara soroll o
deteriorament en el resultat final d’OF per a imatges del cor. També s’ha aplicat per
a millorar la navegació dintre l’arbre bronquial en una broncoscòpia.
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Chapter 1

Introduction

Image sequence analysis involves, among others, recognizing specific objects, comput-
ing their position, tracking them or determining motion for each point of the image.
Sequence motion analysis of a sequence is a standout field used in a wide range
of applications such as security aids (like detection of anomalous and unpredicted
agents in urban scenes) [1], car driver assistance [2, 3], UAV guiding [4], 3D recon-
struction [5, 6], occlusion detection [7, 8], background substraction [9, 10] or clinical
support systems [11–15] among others. All these applications require the extraction
of sequence motion as a first computational step to obtain the final output. In order
that such motion can be effectively used in a decision support system, one needs that
the system also decides whether the computed motion is reliable or not to avoid error
propagation to the final outcome.

In the context of clinical decision support systems, reliable computation of motion
and deformation is a key mandatory step. Two flagship examples of such clinical
tasks are cardiovascular disease diagnose and navigation guidance during endoscopic
exploration.

On one hand, dynamic functional disorders in the myocardium reflect most of car-
diovascular diseases [16–18]. Thus, it is of prime importance an accurate visualization
and computation of myocardium dynamics for its diagnose, treatment and follow up.
A widely used technique to evaluate function damage is Tagged Magnetic Resonance
(TMR). TMR sequences print a magnetic grid on cardiac tissue (see top left image in
figure 1.1) which deforms along the cardiac cycle. In this manner TMR allows visual-
ization of the intramural and wall motion of the myocardium (that is, internal tissue
deformation). However, TMR images still lack from a sharp contrast between tagged
pattern and tissue, in addition, such contrast decreases along sequence frames. In
order to improve the reliability of the diagnose, physicians demand computer vision
tools that help them to better analyze the image. Most applications analyze my-
ocardium local deformation by computing the motion of each point of the sequence
and local scores of diagnostic value, such as strain and torsion [19,20].

On the other hand, intervention guiding has become a main issue in videobron-
choscopy imaging. Videobronchoscopy is an endoscopic technique for the internal
exploration of the respiratory pathway. This technique consists in visualizing the

1



2 INTRODUCTION

FUNCTION ASSESSMENT

TMR Optical Flow Score - Strain Map

3D NAVIGATION AND CAMERA MOTION

Videobronchoscopy Optical Flow Location

Figure 1.1: Medical applications requiring confident motion computation.

inside of pulmonary airways for diagnostic and therapeutic purposes [21]. The visual-
ization is recorded using a bronchoscope that has a fiberoptic system that transmits
an image from the tip of the instrument to an eyepiece or video camera at the op-
posite end. During diagnostic explorations the endoscopist must either reach the
damaged tissue identified in a previous 3D scanner or perform on-line identification
during the endoscopic exploration. In the first case, the bronchoscopist has to navi-
gate through the bronchial tree until the cancerous nodule is reached. In the second
case, it should visually identify and measure the scope and 3D side of the lesion. In
both cases, camera lens distortion, projection artifacts and camera manual motion
seriously hinder the observer performance that influences diagnoses yield regardless
of their experience [22, 23]. Therefore, clinicians are in an urgent need of an online
accurate computation of 3D measurements and location from analysis of videobron-
choscopy explorations [24,25].

Figure 1.1 illustrates the two clinical user cases requiring reliable computation of
motion: cardiac function assessment on first row and bronchoscopy 3D guiding on
second row. For cardiovascular disease diagnose we show, in the first column, a frame
of Tagged Magnetic Resonance (TMR) showing the tagged pattern that allows track-
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ing intra-wall tissue deformation along the cardiac cycle. The second column image
shows the computed point-wise motion in red arrows and a close up of the computed
motion. Third column shows an example of the optical flow application, in this case
it is used to compute local scores of functionality disorders like the strain map. For
3D navigation through the trachea we show, in the first column, a videobronchoscopy
frame. The middle image shows the optical flow computed over the sequence frame
in blue arrows and a close up of the flow field. Third column shows an example of
optical flow application which allows to know the location of the camera.

The two paradigms of clinical applications are illustrative of the two kinds of
motion that can appear on sequence objects: rigid or elastic. Rigid motion is induced
by the displacement of objects that have the same shape along a sequence. It is often
present in natural scenes like car driving sequences and its principal application is
object tracking or camera pose estimation. Rigid motion is commonly analyzed by
applying techniques such as particle filters [26] or adaptive appearance models [27].
On the other hand, elastic motion is induced by the displacement of objects that may
change its shape along a sequence. Elastic motion mainly arises in biomedical images
(tissue deformation). A main feature of elastic deformation is that each pixel of an
object has a different motion and thus, motion estimation has to be local. We note
that for cardiac deformation motion vectors, although continuous, do not have the
common trend shown in the bronchoscopy navigation, whose motion vectors have the
typical radial disposition arising from camera central motion. Figure 1.1 shows an
example of rigid and elastic motion for the two clinical cases of use. Second row shows
an example of global rigid motion due to camera navigation in videobronchoscopy,
whereas the first row illustrates the local elastic deformation of myocardial tissue
observed in TMR sequences. The milestone for computing point wise local estimation
of motion is Optical Flow (OF), introduced by Gibson et al. [28, 29].

Optical Flow is the pattern of apparent motion of objects, surfaces, and edges in
a visual scene caused by the relative motion between an observer (eye or camera) and
the scene [30]. That is, given a sequence, OF is the projection of the 3D scene motion
into the image and is given by a dense vector field that indicates for each pixel of a
frame, its displacement to the next frame.

The core of OF computation is the assumption that an image local feature keeps
constant along the sequence. In most cases such feature is the intensity and it is
referred as Brightness Constancy Constraint, BCC. The BCC assumption provides
one equation and two unknowns, thus, the original OF is an ill-posed problem (known
as aperture problem) that requires further information on the motion vector in order to
be solved [31,32]. The first attempt to solve the OF equation are local techniques [33,
34], which assume spatial coherence (i.e. points move like their neighbors) and solve
the aperture problem by deriving a local system of equations from the OF equations
in a neighborhood of each pixel. The main concern about local techniques is that the
system of equations is not solvable for all pixels of the image and thus they do not
provide dense motion fields. In addition, due to the spatial coherence assumption, the
computation of optical flow is not reliable in motion boundaries. The second approach
to solve the OF equation are variational schemes introduced by Horn and Schunck [35].
In contrast to local techniques, variational approaches are able to compute dense
motion fields [35–40]. They compute motion by finding the minimum of an energy
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functional [35] which combines two terms: the data-term and the smoothness-term.
The data-term puts into correspondence one frame with the following one, whereas
the smoothness-term determines the global regularity properties of the vector field
across the image [41]. Even though the smoothness term is the key to obtain a
dense flow field, in some areas the vector field might be over-regularized (especially
at motion boundaries). Figure 1.2 illustrates the impact of the regularity term on
the OF sharpness and quality. We show the OF computed using two variational
techniques with different OF regularization terms: an L2 norm method, in this case
the classical Horn and Schunck [35] and a L1 total variation method labelled classic-
NL [40]. Results are obtained for two representative sequences of two benchmark
synthetic databases with ground truth: Middlebury1 and Sintel2. Both sequences
have independent moving objects, which represent a main modelling challenge for the
data terms. Motion vectors are shown in color code images, where for each pixel,
color indicates the direction and hue the magnitude of the optical flow vector. We
have selected two highlighted in the upper close-ups. Such areas show the impact of
the regularity term, even though in the case of L1 norm the motion boundaries are
sharpener, both optical flow techniques fail in motion boundaries and occlusions.

Although there has been an increasing interest in developing new techniques to
obtain dense flow fields, minimize over-regularization and keep motion discontinuities
[36, 40, 42–45], the OF formulation still can not provide reliable computations in the
sequence domain due to input data errors, propagation errors, illumination changes,
etc. Thus, in the context of decision support systems that use optical flow, it is
of prime importance the definition of a framework and a general road map for its
performance evaluation [46]. Such framework requires discarding those regions where
OF is neither reliable nor accurate. The most common way of measuring OF accuracy
is by computing its deviation from the true motion vector. This suffices to quantify
the overall performance, but it is useless at locating areas of poor performance in
real-time applications where no ground-truth is given. In real situations, the absence
of ground truth forces to assess OF quality using quantities computed from either
sequences or the computed optical flow itself. These quantities are generally known
as Confidence Measures, CM.

Confidence measures should be an indicator of the accuracy of the output of an
optical flow algorithm obtained from the analysis of input or output data. In an ideal
case, we would expect the values of a confidence measure to be correlated to the flow
End-point Error, EE. In this case, the relation between measure and error could be
estimated by means of non-linear regression. The confidence values would provide
an estimation of the flow error and they could be further used for predicting it in
sequences without ground truth. Unfortunately, this is not possible in the general
case, given that errors either follow a random distribution or can not be estimated.
A more realistic approach is to define quantities that estimate an upper bound for
the flow error. This is consistent with the bounds on error propagation defined in the
context of numerical stability [47].

In order that a measure is useful for bounding errors, the plot between the measure
and endpoint errors should show a monotonic tendency. That is, high errors always

1http://vision.middlebury.edu/flow/eval/
2http://sintel.is.tue.mpg.de/results
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Figure 1.2: Comparison between ground truth and computed OF.
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(a) (b)

Figure 1.3: Difference between error prediction (a) and error bounding (b).

correspond to either high or low CM values. In this work, we will assume that high
OF errors correspond to low CM values, so that scatter plots of OF error and CM
values have a decreasing profile.

Plots in figure 1.3 illustrate the difference between the concepts of error prediction
and error bounding. We show the scatter plot of the confidence measure values (CM)
versus the OF End-Point Error (EE) [48]. The x-axis corresponds to CM values
(normalized in range [0, 1]) and y-axis corresponds to OF End-Point Error (EE). In
the first case, shown in fig. 1.3 (a), there is a clear functional correlation between
CM and EE and, thus, it could make sense fitting a regression curve by least squares
(solid blue line). In this context the fitting error which corresponds to the scatter
along the curve determines the quality of the error prediction given by the measure
values. Such scatter is visualized in fig. 1.3 (a) by the vertical interval around each
EE value, EE = EE0 indicated with a red horizontal line. A functional link between
CM and EE is never met in practice and the most usual case is that CM-EE plots
are pure scatter plots like the one shown in fig. 1.3 (b). In this second case, we do
not have any functional dependency but a scatter plot following a decreasing pattern,
which upper bound for each CM values (solid blue line) can also be used for error
bound. In this case, a given value of CM, CM0, is able to provide, at most, an upper
bound of the error values. In particular, we have that low values for the confidence
do not necessarily imply a large error. That is, errors can take any possible value.

Even if we have a proper confidence measure we still need a way to evaluate its
capabilities to discard pixels with an OF prone to have large errors. In addition, each
confidence measure is more capable to bound an specific type of OF error, so we also
need to determine which confidence measure performs better with an specific optical
flow method. Therefore, it is of prime importance the definition of a framework
and a general road map for the evaluation of optical flow and confidence measures
performance, as discussed in [46].
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1.1 Thesis goal

The main goal of this thesis is to design a framework able to decide which pairs
”optical flow - confidence measure” (OF-CM) are best suited for optical flow error
bounding given a confidence level determined by a decision support system. In order
to achieve the goal, this thesis covers the following points:

• Descriptive Scores for CM Performance Evaluation. First we design the
descriptive plots and scores that describe the profile of CM-EE scatter plots and
quantify its decreasing tendency.

• Statistical Framework for Comparison of CM Predictive Value. Sec-
ond, we design a statistically based analysis to compare the different OF-CM
pairs in order to choose the best suited to bound the error for a given application.

1.2 State of the Art and Contributions

This section summarizes current approaches on confidence measures and its perfor-
mance evaluation in order to state our contributions to each of the above points.

In order to use optical flow in a decision support system, a mechanism to detect
sequence pixels that have high error in their computations is of prime importance.
In this context, Confidence Measures (CM) should be an indicator of the accuracy
of the output of an optical flow algorithm. It should be noted that a confidence
measure can provide at most an upper bound of OF error at each pixel, not its real
value (according to numerical error analysis [47]). This implies that high values of
the confidence measure should ensure a low OF error, while for low CM values errors
could take any value. Points that have high error and high value of the confidence
measure are unpredictable points which CM can not discard and, thus, should be the
least possible.

Figure 1.4 helps to understand this idea. It shows the scatter plot of the confi-
dence measure values (CM) against the OF End-Point Error (EE) [48]. The x-axis
corresponds to CM values (normalized in range [0, 1]) and y-axis corresponds to OF
End-Point Error (EE). We plot an horizontal line at EE = EEmax = 1 representing
the maximum error allowed by the application for a better comparison. Figure 1.4(a)
presents a clear decreasing profile which allows determining the minimum CM value
that guarantees that points with CM above such threshold (vertical line) have an EE
below 1. Meanwhile the uniform distribution of CM-EE scatter in figure 1.4(b) makes
impossible the definition of such threshold on CM.

Confidence measures can be formulated from either an analytic or a probabilistic
point of view. Analytic approaches either use the energy [49,50] or the image structure
(gradient magnitude [31], structure tensor [51]) as indicators of confidence. Energy-
based approaches are linked to the capability of finding the energy minima and,
thus, energy convexity. Whereas structure-based approaches are related to numerical
stability and model assumptions. Probabilistic approaches define confidence in terms
of probabilistic distributions of either flow fields itself [52] or its variability with respect
perturbations in the model [53]. Probabilistic approaches are more flexible and not
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(a) CM able to bound OF error (b) CM can not bound OF error

Figure 1.4: Scatter plot confidence measure (CM) against optical flow error (EE).

necessarily linked to any source of error. Furthermore, they can even be used to get a
confidence fusing all previous measures [54] and, thus, relate to other OF error sources
(see chapter 3).

In their seminal work on optical flow evaluation, Barron et al. [31] emphasize the
importance of confidence measures to examine optical flow methods. They also carry
out a first comparison by applying the confidence measures and, after thresholding
by the CM on the sequences, visually compare the performance of the OF methods.
Following the same method, Liu et al. [55] visually compare two different CM and
Fazekas et al. [56] study the efficiencies of other two CM in four OF methods. Some
years later, Bruhn et al. [38] visually check that the pixels suppressed by the confidence
measure are indeed those pixels having the lowest performance of the OF. That is, they
visually correlate the results of the CM selection with the accuracy of OF. Although
these results have been the first steps towards a comparison of confidence measures
within a single framework, they only provide visual comparisons.

An early general attempt to define a type of CM quantitative evaluation for simul-
taneous comparison has been made by Bruhn et al. [49]. They validate the quality
of CM by means of Sparsification Plots (SP). To create such curve, the flow field is
systematically sparsified by a fixed percentage of flow vectors which are sorted accord-
ing to their confidence values. For each such threshold, the remaining average error
is plotted, without taking into account the variability. Under the assumption that
higher values of CM are associated to lower flow errors, SP should have decreasing
profiles. An increase in their values for the higher removed fractions indicates arti-
facts in the decreasing dependency possibly due to a high error despite a high CM.
However, the inverse does not always hold and random uniform dependencies could
produce sensible plots.

Existing descriptive plots can only provide a visual assessment of the performance
of CM that is not enough for standardized quantification and comparison. An alter-
native is to compute a single overall score for each CM, like the average EE across test
sequences proposed in [54]. Although this is a compact way of comparison, a global
score might not suffice to detect significant differences across methodologies [57]. An-
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other common concern is the impossibility to explore sources of variability in OF
performance and select which CM is best suited for a given OF. Finally, comparison
results should generalize to sequences with similar experimental settings than the ones
used at the evaluation stage with a given confidence.

1.2.1 Contributions

This PhD thesis contributes to reliable computation of optical flow for improved
decision support systems in the following aspects:

• Descriptive scores. As a first step, we summarize and analyze the sources
of inaccuracies in the output of optical flow algorithms. Second, as we have
seen in the state of the art section, in the literature there are no robust and de-
scriptive tools to represent the performance of confidence measures according to
the optical flow error. We present several descriptive plots that visually assess
CM capabilities for OF error bounding in terms of the conditional distribution
function measuring the probability that CM can not bound the error. In addi-
tion to descriptive plots, given a plot representing OF-CM capabilities to bound
the error, we provide a numeric score that categorizes the plot according to its
decreasing profile, that is, a score assessing CM performance.

• Statistical framework. We provide a comparison framework that assesses
the best suited OF-CM pair for error bounding that uses a two stage cascade
process. First of all we assess the predictive value of the confidence measures by
means of the Sparse-Density Plots. Then, for a sample of SDP plots computed
over training frames, we obtain a generic curve that will be used for sequences
with no ground truth. As a second step, we evaluate the obtained general curve
and its capabilities to really reflect the predictive value of a confidence measure
using the variability across train frames. Furthermore we apply ANOVA to
decide which pairs OF-CM perform better and better assess the optical flow
error.

Figure 1.5 illustrates the thesis contributions. The top image shows the current
optical flow situation, and the bottom one summarizes the thesis contributions.

The presented framework has been applied to improve clinical decision support
systems. In particular, it has been applied to improve the following two systems:

• Cardiac Diagnose Systems. The presented framework has been applied to a
synthetic cardiac database to analyze the impact of the different image artifacts
such as noise and decay to the output of optical flow.

• Bronchoscopy Guidance. We have used the presented framework in man-
ually annotated dataset of bronchoscopy guidance to improve the navigation
inside the bronchial tree.

