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Abstract

As any iterative technique, it is a necessary condition a stop criterion for terminating
Evolutionary Algorithms (EA). In the case of optimization methods, the algorithm
should stop at the time it has reached a steady state so it can not improve results
anymore. Assessing the reliability of termination conditions for evolutionary algo-
rithms is of prime importance. A wrong or weak stop criterion can negatively affect
both the computational effort and the final result.

In this Thesis, we introduce a statistical framework for assessing whether a termi-
nation condition is able to stop Evolutionary Algorithms (EA) at its steady state. In
one hand a numeric approximation to steady states to detect the point in which EA
population has lost its diversity has been presented for EA termination. This approx-
imation has been applied to different EA paradigms based on diversity and a selection
of functions covering the properties most relevant for EA convergence. Experiments
show that our condition works regardless of the search space dimension and function
landscape and Differential Evolution (DE) arises as the best paradigm. On the other
hand, we use a regression model in order to determine the requirements ensuring that
a measure derived from EA evolving population is related to the distance to the op-
timum in x-space. Our theoretical framework is analyzed across several benchmark
test functions and two standard termination criteria based on function improvement
in f-space and EA population x-space distribution for the Differential Evolution (DE)
paradigm. Results validate our statistical framework as a powerful tool for determin-
ing the capability of a measure for terminating EA and select the x-space distribution
as the best-suited for accurately stopping DE in real-world applications.
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Chapter 1

Introduction

There are a large variety of applications that require finding optimal parameters for
the numerical methods involved in their implementation. These optimal parameters
can be usually defined as the minimum of a cost function or energy that mathemati-
cally models a trade off between several quality standards that the application has to
meet. In some cases these standards reduce to finding those parameters settings that
ensure an optimal algorithm performance in terms of (maximum) accuracy and the
cost function can be expressed as a least squares approximation problem. This is the
best case, since least squares approximation yields convex functions which are known
to have a unique solution that can be found using local optimization techniques as
gradient descent. Local optimization techniques find the optimum of a function by
iteratively evolving an initial point along the direction of maximum function decay,
which is usually given by the function gradient. In case that the function has a con-
tinuous derivative, gradient descent algorithms are fast and its convergence to the
closest local minimum is guaranteed. It follows that they are one of the most widely
used high-speed optimization methods.

Unfortunately, the rate of success of local methods much depends on the func-
tion profile, which should be as convex as possible. In case of multimodal functions
presenting multiple local minima, gradient descent success strongly depends on the
proximity of the initial seed to the target optimum. Seed points distant from the
optimum may lead the local method to premature convergence far from the target
minimum. In case the energy is sensitive to experimental noise, premature conver-
gence may occurs even for closest seeds. Another limitation of local methods, is the
need to deal with functions that have a differentiable formulation so that the gradient
can be computed. This condition discards problems requiring simultaneous minimiza-
tion of several energy functions, black-box parameter optimization problems and also
complex cost functions sensitive to noise. Examples of applications requiring opti-
mization of functions bad posed for local methods can be found in areas as different
as image processing and pharmacology.

In the image processing side, a common task in medical diagnosis decision sup-
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Black-Box
Problem
Compromise:
Time /Accuracy

Figure 1.1: Multiobjective Black-Box problem: Efficient registration of medical
multimodal scans

port applications is the multimodal registration of data acquired with different de-
vices. Volume registration consists in finding the spatial (either in 2D for images or
in 3D for volumes) transformation that best matches the anatomy of a given subject
scanned using two different medical image devices as illustrated in figure 1.1. This
figure 1.1 shows 2 brain scans acquired using a standard Magnetic Resonance , MR
(gray intensity images) and a functional MR (colored images). MR scans are used
to capture anatomy, while Functional MR are used to detect areas of unusually high
metabolic activity prone to be tumors. A combination of both modalities increases
Cancer diagnostic yield and it is a common procedure. The spatial transformation
that matches 2 different scans is given as the minimum of an energy functional that
splits into a data term matching the transformed and target medical scans and a reg-
ularity term determining some properties (usually smoothness) of the transformation.
The definition of this kind of energy functionals combining data and regularity terms
arises in other image processing tasks (like motion estimation and image segmenta-
tion) and has two critical issues. First, the choice of the matching metric defining the
data term and second, setting the parameters that define the trade-off between data
and regularity constraints. The best choice from an application point of view should
reach a maximum accuracy in the matching transformation with the minimum com-
putational cost. Such a compromise between accuracy and computational cost can
not be easily formulated in a compact way suitable for local optimization methods.
On one hand, accuracy and time metrics and scales are not comparable and thus,
they should not be combined in a single cost function. Instead they should be rather



minimized simultaneously in a multi-objective approach. On the other hand, the
cost function depends upon the output of a registration algorithm whose definition
also has to be optimized. It follows that the sensible search, off a method achieving
a compromise between accuracy and efficiency is. This is an example of black-box
non-analytic optimization in a multi-objective scheme.
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Figure 1.2: Life-cycle of the parameter estimation in pharmacological modelization
problem.

In the pharmacological side, a major research area is finding the parameters of a
given pharmacological model explaining the response of a pharmacological system to
a given dose of a chemical compound (figure 1.2). This adjustment is usually done by
fitting a model to a experimental data with unknown parameter that should explain
the experimental data.This adjustment is done by minimizing an energy error that is
multimodal. Low multimodality (figure 1.3 on the left) could be handled by gradient
descent using a multiple seed strategy. However, in pharmacological experiments, a
main concern is the sensitivity of the energy function to noise in experimental data
which propagates to the energy response introducing a saw-shape pattern (figure 1.3
on the right). This makes multiple seed gradient descent strategy falls into local
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Figure 1.3: Impact of Experimental noise in the estimation of pharmacological
models parameters.

minima introduced by noise that might be far away from the true global ones. In
such noise multimodal cases, Evolutionary Algorithms (EAs) can contribute to find
optimal initial seeds for further refinement using gradient descent methods.

The above problems could be solved by exhaustive search of the parameter space,
which is computationally unfeasible. This issue has motivated the development of
more effective global exploration techniques taking into account the values of the cost
function. These global techniques are usually inspired in biological mechanism and
are named as Evolutionary Algorithms (EAs).

EAs are a class of stochastic optimization methods that simulate the process of
natural evolution [6]. Unlike gradient descent methods that evolve a single initial
value each time, EAs maintain a population of possible solutions that evolve accord-
ing to bio-inspired simulated rules. This population-based strategy implements a
global approach to multiple minima optimization problems. A gradely definition of
Evolutionary Algorithms taking into account the connection between the essentials
and the applications can be stated as follows:

1. Essential Definition An Evolutionary Algorithm (EA) is an iterative population-
based technique to find (and explore) as well as possible in a given search space
the most fit set of points according to a cost function.

2. Problem Solver When a problem is presented in practically all situations, an
exploration of a set of possible solutions is needed and for each possible solution
its goodness is valuable. This set of possible solutions, when is defined, is the
search space and we are in the first definition.

3. Optimization Technique. From another point of view, as mentioned above,

Evolutionary Algorithms can be viewed as a optimization technique if a func-
tions is given.



In the literature several possible definitions of Evolutionary Algorithms can be
found [57]. Concepts related to EA could be: population-based optimization tech-
nique, computer intelligence, soft computing, machine learning technique, heuristic al-
gorithms, and so on. Concepts and terminology are imprecise and context-dependent.
A possible complete and compact definition could be the following. Evolutionary Al-
gorithms (EAs) are a stochastic, population-based and an iterative process to explore
a search space defined by a set of points to find a good zone determined by a function of
its goodness simulating the process of natural evolution. The numeric implementation
of EAs maintain a population of possible solutions that iteratively evolve according
to rules of selection and other natural evolution inspired operators, such as recombi-
nation and mutation. One of the main reasons for the wide used range of EAs is its
simplicity for handling complex problems by only determining the following points:
codification of the space of possible solutions, rules for conducting the evolution of the
initial population, the cost function to be optimized and a criterion to stop evolution.
A main advantage over other optimization techniques is that EA admit search spaces
of discrete, continuous and qualitative elements.

Codification for representing the search space of possible solutions. A
codification is a mapping from the space of possible solutions (whose bio-inspired
name is phenotype) to a space of individuals in the EA process (genotype). A main
advantage over other search (optimization) techniques is that, in general terms, EA
can deal with practically all kinds of candidate solutions if a good codification is
found. Among possible representations we can find real-valued vectors, permutations,
bit representation, trees and a lot of different and creative possibilities. In real-valued
optimization cases this mapping is the identity function because possible solutions
as well as representation into the EA process are real-valued vectors plus, in some
advanced cases, some added parameters if EA paradigm needs them to control the
search process as in the case of Covariance Matrix Adaptation Evolutionary Strategies
[45].

Rules for conducting the evolution of the initial population. Such rules
are implemented by bio-inspired operators (selection, recombination and mutation)
that conduct the evolution of the possible solutions to better zones of the search
space. These operators have a strong dependency on the codification of the search
space because they need to be applied over the represented individuals. This simple
mechanism allow easy parallelization of the algorithm.

Cost function to be optimized. This cost function assigns the goodness of each
solution and is the main criterion for selecting the individuals that survive across EA
generations. EAs don’t need information about derivatives like gradient-descent meth-
ods. In fact, there are no restrictions in the cost function, which could be anything that
can be evaluated on the search space elements. This is a main advantage over other
optimization technique and allows EA to be suitable for optimizing complex func-
tions such as multimodal, multi-objective, constrained, and specially non-analytical
functions, including black-box functions. By their ability to optimize several func-
tions, EAs have been successfully applied to a wide range of real life problems, such
as parameter estimation [42], text recognition [47] or image processing [11], among
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others.

A criterion to stop evolution. As any iterative technique, a stop criterion for
terminating EA numeric implementation is mandatory. In the case of optimization
methods, the algorithm should stop at the time it has reached a steady state so it can
not improve results anymore.

1.1 Goal and Contributions

The goal of this Thesis is assessing the quality of existing stopping conditions for
terminating EA at its steady state. The diagram shown in figure 1.4 sketches the main
points that should be checked in order to assess the quality of a stopping condition
in this context. We contribute in the following aspects (also sketched in figure 1.4) to
each quality stage.

Quality Stages

z;n:z:ijnationto Q Actual Q Actual EA EA Accuracy if
" Steady-State Steady-State Convergence

Steady-State

N
Contributions T T

Definitionof a Substitution Regression
Termination Conditions Framework
Condition

Figure 1.4: Flowchart of the main points that should be checked in order to assess
the quality of a stopping condition for terminating EA at its steady state.

1. Definition of a Termination Condition

1. EA population steady state in terms of Cauchy convergence of se-
quences of real numbers EA convergence is a complex and unless partial
unsolved problem. In general, EA optimality is difficult to assess. Under our
point of view, the algorithm should stop at the time it has reached a steady
state so it can not improve results anymore. In these scenario, a stop criterion
should ensure EA has reached a steady state. Defining steady states is not
straightforward for EA paradigms. That definition implies taking into account
the stochastic aspect of the EA process and the diversity of the population.
We provide a formulation of EA steady state inspired in the concept of Cauchy
sequences. The state of the EA process across the iterations is kept in a random
variable quantity that captures the diversity of the evolution. This quantity is
posed in terms of real number sequences and its stabilization (EA population
steady state) in terms of Cauchy convergence.
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2. Numeric approximation to stabilization of sequences of real numbers
We give a numerical formula to determine the moment a quantity has reached
its steady state. The formula (called range formula) is given in terms of the
quantity range of variability across iterations and approximates the continuous
definition of Cauchy sequences. That formula depends on two parameters that
can be adjusted according to the accuracy of the approximation to Cauchy
steady state. We provide a statistical way in terms of a hypothesis test based
on proportions to set the parameter optimal values ensuring a given accuracy
of the approximation. In this manner, we ensure that such accuracy will be
kept for new cases within the class of functions and applications chose to do the
inference test.

2. Evaluation Mechanism In this contribution we propose a regression framework
for determining whether a measure derived from EA evolving population statistically
behaves like its accuracy.

1. Substitution Conditions We provide three conditions that evaluate in several
aspects (from more theoretical to more empirical) the capability of a quantity @
to act as a measure of EA accuracy. First, a regression model is used to relate @
values to EA accuracy given by the distance to the function optimum. Second,
the analysis of the regression coefficients provides a first theoretical condition
for substitution (strong condition). Then, such condition is relaxed to a weak
condition given in terms of Cauchy sequences. Finally, we also propose an
empirical substitution criterium that can be computed using the approximation
formula.

2. Regression framework for prediction of the actual EA Accuracy form
the alternative Quantity. Based on regression framework modelling our
alternative quantity (@) over the distance to the (known) function minimum
in x-space (Ref) we can specify a confidence interval for the response variable
(Ref) from the alternative quantity @ values.

Aside, we also contribute to the selection of the best suited quantity for terminat-
ing EA in black-box problems in the following aspects:

3. Evaluation of current criteria We have applied our evaluation framework to
representative set of EA paradigms and alternative quantities reported in the lit-
erature. Our experiments on a benchmark set of functions [24] covering the main
landscapes influencing EA convergence [37] select a known paradigm and quantity as
the best suited for solving black-box problems.

4. Application to Pharmacology. The selected EA paradigm and quantity have
been applied to a pharmacological model. The problem is fitting a model to a ex-
perimental data with unknown parameter that should explain the data. Finally, the
solution is conformed hybridizing our termination condition to stop the EA algorithm
with a non-linear regression step for precisely find the best solution. Several pub-
lications prove the utility of the framework to solve the pharmacological parameter
estimation problem.
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The rest of the Thesis is organized as follows. In Chapter 2 we briefly review
concepts that we use through the thesis as statistical tools like linear regression or
hypothesis testing, existing evolutionary algorithms and stop criteria. Chapter 3
introduces the first contribution of this thesis. The Chapter presents termination
conditions based on steady states covering a formulation of steady states inspired in
the concept of Cauchy sequences and how to detect when this phenomenon occurs
in an alternative measure that correlates the true EA accuracy with a empirical and
statistical two parameter framework. Two experiments are carried out for distinct
EA paradigms and cost functions. The first experiment validates our framework
and the second one explores the suitable parameters and measures concluding that
distribution-based measures and DE paradigm are the best choice for termination
condition. This sort of measures are used in the rest of the Thesis. Chapter 4
describes a evaluation mechanism based on linear regression that offers a statistical
method to evaluate when an EA process measure behaves like the true distance to
the optimum and then, this distance can be substituted by the EA diversity measure.
After the contributions presentation, in Chapter 5 our framework is applied in a
pharmacological parameter setting problem. In this problem, a 9-parameter dose-
response model is adjusted to a experimental data. Descend gradient techniques fail
in the optimization task and our approximation shows a good solution with significant,
valuable and pharmacological-sense parameters. This particular application is part of
a collaborative project with a pharmacological group and published. Finally, in the
last Chapter conclusions and future work are presented.



Chapter 2

Technical Review

As we said in Chapter 1 during this work we use a set of tools needed to define our
framework and to get results in each of our contributions. Firstly, a summary of EA’s
definition and principles are presented. In the same manner, a revision of the stop
criteria for EA’s are visited. Finally, the common statistical tools Linear Regression
Analysis and Hypothesis Testing are listed.

2.1 Existing Evolutionary Algorithms

Classical Evolutionary Algorithms and more recent EAs could be a first classification
for the existing Evolutionary Algorithms. Evolutionary Computation [6] is a search
technique algorithm based on the principles of biological evolution that may be used to
search for optimal solutions to a problem.In particular, the principle of the ”survival
of the fittest” proposed by Charles Darwin has especially captured for this technique.
As mentioned above, Evolutionary Algorithms simulate evolution. Darwin inspired
used to problem solving originated in 1950s and several references could be found
[57]. For about 15 years different approaches were conducted separately until from
the nineties were considered as the same field called Evolutionary Algorithms. These
different approaches were Genetic Algorithms by John Holland (1975), Evolutionary
Strategies by Ingo Rechenberg and Hans Paul Schwefel, Evolutionary Programming
by Lawrence Fogel and finally about 1990 Genetic Programming.

In a search technique algorithm , a number of possible solutions are available and
the task is to find the best solution possible in a fixed amount of time (optimization
process). For a search space with only a small number of possible solutions, all the
solutions can be examined with exhaustive search. In other cases is possible to use
traditionally techniques (e.g., gradient descent) but derivatives are necessary.

Evolutionary search is usually better than random search and does not suffer
from hill-climbing artifacts like gradient-based search. The key aspect of evolution-
ary search is that it is population-based and simulates the evolution of individual
structures via processes of selection and reproduction

Evolutionary algorithms keep a population of structures that evolve according to
rules of selection and other operators, such as recombination and mutation. Each
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Figure 2.1: Iterative Mechanisms of a generic Evolutionary Algorithm.

individual in the population receives a measure of its fitness in the environment. Se-
lection focuses attention on high fitness individuals and determines which individuals
are chosen for producing offsprings. Recombination and mutation perturb those in-
dividuals, providing general heuristics for exploration. Finally a survival step decides
who survives (among parents and offsprings) to form the new population. This pro-
cess iterate until stop criteria occurs. Figure 2.1 outlines the scheme of a standard
Evolutionary Algorithm (EA).

1. Representation. The first step in defining an EA is to link the "real world”

to the "EA world”, that is, to set up a bridge between the original problem
context and the problem solving space. This first design step is commonly
called representation. The most standard one is an array of bits or a real vectors
representation. Array of other types and complex structures can be used.

. Fitness function. A fitness function is a particular type of objective function

that quantifies the optimality of a solution and, thus, introduces a criterion for
selection of individuals. The fitness function should not only indicate how good
the individual is, but also it should correspond to how close the individual is to
the optimal one.

. Population. The role of the population is to hold possible solutions. Given a

representation, defining a population can be as simple as specifying how many
individuals are (population size). In some sophisticated EA’s a population has
an additional spatial structure, with a distance measure or a neighborhood
relation.
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. Selection operator. The role of selection is to allow the better individuals to be-

come producers of the next generation (offspring creation). Selection is respon-
sible for pushing quality improvements. In EA, selection can be probabilistic
or deterministic. In both cases, high quality individuals are likely to produce
new individuals. Each EA paradigm performs in a different way the selection
operator.

