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1.1 INTRODUCTION 

 

The human population is growing up every year with the concomitant 

consumption of energy, In recent years, only 9% of the energy was provided by 

so-called renewable energies, 4% from nuclear source and the 87% from fossil 

fuels such as coal, oil or gas worldwide1. The last ones, oil and gas, being 

dominating the energy market. An observation of major concern is the 

difficulties to find novel oil reserves that can be exploited with the actual 

technology. As the new oil reserves are every day more difficult to access, the 

price increases and, thus, there is a real risk that most human population will 

not have access to energy2.  

 

 
Figure 1.1: The world energy consumption by source in 2014 

 

Solar energy is available for everyone and, for this reason, is a long-standing 

focus of research to make efficient and cheap light-to-energy (either electrical or 

chemical energy) conversion devices.  The current solar PV (photovoltaic) 

market is mainly devoted to silicon solar cells (average efficiency 16%) and the 

best solar panels (triple junction solar cells made using Indium and Gallium) are 

just made available for space technology (average efficiency 40%) (ei: 
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communication satellites). The cost/energy conversion associated to this type of 

light-to-electrical conversion devices makes nowadays a dream to expand 

worldwide the use of solar energy and the reality is that only those countries 

that subsidise the use of solar panels have a flourished solar energy market. 

Thus the scientific and industrial community have developed efforts towards the 

research of new type of materials and devices to decrease the cost/efficiency 

value. In the next Figure NREL (National Renewable Energy Labs, USA) have 

illustrate all actual solar cell technologies3. 

 

Figure 1.2: Progress on solar cells technologies. Copyright NREL 

 

Two of these types of promising technologies are Dye Sensitized Solar Cells 

(DSSC) also known as Grätzel solar cells and Organic solar Cells (OPV).  
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1.2 DYE SENSITIZED SOLAR CELLS  

 

The Dye Sensitized solar Cells (DSSC) are photoelectrochemical cells based 

on the use of a dye to sensitize a wide band-gap semiconductor metal oxide 

(generally TiO2) supported in a transparent conducting glass (Fluorine-doped tin 

oxide, FTO) that works as a working electrode.  The counter electrode consists 

of a layer of platinum coated on the FTO conducting glass. These two 

electrodes are sealed with a polymer and a redox electrolyte that serves to 

regenerate the dye ground state completes the solar cell. 

 

1.2.1 Principles of DSSC 

 

A typical DSSC basically contains 6 components: semiconductor photoanode or 

working electrode, the sensitizer, the electrolyte (redox pair), the spacer 

(usually Surilyn©) and the counter electrode. 

 

 
Figure 1.3 Scheme of a DSSC and the most relevant charge transfer events tacking 

place upon illumination. 
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First of all the incoming light is absorbed by the sensitizer promoting an electron 

from the ground state to the excited state (1).  

 

TiO!|D + hv → TiO!|D∗!! Eq. 1.1  

 

Thereafter, the electron is transferred to the semiconductor conduction band 

(2), and in an ideal case the electron will flow through an external circuit to the 

counter electrode (3). 

 

TiO!|D∗ → TiO!|D! + e!"!! Eq. 1.2  

 

From the counter electrode, the electron is transferred to the electrolyte (redox 

couple) (4) and the electron donating species at the electrolyte regenerates the 

oxidized dye (5). 

 

2TiO!|D! + 3I! → 2TiO!|D + I!!!! Eq. 1.3  

 

The red/ox electrolyte (often iodine/iodide) is then regenerated at the counter 

electrode by reduction of triiodide. 

 

I!! + 2e!Pt → 3I!!! Eq. 1.4  

 

However, these devices have also undesirable charge recombination reactions, 

(Figure 1.3), which are responsible for the losses in the device efficiency. One 

of these reactions is the deactivation of the dye excited state (6). Nonetheless, 

this process occurs is nanosecond time scale (10-9s) while the electron injection 

from the excited state into the semiconductor conduction band occurs at least 

one order of magnitude faster, making the electron injection more favourable 

than the deactivation of the dye excited state. Another undesired reaction is the 

recombination of the photoinjected electrons at the semiconductor with the 

oxidised sensitizer (7). This process as in the same case that for the first one 

loss mechanism is slower (10-6-10-3 s) than the regeneration of the sensitizer (5)  



Introduction: DSSC and OPV!

 

11 

 

(10-9-10-6s). In order to have a slow recombination we have to make sure that 

the regeneration of the dye is produced efficiently. To be sure of this, the 

HOMO (Highest Occupied Molecular Orbital) of the molecule has to be far from 

the surface of the semiconductor, and, moreover, its energy has to be lower in 

energy respect to the redox electrolyte potential to favour the regeneration 

driving force. The last recombination reaction is produced after the regeneration 

of the sensitizer, because the oxidized electrolyte is close to the surface of the 

semiconductor therefore, recombination of photoinjected electrons in the 

semiconductor with the oxidized electrolyte can occur and the lifetimes are in a 

range from 10-3-10-1s, making this mechanism one of the principal loss 

reactions4. 

 

1.2.2 Basic Solar Cell Parameters 

 

When a solar cell is illuminated, a photocurrent and a voltage are generated 

which can be depicted as in figure 1.4 

 

 
Figure 1.4: Typical IV-Curve of a solar cell 
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The overall energy conversion of a solar cell is defined as the ratio of the output 

power of the cell per incident irradiance (equation 1.7) 

 

η = P!"#
P!"#$%

= J!" · V!"! · FF
P!"#$%

!(Eq. 1.7) 

 

Where Jsc (mA/cm2) is the photocurrent density at short circuit, Voc (V) the 

Voltage at open circuit, FF is the Fill Factor that measures the how squarer is 

the I-V curve (the higher Fill Factor the higher efficiency at a given Jsc and 

Voc), and the Plight the power of the incident light. 

 

As one could imagine, the device efficiency and, thus, the IV curve is affected 

by the charge transfer reactions detailed above. Yet, in this Thesis we have 

focused on the sensitizers used mainly in DSSC and in an example of OPV.  

 

1.2.3 Initial requisites for efficient sensitizers in DSSC 

 

The sensitizer in a DSSC plays a very important role in order to achieve the 

maximum efficiency in devices. First of all, the sensitizer has to have the 

capability to capture the light, absorbing the incident photons from a wide range 

of wavelengths from the solar spectrum. Moreover, the sensitizer must have an 

anchoring group in order to bind strongly (covalently) to the semiconductor 

surface. Although several anchoring groups have described in the bibliography 

as, for example, phosphonates, catechols etc…5,6. The most common chemical 

group used is the carboxylic acid7. The hydroxyl group react with the TiO2 

surface forming a covalent bond in the best cases. 

 

The HOMO and LUMO (Lowest Unoccupied Molecular Orbital) energy of the 

sensitizers is key in order to achieve good efficiency by decreasing unfavoured 

electron transfer reactions.  As already mentioned above, the dye HOMO level 

has to be away from the semiconductor surface and with lower energy than the 

oxidation potential of the redox active electrolyte. On the other hand the LUMO 
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of the sensitizer has to be close to the surface of the semiconductor in order to 

achieve an efficient electron injection. So called unidirectional electron transfer. 

Furthermore, it is paramount that the LUMO level is placed higher than the 

conduction band energy level of the TiO2 to favour the electron injection from 

the dye excited state. 

 

Secondly, the dye solubility in organic solvents preferably non-halogenated 

solvents is also of importance, as well as, the minimization of the presence of 

dye aggregates in the solution and in the semiconductor surface after 

sensitization.  This last requisite can be partially solved with the addition of a 

co-sensitizer such as Chenodeoxycholic Acid8 (CDCA) which decreases the 

formation of aggregates at the semiconductor surface (Figure).  

 

 
Figure 1.5: Molecular structure of CDCA 

 
As an example of efficient dyes used in DSSC we will now detail the use of 

Ruthenium complexes. 

 
1.2.4 Ruthenium Complexes 

 

The first efficient dyes used for DSSC were Ru complexes  (trinuclear 

Ruthenium dye), giving a light-to-photoelectrical conversion efficiency between 

7.1 and 7.9%9. The trinuclear RuL2(µ-(CN)Ru(CN)L’
2)2, where L is 

2,2’bipyridine-4,4’-dicarboxylic acid and L’ is 2,2’-bipyridine. One of the first 

reasons to use the Ruthenium complexes is due to broad absorbance from the 

H

HCH3
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visible region to the near-infrared10. The general structure of a Ruthenium dye 

for DSSC consist usually on a Ru(II) atom coordinated by polypyridyl ligands  

and thiocyanate moieties in an octahedral geometry. The carboxylic acids are 

used as anchoring groups and are attached to the bipyridyl moiety leading to 

easy injection of electrons in the semiconductor from the excited state. This 

complexes show an absorption band in the visible region of the sun spectra that 

can be tuned, which is due to the MLCT (metal to ligand charge transfer band) 

transition11. 

 

Since the seminal paper by Gratzel and O’Regan using ruthenium complexes 

many studies modifying these complexes have been published. Only in 2 years 

Professor Grätzel an co-workers increased the efficiency up to 10% 

(Jsc=18.2mA/cm2, Voc=720mV, FF= 0.73) with cis-di(thiocyanato)bis(2,2’-

bipyridyl-4,4’-dicarboxylate)ruthenium (II) most commonly known as N3 (Figure 

1.6) dye12,13. The following years many ruthenium complexes were reported as 

the tristhiocyanato-4,4’,4’’-tricarboxy-2,2’:6,2’’-terpyridine ruthenium(II) also 

called Black dye (Figure 1.6)  with and efficiency of 10.4%14 that was in 2012 

updated to 11.4%15.  Moreover, other Ru-complexes have been published with 

efficiencies close to the paradigm dye N719 (Figure 1.6)16  as , for example, the  

Z907 (Figure 1.6) that presents long alkyl chains to increase  the solubility and 

slows the recombination reaction between the photo-injected electrons and the 

oxidised electrolyte. Yet, a milestone was set in 2008 with the design of 

Ruthenium complexes bearing π-conjugated moieties as thiophene and other 

derivates at the bipyridyl ligands. The aim was to increase the absorption in the 

near-infrared region as well as to increase the molecular extinction coefficient of 

the dye. Needless to say that most of these novel dyes lead to higher 

efficiencies as in the case of the dye C10117 that presents a 2-hexylthiophene in 

the bipyridyl ligand reaching an 11.0% (Jsc=17.9mA/cm2, Voc=778mV, FF= 0.78) 

(Figure 1.6) similar to the efficiency obtained with the dye CYC-B118 (Figure 

1.6), the dye CYC-B1119 (Figure 1.6) and the maximum performance achieved 

with Ruthenium dyes, with the moetiy 2-(hexylthio)-5-methylthiophene, the dye  
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C10620  with an 11.7% (Jsc=19.8mA/cm2, Voc=758mV, FF= 0.78) of efficiency 

(Figure 1.6). 

 

 
Figure 1.6: Efficient Ruthenium complexes used as sensitizers in DSSC 

 

The Ruthenium complexes present high efficiency and also broad absorption; 

however, many drawbacks are associated to them. For example the cost; 

Ruthenium is considered a non-abundant earth metal and, moreover, there are 

increasing concerns on the environmental assessment of Ruthenium 
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complexes. Last but not least, is also the moderate absorption coefficient. All 

these drawbacks make that many scientist make efforts in alternative 

sensitizers based on metal free organic dyes. 

 

1.2.5 Metal free organic dyes. The Donor-π-Acceptor dyes 

 

The donor-π-Acceptor dyes also known as push pull dyes consist in an electron 

donor and electron acceptor molecular unit linked covalently with a π 

conjugated spacer (Figure 1.7) The photophysical properties associated to 

these dyes are directly related to the intramolecular charge transfer (ICT) from 

the donor to the acceptor moiety. This ICT makes that the dyes present high 

molar extinction coefficients. 

 

 
Figure 1.7: Structure of D-π-A dyes 

 

These dyes with easy-to-tune absorption and high molecular extinction 

coefficients are a good alternative for Ruthenium complexes. 

 

The design of these push-pull dyes is very important in order to achieve good 

results; otherwise organic dyes lie below the efficiency values obtained with 

Ruthenium complexes. For example, it is paramount to have a very good donor 

moiety, which remains stable when oxidised upon light irradiation. For example 

the use of oligoenes by Hara and co-workers, displayed efficiencies about 6% 

but the use of coumarin as donor moieties increased the efficiency up to 8.221-

23. 
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In 2008 Professor Grätzel and co-workers published the D205 dye (Figure 1.8) 

achieving an efficiency of 9.52% (Jsc=18.7mA/cm2, Voc=710mV, FF= 0.71). The 

structure of this dye shows an indoline group with an n-octyl moiety onto the 

rhodanine structure. The key issue, to include this long alkyl chain, was/is to 

decrease the dye aggregation and to make more soluble the molecule in 

organic solvents. The control over the formation of aggregates is an important 

issue for organic sensitizers in order to obtain excellent performances.  In this 

particular work, they observed that the combination of a long alkyl chain and the 

use of CDCA lead to outstanding increase in efficiency24. 

 

 
Figure 1.8: D205 molecular structure 

 

Much recently, in 2010, Prof. Peng Wang and co-workers reported the C219 

dye (Figure 1.9) reaching, for the first time, efficiencies close or above 10%. 

The C219 was reported to deliver an efficiency of 10.1% (Jsc=17.9mA/cm2, 

Voc=770mV, FF= 0.73). This novel dye consists in a binary π spacer: a 3,4-

ethylenedioxythiophene unit (EDOT) connected to the donor moiety (alkoxy-

substituted triphenylamine) to lift the HOMO and dihexyl-substituted 

dithienosilole (DTS) attached to the acceptor to achieve an appropriate 

LUMO25. 
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Figure 1.9: Molecular structures of C219 

 

It is important to notice that until this year this moment all the best devices were 

fabricated using iodide/triiodide electrolyte. Yet, in 2010 a Cobalt2+/Cobalt3+ 

electrolyte was used for DSSC with a remarkable efficiency of 6.2% as reported 

by Hagfeldt, Sun and co-workers for the D35 dye (Figure 1.10). In their work 

they synthesized two new sensitizers the D35 and the D29 with the same 

π−bridge and identical acceptor moiety but with a different donor group. For the 

D29 dye the electron donating group was the group p-N,N-dimethylaminelinyl at 

the TPA moiety ( triphenylamine) and for the D35 it was the  o,p-dibutoxylpheny 

grup at the TPA. These two dyes were investigated to compare the effect of 

bulky alkoxyl substituents in devices employing Cobalt electrolyte. For this, a 

series of cobalt electrolytes were synthesized to optimize the best one for use in 

the device and the election was done tacking into account the different 

oxidential potentials of the different cobalt complexes to achieve efficient dye 

regeneration and higher Voc.26   
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 Figure 1.10: Molecular structures of C219 

 

Professor Peng Wang and co-workers reported the sensitizer C218 (Figure 

1.11) which introduced the 4,4-dihexyl-4H-cyclopenta[2,1-b:3,4-b’]dithiophene 

(CPDT) group, as a conjugated spacer to achieve a high molar absorption 

coefficient with an outstanding record efficiency of 8.95% (Jsc=15.8mA/cm2, 

Voc=768mV, FF= 0.74) using iodine electrolyte27. Thereafter, Professor Peng 

wang reported the same dye comparing their device performance in the same 

conditions with iodine/iodide and Cobalt electrolytes achieving 7.1% 

(Jsc=13.6mA/cm2, Voc=720mV, FF= 0.71) and 8.3% respectively 

(Jsc=14.1mA/cm2, Voc=820mV, FF= 0.73)28. Showing that using cobalt 

electrolyte make to increase to Voc in 100mV. The dye efficiency was improved 

to 9.4% (Jsc=13.0mA/cm2, Voc=950mV, FF= 0.76)29 just one year later, in 2012. 

 

 
Figure 1.11: The C218 dye molecular structure. 
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Professor Peng Wang and his group focussed on the synthesis of organic dyes 

for DSSC in order to achieve record efficiencies by using Cobalt electrolytes 

and, in 2011, reported a new dye called the C229 (Figure 1.12) with a similar 

structure as the C218 dye, however, in that work they decided to enlarge the π 

spacer introducing two thiophenes units and, thus, increasing the molar 

absorption coefficient owing a better delocalizability of π spacer. Meanwhile, the 

efficiency achieved using iodine/iodide electrolyte was just about 6.7% 

(Jsc=15.20mA/cm2, Voc=680mV, FF= 0.65). Nevertheless, in the same 

conditions with the cobalt electrolyte they reached 9.4% (Jsc=15.3mA/cm2, 

Voc=850mV, FF= 0.73)30. 

 

 
Figure 1.12: The dye C229 molecular structure. 

 

Professor Michael Grätzel and co-workers reported also in 2011 the Y123 dye 

with the highest device performance using cobalt electrolyte reaching 9.6% in 

their champion cell31 (Figure 1.13). Later in 2012 other study with this dye was 

reported for high open circuit Voltage with an impressive Voc of 1V just by using 

a Cobalt electrolyte32.  
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Figure 1.13: The dye Y123 molecular structure. 

 

1.2.6 Porphyrins. 

 

Porphyrins consist on a tetra pyrrole macrocycle composed of four modified 

pyrrole connected at carbon α by methine (Figure 1.14). Porphyrins follow 

Huckel’s rule of aromaticity (possessing 4n+2 π electrons). This feature makes 

porphyrins outstanding dyes with a high molecular extinction coefficient and 

also is responsible for the nice colours that often porphyrin solutions have33. 

Porphyrins are present in nature in many biological systems as chlorophyll, 

hemoglobine, cytochromes, and many enzims too. Due to their excellent optical 

properties porphyrins are used in medicine34-36, in electronic37-39 devices and 

due to their role in photosynthesis these molecules have been a long-standing 

promise for efficient organic photovoltaic devices40,41. 