Figure 1.6 shows an scheme of the application of the thesis contributions. Applying
the presented statistical framework to a selected application of optical flow, it provides
a more reliable input for the application, and an improvement and reliability of the
final results.
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Figure 1.5: Thesis contributions.
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Figure 1.6: Application of the thesis contributions.
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The remains of the thesis are organized as follows: chapter 2 compiles a review of
the different optical flow techniques, confidence measures, and current approaches for
performance evaluation of confidence measures. It also summarizes the different sta-
tistical approaches required to define the statistical framework. Chapter 3 analyzes
the optical flow error sources and the capabilities of the state of the art confidence
measures to bound the different optical flow error sources. In addition, in this chapter
we define the descriptive plots and scores to evaluate the performance of the confi-
dence measures. Chapter 4 defines a statistical framework able to choose the best
pair OF-CM able to properly bound the optical flow error for a given decision sup-
port system. Chapter 5 applies the defined statistical framework to improve clinical
decision support systems, in particular, cardiac diagnose systems and bronchoscopy
guidance. Finally, chapter 6 outlines the main conclusions of the thesis and future
lines of research.



Chapter 2

Theoretical tools and Databases

Optical Flow (OF) techniques are a widespread tool for computing pixel-wise motion
between consecutive frames. In this chapter, we summarize how optical flow is com-
puted and also the state of the art techniques. In addition we summarize the different
current tools that are used to determine the accuracy of optical flow methods.

Besides, the statistical framework presented in this thesis analyzing the perfor-
mance of different pairs (optical flow technique, confidence measure) requires several
statistical tools, which are also presented in this chapter.

2.1 Basics of Optical Flow

OF is defined as the velocity vector field that transforms one frame into the follow-
ing one. It assumes that object appearance (given by image intensity) keeps con-
stant along sequence frames (Brightness Constancy Constraint, BCC). Under such
assumption, the vector field given by OF puts into correspondence pixels in consecu-
tive frames that have the same appearance (intensity). In mathematical terms, these
requirements are formulated as follows: let I(x(t), y(t), t) (I for short) be a sequence
and (x(t0), y(t0), t0) an image pixel at time t0. If we assume the BCC, the equation
to solve is the following:

I(x(t+ t0), y(t+ t0), t+ t0) = I(x(t0), y(t0), t0) (2.1)

Considering that displacements are small and the image sequence varies smoothly
along the spatial and temporal coordinates, we can use first-order Taylor expansion
in time t0, obtaining:

Ixxt + Iyyt + It = 0 (2.2)

Since, OF is a vector field, we can define W = (xt, yt) = (u, v) and re-write the
equation (2.2) into the following compact form:

< ∇I,W > +It = 0 (2.3)

The above equation will be called OF equation.

13
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The solution of (2.3) gives, for each pixel of the image, the estimation of motion
given by OF. The application of OF formulation to real life sequences presents three
weighty limitations: BCC is not always fulfilled, sequences should have small temporal
deformations and the equation to solve the optical flow is an ill-posed equation.

In real life sequences, BCC is not always fulfilled due to illumination changes,
physical properties or image acquisition devices. Thus, the computed OF may not
correspond to the real motion. One way of ensuring the BCC is to either change
the feature to keep constant along sequence frames or the representation space of the
sequence [31, 49]. There are two kinds of alternative features, region descriptors and
edges and corners descriptors. Region-based techniques [50, 58] match shift region
descriptors, while feature-based approaches [59–61] seek correspondences of charac-
teristic image features such as edges or corners. Besides, methods that change the
image representation space replace brightness by a filter response. In this case, the
velocity vector field is defined from the phase behavior of band-pass filter outputs in
the Fourier domain and so they are called phase-based approaches [34,62,63].

The second limitation of the OF formulation is that, independently of the feature
to keep constant, OF equation is based on derivatives. Therefore, motion is not
properly recovered for large deformations and a high temporal resolution sequence is
needed. To avoid such problems there are wrapping techniques.

Finally, OF computation is an ill-posed problem since equation (2.3) introduces
one constraint with two unknowns so it can not be uniquely solved. Indeed equation
(2.3) can only recover motion along the image gradient (normal to the image level
sets). That is, if we express W = ω1∇I + ω2∇I> and develop the scalar product, we
have:

< ∇I,W >= cos θ · ‖W‖ · ‖∇I‖ = ω1 · ‖∇I‖ (2.4)

for θ the angle between the motion vector and ∇I. By replacing (2.4) in (2.3) we
obtain:

ω1 · ‖∇I‖+ It = 0⇔ ω1 =
−It
‖∇I‖

(2.5)

Figure 2.1 graphically shows the projection of W over ∇I.

Figure 2.1: Geometric interpretation of the OF.



2.1. Basics of Optical Flow 15

This is a phenomenon called the aperture problem and arises as a consequence
of converting a two dimensional problem into a one dimensional one. Depending on
the geometry of the object and the kind of motion, OF equation can properly recover
the motion or not. That is, in points where motion is perpendicular to the image
level set, OF equation recovers the whole motion, while in points where motion is
tangent to the image contours, the OF equation does not recover motion at all. The
remaining possible motions in a point will be partially recovered. Figure 2.2 shows
three different scenarios. Blue arrows correspond to the motion that OF equation
recovers while red arrows correspond to the real motion of the object. In figure 2.2(a)
motion is perpendicular to the edge; therefore, blue arrows coincide with the red ones,
that is, we can recover the motion. In figure 2.2(b) motion is tangent to the edge,
consequently no motion is recovered. Finally, in figure 2.2(c) motion is oblique to the
edges, thus we will recover the normal component of the motion. Notice that, since
in the corner there are two different equations of the OF, motion can be properly
recovered.

(a) (b) (c)

Figure 2.2: Consequences of the aperture problem. In red the motion of the object,
and in blue the solution given by the OF.

In order to minimize the aperture problem some outstanding local techniques
propose an equation system by assuming some properties of the vector field [33,34,64].
Lucas and Kanade [33] is a differential approach that assumes that motion is constant
in a local neighborhood around each pixel and then, applying least squares, computes
the solution. Fleet and Jepson [34] is a phase-based technique that defines the velocity
in terms of the gradient of the phase output of a Gabor filter, and thus the vector is
the least squares solution of an equation system. Another representative method to
estimate motion locally, specifically defined for tMRI images, is the HARmonic Phase
(HARP) [64,65]. HARP method tracks the phase of the Fourier coefficients associated
to the tagged pattern, and then uses a Newton-Raphson approach for seeking the
points that keep constant phase values between consecutive HARP images. Since
the correspondence is computed separately for each pixel, the resulting vector field is
often irregular.

Local techniques solve the aperture problem in some pixels but do not produce
dense flow fields. In contrast, variational techniques, developed for the first time by
Horn and Schunck [35], produce dense flow fields by combining into a variational
framework a data-term (which assumes constancy in the object appearance) and a
smoothness-term (which models the behavior of the flow across the image). These
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approaches compute the OF (W ) by finding the minimum of the following energy
functional:

ε(W ) =

∫∫
‖f(∇I,W )‖2L2︸ ︷︷ ︸
Data−Term

dxdy + α

∫∫
g(W,∇W, ...)︸ ︷︷ ︸

Smoothness−Term

dxdy (2.6)

where f is the data-term, g the smoothness-term, α is a constant regularization
parameter, ‖ · ‖L2 is the L2 norm and ... denotes higher order terms.

The data-term is a function that puts into correspondence one frame with the
following one. Existing approaches use either the OF equation [35, 36] or the system
equation provided by local techniques such as Lucas and Kanade [38] or Fleet and
Jepson [63]. OF equation as data-term still presents the aperture problem, so it
needs to be solved in the variational framework together with the smoothness-term.
In the case of local techniques, since data-terms are own-solvable, the smoothness-
term is introduced to regularize the velocity vector field. Thus, they are combining
the robustness of local methods and the density of the variational ones.

The smoothness-term determines the global properties of the vector field [41]. The
first approaches defined the smoothness-term in the L2 space to ensure differentiability
[35, 36, 38]. The main limitation is that the solution can be over-regularized in cases
that there are occlusions or discontinuities in the velocity vector field. In order to
overcome that, total variational methods define g in the L1 space [38,40,66,67]. The
problem of those techniques is that there are functions from different spaces in the
same variational framework, which is mathematically inconsistent and also there is
no robust theory which assures the reliability of the solution.

In addition to the data and smoothness terms, the parameter α provides a trade-off
between both terms. The bigger the α is, the smoother the flow field becomes. In most
cases, this parameter is constant and can be learned from a training set [40]. Other
works [36, 63] consider that the smoothness-term should play an important role in
those points where the data-term does not provide motion information. For instance,
Nagel and Enkelmann [36] weight the variational by means of ‖∇I‖. The main idea
is that ∇I = 0 indicates a flat region, since in these points we can not recover any
motion, the scheme gives more weight to the smoothness-term. However ∇I may not
reflect all regions where the data-term can not properly recover motion. In this context
we claim that α has to reflect the theoretical conditions that assure a good solution of
the data-term. In this fashion, [39] introduces the amplitude of the response of Gabor
Filters in the weights with an evident improvement on the computation of the OF.
This approach has been applied to medical images, in particular, to the assessment
of the left ventricle motion.

2.1.1 Accuracy score of optical flow and ground truth databases

In order to quantify the accuracy of the optical flow, we need to evaluate the difference
between the computed optical flow and the ground truth. In the literature we can find
several ways to compute the accuracy [48], but the most extended way to measure it
is the End-Point Error (EE) [48]:

EE = ‖WC −WGT ‖2 (2.7)
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where WC is the computed OF and wGT is the ground-truth of the OF.
The definition of ground truth for optical flow in real life scenes is a challenging

task. There may be inherent errors on the ground truth due to sequence properties
such as occlusions or noise, or discretization errors induced by the generation of
the ground truth itself. This problems for the ground truth also can be found in
synthetic databases in a lower level. In the literature we can find several optical
flow databases [48,68–70], but, since all optical flow methods are somehow trained to
outperform for such databases those ones have a limited time. In this thesis we use
the following databases:

• Middlebury [48]. This database contains real-life and synthetic sequences
with ground-truth. The sequences contain several independently moving ob-
jects, thin structures, shadows and foreground-background transitions. It con-
tains displacements up to 20 pixels per frame, and the sequences have up to
eight frames.

• Sintel [68]. This database is derived from the open source 3D animated short
film Sintel, thus the authors refer to it as a semi-realistic database. It contains
sequences with large motion displacements, specular reflection, motion blur,
defocus blur and atmospheric effects and, thus, it covers a complete bunch of
sequence features. In this database we can find displacements up to 40 pixels
per frame, and the sequences contain up to 40 frames.

• Cardiac database [71]. This is a synthetic database simulating MR images,
and uses the cardiac motion simulator defined by Arts and Waks [72, 73]. The
dataset consists of five short axis slices sampled across the prolate sphere. Every
slice has 50× 50 pixels. The spatial period of the tagging patterns is set to 6.6
pixels. Rician noise is added with a constant SNR of 25 over time, defined as
SNR = µ

σ with µ the mean signal and σ the standard deviation of the noise [74].
Two data variants have been generated: images with noise and decay and clean
data without noise and decay.

• Bronchoscopy database. This database consists of videobronchoscopy ex-
plorations of the tracheal structures, all the images are courtesy of Hospital
de Bellvitge in Barcelona, Spain. We have selected a sample of representative
sequences and for each sequence we have selected a ring to track. Such rings
have been manually labelled as ground truth.

2.2 Confidence Measures

In order to use optical flow in a confident decision support system, a mechanism to
detect sequence pixels that have high error in their computations is of prime im-
portance. In this context, Confidence Measures (CM) should be an indicator of the
accuracy of the output of an optical flow algorithm. It should be noted that a confi-
dence measure can provide at most an upper bound of OF error at each pixel, not its
real value (according to numerical error analysis [47]). This implies that high values of
the confidence measure should ensure a low OF error, while for low CM values errors
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could take any value. Points that have high error and high value of the confidence
measure are unpredictable points which CM can not discard and, thus, should be the
least possible. Therefore, the final purpose of a confidence measure should be the
detection of numerical errors and also, provide an upper bound for the flow error.

Confidence measures can be formulated from either an analytic or a probabilistic
point of view. Analytic approaches either use the image structure (gradient magni-
tude [31] or structure tensor [51]) or the energy [49, 50] as indicators of confidence.
Probabilistic approaches define confidence in terms of probabilistic distributions from
either the flow field itself [52] or its variability with respect perturbations in the
model [53]. Ahoda et al. [54] use supervised learning to estimate a confidence value
for each pixel of the image.

Analytic

Since the data-term is formulated using the image partial derivatives, the first mea-
sures were defined in terms of the image local structure [31, 51, 75]. One of them is
the determinant of the matrix of the structure tensor of the image, we will refer to it
as Cd. Since the data-term is formulated using the image partial derivatives, several
measures are defined in terms of the image local structure, either gradient or struc-
ture tensor. Gradient-based measures [31] is defined as the magnitude of the gradient.
Note that for large values of the magnitude of the gradient we expect reliable motion
vectors. However, large gradients usually denote occlusions or noise [49], and in those
pixels the optical flow computation is not reliable. In order to minimize the impact
of noise, structure tensor based measures use information about the local structure
of the image. These measures are especially well suited for LK-based schemes. There
are several measures derived from the structure tensor: determinant [31], trace [75],
lowest eigenvalue [51] among others. We will consider the determinant-based measure
and we will refer to it as Cd.

Some of them are based on the principle that the OF equation and LK system
require some image properties in order to make sense. In this context, gradient-based
measures are defined for OF equation and structure tensor ones for LK.

The energy-based measure takes into account that variational techniques compute
optical flow by minimizing an energy functional (2.6), and thus, the confidence mea-
sure is computed evaluating the flow field over the functional. Under the (sensible)
assumption that all constrains have been taken into account in the definition of the
functional, the computed flow field will be accurate in the measure that its local en-
ergy is low. Meanwhile for pixels where such energy is high, the flow field does not
fulfil the model and, thus, might have a higher error. We will refer to this confidence
measure as Ce and it is defined in [49]. Under these considerations, the following
measure is proposed:

Ce =
1

D(u, v,∇I) + αS(∇u,∇v,∇I) + ε2
(2.8)

where ε prevents dividing by zero.
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Probabilistic

Measures based on pattern analysis of computed flows are an alternative for defining
confidence measures regardless of the model assumptions [52]. In many applications,
flow fields follow similar local motion patterns. If such motion patterns are learned
a priori, then a classifier can be used to define a confidence measure. The measure
introduced in [52], which we note as Cs, derives natural motion statistics from sample
data and carries out a hypothesis test to obtain confidence values for the computed
flow. The method depends only on the resulting flow field and on the prior knowledge
learned from a database. The confidence measure assesses the computed optical
flow calculating the local variability by means of the Mahalanobis distance between
the computed vector and the distribution given by the surrounding ones. Since the
formulation is not straight forward, we refer the reader to the paper [52] for more
details.

The measure defined in [53] quantifies the uncertainty of the flow method, that
is, in those points where the flow field varies, the computation is not reliable. They
compute such measure using bootstrap resampling. We refer to this measure as cb,
and we will consider the inverse of ψbootg defined in [53] eq.(15).In order to have a
decreasing dependency with the accuracy we consider the inverse of the value:

cb =
1

ψbootg + ε2
(2.9)

for ψbootg defined in [53] eq.(15).
A different attempt that uses confidence measures to improve OF computation is

presented in [54]. They use supervised learning to estimate for each pixel a confidence
value for the computed flow vectors. They estimate if a flow algorithm is likely to
fail in a specific region. Then, they can combine the output of several flow fields and
combine them selecting for each pixel the one that performs best.

2.3 Confidence measure performance evaluation

The most extended way to represent the performance of confidence measures and its
link to flow error is by means of the sparsification plots [49]. Such plots are given
by the remaining mean error for fractions of removed flow vector having increasing
confidence measure values (CM). That is, CM is sorted in increasing order, the n% of
the flow vectors having low value of the measure are removed, and finally the average
error of the remaining vectors is computed. The scatter plots in fig. 2.3 illustrate
the computation of sparsification plots for two representative cases selected from the
Middlebury database. For a given removed percentage (vertical line in scatter plots
and x-axis in sparsification plot below), arrows indicate the points that are considered
for the computation of average errors (y-axis in sparsification plot).

Under the assumption that higher values of CM are associated to lower optical flow
errors, sparsification plots should have decreasing profiles. An increase in their values
for the higher removed fractions indicates artifacts in the decreasing dependency
possibly due to a high error despite a high CM. However, the inverse does not always
hold and random uniform dependencies could produce sensible plots. This is the
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case of the second representative sequence shown in fig. 2.3. Even if the dependency
shown in the scatter plot is worse in the first sequence, its sparsification plot (blue
line) indicates a better performance for high fractions.

Besides a poor power for assessing decreasing dependencies between confidence
measures and flow error, sparsification plots are unable to properly detect if a measure
is appropriate for giving a bound on optical flow accuracy. This is mainly due to the
fact that its computation only considers confidence measure values for removing pixels
regardless of optical flow error. Therefore, if the distribution of errors for high CM
values concentrates around zero, the sparsification plot will be low even if we have
some outliers with high errors. It follows that the distribution of, both, flow error
and CM should be taken into account in order to properly measure the capability of
confidence measures for bounding the error.

Figure 2.3: Sparsification plots. On the left and on the middle the scatter plot
of a CM and the error. On the left a poor CM, on the middle a good one. The
sparsification plot of both measures on the right.

