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Abstract
Self-assembly is a spontaneous and reversible organization of molecular units into or-
dered structures. The self-assembly process plays an important role in materials sci-
ence and life science, for example it includes the formation of molecular crystals, col-
loids, lipid bilayers, phase-separated polymers, and self-assembled monolayers. Since
the 1950s, scientists have built self-assembly systems exhibiting centimeter-sized
components ranging from passive mechanical parts to mobile robots, and present
work is devoted to development and usage in practical applications of the computer
simulation of the nanometer-sized components such as surfactants. When these am-
phiphilic molecules are dispersed in a single solvent likes water, the hydrophobic
interactions of the hydrocarbon chains drive the molecules to self-assemble into mi-
crostructures called micelles, where the hydrophobic tails are shielded from unfavor-
able interactions with the polar solvent by the hydrophilic, polar head groups. Two
principle factors in the self-assembly process are considered in this work. First is the
Hydrophobic Effect, which leads to the spontaneous self-assembly of the molecules
into micelles, and second is the Electrostatic Interactions. The surfactant with
charged polar head group is considered in our model, and the electrostatic interac-
tion originates from two sources. One is the charge-charge repulsions between the
charged head groups which limit the number of surfactant monomers aggregated,
another source comes from the interaction between the charged head groups and
free ions in the solution, which affects the size of the aggregated complex usually.
Self-assembly by linear oppositely charged polyelectrolytes is studied through Poisson-
Boltzmann (PB) theory and implemented into software IPEC, which can be used
to analyze the stability of core–shell inter-polyelectrolyte complexes formed by com-
plexation of oppositely charged block copolymers. Secondly, combined with single
chain mean field (SCMF) theory, we adopt coarse grained model to simulate chemi-
cal structures of ionic surfactants and their micellization process. In this simulation
not only the charge-charge repulsions between charged surfactant are considered,
but also the electrostatic screening effects by free salt ions are taken into account.
By selecting the surfactant chain with certain quantity of charge on the hydrophilic
groups, we can predict the micellization properties of surfactants, structures and
thermodynamics of micelles, such as the critical micelle concentration as well as
the aggregation number and the size distributions of micelles. Besides, by tuning
the density of free salt ions we can obtain the corresponding micelles as predicted
in the computer simulation, and it can be used for the structural modeling in ex-
perimental techniques that require the specific molecular structure. Furthermore,
the 2D SCMF theory is incorporated with PB theory to explore the electrostatic
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Abstract

effect in the shape transition behavior of the micelles composed by ionic surfactant
molecules, and similarly it can be used for the structural modeling in experimental
techniques that require the specific molecular structure.
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1. Introduction

1.1. Background

Long range electrostatic interactions are instrumental in determining the structure
and function of living organisms, biopolymers and drug delivery systems. Charged
macromolecules can self-assemble and aggregate into compact intermolecular com-
plexes. The oppositely charged polymers can form finite size complexes whose struc-
ture determines their biological function, likes gene transfection and compactization
of DNA, that provide promising alternatives in gene delivery is based on the use
of soluble interpolyelectrolyte complexes (IPEC) formed between nucleic acids and
linear polycations. For example, first studies on the utilization of IPEC for DNA
delivery were reported in [71]. Subsequently, this field has been intensively de-
veloped by many laboratories worldwide. These complexes self-assemble owing to
formation of a cooperative system of interchain electrostatic bonds [39]. The charge,
dimensions and other properties of these complexes can be varied by altering the
DNA/polycation ratio and the molecular parameters of the polycation [37]. In
such macromolecular system, the electrostatic forces is usually stronger than van
der Waals or hydrogen bonds, hence determine rich behavior and structural vari-
ability. The structures formed by opposite charges are usually more stable than
neutral block copolymers micelles dissociating upon dilution or slight change in the
external conditions[7]. Due to this high stability, interpolyelectrolyte or polyion
complexes (PIC) and polyion complex micelles (PIC micelles) can be used as func-
tional devices whose responsiveness to external stimuli will be utilized to realize
certain function[7] (Fig. 1.1). For example recognition at the molecular level [28]
and pH-sensitive switching devices [24]. Another important function of PIC is it
can be applied as drug delivery carriers. Since the structure of polyion complexes
change subject to external conditions, artificially tuning the molecular architecture
and global properties of PICs would allow for precise control of their delivery proper-
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Chapter 1 Introduction

ties. For example [75] demonstrated the great potential of the pH-sensitive micelles
as an effective multifunctional nanomedician platform for cancer therapy due to
their active tumor targeting, pH-triggered drug release and ultrasensitive MRI re-
sponsiveness, as shown in Fig. 1.2. Besides the response in change of temperature
and solvent quality[74], the structure of the some charged complexes can be very
sensitive to changes in salt concentration[11, 21, 65, 38], pH[45, 24, 38, 69], charge
ratio[67, 19], addition of ions[19], or mixing ratio[28]. All these properties supply us
possibility to realize accurate control of drug delivery system, although combining
these comprehensive effect into a general model seems impossble, we could consider
one or several aspects from them to build up a simplified model.

Figure 1.1.: 1 Interpolyelectrolyte complexes formed by A) a linear polyelectrolyte
(blue) and a diblock copolymer composed of an oppositely charged block (red) and
a neutral block (black); B) two linear oppositely charged polyelectrolytes (blue
and red) with large asymmetry in the distances between charges (n+ and n−).
The segments with noncompensated charges form a charged corona of loops.

On the other side, the surfactants which composed of polar hydrophilic (attracting
water) and non polar hydrophobic (repelling water) parts, have a peculiar and im-
portant property, under certain conditions likes in low concentrations, with low con-
centrations of salt, at room temperature, the surfactants form a dilute homogeneous
solution of individual amphiphilic molecules. However once change one of some of the
conditions over a threshold, the amphiphilic molecules, spontaneously self-assemble
into aggregates or microstructures known as micelles, with their hydrophilic groups
exposed to solvent, forming corona of the micelle, and their hydrophobic groups
shielded in the micellar interior. And such a self-assembly phenomenon of surfac-
tant solutions plays an important role in biological, pharmaceutical and industrial
processes such as in drug loading and delivery[44, 43, 52][44, 43, 52], catalysis,
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1.1 Background

Figure 1.2.: The copolymers can self-assemble into nanoscaled micelles encapsu-
lated with hydrophobic model drug Fluorescein Diacetate (FDA) and MRI diag-
nostic agents superparamagnetic iron oxide nanoparticles (SPIONs) in aqueous
solution of a neutral pH resembling physiological environment, whereas disassem-
ble in acidic endosomal/lysosomal compartments of tumor cells to achieve rapid
drug release. In vitro drug release study showed that FDA release from the pH-
sensitive micelles was much faster at pH 5.0 than at pH 7.4.

cosmetics, separation processes in engineering and environmental science and tech-
nology because of their unique solution properties. Large amount of experiments,
and theoretical simulations have been done, to investigate the mechanism of the
micellization, and these profoundly enhanced our understanding of surfactant self-
assembly in complex solutions, growing research suggests that besides surfactant
concentration, other factors like salt concentration, charge density will not only ef-
fect the Critical Micelle Concentration, CMC, but also related to the micellar shape,
and the micellar size. [9, 10, 11, 27, 28]. Further more, recent researches has fo-
cused on the electrostatic interaction influence on the aggregation of surfactant. [29]
investigated the interaction between conjugated polyelectrolytes and surfactants in
solution and solid phases, it identified multiple modes of interaction and propose a
model that accounts for their interplay and pronounced variation in photophysics
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Chapter 1 Introduction

over a wide range of conditions, as shown in Fig. 1.3. With these challenges and
opportunities, this thesis focuses on the influence of electrostatic interaction on the
micellization.

Figure 1.3.: Different CPE–surfactant interaction modes with increasing surfac-
tant concentration; (i) electrostatically induced steric disruption of interchain
states, (ii) surfactant cross-linked aggregation, and (iii) CPE templated spher-
ical (a) and cylindrical (b) micelle complexes.

1.2. Objectives

1. To develop software package inter-polyelectrolyte complexes (IPEC) solver to
analyze the stability of core–shell inter-polyelectrolyte complexes formed by com-
plexation of oppositely charged block copolymers. To develop fast, efficient, stable
solver for solving the corresponding Poisson-Boltzmann equations in IPEC. Through
IPEC studying the salt effects, charge distribution and distributions of labile cations
and anions around the complexes are calculated numerically as a function of chain
composition and solvent properties.
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1.2 Objectives

2. To study the influence of electrostatic effect in the micellization process and
stability analysis for spherical micelles of model surfactants. Surfactants modelHxTy

is adopted in our simulation. We combine the Single Chain Mean Field Theory and
Poisson Boltzmann Theory to create a new model, and based on this model our
simulation explore the relation between the size of the spherical micelles and the
charge of the surfactants carried, and how the concentration of free ions in the
solution effect the micelles.
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2. Simulations of spherical
interpolyelectrolyte complexes
formed by oppositely charged
polymers

2.1. Introduction

Dilute solutions of oppositely charged block-polymers can form thermodynamically
stable finite size inter-polyelectrolyte complexes (IPEC) [27, 19, 20, 76, 59, 21] or
polyion micelles [13, 54]. The stability of finite size aggregates results from the
balance of the electrostatic attraction between opposite charges in the core of the
complexes and the steric repulsion of backbone segments forming a corona around
the core[7]. Adjusting the structure of the polymer chain as well as the solution prop-
erties allows one to control the composition and structure of the resulting IPECs.
The Poisson–Boltzmann (PB) equation describes electrostatic interactions and dis-
tribution of ions around charged objects in equilibrium at a mean field level. Numer-
ical approaches to solve the PB equation [68, 5, 33] in different practical situations
and different geometries are widely available[33]. The common methods to solve the
PB equation include finite difference methods and finite element methods[5], where
the space is discretized in grids and elements; boundary element[48] and boundary
integral equation methods[47], where only the surface of a big molecule is discretized
while the surrounding distribution of labile ions is treated as a continuous field.
Most of these methods are more suitable for 3D geometry models describing a big
molecule of arbitrary shape in the electrostatic field. In contrast, IPEC complexes
usually have symmetrical shapes with uniform distribution of charges. In [7], block
copolymers of opposite charge aggregate into a spherical complex comprised of m+
polycations and m− polyanions. The total free energy of the solution of IPECs of
different compositions (m+,m−) is written as

F

V kT
=

∞∑
m+,m−=0

cm+,m−

{
ln(cm+,m−)− 1 + Fm+,m−

}

where V is the volume of the system, v is the molecular volume associated with
the de Broglie length, and cm+,m− is the concentration of the complexes of a given
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2.2 Theoretical model and method

composition (m+,m−). And the free energy of the complex Fm+,m− consists of an
electrostatic contribution Ωel, and a term accounting for the steric repulsion of chains
forming a corona around the complex Fcorona. Then the electrostatic contribution is
given by[7]

Ωel =
ˆ
dr

ρ(r)φ(r)
2 + kT

∑
α

ρα(r) ln ρα(r)
c∞

− kT
∑
α

ρα(r) + 2c∞


where r is the distance from the center of the complex, φ(r) is the electrostatic
potential at a distance r, and ρ(r) is the charge density, α = ±. c∞ is the bulk salt
concentration. The electrostatic contributions to the free energy from the isolated
copolymers is given by [7]

Ωel

kTN±
= u(0)ξ

2 + 1
4

∞̂

κa

r̃dr̃u(r̃) sinh(u(r̃))− 1
2

∞̂

κa

r̃dr̃u(r̃)
[
cosh(u(r̃))− 1

]

where r̃ = κr is a dimensionless distance. The chain lengths N± are expressed in
units of lB and ξ is the Manning parameter. Now tuning the chain composition,
charge and lengths of the blocks, and solvent properties one can obtain the regions
of stability of IPEC complexes, the size of the complexes and their size distribution.

2.2. Theoretical model and method

2.2.1. Poisson–Boltzmann equation in spherical geometry

[7] considers a complex that is formed by m+ positively charged linear polyelec-
trolytes andm− negatively charged block copolymer chains, and each diblock copoly-
mer contains neutral block with length N . Then we assume the core of the complex
as a sphere with radius Rc, and the charge is uniformly spread over the core( Fig. 2.1
), hence the PB equation is defined

∇2φ(r) = 4πq
ε

3Z1H(Rc − r)
4πR3

c

− 2c∞sinh(βqφ(r))
 (2.1)

where φ(r) is the potential at a distance r, q is the elementary charge, β = 1/kT .
And H(Rc − r) is a Heaviside step function, c∞ is the bulk density of labile cations
and anions. Z1 = z+m+− z−m− is the bare charge of the core (due to polymers and
not screened by labile cations and anions). We assume the potential is a constant at
two boundaries. After Introducing the dimensionless electrostatic potential u(r) =
βqφ(r) and the dimensionless distance x = r/Rc, Rc denotes the radius of the
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2.2 Theoretical model and method

charged sphere. Then Eq.2.1 can be written into
u′′(x) + 2

x
u′(x) = −3Z̃H(1− x) + (κRc)2sinh(u(x))

u′(0) = 0
u′(∞) = 0

(2.2)

where Z̃ = Z1lB
Rc

is the dimensionless bare charge of the sphere. lB = βq2

ε
is the Bjer-

rum length and κ2 = 8πlBc∞is a rescaled labile cations and anions concentration.

Figure 2.1.: The core of the complex is assumed as a sphere with radius Rc, and
the charge is uniformly spread over the core, with charge density 3(z+m+−z−m−)q

4πR3
c

.
The bulk density of labile cations and anions outside the core is c∞. The coronas
are treated neutral.

2.2.2. Poisson–Boltzmann equation in cylindrical geometry

Spherical IPECs coexist in the solution with isolated chains of both signs. To
calculate the electrostatic contribution to the free energy of an isolated chain, one
can approximate a polymer chain with a linear charge λ± with an infinite cylinder
surrounded by counterions and salt molecules. Then the PB equation can be written
into 

1
r̃

d

dr̃

(
r̃
d

r̃

)
u = sinh(u)

du

dr̃

∣∣∣∣
r̃=κa

= ± 2ξ
κa

u(r̃ →∞) = 0

(2.3)

where ξ = lBλ± is the so called Manning parameter, and r̃ = κr is a dimensionless
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2.2 Theoretical model and method

Figure 2.2.: The dimensionless boundary lies in a sphere with radius κa, which is
determined by the charge density of copolymer chains λ± and the concentration
of salt c∞ in solution.

distance. a is the radius of the cylinder, and κ2 = 8πlBc∞ is a rescaled labile cations
and anions concentration (Fig. 2.2).

