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CHAPTER 1

Introduction

The electromagnetic behavior of a certain material does not only depend on its
intrinsic material properties but also on the shape of the sample being studied. Actually,
some magnetic quantities in samples with the same material properties but different
geometry can differ by several orders of magnitude. In this thesis we study the geometry
effects, also called demagnetizing effects, in electromagnetic properties of both linear
homogenous isotropic (LHI) materials and hard superconductors. For LHI materials
we consider the response to a uniform applied field, while for hard superconductors we
study both the cases of an applied ac magnetic field and a transport alternating current.

For magnetic samples immersed in a uniform applied field H,, the magnetic field H
inside the material is different from H, for realistic sample geometries due to demagnetiz-
ing effects. The magnetic field inside a magnetic material cannot be directly measured,
but it may be determined theoretically. Moreover, H inside a sample is nonuniform for
most practical geometries. One way to study H inside the material is by means of the
fluxmetric and magnetometric demagnetizing factors Nt and Ny, respectively, which are
directly related to the average H over the sample midplane and volume, respectively.
The calculation of Ny and Ny, can be therefore used to analyze most of the magnetic
quantities of LHI materials, which makes N¢ ;, very useful for the experimental study of
these materials. For example, they can be used to obtain the internal susceptibility x
from measurements of the magnetic flux in the midplane or the magnetic moment.

Although the first studies on demagnetizing factors were contemporary with Maxwell
himself [1], the results had been very incomplete until the 1980s even for the regular
geometries of rectangular prisms and cylinders. The lack of theoretical studies is due
to the difficulty in obtaining analytical results of Nt ,,, so that for most cases numerical
calculations are needed. The development of personal computers made possible accurate
numerical calculations for some cases [2, 3, 4, 5, 6]. The aim of this thesis concerning
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6 Introduction

demagnetizing factors is to calculate their values for rectangular prisms for a wide range
of susceptibility and aspect ratios, a geometry with very few existing theoretical results.
When possible we deduce Ng, analytically, otherwise we perform accurate numerical
calculations using an ordinary personal computer.

Apart from LHI materials we study hard superconductors, which are materials very
interesting for applications. These materials are nonlinear and hysteretic, so that the
use of the results for LHI materials is very limited. A possible way to describe the
electromagnetic properties of hard superconductors is by means of the critical-state
model [7, 8, 9], which assumes that the magnitude of the nonzero current density has a
constant value. In spite of the simplicity of this model, the application to geometries with
a finite dimension along the applied field requires a further development of the model
and results have to be obtained by numerical calculations. These are the reasons for
the existence of very few results, even for geometries with an infinitely long dimension,
which mathematically can be reduced to two dimensions.

Concerning hard superconductors, we present a careful systematical study of elec-
tromagnetic properties for some infinitely long geometries under transverse applied ac
magnetic field or a transport alternating current. This study is interesting for applica-
tions of superconducting tapes and wires in electrical devices operating in ac regime,
being the ac loss one of the most relevant quantities.

This thesis is structured as follows. First, in chapter 2 we introduce the general
theoretical framework of this thesis. We present and review the main quantities and
properties concerning the demagnetizing effects and the demagnetizing factors, concen-
trating in LHI materials. We also summarize the characterizing magnetic and transport
properties of superconductors, specifically those for hard superconductors. The origi-
nal critical-state model, which is commonly used to describe hard superconductors, is
presented and discussed as well. We note that SI units are used throughout the thesis.

In chapters 3, 4, and 5 we present our study on demagnetizing factors for LHI mate-
rials, while chapters 6, 7, and 8 deal with infinitely long hard superconductors. In chap-
ter 3 we review the most important existing theoretical results on Nt p, for rectangular
prisms and cylinders. We also present a numerical procedure in a general formulation to
calculate the demagnetizing factors for LHI samples with arbitrary susceptibility, based
on a previously existing model for cylinders [3]. We do not only generalize the proce-
dure for cylinders to other geometries but also introduce an improvement which reduces
computation time and increases accuracy.

In chapter 4, we calculate and discuss the demagnetizing factors for infinitely long
rectangular prisms with transverse applied field for a wide range of values of susceptibil-
ity and width-to-thickness aspect ratio. For some special values of susceptibility, N, is
calculated analytically, while for the others we use the numerical procedure presented in
chapter 3. The analytical results can be compared with the numerical results in order to
estimate and reduce the error in the numerical calculations of Nt ,. Moreover, we also
present a way to calculate Ny, for cylinders in the radial direction from existing results
for Ny, in the axial direction.



The demagnetizing factors for rectangular prisms are numerically calculated and
discussed in chapter 5. There, we present the main features concerning the adaptation
of the numerical method formulated in chapter 3 to the rectangular prism geometry,
which has been possible thanks to the experience achieved for infinitely long rectangular
prisms in chapter 4. The case of finite rectangular prisms involves an extra parameter
(another aspect ratio) as compared to infinitely long ones, so that one needs to perform
many more calculations to make a complete study of Nt ;, for this geometry. For this
reason, we first study the specific cases with practical importance of square bars, which
only have one aspect ratio, and perfectly shielded rectangular prisms, for which the
susceptibility is fixed. The experience achieved with these two systems is very useful to
accurately calculate and analyze the general case of rectangular prisms with arbitrary
susceptibility, which is being calculated by the time of writing this thesis.

After the study of demagnetizing effects in LHI materials, in chapters 6, 7 and 8 we
present a systematic study of the magnetic properties of infinitely long hard supercon-
ductors with a transverse applied ac field or an alternating transport current.

This study is done by numerical calculations using a procedure based on magnetic
energy minimization (MEM) considering the critical-state model with a constant critical-
current density. This procedure is developed in chapter 6 for infinitely long geometries
with constant cross-section, including multifilamentary structures. For the magnetic
case with multifilamentary cross-sections we consider both the situation of mutually
electrically isolated filaments, which have the restriction of net current to be zero inside
each filament, and filaments interconnected at infinity, without such a restriction. We
also discuss some results achieved using the MEM procedure to other situations, such
as levitation systems or granular YBCO coated conductors.

We present in chapter 7 a systematic theoretical study of the magnetic properties,
such as current density, magnetization loops, ac susceptibility, and ac loss for some
infinitely long geometries under transverse applied ac magnetic field. The geometries
studied are rectangular bars (strips), elliptical bars, and some regular arrangements of
strips, such as linear arrays in the applied-field direction (vertical stacks) or perpendic-
ular to it (horizontal arrays), matrix arrays, and interleaved configurations.

The situation of an alternating current being transported through infinitely long
superconducting samples is studied in chapter 8. In this chapter we consider the geome-
tries of a single strip, linear arrays of strips, and matrices, for which the current profiles
and the ac loss are calculated.

Finally, in chapter 9 we present the conclusions of this thesis.
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CHAPTER 2

General concepts

In this chapter the main concepts involved in the thesis are reviewed. First, we
present the theoretical frame related to the demagnetizing effects and, subsequently, a
summary on the main properties of superconductors, where the critical sate is formu-
lated.

2.1 A summary of some magnetic quantities

This section provides the fundamentals of the demagnetizing effects, that is, the
effects on the magnetic properties in a material due to sample geometry. Moreover, in
this section we introduce the formulation that is used throughout the thesis.

2.1.1 Magnetic moment and magnetization

In classical magnetostatics the dipolar magnetic moment m created by a certain
current density J is [10, 11, 12]

m = —/ r x J(r)dV, (2.1)
2 Jy
where V is the volume where the current is present. In a magnetic material, apart from
the moment of macroscopic currents which can flow through the whole sample, there
are other localized microscopic magnetic moments, which have a quantum-mechanical
origin. When these microscopic moment sources have much smaller dimensions than the
considered length scales, we can define the local magnetization M(r) as a local magnetic
moment density M = dm/dV. This local magnetization must be distinguished from the
volume average magnetization My, = m/V, which can be due to either a free current

density J or microscopic magnetic moment sources.
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2.1.2 Magnetic field and magnetic induction

We next review the differential equations and boundary conditions in magnetostat-
ics, which are the basis of the calculations presented in this thesis. The fundamental
equations in magnetostatics are [10, 11, 12]

VxH = J,
V-B = 0,

where H is the magnetic field strength, B is the magnetic induction and J is the free
current density. Equation (2.2) is named the Ampere law. The boundary conditions of
Egs. (2.2) and (2.3) on the interface between two magnetic media are

(H1 — Hg) X e, = 0 (24)
(B1 - B2) c€ep = 0. (25)

where subindices ‘1’

and ‘2’ refer to each magnetic medium and e, is the unit vector
perpendicular to the interface pointing outwards medium 1.

The magnetic field and the magnetic induction are related to each other by means
of the magnetization as

where i is the permeability of free space. Considering this, Eqs. (2.2) and (2.4) can
also be written as a function of the magnetic induction as

VxB = po(d+Jdu), (2.7)
(B1 —B3) xey, = oKy, (2.8)

where Jj; and Ky are the current density and sheet current density, respectively, and
are defined as

Jy = VXM, (29)
KM = (M1 — Mg) X €n. (210)

From Egs. (2.8) and (2.10) we see that the discontinuities of the magnetic induction are
due to discontinuities in magnetization.

Time-varying current density

In some discussions of this thesis we shall consider time-varying magnetic quantities.
For all the studied situations, we assume the quasi-static approximation, that is, the
displacement current is neglected, so that Eq. (2.2) is still valid [10, 11, 12]. Considering
this, a time-varying J generates a time-varying H and B [Egs. (2.2), (2.3) and (2.6)],
which creates an electrical field E due to the Faraday law

OB
VxB=-—"l (2.11)
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As a consequence of this electrical field, there appears a power dissipation P as

P= /dV.]-E. (2.12)

Pole density and magnetic scalar potential

In many actual situations, there is no free current in the magnetic materials, so that
J = 0. In this case, equations (2.2), (2.3), (2.4) and (2.5) can be written in terms of H
by using Eq. (2.6) as

VxH = 0, (2.13)

V-H = pu, (2.14)

(H; - Hy) xe, = 0, (2.15)
(Hy—Hy)-e, = —oum, (2.16)

where pps and oy are the volume and surface pole densities defined as

opM = (Ml — M2) - €n. (218)

From Egs. (2.16) and (2.18) we see that the discontinuities in H are due to discontinuities
in M.

The differential equations and boundary conditions for the magnetic field H in mag-
netostatics, Eqs. (2.13)-(2.16), have the same form as these for the electric field E in
electrostatics with charge densities pr and og. The electrostatics equations are ob-
tained after replacing H by E, pys by pgp and o by op. Thanks to this analogy, all
the solutions obtained for electrostatics are also valid for magnetostatics without free
currents.

Moreover, same as for the electric field, the magnetic field lines start in positive
magnetic poles, end in negative ones and never form closed loops. These issues can be
directly deduced from Egs. (2.13) and (2.14).

Thanks to V x H = 0, we can describe the magnetic field by means of a magnetic
scalar potential ¢ so that H = —V¢. This completes the analogy with the electrical
field, since E = —V¢g owing to V x E = 0.

2.1.3 Magnetic susceptibility. Linear homogenous isotropic materials

The magnetic susceptibility x is defined by the relation
M(r) = x(H,r)H(r). (2.19)

Since the magnetization and the magnetic field are not necessarily parallel, the magnetic
susceptibility is in general a tensor. Moreover, x can depend on the position and the
magnetic field.
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A linear homogeneous isotropic (LHI) material is defined as a material for which y
is a scalar number (isotropic) independent of the magnetic field (linear) and position
(homogeneous), so that the local relation M(r) = yH(r) holds, where x is a real num-
ber. As a consequence, the magnetic response of a material is determined by a single
parameter. A LHI material can also be characterized by the magnetic permeability p,
defined as p = po(1 + x). Then, from the H and x definitions we obtain

B = ;H. (2.20)

The magnetic susceptibility x must be distinguished from the external susceptibility
X, which is defined from

Mo = X" Ha, (2.21)

M, being the magnetization averaged over the sample volume and H,, the uniform
external applied field. We note that the x®*' relates nonlocal quantities, different from
x in Eq. (2.19).

Moreover, for LHI materials presenting no free-current density the magnetization
follows

VxM = 0, (2.22)
V-M = 0, (2.23)

which can be deduced from Egs. (2.3), (2.6) and (2.13). Equations (2.22) and (2.23)
imply that in the sample volume Jjp; = 0 and pp; = 0, respectively. However the
magnetization current and the pole density can be nonzero on the sample surface.

The magnetic susceptibility can, in principle, take any value between —1 and oco.
x = —1, oo and 0 are specific cases of importance.

The xy — oo limit is commonly used to describe ferromagnetic materials under certain
conditions. Ferromagnetic materials are hysteretic, although the magnetization loop,
obtained after increasing and decreasing H,, is almost linear far away from saturation,
presenting a high slope. The slope of the initial magnetization curve for low H, can
range from few hundreds for iron up to 10° for permalloy. The approximation of ¥ = 0o
for materials with high susceptibility is valid for not very long samples in the direction
of the applied field (Sec. 4.2.3) [3, 13]. In addition, from Eq. (2.20) we can deduce that
for infinite susceptibility the magnetic field H is zero inside the sample.