2.4 Statistical Tools

In order to analyze the performance of different pairs OF-CM over a sequence, for
every two consecutive frames, and decide which pair OF-CM performs better, we need
information about:

• Performance variability: we want to know how much do the results vary de-
pending on the sequence, and also how significant is the difference between the
performances of the different pairs OF-CM.

• Effect of factors of interest: we wonder which is the impact of a certain factor
on the performance.

• Generalization of the results: we need to know if a pair OF-CM can perform
similarly in different conditions, in this case with sequences with different fea-
tures.

For that, we present the following statistical tools:

• Confidence intervals

• Hypothesis tests

• T-test and Analysis of Variance (ANOVA)
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2.4.1 Confidence Intervals

Given a sample population, a confidence interval provides the estimated range of
values that includes an unknown population parameter, which is noted as ξ.

In order to compute a confidence interval we need a confidence level, an statistic
and a margin of error. The confidence level, α, is the probability that the interval
produced by the method employed includes the true value of the parameter ξ. Since
the statistics associated to the sample are unknown, the most usual statistic is the
mean of the population, µ. Finally, the range of confidence interval is defined by the
sample statistic ± margin of error.

In our framework the confidence interval is a useful tool to define a general curve
computed over a sample population of curves. The purpose of that generalized curve
is to apply it for sequences without ground truth where is not possible to compute
the SDP curve. Thus, due to the properties of the confidence interval we can assure
for a given probability that such curve is properly defined.

2.4.2 Hypothesis Test

In case of hypothesis tests, we do not want to estimate a parameter of a given popula-
tion but to decide between two alternatives of its value. For instance, decide between
the alternatives of the population mean µ = µ0 and µ 6= µ0.

The hypothesis tests follow the same concept as someone is innocent until proven
guilty. To perform the tests, two hypothesis are defined, the null hypothesis, H0, and
the alternative one, H1. In our example innocent would be the null hypothesis, and
guilty the alternative one. On one hand, the null hypothesis (H0) is the assumption
to be contrasted. Thus, it is considered that H0 is true, and this hypothesis can or can
not be rejected. On the other hand, the alternative hypothesis is the opposite to the
null one, and it is usually the hypothesis that we want to proof. This hypothesis can or
can not be accepted. If we can rejectH0, then the alternative hypothesis (H1) becomes
accepted, that is, we accept that the sample gives reasonable evidence to support the
alternative hypothesis for the given confidence level. It is important to note that not
rejecting H0 does not mean thatH1 is false, but we have not enough evidence to accept
one or the other. In that case, the confidence interval and the p-value indicates which
hypothesis is more probable. The p-value is the estimated probability of rejecting
the null hypothesis. So, what is the difference between the significance level and the
p-value? Whereas the significance level α is a pre-chosen probability of rejecting the
null hypothesis, the p-value indicates the probability calculated after the study. If
the p-value is less than the chosen significance level then null hypothesis is rejected.

Table 2.1

Decision rules for hypothesis tests.

Real situation
Decision H0 true H1 false

H0 not rejected No error (1− α) Error type II (β)
H0 rejected Error type I (α) No error (1− β)
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The decision rules of a hypothesis tests are summarized in table 2.1. The error
type I, denotes the error of rejecting H0 when it is true. Thus, the value α denotes
the probability of an error of type I (α = P (rejectH0|H0true)), and it is also called
significance level. The error type II denotes the error of not rejecting the null hy-
pothesis when it is false. The value β denotes the probability of an error of type II.
Finally, the power of a hypothesis test denotes the probability of rejecting H0 when
it is false. The power increases when the sample size increases, and it is called 1− β.

We can distinguish among two different types of hypothesis test, as figure 2.4
illustrates: one-tailed tests, where the region of rejection is on only one side of the
sampling distribution, and two-tailed tests, where the region of rejection is on both
sides of the sampling distribution.

TWO-TAILED TEST ONE-TAILED TESTS{
H0 : σ = σ0

H1 : σ 6= σ0

{
H0 : σ ≤ σ0

H1 : σ > σ0

{
H0 : σ ≥ σ0

H1 : σ < σ0

Figure 2.4: Types of hypothesis tests

2.4.3 Student’s t-Test and ANOVA

A Student’s t-test is a statistical hypothesis test in which the statistic follows a t-
Student distribution if the null hypothesis is true. This test is generally used to
determine wether there are significant differences between two sets of data. In order
to apply the test the sample sets must be independent. A restriction of the t-test is
that both sample population must follow a normal distribution. Note that the t-test
does not prove anything, but can support a hypothesis. It is usually applied to small
samples where you can not use more advanced techniques.

When there are more than two samples to compare among them, the results of
several t-tests might become unreliable, and thus we need advanced techniques such
as Analysis of Variance tests, ANOVA. ANOVA tests are used to analyze different
kinds of variability in the data and then they use that information to construct a
hypothesis test.

ANOVA analyzes data consisting of one quantitative response variable and one
or more categorical explanatory variables, referred as factors. The number of factors
depends on the situation to analyze. We will focus on the two simplest cases, using
one or two factors with one response variable, which are called one-way and two-way
ANOVA, respectively.

One-Way ANOVA

In general, a one-way ANOVA analysis considers the factor dividing the subjects into
groups. Thus, the goal of the analysis is to compare the means of the subjects in
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each group and the objective of this test is to select the best parameter settings.
The results are considered reliable if the response variable residuals are normally
distributed or approximately normally distributed, the samples are independent, the
variances of populations are equal and the responses for a given group are independent
and identically distributed normal random variables.

The hypothesis test associated to the one-way ANOVA considers as null hypoth-
esis H0 that the factor has no effect, and as alternative that it does. In terms of
parameters, the ANOVA test can be written as follows:{

H0 : µ1 = µ2 = . . . = µg
H1 : ∃µi s.t.µi 6= µj for some j = 1, . . . , g

If the p-value is less than or equal to α, we can reject H0, and then we conclude
that at least some means of the group population are different. If we fail to reject
H0, that is, the p-value is greater than α, then we conclude that it is reasonable that
all the group population means are the same.

Two-Way ANOVA

The two-way ANOVA test is used to detect the impact of the variability among two
factors and allows us to get a more accurate description of how the response variable
depends on the two factors, detecting any interaction across the different factors
that might distort the analysis of results separately for each factor. In addition, the
two-way ANOVA considers more sources of variability than each individual one-way
ANOVA does, which leads to fewer errors of type II. The two-way ANOVA test can
answer if the response variable depends on the first factor, or if it depends on the
second one. Indeed, it also answers if the response variable depends on the first factor
differently for different values of the second factor and viceversa. The assumptions
for the two-way ANOVA test are the same as for the one-way ANOVA test, but also
that the number of observations should be the same for all groups.

Suppose we have Factor 1 with N categories and Factor 2 with M categories.
Then the total number of groups is NM. The first question to be answered is if the
response variable depend on Factor 1 differently for different values of Factor 2, and
viceversa. The interaction test stands the null hypothesis as there is no interaction,
while the alternative one supposes there is. If the p-value is less than or equal to the
significance level α, then we reject H0 which means that is reasonable to think that
there is interaction. Whereas, if p-value is greater than α then we fail to reject H0,
which means that it is reasonable to think that there is no interaction.

If we assume that it is reasonable that there is no interaction, the response variable
still can depend on Factor 1 and/or Factor 2. Then we can look at the effects of both
factors separately, so we test for the main effects. The main effect test behaves as
the previously described test. That is, the null hypothesis stands that the response
variable does not depend on the factor in question, while the alternative hypothesis is
that it does. Thus, if the p-value is greater less than or equal to the significance level
α, then we can reject H0, and thus, then we can assume that the response variable
depends on the selected factor. If the p-value is greater than α, we can not reject
H0 then it is reasonable to assume that the response variable does not depend on the
selected factor.
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If we can assume that there is interaction, it means that the response depends
on the first factor differently for different values of the second factor and viceversa.
And thus, there is no direct dependence of one factor or the other one. In this case, a
1-way ANOVA combining both factors as one should be applied to determine whether
or not the response variable depends on the combined factors.

Multiple Comparison Methods

In case one factor is identified as influent, it is necessary to confirm what levels differ
mutually. For that, several comparisons among the groups might be done. Since
there is a significance level of 5%, there is a risk in each comparison of 5%, so that
a large number of comparisons significantly increments this risk. Thus, some kind of
correction should be done to have an overall risk below 5%. In particular, for pair-
wise comparisons Tukey correction [76] is the most appropriate for constructing the
confidence intervals.

For each comparison of two groups, we interpret the corresponding Tukey simul-
taneous confidence interval as follows:

• If the interval contains only positive numbers, then we can conclude that the
first of the two population means being compared is bigger than the second.

• If the interval contains only negative numbers, then we can conclude that the
first of the two population means being compared is smaller than the second.

• If the interval contains both positive and negative numbers (in other words, if it
contains zero), then we can’t conclude that either of the two population means
being compared is bigger than the other.

Of course, whenever we conclude that one population mean is bigger than another,
the interval also gives us an idea of how much bigger.



Chapter 3

Descriptive Scores for Confidence
Measure Performance Evaluation

In order to use optical flow in a confident decision support system, a mechanism to
detect sequence pixels that have high error in their computations is of prime im-
portance. In this context, Confidence Measures (CM) should be an indicator of the
accuracy of the output of an optical flow algorithm. Thus, evaluating the quality of a
confidence measure, as well as analyzing the origin of unpredictable points, are issues
as important as the definition of a confidence measure itself.

In order that a measure is useful for bounding errors, the scatter plot between
the measure and end-point errors should show a monotonic tendency. In other words,
if CM values are small, then, OF error is not bounded and it can take any value.
Meanwhile, for large CM values, OF error should be bounded so that the output
data is reliable. Taking into account the expected relation between CM and error
values, the evaluation of CM quality should assess its capabilities for bounding OF
error. This can be achieved by exploring the decreasing profile of CM-error scatter
plots [49].

This chapter is devoted to the analysis of OF error sources and the capabilities
of CM for bounding such OF errors. On one hand, we describe the different error
sources of OF techniques and the theoretical capabilities of existing CM types for
bounding the different sources of OF errors. On the other hand, we contribute to the
quantification of the decreasing pattern of CM-OF error point clouds in two aspects.
First, we present 3 descriptive plots reflecting the decreasing profile of the CM-OF
error point clouds in terms of the distribution function of points that CM can not
bound OF error. Each plot increasingly approaches different aspects that contribute
to a better qualitative description of the CM-OF decreasing profile and leads to the
definition of our definitive Sparse Density Plots, SDP. Second, we provide a set of
scores actually quantifying such decreasing profile from the analysis of descriptive
plots. The higher descriptive capabilities of our plots in comparison to the existing
Sparsification Plot, SP, have been exposed in two representative sequences extracted
from the benchmark Middlebury and Sintel databases. The usefulness of the descrip-
tive scores for using SDP in a decision support system is shown by applying the whole
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description framework to the full Sintel database.

3.1 Theoretical Capabilities for Error Bounding

The final purpose of a confidence measure should be the detection of numerical errors
and provide an upper bound for the final error. Therefore, before introducing the
3 plots describing the capabilities of CM for OF error bounding, let us analyze the
different sources of error that an OF algorithm has and that CM should be able to
detect.

Inaccuracies in the output of optical flow algorithms follow from three main rea-
sons: Model Assumptions, Multiple Global Minima and Numerical Stability of Local
Minima.

Model Assumptions. The goal of optical flow approaches is to find the vector that
best matches two consecutive frames in a sequence. Given that motion vectors are
at least 2D, there is not enough information in the image data alone for producing a
unique solution. Consequently, optical flow algorithms need to assume some condi-
tions on the output vector in order to compute it. Intuitively, these conditions favor a
particular kind of vector field satisfying some theoretical requirements (the model as-
sumptions) for being the final solutions to the problem. Model assumptions on optical
flow can be of either analytical or probabilistic type. In the first case, the flow vector
must satisfy some degree of regularity. This is usually enforced by adding the norm of
the flow in some Sobolev space (usually L2 or L1) to a variational formulation of the
optical flow problem [77]. In the second case, the flow vector should follow a given
probabilistic distribution or be generated by a finite number of basic functions [77].
In any case, the restriction of possible vectors given by model assumptions might not
be right for all image patches and flows. This implies that even if we have a unique
stable solution, the final output might not resemble the true motion at all (see fig.
3.1 (a)).

Multiple Global Minima. Optical flow computation follows from the minimiza-
tion of an energy functional including a data term and model assumptions. Unless
simplified models are used (such as classic Horn and Schunck [35]), this functional
will not be, in general, convex. Lack of convexity introduces multiple local minima
that hinder the performance of gradient descent approaches based on Euler-Lagrange
equations. On one hand, varying initial conditions might lead to different solutions.
On the other hand, the iterative solution might get trapped in a saddle point not
reaching a minimum of the energy. Multiple minima follow from non-convexity of
the energy functional that is minimizing. Although theoretically convexity can be
analyzed by means of the second derivative of the variational [77], in practice it is
difficult to have a friendly analytical expression and some sort of heuristics should be
used. Besides, a main concern is that, even if we are able to find all possible local
minima, there might not be any objective criterion to decide which is the optimal
solution. This uncertainty is illustrated in the plot representing an energy function
shown in figure 3.1(b). The energy has three local minima (depicted by dots) that
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have equal energy and, thus, are also global.

Numerical Stability of Local Minima. The minimum of the energy modelling op-
tical flow requires a numeric scheme in almost all cases. In this setting, it is important
ensuring that any variability in the input data will not introduce a large deviation
in the solution (see bottom sketches in fig.3.1(c)). In mathematical numerical anal-
ysis this is called error propagation or numerical stability [78]. The main concern of
numerical stability is to bound errors of the output data (εout) in terms of the error
of the input data (εin) by means of a constant K such that ‖εout‖ < K · ‖εin‖ for
‖ · ‖ a given norm of the space the data belongs to, usually Rn. The constant K is
an intrinsic property of the algorithm and it is computed using the energy deriva-
tives [78]. In the special case of local minima, error propagation is directly related to
the flatness of the energy around each local solution. Intuitively, if the energy local
profile at a minimum is flat, the number of points locally having a low energy value
increases. Thus, the position of the local minimum is less accurate. On the contrary,
its location accuracy increases as the profile becomes more acute. In other words, flat
profiles magnify differences in initial inputs more than acute ones (see fig. 3.1(c)).

Taking into account the main sources of OF error described above, current CM
have different theoretical capabilities as evaluation tools. We recall that (see Chapter
2) confidence measures can be formulated from either an analytic or a probabilistic
point of view. Analytic approaches either use the energy [49,50] or the image structure
(gradient magnitude [31], structure tensor [51]) as indicators of confidence. Whereas,
probabilistic approaches define confidence in terms of probabilistic distributions of
either flow fields itself [52] or its variability with respect perturbations in the model
[53]. Considering their formulation, described in Chapter 2, we have the following
categorization (summarized in Table 3.1) for error bounding.

Analytic Formulations. Energy-based measures [49] evaluate OF in terms of
the pixel-wise value of the integrand defining the variational that OF solves:

Ce =
1

D(u, v,∇I) + αS(∇u,∇v,∇I) + ε2
(3.1)

where ε prevents dividing by zero. A main advantage of Ce is that it can be computed
for any variational scheme. A main concern is that Ce only measures that (u, v) min-
imizes equation (2.6) and, thus, fulfills the assumptions made in the model. However,
this does not guarantee that (u, v) corresponds to the true flow field, since defining
the most appropriate optical flow constraints for a given application is still an open
problem.

The other big group of confidence measures having analytic formulation are those
measures defined by means of the structure tensor of the image, and thus, they use
information about the local structure of the image. There are several measures de-
rived from the structure tensor: determinant [31], trace [75], lowest eigenvalue [51]
among others. These measures only detect errors produced due to the image, that
is, textureless regions, noise, etc. However, they do not consider the errors produced
by during the computations. An improved measure that uses the structure tensor,
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(a) Model assumptions.

(b) Multiple global minima.

(c) Numerical stability of local minima.

Figure 3.1: Three main sources of error in optical flow algorithms: model assump-
tions (a), multiple global minima (b) and numerical stability of local minima, (c).

considers the condition number of the structure tensor matrix [79]:

Ck =
λmin
λmax

(3.2)
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for λmin and λmax the minimum and maximum eigenvalues of the structure tensor at
a given pixel location. This measure, not only assesses the capabilities of the image
to compute the flow field, but also assesses the numerical stability of the computation
for Lucas-Kanade based schemes [33,38].

Probabilistic Formulations. In many applications, flow fields follow similar
local motion patterns. If such motion patterns are learned a priori, then a classifier
can be used to define a confidence measure. The measure introduced in [52], which
we note as Cs, derives natural motion statistics from sample data and carries out
a hypothesis test to obtain confidence values for the computed flow. The method
depends only on the resulting flow field and on the prior knowledge learned from a
database. The confidence measure assesses the computed optical flow calculating the
local variability by means of the Mahalanobis distance between the computed vector
and the distribution given by the surrounding ones.

A main limitation of this measure is that unusual motion patterns are not easy to
learn and might require a huge database of different flow patterns to train the model.
This limits its use for sequences with flow fields that are erratic or unpredictable.
In addition, it only assesses if the flow field is coherent, but not if the flow field
corresponds to the sequence motion.

The measure introduced in [53] aims at assessing the uncertainty of the optical flow
method with respect to the model constraints. That is, they compute the variability
of the computed flow field using bootstrap introducing numerical perturbations. If
the variability is high, the flow field is not reliable, whereas for low variability, the
computation is reliable. In order to have a decreasing dependency with the accuracy
is rewritten follows:

Cb =
1

ψbootg + ε2
, ψbootg =

√
σ2
u + σ2

v (3.3)

for ψbootg the confidence measure defined in [53], eq. (15). Like Ce, this one also as-
sesses the consistency of the model assumptions, but also assesses the errors produced
by numerical stability of the method. However, Cb requires to be redefined for each
optical flow technique and it is computationally costly.

