
Parallel Algorithms for

Fluid and Rigid Body Interaction

Cristóbal Samaniego Alvarado

Advisor: Guillaume Houzeaux

Co-advisor: Mariano Vázquez

Thesis submitted for the degree of Doctor of Philosophy

Universitat Politècnica de Catalunya

Barcelona, España

November 2015

Acknowledgements

As a personal matter, I prefer to write the acknowledgements in Spanish, my
mother tongue.

Quiero empezar por agradecer a mi director de tesis, a Guillaume Houzeaux.
Soy muy afortunado al haberle tenido como director. No solo por que es una
persona inteligente sino también amable y que disfruta de su trabajo. Gracias
por tu paciencia y dedicación.

También quiero agradecer al BSC (Barcelona Supercomputing Center), al
departamento del CASE, por haber confiado en mi trabajo. Especialmente a
Mariano Vázquez. Fue él quien me conoció primero y en Ecuador. Él vió que
pod́ıa ayudarles de alguna manera y confió en mı́. Nunca lo olvidaré.

A mis compañeros de trabajo y de oficina. Ninguno de ellos, me ha negado
jamás ayuda.

A Paola, mi compañera de viaje y de vida. Sin ella, todo esto hubiera sido
mucho menos agradable. Sé que todos los logros que he hecho, ella los ha hecho
suyos. Me halaga que se sienta tan orgullosa de mı́, es una de las razones
que más me ha empujado a terminar este trabajo. Yo también me siento muy
orgullaso de todo lo que ha logrado y está a punto de lograr. Espero que esto a
ella tamién le sirva como me ha servido a mı́.

A mi familia, a mis padres y hermanos. Ellos me llevaron hasta aqúı. Me
apoyaron y me siguieron como si fueran ellos los que estuvieran haciendo este
trabajo. A ellos es a los que más extraño ahora que estamos en diferenrtes páıses
y continentes. Esteban, además, estuvo conmigo ayudándome en mi tesis y mis
publicaciones sin importar el d́ıa, la fecha o la hora. Sab́ıa que pod́ıa contar
con él siempre. Sé que Augusto, Haydeé o Pedro hubieran hecho lo mismo si su
campo de trabajo hubiera sido parecido al mı́o.

A mis amigos, a los que se fueron ya. Con Natalia, Juan Carlos y Oscar
pasamos muy buenos tiempos en Barcelona. A los amigos de acá, de Cataluña.
Ellos me han tratado como uno más. Gracias Cristina, Laia, Jordi e Iván.
El d́ıa que me vaya, voy a extrañar mucho las noches de comida, bebida, de
conversaciones, de muy buenas conversaciones.

Summary

This thesis is based on the implementation of a computational system to nu-
merically simulate the interaction between a fluid and an arbitrary number
of rigid bodies. This implementation was performed in a distributed memory
parallelization context, which makes the process and its description especially
challenging. As a consequence, for the sake of descriptive precision and concep-
tual clarity, a new formal framework using set theory concepts is developed.

The fluid is discretized using a non body-conforming mesh and the bound-
aries of the bodies are embedded in this mesh. The force that the fluid exerts
on a body is determined from the residual of the momentum equations. Con-
versely, the velocity of the body is imposed as a boundary condition in the fluid.
In this context, two new approaches are proposed.

To account for the fact that fluid nodes can become solid nodes and vice versa
due to the rigid body movement, we have adopted the FMALE approach, which
is based on the idea of a virtual movement of the fluid mesh at each time step.
A new method of interpolation is adopted inside the FMALE implementation
in order to improve the results.

The physics of the fluid is described by the incompressible Navier-Stokes
equations. These equations are stabilized using a variational multiscale finite
element method and solved using a fractional step like scheme at the algebraic
level. The incompressible Navier-Stokes solver is a parallel solver based on
master-worker strategy.

The bodies can have arbitrary shapes and their motions are determined
by the Newton-Euler equations. The contacts between bodies are solved us-
ing impulses to avoid interpenetrations. The time of impact is determined
implementing a dynamic collision detection algorithm. As far as the parallel
implementation is concerned, the data of all the bodies are shared by all the
subdomains. To track the boundary of the bodies in the fluid mesh, computa-
tional geometry tools have been used.

List of publications

• C. Samaniego, G. Houzeaux, E. Samaniego, M. Vázquez, Parallel embed-
ded boundary methods for fluid and rigid-body interaction, Computer
Methods in Applied Mechanics and Engineering 290 (2015) 387–419

• E. Casoni, A. Jérusalem, C. Samaniego, B. Eguzkitza, P. Lafortune, D. Tjah-
janto, X. Sáez, G. Houzeaux, M. Vázquez, Alya: computational solid me-
chanics for supercomputers, Archives of Computational Methods in Engi-
neering (2014) 1–20

• H. Owen, G. Houzeaux, C. Samaniego, A. Lesage, M. Vázquez, Recent
ship hydrodynamics developments in the parallel two-fluid flow solver alya,
Computers & Fluids 80 (2013) 168–177

• G. Houzeaux, H. Owen, B. Eguzkitza, C. Samaniego, R. de la Cruz, H. Cal-
met, M. Vázquez, M. Ávila, Developments in Parallel, Distributed, Grid
and Cloud Computing for Engineering, Vol. volume 31 of Computational
Science, Engineering and Technology Series, Saxe-Coburg Publications,
2013, Ch. Chapter 8: A Parallel Incompressible Navier-Stokes Solver: Im-
plementation Issues, pp. 171–201

• H. Owen, G. Houzeaux, C. Samaniego, F. Cucchietti, G. Marin, C. Tripi-
ana, H. Calmet, M. Vázquez, Two fluids level set: High performance sim-
ulation and post processing, in: 2012 SC Companion: High Performance
Computing, Networking, Storage and Analysis (SCC), IEEE, Salt Palace
Convention Center, Salt Lake City, UT, 2012, pp. 1559–1568

• G. Houzeaux, C. Samaniego, H. Calmet, R. Aubry, M. Vázquez, P. Rem,
Simulation of magnetic fluid applied to plastic sorting, The Open Waste
Management Journal 3 (2010) 127–138

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 4
1.3 Limitations . 5
1.4 Outline of the thesis . 5

2 Parallel context 7
2.1 Finite Element Serial Context . 7
2.2 Finite Element Parallel Context 8
2.3 Finite Element and Finite Difference Parallel Exchange 10
2.4 Halo nodes and Halo elements . 13
2.5 Parallel exchange algorithms . 14

2.5.1 Interface node exchange algorithm (INE) 15
2.5.2 Halo node exchange algorithm (HNE) 17
2.5.3 Parallel matrix-vector and dot product 20

3 Fluid 23
3.1 The Navier-Stokes equations . 23
3.2 Numerical treatment . 24

3.2.1 Stabilization . 24
3.2.2 Subgrid scale modeling . 25
3.2.3 Solution Procedure . 25
3.2.4 Algebraic Solvers . 26
3.2.5 Parallelization . 27

4 Rigid Body 31
4.1 The Newton-Euler equations . 31
4.2 The Newton-Euler discretization 32
4.3 Algorithm of the Euler rotation equation 33

5 Rigid Body Interaction 37
5.1 General Framework . 37

5.1.1 Collision detection . 37
5.1.2 Collision response . 39

5.2 Geometric tools algorithms . 41
5.2.1 Skd-Trees . 42
5.2.2 Closest points between particles 44
5.2.3 Bucket sort . 44

6 Rigid body and fluid interaction 47
6.1 Framework of an embedded boundary mesh method 47
6.2 Fluid and rigid body interaction algorithm 49

6.2.1 Algorithms to define an approximated body boundary Γ̂n+1
S,h 50

6.2.2 Embedded approaches . 54

6.2.3 FMALE . 62
6.2.4 Time step ∆t . 65
6.2.5 The force and torque exerted on the solid surface 66

6.3 Mass conservation . 68
6.4 Summarizing . 69

7 Numerical Experiments 71
7.1 Fluid and rigid body interaction 71

7.1.1 Mesh convergence of a manufactured solution 72
7.1.2 Terminal velocities . 74
7.1.3 Vortex oscillations of a circular cylinder 82
7.1.4 Two Bileaflet Mechanical Heart Valves 87
7.1.5 Parallel performance of the UBF and NBF algorithms . . 93

7.2 Rigid bodies interaction . 94
7.2.1 50 squares falling into a funnel 94
7.2.2 10000 spheres falling inside a cube 94
7.2.3 4000 spheres of different sizes crashing against the floor . 96

7.3 Fluid and rigid bodies interaction (collisions) 96
7.3.1 Drafting, kissing and tumbling for two interacting spheres 98
7.3.2 Drafting, kissing and tumbling for more than two inter-

acting spheres . 98
7.3.3 Separation of bodies in square microchannels 101

8 Conclusions and future work 109
8.1 Achievements . 109
8.2 Future Lines of Research . 110

List of Figures

1.1 Illustration of some methods to simulate flows around moving
components. (Top) (Left) Chimera method. (Top) (Right) Slid-
ing mesh method. (Mid.) (Left) SSMUM. (Mid.) (Right) ALE
method (Bot.) Embedded boundary mesh. 2

2.1 Node connectivity. 8
2.2 Interface and interior nodes of the subdomain S. 9
2.3 Node connectivity in a parallel context. 11
2.4 Mesh partition for FD and FE. 11
2.5 Parallel matrix-vector product for FD and FE. 12
2.6 Halo nodes and halo element of subdomain S. 15
2.7 Array of data related with the set of nodes of S. 16
2.8 Adjacent subdomains S and T . 16
2.9 Interface nodes parallel exchange. 16
2.10 Adjacent subdomains S and T . 18
2.11 Halo nodes parallel exchange. Send data from S to T 18
2.12 Halo nodes parallel exchange. Receive data from T in S. 19

3.1 Convergence of different solvers. 27
3.2 Flowchart for Alya execution. The tasks that the master and

worker processes are responsible for are shown on figure with a
grey and white background respectively. 28

3.3 Speedup of the incompressible Navier-Stokes solver for solving
different physical problems. 29

5.1 Missing collision. 38
5.2 Closest points between the bodies A and B. 39
5.3 Contact between two bodies. 40
5.4 The skd-tree construction for a particle. The surface mesh of the

body has 8 edges. 43
5.5 Bucket sort structure. In order to find the nodes inside the body,

the program has only to consider the nodes represented by white
circles, the nodes in the mesh inside the boxes that intersect with
the boundary box of body. 45

6.1 Hole elements and Γ̂S,h schematization. 48
6.2 Fringe, free and holes nodes. 48
6.3 Near and inside nodes. 50
6.4 Array of data related with the set of nodes of S. The gray zone

represents the nodes take into account by S. 51
6.5 Sets of free nodes at different levels. The red concentric circles

represent the set Nfri. The sets N 1
fre and N 2

fre surround the set
of fringe nodes. 55

6.6 A scheme of the algorithm that defines the movement of nodes.
The body surface mesh is represented as ΓS,h. The parameters
pfri and pfre are the proportions of the movement of the set of
fringe and free nodes respectively. And the value c is the centroid
defined by the set of nodes Cnod(n). 56

6.7 The movement of a fringe node n considering only one increment.
(Middle) First, we have to determine the centroid c of the set
of nodes Cnod(n) ∩ Nfri. (Bottom) Then, we move the node n
towards the projection p of c on the boundary mesh. 57

6.8 Illustration of the selection algorithm. the gray square denotes
esel(n). The red concentric circles denote members of the set of
fringe nodes, and the black circles are the free nodes that belong
to set Nsel(n). 60

6.9 Illustration of the FMALE framework. The dotted lines repre-
sent the body surface mesh at the previous time step tn and the
continuous lines represent the body surface mesh at the current
time step tn+1. The red concentric circles denote members of the
set of fringe nodes, black circles members of the set of free nodes,
and crosses members of the set of hole nodes. The plots (a) and
(c) represent the fluid mesh in two consecutive time steps after
remeshing. 64

6.10 Force over a cylinder at Re = 20 using the numerical and alge-
braic approximations. 68

6.11 Flow chart of the whole process for both methods: UBF and NBF. 70

7.1 Problem domain for the manufactured solution. 72

7.2 Mesh convergence of the velocity field for UBF, LNBF and HNBF. 73

7.3 (Top) Mesh convergence of the force exerted on the solid for UBF,
LNBF and HNBF. (Bot.) Mesh convergence of mass balance for
UBF, LNBF and HNBF. 74

7.4 Mesh convergence of the velocity and pressure fields with and
without mass conservation for (Top) the UBF scheme, (Mid.)
the HNBF scheme, and (Bot.) LNBF scheme. 75

7.5 Mesh used for the cylindrical fluid domain. 76

7.6 Initial position of the sphere in the interior of the mesh. 76

7.7 Set of fringe nodes before applying the r-local adaptivity algorithm. 77

7.8 Set of fringe nodes after applying the r-local adaptivity algorithm. 77

7.9 Numerical and analytical Stokes terminal velocity for Re = 0.004. 77

7.10 Linear and high order interpolation for the FMALE framework. . 78

7.11 Numerical and analytical terminal velocity for Re = 101. 79

7.12 Numerical and analytical terminal velocity for Re = 1647. 79

7.13 Numerical and analytical terminal velocity for Re = 101 using
different meshes and safety factors α and considering only the
HNBF approach. 80

7.14 Numerical and analytical terminal velocity for Re = 1647 using
different meshes and safety factors α and considering only the
HNBF approach. 81

7.15 Solid acceleration and solid velocity for the UBF and HNBF ap-
proaches with Re=3.7. 81

7.16 Time step analysis using different safety factors for the UBF
scheme with Re=101. 82

7.17 Problem domain definition. 83
7.18 Discretization of the problem domain. 83
7.19 Mesh near the hole for the high order kriging interpolation algo-

rithm. 84
7.20 Mesh near the hole after applying the local r-adaptivity algorithm. 84
7.21 Amplitudes of the solid oscillations due to the vortex for the UBF

algorithm. (Left) The envelope (curve outlining the extremes)
of the amplitudes of the oscillations, created using the Hilbert
transform. (Mid.) Initial amplitudes of the oscillations (Right)
Final amplitudes of the oscillations. 85

7.22 Amplitudes of the solid oscillations due to the vortex for the
HNBF algorithm. (Left) The envelope (curve outlining the ex-
tremes) of the amplitudes of the oscillations, created using the
Hilbert transform. (Mid.) Initial amplitudes of the oscillations.
(Right) Final amplitudes of the oscillations. 86

7.23 Amplitudes reached at the last time step for UBF and HNBF
schemes compared to Dettmer’s and experimental results. 87

7.24 Frequencies reached at the last time step for UBF and HNBF
schemes compared to experimental results. 88

7.25 Frequencies reached at the last time step for UBF and HNBF
schemes compared to Dettmer’s results. 88

7.26 Domain of the two bileaflet mechanical heart valves. A zoom is
done as shown in the square in Figure 7.27. 89

7.27 Zoom of the whole domain. Another zoom is done as shown in
the square in Figure 7.28. 89

7.28 Maximum and minimum angles of aperture of the valves. 90
7.29 Plug inflow boundary profile. 90
7.30 Aperture angle of the valves. 91
7.31 Vorticity field at the plane of symmetry at different time steps of

the simulation. 92
7.32 One of the solids with arbitrary shape. 93
7.33 The scalability using the NS equations solver with and without

considering the UBF and NBF algorithms. 94
7.34 Fifty cubes falling into a funnel at the beginning of the simulation. 95
7.35 Fifty cubes falling into a funnel at the end of the simulation. . . 96
7.36 10000 spheres falling inside a square at the beginning of the sim-

ulation. 97
7.37 10000 spheres falling inside a square at the end of the simulation. 98

7.38 4000 spheres crashing against the floor at the beginning of the
simulation. 99

7.39 4000 spheres crashing against the floor at the end of the simulation.100
7.40 Comparison of positions of the spheres at different time steps of

the simulation in the z axis obtained in our work and in [7]. . . . 101
7.41 Positions of the spheres at different time steps of the simulation. 102
7.42 Positions of the spheres at the time steps 0, 0.20 and 0.25 of the

simulation. 103
7.43 Spherical bodies focus at four equilibrium positions in squares

microchannels. 103
7.44 Equilibrium positions in the microchannel considering the square

face perpendicular to the primary flow direction. 104
7.45 Considered periodic boundaries. 104
7.46 Added element and node connectivities for the periodic node n. . 105
7.47 Body replication at the periodic boundaries. 105
7.48 Bodies at the periodic boundaries during the simulation. 106
7.49 Positions of the bodies in the microchannel considering the square

face perpendicular to the primary flow direction. The crosses
indicate the positions at the beginning. 106

7.50 Positions of the bodies in the microchannel considering the square
face perpendicular to the primary flow direction. (Top) Bodies
at beginning of the simulation. (Bot.) Bodies at the end of the
simulation. 107

List of Algorithms

1 Parallel exchange algorithm INE for an arbitrary subdomain S . 17
2 Parallel exchange algorithm HNE for an arbitrary subdomain S 19
3 The parallel matrix-vector product 20
4 The parallel dot product . 21
5 NS-NE Coupling strategy . 49
6 Inside nodes identification algorithm for an arbitrary subdomain S 52
7 Near nodes identification algorithm for an arbitrary subdomain S 52
8 Fringe nodes identification algorithm for an arbitrary subdomain S 53
9 Solid elements identification algorithm for an arbitrary subdo-

main S . 54
10 R-local adaptivity algorithm for an arbitrary subdomain S 58
11 Fringe nodes movement algorithm MOVE FRINGES for an

arbitrary subdomain S . 58
12 Free nodes movement algorithm MOVE FREES for an arbi-

trary subdomain S . 59
13 Selection nodes algorithm for an arbitrary subdomain S 61

1
Introduction

The numerical simulation of the interaction of a fluid and a rigid body in the
context of high performance computing is a challenging subject. Efficiency is
tightly interlinked with a careful implementation. In this thesis we try to eluci-
date the data structures and the algorithms that lead to an efficient simulation
tool for supercomputers by means of formal definitions, thereby generating a
general framework. The implementation of two embedded boundary methods
are described within this framework. They are implemented inside the Alya
system [3], a parallel multiphysics code. Finally, several numerical examples
are used to demonstrate the accuracy and the computational efficiency of the
implemented methods.

1.1 Motivation

The detailed modeling of the interaction of a rigid solid with a fluid has been
the object of intensive research [8, 9, 10, 11]. However, this is still a challenging
subject that entails several difficulties. The problem can become even harder
when a high performance computing implementation is sought.

There exist different methods to simulate the interaction between the fluid
and a solid in movement. We are mainly interested in techniques developed
within the context of the Finite Element Method here. However, it is important
to mention other alternatives like those based on Lattice-Boltzman [12] and
meshless methods [13, 14, 15].

To put our work into context, the main approaches based on the Finite
Element Method are described below and schematized in Figure 1.1. This list
is based on the review presented in [9].

• Domain decomposition methods [16]. Due to the actual process followed
in this class of methods for fluid-structure interaction, maybe a more ap-
propriate name is domain composition methods as pointed out in [17]. A
fluid mesh attached to the body is moving over a fixed fluid mesh. As
a consequence, the information between adjacent meshes or subdomains
has to be exchanged to obtain a global solution. Several instances of this
approach can be mentioned. The Chimera method [18, 19], and HER-
MESH [20], are examples of partially overlapping domain decomposition
as illustrated in Figure 1.1(Top)(Left). The sliding mesh method [21]
is another example of domain decomposition; here the subdomains are
disjoint and information between them is transmitted across the inter-
faces, see Figure 1.1(Top)(Right). In the shear-slip mesh update method
(SSMUM) [8], a layer of shear-absorbing elements is used to connect a

1

CHAPTER 1. INTRODUCTION

Figure 1.1: Illustration of some methods to simulate flows around moving com-
ponents. (Top) (Left) Chimera method. (Top) (Right) Sliding mesh method.
(Mid.) (Left) SSMUM. (Mid.) (Right) ALE method (Bot.) Embedded bound-
ary mesh.

moving, associated to the body, and non-moving region as illustrated in
Figure 1.1(Mid.)(Left).

• The ALE method. The Arbitrary Lagrangian-Eulerian description (ALE)
method takes advantage of the features of both (Lagrangian and Eulerian)
descriptions to move the fluid mesh in order to adapt it to the changing
solid configuration [22]. Figure 1.1(Mid.)(Right) illustrates the movement
of the mesh around a body in an ALE implementation. Remeshing is
required when the elements in the discretization are too distorted.

• Embedded boundary methods. The fluid is discretized using a non body-
conforming mesh and described in an Eulerian frame of reference. The
wet boundaries of the bodies are embedded in this mesh and geometri-
cally tracked by means of moving polyhedral surface meshes, see Figure
1.1(Bot.) Examples of this approach are the Immersed Boundary (IB)
method [23] and the Fictitious Domain (FD) [24, 25]. Another example
relevant to this work is the strategy proposed by Löhner et al. [26], which
imposes the velocity of the body directly as a Dirichlet boundary condition
on the fluid. There exist other alternatives such as the work developed in
[27] that combines concepts from embedded boundary methods and the
isogeometric analysis introduced in [28].

• Monolithic approach. A unified formulation is used for both the solid and

2

1.1. MOTIVATION

fluid. Interaction is taken into account by means of an extra stress tensor
appearing in the Navier-Stokes equations [10].

Within this context, the two new schemes proposed in this work can be
characterized as based on the embedded boundary concept. They both manage
an internal boundary in the fluid domain at each time step to track the solid
wet boundary.

The selection of the strategies has been motivated by the search of a com-
putationally efficient parallel implementation. We decided to avoid connecting
different meshes, because it implies changing the nodes connectivities, thereby
increasing parallel communications and the complexity of the algorithms. Alter-
natives that can cause severe distortions in some elements were also avoided. In
order to tackle these distortions, re-meshing can be used, but this would entail
the need of changing nodes connectivities, which would require redistributing
the computational load in the mesh partitions. That is why we avoid changes
in the topology of the mesh in both of the proposed approaches.