2.2.3. Simulation Method

In the nonlinear Eq.2.2, the term sinh(u) may lead to overflow for large values of
u(x) and the same question happen when solving Eq.2.3. Thus, for convenience we
set w = eu, y = w′ and get an equivalent system

y′ = y2

w
− 2y

x
− 3Z̃1w + w2 − 1

2 (kRc)2

w′ = y
y(0) = 0
y(∞) = 0

(2.4)

where Z̃1 and kRc are two control parameters. The solution of this equation can be
obtained by the conventional approach based on the finite difference method and
the Newton–Raphson method[41, 72, 18]. Similar to the spherical case, the Eq.2.3
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2.2 Theoretical model and method

can be written into

y′ = y2

w
− y

x
+ w2 − 1

2
w′ = y
y

w

∣∣∣∣
r̃=κa

= ±β
w(∞) = 1

(2.5)

where β = 2ξ
κa

, hereinafter for short.

For Eq.2.4, we found standard approach may not be stable for all sets of parameters,
and later the stability of such a nonlinear system will be analyzed. Eq.2.5 is even
worse. For this boundary value problem (BVP), the commonly used method is
the 4th- Order-Runge–Kutta iteration technique[41], combined with the shooting
method[57] we found Eq.2.5 is very sensitive to the parameter β. It is quite difficult
to choose an appropriate initial estimate for the shooting method. In addition, slight
variations in the boundary values may lead to great fluctuation in the solution, thus
it is not possible to use a previous solution as an initial guess for the next solution.
Such a method can be used to solve the equation only for small values of β.
In order to overcome this problem, we use the finite difference method[53] to dis-
cretize the differential equations into a set of nonlinear equations. There are two
sources of error in this method: one is the rounding error which may accumulate
in a sequence of calculations and another is the discretization error or truncation
error, which comes from the difference between the exact solution and the solution
of the finite difference equation. Substitution of y = w′ into Eq.2.5 leads to

w” = w′2

w
− w′

x
+ w2 − 1

2
w′

w

∣∣∣∣
r̃=κa

= ±β
w(∞) = 1

(2.6)

The first and second order derivatives are discretized into finite differences approx-
imations

wi = w(xi)
w′i = −wi−1

3h −
wi
2h + wi+1

h
− wi+1

6h
wi” = wi−1

h2 −
2wi
h2 + wi+1

h2

For the first grid point, we adopt the first order approximation

w′i = −3wi + 4wi+1 − wi+2

2h

The truncation errors for the above three differences expressions are of order O(h2).
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2.3 Analysis and numerical tests results

This method effectively decreases the discretization error and accelerates the con-
vergence speed. For weakly charged chains or large salt concentrations, i.e. when
β � 1, the potential u < 1 and the DH equation is close to the exact solution of
PB. Thus, using its solution as an initial guess provides a good convergence of the
PB equation. When β > 1, the solution of the PB equation can be obtained in the
iterative process by a gradual increase of β, when the solution of the PB equation
with smaller β is used as the initial guess for larger β.

However, a gradual increase of β slows down the calculation. Thus, we use the
adaptive method to approach larger β, starting with the DH solution as the initial
guess for small β and using it as an initial guess for larger β. Using an adaptive
step in β values, we can approach the solution faster. Such a “relay race strategy”
is summarized in Algorithm 2.1 with grid vector x, step size h, boundary condition
value β and relative iteration convergence tolerance tol as input parameters, and
the vector w0 as the output solution.

Solution of these equations provides an equilibrium distribution of counterions and
salt ions in the solution, distribution of charges, free energy of the chains in the solu-
tion and in the self-assembled complexes and thus allows us to determine the range
of stability of IPEC micelles in terms of the numbers of polyanions and polycations
in the complex.

2.3. Analysis and numerical tests results

In order to evaluate the stability of Eqs.2.4 and 2.6, we rely on the stiffness ratio of
the solutions of equation. First Eq.2.4 is written in a general form

dy
dx

= f(x,y) (2.7)

now if ỹ(x) is the solution of the equation that satisfies the corresponding boundary
condition, we can write a linear approximation function

dZ

dx
= J(x)(Z − ỹ(x)) + f(x, ỹ(x))

or

dZ

dx
= J(x)Z + F (x)

hence

F (x) = f(x, ỹ(x))− J(x)ỹ(x)
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2.3 Analysis and numerical tests results

where J(x) is the Jacobian matrix. Substituting ỹ by the vector [w, y]T in Eq.2.4
one obtains the corresponding Jacobian matrix

J =
[

0 1
(κRc)2w − y2

w2 − 3Z̃1
2y
w
− 2

x

]
(2.8)

According to Ref.[22], if the eigenvalues of Jacobian matrix J of dimension k, λj =
λj(x), j = 1, 2...k satisfy

1 . Re(λj) < 0, j = 1, 2....k

2 . s(x) = max1≤i≤k(Re(λi))
min1≤j≤k(Re(λj))

� 1

the nonlinear system is considered to be stiff on x, and s(x) is the stiffness ratio at
x. This signifies the instability of the solution of the equation. The stiffness ratio
s(x) of the finite-difference method combined with the Newton–Raphson method to
solve Eq.2.4 with values of x in the range from 0.02 to 0.8, and the eigenvalues of
the matrix J , Eq.2.8, is given in Tab. 2.1. All the values in the table are smaller

x Z̃1 = 42 Z̃1 = 60 Z̃1 = 138 Z̃1 = 216 Z̃1 = 294
0.02 0.01 0.02 0.04 0.07 0.11
0.04 0.06 0.08 0.26 1.00 1.00
0.06 0.15 0.25 1.00 1.00 1.00
0.08 0.38 1.00 1.00 1.00 1.00
0.10 1.00 1.00 1.00 1.00 1.00
0.12 1.00 1.00 1.00 1.00 1.00
0.14 1.00 1.00 1.00 1.00 1.00
0.16 1.00 1.00 1.00 1.00 1.00
0.18 1.00 1.00 1.00 1.00 1.00

Table 2.1.: Stiffness ratio s(x) of Eq.2.4

than or equal to 1, thus the system is not stiff for most Z̃1 and the solution is stable.
However, we obtain the corresponding Jacobian matrix J arising from Eq.2.6

J =
[

0 1
w − y2

w2
2y
w
− 1

x

]
(2.9)

and the stiffness ratios s(x) are given in Tab. 2.2. The values of the stiffness
ratios(x) > 1 for certain sets of parameters in this table may indicate that com-
monly used methods to solve differential equations could be unstable, and no general
strategy guarantees [41] the existence or uniqueness of a solution of such nonlinear
second-order equations.

Hence we adopt the method described in Algorithm 2.1, which provides a stable
solution of the PB equation in cylindrical geometry, Eq.2.6 for a large range of
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2.3 Analysis and numerical tests results

x ξ = 1.0 ξ = 2.0
β = 1.0 β = 2.0 β = 10.0 β = 20.0 β = 2.0 β = 4.0 β = 20.0 β = 40.0

0.02 1.0e+004 1.0e+003 48.22 18.51 1.0e+003 228.85 18.51 17.43
0.04 2.91 1.04 40.92 16.26 1.04 220.85 16.26 15.41
0.06 0.09 4.80 40.94 15.87 4.80 311.77 15.87 15.04
0.08 0.03 0.67 43.52 16.05 0.67 970.65 16.05 15.19
0.10 0.02 0.25 48.3 16.53 0.25 548.75 16.53 15.62
0.12 0.01 0.14 56.07 17.23 0.14 189.83 17.24 16.24
0.14 0.00 0.09 69.02 18.15 0.09 108.06 18.15 17.04
0.16 0.00 0.07 93.2 19.30 0.07 72.78 19.30 18.04
0.18 0.00 0.05 151.38 20.73 0.05 53.5 20.73 19.27
0.20 0.00 0.04 464.77 22.50 0.04 41.55 22.50 20.78

Table 2.2.: Stiffness ratio s(x) of nonlinear equations 2.6.

parameters, although it takes more time than the solution of the PB equation in
spherical geometry, Eq.2.4. Solution of these equations provides an equilibrium
distribution of counterions and salt ions in the solution, distribution of charges,
free energy of the chains in the solution and in the self-assembled complexes and
thus allows us to determine the range of stability of IPEC micelles in terms of the
numbers of polyanions and polycations in the complex. The performance of this
algorithm is shown in Tab. 2.3.

β
κa = 0.5 κa = 1.0 κa = 2.0 κa = 10.0

β steps Iter num β steps Iter num β steps Iter num β steps Iter num
0.4 2 6 2 7 2 8 2 8
2.0 2 10 2 10 2 10 2 10
4.0 2 12 2 12 2 12 2 12
8.0 7 35 7 36 7 41 7 34
16.0 7 50 7 42 7 62 7 55
32.0 7 53 7 69 7 71 7 54
64.0 12 88 12 63 12 72 12 134
128.0 12 79 12 76 12 91 12 92
256.0 12 103 12 78 12 84 12 88
512.0 17 11 17 88 17 105 17 90

Table 2.3.: The number of steps in β and the number of iterations of Newton-
Raphson method.

The first step in calculation of the size distributions of complexes is the solution of
PB equations for linear chains, Eq.2.6. This time consuming step can be optimized
by using the interpolation of the stored results. Indeed, Eq.2.6 depends only on
two parameters, κa and ξ, thus solving the equation for different combinations of
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2.3 Analysis and numerical tests results

κa and ξ in advance and storing the result in a table may save time. We compute
the value of the free energy for given κa and ξ for each intersection point and store
it in the table. The dependence of electrostatic energy of a cylinder on κa and ξ
becomes linear [7] when κa and ξ are sufficiently large. Thus, the interpolation table
is divided into two regions: region I with step 0.1 and region II with step 0.2. The
electrostatic energy between the table values is obtained using Eq.2.10 . Here v
denotes the required value of the energy, κa1 , κa2, ξ1 and ξ2 are the values in the
table with the corresponding values a, b, c, d, as shown in Fig. 2.3:

Figure 2.3.: Interpolation of electrostatic energy of a cylinder


v = v2 + (v1− v2) ∗ (κa− κa1)/(κa2 − κa1)
v1 = b− (b− a) ∗ ξ2−ξ

ξ2−ξ1

v2 = d− (d− c) ∗ ξ2−ξ
ξ2−ξ1

(2.10)
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2.3 Analysis and numerical tests results

Algorithm 2.1 Adaptive “relay race” algorithm using combination of finite differ-
ence and Newton–Raphson methods.
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3. Efficient and stable method to
solve Poisson-Boltzmann equation
with steep gradients

3.1. Introduction

Poisson-Boltzmann Equation (PBE) describes equilibrium distribution of charged
objects surrounded by counterions and salt molecules in a mean field approxima-
tion, which neglects fluctuations and correlations. Popular methods to solve PBE
include Newton methods, finite difference methods, adaptive methods [68, 5]. These
methods can successfully solve nonlinear PBE in different geometries and shapes of
charged objects such that universal solvers can be used for different practical ap-
plications. For example, a package DelPhi [42, 25, 55] is a 3D nonlinear solver of
PBE. It is successfully used for modeling of electrostatic interactions of biomolecules.
However, universal solvers may not always converge or be always efficient, especially
if the solution exhibits abrupt changes. This is the case, for example, for electro-
static potential around highly charged objects in low salt solutions. Thus, such
particular cases need a special treatment, that may improve the convergence of the
approximation scheme to the exact solution of the nonlinear system.

In this work we show that a method using adaptive step in the region of abrupt
change of the solution may greatly improve the convergence and the stability of the
approximation scheme. This method uses invertible mapping algorithm to trans-
form PBE into a form with a smooth profile. This is similar in spirit to successive
relaxation strategy described in Ref. [55] or similar invertible mappings strategies
used for accurate description of the solution close to boundaries [63], solution of
Burgers’ equation with high Reynolds numbers [40]. Such a strategy applied to
solution of different equations [73, 70, 31, 30] electively reduce the number of grid
points and thus decreasing the degrees of freedom of the corresponding matrices in
the computation process.

The method is implemented for solution of PBE in cylindrical geometry of infinite
charged rod with large charge fixed in the boundary condition. Although the method
is implemented in 1D, it can be generalized, in principle, for other dimensions.
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Chapter 3

3.2. Poisson-Boltzmann Equation

Poisson-Boltzmann equation describes electrostatic potential of charged objects in
implicit ionic solutions, and its general form is written as

∇ ·
[
ε(~r)∇ψ(~r)

]
= −4πρf (~r)− 4π

∑
i

c∞i ziq exp
[−ziqψ(~r)

κBT

]
(3.1)

where ε(~r) is the position dependent dielectric constant, Ψ(~r) is the electrostatic po-
tential, ρf (~r) is the charge density of fixed charges, c∞i represents the concentration
of the ion i in the bulk, zi is the charge of the ion i, q is the elementary charge, kB
is the Boltzmann constant and T is the temperature.

We solve this equation in cylindrical geometry for infinitely long rod with arbitrary
charge and surrounded by small ions and counterions providing electroneutrality
of the system. Charged rod is represented by a cylinder with homogeneously dis-
tributed linear charge λ.

Aqueous solution outside the rod is homogeneous and thus ε(~r) can be treated as
a constant ε. For simplicity we consider monovalent ions only. Since we calculate
the electrostatic potential outside the rod, all fixed charges are on the rod, and
thus ρf = 0. Using ∇2 = 1

r
∂
∂r

(
r ∂
∂r

)
in cylindrical coordinates and introducing

dimensionless distance r̃ = κr, where κ2 = 8πlBc∞ is a rescaled ion concentration,
PBE of infinitely charged rod takes the form [34, 7]

1
r̃

d

dr̃

(
r̃
d

dr̃

)
u = sinh u

du

dr̃

∣∣∣∣∣
r̃=κa

= − 2ξ
κa

u(r̃ −→∞) = 0

(3.2)

where ξ = lBλ is a dimensionless linear charge, the so-called Manning parameter
[64], a is the radius of the cylinder. This equation is controlled by two parameters:
κa related to salt concentration, and a dimensionless parameter β = 2ξ/κa which
reflects the effective charge of a cylinder screened by salt solution.