Finally, the measure presented by Aodha et al. [54] estimates if a flow algorithm
is likely to fail in a specific region by means of supervised learning. This confidence
measure can be computed fusing all previous measures and, thus, it can relate to all
three error sources.

3.2 Descriptive Plots

Scatter plots showing CM against OF errors are a good tool to assess the relation
between both quantities, as illustrated in fig.1.4. A perfect CM should produce de-
creasing profiles, like the one shown in fig.1.4(a). In fig1.4(a) points over the red
dashed line to points which error is not bounded by the confidence measure. Given
that these points could introduce a significant error in a decision support system
using OF, evaluation of the confidence measure should detect the scope of such un-
predictable points.
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on Analytic
gradient-based [31] X × X

image local structure [51] X × X
energy-based [49] × X ×

Probabilistic
bootstrap [53] X × X
p-val [52] × × ×

random forest [54] X X X

Table 3.1

Categorization of confidence measures according to error types.

We have been talking about the importance of a confidence measure, but, what
exactly should we expect from them? We expect a decreasing dependency between
the measure and the accuracy. That is, for high values of the measure, we expect
high accuracy, whereas for low values we expect lower accuracy. However, looking
at the scatter plot between the accuracy and CM we observe that they follow a
probabilistic distribution rather than a pure analytic function. Therefore, we state
the decreasing dependency between confidence measure CM and error EE using the
following inequalities to define our Condition of the Quality Threshold (CQT):

Definition 1 Condition of the Quality Threshold (CQT). We say that a CM
is good for OF error bounding if for any CM value we have a threshold for EE, that
is:

∀cm,∃ee such that CM > cm⇒ EE < ee

That is, for a given probability, α, the ideal confidence measure should be able to
guarantee that for a threshold cm on CM, the error, EE, is bounded. We note that
under CQT, the values of confidence measures would determine the accuracy of the
flow field in the absence of ground-truth.

3.2.1 Error Predictive Plots

Bearing the above requirements in mind, we propose the following confidence frame-
work on the grounds of numerical stability analysis:

The CQT is fulfilled only if the scatter plot between a confidence measure CM
and an error EE show a perfect decreasing pattern. Such pattern is difficult to mea-
sure using mathematical analysis tools because they are unable to properly handle
point distributions. The best way to explore point distribution is by means of prob-
ability density functions. In probabilistic terms CQT can be stated as the following
conditional probability:

P (EE ≥ ee|CM ≥ cm) < α (3.4)
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Figure 3.2: Probability density function of CM capabilities for OF error bounding

for α ≤ 1 the probability of having an error above ee provided that CM is above cm.
The conditional probability can be computed by scanning the scatter plots given by
CM-EE as follows: taking into account that the condition CM ≥ cm corresponds to
a vertical line and EE ≥ ee to an horizontal one, the conditional probability is given
by the fraction of points lying on the superior quadrant defined by the former lines.

The plot in fig.3.2 illustrates the computation of (3.4) by fully scanning the CM-
EE space. Arrows indicate the points that are considered for the computation of
conditional probabilities. The conditional probability (3.4) is a bi-dimensional graph,
not easy to interpret. In order to get a simpler representation able to assess the
capability of the measure for predicting the error, it suffices to consider the values
for the diagonal of the support domain of CM-EE plots. Such line is given by the
following equation:

ee = cm
max(ee)

max(cm)
(3.5)

for max(ee), max(cm) the expected maximum values of CM, EE computed for a
training set. We note that the conditional probabilities:

P (EE ≥ cm max(ee)

max(cm)
|CM ≥ cm))

increase in case we have points with a high EE and CM. Therefore, by scanning all
diagonal values, we ensure that unusual non-decreasing patterns (as the one shown
in the left scatter point cloud in fig.3.3) are detected. We define our Error Prediction
Plots, EPP, as the plot given by:

EPP := cm 7→ (cm, P (EE ≥ cm max(ee)

max(cm)
|CM ≥ cm))) (3.6)

Figure 3.3 shows scatter plots and their corresponding EPP plots. Unlike the
sparsification plot shown in 2.3, we observe that EPP is worse for the non-decreasing
case. In this manner, as illustrated in 3.3, EPP partially overcomes SP limitations
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and, by definition, they are better designed to detect artifacts in CM-OF error scatter
plots. However a main concern is the sampling of the 2D distribution space which
is partially scanned and implies an increasing OF error as CM values are swept. In
order to skip scanning the full 2D space, we propose summarizing CM-OF error scatter
plots in a different manner by reformulating CQT condition given in Definition 3.2
as follows:

Figure 3.3: Error Prediction plots. First column shows the EPP plot for two
different scatter plots. Second column shows the scatter plot of a confidence measure
versus the error. On the left a poor measure, on the right a good one.

3.2.2 RAUC plots

The condition CQT states that CM should give an upper bound for EE everywhere.
That is, ∀cm, EE values should be bounded for all CM values above cm. In proba-
bilistic terms, this implies that the following conditional probability is zero:

∀cm,∃ee such that P (EE > ee|CM > cm) = 0 (3.7)

Figure 3.4 (a) illustrates ee error bounds for different cm values in the case of a
perfect relationship between CM and EE. Vertical lines correspond to cm values and
horizontal lines the best ee bound for such cm values.

In practice, there is a percentage of points with an error that can not be bounded
by the measure:

∃cm s.t. ∀eee, P (EE > ee|CM > cm) > 0 (3.8)

We define the risk of a confidence measure as the proportion of points, ρ, which bound
can not be determined by CM values:

Definition 2 Risk. We define the risk of a confidence measure as

ρ := P (EE ≥ ee|CM ≥ cm)

eeopt(cm) := min (ee such that ρ(ee) ≡ 0)

The scatter plot in fig. 3.6 showing CM versus EE illustrates the concept of risk.
The vertical line represents the threshold for CM at the value cm0 and the horizontal
lines several bounds on EE0 having different risks at CM = cm (ρ1 > ρ2 > ρ3). For
each EE its risk is given by the percentage of points on the upper right square defined
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by the two lines. Given that EE can take any possible value and this holds for all
CM > cm, it is clear that CM can not provide a bound on the error everywhere.
This is not the case for the scatters shown in fig. 3.4(b), where, for each CM value,
equation (3.7) holds.

Not all CM − EE scatters having the same risk have equal properties for error
bound prediction. Also, for a given risk, there are several curves that could be fitted
to the data for error bound setting, since the only requirement for error bounding
is that curves should be monotonically decreasing. Figure 3.4(b) shows two scatter
plots (one in blue crosses and the other one in black dots) achieving risk zero for their
envelope curves plot in dashed lines and labelled c1 for the cross scatter and c2 for
the dot one. Yet, having both a zero risk, c1 is better than c2 because for any cm0

value we have ee1
opt < ee2

opt. On the other hand, note that c1 is also a valid curve
for error bounding for the second scatter plot. It provides a better error bound than
c2, but it increases the risk. This is because the curve c1 does not enclose all points
belonging to the second scatter, so that points above it represent the risk associated
to c1.

(a) (b)

Figure 3.4: Concepts involved in the quality of a confidence measure: risk in error
bound prediction, (a), and optimal error bound for a given risk, (b).

Under the considerations above, a confidence of the confidence measure should
quantify, for each risk, how good for error bounding the measure is. That is, for a
given risk, each cm should provide the lowest possible bound ee. We observe that
the best scatter in terms of error bounding is the one having a maximum decay or, in
other words, the one having a minimal area of points without risk. Given a decreasing
curve fitted to the scatter, this area corresponds to the Area Under the Curve (AUC)
while the risk is given by the percentage of points above the fitted curve. The trade
off between the risk (ρ(ee)) and eeopt for all decreasing curves fitting the scatter
data measures how good for error bounding our confidence measure is. Meanwhile,
the optimal fitting curve should reach the best compromise (prone to vary across
applications) between risk and AUC.

The plot showing AUC versus risk, for curves of increasing risk is our confidence
of the confidence measure and we will name it RAUC. By the previous considerations,
it should be clear that the steeper the RAUC is, the better the confidence measure is.
The curve of minimum risk is given by the envelope to the scatter plot. It represents
the worst ee. The convex curve enclosing the maximum number of pixels gives the
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lower bound for ee. Its risk is a measure of the maximum risk for the best ee bound.
The intermediate curves are computed iteratively removing a percentage of these
points as follows.

As previously described, confidence curves should be monotonically decreasing
and minimize the risk of false error bounds. To achieve this, several approaches are
possible. As the number of points in an evaluation is finite, one (optimal) option
would be to combinatorially compute all possible monotonically decreasing curves
given a dataset. The number of points is larger than a million, so this method takes
an infeasible amount of time to find the optimal curves.

To approximate the approach above with as little loss of optimality as possible, we
first create a two-dimensional histogram H which serves as an approximate Parzen
density [80] estimate of the dataset. To obtain curves which minimally increase the
risk each step similarly to the sparsification plot, we remove a fraction of bins by
setting them to zero. We then search for a monotonically decreasing function in this
set of remaining points with all point being below the curve. The choice of bins is
based on the principle of minimizing the area under the resulting curve while also
minimizing the risk increase caused by the points which are removed (and therefore
might be located above the curve). We therefore use a prioritized recursive region
growing approach with one seed at the location of both maximal error and confidence
(top right corner). The recursion stack is ordered by the number of points which fell
into the bin of the histogram. At lower priority, bins with the same value are ordered
by the distance from the seed point. At lower priority, bins with the same value are
ordered by the L1-distance from the seed point. In case all bins have the same value,
this creates a linear (and therefore monotonically decreasing) confidence curve.

We iterate through the recursion by removing bins until the sum of the removed
bins reaches a fraction of the sum of all bins. Each curve will thereby yield a
good approximation of the optimal confidence curve given an acceptable, application-
dependent risk defined by the user. As described previously on this section, the area
under the curve can then be used to define the quality of the confidence measure.

Figure 3.5 shows the RAUC (first on the left) and scatter plots (second to fourth)
for three representative examples of a confidence measure: an ideal case (C1, second),
expected case (C2, third) and worst case (C3, fourth). Some representative decreasing
curves fitted for a given risk are also shown on each scatter. For the ideal case (C1),
the envelope of the scatter (the curve of risk 0) is the first convex curve enclosing
all the points (that one with the best ee). It is ideal because it is able to produce a
convex curve achieving zero risk. Consequently, its RAUC first point starts with the
lowest value, and its profile is flat. The middle scatter (C2) achieves the first convex
curve at a moderate risk, which is parsed by the fitted curves. Its RAUC is worse
than the case before and has positive area, so that there are still points under the
curve. Finally, the right scatter (C3) is the worse possible case, because EE is random
for all CM values and thus, CM is unable to bound the error. In this case, assuming
more risk, does not imply lower values for EE. Consequently, the RAUC has a linear
decreasing pattern. Any confidence measure should have a RAUC under this line.

Although the concept of risk allows faithfully summarizing CM-OF error scattered
plots, the proposed RAUC is not invariant under transformations of the confidence
measure, which do not alter its error bounding capabilities. In order to obtain plots
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Figure 3.5: Synthetic example. First column, the RAUC for the three different
cases, ideal case (C1). Second column, expected case (C2) and worst case (C3).

invariant under CM scalings, we will use the sparsified predictive value over CM
percentiles to define our Sparse-Density Plots (SDP) as follows:

3.2.3 Sparse-Density Plots

Considering CM as a diagnostic score, the risk associated to CQT can be assessed
using the positive, PV+, and negative, PV−, Predictive Values [81]. These scores are
widely used in medical diagnostic tests and are given by the following distribution
functions, PV+(cm), PV−(cm), computed considering CM as a random variable:

PV+ = PV+(cm) := P (EE ≤ EEmax|CM > cm)
PV− = PV−(cm) := P (EE > EEmax|CM ≤ cm)

(3.9)

for EEmax the maximum error allowed in our application. In the context of decision
support systems, it is more descriptive to consider the probability of points whose
bound can not be determined by CM:

1− PV+(cm) = P (EE > EEmax|CM > cm) (3.10)

We note that such points act as outliers that should either be discarded or processed
separately. Thus, we will call 1 − PV+(cm) risk and will note it by ρ = ρ(cm). The
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CM-EE scatter plot in figure 3.6 illustrates the concept of risk. The vertical dashed
line at CM represents the threshold for CM and the horizontal dashed line the bound
on EE given by EEmax. For each CM value, its risk is given by the percentage of
false positive points over the addition of false positive and true positive points.

The risk plots, (cm, ρ(cm)) provide information about CM capabilities for er-
ror bounding. In order that we get plots invariant under monotonically increasing
transformations (which do not alter CM bounding capabilities), (cm, ρ(cm)) plots
are sampled using the percentiles of CM distribution. If we note such percentiles by
prctCM , then we define our Sparse-Density Plots (SDP) as:

SDP : prctCM 7→ (prctCM , ρ(prctCM )) (3.11)

Figure 3.6: Scatter plot between CM and EE. Dashed vertical line shows the bound
of CM (CM0) and horizontal dashed line shows the maximum EE allowed (EEmax).

Figure 3.7 shows the main SDP profiles ranged from best to worst capabilities
for error bounding. Left column corresponds to the scatter plot CM-EE with the
percentiles {0.25, 0.5, 0.75} marked in red lines, and the EEmax in dashed red line
at 1, while right column shows the corresponding SDP. A confidence measure is able
to completely bound OF error if SDP has an strictly decreasing profile and reaches
the zero value for some prctCM , like the profile shown in fig3.7(a). In such case,
pixels belonging to the upper percentile [prctCM , 1] have no risk at all, so its error is
bounded. Plots shown in figs.3.7(b) and (c) come from the most usual CM behaviors.
In the first case (fig.3.7(b)), there is a small quantity of points where the error is
never bounded by CM values. This introduces an increasing profile at the end of SDP
graphics. In the second case (fig.3.7(c)), there is a group of pixels with unbounded
errors in the first CM percentiles but for higher percentiles, the error is completely
under control. Finally, figs.3.7(d) and (e) show the worse cases, in the sense that
CM is not related to OF error. The constant profile of fig.3.7(d) indicates that the
CM −EE distribution is uniform and, thus, EE can take any value regardless of CM.
The case shown in fig.3.7(e) is even worse. It has a behavior opposite to the expected
one as large CM values have an unbounded error.
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Figure 3.7: Representative examples of different SDP, ranged from best to worst
capabilities for error bounding. Left column shows to the scatter plots (CM vs EE).
Vertical red lines correspond to the percentiles 0.25, 0.5, 0.75 and horizontal red line
indicates the EEmax = 1. Right column shows the respective SDP.
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3.3 Descriptive Scores

To properly bound OF error, the profile of descriptive plots should be monotonically
decreasing and in fact, non monotonically decreasing profiles arise in the presence of
risk points. Figure 3.8 shows the different profiles sorted in decreasing capabilities for
error bounding. Plots in first column show the best profile and plots in last column
the worst one. The first row shows CM-EE scatter plots for a single frame with the
percentiles {0.25, 0.5, 0.75} and EEmax = 1 in solid and dashed red lines respectively,
and the second row shows the corresponding descriptive plot. We label the descriptive
plot bounding capabilities with 3, 2, 1, 0,−1, being 3 best and −1 worst, according to
the three following conditions: proportion of decreasing points, range of decrease and
CM percentile decreasing points. The mentioned conditions and a Descriptive Plot
(DP) classification are illustrated in fig. 3.8 and can be formulated as follows:

Profile
(a) Decreasing (b) Concave (c) Convex (d) Uniform (e) Increasing
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DPLab 3 2 1 0 -1

Cond1 1 1 1 1 0
Cond2 1 1 1 0 -
Cond3 3 2 1 - -

Figure 3.8: Illustrative examples of different descriptive plots, ranged from best
(left) to worst (right) capabilities for error bounding: CM-EE scatter plots in 1st
row, descriptive plot curve in 2nd row and its categorization in the last row.

• Proportion of descriptive plots decreasing points. For descriptive plots
increasing profiles, large CM values have unbounded error. This is the worst
situation, opposite to the expected behavior (see figure 3.8(e)), and, thus, de-
scriptive plots should be assigned label -1. Descriptive plots increasing pro-
files are detected by means of the sign of the descriptive plot first derivative,
which should be negative in a large enough number of prctCM points. Let
XDP (prctCM ) be the sign function of the descriptive plot first derivative:

XDP (prctCM ) =

{
1 if DP ′(prctCM ) ≤ 0
0 otherwise

(3.12)
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which is 1 at points where the profile is decreasing and 0 otherwise. We consider
that the plot has a non-increasing profile if the proportion of points having a
positive XDP :

qDP =

∑
prctCM

XDP (prctCM )

|prctCM |

is above a given tolerance q1:

Cond1 =

{
1 if qXDP

≥ q1

0 if qXDP
< q1

(3.13)

Note that 1 − q1 is the maximum percentage of pixels which error cannot be
bounded by CM and it is application dependant. In case Cond1 = 0, the profile
is considered increasing and it is assigned the worst label equal to -1. Figure
3.9 (a) illustrates the computation of the proportion qXDP

with DP decreasing
intervals highlighted in red.