 

 
Figure 1.14: Basic core at the porphyrin molecules. 
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The typical absorption profile in porphyrins consists of an intense absorption 

band close to 400nm called Soret band and moderate absorption bands 

between 500 and 700nm33. In order to use these molecules for DSSC 

applications one point to take in account is that the molecule requires and 

anchoring group to attach in the semiconductor as in the case of the previous 

discussed organic dyes. The structure of porphyrins presents different positions 

to functionalize them. Four meso-positions and eight β-positions (figure 1.15) to 

attach the anchoring group, that in case of porphyrins the carboxylic acid is also 

considered the best 42,43.  

 

 
Figure 1.15: Available positions to functionalize porphyrins. 

 

During the last decades many porphyrins have been synthesized for DSSC 

applications, with functionalization in the β and in meso-positions. The first 

remarkable example was the work by Professor Michael Grätzel and Professor 

Kay in 1993 with a modest efficiency of 2.6%44. Analogously, the first example 

for meso-position substituted porphyrin was published by Professor Cherian 

and Professor Wamser in 2000 with an efficiency of 3.5%45.  

 

During the last years several works with different porphyrins have been 

published in order to increase the efficiency, minimizing dye aggregation, and 

achieve good charge separation46,47. Nonetheless, it was not until the research 

groups of Professor Yeh and Professor Diau added a donor group in a 

porphyrin structure, as in the case of YD1 and YD2 (figure 1.16) when the 

efficiency increased by a factor of 5 or 6, adding a donor group at the porphyrin 

core did extend the absorption and improved the charge separation efficiency48. 
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These groups tried to solve some aggregation problems too by adding different 

concentrations of chenodeoxycholic acid (CDCA) 49. 

 

 
Figure 1.16: Dye molecular structures for YD1 and YD2. 

 

In their work, it was synthesized the dye YD0 (used as a reference) and the 

dyes YD1 and YD2. The devices were made using different concentrations of 

CDCA. The dye YD2 exhibited a cell performance close to 6.8% 

(Jsc=13.7mA/cm2, Voc=711mV, FF= 0.69). This efficiency is slightly smaller 

comparing the Ruthenium paradigm, N719 7.3% (Jsc=13.8mA/cm2, Voc=760mV, 

FF= 0.70). The high efficiencies were obtained with YD2 and YD1 compared 

with the YD0 due to the slower recombination of the electrons with the oxidised 

electrolyte. In 2010 the device performance for YD2 was improved by Professor 

Grätzel and co-workers exhibiting an overall efficiency of 10.9% 

(Jsc=18.6mA/cm2, Voc=770mV, FF= 0.76)50. 

 

During 2011, some porphyrins had been synthesised trying to achieve greater 

efficiencies than the dye YD251-57. However, it was not possible until the end of 

2011 when Dr. Aswani Yella and co-workers58 published the new record 

porphyrin: The dye  YD2-0-C8 (figure 1.17). 
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Figure 1.17: Molecular structure of YD2-o-C8 

 

The structure of this porphyrin was similar to the YD2 with the difference that 

new one incorporates two octyloxy groups in the ortho positions of each meso-

phenyl ring increasing the electronic density on the porphyrin π-system 

compared to the YD2 dye. This increase in electronic density is directly related 

to the LUMO level that now lies at higher energy. With this new dye, very 

promising results have been achieved using Cobalt electrolyte in D-π-A 

porphyrins making devices that achieved a record in efficiency of 11.9% 

(Jsc=17.3mA/cm2, Voc=965mV, FF= 0.71). This new value is higher than the 

previous record achieved with organic dyes31. In the same work, trying to 

increase the efficiency, the group added a co-sensitizer. The dye used for the 

“cocktail” was the Y123. They achieved a remarkable efficiency of 12.3% 

(Jsc=17.7mA/cm2, Voc=935mV, FF= 0.74). 

 

The same group carried out further efforts to increase the efficiency achieved 

by using the dye YD2-o-C8 and in 2014 they published two new porphyrins the 

GY21 and GY50 (Figure 1.18). In this work their strategy was the introduction of 

the benzothiadazole (BDT) unit as π-conjugated linker between the anchoring 

group and the porphyrin core to broaden the absorption spectra. Moreover, in 

this structure it was also introduced a phenyl group as a spacer between the 

BDT moiety and the carboxylic group. 
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The photovoltaic devices were made using Cobalt electrolyte due the high 

performance achieved for the YD2-o-C8 dye. The results for GY21 and GY50 

were 2.5% (Jsc=5.03mA/cm2, Voc=615mV, FF= 0.80) and 12.75% 

(Jsc=18.53mA/cm2, Voc=885mV, FF= 0.77) respectively. 

 

 
Figure 1.18: Molecular structure of GY21 and GY50 

 

In one hand, the higher efficiency achieved with the GY50 is due to the 

panchromatic absorption, which avoids the use of a secondary dye.  

 

On the other hand, the lower conversion efficiency for GY21 compared to GY50 

is due to the lack of directionality of the excited state and, thus, the observation 

of much less photocurrent59. 

 

During the same year different studies on porphyrins have been published too. 

For example the work presented by Professor Chin-Li Wang and co-workers 

where they synthesized a new porphyrin the, LD31 and the LD1460, inserting 

between the donor unit and the core porphyrin an ethynyl-antrhacenyl moiety to 

extend the π-conjugation in order to improve light-harvesting efficiency51 (figure 

1.19).  
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Figure 1.19: Molecular structures of LD14, LD31 and AN-4 

 

The new porphyrins with and without the use of co-sensitization with the dye 

AN-4 achieved 9.95% (Jsc=20.02mA/cm2, Voc=699mV, FF= 0.71) and 10.3% 

(Jsc=20.3mA/cm2, Voc=704mV, FF= 0.72) respectively. 

 

Finally, this year, 2014, it was reported the champion molecule for DSSC 

achieving a power conversion of 13% by the group of Professor Michael Grätzel 

and co-workers. In that work they synthesized two new porphyrins called 

SM371 and SM315 (Figure 1.20) 

 

 
Figure 1.20: Molecular structures of SM371 and SM315 

 

The structure of these porphyrins is similar to the previously reported Professor 

Grätzel and co-workers (GY21 and GY50). However in that case, they uses as 

donor moiety the bis (2’,4’-bis(hexyloxy)-[1,1’-biphenyl]-4-yl)amine. This donor 

group has been using before in several organic dyes reporting good efficiencies 

in DSSC based on cobalt electrolyte26,31. The efficiencies achieved for SM371 
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and SM315 are 12% (Jsc=15.9mA/cm2, Voc=960mV, FF= 0.79) and 13.0% 

(Jsc=18.1mA/cm2, Voc=910mV, FF= 0.78) respectively using cobalt electrolyte. 

The higher Jsc obtained by SM315 is due to the dramatically improved 

absorption properties that lead to a high IPCE with an 80% across all visible 

wavelength (450nm-750nm). A small difference of just 50mV at the Voc under 

standard irradiation conditions is observed between these two porphyrins 

presenting SM371 higher voltage compared to the SM315. In their studies they 

observed that the electron lifetime is 6 times slower for the SM371 dye. The 

slower recombination kinetics is likely to be produced by the BDT unit which 

improves the excited state directionality and prevents also back electron 

transfer to the oxidised electrolyte61. 

 

In the following figure (figure 1.21) we can observe how has been the evolution 

of photovoltaic performances of DSSC from 1991 to 2014 showing the most 

important family of dyes explained above. 

 

 
Figure 1.21: Progress on DSSC efficiency of the most relevant dyes involving 

Ruthenium complexes (1-8); organic dyes (9-18) and porphyrins (19-28). 1.-trinuclear 
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trinuclear RuL2(µ-(CN)Ru(CN)L’
2)2

9; 2.-N313; 3.-N312; 4.-N71916; 5.-C10117; 6.-CYC-

B1119; 7.-C10620; 8.-Black dye15; 9.-Indoline dye62; 10.-NKX-267763; 11.-JK264; 12.-

D14965; 13.-TA-St-CA66; 14.-MK-267; 15.-D20524; 16.-C21925; 17.-Y12331; 18.-C21829; 

19.-Cu-a-oxymesoisichlorin44; 20.- TCPP45; 21.-Zn-1a68; 22.-Zn-369; 23.-GD270; 24.-tda-

2b-bd-Zn71; 25.-YD250; 26.-YD2oC858; 27.-GY5059; 28.-SM37161 

 

Another promising molecular solar cells studied in our group are the OSC 

(organic solar cells). In this Thesis the Chapter 5 shows my input to this field 

under Professor Palomares supervision. 

Below is shown a short but detailed explanation about the fundamentals of 

OSC. 

 

1.3 ORGANIC SOLAR CELLS (OSC) 
 

OSC combine the use of two organic materials an electron donor or hole 

transport material (HTM) and an electron acceptor material or electron transport 

material (ETM), which are “sandwiched” between to metal electrodes with 

different work function (Figure 1.22). The photo-induced charges are separated 

at the interface between both type of organic materials and the free carriers are 

collected selectively at each electrode. 

 

 
Figure 1.22: Schematic representation of the most simple OSC. 

 

The electron-hole pairs (so called excitons) are generated upon irradiation of 

the solar cells and their lifetime is short being able to being transported a few 

nanometers (10-12nm) depending on the nature of the organic material. When 

the exciton arrives at the interface of both organic materials it separates in free 
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carriers of different charge (so called polarons). The polarons must be 

transported before they can recombine to the contact electrodes (Figure 1.23). 

 

 
Figure 1.23: Schematic principle operation of OPV 

 

Thus, the efficient formation of excitons as well as the optimization of the 

exciton separation and polaron collection is key to achieve excellent device 

performance. A first approach is to select the adequate donor and acceptor 

materials with sufficient energy onset to be able to separate efficiently the 

charges at the interface. For this reason, the study of new materials and the 

morphology at the nanoscale have attracted much attention in recent years. 

From the original device in the eighties by Professor Tang (Figura 1.24), with 

efficiencies as low as 1%72 by using a bi-layer type device to the actual bulk-

heterojunction solar cells, that mixes both type of organic materials, a great 

quantum leap in efficiency has been achieved to almost 10% for single junction 

solar cells. 

 
Figure 1.24: Architecture structure of a bilayer heterojunction (a) and a bulk 

heterojunction (b) 
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1.3.1 Donor and Acceptor Materials 

 

Here, in this section, we describe briefly the most relevant materials used in 

OSC. 

 

1.3.1.1 Electron Acceptor Materials: 

 

The fullerenes and their derivates are the dominating molecules used as 

electron acceptor materials in OSC. The use of these type of molecules is 

justified due to their strong capability to accept electrons from donor materials 

and also their electron mobility73. The derivatives of C60 and C70 as PC61BM and 

PC71BM are the most used in solution processed OPVs (Figure 1.25). 

 

 
Figure 1.25: Principals fullerenes used as acceptor moieties 

 

1.3.1.2 Electron Donor Materials: 

 

The electron donor materials have been much more explored as they are used 

as the main light-harvesting moiety in the OSC. Several type of molecules have 

been designed and synthesized for their applications in solution processed 

OSC as squaraines (SQ)74-78, diketo-pyrrolopyrroles (DPP)79-81, BODIPY82 and 

also D-π-A dyes bearing triphenylamine units as secondary electron donor83-85 

all of them with efficiencies ranging between 4% to 6% under standard 

illumination conditions of 1 sun ( 100mW/cm2 of sun simulated light 1.5AM G 

spectrum) 
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Nowadays, the best reported OSC using small molecules for single junction 

devices is the work by C. Bazan and Alan J. Heeger at University of California 

(USA) that has achieved an impressive 8.9%(figure 1.26)86.  

 

 
Figure 1.26: Molecular structure of p-DTS(FBTTh2)2 

 

Alternatively, porphyrins (POR) have been also widely studied and used in 

many BHJ-OSC87-91. Professor Xiaobin Peng and co-workers have published in 

2014 the best porphyrin for solution-processed BHJ OSC based in small 

molecule with an efficiency up to 7.23% (Jsc=16.0mA/cm2, Voc=710mV, FF= 

0.63)92. 

 

 
Figure1.27: Molecular structure of DPPEznP-O 
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1.4 AIM OF THIS THESIS  

 

Dye Sensitized Solar Cells and Organic Solar Cells have great much attention 

during the last decades as molecular photovoltaic devices that hold the long-

standing promise for inexpensive light-to-energy conversion devices. In both 

technologies the organic dyes play a very important role. The molecules 

structure and their physical properties determine the overall device efficiency.  

 

In this Thesis a series of new sensitizers have been design and synthesized in 

order to study their applications in DSSC and OSC photovoltaics. Furthermore, 

the study about the relationship between the molecules structure, the film 

morphology in the case of OSC of these novel sensitizers and the device 

performance has been also studied.  
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2.1 SYNTHETIC METHODS 

 

The reagents, solvents and the main equipment used in this Ph. D. Thesis are 

described in this section.  

 

2.1.1 General reagents and solvents 

 

All of the chemical reagents were purchased from Sigma-Aldrich©, Frontier 

Scientific Ltd., Lumtec Ltd or Alfa Aesar© and they were used without further 

purification. The dry solvents used for solvent-sensitive reactions were 

purchased from Sigma-Aldrich© and Flucka© and common solvents from SdS. 

2.1.2 General Instrumentation 
 

The 1H and 13C NMR samples were measured on a Bruker Advance 400 

(400mHz for 1H and 100mHz for 13C). The deuterated solvents are indicated 

when used in the respective chapters and the chemical shifts (d) are given in 

ppm, referenced to the solvent residual peak. Coupling constants (J) are given 

in Hz. 

 

High resolution Mass Spectra (HR-MS) were carried out on a Waters LCT 

Premier liquid chromatograph coupled time-of-flight mass spectrometer 

(HPLC/MS-TOF), using electrospray ionization (ESI) as ionization mode. Matrix 

assisted laser desorption (MALDI) were recorded on a BRUKER Autoflex time-

of-flight mass spectrometer. 

 

Uv-Vis absorption spectra were measured in a 1 cm path-length quartz cell 

using a Shimadzu© model 1700 spectrophotometer. The steady state 

fluorescence spectra were recorded Spectrofluorimeter Fluorolog from Horiba 

Jobin Yvon Ltd. The system is composed by a continuum 450W Xenon lamp, 

double monochromator for excitation, a solid sample holder, and detection in 

Right Angle or Front Face mode and absorbance measurements. Two 



Chapter 2 

 

44 

 

detectors PMT(UV-vis) and InGaAs (NIR) allow fluorescence measurements in 

the wavelengths range of the UV-Visible and NIR from 250 to 1600 nm. 

 

The electrochemical measurements were carried out employing a conventional 

three-electrode cell connected to a CH instrument 660c potentiostat-

galvanostat. The working electrode consisted of a platinum wire or a carbon 

electrode and the counter electrode was a platinum mesh. The reference 

electrode was a Ag/AgCl electrode (saturated KCl). All solutions were degassed 

with Argon prior the use. All the measurements were recorded in presence of 

0.1M TBAPF6 supporting electrolyte, using ferrocene as an internal reference. 

 

2.2 DYE SENSITIZED SOLAR CELLS (DSSC) 

2.2.1 Films used 
 

In this Ph.D. Thesis we used 2 different cells depending on the measurement 

carried out. For Laser Transient Absorption Spectroscopy (L-TAS) experiments 

we need highly transparent thin film devices with an active area of 1cm2. These 

films were made screen-printing 4-6mm thick  TiO2 paste (Solaronix Ltd) and 

sensitized with the appropriated organic dye used in the studies. The other films 

we need are to optimize the device efficiency. For these films the active area is 

smaller (0.16cm2) to decrease the losses by series resistance that affects the 

device fill factor. As the same way like other films these are also done by 

screen printing technique depositing a layer of 9 to 16mm of TiO2 of 20nm TiO2 

nanoparticles (Dyesol, and Solaronix paste) and an additional layer of 4mm 

thick made of 400nm diameter particles of TiO2 (so called the scatter layer) and 

sensitized with the appropriated dye See Figure 2.1. 
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Figure 2.1: Scheme of different films used, a) Film for photophisical measurements and 

b) Film for device preparation 

 

2.2.2 Device fabrication 

 

The FTO (Fluorine doped tin oxide) glass (Hartford Glass inc. with 15 Ω/cm2 

resistance) was first cleaned three times; the first one in a detergent solution 

using an ultrasonic bath for 15 min, and then cleaned with ethanol two times. 

After, a treatment in a UV-O3 system (PSD series UV-ozone cleaning, 

Novascan Technologies, Inc.) for 15 min is carried out. Then, the FTO glass 

plates were immersed into a 40 mM aqueous TiCl4 solution at 70 °C for 30 min 

and washed with water and ethanol.  

 

A screen-printed double layer film of interconnected TiO2 particles of 20nm 

(dyesol paste) and an additional layer of 400nm TiO2 particles was used as the 

mesoporous negative electrode.  

 

First a 8-14 µm thick transparent layer of 20 nm sized TiO2 particles were 

deposited on the FTO conducting glass electrode and further coated by a 4 µm 

thick scattering layer of 400 nm sized TiO2 particles with an active area of 

0.16cm2. The resulting electrodes were gradually heated under airflow at 325 

ºC for 5 min., 375 ºC for 5 min., 450 ºC for 15 min., and 500 ºC for 15 min. 

Then, The electrodes are treated again with an aqueous solution of TiCl4 40mM 

at 70 ºC for 30min and then washed with ethanol. The electrodes were heated 

at 500ºC for 30 min and cooled at room temperature. 

b) a) 
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When the electrodes were cooled, they have been dipped in the dye solution in 

the optimal conditions in order to achieve the maximum efficiency possible 

(using a certain concentration, a good solvent a certain dipping time and if it is 

necessary a small quantity of Chenodeoxycholic acid to avoid aggregates). 