To account for the fact that fluid nodes can become solid nodes and vice
versa due to the rigid body movement, we have adopted the FMALE approach
[29, 30]. A new interpolation method is adopted inside the FMALE implemen-
tation in order to improve the results. Also, to track the wet boundary of the
body, computational geometry tools have been used. In general, the two new
approaches, in order to be both computationally efficient and accurate, entail
the integration of different algorithmic solutions.

In addition, in a simulation of a dynamic rigid body system multiple prob-
lems have to be solved. First, the motion of bodies due to the external forces
must be determined. Next, when the bodies are in movement, it is necessary
to prevent interpenetration between them and to solve the collisions when the
bodies are in contact. The simulation framework of dynamic rigid bodies is
well-known, see [31, 32], and tries to solve the problems mentioned above in the
following consecutive stages:

• Collision Detection.

• Rigid Body Motion.

• Collision Response.

The previous paragraphs can give the reader a hint of the intrinsic complex-
ity associated to obtaining an efficient parallel implementation of the interaction
of a fluid and a rigid body. This complexity is reflected in the difficulty of giv-
ing an accurate explanation of such implementations. This is why the need of
generating a framework that allows for a precise description was felt. A very in-
teresting attempt to create such a framework for the modeling of incompressible
flows can be found in [33, 34]. However, in the author’s opinion, a new frame-
work better suited for fluid-structure interaction (FSI) was necessary. Thus,
a new formal characterization of the data structures needed in a distributed
memory environment in terms of set theory concepts is introduced. It must

3

CHAPTER 1. INTRODUCTION

be said that the parallel framework, although mainly thought for FSI, can be
generalized to other applications. In [2], some elements of this framework were
used to explain a parallel solver for solid mechanics.

1.2 Objectives

The aim of this thesis is to numerically simulate the interaction of a fluid and
a number of rigid bodies considering a distributed memory environment. To
achieve this goal, we have to accomplish the objectives mentioned below.

In order to have a precise description of the parallel algorithms to solve the
interaction:

• To develop a general framework for the parallel implementation of the
interaction between a fluid and the rigid bodies by means of a new formal
definition using the set notation. This general framework is intended to
elucidate the data structures and algorithms involved in a precise fashion.
The main formal definitions are detailed in Chapter 2.

In order to numerically solve the interaction inside the embedded boundary
mesh framework:

• To propose two new strategies to accurately solve the interaction of a
fluid and a number of rigid bodies inside the embedded boundary mesh
framework considering a distributed memory parallelization environment.
The description is detailed in Subsection 6.2.2. The validation of both
approaches is described in Subsection 7.1.1.

• To adopt a new interpolation method inside the FMALE framework in
order to account for the fact that fluid nodes can become solid nodes and
vice versa due to the rigid body movement. The FMALE framework is
explained in Subsection 6.2.3. The new method of interpolation is studied
in Subsection 7.1.2.

• To solve the interactions between the bodies. As all the subdomains sim-
ulate the interaction of all the bodies and redundant work is done, the
implementation has to be done in such way that each subdomain solves
these interactions as fast as possible. The theory is described in Chapter
5. Some examples are shown in Section 7.2.

Finally, in order to implement the interaction to solve real problems:

• To select numerical strategies motivated by the search of a computation-
ally efficient parallel implementation.

4

1.3. LIMITATIONS

1.3 Limitations

We do not know the positions of the bodies inside the mesh that discretizes the
problem a priori. Thus, in general, the discretization of a problem entails a fine
mesh in order to obtain results that are good enough.

The mesh has to become finer as the Reynolds number increases. To solve
turbulent flows, the required mesh could imply a considerable growth in the
number of degrees of freedom and alternative numerical methods, that include
numerical strategies to simulate flows with high Reynolds numbers, can render
better solutions for this kind of problems with coarser meshes. Remeshing can
be used, but, as mentioned above in Section 1.1, this would require redistribut-
ing the computational load in the mesh partitions.

For all these reasons, in this thesis, the analyses will be focused on laminar
and transition flows. In particular, flows with Reynolds numbers until nearly
6000. The discretization of the problems will use meshes of until nearly 30
million elements. Even so, the sizes of the meshes and the time of simulation
require a distributed memory environment to solve the problems considered in
this work. In this context, our main goal is not to affect the scalability of
the Alya system. That is, not to affect the scalability of the fluid solver. An
analysis of the scalability of the implementation for the proposed new strategies
is described in Subsection 7.1.5.

1.4 Outline of the thesis

The rest of this thesis is organized as follows. Chapter 2 is devoted to ex-
plaining the mesh topology structures considering a parallel context. Also, the
algorithms to exchange the data structures associated to this mesh are explained
inside a parallel finite element and a parallel finite difference implementations.
The physics and numerical aspects to solve a fluid and a rigid body are described
respectively in Chapters 3 and 4. The general framework of interaction between
rigid bodies is explained in Chapter 5. The Chapter 6 describes in detail a gen-
eral algorithm to solve the interaction between a fluid and a rigid body. It is
important to remark that all the algorithms derived from the general algorithm
are described considering a parallel implementation and using the algorithms of
exchange explained in Chapter 2.

The numerical examples are presented in Chapter 7 in order to validate the
methods. Finally, the conclusions of this work are presented in Chapter 8.

5

2
Parallel context

In a parallel finite element program, the original mesh is partitioned into subdo-
mains. The data that has a direct relationship with the set of nodes of the mesh
will be also divided. As a consequence, the data between adjacent subdomains
has to be exchanged to preserve the coherency of the data and to obtain the
correct solution to the problem.

In order to be precise and avoid ambiguities, some sets are defined to repre-
sent the original mesh, first, in a serial context, and then, in a parallel context.
To illustrate the concepts, a simple one-dimensional example will be considered.

Then, a formal description of the algorithms to exchange data in a finite
element or a finite difference parallel program will be described. A simple iter-
ation of an iterative solver will be considered in order to motivate the definition
of the algorithms.

2.1 Finite Element Serial Context

In the context of the finite element method, the continuous domain is discretized
into a set of elements E = {e1, e2, e3, ...} and a set of nodes N = {n1, n2, n3, ...}.
Each node n ∈ N is defined by its position inside the domain. And each
element e ∈ E is defined, for our purposes, by a subset of the set of nodes
e = {ne

1, n
e
2, n

e
3, ...} ⊂ N .

Mesh connectivities

The definition of an element as a subset of nodes relates any node n ∈ N
with other nodes and elements of the mesh. These relations are called the
connectivity of node n and can be characterized by the following definitions:

• Element connectivity of n. Let Cele(n) denote the set of elements in E
directly connected to the node n, the gray squares in Figure 2.1. Formally,

Cele(n) = {e ∈ E : n ∈ e}.

• Node connectivity of n. Let Cnod(n) denote the set of nodes in N
directly connected to n, the black circles in Figure 2.1. Formally,

Cnod(n) = {m ∈ N : ∃e ∈ Cele(n),m ∈ e} \{n}.

7

CHAPTER 2. PARALLEL CONTEXT

n
∈ Cnod(n)

∈ Cele(n)

Figure 2.1: Node connectivity.

2.2 Finite Element Parallel Context

In the parallel context of the finite element method, the original mesh is par-
titioned into subdomains. Each subdomain is defined by subsets of the set of
elements E and the set of nodes N . Let N S and ES denote the set of nodes
and elements of an arbitrary subdomain S respectively. Then, the nodes and
elements of the mesh can be grouped by subdomains fulfilling

N =

P
⋃

I=1

N I and E =

P
⋃

I=1

EI ,

where P is the number of subdomains.
The partition of the mesh is done such that in any subdomain S,

N S
⋂

P
⋃

I=1,I 6=S

N I

 6= ∅

and

ES
⋂

P
⋃

I=1,I 6=S

EI

 = ∅,

i.e., nodes can be shared between subdomains, whereas elements cannot.
The shared nodes are located at the interface between subdomains created

by the partition of the mesh. This partition allow us to divide the set of nodes
N S into two disjoint subsets defined as

� The set of interior nodes of S. Let

N S
int = N

S\

P
⋃

I=1,I 6=S

N I

8

2.2. FINITE ELEMENT PARALLEL CONTEXT

S T

∈ NS
i f a

∈ NS
int

Figure 2.2: Interface and interior nodes of the subdomain S.

denote the set of interior nodes of the subdomain S. These nodes do
not belong to the interface; see Figure 2.2, where white circles denote the
interior nodes of S.

� The set of interface nodes of S. Let N S
ifa = N S\N S

int denote the
set of interface nodes of S. These nodes belong to the interface and are
shared by different subdomains, including S; see Figure 2.2, where black
circles denote the interface nodes of S.

Two arbitrary subdomains S and T that share at least one node at the
interface are called as adjacent subdomains, i.e N S

ifa ∩ N
T
ifa 6= ∅. Consider

the partition shown in Figure 2.2. In this particular example, the subdomains
S and T are adjacent because they share a set of interface nodes.

Let us define a useful subset of the interface nodes N S
ifa that will be used in

most of the parallel algorithms for fluid and rigid body interaction describe in
this thesis:

� The set of own interface nodes of S. Let N S
ifa,own denote the own

interface nodes of a subdomain S. These own nodes are uniquely associ-
ated to a subdomain in order to manage communications properly when
performing certain operations. The definition of the set of own interface
nodes of S states that:

N S
ifa,own ∩

⋃

I 6=S,I is adjacent to S

N I
ifa,own = ∅.

That is, an own interface node of S cannot be own by another subdomain
different from S.

Parallel mesh connectivity

In this context, consider a node n in an arbitrary subdomain S that is located
at the interface. From the point of view of subdomain S, there are two disjoint
sets whose union defines the whole node connectivity of n:

9

CHAPTER 2. PARALLEL CONTEXT

• Node connectivity of n in S. Let the set

CSnod(n) = Cnod(n) ∩ N
S

denote the set of nodes in N S directly connected to the node n.

• Node connectivity of n in other subdomains. Let the set

CŜnod(n) = Cnod(n)\C
S
nod(n)

denote the set of nodes in subdomains different from S directly connected
to the node n. These nodes will be referred to as halo nodes of S, see
Section 2.4.

In a similar way, there are two disjoint sets whose union defines the whole
element connectivity of n:

• Element connectivity of n in S. Let the set

CSele(n) = Cele(n) ∩ E
S

denote the set of elements in ES directly connected to the node n.

• Element connectivity of n in other subdomains. Let the set

CŜele(n) = Cele(n)\C
S
ele(n)

denote the set of element in subdomains different from S directly con-
nected to the node n. These elements will be referred to as halo elements

of S, see Section 2.4.

In Figure 2.3, the whole connectivity of the interface node n is divided
between the adjacent subdomains S and T .

2.3 Finite Element and Finite Difference Parallel Ex-

change

In a distributed memory context, a typical parallel implementation of the finite
element (FE) method differs from a typical parallel implementation of the fi-
nite difference (FD) or the finite volume (FV) method. The difference stems
from the way these methods assemble the algebraic systems resulting from the
discretizations. On the one hand, in a finite difference code (similarly in a FV
code), each process is responsible for a given set of rows of the matrix. In order
to complete each row, a subdomain is defined by a subset of the set of nodes of
the original mesh and by the set of edges that are directly connected with this

10

2.3. FINITE ELEMENT AND FINITE DIFFERENCE PARALLEL
EXCHANGE

S T

n ∈ CT
nod(n)

∈ CT
ele(n)

∈ CS
nod(n)

∈ CS
ele(n)

Figure 2.3: Node connectivity in a parallel context.

subset of nodes. Thus, the edges located at the interface between subdomains
(cells in a FV code) are duplicated, resulting in an overlap of edges (cells), see
Figure 2.4. On the other hand, in a finite element code, a subdomain is defined
by a subset of the set of elements of the original mesh and by the set of nodes
that belongs to this subset of elements, see also Figure 2.4. Only the nodes
located at the interface between subdomains are duplicated and on these nodes,
the matrix is assembled locally and only partly on each subdomain. To illus-
trate this fact, let us take a very simple one-dimensional example. Figure 2.4
shows the partition of the mesh into two subdomains, S and T . In the case of
the FD method, edge n3−n4 is duplicated. Subdomain S is responsible for the
rows of nodes n1,n2 and n3 while subdomain T takes care of nodes n4 and n5.
In the case of the finite element method, no element is duplicated. But both
subdomains will partly be responsible for node n3. Now let us examine how the
parallelization works.

Finite difference method

subdomainS

subdomainT

duplicate edge

n1 n2 n3 n4

n3 n4 n5

Finite element method

subdomainS

subdomainT

duplicate node

n1 n2 n3

n3 n4 n5

Figure 2.4: Mesh partition for FD and FE.

11

CHAPTER 2. PARALLEL CONTEXT

The numerical solution of a PDE (and consequently the Navier-Stokes equa-
tions) consists mainly of two steps. First, the construction of the matrix A and
right-hand side (RHS) b of the algebraic system Ax = b. Second, the solution
of this system using an iterative solver. As far as the matrix and RHS assem-
blies are concerned, in the case of the FD and FV methods, each subdomain is
able to construct complete rows and RHS thanks to the duplicated edges (cells
in a FV code). In the case of the finite element method, only part of the matrix
is assembled for the interface nodes. As far as iterative solvers are concerned,
the basic operation is the matrix-vector product. Let us consider the matrix-
product y = Ax and examine the parallelization of this product for the FD and
FE methods; see Figure 2.5.

Finite difference method

1. Exchange: S sends x3 to T

2. Exchange: T sends x4 to S

3. Local matrix-vector product

y1

y2

y3

=

A11 A12

A21 A22 A23

A32 A33 A34

x1

x2

x3

x4

y4

y5
=

A43 A44 A45

A54 A55

x3

x4

x5

Finite element method

1. Local matrix-vector product

y1

y2

yS
3

=

A11 A12

A21 A22 A23

A32 AS
33

x1

x2

x3

yT
3

y4

y5

=

AT
33

A34

A43 A44 A45

A54 A55

x3

x4

x5

2. Exchange: S sends yS3 to T

3. Exchange: T sends yT3 to S

4. Assembly: y3 = yS3 + yT3

Figure 2.5: Parallel matrix-vector product for FD and FE.

In the FD case, on the one hand, subdomain S is in charge of the whole row
of node n3. Thanks to the duplication of edge n3−n4, coefficients A33 and A34

are complete. On the other hand, subdomain T is in charge of the whole row of
node n4. As before, thanks to the duplication of edge n3 − n4, coefficients A43

and A44 are complete. The matrix-vector product can be carried out in parallel
as follows:

1. Exchange the data x3 and x4 between the subdomains S and T .

2. Perform local matrix-vector product.

In the case of the FE, the coefficients of the matrix come from element inte-
grals. Subdomain S can therefore provide only part of coefficient A33, namely
AS

33, while subdomain T provides AT
33. Note that

y3 = A32x2 +A33x3 +A34x4

12

2.4. HALO NODES AND HALO ELEMENTS

can be rewritten as

y3 = (A32x2 +AS
33x3) + (AT

33x3 +A34x4)

= yS3 + yT3 .

Then, the matrix-vector product can be carried out in parallel as follows:

1. Perform local matrix-vector product.

2. Exchange the results on the interface node n3: y
S
3 and yT3 .

3. Assemble (sum) the local contribution: y3 = yS3 + yT3 .

Considering any arbitrary subdomain Q, the important fact of interest for
us is that a priori, the parallelization of a finite element code requires only the
local data related with the set of nodes that belongs to Q, the set NQ.

However, as we will see in further sections, the coupling of the rigid-body and
the Navier-Stokes solvers requires that an arbitrary subdomain Q can access the
data related with the whole node connectivity of the set of nodes that belongs
to Q, the set

⋃

n∈NQ Cnod(n), which includes the data related with nodes that
belong to other adjacent subdomains. In particular, we need to include data
of the interior nodes of all the adjacent subdomains of Q that are directly
connected to its interface nodes NQ

ifa. These nodes are the set of halo nodes
of Q and are formally defined in Section 2.4. Considering the problem shown
in Figure 2.5, the sets {n4} and {n2} are the sets of halo nodes of S and T
respectively. Note that the data related with these sets of nodes are already
included in their respective subdomains when we are working in the context of
the finite difference or finite volume method, see Figure 2.4.

2.4 Halo nodes and Halo elements

From the section 2.2, we can easily deduce that the number of nodes and ele-
ments directly connected to an interface node n in a subdomain is smaller than
in the original mesh, see Figures 2.1 and 2.3. This lack of topological informa-
tion can seriously affect the ability of the algorithms that perform the coupling
of the rigid-body and the Navier-Stokes solvers (RB-NS coupling) to reach the
right results.

As mentioned in Section 2.3 and considering the example shown in Figure
2.4, this means that subdomain S needs to access the data related with node
n4 and subdomain T needs to access the data related with node n3, the set
of halo nodes of S and T respectively. This data is not only geometrical and
topological but can also consists of values of some variables.

In a finite element parallel program, we can consider two options in order
to implement the RB-NS coupling:

• Implicit implementation. Include the geometrical and topological data
related with the halo nodes changing the structure of the local matrices.

13

CHAPTER 2. PARALLEL CONTEXT

In this case, the implementation have to enable rectangular matrices like
in the case of the FD method in order to implicit the relation with the
halo nodes.

• Explicit implementation. Include the geometrical and topological data
related with the halo nodes without changing the structure of the local
matrices. In this case, we lose in convergence as the values of the variables
related with the halo nodes have to go to the RHS.

In our code, we choose the explicit implementation option in order to preserve
the structure of the local matrices. Some geometrical and topological data is
added in the subdomain definitions in order to have the same connectivity as
in the original mesh for any interface node.

From the point of view of an arbitrary subdomain S, the formal definitions
of these new added sets of nodes and elements are given by:

• Set of halo nodes of S. Let the set

N S
hal =

⋃

n∈NS
ifa

CŜnod(n)

denote the set of halo nodes in S.

• Set of halo elements of S. Let the set

EShal =
⋃

n∈NS
ifa

CŜele(n)

denote the set of halo elements in S.

Consider again the connectivity of the interface node n in Figure 2.3. Now,
if we include the halo nodes and halo elements of the subdomain S, as shown
in Figure 2.6, the interface node n in Figure 2.3 or any other interface node in
the subdomain S, will have defined its whole connectivity inside S.

2.5 Parallel exchange algorithms

In a finite element program, the most important data structures have a direct
relationship with the set of nodes of the mesh. These structures are collections
of numerical values, each one identified by an index (or a tuple of indices). In
a parallel context, these data structures have to be exchanged between subdo-
mains to preserve the coherency of the data.

In parallel, for any subdomain S, a node in N S ∪N S
hal is related to its index

by:

indexS : N S ∪ N S
hal → {1, 2, 3, ...|N S ∪N S

hal|}

n 7→ iS .

14

2.5. PARALLEL EXCHANGE ALGORITHMS

S T

∈ NS
i f a

∈ NS
hal

∈ ES
hal

Figure 2.6: Halo nodes and halo element of subdomain S.

For implementation aspects, a subdomain S enumerates consecutively its
interior nodes, next its own interface nodes, the rest of its interface nodes, and
finally its halo nodes, see Figure 2.7. Thus, any numerical data array data
of length |N S ∪ N S

hal| can be conveniently splitted in four consecutive arrays:
data(1 : |N S

int|), the values related with the interior nodes of S, data(|N S
int| +

1 : |N S
int ∪ N

S
ifa,own|), the values related with the own interface nodes of S,

data(|N S
int ∪ N

S
ifa,own| + 1 : |N S |), the values related with the interface nodes

that do not own S, and data(|N S |+1 : |N S∪N S
hal|), the values related with the

halo nodes of S. Also, these divisions facilitate the definition of the algorithms
written above which allow us to exchange data between subdomains.

2.5.1 Interface node exchange algorithm (INE)

Consider an arbitrary subdomain S. Then, for each adjacent subdomain T of
S, the algorithm carries out the exchange of values associated with the subset
of interface nodes N S ∩ N T . For this purpose, the algorithm needs a common
index in S and T as defined below:

indexS,T
ifa : N S ∩ N T → {1, 2, 3, ...|N S ∩ N T |}

n 7→ iS,Tifa .

The exchange of data is described in Algorithm 1. Considering the two
adjacent subdomains S and T shown in Figure 2.8, this exchange involves the
data related with the black nodes shown in Figure 2.8 and can be schematized
as illustrated in Figure 2.9.

From the point of view of an arbitrary node n ∈ N S
int, the Algorithm 1 works

as explained next. Let the contributions of a variable x evaluated at node n
furnished by S and all its adjacent subdomains A1, A2, ..., AN that share n;

that is n ∈ NA1

, n ∈ NA2

, ..., n ∈ NAN

; be denoted by xS and x1, x2, ..., xN

respectively. The Algorithm 1, first exchanges the values x1, x2, ..., xN and xS

15

CHAPTER 2. PARALLEL CONTEXT

|NS ∪NS
hal|

...

|NS |+ 1

|NS |

...

|NS
int ∪NS

ifa,own|+ 1

|NS
int ∪NS

ifa,own|

...

|NS
int|+ 1

|NS
int|

...

2

1

halo nodes of S

interface nodes not owned by S

own interface nodes of S

interior nodes of S

Figure 2.7: Array of data related with the set of nodes of S.

S

T

∈ NS ∩NT

Figure 2.8: Adjacent subdomains S and T .

MPI SendRecv

S

T

NS ∩NT

Figure 2.9: Interface nodes parallel exchange.

16

2.5. PARALLEL EXCHANGE ALGORITHMS

between the subdomains A1, A2, ..., AN and S. Then, the Algorithm 1 adds the
contribution coming from the subdomains A1, A2, ..., AN to get a new value

associated to n in S equal to xS +

N
∑

I=1

xI .

