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Abstract

Gene expression is a complex and highly regulated process. Most of the

regulation is controlled by short DNA sequences that can be bound by

some proteins called transcription factors (TF). Binding to these sites the

transcription factors can start the transcription of mRNA, stop it, or just

control the amount of mRNA produced. The DNA binding sites of these

transcription factors have some specific characteristics: (1) They are short

sequences (2) They can be located anywhere in the genome and (3) they

are degenerated, which means that some mutations in the binding site se-

quence do not alter its binding functionality. These characteristics made

impossible to look for a specific sequence in a specific DNA region and, in

order to find these binding sites, first they have to be modelled.

Due to the importance of gene expression in the study of cell differentiation

and its implication in some genetic diseases, many computational models

and experimental processes trying to describe binding site motifs and then

look for them into a genome have appeared in the last 10 years. The compu-

tational models can be divided into two main groups: the motif discovery

methods which try to find binding sites within a set of co-regulated se-

quences without previous knowledge and the motif search methods which

model the binding sites using previous known motifs and then try to locate

binding sequences that fit the model.

The focus of this thesis is to use the conversion from symbolical to numer-

ical DNA and the previous knowledge of binding site sequences in order

to construct models for DNA motifs. In this context, known multivarite

signal processing techniques can be the ideal tools to construct models that

can take into account interdependences without needing a large number of

sequences or a high computational time.

First a characterization of the transcription factors was performed, using



the relationship TF-gene and also the complexity of the binding sites, and

then two different detectors were built.

The first detector converts the DNA motif matrix into a numerical matrix

and uses a Principal Component Analysis (PCA) to model the binding sites.

The information of the interdependences is calculated using the covariance

which is a second order statistics. The Q-residuals of the PCA model can

be used to distinguish between binding sites and genomic sequences.

The disadvantage of this first model is that it is difficult to interpret. Con-

verting the DNA symbolical matrix into a DNA numerical cube allows the

application of PARAFAC which has a unique solution and is, therefore, eas-

ier to interpret it. Since the PARAFAC models have a biological meaning,

their scores can be combined with the PARAFAC Q-residuals in order to

construct a quadratic detector.
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Introduction

The genetic information of every living organism is contained in the double-helix De-

oxyribonucleic Acid (DNA). This information is encoded in a four letter alphabet com-

posed by the four DNA nucleotides: A, C, G, T.

The basic unit of genetic information is a gene, a relatively short string of DNA nu-

cleotides which contains the information necessary to create proteins, responsible for

most of the cellular processes. The Central Dogma of molecular biology establishes that

the DNA information stored in a gene is first passed to the Ribonucleic acid (RNA) in

a process called transcription, and then translated into proteins.

Although this general view of the information flowing from gene to RNA and then to

protein gives a basic idea of the concepts of gene expression it does not account for the

great complexity of the process. Actually, just a 10% of the human genome is composed

by genes. Many of the remaining 90% contains functional elements that control when,

where, and in which amount a protein is needed in the cell. This regulation of the gene

expression is crucial because many processes like cell differentiation and some responses

to specific signals need a control of the expressed proteins at each specific time.

A more general view is given by the figure 1.1 where the basic steps that go from DNA

to the final protein are explained. In the first part of the figure it can be seen that the

gene is preceded by a non-coding upstream region, in blue, where the elements that

control the transcription bind. This region is called promoter of the gene. The gene

itself also contains some non-coding regions called introns (also represented in blue)

interspersed within the exons or coding regions. When the transcription of the gene

is triggered by the binding of some proteins to the promoter, the RNA polymerase

1



1. INTRODUCTION

Figure 1.1. General description of the processes that lead from DNA to the protein, where the non-

coding sequences are represented blue, and the exons in red and yellow. The DNA sequence is composed

by the promoter and the gene which, in turn, is composed by introns and exons. Both introns and

exons are transcribed and then the mRNA is modified by the splicing process and the mature mRNA

is translated into a protein. Source: http://www.ncbi.nlm.nih.gov/probe/docs/applexpression/

creates a complementary RNA sequence. The result of the transcription of the gene

is the messenger RNA (mRNA) but, as it has still to be processed, in eukaryotes it is

known as the pre-mature mRNA or pre-mRNA which is shown in the second step of

the figure 1.1.

The introns are cut from the pre-mRNA and then the exons are combined to form

the mature mRNA. This process, known as alternative splicing, accounts for the large

diversity of proteins present in the eukaryotic organisms, which largely exceeds the

number of genes or transcript units. The mature RNA is then translated outside the

nucleus where it can be further processed. The final step shown in the figure 1.1 is

the protein synthesis or the translation from mRNA to protein. The ribosome travels

along the mRNA translating the information into an aminoacid chain using the genetic

code, where each unit of three nucleotides, a codon, encodes for an aminoacid. The

genetic code also includes some start and stop codons and is degenerated because dif-

ferent codons can code for the same aminoacid. The resultant polypeptide folds into a

functional protein.

To unravel the basic questions of gene expression, the genomes of the living organisms

2



started to be studied many years ago. In 1995 the first genome of a free living organ-

ism, the bacterium Haemophilus influenzae was published by Craig Venter’s laboratory

(Fleischmann et al., 1995). Since then, a genomics revolution started and the genome of

many organisms has been sequenced. The list of sequenced organisms has grown enor-

mously in the last years, specially since the publication of the human genome (Lander

et al., 2001). Nowadays, many of the questions of biology can only be addressed using

computational analysis of large data. For this reason the published genomes are avail-

able in large Internet databases and biologists, computer scientists and statisticians

collaborate to study them.

18 years ago the International Nucleotide Sequence Database (INSD) was created

with the aim to collect and exchange all publicly available DNA data in the differ-

ent databases. INSD is a collaboration between the Database of Japan (DDBJ), the

European Molecular Biology Labs (EMBL), and the Genbank which is funded by the

U.S. National Institute of Health. The data is exchanged between the three databases

in a daily basis and the major contributors are the individual scientists and the genomic

project groups. Each database uses its own standard format, but other formats such

as FASTA, which is the accepted format in all the analysis software, are considered in

all databases.

EMBL database (Kanz et al., 2005) is located at the European Bioinformatics Institute

(EBI). It has a web-based interface and it includes tools (Blitz, Fasta, Blast) to allow

external users to compare their own sequence against the available data. Most of these

tools are part of the European molecular biology open software suite (EMBOSS), which

is a collection of open-source packages created in order to allow bioinformatics analysis

(Rice et al., 2000). DDBJ is the main nucleotide database in Asia and its data comes

mostly form Japanese researchers (Miyazaki et al., 2004). Genbank (Benson et al.,

2012) is accessible through the NCBI Entrez retrieval system, which integrates data

from the major DNA and protein sequence databases along with taxonomy, genome,

mapping, protein structure and domain information, and the biomedical journal liter-

ature via PubMed. A new release of the database appears every two months.

Some of the most useful databases for bioinformaticians and computational biologists

are part of the ENSEMBL project (Flicek et al., 2011). Started in 1999, this project

includes a gene database, with gene ID, the name and the location in the genome, a

variation database that can show homologs and alignments along many genomes and
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1. INTRODUCTION

also a regulatory database which includes information in a cell-type and in a general

basis about the regulatory regions within a genome and the elements that can be found

there. It is updated regularly and in the current version (ensembl76) there is informa-

tion for more than 60 species. Apart from the databases, the ENSEMBL webtool allows

the use of many tools as biomart which can proportionate a lot of extra information as

the protein or transcript ID for a gene, map it to some external IDs or find homologs

and orthologous genes.

The UCSC Genome browser contains the sequence and working draft for a large col-

lection of genomes. In its genome browsers, there are also annotations about the genes

contained, the splicing sites, the conservation of the sequence among organisms as well

as tools to analyse the genomes. It is mostly important for being the home of the

ENCODE project whose aim is to annotate all the functional sites within the Human

genome using experimental data (Raney et al., 2011) and of the Neanderthal project

which has information about the Neanderthal genome and its similarity with the hu-

man genome (Green et al., 2010).

Databases of some functional parts of the genome also exist. The Eukaryotic Pro-

moter Database (EPD) is an annotated non-redundant collection of eukaryotic POL II

promoters, for which the transcription start site has been determined experimentally

(Périer et al., 2000). It is structured in a way that facilitates the extraction of pro-

moter subsets. The 2012 release contains 4806 promoters of several organisms. The

annotations include many cross-references to EMBL, swiss-prot (a protein database),

other databases and bibliographic references. Since most of the TFBS are located at

the promoter sequence of the regulated genes, this database is of particular interest

when studying TFBS.

1.1 Gene Regulation

The regulation of gene expression can take place at every step, starting at the genomic

level with e.g. gene methylation, and continuing through the transcriptional level,

the translational level until the post-translational level through protein degradation or

modification. Most of the proteins produced just in a tissue or in response to a signal

are regulated at the transcriptional level, because a failure in this first step make all
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1.1 Gene Regulation

the others redundant.

1.1.1 Transcriptional Regulation

The accessibility of DNA sequences to the transcriptional machinery can be controlled

by how the DNA sequences are packed in the cell, this makes chromatin structure a

first and important step in transcriptional regulation of gene expression. The second

step is mediated by some short DNA sequences which are bound by specific proteins

called transcription factors (TF).

1.1.1.1 Chromatin mediated regulation

DNA binds to histones in a structure that is known as chromatin. The basic unit

of chromatin is the nucleosome, which is composed by the DNA wrapped 2 times in

8 histone molecules. This structure is further compacted into a solenoid in order to

prevent genes to transcript. In the active genes the nucleosome structure is simpler or

nucleosomes are simply removed (Mohd-Sarip and Verrijzer, 2004).

In order to allow TF to have access to the regulated genes, the chromatin structure

around the gene should be modified. This is usually done by the chromatin remodelling

factors, which can act in three different ways:

• Altering the association of the histone molecules in the chromosome which allows

the TF to bind.

• Moving the nucleosome along the DNA.

