APPENDIX -I-

Microstructural analysis by means of x-ray diffraction

|.l1.- Bragq'slaw of x-ray diffraction

To describe the way x-rays diffract in a perfect crystd (without distortions and with
aoms located in fixed podtions) we will condder that x-rays are pefectly pardld and
monochromatic (with a wavedength 1) and meke an incident angle g with respect to the
reticular planes of the crysta [1].

As a reault of interactions with aoms, x-rays are dispersed in dl directions, but the
diffraction beam is formed from those x-rays for which the incident angle is equa to the
reflected angle. For example, as can be seen in figure A1.1, the rays 1 and 1a drike atoms K
and P and are scattered in dl directions, but only in the directions 1' and 1a' these scattered
beams are completely in phase and therefore capable to reinforce one another (congtructive
interference). Therefore, the difference in ther pah length will fulfil the following
relaionship:

QK- PR=PK cosq- PKcosqg=0 (al.1)

Smilarly, the rays scattered by dl the aoms in the firs plane in a direction pardld to 1 are
in phase and dso contribute to the diffracted beam. This will actualy occur for dl planes

Separately.
However, rays 1 and 2 will be scattered by atoms K and L, respectively, and their path

difference will be:

ML+LN=d sng+d sinq (al.2)
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Figure A1l X-ray diffractioninacrystal [1].

Smilar reationships can be derived from other rays driking atoms in different planes.
Therefore, rays 1' and 2 will be completdly in phase if the following rdaionship is fulfilled
(difference of path length equa to awhole number of waveengths, n):

nl =2d snq (al.3)

where n is the reflection order, d is the interplanar difference and q is the incidence angle.
Thisrelationship is known as Bragg's law, since it was elaborated in 1912 by W.L. Bragg [2].

I.1l1.- The effect of crystallite sze and microstrains on the XRD patterns: Scherrer’s
formula deduction

Bragg's law of XRD assumes the crysd to be ided, without defects. This is usudly
not fulfilled in redity. Moreover, x-rays are never perfectly collimated, i.e. some divergence
is dways inevitably present. This is of big importance, snce it dlows determination of the
crystallite size, which isthe minimum part of materid thet diffracts coherently [1].

Let us congder a cydd of finite thickness t, composed of a set of m + 1 diffraction
planes (see figure A1.2). In the figure, q is the incident varidble angle, ¢ is the incident angle
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that fulfils exactly Bragg's law and | and d are the waveength of the incident beam and the
interplanar distance, respectively.

The rays A, D, .., M make an incident angle with the crystalographic planes exactly
equa to gs. Theray D’ is out of phase with respect to A’ by exactly an amount equa to one
waveength. And M’ is m wavelengths out of phase with respect to A'. Therefore, the rays A’
D', .., M intefere condructively and form a diffracted beam of maximum intensty. Let us
now suppose that two different rays, B and C, that make incident angles op and ¢, dightly
different from ¢, so that:

o =0, +Dq i
q; =0 - Dq
and fulfil the condition:
2t sng, = (m+1)l
¢, = (m+1) (15

2t snqg, = (m- 1)l

Thus, for g, the planesi and i + 1 are dightly out of phase and between the planes 0 and m it
is possble to find midway in the crystd a plane for which the difference of phase with respect
to B will be exactly | / 2, thus interfering destructively with it. These rays cancd each other
and 0 do the other rays from smilar pairs of planes throughout the crysa, the net effect
being that rays scattered by the top haf of the crysta cance those scattered by the bottom
hdf. The intendty of the beam diffracted a an angle q is therefore zero. Smilarly, the
intengty of the beam diffracted a an angle gy is ds0 zero. For rays making an incident angle
between g and gz the intengty will have an intermediate vaue between s and | = 0. Thus,
adigribution of intendtiesis obtained.
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e Tl

Figure A12: Finite crystallite size effect on diffraction [1]

Subtracting equations (al.5) one obtains:

2l =2t (sing, - sing,) =4t cos gl—ng sin Mg» 4t MQ cosq,
e 2 g e 2 g e 2 g
(al.6)
where the gpproximation sin(x) > x has been used, together with:
a. +g
—> =0 (al.7)

