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Abstract

Engineering patterns of wrinkles and bubbles in supported graphene through
modeling and simulation

Kuan Zhang

Graphene deposited on a substrate often exhibits out-of-plane deformations with differ-

ent features and origins. Networks of localized wrinkles have been observed in graphene

synthesized through CVD, as a result of compressive stresses transmitted by the substrate.

Graphene blisters have been reported with various sizes and shapes, and have been shown to

be caused by gas trapped between graphene and substrate. Such wrinkles or bubbles locally

modify the electronic properties and are often seen as defects. It has been also suggested

that the strong coupling between localized deformation and electronic structure can be po-

tentially harnessed in technology by strain engineering, although it has not been possible

to precisely control the geometry of out-of-plane deformations, partly due to an insufficent

theoretical understanding of the underlying mechanism, particularly under biaxial strains.

The specific contributions of the thesis are outlined next. Firstly, we study the emergence

of spontaneous wrinkling in supported and laterally strained graphene with high-fidelity sim-

ulations based on an atomistically informed continuum model. With a simpler theoretical

model, we characterize the onset of buckling and the nonlinear behavior after the instabil-

ity in terms of the adhesion and frictional material parameters of the graphene-substrate

interface. We find that a distributed rippling linear instability transits to localized wrinkles

due to the nonlinearity in the van der Waals graphene-substrate interactions. We identify

friction as a selection mechanism for the separation between wrinkles, because the formation

of far apart wrinkles is penalized by the work of friction.

Secondly, we examine the mechanics of wrinkling in supported graphene upon biaxial

strains. With realistic simulations and an energetic analysis, we understand how strain

anisotropy, adhesion and friction govern spontaneous wrinkling. We then propose a strategy

to control the location of wrinkles through patterns of weaker adhesion. These mechanically

self-assembled networks are stable under the pressure produced by an enclosed fluid and

form continuous channels, opening the door to nano-fluidic applications.

Finally, we examine the coexistence of wrinkles and blisters in supported graphene. By
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changing the applied strain and gas mass trapped beneath the graphene sample, we build

a morphological diagram determining the size and shape of graphene bubbles, and their

coexistence with wrinkles. As a whole, the research described above depicts a systematic

and broad understanding of out-of-plane deformations in monolayer graphene on a substrate,

and could be a theoretical foundation towards strain engineering in supported graphene.
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III, in particular, Professors Antonio Huerta, Pedro Dı́ez, Antonio Rodŕıguez and Irene
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Chapter 1

Introduction

Graphene is a single layer of carbon atoms densely packed in a two-dimensional hexagonal

lattice. As an abundant element in the universe, carbon is incredibly versatile as the chemical

basis for all known life on earth. Depending on the arrangement of atoms, it can form hard

diamond or soft graphite. Graphene is another allotrope of carbon with 2-dimensional

properties. In graphene, atoms adopt a planar structure with sp2 bonds of length 0.142

nm. It is the thinnest and lightest material ever known. Since the discovery of graphene in

2004 (Novoselov et al., 2004), it has attracted considerable attention due to its exceptional

structure, mechanical, chemical and electronic properties, which offer unique possibilities

in nanostructured materials and devices (Meyer et al., 2007; Bunch et al., 2007; Lee et al.,

2009). Graphene is an excellent conductor of electricity, because electrons can move through

graphene extremly fast. It is also the best heat conductor.

Many unique mechanical properties of graphene result from its 2D lattice structure.

Interestingly, it was theoretically predicted in 1940s that a two dimensional material could

not exist, because it would be unstable in front of thermal fluctuation (Landau and Lifshitz,

1980; Peierls, 1935). The debate between the theory that strict 2D membrane would be

thermodynamically unstable and the experimental observations could be clarified by the

coupling between bending and stretching in the out-of-plane fluctuations, when described

with a geometrically nonlinear theory (Meyer et al., 2007; Nelson and Peliti, 1987).

Graphene is easily bendable but very hard to stretch. Free-standing graphene is prone

to relaxing in-plane deformations by spontaneous ripples, see Fig. 1.1(a). Regular ripples

can be also formed under different conditions, such as in-plane shear (Duan et al., 2011)
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a b

Figure 1.1: (a): a perspective view on random rippling in free-standing graphene (Meyer
et al., 2007). (b): regular ripples in suspended graphene (Bao et al., 2009).

or indentation (Huang and Zhang, 2011; Ghosh and Arroyo, 2013). Several attempts have

focused on controlling ripple structure in suspended graphene, with potential applications

in graphene electronics through strain (Bao et al., 2009), see Fig. 1.1(b).

As a result of the synthesis process or performing as a functional material, graphene

is often supported on a substrate. Rather than a flatland, supported graphene describes

a landscape shaped by out-of-plane features with different physical origins. Defects such

as dislocations or grain boundaries can relax through out-of-plane deformations (Liu and

Yakobson, 2010; Yakobson and Ding, 2011; Zhang et al., 2014), which have been observed

experimentally (Duong et al., 2012; Warner et al., 2013). Localized wrinkles are commonly

observed in single or few-layer graphene grown by chemical vapor deposition (CVD) on

solid metallic substrates (Li et al., 2009; Kim et al., 2011; Robertson et al., 2011). Such

wrinkles are formed by the lateral strain produced upon cooling of graphene due to the

differential thermal expansion between graphene and the substrate (Obraztsov et al., 2007).

This process usually forms networks with a typical spacing between hundreds of nanometers

and a few microns, see Fig. 1.2(a-b). Beyond isolated wrinkles, massive crumpling and

delamination has been reported in supported multilayer graphene under very large biaxial

compression (Zang et al., 2013). Gas trapped between graphene and the substrate, either

unintentionally (Stolyarova et al., 2009; Georgiou et al., 2011) or in a controlled manner

(Bunch et al., 2008; Koenig et al., 2011; Zabel et al., 2012; Pan et al., 2012; Kitt et al., 2013),

can elastically deform graphene, producing blisters of various shapes and sizes, see Fig. 1.2(c-

d). Indeed, it has been shown that graphene is highly impermeable to common gases.

The large elastic strain caused by these out-of-plane deformations disrupts the electronic

structure of pristine graphene (Xu et al., 2009; Levy et al., 2010; Zabel et al., 2012). For this
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Figure 1.2: (a-b): wrinkling networks in supported graphene (Calado et al., 2012; Prakash
et al., 2010). (c-d): observations about graphene blisters in experiment (Stolyarova et al.,
2009; Georgiou et al., 2011).

reason, wrinkles and blisters are generally perceived as defects in graphene-based electronics

(Zhu et al., 2012; Jiang et al., 2013) and optics (Garcia-Pomar et al., 2013).

It has been also suggested, however, that the strong coupling between localized defor-

mation and electronic structure can be potentially harnessed by strain engineering (Levy

et al., 2010; Castellanos-Gomez et al., 2013; Ruoff, 2012; Pereira et al., 2010; Zabel et al.,

2012). A number of experimental strategies have attempted to control wrinkle networks

in graphene. It has been shown that the transfer process can increase, decrease, or even

eliminate wrinkling (Liu et al., 2011; Calado et al., 2012), and that wrinkles preferentially

form at topographical features of the substrate (Kim et al., 2011; Pan et al., 2011; Liu et al.,

2012). However, it has not been possible to precisely control their geometry, partly due to

an insufficient theoretical understanding.

In fact, there has been intense research in the formation of buckling patterns in the

laterally compressed systems consisting of an elastic film coupled to a substrate. It has

been shown that the generic linear instability consisting of sinusoidal ripples evolves upon

further compression either by coarsening (Brau et al., 2011; Cao et al., 2012) or by forming

localized wrinkles (Leahy et al., 2010; Holmes and Crosby, 2003). For example, uniaxially

compressed elastic films floating on a fluid develop curvature localization after a uniformly

periodic rippling with a characteristic wavelength (Pocivavsek et al., 2008; Audoly, 2011),

see Fig. 1.3(a). In this system, the ripple-to-wrinkle transition occurs when the film is com-

pressed beyond a third of its initial ripple wavelength, and has been attributed to geometric

nonlinearity. In a different context, a ripple-to-wrinkle transition has been explained by the
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a b

Figure 1.3: (a): a ripple-to-wrinkle transition in supported thin film upon uniaxial compres-
sion (Pocivavsek et al., 2008). (b): formation of wrinkle network upon biaxial compression
(Kim et al., 2011).

nonlinearity of a deformable substrate (Zang et al., 2012). Under biaxial compression, the

process of formation of wrinkle network has been reported (Kim et al., 2011), see Fig. 1.3(b).

The goal of this thesis is to understand the mechanics underlying the emergence of

out-of-plane deformations in supported graphene upon compressive strain and interstitial

pressure, and to propose strategies to precisely control the patterns of wrinkles and blisters.

The thesis is organized around the following questions about the mechanics of monolayer

graphene supported on a substrate.

1. Spontaneous wrinkling upon compressive strains. Generically, localized wrinkling

develops from distributed ripping as a result of nonlinearity in the system. A first

question is if this is also the case for supported graphene interacting with a substrate

through weak van der Waals forces. If this is the case, what is the source of nonlin-

earity that drives the localization of deformation? What is the key factor determining

the separation between wrinkles? What determines the morphology of wrinkle net-

works, presumably developing under biaxial compression? What is the effect of the

graphene-substrate interactions and of strain anisotropy on the wrinkle network?

2. Control of strain-engineered wrinkle networks. Based on the understanding gained

about spontaneous wrinkling, is it possible to propose a strategy to control the location

of wrinkles? Since wrinkles could be potentially used as channels in nano-fluidic appli-

cations, are the wrinkle networks stable under the pressure produced by an enclosed

fluid?

3. Graphene blisters and wrinkles. Can we provide a unified mechanical picture of out-

of-plane features in supported graphene, describing the formation of wrinkles, blisters,
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and their coexistence?

To address these questions, we will resort to high-fidelity continuum simulations. The

modelling methodology is presented in Chapt. 2. The first contribution mentioned above

is split into two chapters. Chapt. 3 presents the simulation result and a theory to analyze

the uniaxial wrinkling of supported graphene, while Chapt. 4 examines the wrinkling upon

biaxial compressive strains. The second contribution is in Chapt. 5. Chapt. 6 describes the

last one. In each of chapters the most significant contributions are highlighted. Research

ideas emerging from the work performed are proposed after a conclusion in Chapt. 7.



8



Chapter 2

Computational modelling of

supported graphene

Molecular dynamics (MD) and molecular mechanics (MM) are mature techniques to simulate

the mechanics of nanostructure, e.g. graphene and carbon nanotubes (Bernholc et al.,

1998; Gao et al., 1998). However, a graphene sample of 1 µm2 includes approximately

3.8 × 107 atoms, which makes all-atom computations unpractical. The pioneering work of

Yakobson about 20 years ago adopted the theory of elastic shells to study the buckling

patterns of compressed carbon nanotubes, and showed that continuum mechanics could

be applied to carbon nanostructures down to nanometer scales (Yakobson et al., 1996).