• Descriptive plot range of decrease. Curves with uniform profiles (like the
one shown in figure 3.8(d)) indicate that CM −EE distribution is uniform and
thus, EE can take any value regardless of CM. Such cases are assigned a label
0 and are detected evaluating if the descriptive plot decrease range:

RngDP := DPmax −DPmin

is above a given percentage, q2, of the plot maximum value,

DPmax := maxprctCM
(ρ(prctCM ))

and thus, the second condition is defined as:

Cond2 =

{
1 if RngDP ≥ q2DPmax
0 if RngDP < q2DPmax

(3.14)

Like q1 in the first condition, the decreasing proportion q2 depends on the de-
cision support system requirements. Figure 3.9 (b) illustrates the computation
of the range condition (3.14).

• Location of descriptive plot decreasing points. We observe that a con-
fidence measure is able to completely bound OF error if a descriptive plot has
a strictly decreasing profile and reaches the zero value for some prctCM , like
the profile shown in figure 3.8(a). In such case, pixels belonging to the upper
percentile [prctCM , 1] have no risk at all, so its error is bounded. Plots shown
in figures 3.8(b) and (c) come from the most usual CM behaviors. In the first
case (figure 3.8(b)), there is a group of pixels with unbounded errors in the first
CM percentiles but for higher percentiles, the error is completely under control.
In the second case (figure 3.8(c)), there is a small quantity of points where the
error is never bounded by CM values. This introduces an increasing profile at
the end of descriptive plot graphics.
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Therefore, the descriptive plot label is 3, 2 or 1 according to the prctCM value
which the plot begins to be increasing. Let mCM be such point defined as:

mCM = min{prctCM‖DP ′ > 0}

and consider a partition of the interval [0, 1] given by I3 = [0, q33), I2 = [q33, q32)
and I1 = [q32, 1] (application dependant as before). Figure 3.9 (c) illustrates
the computation of this final label according to a partition given by the dashed
vertical lines.

The final plot label is given by:

DPLab =

 i mCM ∈ Ii , Cond2 = Cond1 = 1
0 Cond2 = 0 , Cond1 = 1
−1 otherwise

(3.15)

(a) Cond1 (b) Cond2 (c) Cond3

Figure 3.9: Graphical representation of the conditions Cond1, Cond2 and Cond3.

3.4 Experimental Settings

The goal of these experiments is to validate the analysis of confidence measure capa-
bilities and also the descriptive plots and scores presented in this chapter as tools for
assessing the quality of a given CM for bounding OF error. The following experiments
have been carried out:

1. Analysis of confidence measures and descriptive plots capabilities.
This experiment has two purposes, analyze the confidence measures capabilities
depending on the optical flow error source, and to analyze which descriptive
plot can assess better the scatter plot CM-EE.

On one hand, with this experiment we pretend to better understand a confidence
measure behavior and its weak and strong points for bounding OF error. In
particular we will address the local conditions (both in appearance and motion)
that a sequence should fulfill in order that a CM succeeds in bounding the
error of a particular OF method. In order to explore CM bounding capabilities
we locally analyze the behavior of confidence measures for a selected sample of
sequence patches. These patches cover the main appearance and motion features
that are prone to introduce an error in OF and CM expected behaviors. In this
context we have selected patches violating:
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• Data-term OF constrain assumptions. On the one hand, the data
term requires that there is enough information in the image intensity to
compute the apparent 2D motion. On the other hand, large displacements
are against the first order Taylor approximation given by the OF equation.
Therefore, we have selected patches with straight edges and textureless
regions for their intensity appearance as well as, patches of a large dis-
placement.

• Smoothness-term regularity assumptions. Independent motions might
interfere with the regularity assumptions of the smoothness-term. Thus we
have selected regions with motion discontinuities.

On the other hand, we have explored the capabilities of the three plots (EPP,
RAUC and SDP) presented in section 3.2 as tools for assessing CM quality in
terms of OF error bounding power in comparison to Sparsification Plots (SP).
This exploratory analysis will select the descriptive plot having the highest
capability for assessing CM quality. The selected plot will be used for further
experiments.

In order to carry out the experiments we have chosen two representative ex-
amples of confidence measures of each formulation category. The structured
based measure [79], and the energy based [49] for analytic formulations and sta-
tistical [52] and bootstrap [53] for probabilistic approaches. They are denoted
as Ck, Ce, Cs and Cb, respectively (see section 3.1 for more details). Optical
flow has been computed using the Combined Local-Global (CLG) scheme [38]
as implemented in [82] 1. The error score is the End-Point Error (EE) [48],
which measures the difference between computed flow field and ground truth.
Results have been extracted from two benchmark databases (Middelbury [48]
and Sintel [68]) (for more information see Chapter 2). For the first part of
the experiment, we have chosen the sequences RubberWhale and Urban from
Middlebury dataset. For the second part of the experiment we have chosen
the sequences Hydrangea and Grove3 from Middlebury dataset, and cave2 and
sleeping1 sequences from Sintal database.

2. Assessment of the descriptive scores. The second experiment is an ex-
plorative analysis of predictable sequences by means of the descriptive scores
computed for the descriptive plot selected in the first experiment. To assess the
descriptive scores, we have computed the plot label for each sequence frame and
taken the median as summarizing score. The parameters used to compute the
labels are q1 = 0.75, q2 = 0.8 and q33 = 0.25, q32 = 0.75.

In this case, we have used all Sintel sequences and extended the OF methods
in order to cover the following representative and state of the art optical flow
methods2. The classic formulations are: Combined Local-Global (CLG) [38],
which uses a Lucas-Kanade data term [33] with an L2 norm smoothness term
and Horn-Schunck (HS) [35], which uses OF brightness constancy equation
with an L2 norm smoothness term. Meanwhile the state of the art are the

1Available at http://people.csail.mit.edu/celiu/OpticalFlow/
2Using the free source code from [82], [40] and [67].
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Classic-NL (NL) [40], which is a total variation method that uses the L1 norm
to combine OF brightness constancy assumption with the smoothness term and
Correlation method (Corr) [67], which uses an L2 data term based on the
correlation transform of the images with an L1 regularity term based on bilateral
filtering (see Chapter 2 for more information). Concerning confidence measures,
we have considered the same four as before. Therefore, we have 3 × 4 = 12
possible OF-CM pairs.

For all experiments, all CM are assumed to take values in the interval [0, 1], 0
meaning low confidence and 1 high confidence. By definition, this is the range of Ck
and Cs, but, Ce and Cb have to be normalized. This normalization can be a global
one given by CM definition (such as Ce) or an empirical one computed over a sample
(such as Cb). In the case of Ce we have changed its formulation to Ce := 1

Ce+1 to
ensure that Ce values are in the range [0, 1]. In the case of Cb, which always has
positive values, we empirically normalized it by using the training sample, that is,
Cb := Cb

max(Cb) , where max(Cb) is the maximum value of the confidence measure for

all points of the set.

3.5 Results

3.5.1 Analysis of confidence measures and descriptive plots
capabilities

Figures 3.10 and 3.11 show our analysis for RubberWhale and Urban3 sequences.
Each figure shows a sequence frame, 4 representative patches with computed (yellow
arrows) and ground truth (green arrows) flows and CM-EE scatter plots for each
measure. Each patch is of size 7 × 7 and it is centered at the respective illustrative
point shown in the sequence frame and scatter plots.

The patches selected for fig.3.10 contain straight edges with independent motions
(patches 1 and 4), a textureless region with uniform motion (patch 2), and a tex-
tureless region with a slightly irregular motion (patch 3). Figure 3.11 shows a sloped
border with a large displacement of an object moving over a static background (patch
1), textureless regions with uniform motions (patches 2 a 4) and a slightly textured
region with uniform motion (patch 3).

At straight edges (patches 1, 4 in fig.3.10) and textureless regions (patch 2, 3 in
fig.3.10 and 2,4 in fig.3.11) CLG can not solve the data term. The lowest eigenvalue
of the structure tensor matrix is close to zero and this introduces large numerical
instability. We would like to note that in such cases EE can take any value, ranging
within 0.4 and 10 in our sequences. Numerical instability of the data term is properly
detected by low Ck values. The data term is numerically well-conditioned in the case
of sloped borders (patch 1 in fig.3.11) and textured regions (patches 3 in fig.3.10 and
3.11). However, stable numerics do not guarantee accurate OF, given that OF model
assumptions are also decisive for its accuracy. This is the case of patch 1 in fig.3.11,
which presents a high error due to the high displacement magnitude and, thus, Ck can
not properly bound EE. The bounding capabilities of Cb are more related to model
assumptions and, thus, it properly bounds EE at patches presenting independent
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moving objects (like patches 1, 4 in fig.3.10 and patch 1 in fig.3.11). However, its
capabilities for error bounding decrease for patches with uniform motion, given that
Cb is always high, but OF might present a large error for textureless patches (patch 2 in
fig.3.10). The measure based on energy minimization, Ce, is also associated to model
assumptions, given that at pixels which model regularity is not met, the functional
can not be properly minimized. This is the case of patches with independent motions,
like patches 1, 3, 4 in fig.3.10 and patch 1 in fig.3.11. Like Cb, Ce fails in the case
of textureless regions with uniform motion shown in patch 2 in fig.3.10 and patch 3
in fig.3.11. Finally, the weakest measure for error bounding purposes is Cs, which
scatters present the most uniform distribution of all. Such uniform distribution of EE
across Cs values indicates that there is not a clear relation between the measure and
the error. In fact, it only succeeds in bounding EE for patch 3 in fig.3.10 and patch 1
in fig.3.11 that are the ones having a flow field not regular around the central point.
For the remaining patches, OF is regular enough although this does not necessarily
imply it is accurate.

The second part of this experiment analyzes the capabilities of the different de-
scriptive plots to detect when a confidence measure can not bound the OF error.
Figures 3.12, 3.13, 3.15 and 3.14 show some example over benchmark sequences (Hy-
drangea, Grove1, Sleeping1 and Cave2 respectively). For each sequence, we show the
four CM−EE scatter plots with the different space partitions (depicted in black) that
allow the computation of the descriptive plot. We also show the different descriptive
plots for all CM. Note that in general, when a confidence measure shows a decreas-
ing profile, the descriptive plot curve represents a good profile too. However when
the scatter plot does not show a decreasing profile, then different descriptive plots
show different rankings for different confidence measures. For instance, in fig.3.15,
Cb scatters show a decreasing profile, and the different descriptive plots reflect such
tendency. On the other hand, Ck does not always have a decreasing profile and such
profile is not properly reflected by the RAUC curve.

Also note that the bounding artifacts detected in Ce profile in fig.3.14 are not
properly reflected by SP plots. On the contrary, Cb decreasing profiles do not always
produce a best decreasing SP (fig.3.14). This is due to only considering 1-dimensional
statistics over EE and not over the bimodal distribution given by (CM,EE). By
considering bimodal statistics, EPP provides a better ordering of CM quality for
error bounding. In particular, it detects the groups of unpredictable pixels introducing
horizontal scatters in CM-EE plots, like the ones present in Cb and Ce scatter plots
in fig.3.14.

Figure 3.13 shows that the Ck scatter plot has a good EPP and RAUC profiles,
similar to Ce and Cs, however, when you look at the scatter plots, the Ck performance
is much worse than Ce and Ck. The bad profile of the scatter plot is better reflected
by SDP and SP. Another example is shown in fig.3.12, where SDP reflects better
capabilities to assess the performance of Ce than SP.

3.5.2 Assessment of the descriptive scores

A first analysis of the predictability of the sequences is summarized in table 3.2. For
each sequence and each pair OF-CM, a label ranging from -1 to 3 is assigned to the
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Illustrative Points

Scatter Plots

Figure 3.10: RubberWhale sequence.

profiles of the trained upper bound. The labels are assigned following the opposite
order of the plots shown in figure 3.7 from the worst profile (-1) to the best one (3).
To make the table more readable, we have assigned a different color to each label.

When we categorize the capabilities of the CM through the SDP profile, we can
find three types of CM performances on sequences: too good performance, too bad
performance (labelled by -1) and predictable ones.

Too good performance: Current optical flow methods are able to accurately
solve the flow field of sequences fulfilling the method theoretical requirements (bright-
ness constancy, small displacements, etc). There are some sequences that met such
requirements and thus they had not only a good profile for all pairs OF-CM but also
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Illustrative Points

Scatter Plots

Figure 3.11: Urban3 sequence.

a very low upper bound of the EE (alley2, sleeping1, and sleeping2). Since the error
of the optical flow for those sequences is below 1 pixel for almost all pixels, the risk
is almost 0 for all percentiles. Thus, the SDP does not provide additional informa-
tion, and further prediction is not necessary. Such sequences are also labelled with
3. Figure 3.16(a) shows an illustrative example of this kind of sequence. On the left
column, the scatter plot shows that most of points are below EEmax. This means
that the error is subpixel and thus, for each percentile, the risk is almost 0, as we can
observe in the plot on the right hand side of the figure.

Too bad performance: Different OF methods require specific assumptions in
order to properly compute the flow field. In case sequences do not fulfil such require-
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SDP Predictive Value

alley1 0 0 0 -1 3 -1 3 0 3 3 3 3 -1 1 -1 1
alley2 0 0 0 0 -1 3 -1 -1 -1 3 -1 -1 3 -1 -1 3
ambush4 × × × × × × × × × × × × × × × ×
ambush5 0 0 × × × × × × × × × 0 × × × ×
ambush7 × × 0 -1 × × -1 2 × × 3 3 × × 1 0
bamboo1 0 0 0 -1 3 3 3 -1 3 3 3 -1 -1 -1 -1 1
bamboo2 -1 -1 -1 -1 3 -1 3 0 3 3 3 3 -1 1 1 1
bandage1 -1 0 -1 -1 3 3 -1 2 3 3 3 3 -1 1 -1 1
bandage2 0 0 0 -1 3 3 -1 -1 3 3 3 3 -1 1 -1 1
cave2 × × × × × × × × × × × × × × × ×
cave4 0 0 0 -1 -1 × -1 -1 -1 3 0 -1 -1 0 -1 0
market2 -1 -1 -1 -1 3 -1 3 0 -1 3 3 3 -1 1 -1 1
market5 -1 -1 -1 × × × × × 0 0 0 0 × 0 0 ×
market6 × × × × × × × × × × × × × × × ×
mountain1 -1 -1 -1 -1 2 3 -1 -1 2 -1 -1 -1 1 0 -1 0
shaman2 0 0 0 -1 3 3 -1 -1 0 3 3 -1 -1 -1 3 0
shaman3 0 -1 0 -1 -1 3 -1 -1 -1 3 0 0 -1 0 -1 0
sleeping1 3 3 3 -1 3 3 3 -1 3 3 3 -1 3 3 3 3
sleeping2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
temple2 -1 -1 -1 -1 -1 × × -1 -1 -1 -1 -1 -1 -1 -1 -1
temple3 0 0 × × -1 -1 × × -1 0 × × × -1 × ×

Table 3.2

Profile labels for each pair OF-CM.

ments, errors are arbitrarily large. In this case, none of the CMs is able to relate to
the error. This is the case of the sequences which scored −1 for all CM and an OF
methods, shown in figure 3.2. For instance, CLG is based on Lucas-Kanade, thus,
its performance drops in case images do not have enough texture or corners, like
ambush5, cave4 or shaman3. In the case of NL, the use of an approximation to the
L1 norm (which can not be derived near zero) disturbs results in case images have
large areas of uniform intensity, like mountain1 and shaman3. Besides, fast motion
introduces sudden changes in appearance and new objects and occlusions abruptly
appear into the scene (market5) or blurs too much the image (cave2), making any OF
method fail. As well, in the case of market5, illumination changes violate brightness
constancy constrain. Whether optical flow assumptions are met should be checked
a priori using image processing. Figure 3.16(b) shows an illustrative example of this
kind of sequence. The scatter plot on the left hand side of the figure, we can observe
that most of the points are above EEmax, and thus the risk is high (shown on the
right hand side of the figure). As well, and most important, the density of the scatter
plot is accumulates on the upper percentiles (marked in vertical red lines), resulting
an increasing risk profile, which is not able to be predicted.
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Predictable sequences: The remaining sequences obtain different scores along
the different pairs OF-CM, and thus, there exists at least one pair OF-CM that can
predict the risk. This set of sequences are the candidates to carry on the assessment
of error bound at sequence level. Figure 3.16(c) shows an illustrative example of this
kind of sequence. The scatter plot on the left hand side shows the density of points is
accumulated on the lower percentiles (marked in red vertical lines), and most of them
are below 0.25 percentile. This results in a decreasing profile of the curve, shown on
the right hand side of the figure, and thus, the risk can be predicted.

We can observe that different measures have different performances according to
methods or sequences. For instance, measure Ck scores 0 for all methods because it is
too restrictive and discards all pixels for this database. The confidence measure Cb is
successful when the data-term of the flow algorithm can resolve optical flow by itself
(without the regularity term), this holds for L2 approaches (and specially for CLG
scheme) but not for total variation methods such as NL. The measure Ce is adequate
if model assumptions are met, thus, it is the best performer for our selected data-
set because non-predictable frames coincide with frames failing to met the optical
flow algorithm requirements. Finally, Cs depends more on the nature of optical flow
and achieves better results in the presence of patches presenting regular motion. It
follows performs worse for HS and NL, which are the OF methods that include more
variability in sequences.

Thus, with the information given by the scores table, we consider as a proper
OF-CM pairs to bound the OF error the following pairs: CLG-Cb, CLG-Ce, HS-Cb,
HS-Ce, NL-Ce. The score table only provides a descriptive measure of the performance
of a pair OF-CM. In order to choose a real OF-CM pair able to bound the OF error
we require more sophisticated techniques such as ANOVA analysis, as developed in
Chapter 4.