. Variation operators. The role of variation operators is to create new individu-

als from old ones(generate new candidate solutions). In general terms, a good
compromise between exploration and exploitation of the search space is needed.
This task is covered by these operators. The most common are Recombination
and Mutation. Recombination exploits the area defined by the initial popula-
tion, while mutation guarantees that other areas are explored.

Recombination (or crossover) merges information from two parents into one or
more offspring by means of a binary variation operator. By combining two in-
dividuals with different but desirable features, we can produce an offspring that
combines both of those features. There are a lot of recombination operators
depending on EA paradigm. Some paradigms apply recombination probabilis-
tically, that is, with an existing chance of not being performed. After recom-
bination every offspring undergoes mutation. Offspring variables are mutated
by small perturbations (size of the mutation step) with low probability (mu-
tation rate). The representation of the variables (and not the population size)
determines the mutation algorithm parameters. In some cases, the probability
of mutating a variable is inversely proportional to the number of variables (i. e.
representation space dimension), n. A mutation rate of 1/n (only one variable
per individual is mutated) produces good results for a wide variety of test func-
tions [6]. Although the size of the mutation step is usually difficult to choose,
small steps are preferred.

. Survival selection. The role of survivor selection is to determine which individ-

uals among parents and offspring will be allowed in the next generation so that
the population size is constant. This decision is usually deterministic based on
their fitness.

. Initialization. Initialization is kept simple in most EA applications: the initial

population is seeded by randomly generated individuals.

. Termination. Commonly used options for termination condition are: 1.Fixed

number of iterations 2. Fixed number of fitness evaluations. 3.The population
diversity drops under a given threshold(convergence).

The most significant differences from more traditional search and optimization

methods are determined in the definition of the Selection and Mutation stages. Se-
lection deals with the type of cost function, while variation deals with the exploration
and diversity of the search space.

Related to the optimization process EAs could be classified in two main groups:
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1. Single-objective Strategies In this case, the goal of the optimization pro-
cess is to find the optimum (minimum or maximum) of a unique function f
(constrained or unconstrained). The original algorithms of EC as Genetic Algo-
rithms, Evolutionary Strategies and Evolutionary Programming were designed
for this purpose.

2. Multi-objective Strategies When tackling real-world problems, particulary
in some complex fields, the desired optimal configuration to be optimized may
not be expressed in terms of a single objective. In this case we are inter-
ested in optimizing more than one function simultaneously. Regardless EA
paradigms, practically, all of them have a multi-objective adapted version. EAs
have recently become more widely used for their ability to work well with multi-
objective problems.

In this work we will focus on evolutionary strategies for single-objective optimiza-
tion. In particular, the evolutionary strategies we have chosen are Differential Evo-
lution (DE), Particle Swarm Optimization(PSO) and Covariance Matrix Adaptation
Evolutionary Strategy (CMAES).

1. Differential Evolution (DE) is a real parameter encoding evolutionary algo-
rithm for global optimization over continuous spaces [60, 13]. In this paper, we
use the 3-parameter DE scheme [60] for solving DE. For a real search space of
dimension D, the population is randomly initialized with ND vectors (for ND
the first algorithm parameter). Each vector v in the population is evolved by
mutation and recombination operators. Given a mutation rate F' € [0,2] (sec-
ond parameter of the algorithm), the mutation operator produces a new vector
vm by adding a vector difference of two randomly chosen population vectors v1
and v2 to another randomly chosen vector v3:

vm = vl + F(v2 —v3)

For the recombination step, a new vector v f is created from the mutation vec-
tor by means of a combination rate CR (third parameter of the algorithm) as
follows:
vm; if ri <CRori=k
vfi =

V; otherwise

for vf; the i-th component of vf and r; € [0,1] a random number and k a
random number uniformly distributed in [1, D]. Finally a selection operator is
applied. The vector v f and the initial vector v are compared and the vector that
better fits the objective function is selected and remains in the next population.
This process is iteratively repeated until a stopping criterion is reached.

For all experiments in the next Chapters we have used the 3-parameter DE /rand/1/bin
scheme reported in [60]. For a real search space of dimension D, the popula-

tion is randomly initialized with ND vectors. Each vector in the population is
evolved by mutation and recombination operators. The mutation rate is given

by a parameter F' € [0,2] and the combination rate by CR € [0,1]. Follow-

ing the literature [13], we have chosen the following values for DE parameters:
F=0.9, CR=0.5.
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. Particle Swan Optimization (PSO) Particle Swarm Optimization is also

bio-inspired and based in collective intelligence of some natural systems like
groups of animals. In a basic Particle Swarm Optimization scheme for contin-
uous space the population is randomly initialized with N individuals (vectors
x;, t € [1, N]). The fundamental difference between PSO and other EAs is that
other EAS do not model the dynamics of the movement through the search
space. PSO leads with this aspect with the concept of velocity and neighbor-
hood. Each individual has some inertia and tries to maintain its velocity (v;),
i € [1, N]. Velocity indicates how will the next movement be and it is another
parameter of each individual. As position vector z;, i € [1, N] the velocity is
random selected in the initial population or set to zero. The neighborhood of
each individual H;, ¢ € [1, N] is defined by the number of the nearest individuals
that are considered, o, and serves to define the velocity parameter update. For
each individual and for each iteration, the velocity is updated and the individual
moves with the rule: x; < x; + v;. The velocity update is built with the scalar
products between the real vector position x; and the best-so-far position b; in
one hand and, in the other hand, the real vector position x; and the best neigh-
bor position h; with the rule v; + v; + ¢1 0 (b; — ;) + ¢2 0 (h; — i), i € [1, N,
where ¢ and ¢o are the maximum influence values. The absolute values of the
velocities v; are maintained between 0 and v,,ax and ¢; and ¢ between 0 and
O1,maz A @1 maq respectively.

e Initialize random population position vectors x;, velocities v; and b; = x;
i € [1, N] for N the population size.
e Define neighborhood size ¢ < N, maximum influence values ¢1 maz, ®2,max
and maximum velocity vm,qz
e WHILE (not stopping criterion)
FOR each x;, ¢ € [1, N]
— H,; < o nearest neighbors of x;
— h; < argming(f(x) : x € H;)
— Generate a random vector ¢1(k) = (¢1(1),...,¢1(D)) where ¢1(k) ~
U[07 ¢1,ma3§]
— Generate a random vector ¢o(k) = (¢2(1), ..., ¢2(D)) where ¢po(k) ~
U[0> ¢2,maz]
— vy = v + @10 (by — z3) + P2 0 (hy — ;)
— if v; > Vimax Vi ¢ ViUmaz/Vi
— X T+
- bz — argminz(f(mi)v f(bz))
END FOR
END WHILE

ForPSO we have chosen the default parameters used in [7]. The population
size was 40. The o parameter is calculated by a percentage of informants for
each particle and defaults to 1 — (1 — 1/40)3, v,,4, is not fixed which disables
clamping of the velocity.
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3. Covariance Matrix Adaptation Evolution Strategy (CMA-ES). In its
beginnings, ES (Evolution Strategy) [44] was a single search technique that
randomly select one single individual (vector) and only with mutation explores
the search spaces adding a random normal vector with mean zero and standard
deviation o to the initial vector and selecting the best of the two vectors for
each iteration. Firstly, the added vector was performed with the same standard
deviation o for all vector component (z1 < x; + r where the components of
r are computed as r; ~ N(0,0)). Posteriorly, each component had its own o
with the logically improvement (r; ~ N(0,0;) , 1 < 2o + N(0,%)r where ¥
is a nan diagonal matrix with diagonal o;i € [1,n]). This scheme is notated
by (1+1)-ES. An adaptive scheme was proposed in 1973 by Rechenberg who
analyzes the success rates and perform the 1/5 rule for the adaptation of the
deviation standard parameters through the iterations [44]. In the nineteens,
the first generalization of the (1+1) ES was the (u + 1)-ES where p (user-
defined parameter) parents were used in each generation to generate a single
new individual. Posteriorly, (1 4+ A)-ES and (p, A)-ES were performed [8] and a
self-adaptive evolutionary strategy variations appear [6]. A success one of this
variations was CMA-ES (Covariance Matrix Adaptation Evolution Strategy).
The pseudo-code for a simple CMA-ES for dimension N is:

e Initialize 7 and 7. in R

Initialize C' <— I = DD identity matrix and p the number of parents

Generate randomly (z3,0) € RPzR where k € [1, ]

WHILE (not stopping criterion)
-0 <—Zk"7’“7m/ %Zk%whereal € Rand ' € RP
FOR (each k)

% 1 < N(0,1) random normal scalar. and R < N,(0,1) n dimen-
sional normal random vector

! !’
% o <0 €7, s < VCR, 2z, < o2,z < = + 2z END FOR
’ T
-5 3, e

fCe(lfT—lc)C+f—;

where 7 and 7, are time constant learning parameters that determine the adap-
tation speed of the o values and covariance matrix C' respectively. D is the
search space dimension,

For CMA-ES we have chosen the default parameters used in [62].

2.1.1 Existing Stop Criteria for Single Objective Problems

There is a rich literature on online termination of EA. The simplest and most extended
one [55, 43, 61] consists in reaching a number of iterations or function evaluations.
This stopping criterion is not useful by itself since the number of iterations that guar-
antee a steady state significantly varies across problems [55]. This has motivated the
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definition of alternative criteria based on either a measure derived from EA evolv-
ing population [24, 67, 11, 39, 31, 72, 43, 61, 64, 65] or the internal parameters of a
particular EA algorithm [23, 20, 14, 1]. In the case of convergence to the minimum,
some of the former criteria reduce the number of iterations do not improving results
anymore.

However, there are no systematic conditions ensuring that such alternative criteria
terminate EA at the steady state. Also, even in the case that EA has converged to
the optimum, the relation between the alternative measures values and EA solution
distance to the optimum (accuracy) remains unknown.

The definition of a general termination criterion addresses two issues. First, defin-
ing a measure, @, reflecting the state of the optimization at EA current iteration.
Second, setting the conditions that the values of the former measure taken across EA
iterations, namely (Qy)ren for k the k-th iteration and N the natural numbers, should
satisfy in order to terminate the algorithm.

Concerning the termination condition, two different types are considered. The first
condition [24, 67] terminates EA if the measure reflecting the state of the optimization
is below a given threshold ) < ¢,. In order to avoid early termination, it is usual to
require that @) is below the threshold for a (given) number of generation changes ng,
Qr < €g fOI’]{ZIko,...,kU—f—ng.

The second condition terminates EA if the measure @) reaches a steady state. A
steady state is an asymptotic concept that is achieved the moment that the variation
of @ is under a given threshold. Several implementations for computing steady states
are found in the literature. Some authors [11, 39, 31, 72] consider that @ has reached
its steady state if it does not vary more than a fixed threshold between consecutive
iterations for n, generations changes: Yk € {ko,ko+1,..,ko+ngs} |Qr—Qrt1| < €.
However, since it only bounds the difference between consecutive iterations, it does not
guarantee that ) has reached the steady state. Recent works make use of descriptive
statistics. In particular, a threshold over the standard deviation for all Qj values is
used in [51, 66]. This might require a large number of EA iterations for achieving
the steady condition given that EA first stages do not contribute to the asymptotic
behavior. Other approaches use more complex statistics, like regression analysis [21]
or hypothesis tests [35], and, thus, add computational cost at each iteration.

Aside from measures derived for specific EA paradigms, the measures reported in
the literature [31, 55] are based on either the objective function in f-space [11, 39]
(improvement-based) or the distribution of the evolving population in x-space [72, 55]
(distribution-based). In both cases measures are computed from a given percentage
of the (best) evolving population. Improvement-based criteria may lead to early
termination (possibly far from the optimum) due to the stochastic nature of EA
[72]. Distribution-based quantities are better suited for terminating EA for some
test functions. They terminate EA ensuring a given accuracy, as far as suitable
parameters for the termination condition (threshold and number of generations) are
chosen [72]. Given that these parameters are chosen according to the profile of the
objective test function, the above result does not generalize to real-world (unknown)
functions [72]. In this context, some recent works [39] adapt termination parameters
to the current evaluation of the fitness function. However the simplest (and most
extended [55, 43, 61, 64, 67]) way of ensuring that the algorithm terminates is by
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setting a maximum number of iterations. Since the number of iterations ensuring
convergence significantly varies across problems [55], this maximum must be large
enough to ensure EA has reached steady state and is prone to lead to useless iterations
[72, 65].

Noting by (Ind;(k))j_; the set of the n best (ordered in decreasing fitness) indi-
viduals at the k-th iteration, the measure Q) is defined at each iteration as:

e Improvement-based (Fitval) In this case () is defined by the average of the
objective function values for the best individuals:

%, fnd;(k)

n

oy (2.1)

e Distribution-based. These quantities measure the sparseness of a given per-
centage of the (best) evolving population. Two measures are mainly considered:

Maximum Distance (MxD). It is given by the maximum distance of the
population to the best individual:

Qr = mazjs1d(Ind; (k) — Ind;(k)) (2.2)

for d(-, -) the Euclidean distance in the population parametric space.

Population Variability (Std). It is the maximum of the standard deviations
(computed using the population best individuals) of each dimension of the search
space. If such dimension is N, so that Ind;(k) = (Indj(k),..., Indj-v(k)), then
it is defined as:

(2.3)

n—1

(Indi(k) — p;)?
Qk = MaZ;e(1,...,N) (ZJ( " J( ) M) )

_ X, Indj(®)

for pu; the average i-th coordinate.

2.2 Inference Statistics

2.2.1 Regression Model

Given a sampling of two random variables (z and y), the linear regression of y (re-
sponse variable) over = (explicative variable) is formulated as:

yi = Po + Pz + & (2.4)

for x; a set of fixed explicative variable values (the actual sampling of x), y; the
response random variable and ¢; a random error satisfying:

2.2.1.1 Model Assumptions
1. Linearity: E(g;) =0
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2. Homoscedasticity: VAR(e;) = 02, Vi
3. Uncorrelation: COV (g;e;) =0, , Vi, j
4. Gaussianity: &; ~ N(0,02), for N(0,0?) a normal distribution.

The parameters of the regression model (2.4) are the regression coefficients 5 =
(B0, 31) and the error variance o2. The regression coefficients describe the way the
two variables relate, while the variance indicates the accuracy of the model and, thus,
measures to what extent x can predict y.

Histogram of Residuals | Chart of Residuals Residuals vs. Fits
8 - 4 2 - =
3 -
74 ..
> 6 o _ 24 _ 14 .
£ 5 g 14 B sl
8, 2 o 30T .
g 3 T é ‘1 7 &’ _1 -
I 2 2 N .
1 T 3+ i i
U T T T T T T T T 4 =T T T T T T T T T |' T T T T
A45-10-0500 0510 15 20 0 10 20 30 0001020304050607 0809
Residual Observation Mumber Fit

Figure 2.2: Residual diagnosis plots

For a sample of length N, the regression coefficients estimations, B = (EO, 31)),
are estimated by Least Squares Estimation (LSE) as:

B=(XTX)"'XxTy (2.5)
1 Iy
for X = , Y = (y1,...,yn) and T denoting the transpose of a matrix.
1 TN
The differences between estimated responses, 7; = Bo + Bﬂi, and observed responses
Yt N
i =Yi —Yi

are called residuals. Their square sum provides an estimation of the error variance:

2
. €;
S% =52 = 3:_ 5 (2.6)

So, the estimation of the error standard deviation (standard error) is expressed

by:
2
[~ €;
SR = 02 = % (27)

The four model conditions endow desirable properties to the LSE of the regression
coefficients [3]. By the Gauss-Markov theorem under the first three assumptions,
the LSE are best linear unbiased estimators and assure that predictions made by
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least squares fitted equations are good. By adding the fourth assumption (error
gaussianity), the LSE has minimum variance among all unbiased estimators (not
just linear) and allows the use of parametric tests, such as the Student’s t-test for
testing hypothesis on parameter values. The central limit theorem (asymptotically)
guarantees this last property for large samples. Therefore, given that we have as much
samples as EA iterations, in our case, the gaussianity is not a critical issue.

The standarized residuals:

en; = (e; — u(e;))/std(e;) (2.8)

for p the average and std the standard deviation, are used to verify the model
assumptions. The plot of en; over 7; is called the versus fit plot and reflects linearity
(in the measure that it is centered at zero) and homoscedasticity (uniform deviation
from zero). The plot of en vs the sorted explicative variable is called the versus
order plot and serves to detect any correlation pattern. Finally, the histogram of the
standarized residuals reflects Gaussianity [41].
The estimation of the standard error of the regression slope estimator (B\l) can be
expressed by:
Sk

S’\ =
B1 5SS,

where SS, = Y (z; — 7)?
The problem of heterocedasticity is usually solved by taking logarithms in both
variables [2]. In this case, our model formulation is as follows:

log(yi) = Bo + Bilog(xi) + & (2.9)

By taking exponentials, the regression model in the original scale is polynomial
with multiplicative errors:

y = ePogies (2.10)

Previous to any kind of inference, it is mandatory to verify that the estimated
parameters make sense. That is, whether it really exists a linear relation between x
and y. By the Gauss-Markov theorem, such linear relation can be statistically checked
using the following T-test [41]

Hy: p1=0
2.11
Hy: Bi#0 (211)
where the statistic used is:
- (2.12)
&
1

and a p — value close to zero (below «) ensures the validity of the linear model
with a confidence (1 — «)100%.

Another important issue is assessing the predictive value of the model. That is, to
what extend the explicative variable can predict the values of the response variable.
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This is quantified by the percentage of the response variability that is explained by
the explicative variable using the R? rate:

S -5 _ | SN -2
Si-p? SN 1)

for 7, the sample variance of the response variable y. The higher R? is, the more
reliable the prediction is.