The difficulty in solving this equation may arise from two terms: (i) sinh(u) may lead
to overflow for large values of u(r̃), and (ii) high charges and low ion concentration,
i.e. when β � 1, produce steep gradients in the potential. To overcome first problem
we set w = eu, y = w′ and get an equivalent system

y′ = y2

w
− y

r̃
+ w2−1

2
w′ = y

y
w
|r̃=κa = −β
w(∞) = 1

(3.3)
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3.3 Invertible Mappings for PBE

To analyze the stability of the equation for different sets of parameters, we use the
same procedure as in [34] and derive the corresponding Jacobian matrix arising from
the above Eq. (3.3)

J(r̃) =
[

0 1
w − y2

w2
2y
w
− 1

r̃

]
(3.4)

According to [22], if the eigenvalues λi of Jacobian matrix J satisfy
• Re(λi) < 0, i = 1, 2, 3 . . . k

• S(r̃) = max1≤i≤k(Re(λi))
min1≤i≤k(Re(λi)) � 1

the nonlinear system is considered to be stiff on r̃, and S(r̃) is the stiffness ratio at r̃.
The stiffness ratios S(r̃) arising from Eq. (3.4) are given in [34], and they indicate
that commonly used methods to solve differential equations could be unstable, and
no general methods guarantee the existence or uniqueness of a solution of such
nonlinear second-order equations [41]. Furthermore, the 4th-Order-Runge-Kutta
iteration technique was used and incorporated it with shooting method [57]. It turns
out that the solution is very sensitive to the initial guess when the boundary value
β is large. Thus, to address this issue [34], we adopted a method that successively
increases β from small values, using previous solution in each iteration as the initial
guess for solving the PBE with larger β. As a result, the number of iterations greatly
increases making this method slow and unstable for β � 1. Thus a more efficient
method is required to solve PBE for β � 1.

3.3. Invertible Mappings for PBE

The idea behind invertible mappings methods [70] is to replace a uniform discretiza-
tion of space in a common finite-difference technique by adaptive discretization
resulting in sufficiently higher density of points in the region of large variations of
the solution and lower density outside this range.
To implement this strategy for Eq. (3.2) we introduce mapping of the coordinate
r̃ with the function f to a new coordinate t = f (r̃), or r̃ = f−1(t). Function f
should satisfy the condition that large but finite gradient of the solution in the large
variation region is effectively reduced in t-space. The inverse function

f(r̃) = arctan [r̃ tan(A)]
A

(3.5)

satisfies these conditions. Here a smoothing parameter A is used to adjust the
number of grid points in the large variation region. With the help of such function
f , one can find a uniform distribution of grid points in coordinates t that map
non-uniform distribution in original coordinates r̃, as shown in Ref. [70]. Thus, we
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Chapter 3

substitute first and second derivatives
dw

dr̃
= dw

dt
f(t) (3.6)

d2w

dr̃2 = d2w

dt2
f 2(t) + dw

dt
f(t)f ′(t) (3.7)

into Eq. (3.3), and obtain PBE in coordinates t

d2w

dt2
f 2(t)−

(
dw

dt

)2
f 2(t)
w

+ dw

dt

 1
tan(At) − sin(2At)

 tan(A)f(t)

= w2 − 1
2 (3.8)

where f(t) = tan(A) cos2(At)
A

and f ′(t) = tan(At)
A

. Substituting Eq. (3.6) into Eq. (3.3),
we get the first boundary condition in the form

tan(A) cos2(At)
wA

dw

dt

∣∣∣∣∣
t=(arctan[κa tan(A)])/A

= −β (3.9)

To obtin the second boundary condition, we cut off ∞ up to a constant rcut, and
get t = tan(rcutA)

tanA , hence

w

(
arctan [rcut tan(A)]

A

)
= 1 (3.10)

To evaluate the stability of Eq. (3.8), we transform it into equations


W ′ = W 2

w
− W

f(t)

{
tan(A)
tan(At) − tan(A) sin(2At)

}
+ (w2−1)

2f2(t)
w′ = W

w′
∣∣∣t=(arctan[κa tan(A)])/A = − βwA

tan(A) cos2(At)

(3.11)

and the corresponding Jacobian matrix reads

J(t) =
[ 2W

w
− 1

f(t)

{
tan(A)
tan(At) − tan(A) sin(2At)

}
−W 2

w2 + w
f2(t)

M N

]
(3.12)

where M = 1, N = 0 when t 6= arctan[κa tan(A)]
A

, M = 0, N = − βA
tan(A) cos2(At) when

t = arctan[κa tan(A)]
A

.
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3.4 Numerical Test

The best convergence of the equation is obtained for A = 1.45. The corresponding
stiffness ratios for A = 1.45 are shown in Tab. 3.1. Comparing the stability of the
two equations, we consider the stiffness ratios of the grid points in the same interval
through mapping t = arctan[r̃ tan(A)]

A
, but reduce the number of grid points to 100.

Table 3.1.: Stiffness ratios S(r̃) of nonlinear PBE, Eq. (3.8)

ξ = 0.02 ξ = 0.2
r̃(t) β = 1.0 β = 2.0 β = 10.0 β = 20.0 β = 10.0 β = 20.0 β = 30.0 β = 60.0
0.04 22.10 2180.64 6230.57 1603.52 4.01 14.23 14.27 13.88
0.06 183.20 198.54 185.68 277.00 10.98 11.12 10.73 10.70
0.08 39.46 40.53 44.18 46.96 7.64 7.68 7.53 7.49
0.10 9.37 9.51 8.78 11.12 4.96 4.98 4.74 4.69
0.12 2.01 2.06 2.05 2.01 2.71 2.74 2.76 2.69
0.14 1.50 1.59 1.47 1.24 1.00 1.00 1.00 1.00
0.16 3.00 3.11 2.75 2.79 1.00 1.00 1.00 1.00
0.18 4.50 4.66 4.14 4.16 1.00 1.00 1.00 1.00
0.20 5.53 5.43 5.55 5.29 1.00 1.00 1.00 1.00

The values of S in Tab. 3.1 suggest that the solver may be unstable in some isolated
grid points, that does not affect the overall stability, while in most cases it is stable
in all grid points. Further more, it reduces the number of grid points and hence
greatly speeding up the solving process. The value of A in Eq. (3.5) can be used
to tune the distribution of the grid points. If we set A close to 0, the grid points
are distributed more or less evenly both in r̃- and t-spaces. When A is close to π/2
the grid points are densely distributed in the vicinity of κa in r̃-space. Such high
distribution density leads to high values of derivatives close to 0 (Figure Fig. 3.1).
This situation corresponds to Eq. (3.9) when value of β in boundary condition is
large.
Note that when A is close to π/2, the convergence may decrease as shown in Fig-
ure Fig. 3.2. This can be attributed to the fact that fixed number of grid points
crowd around limited area in the vicinity of κa, which prevents the convergence.
To overcome it, we can treat A as adaptive variable, i.e. gradually increasing
A from an initial value S(A0) (for example A0 = 1.0) until S(A0 + h) such that
‖S(A0)− S(A0 + h)‖ < C, where C is a certain threshold.

3.4. Numerical Test

We ran a series of tests to check the performance of the method using invertible
mapping and solving Eq. (3.8) in t-space compared to the solver of PBE with fixed
step and solving directly Eq. (3.3) in r̃-space. Such solver was implemented in
IPEC-solver for electrostatic potential of a linear chain in salt solution, which serves
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Chapter 3

as a reference state for equilibrium structures of self-assembled inter-polyelectrolyte
complexes [7, 34]. The solver corresponding to Eq. (3.3) corresponds to the version
IPEC V1.0, while the solver corresponding to Eq. (3.8) corresponds to IPEC V1.2.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

r

t

~

 A=1.25
 A=1.35
 A=1.45
 A=1.55

Figure 3.1.: Distribution of grid points in t- and r̃- spaces with different values of
tuning parameter A.

The performance of two methods is illustrated in Figure Fig. 3.3 for large β. It
allows to conclude that (i) invertible mappings method implemented in IPEC V1.2
can converge to the solution with the same precision with smaller number of grid
points; (ii) for sufficiently high values of β invertible mappings method converge to
a solution when the direct method fails (blue dashed line for β = 300). However,
invertible mappings method slightly decrease the accuracy of the solution, since
the inverse function transmits the original error O(hr̃) to the solver with the error
O(ht) when the number of grid points is fixed. Here hr̃ and ht are two steps in
corresponding solvers respectively and satisfy ht = arctan[h

r̃
tan(A)]

A
.
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Figure 3.2.: The solution of Eq. (3.3), w = exp(u) for different values ofA obtained
with 200 grid points, andβ = 10, ξ = 0.02. The curve A = 1.5 is distorted due to
lack of gird points in numerical test interval (0.0, 1.0).
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 IPEC v1.0  Points=800  =200.0 
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Figure 3.3.: The solution of Eq. (3.3), w = exp(u) for large values of β and
fixed A = 1.05. The value of A is obtained by starting from an initial value
A0 = 1.0, and set S(A) denote the corresponding solution, h = 0.05,C = 0.1 then
‖S(A0 + h)− S(A0)‖ < C. Invertible mapping method (IPEC V1.2) needs less
grid points and converges readily when the direct method (IPEC V1.0) fails (blue
dashed line).
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4. Electrostatic Effect in the Self
Assembly of Charged Surfactants

4.1. Introduction

Electrostatic interactions are instrumental in the self-assemble process of short am-
phiphilic molecules. At low concentrations the amphiphilic molecules form a dilute
homogeneous solution of individual molecules, while at high concentrations the am-
phiphilic molecules aggregate as micelles with their hydrophilic groups exposed to
solvent and their hydrophobic groups shielded in the micellar interior [32, 2, 26].
Among amphiphilic molecules, surfactants are an important class of chemicals con-
sisting of two moieties that interact very dfferently with a solvent [35, 32, 2, 26],
in which the hydrophobic tail, interacts unfavorably with the solvent while the hy-
drophilic group interacts favorably with the solvent. In everyday life, the surfactants
molecules are playing a crucial role in many areas including such diverse fields as
detergency, food, paint, pharmaceutical products, cosmetics and industrial as well
as biological processes [35, 6, 69, 49, 50]. The critical micelle concentration, (CMC)
and critical aggregate concentration (CAC) designate the onset of aggregation of free
surfactants into micelles in the spontaneous micellization process[36, 14]. [15, 14, 16]
report the electrostatic interaction between the polyelectrolyte and the surfactant
lead to a red shift compared to absorption spectra in aqueous Poly(methacrylic
acid) solution and in water. [1] describes the effect of increasing salt concentration
in the solution near the CMC, and it gives the relation between the surface charge
adaptation and the change of salt concentration.

The Poisson-Boltzmann equation (PBE) describes electrostatic interactions between
molecules in ionic solutions, and it can be used in modeling implicit solvation, an
approximation of the effects of solvent on the structures and interactions of am-
phiphilic molecules and the corresponding micelles or aggregates[7, 5]. Although
the generalized PBE has been modified to adapt to many different applications[42],
it is still a powerful tool to study the effect on the aggregation into micelles or
aggregates.

The Single Chain Mean Field (SCMF) theory is another tool to explore the self-
assembly of a mixture of an arbitrary number of types of molecules of an arbitrary
structure interacting with each other through mean fields[61, 62, 8], and this method
is quite universal that can be applied to solutions of linear or branched polymers,
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Chapter 4 Electrostatic Effect in the Self Assembly of Charged Surfactants

solutions of low-molecular weight surfactants and various additives, mixtures of
various components and structural and shape transitions. Specifically, recent years
SCMF theory has been used to simulate the self-assembly process of surfactants
into micelles, and even the equilibrium structure of phospholipid membranes at
the molecular level [23, 56]. This method enable us to calculate the equilibrium
properties for models of surfactant systems at a coarse grained level which does not
include fluctuations and inter-particle correlations, however it can be compensated
by the combination of the SCMF with MD simulations. Although SCMF theory
can be used for modeling the surfactant or polymer systems in both a lattice and
continuous space [4, 3], considering Poisson-Boltzmann theory that is combined
with SCMF is applied in implicit solvation, we choose the continuous model for
SCMF[12, 46].

4.2. Single Chain Mean Field Theory

In continuous space, SCMF calculation is built on coarse-grained model in which
amphiphile molecules are treated as coarse grained beads. The amphiphile configu-
rations are obtained using the Rosenbluth and Rosenbluth chain growth self-avoiding
random walk algorithm[51] and periodic boundary conditions are used.
First we consider the free energy F of the system in a simulation box volume, V ,
containing N linear polyelectrolytes

F

V kT
=
ˆ
c(Γ) ln c(Γ)

e
Λ3dΓ +

ˆ
dr
V
cs(r) ln cs(r)

e
Λ3
s +
ˆ
c(Γ)utotal(Γ)dΓ

+ 1
V

ˆ
dr
ρ(r)u(r)

2 + 1
V

ˆ
dr
{∑
$=±

ρ$(r)
(

ln
[
ρ$(r)

]
− 1

)}
(4.1)

where c(Γ) = NP (Γ)
V

is the distribution function that related to the probability of
a single surfactant of conformation P (Γ), and cs(r) is the concentration of solvent
molecules. Λ and Λs are the de Broglie lengths of the beads and solvent respectively.
The last term is the entropy of free ions in the solution, and ρ$(r) denotes the pos-
itive and negative free ions which satisfy the equality ln [ρ$(r)/c∞] = −$u(r), and
u(r) is the electrostatic potential at r. Function utotal(Γ) represents the interaction
potential of the conformation Γ within the Fields, and it can be written

utotal(Γ) = uintro(Γ) + N − 1
2

ˆ
dr

εHHφHint(Γ, r) 〈cH(r)〉

+εTTφTint(Γ, r) 〈cT (r)〉
+ εTW

ˆ
drφTint(Γ, r)cs(r)

+εHW
ˆ
drφHint(Γ, r)cs(r) (4.2)
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4.2 Single Chain Mean Field Theory

where uintro(Γ) denotes interactions of the beads inside a given conformation, the
second term denotes the interactions with beads in another conformation. The factor
1
2 is to avoid double counting and (N − 1) is to delete the intra-molecular devotion
uintro(Γ). The last two terms involve the electrostatic interaction and corresponding
entropy. u(r) = βqϕ(r) describes the electrostatic potential at r, and q denotes the
elementary charge, β = 1

kT
, and

ρ(r) = N

ˆ
P (Γ)dΓ {cH(Γ, r)λH + cT (Γ, r)λT}+ c∞

[
e−u(r) − eu(r)

]
(4.3)

is the charge density stems from the surfactants and the free ions, and N is the
number of the surfactants of conformation Γ. The first term in Eq.4.3 denotes the
so called fixed charge density which is assumed in proportion to the concentration
of H and T beads, while the second term ρ$ = c∞e

∓u(r) denotes the density of free
ions arising from the electrostatic potential.