• Displacing the nucleosome to another DNA molecule.

The modification of the histones is not only achieved through the participation of the

remodelling factors. Histones have a complex pattern of post-transcriptional modifi-

cations which interact with each other and alter chromatin structure. One example is

histone acetylation, which is usually found in regions where chromatin is not tightly

packed.
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1.1.1.2 Transcription Factor Biding sites

The cell transcriptional machinery needs a signal in order to know where and when a

protein is needed. A gene embedded in a random DNA would not be expressed because

this signal would not be available. The proteins responsible to give the signal are the

transcription factors (TF) which bind to specific DNA sequences, the transcription

factor binding sites (TFBS). TFBS are usually short sequences, with no more than

20 bp, and degenerated. This means that some non-identical, but similar, sequences

can have the same functionality. Once a TF is bound to a specific site in the DNA, it

interacts with other TFs and also with other molecules in order to signal the amount

of protein needed. One of the main characteristics of TFs is the cooperation between

them in order to regulate gene expression.

TFBS are mostly located at the upstream region of the transcription start site (TSS)

which is called promoter of the gene. In this region two main kinds of binding site

sequences can be found. Those sequences which are directly involved in the process of

transcription and those that are only found on some specific genes. An example of the

first class of DNA binding sites is the TATA box which is found in almost all genes 30

bp upstream of the TSS and that is known to give information about the location of

the TSS. Examples of the second kind of binding sites are the ones that are involved

in the transcription of a gene in a specific tissue or following a specific signal.

Some other binding site sequences are far from the transcription start site and can be

more than 10 Kbp upstream of the regulated gene. Most of them are enhancers or

silencers of transcription. Some others are insulators which do not alter directly the

expression of a gene but block alterations of the DNA structure induced by enhancers

and silencers in order to prevent the transcription of some other gene to be altered.

(Latchman, 2008). In the figure 1.2 the basic picture of transcription is shown with the

involvement of TFBS and chromatin structure. As it can be seen, some DNA regions

have a high density of nucleosomes which make the access to the DNA for TF and other

molecules difficult. The chromatin remodelling factors make some other regions less

tightly packed. In these less-packed regions there are some binding modules where TF

can bind and collaborate to control the transcription. The TATA-box complex, formed

by many transcription associated factors (TAF), indicates where the transcription start
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1.1 Gene Regulation

Figure 1.2. Schema of the mechanisms involved in the transcriptional regulation. The chromatin

remodelling factors unpacked the chromatin in the regions where the genes should be expressed. The

unpacking allows the transcription factor modules to be bound by the collaborating transcription factor

binding sites and the TATA-box that indicates the initiation of transcription (Sandve, 2008).

site of the gene is.

Transcription factors are proteins with different 3-dimensional structures and different

binding domains, which is the part contacting DNA. They can be classified according to

the main characteristics into four basic superclasses: zinc coordinated, Basic domains,

Helix-turn-Helix and β-scaffold. This four superclasses can be divided in classes, fami-

lies and sub-families according to the different binding domains. The main TF families

are:

• Homeobox: All the transcription factors of the homeobox family have a region

of homology of approximately 180 bp. This region encodes for 60 amino-acids

that form an helix-turn-helix motif which is the binding region.

• Cys2His2 zinc finger: These transcription factors have from 7 to 11 atoms of

zinc per molecule, which makes zinc the crucial component of the structure. The

binding region is composed by multiple fingers consisting in an α-helix and an

anti-parallel β-sheet. The name is because each finger also has 2 cysteines and 2

histidines.

• Multi-cysteine zinc finger: These TF are activated by forming a hormone-

receptor complex, and are an example of TF activated by a specific signal.

• Leucine zipper: Leucine zipper are characterized by a Leucine rich region in

which successive Leucine residues occur every seventh amino-acid. The leucine
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rich region is not the DNA binding domain, but it has an indirect structural role

because it forms two symmetric dimers in the adjacent regions which will be the

basic DNA binding domains.

• Helix-loop-helix: The helix-loop-helix is formed by two amphipatic helices con-

taining all the charged amino-acids separated by a non-helical loop. It has a

similar role than leucine zipper allowing dimerization.

Most of the transcriptions factors can be classified into one of the described struc-

tural families, but other families exist with different binding domains and also some

relationships between domains can exist, even if they are not frequent.

1.1.1.3 Post-transcriptional Regulation

The result of the transcription is an mRNA molecule which includes the transcription

of the coding regions, or exons, and the non-coding regions or introns. This is called the

pre-mRNA. As soon as the 5′ end of the nascent transcript is available, the pre-mRNA

processing starts.

The first step is the mRNA capping which consists in altering the 5’ end of the mRNA in

order to prevent its degradation. Still in the nucleus and co-transcriptionally a second

step is performed. The pre-mRNA is modified by means of the alternative splicing. Al-

ternative splicing is a process that separates the introns and the exons of the transcript,

allowing the introns to combine within them in order to form different mature mRNAs

that will finish in different expressed proteins. This process is responsible for the large

diversity of proteins in most eukaryotic organisms. Alternative splicing is controlled by

the binding of the spliceosome, which is a complex of some transcriptional proteins and

small RNAs (sRNAs) to the RNA splicing sites. Similarly to the transcription factor

binding sites, the splicing sites accept some variation in their sequences without loosing

their function, but they usually have a more well conserved 5’ and 3’ sites which are

considered the core of the splicing site sequences. (Proudfoot et al., 2002; Wang and

Burge, 2008).

The mature RNA is then transferred out of the nucleus in order to be translated to pro-

teins. But mRNA levels are only partly correlated with protein expression levels (with

a 40% or a 50% of correlation), because there also is a strong translational regulation.

The translational regulation is specially important when the cell processes need some
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abrupt change in protein expression, which is common in cell response to stress or cell

apoptosis (Mata et al., 2005). This regulation is mainly due to the effect of microRNA

(miRNA) that are small regions of RNA (typically of 20 bp) which bind to partially

complementary sites in the mRNA and repress its expression (Hammell, 2010).

Further steps in the post-transcriptional regulation are the regulation of protein ac-

tivity, for example via the kinase phosphorylation which is a hallmark in signalling

cascades, or protein degradation.

1.2 Experimental determination of binding sites

As the identification of binding sites is a major step in the comprehension of the pro-

tein synthesis, many experimental methods try to characterize them. The variability in

the methods is huge: some of them are applied genome-wide while others can be only

applied to promoter sequences, some of them find regions where protein-DNA interac-

tions are possible without knowing the specific protein while others are only useful for

a specific transcription factor (Elnitski et al., 2006).

The most known technique to find regions of protein-DNA binding is the Deoxyribonu-

clease sensitivity, while, when a specific transcription factor is searched genome-wide,

the most widely used method is the chromatin immunoprecipitation.

1.2.1 DNaseI Sensitivity

Deoxyribonuclease (DNase) is an enzyme that catalyses the hydrolytic cleavage of DNA.

The degree of response from DNA to DNase can be classified as generalized sensitivity

or hypersensitivity. Generalized nuclease sensitivity appears in all the expressed genes

and is correlated with relatively large regions of open chromatin due to the presence

of acetylated histones. Hypersensitivity appears in short DNA stretches (from 100bp

to 400 bp) with extreme sensitivity to the cleavage effects of the enzyme. This effect

is related to functional non-coding regions: promoters, enhancers, silencers, origins of

replication, recombination elements and structural sites of centromers and telomers.

It is associated with the removal of nucleosomes or the presence of modified histones

(e.g. methylated) because they reduce the affinity from DNA to nucleosomes. DNaseI

Hypersensitivity (DHS) has been widely used as a method to discover the presence of
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a binding site when the specific protein is not known because it is a good indicator of

the presence of an active promoter of a gene.

There are different methods to calculate the DNase sensitivity and the accuracy varies

among them, from an error of 500 bp in the first methods of 1980 to the near nucleotide

resolution using quantitative Polymerase chain reaction (qPCR) (Crawford et al., 2004).

More recent techniques have been developed that allow the use of the DNaseI sensitiv-

ity in a genome-wide scale such as quantitative chromatin profiling (Dorschner et al.,

2004) and massively parallel signature sequencing (Thurman et al., 2012).

1.2.2 Promoter analyses

Gene expression experiments can measure the production of a reported protein in re-

sponse to cis-acting regulatory signals, for example using fluorescent proteins. When

a enhancer is inserted into the promoter sequence of the gene, it produces a gain of

function whereas introducing a mutation in a known binding site can produce a loss of

gene production. The main disadvantage of these experiments is that the created cell

lines will not provide an in vivo environment for the cell.

The study of in vivo gene expression is more technically difficult but it can provide

conclusions that are not possible with cultured cells, such as the action of a specific

transcription factor in a specific biological pathway (Hallikas et al., 2006).

1.2.3 Protein Binding assays

1.2.3.1 EMSAs

Electrophoretic mobility shift assay (EMSA) are the historically way to report the

interactions between DNA and proteins. It is based on the idea that the mobility

of a protein-DNA complex is less than the mobility of the free DNA. Usually these

assays are performed for qualitative purposes but under some conditions quantitative

data of the binding strength can also be retrieved from the experiments (Hellman and

Fried, 2007). In the assay, solutions of protein and nucleic acids are combined and the

mixtures are then subjected to electrophoresis through a polycramide gel. Typically

the protein bound DNA will migrate slower than the free nucleic acid. The technique

is simple and robust but it also has some disadvantages. The most important ones
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are that the electrophoretics shifts depend on more things than simply the molecular

weight of the bound protein, that the electrophoresis is not performed in a chemical

equilibrium of the protein-DNA complexes and that, once a protein-DNA complex is

found, it is not straightforward to find the binding sites within the genome.

1.2.3.2 ChIP assays

Chromatin immunoprecipitation is the most used experimental technique to determine

whether proteins bind to specific regions of the chromatin in vivo. The steps of the

Chromatin immunoprecipitation experiments which can be observed in the figure 1.3

are the following (Carey et al., 2009):

1. The living cells are cross-linked using formaldehyde which serves to fix protein-

DNA interactions and then they are lysed.

