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7.4.3 Homogeneity in superconducting properties of the
YBCO/Ag/YBCO joints

Now, for a better understanding of Ag diffusion phenomenon into YBCO ma-

trix, we will determine the remanent magnetization profiles and critical current

densities of different sample faces which will be called hereafter: top, center and

bottom. It is important to notice that, since the resolution of the measurements

depends on the distance between the Hall probe and the layer in which the

critical current flows, not much information about the remanent magnetization

distribution at the center and bottom sides is obtained by scanning the top face

of the samples. Thus, in order to do this experiment we have cut the samples

in three layers along the c-axis as it was schematically shown in figure 6.43.

The ”top face” corresponds to the ab plane where the seed has been placed in

order to obtain the YBCO monolith by TSMG process. The ”center” and ”bottom”

faces correspond to ab planes situated at 0.3cm and 0.6cm below the ”top face”,

respectively.

Two samples ∆T28 and C3 obtained by the welding process have been chosen

for the homogeneity study. The nomenclature used for the faces studied in this

Section are top∆28 and topC3corresponding to the top side of the samples ∆T28 and

C3, respectively and center∆28, centerC3 and bottom∆28, bottomC3 corresponding to

the center and bottom sides of samples ∆T28 and C3, respectively. Sample ∆T28

is a joint obtained after the optimization of the welding process by employing

the following parameters: gAg=10µm thick, Tmax=992◦C, t1=3h, T2=973◦C, t2=1h,

r=0.6◦C/h, ∆T=28◦C, Tox=450◦C and tox=168◦C. On the contrary, sample C3 is a

joint obtained by using a non-optimized welding process, thus it is of a reduced

critical current density. The later kind of joint is not of a technological interest

but it will be interesting to determine the critical current density along its depth

in order to observe the phenomenon of Ag diffusion and how does it affect the

superconducting properties of the samples.
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(a)

(a)

(b)

Figure 7.33: 2D remanent magnetization profiles obtained after a fc process for different faces
along c-axis of the sample ∆T28: a) top face, b) center face and c) bottom face. The center face is
situated 0.3cm below the top face and the bottom face is situated 0.6cm below the top face. The
dimension of c-axis of the top face is different from the other faces. The joint is indicated in the
figure by arrows

.
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”Top face” of the samples studied has a thickness of 0.6cm, whereas the cen-

ter and bottom faces have a thickness of 0.3cm. As a consequence, the remanent

magnetization at top faces cannot be compared with the remanent magnetiza-

tion measured at center and bottom faces. We will use remanent magnetization

measurements in order to have a general view of the quality of the final joint. For

comparison purposes we will calculate the critical current density of the YBCO

samples and of the final joints by using the software ”Caragol”.

The top face of sample ∆T28 was analyzed in order to optimize the parameter

∆T. It is shown that the remanent magnetization profile (figure 7.33a) exhibits

only one peak, as expected for a single domain. As microstructural studies have

shown (see figure 6.41), no additional phases have been formed at the interface

after the welding process concluding that the profile indeed agrees with the re-

sults obtained when the microstructure was investigated. A small asymmetry is

seen in this profile with respect to the joint, indicating a small difference be-

tween the critical current densities present in the sample in the left-hand side

and right-hand side. Remanent magnetization profiles corresponding to center

and bottom faces of sample ∆T28 are shown in figures 7.33(b-c), respectively,

where the joint is indicated by arrows. A small reduction of remanent magneti-

zation of the junction and of the YBCO grain from the right-side of the graph is

observed in these profiles indicating that their critical current density are slightly

reduced when compared with Jc of the left side YBCO grain. The inhomogeneity

found in the remanent magnetization values is reflected in the critical current

density values as can be seen in figure 7.34 where the blue and red symbols are

associated with critical current density values corresponding to YBCO grains

while the yellow symbols are associated to the critical current densities obtained

for the junction.

Note that when, the top face is investigated, the critical current densities

of the Grain 1 and Grain 2 are quite different. This difference make us con-

clude that the previous YBCO samples used for the joining process are in-
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Figure 7.34: Critical current density values obtained along c-axis of the junction at different
depths from the face, where the seed was located during the TS process. The sample analyzed is
∆T28. Red and blue symbols indicate the critical current density dependence along the c-axis of
the sample of the Grain 1 and Grain 2, respectively. Yellow symbols indicate this dependence for
the joints. Error bars show the Jc values dispersion obtained by using the methodology detailed
in Section 7.1.

homogeneous. The critical current density of the Grain 1 when the ”top face”

was analyzed is Jgrain1
c =1.84×104A/cm2 and of Grain 2 is Jgrain2

c =1.35×104A/cm2.