R*=1- €[0,1] (2.13)

2.2.2 Hypothesis Testing

An hypothesis in statistics is an assumption about a population parameter or a pop-
ulation parameters relation. Hypothesis testing begins with a formulation of a null
hypothesis (Hp) that it is supposed hypothetically true and the alternative hypothesis
(H,) that is the opposite of the null hypothetical. In fact, the alternative hypothesis
is the hypothesis that the researcher sets out to prove.
The general procedure continues with seeking a function U assuming that (Hy) is
true that contains the objective parameter and a statistics with known distribution.
Posteriorly, a sample is selected and the value of U with the data from the sample
selected is calculated. Finally, the statistically-based decision is taken considering a
significance level a, the probability to reject Hy in the case that Hy is true. Because
the distribution of U is known, the decision is taken based on a critical zones defined
by critical values determined with the a level. If the statistics calculated with the
sample fall in the critical zone the null hypothesis Hj is rejected and the alterna-
tive hypothesis can be hold with certain risk determined by «. In 2.3 three possible
situations are drawn.

In the case of a proportion population parameter the formulation of the one-tailed
test (upper bound) hypothesis is:

Ho: ¢<qo

2.14
Hi: q>qo (2.14)

The statistic for the sampling proportion follows a normal distribution N(0,1) and is
given by:

Z =(q7—q)/Va(l —q)/nga - N(0,1) (2.15)

for ¢ the sampling proportion and ng4 the sample size. The null hypothesis Hy
is rejected if the statistic Zg has a p-value below o case in which Z falls in the reject
zone because is greater than the critical value.
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Chapter 3

Statistical Tools for Steady State
Termination Conditions

Defining steady states is not straightforward for all EA paradigms and, in fact, they
can not be properly defined if the mutation rate (like genetic algorithms [53]) is
always positive across EA iterations. For these cases, EA can only be stopped if
there is a theoretical analysis of its convergence to the optimum. However, whether
EA has reached the optimum can only be answered for very specific algorithms and
optimization problems [34, 69, 54, 6]. In general, EA optimality is difficult to assess
and, for many paradigms, is impossible when no gradient information is available.
Given that this could be the usual case for EA optimization problems, a stop criterion
should ensure EA has reached a steady state [65].

First, in this Chapter, we provide a formulation of EA steady state inspired in
the concept of Cauchy sequences. Second, we present a formula for determining
the moment a quantity has converged to its steady state. The formula is given in
terms of convergence rates and only depends on two parameters. Finally, we provide
a statistical way to set the values for these parameters to ensure accuracy of the
formula.

3.1 Formulation of EA Steady State in Cauchy terms

In a theoretical framework, analysis of EA convergence properties addresses the con-
ditions that ensure reaching the set of optima individuals, regardless of the initial
population. Given the stochastic mechanisms of EA paradigms, such general proper-
ties must be given in probabilistic terms [53, 6, 5]. In practice, each run of EA iterative
scheme depends on a single given initial population and consists of a sequence of states
of such population. In this context and assuming that the search space is RY, explor-
ing EA population steady state can be posed in terms of convergence of real number
sequences.

21
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We will consider that EA has reached a steady state if the values of EA best
individuals (given by a percentage of EA population) jointly converge, as sequences of
real numbers, to the same values that give the coordinates of a given point of the search
x-space, P € RN . This definition of steady state assumes that EA population diversity
decreases across evolution and that we deal with a single objective optimization. This
is the case for a large range of EA paradigms (like covariance matrix adaptation [4],
differential evolution [60] or particle Swarm optimization [32] to mention just a few).

Let npest be the number of EA best individuals and, for each individual j =
1,..., Npest, note by (Ind;(k)); € RY their sequence of values across EA iterations,
which we index by k. Then, we say that EA population has converged to its steady
state if 3P € RY such that:

Ind7(k) — P ,Vj = 17-'-7nbest (31)
’ k—o0

In real world applications, the point P is unknown, and, thus, the above definition
is not feasible. In real vector spaces of finite dimension, convergence to unknown
points is naturally handled by using the concept of Cauchy sequence. A sequence of
real numbers, (§x)ren, is Cauchy if the following condition holds:

Ve, Tko ,such that Vkq, ke > ko. H(jkl — %H <e (3.2)

for ”H denoting a norm in RN .By general theory of real analysis, a sequence
converges if and only if it is Cauchy [52]. This equivalence is broadly used in numerical
analysis to terminate iterative algorithms having as parametric space the real numbers
[12]. It is worth noticing that the above Cauchy condition measures the amount of
change of the sequence of real numbers. This fits into the intuitive idea that an
algorithm should terminate if it can not improve results anymore.

In the case of EA, given that all individuals should simultaneously converge to the
same point, the condition (3.2) can be stated in Cauchy terms as follows:

Vi |lIndi(k) = Ind; (k)| —— 0 (3.3)
—00

fori,jel,... ,nbcstand(Indj(k:));-“:’“ft the set of the np.s best individuals at the
k-th iteration.

Let us see that the above condition relates to the accuracy of EA solution. The
accuracy of EA solutions is given by the distance of the best individuals to the (un-
known) function minimum, Ref;(k) := d(Ind;(k),Opt), j = 1,...,npest. If EA
reaches a steady state, we have that Ref;(k) simultaneously converge to the unknown
(and possibly positive) distance d(P, Opt):

EA Reaches a Steady-State < Ref;(k) - d(P,Opt), ¥j =1,...,npest  (3.4)
—00
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Consequently, its maximum value for the ny.s individuals, Re fi, := maxz;(Ref;(k)),
provides the following equivalent formulation:

EA Reaches a Steady-State < Ref - d(P,Opt) (3.5)
—00

In a similar manner, any quantity @ computed from EA evolving population is
simultaneously Cauchy across the npes; individuals and, thus, its maximum value
max;(Q;(k)) is a sequence of real numbers that it is Cauchy and convergent to Q
evaluated at P.

Posing EA steady state in terms of Cauchy sequences allows the definition of a
numeric termination condition which parameters can be adjusted according to the
accuracy of such numeric formula for detecting steady states.

3.2 Stopping condition based on EA steady states

In our approach, the natural termination condition is the Cauchy convergence of the
sequence of real numbers, (x)x, given by the values of the measure for all iterations.
To detect the stabilization of a measure ¢ some authors [11, 39, 31, 72] consider that
G has reached its steady state if it does not vary more than a fixed threshold between
consecutive iterations for ngt generations changes:

Vk € {ko, ko+1,... ko + nst} ‘(j}c — qr41] < €g- (3.6)

However, since it only bounds the difference between consecutive iterations, it
does not guarantee that ¢ has actually reached the steady state. This could be the
case, for instance, if ¢ had a linear profile across iterations of slope less or equal than
€g, 1.6, @ = ek for € < ¢,. In such case |Gr — Gry1| = € < €,Vk, but the sequence is
by no means Cauchy since it is not convergent. gy, P Figure 3.1(a) illustrates

the limitations of the criterion (3.6) for detecting the moment a quantity has reached
a steady state in case of a constant decreasing behavior less than .

Our approach connecting with the idea of Cauchy sequences is implemented by a
range formulae by checking that the variation of (gx)ren keeps below a threshold, eg,
for a given number of ng generation changes (variations):

VZ,] € {k7k+17“7k+nst} ‘ququ| S €st (37)

This can be formulated in terms of the range of ¢ in the generational interval
{k,...,k+ng} as:

Rn, n i) = Rng; = max ¢; — min  ¢; < €g 3.8
ik, .oht St}(q) 9a i€{k,....k+ng ie{k,...,k-&-'nsgz t ( )
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Figure 3.1: Possible numeric criteria to detect wether a quantity has reached a
steady state: Stabilization formula and the proposed Range formula

The sequence is assumed to have reached its steady at the first generation satis-
fying (3.8):
Kg"er = Hlljn(Rng{k,.“,k-knst}(q) < 6st) (39)

Figure 3.1(a) illustrates the higher capability of the range criteria (3.8) for detect-
ing convergent asymptotic behavior compared to the point criteria (3.6). In the case
of a linear sequence, the range Rngg = nge, and thus, (3.8) does not hold.

In case of EA termination ¢ is defined by either the gold-standard Ref or of
the alternative measure ) defined in Chapter 2 taken across EA iterations that are
indexed by k so that either § = (Refi)r or ¢ = (Qk)k-

We would like to note that, in the next section, we will check in case that EA
converges to the optimum, the relation between the parameter € in formula (3.8)
and the algorithm accuracy, provided that formula (3.8) is an accurate approximation
to ¢ steady state.

The number of generations, ng;, and the maximum variation range across them,
€s+ determine how good for detecting that ¢ has reached a steady state the range
bound (3.8) is. The parameter es represents the accuracy of the approximation,
while ng sets the temporal generational window we expect such accuracy to hold.
‘We note that in stochastic process like EA, the number of generations such that ¢ has
a low variation should be large enough to prevent premature convergence at EA early
stages. We also note that K7 varies due to EA stochastic nature when taken for
different runs. In this context, the parameters chosen to compute (3.9) should also
ensure that EA termination keeps stable across EA runs.

The link between formula (3.9) parameters and deviation for detecting true steady
state can be used to set their values using the following statistical analysis [32]. Let
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K%er be the minimum iteration achieving the bound (3.8). By definition of a steady
state, ¢ has reaphed it if the range inequality given by (3.8) is below ey for all k
greater than K7 _ .

Rngk(§) < extVk > K2, (3.10)

For each ng and €4, this condition can be expressed by the following function:

er 11
0 otherwise (3.11)

[ { 1 if Rng(k) (@) < e V> K2
q=
The function X; takes values in {0,1} and taken across ng4 independent EA runs
is a discrete random variable that follows a Bernoulli distribution with parameter
g = P(X; = 1). This probability ¢ is estimated by the sample proportion given by:

7= Xi/npa (3.12)

for nga the number of EA runs considered.

In this context, ¢ has actually reached its steady state if the probability P(X; ==
1) = ¢ is close to 1. This can be statistically checked using the proportion test:

Ho: q<aqo

3.13
Hy: q>qo (3.13)
for go representing the minimum proportion of times that an EA run will be stabilized
using the range formula (3.9). This ¢o provides a lower bound for ¢ with a given
confidence level (1 — «). The statistic for the sampling proportion ¢ given by (3.12)
follows a normal distribution N (0, 1) and is given by:

Z3= (7~ 0)/Vao(1 = q0)/nea ~ N(0,1) (3.14)

The null hypothesis Hy is rejected if the statistic Z; has a p-value below a which
implies that the number of EA runs achieves stable behavior given by condition (3.10)
is above (qp)100% of the cases. Therefore, for each ey we consider that the number
of generations ng ensuring that ¢ has reached a steady state with a confidence « is
given by the minimum integer such that Hy is rejected. On the other side, (3.13)
can be used to explore weather a given quantity is suitable for terminating a partic-
ular EA paradigm. We consider that @ can effectively terminate EA if there are a
set of combinations (es,ns¢) that can determine @ steady state for different function
types regardless of the search space dimension. This can be checked by considering a
sampling of the parameter space (e;,n5;) and applying the proportion test for a repre-
sentative set of functions covering the landscapes most influential on EA convergence
([24, 25]). Scalability across search space dimensionality is checked by considering
the same test functions for increasing dimension. Those pairs (€s¢,ns¢)with the most
stable rejection rate across function landscape and dimension are the best suited for
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terminating EA using ). In case that no pair (es,ns) achieves a stable rejection
across dimensions for any function type, the quantity @ is not a good candidate for
EA termination.

3.3 Experimental Set-up

We have applied our framework to the benchmark used in [24] to test 31 state-of-
the-art evolutionary algorithms. Details about function definition might be found in
[25]. The functions are clustered according to their overall properties in five groups
[25]: separable, low (good) conditioning, high (bad) conditioning, multi-modal with
strong global structure and with weak global structure. Besides, the functions cover
the main properties (multimodality, global structure and scalability) reported in a
recent study [37, 9] to have a high influence in the performance of EAs. For this
experiment we have chosen 5 functions (one from each clustered group mentioned
above) representative of the benchmark used in [24]: Sphere, Rosenbrock, Ellipsoidal,
Rastrigin and Schwefel functions. Figure 3.2 shows these functions for dimension 2.

The goal of these experiments is to asses our numerical termination condition in
two aspects:

1. Termination of EA paradigms relying on diversity. First of all, we have
validated the presented framework for terminating EA paradigms relying on
diversity. The three EA strategies representative of diversity based paradigms
described in Chapter 2 have been analyzed in order to check if they admit a
termination using one of the measures of population diversity given in chapter 2.
We recall that such EA paradigms based on diversity chosen for this experiment
are: Differential Evolution (DE) [60, 13], Particle Swarm Optimization (PSO)
[29, 32] and Covariance Matrix Adapting Evolutionary Strategy (CMA-ES) [4,
40].

The 3 EA paradigms are DE, PSO and CMA-ES and were ran using the pa-
rameters and computational algorithms described in Chapter 2

For all paradigms population size has been set to 20*D dimension of the search
space) and EA optimization was computed for 3000 iterations. Dependency of
termination parameters with respect the search space dimension has been ex-
plored by considering the definition of the functions for dimensions 2, 4 and 10.
The quantity measuring population diversity is the distribution of EA popula-
tion in x-space given by the maximum Euclidean distance, MzD given by:

MzD = maxjcq,... p,...)dInd;, Ind;) (3.15)

for (1 ndj)?ff‘ the set of the npes; best individuals and Opt the function opti-
mum in x-space. This quantity is set to be ¢ for the computation of (3.10) and
the proportion test. For each paradigm and test function, the range formula
(3.10) has been computed for ¢ = 107! and ny = 10,50, 100,200, 500. For
each function and dimension the function Xj in (3.11) computed for ngs = 30
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Figure 3.2: Representative set of five functions covering different landscapes influ-
encing EA convergence

independent EA runs defines the sample for the random variable used in the
proportion test. The proportion test has been computed for ¢y = 0.95 and
at confidence @ = 0.05. The EA paradigm presenting a most suitable rejec-
tion profile across increasing dimension is the one selected for the subsequent
experiments.

2. Optimal Parameters for the Stopping Condition. Once the EA paradigm
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most suitable to be terminated using diversity has been determined, the opti-
mal parameters for the range formula should be set. For a given accuracy in
steady states, €4, in this experiment we will determine the minimum number of
generations ng; in the range formula required to actually have a good approxi-
mation to the steady state. Such number of generations should be the same for
all quantities used to terminate EA. The quantities stabilized using the range
formula and the proportion test are the gold-standard ¢ = Ref and the two
alternative quantity MzD (2.2)and Fitval value (2.1).

For this experiment, we have used the proportion test to determine the minimum
number of generations in the range formula (3.9) required to actually have a
good approximation to @ steady state. We have applied the proportion test with
a = 0.05 and gy = .95 for ny € {10,50,100,200,500} and e, € {1071, 1072},
For each paradigm and x-space dimension, the parameters of formula (3.8) best
suited for its termination are the minimum number of generations that reject
the proportion test (3.13).

The EA paradigm selected in the first experiments with the range formula pa-
rameters determined in the second one have been used in the remaining experiments
presented in the next Chapter.

3.4 Results

3.4.1 Termination of EA paradigms relying on diversity

Tables 3.1, 3.2, 3.3 report the results of the proportion test for DE, PSO and CMA,
respectively. Each table reports results across the selected number of generations
(columns) and x-space dimension (rows). We report the hypothesis test result (1
for null hypothesis rejection, 0 for not rejection), the test p-value and the sampling
proportion.

For the 2D case a minimum number of generations could be achieved for all
paradigms. For dimension 4, our range formula fails to detect PSO steady state
and for dimension 10 the proportion of detected steady states is below 0.9 for all ng
and paradigms. An analysis of the profiles of population diversity across iterations
shows that failures arise from a number of iterations insufficient for reaching steady
states of some particular functions. These cases are Rosenbrock, Schwefel for DE,
Schwefel for PSO and Rosenbrock for CMA. These functions have a landscape show-
ing a poor EA convergence rate at least for the chosen parameters for each paradigm
and would require more iterations. Figure 3.3 shows the profiles of MxD for one of
the failing cases (solid line) in comparison to the always convergent Sphere (dot line).
We show an example for each of the EA paradigms, Schwefel for DE and PSO and
Rosenbrock for CMA.

In order to faithfully asses the capability of MxD for detecting EA steady state,
functions not reaching EA steady state should be excluded. We have repeated the
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Table 3.1: Optimal Number of Termination Generations for DE

29

p — value Sampling Proportion ¢ | Null Hypothesis Rejection
dim2 dim4 | dim 10 | dim2 | dim 4 | dim 10 | dim 2 | dim 4 dim 10
10 1.0 1.0 1.0 0.55 0.23 0 0 0 0
50 | 2.2e-05 0.9 1.0 1 0.77 0.32 1 0 0
100 | 2.2e-05 0.13 1.0 1 0.89 0.50 1 0 0
200 | 2.2e-05 | 2.2e-04 0.8 1 0.97 0.53 1 1 0
500 | 2.2e-05 | 2.2e-03 1.0 1 0.94 0.33 1 1 0
Table 3.2: Optimal Number of Termination Generations for PSO
p — value Sampling Proportion ¢ | Null Hypothesis Rejection
dim2 | dim 4 | dim 10 | dim2 | dim 4 | dim 10 | dim 2 | dim 4 dim 10
10 1.0 1.0 0.3 0.75 0.59 0.52 0 0 0
50 | 2.2e-04 0.9 0.2 0.97 | 0.77 0.87 1 0 0
100 | 2.2e-05 0.9 0.2 1 0.77 0.88 1 0 0
200 | 2.2e-05 0.9 0.8 1 0.77 0.88 1 0 0
500 | 2.2e-05 1 0.7 1 0.74 0.83 1 0 0
Table 3.3: Optimal Number of Termination Generations for CMA-ES
p — value Sampling Proportion ¢ | Null Hypothesis Rejection
dim2 dim4 | dim 10 | dim2 | dim 4 | dim 10 | dim 2 | dim 4 | dim 10
10 0.01 0.8 1 0.95 0.82 0.34 1 0 0
50 | 2.2e-05 | 2.2e-05 1.0 1 1 0.65 1 1 0
100 | 2.2e-05 | 2.2e-05 1.0 1 1 0.70 1 1 0
200 | 2.2e-05 | 2.2e-05 0.5 1 1 0.86 1 1 0
500 | 2.2e-05 | 2.2e-05 0.2 1 1 0.88 1 1 0

experiments without the failing cases and in order to explore the impact of the ac-
curacy €y, we have computed the range formula for e, = 107!, and e, = 1072,
Results for the proportion test as reported as before in Tables 3.4,3.5 and 3.6. For
low dimensions (up to 4) the number of generations required for termination remains
unchanged across ey for the 3 methods considered. For higher dimensionality, PSO
is the only method that has the same behavior regardless of eg;, while DE and CMA
present a variability in the number of generations that should be further investigated
It is worth noticing that PSO termination is also stable across dimensions and, for
low dimensionality, DE as well. This is not the case for CMA, for which termination

generation seems to increase across dimensionality.