If we ddfine (op - @) = b, where b is the hdf-haght width, from equation al.6 one can
deduce:

b= I

= 1 (al.8)
t cosq,
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which is the wel-known Scherrer formula for crysalite sze [1,3]. A more precise trestment
givesthd:

b 09

=29 (al.9)
t cosg,

This equetion is vdid only for crysdlite szes smdler than 100 nm. Moreover, t is not
exactly the crysdlite sze but the coherent diffraction domain (portion of crysd that gives a
beam of diffracted rays with wel-defined phase reaion). This means that didocations or
stacking faults indde the cryddlites can dso limit the coherent diffraction domain. Moreover,
for aninfinite crysd:

) ) . am-11 ¢ | .
lim(sing,)=lim ¢c———==—=9n i
im(sing,)=lim €2 5= 20 = sing, (al.10)

Thismeansthat for aninfinite crystd o = g5 = @, and the intensity will bead-Dirac.

Furthermore, during bal milling and heat treatments not only cryddlite sze is found
to vay but dso some drans may appear in the materid which, to some extent, can deform
the grains or particles. In generd, it is important to digtinguish between macrogtrains, which
affect the overdl crystd, and microdrains, which are created by the influence of neighboring
grans in the form of didocations, dacking faults eic. Both the cryddlite sze and
microgtrains can be evduated from the width of the diffraction peaks. However, in the peak
width there is aso an experimenta contribution. Therefore, in order to obtain reliable vaues
of the crydtdlite Sze, dl effects have to be somehow isolated and evauated separately.
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Crystal Diffraction Peak
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Figure A1.3: Effect of strains on the width and position of the diffraction peaks[1]

It is quditatively easy to understand that microgtrains contribute the broaden the
diffraction pesks, while macrosrans induce a shift in ther podtions. Figure A1.3 shows
schematic diagrams of (a) undrained crystd, (b) uniformly drained crysd and (c) non-
uniformly grained crysd. In (b) a macrogtrain is shown to bring about an increase of the cell
parameter, thus shifting the diffraction pesk to a lower angle. In (c) the non-uniform dran
makes different portions of the crystdlites to deform differently. Thus, the cdl parameter
vaies indde the cryddlite from one region to another. As a result, we would obtain severd
sharp pesks (one from every sub-cryddlite), mutudly overlapped which, as a result, would
give awide diffraction pesk, as observed experimentally.

I.111.- Evaluation of structural parameters by single-peak fit method (Marquardt Model)

The anadlyss of XRD data can be peformed by fitting pesk by pesk or fitting the
whole spectra (Fourier analyss). The andyds pesk by pesk was caried out using the
MARQFITO program, which was obtained from the Materids Engineering Department of
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Trento University. This program fits the pesks usng a pseudo-Voigt function, by means of
mathematic dgorithms, based on the Marquardt model [4], usng aminimum square method.

The diffraction profile obtaned experimentdly, h(x), is the convolution product of a
“pure’ diffraction prafile, f(x), and the experimenta contribution, g(x):

h(x) = ¥(‘)g(e) f(x- e)de (al.11)

Crygdlite szes and microgtrains are determined from the pure diffraction profile, f(x).
A good approximation of f(x) is obtaned usng a pseudo-Voigt function [5], which can be
written as a lined combinaion of a Cauchy (rdated to cryddlite sze) and Gaussan (related
to microdrains) functions. The width of the experimenta contribution to the diffraction pesk,
g(x), aso has these two components.

It has been demondrated that the Voigt function is a good mathematical approach to
describe the behavior of the diffraction pesks [6]. In particular, it can be written as the
convolution product of a Gaussan, G(x), and a Lorentzian (or Cauchy), C(x), functions,
which when normdized to the peek integrated intendties, are given by:

é u
G(x) = 2 In—2>expé- 4'22x20 (al1.12)
W, V p e Wi, @
e u
e u
2 1 4 1 .
C(X) =—x——>%& —u (al.13)
p W, gl+ 4x° u
u
é szﬂ

where x represents the distance with respect to the maximum of the diffraction pesk (it takes
the value O at the peak center) and Wyy» is the full-width a hadf height, once the background is
eliminated. Sometimes it is dso desgnated as HWHM (half width at half maximum). It is
necessary to disinguish Wiy, from the integra width, b, which is defined as the integrated
intengity of the peek divided by its height:
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b == (20)d(2q) (a1.14)

where |, is the maximum intendty of the pesk and 1(20) is the intendty corresponding to the
ange2qg