Besides weak magnetic materials, |x| < 1, the case x = 0 also describes saturated
ferromagnetic materials. This is so because ferromagnetic materials present uniform and
field-independent magnetization under enough high applied fields.

Finally, the x = —1 (u = 0) case corresponds to the perfect magnetic shielding
situation, since B = 0 inside the material for any H, Eq. (2.20). An example of this
case is a superconductors in Meissner state with London penetration depth much lower
than the sample dimensions (Sec. 2.3.1).
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Differential equations for the electromagnetic potential

In LHI materials with no free currents, both the magnetic induction and magnetic
field can be found by means of two different sets of differential equations, Eqs. (2.7),
(2.3), (2.8), (2.5) or Egs. (2.13)-(2.16), thanks to the relation B = pH.

Equations (2.7), (2.3), (2.8) and (2.5) can be written as function of the vector po-
tential A by using B = V x A. The field equation considering the gauge V- A = 0
reduces to

VZA = 0. (2.24)
The boundary conditions for a sample with permeability ©; immersed in a magnetic
material with permeability s are in the materials interface

e, X (A1 — A.2) = 0, (225)
1 1

e, X <—V X A — —V x A2> = 0, (2.26)
M1 M2

which can be deduced from Egs. (2.5) and (2.15).
If the magnetic scalar potential ¢ is preferred to describe the magnetic system, one
obtains the field equation
Vi =0, (2.27)
deduced from Eqgs. (2.13) and (2.14) using H = —V¢. Again, the boundary conditions
in the interface can be deduced from Egs. (2.5) and (2.15), yielding to

en - (1Ve1 — Vo) = 0, (2.28)
$1 = 2. (2.29)

In many practical cases, the magnetic sample is immersed in a uniform applied field
H,. In this case, boundary conditions at infinity must be considered, which are

VxA = uH,, (2.30)
V¢ = -H, (2.31)

for the vector potential and the scalar potential, respectively.

2.2 Demagnetizing effects

The magnetic behavior of a sample does not only depend on its intrinsic magnetic
properties, such as M or x for LHI materials, but also on its geometry, as can be seen
from the boundary conditions for H and B in Sec. 2.1.2. The effects of the geometry of
the sample on their magnetic properties are usually known as demagnetizing effects.

The demagnetizing effects can change B, H or M by some orders of magnitude when
comparing between samples with the same intrinsic magnetic properties but with differ-
ent geometry (see chapters 4 and 5). Then, a deep understanding of the demagnetizing
effects is of vital importance to extract the intrinsic magnetic properties of a sample

from magnetic measurements.
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2.2.1 Demagnetizing fields

As presented in Sec. 2.1, a magnetic field H can be generated by either free currents
or some pole distribution due to the sample magnetization [14] by means of Egs. (2.2)-
(2.16). The magnetic field generated by the pole density is called the demagnetizing
field, Hy. In many magnetic measurements there are no free currents in the sample, so
that Egs. (2.13)-(2.16) can be used and the analogy to electrostatics is fulfilled.

In LHI materials (Sec. 2.1.3), the pole density in the sample volume is zero, although
these materials can present nonzero surface pole density.

If x > 0 and the volume average magnetization M, is parallel to the applied field®,
there appears a surface pole density like in Fig. 2.1(a,b). As for the electrical field, the
magnetic field lines are created in the positive pole density zones and annihilated where
negative pole density is present. As shown in Fig. 2.1(a,b), Hq in the sample interior
has roughly the sense opposite to that of the applied field, so that the magnitude of
the total magnetic field in the sample interior is lower than the applied field. Then, the
magnitude of the magnetization in the sample is lower than |xH,|, which is the value
we would expect if there was no demagnetizing field. For the limit of y — oo the total
magnetic field inside the sample is zero [Eq. (2.20)], so that the demagnetizing field
inside the sample is uniform and opposite to the applied field, Fig 2.1(a).

++ + + ++ - - - —- -+ +

ME- 77 <>
HITEENZRN

(a) (b) (©)

Figure 2.1: Sketch of the demagnetizing field Hy created by the pole density oy in a sample
submitted to a uniform applied field H,. The sketch is qualitatively correct for a vertical cut
of a cylinder or a rectangular bar. The figures correspond to x = oo (a), 0 > x > —1 (b) and
X — 0% with uniform magnetization (c).

|
|
|
|
|
|
+
+

For y < 0, the magnetization has opposite direction to the applied field. As a
consequence, the pole density at the sample ends has the opposite sign to that for
x > 0, Fig. 2.1. Then, the demagnetizing field has the same direction as the applied

11f the sample geometry has some mirror symmetry, My is parallel to H, for H. perpendicular to
the plane symmetry.
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field and H > H,, so that the magnetization is higher than if only the external field was
present. Moreover, the pole density on the side surfaces has opposite signs than on the
end ones [3].

For uniform magnetization or the limit y — 0, the surface pole density becomes
uniform on the end surface and zero on the side ones. However, the demagnetizing field
is not uniform [Fig. 2.1(c)]. This apparent contradiction is solved as follows. Although
H, is not uniform, for y — 0 the magnetization is much lower than the applied field,
so that the pole density is very small and creates a low demagnetizing field. Then,
Hyq < H, and the magnetic field inside the sample is almost the applied field, which
is uniform. As a consequence, the magnetization can be taken as uniform and parallel
to the applied field. For saturated spin systems, the apparent contradiction is resolved
in the same way as for Y — 0 provided that the applied field is high enough, so that
H, > M [15].

The effect of Hyq on the magnetization for x > 0 is the reason why the demagnetizing
field is called in this way, although for negative susceptibility Hq enhances the magnitude
of the magnetization.

Since Hy is created by the surface pole density, which is due to the magnetization
component normal to the sample surface, the demagnetizing field strongly depends on
the sample geometry. As it is explained below, the demagnetizing field can change the
magnetization by some orders of magnitude.

The demagnetizing field has effects not only on the magnetization but also on the
external magnetic field and the total magnetic field at any point (inside or outside the
body) is

H=H, + Hy, (2.32)

where H, is the applied field, which is created by some external electrical current or
magnetic pole density and it is usually assumed to be independent of the sample mag-
netization.

Magnetization induction and demagnetizing field

An alternative way to describe the demagnetizing effects is to use the magnetic in-
duction B, that is generated by both free currents and magnetization currents Egs.
(2.3), (2.7), (2.5) and (2.8). In the absence of free currents, the only magnetic induction
sources are magnetization currents. The magnetic induction created by these magneti-
zation currents is called the magnetization induction Bjs. If the sample is immersed in
an external magnetic field the total magnetic induction is

B = joH, + Byy. (2.33)

For LHI materials, there are no volume magnetization currents (Sec. 2.1.3), so that By,
is created by the surface magnetization currents K, only.

The concepts of magnetization induction Bj; and demagnetizing field Hy are similar
in the sense that they are the contributions to B and H, respectively, due to the mag-
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netization of the sample. Moreover, for LHI materials we can find a relation between
B and Hy by means of Egs. (2.20), (2.32) and (2.33). This relation is

B, = M(](l + X)Hd + poxHa. (234)

Equation (2.34) is useful to obtain the demagnetizing field when only the magnetization
currents, from which Bjy; can be deduced, are known.

2.2.2 Demagnetizing factors

There are many magnetic measurements performed under a uniform external applied
field H, over the sample. In chapters 3, 4 and 5 we will focus on two commonly performed
magnetic measurements. These are the fluxmetric (or ballistic) measurements and the
magnetometric measurements.

In fluxmetric measurements, the magnetic flux ® is measured over a cross-section
of the sample, typically the midplane. The corresponding average magnetic induction
Bmig can be obtained dividing by the cross-section surface. A possible way to measure
® can be done by winding a thin coil around the cross-section of the sample, applying
a uniform applied ac field and then measuring the electromotive force in the coil.

The quantity directly obtained in magnetometric measurements is the magnetic mo-
ment m, from which M, can be obtained dividing by the sample volume. There exist
many different techniques based on several physical mechanisms to do magnetometric
measurements. Some of them are based on measurements of magnetic flux in some space
region under uniform applied fields [16, 17]. Other techniques extract the magnetic mo-
ment from the magnetic force on the sample in the presence of a nonuniform external
field.

Measurements of ® or m are often not enough to extract the intrinsic magnetic
properties of the samples. For example, in order to obtain x for a LHI material from
® or m, the determination of H is also necessary, or at least its average on the cross-
section or the volume (Hpiq and Hy,, respectively). Although the applied magnetic
field in the sample is usually known, the demagnetizing field strongly depends on the
sample geometry, which is not easy to calculate or to determine experimentally.

In order to consider the effect of demagnetizing fields in fluxmetric and magnetomet-
ric measurements, it is useful to define the fluxmetric and magnetometric demagnetizing
tensors N¢ and N, as

Hy mid,vol = —Nt,mMmid,vol, (2.35)

where the subindices ‘mid’ and ‘vol’ refer to the average over the midplane and the
volume, respectively. In general, Hy mid,vol and Mp;q,vo1 do not have to be parallel to
each other, even if the magnetic material is LHI, because the geometry of the sample
do not have to be symmetric.

For the cases that Bmid,vol; Md,mid,vol and Hg mid,vo1 are parallel to the applied field
H,, we can ignore the vectorial nature of these quantities. Then, the demagnetizing
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tensor is reduced to a number, which receives the name of demagnetizing factor and can
be defined as [3]

Nim = —H4 mid,vol/ Mmid vol- (2.36)

The directions of H, for which all the averaged magnetic quantities are parallel to and
the demagnetizing tensor is reduced to a scalar are called as principal directions. For
LHI materials the directions perpendicular to a plane of mirror symmetry are always
principal directions. This is because for this case the magnetic pole distribution is
antisymmetric with respect to the mirror symmetry plane (Fig. 2.1) so that Hg midvol
is perpendicular to the symmetry plane and, consequently, parallel to H,. For LHI
materials the average magnetization and average magnetic induction are also parallel to
the applied field thanks to M = x(H, + Hy) and B = u(H, + Hy), respectively.

If the applied field is parallel to a principal direction, the magnetic moment and the
external susceptibility, defined in Eq. (2.19), can be written as a function of Ny, by
means of Eqs. (2.32) and (2.36) as

_om 1
 H,V Ny +1/x’

ext

X

(2.37)

where V is the sample volume. If the x dependence of Ny, is known, this relation allows
the extraction of xy from magnetometric measurements. We can obtain a similar relation
concerning the magnetic flux ® over the midplane and N¢, so that

®  1+1/x
poH.S  Ne+1/x’

(2.38)

being S the surface of the midplane. This is one of the reasons why we systematically
calculate Ng;, for several x in chapters 4 and 5.

To determine the demagnetizing factors N¢ , we need both Hg mid,vor and Mpiq vol-
However, if the material is LHI, the magnetization is related to the magnetic field as
M = yH and, consequently, the demagnetizing factors can be written as a function of
either Hy midvol O Mmid.vol- Using Eq. (2.32), we deduce from Eq. (2.36) that

H, 1

Nipp = —2 2 2.39

fm Mmid,vol X ( )
—H g mid,vol

N¢ = 2 . 2.40

" X(Hd midvol + Ha) (2.40

We notice that Eq. (2.40) is not useful for x = oo and that neither Egs. (2.39) nor (2.40)
are useful for x = 0 because they lead to mathematical indeterminations. Furthermore, if
only the magnetization induction By is known, the demagnetizing fields can be obtained
using Egs. (2.34) and (2.40) so that

New = XHa — Barmid,vol/ 1o
" X (Burmidvol /1o + Ha)

(2.41)
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where B/ mid,vol 18 the mean magnetization induction in the midplane and the volume,
respectively. In a similar way than for Egs. (2.39) and (2.40), Eq. (2.41) is not useful for
x = —1 since for this case By, = —pugH, and Eq. (2.41) results in an indetermination.

It is also important to mention that for a uniform magnetization sample (xy = 0),
the magnetometric demagnetizing factors in the principal directions follow

Nz + Ny + N = 1, (2.42)

according to [18, 15, 19, 20]. In Eq. (2.42) we took the directions of z, y and z as
principal directions.

The demagnetizing factors for an infinitely long sample with constant cross-section
are zero for an applied field in the long direction. This is so because the system made
up of the sample and the infinite applied field has translational symmetry in the infinite
direction, so that Hy(r) and M(r) are parallel to the applied field. Then, from Eq.
(2.16) we deduce that 03,=0, so that Hy = 0 and N, = 0 from Eq. (2.36).

Many geometries of practical importance have clear principal directions, such as
cylinders, rectangular prisms and ellipsoids, including all their limits. In chapter 3 we
summarize the existing results for the demagnetizing factors for these geometries.

2.3 Hard superconductors

In this section we present an overview of some superconductor properties that are
considered in the thesis. Readers are referred to Refs. [21, 22, 23] for deeper and more
extended surveys on superconductivity.