In parallel, significant research was devoted to connecting atomistic models of materials

and continuum mechanics, notably with the quasicontinuum methods (Shenoy et al., 1998;

Tadmor et al., 1999; Smith et al., 2000). Away from defects and for stable crystals, it

was shown that the Cauchy-Born rule could be used to connect atomistic and continuum

deformation, thereby allowing researchers to define hyper-elastic potentials directly from the

atomistic potentials. However, for curved crystalline films such as graphene, the CB rule

was shown to be inconsistent, and was generalized by an exponential Cauchy-Born rule in

Arroyo and Belytschko (2002). It has been demonstrated that such continuum models can

accurately describe the mechanics of graphene and carbon nanotubes in the full nonlinear

regime in the absence of defects (Arroyo and Belytschko, 2004a, 2003; Zhang et al., 2005; Wu

et al., 2008; Arias and Arroyo, 2008). Other types of atomistic-based continuum methods

have also been proposed, e.g. higher-order Cauchy-Born rule (Guo et al., 2006), to take into

9
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account of the curvature of the graphene surface.

Here, we use this model for the elastic behavior of graphene. However, to model sup-

ported graphene, the interaction with the substrate is equally important, and is developed

in subsequent sections.

1 Model setup

The target of our modeling is to investigate the out-of-plane deformations in supported

graphene, see Fig. 2.1(a) for a clear definition of ripples and wrinkles. Fig. 2.1(b) depicts the

model setup, in which a mesoscopic (of about 500 × 500 nm2) graphene sample is adhered

on a substrate undergoing lateral deformation. The domain is large enough to capture

the typical wrinkle separation (several 100 nm) but small enough to be computationally

tractable, since the geometric features of an individual wrinkle (∼ 1 nm) (Zhu et al., 2012;

Liu et al., 2012) need to be resolved. Graphene interacts with the substrate non-covalently,

resulting in perpendicular adhesive forces and tangential frictional forces opposing sliding,

see Fig. 2.1(c).

We use periodic boundary conditions and apply strain by progressively reducing the

lateral dimensions of the periodic simulation box. The strain is viewed as externally applied

by deforming the substrate, although it can occur from differential thermal expansion, as in

graphene synthesis by CVD. We denote by λx and λy the stretch ratios between the current

and initial lateral dimension along each coordinate, and by εc = 1 − λxλy the compressive

areal strain (normalized area difference). Here, we assume that the strain in the graphene

sample is equal to the strain applied to the substrate and transmitted by the shear stress in

the interface. In general, the deformation of the graphene sample and that of the substrate

in its vicinity will not uniformly conform to the externally applied strain. Near to the edges

of graphene, only a fraction of the applied strain is transmitted by the laterally deformed

substrate. A shear lag model has been proposed in literature to explain this effect, see

Fig. 2.2. It was found that a length in the order of 1-2 µm of graphene sample is needed for

an efficient transfer of the applied strain from the substrate to graphene (Gong et al., 2010).

In our case, a periodic simulation box represents a portion of a large graphene sample, where

efficient strain transfer occurs. Furthermore, we assume that the substrate remains planar,

which is generally the case although very soft substrates have been shown to ripple along
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Figure 2.1: (a) Upon compression, confined thin films develop a variety of out-of-plane
deformations, classified here as rippling, distributed wave-like disturbances, or wrinkling,
localized out-of-plane features surrounded by planar regions. (b) Model setup for a graphene
flake adhered to a substrate, laterally compressed and upon pressure by an enclosed fluid
in the interface. h is the graphene-substrate separation. (c) Graphene interacts with the
substrate through an adhesion potential V(h) (Aitken and Huang, 2010), characterized by
the adhesion energy γ and the equilibrium separation h0, and through tangential forces
opposing sliding, modeled as dry friction with interfacial shear strength τ0 (Zhang and
Arroyo, 2013).

with graphene (Wang et al., 2011).

In the simulations, we apply strain incrementally by setting the stretch ratios at load

increment k to λx,k = (δλx)k and λy,k = (δλy)
k, where δλx denotes the incremental stretch

ratio along x. To obtain the equilibrium configuration at step k+ 1, we modify the previous

equilibrium configuration xk(u, v) following (δλxxk(u, v), δλyyk(u, v), zk(u, v)) to define an

initial guess in the iterative procedure consistent with the boundary conditions.

2 Model for elasticity of graphene

We model graphene with an atomistic-based continuum method, which is geometrically ex-

act. The internal energy per unit underformed surface is given by a hyper-elastic potential

W (C,K) that depends on the in-plane strain (the metric tensor) of the surface C measured

through the right Cauchy-Green deformation tensor, and its curvature (the second funda-

mental form) K (Arroyo and Belytschko, 2002). The potential W is systematically derived

from the Brenner atomistic interactions describing the bonded energy and forces (Brenner,
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Figure 2.2: (a) Experimental setup, in which a sample of monolayer graphene is supported
on a substrate upon uni-axial stretch. It has been shown experimentally that lateral strain
is transmitted from the substrate to graphene flakes by frictional forces (Jiang et al., 2013).
These frictional forces can in principle laterally deform a compliant substrate non-uniformly,
so that the local strain of the substrate near the interface deviates from the applied strain.
(b) shows strain distributions in graphene, comparing experimental results from the Raman
measurements (symbols) with a nonlinear shear lag analysis (lines). For moderate strains
and in the centre of the sample, the strain in the graphene flake conforms to the strain
applied to the substrate. However, as stretch increases, the flake laterally slides near its
edges, where the strain distribution becomes linear.
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1990) using a kinematic rule linking continuum and lattice deformations, the exponential

Cauchy-Born rule, and averaging the atomistic energy in one unit cell of the lattice. This

model has been shown to very accurately mimic all-atom simulations with finite deforma-

tions and buckling instabilities (Arroyo and Belytschko, 2004b). The total elastic energy of

the graphene sheet is then

Uel[x] =

∫
Ω0

W (C,K) dS0, (2.1)

where S0 is a reference stress-free planar state.

When this model is linearized around the planar ground state of graphene, the in-plane

and bending elasticities are isotropic, and can be characterized by a surface Young’s modulus

Ys (with units of line tension), a Poisson ratio ν, and a bending modulus D (Arroyo and

Belytschko, 2004a; Lu et al., 2009). For the model used here, we have Ys = 336 N m−1,

ν = 0.165, D = 0.238 nN nm, consistent with experimental and ab initio calculations

(Arroyo and Belytschko, 2004a; Lu et al., 2009; Lee et al., 2008).

3 Model for the graphene-substrate adhesive interaction

To model the non-bonded interaction between graphene and the substrate, we adopt a simple

and generic Lennard-Jones potential(Girifalco et al., 2000). The pair-wise Lennard-Jones

6-12 potential between a graphene and a substrate atom a distance r apart is

V (r) = 4ε

[
−
(σ
r

)6
+
(σ
r

)12
]
, (2.2)

where r0 = 6
√

2σ is the equilibrium distance at which the potential attains its minimum,

and ε is the energy at the equilibrium distance. These atom-atom interactions result in an

effective point-half space interaction energy (per unit undeformed surface area) of the form

(Aitken and Huang, 2010)

V(h) = −γ
[

3

2

(
h0

h

)3

− 1

2

(
h0

h

)9
]
, (2.3)

where h is the separation between a given point and the planar substrate, h0 is the equilib-

rium separation between the elastic sheet and a half-space, and γ denotes the well depth or

adhesion energy.
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We often adopt γ = 0.45 J/m2, typical of the interaction between graphene and SiO2

(Koenig et al., 2011), half of than that reported for copper (Yoon et al., 2012), but a

few times larger than that on polydimethylsiloxane (Scharfenberg et al., 2012). As for the

equilibrium separation h0, which controls the decohesion separation and also the stiffness

of this interaction, we range from 0.5 nm, in the order of that measured on SiO2 (Gupta

et al., 2006) to 6 nm, comparable to that reported for a polymeric substrate (Wang et al.,

2011; Aitken and Huang, 2010; Gao and Huang, 2011). A larger equilibrium separations

could be interpreted as an effective property for substrates that are not atomically flat.

Substrate roughness has been shown to modify the effective adhesion energy and equilibrium

separation when the wavelength of roughness is comparable to the equilibrium separation

(Aitken and Huang, 2010; Gao and Huang, 2011). More discussions about the choice of

material parameters and their impact on the behaviour of the system can be found at

Zhang and Arroyo (2013).

4 Model for the friction between graphene and substrate

We model the tangential forces between graphene and substrate as dry friction (Zhang

and Arroyo, 2013, 2014). Since dry friction results in a non-smooth model, we consider a

regularized model of friction for numerical convenience with an incremental work of friction

of the form

Ufr,k[x] =

∫
Ω0

τ0K(sk(u, v)) dS0, (2.4)

where τ0 is the interfacial shear strength, sk is the incremental lateral sliding relative to the

substrate

s2
k(u, v) = [x− δλxxk(u, v)]2 + [y − δλyyk(u, v)]2 , (2.5)

and K(t) is a differentiable approximation to |t|. Here, we consider the log-sum-exp regu-

larization

K(t) =
1

β
log
(
eβt + e−βt

)
(2.6)

for β > 0. As β → +∞, it can be shown that this family of smooth functions converges to

the absolute value function. In our calculations, we choose β = 200 nm−1. The quantity

1/β = 1/200 nm can be interpreted as the length-scale over which the cusp of the absolute

value around zero is being rounded, and therefore for sliding displacements larger than 1/β,
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K(t) is indistinguishable from |t| and we recover dry friction. We have checked that the

results are insensitive to selecting larger values for β, which make numerical convergence

more difficult.

For the interfacial shear strength upon sliding τ0, we range from 0.3 to 4 MPa, compa-

rable to measurements of graphene on polyethylene terephthalate (Jiang et al., 2013) and

on silicon (Kitt et al., 2013).

5 Model for gas trapped in the interstitial space

Following the ideal gas law, we model the effect of gas molecules trapped in the interstitial

space between graphene and the substrate by appending the free energy with the term

Upre = −nRT ln(V/V0), (2.7)

where n is the number of moles of gas trapped underneath the membrane, R is the ideal gas

constant, T the absolute temperature, and V0 an arbitrary reference volume. In simulations,

we increase n incrementally, and obtain the pressure p = nRT/V and the volume as part

of the analysis. This protocol allows us to follow processes in a stable manner in which the

pressure is not monotonic, and is also relevant to some experimental setups (Boddeti et al.,

2013). For an enclosed fluid, invoking molecular incompressibility instead of the ideal gas

law, this ensemble results in prescribing the enclosed volume.

To take into account of Equation (2.7), the enclosed volume and its variation need to

be computed. The calculation of the volume can be recast into a surface integral by noting

that div x = 3 and invoking the divergence theorem

V =
1

3

∫
Ω

div x dV =
1

3

∫
Γ
x · n dS, (2.8)

where n is the outward normal to Γ.

An infinite volume is enclosed between the surface extended by periodicity (graphene)

and a horizontal plane (the substrate), but a finite volume of each repeated cell can be

defined. In this case, Equation (2.8) cannot be directly applied as the periodic surface has

fictitious boundaries. A detailed treatment of this issue can be found in Rahimi et al. (2015),

where we show that a proper formulation includes, in addition to the surface contribution in

Equation (2.8), two line and a point contributions. Not including these extra terms results
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a

b

Figure 2.3: Nodal forces resulting from a follower pressure on a doubly periodic surface
discretized with subdivision finite elements. The color map represents the deviation from a
planar surface. In (a), unphysical forces appear near the boundaries of the computational
domain if the line and point contributions to the volume and its variation are omitted. In
contrast, (b) shows the correct distribution of nodal forces on the sheet.

in incorrect pressure forces as illustrated in Fig. 2.3.