There are several interesting conclusions that can be derived from our experiments.
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Figure 3.3: Loss of population diversity across iterations for DE
Table 3.4: Impact of €5; in DE Termination

p — value Sampling Proportion ¢ Null Hypothesis Rejection

€t =1071 | dim2 | dim 4 | dim 10 | dim2 [ dim 4 | dim 10 | dim 2 | dim 4 | dim 10
10 0.98 1.0 1.0 0.83 0.47 0 0 0 0
50 7.8e-04 | 0.0025 1.0 1 0.99 0.63 1 1 0
100 7.8e-04 | 0.0025 0.36 1 0.99 0.91 1 1 0
200 7.8e-04 | 0.0025 0.039 1 0.99 0.96 1 1 1
500 7.8e-04 | 7.8e-04 1 1 1 0.66 1 1 0

€t =10"2 [ dim2 | dim 4 | dim 10 | dim2 | dim 4 | dim 10 | dim 2 | dim 4 | dim 10
10 0.14 0.52 1.0 0.93 0.61 0.0 0 0 0
50 7.8e-04 | 0.007 0.5 1 0.98 0.59 1 1 0
100 7.8e-04 | 0.0025 0.75 1 0.99 0.82 1 1 0
200 7.8e-04 | 0.0025 0.07 1 0.99 0.94 1 1 0
500 7.8e-04 | 7.8e-04 0.25 1 1 0.33 1 1 0

For the PSO paradigm, convergence to steady states is apparently unchanged across
the dimension of the search space. For low dimensions, this also holds for DE. In such
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Figure 3.4: Loss of population diversity across iterations for PSO
Table 3.5: Impact of ¢5; in PSO Termination
p — value Sampling Proportion ¢ Null Hypothesis Rejection
€t =101 | dim2 | dim 4 [ dim 10 | dim2 | dim 4 | dim 10 | dim 2 | dim 4 | dim 10
10 0.63 0.99 0.54 0.89 0.80 0.63 0 0 0
50 0.0025 | 0.0025 | 0.0025 0.99 0.99 0.99 1 1 1
100 7.8e-04 | 0.0025 | 7.8e-04 1 0.99 1 1 1 1
200 7.8e-04 | 0.0025 | 7.8e-04 1 0.99 1 1 1 1
500 7.8e-04 | 0.039 | 7.8e-04 1 0.96 1 1 1 1
€t =102 [ dim2 | dim 4 | dim 10 | dim2 | dim 4 | dim 10 | dim 2 | dim 4 | dim 10
10 0.92 1.0 0.57 0.85 0.77 0.66 0 0 0
50 0.0025 | 0.0025 | 0.0025 0.99 0.99 0.99 1 1 1
100 7.8e-04 | 0.0025 | 7.8e-04 1 0.99 1 1 1 1
200 7.8e-04 | 0.0025 | 7.8e-04 1 0.99 1 1 1 1
500 7.8e-04 | 0.039 | 7.8e-04 1 0.97 1 1 1 1

cases, the number of generations required to terminate EA can be kept relatively low
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Figure 3.5: Loss of population diversity across iterations for CMA
Table 3.6: Impact of €5, in CMA-ES Termination
p — value Sampling Proportion ¢ Null Hypothesis Rejection
€y = 1071 [ dim2 dim 4 | dim 10 | dim2 | dim 4 | dim 10 | dim 2 | dim 4 | dim 10
10 0.0075 0.11 1.0 0.96 0.93 0.5 1 0 0
50 1.3e-04 | 1.3e-04 0.98 1 1 0.84 1 1 0
100 1.3e-04 | 1.3e-04 0.27 1 1 0.92 1 1 0
200 1.3e-04 | 1.3e-04 | 4.1e-04 1 1 0.99 1 1 1
500 1.3e-04 | 1.3e-04 | 1.3e-04 1 1 1 1 1 1
€t =107%2 [ dim2 | dim 4 | dim 10 | dim2 | dim 4 | dim 10 | dim 2 | dim dim 10
10 4.1e-04 0.38 0.45 0.99 0.90 0.53 1 0 0
50 1.3e-04 | 1.3e-04 0.27 1 1 0.91 1 1 0
100 1.3e-04 | 1.3e-04 | 1.3e-04 1 1 0.99 1 1 1
200 1.3e-04 | 1.3e-04 | 1.3e-04 1 1 1 1 1 1
500 1.3e-04 | 1.3e-04 | 1.3e-04 1 1 1 1 1 1
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and, thus, termination based on population diversity is computationally efficient. For
the CMA paradigm, loss of diversity drops as the dimension increases and, thus, it
requires a higher number of generations for ensuring termination at the steady state.

The dependency of parameters across paradigms illustrates that the choice of the
quantity used for EA termination is linked to EA internal mechanisms and, thus,
its selection is at the very core of the methods used as termination criteria. In
this context, loss of population diversity seems to be a good candidate for PSO and
DE, but might nor be the most appropriate one for CMA. Although, in case of DE
diversity seems more suitable for low dimensions, by its higher simplicity and easier
parallelization [71], we have chosen DE for the remaining experiments.

3.4.2 Optimal Parameters for the Stopping Condition

Tables 3.7, 3.8, 3.9 report the results of the proportion test given in Section 3.2 for
setting the termination parameters (number of generations ng and threshold eg) in
the range formula (3.8). Each table reports results across the generations sampling
ng € { 10,50,100,200,500,750, 1000 } for a given ey, € {1073,1075,10712 }. We report
the null hypothesis rejection state (1 for rejection) as well as the test p-value. We recall
that rejecting the test implies that the configuration (es¢, nst) provides an accurate
approximation to each quantity steady state and, thus, it is a good parameter setting
for EA termination.

Table 3.7: Optimal Number of Termination Generations for es; = 1073

Null Hypothesis Rejection p — value
10 | 50 | 100 | 200 | 500 | 750 | 1000 | 10 | 50 | 100 | 200 | 500 750 1000
MzD | 0 | O 0 0 1 1 1 1.0 1.0| 1.0 | 0.9 | 1e9 | be-15 | be-22
Ref 010 0 0 1 1 1 1.0 ] 1.0 | 1.0 | 0.8 | 2e-10 | 1e-18 | 1le-22
Fitval | 0 | 0 0 0 1 1 1 1.0 ] 1.0 | 1.0 | 0.8 | 7e-13 | 2e-21 | 3e-22

Table 3.8: Optimal Number of Termination Generations for es; = 1076

Null Hypothesis Rejection p — value
10 | 50 | 100 | 200 | 500 | 750 | 1000 | 10 | 50 | 100 | 200 | 500 750 1000
MzD | 0 | O 0 0 1 1 1 1.0 10| 1.0 | 1.0 | 1e-3 | 5e-8 | le-10
Ref 010 0 0 1 1 1 1.0 1.0 | 1.0 | 1.0 | 3e-3 | 6e-12 | Te-15
Fitval | 0 | O 0 0 1 1 1 1.0 [ 1.0 | 1.0 | 0.9 | 4e-10 | 5e-19 | 2e-20

As expected, the minimum number of generations required to provide a good ap-
proximation to () steady state increases as ey decreases. Also, the behavior varies
across quantities, with Mx D requiring, for a given €y, a higher number of iterations
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Table 3.9: Optimal Number of Termination Generations for e, = 10712

Null Hypothesis Rejection p — value
10 | 50 | 100 | 200 | 500 | 750 | 1000 | 10 | 50 | 100 | 200 | 500 750 | 1000
MzD | 0 | O 0 0 0 0 0 1.0 (10| 1.0 | 1.0 1.0 1.0 1.0
Ref 010 0 0 0 1 1 1.0 10| 1.0 | 1.0 1.0 le-3 | 5e-5
Fitval | 0 | 0 0 0 1 1 1 1.0 [ 1.0 | 1.0 | 0.9 | 2e-10 | 1le-18 | 1e-20

in order to accurately detect its steady state. The set of parameters that statisti-
cally provide a good approximation to steady states for all quantities and test func-
tions are (es, ng) € { (1073,500), (1073, 750), (10~3,1000), (10~°,500), (1075, 750),
(107%,1000) }. Given that it is desirable a €4 as small as possible with a minimum
number of iterations, the parameter setting for formula (3.8) that will be used in the
following experiments is ey = 107%, ny = 500.

The parameters that will be used in the following experiments to be presented in
Chapter 4 are €5 = 1075, ng; = 500 applied to MxD, Ref, Fitval and DE paradigm.




Chapter 4

Evaluation Mechanism based on
Regression Analysis

A main challenge in Evolutionary Algorithms (EAs) is determining a termination
condition ensuring stabilization close to the optimum in real-world applications. A
termination condition is suitable if it compares to the accuracy of the EA solution.
The distance to the (known) function minimum in x-space (which we will note by Ref)
is the gold-standard reference convergence criterion, given that is directly associated
to the algorithm accuracy. This criterion can only be computed if the optimum of
the test function is known and, thus, is useless in real-world problems. It follows that
real-world problems require the definition of alternative measures derived from EA
current state. In order to avoid iterations that do not improve results any more, such
alternative measure should be related to the steady state of EA evolving population.

A measure @ derived from EA evolving population is a good candidate for ter-
minating EA if it behaves like the gold-standard Ref given by EA accuracy. In this
context, we propose posing the termination problem in statistical inference terms.
From the perspective of statistical inference, the termination problem consists in de-
signing a quantity (depending only on the EA output) that correlates to the accuracy
of the solution, so that they can be swapped. In this Chapter, we present several
statistical conditions using linear regression models to evaluate to what extent an al-
ternative quantity can substitute the gold standard Ref for EA termination in Cauchy
terms established in Chapter 3.

First, we introduce three conditions (strong,weak and empirical) to evaluate whether
Ref can be swap by the alternative quantity. The first equivalence condition evaluates
the deviation from identity regression line relating Ref and @ , since for the identity
case both quantities have exactly the same convergence rate. Based on the idea of
Cauchy convergence stated in Chapter 3, the strong condition in the regression coeffi-
cients is relaxed to an inequality that bounds Ref Cauchy convergence by @ Cauchy
convergence. Finally, we also present an empirical substitution condition in terms
of the range formula presented in the previous Chapter 3. A second contribution of

35
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this Chapter is the derivation of a prediction formula to actually compute @ values
ensuring a given EA accuracy in case of convergence to the optimum.

Finally, we use the inference model to compare several types of distribution-based
quantities reported in the literature [72]. Our experiments indicate that the maximum
distance to the best individual is the best choice in terms of computational efficiency
and capability of predicting EA accuracy for the DE paradigm.

4.1 Substitution Conditions

Our final goal is to control (predict) the values taken by Ref from the values taken
by the alternative measure ). In inference statistics, this can be achieved by relating
both quantities using a regression model. We remit the reader to the Chapter 2 for
details on inference regression models or to [3]. Given that, in our case, the inference
is over Ref, our model is:

Ref = fo+p1Q +¢ (4.1)

It is worth noticing that as EA approaches its steady state, population sparseness
decreases, while it increases for EA first iterations. This introduces heteroscedasticity
(i.e. a non-uniform variance of random errors) and also affects the Gaussianity as-
sumption [49]. The monotonic behavior of the standard deviation of the random error
in the regression model, depends on the relation between Ref and Q. If Q — 0 as EA
approaches its steady state, since early iterations will also have a large @, there is an
increase of o as a function of @ (as figure 4.1(a) illustrates). Meanwhile, if @) — oo
as EA approaches its steady state, then there is an decrease of o as a function of @
(as figure 4.1(b) also illustrates).
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Figure 4.1: Types of heterocedasticity in regression models due to a decrease in
population sparseness as EA approaches its steady state: increasing o, (a), and
decreasing o, (b).
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Heteroscedasticity is mostly associated to a multiplicative errors and, thus, is
usually solved [2] by taking natural logarithms in both variables, so that the regression
model is given by:

log(Ref) = Bo + f1log(Q) + ¢ (4.2)

For e &~ N(0, o), we note that, by taking exponentials, the regression model in the
original scale is polynomial with multiplicative errors:

Ref = ePoQPref (4.3)

Since the regression error ¢ follows a centered normal distribution, the average
model in logarithmic scale is log(Ref) = By + f1log(Q). This provides the following
intuitive interpretation [49] of the regression coefficients by taking exponentials. In
average, if f1 &~ 1 and By < 0, then @) might ensure an upper bound for Ref:

Ref =ePQ% ~ e®Q < Q (4.4)

We note that if the slope 1 ~ 1, then both quantities stabilize at the same time
and, thus,they are equivalent under the stabilization termination condition. This
requirement can be statistically checked using the following unilateral T-tests:

TP : H()Iﬁl—lZGl s H1151—1<61

TP, : H0251—1§—62 s H1151—1>—62 (45)

Posing the hypothesis over the slope parameter, we get our Strong Equivalence
Condition:

Definition 1 (Strong Equivalence Condition) A measure Q is equivalent to Ref
for EA termination if there exists a small number €* ~ 0 that simultaneous rejects
the following two hypothesis test:

TP : H015121+6* , H1351<1+6*

TP,: Hy:5<1—¢" , H{:p1>1—¢€" (4.6)

for 1 the slope coefficient of the regression model in logarithmic scale given by (4.2).

The hypothesis tests are rejected if their p values are close enough to zero. In case
they are bellow a given «, we have that |3; — 1| < €* with a confidence (1 — «)100%.

The minimum €, namely €*, ensuring rejection of, both, T'P; indicates the accuracy
of the assumption that f; ~ 1 and, thus, measures to what extend @) and Ref
are equivalent for EA stabilization. In particular, the higher ¢* we have, the least
stabilization equivalence. The minimum €* ensuring rejection of the pair of hypothesis
TP, and TP, with a given confidence (1-) can be computed from the one side statistic
for TPy and TP, as follows:
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Proposition 1 Let E the estimated slope of the regression model (4.2) and sg, its
standard error. Then, the minimum number €* that ensures rejection of the double
hypothesis test is given by:

e =max((1—-p51)+ tg_zszfl, (61 —1)— tg_QSEI) (4.7)

For tN =2 the value of a T-student distribution with N-2 (N being the sample size)
degrees of freedom having a cumulative probability equal to a.

Proof.
Assuming that Hy is true for TPy, we have that the statistic:
Bi—(1
P Bl Ch ) (4.8)
o
B1

is a random variable that follows a T-student distribution with N — 2 degrees of
freedom, 7V~2, being N the sample size. Therefore, given a risk «, the null hypothesis
has to be rejected if the probability that 7~ ~2 is under ¢* is less than «. In terms of
the distribution function of 7V=2, namely F(¢*), this is formulated as:

551

F(t*) :P(TN_2 <t*) -p (TN—2 < Bl _(1+E)> <

By taking the inverse of the distribution function, we obtain the optimal value for
t* that leaves oo cumulative probability as:

t'=F"Ya)=t)"?
And, by substituting the value of t* given by (4.8), we have that
Bi—(1+e — V-2
56
Therefore, the minimum € rejecting T'P; is given by:

e=e =B —1)— tgdsa (4.9)

Proceeding in a similar way for T'P,, but considering left tile probabilities we have
that:

Fity=PtN 2>t =P (th > W) <a
B

Thus, the minimum e rejecting T'P; is given by:

e=er=(1-P1)+th 25 (4.10)
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The maximum value between (4.9) and (4.10) defines the minimum common num-
ber, €* ensuring rejection of both hypothesis tests.

O

The hypothesis tests given by (4.6) are the most suitable theoretical way to check
that a given quantity () can substitute the reference one, Ref. However, they re-
quire simultaneous interpretation of the two hypothesis p-values and, possibly, their
confidence intervals. This might be an inconvenient from a practical point of view.
An alternative for assessing to what extend a quantity behaves like Ref for EA ter-
mination, could be to derive a swapability condition from the Cauchy steady state
convergence introduced in the Chapter 3.

We recall that EA has reached a steady state if its npes; individuals simultaneously
converge to a given point P

Ind](k") ﬁp ,VJ = 17-~-7nbest (411)
— 00
Consequently their distance to the optimum

Refy := max(d(Ind;(k),Opt),j =1,..., Npest) (4.12)

is a sequence of reals numbers that also converges to d(P, Opt). In an ideal setting
of EA convergence to the optimum Ref;, — 0 and @ would be suitable for substi-
tuting Ref if Qk also converged to zero and Refx < Q. Since in the general case
d(P,Opt) > 0 we should reformulate the bound on Ref in more flexible terms.

By general theory of real analysis, a sequence converges if and only if it is Cauchy
[52]. A sequence of real numbers, (Q)kren, is Cauchy if the following condition holds:

VE, Hko ,such that Vkl, k2 > ko. Hle — ng H <e (413)

It follows that @ is suitable for EA termination if it is Cauchy (thus, convergent)
and its Cuachy condition provides an upper bound for Ref Cauchy condition.

