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Between all possible accelerometer configurations, the quad bridge1 structure

allows a seismic mass flat movement accelerometer and it matches with the vertical

movement of the bridges. As can be seen in fig. 2.17, seismic mass is connected to the

frame via the bridges located near the vertex. The mechanical stress on the bridges is

given by [17]
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where F is the force that the acceleration causes to the seismic mass, x is the position

considering the origin to be located in the frame and the rest of the parameters are

defined in fig. 2.17.

From eq. (2.16), it can be seen that maximum stress is produced at x=0 and x=a1,

corresponding to the bridge’s edges, being its value
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When this magnitude is higher than 6-9 GPa, the accelerometer bridges suffer from so

high mechanical stress that could cause the structure to crack.

Natural frequency can also be known by ways of the Rayleigh method, which

gives,
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where Y stands for the silicon Young modulus. As compared to other accelerometer

configurations, as could be the more widely employed cantilever bridges [17] (where

the mass is fixed to the frame only by one side), the quad bridge structure generally has

a much higher natural frequency for its lowest vibrational mode. Thus, this design its

advantageous for those applications that would require a wider bandwidth.

                                                
1 It has to be noted that the term bridge is not the most commonly employed in MEMS, but is beam.
However, in order to distinguish between the mechanical part and the light beam, bridge will be used
throughout this work.
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Fig 2.17.: Quad bridge standard geometry.

Two different factors related to acceleration should be taken into account when

designing accelerometers. Firstly, although the device is designed to detect speed

variations in the y axis, by ways of the previously defined sensitivity, its output

response could be affected by crossed accelerations, that is, displacements either in the x

or z axis caused by speed variations in the y axis. This factor should be considered since

it could provide with significant errors on the acceleration measurement. Due to the fact

that the accelerometer center of gravity is not located at the same level as the bridge.

Then, the so-called lateral 3D effect is also observed: when the structure suffers from

acceleration in the direction of the bridges, a force momentum is produced that causes

mass to be displaced, increasing the crossed accelerations. This latter effect is especially

important in the cantilever bulk configuration [17]. On the other hand, quad-bridge

accelerometer, due to its configuration, does not suffer from crossed acceleration in the

direction orthogonal to the bridges, although in the parallel direction the crossed

acceleration still prevails. Thence, quad-bridge accelerometer configuration, as

compared to cantilever, should provide with more feasible results due to its lower

crossed accelerations.

The transduction principle in accelerometers can be either based on

mechanical strain or in mechanical stress variation. Those that belong to the first

category measure the spring deformation that cause the displacement of some of its
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components. Capacitive, resistive and optical accelerometers are its most significant

examples. On the contrary, examples of accelerometers that change its features as a

function of the mechanical stress variations could be resonant, piezojunction or

piezoresistive.

To overcome the inherent problems of electrical-based accelerometers, as

could be temperature dependence, low sensitivity and non stable output under

electromagnetic interference (EMI) [18], there has been several proposals of optical-

based accelerometers, both using integrated optics [19] and fiber optics [20]. The

complete immunity against EMI and the possibility of having the light sources far from

the device also makes them extremely useful in highly explosive atmospheres or where

a strong electromagnetic field is present. Among the different configurations available,

we have chosen two main actuation principles: if the FSZ is partially or completely

blocked by an absorbent media, that is, if there exists a diaphragm that controls the light

coupled to the output waveguide, we will refer to them as diaphragm optical

accelerometers. If no absorbent media is placed on the FSZ, but the waveguides are

somehow misaligned, we have labeled them as misalignment optical accelerometers.

Again, the question arises from the fact that up to date, the most common light

guiding structures used on optical accelerometers have a high refractive index layer

(frequently silicon nitride) in a cantilever configuration [20]. Although they could be

considered as optimum for MOEMS applications (mainly due to its high confinement),

it has to be noted that these waveguides normally have thicknesses around 0.2µm.

Although this dimension allows obtaining waveguides working in the visible range, the

dimensions of the light source should also be taken into account: if end-fire coupling is

used, then light is injected into the integrated optical device by ways of a single mode

fiber optic, whose core has a diameter of 4 µm. The large difference between the

relative areas of both structures causes an extremely high insertion losses (>20 dB).