6 Complete model and solution method

Denoting by x a parametrization of the graphene sheet and orienting x3 perpendicular to

the substrate, the total work function can be written as

U [x] =

∫
Ω0

W (C,K) dS0 +

∫
Ω0

V(x3) dS0 + Ufr,k[x] + Upre, (2.9)

where Ω0 is the reference domain of the graphene membrane.

Equation (2.9) is discretized with subdivision finite elements (Cirak et al., 2000), which

provide a smooth parametrization with square integrable curvature. At each strain in-

crement, we obtain stable equilibrium configurations by numerical minimization using a

quasi-Newton method combined with line-search (Arroyo and Belytschko, 2004b).

We present here two examples to verify our modeling. Firstly, we simulate a periodic

graphene sample on a substrate and subject it to interstitial pressure but no strain. For a

moderate number of trapped molecules, we expect that the solution will be a planar graphene

sheet, displaced a small distance away from the equilibrium separation of the Lennard-Jones
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Figure 2.4: Nodal forces resulting from a follower pressure on a doubly periodic surface
discretized with subdivision finite elements. The color map represents the deviation from a
planar surface. In (a), unphysical forces appear near the boundaries of the computational
domain. In contrast, (b) shows the correct distribution of nodal forces on the sheet.

adhesion potential, h0. Fig. 2.4(a) shows that, when the boundary and corner terms of the

volume and its variation are ignored (see Sec. 5), the result after the quasi-Newton iteration

exhibits spurious deformations at the boundary of the periodic domain. In contrast, the

correct calculation of the volume and its variation results in a planar state as expected,

see Fig. 2.4(b). The numerical convergence of the iterative method is shown in Fig. 2.4(c).

Secondly, we simulate the shear lag effect of friction between graphene and substrate (see a

discussion about shear lag effect in Sec. 1). As expected, our model predicts a similar strain

distribution on graphene as recorded from experiments (Fig. 2.2).
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Figure 2.5: The predicted strain distribution of graphene from our simulation conforms
with the experimental data from Fig. 2.2 and Jiang et al. (2013).



Chapter 3

Spontaneous wrinkling upon

uniaxial compression

When deposited on a super soft substrate and compressed uniaxially, graphene has been

shown to deform together with the substrate surface to develop distributed rippling (Wang

et al., 2011). Here we focus on stiffer substrates, whose surface is assumed to remain planar.

Consequently, any out-of-plane deformation of graphene such as wrinkling involves delami-

nation. Figure 3.1 shows a typical numerical simulation exhibiting rippling and wrinkling. A

periodic graphene slab with length L0 = 200 nm is uniaxially compressed by incrementally

decreasing the periodic length along one coordinate by a factor, Ln = fnL0 with 0 < f < 1,

where in practice f is close to one. For simplicity, in this simulation we ignore the effect of

friction and pressure, which will be considered and discussed later. Initially, the graphene

slab stays planar until, beyond a threshold, it develops periodic, small amplitude ripples,

Fig. 3.1(b). As in similar systems (Pocivavsek et al., 2008; Im and Huang, 2008), the finite

wavelength is set by a competition between bending energy, which penalizes high frequency

undulations, and the interaction with the substrate, which penalizes large amplitude and

low frequency out-of-plane deviations. By further compressing the sample, the out-of-plane

deformation localizes into a single, sharp wrinkle, Fig. 3.1(c). The details of this generic

process, e.g. the critical strain or the rippling and wrinkling morphology, strongly depend

on the parameters of the adhesion potential, h0 and γ. For instance, for large values of h0,

the wrinkles are surrounded by regions of negative out-of-plane displacement, Fig. 3.1(d),

absent for small h0, Fig. 3.1(e).

19
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substrate

graphene
uniaxial strain

a

b

c

d

e

distributed  
rippling

localized   
wrinkling

Figure 3.1: A setup of monolayer graphene upon uniaxial compression is presented in (a).
Representative simulation of a ripple-to-wrinkle transition of is given in (b, c). The length
of the domain along the uniaxial compression is 200 nm, the adhesion energy is 0.45 J/m2,
and equilibrium separation of the potential is 6 nm. A lateral view of the fold is given in (d),
to be compared with the fold morphology obtained with a smaller equilibrium separation
(h0 = 0.6 nm) shown in (e).

In experiments of supported graphene, distributed ripples associated to compression have

not been reported. However, as discussed before by analogy to similar systems, localized

wrinkles are presumably preceded by such ripples. One of our goals in the present chapter

is to understand the emergence of wrinkles under uniaxial compression, to characterize

their spacing, and to examine quantitatively the effect of the mechanical coupling between

graphene and the substrate.

1 Emergence of rippling

To understand the emergence of rippling and wrinkling in supported graphene, we develop

next a simple analytical model, largely following previous works on compressed thin films

(Chen and Hutchinson, 2004; Huang et al., 2005). We consider a rectangular graphene

membrane under uniaxial compression. We denote by u(x) and w(x) the in-plane and the

out-of-plane displacements of the film, and by ε the uniaxial in-plane strain. The stretching
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and bending energies of the film can be computed as

Us =
Ȳ

2

∫
Ω
ε2 dS, Ub =

D

2

∫
Ω
w′′

2
dS, (3.1)

where we introduce Ȳ = Ys/(1 − ν2) to simplify the expressions. To understand small

amplitude rippling deformations, we linearize the van der Waals energy as

Uv =
27γ

2h2
0

∫
Ω
w2 dS. (3.2)

Adopting a von Karman nonlinear plate theory (Landau and Lifshitz, 1959), the mem-

brane strain of the film can be approximated as

ε = ε0 + u′ +
1

2
w′

2
, (3.3)

where ε0 represents the globally applied lateral strain on the film. We consider the ansatz

w(x) = A cos(kx) for the out-of-plane displacement. By requiring the uniformity of the in-

plane tension or strain, see Equation (3.3), the in-plane displacements should obey u(x) =

(1/8)k2A2 sin(2kx), and the constant strain becomes ε = ε0 + (1/4)k2A2 (Huang et al.,

2005). We note that the applied strain on the system, here ε0 < 0, differs from the film

membrane strain ε < 0, which is partially relaxed by the positive term (1/4)k2A2. The

stretching energy difference per unit area takes the form

∆Ūs(A, k) =
Ȳ

2

(
ε2 − ε2

0

)
=
T0

4
k2A2 +

Ȳ

32
k4A4, (3.4)

where T0 = Ȳ ε0 is a reference surface tension (it is only the actual surface tension for a

uniform planar state). The total energy difference per unit area then becomes

∆Ū(A, k) =

(
T0

4
k2 +

D

4
k4 +

27γ

4h2
0

)
A2 +

Ȳ

32
k4A4, (3.5)

where the last term accounts for the stretching induced by wrinkling, and has a stabilizing

effect.

The onset of rippling from the planar state (A = 0) can be established by the loss of
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stability condition ∂2∆Ū/∂A2(0, k) ≤ 0, which leads to

T0 ≤ −Dk2 − 27γ

h2
0k

2
. (3.6)

The wavenumber of the most unstable mode can be found by maximizing the expression

above (recall T0 is negative) with respect to k2, yielding

k =

(
27γ

h2
0D

)1/4

. (3.7)

This expression shows that the finite wave number is set by a competition between bending,

which favors long wavelength out-of-plane disturbances, and interaction energy, which favors

short wavelength disturbances. Replacing Equation (3.7) and into Equation (3.6), we obtain

the critical tension and strain for buckling

Tcr = − 2

h0

√
27γD, εcr = − 2

h0Ȳ

√
27γD. (3.8)

Minimizing the total energy density in Equation (3.5) with respect to A, we find

A = 2

√
− 1

Ȳ

(
T0k−2 +D +

27γ

h2
0

k−4

)
. (3.9)

The expression under the square root is positive beyond the stability point, c.f. Equation

(3.6). Replacing the expression above in ∆Ū(A, k) results in

∆Ū(k) = − 1

2Ȳ

(
T0 +Dk2 +

27γ

h2
0

k−2

)2

. (3.10)

Minimizing the energy with respect to the wave number, we recover Equation (3.7) even

beyond the critical strain, and obtain

∆Ūmin = − 1

2Ȳ

(
T0 + 2

√
27γD

h2
0

)2

. (3.11)

Replacing Equation (3.7) into Equation (3.9), we find

A =
λ

π

√
(Tcr − T0)/Ȳ =

λ

π

√
εcr − ε0, (3.12)
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where λ = 2π/k is the wavelength. We shall compare later these estimates with our fully

nonlinear simulations.

2 Ripple to wrinkle transition

Similarly to the previous treatment of rippling, we adopt the von Karman theory with an

ansatz for the wrinkling geometry in agreement with our simulations. We consider

w(x) = A cos
πx

l
+B cos

2πx

l
+A−B (3.13)

for x ∈ [−l, l] and w(x) = 0 otherwise, for x ∈ (−L/2,−l) ∪ (l, L/2). Here, A and B are

amplitudes, l is half of the fold length, and L is the length of the graphene film. The term

multiplied by A describes the main feature of the wrinkle, while that multiplied by B models

the lateral depressions observed in wrinkles with soft interaction potentials. As the wrinkle

breaks the translational symmetry, the length of the domain plays a role now. We demand

that the membrane tension (strain) be uniform, see Equation (3.3), and solve for the in-plane

displacement from u′′ = −w′w′′. After imposing symmetry, we obtain u(x) = û(x) + ε̄x,

where

û(x) =
π

l

(
A2

8
sin

2πx

l
+
AB

3
sin

3πx

l
−AB sin

πx

l

+
B2

4
sin

4πx

l
− πA

2 + 4B2

4

x

l

) (3.14)

in the interval [−l, l]. It is easy to see from Equation (3.3) that in this interval ε = ε0 + ε̄.