Definition 2 (Weak Equivalence Condition) A measure @) is suitable for EA
termination if and only if Ve, Ik such that Vki, ke > k we have the following equiva-
lence of Cauchy sequences:

||Qk1_kauSE:>||R6fk1_R€fk2HSE/<E (414)

Definition 2 is given in terms of Cauchy sequences, which deal with rates of con-
vergence to the limit point of a sequence. Convergence rates are independent of the
scale and range of the sequence values. In particular, Definition 2 states that Ref
convergence rate is higher than @ convergence rate. It is worth noticing that this
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can hold regardless of Ref and @ scales and limit points, which by no means need
to be the same. Consider, for instance, Q1 = ¢~* and Q2 = @1,/100 — 100. It should
be clear that Q2 < (1 and that they are neither in the same scale nor converge to
the same point. However, (2 has a higher convergence rate than @1, so that, for
any sequence x, — 00, @Q1(n) = Q1(z,) satisfies the Cauchy-measure condition with

respect to Q2(n) = Qa2(xy,):

if |Q1(k1) — Q1(k2)| = |e™ —e™ 2| <€, then
|Q2(k1) — Q2(ka)| = |e®*t — e™#2|/100 < ¢’ = €/100 < €

The regression model is useful for checking theoretical condition like the one given
in Definition 2 that can not be easily checked analytically [68]. An algebraic condition
over g and (1 ensuring that Definition 2 is satisfied in statistical inference terms is
given by the following Proposition:

Proposition 2 Let P be the limit point of an EA algorithm reaching a steady state
and B, By the regression coefficients of the following logarithmic regression model:

log(Ref) = Bo + B1log(Q) + ¢ (4.15)

for E\e/f = Ref —d(P,Opt), Q=0Q- Q(P). If B1 > 0 and the following inequality
for the regression coefficients holds:

Bo+30 <0 (4.16)
then @ satisfies the Cauchy-measure Condition.

Proof.

The Cauchy-condition given by definition 2 is satisfied if Ve, Ik such that Vkq, ko <
ko, we have that:

|Qk, — Qk,| < € = |Refi, — Refy,| <e

By the regression model (4.34), we have that:

|[Refi, — Refral = e®|(QFt e — Qe

for ex,, ek, following a gaussian distribution N(0,0%). Given that 99.7% of the
values of a gaussian are in the interval given by three standard deviations, [—30, 30],
we have that:
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|Refy, — Refi,| < e®|QPe® — QPre=3| =

= QLY — Qe 4 Qe — Qe <

< QL1 — e e QR — Q)

=eP(Ty 4+ T) (4.17)

Since EA has converged to the minimum, Ref, — 0 and, by the linear regression,

also Qr — 0. If 51 > 0, then in is also convergent to zero. Therefore, T and 715 are
bounded by:

Tl S 6|e3¢7 _ 6730

T2 < 66730

for ki, ko large enough. Substituting in (4.17) and taking into account that €37 —
e™3% > 0, we have that:

|Refi, — Refr,| < eePoede

Therefore |Refr, — Refr,| < € holds provided that:

eeP0e37 < ¢

Finally, taking logarithms we have that:

Bo+30 <0

The relation between € and the model accuracy given by Sg proves the Proposition.

O

We would like to note that Proposition 2 is proven using a set of inequalities
< which achieve strict values for some cases and, thus, it is a sufficient but not
necessary condition. This means that any measure satisfying the inequality is Cauchy,
but implies by no means that all Cauchy measures should fulfill it. In this context,
Proposition 2 is a way of verifying that a measure is Cauchy rather than a means of
discarding non-Cauchy measures.

Corollary 1 Ifﬁ’; > 0 and the coefficients for the regression model of @ over é;f
satisfy the following inequality:

Bo+ 357 <0 (4.18)
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then @ satisfies the Cauchy-measure Condition.

Proof. The Corollary follows from applying the regression estimation formulae given
in Chapter 2. O

It is worth noticing that in the case that EA has succeeded in converging to the
global optimum, a quantity fulfilling Proposition 2 terminates EA ensuring a given
accuracy of its solution. This follows from the fact that a sequence of real numbers
converges if and only if it is a Cauchy sequence. In this case, we have that Ve, (Qx)
satisfies:

3k{, such that Vk > kg, [|Qr — Qol| < € (Convergent Sequence)

E'kg, such that th ko > k87 ||Qk1 — ng” <€ (Cauchy Sequence) (419)

for Qo the limit value of (Qy)x. By considering ko = maxz(kg, k2), the limit and
Cauchy conditions hold for the same € and Vky, ko > ko:

1@k, — Q.|| < €& [|Qr, — Qoll <€ (4.20)

The above condition combined with the Cauchy-measure Condition, implies that:

Q steady & [|Qr, — Q.|| < €= |[Refr, — Refi,|| < e < [|Refi, —d(P,Opt)|| <€
(4.21)

for d(P, Opt) the distance from the best individuals to the optimum. In the case EA
has converged, d(P,Opt) = 0 and € bounds the algorithm accuracy.

Finally, the Cauchy condition given in definition 2 can also be stated in terms of
the range formula approximating the deviation from a steady state. Let us consider
the first generations K7 and quf’:f such that @ and Ref have reached their steady
states.

Definition 3 (Empirical Cauchy-measure condition) A quantity is a Cauchy
measure if for all possible cost functions the following termination inequality holds:

_ Re

Kf,, < K7pf (4.22)
We would like to note that, in the next section, we will check in case that EA converges
to the optimum, the relation between the parameter ey in formula (3.8) and the

algorithm accuracy, provided that formula (3.8) is an accurate approximation to ¢
steady state.

K’_(Zi"e'r = Hlljn(Rng{k,,k+nbt}(q) < €st) (423)
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Kﬁff = mm(Rng{k tnay (Ref) < ées) (4.24)

Then, the continuous Cauchy condition given in definition 2 can be stated by the
equation:

R
K%m < KT;f (425)

4.2 Prediction Formula

In case that @ satisfies Proposition 2, its values across EA iterations behave like
Ref and, thus, we can use them as a bound on Ref for functions having similar
landscapes and properties. In the case that Proposition 2 does not hold but there
is a valid regression model (i.e. 1 # 0) we can still give a bound on Ref from the
values achieved by @, using the regression prediction intervals [41] for the model in
logarithmic scale given by 4.2.

The prediction intervals in logarithmic scale PI(log(Q)) are computed for each
log(Q) and provide ranges for log(Ref) = o + Bi1log(Q) at a given confidence
level 1 — .. That is, given log(Q), the values of the response log(Ref) are within
Lpi(log(Q)) <log(Ref) < Upr(log(Q)) with a (1 — a)100% confidence level.

Given log(@Q), the confidence interval at a confidence level (1-«) predicting log(Re f)
is given by:

Pliog(res) = Pliog(res)(log(@Q)) = [Lpzlog(ncf)(zog(cg))7 UPTLoy e (log(@)] =
= [log(Ref) —t352SrV/1 + ho, log( g(Ref) 05 SRV 1+ hol - (4.26)

for Sk given by 2.6, t* /22 the value of a T-Student distribution with N — 2 degrees

of freedom having a cumulative probability equal to a/2 and log(Re f), ho given by:

log(Ref) = by + b:1Q

ho = (1 xo)(XTX)—1< qlg ) o+ 01O + 420 (4.27)

Where (ag.a1,az) stand for the coefficients of the quadratic polynomial resulting
from the previous algebraic expression. formula per les as The exponential of Pl
already provides (with confidence 1 — «)) an upper bound for the accuracy of EA
solution given EA current state. In order to obtain the upper bound for log(Q)
ensuring a given accuracy Upr(Q) = €, it suffices to find the value log(Q) that solves:

log(Ref +tN S2SrV 1+ ho = Up(log(Q)) = (4.28)
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—

Using the expressions for log(Ref) and hg in (4.27) and solving (4.28) for log(Q),
we obtain:

2bob1 — 1Y ,3Shar — 261Up(log(Q)) + VD

loa(O) =
29(Q) 2(t, 52 5%az — b3)

(4.29)

where the discriminant is given by:

D =N /EES%al — 2boby + 201Ups(log(Q)))* — 4(tY /—235122@2 N /—235123((10 +1)—

= b3+ 2Upr(log(Q))bo — Upr(log(Q))?) (4.30)

The formula (4.29) gives the point estimation value log(Q) ensuring log(Ref) is
bounded with confidence (1-cv). In order to find the value of the alternative quantity,
Q that actually bounds the Ref, we must take exponentials to invert the logarithmic
scale and find the bound in the normal scale. By taking exponentials from (4.28) we

get the value for log(Q) ensuring Refy < e with confidence 1 — « as:

log(Ref) < Upi(log(Q)) = Ref < eapUr1(os@) — ¢ (4.31)

In figure 4.2 and figure 4.3, we illustrate the different casuistics that might appear
in the definition of the bound Py p depending on the deviation from identity of the
regression model slope. We show prediction intervals (dashed lines), the regression
model (dotted line) and the identity line (solid line) in the logarithmic scale as well
as their transformation in the normal scale after taking exponentials. In the normal
scale we observe a non-linearity for the prediction intervals with increasing prediction
ranges due to the model heteroscedasticity. In both scales, we show the value of
the independent variable, either log(@) or Q~, that ensures an upper bound on either
log(Ref) or Ref given by the relation (4.31). In case the regression model is under
the identity, as illustrated in figure 4.2, log(Ref) = log(Q)*by +by < log(Q), the value
log(Q) (and, thus, Q) is higher than the considered accuracy log(e) (e in normal scale).
And, in fact, Q = € always achieves the accuracy bound. In case the regression model

is above the identity, as shown in figure 4.3), log(Ref) = log(Q) * by + by > log(Q),

neither log(Q) nor @ can not bound Ref by themselves, and we should iterate @
more than the number of iterations required to have Ref bound e.

4.3 Experimental Set-Up

The goal of these experiment is to validate our framework for assessing the quality
of existing stopping conditions and to check its applicability to unknown black-box
problems.

The following experiments have been carried out:
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Figure 4.2: The predicted upper bound and the equivalence condition in case of a

good, (a), and poor, (b), equivalence relation.

1. Assessment of the Regression Model.

45

In order to correctly apply our

quality framework, there must exist a true linear relation [2]. This is assessed
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Figure 4.3: The predicted upper bound and the equivalence condition in case of a
good, (a), and poor, (b), equivalence relation.

by the t-test on the slope /73’: and the R? statistic as described in Chapter 2

2. Assessment of Current Termination Conditions. We have applied our
evaluation framework to those cases that have a reliable regression model. The
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quality of termination quantities have been assessed using the strong, weak and
empirical substitution conditions described in Section 4.1.

3. Applicability to Black-Box Problems. We have checked to what extent
results generalize to more realistic settings. In particular we have checked that
the weak condition holds in case of perturbations. Finally, we have also explored
to what extent termination of EA using @ relates to its accuracy in case of
convergence to the optimum by showing that prediction intervals provide an
actual bound for Ref.

Like in the experiments of Chapter 3, the regression framework has been applied
to the following quantities based on improvement in f-space, Fitval, distribution of
EA population in x-space, MzD, as well as, the distance to the function minimum in
x-space, Ref:

Imp = nblest Z;”;l’ (Ind;)

MzD = mazjeq,... n,..,)d(Ind;, Ind;) (4.32)
Ref :=maxje,... ny...)d(Ind;, Opt)

for (I ndj);-‘ff‘ the set of the npes best individuals and Opt the function optimum in
X-space.

We have chosen Differential Evolution (DE) paradigm with the settings given in
Chapter 3 for its dependency on diversity for achieving steady states (see experiments
in Chapter 3) and its proven success for solving global optimization over continuous
spaces [60, 13]. The range formula for checking the empirical condition has been
computed using the optimal parameters selected in Chpater 3, e, = 1075, ny, = 500.

We have applied our framework to test the 31 state-of-the-art evolutionary algo-
rithms cited in Chapter 3 ([24, 25]). For a representative set of the functions, the
benchmark also includes noisy versions with different degrees of noise [16]. These
functions have been used in our third experiment. In table 4.1 we show the test
function set with their main features. Each test function is checked with a 4/ if the
property holds, with a /4/ if the property strongly holds and with a X if the prop-
erty does not hold. For illustration of the function landscapes associated to tehe main
properties , figure 4.4 shows a pair of functions for each of the properties (multimodal-
ity, scalability and global structure) related to EA performance. At the top of the
figure, we show functions favoring convergence of EA schemes to the function opti-
mum, whereas functions favoring the opposite behavior are shown in bottom images.
At the top of the figure, we show functions favoring convergence of EA schemes to
the function optimum, whereas functions favoring the opposite behavior are shown in
bottom images.

We would like to note that the experiments have been done excluding the functions
LinearSlope, StepEllipsoidal, Weierstrass and Katsuura (figure 4.4). These functions
have infinite global minima, either a discrete set (Weierstrass, Katsuura) or even a
submanifold (plateau) of them (LinearSlope, StepEllipsoidal). These cases have to be
dropped from our analysis for two main reasons. First, the gold-standard reference
measure of the algorithm accuracy given by the distance to the global optimum cannot
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be computed in a reliable manner. Second, functions having multiple global minima
require specific EA paradigms and other stopping criteria different from reaching a
steady state (see discussion in Section 4.5 for further details). The remaining set of 20
functions include multimodal functions having several local minima with different EA
convergence behaviours: convergence to optimum (Rastrigin, Schaffers and Gallaghers
101) and premature convergence (Griewank-Rosenbrock, Schwefel, Gallagher21 and
Lunacek).

Katsuura Weierstrass

Figure 4.4: Dropped functions having multiple global minima, a finite discrete set
functions in top images and an infinite set given by a manifold in bottom images

As in Chapter 3, in order to account for variability across initial population, a
total number of 30 runs per function have been performed. For each run 3000 EA
iterations were performed in order to ensure convergence to the steady state.

For each quantity and test function, the generic regression model is:

log(Refk) = 6o+ ﬁ1lOg(Qk) + €k (4.33)

for Refr, Qk a random sampling of size 1000 of the values obtained across runs and
iterations. In case EA steady state is reached in finite time (usually due to premature
convergence as discussed in Section 4.5), repetitions of values at final iterations have
been removed to preserve uncorrelation of the linear model.
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Multimodality Scalability Global Structure

Ellpsoidal

Rosenbrock
Wigierstrass

Poor EA Convergence Good EA Convergence

Figure 4.5: Representative set of the benchmark test functions.

We note that, by taking exponentials, the regression model in the original scale is
polynomial with multiplicative errors:

Ref; = e®Q% e5i (4.34)

4.4 Results

4.4.1 Assessment of Regression Models

Tables 4.2 and 4.3 report the p—wvalue of the t-test on the slope, R? and the parameters
of the regression model (BB, ,73’; and Sg) for the 20 noiseless test functions having
a unique global minimum. The functions are split in 5 groups: functions 1-4 are
separable functions (group 1), functions 5-9 have a low (good) conditioning (group
2), functions 10-14 have a high (bad) conditioning (group 3), functions 15-19 have a
strong global structure (group 4) and functions 20-24 have a weak global structure
(group 5). Results for MzD are given in Table 4.2 and results for Imp in Table 4.3.
Regressions having a either p — value > 0.05 or R? < 0.9 are discarded. For both
quantities, the regression model is consistent for all functions.
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Function Mult. | gl.str. | separ | scaling | homog. | basins | gl.loc | plat.
Sphere X X /Y X 7 X X X
Ellipsoidal X X Nav4 Nav4 Nav4 X X X
Rastrigin Vo WY X v vV v v X
Bche-Rastrigin Nav4 Vv Nav4 vV Navi v Vv X
Linear Slope X X Vv X Vv X X v
Attractive Sec. X X VYV Vv v X X X
Step Ellipsoidal X X VY v VvV X X v
Rosenbrock v X X X v v v X
Rosenbrock Rot. Vv X X X Vv v vV X
Ellipsoidal X X X N IV X X X
Discus X X X VvV Nav4 X X X
Bent Cigar X X X Navi Navi X X X
Sharp Ridge X X X Vv vV X X X
Different Powers X X X Vv Vv X X X
Rastrigin N Y, X v vV v v X
Weierstrass VvV Vv X Vv Nav4 v Vv X
Schaffers VvV Vv X Vv vV Vv Navi X
Schaffers Conditioned | +/y/ v X Navi v v Navi X
Griewank-Rosenbrock | /y/ Vv X X VYV Vv Vv X
Schwefel v dec X X Navi v vV X
Gallagher’s 101 Vv X X Vv Vv vV vV X
Gallagher’s 21 Vv X X Vv Vv v 4 X
Katsura VvV X X X Nav4 Vv Vv X
Lunacek Vi v X v ViV v v X

Table 4.1: Test Functions and their features

For the distribution-based quantity, the goodness-of-fit is excellent, given that
Sgr is extremely small compared to the variable ranges. It is worth noticing that

the slope 1 is very close to 1 and BE is always negative. This implies that the
relation in logarithmic scale is a translation of the identity and the regression model

in the original scale is also linear. Besides a negative [y ensures that MxzD might

guarantee an upper bound for EA accuracy. It follows that MzD is a promising
alternative quantity to stop EA ensuring a given accuracy. Regarding results for the

improvement-based quantity reported in Table 4.3, the goodness-of-fit is also excellent.
Unlike MzD, the slope 3; takes any value in [0, 1] and Sy is not negative for all cases.
This implies that the quantity does not provide an upper bound for EA accuracy and,

thus, is worse suited for stopping EA.

4.4.2 Assessment of Current Termination Conditions

For this experiment we have used the noiseless test functions in order to test the two

following issues:
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Table 4.2: Distribution-based Quantity. Regression Model.
Function Model Verification Model Parameters

p — value R — sq | Constant | slope | SR
1 Esphere 6.4F — 208 0.99 —3.50 1.00 | 0.59
2 Ellipsoidal 1.4F — 201 0.99 —-3.7 1.00 | 0.71
3 Rastrigin 6.6E — 03 0.99 —1.94 1.10 | 0.26
4 Bunche-Rastrigin 1.75F — 212 0.99 —3.59 1.00 | 0.70
6 Attractive-Sector 7.99E — 20 0.99 —3.30 1.00 | 0.86
8 Rosenbrock 2.08E — 19 0.99 —3.65 0.99 | 1.38
9 Rosenbrock-Rotated 1.26F — 28 0.99 —2.90 1.03 | 0.84
10 Ellipsoidal-HC 2.59F — 16 0.99 —-3.71 1.02 | 0.88
11 Discus 5.98F — 16 0.99 —4.20 0.96 | 0.58
12 Bent-Cigar 4.16F — 131 1.00 —3.38 1.00 | 1.33
13 Sharp-Ridge 8.35F — 37 0.96 —2.83 1.00 | 0.95
14 Different-Powers 241FE — 25 0.92 —2.03 1.03 | 1.32
15 | Rastrigin-Multimodal | 1.28F — 14 0.99 —3.46 1.00 | 1.07
17 Schaffers 2.58F — 17 0.99 —3.56 1.02 | 1.03
18 | Schaffers-Conditioned | 5.52F — 28 0.98 —-3.11 1.05 | 1.23
19 | Griewank-Rosenbrock | 2.66EL — 04 0.94 1.26 1.67 | 2.51
20 Schwefel 7.66F — 04 0.91 —-7.61 0.72 | 3.10
21 Gallagher-101 5.57TFE — 06 0.93 —4.32 0.96 | 2.18
22 Gallagher-21 2.60F — 07 0.99 —3.15 1.04 | 0.11
24 Lunacek 3.79E — 09 0.94 —4.38 0.94 | 3.23

1. Strong Interchange Condition. We have checked the definition 1 for distribution-
based (MxD) and improvement-based (F'itval) measures using our benchmark
test functions. Table 4.5 and 4.4 contains the e values for Mz D and show to
what extent the slope f; is equal to 1 in the case of distributed-based measure,
and, thus, to what extent our measure can substitute our standard goal measure
Ref. As we can expect, the strong condition does not hold for all the functions
but we can see that most of them keep ¢ bellow 1072, It is worth noticing that
functions with a poor e was precisely poor R? ones. That fact indicates that
more strong linear relation more the slope closes to 1. Then, more alternative
and gold-standard measures are interchangeable. In the case of improvement-
based measure, Fitval, practically all of ¢ values are greater than 10! and,
thus, the substitute condition does not hold.