Therefore, the ingrumentd function, g(x), has two contributions. gaussan (ge(X)),
which is manly due to the x-rays source and geometry and is especidly important for low
agles (29 < 907, and the lorentzian (gc(x)), which is manly due to the wavdength
disperdon and is especidly important for high angles. Therefore, g(x) can be written as the
convolution product of ge(X) and gc(X), which we can indicate in asmple way asfollows

9(x) = ga(X)* ge(x) (al.15)
Smilaly, the pure diffraction profile, f(x), can be expressed as a convolution product
of a gaussan contribution, due to micrograins, and a lorentzian contribution, due to crysalite
sze digtribution. We can express, therefore, f(x) asfollows:
F(X) = fo (* fo(¥) (a1.16)
In summary, the experimentd profile can be written in thisway:
h(x) = [fs(X)* g ()] * [ fe(X)* Ge(X)] (a1.17)
To avoid having to cdculate lengthily the integrals of the convolution product, a good
approximation is to use the pseudo-Voigt function, ingead of the Voigt function. The pseudo-
Voigt function can be written as alinear combination of Cauchy and Gauss functions:

pV(x) =hC(x) + (1- h)G(x) (al.18)

where h is the Gaussan parameter, which can take values from 0 to 1. If h is dose to unity
this indicates that the curve is lorentzian-like. Conversdy if h is close to O, the gaussan
contribution predominates. For x = 0, i.e a the maximum intensty, the pseudo-Voigt
function can be written in the following way:

2oxel 6 & /InZQael 0
V(0) =h ¢—= ++(1- h —c T al.19
V) epP g V\{/zé ( )é P a V\{/zb ( )
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Moreover, both the integrd width and the full width a hadf height, are taken into account in
the factor form parameter:

F= 2N, (a1.20)
b
Hence, it is possible to express the integra width asfollows:
W, area
=212 - peak _ 1 (a1.21)
F I, pV(0)

where the last equdlity isvaid when the overal area of the peek is normalized to unity.

Therefore, the form factor gives an idea of the gaussan and lorentzian profile contributions,
gnce it can be expressad in the following way:

& 0 @ 6u

- Tu
F=6& Ip 4GP lp “hu (al.22)

g In2~ 82 In2~ U

In2. nZz. 3

& \p g eé P o{

This rdaionship holds both for the indrumental or the observed (experimenta) profiles and,
thus, it avoids having to work with the convolution products.

Experimentaly, it has been demondrated that the observed and experimental profiles
fulfil the following relaionships[5]:

b

FC =a, +a,F +a,F? (al.23)
12

Po b 10, & - 29 4bF +b,F? (al.24)

b e pg

where the a and b parameters take the following values:
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ap = 2.0207 bo = 0.6420

a; =-0.4803 by = 1.4187

a» =-1.7756 b]_ =-2.2043
b, = 1.8706

The error in this gpproach is edimated to be less than 1 %. Moreover, the following
relationships are dso vdid:

b2 =b2+b2 (al.25)
b =b +by (al.26)

The vdues g Wiz and h for the experimenta spectra are determined using the fitting
program. From equation al.22 it is possble to determine the form factor of the observed
gpectra and from equation al.21 the integrd width, b, can dso be evauated. Then, usng
equations al.23 and al.24 it is possble to caculate b, and bng. The ingrumentd vaues of
W2 and h were determined using a S single-crysta standard and they were found to fulfil the
following expressons.

1-h = 0.84220 — 6.6440- 103 (29)
Wip 2= 1.8064- 10+ 1.3797- 10 tg(g) + 7.6180- 10 (tg(Q)’* (al.27)

Findly, expressons al.25 and al.26 can be used to determine the Cauchy, by, and
Gaussan, bxg, contributions of the “pure’ diffraction profile.

The Cauchy pat of the integrd width, bxc, is reaed to the micrograins, while the
gaussan contribution, bxg, to the width is related crydtdlite sze. Hence, for a specific pesk,
cryddlite Sze is determined from borc using the following expression:

I
dy =77 al.28
ki b cosq, ( )

wheregs is the angular postion of the pesk (measured in radians) and | is the wavdength
(messured in A). The vaue of dry represents the diffraction coherent domain and is measured
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ds in A. This formula is able to esimate crystalites sizes up to 1000 A. For larger dnw, brc
tendsto 0 and dyy to ¥. Equation al.28 is caled the Scherrer formula.