On the contrary, when the center and bottom faces are investigated, the

critical current densities of Grain 1 and Grain 2 are Jgrain1
c =1.67×104A/cm2,

Jgrain2
c =1.65×104A/cm2 and Jgrain1

c =1.44×104A/cm2, Jgrain2
c =1.4×104A/cm2, re-

spectively and can be considered quite homogeneous.

Concerning the critical current density calculated at the junction we have

noticed that the values determined all along its junction are similar. For the

top face the critical current density is Jgb
c =1.35 × 104A/cm2, for the center face is

Jgb
c =1.44× 104A/cm2 and for the bottom face is Jgb

c =1.34× 104A/cm2. Thus, we can
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conclude that when the welding process is optimized, a quite homogeneous joint

is obtained. For comparison purposes, we will determine the ratio Jgb
c /Jgrain

c for

each face studied. This ratio indicates the percentage of the reduction of the

critical current density of joint (Jgb
c ) after the welding process when compared

with the lowest critical current density value obtain for the YBCO grains Jgrain
c

(see figure 7.34). The error bars in the figure quantify the dispersion on Jgb
c /Jgrain

c

values calculated by using the methodology described in Section 7.1 for each

case and exist due mainly to the inhomogeneities found in the proper YBCO

grains. For the top face note that Jgb
c exhibits similar value that the lowest critical

current density exhibited by the YBCO grain, thus the ratio Jgb
c /Jgrain

c is ∼ 1 as

it is indicated in the figure. On the contrary, note that for the center face, the

ratio Jgb
c /Jgrain

c is 0.87 which means that Jgb
c is reduced ∼12% from Jgrain

c . Even

the ratio is reduced, Jgb
c is kept constant. This reduction is given by the Jgrain2

c

increasing and not by the Jgb
c reduction. When the bottom face critical current

density values are investigated, the ratio Jgb
c /Jgrain

c is ∼0.96 which indicates that

Jgb
c is reduced only 4% from Jgrain

c values corresponding to the weakest grain. As

it is shown in figure 7.34, the reduction of the Jgb
c /Jgrain

c if it is compared with

the ratio obtained for the top face and the enhancement of ratio value if it is

compared with the ratio value obtained for the center face is mainly due the

inhomogeneities in Jc values obtained for the YBCO grains.

Thus, we conclude that the Jgb
c is quite homogeneous along the c-axis and

that the welding process used to determine this weld was the optimum one and

Ag diffusion into YBCO matrix was quite homogeneous.

When the sample C3 is investigated, differences in the remanent magnetiza-

tion distribution between the top, center and bottom sides (see figures 7.36(a-c))

can be seen. All profiles exhibit two peaks indicating that the critical current

which flows across the junction is disrupted by the inhomogeneities found at

the interface when the microstructure has been investigated. In figure 6.47 (a-c)

can be seen that some non-superconducting phases have been trapped at the
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Figure 7.35: Dependence of ratio Jgb
c /Jgrain

c with sample face analyzed (red and blue symbols
for grains, whereas yellow symbols for the joint).

interface of the top face during the welding process. Because of the high cooling

rate used to grow this sample, the Ag-rich liquid could not be completely elimi-

nated from the interface and has solidified along with Y211 and BaCuO2 − CuO

phases at the interface. On the contrary, the remanent magnetization profile cor-

responding to the center sample, centerC3, shows two less differentiated peaks

indicating a better connectivity between grains than the other faces (center and

bottom). As in the previous case when the sample ∆T28 was investigated, the top

face of the sample is thicker than center and bottom faces, thus we cannot use

the comparison as a method to conclude which face has higher performances.

Because of this, we further continue our investigation by calculating the critical

current density of the YBCO sample and final joint.