2.3.1 Superconducting materials

Superconductors present a sharp resistivity decrease, when the material is cooled
below some critical temperature T¢, to values several orders of magnitude lower than
any conventional conducting material. When the material is placed below the critical
temperature 7T, we say that it is in the superconducting state, while if T' > T¢ it is in
the normal state.

Another interesting property of superconductors is that below T they present flux
quantization, that is, for any closed circuit inside a superconductor where there is no
supercurrent, the magnetic flux over the surface bounded by the circuit must take an
integer number of the flux quantum ®y, = h/2e.

With regard to electromagnetic properties, we can distinguish between type I and
type II superconductors.

Type 1 superconductors

If T < T, type I superconductors keep B = 0 inside its body for any applied
magnetic field below a certain critical value H.. Actually, there is a shell of depth A
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from the material border inwards where currents and magnetic induction are present?.
A key issue is that if the cooling process to reach T' < T¢ is done under a certain applied
magnetic field, superconducting materials expulse the magnetic induction inside them.
This effect is called Meissner effect.

A type I superconductor carrying a transport current only has nonzero current den-
sity in a layer of depth A, since pugJ = V x B and B = 0 in the bulk. The existence
of the critical field H, is the cause of the Silsbee effect, arising when the magnetic field
created by a transport current in the surface of a superconducting wire equals to H..
Then, normal regions appear in the superconductor and the wire resistivity becomes of
the same order as in the normal state ([23], pp. 357-361). Since H. is low and most
of the cross-section of the wire does not carry current, type I superconductors are not
practical for transport applications.

Type II superconductors

Type II superconductors have the same properties as type I for any applied field
below a certain critical field H.;. However, between H.; and another critical field
H.o (Hco > Hc;), magnetic induction partially penetrate inside the material bulk in
the form of superconducting current vortices containing flux inside them, forming the
mixed state. These current vortices contains a flux quantum & each, which is the
minimum flux magnitude which can be surrounded by superconducting material. Under
applied fields higher than H, o, superconductivity is suppressed.

Furthermore, type II superconductors with vortices present a resistive-like behavior
when carrying a transport current. This effect is explained as follows. The transport
current density J interacts to the current vortices, yielding to a driving force per unit
length [24]

Fd/L =J x @0, (243)

where the vector ®( has magnitude ®y and the same direction as the magnetic induction.
This force makes the vortices move throughout the superconductor (flux flow), creating
a local magnetic flux variation and, consequently, an induced electrical field E. Then,
ohmic loss J - E appears. We notice that the current vortices can appear as the result of
either an external applied field or the self magnetic induction created by the transport
current.

This ohmic loss appearing in ideal type II superconductors can be avoided under the
presence of defects or impurities in the material. These defects or impurities can act as
vortex pinning centers, that is, they can keep vortices fixed at a certain position. Then,
if vortex density is not very high, pinning centers prevent flux motion and, consequently,
ohmic loss. For this reason, defects and impurities are usually artificially created to im-
prove type I superconductors practical properties. As it is explained in Sec. 2.3.3, these
pinning centers allow nonzero vortex gradient density and, consequently, superconduct-
ing current inside the material bulk.

2Typical values of X for type I superconductors range from 40 to 60 nm.
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2.3.2 Currents and magnetization

Contrary to many magnetic materials, the magnetic moment created by a supercon-
ductor is due to free volume current density J, which for type I superconductors with
A much lower than the sample dimensions can be approximately described as a sheet
current density K. This allows two possible descriptions of the magnetic properties.

First, the superconductor can be treated as a nonmagnetic material with free currents
in it. With this description M(r) = 0 and B = poH, so that the physical role of the
quantities B and H is the same.

The other possible description is to consider the current flowing into the supercon-
ductor as a magnetization current. Then, Jy; = V x M and K3y = M X e,, being
M and effective local magnetization. This approach is useful for the perfect shielding
state, which appears, for example, for type I superconductors with A much lower than
the sample dimensions. For this case the material can be taken as LHI with y = —1, so
that M = —H and B = 0.

The latter description is used in Part I to discuss the demagnetizing effects in perfect
shielding. However, the former approach is more practical (see below) for the critical-
state model, since this model is based on an assumption of the critical current density J.
Nevertheless, for both approaches the magnetic induction is the same since its sources
are J and K, independently if they are considered as magnetization currents or not.

2.3.3 The critical-state model

The critical-state model was formulated to describe superconductors with strong
pinning, also called hard superconductors.

Current vortices repeal to each other due to the force of Eq. (2.43), where in this
case J is the current around one vortex. Then, the vortices natural behavior in an ideal
type II superconductor is to uniformly distribute in average. For superconductors with
impurities and lattice imperfections there appear pinning forces F,,, which attract the
vortices to the impurity or imperfection position (pinning center). Pinning forces can
compensate the vortices repulsion, allowing magnetic field gradients and, consequently,
also nonzero macroscopic bulk current densities J. Then, the magnitude of the bulk
current is limited by the average maximum pinning force. Let name the magnitude of
the maximum local bulk current density as J..

Superconductors with strong pinning receive the name of hard superconductors be-
cause with increasing and then decreasing the applied field they present magnetization
loops with high irreversibility. These superconductors also have high critical-current den-
sities®, which makes them very interesting for applications. Actually, hight-temperature
superconductors and all superconducting materials with practical applications belong
to the hard type.

The critical-state model, proposed by C. P. Bean and H. London [7, 8, 9], is based on

3Typical values of J, in hard superconductors range between 10° and 10” A/cm2.
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the assumption that any electromotive force, whatever small, will induce a macroscopic
constant current, J.. This model applicability has been proved to be very broad to
understand magnetic [7, 25, 26, 27, 28, 29, 17, 30, 31, 32, 33, 34] and transport [35,
36, 37, 38, 39, 40, 41, 42, 43] measurements in hard superconductors. The critical-state
model implicitly assumes that H.; = 0 and neglects surface current effects, such as
equilibrium magnetization or surface barriers. Although the original critical-state model
assumed constant J., further extensions have been formulated for magnetic-induction-
dependent J; [44, 45, 46, 25, 47, 26], nonhomogeneous J. [48, 49, 50] or anisotropic J,
[51].

As an example, we review in the following the original Bean-London model applied
to an infinite slab. The main concepts reviewed here are useful for the development of
chapters 6, 7 and 8.

JZ JZ JZ
"_ X e J
J X X X

J. T I

Hy HY Hy

Hp T B Hp
H, - H,
H, | [ 11,
X X X
(a) (b) (c)
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H, - Hy -H,  Hag Hy Pl H Hy - H,
] - H, ] FH, Hp - Hy
H, H,
X X X
(d) (e) ®

Figure 2.2: Sketch of current and field profiles in an infinite slab in longitudinal applied field
H, within the Bean’s critical-state model.

We present for illustration the case of an infinite slab immersed in a uniform applied
field H, in an infinite direction starting from a zero-field cooled situation, that is, there is
no magnetic field nor current density in the sample. If we gradually increase the magnetic
field, some current density will be induced from the exterior to inwards following the
Lenz law, Fig. 2.2. According to the main assumption of the model, this current density
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Figure 2.3: Sketch of current and field profiles in an infinite slab carrying transport current I
within the Bean-London critical-state model.

have magnitude J. [Fig. 2.2(a)]. Since J. = |V x H| = |0H,/0z|, the magnetic field
decreases linearly with slope J./po from the external value H, = H, to 0 from the
border to inside. Then, there can be distinguished a region with critical-current density
and magnetic field and a field-free core with no current density [Fig. 2.2(a,b,c)]. With
increasing the applied field, current density is induced inwards until the sample is fully
penetrated [Fig. 2.2(c)]. The applied field at which this situation is reached receives the
name of full penetration field H,. Further increase in the applied field cannot induce
more current, so that the inner magnetic field increases uniformly [Fig. 2.2(d)]. If the
applied magnetic field is decreased after a maximum applied field H,,, the electromotive
force induces current density in the opposite direction, having magnitude J.. These
currents, called reverse currents, penetrate in the same way as the initial ones and
overlap the already existing current density. The previously set current density and
magnetic field which are not overlapped by reverse ones are kept frozen [Fig. 2.2(d,e,f)].

We note that at low fields applied after the zero-field cooling state, the supercurrents
shield this applied field in almost the whole volume of superconductor. Then, the perfect
shielding approximation is suitable for this case and we can consider that the material



2.3 Hard superconductors 23

has an internal susceptibility y = —1.

The same process which has been presented for a uniform applied field can be re-
peated for a certain transport current I (Fig. 2.3). With increasing the transport current
after a zero-field cooling, critical current and magnetic field penetrate from the exterior
to inwards. The current at which the superconductor is penetrated is named critical
current I.. If the current is decreased after a maximum current I,, < I. is reached,
reverse current penetrates from the surface inwards keeping the internal current density
and magnetic field frozen. If, instead, the current is forced to be higher than I., the
driving force on current vortices can no longer be compensated by pinning forces and
ohmic loss appears in the superconductor.

The critical-state model has been extended to other geometries by many authors, as
reviewed in the introduction of chapters 7 and 8. As it is mentioned in the introduction,
this thesis provides an extension of the critical-state model for multifilamentary infinite
superconducting samples with uniform transverse applied field or transport current.
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CHAPTER 3

Introduction and numerical method

This part of thesis deals with the demagnetizing effects in some practical geometries,
such as rectangular prisms and cylinders.

In this chapter we first review the state-of-the-art of demagnetizing calculations prior
to our research. Afterwards, we present a numerical method to calculate the surface pole
density and the demagnetizing factors for LHI materials with an arbitrary susceptibility.
This method is described by means of a general formulation suitable for any geometry.
Although the main part of our work on demagnetizing effects is based on numerical
calculations using this method (see §4.2 and §5) [13, 52, 53], we also present some other
relevant analytical results (see and §4.1) [54, 55].

3.1 Some interesting geometries

A complete review of the most interesting existing works on demagnetizing factors
can be found in Refs. [3] and [56]. Here we present an overview of the existing results
and some interesting features which are used in this thesis.

3.1.1 Ellipsoids

This geometry has great conceptual importance since it is the only one which presents
uniform magnetization and demagnetizing field under a uniform applied magnetic field
for any susceptibility x [1]. As a consequence, the demagnetizing factors Ny and Ny,
defined in Eq. (2.36) are identical, so that a unique demagnetizing factor N needs to be
considered. In addition, the demagnetizing factors are y-independent, depending only
on the relative length of the ellipse axes.

Thanks to the fact that the magnetization is uniform, an analytical expression of N
can be obtained as a function of the elliptic integrals. The deduction of formulae for

27
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N where derived in the beginning of the twentieth century and where systematically
presented and summarized in 1945 by Osborn and Stoner [58, 57].

From the analytical result in [57, 58], it can be obtained that N for an ellipsoid with
semiaxis a, b and ¢ under an applied field in the ¢ direction monotonically decrease when
decreasing ¢ with fixed a and b. Moreover, the limit of long samples, ¢ > a, b, yields to
N — 0 while for short one, ¢ < a,b, the limit is N — 1. These qualitative results are
fulfilled for any geometry.

3.1.2 Cylinders

This is a very interesting 3D geometry to calculate, since many actual magnetic
samples have this shape. However, for this geometry no general analytical formulae can
be obtained since the magnetization and the demagnetizing field are nonuniform for all
x # 0.

The only case which can be analytically deduced is for x = 0 and axial applied field,
for which the magnetization is uniform. As done by Joseph [59], the demagnetizing
field can be calculated by direct integration considering that the pole density on the end
surfaces is 0 = =M and null in the cylinder side. Then, the demagnetizing factors N¢
are obtained by further integration of H4q over the midplane or the entire volume. An
alternative deduction was made by Brown [60] by means of already existing formulae
for mutual inductances. Thanks to Eq. (2.42) for uniform magnetization, the magne-
tometric demagnetizing factor in radial applied field, N/, can be calculated from that
corresponding to axial H,, N%, so that for the case x =0

1

Nin(x = 0) = 5(1 = Ney(x = 0)). (3.1)

Although analytical solutions can only be deduced for y = 0, the demagnetizing
factors for other susceptibilities can be calculated by using numerical methods. Many
numerical methods are based on calculating first the surface pole density to obtain the
demagnetizing field Hy and the average magnetization Mmiqvo (§3.2) [3, 13, 52, 53].
For a cylinder with axial applied field, the system has rotational symmetry so that the
problem can be mathematically reduced to a two dimensional one.

Considering 2D numerical calculations, it is worth to mention the accurate results
obtained by Taylor in 1960 [61, 62] for Ny, in either axial or radial applied fields, x = —1
and oo, and lenght-to-diameter ratio in 0.25 < v < 4. Afterwards, quite accurate
calculations of axial N; for a wider range of v and x were made under the help of
computers [2, 4], and the v and x dependence of the axial Nt ;,, was practically completed
and discussed for cylinders in [3, 63]. Calculations for radial N ,, are more incomplete,
being Nt calculated for x > 0 and 0.01 <y < 100 in [5] and Ny, for —1 < x < 10? and
0.01 <+ <1 in [55].