 

The platinized counter electrode was made by adding a drop of 5·10-3 M H2 

PtCl6 in ethanol dry solution onto a conducting glass substrate (FTO) and 

heated under airflow at 390ºC for 15 min.   

 

After the time required for the immersion of the electrodes into the dye solution, 

the electrodes were washed with the solvent used and dried under air. At the 

end the working and counter electrodes were assembled in a sandwich form 

using a thermoplastic (Surlyn) frame that melts at 100ºC.  

 

The counter electrode has an internal space, which was filled with a liquid 

electrolyte using a vacuum backfilling system. After that this hole is sealed with 

a Bynel sheet and a thin glass cover by heating. The liquid electrolyte used 

consists in 2 pair redox coupling using iodine-iodide (I-/I3-) or Co(II)/Co(III)  with 

the presence of different additives in order to increase the performance of the 

devices and the characterization of them. 

 

The composition of the different electrolyte solutions will be explained in more 

details in the respective chapters. 

 

2.3 ORGANIC SOLAR CELLS (OSC) 

 

2.3.1 Device fabrication 

 

We used for OSC Indium Tin Oxide (ITO) 5 Ohm/square (PSiOTec, Ltd., UK) 

sodalime glass substrates. However, prior to use them we must remove the 

residual photoresist layer cleaned with acetone. The substrates were then 

placed in a holder and were sonicated first 10 min in acetone and two times 
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more in isopropanol. After that, the substrates were dried under Nitrogen flow. 

Moreoverthe ITO substrates are ozone-treated in a UV-Ozone cleaner for 30 

min in ambient atmosphere, and subsequently coated in air with a layer of 

filtered (0.45 µm, cellulose acetate) solution of Poly(3,4-

ethylenedioxythiophene) : poly(styrenesulfonate) (PEDOT:PSS, HC 

StarckBaytron P) (4500 rpm 30 seconds followed by 3500 rpm 30 seconds). 

The PEDOT:PSS film was dried at 120 ºC under inert atmosphere for 15 min. 

The blend or Active Layer consists in a solution of donor derivative and PC70BM 

as acceptor. The concentration used normally is 20mg/ml and the ratio between 

the donor and the acceptor is optimized for each device. Active layers were 

spin-coated in different conditions depending on the blend used.  

 

The cathode layer was deposited by thermal evaporation in an ultra high 

vacuum chamber (1·10-6 mbar). Metals were evaporated through a shadow 

mask leading to devices with an area of 9 mm2. LiF (0.6 nm) and Al (80 nm) 

were deposited at a rate of 0.1 Å/s and 0.5-1 Å/s respectively. Following 

fabrication, the films were maintained under a nitrogen atmosphere and stored 

in the dark until used. In the case of hole only and electron only devices the 

solar cells were prepared as expalined above but for hole only devices the 

structure was ITO/PEDOT:PSS/donor:PC70BM/Au and for electron only devices 

the structure was ITO/ZnOnp/donor:PC70BM/Al.  

 

2.4 DEVICE CHARACTERIZATION 

2.4.1 Charge Extraction (CE) 
 

As the name indicates with this technique we extract and measure the charge 

accumulate in the system under determinate conditions. First of all, the cell is 

simultaneous putted in open circuit and illuminated with a series of LEDS and 

these conditions are applied until the cell reaches the steady state. Then, The 

cell is also simultaneously short-circuited and the light is switched off. In that 

situation all the charges accumulated in the open circuit conditions can be  
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extracted, allowing the measurement of the charge density1.  

 

The Charge extraction system consists in 6 white light LEDS. These pulses are 

generated and controlled by the Trigger (TGP, from Thrurlby Thandar 

Instruments). The decay in voltage is measured using an oscilloscope TDS 

2022 from Tektronix©. All the measurements are done in the dark to eliminate 

stray light that can increase the error. 

 

The accumulate charge Q (C) can be calculated following  equation (1). 

 

! = !
! ! ! !"!!!

!!!       (1) 

 

Where R is the resistance in ohms (Ω) and V(t) is the voltage in volts (V) 

measured at each time.  

 

To define the amount of charge accumulated in the semiconductor we use the 

charge density and it can be calculated from equation (2) 

 

!!"#$%&'!
– = !. !!! .

!"""
!·!·(!!!)     (2) 

 

Where Q is the accumulate charge (that it has been calculate before); Ce is the 

charge of the electron (1.609.1019C/e-), d is the film thickness in centimeters 

(cm), A is the area of the surface (cm2) and p is the porosity of the film. 

We can represent the different e-
density obtained at different voltages. The plot of 

these data can be fitted to an exponential curve defined by equation 3. 

 

!!"#$%&'! ! = !! + !! · !
! !!     (3) 
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2.4.2 Incident Photon to Current Efficiency (IPCE) 

 

In this technique we irradiate the cell using a range of different wavelengths, at 

each wavelength the solar cells convert the incoming photons into electrical 

current.  

 

The IPCE values can be calculated using equation 4. 

 

!"#$ = !"#$·!!"
!·!!"#$

· 100      (4) 

 

Where: Jsc is the short circuit photocurrent (mA/cm2), λ is the wavelength for the 

incident light in nanometres (nm), Plamp is the power of the incident light in Watts 

(W/m2) and 1240 is the conversion factor of the energy of photons. 

 

The instrument to measure the IPCE consists in a xenon lamp (Oriel 150 W) as 

the light source, a monochromator (PTIM-101) that automatically change the 

wavelength to promote homogeneous monochromatic light in all the exposed 

area of the cell, a 4 inch integrating sphere and a Keithley 2400 to measure the 

current generate. 

 

2.4.3 Solar cell power conversion efficiency (η) 

 

The overall efficiency of a solar cell is calculated using equation 5.  

 

 

!!"" = !!"·!!"·!!
!!"#$

· 100     (5) 

 

Where Jsc is the photocurrent at short circuit; Voc is the open circuit 

photovoltage; ff, the fill factor of the cell and Plamp the light intensity. The devices 

are measured under sun-simulated solar spectrum AM 1.5G (at 48.2º zenith 

angle)2 conditions with an Abet solar simulator and a Keithley 2400 source 
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meter to measure the current. A homemade software interface (Labview©) is 

used to register and record the I-V curves. To calibrate the light source intensity 

at 100mW/cm2 (1 Sun) a calibrated silicone diode is used prior to each device 

measurement. When needed, a series of neutral filters are used to measure the 

efficiency of the cells at different intensities of light. 

 

2.4.4 Transient Photovoltage (TPV) 

 

The measurements of transient photovoltage provide us information about 

recombination dynamics in the devices between the charges accumulated at 

the semiconductor and the oxidized electrolyte3. The solar cell is illuminated 

with a set of white LEDS (in a similar way that the one used for charge 

extraction measurements) until the solar cell reaches steady state conditions. 

When the solar cell achieves the steady state condition a ultra short laser pulse 

with low intensity is applied to the device and a small perturbation in the 

equilibrium is created allowing an excess of charge to be generated producing a 

transient decay. The same laser pulse is used under different light intensities 

that lead to different device steady-state voltage and, thus, providing different 

transient decays. 

 

The data obtained is fitted as an exponential equation (6) 

 

! ! = !!" + !! · !!(! !)     (6)  

 

Where V (V) is plotted as a function of time. Voc (V) is the voltage at open 

circuit, V1 (V) is the voltage generated by the pulse and τ (s) is the 

recombination lifetime. 

 

2.4.5 Laser Transient Absorption Spectroscopy (L-TAS) 

 

The measurements of Laser Transient Absorption Spectroscopy provide us with 

information about excited short living species4,5. Basically, a sample is irradiate 



Materials and Methods!

 

51 

 

constantly (probe light) at a determinate wavelength that corresponds to the 

maximum absorption of the sample excited state. At the same time, we excite 

the sample with a short   light pulse producing a change in the sample optical 

density. The change in optical density is monitored during a short period of time 

to monitor the variations.  

 

The data collected is treated in order to obtain units of optical density; the data 

can be fitted to an exponential function equation (7) 

 

Δ!.!. ! = !! + !!!!(! !)!     (7) 

 

Where A0 (a.u.) is the baseline, A1 (a.u.) is the signal amplitude, τ (s) is the 

lifetime of the transient and β (a.u) is the emprirical stretched factor whose 

value is between 0 and 1. 
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3.1 ABSTRACT 
 
The synthesis, characterization, electrochemical and photophysical properties 

of a novel D-π-A indoline organic dye, VCL01, are described. Its performance 

characteristics in Dye Sensitized Solar Cell (DSC) devices under standard AM 

1.5G illumination are also investigated. VCL01 incorporates a 

cyclopentadithiophene unit as the π-bridge between the indoline donor and 

cyanoacetic acceptor units. In comparison to the reference dye LS-1 containing 

only one thiophene unit in the π-bridge, VCL01 shows a 40nm red shift in 

adsorption, an increase in molar absorptivity and a 0.13 V lower oxidation 

potential, all consistent with the more conjugated nature of this sensitizer. The 

efficiency of VCL01 and LS-1 DSC devices were 4.81% and 6.23% 

respectively, which upon >100 mins continuous light soaking under AM 1.5G 

illumination rose to 7.21% and 6.95%, representing an unprecedented 42% 

increase in efficiency for the VCL01 device. This increase is overwhelmingly 

due to an increase in photocurrent but, remarkably, Voc also increases by 50 mV 

upon illumination reflected in transient photovoltage data which indicate that 

electron lifetime increases considerably also. Time-Correlated Single Photon 

Counting data indicate that partly the light soaking effect can be attributed to 

improved TiO2/dye interaction leading to enhanced electron injection. 

3.2 INTRODUCTION 

Development of dye Sensitised Solar Cells (DSCs) based on organic D-π-A 

sensitizers1-3 is an active area of research as the properties of these sensitizers 

can be easily tailored by judicious selection of each individual unit and can be 

exploited commercially as efficient solar cells for indoor applications4 and 

building integrated photovoltaics (BIPV).5 Compared to those containing 

triphenylamine donor groups,6-14 D-π-A sensitizers containing indolines15-22 
have been much less investigated despite the superior donating ability of these 

groups and the well-known stability they impart, which is a pre-requisite for long 

term device stability.  
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In this present work we perform a comprehensive study of the novel sensitizer 

VCL01 (Scheme 1) using the dye LS-1 reported by Li et al.23 as a reference. 

VCL01 consists of an indoline and cyanoacetic acid and, in addition, a 

cyclopentadithiophene unit is used in the π-bridge to increase conjugation and 

the light-harvesting dye properties. Moreover, the long alkyl chains are 

expected to block recombination loss reactions between TiO2 electrons and the 

oxidised electrolyte. Cyclopentadithiophene is used in many efficient D-π-A 

dyes and for this reason it was coupled with an indoline donor group here for 

the first time. A dramatic 42% increase in efficiency is observed for VCL01 

devices upon continuous light soaking of over 100mins. We ascribe this 

increase to improved interaction between dyes and TiO2 leading to an 

enhancement in electron injection 

 

 

 

 

 

Scheme 3.1: Molecular structures of dyes LS-1 and VCL01. 

 

3.3 EXPERIMENTAL SECTION 

3.3.1 Synthesis and characterization 

 

LS-1 was synthesized according to the literature.23 

3, 4 and 5 were synthesized according to the literature24 
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Synthesis of LS-1 

 

 
Scheme 3.2: Synthetic route of LS-1. (Reaction conditions: (i) K2CO3, Cu, 1,2-

dichlorobenzene, 48 h, 150ºC; (ii) NaBH4, CH3COOH, 4 h, 50ºC; (iii) NBS, CH3COCH3, 2 

h, 0ºC; (iv) PdII(dppf)Cl2, 2M K2CO3 aqueous solution, dimethoxyethane, 2 h, 90ºC; (v) 

cyanoacetic acid, piperidine, Chloroform, 12 h, reflux.) 

 

Synthesis of 4-(p-tolyl)-1,2,3,4-tetrahydrocyclopenta[b]indole (3). In a 

round flask 3,4-dihydrocyclopenta[b]indole (9.4g, 0.06mol), 1-iodo-4-

methylbenzene (16.8g, 0.07mol), Potassium carbonate (16g, 0.125g) and Cu 

(0.72g, 0.01mol) were added in 100mL of  1,2-dichlorobenzene. The solution 

was heated up at 150ºC for 48 hours. After that, de 1,2-dichlorobenzene was 

distilled. Then the mixture was extracted in CH2Cl2 and the organic layer was 

cleaned with brine. Then the organic layer was dried over Na2SO4 anhydrous. 

Then the crude is purified by column chromatographic using Hexane/Ethyl 

Acetate (9.5:0.5) as a solvent to obtain a yellow oil (4g, 27% of Yield). 1H-NMR 

(400 MHz, CDCl3) dH: 7.46 (m, 1H): 7.38 (m, 1H); 7.29 (m, 4H); 7.09 (m, 2H); 

2.87 (m, 4H); 2.53 (m, 2H); 2.41(s, 3H). 

 

Synthesis of 4-(p-tolyl)-1,2,3,3a,4,8b-hexahydrocyclopenta[b]indole (4): In 

a schlenk flask NaBH4 (8.4g), 0.22mol) was added slowly to a solution of 3 (4g, 

0.016mol) in acetic acid (120mL). Then the muxtire was heated up to reflux 

overnight. After that the mixture was stirred for 4 hours at 50ºC. Then, Na2CO3 

was slowly added until pH 7. Then we extracted with CH2Cl2, and the organic 

layer was dried over MgSO4. Then the crude is purified by column 

chromatographic using Hexane as a solvent to obtain a yellow oil (2.8g, 71% of 

HN
+

I

(i) N N(ii)

1 2 3 4

(iii) N

5

Br
SOHC B(OH)2

N

6

S CHO N S

(iv)

CN
HOOC

LS-1

(v)



Chapter 3 

 

60 

 

Yield). 1H-NMR (400 MHz, CDCl3) dH: 7.18(m, 5H): 7.05(t, J=8.2Hz, 1H); 6.94 

(d, J=8.2Hz, 1H); 6.73 (t, J=8.2Hz, 1H); 4.76 (m, 1H); 3.85 (m, 1H); 2.36 (m, 

3H) 2.06 (m, 1H); 1.92 (m, 2H); 1.82 (m, 1H); 1.66 (m, 1H); 1.56 (m, 1H).  

 

Synthesis of 1,2,3,3a,4,8b-hexahydrocyclopenta[b]indol-6-ylium (5): in a  

schlenk flask a solution of  4 (2.14g, 8.62mmol) and Acetone (90mL) was cold 

at 0ºC. After that, N-bromosuccinimide (1.53g, 8.62mmol) was added and the 

mixture was stirred at 0ºC in the dark for 2h. Then water was added. The crude 

product was extracted into CHCl3, and the organic layer was dried over Na2SO4. 

Finally the sample was recrystallized in Hexane to obtain a white solid. (2.4g, 

96% of Yield) 1H-NMR (400 MHz, CDCl3) dH: 7.14 (dd, J=2.2Hz, 1.2Hz, 1H); 

7.11 (m, 4H); 7.06 (dd, J=8.6Hz, 1.2Hz, 1H); 6.70 (d, J=8.8Hz, 1H); 4.72 (m, 

1H); 3.77 (m, 1H); 2.30 (s, 3H); 1.81 (m, 6H).  

 

Synthesis of 5-(4-(p-tolyl)-1,2,3,3a,4,8b-hexahydrocyclopenta[b]indol-7-

yl)thiophene-2-carbaldehyde (6): in a schlenk flask 5 (200mg.  0.61mmol), 

thiophen-2-ylboronic acid (135mg, 0.85mmol), PdII(dppf)Cl2 (20.1mg, 

0.027mmol) and 20ml of dimethoxyethane was added and the mixture was 

degassed. Then the solution was stirred at room temperature for 30 minutes. 

After this time 3mL of K2CO3 2M was added and the mixture was degassed 

again. Then the mixture was heated up to 90ªC for 2 hours. After cooling at 

room temperature water was added and the solution was extracted with Et2O 

and washed with Brine. Then the crude is purified by column chromatographic 

using Hexane/Ethyl Acetate (8:2) as a solvent. (80mg, 36% of Yield). 1H-NMR 

(400 MHz, CDCl3) δH: 9.88 (s, 1H); 7.65 (d, J=4.0Hz, 1H); 7.39 (s, 1H); 7.35 (dd, 

J=8.2Hz, 2.0 Hz, 1H); 7.21 (d, J=4.0Hz, 1H); 7.16 (m, 4H); 6.81 (d, J=8.2Hz, 

1H); 4.83 (m, 1H); 3.83 (m, 1H); 2.33 (s, 3H); 2.06 (m, 1H); 1.88 (m, 2H); 1.76 

(m, 1H); 1.66 (m, 1H); 1.53 (m, 1H). 

 

Synthesis of LS-1: In a schlenk flask 6 (0.08g, 0.22mmol), cyanoacetic acid 

(0.057g, 0.66mmol), piperidine (0.095g, 1.11mmol) and 15mL of dry chloroform 

was added and was refluxed overnight. Then the solution was acidified with 
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20% aqueous HCl and extracted with CHCl3. The organic layer was dried over 

anhydrous Na2SO4 and concentrated. The crude was purified by column 

chromatography (CHCl3/Methanol 9:1) on silica gel and the product was 

obtained as a violet solid (0.085g, 91% yield). 1H-NMR (400 MHz, DMSO-d6) δH: 

8.34 (s, 1H); 7.91 (d, J=4.0Hz, 1H); 7.54 (m, 2H); 7.45 (dd, 8.2Hz, 2.0Hz, 1H); 

7.21 (m, 4H); 6.82 (d, J=8.2Hz, 1H); 4.92 (m, 1H); 3.85 (m, 1H); 2.27 (s, 3H); 

2.05 (m, 1H); 1.77 (m, 3H); 1.62 (m, 1H); 1.37 (m, 1H). 