As our surfactants are composed by only two types of beads: hydrophilic, H and
hydrophobic, T, we introduce interaction parameter εTT which denotes the contact
energy between hydrophobic beads and parameter εHH between hydrophilic beads.
Likewise, εTW and εHW denote interaction parameters between hydrophobic beads
and solvent, and hydrophilic beads and solvent respectively. Then the average con-
centrations of beads T and H are

〈cT (r)〉 =
ˆ
P (Γ)cT (Γ, r)dΓ (4.4)

〈cH(r)〉 =
ˆ
P (Γ)cH(Γ, r)dΓ (4.5)

And the average volume fraction

〈φ(r)〉 =
ˆ
P (Γ)φex(Γ, r)dΓ (4.6)

where φex(Γ, r) is the excluded volume of the conformation Γ, and it is obtained
after all conformations are generated. Then incompressibility condition is

φs(r) +N 〈φ(r)〉 = 1 (4.7)

where φs(r) = cs(r)vs is the solvent volume fraction. Hence the augmented free
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Chapter 4 Electrostatic Effect in the Self Assembly of Charged Surfactants

energy Faug can be written into
Faug
V kT

=
ˆ
c(Γ) ln c(Γ)

e
Λ3dΓ +

ˆ
dr

V
cs(r) ln cs(r)

e
Λ3
s +
ˆ
c(Γ)utotal(Γ)dΓ

+ 1
V

ˆ
dr
ρ(r)u(r)

2 +
ˆ
dr
π(r)
V

φs(r) +N 〈φ(r)〉 − 1


+ 1
V

ˆ
dr
{∑
$=±

ρ$(r)
(

ln
[
ρ$(r)

]
− 1

)}
(4.8)

We minimize Faug with respect to the concentration of the solvent cs(r) to get the
approximate expression for the Lagrange multiplier π(r).

π(r) ≈ − lnφs(r)
vs

(4.9)

Finally, Eq.4.9 is inserted into Eq.4.8 and it is minimized in terms of P (Γ), then it
gives

P (Γ) = exp (−HN(Γ))
Q

(4.10)

where Q is the normalization factor such that
ˆ
P (Γ)dΓ = 1 (4.11)

As term N
V

´
dΓ ln c(Γ) is a constant and can be eliminated after normalization, the

effective Hamiltonian HN(Γ) expressed in units kT is given by Eq.4.12

HN(Γ) = − lnφs(r)
vs

φex(Γ, r) + uintro(Γ) + (N − 1)
εHHφHint(Γ, r) 〈cH(r)〉

+εTTφTint(Γ, r) 〈cT (r)〉
+ εTW

ˆ
drφTint(Γ, r)cs(r) + εHW

ˆ
drφHint(Γ, r)cs(r)

+2πN
ˆ
r2dru(r)

ˆ
dΓ {cH(Γ, r)λH + cT (Γ, r)λT} (4.12)

Finally, we take the obtained values of P (Γ) back to the total free energy Eq.4.1. It
is noted that the free energy F contains the fixed number of surfactants N , and the
distribution between micelles of different sizes can be described by the minimum of
free energy per surfactant. Furthermore the semi-grand potential of the system can
be written as 4.13[60]

Ω =
∞∑
N=1

cN

[
log
(
cN/e

)
+ FN − Fref

]
(4.13)
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4.3 Poisson Boltzmann Theory For The Charged Complex

whereFN and cN are respectively the free energy and concentration of micelles with
N surfactants. The free energies are measured in units kT and the interactions
between micelles are ignoringed. Fref is the free energy per surfactant in a reference
state, defined as

Fref =
ˆ
dr

1
vs

ln Λ3
s

vse
− 2c∞

ˆ
dr (4.14)

Under the constraint of conservation of the total chain concentration ct

c1 +
∞∑
N=2

NcN = ct (4.15)

and

cN = cN1 exp
N(F1 − Fref )− (FN − Fref )

 (4.16)

then substitute Eq.4.16 into Eq.4.15, we obtain the total concentration of micelles
in terms of free energy FN and F1 by

c1 +
∞∑
N=2

NcN1 exp
N(F1 − Fref )− (FN − Fref )

 = ct (4.17)

through Eq.4.17 we can obtain the distribution of micelles composed by N surfac-
tants in the solution with dierent salt density.

4.3. Poisson Boltzmann Theory For The Charged
Complex

We consider the Coulombic contribution Fel of the aggregated complex, and the
corresponding entropy Fidea arising from free ions is also taken into account. The
simulation box is discretized into concentric spherical shells, hence we only need to
consider its equilibrium properties in this one dimensional system with the radius r
of the shells as the coordinate. Firstly, Poisson Equation is one of the fundamental
equations of classical electrostatics, which relates the variation of the potential ϕ(r)
within the dielectric variable ε(r) to the total charge density ρtotal(Γ, r). If in a
medium of uniform dielectric constant ε, the Poisson equation adopts the following
form:

∇2ϕ(r) = −4πq
ε
ρtotal(r) (4.18)

31

UNIVERSITAT ROVIRA I VIRGILI 
MODELING OF SELF-ASSEMBLY OF CHARGED POLYMERS 
Beibei Huang 
Dipòsit Legal: T 1350-2015 



Chapter 4 Electrostatic Effect in the Self Assembly of Charged Surfactants

In this homogeneous solution, the total charge density ρtotal(r) reads

ρtotal(r) = N

ˆ
P (Γ)dΓ {cH(Γ, r)λH + cT (Γ, r)λT}

+c∞
(
e−βqϕ(r) − eβqϕ(r)

)
(4.19)

where the first term is the density of fixed charge which is in proportion to the linear
combination of the concentrations of polymers, and λH and λT denotes the charge
ratio which is a scale coefficient in proportion to the corresponding beads concen-
tration. It is noted that Eq.4.18 connects the microscopic properties of individual
surfactant ((Γ, r)λH and cT (Γ, r)λT ) to the macroscopic charge density ρtotal(r).
The second term is the charge density of the free ions in the solution, c∞ the bulk
concentration of ions. In our model, we divided the space of the box into nested
spherical cells, and denote δ as the thinkness of each cell, and substitute x = r

lB
,

hence the total charge density ρtotal(Γ, x) can be written into a dimensionless form

ρtotal(x) = N

ˆ
P (Γ)dΓ {cH(Γ, x)λH + cT (Γ, x)λT}

+c∞(e−βqϕ(x) − eβqϕ(x)) (4.20)

Then we substitute Eq.4.20 into Eq.4.18. As it can be approximated in symmetrical
spherical coordinates, we obtain the differencial Poisson-Boltzmann equation in the
spherical coordinates. For brevity we set u(x) = βqϕ(x), and we define the Debye
length 1

κ
by κ2 = 8πlBc∞ ⇒ κ2

8π = lBc∞, where lB = βq2

ε
is the Bjerrum length and

ε is the solvent dielectric constant.

d2u(x)
dx2 + 2

x
· du(x)
dx

= −4πNl3B
ˆ
P (Γ)dΓ {cH(Γ, x)λH + cT (Γ, x)λT}

+(κlB)2 sinh u(x) (4.21)

where (κlB)2 is a parameter which is proportional to the salt density. It is noted
cH(Γ, x) and cT (Γ, x) are in units of Bjerrum length lB , and for compatible with
the dividing space of the box we need to convert units in lB to the thickness of the
cell δ when solving the equation. Finally, discretisation of the boundary Γ with the
Dirichlet boundary condition is

u(x)|x→∞ = 0 (4.22)

For solving this differencial equation we add in an extra boundary condition

u′(x)|x=0 = 0 (4.23)

The electrostatic free energy functional Fel in terms of the local co- and counterion
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4.3 Poisson Boltzmann Theory For The Charged Complex

densities ρtotal which include Coulombic contribution Fel, and the ions detached from
the polymers consist of the usual ideal Fid

Fel
V kT

= 4π
V

ˆ

V

r2dr
ρtotal(r)u(r)

2 (4.24)

and from Eq.4.24 we can obtain the corresponding contribution Fel−eff in the effec-
tive Hamiltonian

Fel−eff
kT

= 2πN
ˆ
r2dru(r) {cH(Γ, r)λH + cT (Γ, r)λT} (4.25)

Then the contribution to the free energy due to the entropy of free ions can be
written as

Fidea
V kT

= 4π
V

ˆ

V

r2dr
{∑
$=±

ρ$(r)
(

ln
[
ρ$(r)
c∞

]
− 1

)}

= 8c∞π
V

ˆ

V

r2dr
{
u(r) sinh u(r)− cosh u(r)

}

where ρ±(r) = c∞e
∓u(r), as u(r) is independent of P (Γ), hence the entropy of free

ions Fidea−eff makes no effective contribution to the final Hamiltonian
Fidea−eff
kT

= 0

Finally, combined with the contribution of the entropy of free ions

Fel−eff + Fidea−eff
kT

= 1
2

ˆ

V

4πr2Ndr

u(r)cH(Γ,r)λH + u(r)cT (Γ,r)λT


then substitute x = r

lB
,

Fel−eff + Fidea−eff
kT

≈
∑
k

l3BVk(lB)N
u(k)cH(Γ,k)λH

2 + u(k)cT (Γ,k)λT
2


where k denotes the number of kth layer, and u(k) is the electrostatic potential
at the kth layer. Vk(lB) denotes the volume of the kth layer in units of lB, and
similarly in calculation we substitute l3BVk(lB) = δ3( lB

δ
)3Vk(δ) into Eq.4.12, where δ

is the thickness of the cell, and Vk(δ) denotes the volume of the kth layer in units
of δ, and lB

δ
is the ratio of the Bjerrum length to the thickness of the cell.

Furthermore, Eq.4.21 can be solved analytically in the DH approximation when the
electrostatic potential is small, u(x) � 1. In this case, the charge density can be
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Chapter 4 Electrostatic Effect in the Self Assembly of Charged Surfactants

linearized, sinh u(x) ≈ u(x), and the solution can be written in the form

u(x) = M1e
√
bx

x
− M2

√
b

2bxe
√
bx
− a(x)

b
(4.26)

where a(x) = −4πNδ3/( δ
lB

)
´
P (Γ)dΓ {cH(Γ, x)λH + cT (Γ, x)λT}, b = (κlB)2( δ

lB
)2,

and M1, M2 are two coefficients determined by boundary conditions Eqs.4.23,4.22.
Furthermore, from Eq.4.23 we derive M2 = 2

√
bM1 , hence

u(x) = M1e
√
bx

x
− M1e−

√
bx

x
− a(x)

b
(4.27)

where M1 = lim
x→∞

a(x)
2b

x

sinh(√bx) which is determined by the boundary condition Eq.4.22.

4.4. Numerical test and disscussion

We develop the programm in C++ for the simulation. For brevity and clarity,
the numerical tests are organized into 2 groups according to the parameters, in
the first group we fix the charge density of free ions, and tune the fixed charge
density by changing the values of coefficients related to the linear combination of
the concentrations of polymers ρf (Γ, r) = cH(Γ, r)qλH + cT (Γ, r)qλT , while in the
second group the charge ratio on beads H of the polymers (λH) are fixed to study
the variation of the size of the aggregated complex in different salt density of the
solution.
In numerical tests, all the surfactants consist of 6 beads in type H and 6 beads
in type T , and the size of the box is 24 × 24 × 24 (in units of kuhn length). 1
million of conformations is adopted in the sampling simulation, and the configuration
parameters are summarized in Tab. 4.1.

Configuration Parameters
Units radius (In units of Kuhn length) 1.0

Interaction range (In units of Kuhn length) 1.61
Bond length (In units of Kuhn length) 1.47

T-T contact energy -7.0
H-H contact energy -1.0
T-S contact energy 0.5
H-S contact energy 2.0

Table 4.1.: Configuration parameters in numerical test for simulation of electro-
static effect in the self assembly of charged surfactants

In the first group, the charge density of free ions is fixed and Fig. 4.1 shows the free
energy of the spherical complex per surfactant, and the complex are aggregated by
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4.4 Numerical test and disscussion

different charged surfactants in the solution with fixed dimensionless density of salt
ions.
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re

f)/
N
kT

 H=0.03
 H=0.04
 H=0.045
 H=0.05
 H=0.055
 H=0.06

N

Figure 4.1.: Free energy per surfactant of H6T6 in solution with dimensionless salt
density κlB = 0.001, increase the charge on H beads by different values of λH ,
the numbers of aggregating polymers according to the minimum free energy per
surfactant decrease.

Fig. 4.2 illustrates the self-assembly behaviors ofH6T6, and radial variation of volume
fraction profile of all parts of the complex, in which beadsH carry different quantities
of electric charge. In particular, the volume fraction of φH decreases prominently.
Rather than the distribution cp, we adopt the more convenient function Ωp = ln c1

cp

to consider the variation of distribution of the ionic micelles composed by different
charged surfactants with different charge ratio. The values of Ωp are shown in
Fig. 4.3, and it illustrates the more charge the surfactants carry, the less aggregate
and the lower concentration of corresponding micelles in the solution. The influence
of charge ratio on critical micelle concentration (CMC) are listed in Fig. 4.4.
Reversely, in the second group we fixed the charge ratio on beads H of the poly-
mers (λH) to study the variation of the size of the aggregated complex in different
salt density of the solution. We fix λH , and gradually increase the salt density of
the solution κlB. Fig. 4.5 presents the free energy of the complex aggregated by
the charged surfactants with the fixed charge ratio λH = 0.07, and it indicates more
charged surfactants aggregating into the complexes with the salt density κlB increas-
ing. Fig. 4.6 illustrates the radial variation of volume fraction profile of the spherical
micelle in the solution with different salt density κlB. It demonstrates that it will
swell as salt density of the solution increases, and the corresponding electrostatic
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Figure 4.2.: Radial variation of volume fraction profile of tail φT (x) , headφH(x)
, solvent φW (x) and soluteφS(x) of the spherical micelle, which are aggregated by
the charged surfactants with different charge ratio λH on beads H, and the salt
density in the solution is fixed by κlB = 0.001 .

potentials are shown in Fig. 4.7. Analogously we calculate the distribution of the
ionic micelles in solution with different salt density and the corresponding CMC, as
shown in Fig. 4.8 and Fig. 4.9.