Algorithm 1 Parallel exchange algorithm INE for an arbitrary subdomain S

Require: A numeric array data with length |N S |
Ensure: A modified array data

⊲ Construct sending data arrays
for each adjacent subdomain T of S do

for each node n ∈ N S ∩ N T do
iS ← indexS(n)

iS,Tifa ← indexS,T (n)

Construct the array data sendT (iS,Tifa)← data(iS)
end for

end for
⊲ Send and receive data arrays

for each adjacent subdomain T of S do
Using MPI SendRecv, send data sendT to T and receive data receiveT

from T
end for

⊲ Assembly
for each adjacent subdomain T of S do

for each node n ∈ N S ∩ N T do
iS ← indexS(n)

iS,Tifa ← indexS,T (n)

data(iS)← data(iS) + data receiveT (iS,Tifa)
end for

end for

This algorithm is commonly used in parallel finite element programs to per-
form the matrix-vector operation during the execution of iterative solvers as
illustrated in Section 2.3. In this work, the idea is to reuse this code for the
algorithms that perform the fluid and the rigid body interaction.

2.5.2 Halo node exchange algorithm (HNE)

Consider an arbitrary subdomain S. Then, for each adjacent subdomains T of
S, the algorithm carries out the exchange of values associated to the subset of
halo nodes of S: N S

hal ∩N
T , and to the subset of halo nodes of T : N S ∩N T

hal.

In this case, the algorithm needs two numerical data arrays as common
indices instead of only one for S and T : an array to send data to T , see Figure

17

CHAPTER 2. PARALLEL CONTEXT

S

T

∈ NS ∩NT
hal

∈ NS
hal ∩ N

T

Figure 2.10: Adjacent subdomains S and T .

MPI Sendv

S

T

NS ∩NT
hal

Figure 2.11: Halo nodes parallel exchange. Send data from S to T .

2.11, and another one to receive data from T , see Figure 2.12. From S to T :

indexS,T
hal : N S ∩ N T

hal → {1, 2, 3, ...|N S ∩ N T
hal|}

n 7→ iS,T .

From T to S:

indexT,S
hal : N T ∩ N S

hal → {1, 2, 3, ...|N T ∩ N S
hal|}

n 7→ iT,S .

The exchange is described in Algorithm 2. Considering the two adjacent
subdomains S and T shown in Figure 2.10, the exchange of data involves the
data related with the black and white nodes shown in Figure 2.10 and can be
schematized as illustrated in Figures 2.11 and 2.12. In Figure 2.11 the data is
sent from S to T and in Figure 2.12 the data is sent from T to S.

From the point of view of an arbitrary node n ∈ N S
hal that is shared with an

adjacent subdomain T of S, that is n ∈ N T , the Algorithm 2 works as explained
next. Let the values associated to n be xS and xT for S and T respectively.
The Algorithm 2, first, sends the value xT from T to S and, then, replaces the
value associated to n in S to get a new value xS = xT .

Actually, the relationships between a subset of nodes and a common index
for a pair of adjacent subdomains defined above are slightly different in the

18

2.5. PARALLEL EXCHANGE ALGORITHMS

MPI Recv

S

T

NS
hal ∩N

T

Figure 2.12: Halo nodes parallel exchange. Receive data from T in S.

Algorithm 2 Parallel exchange algorithm HNE for an arbitrary subdomain S

Require: A numeric array data with length |N S ∪ N S
hal|

Ensure: A modified array data
⊲ Construct sending data arrays

for each adjacent subdomain T of S do
for each node n ∈ N S ∩ N T

hal do
iS ← indexS(n)

iS,Thal ← indexS,T
hal (n)

Construct the array data sendT (iS,Thal)← data(iS)
end for

end for
⊲ Send and receive data arrays

for each adjacent subdomain T of S do
Using MPI Send, send data sendT to T
Using MPI Recv, receive data receiveT from T

end for
⊲ Data substitution

for each adjacent subdomain T of S do
for each node n ∈ N T ∩ N S

hal do
iS ← indexS(n)

iT,S
hal ← indexT,S(n)

data(iS)← data receiveT (iT,S
hal)

end for
end for

19

CHAPTER 2. PARALLEL CONTEXT

implementation level. The idea is to avoid to send or to receive redundant data.
Thus, the value of a node n ∈ N S

hal shared for the adjacent subdomains of S:

A1, A2, ..., AN ; that is n ∈ NA1

, n ∈ NA2

, ..., n ∈ NAN

; will be sent only

for the adjacent subdomain NAI

, where 1 ≤ I ≥ N , with the smaller identifier
value.

2.5.3 Parallel matrix-vector and dot product

To describe some characteristics of the iterative methods for solving linear sys-
tems in a parallel context, consider a simple iteration of an Orthomin(1) method:

xk+1 = xk + α
(

b−Axk
)

,

where k is the iteration index, α =< rk,Ark > / < Ark,Ark >, and rk =
b−Axk.

It is clear that in this simple iteration, there are two matrix-vector products
and two dot products operations involved. In a parallel context, these operations
require the exchange of data between subdomains. In order to be precise in
the implementation, let us formally defined the algorithms to solve a parallel
matrix-vector and a parallel dot product operations.

Parallel matrix-vector product

The current implementation of the matrix-vector product uses synchronous
communications. Formally, the operation is written in Algorithm 3. Note that
each subdomain has to call the parallel exchange algorithm INE defined in
section 2.5.1 after calculating its local matrix-vector product.

Algorithm 3 The parallel matrix-vector product

for each subdomain S do
for each n ∈ N S do

i = indexS(n)
Initialize yS(i) = 0
for each m ∈ {n} ∪ CSnod(n) do

j = indexS(m)
Construct yS(i) = yS(i) +AS(i, j) ∗ xS(j)

end for
end for
call INE(yS)

end for

Parallel dot product

The current implementation of a parallel dot product is formally defined in Algo-
rithm 4. At the end, each subdomain has to call the MPI AllReduce subroutine

20

2.5. PARALLEL EXCHANGE ALGORITHMS

after calculating its local dot product.

Algorithm 4 The parallel dot product

for each subdomain S do
Initialize α = 0
for each n ∈ N S

int ∪ N
S
ifa,own do

i = indexS(n)
α = α+ xS(i) ∗ yS(i)

end for
MPI AllReduce of α

end for

It is necessary to ensure that only one subdomain calculates α for any ar-
bitrary interface node. For this reason, and as shown in Algorithm 4, any
arbitrary subdomain S will take into account only its set of interior nodes NS

int

and its set of own interface nodes N S
ifa,own defined in Chapter 2.

21

3
Fluid

This chapter introduces the mathematical and numerical models for a transient
and incompressible fluid flow considering the coupling with a rigid solid. In par-
ticular, the fluid is described by the Navier-Stokes equations and approximated
using the finite element method. The coupling of the fluid with a rigid solid is
taken into account by imposing the velocity of the solid surface as a Dirichlet
boundary condition in the Navier-Stokes equations.

The discretization of the Navier-Stokes equations will lead to a velocity and
pressure coupled algebraic system. The solvers used to find a solution of this
algebraic system are described at the end of this chapter.

3.1 The Navier-Stokes equations

The physics of the fluid is described by the incompressible Navier-Stokes equa-
tions. Let µ be the viscosity of the fluid, and ρ its density. Let ε and σ be the
velocity rate of deformation and the stress tensors respectively, defined as:

ε(u) =
1

2

(

∇u+∇ut
)

and

σ = −pI + 2µε(u).

The problem is stated as follows. Find the velocity u and mechanical pressure
p in a domain Ω such that they satisfy in a time interval (0, T]:

ρ
∂u

∂t
+ ρ[(u− umsh) · ∇]u−∇ · [2µε(u)] +∇p = ρf in Ω× (0, T](3.1)

and ∇ · u = 0 in Ω× (0, T](3.2)

together with initial and boundary conditions.

In the momentum equations, umsh is the velocity of the fluid particles, which
basically enables one to go locally from an Eulerian (umsh = 0) to a Lagrangian
(umsh = u) description of the fluid motion. The boundary conditions considered
in this work are:

u = uD on ΓD × (0, T],

u = uS on ΓS × (0, T], and

σ · n = t on ΓN × (0, T],

23

CHAPTER 3. FLUID

where ΓD, ΓS and ΓN are the boundaries of Ω where Dirichlet, rigid body
Dirichlet and Neumann boundary conditions are prescribed respectively, and
∂Ω = ΓD ∪ ΓS ∪ ΓN . Note that the wet boundary of the solid ΓS , and the
associated prescribed solid surface velocity uS will change in time. They are
respectively the boundary and the variable used in the coupling with the rigid
body.

In general, in an embedded boundary method, the fluid is discretized using
a non body-conforming mesh and described in an Eulerian frame of reference.
However, the Navier-Stokes Equations (3.1) and (3.2) are expressed in an Arbi-
trary Lagrangian-Eulerian (ALE) frame of reference. The reason has to do with
the fact that there is a set of nodes in the fluid mesh at the current time step
of the simulation that were part of the solid mesh at the previous time step.
Then, the undetermined values of the velocities in the fluid for this set of nodes
at the previous time step can be obtained considering a hidden movement of
the mesh with velocity umsh. This framework is known as the Fixed Mesh ALE
(FMALE) method and will be deeply explained in Section 6.2.3.

Now, for sake of simplicity in the numerical description, let us rewrite the
Navier-Stokes Equations (3.1) and (3.2) in a more compact form. Then, consid-
ering U := [u, p]T , we can define the differential operator L(U) and the force
term F as

L(U) :=

[

ρ[(u− umsh) · ∇]u−∇ · [2µε(u)] +∇p
∇ · u

]

and (3.3)

F :=

[

ρf
0

]

.

By introducing also the matrix M = diag(ρId, 0), where Id is the identity
tensor, the compact form of the incompressible Navier-Stokes equation reads:

M∂tU + L(U) = F .

3.2 Numerical treatment

The numerical solution of the incompressible Navier-Stokes was implemented
inside the Alya system, a parallel computational mechanics code developed at
the Barcelona Supercomputing Center (BSC-CNS). The Alya system uses the
finite element method as a general tool to find a numerical solution of partial
differential equations. In particular and in order to solve an incompressible
fluid, the Alya system uses a stabilized finite element method.

3.2.1 Stabilization

The stabilization is based on the Variational MultiScale (VMS) method, see
[35]. The formulation is obtained by splitting the unknowns into grid scale

24

3.2. NUMERICAL TREATMENT

and a subgrid scale components, U = Uh + Ũ . This method has been intro-
duced in 1995 and sets a remarkable mathematical basis for understanding and
developing stabilization methods [36]. The general form of this stabilization is

Galerkin + Stabilization = 0.

Let V be the test function vector including the velocity and pressure test
functions, v and q, respectively, such that V := [v, q]T . Then, the stabilization
based on the VMS framework reads:

Stabilization = (∂t(ρũ),v) + (Ũ ,L∗(V)).

For the sake of clarity, subscript h is removed.

3.2.2 Subgrid scale modeling

In addition to the scale splitting technique, the subgrid scale must be modeled.
Define the residual R of the Navier-Stokes system such that R(U) = F −
M∂tU − L(U). Then, the expression

Ũ = τR(U)

is considered for the ASGS stabilization, where τ is approximated as a diagonal
matrix τ = (Idτ1, τ2), where τ1 is the algebraic approximate of the inverse mo-
mentum operator, and τ2 is the algebraic approximate of the inverse continuity
operator.

Let us linearize Equation (3.3) by setting the convection velocity to a. Then,
the values of τ1 and τ2 are:

τ1 =
(

4µ
h2 + 2ρ |a|

h

)−1

and

τ2 = c1µ+ c2ρ|a|h,

with c1 = 4 and c2 = 2.

3.2.3 Solution Procedure

The time discretization is based on second order BDF (Backward Differentia-
tion) schemes and the linearization is carried out using the Picard method. At
each time step, the linearized velocity-pressure coupled algebraic system must
be solved:

[

Auu Aup

Apu App

] [

u
p

]

=

[

bu

bp

]

,

where u and p are velocity and pressure unknowns. In order to solve efficiently
this system on large supercomputers, we consider a split approach, see [37].
That is, we solve for the pressure Schur complement system. In its simplest

25

CHAPTER 3. FLUID

form, this method can be understood as a fractional step technique. The ad-
vantage of this technique is this it leads to two decoupled algebraic systems: one
for the velocity and one for the pressure. The Orthomin(1) method, explained
in [38], is used to solve the pressure system. In our work, we only consider
the continuity preserving Orthomin(1). Both momentum and continuity are
preserved only when convergence of the algorithm is achieved. The continuity
preserving Orthomin(1) iteration reads:

1. Solve momentum equation: Auuu
k+1 = bu −Aupp

k.

2. Compute Schur complement residual: rk = [bp −Apuu
k+1]−Appp

k.

3. Solve continuity equation: Qz = rk.

4. Solve momentum equation: Auuv = Aupz.

5. Compute x = Appz−Apuv.

6. Compute α =< rk,x > / < x,x >.

7. Update velocity and pressure:
{

pk+1 = pk + αz,
uk+2 = uk+1 − αv.

8. Compute Schur complement residual: rk+1 = rk − αx.

9. Solve continuity equation: Qz = rk+1.

10. Update velocity and pressure:
{

pk+2 = pk+1 + z,
uk+3 = uk+2 +C(pk+2 − pk+1).

The superscript k is the iteration index. The matrix Q is the preconditioner
and C is a correction matrix that depends on the preconditioner.

3.2.4 Algebraic Solvers

The two algebraic systems resulting from the Orthomin(1) method applied to
the pressure Schur complement must be solved. For the momentum equation,
the GMRES or BiCGSTAB methods are considered, with symmetric Gauss-
Seidel preconditioner. For the pressure system, a Deflated Conjugate Gradient
(CG) method [39] with linelet preconditioning when boundary layers are con-
sidered [40] has been developed in the framework of PRACE FP7 European
Project. The Figure 3.1 compares the convergence of the classical CG with
diagonal preconditioning, the deflated CG with diagonal preconditioning and
the Deflated CG with linelet preconditioning for a thermal turbulent cavity
with boundary layer mesh. This last method exhibits a strong robustness and
enables to obtain a much better rate of convergence.

26

3.2. NUMERICAL TREATMENT

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

 0 500 1000 1500 2000 2500 3000 3500

R
es

id
ua

l

Number of iterations

CG
Deflated CG

Deflated CG + linelet

Figure 3.1: Convergence of different solvers.

3.2.5 Parallelization

The parallelization is based on a master-worker strategy for distributed memory
supercomputers, using MPI as the message-passing library [4, 37]. The master
reads the mesh and performs the division of the mesh into mesh subdomains
using METIS (an automatic graph partitioner). Each process will then be in
charge of a subdomain. These subdomains are the workers. The workers build
the local element matrices and the local right-hand sides, and are in charge of
finding the resulting system solution in parallel. In the elementary assembling
tasks, no communication is needed between the workers, and the scalability
depends only on the load balancing. In the iterative solvers, the scalability
depends on the size of the interfaces and on the communication scheduling.

As mentioned previously, the momentum and continuity equations are solved
with unsymmetric and symmetric iterative solvers respectively. During the ex-
ecution of the iterative solvers, two main types of communications are required:

• Global communications via MPI AllReduce, which are used to compute
residual norms and scalar products.

• Blocking point-to-point communications via MPI Send and MPI Recv, which
are used when sparse matrix-vector products are calculated.

Both types of communication were described in Chapter 2. The global com-
munications corresponds to the parallel exchange Algorithm 4 and the blocking
point-to-point communications corresponds to the parallel exchange Algorithm
3.

All solvers need both these types of communication, but, when using com-
plex solvers like the DCG (Deflated Conjugate Gradient Method), additional
operations may be required, such as the MPI AllGatherv functions, explained
in [39]. When using parallelized sequential solvers in Alya, the solution obtained
in parallel is, up to round-off errors, the same as the sequential one all the way

27

CHAPTER 3. FLUID

through the computation. This is because the mesh partition is only used for
distributing work without altering the actual sequential algorithm in any way.
This would not be the case if one considered more complex solvers, like the
primal/dual Schur complement solvers, or more complex preconditioners, like
linelet or block LU, which are implemented as well. Figure 3.2 is a schematic
flowchart for the execution of a simulation using Alya. The tasks that the mas-
ter process is responsible for are shown on the left side of the Figure 3.2 with
a grey background. The master process performs the first steps of the execu-
tion, namely reading the file and partitioning the mesh. Afterwards, the master
sends the corresponding subdomain information to each worker process; then
the master and the workers enter the time and linearization loops, represented
as one single loop.

Begin

Read mesh

Partition mesh Receive submesh ... Receive submesh

AssembleA1, b1 ... AssembleAn, bn Assembly

y1 = A1x1 ... yn = An xn

Output convergence Solver

x1 · y1 ... xn · yn

End

MPI Send

MPI SendRecv MPI SendRecv

MPI Allreduce MPI Allreduce

Figure 3.2: Flowchart for Alya execution. The tasks that the master and worker
processes are responsible for are shown on figure with a grey and white back-
ground respectively.

Fluid simulations have been tested on Blue Waters Supercomputer and Ju-
gene Supercomputer with two viscous Navier-Stokes benchmarks, see Figure
3.3.

28

3.2. NUMERICAL TREATMENT

 0

 20000

 40000

 60000

 80000

 100000

32768 65536 100000

129k 64k 42k

S
pe

ed
 u

p

Number of CPU’s

Average # elements per CPU

Ideal
Blue Waters

 4000

 6000

 8000

 10000

 12000

 14000

 16000

2048 8192 16384

730k 183k 92k

S
pe

ed
 u

p

Number of CPU’s

Average # elements per CPU

Ideal
Jugene BG

Figure 3.3: Speedup of the incompressible Navier-Stokes solver for solving dif-
ferent physical problems.

29

4
Rigid Body

In this chapter, once the Newton-Euler equations are introduced, we will explain
the numerical scheme that models the movement of a rigid solid given the forces
exerted on the body.

4.1 The Newton-Euler equations

The position of an arbitrary point inside a rigid body at a given time t can be
defined as

p(t) = x(t) + r(t), (4.1)

where x(t) is the position of the center of mass of the body and r(t) is the
position of p(t) relative to x(t). Considering that

r(t) = R(t) · r0,

where R(t) is the rotation of the body about x(t) and r0 is the initial position
of p(t) relative to x(t), Equation (4.1) can be rewritten as

p(t) = x(t) +R(t) · r0.

Taking into account that the rotation matrices are orthogonal, the velocity
of p(t) can be expressed as

ṗ(t) = ẋ(t) + Ṙ(t) · r0

= v(t) + Ṙ(t) ·RT (t) · r(t),

where v(t) is the linear velocity of the body. The product Ṙ(t) ·RT (t) defines
an antisymmetric tensor:

W (t) := Ṙ(t) ·RT (t) =

0 −ω3(t) ω2(t)
ω3(t) 0 −ω1(t)
−ω2(t) ω1(t) 0

 , (4.2)

where ω1(t), ω2(t) and ω3(t) are the components of the angular velocity vector
ω(t) of the body. The tensor W (t) is called the angular velocity tensor.

31

CHAPTER 4. RIGID BODY

The linear acceleration a(t) and angular acceleration α(t) of the body are
related with the input force fF (t) and input torque τF (t) by the Newton-Euler
equations:

fF (t) = ma(t) (4.3)

and

τF (t) = I(t) ·α(t) + ω(t)× (I(t) · ω(t)), (4.4)

where m is the total mass of the body and I(t) is the inertia tensor. By
integrating in time the Equations (4.3) and (4.4), the velocity and the position
of the rigid body can be determined.

4.2 The Newton-Euler discretization

Assume we know the force fn+1
F and torque τn+1

F , exerted by the fluid, at the
current time step tn+1. Both will be approximated as described in Chapter 6.
Then, the linear acceleration is easily computed by dividing the current force
exerted on a rigid body by the total mass of the body

an+1 =
fn+1
F

m
.

The superscript n+ 1 refers to the current values of the simulation. The linear
velocity and linear displacement of the center of mass can be determined using
the Newmark scheme as method of numerical integration. Given the time step
∆t of simulation, the Newmark method states that the current linear velocity
is equal to

vn+1 = vn +∆t(1− γ)an +∆tγan+1

and the current linear displacement is

xn+1 = xn +∆tvn +∆t2(1/2− β)an +∆t2βan+1,

where γ and β are specified coefficients of the integration method, and the
superscript n refers to the values from the previous time step of the simulation.
The coefficients γ and β are deeply studied in [41].

The angular velocity vector can also be computed using Newmark as method
of numerical integration:

ωn+1 = ωn +∆t(1− γ)αn +∆tγαn+1.

Nevertheless, the implementation of an iterative method is necessary in order
to obtain a good approximation of the solution of the nonlinear ordinary differ-
ential Equation (4.4), the Euler rotation equation.

32

4.3. ALGORITHM OF THE EULER ROTATION EQUATION

4.3 Algorithm of the Euler rotation equation

The rotation of the body around its center of mass can be computed using the
relation from Equation (4.2) as shown below:

Rn+1 = Rn +∆tW n ·Rn, (4.5)

where W n is the angular velocity tensor obtained from the previous time step.
Then, the current components of W (t) are obtained by solving the Euler rota-
tion equation. Thus, the current angular acceleration is equal to

αn+1 = (I−1)n ·
[

τn+1
F − ωn × (In · ωn)

]

,

and the angular velocity vector using Newmark as method of numerical inte-
gration is

ωn+1 = ωn +∆t(1− γ)αn +∆tγαn+1.

Note that the components of the angular velocity tensor W (t) can be obtained
from the angular velocity vector ω(t).

Note also that the inertia tensor is time dependent, so it is necessary to
recalculate their values at each time step. In order to avoid this expensive task,
the following relation can be used:

I(t) = R(t) · J ·RT (t),

where J is the initial inertia tensor of the body. This tensor is a symmetric
tensor and is defined by

I =

∫

ΩS

ρS (p · pId − p⊗ p) dΩS , (4.6)

where ΩS is the body domain, ρS is the body density, p defines the position of a
point in the body, Id is the identity tensor, and ⊗ represent the tensor product.