2. The chromatin is sheared into short fragments (0.2-1 Kb) using sonication or

enzymatic digestion.

3. The protein bound DNA fragments are then immunoprecipitated using the spe-

cific antibodies.

4. Cross-linking is reversed.

5. DNA is purified and assayed to determine the sequence bound by the protein.

Two main techniques allow to characterize genome wide binding sites. First the ChIp-

chip which combines the ChIP with DNA micro-arrays appeared and, more recently,

the ChIP-seq that uses next generation massive parallel sequencing.

In the ChIP-chip experiments (Ren et al., 2000) after the immunoprecipitation a Poly-

merase chain reaction (PCR) is used in order to to amplify the DNA signal. Then, the

IP-enriched DNA is labeled with a fluorescent molecule and genomic DNA prepared

from the ChIP input is used as a reference and labeled with a different fluorescent

molecule. The two probes are then combined and hybridized to a single DNA micro-

array. The results of the hybridization allow one to identify which segments of the

genome were enriched in the IP. Since the precise location of each arrayed element

is known, construction of a genome-wide map of in vivo protein-DNA interactions is

possible.
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Figure 1.3. Steps of the ChIP experiments. First the DNA is cross-linked with formaldehyde and then

the cell lysis is performed. The chromatin is fragmented and the fragments are immunoprecipitated

using specific antibodies. Finally DNA is purified and some technique is applied in order to know the

DNA sequences bound by the protein (Collas and Dahl, 2008)
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Although ChIP-chip allows the genome-wide identification of binding sites, ChIP-seq is

now becoming the most used technique because of its high-resolution, cost-effectiveness

and the ability to sequence millions of bases in a short time. In this technique, the DNA

fragments obtained from the ChIP experiments are sequenced using the next generation

genome sequencers and the results are then mapped to the reference chromosome.

1.2.4 Transcription Factor Binding Sites Databases

Some databases collect the experimental found binding sites for the transcription fac-

tors. The most used TFBS databases are TRANSFAC which has a public and a com-

mercial release and JASPAR which is entirely public. But also smaller databases of

transcription factor motifs exists. These databases are useful to model binding sites, to

predict their position within the genomes and to construct the transcriptional network

that regulates the expression of a gene.

1.2.4.1 TRANSFAC Database

TRANSFAC database is a database of manually annotated and experimentally proven

binding sites that also provides data about the consensus sequences, the binding pro-

files and the regulated genes. The public version of TRANSFAC 7.0 (2005) contains

data for 2397 genes and 6133 factors (7915 sites) and is available for non-commercial

purposes.

The first version of TRANSFAC database appeared in 1988, when the importance of

gene regulation and, specially, of the transcription factor binding sites became obvious.

The aim of the database was to incorporate the quickly growing number of binding

sites that were collected and map them into the corresponding promoter. Since then,

TRANSFAC has become a large database of binding sites. Data in TRANSFAC is

organized by transcription factors and in each transcription factor there is included

information about all the known sites and the experimental method used to retrieve

them, the gene regulated and the position of the binding sites related to the transcrip-

tion start site (Wingender, 2008).

Few years ago, TRANSFAC became part of the biobase company and the new versions

from TRANSFAC are not publicly available. Apart from an increasing collection of
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binding sites, the new TRANSFAC versions also include micro-RNA information, be-

cause the scope has been expanded from the study of transcriptional networks to the

study of gene-regulation networks. Nowadays the TRANSFAC professional database

has data available for 18211 factors (including miRNA), 34742 sites and information

about the 70869 genes from different organisms controlled by these TF.

Two new databases associated with TRANSFAC have been released, the TRANScom-

pel which studies the physical and functional interactions between transcription factors

and the TRANSpath which can be used to study gene pathways.

1.2.4.2 JASPAR Database

JASPAR database is the largest open-access collection of transcription factor binding

sites (Mathelier et al., 2014). The JASPAR core database includes a curated non-

redundant set of profiles for binding sites of multicellular eukaryotes that come from

published articles, mainly fro in vitro experiments, but with the development of Chip-

seq methods, some published chip-seq datasets have also been added to the database.

The current version has profiles from 590 transcription factors from different organisms

including vertebrates, plants, fungi, insects, nematodes and urochordata. The data is

organized in a matrix way, so it is easy to model the binding motif and look for bind-

ing sites within genomic sequences. The data for each transcription factor includes the

binding sequences, the name of the transcription factor, its family and the methodology

used to construct the matrix.

Besides the JASPAR core database, JASPAR also includes many separate collections

from matrix profiles that cannot be included into the core database because they don’t

fit the criteria. For example the JASPAR family which includes 11 profiles with the

shared properties of the structural classes of TF, the JASPAR phylofacts which includes

174 profiles extracted from phylogenetic studies or other databases which are non-TF

binding profiles. The total number of profiles including JASPAR core and the other

collections is 840.

The new version of JASPAR can also be explored using new developed packages, as

BioPython and a new R tool, which allow an easy access to all the information stored

in the database.
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1.2.4.3 Other Databases

Smaller public databases of binding sites exist. One example is the ABS database which

includes data of experimentally verified binding sites identified from the promoters of

orthologous vertebrate genes. The database includes a total of 100 orthologous genes

and 610 binding sites corresponding to 68 transcription factors (Blanco et al., 2006).

Mapper is a database of 1079 built models to describe different transcription factors

and it also includes the annotations of their positions within the genome. The data

comes from human, mouse, fly and worm genomes (Marinescu et al., 2005).

VISTA is a database of distant-acting enhancers in human and mouse genomes. The

enhancer candidates are chosen between highly conserved sequences or ChIP-seq data

and then they are verified in vivo. When the in vivo validation works, a map with the

expression of the enhanced genes is also provided (Visel et al., 2007).

Another database, focused in one organism, is the RedFly 2.0 database which in-

corporates the information about all the verified regulatory modules in Drosophila

melanogaster, the affected genes and the expression patterns that they direct (Gallo

et al., 2011).

1.2.5 Interaction Databases

Cell processes are mainly regulated by complex protein-protein interactions which can

be described as protein interacting networks. These interactions can be physical inter-

actions between proteins, genetic interactions, or also interactions known to catalyse

consecutive steps in a cell pathway.

Even though the construction of databases that describe these interactions is compli-

cated, the network view of the genome has become increasingly popular and many

public databases try to annotate the different protein interactions. Most of them only

take into account direct physical interactions, but others try to annotate all the func-

tional interactions between proteins.

This databases can give a systems biology view of the transcriptional regulation, giving

information about the physical interactions between binding sites that govern a gene

regulation. They also can give information about where in a pathway a transcriptional

regulation is important.
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Figure 1.4. Network of protein interactions for the F7 human protein provided by the STRING

database. The described interactions come from different sources: experimental verification, text min-

ing, databases, co-expression, etc. Each colour represents a different kind of interaction.

One of the databases that integrate physical and functional interactions is the search

tool for the retrieval of interacting genes (STRING) (Szklarczyk et al., 2011). STRING

integrates data from many sources, as experimental data, database search, text mining,

co-expression, homology, co-occurrence and neighbourhood, to provide the functional

interactions for a given protein. The main advantages of STRING are that it incor-

porates an scoring scheme to show the reliability of each interaction and also that it

has a user-friendly interface. Given a protein, STRING outputs a network of protein

interactions and a list of the interacting proteins, its function, the sources of the inter-

action and the confidence score. This confidence score is benchmarked independently

for each source and then a combined score is computed. One example of the network

constructed by string can be seen in the figure 1.4 where the F7 interaction network

is shown. The different colours of the edges represent different kinds of interactions.

The last version of STRING provides data for 1100 genomes, going from bacteria to

humans.

On the other hand the molecular interaction (MINT) database focuses on the pure

physical protein interactions (Chatr-aryamontri et al., 2007). Unlike in the STRING

database, the data in MINT only includes experimental interactions extracted from

published papers and the inferred interactions are excluded. Nowadays MINT includes
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over 95000 physical interactions between 27461 proteins from 325 organisms. Most of

the interactions, a 90% of them, come from genome-wide experiments.

The Biological General Repository for Interaction Datasets (BioGRID) is a public

database that includes genetic and physical interactions (Stark et al., 2011). The 3.1.93

release has 375704 non-redundant interactions and 557934 raw interactions from major

model organisms as Saccharomyces cerevesiae, Arabidopsis thaliana and Homo sapiens.

Current efforts are focused on the areas relevant to human health. It also incorporates

a web interface to look for the interactions of a specific protein and to download the

data.

Many other databases exists, and many of them are included in PSIQUIC which is

focused in molecular interactions. PSIQUIC is a tool that looks at many interac-

tion databases (including protein-protein interactions) and gives the results for all the

databases in a single search (Aranda et al., 2011).

A useful application in order to understand the interaction between transcription fac-

tors and their regulated genes is the Sabiosciences database, which combines a text

mining algorithm with the annotations in the USC genome browser in order to find the

regulated genes for a transcription factor.

1.3 ENCODE project

The Encyclopedia of DNA elements(ENCODE) is a project funded by the National

Human Genome Research Institute whose aim is to identify all regions of transcription,

transcription factor association, chromatin structure and histone modification in the

human genome sequence. Summarizing, the project wants to find all the functional

sites within the human genome and to make them publicly available, because the com-

prehension of these sites is of crucial importance in biomedical research.

It started in 2003 with the collaboration of a consortium of computational and laboratory-

based scientists. In the pilot phase of the project a 1% of the human genome (30 Mb)

was analysed. As many functional genomic elements are only active in certain cell types

or in response to certain signals, the analysis was performed using different cell types

(ideally it should be performed in all the cell types at every stage of development).

This pilot phase was useful in order to evaluate the strategies for identifying various
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types of genomic elements by means of high-throughput technologies (Material et al.,

2004).