From the analytical results for ellipsoids and cylinders with xy = 0 in axial field,
we can do a comparison between the demagnetizing factors for cylinders with diameter
D and length L and ellipsoids with semiaxis a,a,c so that v = L/D = ¢/a. When
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doing so, the demagnetizing factors differ in more than 10% for v between 0.1 and 0.5, a
difference that can be higher than 100% for a 7 larger than 2. This difference exemplifies
the significant dependence of the demagnetizing factors on the sample shape and the
importance of their calculation for any practical geometry.

3.1.3 Rectangular prisms

The rectangular prism geometry has great practical importance. For this reason, a
lot of effort has been made to obtain the demagnetizing factors for this geometry, both
numerically and analytically. Two separate cases must be considered: infinitely long
prisms (bars) and finite ones. As explained in §2.2.2, the demagnetizing factors N, for
the infinite directions are null, so that for the infinitely long prisms only the transverse
demagnetizing factors have to be calculated. The case of infinitely long prisms is easier
to solve due to the translational symmetry in the infinite direction, thanks to which the
problem is reduced to a two dimensional one.

Infinite rectangular prisms

For infinite bars exact analytical formulae can be derived for x = 0, —1 and oo.
In 1960’s Brown presented a comprehensive work on analytical formulae for infinite
prisms. He calculated Ng,, for uniform magnetization by means of direct integration
(appendix in [18]). Furthermore, he also calculated the analytical solution for x = oo
by means of conformal mapping thanks to the analogy with the electrical field in a
conductor, in the sense that for infinite susceptibility H is null inside the magnetic
sample, while for a conductor the electric field vanishes [18]. However, Brown never
published the specific deduction nor the surface pole density o. Recently, Brandt and
Mikitik analytically obtained x®** for x = —1 [64], from which Ny, can be deduced by
means of Eq. (2.37). Although Brandt and Mikitik mention in their article that they use
conformal mapping, the do not specify the process to calculate the sheet currents, from
which x®* is calculated. We deduced the demagnetizing factors N, for x = —1 from
solving step by step the x = oo case and using a conjugate relations between xy = oo
and x = —1 [54, 65]. Apart from N, analytical formulae and tables, in that article we
calculated the surface pole density o for y = oo and the sheet current K, for y = —1.
The main results and the method used for these susceptibilities are summarized in Sec.
4.1.

Apart from the above analytical results for x = 0, oc and —1, there exist neither
analytical results nor numerical ones for any other susceptibility values. In order to
fill this lack, we numerically calculated Nt for a wide susceptibility range [13]. The
numerical method used to calculate them is presented in a general formulation in §3.2
and the results obtained are summarized in §4.2.
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Finite rectangular prisms

For finite rectangular prisms there only exist analytical solutions for uniform mag-
netization, that is, ¥ = 0. The magnetometric demagnetizing factor was first calculated
by Rhodes and Rowlands [66] in 1954 by energy considerations [66], while later Joseph
published analytical formulae for both Ny and Ny, obtained by direct integration. The
specific case of Ny, for a cube with uniform magnetization can be easily calculated from
Eq. (2.42) yielding to Ny, = 1/3, which is the same as for a sphere.

Apart from the analytical results for uniform magnetization, the only existing results
for finite rectangular prisms are the /Ny numerical calculations for square bars obtained
by Templeton and Arrot for x = oo and a wide range of length-to-side aspect ratio [2].
Templeton and Arrot results for square bars can be compared to those for cylinders, also
obtained in [2], which show that N for a square bar and a cylinder with same length
and cross-section only differ between 1.5% and 3%. Similar results are obtained for
X, directly related to Ny, for perfectly shielded rectangular bars (x = —1) obtaining
a difference of 1% for a length-to-semiside ratio of 10 up to 5% for a ratio of 0.1 [67].

In this thesis we present numerical calculations of the demagnetizing factors Nt ;,, for
finite square and rectangular prisms in chapter 5, which can also be found in [52, 53].
The numerical calculation of the demagnetizing factors for finite rectangular prisms is
much more complicated than for infinitely long rectangular prisms, since the change from
2D problems to 3D implies much more than 50% of computation time and memory. As
explained below, this fact motivated the refinement of the method previously used for
infinite rectangular prisms and cylinders [13, 3].

We next present the general numerical method used to calculate the surface pole
density and the fluxmetric and magnetometric demagnetizing factors for arbitrary sus-
ceptibility and a wide range or samples dimensions. As mentioned above, this numerical
method has been applied to cylinders [3], infinite rectangular bars [13] and finite square
and rectangular bars [52, 53]. In the research work of this thesis we adapted the original
method presented in [3] for cylinders to infinite rectangular prisms and improved it to
make the method applicable to rectangular bars, obtaining for both geometries highly
accurate results.

3.2 Numerical method for arbitrary susceptibility

As explained in the previous section, the determination of the demagnetizing factors
for arbitrary susceptibility requires numerical calculations, even for regular geometries
such as cylinders and rectangular prisms. In this section we present a general numerical
method to calculate the demagnetizing factor for a LHI sample, based on that developed
by Chen, Brug and Goldfarb [3].

As mentioned in §2.2.2, the calculation of the demagnetizing factors N¢n, in a LHI
material requires either Miq vol, Hd,mid,vol OF Bar,mid,vol, S0 that Nt can be obtained
by means of Egs. (2.39), (2.40) or (2.41), respectively. By definition, the demagnetizing
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field Hq can be calculated by direct integration from o7, while By is calculated from
the magnetization sheet current Kj;.

The numerical method developed in this thesis requires the division of the sample
surface into elements, in each of which ops or Ky is uniform. After doing so, the o
or Kjs values on the elements are calculated by solving a linear equation system. From
the surface pole density or the magnetization sheet current, the quantities Hyq or B,
are obtained, respectively, which the demagnetizing factors can be calculated from.

Although in principle the demagnetizing factors can be calculated from either o,/ or
Ky, the use of K for finite rectangular prisms requires a double number of independent
variables than using s, due to the vectorial nature of the sheet currents. Consequently,
considering that the algorithm used to solve the linear equation system has a temporal
complexity of n3, being n the number of independent variables, the use of Kj; requires
eight times more computational time than using o;.

Furthermore, Chen, Brug and Goldfarb provided a useful correction to reduce the
discretization error (Eq. (40b) in [3]). As explained below, in some cases this correction
can reduce the discretization error in several orders of magnitude. This correction
requires the calculation of the demagnetizing factors from both Mg vl and Hy mid,vol-
The mean magnetization can be calculated from o thanks to V-M = 0 (§3.2.2) [3, 54],
which cannot be done from K.

3.2.1 Surface pole density calculation

In order to obtain N, we need to calculate first the surface pole density o3 on the
sample surface. We now describe a general numerical method which can, in principle,
be applied to any geometry. From now on, we will omit the subindex ‘M’ to simplify
the notation.

For a LHI material, the local magnetization is proportional to the magnetic field,
M = xH. Considering the component perpendicular to the surface and the o definition
of Eq. (2.18), we obtain

o(r) = x [Ha(r) + Hq(r)] - en(r), (3.2)

where e, (r) is the unit vector perpendicular to the surface at position r. In Eq. (3.2)
we allow the general case of a nonuniform applied field, although in this thesis we only
consider uniform applied fields. Then, we divide the surface into n elements where
we assume a uniform pole density. The error due to this approximation decreases with
increasing the number of elements n. Considering this approximation, the demagnetizing
field at position r is

Hy(r) =Y o/hi(r) (3.3)
j

where o/ is the surface pole density at element j and h’(r) is the magnetic field for unit
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pole density created by this element, so that

- 1 r—r
h’ = ds'—— 4
(x) 4ﬂ/% e (3.4)

with S; as the element j cross-section. From Egs. (3.2) and (3.4) we obtain the linear

) 54 | .
H,=>" (; + N:ﬂ) o, (3.5)

where §% is the Kronecker symbol and Héyn and N/ are defined as H;"n = H,(r") e, (r’)
and N/ = —h/(r') - e, (r'), being r’ the element 4 central position.

equations set

For a given applied field H, and knowing the geometrical coefficients N , the surface
pole density at each element o’ can be calculated by solving the linear equation set
(3.5). Actually, this linear equation set is only useful to calculate the surface pole
density provided that the coefficients hi(r) can be calculated analytically by means of
Eq. (3.4). This method has been used for cylinders and infinite rectangular prisms
[3, 13].

The numerical method presented above can be improved by considering the average
demagnetizing field on the element surface, instead of Hy in the center only. When
doing so, the linear equation system for o’ changes into

. 5t iy .
Hi =Y <— + D;ﬂ) ol (3.6)

; X
where Hg’n is the average of H,(r) - e,(r) on the element i surface and DY is defined as

DY = — / dSe,(r) - h(r). (3.7)
Si
We apply this latter method to rectangular prisms [52, 53], showing a much higher
accuracy in the surface pole density than when considering the demagnetizing field in
the element center only. However, in order to apply the linear equation set of Eq. (3.6)
we need the analytical expression for DY , which can be calculated from Eq. (3.7) by
direct integration of h/(r). The calculation of DY requires an extra integration compared
to Nﬁj , s0 that for some geometries only Nﬁj have an analytical expression but not Dflj ,
as is the case for cylinders.

3.2.2 Calculation of the demagnetizing factors

Once the surface pole distribution is known, we can calculate Mg vo1 and Hg mid,vol,
from which the demagnetizing factors N¢m, can be calculated using Egs. (2.39) and
(2.40), respectively. As mentioned above, the demagnetizing factors are calculated by
two different methods in order to use a Nt correction, which significantly reduces the
discretization error [3].
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Let us take the uniform applied field H, to be in the z direction with the origin
located in the center of the sample. If the sample geometry has mirror symmetry in
the zy plane, both Mp,iq.vo1 and Hg mid,vol are in the z direction, §2.2.1, so that we can
ignore the vector nature of these quantities.

Average magnetization calculation

The average magnetization on any surface with constant z, My, (2), can be calculated
from o thanks to V - M = 0, which is fulfilled for any LHI material. From V-M = 0 it
can be deduced that the integral § M - ds is null on any surface closing a volume inside
the magnetic sample. Then, M,y (z) is

]‘ ! /
M) = 55 /S L. A5, (3.9)

where S(z) is the sample cross-section at height z and S(z' > 2) is the sample surface

above z. Then,
Myia = Mav z = 0 (39)
Mvol = 1/l / Mav (310)

being 2/ the sample length. For obtaining the above formula for M, we have used the
sample mirror symmetry with respect to the y = 0 plane.

Average demagnetizing field calculation

The average demagnetizing fields Hg miq and Hq o1 are

1
Homia = ¢ d/ dSHg ,(r Za]hzmld, (3.11)

mld

Hyvol = — / dVHy ,(r _Zafhiml, (3.12)

where the factors hi miq and h‘i vol are the element j contribution to Hy mid,vo1 normalized

to o7, respectively. Naturally, the analytical obtention of factors h] miq and hz vol 18
preferred than any numerical evaluation. Again, this analytical derivatlon is not possible
for cylinders, so that a surface or volume numerical integration of Hy ,(r) from Eq. (3.3)
is needed. We note that the use of analytical formulae for h? mia and h’ ol improves
significantly both the accuracy and the computation time of Hg miq,vo1 from the numerical

o solution [52].

Demagnetizing factors calculation

Once Mmpiq,vol and Hg miq,vol are obtained, the demagnetizing factors N¢, can be
calculated from Egs. (2.39) and (2.40). Although the demagnetizing factors calculated
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from both equations should yield the same value, it is not so due to the discretization
error in 0. To distinguish between the Nt ;,, values obtained from the different equations,
we name the demagnetizing factors obtained from M,;qvo1 as the surface demagnetizing
factors, Nfs’m, and those obtained from Hg mid,vol, as volume demagnetizing factors va,m-
As explained in [3], a corrected demagnetizing factor value Nf,, can be obtained

from Nf,, and N¢|, using
NE = N 1+ N¢x

C 3.13

This relation can be obtained from Egs. (2.39) and (2.40) assuming that the relative
error in Mmiq,vol and Hg mid,vo1 are the same. This last assumption is formulated as

5 _ Mmidvor H g mid,vol 4
mid,vol = I—M*i _l_ra (3.14)
mid,vol d,mid,vol

where dppiq vor is the relative error and M ., ., and H] ., are the correct ideal values
of Mmidvol and Hg mid,vol, Tespectively.

3.3 On Nf’m and 1 — Nf’m

We now present some general considerations upon N, and its relation to Mmiq vol,
which is the quantity that is desired to determine when doing fluxmetric and magne-
tometric measurements (§2.2.2). These considerations are useful when discussing the
error of numerical calculations [13].