In the current numerical implementation, bodies are described by their
boundaries ΓS (boundary mesh.) It is therefore convenient to re-express the
initial inertia tensor of the body as an integral over its volume into an integral
over its surface using the divergence/Gauss theorem, see [42] to a fast compu-
tation of other body properties. Then, from Equation (4.6), we have that for

33

CHAPTER 4. RIGID BODY

each component of the inertia tensor I:

I11 =
1

3
ρS

∫

ΓS

p32n2 + p33n3 dΓS ,

I22 =
1

3
ρS

∫

ΓS

p31n1 + p33n3 dΓS ,

I33 =
1

3
ρS

∫

ΓS

p31n1 + p32n2 dΓS ,

I12 =
1

4
ρS

∫

ΓS

−p21p2n1 − p1p
2
2n2 dΓS ,

I13 =
1

4
ρS

∫

ΓS

−p21p3n1 − p1p
2
3n3 dΓS , and

I23 =
1

4
ρS

∫

ΓS

−p22p3n2 − p2p
2
3n3 dΓS ,

where n1, n2, and n3 are the components of the exterior normal of the body in
p.

Now, although the rotation matrix can be computed from (4.5), it is highly
recommended to implement an iterative method to improve the approximate
solution of this non-linear system of equations. An alternative algorithm is
described below:

Initialize values: (·)i,n+1 = (·)n.
Iterate while ǫ be higher than a given tolerance.

• Ri+1,n+1 = Rn +∆tW i,n+1 ·Ri,n+1.

• (In+1)−1 = (RT)i+1,n+1 · J−1 ·Ri+1,n+1.

• αi+1,n+1 = (In+1)−1 · [τn+1
F − ωi,n+1 × (In+1 · ωi,n+1)].

• ωi+1,n+1 = ωn +∆t(1− γ)αn +∆tγαi+1,n+1.

• ǫ = ‖ωi+1,n+1 − ωi,n+1‖/‖ωi+1,n+1‖.

• Update values: (·)i,n+1 = (·)i+1,n+1.

The superscript i+1 refers to the values of the current iteration, the superscript
i to the values of the previous iteration, ǫ is a norm for the angular velocity
vector, and (·) represent all the angular variables.

Numerical errors will appear in the coefficients of R(t) so that the rotation
matrix will no longer be precisely an orthogonal matrix. For this reason, at
each iteration it is necessary to reorthogonalize R(t), see [43]. To avoid this
problem, unit quaternions can be used to represent rotations. However, it is
important that the quaternions remain normalized at each iteration. A deeper
description of quaternions and general implementation aspects can be found in
[44].

34

4.3. ALGORITHM OF THE EULER ROTATION EQUATION

To finish, let us summarize the necessary steps to update the the position of
the bodies (the coordinates of their boundary meshes.) Then, given the force
and torque exerted on a body, do:

• Determine the current linear displacement xi+1 using Newmark as method
of numerical integration.

• Determine the current rotation matrix Ri+1 using the iterative algorithm
described above.

• Finally, update the position p of each node that defines the boundary
mesh of the body using the relation

p = xi+1 +Ri+1 · r0,

where r0 is the initial position of p relative to the center of mass of the
body.

35

5
Rigid Body Interaction

In a simulation of a dynamic rigid body system we deal with multiple prob-
lems. First, we have to determine the motion of particles due to external forces.
Then, when the particles are in movement, we have to prevent interpenetration
between them and solve possible collisions when the bodies are in contact. The
simulation framework of dynamic rigid bodies is well-known and tries to solve
the problems mentioned above. In this context, we will present the algorithms
to describe and solve the collision between bodies.

5.1 General Framework

The geometrical description of all the rigid bodies consists mainly of an STL
file describing the outer boundaries of the bodies. Note that a priori, only one
STL description is necessary for each type of bodies.

For the sake of simplicity, we will consider the bodies as convex polyhedra.
For non-convex bodies a convex decomposition is required.

In our simulation, we are able to solve the interaction between a lot of bodies
with different shapes. For this reason, a collision detection module, where the
time of collision is estimated, is necessary to avoid a situation where we need to
do a lot of corrections to fix penetration between bodies. Also, we have to solve
possible collisions when the bodies are in contact. The simulation framework of
dynamic rigid bodies, see [32, 45, 46], solves all these problems in the following
consecutive stages:

1. Collision Detection.

2. Rigid Body Motion.

3. Collision Response

Now, we will explain how to implement the first and the last stages mentioned
above. The rigid body motion was already described in Chapter 4.

5.1.1 Collision detection

Until now we determine the motion of bodies without considering collisions. In
this context, the penetrations between bodies are not detected. To avoid this
unrealistic situation, we can proceed as described below:

1. We estimate a time of contact between bodies.

2. Then, we move the bodies freely until the estimated time is reached.

37

CHAPTER 5. RIGID BODY INTERACTION

To ensure not missing any collision we implemented a dynamic collision detec-

tion algorithm. In Figure 5.1 we see an example of a missing collision. Notice
that no penetration was detected between the two consecutive time steps t0 and
t1. The algorithm we use to estimate the time of collision is detailed in [47].

t1 :

t0 :

Figure 5.1: Missing collision.

Let us briefly explain the idea. Consider two convex polyhedra A and B, then
determine:

• The closest points between the bodies: pA on body A and pB on body B.

• The direction d = pA − pB .

• The minimum distance between bodies d = ‖d‖.

• The normalized direction d̂ = d/d .

In Figure 5.2 we see two convex bodies A and B and their closest points. Next,
if the last time step reached is t0, we define:

• DA(t) as an upper bound for the distance traveled by any point in A along
−d̂ in the time interval [t0, t].

• DB(t) as an upper bound for the distance traveled by any point in B along
d̂ in the same time interval.

A collision occurs at time t = tc between the two convex bodies A and B if

DA(tc) +DB(tc) ≥ d.

This result is derived from the fact that the bodies are convex. Now, consider
the total acceleration of any point in the body:

atotal(t) = a(t) +α(t)× r(t),

38

5.1. GENERAL FRAMEWORK

BA
pB

pA d

Figure 5.2: Closest points between the bodies A and B.

where r is the position from the center of mass to the point. The acceleration
of an arbitrary point in the direction of d̂ is

atotal(t) · d̂ = a(t) · d̂+ (α(t)× r(t)) · d̂,

and fulfills
atotal(t) · d̂ ≤ a(t) · d̂+ αmaxrmax,

where rmax is the maximum distance of any point in the body from the center of
mass and αmax is the maximum angular acceleration in the time interval [t0, tc].
Integrating twice over time the function on the right side of this inequality, a
suitable expression for DA(t) and DB(t) is obtained. Thus, if we also consider
the inequality (5.1.1), we obtain an estimated value for the time of collision.

5.1.2 Collision response

Once the bodies reach the time of collision estimated by the collision detection,
we need to identify the bodies in contact and, when it is necessary, calculate
new forces in order to avoid interpenetrations. These tasks are carried out by
the collision response.

We use an impulse-based method for computing the contact forces. An
impulse force is defined as

JS = lim
∆t→0

∫ tc+∆t

tc

fdt,

where tc is the time of collision and ∆t is the period of time of collision. An
impulse produces an instantaneous change in the velocity of a body.

For frictionless bodies, the direction of the impulse is determined by the type
of contact. For the typical face-vertex contact, the direction of the impulse is

39

CHAPTER 5. RIGID BODY INTERACTION

the unit exterior normal of the face of contact. For edge-edge contact it is the
unitized cross-product of the edge directions. Thus, we can express the impulse
as

JS = jn(tc),

where j is the impulse magnitude and n(tc) is the unit collision vector.
Now, consider two polyhedra bodies A and B in contact and suppose that

the unit collision vector n(tc) is in body B, see Figure 5.3. The relative velocity
of these two bodies is defined as

vrel = n ·
(

(v−
A + ω−

A × rA)− (v−
B + ω−

B × rB)
)

.

If the relative velocity vrel is positive, the bodies are moving apart. But if vrel
is negative, the bodies are moving closer together. Then, an impulse force is
necessary to change the velocity of the bodies in order to avoid interpenetration.

Take into account that the magnitude j of the impulse is still undetermined.
Then, to obtain an expression for j we have to consider the empirical law for
frictionless collisions which relates the velocities of the bodies before and after
the collision. The empirical law for frictionless collisions states that

n(tc) ·
(

u+
A(tc)− u+

B(tc)
)

= −cn(tc) ·
(

u−
A(tc)− u−

B(tc)
)

, (5.1)

where uA is the total velocity of body A, uB is the total velocity of body B, c
is the restitution coefficient, the superscript + indicates the quantities after the
collision and the superscript − the quantities before the collision. When c = 1,
the collision is perfectly elastic. If c = 0 the collision is perfectly inelastic. For a
collision that is perfectly elastic, the momentum and kinetic energy is conserved
by the empirical law for frictionless collisions.

B
A n

Figure 5.3: Contact between two bodies.

40

5.2. GEOMETRIC TOOLS ALGORITHMS

On the other hand, the linear and angular velocities in body A, after the
collision, are related with the previous linear and angular velocities through an
impulse by equations

v+
A(tc) = v−

A(tc) +
jn(tc)

mA

(5.2)

and

ω+
A(tc) = ω−

A(tc) + I−1
A (tc) (rA(tc)× jn(tc)) , (5.3)

where vA is the linear velocity of body A, wA is the angular velocity of A, mA

is the mass of A, I−1
A is the inverse of inertia tensor of A, and rA is a vector

defined from the contact point to the center of gravity of A. For body B we
must consider the opposite impulse −JS .

Now, considering the total velocity of body A after collision:

u+
A(tc) = v+

A(tc) + ω+
A(tc)× rA(tc)),

by Equations (5.2) and (5.3) we obtain that

u+
A(tc) = v−

A(tc) +
jn(tc)

mA

+
(

ω−
A(tc) + I−1

A (tc) (rA(tc)× jn(tc))
)

× rA(tc).(5.4)

A similar expression can be obtained for body B considering the opposite im-
pulse −JS .

Finally, the magnitude j of the impulse can be obtained replacing the equa-
tion (5.4) for body A in Equation (5.1), the law for frictionless contacts, and
for body B with the opposite impulse −JS . Thus, the magnitude j is equal to

j =
−(1 + c)n ·

(

(v−
A + ω−

A × rA)− (v−
B + ω−

B × rB)
)

1
mA

+ 1
mB

+ n ·
(

I−1
A (rA × n)

)

× rA + n ·
(

I−1
B (rB × n)

)

× rB
.

An expression for j is also obtained in [32].

5.2 Geometric tools algorithms

Important issues in the collision detection, the collision response, and the fluid
and particles interactions are related to the implementation of efficient algo-
rithms to search the minimum distance between a pair of particles or to de-
termine if a node in the mesh is contained inside a particle. These searches
can affect the performance of the whole system in a negative way: the time of
simulation can grow considerably. To reduce the number of computations of
this expensive task, it is necessary to implement different kind of structures to
optimize these searches.

41

CHAPTER 5. RIGID BODY INTERACTION

5.2.1 Skd-Trees

The skd-trees are binary trees. These structures are bounding volume hierar-
chies. Each node of these binary trees is a bounding volume for a subset of
faces of a particle. In particular, a skd-tree allow us to find the shortest dis-
tance between a point and a surface mesh in an efficient way. The details of
implementation for building these structures for a particle are described in [48]
and outlined below:

1. Create a new node, the root node, see Figure 5.4.

2. Link all the faces of the particle with the root node.

3. Do for each newly created node whenever it has more than one face:

• Determine the boundary box that contains all the faces linked to the
current node.

• Store the boundary box in the current node.

• Find the largest dimension of the boundary box, let us denote as d.

• Distribute the faces into two distinct sets. If n is the current number
of faces, each set will have n/2 number of elements. The centroids of
the boundary boxes of the faces in the first set will have the smallest
values on the d coordinate. The second set will have the biggest ones.

• Unlink the faces for the current node.

• Create two new nodes, the child nodes of the current node.

• Link the faces in the first set with the first child node.

• Link the faces in the second set with the second child node.

The skd-tree construction for a particle is schematized in Figure 5.4. The thin
red line indicates that the faces are not linked to the node and their information
is not available. However, the information of the boundary box that contains
the faces is still available. Only the leaf nodes, the nodes that do not have any
children, have a face linked with them.

In [48] it is also described how to use the skd-trees to find the shortest
distance between a point and a particle. The idea is to minimize an upper bound
for the distance between the point and the particle while we are traversing the
binary tree from the root node. We will denote this upper bound as dis. The
algorithm is summarized below:

1. Determine the maximum distance between the point and the boundary
box of the root node. Let us define this value as dis.

2. Traverse the binary tree from the root node in pre-order and perform the
following operations:

• Determine the minimum distance between the point and the bound-
ary box of the current node. Let us define this value as min.

42

5.2. GEOMETRIC TOOLS ALGORITHMS

child nodes

child nodes

leaf nodes

8
7

4

2

6 5

6

8
7

6

1

1

7

7

6
5

3

5
3

4
root node

3
45

1

1

4
38

8
2

2

2

body faces

body boundary box

Figure 5.4: The skd-tree construction for a particle. The surface mesh of the
body has 8 edges.

• If min is smaller than dis then:

– If the current node is a leaf, a node that does not have any
children, then there is one face identifier linked to the node.
Save it in a candidate list.

– If the current node is not a leaf then determine the maximum
distance between the point and the boundary box of the current
node. Let us define this value as max. If max < dis then
dis = max.

• Else, do not traverse the subtree below the current node.

3. Find the distances between the point and all the faces associated in the
candidate list. Choose the smallest one.

Improvement in Skd-tree searching

A simple modification is implemented when we use the skd-trees in order to
obtain a better performance in the simulation. In practice, we obtain better
results if we first visit the nodes whose boundary boxes are closest to the point
when we traverse the tree from the root node. The idea is described below:

1. Determine the maximum distance between the point and the boundary
box of the root node. Let us define this value as dis.

43

CHAPTER 5. RIGID BODY INTERACTION

2. Traverse the binary tree from the root node in pre-order and perform the
following operations:

• Determine the minimum distance between the point and the bound-
ary box of the current node. Let us define this value as min.

• If min is smaller than dis then:

– If the current node is a leaf, a node that does not have any
children, then there is one face linked to the node. Find the
distance between the point and this face and save it as new dis.
If new dis < dis then dis = new dis.

– If the current node is not a leaf then sort their two child nodes
such that we visit first the child node whose boundary box is
closest to the point.

• Else, do not traverse the subtree below the current node.

3. dis has the minimum distance between the point and the particle.

These structures was used in different applications [1, 3, 5, 6].

5.2.2 Closest points between particles

In order to determine the time of collision between two particles we first have
to find the closest points between them. An algorithm to calculate the distance
between two convex bodies is described in [49] and it is summarized below.

• Find the minimum distance dA between the nodes of A and the particle
B.

• Find the minimum distance dB between the nodes of B and the particle
A.

• Find the minimum distance dE between the edges of A and the edges of
B.

• Choose the shortest distance between dA, dB and dE .

All these tasks can be carried out using skd-trees to obtain better computational
times of execution.

5.2.3 Bucket sort

The idea is to subdivide the domain along each coordinate to obtain buckets or
boxes with the same size in all the coordinates. This grid may have different
numbers of boxes in each direction. The boxes will contain elements that are
inside or intersect with them. The construction details are shown in [50].

By incorporating this kind of structure in the code, we will able to reduce
the size of the search space when we need to carry out some local operations
with the elements contained in the boxes.

44

5.2. GEOMETRIC TOOLS ALGORITHMS

In particular, this structure is used to store the nodes of the mesh in different
boxes. Thus, in order to determine the nodes that are inside a body at each
time step of the simulation, we only need to check the nodes inside the boxes
that intersect with the boundary box of the body.

Consider the elements and nodes of the mesh shown in Figure 5.5, repre-
sented by small black squares and small circles respectively. The body and its
respective boundary box are represented by a big red circle and a big red square.
The big black squares represent a bucket sort structure, where the nodes of the
mesh are stored. Then, in order to find the nodes inside the body, the program
has only to consider the nodes in the mesh inside the boxes that intersect with
the boundary box of body, the white circles in Figure 5.5.

checked node

unchecked node

Figure 5.5: Bucket sort structure. In order to find the nodes inside the body,
the program has only to consider the nodes represented by white circles, the
nodes in the mesh inside the boxes that intersect with the boundary box of
body.

45

6
Rigid body and fluid interaction

In this chapter we describe in detail the mathematical and numerical models to
solve the interaction between a fluid and a rigid body. The solid is taken into
account on the fluid by imposing the body surface velocity on the fluid as a
Dirichlet boundary condition and the motion of the body is determined by the
force and torque that the fluid exerts on its surface.

The numerical simulation of a fluid and its interaction with rigid bodies
requires the implementation of many different algorithms. In order to present
these algorithms in a organized manner we will first describe a general algorithm
to solve the fluid and rigid body interaction. Then, we will describe in detail
each part of the algorithm. These algorithms will be described considering a
parallel context.

6.1 Framework of an embedded boundary mesh method

Let ΩF and ΩS be the fluid and solid domain, where ΩS is the union of all the
domains associated to the rigid bodies in the problem. Then, in an embedded
boundary mesh method, at the beginning, ΩF ∪ ΩS is discretized without any
particular regard to the rigid bodies. The movements of the boundaries de-
scribes the movements of the solids inside the fluid. Then, at each time step of
the simulation, the nodes and elements that are considered as part of the solids
will be excluded from the assembly process. Finally, the solids are taken into
account on the fluid by imposing the body velocity on the fluid as a Dirichlet
boundary condition in an interpolated way.

In particular, at each time step of the simulation, the program identifies the
elements in E whose volumes of intersection with the rigid body domain are big
enough to consider them as part of the solid, that is, elements that belong to the
set of hole elements Ehol, see Figure 6.1. They are then excluded from the finite
element assembly process. Let Γ̂S,h be the internal boundary mesh generated
in the fluid mesh once the hole elements have been excluded. In Figure 6.1 the
bold black line represents Γ̂S,h. Inside this closed line one can find the hole
elements represented by gray squares. In a embedded boundary mesh method,
the velocity of the rigid solid is imposed on the nodes that define Γ̂S,h. Let
this set be the set of fringe nodes: Nfri. The set Nfri allow us to define other
important sets of nodes: the set of free Nfre and the set of hole nodes Nhol.
The set of free nodes belongs to the discretized fluid domain and the set of hole
nodes belongs to the discretized solid domain, see Figure 6.2.

Some of the implementation details of the embedded mesh boundary meth-
ods described next in this work was published previously in [1, 6].

47

CHAPTER 6. RIGID BODY AND FLUID INTERACTION

Ehol

Γ̂S
h

Figure 6.1: Hole elements and Γ̂S,h schematization.

∈ N f ri

∈ N f re

∈ Nhol

Figure 6.2: Fringe, free and holes nodes.

48

6.2. FLUID AND RIGID BODY INTERACTION ALGORITHM

6.2 Fluid and rigid body interaction algorithm

The numerical schemes to solve the Navier-Stokes (NS) and the Newton-Euler
(NE) equations need information from each other to account for the interaction.
In order to close the problem, one is left with the variables involved in the
coupling between the fluid and the rigid body problems. On the one hand, the
variables that the fluid receives from the rigid body are enumerated below:

• The linear velocity vn+1 of the rigid body from Equation (4.3).

• The angular velocity wn+1 of the rigid body taken from Equation (4.4).

• The definition of the boundary mesh Γ̂n+1
S,h once the program excludes the

hole elements from the fluid discretization at the current time step n+ 1.

• The total velocity un+1
S to be imposed on Γ̂n+1

S,h . That is, the velocity

of the set of fringe nodes Nn+1
fri to approximate the rigid body boundary

velocity.

On the other hand, the set of variables that the solid requires from the fluid
problem is enumerated below:

• The force fn+1
F that the fluid exerts on the rigid solid.

• The torque τn+1
F that the fluid exerts on the rigid solid.

Taking into account all the coupling variables described above, a new cou-
pling strategy is briefly described in Algorithm 5.

Algorithm 5 NS-NE Coupling strategy

Initialize the variables
repeat

1. Determine the time step ∆t, see Subsection 6.2.4.
2. Solve NE equations to obtain vn+1 and wn+1, see Chapter 4.
3. Define Γ̂n+1

S,h , which implies to determine Nn+1
fri , see Subsection 6.2.1.

4. Determine un and un
msh applying the FMALE method, see Subsection

6.2.3.
5. Embedded approaches. Impose un+1

S on Nn+1
fri , see Subsection 6.2.2.

6. Solve the NS equations to obtain un+1 and pn+1, see Chapter 3.
7. Determine fn+1

F and τn+1
F from un+1 and pn+1, see Subsection 6.2.5.

until the time of simulation is reached

Note that the NS-NE system is a two-way coupled problem. Therefore,
Algorithm 5 consists of a staggered approximation of the coupled solution at
each time step, as no coupling loop has been introduced and variables Γn+1

S ,
un+1
S , fn+1

F and τn+1
F are approximations of the actual values at time step

n + 1. We thus expect the accuracy of the scheme to depend not only on

49

CHAPTER 6. RIGID BODY AND FLUID INTERACTION

S T

inside node

near node

∈ NS
i f a,own

∈ NT
i f a,own

Figure 6.3: Near and inside nodes.

the way the set of coupling variables is defined but also on the time step ∆t.
Another important issue is the so-called added mass effect [51], which may cause
instabilities in many cases. In order to circumvent this problem, it is important
to make sure that the ratio between fluid and solid densities is not too close
to the unity [52]. In the numerical experiments presented in this thesis, these
ratios are rather small than the unity and we have not observed any instability.
However, it must be said that subiterations at each time step could be used to
achieve a strong coupling, increasing the computational cost, but without the
need of significant effort in a parallel implementation.

Let us now describe in detail each step of Algorithm 5.

6.2.1 Algorithms to define an approximated body bound-

ary Γ̂n+1

S,h

Fringe nodes identification algorithm

The idea is simple, but the implementation, specially in a parallel context, is
somehow complicated.

First, for each subdomain, we have to identify the nodes inside the body,
and then the nodes outside and near the body, see Figure 6.3.