The second phase of the project started in 2007 and lasted 5 years, the objective was

to interrogate the complete human genome. In the year 2012 the initial analysis of

1640 datasets involving 147 cell types have been published (Dunham et al., 2012). The

results show that 80% of the components of the human genome have at least one bio-

chemical function associated with them, which means that they participate in at least

one RNA or chromatin associated event. This is much more than the 8% of bases

under negative selection pressure that were expected to be functional from previous

estimations. In the ENCODE initial results it is also shown that more than the 99%

of the genome lies within a 1.7 Kb distance from a ENCODE annotated element and

that a 95% of the genome is less than 8 Kb far from a DNA-protein interaction.

A manual catalogue of coding and non-coding DNA has been constructed, the GENECODE.

And it has been observed that the protein-coding genes cover only a 2.94% of the

genome, while the transcribed region is much larger. Additionally 119 DNA-binding

proteins and some RNA polymerase components have been located in 72 different cell

types using ChIP-seq.

A computational study of the ENCODE experimental results correlates quantitatively

the RNA production with the chromatin modification and the transcription factor bind-

ing. The study of the location of 117 TF in five cell lines states that binding sites are

not randomly distributed along the genome and that most transcription factors have

collaborative associations that can be measured through co-ocurrence of the sites in the

genome. The genome has been divided into 6 genomic regions according to three differ-

ent criteria: (1) Binding active regions (BAR) and binding inactive regions (BIR) (2)

Promoter-proximal regulatory modules (PRM) and gene-distal modules (DRM) and (3)

High occupancy of TF regions (HOT) and low occupancy of TF regions (LOT). BAR

are regions with a high amount of binding sites, and the presence of them is correlated

with the gene density of a DNA region. The HOT and LOT regions are defined accord-

ing to the region specific likelihood of co-ocurrence of TFBS. This means that HOT

regions are defined as regions with a high co-occurrence of TFBS that only co-occur in

this region. For instance, co-occurrences like the TATA-box that occur genome-wide

are not taking into account in order to define HOT and LOT regions. Most of the HOT

regions (approximately a 70%) are within 10 Kbp of a gene and only a 50% of the LOT
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regions are close to overlap a gene. In the promoter regions the levels of association are

higher than in the intergenic regions, but in the last ones, more specific associations

can be found. (Yip et al., 2012)

The individual variations of the genome have been also studied by the project and it

has been found that many functional variants within individual genomes lie in non-

coding regions, and that most of them are found functional sites. This encourages

to perform a whole-genome sequencing instead of a exon sequencing in the study of

rare diseases. The study of 4860 single nucleotide polymorphisms (SNPs) associated

to a disease by a Genome-wide association study (GWAS) also revealed that a 12%

of these SNPs overlap with transcription factor binding sites and that a 34% overlap

with DNase hypersensitivity regions (Dunham et al., 2012). These findings enhance

the need for tools able to recognize TFBS into large genomic sequences, since the mu-

tations occurring in genes are not sufficient to understand the causes of many diseases

or interesting phenotypes.

The results of the functional elements found by the ENCODE project are annotated

in the UCSC genome browser (Raney et al., 2011). The annotation includes sequences

with quality scores, alignments, signals calculated from the alignments, and in most

cases, element or peak calls calculated from the signal data. Each data set is available

for visualization and download via the UCSC Genome Browser and it can also be re-

trieved using a meta-data system that captures the experimental parameters of each

assay.

1.4 Sequence alignment

Sequences that have evolved from the same ancestor sequence are called homolog se-

quences. Even though they have diverged due to mutations, insertions and deletions

occurred in the different genomes, they are thought to share a similar function and also

most of their nucleotides. The concept of sequence alignment appeared in biology in

order to find out whether two sequences are homologs, how did they diverge and also

if the similarities are still enough to think that they have the same function within

different organisms. Two sequences are aligned by writing them into rows. Identical

characters are placed in the same column while non-identical characters are considered
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a mismatch (mutation) or filled with a gap (insertion or deletion). The alignment with

more identical positions between sequences is considered the best alignment.

The alignment can be performed using a pair of sequences, in order to see how similar

they are, or with multiple sequences at the same time. This latter approach is useful to

do an evolutionary analysis of genomes and also to find the conserved positions in func-

tional sites, such as transcription factors. In some databases transcription factors come

as independent sequences with different length, and in those cases, a correct alignment

of the sites is a basic step in the construction of a valid model.

1.4.1 Pairwise Alignment

Pairwise alignment is used to find if two sequences are evolutionary related.

A first approximation to that problem can be easily found using dot matrices. To

construct a dot matrix one of the two sequences is placed horizontally and the other

vertically, the nucleotides in each position are compared and a dot is printed where

there is a match. The result is a matrix where sequence matches appear in the form of

sequences of dots in the diagonal. (W.Mount, 1998).

Even if this is an easy way to visualize the similarity between two sequences, a score

is needed to find the degree of similarity between them. First a score is assigned to

matches, mutations and gaps and then the total score is calculated as the sum of scores.

The different scores can be represented using DNA substitution matrices. A very simple

score function for nucleotides is presented in table 1.1 where each match is considered

as a +1 and mismatches and gaps are equally treated as −1. Usually the substitution

matrices used are the PAM matrices which are based on the evolutionary probability

of mutations and gaps.

Once the score of the alignment is calculated, a significance measure is needed, be-

cause long sequences will always score higher than short ones despite its similarity. The

significance is calculated by taking a set of sequences with the same characteristics of

the studied ones and calculating the probability of randomly picking two sequences of

this distribution and finding a similar or higher score.
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Table 1.1. Simple substitution matrix where the score of each match is +1 and the score of a mismatch,

a insertion or a deletion is -1.

A C G T -

A +1 -1 -1 -1 -1

C -1 +1 -1 -1 -1

T -1 -1 +1 -1 -1

G -1 -1 -1 +1 -1

- -1 -1 -1 -1 NA

1.4.1.1 Global alignment

In global alignment the best alignment between a pair of sequences is found and muta-

tions, deletions and insertions are considered mismatches. To find the best alignment

between two sequences of length n, all the possible alignments should be explored. The

number of possible alignments is
(

2n
n

)
= (2n)!

(n!)2 = 22n
√
πn

which is large even for small n.

This issue can be solved using dynamic programming.

The dynamic programming algorithm used to solve the global alignment problem is the

Needleman-Wunsch algorithm (Needleman and Wunsch, 1970). Starting with a score

function S = 0, the algorithm compares at each step the three possible combinations (a

insertion a deletion or a match/mismatch) and chooses the one with higher score, and

the new S score is computed. Having the Score S(i − 1, j − 1), the new score S(i, j)

can be found using equation (1.1). This algorithm has been mathematically proven to

provide the best alignment given a scoring function. Choosing a good scoring function

is, thus, the critical step for alignment (Durbin et al., 1998).

S(i, j) = max


S(i− 1, j − 1) + f(i, j)
S(i− 1, j)− d
S(i, j − 1,−d)

(1.1)

The computational time for the Needleman-Wunsch algorithm increases as O(nm)

where n and m are the length of the sequences to align. The computer memory also

increases as nm.
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1.4.1.2 Local alignment

When aligning pairs of sequences, the most common problem is to compare extended

regions of DNA (e.g entire chromosomes corresponding to two different specie). This re-

gions are usually highly diverged sequences and just some small regions are under strong

positive selection, the rest of the sequence has many noise that appeared through mu-

tations. In this cases, global alignment would be useless because the only regions that

really need to be aligned are the conserved regions.

A dynamic programming to solve the local alignment problem was also proposed, the

Smith-Watermans algorithm (Smith and Waterman, 1981). This algorithm is similar

to the Needleman-Wunsch algorithm but, when the score S becomes negative, it is set

to 0 which means that a new alignment begins.

When the sequences to compare are too large, even the dynamic programming algo-

rithms are too slow and need too many memory to be ran in a computer.

Some heuristic algorithms do not always give the optimal local alignment, but are the

best option to match a sequence within a large database. This algorithms, called k-

tuple or word algorithms, work in two steps. First they look for words of length l that

exactly match a sequence, or that match a sequence over a score S higher than some

threshold, and then use dynamic programming to finish the alignment. The first of

this heuristics algorithms was the FASTA algorithm (Lipman and Pearson, 1985), and

another example is the BLAST algorithm (Altschul et al., 1990) which is now the most

used algorithm for local alignment.

1.4.2 Multiple Alignment

Similar genes are widely conserved across divergent species, often performing a similar

function, and a simultaneous alignment of sequences of many organisms can find se-

quence patterns and give an evolutionary history of the sequence. In order to do that,

the pairwise alignment methods need to be expanded to multiple sequence alignment

(MSA), which tries to find a relationship between more than two sequences.

Most of the ideas from pairwise alignment can be applied also to MSA, such as the

concepts of local and global alignment. But two questions arise (1) How can a MSA
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be scored? and (2) What method can be used to efficiently find the optimal align-

ment? Regarding to the second question, the dynamic programming algorithms can

be extended to k sequences, but the computational cost increases exponentially with

k which means that, in fact, only small k and short sequences can be aligned using

dynamic programming.

Many heuristic algorithms that do not guarantee the best alignment but give good ap-

proximations have been proposed. They can be divided into different kinds of methods

(Notredame, 2007).

1.4.2.1 Progressive methods

Progressive methods construct a phylogenetic tree using the unaligned sequences and

the two closest sequences of the tree are first aligned. Then the other sequences are

added according to the distances into the phylogenetic tree. One example of an itera-

tive algorithm is CLUSTALW (Thompson et al., 1994).

The main problem of this MSA algorithms is that they have a high dependence on

the quality of the first phylogenetic tree. If the sequences are not closely related and

the phylogenetic tree can not be trust, then the quality of the final alignment is also

poor. This problem can be partially addressed using a library of weighted pairwise

alignments to construct the first phylogenetic tree as T-coffee (Notredame et al., 2000).

The library is constructed with the pairwise alignment of all the sequences, that is

weighted according to the similarity between them.