In a similar way in which we have defined the external susceptibility x**' in Sec.
2.1.3, we can define Xext,mid,vol S

Xfr}l(itd,vol = Mmid,vol/Ha- (315)
These external susceptibilities are related to demagnetizing factors as

ext 1

Xrmid,vol = Mm% (3.16)
,m

The magnetic materials and their demagnetizing factors study has traditionally been
done for magnetic materials with high susceptibility, x > 1.
The relevant quantity for materials with x > 1 is the shape susceptibility y,, defined

as

Xs = Xrmidvol (X = 00) = 1/N¢ . (3.17)

Actually, this x; is defined at one extreme value of x, and if using the other extreme
value x = —1, we will have another shape susceptibility

Xs = Xmiawol (X = =1) = =1/(1 — Nem). (3.18)

In the first case, what determines the accuracy of x; is the accuracy of Nfp; in the
second case, the accuracy of x§ is determined by that of 1 — Nt . Thus, the accuracy
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of N, determination should be required with respect to Ngp, itself if y > 1 and to
1 — Npp if x ® —1. Related to this, when making the error estimations at any value
of x, we will more strictly define the relative error of the demagnetizing factors as the
higher one obtained from N¢, or 1 — N¢p,.

3.4 Chapter summary and conclusions

Since the definition of the demagnetizing factors, which was contemporary to
Maxwell himself [1], a lot of work has been done to calculate them. Some of this
work is reviewed in this chapter. From the published results, it can be found that the
demagnetizing factors N;,, can strongly depend on the sample geometry. Then, Nt
must be calculated independently for each interesting geometry. We have detected some
lacks in the demagnetizing factors published results even for the regular geometries of
cylinders and rectangular prisms. Although there can be some others, these lacks are
overviewed below.

For infinitely long prisms, there exist only some results for particular values of sus-
ceptibility x = —1,0, 00, which are found analytically. Although for x = oo both the
fluxmetric and magnetometric demagnetizing factors are calculated, neither their deduc-
tion nor the surface pole density o have been published. For y = —1 only Ny, has been
obtained. Furthermore, there are no N, results for intermediate values of x, which
can only be calculated numerically.

There are even less results for the general case of a finite rectangular prism. Actually,
the only analytical results are for y = 0 and there are only some numerical calculations
for Ny and y = oc.

At least part of these lacks in N, results can be covered by appropriate numerical
calculations. For this reason we present in this chapter a general formulation of a
numerical procedure which was first developed for cylinders in axial applied field [3].
Furthermore, we improve this method by considering analytical formulae for surface
and volume averages.
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CHAPTER 4

Infinitely long rectangular bars in transverse field

In this chapter we present the main demagnetizing effects results for samples with
the geometry of infinitely long rectangular bars. Although the study of this geometry
has some practical interest, specially for x = —1, the study of infinitely long rectangular
strips must be taken as a step to solve the more interesting finite prisms geometry.

Although the numerical model presented in §3.2 is valid for any physical susceptibil-
ity, for some x values, x = —1,0, 0o, it is possible to deduce analytical formulae for the
demagnetizing factors and the surface pole density o or the magnetization sheet current
Kys. As it is explained below (§4.2.3), the error in the numerical calculations can be
checked by comparison to the derived exact analytical formulae. The deduction of these
formulae requires the use of relations between the magnetometric demagnetizing factors
of different strips, which we call the conjugate relations (§4.1.1). Similar conjugate re-
lations, although approximate, can be found for other geometries, such as cylinders and
cubes. These conjugate relations for cylinders can be used for approximate calculations
of the radial magnetometric demagnetizing factor from the previous results of the axial
one.

After presenting the analytical results, we expose the numerical ones for arbitrary
x obtained from the method described in Sec. 3.2 adapted to the infinite rectangular
prism geometry. To make this adaptation, the analytical formulae for ¢ with x = oo
and Nf, with x = —1,0 and oo have been of fundamental importance for estimating
and reducing the discretization error.

37



38 Infinitely long rectangular bars in transverse field

4.1 Exact analytical calculations for extreme values of sus-

ceptibility
In this section we outline the main analytical results for y = —1 and oc, published
in Ref. [54] and detailed in Ref. [65]. Although, the analytical formulae for Ni,, with
X = oo and for Ny, with x = —1 were already published!, in Refs. [54, 65] we not

only presented all the steps to obtain the demagnetizing factors but also calculated the
surface pole density o for x = oc, which did not appear in the original results.

We will start by presenting some relations, which we call conjugate relations, relating
demagnetizing properties between samples with same dimensions but different suscep-
tibility. Thanks to these relations, we can obtain Kj; and Ny, for Yy = —1 from the o
and Ny, results for y = oo, respectively.

4.1.1 Conjugate relations for infinitely long rectangular prisms

In this subsection we focus on infinitely long rectangular prism of dimensions 2a x 2b
in the z and y directions, respectively, having its infinite dimension parallel to the z
axis (Fig. 4.1). We assume that there are no free currents in the sample (J = K = 0).
Then, since for LHI materials the magnetization current density Jj; and the volume
pole density py; are always zero (§2.1.3), the only sources for vector potential A and
magnetic scalar potential ¢ are Ky and o, respectively. Moreover, for applied fields in
the zy plane, the sheet current Kj,; flows in the z direction. Since the vector potential
in the Coulomb gauge (V- A =0) is
Aw) = X0 [ Kulr) g2y (4.1)

4 s r —r'|

the vector potential is parallel to the z direction. In addition, neither A nor ¢ depend
on the z position thanks to the translational symmetry.

We consider now an infinite prism with susceptibility x; immersed in an applied field
in the z direction (prism 1) and another one with susceptibility x2 and the same applied
field but in the y direction (prism 2), Fig. 4.1.

In Ref. [54] we demonstrated that as long as the condition

Ho B i 2

is fulfilled, the scalar magnetic potential for prism 1, ¢, and the z component of the

Hit _ Ho (4.2)

vector potential for prism 2, As, divided by pug, follow the same differential equations
with the same boundary conditions. This issue can be deduced from the A and ¢
differential equations and boundary conditions of section §2.1.3. Consequently ¢; is
proportional to Ao,

¢1(m,y) = AQ(.’L‘,?/)/M(). (4'3)

!The demagnetizing factors Nt ., for x = co were calculated by Brown [18] and Brandt and Mikitik

presented a formula for x*** for y = —1 [64], from which N,, can be directly deduced by means of Eq.
(2.37).
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H

a

(a) (b)

Figure 4.1: Infinite prism cross-section of dimensions 2a x 2b under an applied field of magnitude
H, in the z (a) and y (b) directions. The prism is a LHI magnetic material with susceptibility
x1 (a) and x2 (b), respectively.

The permeability condition of Eq. (4.2) is equivalent to the following susceptibility one

x1 = x5 (4.4)
X*
= ——4— 4.5
X2 o X* ) ( )
being x* any number between —1 and oc.
Equation (4.3) has some important implications. From Eq. (2.8) and (2.16) and

taking into account that H = —V¢ and B =V x A we deduce that

o = V¢-en, (4.6)
1

Ky = —(VA-en)e;, (4.7)
Ho

where the second equation is obtained by using V x A = VA X e, for the infinitely long
geometry. Then, Eq. (4.3) implies that

oi(z,y;x = X7) = Kom(z,y5x = =x"/(1 + x7)), (4.8)

where the subindices 1 and 2 refer to prism 1 and 2, respectively. If one wants to study
the infinitely long prism geometry with an applied field always in the same direction,
we can rotate prism 2 axis anti-clockwise a m/2 angle, Fig. 4.1(b). Moreover, the
prism semisides should be renamed so that the prism vertical dimension is 2a and the
horizontal one is 2b. After doing these changes Eq. (4.8) becomes

K'y (m,y;50/b;x = —x"/(14+ X)) = om(—y, z;0/a; x = x*), (4.9)
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where K, is the sheet current for the rotated prism 2.

We next present the conjugate relation for M,y between the prisms. For prism 2 we
can use the dipolar magnetic moment definition?, while for prism 1 the electric dipolar
moment formulae can be applied. Then, we obtain

1 b a
Mas = oo [Coan+ [ ool (410)
0 0

1 b a
Moo = ~= [a/ KM(a,y)dy+/ :EKM(m,b)dx] . (4.11)
0 0
Consequently, since Ky 2 = o1 the volume average magnetization follows the relation
Myo1,1 = —Myo,2- (4.12)

Considering that M = yH and by means of Egs. (4.12), (2.36) and (2.32) the following
relation between the magnetometric demagnetizing factor can be deduced

Nm71 + Nm72 =1, (413)

where Np, 1 and Ny, 1 are the magnetometric demagnetizing factors for prism 1 and 2,
respectively, in Fig. 4.1. As done above for ¢ and Kj;, we can rotate prism 2 and
the applied field if Fig. 4.1(b) so that H, is parallel to the z direction. Then, the
demagnetizing factors for rectangular prisms with applied field in the 2 direction follow

the relation i

Nim(a/b, x*) + Nm(b/a, 1_+Xx*) =1 (4.14)

This last conjugate relation, Eq. (4.14), is of great importance for the calculations

for the infinitely long geometry, since the Ny, results for a certain susceptibility x* for
a range of a/b can be directly used to obtain those for susceptibility —x*/(1 4+ x*). In
particular, thanks to Eq. (4.14), the Ny, values for x = —1 can be obtained from the
analytical formulae for x = oo published by Brown [18] and rederived in [54, 65].

Conjugate relations for other geometries

It is possible to find some other conjugate relations for other geometries, although
they are not as general as for infinite strips.

For cylinders, we can deduce a conjugate relation for Ny, similar to Eq. (4.14). This
relation is

N (R/Lx = X7) +2Np(R/lx = =x7 /(1 +X7)) = 1+ 0(R/L, X7), (4.15)

where R is the cylinder radius, 2/ its length, N and N/, are the magnetometric demag-
netizing factors in the axial and radial directions, respectively, and §(R/l, x*) is a factor

2For the infinitely long geometry approximation, the currents of the U-turn at the far-away ends of
the sample give the same contribution to m as the currents in a cross-section, thus canceling the factor
1/2 in the m definition of Eq. (2.1) [87].
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that accounts for the deviation from 1 of the conjugate relation. It can be proved that
O0(R/l,x*) =0 for x* = —1 and 0, so that we obtain a relation similar to Eq. (4.14)[55].
In Ref. [55, 65] we estimate the factor 6(R/l, x*) for cylinders with R/l <1 and we use
this estimation to calculate the radial magnetometric demagnetizing factors N/, from
the numerical results in [3]. The maximum estimated discretization error for these NJ,
values is of about 1%.

From the numerical Ny, results for a cube, presented in Sec. 5.2.3 and in [52], we
can find a similar conjugate relation, Eq. 5.1.

4.1.2 Infinitely long prism with infinite susceptibility

We now present the main analytical results obtained for Y = oo. The surface pole
density o on the prism is obtained by solving the magnetic scalar potential for an infi-
nite cylinder with the same susceptibility and applied field and transforming the external
region for a circle into that for a rectangle by means of conformal mapping transforma-
tions. Once the surface pole density is obtained, the calculation of the demagnetizing
factors can be done by direct integration. The details of the deduction of o and Nt
can be found in [54, 65].

Surface pole density

After doing the appropriate conformal transformation, the surface pole density on a
prism with y = oo with orientation like in Fig. 4.1 is found as

H
ola,y) = ﬂ (0 <0 < arcsink), (4.16)

k2 —sin%6

o(z,b) = _ Hacost (arcsink < 6 < 7/2), (4.17)

V/sin2 6 — k2

where the parameter k is related to a, b and a/b as

= 2[E(K) - K2 K (K], (4.18)
= 2[E(k) — KK (K)], (4.19)
E(K") — KK (k")
E(k) — E2?K(k)"

a

b
a
b

with k2 = 1 — k% and K (k) and E(k) as the complete elliptical integrals of the first
and second kind, respectively. The angle § in Eqs. (4.16) and (4.17) is related to the
coordinates x and y by means of

Y E(lﬂa k) - kle(lﬂa k)

b E(k) — k2K (k) (4.21)
r _ EW,K)—-EF@W.K)

a  EW)-EK®E) (4.22)
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where E(9,k) and F(9,k) are the first and second kind elliptical integrals, and ¢ and
9 are defined as

sind = sinf/k (0 <6 < arcsink), (4.23)
sing = sind'/k' = sin(r/2 — 0)/K (arcsink < 0 < 7/2). (4.24)

The pole density o(a,y) and o(z, b) calculated from Eqgs. (4.16)-(4.24) are plotted in
Fig. 4.2 for some a/b values. In this figure the pole density diverge near the corners as
8~ 1/3, where ¢ is the corner distance. Moreover, close to z = 0 the pole density depends
linearly on z, being the linear region wider for higher a/b. These o features, which were
already used for other geometries, such as cylinders [61, 2, 3] and finite square bars [2],
are very useful to optimize the finite elements calculations presented in §4.2.

b—— 7717 T T T 71 6

a

-1yH

K, (x,bsx=

a’
a®

o(a,y;x=0)/H KM(a,y;xz- 1 )/H21

o(x,byy=0)/H

1.0 08 06 04 02 00 02 04 06 08 10
1-x/a 1-y/b

Figure 4.2: Surface pole density of the prism in Fig. 4.1(a) with infinite susceptibility o(z,y; x =
oo) and sheet current on the prism in Fig. 4.1(b) with —1 susceptibility K (a,y;x = —1) for
three different a/b values.