Outside this interval, graphene remains planar with the same constant strain ε. To find ε̄,

we impose continuity of the in-plane displacement at x = ±l, i.e.

u(±l) = ∓(L/2− l)ε̄, (3.15)

from which we obtain

ε̄ =
π2

2Ll
(A2 + 4B2). (3.16)
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Thus, the stretching energy difference per unit area becomes

∆Ūs(A,B, l) = T0ε̄+
Ȳ

2
ε̄2. (3.17)

A simple calculation shows that the bending energy density can be computed as

Ūb(A,B, l) =
Dπ4

2Ll3
(A2 + 16B2) (3.18)

We turn now to the graphene-substrate interaction. A harmonic approximation disregards

the physics of wrinkling, which is promoted by decohesion for large amplitude out-of-plane

displacements of the film, beyond the inflection point of the potential. Also, the wrinkling

geometry is strongly affected by the stiffening of the interaction as the film is brought closer

to the substrate. With a harmonic approximation, localized wrinkling is never energeti-

cally preferable to rippling, from which we conclude that the nonlinearity of the graphene-

substrate interaction is crucial to explain the ripple-to-wrinkle transition in this system. We

find that the qualitative features of the ripple-to-wrinkle transition can be captured with a

third order expansion of the interaction potential. However, for accurate predictions of the

model, we approximate the interaction potential with a five term expansion

V(w) = γ

(
− 1 +

27w2

2h2
0

− 135w3

2h3
0

+ 225
w4

h4
0

− 612
w5

h5
0

+ 957.96
w6

h6
0

)
, (3.19)

where the last term is modified to match the inflection point of the original potential. The

corresponding energy density after integration is

Ūv(A,B, l) =
27γl

2h2
0L

(3A2 − 4AB + 3B2)− 135γl

4h3
0L

(10A3 − 15A2B + 18AB2 − 10B3)+

225γl

4h4
0L

(35A4 − 56A3B + 84A2B2 − 80AB3 + 35B4)−

153γl

h5
0L

(63A5 − 105A4B + 180A3B2 − 225A2B3 + 175AB4 − 63B5)+

59.87γl

h6
0L

(462A6 − 792A5B + 1485A4B2−

2200A3B3 + 2310A2B4 − 1512AB5 + 462B6).

(3.20)
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The total energy density relative to a planar state under a strain ε0 is

∆Ū(A,B, l) = ∆Ūs + Ūb + Ūv. (3.21)

We find candidate equilibrium states by minimizing the total energy with respect to A, B,

and l numerically. Depending on the applied strain, ε0, we estimate the ripple-to-wrinkle

transition by comparing the energies of the optimal rippling pattern and of the optimal

wrinkle, as reported in the results section.
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Figure 3.2: Critical strains for the onset of rippling and the ripple-to-wrinkle transition
under uniaxial compression, for different van der Waals parameters and for a graphene
film of length L = 200 nm. Comparisons between analytical model (lines) and numerical
simulations (symbols) for both wrinkling (dashed lines, triangles) and ripple-to-wrinkle (solid
lines, squares) strains as a function of the equilibrium spacing of the interaction potential h0,
and the adhesion energy γ (different colors). The inset shows the features of the interaction
potential.

To check the consistency between the simulations and the theoretical model, we examine

in Fig. 3.2 the systematic dependence of rippling and wrinkling on the interaction parame-

ters γ and h0. Here, we fix L and leave the effect of friction for later. The rippling strain

is estimated by Equation (3.8) and the ripple-to-wrinkle strain by energy comparison. The

theoretical model predictions (solid and dashed lines) are compared with simulations (sym-



3 Separation between wrinkles: the role of friction 26

bols), obtaining an excellent agreement throughout the parameter space. In the simulations,

we observe that wrinkling is always preceded by rippling. For small values of h0, the gap

between these two strains becomes very small, and therefore, wrinkling appears to bifurcate

directly from the planar state. The theoretical model for wrinkling is not very accurate for

small h0. In this regime, even at the onset of wrinkling, the film deviation is significant

and reaches beyond the point where the Taylor series expansion of the potential is accurate.

While the critical rippling strain exhibits a monotonic decrease as a function of h0, the

ripple-to-wrinkle strain attains a minimum for a finite equilibrium separation, which results

in a broader rippling regime as h0 becomes larger. As mentioned previously, the strain gap

between the onset of rippling and the ripple-to-wrinkle transition decreases as L increases.

Not surprisingly, the critical strains increase with adhesion energy.
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Figure 3.3: Illustration of the sliding of graphene as the system transits from rippling,
with distributed excess graphene area relative to substrate area, to wrinkling, with localized
excess area (a). Critical strain for rippling and for the transition from rippling to multiple
wrinkles as a function of the frictional parameter τ0, for a uniaxially compressed graphene
sheet of length L = 1 µm (b).

3 Separation between wrinkles: the role of friction

In the previous model for wrinkling, the length of the graphene film L, which can be inter-

preted as the separation between wrinkles, has been kept fixed. It is not possible to consider

it as an unknown and minimize the total energy density with respect to L as well because
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it appears in the denominator of all the terms, see Eqs. (3.17, 3.18, 3.20), and therefore the

optimal separation tends to infinity. Physically, we hypothesize that the separation is set

by frictional forces between graphene and its substrate. Frictional forces in graphene and

carbon nanotubes have been measured in other contexts (Bourlon et al., 2004; Lee et al.,

2010).

The model of friction in the simulation has been discussed in Chapt. 2. Let us discuss

now the treatment of friction in the analytical model. Since wrinkling requires significant

sliding of the graphene sheet relative to the substrate in a large fraction of the sample, see

Figure 3.3(a) for an illustration, we assume that the whole surface undergoes sliding, which

results in a simple expression for the work of dry friction

Wf =

∫
Ω
τ0|u| dS =

1

4
τ0ε0L

2H, (3.22)

where H is the width of the sample. To systematically explore the separation, we consider

a single wrinkle in a sample of length L, and minimize the energy deviation per unit surface

∆Ū(A,B, l, L) = ∆Ūs + Ūb + Ūv +
1

4
τ0ε0L (3.23)

with respect to all its arguments. Since the last term is an increasing function of L while the

other terms are decreasing functions of L, this energy leads to a finite separation between

wrinkles.

Indeed, as illustrated in Fig. 3.3(a), transitioning from a rippled state to a wrinkled state

requires sliding of the graphene sheet relative to the substrate, as the uniformly distributed

excess area of a rippled configuration is brought to a localized wrinkle. For a given applied

strain, wrinkles separated by a large distance are energetically favorable as compared to

smaller wrinkles closer to each other, but dissipate a larger frictional work. Thus, a com-

petition between potential energy (elastic and adhesion) and frictional work is established.

The tribological properties of supported graphene have been examined experimentally with

AFM (Lee et al., 2010). The frictional traction between different shells in multi-walled car-

bon nanotubes has been reported to be in the range τ0 = 0.2 to 0.85 MPa (Cumings and

Zettl, 2000; Yu et al., 2000; Bourlon et al., 2004), while τ0 between graphene and polyethy-

lene terephthalate (PET) has been found to range between 0.46 to 0.69 MPa (Jiang et al.,

2013). These experiments probe a similar situation as that studied here, where the normal
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force confining the sliding surfaces is not externally applied but rather due to their cohe-

sion. Also, friction can be presumably controlled by the chemistry and topography of the

substrate surface.

Figure 3.3(b) shows the critical rippling strain together with the critical strain for forming

one, two, or three wrinkles, as a function of the frictional parameter τ0 (the maximum shear

traction that the substrate can exert on the graphene sheet) for a sheet of length L = 1 µm.

The adhesion parameters are γ = 0.45 J/m2 and h0 = 4.5 nm. We assume that rippling

results in negligibly small tangental displacement, and thus the rippling strain is independent

of τ0. In the absence of friction, the figure shows that configurations with a single wrinkle

are preferred. However, the work of friction affects in a different way the uni-, bi-, and

tri-wrinkling configurations, and for larger τ0, two or three wrinkles become favorable.
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Figure 3.4: Separation between wrinkles L as a function of the friction parameter τ0 pre-
dicted by the theoretical model (top), checked against the simulations for four selected
frictional coefficients (bottom). The color represents the out-of-plane deviation w(x). The
inset shows L as a function of τ0 in a log-log scale, to highlight the fact that the relation is
not a power-law.

We examine the systematic dependence of the wrinkle separation as a function of fric-
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tional coefficient τ0 in Fig. 3.4, where we minimize the potential energy and frictional work in

Equation (3.23) with respect to L as well. We test the theoretical model predictions against

simulations for four selected values of τ0, and find they are in a very good agreement.

Contributions

We summarize here the most significant contributions of this work, which has been published

as a research paper in (Zhang and Arroyo, 2013):

1. we study the emergence of spontaneous wrinkling in supported and laterally strained

graphene with high-fidelity simulations based on an atomistic-informed continuum

model.

2. We theoretically analyze the ripple-to-wrinkle transition of supported graphene under

the uniaxial compression. We characterize the onset of buckling and the nonlinear

behavior after the linear instability in terms of the adhesion and frictional material

parameters of the graphene-substrate interface.

3. We find that localized wrinkles evolve from a distributed rippling linear instability due

to the nonlinearity in the van der Waals graphene-substrate interactions.

4. When graphene sample is supported on a tight substrate, e.g. silicon-oxide and upon

compression, localized wrinkles are transited from planar surface without an observable

rippling stage, which has been proved by experiments.

5. We identify friction as a selection mechanism for the separation between wrinkles, as

the formation of far apart wrinkles is penalized by the work of friction. We quanti-

tively study the separation distance between wrinkles in terms of the interfacial shear

strength in the interface (friction) theoretically and by simulations.
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Chapter 4

Spontaneous wrinkling upon

biaxial compression

Having understood the emergence of wrinkling under uniaxial compression, we turn now

to the much more complex case of biaxial compression. Here, the boundary conditions are

incompatible with inextensible deformations, which in the case of unsupported crumpling

of thin elastic films has been shown to lead to complex and localized deformation patterns

(Witten, 2007).

1 Spontaneous wrinkling under isotropic compression

We first examine the spontaneous emergence of localized wrinkles upon isotropic biaxial

compression, see Fig. 4.1(a). Beyond a threshold strain, the system departs from a planar

state and develops a distributed, small-amplitude rippling instability throughout the sample

(εc = 0.6%), but since it produces polarized plane-wave deformations and strain is isotropic,

many domains with random orientations develop, similar to labyrinth patterns previously

reported in other compressed thin films (Huang et al., 2005). Upon further compression

(εc = 1.2%), the out-of-plane deformation localizes into short wrinkles, which partially

release rippling in their vicinity. Localization is caused by the decohesion of the graphene-

substrate interaction. Ripple and wrinkle coexistence has been reported in CVD graphene

samples (Liu et al., 2012). As compressive strain increases, wrinkles grow and connect to

form a network partitioning the sample into nearly flat subdomains. During this reorgani-

31
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zation, most ripples and some wrinkles disappear, and the network simplifies by aligning

and merging neighboring wrinkles that were previously along similar directions (εc = 2.4%).

While wrinkles can form complex structures where they meet, the abundance of simple

T-junctions is noteworthy. Once the wrinkle network has matured, further compression

increases the wrinkle height without significant reorganization. The equilibrium separation

chosen here is relatively large to better visualize the competition between distributed rip-

pling and localized wrinkling, which results in a compliant interaction since the stiffness of

the adhesion potential is proportional to γ/h2
0. For very tight interaction as in atomically

flat substrates, e.g. h0 below 1 nm, the system withstands larger strains before buckling

and then abruptly transits to wrinkling after an almost unnoticeable rippling regime. The

ripple-to-wrinkle transition reported here is reminiscent of that observed in other elastic

sheets coupled to different substrates (Pocivavsek et al., 2008; Zang et al., 2012; Kim et al.,

2011).

2 Modulating wrinkle patterns through friction and strain

anisotropy

Spontaneous wrinkling can be modulated in various ways. Since the emergence of wrinkling

requires significant sliding of graphene relative to the substrate, frictional forces determine

the expected separation between wrinkles (Zhang and Arroyo, 2013). By considering a sig-

nificantly larger interfacial shear strength in Fig. 4.1(b), many more short wrinkles nucleate

and the reorganization of the wrinkle network is hindered, leading to smaller subdomains.