3.6 Conclusions

Confidence estimation is of prime importance for decision support systems and quite
a lot of research has been recently done. Yet, there is little consensus about the
meaning of some usual terms and the best way to assess the quality of a confidence
measure. In this chapter, we have introduced a setting for categorizing confidence
measures in terms of accuracy and capabilities for error bound prediction. We have
introduced three graphical ways of exploring whether CM can provide a bound on
OF error and a numeric categorization of each plot profile.

The presented tools have been validated on the Middlebury [48] and Sintel database
[68], by four confidence measures with different grounds. The following interesting
conclusions concerning quality plots as validation tools and capabilities of current CM
for OF error bounding are derived from our experiment.

First of all, we have analyzed local capabilities of confidence measures for bounding
the different types of OF error. We have also evaluated if current tools for confidence
measure quality assessment agree with confidence measures bounding capabilities.
Concerning the capabilities of existing CMs for OF error bounding, the following
interesting points are derived from our analysis:
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Energy (Ce) confidence measure detects when the functional is not properly
minimized, and this usually happens at borders. In addition, this confidence measure
only detects points where the computation does not correspond with the model as-
sumptions, and thus it detects points that satisfy the model assumptions as reliable
although they may not coincide with the ground truth.

Statistical (Cs) confidence measure detects if the computed flow is not coherent,
and, thus, points having an OF either not regular or random. This implies that a
constant OF would always be reliable, regardless of its agreement with ground truth.

Bootstrap (Cb) confidence measure detects if the model is unstable, that is, when
small perturbations in the input data produce high variations in the output. Thus,
it detects points that do not satisfy model assumptions like edges of object following
different motions, and textureless regions.

Image Local Structure (Ck) confidence measure detects those pixels the image
structure is not appropriate to solve optical flow, like textureless regions, and straight
lines. However, textured regions may contain a lot of noise disturbing computations
and, also, failing of OF assumptions is not considered.

We conclude that Cs is not the best suited for bounding OF error. Besides,
Ck, Cb, Ce are able to bound a different kind of errors and, in fact, they provide
complementary bounds.

Concerning existing methods for the evaluation of confidence measures, EPP bet-
ter reflect non-decreasing profiles between CM and OF error and, thus, it is better
suited for detecting CM unable to bound errors for a significant amount of cases.
RAUC curves provide an improvement in the sense that the shown curve can assess
the risk for each curve considered, however the space partition to obtain the plot is
not invariant to transformations. Finally the SDP plot, has a good partition of the
space that allows a good transformation scatter plot - descriptive plot. In addition,
the SDP curve shows the risk at each CM percentile, which transforms the SDP curve
into a useful tool able to properly assess a threshold on CM to assess error bound for
OF. Thus, in the following chapters we will use only the SDP curve.

This chapter constitutes a first step in the use of statistical and probabilistic
tools for the evaluation of the capabilities of CM for predicting OF error in decision
support systems. In the following chapter (4) we present a solid methodology based
on advanced statistical techniques to assess the capabilities of the confidence measures
for error bounding.
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HYDRANGEA
Error Prediction Plot RAUC

Sparse Density Plot Sparsification Plot

Figure 3.12: Descriptive plots for Hydrangea sequence.
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GROVE3
Error Prediction Plot RAUC

Sparse Density Plot Sparsification Plot

Figure 3.13: Descriptive plots for Grove3 sequence.
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CAVE2
Error Prediction Plot RAUC

Sparse Density Plot Sparsification Plot

Figure 3.14: Descriptive plots for Cave2 sequence.
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SLEEPING1
Error Prediction Plot RAUC

Sparse Density Plot Sparsification Plot

Figure 3.15: Descriptive plots for Sleeping1 sequence.
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(a) Example of too good sequence.

(b) Example of too bad sequence.

(c) Example of predictable sequence.

Figure 3.16: SDP profiles for different kind of sequences: prediction not neces-
sary (a), non-predictable (b) and predictable (c). Left column shows to the scatter
plots (CM vs EE). Vertical red lines correspond to the percentiles 0.25, 0.5, 0.75 and
horizontal red line indicates the EEmax = 1. Right column shows the respective
SDP.
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Chapter 4

Statistical Framework for
Comparison of Confidence Measure
Predictive Value

In order to analyze the performance of different pairs OF-CM over a sequence, for
every two consecutive frames, we compute the SDP curve. Thus, we have a sample
of SDP curves and we can average them to obtain a curve, that we denote as SDP.
This curve can provide information about the general performance of the OF-CM
pair. However, this curve is not enough to decide which pair OF-CM performs better,
and this is because we do not have information about:

• Performance variability: we want to know how much do the results vary de-
pending on the query, and also how significant is the difference between the
performances of the different pairs OF-CM.

• Effect of factors of interest: we wonder which is the impact of a certain factor
on the performance (sequences, optical flow methods, confidence measures).

• Generalization of the results: we need to know if a pair OF-CM can perform
similarly in different conditions, in this case with sequences with different fea-
tures.

In order to analyze deeply the performance of the different pairs OF-CM we use
the statistical tools presented in chapter 2: confidence intervals, hypothesis tests,
student’s t-test and ANOVA. In our particular case, the factor is the combination
of optical flow methods and the confidence measures, thus, the groups are the OF-
CM pairs, and the quantitative response is a numerical score that evaluates if the
confidence measure is capable of bounding the optical flow error. The objective of
this test is to find significant differences among the pairs OF-CM and, in affirmative
case to select the best parameter settings, that is, the best pair OF-CM that is able
to bound the optical flow error by means of a multicomparison test. In the case of
two-way ANOVA test, we consider two factors, which are sequences (FS) and OF-
CM pairs (FP ). The response variable is the same as for the one-way ANOVA test, a

55
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numerical score that evaluates if the confidence measure is capable of bounding the
optical flow error.

4.1 Statistical Framework Definition

In order to use a given CM in a decision support system, one should be able to provide
a threshold on CM values that discards pixels prone to have high EE with a risk below
the maximum risk allowed by the system. Such thresholds on CM values can be
computed by means of a training set of frames representative enough of the decision
support system sequences. We define a curve (SDP) that provides a descriptive
profile of SDP curves sampled across frames presenting similar appearance, dynamic
conditions and resolution. For a given CM percentile prctCM , let us consider its risk
for a frame sampling of size NFr taken across a sequence type:

ρi = (ρi)
NFr
i=1 := (ρi(prctCM ))NFr

i=1

For each such percentile, let us consider the one-sided confidence interval [83] for the
sample mean of the risk across the different frames ρi of a sequence. Provided that
NFr is large enough, this interval can be computed at confidence level 1− α from ρi
sample mean, µprctCM

, and variance, σprctCM
, as:

[0, µprctCM
+ tNFr−1

1−α σprctCM
] = [0,ΥprctCM

] (4.1)

for tNFr−1
1−α the value of a T-Student distribution with NFr − 1 degrees of freedom

having a cumulative probability equal to 1− α [83].
The above punctual upper bound ΥprctCM

taken across a fixed number of CM
percentiles, provides a confidence curve that statistically describes SDP profiles across
application sequence frames:

SDP := SDP(prctCM ) = (prctCM ,ΥprctCM
)

The curve SDP provides an upper bound (see Section 4.2) for the error risk of new
incoming sequences with conditions similar to the ones of the sample frames used to
compute (4.1), provided that SDP variability across such a frame sample is as low as
possible [84]. In this context, a most relevant quality feature of confidence measures
would be a stable behavior of SDP across different sequences.

Therefore, the capability of a pair OF-CM for risk bounding should follow a two-
stage cascade process. First SDP predictive value should be assessed and, then,
for those OF-CM pairs with the highest predictive value, the quality of the bound
provided by SDP should be determined.

In order to detect significant differences across several OF-CM pairs we use Anal-
ysis of Variance (ANOVA) [85] since it is a powerful statistical tool for detecting
differences in performance across methodologies, as well as the impact of different
factors or assumptions. We can apply ANOVA in case our data consists of one or
several categorical explanatory variables (called factors) and a quantitative response
of the variable. The variability analysis is defined as soon as the ANOVA quantitative
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score and the different factors and methods are determined. Training data (individu-
als) are grouped according to such factors and differences among quantitative response
group mean are computed. ANOVA provides a statistical way to decide if such dif-
ferences are significant enough for a given confidence level α. In case of having more
than one factor, ANOVA also detects any interaction across the different factors that
might distort the analysis of results separately for each factor. If interaction across
factors is significant, then the multiple ANOVA has to be re-designed as one factor
ANOVA combining all factor groups into a single one. The ANOVA design (variable,
individuals and factors) for each quality stage is defined as follows:

4.1.1 SDP Predictive Value

The curve SDP provides an effective bound for new cases if SDP variability across
sequences is low. Figure 4.1 shows an illustrative example of the curve SDP computed
over different samples of SDP curves. The SDP curves are depicted in red and the
SDP one in black and crosses. Small variability indicates stable behavior of a pair
OF-CM across different sequences or frames. In this case, the statistical rule (4.1)
used to compute SDP guarantees a reliable upper bound of the error in the absence
of ground truth for similar sequences with a confidence 1− α (as illustrated in figure
4.1(a)). Otherwise, the model is not suitable for predicting sequences and frames
not belonging to the ones used to compute SDP (as illustrated in figure 4.1(b)).
Therefore, selecting those OF −CM pairs that have SDP not presenting a significant
variability is a first mandatory check for a further confident use. Significance in SDP

(a) (b)

Figure 4.1: SDP (black line) predictive value for a sample of SDP curves (red) with
small variability, (a), and with large and random variability, (b).

variability is checked using ANOVA as follows. Given a sampling of CM percentiles
prctjCM = j·h

Nprct
, being h the sampling step and Nprct the number of percentiles, the

variability of its SDP is approximated by the unbiased sample estimator:

σiSDP =
1

Nprct − 1

Nprct∑
j=1

(
ρi(prct

j
CM )−Υj

prctCM

)2

(4.2)

where i and j correspond to the frame and the percentile, respectively. We denote
as σSDP the global variable depending on SDP that has the values of σiSDP for all
frames of a given sequence. In this context, the pair OF-CM best suited for a given
application should be the one with the lowest σSDP for all application sequences.
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Under the above considerations, ANOVA should explore the impact, if any, of
sequence appearance and motion characteristics. Therefore, a 2-way ANOVA with
factors defined by OF-CM pairs and sequences of the database are used to detect any
interactions. This is a mandatory step if sequences are presumed to be heterogeneous
(like Middlebury [48] or Sintel [68] benchmark databases). For each SDP, a sampling
of σSDP given by the NFr frames used to compute eq.(4.1) defines the individuals for
each ANOVA factor group. If there is no significant interaction between OF-CM and
sequence type, a 1-way ANOVA with OF-CM as factor and taking σSDP percentile
sampling for all sequences as individuals serves to select those OF-CM pairs best suited
for the application. In case of interaction, a 1-way ANOVA with the combined factor
(OF-CM)-Seq taken over σSDP percentile sampling should be applied to determine
which sequences have homogeneous features for OF-CM performance.

This ANOVA selects those OF-CM pairs that have a significantly large variability
across SDP profiles and, thus, such pairs should be dropped from the further analysis.

4.1.2 SDP Bound Quality

For those pairs OF-CM and sequences such that SDP variability is significantly low,
SDP is a good descriptor of the relation between OF error and CM. Two aspects de-
termine the quality of SDP bound: a good correlation with OF error and a minimum
risk for the bounded pixels.

The correlation to OF error is directly assessed by the SDP label assigned using
the conditions given in Section 4.1.1. Given that categorization of SDP curve profiles
with labels {2, 1} strongly depends on each application’s specific requirements, all
SDP having a label greater than 0 will be considered to have a suitable decreasing
profile.

Like in subsection 4.1.1, the amount of risk is assessed by defining a variable
depending on SDP that can be compared across sequences and OF-CM pairs using
ANOVA. In this case, the ANOVA variable, noted by ΥSDP , is the average of SDP
values computed across a sampling of prctCM :

Υi
SDP :=

1

Nprct

∑
j

ρi(prctjCM ) (4.3)

for prctjCM = j·h
Nprct

and the subscript i denoting each individual frame of a given

sequence. In this case, a 1-way ANOVA is applied having as factors either the se-
lected OF-CM pairs or the combined factor (OF-CM)-Seq. The choice will depend on
whether the 2-way ANOVA carried out in the first quality stage detects interactions
or not.

The OF-CM best suited for the application will be the pair having the best pre-
dictive power, an SDP label above 0 and the least significant risk detected in this
second stage ANOVA.
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4.2 SDP Applicability

The SDP curve learned at confidence 1 − α can be used to assess OF for similar
sequences without ground truth in two aspects:

1. Confident Pixel Discarding. The inverse of the curve SDP allows selecting
for each new incoming frame the set of pixels such that their risk is under a
given maximum risk allowed by the application with confidence 1− α.

2. Confident Risk Assessment. The curve SDP itself assesses the expected
risk for a given percentage of image pixels with confidence 1 − α. This allows
the computation of outliers over the minimum number of pixels required for
further computations.

4.2.1 Confident Pixel Discarding

Let ρMx be a maximum risk required in our decision support system and consider
the intersection of the horizontal line ρ ≡ ρMx with the curve SDP.Such intersection
point is given by a CM percentile and corresponds to the inverse of the function
ΥprctCM

evaluated at ρMx, Υ−1
prctCM

(ρMx). We would like to note that the percentile

Υ−1
prctCM

(ρMx) should be large enough to allow further computations in the decision
support system.

The percentile Υ−1
prctCM

(ρMx) provides the actual threshold over CM values by
means of CM distribution function, FCM (cm) := P (CM ≥ cm). To be precise, the
inverse:

F−1(Υ−1
prctCM

(ρMx)) (4.4)

is the threshold on CM values such that 100(1− ρMx)% of the image pixels with CM
over (4.4) have an error under EEmax in 100(1 − α)% of the frames. In case CM
had a different scale for each frame, the threshold (4.4) would be computed for each
new frame using the inverse of the empirical distribution computed over its pixels.
Otherwise, (4.4) would be common to any frame and could be directly computed from
the distribution function of the training set.

At this point, it is worth explaining the meaning of the confidence α used to com-
pute SDP from an application point of view. By the properties of confidence intervals,
we have that the probability that a frame has a risk above ρMx is approximately the
confidence α used to compute SDP. This implies that for a new sequence the pro-
portion of failing frames is approximately α. Therefore, in practice, the number of
failing frames depends on the number of sequence frames as well as on the confidence
α and can be computed using confidence intervals. We will call such expected number
of failing frames Empirical Confidence (EC).

By definition, the failing cases follow a binomial distribution of probability p = α,
B(n, p) = B(nFr, α), for nFr the number of sequence frames:

P (B(nFr, α) = k) =
(nFr
k

)
αk(1− α)nFr−k (4.5)

Therefore the number of expected failures [86] can be estimated with confidence 1−α
as the smallest value such that a binomial B(nFr, α) distribution function equals
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1− α:

P (B(nFr, α) ≤ EC) = (4.6)
EC∑
k=1

(nFr
k

)
αk(1− α)nFr−k = 1− α

Such a value is easily computed as the inverse of the binomial distribution function.

4.2.2 Confident Risk Assessment.

The values of the curve SDP return the expected percentage of outliers without
bounded error for each percentage of image pixels selected according to CM per-
centiles. This is useful in case our application requires a minimum amount of pixels
prctMm for a reliable performance of the decision support system. In such case, SDP
value at prctMm:

Υ(prctMm) (4.7)

directly assesses the expected risk with confidence 1− α.
As before, confidence should be interpreted in terms of EC. That is, the number

of frames such that the outliers with an error over EEmax is less than (4.7) is ap-
proximately 100(1−α)% of the total number of frames in the sequence. This number
can be actually computed using the inverse of the distribution function of a binomial
B(nFr, 1− α) as the minimum number such that:

P (B(nFr, 1− α) ≤ EC) = (4.8)
EC∑
k=1

(nFr
k

)
αnFr−kk(1− α)k = 1− α

4.3 Experimental Setup

The goal of our experiments is to show the applicability of the presented framework
for selecting OF-CM pairs able to predict the risk for a given type of sequences. In
order to cover as much methods and sequence features as possible, we have chosen the
Sintel database [68], four representative OF methods, and four confidence measures.
These settings give 4× 4 = 16 possible OF-CM pairs.

Database. In order to get consistent statistics, sequences should have ground
truth and more than 30 frames (30 frames for training and the rest for testing).
The Sintel database [68] fulfils this condition so we have selected 17 sequences with
ground truth and at least 40 frames. Besides, it contains sequences with large motion,
specular reflection, motion blur, defocus blur and atmospheric effects, so that it covers
a complete battery of sequence features.