Moreover, in order to obtain cross-section light confinement, the core of integrated

optical waveguides is partially etched, forming the so-called rib. In silicon nitride

waveguides this rib seldom exceeds 5 nm in size, being impossible to see it at naked eye

and hardening the alignment. Moreover, optical accelerometers should be able not only

to detect when speed changes are produced, but also the magnitude of this change. If
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waveguides with high numerical aperture are used (as is the case of silicon nitride), the

lineal working range is quite small, reducing the device sensitivity. Hence, using

ARROW configuration in uniaxial optical accelerometers offers several advantages:

low insertion losses, injection easiness and wide lineal range.

The optical accelerometer configurations proposed result from the

combination of two opposite technologies: integrated optics and MEMS. While the

former demands for relatively thick layers so as to obtain good light confinement, the

latter avoids to have multilayer structures, in order not to have the so-called bimetal

effect, by which two material with different mechanical stresses or different thermal

coefficients that cause structures to bend. Agreement has been achieved having only

waveguides in very concrete accelerometer regions, far away from the weal mechanical

parts (as could be the bridges).

2.3.1.2.1 Diaphragm Uniaxial Optical Accelerometers
The basic configuration of the diaphragm accelerometer proposed can be seen

in fig. 2.18a. It consists of two ARROW-A waveguides of different width (14 µm for

the input and 50µm for the output) placed head-to-head. In the middle region, a

diaphragm has been designed so as to absorb part of the light emitted from the input

waveguide, as shown in fig 2.18b. Since this diaphragm is connected to a seismic mass,

speed variation causes the mass and the diaphragm to move, causing a variation of the

total amount of optical power at the output waveguide. It has to be considered that the

diaphragm is made of silicon, which is absorbent at the working wavelength (633nm),

hence, not only the diaphragm reflects part of the light, but also absorbs the fraction that

its injected into it.

For the design of the optimum diaphragm thickness, the attenuation of a light

beam with a wavelength of 633nm propagating through silicon should studied. As can

be seen in fig. 2.19, for values above 6µm, losses are so high that it could be considered

that light is completely absorbed by the diaphragm. However, sometimes during the

technological steps, there exists the possibility that some dimensions were reduced,

especially if dry etching is used. For this reason, we have chosen a 20µm wide

diaphragm, which should be enough to overcome all possible problems during

fabrication.
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a) b)
Fig 2.18.: a) Scheme of the diaphragm accelerometer proposed. b) AA’ cut of fig 2.16a, where it can be
seen both the input and the output waveguides, together with the diaphragm, which is the main
responsible of the losses variation.
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Fig 2.19.: Losses in a light beam with a wavelength of 633nm propagating through silicon.

2.3.1.2.2 Misalignment Uniaxial Optical Accelerometers
In the previous accelerometer design it was shown that in order to be able to

detect acceleration not only in the –y direction, but also in the y direction, at zero g’s the

diaphragm should be placed at the center of the waveguide. Hence, the first step on the

fabrication would be a surface etch. The correct behavior of the sensor strongly depends

on this etch. A sub- or an overetching would cause an irreversible lost of the optimum

measurement range. For misalignment sensors, no initial etching is needed in its

fabrication. Thus, although it would not be possible to distinguish between positive and

negative acceleration values, the misalignment uniaxial optical accelerometers are

inherently self-aligned, which greatly simplifies its technology.
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The scheme of the proposed accelerometer can be seen in fig. 2.20a. In this

case, while the input and output are fixed on the frame, a third waveguide, called the

sensing waveguide, is placed over the seismic mass. If there are no speed variations, all

three waveguides are aligned and a maximum of power is obtained at the output, as

shown in fig 2.20b. When an acceleration is produced, the seismic mass and

straighforwardly, the sensing waveguide are displaced, causing a double misalignment

(input-sensing and sensing-output) increasing the device losses. What would be

desirable in this accelerometer would be that the mass displacement (i.e. the

misalignment) to be proportional to the acceleration.

a) b)

Fig 2.20.: a) Scheme of the misalign accelerometer proposed. b) AA’ cut of fig 2.19a, where it can be
seen the both the input and the output waveguides placed at the frame and the sensing waveguide on the
seismic mass, which detects speed variations.