Volume average magnetization and demagnetizing factors

The average magnetization M,iq vo1 can be directly calculated from the obtained
surface pole density by means of Eqgs. (3.8)-(3.10), changing z by z for the present
geometry. After doing the corresponding integrations, we obtain [54, 65]

2H, sin6

Ma(2) = — (arcsink < 6 < 7/2), (4.25)
2H.

Muyia = ba, (4.26)
k?H

My = =72 (4.27)

ab
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As explained in Sec. 2.2.2, for LHI materials the demagnetizing factors can be calculated
directly from Mpiqvor by means of Eq. (2.39). Using the above Mpiq o1 results and
the a and b expressions in Eqs. (4.18) and (4.19), we obtain the demagnetizing factors
formulae

Ni(x =c0) = E(k) - K2K(k), (4.28)
4 [E(k) — kK" K(k)|[E(F') — kK (K]
T k/2 ’

where k> = 1 — k? and the parameter k is related to a/b by means of Eq. (4.20).

Nin(x = o0) = (4.29)

4.1.3 Perfectly shielded infinitely long prism

This case, which correspond to x = —1 (§2.1.3), can be easily solved from the results
for x = oo thanks to the conjugate relations, presented in Sec. 4.1.1.

Sheet current, volume average magnetization and demagnetizing factor

As explained in Sec. 4.1.1, the surface pole density in a prism with susceptibility x*
and applied field in the z direction is related to the sheet current for another prism with
susceptibility —x* /(14 x*) and applied field in the y direction. Then, from o for y = co
in Egs. (4.16) and (4.17) and the relation in Eq. (4.8) we obtain the sheet current

H 0
Ky (a,y) = _ Ta 8T (0 <0 < arcsink), (4.30)

k2 — sin2 6

Ky (z,b) = _ Hacosh (arcsink < 6 < 7/2), (4.31)

Vsin? 0 — k2
where 0 is related to x and y by means of Eqgs. (4.22) and (4.21), respectively. The
sheet current Kjs for x = —1 is plotted in Fig. 4.2 for several a/b aspect ratios.
Since for x = —1 we know Kj; but not o, M,;q.vo1 cannot be calculated directly from
o by means of Egs. (3.9) and (3.10), as done for xy = oo. However, M, can be deduced
either from K, and Eq. (4.11) or directly from the volume average magnetization for
X = oo by means of the conjugate relation of Eq. (4.12), yielding to

k" H,

Mvol = - ab

. (4.32)

Finally, we can apply the conjugate relation of Eq. (4.14) to derive Ny, for x =
—1 from the x = oo result. For the study of the susceptibility dependence of the
demagnetizing factors, it is convenient to consider the same direction of the applied
field for any x. For x = —1 we only have to change a by b and b by a, which is the same
as changing k by k' and k' by k. After doing these changes, we obtain from Eqs. (4.14)
and (4.29) that

_A[B(F) - BE(K)][E(k) — k?K (k)]

(4.33)
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The fluxmetric demagnetizing factor Ny cannot be exactly calculated from Kj;. This
is so because neither Myy;q nor Hy niq can be calculated from Kj;. The vector quantity
that can be calculated from Ky is By;. However, the equation relating By miq and
N, Eq. (2.41), is not applicable for x = —1 because it yields mathematical indeter-
minations. Although N cannot be analytically solved exactly, it is possible to obtain
an approximate formula for long samples in the applied field direction. As presented in
[54, 65], such a formula is

Ne(x = -1) ~1— K, (4.34)

which is valid for a/b > 10 if the applied field is in the z direction. Equation (4.34) can
be deduced from taking into account that Ky, is almost uniform on the surface parallel
to H,, except close to the corner.

4.1.4 Infinitely long rectangular prism with uniform magnetization
(x =0)

For completitude, we include the Nt ., formulae for an infinitely long strip with
uniform magnetization, corresponding to the y = 0 case. This formulae can be calculated
by direct integration of the demagnetizing field created by the uniform surface pole
distribution ¢ = £M on the sides perpendicular to the applied field [18]. Then, the
demagnetizing factors N, are

2 20 a 4b?

Ne(x=0) = - arctan — 57 ln<1 + ?>, (4.35)
1 b 2

Nm(x=0) = —|4arctan— + Imey
2w a b b

+<2—%>m<y+g>} (4.36)

where a and b are the cross-section semisides parallel and perpendicular to the applied
field, respectively.

4.2 Numerical calculations for arbitrary susceptibility

In this section we present the formalism to adapt the general method presented in
Sec. 3.2 to infinitely long rectangular prisms with arbitrary y. The most important
issue of this adaptation is the surface division, which has been optimized to minimize
the discretization error comparing to the analytical results. After doing this adaptation,
we present the N, numerical results for a wide range of x and the a/b aspect ratio.
The discretization error in the numerical calculations is estimated by comparing to exact
analytical formulae and by using the conjugate relations in Sec. 4.1.1.
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4.2.1 Formalism

Let us consider a rectangular prism (or strip) infinitely long in the z direction with
arbitrary susceptibility x and cross-section 2a x 2b immersed into an applied field H, in
the z direction, Fig. 4.1.

In order to determine the surface pole density o(x,y) we use the numerical model
described in Sec. 3.2. For the strip geometry we used the original numerical method, so
that we did not consider the demagnetizing field average on the elements? (§3.2.1). To
apply this model to the strip geometry, we divide its surface into n rectangular elements
infinitely long in the z direction an with finite width in the x or y direction, depending on
the side where the element belongs to, Fig. 4.1. Moreover, thanks to the system mirror
symmetries, the pole density o(z,y) is antisymmetric in the x direction and symmetric
in the yy one. Then, the independent variables can be reduced to the surface pole density
on the elements in the z,y > 0 region. If we consider this, we can keep the formalism for
the linear equations set (3.5) by appropriately adapting the factors N The analytical
expressions of the factors Néj and the details of the numerical calculation method can
be found in [13, 65].

In the following section we present the main issue to adapt the numerical method to
infinitely long prisms, which is the surface division into elements with uniform o.

4.2.2 Surface division into elements

The infinite prism is divided into 2n,+1 and 2n, elements on the y = £band z = +a
surfaces, so that the total number of elements is n = 2n, + 2n, + 1. For the division
in the z direction we set an element centered at x = 0 with zero pole density in order
to avoid that an element border belong to the midplane. We proceed in this way since
the demagnetizing field in the elements border diverge due to the surface pole density
discontinuity, so that if the midplane contains an element border there is an important
error in N;f. Moreover, the division is done by keeping the system mirror symmetries.
Then, the total number of independent variables are n' = ng + ny.

For uniform magnetization, x = 0, ¢ is uniform in the sides x = 4a and zero
in y = +b. However, for extreme values of susceptibility, x = oo, —1, the surface
pole density strongly depends on the position. In section 4.1.2 we presented the exact
analytical expression for the surface pole density on a strip with x = oo, which diverge

as 0~ 1/3

and is linear with z close to x = 0 (Fig. 4.2). In a similar way, preliminary o
results for several y show that o diverge in the corner as a power law except for |x| < 1.
Moreover, the cases for x = oo and x = —1 present the highest power law exponent in
magnitude, so that the divergence near the corner is sharper. Since we assume that o is
uniform on the elements, a surface division with more elements near the corner reduces

the discretization error.

3In our published calculations for strips [13, 65], we did not use Hy averages on the elements even
though the corresponding D¥ factors can be calculated analytically, because for this geometry, the
results using the original model are already satisfactorily accurate.
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If we already know o(z,y), as we do for x = 0o, we can have two types of cell
divisions, namely, (i) uniform pole intensity, o’Az; or 0/Ay;, and (ii) uniform pole-
density increment, o;.; — o’ or Ojy1 — oJ. The division used in [3] for cylinders is
basically of type (i). In the present work, type (ii) is used, since compared with the
exact N, for x = oo and —1 calculated analytically, type (ii) results in smaller error
in the final results.

For simplicity, we use artificial o distributions,

o(z) = (1—=z/a) P -1 +2z/a)"'? + quz/a,

oly) = (1—y/b)7"% = (1+y/b)" +quy/b, (4.37)
to calculate the cell divisions on the y = b and x = a surfaces, respectively. Since type
(ii) involves a uniform division of o(z) or o(y) from the center to the corner, where
o(x = a) = o(y = b) = oo, we have to make a nonzero cutoff (da or db) close to the

corner so that the cells can extend over the entire surface. To consider such a cutoff in
the artificial o functions and to make a division which cover the whole surface, we can

modify Eqgs. (4.37) as
)
ox)=0 <$a—|— a)
a

o) =o (s752).

The determination of n, and n, is made under the conditions of n, + n, = 400 and

(4.38)

ng/ny = a/b with a minimum n, or n, equal to 40. For different values of x and a/b, the
values of g, and g, are chosen between 3 and 20 and da/a and 6b/b are chosen between
1/260 and 1/3000. They are determined iteratively by comparing the final results of
Nt m with the exact analytical formulae for x = 00,0, —1 of Eqgs. (4.29), (4.28), (4.33),
(4.35) and (4.36).

4.2.3 Demagnetizing factors results and discussion

The final results for Nt , have been calculated for a x and a/b values in such a way
that the conjugate relations for N, in Eq. (4.14) can be checked from the calculated
Nt m values. Then, we choose x* = 1.5,9,99, 999, 10 ~ oo and a/b = 1,2,5 x 10™ for
0.001 < a/b < 1000. In Refs. [13, 65] we reported tables containing all the calculated
numerical results. To illustrate part of this data, we present in Figs. 4.3 and 4.4. In
Fig. 4.3 we plot Ni, and 1 — Npp, as a function of a/b, while in Fig. 4.3 we present
the demagnetizing factors as a function of the susceptibility x. The figure for 1 — N¢
is included since for some susceptibilities, such as xy = —1, the factor 1 — Nt p,, is more
relevant than Ng .

General trends

From Figures 4.3 and 4.4, we can describe the general features of Nt ;,, as a function
of a/b and x, as it was done for cylinders [3]. Then, for infinite prisms we obtain the
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Figure 4.3: Demagnetizing factors numerical calculations for Ny, (a), 1 — Nn(b), Ne(c) and
1 — N¢(d) for infinitely long rectangular prisms as a function of a/b for several y.

following general N ,, properties:

1.

At any given x, Npm decrease with increasing a/b. This is consistent with the
known fact that the demagnetizing factors for an infinite sample with applied field

in the infinite direction are zero.

. Ny, > N¢ at any given x and a/b.
. At any a/b, Ny, decreases with increasing x.

. Nr decreases and increases with increasing x at a/b < 1.5 and a/b > 1.7, respec-

tively. This makes the following order of N, change with x:

Nm(=1) > Np(0) > Npy(o0) > Ni(oo) >
Ni(0) > Ne(—1) (a/b>1.7),
Nim(=1) > Npw(0) > Nig(oo)  (a/b < 1.5).
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Figure 4.4: Numerical calculations for N¢(a) and Ny, (b) for infinitely long rectangular prisms
as a function of 1+ x for several a/b values.

5. For a/b > 0.7, Ny /Ny increases with increasing a/b and decreasing x; for a/b < 0.5,
Ny /Nt decreases with decreasing a/b and decreasing .

6. For high a/b, a/b > 10, the minimum x for N¢(x) > 0.99N¢(c0) and Ny (x) <
1.01 Ny (00), that is, the minimum susceptibility that can be taken as infinity
concerning the demagnetizing factors, is x = 10a/b and = 6a/b, respectively.

Error analysis

The discretization error of the N¢;, numerical calculations for y = —1,0 and oo can
be checked by comparing to the exact analytical results in Sec. 4.1. As explained in
Sec. 3.3, the error of N, must be more strictly defined as the maximum one between
Nf’m orl— Nf7m.

After doing such a comparison, we find that the corrected value Nfc’m calculated from
N¢, and Ny, improves a lot comparing to the original results for almost all cases. The
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improvement is vital for long samples (a/b > 10) with x = oo, for which the best result
between N¢ - and Ny, can have up to a 15% error. The only cases which the correction
Nfc’In does not improve the calculations are for x = —1 and a/b < 0.5, for which the
NP result has higher accuracy. For this reason, the correction is used for any x and a/b
except for x < —0.6 and a/b < 0.5. The maximum error compared to exact analytical
formulae are always for N, (or 1 — Ny, ), being —0.13% for x = —1 and a/b = 1000 and
—0.11% for x = oo and a/b = 0.001, while for xy = 0 the maximum error is only —0.01%.

Since the surface pole density nonuniformity is higher for y = oo and y = —1, the
intermediate x results are expected to have a lower error. For these x values, the error
can be estimated by means of the conjugate relation for Ny, of Eq. (4.14), since the
deviation from 1 in the right-side part of this equation must be due to error. When
doing this, we checked that the error for intermediate susceptibilities is lower than for
the maximum error for the extreme values of x presented above.