 

Synthesis of VCL01 

 
 

Scheme 3.3: Synthetic route of VCL01. (Reaction conditions: (i) KI, BrC6H13, KOH, RT 

overnight; (ii) POCl3, DMF, 1,2-dichloroethane, 4h 0ºC; (iii) NBS, THF, 5h 0ºC; (iv) n-

BuLi, THF, B(OCH3)3, -78ºC; (v)  Pd(PPh3)4, 2 M K2CO3 aqueous solution, THF, 6 h, 

800C; (vi) cyanoacetic acid, piperidine, chloroform, 12 h, reflux.) 

 

9, 10 and 11 were synthesized according to the literature25 

Synthesis of 4,4-dihexyl-4H-cyclopenta[2,1-b:3,4-b’]dithiophene (9): 
A solution of 4H-cyclopenta[2,1-b:3,4-b’]dithiophene (8) (0.7g, 3.92mmol), 1-

bromohexane (1.27g, 7.84mmol), and KI(1.62mg, 0.013mmol) in DMSO (20mL) 

was cold at 0º. Then, KOH (0.44g, 7.84mmol) was added. The reaction was 

stirred overnight at room temperature under argon. Then water was added. The 

crude product was extracted into diethyl ether, and the organic layer was 

washed with saturated ammonium chloride and water, and dried over Na2SO4. 

After removing the solvent under reduced pressure, the residue was purified by 

column chromatography using petroleum ether as a solvent to yield a colorless 
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oil (0.9g, 66% yield) 1H-NMR (400 MHz, CDCl3) dH: 7.12 (d, J=4.9Hz, 2H); 6.91 

(d, J=4.9Hz, 2H); 1.82 (m, 4H); 1.13 (m, 12H); 0.79 (t, J= 6.8Hz, 6H). 

 
Synthesis of 4,4-dihexyl-4H-cyclopenta[2,1-b:3,4-b’]dithiophene-2-

carbaldehyde (10): A cold solution of 9 (0.90g, 2.6mmol) and DMF (0.22g, 

3.12mmol)in 1,2-dichloroethane (20mL) at 0ºC was added phosphorus chloride 

oxide (0.48g, 3.12mmol) under argon. The reaction was stirred at same 

temperature for 4 hours and then saturated sodium acetate aqueous solution 

(10mL) was added. The mixture was stirred at room temperature for 2 hours. 

The crude was an extracted into dichloromethane, and the organic layer was 

washed with brine and water, and dried over sodium sulphate. After removing 

the solvent the residue was purified by column chromatography with petroleum 

ether and ethyl acetate (8:2) as a solvents to obtain a colourless oil (0.73g, 75% 

yield) 1H-NMR (400 MHz, CDCl3) dH: 9.80 (s, 1H); 7.54 (s 1H); 7.37 (d, J=4.9Hz, 

2H); 6.95 (d, J=4.9Hz, 2H); 1.84 (m, 4H); 1.13 (m, 12H); 0.78 (t, J= 6.8Hz, 6H). 

 

Synthesis of 6-bromo-4,4-dihexyl-4H-cyclopenta[2,1-b:3,4-b’]dithiophene-

2-carbaldehide25 (11): A cold solution of 10 (0.70g, 1.86mmol) in 

tetrahydrofuran (20mL) was added N-bromosuccinimide (0.4g, 2.23mmol) at 

0ºC under argon. The reaction mixture was warmed to room temperature and 

stirred for 5 hours and then water was added. The crude product was extracted 

into dichloromethane, and the organic layer was dried over sodium sulphate. 

The residue was purified by column chromatography (dichloromethane) to 

obtain yellow oil. (0.75g, 90% yield) 1H-NMR (400 MHz, CDCl3) dH: 9.81 (s, 1H); 

7.53 (s, 1H); 6.99 (s, 1H); 1.84 (m, 4H); 1.13 (m, 12H); 0.78 (t, J= 6.8Hz, 6H). 

 

Synthesys of 4,4-dihexyl-6-(4-(p-tolyl)-1,2,3,3a,4,8b-

hexahydrocyclopenta[b]indol-7-yl)-4H-cyclopenta[1,2-b:5,4-

b']dithiophene-2-carbaldehyde (12): 5 (0.240g, 0.735mmol) was added to a 

round flask with 30mL of THF and was stirred under nitrogen atmosphere at -

78ºC. nBuLi 2M in hexane (0.33mL, 0.867mmol) was added and the mixture 

was stirred for 15 minutes at -78ºC. After that, B(OMe)3 (0.12mLm, 1.10mmol) 
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was added and the reaction was stirred overnight at -78ºC. The crude was 

warmed at room temperature. In another Schlenk, Pd(PPh3)4 (0.075g, 

0.02mmol), 11 (0.3g, 0.66mmol), K2CO3 2M (3mL), the crude, and THF (20mL) 

was added and the reaction was stirred at 70ºC for 4 hours.  Then water was 

added. The crude product was extracted into CHCl3, and the organic layer was 

dried over NaSO4. The residue was purified by column chromatography 

(Hexane/Dichloromethane 6:4) to obtain a red solid (0.270g, 60% yield). 1H-

NMR (400 MHz, CDCl3) δH: 9.78 (s, 1H); 7.56 (s, 1H); 7.35 (s, 1H); 7.30 (dd, 

J=8.4Hz, 2Hz, 1H); 7.20 (m, 4H); 7.02 (s, 1H); 6.85 (d, J=8.4Hz, 1H); 4.80 (m, 

1H); 3.78 (m, 1H); 2.32 (s, 3H); 2.06 (m, 1H); 1.87 (m, 8H); 1.66 (m, 1H); 1.13 

(m, 16H); 0.80 (t, J=6.8Hz, 6H). 13CNMR (100MHZ, CDCl3, 

ppm): δ  182.46; 164.05; 157.13; 151.43; 149.02; 148.54; 142.44; 140.17; 

136.00; 132.60; 132.12; 130.07; 125.50; 124.90; 122.33; 120.55; 115.64; 

107.77; 69.55; 54.20; 45.50; 38.04; 35.34; 33.90; 31.80; 29.67; 24.75; 24.62; 

22.83; 21.03; 14.23. MS-ESI (m/z): [M+Na]+ calculated for C40H47NOS2Na: 

644.2991; found: 644.2991. 

 

Synthesis of VCL01 

In a schlenk flask 12 (0.21g, 0.34mmol), cyanoacetic acid (0.086g, 1.02mmol), 

piperidine (0.144g, 1.7mmol) and 10mL of dry chloroform was added and was 

refluxed overnight. Then the solution was acidified with 20% aqueous HCl and 

extracted with CHCl3. The organic layer was dried over anhydrous Na2SO4 and 

concentrated. The crude was purified by column chromatography 

(CHCl3/Methanol 9:1) on silica gel and the product was obtained as a violet 

solid (0.140g, 67% yield). 1H-NMR (400 MHz, CDCl3) dH: 8.27 (s, 1H); 7.80 (s, 

1H); 7.49 (s, 1H); 7.45 (s, 1H); 7.34 (dd, J=8.4Hz, 2Hz, 1H); 7.20 (m, 4H); 6.85 

(d, J=8.4Hz, 1H); 4.88 (m, 1H); 3.84 (m, 1H); 2.28 (s, 3H); 2.05 (m, 1H); 1.89 

(m, 4H); 1.76 (m, 3H); 1.63 (m, 1H); 1.39 (m, 1H); 1.11 (m, 12H); 0.90 (m, 4H); 

0.77 (t, J=6.8Hz, 6H). 13C NMR (100MHz, DMSO-d6, ppm) δ 157.04; 150.80; 

147.70; 139.50; 136.14; 135.96; 135.76; 131.82; 131.26; 130.48; 129.99; 

125.27; 125.19; 124.41; 124.30; 121.93; 120.23; 119.94; 116.21; 107.26; 68.53; 

53.57; 44.62; 37.11; 37.01; 34.97; 33.10; 31.09; 29.05; 24.15; 24.10; 22.13; 
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20.54; 13.97. MS-ESI (m/z): [M-H]- calculated for C43H47N2O2S2: 687.3084; 

found: 687.3069.  

 
3.3.2 Device preparation and characterization 

 

As we have said in chapter 2 two different types of TiO2 films were utilized 

depending on the measurements being conducted. Highly transparent thin films 

(8 µm) were utilized for L-TAS measurements. On the other hand, for efficient 

DSC devices were made using 9 µm thick films consisting of 20 nm TiO2 

nanoparticles (Dyesol© paste) and a scatter layer of 4 µm of 400 nm TiO2 

particles (CCIC, HPW-400).  

All films were sensitized in dye solutions at concentrations of 0.125 mM in 1:1 

acetonitrile:tert-butanol containing 1 mM chenoxydecholic acid were prepared 

and the film immersed overnight at room temperature. The sensitized 

electrodes were washed with 1:1 acetonitrile:tert-butanol and dried under air. 

The electrolyte used consisted of 0.5 M 1-butyl-3-methylimidazolium iodide 

(BMII), 0.1 M lithium iodide, 0.05 M iodine and 0.5 M tert-butylpyridine in 

acetonitrile. 

 

3.4 RESULTS AND DISCUSSION 

The absorption and emission spectra in solution and the photophysical and 

electrochemical properties of LS-1 and VCL01 are collected in Table 3.1. 
 

Table 3.1. Absorption, emission and electrochemical properties of LS-1 and VCL01. 

 
 

 

 

 

 

 

 

Dye λabs 

(nm)a 

λem 

(nm)a 

Eox 

(V v’s 

Fc/Fc+) 

E0-0 

(eV)c 

EHOMO 

(eV)d 

ELUMO 

(eV)e 

LS-1 527 

(20200) 

704 0.31 1.99 -5.19 -3.20 

VCL01 567 

(34500) 

765 0.14 1.82 -5.02 -3.20 
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aMeasured in dichloromethane. In parenthesis molar extinction efficient at λabs (in M-1 cm-

1). cE0-0 was determined from the intersection of absorption and emission spectra in 

dilute solutions. dEHOMO was calculated using EHOMO(vs vacuum) = -4.88-Eox(vs Fc/Fc+). 
eELUMO was calculated using ELUMO = EHOMO + E0-0. 

 

 
 

Figure 3.1: Absorption and emission spectra of LS-1 and VCL01 in dicholoromethane. 
 

 
LS-1 and VCL01 both show absorption bands in the UV-Vis region of the solar 

spectrum which are assigned to π-π* transitions. The increase in molar 

extinction coefficient and 40 nm red-shift in absorption maximum of VCL01 with 

respect to LS-1 is attributed to the increase in conjugation in this sensitizer 

afforded by the insertion of the cyclopentadithiophene unit. We note that the 

absorption maximum of LS-1 at 527nm is different to that as reported as 483nm 

by Li et al.23 This can be explained due to the dependence of the absorption 

spectra of D-π-A organic dyes on their degree of protonation in different 

acid/base media, as we have observed previously.7 This can be demonstrated 

by adding triethylamine (TEA) and trifluroacetic acid (TFA) to a solution of LS-1 

which shows a blue shift and red shift respectively (Figure 3.2). A blue shifted 
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spectrum corresponds to the deprontonated state and a red-shifted spectrum to 

the protonated state, therefore, LS-1 as reported in the study by Li et al.23 would 

appear to be in the deprotonated state. In any case, both studies show similar 

absorption maxima for LS-1 immobilized onto TiO2 film (≈ 450 nm). It is noted 

that the absorption spectrum of VCL01 also changes when in its protonated or 

deprotonated state. 

 

              
Figure 3.2: Absorption spectra of dichloromethane solutions of LS-1 (a) and VCL01 (b) 

in the presence of organic base (TEA, triethylamine) and organic acid (TFA, 

trifluoroacetic acid). 
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Cyclic voltammetry studies (Figure 3.3) indicate there is a significant difference 

of 0.13 V in ground state oxidation potential (Eox) between LS-1 and VCL01 and 

again the effect of the cyclopentadithiophene unit is apparent reducing the Eox 

of VCL01. The EHOMO and ELUMO in eV were calculated using the data in Table 

1. EHOMO and ELUMO values indicate efficient dye regeneration by the iodide/tri-

iodide redox electrolyte (Eredox = 4.75 eV) and also efficient electron injection 

into the TiO2 conduction band (ETiO2 = 4.0 eV) is energetically possible for these 

sensitizers.  

 

   

 
Figure 3.3: Cyclic voltammetry of LS-1 (top) and VCL01 (bottom) recorded in 0.1M 
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tetrabutylammonium hexafluorphosphate in 1:1 acetonitrile:tert-butanol at a scan 

rate of 10 mV s-1. The working electrode consisted of a platinum wire and the 

counter electrode a platinum mesh. The reference electrode was the silver calomel 

electrode (saturated KCl). All solutions were degassed with argon for 5 mins prior to 

measurement. The red and black scans were recorded in the presence and 

absence of Ferrocene/Ferrocene+. 

 

LS-1 and VCL01 were used to fabricate DSC solar cells and the device 

properties are listed in Table 3.3. Devices were measured after periods of 0 

and 120 mins of continuous illumination. The best efficiencies were found 

using 1mM chenoxydecholic acid as co-adsorbent. With higher 

concentrations of chenoxydecholic acid (10 mM), though LS-1 devices 

increased somewhat in efficiency (also observed by Li et. al)23, that of 

VCL01 dropped sharply (see Table 3.2). For this reason a compromise was 

sought with a lower concentration of 1 mM of chenoxydecholic acid used 

(Table 3.3) 

 
 
        Table 3.2. Device optimization of LS-1 and VCL01 DSCs. 

 
    

 

 
 

 

 
 

Dye Voc 
(V) 

Jsc 
(mA/cm2) 

FF 
(%) 

η 
(%)* 

LS-1  
(No chenoxydecholic acid) 

0.66 8.44 67.41 3.79 

LS-1  
(10 mM  chenoxydecholic 

acid) 

0.73 14.06 66.20 6.83 

VCL01  
(No chenoxydecholic acid) 

0.67 12.75 67.44 5.81 

VCL01  
(10 mM  chenoxydecholic 

acid) 

0.60 5.25 71.22 2.27 
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 Table 3.3. Device properties of LS-1 and VCL01 DSCs. 

 

aRecorded after 0 mins illumination. bRecorded after 120 mins continuous 
illumination. *Efficiencies recorded with mask. In parenthesis efficiencies 
without mask. 
 

Following 0 mins illumination LS-1 shows a superior power conversion 

efficiency of 6.23% compared to only 4.81% for VCL01. However, following a 

period of 120 mins continuous illumination the efficiency of the VCL01 device 

manifests a dramatic increase in efficiency to 7.21% compared to LS-1 which 

shows a smaller increase in efficiency to 6.95%. This phenomenon was always 

observed with, however, the time necessary for the efficiency maximum to be 

reached varying somewhat. This was probably due to small differences in the 

quantity of dye being adsorbed onto the TiO2 films after sensitization and/or 

small differences in TiO2 film thickness. The increase in efficiency is caused due 

to an increase in Jsc upon illumination. The nature of the increase in efficiency is 

discussed later. It should be noted that the efficiency of the LS-1 device is 

higher than that reported by Li et al.,23 however, the electrolyte used is different 

in both studies. 

 

The I-V curves recorded under AM 1.5G radiation and IPCE spectra recorded 

for LS-1 and VCL01 devices are shown in Figure 3.4. IPCE spectra show broad 

absorption in the UV-vis and a notable spectral red-shift for VCL01. Following 

light soaking the increase in device IPCE is consistent with the Jsc data in Table 

2. Moreover, integration of the IPCE data agrees with the Jsc data in Table 2 

within an error of 5 %. 

 

 

Dye Voc (V) Jsc 
(mA/cm2) 

FF 
(%) 

η (%)* 

LS-1 (0 mins)a 0.689 12.90 70 6.23 (7.84) 

LS-1 (120 mins)b 0.704 13.81 71 6.95 (8.48) 

VCL01 (0 mins)a 0.649 10.99 68 4.81 (6.52) 

VCL01 (120 mins)b 0.699 14.69 70 7.21 (8.98) 
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Figure 3.4: (a) I-V curves and (b) IPCE spectra for LS-1 and VCL01 DSC devices 

recorded under AM 1.5G radiation. Also shown are I-V dark curves. 
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Electron density and electron lifetime in these devices were probed using 

charge extraction and transient photovoltage measurements respectively 

(Figure 3.5). With 0 mins illumination the LS-1 device shows a negligibly higher 

charge density than the VCL01 device but almost an order of magnitude of 

difference longer electron lifetime under the same electron density. This 

explains the 40 mV higher Voc for the LS-1 device. Upon illumination for 120 

mins, charge extraction data shows an increase in charge density for both 

devices suggesting a downward shift in the conduction band. Moreover charge 

density is now similar in both devices. Transient photovoltage data show that 

the effect of 120 mins light soaking on the devices is an increase in electron 

lifetime, with the increase notably more pronounced for the VCL01 device (over 

1 order of magnitude). The difference in lifetime between LS-1 and VCL01 is, 

however, narrowed significantly upon light soaking. This explains the very 

similar Voc for the devices following illumination. 