The following expression can be used to determine microdrains.

bfG
490

microstrain= <e> =

(al.29)

where <e> represents the upper limit of microgtrains. However, it is more frequent to use the
mean square root of microstrains, <€>2 (rms strain), which is related to <e> in the
following way: <e> = 1.25 <e#>12,

I.1V.- Thefull pattern fit procedure: Rietveld M ethod

The Rietvdld method is used to obtan dructurd information of the sample by fitting
the entire XRD pattern, thereby overcoming the problem of pesk overlap and dlowing the
maximum amount of information to be extracted. In the Rietvedd method, during the
refinement process, dructura parameters, background coefficients and profile parameters are
varied in a least-squares procedure until the calculated powder profile, based on the structura
model, best matches the observed pattern [7].

This method was firgd applied to powder neutron diffraction data but later it was
adapted for use with x-ray data. A limitation of the Rietveld method is that one must start with
a modd that is a reasonable agpproximation of the actud dructure and it is, therefore,
primaily a dructure refinement, as opposed to dructure solution techniques. Rietveld
refinements can yield very precise sructurd parameters, as wel as quantitative analyses of
phase mixtures.

The basc requirements for any Rietveld refinement are accurate powder diffraction
intengty data measured in intervas of 2q (i.e. step-scan), a Sarting mode that is reasonably
close to the actud crysa dructure of the materid of interet and a modd that accurately
describes shapes, widths and any systematic errors in the postions of the Bragg pesks in the
powder pattern.

The cdculation of dl sructurd parameters, by means of the Rietvedd method, has

been carried out usng the MAUD program, crested by L. Lutterotti in Trento University [8].
Although it is out of the scope of this thesis to give a detailed description of dl the equations
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used by the program, in the following paragraphs some of the more reevant aspects of the
way the program fits the data will be summarized.

During a Rietvdd refinement, the quantity that is minimized by the leest-squares
procedure is the weighted R-pattern, Ry, which isgiven by [7]:

1/2

(al.30)

Ea

1]
@®D> D (D> (D~
_ Q_)o
-Q9 =
= R
5 '
N 6_<

where Y, is the observed intendty and Y. is the caculated intendty a step i, and w; is the
statigticd weight assgned to each Sep intengty:

W =s/=s?+s] (al.31)

Here sip is the background standard deviation and sig is the standard deviation a each step i
of the rest of the spectrum. The goodness of fit can be estimated from comparison of Ry, with

the following parameter:

(al.32)

where N is the number of points in the spectrum and P the number of parameters to be fitted.
Usudly the results are normaized and expressed in terms of GoF = Ryp/Rexp. If GoF would

take avaue equd to 1 it would indicate thet the fit is perfect.

The cdculated XRD profile, Y;, can be expressed in the following way:

Y, (29) =[B* 1] (2q) + bkg (a1.33)

where B(29) is the function that describes the sample profile, 1(29) is the ingrumentd profile
and bkg is the background, which is fitted using a 4™ degree polynomid. As in the Marquardit

model B and | are fitted using a pseudo-Voigt function.

Actudly, complicated agorithms are used to express B(2qQ). For cryddlite sze and
microgtrains determination MAUD used the Delft model [7,9], which is based on the fact that
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broadening due to crygdlite Sze refinement does not change with 2g, while the microdrains
contribution depends on 2g The program is dso adle to quantify stacking faults, based on
Warren's formulae [10]. In brief, Warren's modd tekes into account the experimenta
observation that, for example, in a hexagona close-packed phase, sacking faults make
increase the widths for XRD pesks with Miller indexes (hkl) satidying the following
conditions h - k = 3 n+ 1 (where nisan integer) and | = 0 and, at the same time, they are
responsble for the anomaous decresse of the rdative intendty of pesks with | even.
Moreover, MAUD is able to discern into two different types of dacking faults, namey
deformation (due to dip) and twin (due to the formation of twins) dacking faults.
Deformation stacking faults decresse dightly the intengty for pesks with | even and increase
the intengty for pesks with | odd. The broadening due to deformation faults is the same for |
even or odd, but the broadening due to twin faults is only one-third as large for | odd as for |
even. The different effects of both types of faults into the diffractograms are taken into
account in the full-pattern fitting procedure in order to quantify them. There are no pesk
displacements and no peak asymmetries as aresult of either deformation or twin faults.
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M acr oscopic magnetic properties. Units