Thence, it would be extremely useful knowing which are the expected losses

as a function of the waveguide misalignment, since the mechanical structure that held

the sensitive waveguide yet is to be configured. There are, however, some points that

the structure should fulfill: mass movement range should be as large as possible in order

to have large power differences. In terms of sensitivity, at least 3dB/µm should be

obtained for accurate device characterization

When comparing the working range of ARROW and TIR waveguides with

high ∆nce (fig. 2.21a), it can be seen that the latter have much higher sensitivity (since

small misalignments cause an huge power variation at the output). However, the linear

region (2nd derivative of the losses) where losses are directly proportional to

acceleration changes (see figure 2.21b) is extremely small. Thence, optical

accelerometers based on high ∆nce waveguides mostly act as a switch. On the other

hand, those based upon ARROW waveguides have a much larger working range, being
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capable to measure acceleration changes with non-critical alignment and with low

numerical aperture.
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Fig 2.21.: a) Total losses due to waveguide misalignment in a quad bridge optical accelerometer with 300nm-
thick TIR waveguide (∆nce=2) or ARROW waveguides. b) Linear regions where losses are directly
proportional to misalignment. Waveguides were 30µm-distanced.

2.3.2 Phase Change-based Devices

Measurement by interferometry maybe is one of the most sensitive techniques

employed, not only in integrated optics, but also in several other application fields. If

light coming from a coherent source is split in two beams, and each one follows a

slightly different optical path, when recombining them, an interference pattern is

obtained due to the phase change between both beams, which provides information

concerning the difference between the optical paths. This operation principle could be

applied to any field, especially in sensors or quality control, since its high sensitivity

allows detecting the slightest variation. Examples of devices based upon this operation

principle are Mach-Zehnder interferometers or Multimode interference couplers.

2.3.2.1 Interferometric Devices I: Mach-Zehnder Interferometer (MZI)
Probably, the Mach-Zehnder configuration is the most well known

interferometer in integrated optics. Its principle of operation is relatively simple,

however extremely effective. It consists on an Y-divider headed to an Y-junction, as

shown in fig. 2.22. Light entering through the input single mode waveguide splits into

two beams, which have a relatively large distance so as not to interact between them.
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After a given distance, light coming from both branches is recombined, via the Y-

junction, so as to form a single signal. If the optical path on both branches is exactly

equal, there will not be interference pattern at the output. On the contrary, if a

perturbation is applied during a certain length L to one branch, a phase difference ∆Φ

between the light propagating through the two waveguides will be introduced. This fact

leads to an intensity modulation at the device output, which can be written as:
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Where E is the electric field propagating along the waveguide, neff is the

effective refractive index and L is the sensor region. The labels sens and ref stands for

the sensing and the reference arm, respectively.

The intensity at the output is a simple interference pattern caused by the sum

of two slightly different waves. Following the principles of interferometric theory, it

becomes essential that the contrast of this pattern to be the maximum available. Whether

interference minimums and maximums could be distinguished or not depends on a

factor called fringe visibility (ν), which has the form:
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Fig 2.22.: Mach-Zehnder interferometer. Light injected in the input waveguide (A), is split in two
branches (B). After varying the relative optical path during a length L, both are recombined again at (C).
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If a single light source is used, then Esens=(1-Eref), hence, the fringe visibility is:
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It can be proved that maximum ν values are obtained when Esens=1/2, that is, optimum

MZI reading is obtained when the splitting is exactly the same (3dB) at both branches.

Although this division can be easily achieved in classical optics (using a beamsplitter)

this is not so easy in integrated optics. So far, there are two main problems with

integrated MZI: as it will be discussed in the next chapter, the precision and the size of

the Y-junction edge depends on the technology used. Moreover, the angle between

waveguides rarely has a value above 1º. Thence, waveguides slowly separates. Standard

technology is unable to perform accurately this kind of edges and normally they become

rounded when the distance between the waveguides is the same than the minimum

dimension obtainable with the technology used. This rounding is uncontrollable and

3dB dividers are difficult to obtain in the form of an Y-junction. The second problem

with MZI arises from its modal behavior. The previous analysis has been done

considering a single mode on each branch, that is, considering that all waveguides in the

MZI are single mode. If it is not so, intensity pattern at the output will not be defined by

expression 2.20, since more field contributions should be considered. Hence, if

waveguides have to be single-mode in the cross section, ribs have to be as minimum as

possible so as to avoid several modes in the horizontal direction (in the vertical axis of

an ARROW-based MZI, vertical modes higher than TE0 are filtered out due to their

excessive losses). However, as the rib decreases, the confinement is worse and losses at

the Y-junctions dramatically increase. Thence, it will become necessary to reach an

agreement between the confinement factor and the modal properties of the MZI

waveguides.