 

Transient absorption spectroscopy was then used to probe charge 

recombination and regeneration by the I3−/I− redox couple in transparent DSC 

devices (Figure 3.6). The data recorded in the absence of red/ox active 

electrolyte (black) show long-lived decays assigned to the dye cation formed 

following photo-excitation and charge separation. These kinetics are similar to 

those which we have observed for D-π-A organic sensitizers previously.7 In the 

presence of redox couple the kinetics become bi-phasic with the loss of the 

cation signal due to regeneration by I− and the appearance of a long-lived signal 

assigned to TiO2 injected electrons and/or I2•- (red decay). The t50% (time taken 

for 50% of signal to disappear) for the regeneration reaction is estimated as 5 

and 200 µs for LS-1 and VCL01 respectively. This difference can be explained 

by the difference in ground state oxidation (Eox) potential for these dyes, with 

the more positive potential of LS-1 
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Figure 3.5: (a) Electron density as a function of cell voltage and (b) device electron 

lifetime τ as a function of charge density for LS-1 and VCL01 devices. 
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Figure 3.6: Transient absorption kinetics of (a) LS-1 and (b) VCL01 recorded for 1cm2 

area devices comprising 8 µm TiO2 films in the presence of a blank electrolyte (black) 

and an iodide/tri-iodide red/ox electrolyte (red). Kinetics were recorded at 800nm 

following excitation at 490 nm.  
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Figure 3.7 Emission lifetime decays for (a) LS-1 and (b) VCL01 devices after 0 and 100 

mins AM 1.5G illumination light soaking measured at a 300 second acquisition time. 

Excitation wavelength was 470nm and emission wavelengths were 565 nm (LS-1) and 

600 nm (VCL01). 
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Returning to the effect of light soaking on device efficiency, generally, for most 

DSCs regardless of the sensitizer employed, from our experience26,27 and that 

of other groups28-30 an increase in efficiency is observed. In an exhaustive study 

by Listorti et al.31 involving DSC devices prepared with different materials (dyes, 

pastes, electrolytes etc.) in different laboratories the effect of light soaking on 

device parameters was investigated. In all cases an increase in both efficiency 

and Jsc was observed and explained as a downward shift in the TiO2 conduction 

band resulting in lower Voc. Luminescence lifetime studies indicated that this 

shift resulted in both faster electron injection and improved injection efficiency 

leading to higher Jsc and cell efficiency despite the lower Voc.  

 

Table 3.4. Emission lifetimes extracted from TC-SPC data of LS-1 and VCL01 DSC 
devices.  

Dye Lifetime (ns)* 
 

LS-1 (0 mins) 1.20 (42%); 2.96 (58%) 

LS-1 (100 mins) 1.39 (41%); 2.99 (59%) 

VCL01 (0 mins) 1.83 (75%); 3.37 (25%) 

VCL01 (100 mins) 2.02 (92%); 4.79 (8%) 

*Emission decays were fitted with 2 exponential parameters. The percentage in 

parenthesis is the contribution of each parameter. 

 

LS-1 and VCL01 devices also show an increase in efficiency and Jsc following 

light soaking coupled with a small downward shift in the TiO2 conduction band 

and increase in device electron lifetime. Emission lifetime studies of LS-1 and 

VCL01 devices measured using Time-Correlated Single Photon Counting 

(Figure 3.7) before and after light soaking show negligible differences in lifetime 

(Table 3.4), however, a notable quenching of emission intensity is observed 

after light soaking. This indicates that light soaking improves TiO2/dye 

interaction resulting in improved quenching of dye excited states by TiO2 

electron injection. This also helps to explain the increase in device electron 

lifetime following light soaking, as the improvement in TiO2/dye interaction 
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would improve the blocking of recombination of TiO2 electrons with the 

electrolyte, with the much larger increase in electron lifetime for the VCL01 

device compared to the LS-1 device due to the more bulky 

cyclopentadithiophene units. It is worth noting that no such affect was observed 

by leaving the cells in the dark indicating the positive effect of light soaking over 

device efficiency in these devices.  

 

We therefore conclude that the improvement in device efficiency upon light 

soaking is less due to a change in the TiO2 energetics and more to do with 

improved TiO2/dye interaction resulting in a higher injection yield and larger Jsc 

on the one hand and improved blocking effect and larger Voc on the other. 

3.5 CONCLUSIONS 

The synthesis and characterization of a novel indoline D-π-A sensitizer, VCL01, 

with a cyclopentadithiophene unit in the π-bridge was described and its 

performance determined in DSC devices. Though initially it showed an 

efficiency of 4.81%, this rose to 7.21% upon 120 mins light soaking under AM 

1.5G illumination, representing an increase of 50%. This increase is mainly due 

to an increase in Jsc which is reflected in the improved IPCE spectra of devices 

following light soaking. Charge extraction data indicate a downward shift in the 

TiO2 conduction band upon light soaking and transient photovoltage data show 

that device electron lifetime increases by over one order of magnitude. Time-

correlated Single Photon Counting data explain partly the light soaking effect by 

an improvement in TiO2/dye interaction leading to enhanced electron injection.  
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4.1 ABSTRACT 

A new series of porphyrins have been synthesized in order to study their 

applicability in DSSC. The strategy followed to synthesize these porphyrins was 

the synthesis of a donor and acceptor zinc porphyrin introducing 2,1,3-

bezothiadazole (BDT) group as a π-conjugated linker between the anchoring 

group and the porphyrin (LCVC01) and also the introduction of a thiophene 

(LCVC02) and a furan (LCVC03) between the BDT moiety and the anchoring 

group. These series of porphyrins were investigated for their application in 

DSSC devices.  Devices of all of these dyes were characterized achieving a 

record cell of 10.4% for LCVC02 but only a 3.84% and 2.55% were achieved for 

LCVC01 and LCVC03 respectively. The introduction of a thiophene shows us 

the importance to introduce a chemical group, such as thiophene, between of 

the BDT and the anchoring group. However the election of this group has to be 

accurate because, as we can see in this study, the change of one atom 

increases the recombination rate and decreases the device performance due to 

the interaction of oxygen atoms with iodine species. 

 

4.2 INTRODUCTION 

Dye Sensitized Solar Cells (DSSC) have attracted great much attention in 

recent years due to their potential low cost and the solar-energy conversion 

efficiency when compared to conventional photovoltaic devices1,2. A great 

number of sensitizers have been synthesized looking for the highest conversion 

efficiency as, for example, Ruthenium complexes that show high efficiencies 

due to the broad absorbance range from the UV-Visible and some of the 

complexes even expand their absorption to the near infrared (NIR)3-7. However, 

the moderate molar extinction coefficients of the Ruthenium complexes, their 

synthesis and the hard purification process have lead to new efforts towards the 

synthesis of novel Ruthenium-free dyes. Most of these new organic dyes have, 

as general molecular structure, the Donor-π-Acceptor (D-π-A) combination8. 

This configuration allows easy tunability of the absorption properties, as well as, 

higher molar extinction coefficient.  
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Since the seminal paper by Sun and collaborations, many organic dyes have 

been reported with high efficiencies not only in iodine electrolyte9,10, but even 

better efficiencies when using cobalt electrolyte11-15. Moreover, recent studies 

on porphyrins have shown very promising results due to the high molar 

extinction coefficients of their Soret and Q band16. A landmark paper shows that 

the D-π-A structure consisting on the core of the porphyrin as π-moiety, leads to 

high efficiencies employing iodine as electrolyte17-20. Furthermore, the best 

efficiencies have been achieved using a cobalt electrolyte reaching an 

efficiency of 11.9% and 12.3%, for iodine/iodide and cobalt electrolytes 

respectively. However, these efficiencies can only be achieved with the use of 

co-sensitized semiconductor mesoporous TiO2 films with the Y123 dye21. 

Recently, Aswani Yella et al. reported an efficiency close to13%, which is the 

highest reported efficiency ever for a DSSC22,23  

 

Based on the above mentioned results we synthesized a series of new 

porphyrins, namely LCVC01 (GY21), LCVC02 and LCVC03. We aim to study 

the effect of introducing a thiophene (LCVC02) and a furan group (LCVC03) 

between the benzothiadazole (BDT) and the anchoring group. The structures of 

these porphyrins are shown in Scheme 4.1. 

 
Scheme 4.1: Molecular structures of LCVC01, LCVC02 and LCVC03 dyes. 
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4.3 EXPERIMETNAL SECTION 

4.3.1 Synthesis and characterization  

 

 

 

 

 

 
 

 

 

Scheme 4.2: Synthetic route for the acceptor moieties. (Reaction conditions: (i) 

NaClO2, Sulfamic acid aqueous, Acetone, 4 h, RT; (ii) PdII(dppf)Cl2, 2M K2CO3 aqueous 

solution,THF, 2 h, 76ºC; (iii) NaClO2, Sulfamic acid aqueous, Acetone, 4 h, RT; (iv) 

PdII(dppf)Cl2, 2M K2CO3 aqueous solution,THF, 2 h, 76ºC;  (v) NaClO2, Sulfamic acid 

aqueous, Acetone, 4 h, RT; PdII(dppf)Cl2, 2M K2CO3 aqueous solution, 

dimethoxyethane, 2 h, 90ºC;  

 

 
 
Scheme 4.3: Synthetic route for the common part of porphyrins. (Reaction conditions: 

(i) 1-Bromooctane, K2CO3, Acetone, reflux, 4 days; (ii) TMEDA, THF, 0ºC, nBuLi, 3 h, 

0ºC, DMF, 2 h, RT; (iii) TFA, DCM, 4 h, 23ºC, DDQ, 1h; (iv) NBS, DCM, 6 h, 0ºC;  (v) 

Zn(OAc)2·2H2O, DCM/Methanol, 3 h, 23ºC; (vi) triisopropylsilylacetylene, Pd(PPh3)2Cl2, 
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CuI, THF, Net3, 4 h, reflux; (vii) Diphenylamine, iodobenzene diacetate, tetrachloroaurate 

dehydrate, DCM, 30 minutes, RT, Zn(OAc)2·2H2O, DCM/Methanol, 3 h, 23ºC; 

 
Scheme 4.4: Synthetic route for the LCVC01, LCVC02 and LCVC03 dyes. (Reaction 

conditions: (i) TBAF 1M in THF, THF, 30 minutes, 23ºC, 2, NEt3, Pd2(dba)3,  ASPh3, 

THF, 4 h, reflux;  (ii) TBAF 1M in THF, THF, 30 minutes, 23ºC, 5, NEt3, Pd2(dba)3,  

ASPh3, THF, 4 h, reflux;  (iii) TBAF 1M in THF, THF, 30 minutes, 23ºC, 7, NEt3, 

Pd2(dba)3,  ASPh3, THF, 4 h, reflux;   

 

Synthesis of 7-bromobenzo[c][1,2,5]thiadiazole-4-carboxylic acid 2: A 

solution at 0ºC of 7-bromobenzo[c][1,2,5]thiadiazole-4-carbaldehyde (0.1g; 

0.41mmol) in Acetone (70mL), NaClO2 (0.109g, 1,21mmol), was added slowly. 

Then, a solution of sulfamic acid (0.117g; 1.21mmol) in Milli-Q-grade deionized 

water (8mL) was added and the solution was then stirred at room temperature 

for 4h. Then, the reaction was quenched with HCl (0.1M, 250mL) and the 

mixture was extracted with CHCl3.The combined extracts were washed with 

water and dried over anhydrous MgSO4. The solvent was removed under 
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reduced pressure to give as the desired product (white solid). (0.093g, 88% 

Yield). 1H NMR (CDCl3, 400 MHZ) δH: 8.45 (d, J=7.7Hz, 1H); 8.05 (d, 

J=7.7Hz, 1H). 
Synthesis of 5-(7-bromobenzo[c][1,2,5]thiadiazol-4-yl)thiophene-2-

carbaldehyde (4): In a Schlenk flask 3 (0.5 g.  1.70mmol), (5-formylthiophen-2-

yl) boronic acid (0.268 g, 1.70mmol), PdII(dppf)Cl2 (0.056 g, 0.0765mmol) and 

50ml of THF was added and the mixture was degassed. Then the solution was 

stirred at room temperature for 30 minutes. After this time 7 mL of K2CO3 2M 

was added and the mixture was degassed again. Then, the mixture was heated 

up to 76oC for 2 hours. After cooling,at room temperature, we added water and 

the solution was extracted with Et2O and washed with brine. Then the crude is 

purified by column chromatography using Hexane/Ethyl Acetate (8:2) as a 

solvent to give us the desired product (yellow solid) (150mg, 27% Yield). 1H 

NMR (THFd-8, 400 MHZ) δH: 9.95 (s, 1H); 8.25 (d, J=4.0Hz, 1H); 8.06 (d, 

J=7.7Hz, 1H); 8.00 (d, J=7.7Hz, 1H); 7.93 (d, J=4.0Hz, 1H). 13C NMR 

(100MHz, THFd-8, ppm) δ 183.18; 162.87; 160.35; 153.92; 145.65; 136.99; 

134.36; 132.99; 129.00; 128.05; 115.27  MS-ESI (m/z): [M-H] calculated for 

C11H4N2BrN2OS2: 322.8954; found: 322.8958.  
Synthesis of 5-(7-bromobenzo[c][1,2,5]thiadiazol-4-yl)thiophene-2-

carboxylic acid (5): NaClO2 (0.124g, 1,38mmol), was added slowly to at 0ºc 

solution of 5-(7-bromobenzo[c][1,2,5]thiadiazol-4-yl)thiophene-2-carbaldehyde, 

4 (150mg; 0.46mmol) in acetone (100mL). Then, a solution of sulfamic acid 

(0.134g; 1.38mmol) in Milli-Q-grade deionized water (10mL) was added to 

proceed at room temperature for 4h. Then the reaction was quenched with HCl 

(0.1M, 250mL) and the mixture was extracted with CHCl3. The combined 

extracts were washed with water and dried over anhydrous MgSO4. The solvent 

was removed under reduced pressure to give as the desired product (white 

solid). (0.131g, 84% Yield). 1H NMR (CDCl3, 400 MHZ) δH: 8.12 (m, 3H); 7.82 

(d, J=4.0Hz, 1H). 13C NMR (100MHz, DMSO-d6, ppm) δ 162.85; 152.94; 

150.82; 143.52; 135.81; 133.44; 132.49; 127.95; 127.18; 125.07; 113.22.  
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Synthesis of 5-(7-bromobenzo[c][1,2,5]thiadiazol-4-yl)furan-2-

carbaldehyde (6): In a Schlenk flask 3 (0.5 g.  1.70 mmol), (5-formylfuran-2-yl) 

boronic acid (0.237 g, 1.70mmol), PdII(dppf)Cl2 (0.056 g, 0.0765mmol) and 

50ml of THF was added and the mixture was degassed. Then, the solution was 

stirred at room temperature for 30 minutes. Thereafter, 7mL of K2CO3 2M were 

added and the mixture was degassed again. Then the mixture was heated up to 

76oC for 2 hours. After cooling at room temperature water was added and the 

solution was extracted with Et2O and washed with brine. Then the crude was 

purified by column chromatography using Hexane/DCM (8:2) as a solvent to 

give us the desired product (yellow solid) (0.160g, 29% Yield). 1H NMR (CDCl3, 

400 MHZ) δH: 9.72(s, 1H); 8.14 (d, J=7.7Hz, 1H); 7.94 (d, J=7.7Hz, 1H); 7.87 

(d, J=3.6Hz, 1H); 7.41 (d, J=3.6Hz, 1H); 13C NMR (100MHz, CDCl3, ppm) δ 

177.71; 154.39; 154.017; 152.31; 150.92; 132.45; 126.50; 123.88; 121.50; 

115.65; 114.89 MS-ESI (m/z): [M+Na]+ calculated for C11H5N2BrN2NaO2S: 

330.9147; found: 330.9137.  
Synthesis of 5-(7-bromobenzo[c][1,2,5]thiadiazol-4-yl)furan-2-carboxylic 

acid (7): A solution at 0ºc of 5-(7-bromobenzo[c][1,2,5]thiadiazol-4-yl)furan-2-

carbaldehyde 6 (0.160 g; 0.51mmol) in acetone (110mL), NaClO2 (0.140 g, 

1,55mmol), was added slowly. Then, a solution of sulfamic acid (0.151 g; 

1.55mmol) in Milli-Q-grade deionized water (10mL) was added and the solution 

was then stirred at room temperature for 4h. Then, the reaction was quenched 

with HCl (0.1M, 250mL) and the mixture was extracted with CHCl3.The 

combined extracts were washed with water and dried over anhydrous MgSO4. 

The solvent was removed under reduced pressure to give as the desired 

product (yellow solid). (0.133 g, 80% Yield). 1H NMR (DMSO-d6 400 MHZ) δH: 

8.12 (d, J=7.7Hz, 1H); 7.99 (d, J=7.7Hz, 1H); 7.69 (d, J=3.6Hz, 1H); 7.42 

(d, J=3.6Hz, 1H); 13C NMR (100MHz, DMSO-d6, ppm) δ 159.13; 153.00; 

151.44; 149.83; 144.88; 132.54; 125.28; 120.91; 119.82; 113.90; 113.45.  

Synthesis of 1,3-Dioctoxybenzene (9): A mixture of resorcinol 8 (11g, 

0.1mol), 1-bromooctane (69.6mL, 0.4mol) and K2CO3 (69g, 0.5mol) was 

refluxed for 4 days in dry acetone (500mL). The solvent was removed under 

reduced pressure and the mixture is extracted with EtOAc (3x100mL). The 
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organic layer was washed with water and dried over anhydrous MGSO4. After 

removal of solvent under reduced pressure, the product was purified by column 

chromatography using hexane as a solvent to give the desirable product. (18g, 

54% yield). 1H NMR (CDCl3, 400 MHZ) δH: 7.13 (t, J= 8.2Hz, 1H); 6.45 (m, 3H); 

3.91 (t, J=6.6 Hz, 4H); 1.75 (m, 4H); 1.43 (m, 4H); 1.33-1.23 (m, 16H); 0.88 (t, 

J=6.7HZ, 6H). 

Synthesis of 2,6-Dioctoxybenzenaldehide (10): A three-neck flask was 

equipped with an addition funnel and charged with 1,3-Dioctoxybenzene 9 (5g, 

0.15mol) and tetramethylethylenediamine (TMEDA) (0.57mL) in 42 mL of THF. 