2. Weak and Empirical Interchange Condition. We have checked that the
statistical requirements given in Proposition 2 ensure the Cauchy-measure con-
dition given by Ref Definici for a set of benchmark test functions. The Cauchy-
measure condition given in Proposition 2 has been computed over the meaningful
regression models. The theoretical condition has been compared to the empir-
ical termination given by (4.22). For each case, the empirical termination has
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Table 4.3: Improvement-based Quantity. Regression Model.
Function Model Verification Model Parameters

p — value R — sq | Constant | slope | SR
1 Esphere 0 1 0 0.5 | 0.00
2 Ellipsoidal 2.42F — 256 0.99 —0.34 0.5 0.05
3 Rastrigin 3.93FE — 05 0.99 —2.56 0.51 | 0.01
4 Bunche-Rastrigin 1.80F — 218 0.99 —2.20 0.50 | 0.53
6 Attractive-Sector 6.85F — 22 0.99 1.67 0.28 | 0.52
8 Rosenbrock 3.81F — 24 0.99 0.12 0.50 | 0.44
9 Rosenbrock-Rotated 1.98E — 30 0.99 1.38 0.50 | 0.62
10 Ellipsoidal-HC 1.14E — 19 0.99 0.65 0.50 | 0.33
11 Discus 2.46F — 19 0.99 —0.69 0.50 | 0.22
12 Bent-Cigar 3.26EF — 140 0.99 0.03 0.50 | 0.83
13 Sharp-Ridge 1.28E — 39 0.97 1.22 0.50 | 0.73
14 Different-Powers 1.59F — 29 0.95 2.47 0.37 | 0.84
15 | Rastrigin-Multimodal | 2.79F — 22 0.99 0.41 1.01 | 0.09
17 Schaffers 6.48F — 18 0.99 —0.70 1.00 | 0.86
18 | Schaffers-Conditioned | 4.42F — 29 0.99 —1.21 1.04 | 1.04
19 | Griewank-Rosenbrock 24F — 04 0.97 3.15 0.52 | 0.95
20 Schwefel 1.5E — 03 0.98 —5.07 0.58 | 0.63
21 Gallagher-101 5.98E — 07 0.98 —0.77 0.24 | 0.72
22 Gallagher-21 4.24F — 07 0.99 —0.39 0.24 | 0.13
24 Lunacek 6.26F — 09 0.95 —3.28 0.47 | 2.96

been checked using a proportion test for the variable:

o201 KR, — K >0
Dif = 0 otherwise

using go = 0.95 and « = 0.05.

Tables 4.8 and 4.9 report the average termination iterations u(KiQer) and M(Kﬁef)

computed across EA runs, p-values for the termination condition (4.22) and the
Cauchy condition given by Proposition 2. We use a 4/ if conditions are satisfied
and a X otherwise. In the case of the termination given by (4.22) a / is given if
the p-value is less that o = 0.05. In the case of Proposition 2 a 4/ indicates that the
inequality of its Corollary is satisfied. Results for MzD are given in Table 4.8 and
results for Imp in Table 4.9. For all cases, a steady state for MzD also implies Ref
steady state as p-values are below 0.01. It follows that the quantity is a good a candi-
date for terminating EA, at least for the benchmark test set. Besides the theoretical
condition ensuring generalization of results is fulfilled in 13/20 = 65% cases. In fact,
if we consider the joint regression model for the 20 functions, we obtain a regression
parameters 3y = —3.079, f1 = 1.000, Sg = 0.813 and R — sq = 0.999 that also satisfy
the Cauchy condition. This indicates that the quantity is also well-conditioned for
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Table 4.4: 3, Condition MxzD

Function Sg, Cl— | CI+ €
1 Esphere 5.61F£ —04 | 0.99 | 1.00 | 1.47F — 03
2 Ellipsoidal 6.53F — 04 | 0.99 1.00 | 1.75FE — 03
3 Rastrigin 4.64F — 02 | 0.90 1.30 | 2.35F — 01
4 Bunche-Rastrigin 5.98FE — 04 | 0.99 1.00 | 1.41F — 03
6 Attractive-Sector 2.32FE —02 | 095 | 1.05 | 4.29F — 02
8 Rosenbrock 3.06E —02 | 0.93 | 1.05 | 6.38E — 02
9 Rosenbrock-Rotated | 1.93FE —02 | 0.99 | 1.07 | 6.52F — 02
10 Ellipsoidal-HC 2.81FE —02 | 0.96 1.07 | 6.52E — 02
11 Discus 2.27TFE —02 | 091 1.01 | 7.96F — 02
12 Bent-Cigar 4.20FE —03 | 0.99 1.01 | 1.07TE — 02
13 Sharp-Ridge 2.71FE —02 | 0.94 1.05 | 4.87TEF — 02

14 Different-Powers 529E —02 | 093 | 1.14 | 1.21F - 01
15 | Rastrigin-Multimodal | 3.20E —02 | 0.94 | 1.08 | 6.54F — 02

17 Schaffers 2.34FE —02 | 0.97 | 1.07 | 5.74F — 02
18 | Schaffers-Conditioned | 2.82E — 02 | 0.99 | 1.10 | 9.41F — 02
19 | Griewank-Rosenbrock | 2.92F — 01 | 0.93 | 2.43 1.26

21 Schwefel 1.75FE — 01 | 0.27 1.17 | 6.31F — 01
21 Gallagher-101 1.34F — 01 | 0.65 1.27 | 2.90F — 01
22 Gallagher-21 1.37TE—02 | 1.01 | 1.07 | 6.69E — 02
24 Lunacek 1.23FE —01 | 0.68 1.21 | 2.74F — 01

terminating EA for other functions presenting similar landscapes. In the case of Imp,
only 3 functions (Bunche-Rastrigin, Schaffers-Conditioned and Schwefel) satisfy the
empirical termination condition. However only two of the former functions satisfy the
theoretical condition given in Proposition 2. This indicates that the capability of Imp
for detecting EA steady state will be very low in general.

4.4.3 Applicability to Black-Box Problems

In order to assess the capability of the statistical requirements for accurate termination
we have computed the proportions test (3.13) in the set of noisy functions [16]. This
set is representative of the main properties characterizing cost functions but includes
several degrees of noise that distort the expected profile like in real-world applications.
There is a function for each of the 5 groups [16]: Sphere for group 1, Rosenbrock for
group 2, Ellipsoidal for group 3, Schaffers for group 4 and Gallagher101 for group 5.
We want to note that DE converged to the optimum in all cases.

The generalization capability is validated in the measure that the termination
condition agrees with the statistical requirements of Proposition 2 computed in ex-
periment 4.4.2. In order to assess the accuracy of the EA solution given by the
experimental termination condition, we have also compared the distances between
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Table 4.5: 5; Condition ImpFunc
Function Sg, Cl— | CI+ €
1 Esphere 1.11E—-30 | 0.5 0.5 | 5.00F —01
2 Ellipsoidal 2.23E—05 1| 0.49 | 0.49 | 5.00F — 01
3 Rastrigin 1.25E —04 | 0.5 0.5 | 4.95F — 01
4 Bunche-Rastrigin 2.25FE —04 | 049 | 049 | 5.02F — 01
6 Attractive-Sector 3.86F —03 | 0.27 | 0.28 | 7.31E —01
8 Rosenbrock 4.85FK —03 | 0.49 | 0.51 | 5.12FE —01
9 Rosenbrock-Rotated | 7.056FE — 03 | 0.49 | 0.52 | 5.06F — 01
10 Ellipsoidal-HC 519FE —03 | 0.48 | 0.50 | 5.15F — 01
11 Discus 4.37TE —03 | 0.48 | 0.50 | 5.16E — 01
12 Bent-Cigar 1.30E —03 | 0.49 | 0.50 | 5.01E —01
13 Sharp-Ridge 1.06FE —02 | 048 | 0.52 | 5.14F — 01
14 Different-Powers 1.18E —02 | 0.34 | 0.39 | 6.55F — 01
15 | Rastrigin-Multimodal | 2.58%2 —03 | 1.00 | 1.02 | 1.94F — 02
17 Schaffers 1.92E8 —02 | 0.96 | 1.04 | 3.73E — 02
18 | Schaffers-Conditioned | 2.37E —02 | 0.99 | 1.09 | 8.43F — 02
19 | Griewank-Rosenbrock | 4.12F — 02 | 0.41 | 0.64 | 5.65F — 01
21 Schwefel 4.08E —02 | 0.44 | 0.70 | 5.21FE —01
21 Gallagher-101 1.19FE —02 | 0.21 | 0.27 | 7.83E — 01
22 Gallagher-21 3.69F —03 | 0.23 | 0.25 | 7.69F — 01
24 Lunacek 5.66F —02 | 0.35 | 0.60 | 6.27F — 01

the best individual and the function optimum at the termination iterations K %T and

Ref
KT;" .

that K<

Ref

distance is smaller than the one achieved at K. - .

The empirical termination condition ensures a given accuracy in the measure

A one-tailed paired

t-test for the difference in means is used to check if the accuracy achieved by
bounds EA actual accuracy.

Tables 4.10 and 4.11 report the average termination iterations /J/(ngr) and pu(
for the 100 EA runs and the proportion test for the empirical termination condition
as in Tables 4.8 and 4.9. We also report the average distances (noted by u(D%) and
w(DTef)) between the best individual and the function optimum at the termination
iterations K. %T and K. qu‘ff , as well as, p-values for the one-tailed paired t-test on their
difference. Results for MxzD are given in Table 4.10 and results for Imp in Table 4.11.

Q
KTe'r

Ref
KT:’I’

As predicted by the Cauchy condition, MzD terminates EA at its steady state,
while Imp always fails to terminate EA at the steady state. It is worth noticing the
case of the Schaffers function because it is illustrative of the usefulness and reliability
of the inference provide by our Cauchy condition. The empirical termination condition
was successful in the noiseless function (case 18 in Table 4.9), but the Cauchy condition
was not satisfied. This indicated that the empirical conclusion was not reliable enough
to be generalized. This is proved by the empirical failure reported in Table 4.11.

Concerning distances, the accuracy achieved by K%’f,D always bounds (with p-

)
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Table 4.6: 3y Condition MxzD

Function Sa, Cl— CI+ Yvalue
1 Esphere 1.27E—-01 | =3.75 | —=3.24 | 1.40E — 47
2 Ellipsoidal 1.44F — 01 | —3.98 | —3.41 | 1.55F — 44
3 Rastrigin 5.14F — 01 —4.15 0.26 0.032
4 Bunche-Rastrigin 1.26F — 01 —3.84 | —3.34 | 1.66F — 49
6 Attractive-Sector 3.78E —01 | —4.09 | —2.51 | 2.20FE — 08
8 Rosenbrock 5.83F —01 | —4.86 | —2.42 | 2.63F — 06
9 Rosenbrock-Rotated | 3.53F —01 | —3.62 | —2.17 | 3.02FE — 09
10 Ellipsoidal-HC 4.00E —01 | —4.56 | —2.86 | 3.77E — 08
11 Discus 3.42F — 01 —4.92 | =347 | 7T40F — 10
12 Bent-Cigar 2.61F — 01 —-3.90 | —2.86 | 2.26F — 22
13 Sharp-Ridge 3.53F — 01 —3.54 | —2.12 | 8.68F — 11

14 Different-Powers 5.34E —01 | —3.11 | —0.95 | 2.21F — 04
15 | Rastrigin-Multimodal | 5.32F — 01 | —4.60 | —2.31 | 7.02E — 06

17 Schaffers 3.83F — 01 —4.38 —2.74 | 6.51F — 08
18 | Schaffers-Conditioned | 4.03F£ — 01 | —3.94 | —2.29 | 6.57F — 09
19 | Griewank-Rosenbrock 2.22 —4.43 6.95 0.70
21 Schwefel 241F —01 | —13.81 | —1.41 0.01
21 Gallagher-101 1.22F — 01 —-7.13 —1.52 0.003
22 Gallagher-21 9.97F —02 | —3.39 | —2.90 0.88
24 Lunacek 1.83 —8.33 | —0.43 0.02

values under 1072°) the actual EA accuracy given by the distance at iteration Kﬁ’:f .

This agrees with the theoretical properties of Cauchy-measures. On the other side,
distances given by Fitval do not present a clear relation with the ones given by the
reference measure Ref. Asreported in the literature [72], the large variability in their
values strongly depends on the properties of the cost functions. A comparison between
Rosenbrock and Gallagher101 functions illustrates this behavior. Although, for both
functions, Fitval stopped EA before Ref in around 170 iterations (see Table 4.11),
their accuracies are very different. It is also worth noticing that differences in accu-
racies do not seem to be related to the differences between Fitval and Ref iterations.
This is illustrated again by comparison between Ellipsoidal and Gallagher101 func-
tions. Ellipsoidal is the function having the least number of difference in iterations,
but, it is worse than Gallagher101 in terms of accuracy loss.

4.5 Discussion

There are several topics arising from the theoretics and experiments presented in this
paper that deserve a detailed discussion.

1. Behavior in case of Premature Convergence
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Table 4.7: 5y Condition ImpFunc
Function Sg, CI— CI+ Yvalue
1 Esphere 512F — 28 | 9.26F — 15 | 9.26F — 15 1.00
2 Ellipsoidal 9.97F — 03 —0.35 —0.31 5.49F — 55
3 Rastrigin 2.89F — 03 —2.57 —2.55 6.35F — 07
4 Bunche-Rastrigin 9.57E — 02 —2.39 —-2.01 1.27TF — 41
6 Attractive-Sector 2.90F — 01 1.06 2.27 0.99
8 Rosenbrock 2.16F — 01 —0.33 0.57 0.70
9 Rosenbrock-Rotated | 3.17FE — 01 0.72 2.02 0.99
10 Ellipsoidal-HC 1.92F — 01 0.25 1.06 0.99
11 Discus 1.57F — 01 —1.02 —0.35 0.00
12 Bent-Cigar 1.70F — 01 —0.30 0.37 0.57
13 Sharp-Ridge 3.50F — 01 0.51 1.92 0.99
14 Different-Powers 4.75F — 01 1.51 3.43 0.99
15 | Rastrigin-Multimodal | 5.12F — 02 0.30 0.52 0.99
17 Schaffers 3.60F — 01 —1.47 0.06 0.03
18 | Schaffers-Conditioned | 3.77F — 01 —1.98 —0.44 0.00
19 | Griewank-Rosenbrock 1.03 0.30 6.00 0.98
21 Schwefel 6.92F — 01 —7.26 —2.86 0.00
21 Gallagher-101 5.46F — 01 —2.06 0.52 0.10
22 Gallagher-21 1.57F — 01 —0.77 0.00 0.02
24 Lunacek 1.79 —7.17 0.60 0.04

Concerning cases in which algorithms diverge, EA population stagnates and
cannot reach a steady state and the iterative process does not converge to any
point. Divergent cases failing to reach a steady state are always problematic
and often require stopping EA using a maximum number of iterations, given
that EA population is prone to behave erratically and there is no clear quan-
tity reaching a steady state. Divergent cases usually arise due to the choice
of an EA paradigm that fails to sufficiently explore the function profile. This
is the case of DE and the functions LinearSlope, StepEllipsoidal, Weierstrass
and Katsuura that have multiple global minima. These functions require niche
search EA paradigms, like crowding [1], which present a different asymptotic
behaviour given by the multiple global minima searched by the algorithm. Our
methodology could be applied provided that a different kind of measure of EA
steady state taking into account the multiple convergence was defined. This
is future research out of the scope of the presented work. The quality of the
fit depends on the properties of EA asymptotic behavior. There are 3 possible
general asymptotic behaviors for EA: convergence to optimum, premature con-
vergence and stagnation. FEach case has a characteristic regression model and
EA population configuration illustrated in figure 4.10. We show the regression
in logarithmic scale for @ = MaD (middle scatter plots) and @Q = I'mp (right
scatter plots) in right plots. The left most scatter shows EA population config-
uration for the first (blue dots) and last (black crosses) iterations, together with



4.5. Discussion 57

Table 4.8: Distribution-based Quantity. Cauchy-measure Condition.