Critical current density values have been determined for sample C3 by using
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(a)

(b)

(c)

Figure 7.36: Remanent magnetization maps obtained after applying a field cooled process for
different faces obtained along the c-axis of the sample C3. a) top face, b) center face and c) bottom
face. The center face is located at 0.3cm below the top face, whereas the bottom face is located at
0.6cm below the top face. The joints are indicated by arrows in the figure.
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the methodology described in Section 7.1 and by using ”Caragol” software. Fig-

ure 7.37(a-c) shows the critical current density values determined for each side

of sample C3 (top, center and bottom) where red and blue symbols indicate the

critical current density of the YBCO grains (Grain 1 and Grain 2) and the yellow

symbols correspond to the Jgb
c values. Error bars in the figure quantify the inho-

mogeneity in Jc values found by employing this methodology. In the figure can

be observed that the error bars indicating the dispersion of Jc values obtained

for the YBCO grains are overlapping in all the cases. This can be interpreted as

follows: this inhomogeneity in Jc values is mainly due to the inhomogeneity in

the proper YBCO grains Thus, both YBCO grains could be considered of similar

superconducting properties. The critical current density of the joint Jgb
c is span-

ning between 1.01× 104A/cm2 and 1.21× 104A/cm2. For the ”top face”, the critical

current density of the junction is Jgb
c =1.1 × 104A/cm2, whereas for the ”center

face” is Jgb
c =1.2 × 104A/cm2 and for the ”bottom face” Jgb

c =0.8 × 104A/cm2. Higher

reduction takes place at the bottom face.

The ratio Jgb
c /Jgrain

c shows the percentage of the reduction of the critical cur-

rent density of joint (Jgb
c ) after the welding process when compare with the weak-

est YBCO grain. The dependence of this ratio with the analyzed face is depicted

in figure 7.38. It can be observed that highest reduction of the critical current

density of the joint took place for the bottom face of the Jgb
c /Jgrain

c is ∼0.53

which means that Jgb
c is reduced ∼47% from the Jgrain

c value corresponding to

the lowest value of critical current density corresponding to YBCO grains. For

the ”top face”, this ratio is ∼0.69, which means that Jgb
c value is reduced ∼31%

from Jgrain2
c value of sample C3 where the ratio, whereas for the ”center face”,

the figure shows that the Jgb
c was reduced ∼23% from the Jgrain2

c value. As it

was observed in figure 7.37, the critical current density values corresponding to

the top and center faces of the junction are quite similar. On the contrary, the

critical current density values corresponding to YBCO grain to the same faces

showed a small inhomogeneity. Thus, we conclude that the difference in ratio
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values determined for the top and center faces of this sample is governed by the

inhomogeneity in Jc values corresponding to proper YBCO grain and not to the

differences in superconducting properties of both YBCO grains used for joining.

Figure 7.37: Critical current density values obtained for each YBCO grain (Grain 1 indicated
by red symbols and Grain 2 indicated by blue symbols) and for the final joint (indicated by yellow
symbols) along the c-axis of the joint. Top, center and bottom faces corresponding to the sample
C3 are investigated.
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Figure 7.38: Ratio Jgb
c /Jgrain

c along the c-axis of the sample analyzed. Top, center and bottom
faces are investigated.
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7.4.4 Conclusion of Chapter 7

The remanent magnetization distribution was investigated on samples joined

by the welding process described in Chapter 5 by using a Hall probe imaging

system. These measurements allow us to deduce the magnitude of the critical

current densities by solving the inverse problem, i.e Biot-Savart law, as well as

the homogeneity and spatial scale on which they flow.

We have proposed a methodology allowing the determination of the critical

current density of the final joints from remanent magnetization profiles obtained

by employing a Hall probe imaging system after a FC process. Following the Bean

model which predicts that Jc is constant all over the sample, we have used only

the y component of Jc (Jcy) to further determine the critical current density of

the YBCO grains and of the junction at the same time. We have observed that

the current distributions patterns obtained by using ”Caragol” software [30,96]

agree well with the current distribution profile predicted by the Bean model.

In this Chapter we have evaluated the limitations of the Hall probe imaging

system, employed to determine the remanent magnetization profiles, and of the

calculation of critical current densities by using the software ”Caragol”. In this

way we have used a totally non-superconducting joint, obtained by simply gluing

two YBCO parts. We have demonstrated that when the reduction in remanent

magnetization of the joint with respect with YBCO grains, is higher than 60%-

70%, the junction will be considered of a very low quality. Moreover, any sample

exhibiting Jc values across the joint that have been reduced more than 60% after

the welding process and an angle α higher than 33◦, will be considered to have

a low critical current density and we will not be able to quantify more precisely

the Jc across the joint.