The solution was degassed and cooled to 0ºC. Then n-butyllithium (11.2mL, 

0.03moL) was added dropwise, (during 20min) and allowed to stir for 3 hours. 

After warming to room temperature DMF (2.19mL, 0.03mol) was added 

dropwise and the solution was stirred for 2 hours. The reaction was quenched 

with water, and the mixture was extracted with ether (3x40mL), dried over 

MGSO4, and the solvent was removed under vacuum. The product was 

recrystallized from hexanes to yield a white solid. (3.5g, 65% Yield). 1H NMR 

(CDCl3, 400 MHZ) δH: 10.11 (s, 2H); 9.23 (d, J= 4.6Hz, 4H); 8.50 (d, J=4.6Hz, 

4H); 7.69 (t, J= 8.2Hz, 2H); 7.00 (d, J=8.2Hz, 4H); 3.82 (t, J=6.4 Hz, 8H); 0.92-

0.78 (m, 16H); 0.67-0.60 (m, 8H); 0.56-0.40 (m, 36H); -3.03(s, 2H). 

Synthesis of 5,15-Bis(2,6-dioctoxyohenyl)porphyrin (11): Dipyrromethane 

(1.51g, 10.35mmol) and 2,6-Dioctoxybenzenaldehide 10 (3.75g, 10.35mmol) 

were solved in DCM (1.35L) and degassed. Then, Trifluoroacetic acid (0.69mL, 

9.32mmol) was added and the mixture was stirred at 23ºC for 4h under 

Nitrogen conditions. After that, DDQ (3.53g, 15.25mmol) was added and the 

mixture was stirred for an additional 1 h. Then, the mixture was basified with 

Et3N (1.75mL) and filtered through silica. The solvent was removed under 

vacuum and the residue was purified by column chromatography using a 

mixture of Hexane/DCM (2/1) as eluent to give us the desired product (purple 

powder), (1.6g, 31.50% Yield). 1H NMR (CDCl3, 400 MHZ) δH: 10.11 (s, 2H); 

9.23 (d, J=4.5Hz, 4H); 8.95 (d, J=4.5Hz, 4H); 7.69 (t, J= 8.5Hz, 2H); 7.00 (d, 

J=8.5Hz, 4H); 3.81 (t, J=6.5 Hz, 8H); 0.92-0.87 (m, 8H); 0.85-078 (m, 8H); 0.64-

0.59 (m, 8H); 0.55-0.48(m, 28H); 0.45-0.39 (m, 8H); -3.03(s, 2H). 
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Synthesis of 5-Bromo-10,20-bis(2,6-dioctoxyphenyl)porphyrin (12): A 

stirred solution of 5,15-Bis(2,6-dioctoxyohenyl)porphyrin 11 (1.6g, 1.64mmol) in 

DCM (600mL) was slowly added a solution of NBS (0.31g, 1.72mmol) in DCM 

(100mL). The reaction was stirred at 0ºC for 6h.  The reaction was quenched 

with acetone (20mL), the solvent was removed under vacuum. The residue was 

purified by column using Hexane/DCM (2:1) as eluent to give us the desired 

product. (Purple powder) (1.4g, 70% Yield). 1H NMR (CDCl3, 400 MHZ) δH: 

10.02 (s, 1H); 9.63 (d, J=4.8Hz, 2H); 9.18 (d, J=4.8Hz, 2H); 8.90 (m, 4H); 

7.70(t, J= 8.1Hz, 2H); 7.01 (d, J=8.4Hz, 4H); 3.85 (t, J=6.6 Hz, 8H); 0.98-0.90 

(m, 8H); 0.88-0.80 (m, 8H); 0.69-0.61 (m, 8H); 0.58-0.49 (m, 36H); -2.85 (s, 

2H). 

Synthesis of [5-Bromo-10,20-bis(2,6-di-octoxyphenyl)porphinato]zinc (II) 

(13): A mixture of 5-Bromo-10,20-bis(2,6-dioctoxyphenyl)porphyrin (1.44g, 

1.36mmol) 12 and Zn(OAc)2·2H2O (3g, 13.66mmol) in a mixture of DCM 

(280mL) and MeOH (150mL) was stirred at 23ºC for 3 h. The reaction was 

quenched with water (60mL), and the mixture was extracted with DCM. The 

combined extracts were washed with water and dried over anhydrous MgSO4. 

The solvent was removed under reduced pressure to give as the desired 

product. (1.34g, 88% Yield). 1H NMR (CDCl3, 400 MHZ) δH: 10.05 (s, 1H); 9.68 

(d, J=4.8Hz, 2H); 9.22 (d, J=4.8Hz, 2H); 8.95 (t, J=4.8Hz, 4H); 7.68(t, J= 8.5Hz, 

2H); 6.99 (d, J=8.5Hz, 4H); 3.81 (t, J=6.7 Hz, 8H); 0.91-0.84 (m, 8H); 0.78-0.71 

(m, 8H); 0.57-0.40 (m, 44H). 

Synthesis of  [5,15-Bis(2,6-di-octoxyphenyl)-10-(triisopropylsilyl)ethynyl-

porphinato] zinc (II) (14). A mixture of zinc complex 13 (1.34g, 1.19mmol), 

triisopropylsilylacetylene (0.47mL, 2.99mmol), Pd(PPh3)2Cl2 (0.16g, 0.23mmol), 

CuI (0.066g, 0.35mmol), THF (45mL) and Net3 (7.3mL) was refluxed for 4 h 

under dinitrogen. The solvent was removed under vacuum. The residue was 

purified by column chromatography using Hexane/DCM (3:2) to give as the 

desired product (purple solid) (1.3g 89.6% Yield). 1H NMR (CDCl3, 400 MHZ) 

δH: 10.02 (s, 1H); 9.72 (d, J=4.6Hz, 2H); 9.20 (d, J=4.6Hz, 2H); 8.93 (d, 

J=4.4Hz, 2H); 8.91 (d, J=4.4Hz, 2H); 7.66 (t, J=8.4Hz, 2H); 6.99 (d, J=8.4Hz, 
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4H); 3.80 (t, J=6.8Hz, 8H); 1.61-1.57 (m, 21H); 1.09-1.00 (m, 8H); 0.91-0.81 (m, 

8H); 0.69-0.44 (m, 44H). 

Synthesis of [5-Bis(4-hexylphenyl)amino-15-(TRiisopropylsily)ethynyl-

10,20-bis(2,6-di-octooxyphenyl)porphirinato] Zinc(II) (15). To a stirred 

solution of [5,15-Bis(2,6-di-octoxyphenyl)-10-(triisopropylsilyl)ethynyl-

porphinato] zinc (II) 14 (370.0 mg, 0.30 mmol) and Diphenylamine (0.310 g, 

0.91mmol) in CH2Cl2 (150 mL) was added iodobenzene diacetate (99 mg, 0.310 

mmol) and sodium tetrachloroaurate dihydrate (184 mg, 0.465 mmol) at 0 0C 

and stirred for 30 minutes at room temperature under open air. After completion 

of the reaction (monitored by TLC) the reaction mixture were quenched with a 

saturated solution of sodium thiosulfate and separated the organic layer.  

Extracted the aqueous layer with CH2Cl2; combined organic phase was washed 

with brine, and dried over Na2SO4. The solvent was removed in vacuum 

obtaining the mixture. This mixture was reacted with Zn(OAc)2·2H2O in a 

mixture of DCM (280mL) and MeOH (150mL) and was stirred at 23ºC for 3 h. 

The reaction was quenched with water (60mL), and the mixture was extracted 

with DCM. The combined extracts were washed with water and dried over 

anhydrous MgSO4. The solvent was removed under reduced pressure to give 

as the desired product (0.382g 82% Yield). 1H NMR (CDCl3, 400 MHZ) δH: 9.63 

(d, J=4.6Hz, 2H); 9.16 (d, J=4.6Hz, 2H); 8.83 (d, J=4.4Hz, 2H); 8.67 (d, 

J=4.4Hz, 2H); 7.61 (t, J=8.4Hz, 2H); 7.20 (d, J=8.4Hz, 4H); 6.91 (t, J=8.5Hz, 

8H); 3.79 (t, J=6.2Hz, 8H); 2.43 (t, J=7.5Hz, 4H); 1.53-1.49 (m, 4H); 1.44-1.41 

(m, 21H); 1.32-1.27 (m, 12H); 0.95 (m, 8H); 0.88-0.76 (m, 22H); 0.61-0.44 (m, 

44H). 

Synthesis of LCVC01: To a solution of [5-Bis(4-hexylphenyl)amino-15-

(Triisopropylsily)ethynyl-10,20-bis(2,6-di-octooxyphenyl)porphirinato] Zinc(II) 15 

(240mg, 0.154mmol) in dry THF (20mL) was added TBAF (0.78mL) 1M in THF. 

The solution was stirred at 23ºC for 30min under dinitrogen. The mixture was 

quenched with H2O and then extracted with CH2Cl2. The organic layer was 

dried anhydrous MGSO4 and the solvent was removed under reduced pressure. 

The residue and 7-bromobenzo[c][1,2,5]thiadiazole-4-carboxylic acid 2 (190mg, 

0.76) were dissolved in a mixture of dry THF (36mL) and NEt3 (7mL) and the 
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solution was degassed with dinitrogen for 10min. Then, Pd2(dba)3 (42mg, 

0.046mmol) and ASPh3 (100mg, 0.30mmol) were added to the mixture. The 

solution was refluxed for 4 hours under dinitrogen. The solvent was removed 

under reduced pressure. After that, the residue was purified by column 

chromatography (silica gel) using DCM/CH3OH =20/1 as eluent. 

Recrystallization from CH3OH/Ether to give LCVC01 (180mg, 74%) 1H NMR 

(THFd-8, 400 MHZ) δH: 9.97 (d, J=4.6Hz, 2H); 9.04 (d, J=4.6Hz, 2H); 8.81 (d, 

J=4.6Hz, 2H); 8.55 (d, J=4.6Hz, 2H); 8.54 (s, 1H); 8.30 (d, J=7.6Hz, 1H); 7.67 

(t, J=8.4Hz, 2H); 7.20 (d, J=8.4Hz, 4H); 7.04 (d, J=8.4Hz, 4H); 6.92 (d, 

J=8.4Hz, 4H); 3.87 (t, J=6.3Hz, 8H); 2.47 (t, J=7.4Hz, 4H); 1.58-1.51 (m, 4H); 

1.36-1.27 (m, 12H); 1.00-0.57 (m, 66H). 

Synthesis of LCVC02: To a solution of [5-Bis(4-hexylphenyl)amino-15-

(Triisopropylsily)ethynyl-10,20-bis(2,6-di-octooxyphenyl)porphirinato] Zinc(II) 15 

(165mg, 0.106mmol) in dry THF (15mL) was added TBAF (0.54mL) 1M in THF. 

The solution was stirred at 23ºC for 30min under dinitrogen. The mixture was 

quenched with H2O and then extracted with CH2Cl2. The organic layer was 

dried anhydrous MGSO4 and the solvent was removed under reduced pressure. 

The residue and 5-(7-bromobenzo[c][1,2,5]thiadiazol-4-yl)thiophene-2-

carboxylic acid 5 (180mg, 0.53mmol) were dissolved in a mixture of dry THF 

(30mL) and NEt3 (4.8mL) and the solution was degassed with dinitrogen for 

10min. Then, Pd2(dba)3 (29mg, 0.031mmol) and ASPh3 (71mg, 0.212mmol) 

were added to the mixture. The solution was refluxed for 4 hours under 

dinitrogen. The solvent was removed under reduced pressure. Then, the 

residue was purified by column chromatography (silica gel) using DCM/CH3OH 

=20/1 as eluent. Recrystallization from CH3OH/Ether to give LCVC02 (115mg, 

66%) 1H NMR (THFd-8, 400 MHZ) δH: 9.96 (d, J=4.6Hz, 2H); 9.03 (d, J=4.6Hz, 

2H); 8.80 (d, J=4.6Hz, 2H); 8.55 (d, J=4.6Hz, 2H); 8.27 (s, 2H); 8.24 (d, 

J=4.0Hz, 1H); 7.84 (d, J=4.0Hz, 1H); 7.65 (t, J=8.4Hz, 2H); 7.19 (d, J=8.4Hz, 

4H); 7.02 (d, J=8.4Hz, 4H); 6.91 (d, J=8.0Hz, 4H); 3.85 (t, J=6.4Hz, 8H); 2.46 (t, 

J=7.3Hz, 4H); 1.59-1.51 (m, 4H); 1.28 (m, 12H); 0.97-0.55 (m, 66H). 13C NMR 

(100MHz, THF-d8, ppm) δ 160.78; 156.76; 153.02; 152.11; 151.53; 151.28; 

151.02; 134.90; 132.57; 132.06; 131.27; 130.81; 130.42; 130.34; 129.16; 
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128.21; 127.29; 122.39; 121.49; 121.46; 115.27; 105.71; 68.73; 35.98; 32.54; 

32.36; 30.45; 29.58; 29.50; 29.40; 25.98; 23.32; 23.10; 14.23; 14.10  MS-ESI 

(m/z): [M+Na]+ calculated for C101H121N7NaO6S2Zn: 1678.8003; found: 

1678.7963.  
Synthesis of LCVC03: To a solution of [5-Bis(4-hexylphenyl)amino-15-

(Triisopropylsily)ethynyl-10,20-bis(2,6-di-octooxyphenyl)porphirinato] Zinc(II) 15 

(150mg, 0.09mmol) in dry THF (15mL) was added TBAF (0.50mL) 1M in THF. 

The solution was stirred at 23ºC for 30min under dinitrogen. The mixture was 

quenched with H2O and then extracted with CH2Cl2. The organic layer was 

dried anhydrous MGSO4 and the solvent was removed under reduced pressure. 

The residue and 5-(7-bromobenzo[c][1,2,5]thiadiazol-4-yl)furan-2-carboxylic 

acid 7 (146mg, 0.45) were dissolved in a mixture of dry THF (24mL) and NEt3 

(4mL) and the solution was degassed with dinitrogen for 10min. Then, 

Pd2(dba)3 (24mg, 0.026mmol) and ASPh3 (60mg, 0.18mmol) were added to the 

mixture. The solution was refluxed for 4 hours under dinitrogen. The solvent 

was removed under reduced pressure. The residue was purified by column 

chromatography (silica gel) using DCM/CH3OH =20/1 as eluent. 

Recrystallization from CH3OH/Ether to give LCVC03 (112mg, 76%). 1H NMR 

(THFd-8, 400 MHZ) δH: 9.80 (d, J=4.6Hz, 2H); 9.04 (d, J=4.6Hz, 2H); 8.81 (d, 

J=4.6Hz, 2H); 8.56 (d, J=4.6Hz, 2H); 8.41 (d, J=7.7Hz, 1H); 8.34 (d, J=7.7Hz, 

1H); 7.93 (d, J=3.6Hz, 1H); 7.67 (t, J=8.3Hz, 2H); 7.41 (d, J=3.6Hz, 1H); 7.21 

(d, J=8.7Hz, 4H); 7.04 (d, J=8.7Hz, 4H); 6.93 (d, J=6.7Hz, 4H); 3.87 (t, 

J=6.5Hz, 8H); 2.47 (t, J=7.4Hz, 4H); 1.60-1.51 (m, 4H); 1.30 (m, 12H); 1.01-

0.57 (m, 66H). 13C NMR (100MHz, THF-d8, ppm) δ 160.78; 156.75; 153.03; 

152.10; 151.88; 151.53; 151.28; 151.02; 134.90; 132.57; 132.05; 131.31; 

130.82; 130.34; 129.16; 125.75; 123.93; 122.40; 121.49; 115.27; 114.40 

105.17; 68.72; 35.98; 32.54; 32.36; 29.91; 29.60; 29.50; 29.40; 25.98; 23.32; 

23.10; 14.23; 14.10  MS-ESI (m/z): [M]+ calculated for C101H121N7O7SZn: 

1639.8334; found: 1639.8365.  
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4.3.2 Device preparation  

 

All the devices for this work have been made as described in Chapter 2. 

Two types of TiO2 films were utilized depending on the measurements being 

conducted. Highly transparent thin films (8 µm) were utilized for L-TAS 

measurements. On the other hand, efficient DSC devices were made using 14 

µm thick films consisting of 20 nm TiO2 nanoparticles (Dyesol© paste) and a 

scatter layer of 4 µm of 400 nm TiO2 particles (CCIC, HPW-400). All films were 

sensitized in dye solutions at concentrations of 0.125 mM in Ethanol containing 

20mM chenoxydecholic acid were prepared and the film immersed overnight at 

room temperature. The sensitized electrodes were washed with Ethanol and 

dried under air. For this work we have used iodine electrolyte consisted of 0.5 M 

1-butyl-3-methylimidazolium iodide (BMII), 0.1 M lithium iodide, 0.05 M iodine 

and 0.5 M tert-butylpyridine in acetonitrile;  

 

4.4 RESULTS AND DISCUSSIONS 

 

In Figure 4.1 we can see the absorption spectra of LCVC01, LCV02 and LCV03 

dyes. Their photophysical and electrochemical characteristics are listed in 

Table 4.1 

 
Figure 4.1: Absorption spectra of LCVC01, LCVC02 and LCVC03 
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As shown in Figure 4.1 all the dyes exhibit typical porphyrin spectra with the 

bands associated to them. At around 450nm we observed an intense Soret 

band and between 600-700nm a lower intense Q-band. The absorption and 

emission values of three porphyrins are similar. The oxidation potentials of 

LCVC02 and LCVC03 are the same. However is 20mV lower comparing with 

the LCVC01. This is due to the presence of thiophene and furan between the 

BDT moiety and the carboxylic acid in LCVC02 and LCVC03 respectively. We 

do not observe a great difference in the HOMO and LUMO levels of the 

molecules and the values of them are in the case of the LUMO high enough to 

inject in the TiO2, and the HOMO level low enough to regenerate from the 

electrolyte. 
 