In the gaussan-cgs units sysem, with which our results will be given, the magnetic
induction or magnetic flux density, B, can be expressed by the following relationship [1]:

B=H +4pM (a2.1)

where B is messured in Gauss (G), H is the goplied magnetic fiedd and is measured in Oe and
M is the magnetization and is measured in emu / cm?®,

The magnetization is defined as the raio between the magnetic moment, m, and the
volume, V, of the materid:

M=— (a2.2)

Microscopic  theories show that the dipolar magnetic moment, observed in bulk
ferromagnetic materids, arises from two different contributions. it is, in pat, due to the
rotation of eectrons around the atomic nucleus (orbital angular momentum) and aso to the
rotation of eectrons around their own axis (pin angular momentum). The aomic nucleus has
adso a magnetic moment but it is so smal compared to eectronic magnetization that it is
usudly neglected in macroscopic magnetic messurements. In - ferromagnetic materids, the
magnetic moments dign padld to each other forming the so-cdled magnetic domains and
the overdl magnetic moment can be conddered to be the sum of dl the magnetic moments of

evay individud aom. In the gaussan units system |rrd is measured in /g / G or emu
(electromagnetic unit).

Another common way to refer to the magnetic signd is the specific magnetization, s,
which is the ratio between the magnetic moment, m, and the mass, q:

S:E:\FZT(emU/g) (a2.3)
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wherer isthe dengty of the materid.

The curve M versus H is cdled hygseress loop. In generd, in FM materids, these
loops are symmetric and, therefore, the coercivity, Hc, is smply determined by the
intersection of the curve with the magnetic fidd axis. However, as has been described in the
introduction, in exchange coupled FM-AFM materids the loops become asymmeric, as
shown in figure A2.1. In this case, the coercivity can be cdculated from the vaues of Hcp and
Hco, i.e the intersections both with the postive and negative fidd axis, usng the following
formula

H., - H
He=| ———= (a2.4)
2
Smilarly, the hysteress loop shift is cdculated as follows:
H., + H
H. :% (a2.5)

Figure A2.1: Schematic picture of a shifted hysteresisloop

As indicated in the introduction, the sguareness ratio, which is defined as the ratio
between the remanent and saturation magnetization, Mr/Ms, gives an idea of how sgquare is the
hysteress loop. This magnitude, which is adimensond, has been determined after recentering
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the hyderess loop, i.e. removing the asymelry by shifting it by the amount He dong the
magnetic fidd axis.

The remanence is then smply the average between M'r; and M’rp, which are the
intersections of the curve with the ordinate (magnetization) axis of the hyseress loop (see
figure A2.1).

M|+ Mg |
2

M. (a2.6)

Determination of Ms has been carried out by the law of approach to saturation [1]:

M:MSA-HE- Hb2‘9+cH @2.7)

where a and b are magnetic coefficients that depend on the magnetic and Structurd properties
of the materid and c is the magnetic susceptibility. The parameter a is consdered to be
rdated to demagnetizing effects and inhomogenities of the maerid (gran boundaries,
didocations, non-magnetic indusons) while b is reated to the magnetic anisotropy and
magnetodtriction of the materid.

In a close magnetic circuit the magnetodatic energy sored in the system can be
expressed as.

U :%déﬁ) dv (a2.9)

The qudity of a permanent magnet, which is determined by the energy that it can
store, can be estimated from the product B.H. This product is not only a materid property but
it dso depends on the considered point of the hysteresis loop. Figure A2.2 shows the so-called
demagnetization curve, which is the second quadrant of the hysteresis loop. It can be seen in
the figure that a the point A’ the value of B is quite high. However, the value of H a this
point is small. Conversdly, the point A"’ has a high vaue of H but Bis small. Therefore it is
much better to work on point A, where B.H takes it maximum vaue which is commonly
referred as (BH)wmax. In order to have high (BH)vax there are three necessary requirements: to
have high Ms, alarge Hc and aloop as square as possible, i.e. Mr/Ms as close to 1 as possible.
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Figure A2.2: Demagnetization curve of a permanent magnetic material.

From the hysteresis loop the vaue of (BH)wax can be obtained by plotting the product
(B.H) as a function of B and edimating the maximum of the curve. In our particular case it is
necessary to re-center the hysteresisloop before doing such a representation.
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