4.3 Chapter summary and conclusions

First, in this chapter we present some conjugate relations between different infinite
prisms with applied field H, in the x and y direction, respectively. We find that when
the prism susceptibilities obey some conjugation condition, ¢ and Ny, for one prism
equal to Ky and 1 — Ny, for the other, respectively. A similar conjugate relations can
be found for cylinders, allowing to calculate Ny, in the radial direction from already
calculated results for the axial one.

Furthermore, exact analytical formulae for o(xy = o0), are presented, from which
formulae for N m(x = 00) can be calculated. The derived conjugate relations allow to
obtain exact formulae for Kj; and Ny, for x = —1, as well as N¢(x = —1) for long
prisms in the applied field direction. Moreover, we find that o(x = o) diverges as 6~ /3
near the corner, where § is the distance to the corner, while o depends linearly on the
position near the prism midplane.

In order to obtain the demagnetizing factors for susceptibility values other than
oo, 0 and —1, we adapt the numerical method presented in Sec. 3.2 to infinitely long
rectangular prisms. The adaptation to this geometry can be optimized thanks to the
exact analytical results for o(x = 00), Nym(x = 00,0) and Ny (x = —1). Specifically,
they allow to check the discretization error for y = —1, 0, 0o, so that an optimum surface
division can be found. The conjugate relations were also used to estimate the error for
the numerically calculated Nt ;,, at the intermediate x values, so that the maximum error
is found to be 0.15%.

Finally, the optimization of these 2D calculations for infinitely long prisms is very
useful for the development of the more general 3D method for finite rectangular prisms,
which is presented in the next chapter.
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CHAPTER b

Rectangular prisms

In this chapter we adapt the numerical method for demagnetizing factors calculations
in Sec. 3.2 to the finite rectangular prism geometry. As mentioned above, this adaptation
relies on both the experience achieved with infinitely long rectangular prisms and the
use of average demagnetizing fields on the elements, rather than the value at their center
only.

For a given finite rectangular prism, the 3D calculations for N, require much
more computation time than the 2D ones for an infinite rectangular prism. Moreover,
while N, for infinite rectangular prisms only depend on two parameters, x and an
aspect ratio, for finite rectangular prisms we must also consider the dependence on a
second aspect ratio. These two features are the reason for which a complete study
of Nfm for finite rectangular prisms requires many more calculations than for infinite
rectangular prisms. Also, the discussion of the N, calculated data for finite prisms is
more complicated than for infinite ones since for the former we have to consider three
parameters, while for the latter we only have to consider two. For these reasons, we study
first the specific cases of square bars, where we fix one of the aspect ratio parameters,
and then the completely shielded rectangular prisms, which corresponds to x = —1.

The geometry of rectangular bars is very important because it is often met in practice
for material research (for example, the shape of a cube is popularly regarded as a highly
symmetric one after a sphere).

The case of perfect shielding, corresponding to x = —1, is relevant since it is actually
a representative of x values less than 0. This is so because all diamagnetic materials
with constant x have —1 <« x < 0, so that their N;,(x) are practically the same
as Nim(x = 0), and a significantly negative constant x occurs only for completely
shielded superconductors or normal conductors, where x = —1 everywhere in the body.
Moreover, these calculations are useful to determine the error committed by using the

ol
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infinitely long approximation for finite samples, not only for the cases of perfect shielding
[54, 13, 64, 68, 69] but also for superconductors in the critical-state model (chapter 7)
[32, 33, 70, 71]. This discussion can be also very useful for experimentalists working on
ac susceptibility measurements of superconducting tapes [69].

As to the values of N¢p, for rectangular prisms with x > 0, they are being calculated
by the time of writing this thesis and will be presented and discussed elsewhere.

5.1 Method adaptation to rectangular prisms

We counsider a rectangular bar of dimensions 2a x 2b X 2¢ in the z, y and z directions,
respectively, with constant internal susceptibility x and immersed in a applied field H,
in the z direction.

The surface pole density and the demagnetizing factors are calculated by means of
the numerical method described in 3.2, which implies a surface division into elements.
Then, the rectangular prism is divided into n rectangular elements. For the general
rectangular prism geometry, we use the improved method which consider demagnetiz-
ing field averages on the elements to calculate o, so that the linear equations set (3.6)
is considered, yielding more accurate Npp, results. As for infinitely long rectangular
prisms, the system has several mirror symmetries, so that the number of the indepen-
dent variables n’ can be reduced to the number of elements in the z,y,2z > 0 region.
To consider this simplification, the factors DY in Eq. (3.6) must be correspondingly
modified [52, 53]. The analytical formulae used to calculate DY can be found in [52, 53].

The quantities Hy mid,vol are calculated by means of the corresponding analytically
calculated element contributions hi’midwol
(3.11) and (3.12).

We use the N, correction of Eq. (3.13) for all cases except for ¢/ Vab < 0.5 and
x < —0.6. For these latter cases the result for Ny, is more accurate, according to the

(formulae can be found in [52]) and Egs.

infinitely long strip calculations, §4.2.3.

5.1.1 Surface division

The surface elements are taken to be rectangular shaped. Their size in the z direction
Az depends only on the z coordinate of the position of the element center z;, Ax
depends only on z;, and Ay depends only on y;. In this way, the surface division into
elements can be done as the composition of three independent line elements divisions.
We take the same nonlinear line division in the z direction as done for infinitely long
rectangular prisms in the direction parallel to the applied field (Sec. 4.2.2 or Refs.
[13, 65]). Consistently, the line divisions in the z and y directions are done as in Sec.
4.2.2 for the direction perpendicular to the field.

The numbers of divisions in the z, y, and z directions, 2n,,2n,, and 2n, + 1,

respectively, are chosen by fixing the total number of independent variables' n' =

! As for infinitely long rectangular strips, we make the z direction divisons in such a way that all the
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NgNy + Ny, + nyn,, taking n, = n,, and assuming n,/n; =~ ¢/vab. We also consider

the restrictions of n, > (1/n’/3)/5, ny > (\/n'/3)/5 for x > —0.5 and ny > (24/n'/3)/5
for y < —0.5.

5.1.2 Error estimation

In Sec. 4.2.3 (and [13, 65]), the error in the calculated Nt , was checked by comparing
the results with those calculated analytically for several x values. However, for the case
of square bars there are only exact analytical formulae for N, at x = 0 [66, 59]. Since
the error for extreme y values, y = oo, —1, is at least one order of magnitude greater
than for x = 0 (§4.2.3)[13], these analytical formulae are not useful for estimating the
error for arbitrary x. Consequently, an alternative error estimation method has to be
found.

The error involved in finite elements methods is mainly due to the division of a
continuous body into discrete elements. The discretization error of the calculated o
decreases with increasing the number of elements n, so that the limit of n — co would
yield to the exact o?, and consequently, the precise solution of Nt m. Then, if we plot Nt
as a function of 1/n, the exact N¢m, value would correspond to 1/n = 0. Furthermore,
if 1/n is low enough, the Nt ., dependence on 1/n can be estimated as linear.

The error is estimated as follows. For each pair of x and c¢/a values, two Ngp,
calculations are done using different numbers of elements, V) and n(? with n(t) > n(2,
Then, we regard the “exact” Ng,, value as the linear extrapolation of Nip,(1/n) at
1/n = 0, obtained from N¢p,(1/nM)) and Ni,(1/n®?). Finally, the relative error of
Ni m is estimated as [Ngm(1/n()) — Ni i (1/n = 0)]/Ni.m(1/n = 0), taking Nip,(1/n(0))
as the final N, value. For the calculations presented in this paper we have used n®)
being around 8 x 4800 and n? around 8 x 4000, so that the number of independent
variables are 4800 and 4000, respectively.

If the 1/n dependence of Ni,, were exactly linear, we should use the extrapolated
Nim(1/n — 0) as the final result. However, this is not the case, and we can only use
this technique to estimate the error roughly.

As discussed in Sec. 3.3, it is convenient to define the relative error as the highest
between N¢p, and 1 — Ngp,.

5.2 Square bars with arbitrary susceptibility

A complete study of the rectangular bar geometry with arbitrary susceptibility re-
quires a large number of numerical calculation, since three independent parameters (x
and two prism dimensions ratios) must be taken into account. Then, we start with the
square bar case, for which one of the dimensions ratios is fixed. For this case, we restrict
the study when the applied field is perpendicular to the square direction.

elements surrounding the midplane are centered at z = 0.
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5.2.1 Demagnetizing factors calculations

The demagnetizing factors Nt have been calculated for a set of x values chosen
“symmetrically” according to the conjugate relations in Sec. 4.1.1, being the suscep-
tibility specific values x = —1,—0.999, —0.99, —0.9, —0.6,0.0001, 1.5,9, 99,999 and 10°.
For each x value, Ny and Ny, are calculated for the c¢/a ratio 0.01 < ¢/a < 100. The
results are listed in Tables 5.1 and 5.2 for Nt and Ny, [52], respectively. In order to show
their features, curves of Ny and 1 — N¢ versus c¢/a are plotted in Figs. 5.1(a) and 5.1(c),
and curves of Ny, and 1 — Ny, versus ¢/a are plotted in Figs. 5.1(b) and 5.1(d).

Table 5.1: Fluxmetric demagnetizing factor, N, of a square bar with dimensions (2a x 2a X 2¢)
magnetized along the ¢ dimension. Results for Ny are multiplied to 10°. For simplicity, x =
0.0001 and 10° are replaced by x = 0 and oo, respectively.

c/a |x =—1{-0.999 |—0.99 |[-0.9 -0.6 |0 1.5 9 99 999 00
0.01/97910.8{97899.1|97807.197361.9|96870.5 | 96481.5|96097.3 | 95694.0 |95495.9 | 95472.6 | 95470.0
0.02(95985.395974.4 |95883.7|95317.9 |94526.6 | 93842.393148.4 {92412.892050.3|92007.5 |92002.6
0.05]90843.1|90833.6 90749.9|90082.6 88794 87499 |86125 (84649 |83917 |83830 |[83820
0.1 |83651 (83642 |83561 [82842 |81185 (79331 |77297 |[75089 |73989 |73858 |73843
0.2 (72227 |72217 |72131 |71346 |69423 (67170 |64647 [61883 |60490 (60323 |60304
0.5 |48891 [48883 48807 [48127 |46533 (44731 |42731 [40500 |39336 (39194 |39178
1 26132 (26132 |26136 |[26159 |26104 |25873 (25426 |24725 (24286 (24229 |24222
2 8434.7 |8441.5 |8501.6 [9018.3 |10091 11089 |11959 |12651 [12900 |12925 12928
5 1687.5 |1688.6 |1698.2 |1786.7 |2021.6 |2363.2 |2902.1 |3805.0 |4436.8 |4521.8 [4531.6
10 |515.38 |515.54 [517.02 |530.54 |566.67 |624.25 |744.62 |1124.4 (1665.5 |1767.4 |1779.7
20 (143.98 [144.01 |144.21 [146.09 |150.95 |158.37 |174.02 |246.50 [522.75 |621.59 |635.07
50 [24.565 [24.567 |24.580 [24.702 |25.008 |25.445 [26.277 |29.792 [71.703 |132.44 |145.94
100 6.2606 |6.2608 [6.2625 |6.2774 [6.3142 |6.3649 |6.4566 |6.7946 [10.936 |33.478 |45.196

Table 5.2: Magnetometric demagnetizing factor, Ny,, of a square bar with dimensions (2a x
2a x 2¢) magnetized along the ¢ dimension. Results for N, are multiplied to 10°. For simplicity,
x = 0.0001 and 10° are replaced by x = 0 and oo, respectively.

c/a |x =—1{-0.999 |—0.99 |-0.9 -0.6 |0 1.5 9 99 999 00
0.0197912.5{97900.997810.0 [97378.596932.3 | 96603.9 | 96288.5 [95954.4 |95787.0 | 95767.1|95764.8
0.0295994.1 {95983.6|95895.5 [95358.9|94656.4 | 94086.2 | 93518.2 {92906.6 |92598.0 | 92561.2 | 92557.0
0.05|90915.7{90907.0|90831.3 |90240.5 89155 (88100 |86976 (85730 |85093 (85017 |85008
0.1 |83973 |83966 (83900 |83320 (81999 |[80508 |78819 (76898 |75905 |75786 |75772
0.2 |73486 |73479 (73414 |72813 (71294 |69419 |67194 |64612 |63260 |63097 [63078
0.5 |54629 |[54619 |54530 [53726 |51808 (49592 |47089 [44288 42835 (42659 |42639
1 38967 |38954 38839 (37835 (35618 |33333 |31030 |28713 (27593 |27460 27445
2 25091 (25078 |24962 (23967 |21862 |19831 (17937 |16200 |15427 (15339 |15329
5 12262 12254 |12177 11515 |10142 |8831.4 |7589.8 |6376.6 |5784.5 |5713.4 |5705.3
10 |6653.1 |6647.7 [6600.1 |6194.6 |5363.3 |4573.0 [3802.8 |2956.1 [2417.8 |2339.3 (2330.1
20 |3477.3 |3474.3 |3447.7 (3222.0 |2762.0 |2326.2 |1895.1 |1383.7 |955.90 |869.45 |858.47
50 |1429.9 |1428.6 |1417.2 |1320.8 |1125.2 |940.02 |755.58 |527.91 |293.61 |216.25 (203.51
100 |721.47 |720.81 |715.01 [665.83 |566.04 |471.60 [377.30 |259.62 [131.61 |76.877 |64.149
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Figure 5.1: Demagnetizing factors for a square bar N¢ (a), Nyy(b), 1 — Ne(c) and 1 — Ny (d)
as functions of ¢/a for y = —1,-0.999, —0.99, —0.9, —0.6,0,1.5,9, 99,999, and co. Each curve is
a spline line passing through all the data points in Table 5.2 for a given value of x. The arrow
indicates the direction of increasing y.