Table 4.1. Absorption, emission and electrochemical properties of LCVC01, LCVC02 
and LCVC03 

 

aMeasured in Tetrahidrofuran. In parenthesis molar extinction efficient at λabs (in M-1 cm-

1). cE0-0 was determined from the intersection of absorption and emission spectra in 

dilute solutions. dEHOMO was calculated using EHOMO(vs vacuum) = -4.88-Eox(vs Fc/Fc+). 
eELUMO was calculated using ELUMO = EHOMO + E0-0. 

 

Dye λabs 
(nm)a 

λem 
(nm)a 

Eox 
(V v’s 

Fc/Fc+)b 

E0-0 
(eV)c 

EHOM

O 
(eV)d 

ELUM

O 
(eV)e 

LCVC01 
448(212); 579(18); 

668(87) 
705 0.19 1.82 -5.07 -3.25 

LCVC02 434(92); 674(47) 715 0.17 1.81 -5.05 -3.24 

LCVC03 434(145); 674(70) 690 0.17 1.82 -5.05 -3.23 
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Figure 4.2: Cyclic voltammetry of LCVC01 (top), LCVC02 (middle) and LCVC03 

(bottom) recorded in 0.1M tetrabutylammonium hexafluorphosphate in 1:1 

acetonitrile:tert-butanol at a scan rate of 10 mV s-1. The working electrode consisted of a 
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platinum wire and the counter electrode a platinum mesh. The reference electrode was 

the silver calomel electrode (saturated KCl). All solutions were degassed with argon for 5 

mins prior to measurement. The red and black scans were recorded in the presence and 

absence of Ferrocene/Ferrocene+. 

 

Comparing the frontier orbitals of three molecules we observed that probability 

to find the highest occupied molecular orbital (HOMO) of three dyes is located 

predominantly on the donor moiety of the molecule. The probability to localize 

the lowest unoccupied molecular orbital (LUMO) is similar for LCVC02 and 

LCVC03 showing a significant shift through the acceptor due to the presence of 

the BDT acting as an electron drawing moiety that we don’t observe for 

LCVC01 dye. With this observation we can say that the in the case of LCVC02 

and LCVC03 an increase of Charge Transfer. 

 

 
Figure 4.3: Frontier molecular orbitals of LCVC01, LCVC02 and LCVC03 at the 

B3LYP/6-31G (d) level 

 

LCVC01, LCVC02 and LCVC03 were used to fabricate DSSC solar cells and 

measured under illumination conditions (AM 1.5G 100 mW/m2). Device 

properties are listed in Table 4.2. 
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 Table 4.2: Photovoltaic parameters obtained with LCVC01, LCVC02 and LCVC03 

 

The photocurrent density observed for LCVC01 and LCVC03 is lower when 

compared to LCVC02. The best Jsc corresponds to LCVC02 that displays an 

impressive 20.00 mA/cm2, such current is actually as high as the best 

perovskite solar cells, in contrast with the 7.7 and 5.8 achieved for LCVC01 and 

LCVC03 respectively. The open circuit voltage  (Voc) for LCVC01 is 650mV. As 

reported before22 the introduction of a group between the BDT and the 

anchoring group as in the case of LCVC02 made that the Voc increase in 50mV. 

Despite this effect is not observed for LCVC03 with a low Voc of 580mV. All 

dyes present similar values of fill-factor (FF). In Figure 4.3(a) is showed the I-V 

curves of LCVC01, LCVC02 and LCVC03. In figure 4.3(b) is showed the 

incident-photon-to-current conversion (IPCE) of the champion cell of LCVC02 

exhibiting an IPCE up to 800nm. IPCE spectrum shows two maxima due to the 

Soret and Q bands of the porphyrin at 480nm of 76% and 670nm almost 90%. 

 

Electron density and electron lifetime (Figure 4.4 and 4.5) in these devices were 

probed using charge extraction and transient photovoltage measurements 

respectively24-26. We observed higher charge density for LCVC02 when 

compared to LCVC01. However the greater difference is comparing LCVC03 

that presents a lower charge density. From the TPV measurements (Figure 4.5) 

a slower recombination dynamics can be seen for LCVC02 and a similar 

electron lifetime is also observed for LCVC01, which explains the similar 

voltage achieved for these devices. Also in agreement with the shortest electron 

lifetime for LCVC03. The difference obtained can be explained due to the 

differences in the e-
TiO2/electrolyte+ recombination rate. Some studies reported 

before10,27,28 show that the introduction of heteroatoms could bind to I3- and I2 

Dye Voc (V) Jsc 
(mA/cm2) 

FF (%) η (%)* 

LCVC01 0.65 7.69 75.40 3.84 (4.52) 

LCVC02 0.70  20.00 74.41 10.41 (12.51)  

LCVC03 0.58 5.81 74.42 2.55 (2.82) 
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forming complexes. Due to this, more species are present in the TiO2 surface 

accelerating the recombination rate. In our study we have seen how this 

hypothesis effects a change in the device performance by just the change of 

only one atom in the molecular structure.  

 

 
Figure 4.3 (a) I-V curves for LCVC01, LCVC02 and LCVC03 (b) IPCE spectra of 

LCVC02. DSC devices recorded under AM 1.5G radiation. Also shown are I-V dark 

curves. 

 

 

20

10

0

-10

-20

P
ho

to
cu

rr
en

t (
m

A
/c

m
2 )

0.80.60.40.20.0
Voltage (V)

(a)

 LCVC01
 LCVC02
 LCVC03
 Dark
 Dark
 Dark

100

80

60

40

20

0

IP
C

E 
(%

)

700600500400
λ (nm)

 LCVC02

(b)



Chapter 4 

 

100 

 

In order to probe charge recombination and regeneration by the I3−/I− redox 

couple in transparent DSC devices Laser transient absorption spectroscopy has 

been used. In figure 4.6 a, b, c we can see the charge recombination decays 

between the photo-injected electrons at the TiO2 and the oxidized dye for 

LCVC01, LCVC02 and LCVC03 respectively. The data was recorded in 

absence of electrolyte (black) and corresponds to the long-lived decays 

assigned to the dye cation formed following photo-excitation. In red color we 

monitored the same process but in presence of electrolyte (red) with loss of 

cation signal due to the regeneration by I-.  

In order to estimate the regeneration efficiency we quantified the lifetime at the 

FWHM (full with at half maximum) of the signal which is 20, 60 and 60µs for 

LCVC01, LCVC02 and LCVC03 showing a small difference comparing 

LCVC01 with LCVC02 and LCVC03 due to the small difference in oxidation 

potentials having LCVC01 more positive oxidation potential and presenting 

more driving force. 

 
Figure 4.4: Electron density as a function of cell voltage for LCVC01, LCVC02 and 

LCVC03 devices. 
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Figure 4.5: Device electron lifetime τ as a function of charge density for LCVC01, 

LCVC02 and LCVC03 devices. 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

(a)

Δ
 O

.D
. (

no
rm

al
iz

ed
)

Time (secs)

2

3

4

5
6
7
8
9

0.01

2

τ 
(s

)

1016 1017 1018 1019

e
-
density (e

-
/cm

3
)

LCVC01 
LCVC02 
LCVC03 

(b)



Chapter 4 

 

102 

 

 

 
 
Figure: 4.6 Transient absorption kinetics of (a) LCVC01, (b) LCVC02 and (c) LCVC03 

recorded for 1cm2 area devices comprising 8 µm TiO2 films in the presence of a blank 
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electrolyte (black) and an iodide/tri-iodide red/ox electrolyte (red). Kinetics were recorded 

at 825nm for LCVC01, 775nm forLCVC02 and 825nm for LCVC03 following excitation at 

600nm.  

4.5 CONCLUSIONS 

We have been synthesized a new series of push pull porphyrins using a 

diphenylamine as a donor moiety and an acid group as anchoring group with 

the introduction of a BDT group between the porphyrin core and the anchoring 

group for LCVC01 and the introduction of a thiophene and a furan between the 

BDT and the anchoring group for LCVC02 and LCVC03 dyes. The DSSC 

performance gave us a record cell of 10.4% for LCVC02, however only a 3.84% 

and 2.55% were achieved for LCVC01 and LCVC03 respectively. As we have 

studied in the past the thiophene introduced in LCVC02 reduce recombination 

reaction. Morever, the introduction of a furan moiety doesn’t make the same 

effect. In that case, the electronegativity of the oxygen atom interacts with the 

electrolyte oxidized species placing them closely to the TiO2 surface and 

accelerating the recombination rate.  
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Chapter 5 
Novel Porphyrin-based small molecule 
using indoline as secondary donor for 
solution processed bulk-heterojunction 
organic solar cells. 
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5.1 ABSTRACT 
We have synthesized and characterized a new symmetric molecule based on 

our  “push-pull” strategy (VC53) using a core of porphyrin as a main donor 

moiety and the indoline group as secondary electron donor for solution 

processed bulk-heterojunction organic solar cells obtaining an efficiency of 

1.2% with a photocurrent of 5 mA cm-2 ensuring efficient electron transfer to 

PC70BM. 

 

5.2 INTRODUCTION 
Bulk-heterojuntion organic solar cells (BHJ-OSC) based on both; polymers1-4 
and small molecules5 have been intensively developed in recent years and are 

still in continuous progress due to the great promising alternatives that these 

organic materials present for solar cells ( such us implementation in buildings). 

These materials can be prepared in multi-scale and, additionally, the use of 

solution-processed techniques for device fabrication promise to lower the cost 

of the solar cell6,7. In spite of these clear advantages, these kind of devices are 

always accompanied with some other unsolved scientific matters that defines 

the entire field development such as studies related on charge generation or the 

determination of all losses mechanisms and the long-standing question about 

device stability.8-13 

 

Recent published results for solution-processed small molecule bulk-

heterojunction organic solar cells (smOSC) have demonstrated efficiencies 

reaching 8% under standard measurement conditions14-16 by using different 

molecular designs; On the other hand, the approach of using conjugated donor-

acceptor (D-A) frameworks facilitate the internal charge transfer because their 

“push-pull” properties and, in addition, the energetic levels can be easily tunned 

by introducing different electron donors or acceptor moieties.17,18 

In addition, the porphyrins (POR) have been also widely studied and used in 

many BHJ-OSC17-21 and DSSC22-25; PORs are based and inspired on 

photosynthetic systems, they provide extensive π-conjugated systems, with a 

fast electron transfer, and an extremely high absorption coefficients. 

Furthermore, their electrochemical properties can be tuned by both; the 
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insertion of the metal in the cavity or/and the addition of moieties to the 

periphery using well-stablished synthetic procedures.18 

In contrast, the use of porphyrins as small molecule in solution processed BHJ 

smOSC provides, in general, lower device efficiencies17-20 than polymeric 

electron donor materials. 

 

The main reasons are: in first place, the poor solubility of these materials in 

most common-in-use organic solvents for processing, and, secondly, the weak 

intermolecular interactions with the acceptor moieties. For both reasons the 

addition of an additive is usually required.21 Despite of that, the use of porphyrin 

in smOSC has recently reach values of efficiencies as high as 7%26, competing 

very close with other small molecule moieties. 

 

In the present work, a porphyrin based on symmetric “push-pull” framework has 

been designed and synthesized. The architecture, described as D-A-D-A-D, is 

based on a porphyrin core at the centre of the molecular backbone and the 

indoline27,28 moieties, as secondary donors placed at the periphery. The 

benzothiadazole moiety29 is used as intramolecular acceptor moiety. This 

design allows a relative low HOMO energy values favouring higher open circuit 

voltages, Voc, and proper LUMO energy levels that leads to efficient charge 

dissociation to the main fullerene acceptor. 

 

 
Scheme 5.1: Molecular structure of VC53 
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The complete devices were fabricated and analysed in this work. The most 

relevant parameters are presented below, as well as, the charge recombination 

measurements that will help to explain what limits the final device performance. 

 

5.3 EXPERIMENTAL SECTION 

5.3.1 Synthesis and characterization 

The Synthesis of VC53 is shown in Scheme 2. The intermediate 3 was 

synthesized via in-situ Suzuki coupling. The synthesis of the dye VC53 was 

carried out by attaching the intermediate 3 to the meso positions via 

Sonagashira coupling. The intermediates and VC53 were characterized by 1H-

NMR, 13CNMR and MALDI mass spectroscopy. 
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Scheme 5.2: Synthetic route of VC53. (Reaction conditions): (i) n-BuLi, THF, B(OCH3)3, 

-78ºC; (ii) Pd(PPh3)4, 2M K2CO3 aqueous solution, THF, 6 h, 80ºC; (iii) NBS, AIBN, 

benzene, 4h, reflux, hexamethylenetetramine, EtOH/H2O, 4h, reflux, HCl, 30 minutes, 

reflux; (iv) TFA, DCM, 4 h, 23ºC, DDQ, 1h; (v) Zn(OAc)2·2H2O, DCM/Methanol, 3 h, 

23ºC; (vi) NBS, DCM, 6 h, 0ºC; (vii) triisopropylsilylacetylene, Pd(PPh3)2Cl2, CuI, THF, 

Net3, 4 h, reflux; (viii) TBAF, THF, 30min, RT; (ix) Pd(PPh3)4, NEt3, CuI, Toluene, 4 h, 

reflux;  

 

Synthesis of 4-bromo-7-(4-(p-tolyl)-1,2,3,3a,4,8b-

hexahydrocyclopenta[b]indol-7-yl)benzo[c][1,2,5]thiadiazole (3): 7-bromo-

4-(p-tolyl)-1,2,3,3a,4,8b-hexahydrocyclopenta[b]indole  1 (0.300g, 0.914mmol) 

was added to a round flask with 30mL of THF and was stirred under nitrogen 

atmosphere at -78ºC. A solution of nBuLi 2M in hexane (0.41mL, 1.09mmol) 

was added and the mixture was stirred for 15 minutes at -78ºC. After that, 

B(OMe)3 (0.15mL, 1.37mmol) was added and the reaction was stirred overnight 

at -78ºC. The crude was warmed at room temperature. In another Schlenk 

vessel, Pd(PPh3)4 (0.094g, 0.025mmol), 2 (0.24g, 0.82mmol), K2CO3 2M (4mL), 

the reaction mixture, and THF (25mL) were mixed and the reaction was stirred 

at 70ºC for 6 hours.  After the reaction, distilled water was added. The crude 

product was extracted using CHCl3, and the organic layer was dried over 

NaSO4. The residue was purified by column chromatography 

(Hexane/Dichloromethane 6:4) to obtain the desired product (0.230g, 54.4% 

yield). 1H-NMR (400 MHz, CDCl3) δH: 7.84 (d, J=7.7Hz, 1H); 7.68 (s, 1H); 7.63 

(dd, J=8.4Hz, 2Hz, 1H); 7.48 (d, J=7.7Hz, 1H); 7.20 (m, 4H); 6.97 (d, J=8.4Hz, 
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1H); 4.84 (m, 1H); 3.91 (m, 1H); 2.33 (s, 3H); 2.06 (m, 1H); 1.92 (m, 2H); 1.79 

(m, 1H); 1.64 (m, 2H).  

Synthesis of 3,5-di-tert-butylbenzaldehyde (5): A solution of 3,5-di-tert-

butyltoluene (25g, 0.122mol), N-bromosuccinimide (33.0g, 0.185mol) and 

azobisisobutyronitrile (AIBN) (0.9g, 0.0055mol) in benzene was heated with 

reflux under magnetic stirring for 4 hours. The reaction mixture was cooled, 

filtered through paper and the solvent was evaporated under vacuum. The 

residue was dissolved in 70mL of a solvent mixture composed by EtOH/H2O 

(1:1) and hexamethylenetetramine (50.0g, 0.357mol) was added. The solution 

was heated under reflux for 4 hours. Concentrate HCl was added (21mL) and 

the heating under reflux was continued for 30min. The ethanol solution was 

removed under reduced pressure, and the remaining aqueous layer was 

extracted with ether. The organic layer was dried over Na2SO4 and the solvent 

removed. Recrystallization from EtOH afforded the desired product as white 

crystals. (20.0g, 75% yield). 1H-NMR (400 MHz, CDCl3) δH: 10.0 (s, 1H); 7.70 

(m, 3H); 1.35 (s, 18H). 

Synthesis of 5,15-Bis-(3,5-bis-tert-butylphenyl)porphyrin (7): 

dipyrromethane (2.00g, 13.70mmol) and 3,5-di-tert-butylbenzaldehyde (2.98g, 

13.70mmol) were dissolved in DCM (1.78L) and degassed. Then, trifluoroacetic 

acid (0.91mL, 12.33mmol) was added and the mixture was stirred at 23ºC for 

4h under nitrogen. After that, DDQ (4.70g, 20.55mmol) was added and the 

mixture was stirred 1 h more. After, the mixture was basified with Et3N (2.31mL) 

and filtered through silica. The solvent was removed under vacuum and the 

residue was purified by column chromatography using a mixture of 

Hexane/DCM (2/1) as eluent to give us the desired product (purple powder), 

(2.5g, 26.56% Yield1H NMR (CDCl3, 400 MHZ) δH: 10.32 (s, 2H) 9.43 (d, 

J=4.6Hz, 4H); 9.18 (d, J=4.6Hz, 4H); 8.15 (d, J=1.6Hz, 4H); 7.81 (t, J=1.6H, 

2H); 1.58 (s, 36H); 3.01 (s, 2H).  