1.4.2.2 Iterative methods

To avoid the dependency in the construction of the phylogenetic tree, the iterative

methods put the previous algorithm into a loop where the tree and the alignment are

estimated iteratively until convergence. Different algorithms reconstruct the tree in

different ways but the basic idea is that the pairwise scores are recalculated during the

construction of the alignment and then the tree is reconstructed which, in turn is used

for the new alignment. An example of a iterative algorithm is MUSCLE (Edgar, 2004).
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1.4.2.3 Machine learning approaches

Other approaches have been used to solve the problem of MSA. For example genetic

algorithms (Notredame and Higgins, 1996) or more frequently Hidden Markov Mod-

els (HMM), which study the transition probabilities between sequences and are more

general allowing local and global alignment (Eddy, 1998).

1.5 DNA Motif Detection

Even if the experimental detection of binding sites has become very effective, it is still

a complex and expensive process. Motif detection algorithms can complement, or in

some case substitute, the experimental determination of motifs like binding sites, splic-

ing sites or miRNA.

Motif detection algorithms have also some difficulties to overcome, the most relevant

one is that motif sequences can show some variability without loss of function, which

makes impossible to look for a specific sequence. Other characteristics such as the short-

ness of the sequences and the fact that they can be located anywhere in the genome

convert the detection of binding sites into a computational challenge. (Sandve, 2008)

Every motif detection algorithm has two main steps. First the construction of the

model and then the scoring of a candidate sequence. Some algorithms use known

motifs in order to find new instances in some candidate sequence, others try to find

over-represented motifs within a set of unaligned sequences from co-regulated genes or

using phylogenetic foot-printing. The first ones are the motif finding algorithms and

the latter the motif discovery algorithms which are doing the two steps (modelling and

scoring) at the same time. Both motif finding and motif discovery algorithms can be

classified according to the models that they use for the binding sequences.

The first computational model for a binding site motif appeared at the 70’s (Korn

et al., 1977), which models the motifs like oligonucleotides. Since then, the increasing

amount of data available made possible the appearance of many computational meth-

ods modelling binding sites and the first simple consensus models have been evolved

to more complex models (Pavesi et al., 2004a; D’haeseleer, 2006; Sandve and Drablos,

2006; Hannenhalli, 2008).

Most of the motifs models are based on Position Specific Scoring Matrices (PSSM)

(Stormo, 2000) which are matrices of weights of each nucleotide in each position and
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that assume that each position within a binding site is independent. Since some exper-

imental and computational studies suggested that interdependences between positions

exist (Bulyk et al., 2002; Zhou and Liu, 2004; O’Flanagan et al., 2005; Tomovic and

Oakeley, 2007), new methods appeared which use probabilistic models to model binding

sites using interdependences.

1.5.1 Word-enumeration Models

A consensus is a way to describe a set of sequences using the most frequent nucleotide

in each position. It can be considered the most perfect form of a binding site, the

one that would be most likely bound for the corresponding transcription factor. But

since the binding sites have a certain variability, a number of mutations e should be

allowed when looking for binding sites using a consensus model, or some distances such

as the Hamming distance (Hamming, 1950), the number of positions with different

corresponding symbols, should be calculated.

These models are very rigid because they do not account for occurrences of different

nucleotides in certain positions. In order to avoid this problem, the IUPAC code, which

takes into account that different nucleotides can be present in some positions, is used

to model the binding motifs. Figure 1.5 shows the binding sequences of a motif in a),

the consensus sequence in b) and the consensus sequence using the IUPAC alphabet in

c).

When a nucleotide is known to have some well-conserved positions, the algorithms

looking for binding sequences using a consensus model can be improved allowing muta-

tions just in the less-conserved positions. But it is difficult to find a trade-off between

the mismatches allowed, the flexibility used to represent the sequence and the precision

of the search.

Consensus models were the first models that appeared for binding motifs but, despite

their simplicity and their limitations, they are still among the most used methods due

to the low computational time and the high performance that they can achieve. Some

examples are WEEDER (Pavesi et al., 2004b) and more recently a method using the

DNA Gray code (Ichinose et al., 2012).
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TGACTCA
TTCCTGG
TGAGTCA
TGAGTCA
TGAATCA
AGTGTCA
TGAGTCA
TGAGTAA
TGATTAA

a)

b) TGACTCA

WKHNTVRc)

d)

e)

A

C

G

T

1 2 3 4 5 6 7

1/9   0    7/9    1    0    3/9   8/9

 0     0    1/9   2/9  0    5/9    0

 0    8/9   0     5/9  0    1/9    1/9 

8/9   1/9  1/9   1/9  1    0       0

Figure 1.5. Sequences of a binding motif in (a), consensus sequence generated using the DNA alphabet

in (b), consensus sequence using the IUPAC code in (c) PSSM matrix in (d) and finally the Logo

representation of the sequence in (e).
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Figure 1.6. Calculation of the Score of a candidate sequence. It is calculated as the sum of the scores

in each position of the binding site.

1.5.2 Profile Models

1.5.2.1 Position Specific Scoring Matrices (PSSM)

The most used way to calculate the model of a binding motif is to use PSSM. PSSM

are 4×M matrices of frequencies of each nucleotide at each position, where M is the

number of positions. For example, in the figure 1.5 (d) the PSSM for the binding motifs

is shown. It can be calculated dividing the count of each nucleotide in each position by

the number of sequences of the motif. Each row of the matrix is the frequency of one

nucleotide in each position.

Once the PSSM is calculated, in order to calculate the score of a candidate sequence,

the frequency of the corresponding nucleotide of the candidate sequence in each one of

the positions is summed and the result is the final score of the sequence. One example

can be observed in the figure 1.6 where the score of the sequence in red is calculated

using the PSSM model of the example in the figure 1.5

A higher score means a high probability of being a binding site. Each one of the

methods that use PSSM have a different way to calculate the significance of the scores

of the candidate sequence.

Models using PSSM can be improved if the information per position is calculated
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instead of the frequency (Osada et al., 2004). The information can be calculated, using

also the nucleotide distribution in the background organism with the equation (1.2)

(Schneider, 1997).

I(i) =
∑
b

fb,ilog2
fb,i
pb
, (1.2)

where I(i) is the information, fb,i is the frequency of the b nucleotide at the i position

and pb is the genomic probability of the b nucleotide. The PSSMs calculated using

information theory can be represented by a sequence logo which indicates the informa-

tion of each nucleotide in each position as it is show in figure 1.5 e)

If the free energy of binding of a TF to its binding site is calculated as the sum of

the free energy of the binding to each position (Berg and von Hippel, 1987), then the

information per position can be related to the free energy of the binding, and the score

of a sequence is related to the energy of binding of that sequence (Stormo and Fields,

1998). Even if this is not strictly true, in some cases it can be a good approach (Benos

et al., 2002). For this reason, some PSSM methods use a biophysical approach to model

binding sites (Roider et al., 2007).

The most famous motif discovery algorithms which use a PSSM to model the motif are

MEME (Bailey and Elkan, 1994) and Gibbs sampling (Neuwald et al., 1995). Given

a set of N unaligned sequences that contain k different motifs, the Gibbs sampling

algorithm first divides each sequence into subsequences and randomly assigns each

subsequence to one of the M0...Mk models, where M0 is the model of the background

sequences that do not belong to any motif and M1...Mk are PSSM models for each one

of the k models. Then two steps are repeated until convergence: (1) A sequence si is

selected and the corresponding model is recalculated (2) A model is sampled taking

into account the probability that the selected sequence si was derived from that model.

MEME uses a Expectation-maximization (EM) algorithm in order to find motifs in co-

regulated sequences. First the subsequences of width W are chosen as a starting point

to construct the possible models. Then the models are constructed and 1 iteration of

the EM algorithm is run, the model with a highest likelihood is chosen and the EM al-

gorithm is used until convergence to find the optimal model. Finally, the subsequences

belonging to the found motif are erased and the previous steps are repeated until the

k different motifs are found. Both algorithms have been recently updated in order to

incorporate prior information or heterogeneous backgrounds (Thompson, 2003; Bailey
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et al., 2010).

Also most of the motif finding algorithms are based on PSSM. MAST (Bailey and

Gribskov, 1998) which is part of the MEME suite (Bailey et al., 2009), predicts the

presence of one or more known motifs within a large genomic sequence. The motifs are

modelled as PSSMs where the score of each nucleotide in each position is the logarithm

of the frequency of the nucleotide, as in equation (1.3).

Sb,i = −log
fb,i +B

pb +B
, (1.3)

where Sb,i is the Score of the b nucleotide in the position i. fb,i is the frequency of

the b nucleotide in the i position and B is a pseudo-count usually set to B = 0.1. pb

is the background probability of the b nucleotide, calculated using a Markov model of

the background genome. The final score of a sequence, as it is explained above, is the

sum of the scores for the corresponding nucleotide in each position. The p-value for

the probability of the sequence being a binding site is calculated and, if more than one

motif are studied ,the final result is the product of p-values. The probability that the

product of p-values is due to the presence of the different motifs is the output of the

algorithm. If only one motif is studied, it is equivalent to calculate the p-value.

MATCH is another PSSM algorithm, available from TRANSFAC (2005) database

which uses the information per position. The score of a candidate sequence in MATCH

is then calculated as in equation (1.4)

S =
L∑
i=1

I(i)fb,i, (1.4)

where S is the score, i the position of the sequence of length L I(i) is the information

calculated as in equation (1.2) but assuming that in the background all the nucleotides

have the same probability (pb = 1/4). As in the above equations fb,i is the frequency of

the b nucleotide in the i position. Instead of using a p-value to determine if a sequence

belongs to the modelled motif, MATCH algorithm calculates the similarity score of the

sequence and the similarity score of the first five consecutive positions of the matrix,

the core of the motif. They are calculated in equation 1.5

SS =
Current−Min

Max−Min
(1.5)
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Where Max and Min are the maximum and minimum scores given the PSSM matrix.