Friction could be modulated experimentally by controlling the pressure difference across the

graphene sheet (Kitt et al., 2013; Pugno et al., 2013), since graphene is impermeable to

common gases (Bunch et al., 2008). On the other hand, strain anisotropy leads to ripples

and wrinkles aligned with the principal directions of anisotropy (Huang et al., 2005; Kim

et al., 2011), see Fig. 4.1(c). The similarity between the isotropic (Li et al., 2009; Robertson

et al., 2011; Obraztsov et al., 2007; Calado et al., 2012; Liu et al., 2012) and anisotropic (Zhu

et al., 2012; Liu et al., 2012) wrinkle patterns observed in supported single and few-layer

graphene and those obtained here is remarkable.
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Figure 4.1: Spontaneous wrinkling under biaxial compression. (a) Morphological evolution
of the buckling pattern of supported graphene upon isotropic biaxial strain (500 nm × 500
nm sample, τ0 = 0.3 MPa, h0 = 4.5 nm, γ = 0.45 J/m2). The blue-to-red color maps
represent the out-of-plane displacement, and the color scale is chosen in each case to better
highlight the deformation pattern. The maximum out-of-plane displacement ranges from
0.2 nm at εc = 0.6% to 3 nm at εc = 2.4%. (b) A denser pattern of wrinkles is obtained
with higher friction (τ0 = 1.8 MPa). (c) Under anisotropic compression, ripples and wrinkles
align with the principal directions of strain.
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Figure 4.2: Energetics of spontaneous wrinkling. (a) Different components of the energy den-
sity as a function of compressive strain, where the planar (red), rippled (green) and wrinkled
(blue) stages have been shaded. (b) Maps of stretching energy density corresponding to the
snapshots in Fig. 4.1(a). (a) and (b) depict wrinkling as a process of relaxation and focusing
of stretching energy. (c) Geometry and stretching energy density of a T-junction. Along
the y direction, one of the wrinkles very slowly decreases its amplitude as it approaches the
other wrinkle, remaining nearly developable. However, in a very small region at the tip of
the vanishing wrinkle, a very strong focusing of Gaussian curvature and stretching energy
can be observed.
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3 Energetics and the role of stretching

To better understand the mechanics leading to these wrinkle networks, we analyze next the

energetics of the process. Fig. 4.2(a) shows different components of the energy (stretching,

bending and adhesion) per unit area as a function of compressive strain. While the sample

remains planar and at its equilibrium separation (red-shaded region), the stretching energy

is the only contribution, and it grows quadratically as expected for an elastic material under

small deformation. At a critical strain, it is energetically favorable to further accommodate

compressive strain by distributed rippling. This out-of-plane deformation upsets the bending

and adhesion energies, which linearly increase, but keeps stretching energy constant (green-

shaded region). The competition between adhesion and bending energy sets the rippling

wavelength. The figure shows that, beyond a second threshold, localized wrinkling further

relaxes the energy; bending and adhesion energies grow at a slower rate, and stretching

energy progressively reduces. This response under biaxial compression is very different from

the wrinkling behavior under uniaxial compression, where stretching energy reduces towards

zero much faster. Here, it is not possible to accommodate biaxial compression without

significant stretching, which becomes a key factor in understanding wrinkle networks and

the junctions they form.

Unlike bending deformations, in-plane stretching cannot be directly visualized from the

out-of-plane displacement maps. For this reason, we show in Fig. 4.2(b) the spatial distribu-

tions of stretching energy during the process. While in the rippling stage (b-i) the stretching

energy is quite uniformly distributed, it progressively relaxes around the nascent wrinkles

(b-ii). When the wrinkle network is fully formed (b-iii), the contrast in stretching energy

distribution dramatically increases, by nearly relaxing in most of the sample and strongly

focusing it along some wrinkles and mainly at wrinkle junctions and other network point

defects. Thus, wrinkling can be understood as a process of stretching energy relaxation and

focusing, at the expense of bending and adhesion energy.

The relation between sheet morphology and stretching can be understood from Gauss

Theorema Egregium, which implies that doubly-curved (non-developable) regions of the film

are necessarily stretched, while developable straight wrinkles can exist without stretching

(Witten, 2007). Junctions involve localized double curvature, which explains why stretching

focuses at points, while bending and decohesion also concentrate along the linear singly-

curved wrinkles. Amongst the diversity of junction morphologies, T-junctions appear to be
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stable low-energy configurations, see Fig. 4.2(c). Interestingly, T-junctions are frequently ob-

served in supported graphene (Liu et al., 2012). In the context of crumpling of unsupported

thin elastic sheets including graphene, focusing of stretching energy at point (developable

cones) and line (stretching ridges) deformation features has been extensively studied (Cerda

et al., 1999; Witten, 2007; Pereira et al., 2010). T-junctions between wrinkles seem to be

an analogous building block for compressed and adhered sheets (Aoyanagi et al., 2010).

4 Reproducibility of wrinkle patterns

We examine next the sensitivity of the computational result to key numerical parameters:

mesh refinement, load increment size, and dimensions of the periodic domain. We performed

many simulations varying these parameters within the computationally feasible range, some

of which are reported in Fig. 5.1. We found that the precise location of wrinkles is com-

pletely different when the load increment size or the dimensions of the periodic box are

changed (Fig. 5.1(a)). This variability is a consequence of the massive non-uniqueness of

equilibrium states in the system. However, the general features of the pattern, in terms of

wrinkle spacing and orientations, are similar. More quantitatively, as shown by the evolu-

tion of the different energy components as a function of strain in Fig. 5.1(b), the numerical

equilibria for different computational parameters exhibit very similar global behavior. Our

simulations appear to be converged in terms of the periodic domain and mesh size, and the

most noticeable differences are observed for large load steps, with a delayed ripple to wrinkle

transition, presumably due to an inaccurate estimation of the work of friction. In summary,

given the fundamental metastability of buckling in highly symmetric systems, the precise

wrinkle pattern is highly dependent on details about numerical parameters, but the global

characteristics of the solutions are remarkably insensitive.

Contributions

We summarize here the most significant contributions of this work, which has been published

as a research paper in (Zhang and Arroyo, 2014):

1. We have reproduced computationally the most salient features of wrinkle networks

observed in supported graphene.
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Figure 4.3: Wrinkling pattern (a) and different contributions to the energy of the system as
a function of applied strain (b), as the key numerical parameters—mesh size, load increment
size, and dimensions of the periodic domain—are varied. In all the simulations, τ0 = 1.8
MPa, h0 = 1.5 nm, γ = 0.45 J/m2.
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2. We have identified the influence of strain anisotropy and the adhesive and frictional

properties on the morphology of spontaneously-formed wrinkle networks.

3. We have analyzed the energetics of the process. Wrinkling can be understood as a

process of stretching energy relaxation and focusing on the junctions. T-junctions are

frequently observed and energetically favorable.

4. Our simulations illustrate the fundamental difficulty in trying to control wrinkle net-

works by compressing supported elastic thin films.



Chapter 5

Control of strain-engineered

wrinkle networks in supported

graphene

With the understanding of the mechanics of spontaneous wrinkling in Chap. 4, we turn

now to strategies to precisely control the geometry of the wrinkle network amongst the vast

range of available wrinkling pathways. While controlling buckling instabilities is notoriously

difficult, particularly under multiaxial compression, there have been different attempts to

guide wrinkles in different supported thin films (Hendricks et al., 2010). Wrinkling patterns

in metal-capped thin polymer films have been modulated, but not precisely controlled, by

chemically patterning the adhesive properties of the substrate (Vandeparre et al., 2007).

Wrinkles in supported graphene have been shown to predominantly form at substrate cor-

rugations under uniaxial compression (Kim et al., 2011; Pan et al., 2011; Liu et al., 2012).

1 Controlling wrinkle networks through weak adhesion stripes

on the substrate

Building on these ideas, we attempt to conform wrinkles to patterns of stripes of weaker

adhesion in an otherwise homogeneous substrate. We model the stripes of weaker adhesion

by spatially modulating the adhesion energy as γ(x, y) = γ̄
{

1− exp
[
−dist(x, y; `)2/c2

]}
,

where γ is the adhesion energy between graphene and substrate (see Chap. 2), and dist(x, y; `)
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denotes the distance of a point to the closest line in the pattern `. We take c = 1 nm,

which leads to a stripe width of ∼ 4 nm. We found that graphene wrinkles tend to follow

the width of stripes. However, if the stripe width becomes comparable to
√
D/γ ≈ 0.7 nm,

then bending stiffness can significantly impede the formation of wrinkles conforming to such

narrow stripes. In experiment, such patterns may be implemented through physicochemical

modification and nanolithography.

We examine first uniaxial compression, where in the absence of stripes the wrinkle sepa-

ration strongly depends on the frictional properties (Zhang and Arroyo, 2013), see the black

curve in Fig. 5.1(a). We expect that the frictional selection principle for wrinkle separation

may interfere with our strategy to control the wrinkle location, e.g. uncontrolled wrinkles

could form between the stripes for very high friction or some stripes may fail to accommo-

date a wrinkle for very small friction. To address this question, we uniaxially compress a 1

µm graphene ribbon supported on a substrate decorated with uniformly spaced stripes 4 nm

wide and 200 nm apart. Fig. 5.1(a) shows the average wrinkle spacing (red circles) obtained

from simulations with different frictional properties. It can be observed that, given a target

wrinkle separation, wrinkles conform to stripes in a relatively wide range of interfacial shear

strength. Thus, stripes of weak adhesion appear to be a robust method to control wrinkle

location if properly tuned to the graphene-substrate friction.