It is important to remark that the round-off errors of the geometric opera-
tions such as the projection of a node on the solid and its minimum distance can
cause that a node n located at the interface between subdomains be considered
as part of the solid for a subdomain and as part of the fluid for another one.
In order to avoid these errors, each subdomain S will be the only responsible
for identifying the set of inside and near nodes considering the subset of nodes
N S

int ∪N
S
ifa,own as illustrated in Figure 6.4. Thanks to the definition of the set

of own interface nodes N S
ifa,own for an arbitrary subdomain S, see Chapter 2,

the program will be able to consider all the nodes in the mesh without consider

50

6.2. FLUID AND RIGID BODY INTERACTION ALGORITHM

|NS ∪ NS
hal|

...

|NS|+ 1

|NS|

...

|NS
int ∪ NS

ifa,own|+ 1

|NS
int ∪ NS

ifa,own|

...

|NS
int|+ 1

|NS
int|

...

2

1

computed by
the adjacents subdomains of S

computed by S
(interior and own interface nodes of S)

Figure 6.4: Array of data related with the set of nodes of S. The gray zone
represents the nodes take into account by S.

the same node twice in a parallel execution.

Precises definitions of the set of inside and the set near nodes are carried
out by Algorithms 6 and 7 respectively. As mentioned above, each subdomain
S identify the set of inside and the set of near nodes considering only the set
NS

int ∪ N
S
ifa,own. Then, the new data is exchanged between the subdomains at

the end of each algorithm using the algorithms of exchange INE and HNE
defined in Subsections 2.5.1 and 2.5.2 respectively.

In Algorithm 6, the bin search uses the bucket sort structure explained in
Subsection 5.2.3. This structure allows us to reduce the size of the search for
nodes in N S

int ∪N
S
ifa,own that are inside the body considering only the nodes in

the boxes of the bucket sort structure that intersect with the boundary box of
the body.

In Algorithm 7 the idea, as illustrated in Figure 6.3, is to obtain a set of
fringe nodes closer to the rigid body surface mesh.

Then, considering a node n ∈ N S ∪ NS
hal, for an index iS = indexS(n) we

have that

inside(iS) =

{

1 when n is inside the body

0 when n is outside the body

after the execution of Algorithm 6, and

near(iS) =

{

1 when n is near the body

0 when n is not near the body

51

CHAPTER 6. RIGID BODY AND FLUID INTERACTION

Algorithm 6 Inside nodes identification algorithm for an arbitrary subdomain
S

Require: A numeric array inside with length |N S ∪NS
hal|

Ensure: A modified array inside
Initialize inside(1 : |N S ∪ N S

hal|)← 0
Bin search. Select a reduced candidate list of nodes in NS

int ∪NS
ifa,own using

the bucket sort structure, see Subsection 5.2.3.
for each node n ∈ NS

int ∪NS
ifa,own in the previous list do

Skd-tree search. Efficiently determine if n is inside the body
if n is inside then

iS = indexS(n)
inside(iS) = 1

end if
end for
call INE(inside(1 : |N S |)), see Algorithm 1.
call HNE(inside(1 : |N S ∪ N S

hal|)), see algorithm 2

Algorithm 7 Near nodes identification algorithm for an arbitrary subdomain
S

Require: A numeric array near with length |N S ∪NS
hal|

Ensure: A modified array near
Initialize near(1 : |N S ∪NS

hal|)← 0
for each node n ∈ N S

int ∪ N
S
ifa,own outside the body do

for each node m ∈ Cnod(n) inside the body do
if n is closer to the surface mesh than m then

iS = indexS(n)
near(iS) = 1

end if
end for

end for
call INE(near(1 : |N S |)), see Algorithm 1
call HNE(near(1 : |N S ∪ N S

hal|)), see Algorithm 2

52

6.2. FLUID AND RIGID BODY INTERACTION ALGORITHM

after the execution of Algorithm 7.

Finally, once the Algorithms 6 and 7 have been executed, we can determine
the fringe nodes as described in Algorithm 8. By definition, a fringe node n has
at least one free and hole node in its node connectivity Cnod(n). That is, n is
an inside or near node with at least one node outside and not near the body in
Cnod(n), a node at the interface between a solid and the fluid.

Algorithm 8 Fringe nodes identification algorithm for an arbitrary subdomain
S

Require: A numeric array fringe with length |N S ∪NS
hal|

Ensure: A modified array fringe
Initialize fringe(1 : |N S ∪ N S

hal|)← 0
for each node n ∈ NS inside or near the body do

if there is at least one node outside and not near the body in Cnod(n)
then

iS = indexS(n)
fringe(iS) = 1

end if
end for
call HNE(fringe(1 : |N S ∪ N S

hal|)), see Algorithm 2

As before, considering a node n ∈ N S ∪NS
hal, for an index iS = indexS(n)

we have that

fringe(iS) =

{

1 when n is a fringe node

0 when n is not a fringe node

after the execution of Algorithm 8.

Free and hole nodes identification algorithm

The set of free Nfre and hole nodes Nhol are defined as the set of nodes in
the mesh that are outside and inside the body respectively, excluding the set of
fringe nodes Nfri.

Hole and free elements Identification algorithm

The elements that will be considered as a part of the solid, the set of hole
elements Ehol, see Figure 6.1, can be easily identified from the set of fringe,
free and hole nodes. The process is described in Algorithm 9 for an arbitrary
subdomain S. As mentioned in this chapter, the set of hole elements Ehol will
be excluded from the finite element assembly process.

Finally, the set of free elements is defined as Efre = E\Ehol.

53

CHAPTER 6. RIGID BODY AND FLUID INTERACTION

Algorithm 9 Solid elements identification algorithm for an arbitrary subdo-
main S

for each element e ∈ ES ∪ EShal do
if all the nodes n ∈ e belong to Nfri or Nhol then

e will be considered as part of the solid, that means e belongs to Ehol.
end if

end for

6.2.2 Embedded approaches

In our implementation, two approaches that allow us to impose the velocity of
the rigid body on Γ̂S,h are considered: an updated body fitted and a non body
fitted strategies. The first approach implements a local r-adaptivity algorithm
that moves the nodes in N close to the rigid body surface in order to adapt their
position to that of the body surface mesh. The second approach implements a
high order kriging interpolation to impose the velocity of the body on the nodes
in N close to the rigid body surface.

Updated body fitted method (UBF)

The updated body fitted approach implements a local r-adaptivity algorithm
that moves the set of fringe nodes Nfri incrementally until the body surface
mesh is reached. Then, the program directly imposes the velocity of the rigid
body in each fringe node nfri equation as:

ufri = uS(xfri),

where ufri is the fringe node velocity, xfri is the spatial coordinates of the
fringe node and uS(xfri) is the velocity of the solid at xfri.

Actually, in our implementation, the algorithm that defines the movement
of the nodes of the fluid mesh involves several sets of nodes besides the set of
fringe nodes. The reason is to avoid distorted or inverted elements.

In this context, the algorithm also defines the movement of a group of subsets
of the set of free nodes that have a close connectivity with the set of fringe nodes.
In order to elucidate what we mean by ‘close connectivity’, let us introduce some
definitions. Define the subset

N 1
fre =

⋃

n∈Nfri

Cnod(n) \(Nfri ∪ Nhol)

as the set of free nodes at level 1, see Figure 6.5. In an analogous way, a second
subset

N 2
fre =

⋃

n∈N 1

fre

Cnod(n)
∖(

N 1
fre ∪ Nfri

)

54

6.2. FLUID AND RIGID BODY INTERACTION ALGORITHM

S T

n ∈ N2
f re

n ∈ N1
f re

n ∈ N f ri

n ∈ NS
i f a,own

n ∈ NT
i f a,own

Figure 6.5: Sets of free nodes at different levels. The red concentric circles
represent the set Nfri. The sets N 1

fre and N 2
fre surround the set of fringe

nodes.

will be called the set of free nodes at level 2, see Figure 6.5. In general, the
subset

N l
fre =

⋃

n∈N l−1

fre

Cnod(n)
∖(

N l−1
fre ∪ N

l−2
fre

)

defines the set of free nodes at level l ∈ N\{0, 1, 2}. Evidently, the smaller the
value of l, the closer the connectivity with the set of fringe nodes.

The movement of the nodes of the fluid mesh is incremental and finishes
when the set of fringe nodes reaches the body surface mesh. In particular, for
each increment in the movement of the set of fringe nodes, there are several

increments in the movement of the free nodes that belong to the set
⋃

l≤level

N l
fre

for a given value of level. The flow of the whole algorithm is illustrated in
Figure 6.6.

In particular, the movement of the free nodes is defined by a Laplacian-like
smoothing technique similar to that described in [53, 54]. In these references,
a node n is relocated in the centroid c of the nodes directly connected with n:
the set of nodes Cnod(n), as described in Algorithm 10. In our approach, we
perform some treatment to the set Cnod(n) so that the region defined by these
nodes be convex.

On the other hand, the movement of the set of fringe nodes is more complex.
The movement for a fringe node n is illustrated in Figure 6.7 and performed as
indicated below:

• Determine the centroid c of the set Cnod(n)∩Nfri, see Figure 6.7(Middle.)

55

CHAPTER 6. RIGID BODY AND FLUID INTERACTION

Start

increasep f ri (until 1.0)

for each noden ∈ N f ri do:
1. determine the centroidc of Cnod(n) ∩N f ri

2. determine the projectionp of c on ΓS ,h

3. moven towardsp in a proportionp f ri

l ← l + 1

increasep f re (until 1.0)

for each noden ∈ N l
f re do:

1. determine the centroidc of Cnod(n)
2. moven towardsc in a proportionp f re

Hasn ∈ N l
f re reachedc(n)?

Is l > level, wherelevel ∈ N\{0}

Hasn ∈ N f ri reachedΓS ,h?

End

p f ri ← 0

l← 0

p f re ← 0

yes

yes

yes

no

no

no

Figure 6.6: A scheme of the algorithm that defines the movement of nodes. The
body surface mesh is represented as ΓS,h. The parameters pfri and pfre are
the proportions of the movement of the set of fringe and free nodes respectively.
And the value c is the centroid defined by the set of nodes Cnod(n).

• Determine the point of projection p on the body surface mesh of c, see
Figure 6.7(Middle.)

• Move n towards p, see Figure 6.7(Bottom.)

A precise description of the movement of the set of fringe and the set of free
nodes at a given level is described next considering a parallel context.

Parallel movement algorithm

Consider now a distributed memory parallelization environment. An incre-
ment in the movement of the set of fringe nodes is described in Algorithm 11.
And an increment in the movement of a set of free nodes at a given level is
described in Algorithm 12. In both algorithms, as before, only one subdomain

56

6.2. FLUID AND RIGID BODY INTERACTION ALGORITHM

ΓS ,h
n

ΓS ,h

Cnod(n) ∩ N f ri

c

p

n

ΓS ,h

p

n

∈ E f re

∈ Ehol

∈ N f ri

∈ N f re

∈ Nhol

Figure 6.7: The movement of a fringe node n considering only one increment.
(Middle) First, we have to determine the centroid c of the set of nodes Cnod(n)∩
Nfri. (Bottom) Then, we move the node n towards the projection p of c on the
boundary mesh.

defines the movement of an interface node The idea is illustrated in Figure 6.5.
The subdomain S only moves the interface nodes inN S

ifa,own and the subdomain

T the interface nodes in N T
ifa,own.

The whole movement is described in Algorithm 10 for a given number of
increments and levels of the set of free nodes. From here, the Algorithms1 11
and 12 are called.

Non body fitted embedded method (NBF)

The non body-fitted approach implements a high order kriging interpolation
algorithm. The idea is to impose the velocity of the body for each fringe node
nfri in an interpolating way. For this purpose, the program first has to consider
a convenient subset of the set of free nodes Nfre that have a close connectivity
with nfri; denote it as Nsel(nfri). Then, the program imposes the velocity of

57

CHAPTER 6. RIGID BODY AND FLUID INTERACTION

Algorithm 10 R-local adaptivity algorithm for an arbitrary subdomain S

Require:
1. An array coordinates with the positions of the nodes in N S ∪ N S

hal

2. A value for level
Ensure: A modified array coordinates

proportion fringe← 0
repeat

increase proportion fringe
callMOVE FRINGES(coordinates, proportion fringe), see Algorithm

11
l← 0
repeat

l = l + 1
proportion free← 0
repeat

increase proportion free
call MOVE FREES(coordinates, l, proportion free), see Algo-

rithm 12
until proportion free = 1

until l ≥ level
until proportion fringe = 1

Algorithm 11 Fringe nodes movement algorithm MOVE FRINGES for an
arbitrary subdomain S

Require:
1. An array coordinates with the positions of the nodes in N S ∪ N S

hal

2. A value for proportion
Ensure: A modified array coordinates

Initialize new coordinates(1 : N S ∪ N S
hal)← 0

for n ∈ Nfri ∩ (NS
int ∪NS

ifa,own) do
Determine the centroid c defined by Cnod(n) ∩ Nfri

Determine the projection p of c on ΓS,h

Determine the position in order to move n towards p in a proportion equal
to proportion and save it in position

iS = indexS(n)
new coordinates(iS) = position

end for
call INE(new coordinates(1 : |N S |)), see Algorithm 1
call HNE(new coordinates(1 : |N S ∪ N S

hal|)), see Algorithm 2
coordinates← new coordinates

58

6.2. FLUID AND RIGID BODY INTERACTION ALGORITHM

Algorithm 12 Free nodes movement algorithm MOVE FREES for an arbi-
trary subdomain S

Require:
1. An array coordinates with the positions of the nodes in N S ∪ N S

hal

2. A value for level
3. A value for proportion

Ensure: A modified array coordinates
Initialize new coordinates(1 : N S ∪ N S

hal)← 0
for n ∈ N level

fre ∩ (NS
int ∪NS

ifa,own) do
Determine the centroid c defined by Cnod(n)
Determine the position in order to move n towards c in a proportion equal

to proportion and save it in position
iS = indexS(n)
new coordinates(iS) = position

end for
call INE(new coordinates(1 : |N S |)), see Algorithm 1
call HNE(new coordinates(1 : |N S ∪ N S

hal|)), see Algorithm 2
coordinates← new coordinates

the rigid body in the fringe node nfri equation as

Nfriufri +
∑

ni∈Nsel(nfri)

Niui = uS(xS),

where ui is the velocity of free node ni, xS is the projection point of the fringe
node on the surface mesh of the body, and uS(xS) is the velocity of the body
at xS . Nfri and Ni are the interpolation coefficients determined by solving the
matrix kriging system.

The whole algorithm can be divided into three consecutive main steps. For
each fringe node n in Nfri do:

• The selection of a convenient subset of free nodes that has a close connec-
tivity with n to perform the interpolation: Nsel(n) ⊂ Nfre.

• The assembly of the matrix of the kriging system to interpolate the body
surface velocity. In particular, this velocity will correspond to the solid
velocity at the projection point p of n on the body surface. The positions
of the free nodes in Nsel(n) and p will be used in the assembly.

• The inversion of the matrix of the kriging system by using the LU decom-
position method in order to obtain the interpolation coefficients Nfri and
Ni of Equation 6.2.2.

Parallel element and nodes selection

59

CHAPTER 6. RIGID BODY AND FLUID INTERACTION

The interpolation requires to previously select a subset of the set of free nodes
Nfre with a close connectivity with a fringe node n. The idea is schematized in
Figure 6.8.

ΓS

Γ̂S

ΓS

n

Figure 6.8: Illustration of the selection algorithm. the gray square denotes
esel(n). The red concentric circles denote members of the set of fringe nodes,
and the black circles are the free nodes that belong to set Nsel(n).

Considering an arbitrary fringe node n, the definition of the set Nsel(n) can
be carried out in an algorithmic fashion as follows:

• Select a convenient element esel(n) containing n, that is n ∈ esel(n). In
Figure 6.8, the gray square denotes esel(n).

• Then, let

Nsel(n) =
⋃

m∈esel(n)

Cnod(m) ∩ Nfre

be the definition of the set of nodes used to perform the interpolation. In
Figure 6.8, the black circles are free nodes that belong to set Nsel(n).

Algorithm 13 describes in detail the selection of nodes considering a parallel
context. It can be divided into two parts. In the first part, each fringe node n
starts by selecting a convenient element esel(n). The idea is to select an element
e = {ne

1, n
e
2, n

e
3, ...} with ne

1, n
e
2, n

e
3, ... close to the boundary of the body.

As explained in Subsection 6.2.1, only one subdomain has to execute the
geometric operations for any arbitrary node located at the interface between
subdomains in order to assure the coherency of the data. For this reason, any
arbitrary subdomain S will consider only its set of interior nodes NS

int and its
set of own interface nodes N S

ifa,own to select esel(n).
At the end of the first part of the Algorithm 13 the data is exchanged between

the subdomains using the algorithms of exchange INE and HNE defined in
Subsections 2.5.1 and 2.5.2 respectively.

In the second part, each fringe node n defines the set of nodes Nsel(n) to
perform the interpolation taking into account esel(n).

60

6.2. FLUID AND RIGID BODY INTERACTION ALGORITHM

Algorithm 13 Selection nodes algorithm for an arbitrary subdomain S

⊲ Selection of the convenient element esel(n)
Initialize element(1 : |N S ∪ N S

hal|)← 0
for each node n ∈ Nfri ∩ (N S

int ∪ N
S
ifa,own) do

for each element e ∈ Cele(n) (including E
S
hal) do

if the distance from the centroid of e to n is the smallest one then
iS ← indexS(n)
element(iS)← the global id of e

end if
end for

end for
call INE(element(1 : |N S |)), algorithm 1
call HNE(element(1 : |N S ∪ N S

hal|)), algorithm 2
⊲ Selection of the set of nodes Nsel(n)

for each node n ∈ Nfri ∩ N S do
for each element e ∈ Cele(n) ∩ E

S) do
iS ← indexS(n)
if the global id of e is equal to element(iS) then

Select the set of nodes Nsel(n) =
⋃

m∈esel(n)

Cnod(m) ∩ Nfre for n

end if
end for

end for

61

CHAPTER 6. RIGID BODY AND FLUID INTERACTION

Kriging interpolation algorithm

In particular, we use an approximation method known as the universal kriging.
The concepts and implementation aspects are detailed in [55].

In the kriging approach, the unknown function is the sum of a mean value
µ(x) and an error term ǫ(x):

F (x) = µ(x) + ǫ(x),

where x is the position vector of the unknown function.
The approximation function for F (x) is expressed as a linear combination

of the data {F (xi)}i=1,n:

f(x) =

n
∑

i=1

Ni(x)F (xi).

The weights Ni are chosen to minimize the squared variance of the error of
prediction:

Var (F (x)− f(x))
2
= Var

(

F (x)−
n
∑

i=1

Ni(x)F (xi)

)2

,

subject to the unbiasedness condition. This condition states that the mean of
the unknown function is equal to the mean of its approximation:

µ(x) =

n
∑

i=1

Ni(x)µ(xi).

Our choice for the mean of the unknown function is a polynomial function.
Some implementation aspects are taken from [56].

6.2.3 FMALE

As mentioned before, the proposed embedded boundary techniques identify a
set of free nodes Nfre, a set of fringe nodes Nfri, and a set of hole nodes Nhol

at each time step of the simulation. Then, only the nodes in Nhol are excluded
from the finite element assembly process. Now, consider the nodes inNfre∪Nfri

at the current time step tn+1 that were hole nodes at the previous time step
tn. They are the new fluid nodes of the simulation at tn+1. These nodes were
therefore, for practical purposes, nonexistent at the previous time step. Then,
one of the practical problems with these new fluid nodes consists in defining the
velocities at the previous time step tn, which are required by the Navier-Stokes
equations to compute the time derivatives.

62

6.2. FLUID AND RIGID BODY INTERACTION ALGORITHM

This problem can be solved by considering a hidden motion of the mesh
from tn to tn+1, which can be explained and formulated in the framework of
the FMALE method [57]. In this work, new characteristics are adopted inside
the FMALE implementation in order to improve the results obtained. These
new features are explained below. But first, it is important to know in detail
how the FMALE works.

We slightly reinterpret the FMALE algorithm described in [57] here. It
consists of the following:

• Move the mesh at the current time step tn+1 such that all the new fluid
nodes lie on the fluid domain at tn. This virtual time step being referred
to as tn∗ .

• Then, interpolate the values of the previous velocity onto this new mesh
from the solution obtained at tn.

• Finally, compute a mesh velocity umsh to be included in Equation (3.1)
in order to recover the original mesh at tn+1 from tn∗ and to account for
the mesh motion.

In order to illustrate the FMALE approach, let us consider the one-dimensional
example shown in Figure 6.9. The dotted lines represent the solid body at tn,
which moves to the right, and depicted with continuous lines at tn+1, see Figure
6.9 (original mesh). At time tn, the fringe node is node n3 and at time tn+1 we
end up with a new free node n4, and a new fringe node n5. The procedure is
described below:

• Prescribe a displacement for the new fringe node n5 such that at tn it falls
into the fluid, and move it incrementally together with nodes n3 and n4.
Nodes n1 and n2 are assumed to be sufficiently far to remain fixed. The
resulting new mesh at tn∗ is shown in Figure 6.9 (b).

• The values of the velocities for the moved nodes n3, n4 and n5 are then
interpolated from the solution obtained at time tn. This interpolation is
represented by the vertical arrows between Figures 6.9(b) and 6.9(a).

• The mesh velocity is then computed from the positions obtained at time
tn∗ to recover the positions of the nodes on the original mesh tn+1, Figures
6.9(b) and 6.9(c) for nodes n3, n4 and n5. The nodal mesh velocity is
simply ui

msh = (xn+1
i − xn∗

i)/∆t. The mesh velocity is represented by
horizontal arrows.

A new virtual movement of the mesh inside the FMALE framework

The positions of the nodes at the previous virtual time step tn∗, as it is illus-
trated in Figure 6.9(b), are determined by the r-local adaptivity Algorithm 10.