Optical flow algorithms. Our framework has been applied to classic and state
of the art representative OF methods 1. The classic formulations are:

1Using the free source code from [82], [40] and [67].
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alley1 0.03 0.05 0.03 0.02 0.00 0.01 0.01 0.02 0.00 0.01 0.00 0.01 0.01 0.02 0.01 0.01
alley2 0.02 0.05 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.00 0.03 0.01 0.01 0.01 0.00
ambush2 − − − − − − − − − − − − − − − −
ambush4 × × × × × × × × × × × × × × × ×
ambush5 × × × × × × × × × × × × × × × ×
ambush6 − − − − − − − − − − − − − − − −
ambush7 × × 0.00 × × × × 0.01 × × 0.00 0.01 × × 0.00 0.02
bamboo1 0.05 0.07 0.05 0.05 0.01 0.01 0.01 0.06 0.01 0.01 0.01 0.04 0.02 0.02 0.02 0.02
bamboo2 0.06 0.08 0.05 0.05 0.00 0.01 0.01 0.03 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01
bandage1 0.11 0.16 0.07 0.06 0.02 0.04 0.06 0.05 0.04 0.04 0.01 0.03 0.04 0.05 0.02 0.03
bandage2 0.07 0.11 0.07 0.05 0.02 0.03 0.04 0.04 0.02 0.02 0.02 0.03 0.03 0.05 0.03 0.02
cave2 × × × × × × × × × × × × × × × ×
cave4 × × 0.17 × × × × × 0.22 0.07 0.07 0.19 0.20 0.11 0.08 0.08
market2 0.09 0.11 0.07 0.09 0.01 0.03 0.01 0.03 0.02 0.01 0.01 0.02 0.02 0.03 0.01 0.02
market5 × × × × × × × × × × 0.34 × × × 0.33 ×
market6 × × × × × × × × × × × × × × × ×
mountain1 0.11 0.43 0.11 0.20 0.06 0.19 0.13 0.22 0.06 0.22 0.09 0.15 0.05 0.35 0.09 0.15
shaman2 0.03 0.06 0.04 0.06 0.01 0.02 0.03 0.06 0.02 0.02 0.02 0.05 0.01 0.05 0.02 0.03
shaman3 0.11 0.13 0.05 0.04 × 0.04 0.06 0.05 × 0.03 0.02 0.04 0.08 0.08 0.03 0.03
sleeping1 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
sleeping2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
temple2 0.17 0.23 0.16 0.27 0.11 × × × 0.14 0.07 0.09 0.25 0.13 0.18 0.10 0.23
temple3 0.86 0.88 × × 0.96 0.86 × × × × × × × 0.88 × ×

Table 4.1

SDP bound quality for the Sintel Database.

• Combined Local-Global (CLG) [38], which uses a Lucas-Kanade data term [33]
with an L2 norm smoothness term.

• Horn-Schunck (HS) [35], which uses OF brightness constancy equation with an
L2 norm smoothness term.

while the state of the art are:

• Classic-NL (NL) [40], which is a total variation method that uses the L1 norm
to combine OF brightness constancy assumption with the smoothness term.

• Correlation method (Corr) [67], which uses an L2 data term based on the
correlation transform of the images with an L1 regularity term based on bilateral
filtering.

Confidence Measures. In order to find optimal confidence measures for each
OF method, we have considered four CM with different grounds:
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• Image structure (Ck): From all measures based on image structure [31], we have
selected the condition number of the data-term system defined in [79].

• Energy (Ce): The confidence measure is computed by evaluating the flow field
over the functional, as described in [49].

• Statistical (Cs): It assesses the computed optical flow calculating the local vari-
ability by means of the Mahalanobis distance between the computed vector and
the distribution given by the surrounding ones [87].

• Bootstrap (Cb): It measures OF variability with respect to perturbations in the
model [53].

For the experiments, all CM are assumed to take values in the interval [0, 1], 0 meaning
low confidence and 1 high confidence. On the one hand, Ck and Cs are already in the
range due to their definition. On the other hand, Ce and Cb need to be normalized.
This normalization can be a global one given by CM definition (such as Ce) or an
empirical one computed over a sample (such as Cb).

Experiments. Three experiments are presented. First, the whole framework is
applied to a training set of sequences to select the best suited OF-CM pairs. Second,
the SDP bounds for the selected pairs are applied to a test set of sequences to show
the actual predictive power of the computed bounds. The significance of all tests
and statistics is α = 0.05. Finally, we show an example of the applicability of the
presented framework.

For the first experiment, the ANOVA variables σSDP , ΥSDP have been computed
over the uniform sampling of CM percentile prctjCM = j0.1

Nprct
= {0, 0.1, . . . , 1} and us-

ing 30 random frames for each sequence. The maximum allowed error for computation
of SDP has been set to EEmax = 1.

For the second experiment, we have assessed the actual predictive capabilities of
each OF-CM pair in 2 aspects: prediction power and percentage of discarded pixels.
The ideal situation would be a high prediction power with the lowest percentage of
discarded pixels.

For each OF-CM, we have considered the triplets OF-CM-Seq that according to
the first experiment can be used to bound the error. For each such triplet, we have
used the training curve SDP to compute the threshold on CM given by (4.4) for
a risk ρMx = 0.05. The confidence interval for the percentile Υ−1

prctCM
(ρMx) used

to compute (4.4) provides the average percentage of discarded pixels. To compute
prediction power, pixels on the test frames have been discarded according to (4.4) and
the number of test frames with a risk over ρMx = 0.05, which we call Real Empirical
Confidence (REC) has been computed. Under the hypothesis that CM can bound OF
error, the expected REC should be less than EC given by (4.6). Since the number of
test frames is nFr = 17 and the confidence is α = 0.05, the number of failing frames
given by (4.6) should be less or equal than 3. A left tailed t-test for an average REC
under 3 serves to check the prediction power of each OF-CM pair. A p − val under
α = 0.05 rejects the null hypothesis and ensures with 1− α = 0.95 of confidence that
the OF-CM pair has an average risk under ρMx = 0.05.

The last experiment shows an example of the points that we discard after applying
the presented framework.
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4.4 Results

4.4.1 Exp1: Framework Training.

The 2-way ANOVA over OF-CM and sequence factors gives significance for each factor
(with p− val < 10−16) as well as interaction (p− val < 10−16). Interaction is mainly
attributed to the heterogeneity of the Sintel database, which contains sequences with
several artifacts (blurring, illumination changes, large displacements, etc.) that in-
fluences the error bounding properties of the considered OF-CM pairs. Therefore,
the remaining 1-way ANOVA is applied to the combined factor OF-CM-Seq, which
results in a 4× 4× 17 = 272 groups to be analyzed.

Table 4.1 shows the bound quality assessment for those OF-CM-Seq triplets that
had the least significant variability across sequence frames. We show the average risk
for each triplet with those ones having the least significant risk according to ANOVA
highlighted in blue. Crosses indicate that the triplet had a significant large variability
and, thus, OF errors can not be predicted.

There are four sequences (cave2, ambush4, ambush5 and market6) that could not
be predicted by any pair due to a significantly large variability across SDP curves.
Such variability mainly arises in case frames have highly heterogeneous motion and
intensity patterns producing good and bad SDP profiles. For instance, sequence
ambush4 starts with small displacements, and suddenly from frame 3 to 4 a huge
object appears on the image and the sequence has large displacements and blurring
from there until frame 13 approximately, where sequence again has sharpen objects
and smaller displacements. Such abrupt changes across the sequence split SDP profiles
into two main groups, which introduce a large variability.

4.4.2 Exp2: Framework Testing.

For those triplets that have been selected as good candidates for error bounding
(highlighted in blue in table 4.1), we have checked their actual predictive power on
the test frames. Results for each OF − CM pair are reported in Table 4.2. We
report the CI interval for REC (Real Empirical Confidence) taken over all candidates,
labelled CIREC , the p-value, labelled pREC , of a left-tailed t-test with null hypothesis
checking wether the average REC is above 3 and the CI for the average percentage of
discarded pixels, labelled CIΥ−1

prctCM

.

The measure Cs is, by far, the worst suited for OF bounding as, with pREC > 0.7,
it has a risk above the expected 3 for all OF methods. In fact, the CI for the average
REC predicts an increase in risk up to 8 frames at least, which represents almost half
(47%) of the test frames. The measure Ck has the highest prediction power, with 3
OF methods (HS, NL and Corr) achieving the expected REC in average. However this
is at the cost of the highest pixel discarding rate, with intervals CIΥ−1

prctCM

indicating

that all image pixels could be removed. This fact, invalidates Ck for most decision
support system, since usually a further use of OF within the application computations
is required. The measure Cb also achieves an average REC under 3 for 3 OF methods
(CLG,HS and Corr). Although, it has a percentage of discarded pixels acceptable
only for the classic CLG and HS. Finally, the measure Ce presents a good pixel
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CIREC pREC CIΥ−1
prctCM

CLG-Ck (0, 4.0) 0.17 (50 %, 103 %)
HS-Ck (0, 2.8) 0.02 (55 %, 109 %)
NL-Ck (.3, 2.0) 7e-6 ( 57 %, 103 %)
Corr-Ck (.2, 2.0) 3e-5 (41 %, 104 %)
CLG-Cb (.5, 2.9) 0.02 (12 %, 56 %)
HS-Cb ( .1, 1.6) 1e-4 (20 %, 67 %)
NL-Cb (.2, 4.6) 0.3 (18 %, 75 %)
Corr-Cb (1, 2.9) 0.02 (45 %, 102 %)
CLG-Ce ( .6,5.5) 0.5 ( 13 %,60 %)
HS-Ce ( .7, 4.0) 0.2 (17 %, 53 %)
NL-Ce ( 1, 4.8) 0.6 ( 17 %, 58 %)
Corr-Ce ( 0,1.3) 3e-6 (26 %, 72 %)
CLG-Cs (.6, 7.6) 0.7 (18 %, 61 %)
HS-Cs (3, 12) 1.0 (35 %, 86 %)
NL-Cs (2, 8.9) 0.9 ( 22 %, 64 %)
Corr-Cs (2 ,8.8) 0.9 ( 25 %, 71 %)

Table 4.2

SDP bound testing. Statistical Summary

discarding rate for all OF methods, but only achieves the expected REC for Corr.
The capabilities of CM for OF error bounding are summarized in Table4.3.

The results shown in table 4.3, indicate that measures based on either local image
structure [31] or local motion regularity [87] are not the best suited for predicting OF
error risk, at least for the considered OF methods. Energy-based [49] and bootstrap
[53] measures are better candidates, as far as, sequences match some assumptions. In
particular, the bootstrap is suitable for CLG methods, while the energy-based could
predict error risk for a wider range of variational methods. In this context, the best
candidates to predict error risk are CLG-Cb, HS-Ce and NL-Ce.

It is worth noticing that none of the measures was well posed for bounding Corr
error. This might be attributed to a high specialized formulation. Our framework
assesses wether a generalist algorithm makes significant mistakes for a given appli-
cation. The behavior of generalist algorithms, such as classic ones CLG, HS, can
be easily predicted using a single measure but are prone to give less accurate results
(as algorithm rankings like the ones found in http://sintel.is.tue.mpg.de/ indicate).
In case no general algorithm could be selected, the approach proposed in [54] could
be used to select, for each pixel, the specialist algorithm best suited for the pixel
particular appearance and temporal features.

This selects the pair Corr-Ce as the best suited with an average proportion of
frames with unbounded error within CIREC = (−0.5, 1.3), 90% of sequences achieving
the expected risk and at most 72% of discarded pixels.
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Prediction Discarding
CLG-Ck × ×
HS-Ck X ×
NL-Ck X ×
Corr-Ck X ×
CLG-Cb X X
HS-Cb X X
NL-Cb × X
Corr-Cb X ×
CLG-Ce × X
HS-Ce × X
NL-Ce × X
Corr-Ce X X
CLG-Cs × X
HS-Cs × ×
NL-Cs × X
Corr-Cs × X

Table 4.3

Capabilities of current CMs for OF error bounding

4.4.3 Exp 3: Applicability of the presented framework

Figure 4.2 shows an example of the points that we discard after applying the presented
framework. On the first row, two consecutive frames of the sequence. On the second
row, depicted in yellow, the points discarded by the application using a risk of 0.05
and, in green, remaining points with error larger than EEmax. Figure 4.2(a) shows
a screen shot of sequence predictable using the pair NL-Ce. Figure 4.2(b) shows a
screen shot of sequence (cave2) which could not be predicted by any pair. For each
case, we also report the percentage of discarded pixels (PR) and the percentage of
pixels that could not be bounded (PU). For the predictable case, PU is under the 5%
of allowed risk, while PU significantly increases to almost 50% for the unpredictable
one.

4.5 Conclusions

This chapter provides the definition of a novel framework based in the use of statistical
and probabilistic tools for the evaluation of the capabilities of CM for predicting OF
error in decision support systems. As any other statistical approach, our methodology
can be applied as far as the training sequences are representative enough of the the
dynamical appearance of application frames. This might require either a large data
set capturing the variability of frames appearance or controlled acquisition conditions.
The latter are frequently achieved in protocols used in medical imaging or the vision
systems of industrial applications.
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(a) NL-Ce-shaman2. Fr 42-43. PR=3.5% PU=0.9%

(b) CLG-Ce-cave2. Fr 17-18. PR=31.0% PU=46.9%

Figure 4.2: Pixel discarding for a predictable (a) and non predictable (b) case.
On top, the two consecutive frames used for the visualization are shown (Fr frames
number). On bottom, the discarded pixels are depicted in yellow (PR percentage of
discarded pixels). From remaining pixels, pixels with error larger than EEmax = 1
are depicted in green (PU percentage of unbounded pixels from the remaining ones).



Chapter 5

Application to medical imaging

In this chapter we apply the presented framework to improve clinical decision support
systems. First of all, we use the presented framework in a manually annotated dataset
of bronchoscopy guidance to improve the navigation inside the bronchial tree. Second,
we analyze the impact of different image acquisition artifacts in cardiac diagnose
systems, such as noise and decay. In order to do so we use a synthetic dataset
reflecting those artifacts and ANOVA.

5.1 Confident Tracking of Anatomical Structures in
Video-Bronchoscopy

In order to illustrate the applicability of the framework presented in Chapter 4, we
use SDP to discard pixels prone to present large OF error in the context of tracking
tracheal structures in videobronchoscopy explorations. Bronchoscopy is an endoscopy
procedure used to visualize the inside of the airways for diagnostic and therapeutic
purposes. The bronchoscope is inserted into the airways and allows the physician to
examine the patient’s airways for foreign bodies, bleeding, tumors or inflammation.

Bronchoscopists have to navigate through the bronchial tree until the lesion is
reached. This task is not trivial due to the fact that lesions might be located at a
very distant bronchial tree ramifications. Thus, physicians require a navigation sys-
tem which help them to reach such lesions by providing 3D measures of the structures
that appear in the scene. This navigation performed efficiently would provide a more
efficient performance of the physician during the intervention, it would potentially
help the doctor to locate the endoscope inside an specific organ and to monitor the
patient’s lesion. Nowadays this is not performed automatically, leading to an addi-
tional cost associated to the repetition of the interventions. Navigation systems based
on computer vision techniques try to find corresponding points between two consecu-
tive frames by using feature points or detecting anatomical structures among others.
As an example, a navigation system tracks anatomical structures such as tracheal
rings to find correspondences to estimate inter-frames movements. These correspon-
dences can be found by computing optical flow techniques on tracheal rings in order

67
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to detect their movement. Unfortunately, there are always errors in the optical flow
estimation. Such errors can ruin the tracking of the rings and the movement estima-
tion. In order to detect values of optical flow with high errors (outliers), confidence
measures and statistical tools explained in Chapter 4. Points marked as outliers by
our statistical tools are removed from the tracking process and then, the movement
estimation improves drastically the results of the tracheal ring tracking. Even the er-
ror between iterations of a system is small, since the navigation problem is solved as
a tracking problem, the error is accumulative and it becomes higher at each iteration.
Hence the importance of removing correspondence with high errors is critical in any
navigation system.

Nowadays, camera pose estimation is an active topic of research and it is useful
for autonomous driving systems, object recognition systems or augmented reality
applications. A common approach is to use key-points such as SIFT or SURF in
order to estimate the inter-frame movement. Thus, SIFT descriptors are computed
in both images and are used to find correspondences or matches by searching the
most similar descriptors between the images. These matches can be already used to
estimate the fundamental matrix (F) which is a matrix that allows to retrieve camera
poses. The problem is that this estimation process is very sensitive to noise. For that
reason, we need to remove outliers in order to increase the precision of the estimation.
The most accepted method to remove outliers from a set of data is RANdom SAmple
Consensus [88] (RANSAC). RANSAC can deal with a significant number of outliers
present in the set of matches. The basic idea of the algorithm is to compute the
fundamental matrix F using seven randomly selected matches (least number of points
that the estimation method needs to solve the problem). The next step of RANSAC
is to verify epipolar constraints with the estimated Fundamental matrix for all the
matches. If the euclidean distance between points and their corresponding epipolar
lines is smaller than a threshold the match is consider as an inlier. This process is
repeated a sufficient number of iteration N. At the end, the fundamental matrix than
produced more inliers is the fundamental returned by the method. The camera pose
can be extracted from the result matrix of RANSAC.

The SDP curve has been learned for Ce and Corr using 30 frames sampled from 5
representative sequences courtesy from Hospital de Bellvitge (for more information see
Chapter 2). The maximum error for computing the sample SDPi, i = 1, . . . , NFr =
30, is set, as before, to EEmax = 1 and the confidence for SDP is also αSDP = 0.05.
In this case, errors are computed as the distance of the tracked structures to manually
traced tracheal rings.

The learned curve SDP together with the training curves are shown in fig.5.1.
The variability across frames is a bit higher than for synthetic sequences, but low
enough with and average σSDP ∈ []. The increase in risk for high CM percentiles
observed in two cases is due to isolated pixels and is quite often in real applications
mainly due to a suboptimal definition of the manual ground truth. Still, the average
AUCSDP is within [0.0696, 0.1457] with confidence 1−α = 0.95 and compares to the
best figures obtained for the Sintel predictable cases (see Table4.1).

For this application, SDP is used to evaluate if the expected risk after removing
a maximum number of points is acceptable for camera pose estimation. To ensure
that enough pixels are kept, we set prctMm = 40% to compute the expected risk
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Figure 5.1: Confident Tracking in videobronchoscopy, SDP (in black) computed
from 30 training SDPi curves (in red).

Figure 5.2: Confident Tracking in videobronchoscopy. Comparison between stan-
dard tracking and confident tracking discarding outliers.