After the analysis performed on studied samples, we have observed that pa-

rameters such as: oxygenation time, cooling rate and window temperature are

very important to optimize the quality of the superconducting joint. After the

systematic analysis of the welding process, the samples obtained using the opti-
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mized parameters had pyramidal shaped remanent magnetization profiles, i.e

they exhibit only one peak, indicating that the connectivity between the do-

mains was good (example: sample ∆T28 and C0.6). These samples exhibit only

one current loop. When the welding process was not optimized some segregation

of non-superconducting phases at the interface was observed with microstruc-

tural analysis. This segregation consists of a mixture of Ag-rich liquid which

was not pushed complectly from the interface, Y211 and BaCuO2 − CuO phases

which were trapped at the interface for different reasons which were explained

in Chapter 6. Therefore, the critical current density flow was strongly limited at

the junction and the remanent magnetization locally decreased (example: sam-

ple C6). Consequently, some peaks and valleys appeared in the remanent mag-

netization profiles, which correspond to regions where the critical current flow

was or was not limited, respectively. We have observed too that the difference

in superconducting volume exhibited by the both YBCO grains used for joining

is reflected in the remanent magnetization profiles obtained by using the Hall

probe imaging system after a field-cooled process.

We have determined that: tox=168-240h, r≤ 1.8◦C/h and ∆T=28◦C are the

optimum parameters needed for the obtention of a high quality superconduct-

ing joint and the critical current density of the junction determined by using

the methodology described in Section 7.1 was Jgb
c =1.35 × 104A/cm2, the same as

the mother blocks. Moreover, it has been shown that the critical current den-

sity of the junction along the c-axis of the sample is quite homogeneous. On

the contrary, Jgrain
c of the YBCO material is quite inhomogeneous along c-axis.

This inhomogeneity in Jc values is provided from the inhomogeneity in the mi-

crostructure of the starting samples. It has been shown that the inhomogeneity

in the YBCO material is increasing while moving away from the top face of the

sample, being the face where the seed has been placed during the TS method.
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Conclusions

The main goal of this PhD thesis has been to develop a technology which

would be able to achieve superconducting pieces of large dimensions and com-

plex geometries, with the purpose of integrating them into different supercon-

ducting devices by fabricating artificial superconducting joints.

The first step in achieving high temperature superconducting YBCO joints

was to find a suitable welding material. We have investigated two Ag based ma-

terials as welding agents: Ag2O powder and Ag thin foil. Microstructural analysis

along with transport and in-field Hall mapping measurements have been per-

formed to find the conditions to reach a high quality superconducting joints.

Considering the quality limitations found with the use of Ag2O powder as a

welding agent, giving rise to the formation of a large amount of porosity at the

interface, and the promising results achieved for Ag thin foils, we scheduled a

systematic study of the YBCO joints parameters by using Ag thin foils as welding

elements obtained by a cold rolling process.

A deep study of the influence of different parameters on the microstructure

and on the superconducting properties, i.e remanent magnetization and critical

current density of the final joints, generated using a YBCO/Ag/YBCO architec-

ture has been performed in order to understand the role of the Ag diffusion and

to optimize the welding process. It has been shown that these parameters influ-

ence in one way or another the microstructure and superconducting properties

199
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of the final joints. In order to optimize these parameters, we have preformed two

kinds of experiments: quench experiments and slow cooling experiments. By

quench experiments we have succeeded in controlling the Ag diffusion process

into the YBCO matrix. Parameters such as: melting time (tmelt), Ag foil thickness

(gAg) and weld configuration have been investigated and optimized. On the other

hand, the influence of parameters such as: cooling rate (r), processing temper-

ature (Tmax) and window temperature (∆T), on the microstructure of the final

joints has been analyzed by means of slow cooling experiments.

It has been shown that the microstructure of the starting YBCO monoliths

is very important since a strong Ag liquid migration from the interface occurs

through the pre-existing macrocracks perpendicular to the interface. Hence,

special care was taken to avoid the existence of such defects in the microstruc-

ture of the starting YBCO monoliths. We have used previously non-oxygenated

samples which are mainly free, or have a reduced concentration of micro and

macrocracks.