We found that the estimated discretization error in Ny, is always greater than that
for N;. This is so because the contribution from o in the vertices to Hg o is higher
than to Hgmiq for proximity. Since the error in o is greater near the vertexes, the
error in Hy o is higher than to Hgmiq and so as to Ny, and Ny. We next give some
representative values for the error. For x < 0 the highest error in N¢,, is at x = —1
for the longest samples (high c¢/a), being 0.22%, while the maximum error in 1 — N¢p,
is —0.15% for the shorter samples and x = —1. For x > 0 the maximum error is for
x = oo and 1 — Ng 5, being about 0.15% for lower ¢/a. We notice that in the aspect
ratio range 0.2 < ¢/a < 5 the error is lower than 0.05% in magnitude for any x value.
The estimated error for x = 0 is negligible for any c/a.

From Fig. 5.1 and the tabulated data we can see that the Ny and Ny, general rules
presented for infinitely long rectangular strips in Sec. 4.2.3 are essentially the same.
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Rules 1, 2 and 3 are the same, while rule 4 and 5 are modified as follows. Concerning
rule 4, now N; decreases and increases with increasing x at ¢/a < 1 and ¢/a > 1.5,
respectively. Then, the order of N, change with x now is:

N (—1)> Ny (0) > Np(o0) >
Nf(OO) > Nf(O) > Nf(—l) (c/a > 1.5),
Nf’m(—].) >Nf,m(0) > Nf}m(oo) (c/a < 1).

Rule 5 is modified, so that for ¢/a > 0.5, Ny /N; increases with increasing ¢/a and
decreasing x, while for ¢/a < 0.2, Ny, /Ny decreases with decreasing ¢/a and decreasing

X-

5.2.2 Comparison with existing results

There are only slight differences in the final digit between the numerically calculated
Nt,m values for x = 0 given in Tables 5.1 and 5.2 and those given in [56] calculated from
exact formulae.

Our numerical results may be compared with those for cylinders given in [3]. As
discussed in [56, 2, 67], such a comparison is better to be made by defining the aspect
ratio v = R/l for the cylinder and v = y/7¢/(2a) for the square bar, where R is the
cylinder radius and 2/ its length. When doing such a comparison we found [52] that for
v > 1 Ny, for cylinders is slightly higher than for square bars, while 1 — N¢ ,, for v < 1
is significantly greater than cylinders, which can be up to 7% higher for the lowest +.
Moreover, such a comparison revealed that for v < 0.02 some anomalies in 1 — N,
existed for the cylinders calculations in [3]. These anomalies can appear since for those
calculations only the relative error of Nt ;, was considered but not that for 1 — V¢ ,, see
Sec. 3.3. An important conclusion we can extract from this i that for many purposes
the results for square bars can be used for cylinders and vice versa [52].

5.2.3 Approximate conjugate relation for a cube

It is known that for any body with x = 0 the sum of the magnetometric demagne-
tizing factors along the z, y, and z directions is one, as discussed in Sec. 2.2.2 and [3].
In particular for a square bar with ¢/a = 1, and then, a cube, we have 3N, (x = 0) = 1.
From the data listed in Table 5.2, we find an interesting more general relation to be
valid for a cube:

2 Nl = X)+ Nulx = = /(LX) =16, (5.1

where 0 < 1, being 0,0.0003,0.0018,0.0035, and 0.0038 for x* = 0,1.5,9,99, and >
999, respectively. These small nonzero values of § cannot be due to the error in Ny,
calculation, since it is even smaller when c¢/a = 1, being 0 and ~ 0.0002 for xy = 0 and
x # 0, respectively. Since the two values of susceptibilities in Eq. (5.1) are conjugate as
derived in Sec. 4.1.1 for the two-dimensional case, we refer to Eq. (5.1) with § = 0 as
an approximate conjugate relation for the three-dimensional cube.
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5.3 Completely shielded rectangular prisms

In the previous section we fixed one rectangular prism aspect ratio by considering
square bars only. Now, the parameter that we fix is the susceptibility, x = —1, and we
change the two prism aspect ratios. After presenting the Npp, results, we will discuss
them concerning actual measurements for superconducting tape prisms.

5.3.1 Demagnetizing factors calculations

The demagnetizing factors Ny, and Ny have been numerically calculated at 0.01 <
¢/a <100 and b/ max[c,a] = 1,2,5, and 10. Together with the data for infinitely thin
strips (b — 00) calculated previously in [54, 13] and presented in chapter 4, the results
are listed in Table 5.3. In order to show their features, curves of Ny, and 1 — IV, versus
c¢/a are plotted in Figs. 5.2(b) and 5.2(d), and curves of Ny and 1 — Ny versus ¢/a are
plotted in Figs. 5.2(a) and 5.2(b).

Table 5.3: Fluxmetric and magnetometric demagnetizing factors, Ny and Ny, of a rectangular

prism with dimensions 2a x 2b x 2¢ and susceptibility x = —1 magnetized along the ¢ dimension
[53].
N¢ Nm
b/ max[c, a] b/ max[c, a]
c/a |1 2 5 10 00 1 2 5 10 oo

0.01]0.979125(0.983868|0.986330{0.987055{0.987752(|0.979108(0.983859|0.986324|0.987050|0.987748
0.02{0.959941(0.968840(0.973525{0.974912{0.976223(|0.959853|0.968793|0.973494|0.974884|0.976199
0.05{0.909157(0.928258|0.938673|0.941798{0.944730(|0.908431|0.927862|0.938405|0.941563|0.944524
0.1 ]0.839734|0.871099|0.888972|0.894445|0.899584(|0.836512|0.869275{0.887719]0.893340(0.898616
0.2 ]0.734864|0.781343|0.809595|0.818527|0.826967||0.722273|0.773830{0.804302{0.813823(0.822784
0.5 |0.546293(0.609236|0.652644|0.667438|0.681738(|0.488913(0.571093|0.624156|0.641688|0.658448
1 ]0.389667)|0.454537]0.505128|0.523837(0.543053(|0.261316|0.355763|0.424942|0.449520(0.474243
2 10.306389(0.346622|0.376887|0.388058|0.399699|0.143522|0.192848|0.230987|0.245067(0.259772
5 10.194122{0.212809|0.226717|0.231875|0.237263||0.056062|0.074173|0.088719[0.094203(0.100108
10 ]0.125881|0.135816|0.143260{0.146068(0.148540(|0.031671|0.041182|0.048659{0.051463|0.054523
20 ]0.076982(0.082115|0.085975|0.087448(0.088655(|0.017316(0.022250|0.026079|0.027510{0.029054
50 ]0.037788(0.039888|0.041463|0.042064|0.042566||0.007407|0.009434|0.010993[0.011575(0.012194
100 (0.021384(0.022442(0.023234|0.023533|0.023798(0.003804|0.004828(0.005613|0.005906|0.006215

The error estimation for all cases is less than 0.2%. For the two-dimensional (2D)
case with b — oo, the result for Ny, is calculated by means of the exact formula of Eq.
(4.33) and Ng corresponds to the numerical results presented in Sec. 4.2.3, having a
maximum error of 0.1%.

In the above calculations for 2a x 2b x 2¢ prisms we used the aspect ratios ¢/a and
b/ max|c, a], although we could define the aspect ratios in several ways. This aspect ratio
definition choice has been done to compare our results to the 2D models for infinitely
long strips, such as those in Refs. [54, 13, 64, 68, 69, 32, 33, 70]. This is the reason why
we use ¢/a as the primary aspect ratio for y = —1. The other aspect ratio is chosen as
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Figure 5.2: Demagnetizing factors for rectangular bars Nt(a), Ny (b), 1 — Ne(c) and 1 — Ny, (d)
as functions of ¢/a for x = —1 and b/ max|[ec,a] = 1,2, 5,10, (solid lines) and oo (dashed lines).
Each solid line is made of two spline fits passing through the data points in Table 5.3 for a given
value of b/ max|c,a] in the regions of ¢/a < 1 and > 1. The arrow indicates the direction of
increasing b/ max|c, a.

b/ max|c, a] to study the effect of the finite length when comparing to 2D models. The
use of this simple second aspect ratio is convenient from the experimental point of view,
since larger dimensions can be measured more accurately. This aspect ratio definition
is the cause of the kink appearing for ¢/a =1 in Fig. 5.2.

5.3.2 Application to superconductors research

The results are relevant to superconducting prisms in the Meissner state or the zero-
field cooled critical state at low fields. Since highly conducting prisms may be completely
shielded at sufficiently high frequencies, the results are also useful for them. Although
both N¢p, are calculated for completeness, Ny, is more useful in all these cases. An
important quantity is the shape susceptibility xi = —1/(1 — Ny) Sec. 3.3 [13], which is
calculated for 0.01 < ¢/a <1 as a function of b/c from the data in Table 5.3, as plotted
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in Fig. 5.3.

c/a=0.01, 0.02, 0.05, 0.1,0.2, 0.5, 1
. . . A |
091 2 3 4 5 6 7 80910

b/a

Figure 5.3: Shape susceptibility —x% = (1 — Ny,)~' for x = —1 as a function of b/a for
¢/a = 0.01,0.02,0.05,0.1,0.2,0.5, and 1 (solid lines) compared with that for b/a — oo (dashed
lines). Open circles are for normalized experimental data in [69].

Fig. 5.3 can be very useful in experimental research of superconducting tapes. With
the help of this figure, the 2D models assuming infinite strip length can be more strictly
compared with experimental data. Roughly speaking, we see from Fig. 5.3 that if
¢/a < 0.1 as it is for most high-temperature superconducting tapes, —x% measured for
samples with b/a = 2 and 5 will be lower than that of the corresponding infinitely long
tape for about 20% and 10%, respectively. As an example, it is interesting to analyze
the experimental results given in [69] for the sample length dependence of —x¥ of a
mono-core Bi-2223/Ag tape as follows.

According to the description in [69], the elliptical cross-sectional dimensions of the
core of the studied tape are similar to those of the core of rectangular cross-section
tape, whose 2a = 1.4 mm and 2¢ = 0.14 mm. Therefore, we assume its ¢/a = 0.1,
which corresponds to —x: = 10 according to Fig. 5.3. Converting the sample length
dependence given in Fig. 5.3 of [69] into b/a dependence assuming 2a = 1.4 mm, and
multiplying their —y* values by? 1.26, which may arise from the inevitable errors in
dimensions and magnetic measurements, we obtain the renormalized experimental —y
as a function of b/a, as plotted in Fig. 5.3 by open circles. We see that the five high

1

b/a circles agree well with the calculated (1 — Ny,)™" versus b/a curve, from which we

conclude that although after the fifth point, counted in the order of increasing b/a, the

*We choose this factor to fit the data to the corresponding —x(b/a) curve.
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result seem to saturate, as described by the authors of [69], it can still be less than that
for b/a — oo for 13%.

5.4 Chapter summary and conclusions

In this chapter we adapt the numerical method in Sec. 3.2 for N, calculations
to the 3D rectangular prism geometry. To achieve a good accuracy and to minimize
the computation time, we use the improved method in Sec. 3.2 which uses average
demagnetizing fields analytical formulae. The main method innovation which appears
in this chapter is the error estimation, which is done by means of extrapolated Nt
values to the infinite number of elements limit. This way of error estimation is necessary
since no exact analytical results exist for x # 0.

Demagnetizing factors numerical results are obtained for square bars and perfectly
shielded rectangular prisms (xy = —1), having a maximum error of 0.22%.

After comparing the square bars results to the cylinders ones in [3] we find that in
many cases N, for square bars can be used for cylinders and vice versa. In addition,
we find that the N, results for a cube follow an approximate conjugate relation.

The results for rectangular prisms with x = —1 allows to obtain the sample length
dependence of Ng,, for a fixed c¢/a aspect ratio. Moreover, the presented study of
the shape susceptibility —x* = (1 — Ny,)~! is useful for both actual superconducting
tapes experimental study and comparison to 2D models assuming infinite length. An
agreement with experimental data has been found.

The calculations presented in this chapter and chapter 4 cover some of the lacks of
demagnetizing factors results summarized in Sec. 3.4. The comparison between square
bars and cylinders allows to find that the complete numerical results in [3] can be much
improved at least for short samples, which is a case of practical importance for y = —1.