Synthesis of [5,15-Bis-(3,5-bis-tert-butylphenyl)porphinato]-zinc(II) (8): A 

mixture of 5,15-Bis-(3,5-bis-tert-butylphenyl)porphyrin 7 (2.50g, 3.63mmol) and 

Zn(OAc)2·2H2O (5.20g, 36.39mmol) were mixed in DMF (150mL) and the 

solution was refluxed during 3 h. The reaction was quenched with water 
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(160mL), and the mixture was extracted using DCM (2x100mL). The combined 

extracts were washed with water and dried over anhydrous MgSO4. The solvent 

was removed under reduced pressure to give as the desired product. (2.34g, 

86% Yield). 1H NMR (CDCl3, 400 MHZ) δH: 10.32 (s, 2H) 9.44 (d, J=4.6Hz, 4H); 

9.20 (d, J=4.6Hz, 4H); 8.14 (d, J=1.6Hz, 4H); 7.83 (t, J=1.6H, 2H); 1.57 (s, 

36H).   

Synthesis of [5,15-Bis-bromo-10,20-bis-(3,5-bis-tert-

butylphenyl)porphinato]-zinc(II) (9): To a stirred solution of 5,15-Bis-(3,5-bis-

tert-butylphenyl)porphinato]-zinc(II) 8 (2.34g, 3.11mmol) in DCM (120mL) NBS 

was affed (1.10g, 6.22mmol) and the solution was stirred for 30 minutes. After, 

the reaction was quenched with acetone (20mL) and the solvent was removed 

under vacuum. The solution was filtered and the residue was washed with 

MeOH to give us the desired product. (Purple powder) (2.57g, 91% Yield). 1H 

NMR (CDCl3, 400 MHZ) δH: 9.66 (d, J=4.6Hz, 4H); 8.89 (d, J=4.6Hz, 4H); 8.01 

(d, J=1.6Hz, 4H); 7.92 (t, J=1.6H, 2H); 1.57 (s, 36H).   

Synthesis of [5,15-Bis-(3,5-bis-tert-butylphenyl)-10,20-bis-

triisopropylsilylethynylporphinato]zinc(II) (10): A mixture of [5,15-Bis-bromo-

10,20-bis-(3,5-bis-tert-butylphenyl)porphinato]-zinc(II) 9 (0.20g, 0.22mmol), 

triisopropylsilylacetylene (0.08mL, 0.35mmol), Pd(PPh3)2Cl2 (0.03g, 0.04mmol), 

CuI (4.18mg, 0.02mmol), THF (20mL) and Net3 (2mL) was stirred for 16h. Then, 

the solvent was removed under reduced pressure. The residue was purified by 

column chromatography using Hexane/DCM (3:2) to give as the desired 

product (purple solid) (0.19g, 77.2% Yield). 1H NMR (CDCl3, 400 MHZ) δH: 7.74 

(d, J=4.6Hz, 4H); 8.95 (d, J=4.6Hz, 4H); 8.00 (d, J=1.6Hz, 4H); 7.79 (t, J=1.6H, 

2H); 1.53 (s, 36H); 1.42 (m, 42H).  

Synthesis of VC53: To a solution of 10 (185mg, 0.165mmol) in dry THF 

(10mL) was added TBAF (2mL) 1M in THF. The solution was stirred at 23ºC for 

30min under nitrogen. The mixture was quenched with H2O and then extracted 

with CH2Cl2. The organic layer was dried anhydrous MgSO4 and the solvent 

was removed under reduced pressure. The residue and 3 (230mg, 0.498mmol) 

were dissolved in a mixture of dry toluene (10mL) and NEt3 (5mL) and the 

solution was degassed with nitrogen during 10min. After, Pd(PPh3)4 (38mg, 
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0.030mmol) and CuI (6.30mg, 0.030mmol) were added to the mixture. The 

solution was refluxed for 4 hours under nitrogen. The solvent was removed 

under reduced pressure. The residue was purified by column chromatography 

(silica gel) using DCM/CH3OH =20/1 as eluent to afford pure product (92 mg, 

yield 36%) 1H-NMR (400 MHz, THF-d8) δH: 9.90 (d, J=4.5Hz, 4H); 8.87 (d, 

J=4.5Hz, 4H); 8.19 (m, 5H); 8.05 (s, 1H); 8.03 (s, 2H); 7.97 (t, J=2.0Hz, 2H); 

7.93 (dd J=8.5Hz, 2.0Hz, 2H) 7.86 (d, J=7.5Hz, 2H); 7.27 (d, J=8.5Hz, 4H); 7.18 

(d, J=8.5Hz, 4H); 7.00 (d, J=8.5Hz, 2H); 4.92 (m, 2H); 3.92 (m, 2H); 2.33 (s, 

3H); 2.09 (m, 4H); 1.94 (m, 1H); 1.86 (m, 1H); 1.63 (s, 36H).  MALDI: m/z calcd 

for C100H90N10S2Zn 1558.6083, found 1560.6116 

 

5.3.2 Device fabrication  

 

Indium Tin Oxide (ITO) 5 Ohm/square (PSiOTec, Ltd., UK) sodalime glass 

substrates were first cleaned with acetone to remove the residual photoresist 

layer. The substrates were then placed in a teflon holder and cleaned by 

ultrasonic treatment in acetone (1 × 10 min) and in isopropanol (2 × 10 min), 

and dried under a nitrogen flow. The ITO substrates where ozone-treated in a 

UV-ozone cleaner for 20 min, and subsequently coated in air with a layer of 

filtered (0.45 mm, cellulose acetate) solution of Poly(3,4-

ethylenedioxythiophene) : poly(styrenesulfonate) (PEDOT:PSS, HC 

StarckBaytron P) (4500 rpm 30 seconds followed by 3500 rpm 30 seconds). 

The PEDOT:PSS film was dried at 120 ºC under inert atmosphere for 15 min. 

Active blend was prepared in a concentration of 20 mg/ml (total concentration), 

using porphyrin (VC53) as a donor derivative and PC70BM in a mixed solution 

of chlorobenzene and dichlorobenzene 3:1 v/v and 3% of pyridine to help 

porphyrin solubility; the blend was left under stirring 48 hour; the active layer 

was spin coated at 8000 rpm in air over the PEDOT:PSS layer obtaining a thin 

layer 85 nm thick. After the deposition the active layer was exposed to a 

thermal annealing post-treatment at 130ºC for 2 min. 
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The cathode layer was deposited by thermal evaporation in an ultra high 

vacuum chamber (1×10-6 mbar). The metals were evaporated through a 

shadow mask leading to devices with a defined area of 9 mm2; The LiF (0.6 nm) 

and the Al (100 nm) layers were deposited at the evaporation rate of 0.1 Å/s 

and 0.5-1 Å/s respectively. 

5.4 RESULTS AND DISCUSSION 

The absorption and emission spectra of VC53 in solution is shown below and 

their photophysical and electrochemical characteristics are listed in Table 5.1. 

 
Figure 5.1. The normalized absorption (red) and emission (black) spectra of VC53 in 

THF 
As we can see, the absorption and emission spectra for VC53 show the typical 

bands associated with porphyrins, An Intense Soret Band at 440 nm and 480 

nm and also an intense Q band at 702nm. The cyclic voltammetry 

measurements give as a results a oxidation potential peak of Eox = 0.150V and 

the corresponding ELUMO calculated was ELUMO =-3.28eV that is energetically 

high enough to achieve exciton dissociation at the bulk-heterojunction the 

interface8  
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Table 5.1. UV-Visible, steady-state fluorescence and electrochemical data for VC53  

aMeasured in THF. In parenthesis the molar extinction coefficient (ε) at labs (10-3M-1 cm-

1). bMeasured in 0.1M tetrabutylammonium hexafluorophosphate in THF at scan of 30 

mVs-1. The working electrode consisted of a platinum wire and the counter electrode a 

platinum mesh. The reference electrode was the silver calomel electrode (saturated 

KCl). All solutions were degassed with argon for 5 min prior to measurement. cEo-o was 

determined from the intersection of absorption and emission spectra in dilute solution. 
dEHOMO was calculated using EHOMO(vs vacuum) = -4.48-Eox(vs Fc/Fc+). eELUMO was 

calculated using ELUMO = EHOMO + E0-0 

The Light Harvesting Efficiency (LHE) obtained from the UV-visible absorption 

spectra of thin films is shown in figure 5.2. It is known that one of the main 

advantages is the great capability of porphyrins to absorb light in a broader light 

spectra taking into account the contribution of indoline groups; however, the 

limitation on thickness needed for efficient solar cells reduces the light 

harvesting efficiency of the film. 

 

Figure 5.2. The Light Harvesting Efficiency (from the UV-Visible absorption spectra) of a  

Dye λabs 

(nm)a 

λem 

(nm)a 

Eox 

(V v’s Fc/Fc+) 

E0-0 

(eV)c 

EHOMO 

(eV)d 

ELUMO 

(eV)e 

VC53 
527 (392) 

480 (493) 

702 (574) 

723 0.150 1.75 -5.03 -3.28 
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pristine VC53 film (blue) and VC53:PCBM70 film (Red). The thickness of these films 

corresponds to same thickness obtained in complete devices which is 85-90 nm 

Laser transient absorption spectroscopy (L-TAS) was employed with the aim to 

determine the charge transfer kinetics between the porphyrin and the fullerene 

as shown in figure 5.3. The thin BHJ film was excited at λex= 480nm 

corresponding to a maximum of the film absorption; The decay transient was 

measured from micro- to milliseconds time scale and the signal was fitted to a 

power-law exponential decay (Eq. 5.1), indicating an inhomogeneous 

distribution of localized states and, due to the slow time scale monitored, the 

reaction can be assigned to non-geminate recombination process between the 

porphyrin and the fullerene derivate with a half-lifetime of 3 microseconds and a 

α parameter of 0.5 at room temperature.30,31,32 

τ= τΔn0  ∗ na  (Eq. 5.1) 

 

 
Figure 5.3. Transient absorption decays of VC53:PC70BM film (Red) and pristine VC53 

film (Green) recorded at λprobe=800nm  for λex=480 nm. The black line corresponds to 

the power law fitting of the measured decay. 
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The design of this molecule allows favourable molecular aggregation (π-π 

stacking) due to the presence of the shorter alkyl chains linked over the core of 

the porphyrin; we expect this translate into an increase of the intra-molecular 

electron transport minimizing geminate recombination processes. 

Once the L-TAS kinetics were measured, we fabricated complete devices as 

described above in the experimental section; we obtained an average device 

efficiency of 1.2% under AM 1.5G simulated conditions as shown in figure 5.4. 

 

Figure 5.4. Measured current versus voltage (I-V) curves for VC53:PCBM70 devices at 

100 mW cm-2 and in dark. 

The photocurrent obtained (Jsc = 5 mA cm-2) is notable and correlates well with 

the LHE measurement shown above. Taking into account the LUMO energy 

difference between VC53 (-3.28 eV) and the fullerene derivate (-4.0 eV) it 

seems that exciton dissociation was efficient.4 

The obtained Voc of 680mV is not noticeably high; however represent a 

reasonable value taking into account the theoretical maximum value around 1V 
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obtained from energy level positioning difference of both VC53 (HOMOdonor: -

5.03 eV) and fullerene derivate (LUMOacceptor: -4.0 eV) using calculation 

procedures previously reported by other authors.33  

The FF of 36.5% is unambiguously the main limiting factor of the overall device 

performance and is known that strongly depends on carrier mobility and the 

balanced degree between hole and electron charges being generated at the 

blend and transported through the device active layer to the selective metal 

contacts. From the results obtained from LHE measurements and taking into 

account that electron mobility basically depends on the fullerene derivate, we 

can anticipate that this device present a poor hole mobility that limits the device 

performance.34,35 

The CE and TPV measurements were carried out as it have been previously 

reported by our group among others. 12,13,36 In Figure 5.5, we can appreciate a 

clear linear region at earlier applied bias until values close to the experimental 

Voc corresponding to 1 sun illumination, where an exponential trend appears. As 

we have reported and other authors have confirmed, the linear region is 

indicative that the device works as a capacitor and charges are likely to be 

stored at the electrodes11,37; On the contrary, under 1 sun illumination the 

exponential trend can be assigned to the charge being accumulated at the film 

and producing the splitting of the quasi Fermi levels in both materials. The 

energy difference between those quasi Fermi levels is equal to the observed 

Voc at 1 sun.  
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Figure 5.5. Measured charge density at different light bias, dashed line represents the 

linear trend related to the geometric capacitance of a VC53:PCBM70 complete device. 

 
Figure 5.6. Measured charge lifetime at different charge density of a VC53:PC70BM 

complete device. 

In the charge lifetime vs accumulated charge measurements (Figure 5.6), 

extracted using TPV and CE, we clearly differentiate two regions, the first one 

corresponding to a smoother decay at times between 4·10-4s and 1.5·10-5s that 
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does not corresponds to the real carrier life-time as it measured from the 

geometric capacitance of the cell and it should be attributed to the discharge 

time of the capacitor; The second region, measured life-time values below 10-

5s, truly correspond to the charge carrier recombination dynamics of the 

VC53:PC70BM solar cell. The latest data from the TPV were fitted to a power 

law (Equation 5.1) obtaining an α~5 indicating that the overall charge 

recombination is not only determined by non-geminate bimolecular 

recombination kinetics (with expected value of 2) but also by recombination 

processes at the electrodes interface due likely to the unbalanced mobility 

between holes and electrons.  

 

5.5 CONCLUSIONS 

 

A new porphyrin has been synthesized and characterized in order to study its 

applicability in smOPVs. The average efficiency achieved was 1.2% using as 

acceptor moiety PC70BM. The main limitation observed for this type of 

molecules is the low mobility of charges (holes) that impedes the use of thicker 

films that will lead to higher photocurrent. The recombination lifetime measured 

under working conditions is in the order of other OPV devices including both, 

small molecules and polymers. Thus, further work on this direction (improving 

mobility) should be the focus on the design and synthesis of porphyrins for 

applications in OPV using solution processed methods. 
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FINAL CONCLUSIONS 

 

In this Thesis, the synthesis and characterization of novel sensitizers for their 

applications in DSSC and OPVs have been described. For all of the Sensitizers 

presented the device performance have been done in order to study their 

applicability for the photovoltaic devices studying how change the efficiency of 

the devices versus the structure of the molecule. 

 

Basically we can summarize the conclusions as follows: 

 

• In Chapter 3 we have design a new sensitizer called VCL01 using as 

reference the LS-1 with the difference to include a 

cyclopentadithiophene unit in the π-bridge in the VCL01 and also the 

performance in DSC devices is described. We observed for the VCL01 

dye a moderate efficiency of 4.81%. However under 120mins of 

irradiation this efficiency has been increase in almost 50% showing a 

7.21%. The increase observed was due to the increase in Jsc reflected 

in the IPCE. And increase in the Voc is also observed due an increase 

of the electron lifetime seen in the Transient photovoltage 

measurements. After 120min of irradiation there is an improvement in 

the interaction between the dye and the TiO2, promoting a fast electron 

injection in the semiconductor. 

 

• In Chapter 4 we have design and synthesized a family of porphyrins 

called LCVC01, LCVC02 and LCVC03 in order to study how affect the 

introduction or not of a group between the BDT and the anchoring 

group and the importance to choose the correct group. The results 

achieved indicate that the introduction of a group not always is a good 

issue. Here we have presented the example of one group (thiophene) 

with a record efficiency of 10.4% and in other case we have introduced 

a furan group achieving a modest efficieny of 2.55%. With the 

photophysical studies of these molecules we have seen that the 
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introduction of a thiophene group in LCVC02 reduce the recombination 

rate making it a good option. However the introduction of a furan group 

for LCVC03 not only is showed a worse efficiency if not it seems that 

the oxygen atom interacts with electrolyte oxidized placing them closely 

to the semiconductor surface accelerating the recombination reactions. 

 

 

• In chapter 5 a porphyrin for OPVs applications have been synthesized. 

The efficiency achieved was 1.2% with PC71BM. Further optimizations 

and new design for small molecules is needed to achieve good 

porphyrins with better device performance. 
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ANNEX  
Scientific Contribution 
Journal Articles related with this Thesis 
Light soaking effects on Charge Recombination and Device Performance 
in Dye Sensitized Solar Cells Based on Indoline-Cyclopentadithiophene 
Chromophores. Lydia Cabau, Laia Pellejà, John N. Clifford* Challuri Vijay 
Kumar* and Emilio Palomares (J. Mater. Chem. A, 2013,1, 8994-9000). 
 
Synthesis of new high efficient Push-pull porphyrins for Dye Sensitized 
Solar Cells. Lydia Cabau, Antonio Moncho, Challuri Vijay Kumar, John N. 
Clifford, Núria López and Emilio Palomares. (Writed)  
 
 

Journal Articles not related with this Thesis  
Dye Molecular Structure Device Open-Circuit Voltage Correlation in Ru(II) 
Sensitizers with Heteroleptic Tridentate Chelates for Dye-Sensitized Solar 
Cells. Kuan-Lin Wu, Cheng-Hsuan Li, Yun Chi, John N. Clifford, Lydia Cabau, 
Emilio Palomares, Yi-Ming Cheng, Hsiao-An Pan and Pi-Tai Chou. (J. Am. 
Chem. Soc., 2012,134 (17), pp 7488-7496 ). 
 
Indoline as Electron Donor Unit in “Push-Pull” Organic Small Molecules 
for Solution Processed Organic Solar Cells: Effect of The Molecular π-
Bridge on Device Efficiency. Fernández Montcada, Nuria; Cabau, Lydia; 
Kumar, Challuri; Cambaru, Werther; Palomares, Emilio. Submitted 
 

Conferences 
Frontiers in organic, dye-sensitized and Hybrid solar cells. VII International 
Summer School of Krutyn, Poland 2011. 
 
Hybrid and Organic Photovoltaics (HOPV 2014) Lausanne- Switzerland 
2014. Poster Presentation 
Lydia Cabau; Vijay Kumar Challuri; John N. Clifford; Laia Pellejà; Emilio 
Palomares. Effect of light soaking on efficiency in Dye Sensitized Solar Cells 
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