These similarity score go from 0 to 1, and a threshold in the matrix similarity score

and the core similarity score are used to decide whether a sequence is a binding site or

not. Usually, as the core are the 5 most conserved positions, the cut-off for the core

similarity score is set higher than the matrix similarity score.

MatInspector (Cartharius et al., 2005), part of the Biobase company works in a similar

way than MATCH, calculating a matrix and a core similarity score in order to distin-

guish between binding sites and non-binding sequences. But the score of each position

and the similarity scores are calculated in a different manner. The score per position

is calculated using a coefficient Ci shown in equation (1.6).

Ci =
100

ln5

∑
b

fb,iln(fb,i) + ln5, (1.6)

where, as in previous equations, b is the nucleotide and fb,i is the frequency for each

nucleotide in the i position. The similarity score is calculated in the same way than in

MATCH.

In 2010 Maynou et al. (2010b) developed an algorithm which uses the Rényi entropy

in order to model the binding motifs. The Rényi entropy is a parametric measure of

entropy defined in equation 1.7

Hq(i) =
1

1− q
log2

∑
b

f qi,b, (1.7)

where q is a positive number and i the position within the binding site. When q = 1

the Rényi entropy is equivalent to the Shannon’s entropy. To normalize the measure of

Hq in the interval from 0 to 1 a new variable, the redundancy Rq(i) of each position is

calculated for the motif (equation (1.8)).

Rq(i) = 1− Hq(i)

Hmax
q (i)

(1.8)

When a candidate sequence is evaluated, the sequence is first added to the motif and

the redundancy recalculated. The difference between the two redundancies, with and

without the candidate sequence, is used as a discriminant measure. When the sequence

does not belong to the modelled motif the redundancy will decrease if adding it to the

model. In contrast, if the sequence belongs to the model, the redundancy will remain

constant. A p-value is calculated to decide whether a candidate sequence belongs to
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1.5 DNA Motif Detection

the binding motif.

Some binding sites can have two different profiles corresponding with two different types

of sites for the same transcription factor. PSSM are not able to model these motifs. In

order to avoid it, some methods use a mixture of profiles. In these models a binding

site is represented for a weighted set of profiles, a higher weight means that the profile

is more specific, and the score of a sequence is calculated using the weighted sum of

the scores in each profile (King, 2003).

1.5.2.2 Models with interdependences

Substitutions in binding site positions do not occur independently, a substitution in a

given position might imply a substitution in another position. PSSMs can be easily

extended to take into account pairwise dependences, but usually this is not enough.

The first generalization of the PSSM were the weight array matrix (WAM) models,

which are Markov models of the motifs (Zhang and Marr, 1993). A Markov model of

order n is a probabilistic model which describes the probability P of a nucleotide X in

a certain position i being bi, depending on the previous n nucleotides, as it can be seen

in equation 1.9.

P (X = bi) = P (X = bi|Xi−1...Xi− n) (1.9)

These models have the disadvantage that the number of parameters to adjust increases

exponentially with the order of the model. A way to overcome this difficulty is allow-

ing permutations within the positions of the Markov model in order to find long-range

interdependences without increasing the degree n of the Markov model. In the algo-

rithm created by Ellrott et al. (2002), for every pair of positions i, j they calculate a

dependence score as G(i, j) = −log(p(i, j)) . They pick the two positions with higher

interdependences according to G(i, j), and then the position with higher total inter-

dependences with i and j and this continues until n + 1 positions are chosen. This

positions will be the central positions of the model. After that, a new position is added

with a total dependence score with a subset of k chosen positions is maximized. A new

position is added at one end to maximize its total dependence with the neighbouring

position and a subset of k − 1 of the first positions. The procedure is repeated until

2k + 1 positions are chosen and finally, the new positions are added at each end using
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Figure 1.7. Representation of a variable order Markov model. The degree n = 2 of the model is

pruned depending on the context. For example is the preceding base two bases are TT only the first

T matters, and if the preceding nucleotides are GX, the new base is independent (Zhao et al., 2004).

the maximum dependence score as in the first step. In this algorithm the score of a

candidate sequence is just the probability that the sequence has been generated using

the model.

To reduce even more the parameters of the model, variable length Markov models

(VMM) can be used. VMM are Markov models where the order n of the Markov chain

can be reduced depending on the context. For example, in the figure 1.7 a 2-order

VMM for a motif is shown. In this example, depending on the context, the probability

of a nucleotide P (X = bi) will depend on the first preceding base, on the two preceding

bases or will be independent. For example if the two preceding bases are AA the new

nucleotide will depend on both, if the preceding bases are AC, it will depend only on A,

and in the context of a GX, the new nucleotide will not depend on the previous bases.

The VMM can also be permuted, in order to bring together important dependences

keeping a low n Markov order (Zhao et al., 2004). As the number of context trees in-

creases quickly with the order n of the Markov model, a forward selection or a Markov

Chain Monte Carlo have to be used to select the best model, according to the Akaike

Information Criteria (AIC) or the Bayesian Information Criteria (BIC). The number

of permutations increases with the length of the binding motif, and it is not realistic

to do an exhaustive search for models that have more than 9 positions. A way to

approximate the global optimum is to use simulated annealing.

The likelihood of a sequence to belong to the model is given by equation 1.10

Likelihood = log
P (x|model))

P (x|background)
, (1.10)
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where P (x|model) is the probability that the sequence belongs to the motif model and

P (x|background) is the probability that the sequence belongs to the background model,

constructed using a 3rd order Markov chain.

An alternative to the Markov models are the Bayesian networks which can easily in-

corporate long-range interdependencies without increasing the number of parameters

to estimate. Bayesian networks are a graphical representation of probabilistic models

where some influencing positions (parents) are connected with and edge to the influ-

enced position or child.

Bayesian trees are a kind of Bayesian networks that allow arbitrary dependences within

any two positions in a model. In other words, each position can depend on any other

position (but just one). This tree networks have been used to model splicing sites (Cai

et al., 2000). In order to construct the dependency tree the mutual information (MI) of

every pair of positions is calculated and then used to construct a graph G where each

node is the position i and the weight of the edges connecting i and j is the MI between

the two positions. This graph G is used to construct a maximum spanning tree which

is a tree (acyclic graph) including all the nodes of the graph G and where the maxi-

mum sum of the weight of the edges. After that the variable X0, in the case of splice

recognition sites the nucleotide b0, is set as the root of the tree and the conditional

probability between the dependent positions is calculated. The score of a sequence is

the probability of that sequence being generated by the model. First order Markov

models are only a special case of this algorithm, but as the Bayesian tree looks for

solutions in a wider space of models and, even if the number of parameters is the same,

this kind of models are more likely to overfit.

Adding a hidden variable T to the structure of the tree and allowing each variable to

depend on T and also one of the other variables x1...xL allows to capture more complex

interdependences only multiplying the number of parameters by a factor C that is the

number of different values that can take the T hidden variable (Barash et al., 2003).

More complex Bayesian networks can be able to model higher-order dependencies, but

the number of possible networks increases exponentially. (Castelo and Guigó, 2004)

created an algorithm that can efficiently find the best Bayesian network. Another so-

lution is to create variable order Bayesian networks (VOBN) where the order of the

network depends on the context of the parents nucleotides (Ben-Gal et al., 2005). Using
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the MI as a dependence measure, first a Bayesian Network of order n where each po-

sition depends on other n positions in the sequence is constructed. Then, the network

is pruned in all the dependencies that can be removed without an important change in

the transition probability from parents to child. To do that a forward algorithm and

the Kullback-Leibler divergence are used. The score of a sequence is the log-likelihood

that the sequence belongs to the model, compared to that of the sequence belonging

to the background.

Naughton et al. (2006) proposed a non-probabilistic graph model that can capture com-

plex interdependences. In this graph model the nucleotides are treated as k−mer and

represented as node occurrences in a graph. An edge connect two nodes if the Ham-

ming distance between them is under some threshold. Pairwise dependencies create

clusters in the graph and more complex dependencies create other structures. To score

a new sequence two heuristic criteria are defined: the Sequence Similarity (SS) and the

Identical K-mers (IK). The SS measures how a sequence is close to at least one member

to the motif, it is higher when the number of mutations between the candidate and a

motif k-mer is low. The IK gives value to the multiple occurrences of a k-mer in the

motif: the more occurrences of a k-mer exist in the motif, the more likely than a closely

related k-mer is also part of the motif. The score of a candidate sequence is defined in

equation (1.11).

S =
N∑
m=1

Θd
SSΘNS(b1,b2)

nm∑
j=1

Θj
IK , (1.11)

where N is the number of unique k-mers present in the motif and nm is the number of

instances of a single k-mer. ΘSS is the relative score between zero or one mutations and

d the hamming distance from the candidate sequence to a motif sequence. ΘNS(b1,b2)

is the transition matrix from the nucleotide b1 to the b2, if there are more than one

mutations it is taken as the average of the existing mutations. These substitution

rates can be calculated for each database. Finally ΘIK determines how much we value

the existence of multiple k-mers. To evaluate the significance of this score, a null

distribution of it was calculated for all the studied databases.

While all these models are able to take into account dependences between positions,

they usually need more sequences than the currently available for most of the binding

sites, and also they usually have high computational times.
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1.5.3 Higher order detection

Many effects may alter the functionality of binding sites, from the chromatin structure

to the interaction with other transcription factors, this is why most of the motif find-

ing algorithms, even if they work well in vivo, they cannot be trusted when in vitro

situations are studied.

Transcription is not regulated by a single binding site but by means of a combinatorial

set of interactions between TF at their binding sites, what is called a cis-regulatory

module (CRM). The formation of CRM implies that TFBS are not located randomly

through the genome but they usually have specific distances between them that allow

their interaction. Another effect, crucial to make a binding site functional,is the chro-

matin packaging around the binding site, because it determines the availability of the

DNA to the binding protein. On top of that, protein expression is a dynamic process

and different cells, cell-cycle or development stages need different proteins at different

times, which converts a true positive under certain conditions into a false positives if

conditions are changed. Many CRM models use known motif finding algorithms to look

for different binding sites within a promoter sequence and then, use a combination of

the scores for each binding site and the distances between them to assess the signif-

icance of the regulatory model. The final score can be calculated for example using

a Hidden Markov Model (HMM) (Frith et al., 2001) or a self-organizing map (SOM)

(Mahony et al., 2005). Other algorithms calculate the density of binding sites within

a promoter to study the functionality of the promoter (Berman et al., 2002). Most of

the algorithms use PSSM to detect the binding motifs, but some of them also take into

account the interdependences of the motif (Xing et al., 2003).