2.3.2.2 Interferometric Devices II: Multimode Interference Couplers (MMI)
Multimode interference couplers are based on self-imaging principles [21].

Self imaging is defined as the property that multimode waveguides have by which an

arbitrary input field profile is reproduced in single or multiple images at periodic

intervals along the propagation axis. As can be seen in fig. 2.23, the MMI central

structure is a highly multimode waveguide with effective refractive index, width and
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length neff,c, Wm and Lc, respectively. To inject light into and recover it from the

multimode region, a certain number of single-mode waveguides are placed at both sides

of this region. Such devices are normally referred as NxM MMI couplers, where N and

M stands for the number of input and output waveguides, respectively.

Fig 2.23.: Schematic structure of a multimode interference coupler (MMI) with N inputs and M outputs.

In order to understand how a MMI works, it is necessary to study the

multimode region properties. Depending on its width Wm, it will have a larger number

of modes (m= 0, 1,....p-1), as presented in fig. 2.24. By simple deduction from Maxwell

equations [10], the wavenumber in the y direction (ky,g), the propagation constant βm of

each mode m and the effective refractive index neff,c is given by:
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where the real multimode waveguide width has been replaced by an effective amplitude

We,m that takes into account the different penetration that each mode has at the lateral

boundaries, associated to the polarization-dependent Goos-Hänchen shift. Hence, there

exists an effective width for each mode. However, it is approximated by these of the

lowest mode We0 (We for simplicity), which has the form:
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Where σ=0 for TE and σ=1 for TM polarizations. If waveguides are highly confining,

the penetration depth is negligible and We≈Wm. It also can be shown that the

propagation constant βm is
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Fig 2.24.: Lateral field profiles corresponding to the first 8 modes of a MMI with width Wm and effective
width (if the Goos-Hänchen effect is considered) We.

At this point, Lπ can be defined as the beat length for the two lowest order modes as
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Thence, the propagation constant difference can be written as:
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If an input field Ψ(y,0) is introduced at z=0 in the multimode waveguide, as shown in

fig. 2.25, it will be decomposed as a sum of all waveguide guided modes
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where ψm are the modal field distributions and cm the field excitation

coefficients that can be estimated by means of the overlap integrals
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Fig 2.25.: Top-view multimode waveguide drawing where it can be observed the input field Ψ(y,0), a
mirrored self-image at (2s+1)Lπ, a direct self-image at (2s)Lπ, and two-fold images at (2s+1)/2Lπ.

If all phases are written as a function of these of the fundamental mode and assuming

the temporal dependence implicit thereafter, eq. (2.29) can be rewritten as
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Using eq. (2.28) it is found that at a certain distance L, the field profile is given by
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It can be observed under certain circumstances, the field profile at a distance L

will be an exact reproduction (self-imaging) of the initial field. It is possible to

distinguish between General Interference when the excitation is independent of the

modal field properties and Restricted Interference when only a part of the waveguide

modes are excited.

From eq. (2.32), it is obvious that Ψ(y,0)=Ψ(y,L) if
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The first equation means that all the phase changes after a distance L must differ by

integer multiples of 2π. Hence, all the modes interfere with the same relative phases as

if they were at z=0. The image observed is a direct replica of the input field. The second
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expression states that phase changes must be even and odd multiples of π, being the odd

and the even modes in antiphase. If it is taken into account that
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the self-images will be alternatively mirrored with respect to the symmetry plane y=0.

Considering
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It can be seen that the first conditions at eq. (2.33) will be satisfied if

,...2,1,0)3( == gwithLgLc π (2.36)

for g even and g odd, respectively. The presence of this factor g means that in MMI

couplers, there always exists the self-imaging periodicity. Hence, direct and mirrored

images of the input field will be successively obtained at even and odd multiples of 3Lπ,

respectively.

Previous results can be generalized so as to obtain expressions for M-fold

images, obtained at intermediate positions. It can be proved [22] that a M-folded self-

image can be obtained, in the general interference regime at length values given by

)3( πL
M
gLc = (2.37)

only if there exist no common divisor between g and M. At these values the field will be

of the form:
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where C is a complex normalization constant with C= M1/2, q refers to each of the M

images along the y axis. Ψin(y) is a development in a Fourier series of the input field

Ψ(y,0) with expression
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yq and ϕq are given by
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Previous expressions allows confirming that at distances z=Lπ, M images are

obtained of the extended field Ψin(y), located at y=yq, with amplitude M-1/2 and phase

ϕq. In turn, it leads to obtaining M images of the input field Ψ(y,0).