63

CHAPTER 6. RIGID BODY AND FLUID INTERACTION

original mesh:

Γn
S Γn+1

S
n1 n2 n3 n4 n5 n6

(a) timetn:
n1 n2

x
n4

x
n5

x
n6n3

(b) time tn∗ :
u5

mshu4
mshu3

msh

n1 n2 n3 n4 n5
x

n6

(c) timetn+1:
n1 n2 n3 n4 n5

x
n6

Figure 6.9: Illustration of the FMALE framework. The dotted lines represent
the body surface mesh at the previous time step tn and the continuous lines rep-
resent the body surface mesh at the current time step tn+1. The red concentric
circles denote members of the set of fringe nodes, black circles members of the
set of free nodes, and crosses members of the set of hole nodes. The plots (a)
and (c) represent the fluid mesh in two consecutive time steps after remeshing.

Considering the mesh at the current time step tn+1, the idea is to incrementally
move the set of fringe nodes Nfri and a subset of the set of free nodes until
Nfri reaches the body surface mesh defined at the previous time step tn.

A new way of interpolation of the velocity at the previous time step
inside the FMALE framework

The velocities of the nodes at the previous virtual time step tn∗ are taken from
the velocities of the nodes at the real previous time step tn, as it is illustrated
by the vertical arrows between Figures 6.9(b) and 6.9(c). The values of these
velocities are determined by interpolation using the high order kriging method
defined in Subsection 6.2.2.

The interpolation, as mentioned in Subsection 6.2.2, requires that we previ-
ously select a set of nodes that have a close connectivity with the node whose
velocity we need to interpolate. The algorithm to select the nodes is almost the
same as the Algorithm 13. Considering the mesh at the previous time step tn

and an arbitrary moved node n at the virtual previous time step tn∗, the idea is
also to select an convenient element esel(n) that contains n, that is n ∈ esel(n).
Then, select a set of nodes defined by

Nsel(n) =
⋃

m∈esel(n)

Cnod(m) ∩
(

Nn
fri ∪N

n
fre

)

(6.1)

to interpolate the velocity of n at the previous time step.

64

6.2. FLUID AND RIGID BODY INTERACTION ALGORITHM

6.2.4 Time step ∆t

The time step is limited by one algorithmic constraint and by some accuracy
constraints. The algorithmic constraint comes from the way the FMALE for-
mulation is implemented in order to properly work in a parallel context.

In the FMALE framework, the main purpose is to interpolate the fluid
velocity for any arbitrary fluid node n at the previous time step. For this
reason, and considering a parallel implementation, the program selects the set
of nodes Nsel(n) defined in Equation (6.1), see Subsection6.2.3.

Then, the idea is to determine a time step ∆t in such way that the set
Nsel(n) 6= ∅. That is, we have to assure that we have data to interpolate the
velocity at the previous time step for n. Thus, consider again the set of nodes
Nsel(n) defined in Equation (6.1). This set includes nodes two elements away
from n. The idea is illustrated in Figure 6.8, where the nodes in set Nsel(n),
the black circles, include nodes two elements away from n. Now, the movement
of the mesh in the FMALE framework has a direct relation with the movement
of the bodies. Then, in order to avoid that Nsel(n) = ∅, we require that a rigid
body do not cross more than two elements at each time step. Therefore, we
define the time step of the NE solver as:

∆tNE = 2 min
nfri∈Nfri

(

hfri

|ufri|

)

, (6.2)

where hfri is the minimum edge length that connects nfri with the set of nodes
Cnod(nfri) and ufri is the velocity at nfri.

As far as the accuracy constraint is concerned, both the NS and NE equa-
tions, as well as the coupling strategy, have different requirements. To control
the time accuracy of the NS equations, we use the CFL condition and define

∆tNS = α min
efre∈Efre

(

4µ

ρh2
fre

+
2|ufre|

hfre

)−1

,

where α is called the safety factor which, for an unconditionally stable implicit
scheme, could take in principle a high range of values, depending on the physics
of the problem. A typical range is [10, 1000]. One can alternatively prescribe
a time step ∆tp which does not rely on the mesh but on the physics of the
problem.

For the NE equations, a critical time step should be devised as well, depend-
ing on the Newmark scheme considered. Note that the one given by Equation
(6.2) relies on the mesh size, which would be irrelevant to solve the NE equations
without an underlying mesh. However, we do not consider here any additional
constraint for the Newmark scheme.

As for the time accuracy due to the coupling, we have no way to explicitly
compute it in the general case. Therefore, the time step of the simulation is

65

CHAPTER 6. RIGID BODY AND FLUID INTERACTION

computed as

∆t = min(∆tNE,∆tNS) or ∆t = min(∆tNE,∆tp). (6.3)

6.2.5 The force and torque exerted on the solid surface

In order to close the Newton-Euler equations for the rigid body, we need the
force and the torque exerted by the fluid on the rigid body, fF and τF , respec-
tively. Let us first consider the force. Basically, there are two alternatives. Let
σ · n be the normal stress exerted on the fluid, where n is the exterior normal
to the fluid and σ = −pI + 2µε(u). The first option consists in integrating the
pressure and viscous stresses along the solid boundary:

fF =

∫

ΓS

σ · n dΓ = −

∫

ΓS

σ · nS dΓ,

where nS is the exterior normal to the solid. The integration of these two
stresses over the solid boundary is referred to as numerical force, as it is com-
puted from the numerical solution for velocity and pressure.

The other option consists in considering the algebraic force, computed at
the algebraic level. To understand the link between numerical and algebraic
forces, let us consider the simple following Poisson equation:

∇ · (k∇u) = q,

which variational form reads:

∫

Ω

k∇u · ∇v dΩ =

∫

Ω

qv dΩ+

∫

ΓN

vg dΓ +

∫

ΓD

vk∇u · n dΓ. (6.4)

ΓN is the part of the boundary Γ where the natural condition g is imposed,
and ΓD is the Dirichlet part of the boundary where the unknown is imposed to
ũ, such that Γ = ΓD ∪ ΓN . Let Ni be the shape function of node ni, then the
matrix and right-hand side components resulting from the discretization of the
variational form (6.4) are given by

Aij =

∫

Ω

k∇Nj · ∇Ni dΩ and (6.5)

bi =

∫

Ω

qNi dΩ+

∫

ΓN

Nig dΓ. (6.6)

In order to impose the Dirichlet condition at the variational level, we require
the test function to vanish on ΓD. At the algebraic level, one option consists
in assembling the complete matrix and RHS of the system A and b, given by

66

6.2. FLUID AND RIGID BODY INTERACTION ALGORITHM

Equations (6.5) and (6.6) respectively, and then to force the solution in the
matrix system to be the Dirichlet value. Let Ndir be the set of nodes in the
Dirichlet boundary. To impose the Dirichlet condition, one can define:

{

Ãij = δij , b̃i = ũi ∀ ni ∈ Ndir and

Ãij = Aij , b̃i = bi otherwise,

where δij is the Kronecker delta, so that the final system to be solved reads:

Ãu = b̃.

Now, let us go back to Equation (6.4). We find that the variational flux on the
Dirichlet boundary can be computed as

∫

ΓD

vk∇u · n dΓ =

∫

Ω

k∇u · ∇v dΩ−

∫

Ω

qv dΩ−

∫

ΓN

vg dΓ.

The discrete counterpart of last equation for node ni ∈ Ndir is therefore

∑

juj

∫

ΓD

kNi∇Nj · n dΓ =
∑

juj

∫

Ω

k∇Nj · ∇Ni dΩ

−

∫

Ω

qNi dΩ−

∫

ΓN

Nig dΓ.

Then, we note that the nodal flux on ni can be associated to the residual of the
equation as

fi =
∑

juj

∫

ΓD

kNi∇Nj · n dΓ

= (Au− b) |i .

We note that in last equation we must consider A and b, and not Ã and b̃,
as these last quantities have been modified in order to impose the Dirichlet
boundary condition. Eventually, we have that the total flux on the Dirichlet
boundary is

f =
∑

ni∈Ndir

fi.

By analogy, we can relate the residual of the momentum equations to the
force exerted by the fluid on the particle. Considering only the fringe nodes, we
find:

fF =
∑

nfri∈Nfri

(bu −Auuu−Aupp) |fri .

67

CHAPTER 6. RIGID BODY AND FLUID INTERACTION

Note that as in the Poisson equation, one must consider the matrices Auu, Aup

and vector bu before imposing the Dirichlet boundary condition on the fringe
nodes. As far as the algebraic torque is concerned we compute the nodal torque

τF =
∑

nfri∈Nfri

(bu −Auuu−Aupp) |fri ×rfri.

The advantage of considering the algebraic force rather than the numerical
force is now illustrated by a simple example. It consists of a two-dimensional
flow over a cylinder at Re = 20. We have performed a mesh convergence for
the value of the force using both the numerical and algebraic approximations.
Figure 6.10 shows that the algebraic force approximation converges much faster
to the asymptotic value than its numerical counterpart.

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0.1 1

F
or

ce

Relative h

Numerical
Algebraic

Figure 6.10: Force over a cylinder at Re = 20 using the numerical and algebraic
approximations.

Another important advantage when we obtain the force algebraically has
to do with its computational cost. The algebraic force consists of one simple
matrix-vector product. It is indeed less expensive than computing a boundary
integral, especially in a parallel context.

6.3 Mass conservation

To impose the velocity of a particle in the fluid by interpolation is a non-
conservative strategy. As is shown in [58], the transmission of Dirichlet condition
involves the necessity to ensure the conservation of the mass for each particle in
the simulation. Let us consider a single body, the idea is to obtain new velocities
u∗
fri for the fringe nodes from the values obtained using interpolation ufri by

68

6.4. SUMMARIZING

minimizing

∫

ΓS

∣

∣u∗
fri − ufri

∣

∣

2
dΓS,h

under the constraint

∫

ΓS

u∗
fri · ndΓS,h = 0,

where ΓS,h is the wet boundary mesh of the rigid body and n is the normal
vector. The restriction is derived in [58] and allows to conserve the mass going
through the solid and therefore that of the whole system.

6.4 Summarizing

In order to summarize all the ingredients presented throughout this work, Figure
6.11 presents a flowchart of the general algorithm associated to the UBF and
NBF approaches.

69

CHAPTER 6. RIGID BODY AND FLUID INTERACTION

Start

initialize the variables

determine∆t

solve the NE equations

determineN f ri

NBF option
determine the coefficients to
interpolate the solid velocity

UBF option
move the nodes to adapt

the mesh to the solid

FMALE
determine the previous fluid velocities

solve the NS equations

determine the force and
torque exerted on the solid

has the execution reached
the simulation time?

End

yes
no

Figure 6.11: Flow chart of the whole process for both methods: UBF and NBF.

70

7
Numerical Experiments

This chapter will be divided into three parts. In the first part, we will consider
examples that include the interaction between a fluid and a solid without take
into account the collisions between the bodies. In the third part, on the contrary,
we will consider the collisions between the rigid bodies without take into account
any fluid. Finally, we will solve a problem that include all types of interactions
explained in this thesis.

7.1 Fluid and rigid body interaction

We will first tackle a two-dimensional test case of a fluid and rigid solid in-
teracting. Its main purpose is to determine the correctness of the coding and
to study mesh convergence for the approaches explained in the previous sec-
tions: UBF and NBF. In particular, for this example, we consider two versions
of the non body-fitted approach (NBF): one based on high order kriging inter-
polation (HNBF) and the other on linear (LNBF) kriging interpolation. The
results show that the UBF and HNBF implementations have a much better
performance than that of LNBF.

In the second example, we will solve a set of three-dimensional problems
where the solutions can be analytically determined. The geometry is common
to all of them. A spherical rigid body is immersed within a fluid. The simulation
starts with the body at rest. Immediately, the sphere begins to fall downwards.
The velocity of the body increases until the net forces acting on the sphere are
equal to zero. Then, the body moves with a constant velocity known as terminal
velocity. Different Reynolds numbers will be considered in order to compare
UBF and HNBF approaches with the analytical solutions. The performance of
UBF reaches better results as the Reynolds number increases.

In a third example, we will consider a circular cylinder immersed within a
uniform fluid field that oscillates vertically with harmonic motion. The flow
velocities, imposed as Dirichlet boundary condition, vary from one numerical
experiment to another. The fluid domain and problem characteristics are de-
scribed in [59]. The idea is to capture the interval of velocities in the fluid
where the vortex shedding frequency fv coincides with the natural frequency
of a cylinder-spring system fc. The characteristic behavior of the problem is
the so-called ”lock-in” phenomenon. Both, experimental and numerical results
have been determined by a number of researchers.

In a fourth example, we will simulate the behavior of two Bileaflet mechan-
ical heart valves. This mechanism consists of a pair of artificial heart valves
that replace the native ones when they are malfunctioning. Due to the blood
flow (forward and reverse) the two valves are opened and closed. The large

71

CHAPTER 7. NUMERICAL EXPERIMENTS

ΓS

0.3

0.4

0.3

0.3 0.4 0.3

Figure 7.1: Problem domain for the manufactured solution.

acceleration rates that the valves experiment during the opening and closing
phases and the maximum Reynolds number reached during the simulation are
a challenge for any program that solves the interaction of a fluid with a rigid
solid.

Finally, we will compare the parallel performance of the Navier-Stokes solver
with and without considering the UBF and NBF algorithms used to simulate a
fluid that contains twenty rigid solids with arbitrary shapes falling inside it.

7.1.1 Mesh convergence of a manufactured solution

The manufactured solution technique enables one, among other objectives, to
easily carry out a mesh convergence of an implemented algorithm. Let us con-
sider the Navier-Stokes operator LNS(u, p) represented by the LHS of Equations
(3.1) and (3.2). Let uman and pman be some given target velocity and pressure,
with a desired degree of smoothness. The manufactured solution technique
consists in solving

LNS(u, p) = LNS(uman, pman),

together with u = uman as a Dirichlet boundary condition on the whole bound-
ary of the computational domain, and p = pman on a unique node (indeed, when
ΓN = ∅, the pressure is defined up to a constant and thus should be prescribed
somewhere.) We consider the following manufactured solution:

uman = [sin(πx− 0.7) sin(πy + 0.2), cos(πx− 0.7) cos(πy + 0.2)] and

pman = sin(x) cos(y),

to be sought in the computational domain depicted in Figure 7.1. Note that
the manufactured velocity field is divergence free.

72

7.1. FLUID AND RIGID BODY INTERACTION

10-4

10-3

10-2

10-1

 0.001 0.01 0.1

V
el

oc
ity

 L
2 e

rr
or

Mesh size h

h2

h

UBF
HNBF
LNBF

Figure 7.2: Mesh convergence of the velocity field for UBF, LNBF and HNBF.

First, We study the convergence of the solution as the mesh is refined. We
compare the L2 convergence of a manufactured solution, the convergence of the
force at the solid boundary as well as that of the mass. To be able to assess this
last one, the mass conservation algorithm presented in Section 6.3 was disabled.
The mesh convergence is obtained for the UBF and NBF methods using linear
and higher order kriging interpolations, as shown in Figure 7.2. In the case of
UBF, the solid velocity is imposed to be equal to the value of the manufactured
solution on the body surface, where the fringe nodes have been moved to. In the
case of the two NBF methods, the solid velocity is interpolated at each fringe
node n so that it is equal to the manufactured velocity at the projection point
of n on the body surface. We observe that the convergence graphs for UBF
and NBF with a high order kriging interpolation (HNBF) are very similar and
both methods exhibit a quadratic convergence. It is also clear that the linear
interpolation gives a linear mesh convergence.

Next, we show the mesh convergence of the total force exerted by the fluid
on the solid and the mass unbalance resulting from the interpolation of the solid
velocity in Figure 7.3. The top plot shows that the force converges much faster
in the case of UBF and high order NBF than the linear NBF. As far as the
mass conservation is concerned, the mass loss resulting from the UBF scheme is
much smaller than that found with the other methods (bottom plot.) The order
of convergence is neither linear nor clearly quadratic as nodes are not moved
onto the body in a coherent way as the mesh size is refined. The mass loss of
the linear NBF converges linearly to zero while that of the HNBF converges
quadratically. Here the mass is computed as described in [58], using a closed
quadrature rule.

Finally, let us study the effect of the mass conservation algorithm described

73

CHAPTER 7. NUMERICAL EXPERIMENTS

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

F
or

ce

UBF
HNBF
LNBF
Force

10-8

10-7

10-6

10-5

10-4

10-3

10-2

 0.001 0.01 0.1

M
as

s
un

ba
la

nc
e

Mesh size h

h

h2

UBF
HNBF
LNBF

Figure 7.3: (Top) Mesh convergence of the force exerted on the solid for UBF,
LNBF and HNBF. (Bot.) Mesh convergence of mass balance for UBF, LNBF
and HNBF.

in Section 6.3 on the mesh convergence. Figure 7.4 shows the convergences of
the velocity and pressure for the UBF, HNBF and LNBF methods. We observe
that both the UBF and HNBF give very similarly results with and without
mass conservation. On the contrary, the LNBF without mass conservation does
not even converge. Let us remember that when the velocity Dirichlet boundary
condition is imposed on the whole boundary just like in the case considered
here, then the problem is not-well posed at the continuous level if the mass
is not zero. At the numerical level, this fact translates into a non-converging
pressure.

7.1.2 Terminal velocities

Stokes flow

Consider a spherical rigid body of radius r = 1 and density ρs = 2 immersed
in fluid with density ρf = 1 and viscosity µ = 10. For low Reynolds numbers,
Re << 1, where the inertia effects are negligible, as in the problem just stated,
Stokes derived a simple equation to obtain the terminal velocity of a sphere:

vs =
2(ρs − ρf)r

2g

9µ
= −0.222

where g is the modulus of the gravity.
The geometry of the fluid domain is a cylinder with height equal to 60 and

radius equal to 30. The initial position of the sphere is at 30 times the body
radius from the sides of the cylinder and at 40 times the body radius from the

74

7.1. FLUID AND RIGID BODY INTERACTION

10-5

10-4

10-3

10-2

10-1

100

101

102

 0.001 0.01 0.1

L2 e
rr

or

Mesh size h

UBF Approach

h

h2

p, w/o
p, w
u, w/o
u, w

10-5

10-4

10-3

10-2

10-1

100

101

102

 0.001 0.01 0.1

L2 e
rr

or

Mesh size h

HNBF Approach

h

h2

p, w/o
p, w
u, w/o
u, w

10-5

10-4

10-3

10-2

10-1

100

101

102

 0.001 0.01 0.1

L2 e
rr

or

Mesh size h

LNBF Approach

h

p, w/o
p, w
u, w/o
u, w

Figure 7.4: Mesh convergence of the velocity and pressure fields with and with-
out mass conservation for (Top) the UBF scheme, (Mid.) the HNBF scheme,
and (Bot.) LNBF scheme.

75

CHAPTER 7. NUMERICAL EXPERIMENTS

Figure 7.5: Mesh used for the cylindrical fluid domain.

Figure 7.6: Initial position of the sphere in the interior of the mesh.

bottom of the cylinder. The mesh is unstructured, see Figures 7.5, 7.6, and
composed of 400.000 tetrahedral elements, see Figure 7.6 where the red volume
represents the sphere at the beginning of the simulation.

Figure 7.7 shows the set of fringe nodes Nfri without applying the local
r-adaptivity algorithm and Figure 7.8 shows the set Nfri after the algorithm is
applied.

In Figure 7.9, the velocity for UBF and HNBF approaches is compared
with the analytical solution. Both velocities are almost equal and tend to the
analytical solution.

Interpolation inside the FMALE framework

The values of the previous fluid velocities of the mesh are interpolated by the
FMALE method, see Subsection 6.2.3. In order to study the influence of this

76

7.1. FLUID AND RIGID BODY INTERACTION

Figure 7.7: Set of fringe nodes before applying the r-local adaptivity algorithm.

Figure 7.8: Set of fringe nodes after applying the r-local adaptivity algorithm.

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0 1 2 3 4 5 6 7 8 9 10

ve
lo

ci
ty

time

UBF
HNBF

analytic solution

Figure 7.9: Numerical and analytical Stokes terminal velocity for Re = 0.004.

77

CHAPTER 7. NUMERICAL EXPERIMENTS

-0.2

-0.15

-0.1

-0.05

 0

 0 1 2 3 4 5 6 7 8 9 10

ve
lo

ci
ty

time

FMALE linear interpolation
FMALE high order kriging interpolation

analytic solution

Figure 7.10: Linear and high order interpolation for the FMALE framework.

interpolation, we will compare a high order kriging with a linear interpolation for
calculating the previous fluid velocities within the FMALE framework. Figure
7.10 shows that using a high order kriging algorithm produces a better solution
than linear approximation.

Moderate Reynolds Numbers

Now, let us consider higher Reynolds numbers to solve the problem stated above.
As shown in Figures 7.11 and 7.12, the difference in the velocities obtained with
UBF and HNBF approaches becomes larger and larger as the Reynolds number
grows. These numerical experiments show the better performance of the UBF
with respect to the HNBF scheme when we compare them with the analytical
solutions.

Although, only considering an infinity time of simulation and also a cylinder
with an infinite height we can obtain a final solution for the simulation. How-
ever, we can assure that the UBF at least reach faster the solution than the
HNBF scheme. And also, as shown above, the solution is smoother, especially
when we consider the acceleration of the body.

We briefly explain how we determine the analytic solution now. As men-
tioned before, for very low Reynolds numbers a terminal velocity can be easily
obtained thanks to the linear relationship between the drag force and the ve-
locity of the rigid body. However, when the inertial effect cannot be neglected,
as in the problems shown in Figures 7.11 and 7.12, the relationship is no longer
linear and finding the terminal velocity requires an iterative solution. The de-
tails can be found in [60]. We will now analyze three further issues: the mesh
convergence, the acceleration behavior, and the determination of the time step.

78

7.1. FLUID AND RIGID BODY INTERACTION

-6

-5

-4

-3

-2

-1

 0

 0 1 2 3 4 5 6 7 8 9 10

ve
lo

ci
ty

time

UBF
HNBF

analytic solution

Figure 7.11: Numerical and analytical terminal velocity for Re = 101.

-8

-7

-6

-5

-4

-3

-2

-1

 0

 0 1 2 3 4 5 6 7 8 9 10

ve
lo

ci
ty

time

UBF
HNBF

analytic solution

Figure 7.12: Numerical and analytical terminal velocity for Re = 1647.