We have succeeded in controlling the Ag diffusion process into the YBCO

matrix by employing a melting time of 3 hours, a Ag foil thickness of 10µm and

a welding configuration (100)/(100). By using these conditions, the Ag diffusion

is kept homogeneous and reduced in dimensions into the YBCO matrix.

By slow cooling experiments we have found that a Tmax=992◦C, a cooling rate

of r=0.6◦C/h and a window temperature of ∆T=28◦ are the optimum parame-

ters for our samples, and thus they, should be used in order to obtain a clean

welded interface free of impurities and pores and high critical current density

joints. WDS analysis at the interface and far away from it have been performed.

When the joint is obtained after applying an optimized welding process, no Ag

precipitates have been detected neither at the interface nor into YBCO matrix.

On the contrary, when the joint is obtained by using a non-optimized welding

process, Ag-rich and Cu-rich precipitates have been detected at the interface.

Therefore, a 2D Ag diffusion model has been proposed after these analysis
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which establishes that Ag rich liquid is pushed away from the inner part of

the sample towards its edges along the YBCO growth interface. The crystalliza-

tion is first completed in the inner part where the Ag-rich liquid was completely

expelled. It turns out, then, that we should use a cooling rate slow enough to ex-

pel all the Ag from the interface. Accumulation of non-superconducting phases,

such as: Ag precipitates, Y211 and BaCuO2 phases, at the edge of the junction

occurs when the cooling rate (r) is too high and the time for recrystallization is

too low.

The homogeneity in the microstructure of the final joints along the c-axis of

the sample was analyzed. It was demonstrated that the microstructure at the

interface was quite homogeneous along its depth.

The influence of welding process parameters on the superconducting proper-

ties of the final joints has been studied by determining the remanent magnetiza-

tion profiles of each sample and calculating from them the critical current den-

sity of the joint and YBCO grains for comparison. Moreover, the ratio Jgb
c /grain

c ,

indicating the reduction of critical current density of the joint with respect to the

critical current density of the YBCO grains, has been calculated.

The remanent magnetization distribution was investigated on samples joined

by the welding process by using a Hall probe imaging system. These measure-

ments allowed us to deduce the magnitude of the critical current densities by

solving the inverse problem by using the ”Caragol” software, as well as the ho-

mogeneity and spatial scale on which they flow.

We have proposed a methodology in order to determine the critical current

density of the final joints from the results of ”Caragol”. We have observed that

the current distributions patterns obtained by using ”Caragol” software agree

well with current distribution profile predicted by Bean model.

We have determined the limitation of the Hall probe imaging system allowing

the determination of the remanent magnetization profiles and of the calculation

of the critical current densities by using the software ”Caragol” by employing a
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glued sample. We have demonstrated that when the reduction in remanent mag-

netization of the joint with respect to the YBCO grains is higher than 60%-70%,

the junction will be considered to be of a very low quality. Moreover, any sample

exhibiting Jc values across the joint that have been reduced more than 60% after

the welding process, will be considered to have a too low critical current density

and we will not be able to quantify more precisely the Jc across the joint.

We have observed the influence of the following parameters: oxygenation

time, cooling rate and window temperature on the remanent magnetization and

critical current density of the final joints. We have determined that: tox=168-

240h, r≤ 1.8◦C/h and ∆T=28◦C are the optimum parameters needed for the

obtention of high quality superconducting joint and the critical current den-

sity of the junction determined by using the methodology here proposed was

Jgb
c =1.35 × 104A/cm2, same as the mother blocks. These results agree with the

results obtained when the microstructure of the final joints was investigated.

Moreover, it has been shown that the critical current density of the junction

along the c-axis of the sample is quite homogeneous. On the contrary, Jgrain
c of

the YBCO material is quite inhomogeneous along the c-axis. This inhomogene-

ity in Jc values is provided from the inhomogeneity in the microstructure of the

starting material. It has been shown that the inhomogeneity in the YBCO start-

ing material is increasing while moving down from the top face of the sample,

being the top face where the seed was placed during the top seeding process.

In summary, by employing the new welding methodology developed in the

present work, we have been able to obtain YBCO superconducting joints having

a clean and crystallographic coincident microstructure and with critical current

densities through the joint similar to those of the YBCO monoliths.
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X. Obradors, and J. E. Evetts Supercond. Sci. and Technol., vol. 17, p. 182,

2004.

[69] S. Iliescu, S. Sena, X. Granados, E. Bartolomé, T. Puig, X. Obradors,
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