So far, no condition on the exciting has been applied. However, it could have

been noted that there exists some y values where some modes have a minimum and will

not be excited if the modal excitation was placed there, causing a significant reduction

of the modes involved in the self-imaging process and thenceforward, a total length

reduction.

If input waveguides are placed at ±We/6, modes m=2,5,8,... have a zero

amplitude at this point and will not be excited. Their overlap integrals between the

symmetric input field (typically a gaussian beam) and the asymmetric mode will vanish

and thence cm=0 for m=2,5,8,..

Under this configuration, the modes contributing to the interference are paired,

that is, 2m-(2m+1) modes have similar relative properties within its phase. This

configuration will be therefore called paired interference and obviously in this case the

number of input waveguides will be limited to two. Under paired interference, M-

folded images are obtained at lengths [23]:

)( πL
M
gLc = (2.42)

If only one input waveguide is placed at y=0 (working under 1xM

configuration), restricted interference can also be obtained. In this case, however, it can

be seen that all odd order modes are not excited. That is, the overlap integral vanishes

for all odd modes. Hence, the final imaging profile is obtained via the contribution of all

even modes in the so-called symmetric interference. Under this restricted self-imaging

configuration, M-folded images are obtained at







=

4
3 πL

M
gLc (2.43)



Fundamentals and Proposals

54

Table 2.3 summarizes the previously obtained results.

Interference on multimode region General Restricted Paired

Inputs x Outputs NXM 2XM 1XM

Image 3Lπ Lπ 3Lπ/4

M-folded image 3Lπ/M Lπ/M 3Lπ/(4M)

Modes unexcited (cm=0) None m = 2,5,8,... m = 1,3,5,..

Injected beams position Any y = ±We/6 y = 0

Table 2.3: Summary of the properties of the general restricted and paired MMI devices.

Finally, the MMI fabrication tolerances for all its dimensions can be

calculated. If each self-image at z=L is considered as a gaussian beam, then, the loss

penalty caused by a small variation of the total length δL can be evaluated by

overlapping the defocused beam with the output waveguide field profile. 0.5dB losses

are obtained when [24]:
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Where w0 is the gaussian beam waist. It is noteworthy mentioning that length

tolerance does not depend on the multimode waveguide dimensions. Hence, for a given

wavelength and refractive index, the tolerance can be enhanced by wider input

waveguides. The rest of the parameters can be directly related to the previous

expression using eq. 2.27 and 2.36, which provide
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Thence, it is clear that MMI region should be made as short as possible in

order to obtain more relaxed conditions for the rest of the parameters.

2.3.3 Evanescent Field Devices

Evanescent field maybe is the one of the most unknown light properties in

confined media. However, it has several applications in telecommunications field: two

or more waveguides placed closer each other are able to interchange periodically the

optical power that they transmit. The distance that the waveguides have to be parallel so
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as to transfer all the power depends on the working wavelength and morphology. From

this operation principle, filters and multiplexers have been designed on the basis of

evanescent field coupling.

At the beginning of this chapter, when single waveguides were studied, it was

observed how any guided mode has an evanescent tail that propagates off from the core.

If a second waveguide is closely placed so as to overlap the evanescent field of the

modes propagating by both waveguides, a coupling between them will be produced. If

light is injected to one of the waveguides, a periodic interchange of power between both

waveguides will be obtained. Moreover, if the waveguides are identical, there will be a

complete power transfer. These structures are called directional couplers. An scheme of

which is presented in fig. 2.26.

Fig 2.26.: Directional coupler in which two single-mode waveguides (u and v) with width Wu and Wv are
parallel over a length L with a distance of d0 between them.

Under the supposition of weakly interacting fields and single-mode

waveguides, the coupled-mode theory [25] can be applied, obtaining the expressions for

the field evolution along z,
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where Ψu and Ψv are the field amplitudes at the directional coupler waveguides, being

βu and βv their propagation constants. κuv and κvu represent the strength of the
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interaction between the evanescent tails of the two modes and are referred to as

coupling constants. If waveguides are independent, i.e, they do no interact, κuv = κvu =0

and solutions of eq. (2.46) are of the form exp(-iβz), which is a non-perturbed single

propagating wave.