More recently, some studies show that the incorporation of nucleosome positioning

sequences (NSP) can also help to reduce the number of positives that are, in fact, non-

functional sites. Stable nucleosomes are found in the surroundings of non-functional

sites, while the functional sites usually have a more open chromatin configuration. The

study of the nucleosome occupancy can reduce the number of false positives (Daenen

et al., 2008).
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1.6 DNA signal processing

Genomic information is discrete in the sense that it is encoded in a four-letter alphabet.

The conversion from the symbolical signal into a numerical one allows the use of signal

processing to the study of DNA sequences, making possible a better visualization of

the DNA data and also facilitating the analysis of the sequences.

1.6.1 Numerical Conversions

Many numerical conversions have been proposed (Anastassiou, 2001; Cristea, 2005).

The most common one is a 4-D conversion where each nucleotide is assigned to a dig-

ital value. The 4-D vector is 1 in the position where the nucleotide is present and

0 otherwise. In this case the nucleotide conversion correspond to: A = (1, 0, 0, 0),

C = (0, 1, 0, 0), T = (0, 0, 1, 0) and G = (0, 0, 0, 1). This conversion is symmetric for all

the nucleotides, because the distance between two nucleotides is always the same. For

all the elements Uk corresponding to the k nucleotide, UA + UC + UT + UG = 1, that

means that the dimensionality of the conversion can be reduced to 3 .

This conversion is thus reduced to a 3-dimensional conversion where each nucleotide is

placed at the vertex of a regular tetrahedron, as it can be seen in equation (1.12).

A ≡ (1, 1, 1)

C ≡ (−1, 1,−1)

G ≡ (−1,−1, 1)

T ≡ (1,−1,−1) (1.12)

The tetrahedron can be changed in order to make the distance D between two nu-

cleotides D = 1 and also to make all the vertex of the tetrahedron positive, without

losing any generality in the symmetry of the 3-dimensional conversion. The figure 1.8

shows the 3-dimensional representation when the distances between the nucleotides are

set to D = 1, and was proposed by Silverman and Linsker (1986).

A further reduction of dimensionality looses the symmetry in the conversion, but it

can also be useful in cases where some biochemical properties of the nucleotides are im-

portant. The most used two dimensional conversion is built projecting the tetrahedron

into the complex plane. The way the tetrahedron is projected can be chosen according
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Figure 1.8. Three dimensional conversion of the DNA, where each nucleotide is placed at the vertex

of a regular tetrahedron. This conversion is symmetric for all nucleotides and the distances between

them is D = 1 (Pairó et al., 2012)

to the properties needed to preserve. In equation (1.13), the 2-dimensional conversion

is chosen to reflect the complementarity of the bases A-T G-C by the symmetry to

the real axis and the chemical similarity (purines and pyrimidines) is expressed by the

symmetry with respect to the imaginary axis. The distances A-C and G-T are larger

than the others as it can be seen in figure 1.9 where this conversion is represented.

Of course, the representation where the complementarity is reflected by the symmetry

with the real axis as well as other complex conversions are equally valid.

A ≡ 1 + j

C ≡ −1− j

G ≡ −1 + j

T ≡ 1− j (1.13)

Similarly, conversions where the different nucleotides are placed at the axis of the x-y

plane, have been proposed, one example can be seen in equation (1.14). Obviously

these representations are equivalent to the representations in the complex plane.

A ≡ (1, 0)

C ≡ (0, 1)

G ≡ (−1, 0)

T ≡ (0,−1) (1.14)
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Figure 1.9. Example of a 2-dimensional conversion where each nucleotide is placed in a complex

plane. The complementarity of the bases is shown by its symmetry with respect to the real axis, and

the chemical similarity is shown by its symmetry to the complex axis.

Finally, a 1-dimensional conversion where each nucleotide is assigned to a real number

can also be used. The weight of each nucleotide (indicated by how large is the number)

and the distances between nucleotides have to be carefully chosen according to the

purposes of the analysis. This simple conversion has been used in some applications

such as gene discovery (Akhtar et al., 2008).

1.6.2 Applications in Genomic signal processing

The first applications of Digital signal processing to DNA sequences, appeared more

than twenty years ago, when the 3-dimensional tetrahedron conversion was used to find

DNA periodicity (Silverman and Linsker, 1986). Later, the 4-dimensional conversion

was used to study the short and long-range correlations in DNA signals (Voss, 1992;

Arneodo et al., 1995; de Sousa Vieira, 1999).

Another applications are the constructions of DNA spectrograms that allow a better

visualization of the DNA data than the symbolical DNA. Discrete Fourier transforms

(DFT), wavelet transforms and other methods have been used mostly to find protein

coding regions within genomic sequences (Afreixo et al., 2004; Akhtar et al., 2007;

Wang, W and Johnson, 2002). Some methods try to convert a whole DNA sequence

in a vector, as DNA walks (Peng et al., 1992). In the first DNA walks, the walker
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steps up ui = +1 when a pyrimidine appears at i distance and steps down when a

purine appears at this distance. Long-range correlations and the presence of introns

have been studied using this method. Equivalent and similar concepts have been used

to construct 2-D and 3-D graphical representations of large DNA sequences which take

advantage of the different properties of coding and non-coding regions to visualize the

differences and detect the coding regions (Nandy, 1996; Yuan et al., 2003).

More recently the 4-dimensional conversion has been used to the detection of binding

sites using a SVM method, without taking into account the interdependences (Jiang

et al., 2007).

1.7 Multivariate methods

The conversion from symbolical to numerical DNA allows the application of signal

processing techniques to the DNA. Some examples are shown in the previous section.

In this thesis two techniques have been used for motif detections: principal component

analysis and parallel factorization.

1.7.1 Principal Component Analysis

Principal component analysis (PCA) is a multivariate technique to reduce the dimen-

sionality of a large set of intercorrelated data while capturing the maximum variance.

The data is transformed into a new set of variables, the principal components, which

are uncorrelated and ordered in a way that few of them can retain most of the variance.

(Jolliffe, 1989). It was first developed by Pearson (1901) who was studying the lines

and planes that best fit a set of points in a p-dimensional space. Later, Hotelling (1933)

independently developed the technique for the statistical analysis.

PCA can be defined as a bilinear decomposition of the data as it is shown in equation

(1.15).

X = ABT + E, (1.15)

where X is the original N ×M data matrix with N samples and M variables. A is the

projected data or Scores, a N × nPCS matrix. B corresponds to the loadings which

is the M × nPCS matrix defining the subspace where the data is projected. And E is
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Figure 1.10. Example of a two dimensional correlated data, that can be described by a subspace of

reduced dimensionality, the first principal component, in red.

the N ×M error matrix.

The sum of the variance perpendicular to the data is minimized, which is equivalent to

find the eigenvectors of the covariance matrix. In order to perform a PCA the covariance

matrix is calculated and then diagonalized. The eigenvalues are ordered from higher

to lower. The eigenvectors with higher eigenvalues will be the ones explaining most of

the variance, and will be the Principal Components.

The scores are the projection of the variables in the new subspace, and they can be

used to show the structure of the data. The loadings are the new variables expressed

as a linear combination of the old ones, and are useful to interpret the new subspace.

One example can be seen in the figure 1.10, showing a two-dimensional data base. This

data can be well explained by the subspace defined by the first component (line in

red) which retains most of the variability of the data. The loading will be the vector

indicating the first principal component (PC) and the scores the projection of the data

in the PC.

Some measurements can be used to assess how well a sample can be explained by the

principal components: the Hotelling T-square and the Q-residuals. The Hotelling T-
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Figure 1.11. Hotelling T-square and Q-residuals for a new sample using the previous PCA model,

presented in figure 1.10. In this figure the previous model is shown, with the 1 -component subspace as

a line in grey, and the perpendicular distance to the subspace as a line perpendicular to the subspace,

also in grey. The new sample is presented as a green dot ffl, and the distance within the subspace,

known as Hotelling T-square and the Q residuals, or the distance from the sample to the subspace

are shown in red dotted lines. It can be inferred that the new sample can not be explained using the

previous model because this distances are large.

square is a measure of the distance of a sample to the center of the subspace, within the

subspace and taking into account the variance of each dimension. And the Q-residuals

measure the distance perpendicular to the subspace of principal components. In the

figure 1.11, the same example as above is presented, but with an added sample, in

green. In the figure it can be seen that the new sample has a large distance to the

center of the subspace (high Hotelling T-square value shown as a dotted red line), and

also a large distance perpendicular to the subspace (also a dotted red line). The new

sample is an outlier to the model.

The Hotelling T-square can be calculated using equation (1.16)

T 2 = (X − X̄)S−1(X − X̄), (1.16)

where T 2 is the Hotelling T-square value for a sample, X is the sample vector
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projected to the subspace of principal components, X̄ is the mean of the projection of

the modelled samples and S is the covariance matrix

The Q-residuals are calculated as the square of the euclidean distance of a sample

to the subspace of principal components. They can be calculated using equation (1.17)

Q = EET (1.17)

where E is the 3M error vector obtained from projecting the sequence into the Prin-

cipal Components subspace, and Q is the Q-residual of the candidate sequence. The

Q-residuals can be converted to follow a Gaussian distribution using the transformation

described in equation (1.18), developed by Jackson (2004).