Υ(prctMm) = Υ(40) = 0.2778. This implies that approximately at most 1/10 of the
selected pixels might be outliers, which, according to the literature, is good enough
for SLAM reconstruction and camera pose estimation.

To validate SDP risk bounds, we have conducted 2 experiments (summarized in
Table 5.1) on 4 sequences different from the training ones and having between 17 and
40 frames each (nFr in Table 5.1).

On one hand, we have computed (like the experiment reported in Chapter 4)
the actual REC to check that is under the expected EC given by (4.8). For each
sequence, we have also computed the confidence interval for the average risk, CIΥ ,
and checked it is under µ(Υ) = 0.2778 using a one tailed t-test with null hypothesis
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nFr EC REC CIΥ pΥ CIEET−EECT
pEET−EECT

Seq1 40 35 35 (−∞, 0.1896] 4.0e-009 [0.63, 1.44] 1.3373e-008
Seq2 30 26 28 (−∞, 0.1664] 2.1e-011 [0.35, 0.55] 5.1135e-013
Seq3 30 26 30 (−∞, 0.1452] 2.9e-013 [0.03, 0.07] 2.8234e-007
Seq4 17 14 16 (−∞, 0.0601] 8.9e-014 [0.00, 0.09] 0.0283

Table 5.1

Tracking of Anatomical Structures in VideoBronchoscopy. Statistical

Summary

H0 : µ(Υ) > 0.2778 at α = 0.05. We note that p-values, labelled pΥ in Table
5.1, should be under α = 0.05 to reject H0 and ensure that µ(Υ) is under the risk
predicted by SDP. The numbers reported in Table 5.1, show that the frame risk is
under SDP prediction for all sequences (pΥ ≤ e− 9) and REC ≥ EC. This validates
our framework as predictive tool.

On the other hand, we have computed the tracking error across sequence frames
obtained using all points and only the confident ones. Confident point tracking is
computed by selecting, for each frame, points on the current tracked ring having
CM above the percentile prctMm = 40%. Such set is updated using the computed
OF and their positions are used to interpolate the positions of the non-confident
points to restore a whole ring. Tracking errors are given by distances to manually
annotated rings and significant differences between errors for standard (labelled EET )
and confident tracking (labelled EECT ) are assessed using a one-tailed t-test for
paired data at α = 0.05. We set the null hypothesis to H0 : µ(EET −EECT ) < 0, so
that rejecting the test (pEET−EECT

< 0.05) shows that confident tracking has smaller
average errors than the standard tracking. Again, for all sequences the null hypothesis
is rejected and confident intervals for µ(EET − EECT ) show that differences can be
large for some sequences (Seq1).

Figure 5.2 shows an example of the benefits of using confident measures to discard
potential outliers in tracheal ring tracking. The most-left image shows a ring manually
traced (dashed blue line) on an initial sequence frame, top images its standard tracking
(in blue lines) and bottom ones tracking discarding non-confident points (in green
lines). After 40 frames, accumulation OF errors progressively deviates the initial
curve from the target ring, which corresponds to an image valley. Differences between
both tracked curves can be better observed in the most right close-up image.

5.1.1 Conclusions

After applying the statistical framework presented in Chapter 4, we have improved
the results in the computation of the tracheal rings of bronchoscopy images.
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5.2 Cardiac Diagnose Systems. ANOVA assessment
of influential factors

Changes in cardiac deformation patterns are correlated with cardiac pathologies. De-
formation can be extracted from tagging Magnetic Resonance Imaging (tMRI) using
Optical Flow (OF) techniques. For applications of OF in a clinical setting it is im-
portant to assess to what extent the performance of a particular OF method is stable
across different clinical acquisition artifacts. This section presents a statistical val-
idation framework, based on ANOVA, to assess the motion and appearance factors
that have the largest influence on OF accuracy drop. In order to validate the applica-
tion of the framework, we use a database of simulated tMRI data including the most
common artifacts of MRI and test three different OF methods, including HARP.

The OF method best suited for a clinical application should be the one presenting
the most stable performance across the artifacts arising in that particular clinical
setting. In the context of cardiac deformation tracking, clinical settings prone to affect
OF performance include, among others, variability in image acquisition conditions,
radiological noise distorting image appearance and distorted motion patterns due to
cardiac pathologies.

As we have seen in previous chapters, ANOVA’s [89] are powerful statistical tools
for detecting differences in performance across methodologies, as well as the impact
of different factors or assumptions. Thus, we propose to use Analysis of Variance
(ANOVA) to compare the performance of multiple OF methods and explore the im-
pact of specific clinical conditions. In particular, we propose to use a 2-way ANOVA
with factors given by the OF method (denoted OF) and the clinical source of error
(denoted CSE) whose influence on OF we want to assess. The ANOVA individuals
should be defined as a random sampling of consecutive frames taken from a repre-
sentative set of sequences. The quantitative ANOVA variable should be a measure of
OF performance computed for each of the sampled frames. Such a measure could be
the pixel-based OF error summarized for the whole frame or the error in a clinical
functional score calculated from OF motion (such as strain or rotation).

The desired result of the 2-ANOVA test would be a significance in the methods
factor, possibly a significance across CSE and, most important, no significant inter-
action. In case of significant interaction (p − val < α), a 1-way ANOVA with the
combined OF-CSE factor should be used to detect the sources of bias. Otherwise, the
significance of each ANOVA factor can be correctly interpreted using its associated
p-value. In case of significant differences (p− val < α), we can compare group factors
using a multiple comparison test with Tukey correction [90] to detect those groups
that are significantly worse. In this paper we have considered 3 different types of
CSE:

• CSE1: Acquisition impact. The typical tMRI acquisition can produce either
two sequences with complementary stripes or a single sequence combining both
magnetic fields into a single grid pattern. The two patterns define the CSE
groups.

• CSE2: Radiological noise impact. The influence of the radiological noise
should be assessed by considering sequences with decreasing SNR. The different
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SNRS define the ANOVA groups of the CSE factor.

• CSE3: Motion impact. Finally, several kinds of pathologies should be con-
sidered in order to assess if OF methods are biased due to regularity assumptions
or a priori models of motion. The different motion patterns define CSE factor
groups.

As a first step towards a full validation of CSE influence using clinical data, we use
a database [71] simulating the above conditions using the model of cardiac deformation
and SPAMM acquisition (for more information see Chapter 2).

In this study, we choose motion estimation errors given by OF End-point-Error
(EE) [48] to define the ANOVA variable. Given that EE is computed for each pixel,
the ANOVA variable is the EE average: µ(EE) := 1

N

∑
EEi, with EEi the error

for each pixel and N the number of pixels. In order to account for non-normality in
the data, µ(EE) was transformed to the logarithmic scale [89]. ANOVA tests were
performed at a significance level α = 0.05.

Concerning ANOVA individuals and groups, we defined them using the dataset
described in Chapter 2. The CSE factor groups are given as:

• CSE1. We used the sequences without noise and decay (SNR100) and with the
full 2D motion grouped according to their tag pattern, which denoted as grid
and striped. The ANOVA individuals were taken from a random sampling of 7
frames of sequences at basal, mid and apical levels. This ANOVA should assess
the impact of the grid pattern under the best possible setting and it selects the
pattern for the remaining experiments.

• CSE2. The impact of radiological noise was assessed by taking sequences with-
out noise and without decay, denoted by SNR100, and with decay and the
constant Rician noise added, denoted by SNR25 − D. As before, the full 2D
motion sequences with grid pattern at basal, mid and apical levels randomly
sampled define the ANOVA individuals.

• CSE3. Finally, the impact of motion bias in OF assumptions is checked by
considering 2D motion, noted by 2DF , and its decoupling into rotation, denoted
R, and contraction, denoted C, as CSE groups. Sequences were considered with
Rician noise and decay to account for conditions as realistic as possible. This
ANOVA should detect the impact of regularity assumptions in OF computation.

The OF factor groups are three methods working on the frequency domain and
with different regularity assumptions for a fair assessment of CSE3:

• Full HPF (HPF ). Implementation of the algorithm described by Garcia et
al. in [39]. The data term is computed using the phase images of each tagging
pattern and is combined with the smoothness term using variable weights given
by the amplitudes of the Gabor filter responses.

• Constant HPF (HPFC). Adaptation of [39] with constant weights set to 0.5.

• HARP (HARP ). In-house implementation of the algorithm described by Os-
man et al. in [64].



5.2. Cardiac Diagnose Systems 73

CSE1 CSE2 CSE3

p−OF p− CSE p− int p−OF p− CSE p− int p−OF p− CSE p− int

� 10−16 0.239 0.657 � 10−16 0.058 0.251 � 10−16 0.852 0.874

Table 5.2

ANOVA results.

In order to avoid introducing a bias in the results, we computed harmonic phase
images for all of the input images, as described in [64]. These images were then used
as input for all OF methods.

Table 5.2 reports the 2-ANOVA p-values for the CSE experiments: p-OF for the
OF factors, p-CSE for CSE factors, and p-int for interaction. For all experiments,
there is no evidence of significant interaction (p−int > 0.05), but there are significant
differences in OF performance (p − OF � 10−16). It follows that, OF performance
ranking is independent of the considered CSE conditions and the most suitable OF
method can be selected. Concerning the CSE factor there are no significant differences
(p − CSE > 0.05), so that all OF methods are robust against the clinical settings
considered. However, it is worth noticing that the presence of noise causes p-values
to drop so a further decrease in SNR could affect OF performance.

In order to further explore group differences and, in the particular case of OF
significant differences, discard the worse methods, we have applied the pairwise com-
parison with Tukey correction shown in Figure 5.3. For each factor, Figure 5.3 shows
group mean differences represented as horizontal lines centred at the mean (in log-
arithmic scale) and vertically distributed according to the factor group. Group dif-
ferences being in logarithmic scale, the more negative mean values are, the smaller
the OF error is. We observe that, for all CSE conditions, the best OF method is
HPF and the worst one HARP . Regarding the impact of CSE conditions, although
there is not enough evidence of differences, plots reveal some interesting tendencies.
First, we observed that considering two sequences with stripe lines has smaller error
in OF computations. Second, OF methods performance is better without noise and
decay, as expected. Finally, there is no difference across different motions, so that OF
motion assumptions do not bias computations.

5.2.1 Conclusions

We presented a validation framework that uses ANOVA to detect significant differ-
ences in OF performance according to different clinical factors prone to have large
influence in OF accuracy. Our framework has been applied to quantitatively test the
performance of three OF methods working on the frequency domain (HARP , HPF
and HPFC).

On the one hand, the presented experiments show that a method (HPF ) that
applies the regularity term only at areas where phase is not reliable performs better
than the one using a global regularity constraint (HPFC). Experiments also show
the need for the regularity term to reduce HARP sensitivity to noise.

On the other hand, experiments show that there is no bias due to CSE. First of
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CSE1. Acquisition Impact CSE2. Appearance Impact CSE3. Motion Impact

Figure 5.3: Pairwise comparison with Tukey correction. Results on the EE group
mean shown in logarithmic scale in the horizontal axis.

all, using as input image stripes or a grid pattern does not affect OF performance
significantly. Regarding the SNR25 − D versus SNR100 sequences, despite there
are no significant differences, we observe that OF performance is better for clean
sequences. Finally, motion assumptions do not bias computations. Summarizing, the
chosen OF methods are robust against CSE artifacts.



Chapter 6

Final Remarks and Future Work

Final remarks

For a good quality and reliability of the results of applications that use optical flow as
an input, it is of prime importance the definition of a framework that is able to assess
the optical flow performance. This thesis analyzes the error sources of optical flow
techniques as well as the capabilities of confidence measures to bound such errors. In
addition it defines qualitative scores that assess the performance of the CM for error
bounding. Those qualitative scores are the previous steps to the final goal, which
is the definition of a robust framework able to asses the best pair OF-CM that is
able bound the optical flow error. Finally, it shows the applicability of the presented
framework in medical imaging.

• Optical flow error sources. Some of the errors produced by the optical flow
can be controlled or improved by the framework definition, but other errors are
inherent to the optical flow computation, and thus, we can not get rid of them.
Consequently it is of prime importance to be able to assess the reliability of the
computed flow fields.

• Confidence Measure Capabilites. State of the art confidence measures are
able to asses different types of optical flow error sources, thus we need to analyze
each confidence measure performance against an specific optical flow method in
order to determine its real performance for error bounding.

• Descriptive plots. Descriptive plots are an important tool that should be
able to assess the confidence measure capabilities for error bounding. That is,
they should determine for each CM value which is the risk, or the percentage of
points that have large errors. Thus, the presented SDP plot is the best suited
tool to assess CM bounding capabilities.

• Scores for descriptive plots. The presented scores assess the profile of a
descriptive plot, they provide a first insight in the evaluation of the capabilities
of a CM to properly bound the OF error. Such scores are a required tool to
the definition of the presented statistical framework to properly perform the
ANOVA tests.

75
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• Statistical framework definition. This work constitutes a first new effort
in the use of statistical tools for the evaluation of the capabilities of CM for
predicting OF error in decision support systems. Unlike machine learning ap-
proaches that require a high and large training data set capturing the variability
of frames, our methodology can be applied to a reduced number of training sam-
ples and, still, provide results generalizable enough. This is a main advantage
of using parametric statistical models, which are able to detect significant dif-
ferences from a very reduced set of samples. In this context, our methodology
is a powerful tool to perform a first exploratory analysis to discard unfeasible
parameter settings in methods or algorithms ill-posed under specific application
settings.

• Framework applicability. As any other statistical approach, our methodol-
ogy can be applied as far as the training sequences are representative enough of
the dynamical appearance and resolution of the application frames. This might
require either a data set capturing the variability of frames appearance or con-
trolled acquisition conditions. The latter are frequently achieved in protocols
used in medical imaging or the vision systems of industrial applications.

The potential of the presented statistical analysis for medical application has
been shown in a preliminary study for the design of an optical flow method
better suited for the computation of cardiac clinical scores of diagnostic value
from Magnetic Resonance sequences. In addition we applied it to improve the
results on the navigation inside the bronchial tree on bronchoscopy by means of
improving the bronchial rings computation.

Future work

It is worth noticing that the presented framework is an statistical tool flexible enough
to accommodate different applications other than optical flow, that also require to
assess errors in computations. To do so, the only requirement is to have a quality that
might correlate to errors. In such case, our methodology could be used to analyze its
actual capabilities to bound the error and select the most appropriate threshold.

In this context, our methodology could be applied, for instance, to sparse feature
tracking for camera pose estimation. Camera point of view given by the fundamental
matrix is estimated from correspondent points, estimated using SIFT or SURF, in
two consecutive frames. A main concern is the sensitivity to noise, which introduces
outliers in matches. The most accepted method to remove outliers from a set of data
is RANdom SAmple Consensus [88] (RANSAC). The basic idea is to compute the
fundamental matrix from randomly selected matches and use it to project epipolar
lines from one frame onto the next one. The Euclidean distance between matched
points and their corresponding epipolar lines is used to detect inliers and, thus, it is
a measure of the confidence in matched points. On-going work is the application of
the presented framework to assess the relation of such distance to the fundamental
matrix error and set a threshold ensuring enough inliers in the context of tracheal
ring tracking.

In addition, the presented methodology could be used in a constructive way, either
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to design a novel confidence measure which outperforms the ones considered here, or
to better compare and understand the failures and successes of individual optical flow
methods to design approaches that are more reliable for a decision support system.

In the following points we present some future work related with the improvement
and other possibilities on the definition of the presented framework.

• Improvement and definition of CM. Most of existing CM are designed
to assess OF model assumptions (motion and data term). Sequences where
model assumptions are not fulfilled can not be used to predict error bound for
that particular OF-CM pair. However, this does not invalidate our confidence
framework since it could be used to statistically assess the capabilities of new
designed CM for detecting any failure to satisfy data term assumptions. Ful-
filment of model assumptions could be detected from appearance and temporal
features [54] in order to define new CM according to such characteristics [91].
Or alternatively, sequences could be corrected to satisfy some of the general
constrains (such as illumination constancy). Then, by applying the presented
framework, we could assess the benefits of the correction, and also, to improve
the error bound curves.

• Impact of statistical model assumptions in prediction capabilities. The
main assumptions of our statistical analysis is that data should be unimodal and
normally distributed. Concerning the first assumption, unimodality is violated
for sequences containing very abrupt changes along the sequence, converting
it like two different sequences, the curves will be grouped in two sets, so that
the variability will be too large. In the second case, the population confidence
interval used to compute SDP assumes that data are normally distributed. This
holds for most cases. An alternative could be to use empirical percentiles to get
more stable bounds. However, empirical descriptive statistics require a larger
sample set (n > 30) in order to compute high percentiles comparable to the
confidence 1− α.

• Alternative statistical tools. Given the descriptive nature of the different
strategies proposed, several complementary statistical indexes could be used. In
this sense, in order to describe the variability of the EE values given a OF-CM,
a Lorentz curve provides an interesting summary. Thus, the area under this
curve (Gini’s index) would be a measure of the inequalities between EE values
(actually these tools are commonly used in the macro-economic field to describe
income inequalities in a given country). In the same way, a global measure
of the relationship between EE values and CM could be obtained by means of
correlation, either non-parametric or parametric.

• Dependency across EEmax. Since the approach used depends on the choice
of EEmax, an initial evaluation of the relationship between CM values and risk
could be performed. The ROC curve is a representation of the false positive rate
obtained for different false negative rates. The area under its curve summarizes
the accuracy of the CM to predict large errors for a given EEmax. Thus,
one could represent AUC(EEmax) vs EEmax to check the accuracy stability of
different EEmax choices.
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