As the coupling constant depends on the evanescent field overlap, it should be

a function of the mode confinement inside the waveguide (which, in turn, is a function

of the waveguide width and the rib etch), the separation between waveguides and the

working wavelength. It can be shown [26] that it has the form:

vuts
dxdy

dxdynk

ss

tss

s
ts ,,

2 *

2*2

, =
ΨΨ

Ψ∆Ψ
=

∫ ∫
∫ ∫

∞+

∞−

+∞

∞−

β
κ (2.47)

vutsyxnyxnn ss ,,),(),( 222 =−=∆ (2.48)

where n(x,y) and ns(x,y) are defined in fig. 2.27

Fig 2.27.: a) and b) are the refractive index profiles of two isolated rib waveguides and c) is the refractive
index profile of a parallel directional coupler.

Obviously, for parallel identical waveguides κuv = κvu = κ

 Solving eq. (2.46), it can be seen that if at z=0 the fundamental mode in

waveguide u is excited using a given field amplitude δ, while a different fraction α
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allows exciting the fundamental mode of waveguide v, the power as a function of the

propagation distance has the form:
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where ∆β=βu-βv. If there exist no losses in the directional coupler,

1)()( 22 =Ψ+Ψ zz vu (2.50)

Under the standard excitation conditions, where a power unity is injected in

waveguide u and there is no power in waveguide v (that is, δ=0, α=1) eq. (2.49) is

simplified to
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As it can be seen, there exists a periodical power exchange as a function of the

propagation distance, with period

2
2

4
κβ

π

+
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=T (2.52)

The distance Lc0, defined as
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is called the coupling length and corresponds to the distance required so as to have

maximum power transfer between both waveguides. It also can be seen that the

maximum intensity transferred is given by

2
2

2
2

4

)(
κβ

κ

+
∆

=Ψ
màxv z (2.54)

Only complete power transference between waveguides can take place when

∆β=0, that is, having the two waveguides exactly the same propagation constant. In this

situation, the coupling length will be given by

asssim
cL

ββ
πβ

−
==∆ 0

0 (2.55)

where βsim and βass are the symmetrical and asymmetrical modes of the overall structure

and their values are given by

( ) ( ) 0
4
1

2
1 22

, =+−±+= κβββββ vuvuasssim (2.56)

Figure 2.28 shows the numerical evaluation of eq. (2.51). It can be observed

how a slight variation of the propagation constant causes the variation of the coupling

length value and forbids the complete power transfer between waveguides.
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Fig 2.28.: Numerical evaluation of eq. (2.51) with k=10-3m-1 for identical and non-identical waveguide
propagation constants.



Fundamentals and Proposals

59

If eq. (2.49) is studied, as shown in fig. 2.29, the behavior of the directional

coupler can be modified through the simultaneous light injection in both waveguides. If

the same power fraction is injected (δ=1, α=1) it can be observed how the periodical

power transference is completely suppressed. Although previously we stated that if the

propagation constants were different, only partial exchange of power could be obtained,

this deduction was done considering injection on one waveguide only. As it also can be

seen in fig 2.29, small variations on the propagation constants can be compensated by

simultaneous light injection at both waveguides with balanced intensity. If the balance

is broken, that is, if the light intensity in both waveguides is different, only partial

transference of power is achieved.
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Fig 2.29.: Numerical evaluation of eq. (2.49) with k=10-3m-1 for identical and non-identical waveguide
propagation constants and for balanced and unbalanced light excitation.

As an application example, directional couplers with identical waveguides can

be used for the design of optical switches. If light is injected only in one waveguide and

the parallel distance is the coupling length, the directional coupler it is said to be in the

cross state (⊗), because all the power injected from waveguide u is transferred to

waveguide v. If a change in the propagation constants is introduced so as to vary the
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coupling length to Lc0/2, power will be no longer at v, but it will return to u, being now

the directional coupler in the parallel state ( ). The minimum required propagation

constant difference so as to change from cross state to parallel state is given by

0

3

cL
πβ =∆ (2.57)

This change on the optical constants can be done using the electro-optic effect

[27]. If a given oscillating voltage is applied, an oscillating value of ∆β will be obtained,

causing the output signal modulation. It has to be noted, however, that this operation

principle can only be applied to those compounds, such as lithium niobate or some III-V

compounds where the electro-optical coefficient is extremely high. Unfortunately, this

is not the case for silicon compounds. So, directional couplers based in silicon

technology cannot be applied for electro-optical devices. However, the deep knowledge

and the fabrication techniques in silicon make it very attractive for passive devices.
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