We extend next this idea to two-dimensional isotropic and anisotropic stripe patterns

under biaxial loading, see Fig. 5.1(b). For isotropic compression, we attempt an isotropic

honeycomb pattern of stripes, and observe that wrinkles can conform to the pattern, forming

two types of Y-junctions with broken-symmetry, Fig. 5.1(b-i). Since under anisotropic

compression we found that spontaneous wrinkles form along perpendicular directions, we

choose a rectangular grid of stripes. We find that wrinkles first form perpendicular to

the direction of maximum strain, and then match the target pattern as a second family

of wrinkles develops, forming X-junctions with the first family, Fig. 5.1(b-ii). The wrinkle

networks robustly conform to the desired patterns for a wide range of parameter values,

but the proposed strategy fails if the pattern is not properly tuned the adhesive/frictional

properties, or to the compression anisotropy. For instance, X-junctions can become unstable,

Fig. 5.1(c), particularly when the two families of perpendicular wrinkles have the same

nominal height (α = 1). For tight adhesive interactions, e.g. h0 = 0.5 nm representative of

graphene on an atomically flat surface, X-junctions become severely strained and kink. For
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Fig. 2Figure 5.1: Controlling the wrinkle location with stripes of lower adhesion. Under uniaxial
compression, (a) shows the average wrinkle spacing as a function of τ0 (red circles), compared
to the target spacing (horizontal gray line) set by the separation between stripes. Simulations
where wrinkles conform to the stripes are shown as filled red circles. For very large τ0,
additional wrinkles form between stripes, while for very small τ0 wrinkles do not form in
every stripe. The black curve shows the theoretical wrinkle separation as a function of τ0 in
the absence of stripes. This idea can be extended to two-dimensional wrinkle networks under
isotropic (b-i) and anisotropic (b-ii) biaxial loading, if the adhesion is tight enough (here,
h0 = 1.5 nm and τ0 = 4 MPa). α = lxλx/(lyλy) measures the nominal height ratio between
the two sets of wrinkles in the rectangular pattern. As shown in (c), X-junctions become
unstable if the nominal height ratio is close to one, by either kinking for tight adhesion or by
spreading into a rippled pattern for loose adhesion. X-junctions are stabilized if the nominal
height of the kinks is significantly different. (d) shows how the honeycomb pattern fails to
form if the adhesion is too loose (d-i) or the friction too high (d-ii).
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Figure 5.2: Different junctions types and their local strain behavior. (a) and (b) show
variations of the rectangular and honeycomb patterns involving only low-energy T-junctions.
(c) Stretching energy of the two types of Y-junction in Fig. 5.1(b-i) compared to an analogous
connecting structure consisting of three T-junctions in (b), at εc = 2.4%. (d) Local strain
behavior of the two types of Y-junctions and a T-junction as a function of applied strain.
The color scale for the local compressive strain maps has been chosen in each case to better
show the strain distribution.

very loose interactions, e.g. h0 = 6 nm, which may model a soft polymeric substrate, X-

junctions destabilize into a complex partially rippled structure. X-junctions can be stabilized

by changing the nominal height ratio between the two systems of wrinkles, e.g. α = 5 in

Fig. 5.1(c). The isotropic honeycomb wrinkle pattern fails to form for loose interactions due

to the interference of rippling, Fig. 5.1(d-i). Fig. 5.1(d-ii) shows how an excessive interfacial

shear strength relative to the pattern dimensions leads to uncontrolled wrinkles.

Since T-junctions are energetically favorable structures in spontaneous biaxial wrinkling,

we turn now to isotropic and anisotropic networks that only exhibit these kinds of junctions,

see Fig. 5.2(a,b). We find that for sufficiently tight adhesive interactions (h0 smaller than ∼3
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Figure 5.3: Stability of the wrinkle networks under internal pressure caused by an enclosed
fluid. (a-c) and (d,e) show snapshots of Y- and T-junction patterns as mass is added into
the interstitial space. The left plot shows the pressure-volume relation along this process
for the two patterns, where V0 is the volume enclosed by the wrinkled graphene membrane
before pressure is applied.

nm), such patterns form in a very reproducible way, and are not susceptible to instabilities

of the junctions. T-junctions are much lower energy configurations as compared to the Y-

junctions of the honeycomb lattice, Fig. 5.2(c). Even though T-junctions are attractive due

to their stability, other more energetic junctions may be more interesting from a strain en-

gineering viewpoint. Fig. 5.2(d) analyzes how strain is distributed spatially. Local in-plane

strain has an areal component and a shear component. We focus on the local compressive

strain (local area change) as a function of the applied compressive strain εC for two types

of Y-junctions (Y1 and Y2) and a T-junction (T). We quantify the spatial non-uniformity

of the local strain by tracking its maximum and minimum values, which occur at the junc-

tions, as well as the local strain in the planar region away from wrinkles and junctions.

Examining the structure of the strain fields, it can be observed that Y-junctions exhibit

complex distributions with strongly localized strain dipoles. Thus, it is possible to create

wrinkle networks of diverse geometry and junction configurations, which may attenuate or

significantly amplify the applied strain, and hence strain-induced changes in properties, at

specific points of the network.
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2 Stability of wrinkle networks to interstitial pressure

Along wrinkles, graphene delaminates from the substrate creating nano-channels. Since

graphene is impermeable to most gases and liquids (Bunch et al., 2008; Whitby and Quirke,

2007), wrinkle networks could be harnessed as mechanically self-assembled nano-fluidic de-

vices, possibly in combination with existing methods to encapsulate gas underneath sup-

ported graphene (Bunch et al., 2008; Koenig et al., 2011; Zabel et al., 2012). Trapped

fluid molecules can create a significant pressure difference across a graphene membrane, and

therefore it is important to assess the connectivity and stability of the networks of channels

under these conditions.

Fig. 5.3 shows the response of two isotropic networks, with Y- and T-junctions, as fluid

mass is introduced into the interstitial space until disruption of the network by delami-

nation. We first focus on Y-junctions. As the system becomes pressurized, we observe

that all Y2 junctions transform to Y1 junctions. For a wide range of pressures, increasing

pressure causes channels to progressively thicken, while maintaining connective junctions,

Fig. 5.3(i). Beyond the maximum pressure, further mass input increases the enclosed vol-

ume but decreases the pressure as delamination progresses; triangular blisters nucleate at

most junctions, and then some expand while others shrink leading to fewer and very large

blisters, see Fig. 5.3(a-c). These triangular blisters are remarkably similar to those recently

observed (Pan et al., 2012). Networks with T-junctions can also withstand high pressure

differences by thickening the wrinkles as pressure increases, see Fig. 5.3(d-f). Our simula-

tions confirm the stability of the fixed mass ensemble beyond the onset of delamination, as

observed previously in experiments (Boddeti et al., 2013).

3 Are curved wrinkles stable?

In the previous studies, we examine the possibility of controlling wrinkles by weak adhesion

stripes on the substrate. The wrinkle network could be applied as nano-fluidic channels. To

enlarge the class of wrinkle networks that can be achieved, we ask ourselves if it is possible

to create stable patterns involving curved wrinkles.

A simple straight wrinkle has zero Gaussian curvature, as it is only curved in the direction

perpendicular to the wrinkle. However, curved wrinkles are non-developable surface, with

curvature along the wrinkle. Gauss Theorema Egregium implies that doubly-curved (non-
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Figure 5.4: A curved wrinkle fragments into wrinkle segments as compressive strain is
increased.

developable) regions of the film are necessarily stretched. Our previous simulations have

shown that supported graphene tends to develop localized deformations to relax stretching,

suggesting that curved wrinkles will only remain stable within a certain range. In research

not fully reported here, we have examined this issue. In simulations involving curved weak

adhesion stripes, the accumulated stretching energy due to doubly curving competes with

bending and adhesion energy, and finally triggers the curved wrinkle fragmentation into

wrinkle segments, see Fig. 5.4.

This work confirms the possibility of creating moderately curved wrinkles in supported

graphene. As an application in network design, Fig. 5.5 depicts several possible connections

by curved wrinkle in designing the wrinkle network.

Contributions

We summarize here the most significant contributions of this work, which has been published

as a research paper in (Zhang and Arroyo, 2014):

1. We have proposed a method to precisely control the location of wrinkles through
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Figure 5.5: (a,b) show an application of curved wrinkles in wrinkle network designing with
modified junctions.
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patterns of stripes of weaker adhesion on the substrate. For this strategy to succeed,

the target pattern has to ben tuned to the graphene-substrate interaction and to strain

anisotropy.

2. We have shown that T-junction are very stable and attenuate the applied strain, while

Y-junctions are strain amplifiers.

3. We have assessed the connectivity and stability of the networks of channels trapping

fluid molecules, opening the door to nano-fluidic applications.

4. We have examined the stability of curved wrinkles.
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Chapter 6

Coexistence of wrinkles and

blisters in supported graphene

We examine in this chapter the mechanics of bubbles in supported graphene. In experiments,

graphene bubbles have been observed with different sizes and shapes. The reported radii

of the circular edges of quasi-spherical bubbles range from dozens of nanometers to several

microns (Stolyarova et al., 2009; Koenig et al., 2011). Gas released from the substrate can

become trapped under the impermeable graphene sample, creating a significant pressure

difference across the membrane that produces and stabilizes tense bubbles (Bunch et al.,

2008). The amount of gas inside the interstitial space can be used to control the size of

bubbles (Koenig et al., 2011; Liu et al., 2013). Moreover, blisters with straight edges have

been observed, possibly in association with wrinkles (Pan et al., 2012; Wang et al., 2012).

Triangular and quadrangular straight-edged bubbles have been observed and controlled by

an external electric field (Georgiou et al., 2011). It has been shown that a small triangular

bubble can generate a very large pseudo-magnetic field, demonstrating that the electronic

structure of graphene can be strain engineered (Kim and Neto, 2008; Guinea et al., 2010;

Levy et al., 2010). Figure 6.1(a-d) shows experimental observations of bubbles of different

morphology in supported graphene samples.

The mechanics of quasi-spherical bubbles has been previously examined in detail (Bod-

deti et al., 2013; Kitt et al., 2013; Yue et al., 2012; Koenig et al., 2011). However, the

mechanisms leading to straight-edged bubbles remains unexplored, despite numerous exper-

imental observations. Furthermore, the coexistence and interaction between wrinkles and

49
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Figure 6.1: (a-c) AFM topography scan of triangular, quadrangular and circular bubbles
(Georgiou et al., 2011). (d) A representative AFM image of straight-edged bubbles coex-
isting with wrinkles (Pan et al., 2012). (e-h) Our simulations on graphene bubbles with
various configurations. (e) A circular bubble. (f) A quadrangular straight-edged bubble.
(g) A triangular straight-edged bubble. (h) A lenticular bubble. The colormap in (e-h)
represents out-of-plane displacement.

blisters has not been investigated. Here, we attempts to address these issues and provide a

unified picture of bubbles and wrinkles in supported graphene.

1 Modeling approach

We hypothesize that the shape of bubbles (in particular their circular or straight-edged

morphology) and their interaction with wrinkles result from the system trying to adopt en-

ergetically favorable configurations for a given compressive strain or amount of interstitial

molecules. To test this hypothesis, we consider a simplified set-up with a single and initially

circular bubble in equilibrium at the center of a 200×200 nm2 periodic supported graphene

sample. To prepare the system in this state, we artificially weaken the adhesion strength at

the center of the sample and gradually increase nRT , in analogy with experiments (Koenig

et al., 2011). Once the bubble grows and delaminates from the substrate beyond the weak-

ened region, we remove the adhesion defect and re-equilibrate the system. See Fig. 6.1(e)

for a typical stable bubble created with this procedure, which exhibits a circular rim.
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Once a circular blister is created, by applying compressive strain (progressively reducing

the lateral dimensions of the simulation cell), we observe a variety of straight-edged blis-

ters, associated with wrinkles emanating from the blister’s vertices, see Fig. 6.1(f,g). The

configurations observed in simulations closely follow those observed in experiments by Pan

et al. (2012), see Fig. 6.1(d). In the triangular and quadrangular bubbles reported in Geor-

giou et al. (2011) Fig. 6.1(a-b), a careful examination also suggests the presence of wrinkles

originating at the vertices. We also observe in simulations with anisotropic strain lenticular

bubbles, see Fig. 6.1(h). Thus, although the symmetry of our setup favors quadrangular

blisters and pairs of wrinkles meeting at a 90◦ angle, our modeling approach captures some

of the salient features of blisters in supported graphene. By focusing on the behavior of a

single bubble we analyze in fact a system with a specific density of bubbles given by the

lateral dimensions of the periodic box. We will return to this discussion at the end of the

chapter.