4.5. Conclusions

In this chapter we incorporate the single chain mean field (SCMF) theory with Pois-
son Boltzmann theory to explore the electrostatic effect in the aggregation behavior
of ionic surfactant molecules. We adopt coarse grained model to simulate chemical
structures of ionic surfactants and their micellization process. Combined with the
Poisson Boltzmann theory, the charge-charge repulsions between charged surfactant,
and the electrostatic screening effects by free salt ions are both taken into account.
By selecting the surfactant chain with certain quantity of charge on the hydrophilic
groups, we can predict the micellization properties of surfactants, structures and
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Figure 4.3.: Potential Ωp as a function of the aggregation number p for inoic
micelles composed by charged surfactants with different charge ratio λH . The
valley value of Ωp increase and correspondingly p decrease with the charge ratio
λH increases. The salt density in the solution is fixed by κlB = 0.001.

thermodynamics of micelles, such as the critical micelle concentration as well as the
aggregation number and the size distributions of micelles. Besides, by tuning the
density of free salt ions we can obtain the corresponding micelles as predicted in the
computer simulation, and it can be used for the structural modeling in experimental
techniques that require the specific molecular structure.
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Figure 4.4.: Free surfactant mole fraction (c1) as a function of the total surfactant
concentration (φ(c1)) for different charge ratio λH . The salt density in the solution
is fixed by κlB = 0.001.
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Figure 4.5.: Free energy per surfactant of H6T6 in solution with different dimen-
sionless salt density κlB. With the salt density κlB increasing, the numbers of
aggregating polymers according to the minimum free energy per surfactant in-
creases correspondingly.
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Figure 4.6.: Radial variation of volume fraction profile of tail φT (x), head φH(x),
solvent φW (x) and solute φS(x) of the spherical micelle, which are aggregated by
the charged surfactants with the fixed charge ratio λH = 0.03 on beads H, and
the salt density in the solution varies from 0.07 to 0.25.
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Figure 4.7.: Electrostatic potential (volt) of the spherical micelle with fixed charge
ratio λH = 0.07, in solution of different dimensionless salt density κlB.
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Figure 4.8.: Potential Ωp as a function of the aggregation number p for inoic
micelles in solution with different salt density. The micells are composed by the
charged surfactants with fixed charge raio λH = 0.07. The valley value of Ωp

decrease while correspondingly p increase with the salt density κlB increases.
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Figure 4.9.: Free surfactant mole fraction (c1) as a function of the total surfactant
concentration (φ(c1)) in solution with different salt density. The charge raio of
the charged surfactant is fixed by λH = 0.07.
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5. Electrostatic Effect in Shape
Transition of Micelles Aggregated
by Charged Surfactants

5.1. Introduction

Amphiphilic molecules, such as lipids and surfactants are an important class of
chemicals consisting of two moieties that interact very dfferently with a solvent
[35, 32, 2, 26], in which the hydrophobic tail, interacts unfavorably with the solvent
while the hydrophilic group interacts favorably with the solvent. In aqueous or or-
ganic solvents, these molecules often spontaneously selfassemble into various struc-
tures such as micelles, bilayer membranes and bicontinuous structures[8, 36, 26].
In everyday life, these amphiphilic molecules are playing a crucial role in many
areas including such diverse fields as detergency, food, paint, pharmaceutical prod-
ucts, cosmetics and industrial as well as biological processes [35, 6, 69, 49, 50], and
shape transitions of micelles play an important role in cellular physiology. Ear-
lier, micelles shape transitions in presence of monovalent salt were investigated
experimentally[54], and the transitions of micelles in model nonionic surfactantso-
lutions were theoretically investigated[4]. The sphere to cylinder or disk transitions
of surfactant micelles in aqueous solution have recently been investigated by coarse-
grained molecular dynamics (MD) simulations [58, 66], and single-chain mean-field
theory (SCMF) with Monte Carlo (MC) simulations[17].
The Poisson-Boltzmann equation (PBE) describes electrostatic interactions between
molecules in ionic solutions, and it can be used in modeling implicit solvation, an ap-
proximation of the effects of solvent on the structures and interactions of amphiphilic
molecules and the corresponding micelles or aggregates[7, 5]. Although the gener-
alized PBE has been modified to adapt to many different applications[42], it is still
an powerful tool to study the effect on the aggregation into micelles or aggregates.
The Single Chain Mean Field (SCMF) theory provide us a tool to study the self-
assembly of a mixture of an arbitrary number of types of molecules of an arbitrary
structure interacting with each other through mean fields[61, 62, 8]. Moreover this
method can be applied to solutions of linear or branched polymers, solutions of low-
molecular weight surfactants and various additives, mixtures of various components
and structural and shape transitions universally. Recently SCMF has been used to
simulate the self-assembly process of surfactants into micelles, and even the equi-
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librium structure of phospholipid membranes at the molecular level [23, 56]. Since
Single Chain Mean Field (SCMF) theory can be used for numerically modeling the
surfactant and polymer systems in a lattice and continuous space [4, 3], we choose
the continuous model for SCMF[12, 46].

In this chapter, we explore the process of shape transition in ionic surfactants ag-
gregation with varying electrostatic properties of surfactants and salt density of
solution. The analysis is carried out through two-dimensional SCMF together with
Rosenbluth method which are used for generating conformations of a single chain.
In our model, the amphiphilic molecules are modelled as a chain of freely connected
beads, and the amphiphilic molecules as HxTy, where x and y represent the number
of beads in the head H and tailT . We assume heads H in the amphiphilic molecules
carry charge, hence the amphiphilic molecules are treated as linear polyelectrolytes
on which evenly distributed the charge. In such macromolecular systems, the sta-
bility of finite size aggregates results from the balance of the electrostatic repulsion
between the positively charged hydrophilic groups and the attraction between hy-
drophilic groups (HH interaction), as well as the attraction between hydrophobic
groups (TT interaction). Besides, as the free ions of salt and counterions in the so-
lution surrounding the micelles increases, the concentration of small ions of opposite
charge inside the complex increases inducing stronger screening effect, and such an
effect will weaken the repulsion between charged hydrophilic groups hence break the
balance between forces[7, 34].

5.2. Single Chain Mean Field

We adopt 2D Single Chain Mean Field (SCMF) theory to coarse-grained model. In
this model the space is divided into Zl slice along z−axis and Nc nested concentric
shells of radii r in the x− y plane, hence (r, z) can be treated as the coordinates of
the certain cell in layer z and shell r. The condition for the incompressibility can
be described by Eq.

〈φH(r, z)〉+ 〈φT (r, z)〉+ φS(r, z) = 1 (5.1)

where φS(r, z) = cS(r, z)vs is the volume fraction of the solvent in cell (r, z), cS(r, z)
denotes the corresponding concentration. vs denotes the volume of one solvent bead
and 〈φH(r, z)〉 and 〈φT (r, z)〉 denote the corresponding mean volume fraction of
beads H and T respectively. The angular brackets 〈. . .〉 denote the average over the
probability distribution function P (Γ) of the system, hence

〈φH(r, z)〉 =
ˆ
P (Γ)φH(Γ, r, z)dΓ (5.2)
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5.3 Poisson Boltzmann Theory

〈φT (r, z)〉 =
ˆ
P (Γ)φT (Γ, r, z)dΓ (5.3)

We define c(Γ) = NP (Γ)
V

is the distribution function that related to the probability of
a single surfactant of conformation P (Γ), and V is the volume of the simulation box.
The intramolecular attractive contribution to the interaction energy is simplified

Eintro(Γ) =
ˆ
dvεTT

ˆ
c(Γ)uintro(Γ, r, z)dΓ (5.4)

where uintro(Γ) is the potential generated by the T −T interactions inside conforma-
tion Γ, and it is obtained after all conformations are generated. Then the interaction
between moleculars can be written into

Einter(Γ) = dΓc(Γ)
N − 1

2

ˆ
dv

εHHφHint(Γ, r, z) 〈cH(r, z)〉

+εTTφTint(Γ, r, z) 〈cT (r, z)〉
 (5.5)

The entropies of the polymers and solvent are combined as

Eps = V

ˆ
c(Γ) ln c(Γ)

e
ΛpdΓ +

ˆ
dvcS(r, z) ln cS(r, z)

e
Λs (5.6)

where V denotes the volume of the simulation box. Λp and Λs denote Broglie lengths
of the beads of polymers and solvent respectively.

5.3. Poisson Boltzmann Theory

We consider the Coulombic contribution Fel of the aggregated complex, and the
corresponding entropy Fidea arising from free ions is also taken into account. The
simulation box is discretized into concentric spherical shells, hence we only need to
consider its equilibrium properties in this one dimensional system with the radius r
of the shells as the coordinate. Firstly, Poisson Equation is one of the fundamen-
tal equations of classical electrostatics, which relates the variation of the potential
ϕ(r, z) within the dielectric variable ε(r, z) to the total charge density ρtotal(Γ, r, z).
If in a medium of uniform dielectric constant ε, the Poisson equation adopts the
following form:

∇2ϕ(r, z) = −4πq
ε
ρtotal(r, z) (5.7)
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In this homogeneous solution, the total charge density ρtotal(r, z) reads

ρtotal(r, z) = N

ˆ
P (Γ)dΓ {cH(Γ, r, z)λH + cT (Γ, r, z)λT}+c∞

(
e−βqϕ(r,z)−eβqϕ(r,z)

)
(5.8)

where the first term on the right side is the density of fixed charge which is in
proportion to the linear combination of the concentrations of polymers, and λH
and λT denotes the charge ratio which is a scale coefficient in proportion to the
corresponding beads concentration. It is noted that Eq.5.7 connects the microscopic
properties of individual surfactant ((Γ, r)λH and cT (Γ, r)λT ) to the macroscopic
charge density ρtotal(r). The second term is the charge density of the free ions in
the solution, c∞ denotes the bulk concentration of ions.

Then we substitute Eq.5.8 into Eq.5.7. As it can be approximated in 2D r − z
coordinates, the differencial Poisson-Boltzmann equation is obtained

∂ϕ(r, z)
r∂r

+ ∂2ϕ(r, z)
∂r2 + ∂2ϕ(r, z)

∂z2 = −4πq
ε

N
ˆ
P (Γ)dΓ

cH(Γ, r, z)λH + cT (Γ, r, z)λT


+c∞

e−βqϕ(r,z) − eβqϕ(r,z)

 (5.9)

where q denotes the elementary charge and ε is the solvent dielectric constant. In
our model, the space of the box is divided into concentric circular shells of radius r
and layers of slices with total length z, and the thickness of each cell are δh and δr
respectively, then xh = z

δh
, xr = r

δr
. For brevity we set u(xr, xh) = βqϕ(xr, xh), and

´
P (Γ)dΓ

cH(Γ, r, z)λH + cT (Γ, r, z)λT

 = 〈cH(r, z)〉λH + 〈cT (r, z)〉λT then the 2D

differencial Poisson-Boltzmann equation

∂u(xr, xh)
xr∂xr

+ ∂2u(xr, xh)
∂x2

r

+ ∂2u(xr, xh)
∂x2

h

(
δr
δh

)2

= −4πδ3
rN

〈cH(xr, xh)〉λH +

+〈cT (xr, xh)〉λT

/( δr
lB

)
+

+(κlB)2

2

(
δr
lB

)2
eu(xr,xh) − e−u(xr,xh)


where

(
δr

δh

)
and

(
δr

lB

)
are two ratios determined by the input parameters. N is

the number of polymers, and (κlB) is proportion to the salt density which can be
used for tuning the salt density in the solution. Inverse Debye length 1

κ
is defined

by lBc∞ = κ2

8π , and lB = βq2

ε
is the Bjerrum length and ε is the solvent dielectric

constant. where (κlB)2 is a parameter which is proportional to the salt density,
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5.3 Poisson Boltzmann Theory

and δ
lB

is the ratio of the thickness to the Bjerrum length, which is a constant in
the numerical test we set it 2.0. Finally, discretisation of the boundary Γ with the
Dirichlet boundary condition are

u(xr, xh=0) = 0, u(xr, xh=max) = 0 (5.10)

and

u(xr=max, xh) = 0, u′(0, xh) = 0 (5.11)

where xh=max and xh=0 corresponds to the heights of the top layer and bottom layer,
and xr=max is the radius of the outermost layer of the nested cylinder.

The electrostatic free energy functional Fel in terms of the local co- and counterion
densities ρtotal which include Coulombic contribution Fel, and the ions detached from
the polymers consist of the usual ideal Fid

Fel
V kT

=
ˆ
dv
ρtotal(r, z)u(r, z)

2V (5.12)

Then the contribution to the free energy due to the entropy of free ions can be
written as

Fidea
V kT

= 1
V

ˆ
dv
{∑
$=±

ρ$(r, z)
(

ln
[
ρ$(r, z)
c∞

]
− 1

)}

= 1
V

ˆ
dv
{
u(r, z) sinh u(r, z)− cosh u(r, z)

}
where ρ±(r, z) = c∞e

∓u(r,z), as u(r, z) is independent of P (Γ), hence the entropy of
free ions Fidea−eff makes no effective contribution to the final Hamiltonian. Finally,
combined with the contribution of the entropy of free ions

Fel−eff + Fidea−eff
kT

= N

2

ˆ
dv

u(r, z)cH(Γ,r, z)λH + u(r, z)cT (Γ,r, z)λT


then substitute xh = z

δh
, xr = r

δr
,

Fel−eff + Fidea−eff
kT

≈
∑
k

δhδ
2
rVxr,xh

N

u(xr, xh)cH(Γ,xr, xh)λH + u(k)cT (Γ,xr, xh)λT
2


where xr, xh denotes the coordinates of the cell in simulation box, Vxr,xh

and u(xr, xh)
denote the volume and electrostatic potential of the corresponding cell respectively.
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5.4. Numerical test and disscussion

We developed the programm in C++ to test the equations. For brevity and clarity,
in all numerical tests we fix the fixed charge density represented by the values
of coefficients related to the linear combination of the concentrations of polymers
ρf (Γ, r) = cH(Γ, r)qλH + cT (Γ, r)qλT , and tune the charge density of free ions by
changing the values of κlB. In the first numerical test, the chains consist of 6 beads
in type H and 6 beads in type T , and the size of the box is 30 × 30 × 30 (in units
of Kuhn length), and δh = 2.0 and δr = 2.0, ratio of thickness to Bjerrum length
δr

lB
= 4.0. 1 million of conformations is adopted in the sampling simulation, and the

configuration parameters are summarized in Tab. 5.1.

Parameters
Bead radius 0.5

Interaction range 1.61
Bond length 1.0

T-T contact energy, kT -6.0
H-H contact energy , kT -1.0

Table 5.1.: Molecular configuration parameters of block copolymers used in simu-
lations for H6T6.

Although solution for the 2D SCMFT is not unique, and it means more than one
aggregate could exist in solution, we have always obtained solutions with one single
aggregate. Fig. 5.1 shows the free energy per surfactant of the spherical complex
aggregated by the fixed charge ratio λH = 0.1 with different dimensionless density
of salt ions κlB = 0.01, 0.05, 0.07, 0.10.