79

CHAPTER 7. NUMERICAL EXPERIMENTS

-5

-4

-3

-2

-1

 0

 0 1 2 3 4 5 6 7 8

ve
lo

ci
ty

time

4k,α=5
4k,α=10
3M,α=5

3M,α=10
23M,α=5

23M,α=10
analytic solution

Figure 7.13: Numerical and analytical terminal velocity for Re = 101 using
different meshes and safety factors α and considering only the HNBF approach.

Mesh convergence

Now, let us consider only the HNBF approach to carry out the mesh conver-
gence. The reason for this choice is to improve the performance of the HNBF
with respect to UBF scheme. In Figures 7.13 and 7.14 the difference between
the velocities obtained with the HNBF scheme and the analytic ones becomes
shorter and shorter as the mesh is refined. In particular, we use three different
meshes of 400000, 3 millions, and 23 millions of elements. Also, the velocities
in Figures 7.13 and 7.14 were obtained using different safety factors α.

The solution reached is specially improved for the flow with a Reynolds
number of 1647, as shown in Figure 7.14. We start with a difference with
respect to the analytic solution of 39.4% to finally obtain a difference of 13.5%.
For the flow with a Reynolds number of 101 we have a initial difference of 21.6%
and a final one of 7.6%.

Acceleration

We will consider a Reynolds number equal to 3.4, which entails an analytical
solution for the terminal velocity equal to 1.8. The reason for this choice is
to have a Reynolds number where the velocities reached by both the UBF and
HNBF approaches are still very similar. Then, it is interesting to take a closer
look at the results for the acceleration and velocity values. In Figure 7.15, in
the inside plots, we display a zoom of the accelerations and velocities for the last
time steps. The Figures confirm the better performance of the UBF approach,
especially concerning the acceleration values.

80

7.1. FLUID AND RIGID BODY INTERACTION

-7

-6

-5

-4

-3

-2

-1

 0

 0 1 2 3 4 5 6 7 8

ve
lo

ci
ty

time

4k,α=5
4k,α=10
3M,α=5

3M,α=10
23M,α=5

23M,α=10
analytic solution

Figure 7.14: Numerical and analytical terminal velocity for Re = 1647 using
different meshes and safety factors α and considering only the HNBF approach.

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0 1 2 3 4 5 6 7 8 9 10

ve
lo

ci
ty

time

UBF
HNBF

analityc solution

-1.65

-1.55

-1.45

 6 10

velocity

-0.45

 0

 0.45

 6 10

acceleration

Figure 7.15: Solid acceleration and solid velocity for the UBF and HNBF ap-
proaches with Re=3.7.

81

CHAPTER 7. NUMERICAL EXPERIMENTS

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 2 4 6 8 10

ve
lo

ci
ty

time

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

ve
lo

ci
ty

time

α=12.5
α=25
α=50

α=100

Figure 7.16: Time step analysis using different safety factors for the UBF scheme
with Re=101.

Time step analysis

Now, consider again a Reynolds number equal to 101 and the UBF approach
implementation. Then, following the methodology in Chapter 6, at each time
step a critical time step value has to be estimated to solve the fluid and rigid
body coupled problem. Figure 7.16 shows the results of solving the problem
stated above with different safety factors α where ∆t = α×∆tcri and ∆tcri is
the critical time step for the NS solver. The inside plot in Figure 7.16 shows the
times at which the results of the simulations were calculated. For α = 12.5 and
α = 25 the ∆t obtained for the NS equations is selected. However, for α = 50
and α = 100, the time step is limited by ∆tNE, defined in Subsection 6.2.4, in
order to avoid that the solid steps over more than two elements during a time
step. As we can see in the Figure 7.16, this limitation is only activated after
the first time step as it is based on the previous time step solution (see the first
step of the time loop in Algorithm 5).

We also observe that the terminal velocity is achieved quicker in the case of
higher safety factors. This is the reason why the time step is smaller for α = 50
and α = 100 than for α = 25, despite the fact that the safety factor is higher.

7.1.3 Vortex oscillations of a circular cylinder

The problem geometry is displayed in Figure 7.17. The circle represents the
solid and its surface mesh is embedded inside the fluid mesh. The fluid has a
viscosity µ = 0.01 g (cm s)−1 and a density ρ = 1.0 g cm−3. The motion of the
cylinder defines a linear spring-mass system with a stiffness k = 5.79Nm−1 and
a damping factor c = 0.325 g s−1. The mass of the cylinder is m = 2.979 g with

82

7.1. FLUID AND RIGID BODY INTERACTION

ux = ucm/s
uy = 0cm/s

uy = 0cm/s

uy = 0cm/s

1.4cm

1.4cm

1cm 3cm

0.16cm

Figure 7.17: Problem domain definition.

Figure 7.18: Discretization of the problem domain.

a circular section D = 0.16 cm. The Reynolds number Re = uDρ/µ ranges
from 90 to 120 by changing the value of the inflow velocity u.

The mesh is unstructured and composed of 10000 triangular elements as
shown in Figure 7.18. The time step is prescribed using ∆tp = 0.001 s in
Equation (6.3). The portions of the mesh near the hole are shown in Figures
7.19 and 7.20 for the HNBF and UBF algorithms, respectively, at a given time
step for an arbitrary Reynolds number.

The most interesting characteristic of the problem is the so-called “lock-in”
phenomenon, which is captured for all the simulations with Reynolds numbers
ranging from 90 to 120. The relative amplitudes Y/D, where Y is the dis-
placement of the cylinder with respect to its original position, considering some
Reynolds numbers, are shown in Figures 7.21 and 7.22 for the UBF and the
HNBF implementations, respectively.

The values of the amplitudes for both algorithms and for all the simulations
are shown in Figure 7.23. These values are compared with the experimental
results obtained in [61] and the values shown by Dettmer et al. in [59] for

83

CHAPTER 7. NUMERICAL EXPERIMENTS

Figure 7.19: Mesh near the hole for the high order kriging interpolation algo-
rithm.

Figure 7.20: Mesh near the hole after applying the local r-adaptivity algorithm.

84

7.1. FLUID AND RIGID BODY INTERACTION

-0.008

 0

 0.008

 0 75

Y
/D

envelope

-0.008

 0

 0.008

 0 5

Re=98

-0.006

 0

 0.006

 70 75

-0.4

 0

 0.4

 0 75

Y
/D

envelope

-0.015

 0

 0.015

 0 5

Re=108

-0.4

 0

 0.4

 70 75

-0.013

 0

 0.013

 0 75

Y
/D

time (s)

envelope

-0.013

 0

 0.013

 0 5
time (s)

Re=118

-0.007

 0

 0.007

 70 75
time (s)

Figure 7.21: Amplitudes of the solid oscillations due to the vortex for the UBF
algorithm. (Left) The envelope (curve outlining the extremes) of the ampli-
tudes of the oscillations, created using the Hilbert transform. (Mid.) Initial
amplitudes of the oscillations (Right) Final amplitudes of the oscillations.

85

CHAPTER 7. NUMERICAL EXPERIMENTS

-0.008

 0

 0.008

 0 75

Y
/D

envelope

-0.008

 0

 0.008

 0 5

Re=98

-0.006

 0

 0.006

 70 75

-0.325

 0

 0.325

 0 75

Y
/D

envelope

-0.035

 0

 0.035

 0 5

Re=108

-0.325

 0

 0.325

 70 75

-0.013

 0

 0.013

 0 75

Y
/D

time (s)

envelope

 0

 0 5
time (s)

Re=118

-0.007

 0

 0.007

 70 75
time (s)

Figure 7.22: Amplitudes of the solid oscillations due to the vortex for the HNBF
algorithm. (Left) The envelope (curve outlining the extremes) of the amplitudes
of the oscillations, created using the Hilbert transform. (Mid.) Initial ampli-
tudes of the oscillations. (Right) Final amplitudes of the oscillations.

86

7.1. FLUID AND RIGID BODY INTERACTION

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 90 95 100 105 110 115 120

fin
al

 a
m

pl
itu

d

Re

UBF
HNBF
experimental results
Dettmer’s results

Figure 7.23: Amplitudes reached at the last time step for UBF and HNBF
schemes compared to Dettmer’s and experimental results.

a mesh of 3574 elements. In general, the amplitudes obtained with the UBF
algorithm are larger than the amplitudes obtained with the HNBF algorithm
and, what is more important, closer to the experimental results. In addition,
the maximum amplitude obtained by Dettmer et al. in [59] is also closer to the
maximum amplitude obtained by the UBF algorithm.

The vortex shedding frequency fv with respect to the natural frequency of
the cylinder-spring system fn are shown in Figures 7.24 and 7.25. The frequen-
cies obtained by both algorithms are very similar to the experimental results
obtained in [61] and the frequencies shown Dettmer et al. in [59] for a mesh of
3574 elements.

7.1.4 Two Bileaflet Mechanical Heart Valves

A primary choice of artificial heart valves to replace the native ones when they
are malfunctioning is the Bileaflet mechanical heart valves (BMHVs). These
prostheses are made of a durable pyrolitic carbon material. The design includes
a circular wall (referred as the housing wall) and two semicircular leaflets at-
tached to the circular wall. Due to the blood flow (forward and reverse), and
consequently different pressure levels on either side of the valves, the two leaflets
are opened and closed.

In our simulation, the real problem was simplified as explained next at the
geometrical and physical description of the simulated problem. However, as it is
shown later, the results obtained of the simulation reproduce the experimental
results obtained in [62].

The whole domain and two zooms near to the valves are shown in Figures
7.26, 7.27, and 7.28 respectively. The movement of the valves is schematized

87

CHAPTER 7. NUMERICAL EXPERIMENTS

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 90 95 100 105 110 115 120

f v
 /

f n

Re

UBF
HNBF
experimental results

Figure 7.24: Frequencies reached at the last time step for UBF and HNBF
schemes compared to experimental results.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 90 95 100 105 110 115 120

f v
 /

f n

Re

UBF
HNBF
Dettmer’s results

Figure 7.25: Frequencies reached at the last time step for UBF and HNBF
schemes compared to Dettmer’s results.

88

7.1. FLUID AND RIGID BODY INTERACTION

Figure 7.26: Domain of the two bileaflet mechanical heart valves. A zoom is
done as shown in the square in Figure 7.27.

Figure 7.27: Zoom of the whole domain. Another zoom is done as shown in the
square in Figure 7.28.

in Figure 7.28. The maximum and minimum angles of aperture of the valves
are near 60

◦

and 5
◦

respectively. Both, the ventricular, see Figure 7.26(a),
and aortic chamber, see Figure 7.26(d), have a diameter of D = 25.4cm. The
chamber where the valves are located, see Figure 7.26(b), has a diameter of
21.4cm. The expansion of the aorta chamber to a diameter of 31.74cm, see
Figure 7.26(c), represents the aortic sinus root. The total domain length is 16D
where the ventricular chamber is 4D long. The pyrolitic carbon material of
the valves has an approximated density of 1750kg/m. More details about the
geometrical and physical description of the problem can be found in [63, 62, 64,
65, 66].

A plug flow profile based on the experimental data given in [62] is prescribed
at the beginning of the ventricular chamber as the inflow boundary condition.
The inflow profile is shown in Figure 7.29.

The Reynolds number of the flow varies from 0, when the valves are closed,
to nearly 6000 when the valves are fully open. The complexity of the problem
comes from the geometry and the flow that generates the incoming plug flow

89

CHAPTER 7. NUMERICAL EXPERIMENTS

Figure 7.28: Maximum and minimum angles of aperture of the valves.

0 100 200 300 400 500 600 700 800
−10

−5

0

5

10

15

20

25

time (ms)

in
flo

w
 p

ro
fil

e
(li

te
r/

m
in

)

Figure 7.29: Plug inflow boundary profile.

90

7.1. FLUID AND RIGID BODY INTERACTION

 0

 10

 20

 30

 40

 50

 60
 0 100 200 300 400 500 600 700 800

tim
e

(m
s)

angle (degrees)

fine mesh (12M)
coarse mesh (1.5M)

experimental data

Figure 7.30: Aperture angle of the valves.

profile and interacts with this geometry.

In Figure 7.30, the angular displacement of the valves obtained with a coarse
mesh of 1.5 millions of elements and a fine mesh of 12 millions of elements
are compared to the experimental results obtained by Dasi et al [62]. The
displacement of the valves are captured better with the fine mesh than the coarse
mesh. In general, both simulations reproduce the experimental results. Note
the large acceleration rates that the valves experiment to reach the minimum
and maximum angles of aperture during the opening and closing phases.

The vorticity field at the plane of symmetry can be used to visualize the
motion of the leaflets during a complete cycle as shown in Figure 7.31 at dif-
ferent inflow values. The plane of symmetry is perpendicular to the leaflets.
During the acceleration phase, see Figure 7.31(a), the flow field remains lami-
nar and is dominated by the vortex shedding from the leaflets and the circular
wall of the mechanical heart valves. During the deceleration phase, see Figure
7.31(c),the vorticity field is characterized by the recirculation zone generated
near the sinus root walls. Finally, at the closing phase, see Figure 7.31(d), the
backflow induces the break down of the vortices and the closing of the leaflets.
The numerical simulation reproduces the major features and behavior of the
vortex field described in Dasi et al [62], although some difference exist.

91

CHAPTER 7. NUMERICAL EXPERIMENTS

a)

-200 0 200

Vorticity

-400 400

b)

-200 0 200

Vorticity

-400 400

c)

-200 0 200

Vorticity

-400 400

d)

-200 0 200

Vorticity

-400 400

Figure 7.31: Vorticity field at the plane of symmetry at different time steps of
the simulation.

92

7.1. FLUID AND RIGID BODY INTERACTION

Figure 7.32: One of the solids with arbitrary shape.

7.1.5 Parallel performance of the UBF and NBF algo-
rithms

Some all-to-all communications are necessary at different stages of the UBF and
NBF algorithm, for example, to compute the force acting on the solids. With
respect to the communications due to the fact that the bodies are stored in all
the processors, we can say that they are very few compared to the ones needed
for the NS iterative solver. Thus, the scalability of the code is not affected
significantly.

In order to analyze the scalability of the implementation of the UBF and
NBF approaches, take into account the following problem. There are twenty
rigid solids with arbitrary shapes, see Figure 7.32, immersed inside a fluid. The
domain of the fluid is a cube of side 100 and the boundary boxes of the rigid
bodies are similar to cubes of side 5. The fluid density and viscosity are equal
to 1.0 and 0.1 respectively. The solid density is equal to 5.0. The velocity in
the fluid is imposed to be equal to zero at the side of the domain and negative
one at the top in the z direction.

In a first set of runs, we only considered the NS equation solver implemen-
tation, in order to have a reference for the performance behavior of the UBF
and NBF schemes. We then considered the UBF algorithm and finally the NBF
algorithm.

The mesh uses 24 million elements, running in a range of processors that
goes from 64 to 1024 (considering only integer powers of 2). It is important
to mention that running in 1024 processors implies that each processor handles
23460 elements on average. This is an efficiency limit in terms of scalability,
due to the fact that a small number of elements per processor implies that the
weight of the communications in the total processing time becomes significant.

The scalability using the NS equations solver with and without considering
the UBF and NBF algorithms is shown in Figure 7.33. As it can be observed,
the scalability with respect to the NS equations solver acting alone is not af-
fected significantly. We have intentionally fixed the number of solver iterations
in order to compare the scalability of all the methods. For the momentum equa-
tions it was fixed to 25; whereas for the pressure equation, it was fixed to 100.
These figures are sufficiently high to decrease the residual by several orders of
magnitude with respect to the initial residual.

93

CHAPTER 7. NUMERICAL EXPERIMENTS

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

sp
ee

d
up

cores

Scalability with 24 millons of elements

Ideal
NS solver
UBF
HNBF

Figure 7.33: The scalability using the NS equations solver with and without
considering the UBF and NBF algorithms.

7.2 Rigid bodies interaction

In order to prove the implementation of the general framework to solve the
interaction between rigid solids, we consider three numerical examples. First,
we focus in the prediction accuracy of the estimation time of collision and the
collision resolution for a small group of cubes, less than 100 bodies, falling inside
a funnel. Then, we will simulate a group of 10000 spheres falling inside a cube.
In both examples we consider only elastic collisions and all the bodies have the
same size.Finally, we solve the interaction between a group of 4000 spheres with
different sizes and masses considering a high loss of energy in each collision. For
a large number of bodies, as the last two examples, the bucket sort algorithm is
considered, see Subsection 5.2.3. This algorithm allow us to drastically reduce
the number of operations during a simulation.

7.2.1 50 squares falling into a funnel

In Figures 7.34 and 7.35, fifty squares are falling into a funnel. The squares have
an initial linear and angular velocity imposed. All the collisions are elastic, that
is, there is not a loss of energy in a collision. The number of contacts at the
bottom of the funnel is much bigger than the number of contacts at the top.

7.2.2 10000 spheres falling inside a cube

Inside a cube, 100000 spheres fall due to the gravity force as shown in Figures
7.36 and 7.37. The quantity of contacts that the program has to solve is very
high. This high frequency of collisions is a challenge for the collision detection

94

7.2. RIGID BODIES INTERACTION

Figure 7.34: Fifty cubes falling into a funnel at the beginning of the simulation.

95

CHAPTER 7. NUMERICAL EXPERIMENTS

Figure 7.35: Fifty cubes falling into a funnel at the end of the simulation.

and collision response algorithms.

7.2.3 4000 spheres of different sizes crashing against the
floor

A group of 4000 spheres with different sizes and masses crash against the floor
in Figures 7.38 and 7.39. The spheres fall with a high initial linear velocity.
The different masses of the spheres and the high loss of energy of the collisions
increase the number of collisions of the whole system and complicate the esti-
mated time of collision between the bodies. It is also complex for the bucket
sort algorithm.

7.3 Fluid and rigid bodies interaction (collisions)

In this last section we solve two problems that include the fluid and rigid body
interaction as well as the rigid bodies interacting among themselves.

In a first example, we will reproduce the drafting, kissing and tumbling phe-
nomenon for two interacting spheres considering impulses to solve the contact
between the spheres. The kinematics of the spheres reproduce the positions
obtained in other publications. The same scenario will be considered for the
second example; however, this time there will be eight spheres interacting with
fluid. At the end, separation of spherical bodies in a rectangular microchannel
will be simulated. The results are compared to analytic and experimental data.

96

7.3. FLUID AND RIGID BODIES INTERACTION (COLLISIONS)

Figure 7.36: 10000 spheres falling inside a square at the beginning of the simu-
lation.

97

CHAPTER 7. NUMERICAL EXPERIMENTS

Figure 7.37: 10000 spheres falling inside a square at the end of the simulation.

7.3.1 Drafting, kissing and tumbling for two interacting
spheres

Consider two spheres with densities of 1.14g/cm3 and a radius of 0.083cm falling
due to the gravity inside a fluid in a rectangular channel of 1cm × 1cm × 4cm.
The spheres are located at the positions [0.5cm, 0.5cm, 3.5cm] and [0.5cm,
0.5cm, 3.16cm] inside the channel. The fluid has a density of 1.0g/cm3 and a
viscosity of 0.01g/(cm s). The problem is discretized using a mesh of 5 millions
of elements.

During the simulation, the sphere located at the top will increase its velocity
respect to the sphere located at the bottom as a consequence of the lower drag
that the top sphere experiments, the drafting phenomenon. At some point of the
simulation both spheres will be in contact, the kissing contact. In a Newtonian
fluid, this contact produces an unstable state and as result the particles tumble.

In Figure 7.40 we can see that the positions of the spheres at different time
steps of the simulation in the z axis. The kinematics reproduces the positions
obtained in [7] and [67] as shown in Figure 7.41.

7.3.2 Drafting, kissing and tumbling for more than two
interacting spheres

In order to show that our implementation is capable of handling more spheres
we consider the same domain and fluid described above now with eight spheres

98

7.3. FLUID AND RIGID BODIES INTERACTION (COLLISIONS)

Figure 7.38: 4000 spheres crashing against the floor at the beginning of the
simulation.

99

CHAPTER 7. NUMERICAL EXPERIMENTS

Figure 7.39: 4000 spheres crashing against the floor at the end of the simulation.

100

7.3. FLUID AND RIGID BODIES INTERACTION (COLLISIONS)

Figure 7.40: Comparison of positions of the spheres at different time steps of
the simulation in the z axis obtained in our work and in [7].

inside the fluid. As before, the problem is discretized using a mesh of 5 millions
of elements.

The positions of the spheres at different time steps of the simulation are
shown in Figure 7.42.

7.3.3 Separation of bodies in square microchannels

It has been demonstrated that the inertial effects of the fluid flow in microchan-
nels are important in many biomedical and environmental applications that
include bodies separation, and bio-bodies focusing, see [68, 69].

For squares microchannels, spherical bodies tend to focus on four equilibrium
positions considering laminar flows without any external force, see Figure 7.43.
Inertial migration towards these four equilibrium positions is due to two lift
forces exerted on the surface bodies:

� A “wall effect” force that moves the bodies away from the wall

� A shear gradient force that moves the bodies away from the center of the
channel towards the wall.

Consider the square face perpendicular to the primary flow direction cen-
tered at [0, 0]. Then, the equilibrium positions will be located at [0, p], [0,−p],
[p, 0] and [−p, 0], where 0 ≥ p ≥ h/2 and h is the size of the square face side as
illustrated in Figure 7.44. The focusing increases as the Reynolds number and
the distance traveled by the bodies increase.

101

CHAPTER 7. NUMERICAL EXPERIMENTS

0 0.5 10
0.5

1
0

0.5

1

1.5

2

2.5

3

3.5

4

position at t = 0.0, 0.3, 0.45, 0.7

Figure 7.41: Positions of the spheres at different time steps of the simulation.