2 A morphological diagram for bubble/wrinkle coexistence

Based on a systematic set of simulations, see Fig. 6.2(b), we organize our observations

in a morphological diagram in the compressive strain-trapped mass (εl, nRT ) space, see

Fig. 6.2(a), where εl represents the linear compressive strain applied in each direction. To

explore this diagram, we start from a circular bubble (white region) and increase εl while

keeping nRT constant. We observe that short wrinkles nucleate at the periphery of the

bubble and gradually elongate until they reach the periodic boundary while the circular

bubble transits to a quadrangular straight-edged bubble, see Fig. 6.2(i-iii). At this point,

recalling the periodicity of the box, the system adopts a wrinkle network configuration with

blisters at wrinkle junctions (light grey region). From this state, we go downward in the

diagram by decreasing nRT and observe that the bubble shrinks and finally collapses into

a junction connecting the intersecting wrinkles along two orthogonal directions (dark grey

region), see Fig. 6.2(v). Moreover, we find that this morphological diagram is largely path-

independent. For instance, Fig. 6.2(a) shows with continuous and dashed lines two different

paths in (εl, nRT ) space, which intersect at configurations (iii) and (vi). It can be seen

that the equilibrium state depends on the strain and trapped mass, but not on history.

As illustrated in the figure, the transitions between different morphologies in the diagram,
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Figure 6.2: A strain-trapped mass morphological diagram of deformations in graphene. (i-
iii) depicts the transition from a circular bubble into a straight-edged bubble coexisting with
wrinkles, when the biaxially applied compressive strain is increased (εl represents the linear
applied strain in each direction). Starting from (ii) and decreasing nRT , wrinkles shorten
and the bubble becomes small (vi). (iii’ and vi’) show the same bubble configuration as
(iii and vi), but accessed through an alternative path in parameter space. Starting from
a straight-edged bubble bubble (iii) and decreasing nRT , the bubble shrinks as a junction
connecting two intersected wrinkles (v). (vii and viii) depict shrinking circular bubbles as
nRT is decreased from (i). (b) Depiction of the points used to build the morphological
diagram, where each state is equilibrated for fixed strain and trapped mass, and qualified
according to its morphology.
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e.g. from circular bubble to straight-edged bubble coexisting with wrinkles, are gradual.

For clarity, we represent them however as sharp lines in Fig. 6.2(a), where the criterion to

distinguish between the white and the light grey regions is the nucleation of small wrinkles

and the disappearance of small ripples at the periphery of the bubble.

In the circular bubble region, increasing/decreasing nRT results in larger/smaller bub-

bles, which below a size threshold, become unfavorable compared to the planar configuration

(i-vi-viii). Similarly, when compressive strain is reduced in configuration (v), the wrinkle

height becomes smaller and at one point, the system transits to the planar configuration.

In fact, once the system gets trapped in the planar state (black region), the morphological

diagram is no longer path independent. Indeed, if starting from the planar state we either

increase εl or nRT , the system stays planar beyond the black region because the planar

configuration is metastable with a significant barrier in a broader region. To estimate the

region of metastability, we perform a linear stability analysis of the system around the planar

state. We first consider the uniformly flat solution for a graphene sheet subjected to εc and

nRT . The pressure within the interstitial space can be computed from the ideal gas law as

p =
nRT

h̄A0(1− εl)2
, (6.1)

where h̄ is the equilibrium separation and A0 is initial surface area of the unstrained graphene

sheet. The pressure can also be computed from

p = V′(h̄). (6.2)

Equating both expressions for p, we obtain an implicit formula for h̄, which can be solved

numerically given εl and nRT . We can then linearize the system around this equilibrium

configuration and assess its stability as we did in Section 1 of Chapter 3. In the present

situation, the linearized van der Waals potential takes the form

V̂ =
γ

2h2
0

[
−18

(
h0

h̄

)5

+ 45

(
h0

h̄

)11
]
w2, (6.3)

which reflects the fact that this potential softens as nRT (h̄) increases. Then, recalling our
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Figure 6.3: Starting from a planar state and increasing both nRT and εl, the graphene
surface buckles into polygonal bubbles that coexist with wrinkles (ix). With only com-
pressive strain, a planar surface buckles into a network of localized wrinkles (x). (xi) By
only increasing nRT , a circular bubble can be formed starting from a small defect on the
substrate.

results in Chapter 3, c.f. Equation (3.8), we obtain the critical strain for linear instability

ε̂cr = − 2

h0Ȳ

√√√√[−18

(
h0

h̄

)5

+ 45

(
h0

h̄

)11
]
γD. (6.4)

This equation allows us to delimit the region of marginal stability of the planar con-

figuration in the morphological diagram as a blue curve in Fig. 6.3. We test with fully

nonlinear calculations this boundary for meta-stability of the planar state. Starting at the

origin of the diagram, we increase both strain and trapped mass to describe a diagonal

path. As predicted by the estimate, we find that the system abruptly transits from the pla-

nar state to a state where bubbles coexist with wrinkles when the diagonal path intersects

the blue stability boundary. If instead we increase only strain, we find that in agreement

with the morphological diagram the system transits to a wrinkled configuration as we reach

the marginal stability threshold. If we increase only trapped mass, a circular bubble can be
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Figure 6.4: (a-c) In-plane stretching energy density during the transition from a circular
bubble into a straight-edged bubble, shown earlier in Fig. 6.2 (i-iii). (d) A plot of different
energy components when the applied compressive strain is increased.

induced from a defect on the substrate without having to exit the meta-stability region of

the planar state.

We discussed in Chapt. 4 that wrinkle network formation could be interpreted as a pro-

cess of stretching energy relaxation and focusing. To analyze whether analogous mechanisms

are also operative here, we investigate next the energetics of the transition between a cir-

cular bubble and a straight-edged bubble associated to wrinkles, as shown in Fig. 6.2(i-iii).

A quasi-spherical bubble is doubly curved, and therefore Gauss Egregium Theorem implies

that such configurations are necessarily stretched, see Sec. 3. Such stretching is energeti-

cally penalized by graphene’s extreme in-plane stiffness. Figure 6.4(a) shows the stretching

energy density, which is significant (compare with Fig. 4.2 in Chapt. 4) and spreads over the

entire bubble and part of the adhered region in its vicinity. This figure also shows how the

system partially relaxes the stretching energy at the periphery of the bubble by slightly rip-



3 A membrane analysis 56

graphene bubble

a
b

0

0.01

0.02

�0.01
0 0.3 0.6 0.9

r/b

strains

hoop
radial

ba

0 0.3 0.6 0.9
r/b

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

r/b

S
tr
ai
n

0

0.01

0.02

�0.01

"0 0
-0.2
-0.5

%
%

a bFigure 6.5: We divide an adhered circular region with a bubble into two parts: (a) the
bubble and (b) the external annular region.

pling. Figure 6.4(b) shows how, as strain is progressively increased, the transition towards

a straight-edged bubble with radial wrinkles relaxes the stretching energy in the blister,

but focuses stretching energy in small regions where the bubbles and wrinkles meet. When

the bubble us fully polygonal, Fig. 6.4(c), this mechanism is exacerbated with nearly zero

stretching energy throughout the sample, except for a weakly stretched region at the top of

the bubble and tiny but highly stretched features at the wrinkle-bubble connections. Figure

6.4(d) shows the variations of the different components of the energy (in-plane stretching,

bending and adhesion) per unit area as a function of compressive strain. The sharp drop

in stretching energy in this plot corresponds to the moment when the wrinkles extend to

the boundary of the periodic domain. These results confirm the depiction of this process as

one of stretching energy relaxation and focusing, at the expense of bending and adhesion

energy.

A critical step in the transition from circular to straight-edged bubbles is the nucleation

of short wrinkles at the periphery of the bubble. We analyze next in detail the stress state

in this region for a circular bubble to shed light into the onset of this process.

3 A membrane analysis

During this transition from circular to straight-edged bubbles, thin and short wrinkles nu-

cleate near the periphery of the bubble. This buckling event is governed by the biaxial strain

conditions near the periphery of the bubble. To examine this process, we develop next an

analytical model, related to previous membrane analyses of supported graphene bubbles

(Yue et al., 2012; Koenig et al., 2011).
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Previous membrane analyses of supported graphene bubbles usually assume a clamped

boundary condition of the bubble edge, and thus zero hoop strain where wrinkles form.

However, a compressive hoop strain can develop due to the the sliding of the bubble bound-

ary (Kitt et al., 2013). The compressive hoop strain near the periphery of the bubble can

trigger the nucleation of wrinkles. Here, we consider this in-plane sliding of graphene near

the bubble edge, and include in the analysis the outer annular region of graphene adhered

to the substrate, see Fig. 6.5(a). As commonly done (Yue et al., 2012), we assume the

out-of-plane profile of the bubble as

z(r) = δ

(
1− r2

a2

)
, (6.5)

for an axisymmetric bubble of radius a and maximum deflection δ, both to be determined.

We assume a cubic distribution of radial displacement

u(r) =
(
u0 + u1

r

a

) r
a

(
1− r

a

)
+ up

r

a
, (6.6)

where u0 and u1 are the parameters to be determined, and up accounts for the in-plane

sliding of the circle. Equations (6.5) and (6.6) offer a reasonable approximation for the

deformation of relatively large bubbles. In the von Karman theory, accounting for the

nonlinear effect of the out-of-plane displacement z(r), the radial and hoop strains adopt the

form (Landau and Lifshitz, 1959)

εr(r) =
∂u

∂r
(r) +

1

2

[
∂z

∂r
(r)

]2

, (6.7)

εt(r) =
u(r)

r
. (6.8)

Recalling Equations (6.5) and (6.6), the radial and hoop strain can be written as

εr(r) =
(u0

a
+
u1r

a2

)(
1− 2r

a

)
+
u1r

a2

(
1− r

a

)
+

2δ2r2

a4
+
up
a
, (6.9)

εt(r) =
(u0

a
+
u1r

a2

)(
1− r

a

)
+
up
a
. (6.10)
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Note that the hoop strain in Equation (6.10) is in general not zero at the periphery (r = a),

as controlled by the sliding displacement up. We can now derive the elastic strain energy

per unit area as

U ins (r) =
E2D

2(1− ν2)
(ε2
r + 2νεrεt + ε2

t ). (6.11)

In the current membrane model, we ignore the bending stiffness of the film. This ap-

proximation is computationally convenient and is valid for relatively large bubbles. The

pressure of gas inside the bubble has the following contribution of free energy density,

Ug(r) = −z∆p. (6.12)

Next, we consider the annular region outside of the bubble, which is adhered to the

substrate, and has the inner radius a, and outer radius b, see Fig. 6.5(b). The radial and

hoop components of stress follow the general form (Landau and Lifshitz, 1959)

σr =
A

r2
+ 2C,

σt = −A
r2

+ 2C,

(6.13)

and the radial displacement in the region a < r < b is

u =
1

E2D

[
−(1 + ν)A

r
+ 2C(1− ν)r

]
. (6.14)

In this region, we impose the Dirichlet boundary conditions ur=b = εlb and ur=a = up, see

Equation (6.6). Combining these boundary conditions with Equation (6.14), we obtain

A =
E2D

1 + ν

ab2

b2 − a2
(up − aεl), (6.15)

2C =
E2D

1− ν
b2εl − aup
b2 − a2

. (6.16)

Recalling Equation (6.13) and the expressions for A and C, we can compute stretching

energy density of the annular region outside of the bubble as

Uouts (r) =
1

2E2D
(σ2
r + σ2

t )−
ν

E2D
σrσt. (6.17)
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Figure 6.6: (a) Comparison between the theoretical model (dotted lines) and the nonlinear
simulations (solid lines) for the radial and hoop components of the strain. (b) Distribution
of the radial and hoop components of the strain when the applied strain εl is progressively
increased. The hoop strain develops increasing compression near the periphery of the bubble.