Fig. 5.2 illustrates the self-assembly behaviors ofH6T6, showing salt density changing
induces sphere to cylinder transition of the micelle. The variation of volume fraction
profile of the complex φP according to different dimensionless salt density, in which
the charge ratio of beads is fixed to λH = 0.1. In particular, the volume fraction of
φH is shown in Fig. 5.3, in which it indicates φH increase prominently with the salt
density κlB increasing, and the corresponding dimensionless electrostatic potentials
are listed in Fig. 5.4, which shows decrease of electrostatic potentials with salt density
increasing.

In the second numerical test, the chains consist of 3 beads in type H and 6 beads
in type T , and the size of the box is 25 × 25 × 25 (in units of Kuhn length), and
δh = 2.0 and δr = 2.0, ratio of thickness to Bjerrum length δr

lB
= 4.0. 1 million

of conformations is adopted in the sampling simulation, and the configuration pa-
rameters are summarized in Tab. 5.2. Similarly, the charge ratio on beads H of the
polymers is fixed λH = 0.08, and the salt density of the solution κlB is gradually
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5.4 Numerical test and disscussion

Figure 5.1.: Free energy per surfactant of H6T6 in solution with different dimen-
sionless salt density κlB = 0.01, 0.05, 0.07, 0.1

increased. Fig. 5.5 presents the solvent free energy of the complex aggregated by
the same number of the polymer chains. Fig. 5.6 and Fig. 5.7 illustrate the variation
of volume fraction profile of the micelle φP = φH + φT and charged beads H φH
respectively in the solution with different salt density κlB, and the corresponding
electrostatic potential is shown in Fig. 5.8. It indicates the volume of the micelle
that composed by the asymmetrical surfactant H3T6 does not change much with salt
density of the solution increases, while the shape changes from cylinder to sphere
when micelle is large.

Parameters
Bead radius 0.5

Interaction range 1.61
Bond length 1.0

T-T contact energy, kT -5.5
H-H contact energy , kT -2

Table 5.2.: Molecular configuration parameters of block copolymers used in simu-
lations for H3T6.
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Figure 5.2.: The volume fraction profile of φP = φT +φH of the micelle, which are
composed by the charged surfactants with fixed charge ratio λH = 0.1 on beads H,
in the solution with different dimensionless salt density κlB = 0.01, 0.05, 0.07, 0.1.
It shows the salt density changing induced sphere to cylinder transition of the
micelle.

5.5. Conclusions

In this chapter, the 2D single chain mean field (SCMF) theory is incorporated with
Poisson Boltzmann theory to explore the electrostatic effect in the shape transition
behavior of the micelles composed by ionic surfactant molecules. We adopt coarse
grained model to simulate chemical structures of ionic surfactants and their micel-
lization process. Combined with the Poisson Boltzmann theory, the charge-charge
repulsions between charged surfactant, and the electrostatic screening effects by free
salt ions are both taken into account. By tuning the density of free salt ions we can
obtain the prossible micelles as predicted in the computer simulation, and it can be
used for the structural modeling in experimental techniques that require the specific
molecular structure.
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Figure 5.3.: The volume fraction profile of φH of the micelle composed by the
charged surfactants with fixed charge ratio λH = 0.1 on beads H, in the solution
with different dimensionless salt density κlB.
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Figure 5.4.: Dimensionless electrostatic potential of the spherical micelle with fixed
charge ratio λH = 0.1, in solution of dierent dimensionless salt density κlB.
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Figure 5.5.: Free energy per surfactant of H3T6 in solution with different dimen-
sionless salt density κlB = 0.01, 0.05, 0.07, 0.10.
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Figure 5.6.: Variation of volume fraction profile of micelles φP (x) = φT (x)+φH(x),
which are aggregated by the polymer chains with the fixed charge ratio λH = 0.08
on beads H, and the salt density in the solution varies from 0.05 to 0.7.
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Figure 5.7.: The volume fraction profile of φH of the micelle composed by the
charged surfactants with fixed charge ratio λH = 0.08 on beads H, in the solution
with different dimensionless salt density κlB.
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λH = 0.08, in solution of different salt density .
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a b s t r a c t

IPEC Solver is a Windows program designed to analyze the stability of core–shell inter-polyelectrolyte
complexes formed by complexation of oppositely charged block copolymers. The two-dimensional
size distribution of the complexes composed by different numbers of positively or negatively
charged polyelectrolytes is calculated based on the scaling model of block copolymer aggregation
and Poisson–Boltzmann theory for electrostatic interactions [V.A. Baulin, E. Trizac, Self-assembly of
spherical inter-polyelectrolyte complexes from oppositely charged polymers, Soft Matter 8 (25) (2012)
6755–6766]. Salt effects, charge distribution and distributions of labile cations and anions around the
complexes are calculated numerically as a function of chain composition and solvent properties.

Program summary

Program title: IPEC Solver

Catalogue identifier: AEPM_v1_0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEPM_v1_0.html

Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland

Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html

No. of lines in distributed program, including test data, etc.: 53802

No. of bytes in distributed program, including test data, etc.: 4582576

Distribution format: tar.gz

Programming language: C++ (VS.10)

Computer: PC

Operating system:WinXP, Win7

Has the code been vectorized or parallelized?: Supports parallel computation through OpenMP

RAM: 1 GB

Classification: 16.11

Nature of problem:
This free software is designed to illustrate physical mechanisms of self-assembly of inter-polyelectrolyte
complexes in the presence of salt. It can suggest an optimal structure of the aggregates as a function of
the structure of block copolymers.

Solution method:
The distribution of the complexes composed by a different number of positively or negatively charged
polyelectrolytes is calculated based on a scaling model of block copolymer aggregation and Pois-
son–Boltzmann theory for electrostatic interactions [V.A. Baulin, E. Trizac, Self-assembly of spher-
ical inter-polyelectrolyte complexes from oppositely charged polymers, Soft Matter, 8 (25) (2012)
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6755–6766]. Salt effects, charge distribution and distributions of labile ions around the complexes are
provided.
Restrictions:
IPEC complex is assumed to have a core–shell structure: a spherical core containing charged polymers is
surrounded by a neutral corona. To insure stability of the solution, salt concentration, ka > 0.2
Additional comments:
Solves the Poisson–Boltzmann equation in a broad range of parameters.
Running time:
From seconds to several hours.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Long range electrostatic interactions provide high stability of
the complexes formed by molecules of opposite charge. This in-
sures their potential use in a number of functional devices [1], such
as drug delivery carriers [2–4] ormolecular recognition devices [5].
Dilute solutions of oppositely charged block-polymers can form
thermodynamically stable finite size inter-polyelectrolyte com-
plexes (IPEC) [5–10] or polyion micelles [11,12,1]. Adjusting the
structure of the polymer chain as well as the solution properties
allows one to control the composition and structure of the result-
ing IPECs.

The Poisson–Boltzmann (PB) equation describes electrostatic
interactions and distribution of ions around charged objects in
equilibrium at a mean field level. Numerical approaches to solve
the PB equation [13,14] in different practical situations and differ-
ent geometries are widely available [15]. The commonmethods to
solve the PB equation include finite difference methods and finite
element methods [14], where the space is discretized in grids and
elements; boundary element [16,17] and boundary integral equa-
tion methods [18], where only the surface of a big molecule is dis-
cretized while the surrounding distribution of labile ions is treated
as a continuous field. Most of these methods are more suitable for
3D geometry models describing a big molecule of arbitrary shape
in the electrostatic field. In contrast, IPEC complexes usually have
symmetrical shapes with uniform distribution of charges. Accord-
ing to a recent theory of IPEC complexation [19], block copolymers
of opposite charge aggregate into a spherical complex comprised
of m+ polycations and m− polyanions. The total free energy of the
solution of IPECs of different compositions (m+,m−) is written as

F
VkT

=

∞
m+,m−=0

cm+,m−
((ln[cm+,m−

v] − 1) + Fm+,m−
) (1)

where V is the volume of the system, v is the molecular volume
associated with the de Broglie length, and cm+,m− is the concentra-
tion of the complexes of a given composition (m+,m−). The free
energy of the complex Fm+,m− consists of an electrostatic contri-
butionΩel, and a term accounting for the steric repulsion of chains
forming a corona around the complex Fcorona. The electrostatic con-
tribution is given by [19]

Ωel =


dr


1
2
ρ(r)φ(r) + kT


α

ρα(r) ln
ρα(r)
c∞

− kT


α

ρα(r) + 2c∞


(2)

where r is the distance from the center of the complex, φ(r) is the
electrostatic potential at a distance r , ρ(r) is the charge density,
α = ± corresponds to labile cations and anions, respectively,while

c∞ is the bulk salt concentration. The complexes coexist in the so-
lution with isolated charged copolymers. To calculate the electro-
static potential of isolated copolymers, they are approximated by
cylinders placed in a salty media. The corresponding electrostatic
contributions to the free energy from positively charged, F1,0, and
negatively charged polymers, F0,1 are given by [19]

Ωel

kTN±

=
1
2
u(0)ξ +

1
4


∞

κa
r̃dr̃u(r̃) sinh(u(r̃))

−
1
2


∞

κa
r̃dr̃u(r̃)[cosh(u(r̃)) − 1]. (3)

Here the chain lengths N± are expressed in units of lB and ξ is
theManning parameter. Tuning the chain composition, charge and
lengths of the blocks, and solvent properties one can obtain the re-
gions of stability of IPEC complexes, the size of the complexes and
their size distribution [19]. However, this implies that the stability
of the complexes depends onmany factors that act simultaneously.
Thus, a numerical tool solving efficiently PB equationswould allow
us to explore various possibilities and the influence of different pa-
rameters on the stability of complexes. Fast solution of equations
for a large range of parametersmay suggest a solution for a reverse
problem, when the composition of the polymers and solvent prop-
erties that provide stable IPEC complexes can be guessed.

This work describes IPEC Solver (available at http://softmat.
net/ipec-solver/), a numerical tool for the analysis of the stability
of IPECs, and mostly focuses on the numerical implementation of
the program and solution methods for estimating the equilibrium
distribution of the electrostatic energy of the complexes. The core
of IPEC Solver is the PB equation which is solved in spherical
and cylindrical geometries based on the structure of the block
copolymer chains and the solvent properties [19].

2. Poisson–Boltzmann equation in spherical geometry

In this section we focus on the methodology of solving the PB
equation in spherical geometry with boundary conditions defined
in Ref. [19]:

∇
2φ(r) = −

4πq
ϵ


Z1H(Rc − r)

4πR3
c/3

− 2c∞ sinh(βqφ(r))


(4)

where φ(r) denotes the potential at a distance r, q is the
elementary charge, β = 1/kT ,H(Rc − r) is a Heaviside step
function, and c∞ is the bulk density of labile cations and anions.
The dielectric permittivity ϵ is assumed to be constant inside
and outside the complex to reduce the number of parameters of
the model. Variable dielectric permittivity can easily be included;
however this may not be essential in such a qualitative model.
The bare charge of the core (due to polymers and not screened by
labile cations and anions) [19] is Z1 = z+m+ − z−m−, where z±
is the charge and m± is the number of polymers of each sign in
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the complex. Introducing the dimensionless electrostatic potential
u(r) = βqφ(r) and the dimensionless distance x = r/Rc , where Rc
is the radius of the charged sphere, Eq. (4) is then written as

u′′(x) +
2
x
u′(x) = −3Z̃1H(1 − x) + (κRc)

2 sinh(u(x))

u′(0) = 0
u′(∞) = 0

(5)

where Z̃1 = Z1lb/Rc is the dimensionless bare charge of the
sphere, lb = βq2/ε is the Bjerrum length and κ2

= 8π lBc∞ is a
rescaled labile cations and anions concentration, which includes
counterions and salt molecules. In this nonlinear equation sinh(u)
may lead to overflow for large values of u(x). Thus, for convenience
we set w = eu, y = w′ and get an equivalent system

y′
=

y2

w
−

2y
x

− 3Z̃1w +
w2

− 1
2

(κRc)
2

w′
= y

y(0) = 0
y(∞) = 0

(6)

where Z̃1 and κRc are two control parameters. The solution of
this equation can be obtained by the conventional approach
based on the finite difference method and the Newton–Raphson
method [20–22]. However, this standard approach may not be
stable for all sets of parameters.

To analyze the stability of the equation for different sets of
parameters, we write this equation in a general form

dy
dx

= f (x, y), (7)

If ỹ(x) is the solution of the equation that satisfies the correspond-
ing boundary condition, we canwrite a linear approximation func-
tion
dZ
dx

= J(x)(Z − ỹ(x)) + f (x, ỹ(x))

or
dZ
dx

= J(x)Z + F(x)

hence

F(x) = f (x, ỹ(x)) − J(x)ỹ(t)

where J(x) is the Jacobian matrix. Substituting ỹ by the vector
[w, y]T in Eq. (6) one obtains the corresponding Jacobian matrix

J =

 0 1

(kRc)
2w −

y2

w2
− 3Z̃1

2y
w

−
2
x

 . (8)

According to Ref. [23], if the eigenvalues of Jacobian matrix J of
dimension k, λj = λj(x), j = 1, 2 . . . k satisfy

1. Re(λj) < 0, j = 1, 2 . . . k.
2. s(x) =

max1≤j≤k(Re(λi))
min1≤j≤k(Re(λj))

≫ 1

the nonlinear system is considered to be stiff on x, and s(x) is the
stiffness ratio at x. This signifies the instability of the solution of the
equation.

The stiffness ratio s(x)of the finite-differencemethod combined
with the Newton–Raphson method [20–22] to solve Eq. (6) with
values of x in the range from 0.02 to 0.8, and the eigenvalues of the
matrix J , Eq. (8), is given in Table 1.

All the values in the table are smaller than or equal to 1, thus
the system is not stiff for most Z̃1 and the solution is stable.

Table 1
Stiffness ratio s(x) of Eq. (6).

x Z̃1 = 42 Z̃1 = 60 Z̃1 = 138 Z̃1 = 216 Z̃1 = 294

0.02 0.01 0.02 0.04 0.07 0.11
0.04 0.06 0.08 0.26 1.00 1.00
0.06 0.15 0.25 1.00 1.00 1.00
0.08 0.38 1.00 1.00 1.00 1.00
0.10 1.00 1.00 1.00 1.00 1.00
0.12 1.00 1.00 1.00 1.00 1.00
0.14 1.00 1.00 1.00 1.00 1.00
0.16 1.00 1.00 1.00 1.00 1.00
0.18 1.00 1.00 1.00 1.00 1.00

3. Poisson–Boltzmann equation in cylindrical geometry

Spherical IPECs coexist in the solution with isolated chains
of both signs. To calculate the electrostatic contribution to the
free energy of an isolated chain, one can approximate a polymer
chain with a linear charge λ± with an infinite cylinder surrounded
by counterions and salt molecules. In this section we describe
the numerical method of solving the PB equation in cylindrical
geometry [19]:

1r d
dr

r d
dr


u = sinh u

du
dr

r=κa
= ±

2ξ
κa

u(r −→ ∞) = 0

(9)

where ξ = ℓBλ± is a dimensionless linear charge, the so-called
Manning parameter [24], a is the radius of the cylinder, κ2

=

8π lBc∞ is a rescaled labile cations and anions concentration andr = κr is a dimensionless distance. This equation is controlled by
two parameters, κa related to salt concentration, and a dimension-
less parameter β = ±2ξ/κa. Both of them appear in the boundary
condition, thus the stiffness of the equation will be determined by
these parameters.