102

7.3. FLUID AND RIGID BODIES INTERACTION (COLLISIONS)

0
0.5

1
0

0.5

1

0

0.5

1

1.5

2

2.5

3

3.5

4

0
0.5

1
0

0.5

1

0

0.5

1

1.5

2

2.5

3

3.5

4

0
0.5

1
0

0.5

1

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 7.42: Positions of the spheres at the time steps 0, 0.20 and 0.25 of the
simulation.

flow principal direction
random input

equilibrium positions

Figure 7.43: Spherical bodies focus at four equilibrium positions in squares
microchannels.

103

CHAPTER 7. NUMERICAL EXPERIMENTS

(0,0) (p,0)(−p,0)

(0,p)

(0,−p)

h

Figure 7.44: Equilibrium positions in the microchannel considering the square
face perpendicular to the primary flow direction.

Γ2Γ1

Figure 7.45: Considered periodic boundaries.

In our simulation, there are eight bodies with a diameter of 9µm inside a
50µm wide square channel that contains water. The Reynolds number of the
problem is similar to 60. The geometry and physics details of the problem are
obtained from [68].

In order to reduce the size of the problem, periodic conditions are considered
for the bodies and the fluid. Suppose that the periodic conditions are imposed
on boundaries Γ1 and Γ2 shown in Figure 7.45, then the velocity on Γ1 is equal
to the velocity on Γ2. The final length of microchannel will be 200µm.

At the implementation level, the periodic conditions require that any node n
that discretizes Γ1 and Γ2 has its whole element and node connectivities defined,
Cele(n) and Cnod(n) respectively. That is, any node n that discretizes Γ1 has
to add the connectivity of its corresponding node that discretizes Γ2 and vice
versa. The idea is illustrated in Figure 7.46. In a parallel context, the addition
of the whole connectivities for periodic nodes is a complex issue and requires a
careful modification of their connectivities.

Also, each body in the simulation has a copy of itself. This copy allow us to
properly find the set of fringe nodes and impose the body boundary velocity on
the fluid when the body is near or over the boundaries Γ1 and Γ2, see Figure
7.47. Thus, we actually have sixteen bodies in our simulation.

The discretization of the square channel uses 500000 hexahedral elements.
The periodicity of the bodies across the channel is shown in Figure 7.48 at
a given time of simulation. The positions of the bodies at the square face

104

7.3. FLUID AND RIGID BODIES INTERACTION (COLLISIONS)

corresponding elements

corresponding periodic node

corresponding nodes
n
∈ Cnod(n)

∈ Cele(n)

Γ2Γ1

Figure 7.46: Added element and node connectivities for the periodic node n.

Γ2Γ1
same body

Figure 7.47: Body replication at the periodic boundaries.

of microchannel at the beginning and at the end of simulation are shown in
Figure 7.49. The bodies positions are shown together with the four equilibrium
positions obtained analytically in [70]. The positions at the begging of the
simulation (top) and at the end of the simulation (bottom) are shown in Figure
7.50. All these results are similar to the results obtained in [68].

105

CHAPTER 7. NUMERICAL EXPERIMENTS

400 800 1200

VELOC Magnitude

0 1.56e+03

Figure 7.48: Bodies at the periodic boundaries during the simulation.

Figure 7.49: Positions of the bodies in the microchannel considering the square
face perpendicular to the primary flow direction. The crosses indicate the posi-
tions at the beginning.

106

7.3. FLUID AND RIGID BODIES INTERACTION (COLLISIONS)

1000

2000

VELOC Magnitude

0

2.46e+03

1000

2000

VELOC Magnitude

0

2.46e+03

Figure 7.50: Positions of the bodies in the microchannel considering the square
face perpendicular to the primary flow direction. (Top) Bodies at beginning of
the simulation. (Bot.) Bodies at the end of the simulation.

107

8
Conclusions and future work

In this thesis, the main aim is to contribute to the numerical simulation of the
interaction of a fluid and and a number of rigid bodies considering a distributed
memory environment. The interaction is based on the embedded boundary
mesh concept. Here, the fluid is discretized using a non body-conforming mesh
and the boundaries of the bodies are embedded in this mesh and geometrically
tracked by means of moving polyhedral surface meshes.

8.1 Achievements

Within an embedded boundary mesh context, two new approaches to deal with
the interaction of a fluid and a rigid body have been presented. They basically
differ in the way velocities from the solid are imposed on the fluid interface.

The first approach, an updated body-fitted one (UBF), implies the move-
ment of nodes onto the body surface to conform with its current position at
the previous time step. The second, a non body-fitted approach (NBF), uses
interpolation to impose velocities on the rigid body surface on the fluid. In
both cases, the FMALE framework is considered to deal with the new fluid
nodes appearing at each time step. A new method of interpolation within this
framework has been implemented. Also, the mass conservation is imposed by
solving a minimization problem under a mass conservation constraint.

Both UBF and NBF new approaches have been tested by using numerical
experiments and their accuracies have been studied. Regarding convergence,
assessed by solving a manufactured solution example, the UBF approach seems
to outperform the NBF one. However, the last method remains competitive
whenever a high order interpolation is considered. Both methods are also ca-
pable of closely reproducing the final velocity of the Stokes problem. In a more
complex example, the movement of a rigid body produced by resonance with
the frequency of vortices is simulated. Both approaches are able to detect the
initiation and describe the development of the body movement. Although it
could be said that the UBF approach is more accurate in a general sense, the
NBF approach usually gives reasonably accurate results too. In addition, it
has to be mentioned that the last one is better in principle when considering
computational cost and robustness. We also proof that the scalability of the
fluid solver is not affected significantly considering both approaches.

More complex problems have been considered. The simulation of two bileaflet
mechanical heart valves, with a complex geometry domain and where the Reynolds
number of the flow varies from 0 to nearly 6000. The reproduction of the
“drafting, kissing and tumbling” phenomenon that includes the resolution of
the collisions between the bodies. And the separation of spherical bodies in a

109

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

rectangular microchannel. All the results obtained in these simulations have
been compared with the data obtained in other studies.

In the implementation of these two new approaches, we include the solution
of the interactions between the bodies. Although, all the subdomains simulate
the interaction of all the particles and redundant work is done, the implementa-
tion has to be done in such way that each subdomain solves these interactions
as fast as possible.

Also, a new framework for the fluid-structure interaction was described in
a new formal definition using the set notation and considering a distributed
memory environment. This framework can be generalized to other applications
and allow us to elucidate the data structures and algorithms involved in a precise
fashion.

8.2 Future Lines of Research

There are a lot of possibilities for research in the numerical simulation of the
interaction of a fluid and a rigid body within an embedded boundary mesh
context. Based on the work presented in this thesis, some suggestions for future
research are presented below:

• To study more in depth the parallel behaviour of both approaches in order
to improve their execution times.

• To develop numerical strategies (e.g. wall law) in order to be able to
simulate turbulent flows.

• To improve the movement of nodes in order to allow the mesh to adapt
to the boundary meshes of the bodies considering less levels of free nodes.
Thus, the UBF approach will improve its robustness.

• To consider the possibility of remeshing in a distributed memory environ-
ment in order to improve the quality of the results for both approaches.

110

Bibliography

[1] C. Samaniego, G. Houzeaux, E. Samaniego, M. Vázquez, Parallel em-
bedded boundary methods for fluid and rigid-body interaction, Computer
Methods in Applied Mechanics and Engineering 290 (2015) 387–419.

[2] E. Casoni, A. Jérusalem, C. Samaniego, B. Eguzkitza, P. Lafortune,
D. Tjahjanto, X. Sáez, G. Houzeaux, M. Vázquez, Alya: computational
solid mechanics for supercomputers, Archives of Computational Methods
in Engineering (2014) 1–20.

[3] H. Owen, G. Houzeaux, C. Samaniego, A. Lesage, M. Vázquez, Recent
ship hydrodynamics developments in the parallel two-fluid flow solver alya,
Computers & Fluids 80 (2013) 168–177.

[4] G. Houzeaux, H. Owen, B. Eguzkitza, C. Samaniego, R. de la Cruz, H. Cal-
met, M. Vázquez, M. Ávila, Developments in Parallel, Distributed, Grid
and Cloud Computing for Engineering, Vol. volume 31 of Computational
Science, Engineering and Technology Series, Saxe-Coburg Publications,
2013, Ch. Chapter 8: A Parallel Incompressible Navier-Stokes Solver: Im-
plementation Issues, pp. 171–201.

[5] H. Owen, G. Houzeaux, C. Samaniego, F. Cucchietti, G. Marin, C. Tripi-
ana, H. Calmet, M. Vázquez, Two fluids level set: High performance sim-
ulation and post processing, in: 2012 SC Companion: High Performance
Computing, Networking, Storage and Analysis (SCC), IEEE, Salt Palace
Convention Center, Salt Lake City, UT, 2012, pp. 1559–1568.

[6] G. Houzeaux, C. Samaniego, H. Calmet, R. Aubry, M. Vázquez, P. Rem,
Simulation of magnetic fluid applied to plastic sorting, The Open Waste
Management Journal 3 (2010) 127–138.

[7] R. Glowinski, T. W. Pan, T. I. Hesla, D. D. Joseph, J. Périaux, A fictitious
domain approach to the direct numerical simulation of incompressible vis-
cous flow past moving rigid bodies: Application to particulate flow, Journal
of Computational Physics 205 (2001) 363–426.

[8] M. Behr, T. Tezduyar, The shear-slip mesh update method, Computer
Methods in Applied Mechanics and Engineering 174 (3) (1999) 261–274.

[9] R. Codina, G. Houzeaux, Implementation aspects of coupled problems in
cfd involving time dependent domains, Verification and Validation Methods
for Challenging Multiphysics Problems (2006) 99–123.

[10] S. Feghali, E. Hachem, T. Coupez, Monolithic stabilized finite element
method for rigid body motions in the incompressible navier-stokes flow:
Monolothic sfem for fsi, European Journal of Computational Mechan-
ics/Revue Européenne de Mécanique Numérique 19 (5-7) (2010) 547–573.

111

BIBLIOGRAPHY

[11] C. Farhat, V. K. Lakshminarayan, An ale formulation of embedded bound-
ary methods for tracking boundary layers in turbulent fluid–structure in-
teraction problems, Journal of Computational Physics 263 (2014) 53–70.

[12] D. Owen, C. Leonardi, Y. Feng, An efficient framework for fluid–structure
interaction using the lattice boltzmann method and immersed moving
boundaries, International Journal for Numerical Methods in Engineering
87 (1-5) (2011) 66–95.

[13] T. Rabczuk, R. Gracie, J.-H. Song, T. Belytschko, Immersed particle
method for fluid–structure interaction, International Journal for Numer-
ical Methods in Engineering 81 (1) (2010) 48–71.

[14] S. Idelsohn, E. Onate, F. Del Pin, N. Calvo, Fluid–structure interaction
using the particle finite element method, Computer Methods in Applied
Mechanics and Engineering 195 (17) (2006) 2100–2123.

[15] F. Habbal, The optimal transportation meshfree method for general fluid
flows and strongly coupled fluid-structure interaction problems, Ph.D. the-
sis, California Institute of Technology (2009).

[16] A. Quarteroni, A. Valli., Domain Decomposition Methods for Partial Dif-
ferential Equations, Oxford Science, 1999.

[17] J. J. C. W. W. Charlesworth, D. C. Anderson, The domain composi-
tion method applied to poisson’s equation in two dimensions, International
Journal for Numerical Methods in Engineering 37 (1994) 3093–3115.

[18] G. Houzeaux, R. Codina, A chimera method based on a dirich-
let/neumann(robin) coupling for the navier-stokes equations, Computer
Methods in Applied Mechanics and Engineering 192 (31-32) (2003) 3343–
3377.

[19] G. Houzeaux, B. Eguzkitza, R. Aubry, H. Owen, M. Vázquez, A chimera
method for the incompressible navier–stokes equations, International Jour-
nal for Numerical Methods in Fluids 75 (3) (2014) 155–183.

[20] B. Eguzkitza, Hermesh: a geometrical domain composition method in com-
putational mechanics, Ph.D. thesis, Universitat Politènica de Catalunya.
Departament d’Arquitectura de Computadors (2014).

[21] C. A. Rivera, M. Heniche, F. Bertrand, R. Glowinski, P. A. Tanguy, A
parallel finite element sliding mesh technique for the simulation of viscous
flows in agitated tanks, International Journal for Numerical Methods in
Fluids 69 (3) (2012) 653–670.

[22] S. Tanaka, K. Kashiyama, Ale finite element method for fsi problems with
free surface using mesh re-generation method based on background mesh,
International Journal for Numerical Methods in Fluids 20 (2006) 229–236.

112

BIBLIOGRAPHY

[23] C. Peskin, Flow patterns around heart valves: a numerical method, Journal
of Computational Physics 10 (1972) 252–271.

[24] R. Glowinsky, T. Pan, J. Périaux, A fictitious domain method for external
incompressible viscous flow modelled by navier-stokes equations, Computer
Methods in Applied Mechanics and Engineering 111 (1994) 133–148.

[25] P. A. T. F. Bertrand, F. Thibault, A three-dimensional fictitious domain
method for incompressible fluid flow problems, International Journal for
Numerical Methods in Fluids 25 (1997) 719–736.

[26] R. Löhner, J. D. Baum, E. Mestreau, et al., Adaptive embedded unstruc-
tured grid methods, International Journal for Numerical Methods in Engi-
neering 60 (2004) 641–660.

[27] D. Schillinger, L. Dedè, M. A. Scott, J. A. Evans, M. J. Borden, E. Rank,
T. J. Hughes, An isogeometric design-through-analysis methodology based
on adaptive hierarchical refinement of nurbs, immersed boundary methods,
and t-spline {CAD} surfaces, Computer Methods in Applied Mechanics and
Engineering 249–252 (0) (2012) 116–150.

[28] T. Hughes, J. Cottrell, Y. Bazilevs, Isogeometric analysis: Cad, finite ele-
ments, nurbs, exact geometry and mesh refinement, Computer Methods in
Applied Mechanics and Engineering 194 (39–41) (2005) 4135–4195.

[29] R. Codina, G. Houzeaux, H. Coppola-Owen, J. Baiges, The fixed-mesh
ale approach for the numerical approximation of flows in moving domains,
Journal of Computational Physics 228 (5) (2009) 1591–1611.

[30] J. Baiges, R. Codina, H. Owen, The fixed-mesh ale approach for the nu-
merical simulation of floating solids, International Journal for Numerical
Methods in Fluids 67 (8) (2011) 1004–1023.

[31] A. S. Jan Bender, Constraint-based collision and contact handling using
impulses, Proceedings of the 19th international conference on computer
animation & social agents, Geneva (Switzerland).

[32] D. Baraff, An Introduction to Physically Based Modeling: Rigid Body Sim-
ulation II. Nonpenetration Constraints, SIGGRAPH Course Notes, 2001.

[33] T. Heister, A massively parallel finite element framework with application
to incompressible flows, Ph.D. thesis, Niedersächsische Staats-und Univer-
sitätsbibliothek Göttingen (2011).

[34] W. Bangerth, C. Burstedde, T. Heister, M. Kronbichler, Algorithms and
data structures for massively parallel generic adaptive finite element codes,
ACM Trans. Math. Softw. 38 (2) (2012) 14:1–14:28.

113

BIBLIOGRAPHY

[35] G. Houzeaux, J. Pŕıncipe, A variational subgrid scale model for transient
incompressible flows, International Journal of Computational Fluid Dy-
namics 22 (3) (2008) 135–152.

[36] T. J. R. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-
to-Neumann formulation, subgrid scale models, bubbles and the origins of
stabilized methods, Computer Methods in Applied Mechanics and Engi-
neering 127 (1995) 387–401.

[37] G. Houzeaux, M. Vázquez, R. Aubry, J. Cela, A massively parallel frac-
tional step solver for incompressible flows, Journal of Computational
Physics 228 (17) (2009) 6316–6332.

[38] G. Houzeaux, R. Aubry, M. Vázquez, Extension of fractional step tech-
niques for incompressible flows: The preconditioned orthomin(1) for the
pressure schur complement, Computers & Fluids 44 (2011) 297–313.

[39] R. Löhner, F. Mut, J. Cebral, R. Aubry, G. Houzeaux, Deflated precon-
ditioned conjugate gradient solvers for the pressure-poisson equation: Ex-
tensions and improvements, International Journal for Numerical Methods
in Engineering 87 (2011) 2–14.

[40] O. Soto, R. Löhner, F. Camelli, A linelet preconditioner for incompressible
flow solvers, International Journal of Numerical Methods for Heat & Fluid
Flow 13 (1) (2003) 133–147.

[41] T. C. Fung, Numerical dissipation in time-step integration algorithms for
structural dynamic analysis, Progress in Structural Engineering and Ma-
terials 5 (3) (2003) 167–180.

[42] B. Mirtich, Fast and accurate computation of polyhedral mass properties,
J. Graph. Tools 1 (2) (1996) 31–50.

[43] C. Hecker, Physics, Part 4: The Third Dimension, Game Developer Mag-
azine, 1997.

[44] D. Baraff, An Introduction to Physically Based Modeling: Rigid Body
Simulation I. Unconstrained Rigid Body Dynamics, SIGGRAPH Course
Notes, 2001.

[45] F. Schornbaum, A real–time capable impulse–based collision response al-
gorithm for rigid body dynamics, Master’s thesis, Friedrich–Alexander–
Universität Erlangen-Nürnberg (2010).

[46] B. V. Mirtich, Impulse–based dynamic simulation of rigid body systems,
Ph.D. thesis, University of California at Berkeley (1996).

[47] B. V. Mirtich, Impulse-based dynamic simulation of rigid body systems,
Ph.D. thesis, University of California, Berkeley (1996).

114

BIBLIOGRAPHY

[48] A. Khamayseh, A. Kuprat, Deterministic point inclusion methods for com-
putational applications with complex geometry, Computational Science &
Discovery 1.

[49] E. Dyllong, W. Luther, W. Otten, An accurate distance-calculation algo-
rithm for convex polyhedra, Reliable Computing 5 (1999) 241–253.

[50] M. W. Heinstein, F. J. Mello, S. W. Attawaya, T. A. Laursen, Contact-
impact modeling in explicit transient dynamics, Computer Methods in Ap-
plied Mechanics and Engineering 187 (2000) 621–640.

[51] C. Förster, W. A. Wall, E. Ramm, Artificial added mass instabilities in
sequential staggered coupling of nonlinear structures and incompressible
viscous flows, Computer methods in applied mechanics and engineering
196 (7) (2007) 1278–1293.

[52] P. Causin, J.-F. Gerbeau, F. Nobile, Added-mass effect in the design of
partitioned algorithms for fluid–structure problems, Computer methods in
applied mechanics and engineering 194 (42) (2005) 4506–4527.

[53] D. A. Field, Laplacian smoothing and delaunay triangulations, Communi-
cations in Applied Numerical Methods 4 (6) (1988) 709–712.

[54] S. H. Lo, A new mesh generation scheme for arbitrary planar d omains,
International Journal for Numerical Methods in Engineering 21 (8) (1985)
1403–1426.

[55] C. V. Deutsch, Geostatistical Reservoir Modeling, Oxford University Press,
2002.

[56] D. Y. Le Roux, C. A. Lin, A. Staniforth, An accurate interpolating scheme
for semi-lagragian advection on an unstructured mesh for ocean modelling,
Tellus (1997) 119–138.

[57] G. Houzeaux, R. Codina, Finite element modeling of the lost foam casting
process tackling back-pressure effects, International Journal of Heat and
Fluid Flow 16 (5) (2005) 573–589.

[58] G. Houzeaux, R. Codina, Transmission conditions with constraints in finite
element domain decomposition method for flow problems, Communications
in Numerical Methods in Engineering 17 (2001) 179–190.

[59] D. P. W. Dettmer, A computational framework for fluid-rigid body inter-
action: Finite element formulation and applications, Computer Methods
in Applied Mechanics and Engineering 195 (2006) 1633–1666.

[60] P. P. Brown, D. F. Lawler, Sphere drag and settling velocity revisited,
Journal of Environmental Engineering 129 (3) (2003) 222–231.

115

BIBLIOGRAPHY

[61] P. Anagnostopoulos, P. Bearman, Response characteristics of a vortex-
excited cylinder at low reynolds numbers, Journal of Fluids and Structures
6 (1) (1992) 39–50.

[62] L. P. Dasi, L. Ge, , H. A. Simon, F. Sotiropoulos, A. P. Yoganathan,
Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric
aorta, Physics of Fluids 19, 067105 (2007) 1–17.

[63] B. Min Yun, C. K. Aidun, A. P. Yoganathan, Blood damage through a
bileafletmechanicalheart valve: A quantitative computational study using
a multiscale suspension flow solver, Journal of Biomechanical Engineering
136, 101009 (2014) 1–17.

[64] I. Borazjani, L. Ge, F. Sotiropoulos, Curvilinear immersed boundary
method for simulating fluid structure interaction with complex 3d rigid
bodies, Journal of Computational Physics 227 (2008) 7587–7620.

[65] K. Dumont, J. Vierendeels, R. Kaminsky, G. Van Nooten, P. Verdonck,
D. BLUESTEIN, Comparison of the hemodynamic and thrombogenic per-
formance of two bileaflet mechanical heart valves using a cfd/fsi model,
Journal of Biomechanical Engineering-Transactions of The Asme 129 (4)
(2007) 558–565.

[66] H. L. Leo, An in vitro investigation of the flow fields through bileaflet
and polymeric prosthetic heart valves, Ph.D. thesis, Georgia Institute of
Technology (2005).

[67] N. Sharma, N. A. Patankar, A fast computation technique for the direct
numerical simulation of rigid particulate flows, Journal of Computational
Physics 205 (2005) 439–457.

[68] D. Di Carlo, D. Irimia, R. G. Tompkins, M. Toner, Continuous inertial fo-
cusing, ordering, and separation of particles in microchannels, Proceedings
of the National Academy of Sciences 104 (48) (2007) 18892–18897.

[69] D. Di Carlo, Inertial microfluidics, Lab Chip 9 (2009) 3038–3046.

[70] E. S. Asmolov, The inertial lift on a spherical particle in a plane poiseuille
flow at large channel reynolds number, Journal of Fluid Mechanics 381
(1999) 63–87.

116