Considering now the entire system consisting of the bubble and the annular region, and

including the effect of the adhesion energy per unit surface γ, we obtain the total energy as

Π(a, δ, u0, u1, up) = 2π

∫ a

0

(
U ins + Ug

)
rdr + 2π

∫ b

a

(
Uouts + γ

)
rdr. (6.18)

By minimizing the total energy Equation (6.18) with respect of a, δ, u0, u1, up, stable

equilibria are obtained. The distribution of two components of strain is shown in Fig. 6.6(a),

and compared with our nonlinear simulations. Despite the simplicity of the theoretical

model, the fact that our periodic computational domain is square (as opposed to the disc-

like geometry of the simple model), and the modest size of the bubble (and therefore bending

energy plays a role), the agreement between model and simulations is quite good. We see

that at the periphery of the bubble, the strain is negative (compressive) in hoop direction,

and positive in radial direction. These negative hoop strains are consistent with the small

ripples always present in our simulations in at the edge of the detached part of quasi-

spherical bubbles. The model also shows that the compressive hoop strain increases as εl

increases. Such high compressive hoop strains could favor the nucleation of small wrinkles

near the periphery of the bubble, and trigger the morphological evolution from a circular

bubble to a straight-edged bubble in Fig. 6.2(i-iii). We analyze next the onset of instability

for an adhered elastic sheet with compressive strain in one direction and tensile strain in

the perpendicular direction, representative of the state at the periphery of the bubble, to
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estimate the onset of this instability.

4 Buckling analysis at the periphery of the bubble

For supported graphene under uniaxial compression, a linear instability analysis has been

proposed in many previous studies, predicting a critical strain upon which the planar surface

transforms to rippling. With further compression, the uniformly distributed rippling will

transit to several localized wrinkles due to the nonlinearity of van der Waals interaction

(Zhang and Arroyo, 2013). As we discussed previously, the periphery region of bubble

experiences a biaxial strain state, compressive along the azimuthal direction and tensile

in the radial direction. We examine next the onset of buckling under such biaxial strain,

ignoring details such as the curvature of the bubble edge.

Consider a supported rectangular graphene sheet compressed in one direction and stretched

in the other direction Fig. 6.7(a). The stretching delays the critical strain of rippling without

changing the rippling direction or wavelength. We denote by u(x, y) and v(x, y) the in-plane

displacements and w(x, y) the out-of-plane displacement of the membrane, and εx and εy

the in-plane strain components in x and y directions. The stretching and bending energies

of the membrane per unit area can be expressed as

Us =
Ȳ

2
(ε2
x + ε2

y + 2νεxεy),

Ub =
D

2

(
∂2w

∂x2

)2

.

(6.19)

Adopting a von Karman nonlinear plate theory (Landau and Lifshitz, 1959), the mem-

brane strain components of the film can be approximated as

εx = ε0
x +

∂u

∂x
+

1

2

(
∂w

∂x

)2

,

εy = ε0
y +

∂v

∂y
+

1

2

(
∂w

∂y

)2

,

(6.20)

where ε0
x and ε0

y represent the globally applied lateral strain on the membrane. We assume

uniaxial ripples perpendicular to the direction of compressive strain as w(x) = A cos(kx).

By requiring the uniformity of the in-plane tension or strain, see Eq. (6.20), the in-plane
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Figure 6.7: (a) Simplified model for the state of the graphene sheet at the periphery of the
bubble, under compression in the x direction (the azimuthal direction) and stretching in y
(radial) direction. (b) An estimation of the boundary between the white (circular bubble)
and light grey (straight-edged bubble with wrinkles) regions in the phase diagram in Fig. 6.2
with various sizes of the domain. As predicted by (b), under the same value of nRT = 2500
nN·nm and εl = 0.15%, for an array of bubbles of high density (small domain size, c), the
quasi-spherical bubble is more stable than for a lower density of bubbles (d).
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displacement in x becomes u(x) = (1/8)k2A2 sin(2kx), and the constant strain component

in x becomes εx = ε0
x + (1/4)k2A2. In the y direction, εy = ε0

y. The stretching energy

difference per unit area takes the form

∆Ūs(A, k) =
Ȳ

2
(ε2
x + ε2

y + 2νεxεy − ε0
x

2 − ε0
y

2 − 2νε0
xε

0
y)

=
T 0
x

4
k2A2 +

Ȳ

32
k4A4 +

T 0
y

4
νk2A2,

(6.21)

where T 0
x = Ȳ ε0

x and T 0
y = Ȳ ε0

y are reference surface tensions in the x and y directions. The

third term in Eq. (6.21) is the contribution in the stretching energy of the applied stretch

in the y direction. Including the bending and adhesion energies, the total energy difference

per unit area then becomes

∆Ū(A, k) =

(
T 0
x + T 0

y ν

4
k2 +

D

4
k4 +

27γ

4h2
0

)
A2 +

Ȳ

32
k4A4. (6.22)

If T 0
y = −αT 0

x , we have

εcr = − 2

h0Ȳ (1− αν)

√
27γD, (6.23)

which predicts the critical strain along x.

The theory developed in Sec. 3 provides an estimate of the strain state at the periphery

of the bubble, i.e. εx and α, given the applied strain εl and nRT . Using the equation above

to estimate the onset of buckling instability at the margin of a quasi-spherical bubble, we

can theoretically estimate the boundary between the white (circular bubble) and light grey

(straight-edged bubble with wrinkles) regions in the phase diagram in Fig. 6.2. This theoret-

ical estimate of the boundary is represented in Fig. 6.7(b). Despite all the approximations

in the model and the somewhat arbitrary criterion to select the boundary in Fig. 6.2, we

observe that the numerical and theoretical boundaries agree quite well. Interestingly, it can

be observed that when plotting nRT per unit area versus εl, the boundary does not change

as the size of the domain changes. Since the size of the domain can be interpreted as the

separation between bubbles in a graphene sample, we can conclude that the transition strain

between circular and straight-edged bubbles for a given number of trapped molecules per

unit graphene area is independent of bubble density. This observation allows us to estimate

the transition from circular bubbles to straight-edged bubbles for very large domain sizes,
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beyond the limits of our computational capabilities. The relation represented in Fig. 6.7(b)

predicts that for a given nRT and εl, circular bubbles are more stable if the domain size is

smaller. Figures 6.7(c) and 6.7(d) show an example of this behavior, where for the larger

domain size, wrinkles have nucleated at the periphery of the bubble.

Contributions

We summarize here the most significant contributions of this chapter:

1. We have examined the coexistence of wrinkles and blisters in supported graphene.

We have shown that a wide diversity of out-of-plane disturbances observed in sup-

ported graphene, including spherical bubbles, wrinkles, and polygonal blisters, can

be explained within a unified framework accounting for the lateral strain and for the

trapped mass beneath the graphene sample.

2. We have proposed a morphological diagram organizing the behavior of the system.

3. The transition between quasi-spherical bubbles to straight-edged bubbles upon increas-

ing compressive strain can be understood as a process of stretching energy relaxation

and focusing. A simple theoretical model suggest that the onset of this transition

is determined by compressive hoop strains at the periphery of the bubble caused by

radial sliding. This model predicts that the critical compressive strain to transition

between circular and straight-edged bubbles for a given number of trapped molecules

per unit graphene area is independent of bubble density.
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Chapter 7

Conclusions

We have examined various aspects of the mechanics of out-of-plane deformations in sup-

ported graphene upon uniaxial or biaxial strains, and under the pressure produced by

trapped gas molecules. The main contributions of the present work are summarized be-

low:

1. We have studied the emergence of spontaneous wrinkling in supported and uniaxially

strained graphene with high-fidelity simulations based on an atomistically-informed

continuum model.

2. With a simpler theoretical model, we have characterized the onset of buckling and the

nonlinear behavior after the instability in terms of the adhesion and frictional material

parameters of the graphene-substrate interface. We have found that localized wrinkles

evolve from a distributed rippling linear instability due to the nonlinearity in the van

der Waals graphene-substrate interactions.

3. When graphene sample is supported on a tight substrate, e.g. silicon-oxide, and upon

compression, localized wrinkles develop from the planar state without an observable

rippling stage, in agreement with experiments.

4. We identify friction as a selection mechanism for the separation between wrinkles, as

the formation of far apart wrinkles is penalized by the work of friction. We quanti-

tively study the separation distance between wrinkles in terms of the interfacial shear

strength in the interface (friction) theoretically and by simulations.
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5. We have reproduced computationally the most salient features of wrinkle networks

observed in supported graphene upon biaxial strains. We have identified the influence

of strain anisotropy and the adhesive and frictional properties on the morphology of

spontaneously-formed wrinkle networks.

6. We have proposed a method to precisely control the location of wrinkles through

patterns of stripes of weaker adhesion on the substrate.

7. We have assessed the connectivity and stability of the networks of channels trapping

fluid molecules, opening the door to nano-fluidic applications.

8. We have examined the coexistence of wrinkles and blisters in supported graphene.

Considering both applied strains and trapped mass beneath the graphene sample, we

have built a morphological diagram determining the relative stability of quasi-spherical

bubbles, of straight-edged bubbles coexisting with wrinkles, and of wrinkle networks.

This work also suggests open research topics for the future:

1. We have focused here on supported graphene sheets under compression. Under tension

or subject to out-of-plane forces, however, graphene can fracture and peel (Sen et al.,

2010). This fracture behavior can be important to assess the reliability of devices or

as a fabrication method. It could be modeled by introducing a fracture phase-field

model, possibly with an anisotropic fracture energy (Li et al., 2014).

2. The strong coupling between localized deformation and electronic structure of sup-

ported graphene is another interesting topic. The electronic and quantum effects due

to localized strains resulting from buckling, e.g. at junctions of wrinkle networks, need

to be evaluated.

3. Besides of the elastic buckling in wrinkles and blisters, other types of structural defects

such as dislocations, grain boundaries, or bridges between multilayer graphene could be

considered in the simulations, to depict a broader picture of out-of-plane deformations

of supported graphene.

4. More general aspects of the substrate could be studied. In the thesis, graphene samples

are supported on a stiff substrate, which is assumed planar in the simulations. By
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considering a soft substrate, the coherent buckling of graphene and substrate surface

near the interface can be evaluated. Besides, the deformability of the substrate in

the tangential direction could be accounted for with a shear-lag model coupled with

friction and extended to biaxial situations.
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