Similar to the spherical case, a change of variables w = eu, y =

w′ leads to
y′

=
y2

w
−

y
x

+
w2

− 1
2

w′
= y

y
w

r=κa
= ±β

w(∞) = 1.

(10)

The corresponding Jacobian matrix J is given by

J =

 0 1

w −
y2

w2

2y
w

−
1
x

 (11)

and the stiffness ratios s(x) are given in Table 2. The values of the
stiffness ratio s(x) > 1 for certain sets of parameters in this table
may indicate that commonly used methods to solve differen-
tial equations could be unstable, and no general strategy guar-
antees [20] the existence or uniqueness of a solution of such
nonlinear second-order equations. One of the most commonly
used methods to solve such a boundary value problem is the 4th-
Order-Runge–Kutta iteration technique [20], and we find that the
solution of this equation is very sensitive to the parameter β when
it is used together with the shooting method [25]. It becomes un-
stable for some sets of the parameters and thus is not suitable for
the solution of Eq. (10) for all sets of parameters. It is quite difficult
to choose an appropriate initial estimate for the shooting method.
In addition, slight variations in the boundary values may lead to
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Table 2
Stiffness ratio s(x) of nonlinear equations (10).

x ξ = 1 ξ = 2
β = 1.0 β = 2.0 β = 10.0 β = 20.0 β = 2.0 β = 4.0 β = 20.0 β = 40.0

0.02 1.0e+004 1.0e+003 48.22 18.51 1.0e+003 228.85 18.51 17.43
0.04 2.91 1.04 40.92 16.26 1.04 220.85 16.26 15.41
0.06 0.09 4.80 40.94 15.87 4.80 311.77 15.87 15.04
0.08 0.03 0.67 43.52 16.05 0.67 970.65 16.05 15.19
0.10 0.02 0.25 48.30 16.53 0.25 548.75 16.53 15.62
0.12 0.01 0.14 56.07 17.23 0.14 189.83 17.24 16.24
0.14 0.00 0.09 69.02 18.15 0.09 108.06 18.15 17.04
0.16 0.00 0.07 93.20 19.30 0.07 72.78 19.30 18.04
0.18 0.00 0.05 151.38 20.73 0.05 53.50 20.73 19.27
0.20 0.00 0.04 464.77 22.50 0.04 41.55 22.50 20.78

great changes in the solution, thus it is not possible to use a previ-
ous solution as an initial guess for the next solution. Such amethod
can be used to solve the equation only for small values of β .

In order to overcome this problem, we use the finite difference
method [26] to discretize the differential equations into a set of
nonlinear equations. There are two sources of error in thismethod:
one is the rounding error which may accumulate in a sequence of
calculations and another is the discretization error or truncation
error, which comes from the difference between the exact solution
and the solution of the finite difference equation. Substitution of
y = w′ into Eq. (10) leads to

w′′
=

w′
2

w
−

w′

x
+

w2
− 1
2

w′

w

r=κa
= ±β

u(∞) = 1.

(12)

Using Taylor expansion and the method of undetermined
coefficients, we discretize the first and second derivatives into
finite differences expressions. The space is divided uniformly into
a grid, x0, x1 . . . xi with step h, which gives
wi = w(xi) (13)

w′

i = −
wi−1

3h
−

wi

2h
+

wi+1

h
−

wi+2

6h
(14)

w′′

i =
wi−1

h2
−

2wi

h2
+

wi+1

h2
. (15)

Further we discretize the first derivative of the boundary
condition [23],

w′

i =
−3wi + 4wi+1 − wi+2

2h
. (16)

The truncation errors for the above three differences expres-
sions are of order O(h2). This method effectively decreases the dis-
cretization error and accelerates the convergence speed.

The resulting system of nonlinear equations is then solved us-
ing the Newton–Raphson method [20–22] with values of x from
0.02 to 0.8. A properly chosen initial guess of the solution is an im-
portant factor for fast convergence to the solution. It becomes even
more important when β > 1, because the values in the Jacobian
determinant (8) also increase leading to the accumulation of small
errors. Thus, we first solve a linearized PB equation (Debye–Huckel
(DH) equation), which has an analytical expression and use it as
an initial guess to solve the PB equation. The solution of linearized
Eq. (10) is given by

w = ±β exp


K0(κa)I0(x)

I1(κa)K0(κa) − K1(κa)I0(∞)

+
I0(∞)K0(x)

I0(∞)K1(κa) + I1(κa)K0(κa)


(17)

where Iα and Kα are modified Bessel functions of the 1st kind and
the 3rd kind respectively [27]. For weakly charged chains or large
salt concentrations, i.e. when β ≪ 1, the potential u < 1 and the
DHequation is close to the exact solution of PB. Thus, using its solu-
tion as an initial guess provides a good convergence of the PB equa-
tion. When β > 1, the solution of the PB equation can be obtained
in the iterative process by a gradual increase of β , when the solu-
tion of the PB equation with smaller β is used as the initial guess
for larger β .

However, a gradual increase of β slows down the calculation.
Thus, we use the adaptive method to approach larger β , starting
with the DH solution as the initial guess for small β and using
it as an initial guess for larger β . Using an adaptive step in β
values, we can approach the solution faster. Such a ‘‘relay race
strategy’’ is summarized in Algorithm1with grid vector x, step size
h, boundary condition value β and relative iteration convergence
tolerance tol as input parameters, and the vector w0 as the output
solution. An example of the algorithm performance is shown in
Table 3.

Input: vector x, float h, β, tol
Output: vector w

1 set βstep ≪ 1;
2 create a vectorw0 which is a solution of the corresponding
DH Eq. (17) with βinit ≪ 1 ;

3 i = 1;

4 num =


β

βstep


;

5 while i < num + 1 do
6 β = βstep ∗ i;
7 w1=Newton–Raphson(x, β,w0, h, tol);
8 if w1 does not converge to a solution then
9 num=num*2;

10 βstep = βstep/2;
11 i = 1;
12 continue;
13 end
14 w0 = w1;
15 i=i+1;
16 end
17 w = w0

Algorithm 1: Adaptive ‘‘relay race’’ algorithm using combina-
tion of finite difference and Newton–Raphson methods.

Such a method provides a stable solution of the PB equation
in cylindrical geometry, Eq. (12) for a large range of parameters,
although it takes more time than the solution of the PB equation in
spherical geometry, Eq. (6). Solution of these equations provides
an equilibrium distribution of counterions and salt ions in the
solution, distribution of charges, free energy of the chains in the
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Fig. 1. IPEC: overview of the main window. Left panel: structure of block copolymers and solution properties; Central field: probability of complexes of a given composition
of polycations and polyanions; Right panel: optimal solution; Window below: solution process.

Table 3
The number of steps inβ and the number of iterations of Newton–Raphsonmethod.

β κa = 0.5 κa = 1.0 κa = 2.0 κa = 10.0
β steps Iter

num
β steps Iter

num
β steps Iter

num
β steps Iter

num

0.4 2 6 2 7 2 8 2 8
2.0 2 10 2 10 2 10 2 10
4.0 2 12 2 12 2 12 2 12
8.0 7 35 7 36 7 41 7 34

16.0 7 50 7 42 7 62 7 55
32.0 7 53 7 69 7 71 7 54
64.0 12 88 12 63 12 72 12 134

128.0 12 79 12 76 12 91 12 92
256.0 12 103 12 78 12 84 12 88
512.0 17 111 17 88 17 105 17 90

solution and in the self-assembled complexes and thus allows us
to determine the range of stability of IPEC micelles in terms of the
numbers of polyanions and polycations in the complex.

4. Implementation of IPEC Solver

In this section we introduce IPEC Solver (available at http://
softmat.net/ipec-solver/), which is a Windows program designed
to analyze the stability of core–shell polyelectrolyte complexes
formed by the complexation of oppositely charged block copoly-
mers. The two-dimensional size distribution (number of polyan-
ions and polycations) of the complexes is calculated based on a
scaling model of block copolymer aggregation and PB theory for

electrostatic interactions [19]. The program supplies a graphical
interface for input parameters, and output probabilities of IPEC
sizes, charge and labile cations and anions distributions around the
complexes.

4.1. Structure of IPEC Solver

IPEC Solver is designed to provide a rapid estimate of the sta-
bility region of polyelectrolyte complexes self-assembled from
di-block copolymers, Fig. 1. The left column is reserved for in-
put parameters, such as the structure of block copolymer chains,
their charge and the length of charged and neutral blocks. The
resulting distribution of the complexes is displayed in the main
field in the center. The range of aggregation numbers of the com-
plexes, i.e. numbers of positively and negatively charged chains in
the complexes, can be fixed before the solution of the equations
and the equations are solved in the indicated region of aggrega-
tion numbers. The complexes are shown in the central field with
different colors, which represent different probabilities to form a
complex with a given composition (the probability of the com-
plex aggregated by certain numbers of oppositely charged copoly-
mers is demonstrated by the corresponding color, as shown in
Fig. 1). The optimal solution, i.e. the solution which corresponds
to the maximum of the probability is shown in the right column.
It contains aggregation numbers, core radius Rc , the bare charge of
the core Z1 and a schematic representation of the complex at the
bottom. Double clicking on the grid in the main field opens a new
windowwith the electrostatic details of the complex with the cor-
responding aggregation numbers.
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(a) Table of interpolation values for electrostatic energy of a
cylinder.

(b) Getting values for given κa
and ξ .

Fig. 2. Interpolation of electrostatic energy of a cylinder.

(a) Size distribution for z+ = z− = 44 and concentrations of individual chains
c+ = c− = 10−7 , salt concentration κa = 0.2, ξ = 0.25.

(b) Size distribution for z+ = z− = 78 and concentrations of individual chains
c+ = c− = 10−13 , salt concentration κa = 0.2, ξ = 0.25.

Fig. 3. Probability distribution function for different lengths of block copolymers of opposite charge for two groups of different input parameters.

The work with the program is summarized in the following
steps:

1. Define the structure of the chains (positively and negatively
charged) defining the length of charged and neutral blocks and
their charge.

2. Define solvent conditions, such as salt concentration and
concentrations of block copolymers.

3. Define the aggregation number range in the main field, where
the solution needs to be found.

4. Solve equations either choosing the DH approximation for
weakly charged objects or the full PB equation.

5. Analyze the resulting distribution of complexes in the main
field, the optimal solution in the right column and detailed
electrostatic properties of the complexes by double clicking the
grids in the main field.

IPEC Solver first solves the PB equation for linear chains, Eq. (10),
since this solution is the same for all grids in the main field. Then
it solves the PB or DH equations (depending on the choice of the
user) for each grid in the main field. Using the solution of the
equations, the size distributions of complexes are calculated taking
into account non-electrostatic contributions as described in [19].
The complexes are colored according to their probability, while
the most probable in the indicated aggregation numbers range is
shown in the right column.

4.1.1. Input parameters
Input parameters are divided in two groups: (i) the structure

and geometry of the chains: the charge and the lengths of charged
and neutral blocks and (ii) solution properties: salt concentration
κa and the total concentrations of oppositely charged block
copolymers c+ =


∞

m+=0 m+cm+,m− and c− =


∞

m−=0 m−cm+,m−.
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(a) Neutral block length = 10. (b) Neutral block length = 20.

(c) Neutral block length = 50. (d) Neutral block length = 200.

Fig. 4. Size distributions of IPECs for different length of neutral block of a negatively charged block copolymer, z+ = z− = 18, c+ = c− = 10−3 and κa = 0.2, ξ = 0.25.

In addition, the range of aggregation numbers of polymer chains of
both signs is introduced below the grid, see Fig. 1.

4.1.2. Interpolation for speeding up the calculations
The first step in calculation of the size distributions of com-

plexes is the solution of PB equations for linear chains, Eq. (10). This
time consuming step can be optimized by using the interpolation
of the stored results. Indeed, Eq. (10) depends only on two parame-
ters, κa and ξ , thus solving the equation for different combinations
of κa and ξ in advance and storing the result in a table may save
time. If the values of κa and ξ are not in the table, their values are
approximated as shown in Fig. 2. We compute the value of the free
energy for given κa and ξ for each intersection point and store it in
the table. The dependence of electrostatic energy of a cylinder on

κa and ξ becomes linear [19] when κa and ξ are sufficiently large.
Thus, the interpolation table is divided into two regions: region I
with step 0.1 and region II with step 0.2. The electrostatic energy
between the table values is obtained using Eq. (18). Here v denotes
the required value of the energy, κa1, κa2, ξ1 and ξ2 are the val-
ues in the table with the corresponding values a, b, c, d, as shown
in Fig. 2:

v = v2 + (v1 − v2) ∗ (κa − κa1)/(κa2 − κa1)

v1 = b − (b − a) ∗
ξ2 − ξ

ξ2 − ξ1

v2 = d − (d − c) ∗
ξ2 − ξ

ξ2 − ξ1
.

(18)
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Fig. 5. Dimensionless electrostatic potential (a)–(c), reduced charge density of labile cations and anions around the core ρ± = c∞e∓u(x) (d)–(f) and charge density ρR2
c lB as

a function of distance from the core for different charges of the core (g)–(i). Three groups of figures correspond to IPECs with aggregation numbers (3, 5), (4, 4), and (5, 3),
respectively. Here (m, n) denotes the probability value of the complex composed bym positively charged copolymers and n negatively charged copolymers. Parameters for
all figures are κa = 0.2, ξ = 0.25, z− = z+ = 18 and c− = c+ = 0.001.

4.1.3. Numerical example
Fig. 3 shows the probability distribution function for symmetric

di-block copolymers of opposite charge. The size distribution of the
complexes moves along the electroneutrality line (m+ = m−).

Fig. 4 illustrates the effect of the length of a neutral block of
a negatively charged polymer. Increasing the length of a neutral
block increases repulsive excluded volume interactions in the

corona and, as a result, a shift of the size distribution to smaller
numbers.