Function w(KS ) | w(KETY | Termination | Proposition 2
1 Esphere 100.94 73.7 0.01, / Vv
2 Ellipsoidal 101.89 73.76 0.01, / N
3 Rastrigin 114.75 87.68 0.01, / N
4 Bunche-Rastrigin 118.33 88.62 0.01, / N
6 Attractive-Sector 376.66 297.49 0.01, / Vv
8 Rosenbrock 556.51 480.52 0.01, / N
9 | Rosenbrock-Rotated 528.25 446.4 0.01, / N
10 Ellipsoidal-HC 204.37 146.88 0.01, / Vv
11 Discus 388.83 304.53 0.01, / N
12 Bent-Cigar 483.14 382.39 0.01, / X
13 Sharp-Ridge 494.23 402.37 0.01, / X
14 Different-Powers 499.72 395.3 0.01, / X
15 | Rastrigin-Multimodal | 626.78 560.19 0.01, / v
17 Schaffers 198.89 129.73 0.01, / N
18 | Schaffers-Conditioned | 451.98 321.36 0.01, / X
19 | Griewank-Rosenbrock | 1274.59 | 1096.43 0.01, / X
21 Schwefel 12073 | 82.85 0.0,/ Vi
21 Gallagher-101 301.23 230.71 0.01, / X
22 Gallagher-21 294.96 228.9 0.01, / N
24 Lunacek 386.6 328.79 0.01, / X

the function optimum (red circle) for a 2D case. Each asymptotic behavior of
EA population is better appreciated in the squared close-ups around function
optima.

In the case of convergence to optimum (first row in figure 4.10), EA population
converges to a steady state that gathers around the function optimum to finally
coincide with it. For this cases there is an excellent fit of the regression model
and all theory applies.

In the case of premature convergence (second row in figure 4.10), EA population
reaches a steady state gathered around a point different from the function opti-
mum. The functions Griewank-Rosenbrock, Schwefel, Gallagher21 and Lunacek
belong to this group. Due to the premature convergence, the limit point of EA
steady state might be achieved in a finite number of iterations. Before reach-
ing such limit point, there is a perfect linear regression (see close-up of figure
4.10). However the moment EA has actually reached the limit point, quantities
are prone to repeat their values. Such repetitions create a fake asymptote that
distorts the linear pattern and, in fact, violate the uncorrelation assumption
for errors required for the regression model. In order to apply our regression
framework the final repeated values have to be removed. Since infinite values
are excluded from the computation of regression models, repetitions in final it-
erations are discarded by applying the regression model to Y = Ref — Ref(N;)
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Table 4.9: Improvement-based Quantity. Cauchy-measure Condition.

Function wW(KS ) | w(KETY | Termination | Proposition 2
1 Esphere 45.74 73.7 1, X X
2 Ellipsoidal 48.78 73.76 1, X X
3 Rastrigin 80.21 87.68 1, X X
4 Bunche-Rastrigin 94.49 88.62 0.01, v/ N
6 Attractive-Sector 124.74 297.49 1, X X
8 Rosenbrock 388.03 480.52 1, X X
9 Rosenbrock-Rotated 331.87 446.4 1, X X
10 Ellipsoidal-HC 76.25 146.88 1, X X
11 Discus 226.66 304.53 1, X X
12 Bent-Cigar 279.82 382.39 1, X X
13 Sharp-Ridge 213.23 402.37 1, X X
14 Different-Powers 79.01 395.3 1, X X
15 | Rastrigin-Multimodal | 559.23 560.19 1, X X
17 Schaffers 139.42 129.73 0.67, X X
18 | Schaffers-Conditioned | 371.65 321.36 0.01, / X
19 | Griewank-Rosenbrock | 755.96 1096.43 1, X X
21 Schwefel 98.24 82.85 0.01 v
21 Gallagher-101 99.44 230.71 1, X X
22 Gallagher-21 120.75 228.9 1, X X
24 Lunacek 294.52 328.79 1, X X

Table 4.10: Distributed-based Quantity. Applicability to Black Box Problems.

Predictive Power EA Actual Accuracy
Function M(K%,,,) u(K:Ipszf) Termination | p(D®) | p(DF) | p-val
Esphere 198.8 131.9 0.01, / 2¢ — 8 5e — 7 9e — 41
Rosenbrock 456.1 314.1 0.01, / de—8 | 4de—T7 | 8e—28
Ellipsoidal 200.9 132.7 0.01, / 3e—8 | Be—T7 | le—29
Schaffers 1601.4 868.3 0.01, v/ 3e—8 de -7 de — 22
Gallagher101 364.6 287.2 0.01, v/ 3e—8 | HBe—T7 |4de—34

and X = Q — Q(Ny), for N the maximum number of EA iterations.

Finally, in the case of stagnation (third row in figure 4.10), EA population
cannot reach a steady state and the iterative process does not converge to any
point. The functions LinearSlope, StepEllipsoidal, Weierstrass and Katsuura
belong to this group. These cases have to be dropped from the further analysis,
given that they require stopping EA using other criteria different from reaching
a steady state. First, we would like to note that these functions do not have
a unique global minimum and, thus, require multimodal search EA paradigms,
like niching [56]. Multimodal algorithms present a different asymptotic behavior
(given by the multiple minima searched by the algorithm) and are out of the
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Table 4.11: Improvement-based Quantity. Applicability to Black Box Problems.

Predictive Power EA Actual Accuracy

Function u(Kerr) u(K:ﬁ:f) Termination | p(D®) | p(DRT) | p-val
Esphere 57.1 131.9 1, X 4e — b b5e — 7 1
Rosenbrock 123.2 314.8 1, X Te—5 de — 7 1
Ellipsoidal 60.0 132. 1, X 4e —5 5e — 17 1
Schaffers 439.04 868.3 1, X le—5 de — 7 1
Gallagher101 110.2 287.2 1, X le — 6 5e — 7 1

Table 4.12: Noiseless Functions Upper bound
MaxDist FitVal

Function |[e=10°] ¢=10" | e=10C% [ e=10"
Esphere 6.0le—6 | 5.98¢—9 | 1.00e —12 | 1.00e — 18
Rosenbrock | 1.07e —6 | 1.22¢e —9 | 3.89e¢ — 14 | 4.64e — 20
Ellipsoidal 5.19¢ —6 | 5.13¢—9 | 6.53¢ — 13 | 6.48¢ — 19
Schaffers 2.27e —6 | 1.59¢ —9 1.6le —7 | 1.49¢ — 10
Gallagher101 | 1.39¢ — 6 | 3.36e — 10 | 1.56e — 7 | 1.44e — 10

Table 4.13: Noisy Functions Upper bound
MaxDist FitVal
Function e=10"0] e=107" e=10"F e=107"
Esphere 3.65e —6 | 3.32¢—9 | 5.70e — 14 | 5.52e¢ — 20
Rosenbrock | 1.10e —6 | 1.0de —9 | 6.22¢ — 15 | 3.59¢ — 21
Ellipsoidal 2.76e — 6 2.76 -9 8.23e — 14 | 8.06e — 20
Schaffers 3.28¢ — 7 | 2.45¢ — 10 | 7.56e —9 | 4.68¢ — 12
Gallagher101 | 1.82¢ — 7 | 2.59¢ — 11 | 9.88¢ — 11 | 6.04de — 14

scope of the presented work. Second, divergent cases failing to reach a steady
state are always problematic and often require stopping EA using a maximum
number of iterations [72].

2. Applicability to Black-Box Problems

The proposed evaluation mechanisms are given in statistical regression terms
(Proposition 2) that are checked for known test functions. If the set of test
functions cover enough features of potential landscapes, then statistical infer-
ence can be applied to extend results to unknown functions presenting similar
properties. Knowledge about the properties of unknown optimization problems
can be obtained using ELA [36] and, thus, suitability of a quantity validated
with our method could be assessed in real settings. We would like to note that
the chosen dataset already includes most landscapes described for optimization
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problems [36]. Thus, if a given quantity Q satisfies the Cauchy measure con-
dition for the BBOB’09/°10 sets, this quantity will be likely to be suitable for
stopping EA in practice using the range formula (3.8), provided that EA has
reached a steady state. Further, our methodology can be applied to any data
set of test functions, so results are easily reproducible for benchmarks more
complete regarding the whole space of possible optimization tasks.

Once the quantity and its parameters have been chosen using the validation
benchmark, these are the settings that should be used for terminating unknown
problems without further verifications. We would like to point that whether



4.5.

Discussion 61

Ellipsoidal

ReT
HeT

] 4

CostFunction

Schaffer

HeT

" 4

Her
4

2 7

] 4
CostFunction

Figure 4.7: Confidence Intervals and Identity line for FitVal noiseless functions in
logarithmic scale

EA should be restarted or has reached the optimum cannot be predicted by
our evaluation mechanisms and, it is out of the scope of this paper. In fact,
information about the EA state optimality is impossible when no gradient infor-
mation is available. Given that this could be the usual case for EA optimization
problems, whether EA has reached the optimum can only be answered for very
specific algorithms and optimization problems [34]. Therefore, in practice, the
most sensible stop criterion should ensure EA has reached a steady state rather
than its convergence to the optimum [65].
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Chapter 5

Application to Pharmacology

5.1 Preliminaries

This thesis is aimed to develop and apply mechanistic models because they usually
include many parameters in the equation with the consequent necessity of algorithmic
applications for correct estimation. In particular we consider the Operational model
of allosterism including receptor activity.

Knowledge of biological systems can be gained by examining the physiological ef-
fects that they produce under particular experimental conditions. These effects are
the result of the transduction by the system of the signal embodied in the molecu-
lar structure of a drug, where for drug we mean, in a general sense, any substance
able to perturb a biological system in a concentration-dependent fashion. Because
the true transduction function is generally unknown an estimate must be obtained.
These functional estimates, expressed as mathematical models, are useful for the
characterization of the biological system and for the classification and discovery of
new drugs. The perturbation that the drug exerts on the biological system can, in
theory, be described by a true theoretical function ¢(z) of all the parameters present
in the system (figure 5.1). Because this function is unknown an f(x) estimate must
be obtained from FE/[A] experimental data. The f(x) estimate can be used for both
characterization of the biological system and classification and design of new drugs.

Yet what we understand by a mathematical model, particularly in pharmacology?
A mathematical model of pharmacological effect is a mathematical equation F =
f([A]), in which E represents the pharmacological effect, [4] is the concentration of
the drug and f is a mathematical function containing a number of parameters. It is
the nature of the parameters what defines the approach we are using for modelling
the experimental data. We distinguish between two types of mathematical models:
(i) empirical, if the parameters lack physical meaning and (ii) mechanistic, if the
parameters embody part of the biological information the function is intended to
represent [26].

65
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x=[drug]
Drug | sl [Biologica] System |
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Figure 5.1: Schematic representation of the drug action process.

Empirical models. Customarily, drugs and receptors are compared and classified
by monitoring the pharmacological effect the receptor produces with increasing [A].
E/[A] data are commonly depicted in a semi-logarithmic scale, F/z with @ = log[A],
typically leading to sigmoid-shaped plots. To properly compare the experimental
scatter plots, £ = f(x) functions are fitted to the data points and their parameters
estimated. The parameter estimates allow the quantification of the geometric charac-
teristics of the E/x curves. If, for simplicity, we assume that basal response is absent
(E = 0 for [A] = 0) then the shapes of E//x curves can be characterized by four quan-
tities, the upper asymptote (maximum response), the mid-point (curve location), the
mid-point slope (steepness) and the inflection point (symmetry of the curve) . Each
of these properties can be mathematically defined and pharmacologically interpreted.

The upper asymptote, top(figure 5.2 A), reflects the efficacy of the agonist-receptor
system and is defined as the value towards the effect tends as [A] increases, F ——
Tr—00

Top . The mid-point(5.2 B), x50, measures the agonist potency and is defined as the
x for half the top. The mid-point slope (5.2 C)is the value of the slope of the E/x
curve at the mid-point, (%)w:ww , and displays the sensitivity of the system to small
changes in agonist concentration. Rectangular hyperbolic curves give a typical mid-
point slope of 0.576 when they are normalized (the derivative is divided by top) while
non-hyperbolic curves can be steep ((4£),_,., > 0.576 ) or flat ((%£),—s,, < 0.576 )
. The point of inflection ((5.2 C)),X; , is a point on a curve at which the curvature
changes from convex to concave or vice versa. For an E/x curve, this is a point at
which the first derivative of the function is a maximum whereas the second derivative
is equal to zero. Importantly, the location of the point of inflection serves for the
assessment of the symmetry of the curve. An F/x curve is symmetric if the point of
inflection matches the mid-point, X; = X50, and asymmetric if it does not, X; # X50.
Geometric characterization of the experimental F/z plots is what empirical models
are asked for. The above commented geometric features, upper asymptote, location,
steepness and symmetry, are obtained after fitting data with a mathematical model.
There are a number of E = f(x) functions for data fitting but, with no doubt, the
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Figure 5.2: Geometric parameters characterizing F/[A] curves. The data are rep-
resented using logarithm values for the X axis. The effect for [A] = 0 is 0. The solid
curve is symmetric. The dashed curve is asymmetric(open and solid circles are used
for the mid-point and the inflection point, respectively).

mostly used in pharmacology is the Hill equation.
Hill equation: a model for symmetric concentration-effect curves.

The Hill equation [26] is the three-parameter (5.1).

a

b= roe—s (5.1)

where 2 = Log[A] and m > 0, being m the Hill coeflicient.

The upper asymptote is a, the mid-point is 50 = z;, , the mid-point slope is
%)w:xso = % = 0.576am (notice that for m=1, rectangular hyperbola, the mid-
point slope is equal to 0.576 after normalization by dividing by a) and the point of
inflection is ;7 = x . Because there is an identity between the inflection point and
the mid-point, the Hill equation produces symmetric curves in all cases and, therefore,

is not appropriate for fitting asymmetric E/z data.

But what to do with asymmetric concentration-effect curves?. There are several
empirical models capable of dealing with asymmetric E/x data, namely the Richards
model, the Gompertz model and the modified Hill equation [19].

The Richards model The Richards model [46] is a generalization of the Hill
equation by including an additional parameter (5.2).

a

E=— - 5.2
1+ 10m(zo—2) (5:2)

with s > 0 The upper asymptote is a, the mid-point is x50 = x — %log(Qfm‘ﬂs -1)
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1
, the mid-point slope is (%)x:xso = w, and the point of inflection is

xr; = xp + %log(s). The new parameter, s, allows for asymmetry. If s = 1, 5.2
is equivalent to 5.1 and the theoretical curve is symmetric. Consistently with this
feature, we see that if s = 1 then x; = x50 = x; . However, if sneql then xneqxs0
, and the theoretical curve is asymmetric. Interestingly, for sneql, the degree of
asymmetry of the curve, measured as the difference between z; and x50, relies on both
s and m parameters, and x; — x50 = %log(s(ﬁ —1)) . If s > 1 then 5 < x50, the
point of inflection is located before the mid-point, whereas if If s < 1 then x; > x50,
the point of inflection is placed after the mid-point. We see that for a given s value
the degree of asymmetry decreases as the parameter m increases. In addition, it
has been shown [26] that the degree of asymmetry is higher for Richards equations
with s < 1 than for those equations with s > 1. The Richards equation may detect
and quantify the asymmetry present in F/z data. However, the correlation between
parameters, that inclusion of parameter s brings in, poses additional difficulties in
data fitting [63]. The Richards equation is a typical example of an overparameterized
model (see Appendix for a discussion on data fitting). To account for asymmetry
without increasing the number of parameters of the Hill equation led to the proposal
of two new functions, the Gompertz model and the modified Hill equation.

Connecting empirical and mechanistic models The asymmetry of the
curves and the Hill coefficient. In an earlier work [18] a connection between
empirical and mechanistic models was shown by using a mechanistic model taken from
the ion channel field, a ligand-gated ion channel with 4 binding sites. Nevertheless,
the model can be applied to a general tetrameric receptor R that is activated after all
the binding sites are occupied. By defining the effect as the proportion of receptors
in the open/active state, the following expression was obtained

where K1, K2, K3 and K4 are the microscopic equilibrium dissociation constants

and Kp = [{XZIE] is the equilibrium constant for the opening/activation (ion chan-

nel/receptor) reaction. By defining the effect as the proportion of receptors in the
open/active state, the following expression was obtained

A*Kp

E =
K1 Ko K3 Ky + 4Ky K3 K4 [A] + 6 K3 Ka[A]2 + 4K, [A]P + [A]*(1 + Kg)

(5.3)

By supposing that the efficacy is very low (KFE << 1) and no cooperativity
between the binding sites (K; = K), the previous mechanistic equation simplifies to

Kg Kg
F— — 5.4
(1 + [IA{])4 (1 + 10logK—z)4 ( )

where 2 = log[A]. The latter equation corresponds to a Richards model 5.2(with
a=Kg,m=1,z, = logKands = 4). Thus, we see that empirical models (phenotype)
may reflect some of the features that characterize mechanistic models (genotype). In
addition, this value of s is indicative of asymmetry and may represent an example
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of the necessity of expanding the set of empirical models and consider that in some
cases other models apart from the symmetric Hill model are needed.We have shown
an example in which a mechanistic model may be expressed as an empirical model
under particular mechanistic features. It can be hypothesized that if a systematic
analysis of mechanisms were done in a particular biological /pharmacological research
area and the corresponding set of empirical equations were identified then we could
proceed in the inverse order and try to propose some mechanistic conditions from
the application of one or other empirical model. For instance, in the case of GPCRs
asymmetric curves are found when total receptor and total G protein concentrations
are not negligible one relative to the other . This indicates that the stoichiometry of
the biological species in a proposed mechanistic GPCR system must be consistent with
the symmetry of the experimental curves. Likewise many other molecular properties
associated to GPCR function will be commented from the models presented on the
next section.

Mechanistic models We have seen that there is a relationship between the
mechanism underlying experimental data and the shape of the curves they produce.
Empirical models may be powerful enough to reveal that ”something” at the biological
level is happening if this affects any of the geometric characteristics of the curves. Yet
to properly analyze mechanistic hypotheses mechanistic models need to be used.

5.2 The Operational Model of agonism including
constitutive receptor activity

To allow the operational model of agonism to account for constitutive receptor activ-
ity, an extension of the model has been recently proposed in [59]. Constitutive recep-
tor activity was included in the model by defining a stimulus, S, as S = [R] + ¢[AR],
which is connected with the observed effect by the rectangular hyperbolic function
= = %_w (figure 5.3).

1. The equilibrium constant of the model

A+RE AR (5.5)

2. The fractional observed effect A receptor stimulus is defined which includes
the concentration of both the free and the ligand-bound receptors.

