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Longitudinal, transversal and averaged mechanical stresses that the bridge

suffers when maximum acceleration is applied are shown in fig. 4.40. In this case, lower

stresses are applied to the bridges due to their low stiffness. It can also be observed that

in this case, longitudinal and transversal stress values approximately have the same

magnitude. That is, in an L-shaped bridge, due to its geometry, mechanical stresses are

approximately equally distributed both in the transversal and longitudinal directions.

a) b)

c)

Fig 4.40. a) Lateral and b) transversal stress distribution on the bridges of the misalignment
accelerometer. c) Average stress value considering 3D movement.

Finally, modal simulations were done so as to fix the structure vibrational

modes. The first vibration mode has a natural frequency of 488.75Hz. The deformation

of the structure for this mode is shown in fig. 4.38d. Its significant reduction, as

compared to the diaphragm accelerometer, is logical due to the different acceleration

ranges for which they were designed. This device has been designed for ±1g range and

so its stiffness is lower as compared to the previously presented diaphragm

accelerometer design.
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Acceleration Ymax (nm/g) Sl (MPa) St (MPa)

In z axis 1.050 4.7 4.6

In y axis 0.105*

In x axis 0.202
* For misalignment accelerometers with centered waveguides, there exists no movement.

Table 4.10: a) Maximum displacement in the y-axis (Ymax) for accelerations in the three directions and
longitudinal and transversal mechanical stresses.

Opto-mechanical specifications of the misalignment accelerometer are

summarized in table 4.11. It has been seen that although the configuration proposed is

not able to distinguish the acceleration sign at which it is submitted, the fact that it is

self-aligned and that has extremely high failure losses are clear advantages as compared

to the diaphragm optical accelerometer. Mechanical properties have been adapted so as

to fulfill the optical requirements. In this case, however, L-shaped bridges have been

used, showing a lower and more uniform stress distribution for approximately the same

range as compared to straight bridges. Moreover, they provide with a higher sensitivity

for the same chip area. Straight bridges would mean an excessively large device that

would harden its manipulation and would increase its cost. Normal frequencies obtained

by simulations are much lower as compared to these from the diaphragm accelerometer.

This is mainly due to the fact that for detecting low acceleration variations large bridges

or low stiff structures are needed, with the consequently decrease of the natural

frequency.

Optical considerations
Waveguide width Distance between

waveguides (µm)
Input (µm) Sensing (µm) Output (µm) With mass Without

mass

Failure losses
in z axis (dB)

Failure losses
in x axis (dB)

14 30 50 24 4044 18.1 1.3

Mechanical considerations
Maximum displacementBridge

Length (µm)
Top mass area

(µm2)
Sensitivity
(dB/µm)

Frequency
(Hz)

Span
(µm) x (µm/g) z (µm/g) y (µm/g)

1347 4015x4015 4.5 489 1 0.202 0 1.050

Table 4.11. Basic specifications for the misalignment -based optical accelerometer.
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This chapter has been focused on analyzing the viability and goodness of the

modifications proposed for several existing integrated optical devices, ranging from

simple waveguides to optical accelerometers. Once the simulations have been done, and

using the previously described technological steps, they will be obtained. Results and

comparison between simulation and experimental will be presented in the following

chapter.
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