Double clicking on the grid in the main field opens a window
with detailed electrostatic properties of the selected IPEC similar to
Fig. 5. The dimensionless electrostatic potential u(x), Fig. 5(a)–(c),
both DH and PB solutions; the reduced charge density of labile
cations and anions around the complex, Fig. 5(d)–(f) and the charge
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density, Fig. 5(g)–(i), are shown as a function of the distance from
the center of the complex [19]. Themiddle column has zero values,
since the (4,4) complex is composedof 4 positively and4negatively
charged polymers and the complex is neutral.

5. Conclusion

We have described IPEC Solver, a program designed to esti-
mate the regions of stability of inter-polyelectrolyte complexes
composed of linear di-block copolymers of arbitrary lengths of
the blocks. The simple structure and graphical interface allows
for fast solution of PB equations in a large range of aggregation
numbers of the complexes and also investigates the influence of
numerous parameters and the structure of the block copolymers
on the stability of the complexes. This program is available at
http://softmat.net/ipec-solver/.
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Efficient and stable method to solve
Poisson-Boltzmann equation with steep
gradients

Beibei Huang and Vladimir A. Baulin

Abstract This work describes a method to solve Poisson-Boltzmann Equa-
tion (PBE) with steep gradients when common methods of solving nonlinear
equations do not converge or work inefficiently. This is particularly the case
for relatively large boundary conditions leading to rapid changes of the so-
lution in a narrow interval. The method uses adaptive step in the region of
abrupt change of the solution and adopts invertible mapping algorithm to
transform the original PBE into a form with a smooth profile which insures
convergency and stability of the solution. The numerical tests demonstrate
the advantages of the method compared to usual successive itteration meth-
ods, in which the solution is gradually approached by iterations from small
values.

1 Introduction

Poisson-Boltzmann Equation (PBE) describes equilibrium distribution of
charged objects surrounded by counterions and salt molecules in a mean
field approximation, which neglects fluctuations and correlations. Popular
methods to solve PBE include Newton methods, finite difference methods,
adaptive methods [1, 2]. These methods can successfully solve nonlinear PBE
in different geometries and shapes of charged objects such that universal
solvers can be used for different practical applications. For example, a pack-
age DelPhi [3, 4, 5] is a 3D nonlinear solver of PBE. It is successfully used
for modeling of electrostatic interactions of biomolecules. However, universal
solvers may not always converge or be always efficient, especially if the solu-
tion exhibits abrupt changes. This is the case, for example, for electrostatic
potential around highly charged objects in low salt solutions. Thus, such par-

Departament d’Enginyeria Quimica, Universitat Rovira i Virgili, 26 Av. dels Paisos
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2 Beibei Huang and Vladimir A. Baulin

ticular cases need a special treatment, that may improve the convergence of
the approximation scheme to the exact solution of the nonlinear system.

In this work we show that a method using adaptive step in the region of
abrupt change of the solution may greatly improve the convergence and the
stability of the approximation scheme. This method uses invertible mapping
algorithm to transform PBE into a form with a smooth profile. This is similar
in spirit to successive relaxation strategy described in Ref. [5] or similar
invertible mappings strategies used for accurate description of the solution
close to boundaries [7], solution of Burgers’ equation with high Reynolds
numbers [9]. Such a strategy applied to solution of different equations [8, 10,
11, 12] electively reduce the number of grid points and thus decreasing the
degrees of freedom of the corresponding matrices in the computation process.

The method is implemented for solution of PBE in cylindrical geometry
of infinite charged rod with large charge fixed in the boundary condition.
Although the method is implemented in 1D, it can be generalized, in principle,
for other dimensions.

2 Poisson-Boltzmann Equation

Poisson-Boltzmann equation describes electrostatic potential of charged ob-
jects in implicit ionic solutions, and its general form is written as

∇ ·
[
ε(r)∇ψ(r)

]
= −4πρf (r)− 4π

∑

i

c∞i ziq exp
[−ziqψ(r)

κBT

]
(1)

where ε(r) is the position dependent dielectric constant, Ψ(r) is the electro-
static potential, ρf (r) is the charge density of fixed charges, c∞i represents
the concentration of the ion i in the bulk, zi is the charge of the ion i, q is the
elementary charge, kB is the Boltzmann constant and T is the temperature.

We solve this equation in cylindrical geometry for infinitely long rod with
arbitrary charge and surrounded by small ions and counterions providing
electroneutrality of the system. Charged rod is represented by a cylinder
with homogeneously distributed linear charge λ.

Aqueous solution outside the rod is homogeneous and thus ε(r) can be
treated as a constant ε. For simplicity we consider monovalent ions only. Since
we calculate the electrostatic potential outside the rod, all fixed charges are on
the rod, and thus ρf = 0. Using∇2 = 1

r
∂
∂r

(
r ∂∂r
)

in cylindrical coordinates and
introducing dimensionless distance r̃ = κr, where κ2 = 8πlBc∞ is a rescaled
ion concentration, PBE of infinitely charged rod takes the form [6, 13]
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1

r̃

d

dr̃

(
r̃
d

dr̃

)
u = sinhu

du

dr̃

∣∣∣∣
r̃=κa

= − 2ξ

κa
u(r̃ −→∞) = 0

(2)

where ξ = lBλ is a dimensionless linear charge, the so-called Manning
parameter [14], a is the radius of the cylinder. This equation is controlled
by two parameters: κa related to salt concentration, and a dimensionless
parameter β = 2ξ/κa which reflects the effective charge of a cylinder screened
by salt solution.

The difficulty in solving this equation may arise from two terms: (i) sinh(u)
may lead to overflow for large values of u(r̃), and (ii) high charges and low ion
concentration, i.e. when β � 1, produce steep gradients in the potential. To
overcome first problem we set w = eu, y = w′ and get an equivalent system





y′ = y2

w −
y
r̃ + w2−1

2
w′ = y

y
w |r̃=κa = −β
w(∞) = 1

(3)

To analyze the stability of the equation for different sets of parameters,
we use the same procedure as in [6] and derive the corresponding Jacobian
matrix arising from the above Eq. (3)

J(r̃) =

[
0 1

w − y2

w2
2y
w − 1

r̃

]
(4)

According to [15], if the eigenvalues λi of Jacobian matrix J satisfy

• Re(λi) < 0, i = 1, 2, 3 . . . k

• S(r̃) =
max1≤i≤k(Re(λi))

min1≤i≤k(Re(λi))
� 1

the nonlinear system is considered to be stiff on r̃, and S(r̃) is the stiffness ra-
tio at r̃. The stiffness ratios S(r̃) arising from Eq. (4) are given in [6], and they
indicate that commonly used methods to solve differential equations could be
unstable, and no general methods guarantee the existence or uniqueness of a
solution of such nonlinear second-order equations [16]. Furthermore, the 4th-
Order-Runge-Kutta iteration technique was used and incorporated it with
shooting method [17]. It turns out that the solution is very sensitive to the
initial guess when the boundary value β is large. Thus, to address this issue
[6], we adopted a method that successively increases β from small values, us-
ing previous solution in each iteration as the initial guess for solving the PBE
with larger β. As a result, the number of iterations greatly increases making
this method slow and unstable for β � 1. Thus a more efficient method is
required to solve PBE for β � 1.
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4 Beibei Huang and Vladimir A. Baulin

3 Invertible Mappings for PBE

The idea behind invertible mappings methods [10] is to replace a uniform
discretization of space in a common finite-difference technique by adaptive
discretization resulting in sufficiently higher density of points in the region
of large variations of the solution and lower density outside this range.

To implement this strategy for Eq. (2) we introduce mapping of the coor-
dinate r̃ with the function f to a new coordinate t = f (r̃), or r̃ = f−1(t).
Function f should satisfy the condition that large but finite gradient of the
solution in the large variation region is effectively reduced in t-space. The
inverse function

f(r̃) =
arctan [r̃ tan(A)]

A
(5)

satisfies these conditions. Here a smoothing parameter A is used to adjust
the number of grid points in the large variation region. With the help of such
function f , one can find a uniform distribution of grid points in coordinates
t that map non-uniform distribution in original coordinates r̃, as shown in
Ref. [10]. Thus, we substitute first and second derivatives

dw

dr̃
=
dw

dt
f(t) (6)

d2w

dr̃2
=
d2w

dt2
f2(t) +

dw

dt
f(t)f ′(t) (7)

into Eq. (3), and obtain PBE in coordinates t

d2w

dt2
f2(t)−

(
dw

dt

)2
f2(t)

w
+
dw

dt

{
1

tan(At)
− sin(2At)

}
tan(A)f(t)

=
w2 − 1

2
(8)

where f(t) = tan(A) cos2(At)
A and f ′(t) = tan(At)

A . Substituting Eq. (6) into Eq.
(3), we get the first boundary condition in the form

tan(A) cos2(At)

wA

dw

dt

∣∣∣∣
t=(arctan[κa tan(A)])/A

= −β (9)

To obtin the second boundary condition, we cut off ∞ up to a constant

rcut, and get t = tan(rcutA)
tanA , hence

w

(
arctan [rcut tan(A)]

A

)
= 1 (10)
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To evaluate the stability of Eq. (8), we transform it into equations





W ′ = W 2

w − W
f(t)

{
tan(A)
tan(At) − tan(A) sin(2At)

}
+

(w2−1)
2f2(t)

w′ = W

w′
∣∣
t=(arctan[κa tan(A)])/A = − βwA

tan(A) cos2(At)

(11)

and the corresponding Jacobian matrix reads

J(t) =

[
2W
w − 1

f(t)

{
tan(A)
tan(At) − tan(A) sin(2At)

}
−W 2

w2 + w
f2(t)

M N

]
(12)

where M = 1, N = 0 when t 6= arctan[κa tan(A)]
A , M = 0, N = − βA

tan(A) cos2(At)

when t = arctan[κa tan(A)]
A .

The best convergence of the equation is obtained for A = 1.45. The cor-
responding stiffness ratios for A = 1.45 are shown in Table 1. Comparing
the stability of the two equations, we consider the stiffness ratios of the grid

points in the same interval through mapping t = arctan[r̃ tan(A)]
A , but reduce

the number of grid points to 100.

Table 1: Stiffness ratios S(r̃) of nonlinear PBE, Eq. (8)

r̃(t)
ξ = 0.02 ξ = 0.2

β = 1.0 β = 2.0 β = 10.0 β = 20.0 β = 10.0 β = 20.0 β = 30.0 β = 60.0
0.04 22.10 2180.64 6230.57 1603.52 4.01 14.23 14.27 13.88
0.06 183.20 198.54 185.68 277.00 10.98 11.12 10.73 10.70
0.08 39.46 40.53 44.18 46.96 7.64 7.68 7.53 7.49
0.10 9.37 9.51 8.78 11.12 4.96 4.98 4.74 4.69
0.12 2.01 2.06 2.05 2.01 2.71 2.74 2.76 2.69
0.14 1.50 1.59 1.47 1.24 1.00 1.00 1.00 1.00
0.16 3.00 3.11 2.75 2.79 1.00 1.00 1.00 1.00
0.18 4.50 4.66 4.14 4.16 1.00 1.00 1.00 1.00
0.20 5.53 5.43 5.55 5.29 1.00 1.00 1.00 1.00

The values of S in Table 1 suggest that the solver may be unstable in some
isolated grid points, that does not affect the overall stability, while in most
cases it is stable in all grid points. Further more, it reduces the number of
grid points and hence greatly speeding up the solving process. The value of
A in Eq. (5) can be used to tune the distribution of the grid points. If we set
A close to 0, the grid points are distributed more or less evenly both in r̃-
and t-spaces. When A is close to π/2 the grid points are densely distributed
in the vicinity of κa in r̃-space. Such high distribution density leads to high
values of derivatives close to 0 (Figure 1). This situation corresponds to Eq.
(9) when value of β in boundary condition is large.
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6 Beibei Huang and Vladimir A. Baulin

Note that when A is close to π/2, the convergence may decrease as shown
in Figure 2. This can be attributed to the fact that fixed number of grid
points crowd around limited area in the vicinity of κa, which prevents the
convergence. To overcome it, we can treat A as adaptive variable, i.e. grad-
ually increasing A from an initial value S(A0) (for example A0 = 1.0) until
S(A0 + h) such that ‖S(A0)− S(A0 + h)‖ < C, where C is a certain thresh-
old.

4 Numerical Test

We ran a series of tests to check the performance of the method using invert-
ible mapping and solving Eq. (8) in t-space compared to the solver of PBE
with fixed step and solving directly Eq. (3) in r̃-space. Such solver was im-
plemented in IPEC-solver (http://softmat.net/ipec-solver/) for electrostatic
potential of a linear chain in salt solution, which serves as a reference state
for equilibrium structures of self-assembled inter-polyelectrolyte complexes
[13, 6]. The solver corresponding to Eq. (3) corresponds to the version IPEC
V1.0, while the solver corresponding to Eq. (8) corresponds to IPEC V1.2.

The performance of two methods is illustrated in Figure 3 for large β.
It allows to conclude that (i) invertible mappings method implemented in
IPEC V1.2 can converge to the solution with the same precision with smaller
number of grid points; (ii) for sufficiently high values of β invertible mappings
method converge to a solution when the direct method fails (blue dashed line
for β = 300).

However, invertible mappings method slightly decrease the accuracy of
the solution, since the inverse function transmits the original error O(hr̃)
to the solver with the error O(ht) when the number of grid points is fixed.
Here hr̃ and ht are two steps in corresponding solvers respectively and satisfy

ht = arctan[hr̃ tan(A)]
A .

5 Conclusion

We have demonstrated that invertible mapping can be efficient and stable
method for solution of PBE for highly charged objects in low salt solutions.
The method is implemented in 1D for the solution of PBE of a charged infinite
rod in cylindrical coordinates for arbitrary charge of the rod. Numerical tests
confirm the efficiency and stability of the method. The method can further
be generalized for other systems and geometries.
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Fig. 1 Distribution of grid points in t- and r̃- spaces with different values of tuning
parameter A.
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Fig. 2 The solution of Eq. (3), w = exp(u) for different values of A obtained with
200 grid points, and β = 10, ξ = 0.02. The curve A = 1.5 is distorted due to lack of
gird points in numerical test interval (0.0,1.0).
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Fig. 3 The solution of Eq. (3), w = exp(u) for large values of β and fixed A = 1.05.
The value of A is obtained by starting from an initial value A0 = 1.0, and set S(A)
denote the corresponding solution, h = 0.05,C = 0.1 then ‖S(A0 + h)− S(A0)‖ < C.
Invertible mapping method (IPEC V1.2) needs less grid points and converges readily
when the direct method (IPEC V1.0) fails (blue dashed line).
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