S = [R] + ¢[AR] (5.6)

A rectangular hyperbolic equation is proposed for the relationship between the
receptor stimulus and the observed effect.
E,S KX + eX[A4]

I = Rp+8 RO+ + (1 + A (5:1)

with N = [ﬁ—z] and [Rp] = [R] + [AR]
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Figure 5.3: The Operational Model of Agonism Including Constitutive Receptor
Activity

3. The Geometric Descriptors of the Curves
(a) Left asymptote Basal response for [A] = 0, Basal = %

(b) Right asymptote. The asymptotic f-values when [A] increases. Top =

Er,
1+%
(¢c) The midpoint. The [A] value for half maximum effect [As0] = KS_J&? ),

[A50] is lower, equal and greater than K for agonists (¢ > 1), neutral
agonists (e = 1) and invers agonists (¢ < 1) respectively.

Equation 5.7 contains 3 parameters, N = [ﬁ—T] (a parameter determining the ca-

pacity of the free receptors of generating the (bEasal) response), K (the equilibrium
dissociation constant of the ligand for the receptor) and e (a parameter measuring
the different capacity of the ligand-bound receptor of generating a stimulus relative
to the free receptor). Values of greater, equal and lower than one lead to asymptotic
top values greater, equal and lower than basal response, which are the effects found
for agonists, neutral antagonists and inverse agonists, respectively.

5.2.1 The Operational Model of allosterism

The operational model of allosterism [15, 27, 28, 30, 38] was constructed as an
extension of the operational model of agonism [10] by including a second binding
site, that for the allosteric modulator. This leads to three independent dissociation
constants, two for the binding of the agonist A and the allosteric modulator B to the
free receptor (K and M, respectively) and a third one involving the doubly occupied
receptor. The dissociation constant regulating the latter equilibrium can be expressed
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in terms of K or M, depending on which is the complexed receptor to which the second
ligand binds and a cooperativity binding factor «. Following the rationale [30] a total
stimulus S is defined as the sum of the stimulus of all the ligand-bound receptor
species, S = €s[AR| + eg[RB] + eap[ARB]. The connection between stimulus and

fractional effect is made by the rectangular hyperbolic function % = ﬁ

5.8 embodies the concentration-fractional effect relationship for the operational
model of allosterism. Apart from the K and M dissociation constants and a bind-

ing cooperativity, the equation includes the operational efficacies 74 = %, B =
% and T4p = EA%[?T = 56AI[<}Z]T = B74. Asin the operational model of agonism,

7 includes both molecular and tissue components. It is worth noting that e p was
defined as exap = €48 another possibility being e 45 = €4€59. The chosen parameters
have a different meaning, 8 describes the ability of B to alter the signalling capacity
of A (asymmetric interaction: its value would be different if it had been defined as
the ability of A to alter the signalling capacity of B, that is eap = epf3) whereas &
describes the activation cooperativity between A and B in the ARB complex (sym-
metric interaction: it does not measure the influence of one compound on the other
but their mutual effects on each other). However, only the former (eqp = €40) defi-
nition is satisfactory in this modelling approach in terms of curve fitting as the latter
(eap = €a€p0) leads to an additional parameter in the final equation, after intrinsic
efficacies are combined with system parameters into operational (7) efficacies.

B B K7g[B]+ 7a(M + aB[B])[4]
En KM+ (1473)[B]) + (M(1+474) + a(1 + 743)[B])[4]

(5.8)

As constitutive receptor activity is not included in the model, the effect for [A]
and [B] equal to 0 (basal response) is 0. To account for this issue without changing
the mechanistic nature of the model, basal response has been included as an ad hoc
parameter as it was also done in the operational model of agonism (5.9) [58]. However,
as it also happened with the operational model of agonism, effects lower than the basal
response are outside the scope of the model.

(B — Basal)(K7p|B] + 74(M + of]B])[A)])

E = Basal + K(M + (1+75)[B]) + (M(1 +74) + (a(1 + 748)[B])[A]

(5.9)

It is worth noting that constitutive receptor activity was not incorporated into
the model because as the authors stated [30] the resultant number of parameters
makes the model impractical for fitting to experimental data. Interestingly, the op-
erational model of agonism including constitutive receptor activity (vide supra) has
been applied to describe experimental data, the effects of agonists at CC-chemokine
receptor 4, with overall satisfactory fitting parameters [59]. These positive results en-
couraged us to incorporate constitutive receptor activity into the operational model
of allosterism. This would allow us to model the behaviour of allosteric modulators
with intrinsic negative agonist efficacy (inverse agonists).
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5.2.2 The operational model of allosterism including constitu-
tive receptor activity

This is the model for our Evolutionary Algorithm application. To incorporate
constitutive receptor activity in the operational model of allosterism we followed a
rationale similar to that taken by Slack and Hall in the operational model of agonism
[59].

1. The equilibrium constant of the model

A+R£AR;K:% (5.10)
B+R£>RB;M:% (5.11)
AR+ B - ARB;a — % (5.12)
RB+ A - ARB;a — % (5.13)

2. The fractional observed effect the concentration of free receptors was included in
the definition of the total stimulus S, S = [R] + €s[AR] + eg|RB] + eap[ARB]
, which, in turn, was connected with the observed effect by the rectangular

hyperbolic function % = %—&-S (5.4).

b AR] 1 AR e ARR - dARB] |
Stimulus | ! HK H ' ! Stimubs

|
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Figure 5.4: The operational model of allosterism including constitutive receptor
activity.

Equation 5.14 embodies the concentration-fractional effect relationship for the

operational model of allosterism including constitutive receptor activity. It is

worth mentioning that the equation is an alternative derivation of one previously

obtained in [22]. By comparing 5.8 and 5.14, we see that including constitutive

receptor activity leads to a model in which intrinsic efficacies (es) are included
[R]:

instead of operational efficacies (75) and a parameter (X = Z2*) to account for

basal response appears. Ligands A and B are agonists, neutral antagonists or
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inverse agonists if they increase, not change or decrease the basal response (€4 or
ep greater, equal or lower than 1, respectively). Finally, for proper comparison
with the allosteric two-state model, the intrinsic efficacy of ARB is defined as
eap = €4€p0, with 0 measuring the activation cooperativity between A and B
in the ARB complex.

E KX(M + ep[B]) + €aX(M + epad[B])[A]

P = B = ROI N + (L + e5N)[B]) + (M(1 + eaR) + a(l + eacpoN) B A]

(5.14)

The operational model of allosterism including constitutive receptor activity
contains four chemical equilibria, corresponding to the binding of the agonist
or the allosteric modulator to the free receptor or to a receptor occupied by the
other compound.

3. Geometric descriptors of the curves

(a) Left asymptote in absence of A and B Basal: response f for [A] = 0 and

[B] = 0. Basal = lfiw%

(b) Left asymptote in absence of A Bottom: f for [A] = 0. DBottom =
N(M+ep[B])
M (1+€)+[B](1+epR)
(c) Right asymptote, the asymptote f-value as [A] increases (f % oo]Top)

Nea (M+epad[B])
M(1+eaR)+a(l+eaepdR)[B]

Top =

K(R(M+e¢p[B])+M+[B])

(d) The mid-point. The [A] values for half maximum effect. [Also = xc it psalB]) T M 1ol B]

In 5.1 the pharmacological properties of the parameters of the operational model
of allosterism is presented.

Pharmacological Property Parameter
Constitutive receptor activity (basal response) N
Agonist Concentration [A]
Allosteric modulator concentration [B]
Agonist dissociation constant K
Allosteric modulator dissociation constant M
Intrinsic efficacy of A €A
Intrinsic efficacy of B €B
Binding cooperativity between A and B «
Activation cooperativity between A and B 1)

Table 5.1: Operational model of allosterism parameters with their pharmacological
properties.



74 APPLICATION TO PHARMACOLOGY

5.3 Theoretical Simulation

Over-parameterization is a characteristic of operational models. It has been shown
that for this kind of models is not possible to directly fit a single experimental E/[A]
curve if Em, the maximum effect of the system, is unknown [59, 33, 50]. Because of the
correlation between parameters, to obtain reliable parameter estimates at least two
E/[A] curves with differentiable asymptotic maximum responses are needed and this
can be done by using the receptor inactivation method [17]. Decreasing the number of
available receptors has the effect of lowering the N parameter in the operational model
of allosterism including constitutive receptor activity. This leads to concentration-
effect curves with asymptotic maximum values lower than that of the control curve.

To exemplify this case we will assume that we are working with the same input
data as in the previous case (the same tissue, the same receptor and the same agonist)
but in the presence of an AM at a defined (107*) concentration 5.5.
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Figure 5.5: Simulated experiment in which curves in figure 5A (the allosteric mod-
ulator B is absent) are the control curves for figure 5B (the allosteric modulator B
is present)

On the fitting procedure the parameter values estimated in the previous case (E,,,
N, €4, K) were assumed known and kept fixed. Figure 5.5 illustrates a simulated
experiment in which curves in figure 5A (the allosteric modulator B is absent) are
the control curves for figure 5B (the allosteric modulator B is present). The whole
set of curves of the experiment is separated into two (figure 5A and figure 5B) for
clarity. A. Monte Carlo data (mean + SD) and curve fitting (solid lines) under
the operational model of agonism with constitutive receptor activity. 50 sets each
composed of 5 R-varied (X = 0.5,0.1,0.05,0.01and0.005) curves were generated for an
agonist-receptor system, in which Em = 10, K = 10~ and ¢ = 102, by assuming that
responses follow Equation 4 under a normal distribution with mean equal to the former
theoretical values and standard deviation equal to 3percent of the mean for log[A]
ranging between —15 and —4. For curve fitting a hybrid approach between a global
Evolutionary Computation method and a local gradient-based nonlinear approach
was used (see Table 2). B. Monte Carlo data generation and curve fitting under
the operational model of allosterism with constitutive receptor activity. As in figure
5A, 50 sets each composed of 5 R-varied (X = 0.5,0.1,0.05,0.01and0.005) curves were
generated for an agonist-receptor system with parameters equal to those in figure
5A (Em = 10, K = 107 and € = 10?) in the presence of an allosteric modulator
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with M = 1072 and €5 = 107! that interacts with the agonist as determined by
a = 107! and § = 0.5, at two fixed concentrations, [B] = 107¢ and [B] = 10~%.
Monte Carlo response data were generated as in figure 5A using Equation 8 and the
defined system, agonist and modulator parameters. Curve fitting was performed as in
figure 5A keeping fixed the parameter estimates obtained for the agonist when acting
alone (see Table 3): long-dashed lines [B] = 10~ and short-dashed lines [B] = 1074,
colour code as in figure 5A.

As it can be seen in Table 5.2 the hybrid DE-NLR approach produced excellent
results. Comparison between figures 5.5 A and B shows the effect of compound B as a
NAM with negative intrinsic efficacy and negative cooperativities both for binding and
activation: left and right asymptotes are lowered and a right-shift displacement of the
curves is observed. System- (E'm and X) and agonist-dependent (K, €4) parameters
were taken from parameter estimates in Table 2 and kept fixed (Curves from Table
2 (figure 5A) represent the control curves from those from Table 3 (figure 5B)). Two
concentrations (1078 and 107*) were used for the allosteric modulator. Details for
Monte Carlo simulated data generation and curve fitting as described at the bottom
of Table 2. All parameters were assumed log-normally distributed. The parameter
space for exploration with DE was defined as: log(M), (—15,—3); log(eg), (—4,0);
log(a), (—4,4); and log(0), (—4,4).

Parameter | Theoretical values | Parameter estimates(mean + SD)
Log(M) -9 —9.01 £ 0.05
Log(ep) -1 —1.00£0.01
Log(c) -1 —1.00+£0.02
Log(é —0.30 —0.30 £ 0.01

Table 5.2: Results for parameter estimation
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Chapter 6

Conclusions and Future Work

A main concern in EAs is determining a termination condition ensuring EA has
reached its steady state so that useless iterations are not performed. We have intro-
duced a regression framework for assessing the capability of existing stopping condi-
tions for terminating EA at its steady state. Our framework relies on a statistical
inference regression model, which guarantees that the conclusions derived from any
particular experiments are generalizable with a given confidence. We have also pro-
vided with an empirical termination condition based on the rate of convergence of
quantities. The framework has been applied to DE paradigm and two quantities, one
defined in f-space and the other defined in x-space.

We would like to highlight some interesting conclusions that arise from the analysis
of our experiments.

1. Paradigms suitable for loss of diversity termination

Termination of EA in black-box applications is still an open issue. This work
presents a formulation of EA steady state inspired in the concept of Cauchy
sequences and a practical stop criterion based on an implementation of this
concept through a 2-parameter criterion together with statistical tools for ad-
justing parameters optimal values.

Our experiments concluded that loss of population diversity seems to be a good
candidate for PSO and DE (at least for low dimensions), but might not be the
most appropriate one for CMA. This result was not unexpected and shows that
the tools presented constitute an appealing basis for the definition of a general
framework for EA termination criteria analysis.

Our criterion can be used to detect loss of diversity for EA termination. We
have applied our method to 3 EA paradigms (DE, PSO and CMA) and 5 rep-
resentative test functions up to dimension 10. Experiments show that the tools
presented constitute an appealing basis for the definition of a general framework
for EA termination criteria analysis. However, more research is needed in order

7
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to fully validate our framework as a solid methodology for the implementation
of termination strategies.

2. Selection of a Stopping Condition for DE Paradigm

We have applied our framework for quality assessment to two generic stopping
conditions, one based on function improvement in f-space, Imp, and another one
based on EA population distribution in x-space, MxzD. These quantities have
been used to terminate a DE paradigm for benchmark test functions [23]. Two
experiments concerning the quality of the termination conditions are presented:
capability for detection of DE steady-state and applicability to black-box prob-
lems.

Our first experiment shows that the proportion test is rejected whenever Propo-
sition 2 is satisfied, which validates our theoretical regression framework. This
experiment also selects MxzD as the better candidate for terminating than I'mp,
given that it satisfies the proportion test in 95% of the functions and Propo-
sition 2 regardless of the function profile. Our second experiment shows the
necessity of the statistical inference in order to guarantee reproducibility of re-
sults in black-box applications. As predicted, MxzD terminates DE at its steady
state in the presence of noise, while Imp fails to produce the expected results
(the p-value for Schaffers worsens). Besides, MzD always bounds DE accuracy,
which is one of the theoretical properties of Cauchy measures.

Therefore, we conclude that measures based on EA population distribution in
x-space are well-suited for terminating DE at its steady state. This agrees with
theoretical studies on DE properties which relate its convergence to the steady
state with a lost in diversity [68, 70] and, thus, it reinforces the usefulness of
our framework for selecting termination conditions.

Our framework strongly depends on the definition of EA steady state. In this
paper we have restricted to single objective EA paradigms reaching a steady
state. However, the results obtained encourage extending our definitions of
steady state (such as the ones arising in multi-objective problems) and EA
paradigms to select quantities that guarantee that EA has reached some sort of
steady state and their relation to the convergence rate to the steady state.

3. Applicability of the framework to Pharmacology

6.1 Future Work

Termination of EA in black-box applications is still an open issue. This work presents
a 2-parameter criterion together with statistical tools for adjusting parameters optimal
values. Experiments show that the tools presented constitute an appealing basis for
the definition of a general framework for EA termination criteria analysis. However,
more research is needed in order to fully validate our framework as a solid method-
ology for the implementation of termination strategies. The results obtained on EA
paradigms depending on loss of diversity (DE in particular) indicate the strength
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of our statistical approach to fully determine its flexibility and capabilities for EA
termination. Although this preliminary work constitutes a new effort in the use of
statistical analysis as a tool for termination of EA algorithms and illustrates their po-
tential for analyzing the behavior of EA algorithms, several issues should be further
investigated:

1. Scalability to high dimensions

A limitation of this study is that we have only considered 5 functions up to
dimension 10 with a number of EA runs that fall shortly to achieve steady states
for some cases. We are aware that to fully generalize results more functions and
iterations should be considered. This is a matter of computational resources,
time and an efficient parallel implementation and it is our top issue in our to-do
list.

2. Dependency on parameters

Another interesting topic to be further investigated is the variability of the
number of generations ng under different configurations in functions, as well
as, the dependency on other parameters involved in the computation of the ter-
mination condition. In the first case, it would be of interest to determine the
variability of generations across landscapes and dimensions, in order to check if
the diversity criterion is still useful. Although a preliminary study [48] suggests
that the parameters involved in the computation of the quantity selected for
measuring diversity (in particular the percentage of best individuals used for
computing MaxD) is not a critical issue, at least for DE, its influence should
be further explored. Finally, the impact that the accuracy, e, required by
the application has on the number of generations, and, thus, EA executions re-
quires a deeper study, especially for high dimensions. Variability under different
conditions, can be assessed with ANOVA test using functions and dimensions
properties for inter-group variability. In the case of absence of normality and/or
homoscedasticity a non-parametric test would be used.

3. EA paradigms internal mechanisms for ensuring convergence The ques-
tion of how to select the quantities depending on the behavior of the algorithm
is at the very core of the methods used as termination criteria. This question is
not addressed in this work, but the proposed framework allows exploring which
quantities are better related to EA internal mechanisms.

In this context, we think that a quantity is suitable for EA termination (under
the hypothesis that EA converges to a steady state) if the parameters of the
range formula do not change across dimensionality of the search space. This
hypothesis is supported by the results obtained for CMA in the experiments of
Chapter3. We recall that such experiments indicated that loss of diversity was
not the best suited quantity for CMA termination as the stopping parameters
were not stable across function dimensionality. Therefore a list of methods and
quantities that could be used in order to apply our framework will be further
investigated.
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4. Further analyze non-convergent cases As the results show, there is a rela-
tion between the convergence cases and the R? statistics. Practically all the con-
vergent cases present a high R? value and, thus, a goodness of fit. Consequently,
for the non-convergent cases, a good convergence version of the paradigms ex-
ploration must be done to ensure the convergence and check if the linear relation
between measures and the R? statistics improve.

5. Adaptation to a Multi-objective scheme Practically all real-world opti-
mization problems are multi-objective. The study and the applications of those
schemas are increasing rapidly. An adaptation or modification of our framework
is needed to extend all their mechanisms and utilities to the multi-objective sit-
uation. Perhaps, new statistical tools and concepts will be able to lead with
that new and important paradigms.
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