Θ1 =

p∑
i=npcs+1

li

Θ2 =

p∑
i=npcs+1

l2i

Θ3 =

p∑
i=npcs+1

l3i

h0 = 1− 2Θ1Θ3

3Θ2
2

, (1.18)

where Θ1, Θ2, Θ3 and h0 are the new variables, li the eigenvalues of the principal

component analysis, npcs the number of components and p the number of the original

dimensions of the X data. The confidence interval C for the new Q-residuals which

are normally distributed with µ = 0 mean and σ = 1 variance can be computed as in

equation (1.19).

c = Θ1

[( QΘ1
)h0 −

Θ2h0(h0−1)
Θ2

1
− 1]√

2Θ2h2
0

(1.19)

C is the confidence interval for a given value of Q and Θ1, Θ2, Θ3 are the new variables.

PCA is one of the most used multivariate techniques. Finding the principal components

can be useful to display multidimensional data in order to find a good interpretation

and explanation of those data. At the same time it serves the purpose of dimensionality

reduction.
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1.7 Multivariate methods

In bioinformatics the challenge of high dimensionality of the data is very common. For

this reason PCA has been widely used, specially in order to analyse gene expression

data (Ma and Dai, 2011). The PCA analysis of gene expression microarrays can be

helpful to find the combination of genes that better explain the phenotype (Wall et al.,

2003), or to find the transcription factor binding sites in chip analysis. It can also be

applied to time-series experiments to find dynamic models of gene expression (Holter

et al., 2001) and, although it has been used as a preprocessing step in some cluster

analysis of genes, it was shown that the first components do not necessarily lead to

meaningful clusters (Yeung and Ruzzo, 2001). In whole-genome analysis PCA has

been used to find gene pathways (Ma and Kosorok, 2009).

1.7.2 Multiway Analysis

Multiway data is characterized for a set of variables that are measured in a crossed

fashion. This kind of data is very popular in psychology where different measures are

taken for different subjects and times (John R., 2003) or chemometrics (Bro, 1999)

with the main example of fluorescence data, where the emission spectra is measured

for different samples and different excitation wavelengths.

There are many algorithms that can be used to model the N-way data (Kiers, 2001),the

most famous ones are PARAFAC which is a trilinear decomposition of the data and

Tucker-3 which can be seen as an N-way extension of PCA (Tucker, 1966). PARAFAC,

which is described in detail below, decomposes an N-way array into N matrices, while

tucker-3 decomposes it in a set of N matrices plus a core N-way tensor.

Multiway models have some common characteristics. The most important one is that

they are simpler in a mathematical way than the two-way models because they have

less degrees of freedom which actually leads more restricted models and, generally, to

poorer fits. PARAFAC, which can be seen as a restricted Tucker-3 model (the core is

restricted to be superdiagonal), is the one with a poorest fit. Tucker-3 can at its turn

be seen as a restricted PCA model, which also means that it would have a poorer fit

than PCA (Kiers, 1991). In general,then, multiway models are used not to find a better

fit to the data but to create easily interpretable models, because organising the data

into a N-way array allows to maintain all the information. Sometimes, for example if

PARAFAC is the adequate model to the studied data, the other models can be just

fitting the noise.
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In contrast with the two-way models, the three-way algorithms cannot be calculated

sequentially, which means that the solutions are not nested. Every time that the num-

ber of components changes the model has to be recalculated

1.7.2.1 PARAFAC

PARAFAC is a multilinear model of N-way data. It was independently developed in

1970 as PARAllel FACtor Analysis (PARAFAC) by Harshman (1970) and as CANonical

DECOMPosition (CANDECOMP) by Carroll and Chang (1970). Harshman developed

PARAFAC using as initial idea the principle of parallel proportional profiles, which tried

to solve the problem of the rotational freedom for 2 two-way analysis, and to find a

model with a unique solution (Cattell, 1944).

In PARAFAC a N-way array is decomposed as the sum of the elements from its N

loading matrices, while the unweighted sum of squares is minimized. The three-way

PARAFAC decomposition is described by equation (1.20), but it can be easily extended

to N-way arrays.

xijk =

r=R∑
r=1

ai,r, bj,rck,r + ei,j,k, (1.20)

where xijk is the original data, ai,r, bj,r, ck,r are the elements of the A, B, C loading

matrices that describe each one of the modes ( i, j or k indicate the mode and r the

component), R is the number of components of the model and ei,j,k are the elements of

the three-way array error. A graphical representation of a PARAFAC decomposition,

with F components can be seen in figure 1.12 where the original data x is decomposed

in 3 matrices, each one having F components.

As it is said above, PARAFAC can be seen as an extension of the bilinear Princi-

pal Component analysis to N-way data. However, there are differences between the

PARAFAC and the PCA models. The most important ones are that PARAFAC does

not impose orthogonality to its components, and that the PARAFAC models cannot be

rotated without any loss of fit. This means that PARAFAC has no rotational freedom,

although scaling and permutations can be performed without changing the fit.

Degenerate solutions can also appear in PARAFAC, when the solution is in a swamp

or when there is no optimum solution. The conditions in which these solutions appear

where studied by Ten Berge and Kiers, and are related to the rank of the the A, B and
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Figure 1.12. Geometric representation of a F components PARAFAC model. The initial X cube is

decomposed into the sum of the loadings of the A, B and C matrices plus the error associated to the

model. (Luna and Pinto, 2014)

C matrices (Bro, 1998). If Kx is the rank of the A matrix the sufficient condition for

the uniqueness of the solution is that KA+KB +KC ≥ 2R+ 2. There R is the number

of components.

Many algorithms can be used to fit PARAFAC but the most used one is the alternat-

ing least squares(ALS). First A, B, C are taken (randomly or with some estimating

algorithm) and then B and C are fixed and A estimated. After that, A and C are

fixed an B estimated and so on, until the convergence criteria is reached. The most

frequent issue is that the algorithm can reach a local minimum, being unable to find

the most appropriate solution. To avoid this, the convergence criteria must be strict

and the algorithm must be run several times with different initial conditions (Hopke

et al., 1998).

When the data to model is trilinear and the signal-to-noise ratio is appropriate, a

PARAFAC model with the appropriate number of components represents the true un-

derlying phenomena, for example in the excitation-emission fluorescence spectra, where

some excitation and emission wavelengths are calculated for different samples. But if

the data is not trilinear PARAFAC may not be the best option to fit it, leading to

unstable or inappropriate solutions. Several steps can be followed to see how good is

the PARAFAC model to explain the data (Bro, 1997).
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1. PARAFAC does not impose orthogonality to its solutions, as the number of com-

ponents increases, the new components can be just a linear combination of the

old ones, not adding new information to the model and making it more complex.

When this happens, the variance explained by the model does not increase as the

number of components increases. On the other hand, the difference between the

variance explained by one component and the variance that can be explained only

by this component increases because many components explain the same part of

the variance. In that cases, the number of components of the PARAFAC model

should be reduced.

2. The Q-residuals and the Hotelling T-square can be studied in order to find out-

liers, as in the two-way analysis.

3. The core consistency is a measure of how trilinear the data is. In order to calculate

the core consistency, the data is first modelle with PARAFAC which can be seen

as a Tucker-3 model with a restricted superdiagonal core. Then the A, B and C

loadings of the PARAFAC model are used to calculate the equivalent Tucker-3

core using a regression model. If the PARAFAC model is valid, then the Tucker-3

core should be similar to the PARAFAc core (this means superdiagonal). When

the core similarity is 100, then the Tucker-3 core is superdiagonal and the data

does not have any non-trilinearity, as the non-linearities in the data appear, the

core consistency drops. A core consistency lower than 70 may mean that the

data has too many non-triniliearities to be explained with a PARAFAC model,

or that the PARAFAC model used has too many components, and a model with

less components can explain the data better.

4. PARAFAC allows the use of some constraints such as orthogonality or non-

negativity. This can be helpful to find more meaningful models even if the fit

would be worse.

5. In order to avoid local minima, the algorithm must be run several times. Also, to

study the robustness of the model, a split-half or a k-fold cross-validation can be

run. If the models built using the cross-validation are similar, then the model is

not sensitive to the samples. This step needs a large amount of data, otherwise

a l.o.o. cross validation can also be used.
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All the tips mentioned above are just a guide to find the best model, but the most

important thing is to have a good knowledge of the system in order to find the appro-

priate PARAFAC model which can best be useful to interpret the data.

As commented before, most of the PARAFAC applications are on the Psychology and

Chemometrics fields, where it has been applied to a large variety of problems. But

more recently PARAFAC was also applied to the study of the origin of seizure (Acar

et al., 2007), or to the study of the dynamics of stem cells biology because it allows

the integration of time-course data (Yener et al., 2008). Other multi-way techniques

have been applied to the integration of data from different microarrays (Omberg et al.,

2007) and have been shown to have a great potential in the study of systems biology

(Conesa et al., 2010).

1.8 Thesis Goal

1.8.1 Definition of the problem

Determining where in DNA each TF can bind is an important issue in biology, be-

cause transcriptional regulation is essential to understand a range of cellular processes

which go from cell differentiation to specific cell-type regulation. Moreover, mutation

on TFBS are likely to underlie several diseases that are responsible for differences in

morphology physiology and behaviour (Wray, 2007).

The methods to detect binding sites sequences using previous knowledge of the binding

sites can be divided into two main groups (1) PSSM which do not take into account

interdependences between positions and (2) Methods that take into account interde-

pendences. While the first group of methods, the most commonly used, have the

disadvantage that do not take into account interdependences, the second group needs

too many sequences and too high computational times.

A method is needed which can take into account interdependences between positions

in the binding sites without needing a high computational time or many sequences to

construct a good model.
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1.8.2 General Objective

The general objective of the thesis is to use the knowledge of event detection in nu-

merical sequences in order to find binding motifs within large genomic sequences. The

constructed detectors will use well-established multiway signal processing techniques

and will use covariance, which is a second order statistics, in order to find interdepen-

dences between positions. This detectors should be fast and easy to build as PSSM

detectors but also able to detect position with interdependences.

1.8.3 Goals of the Project

The specific goals of the project are:

1. Characterization of the binding sites and their relation to the regulated genes:

study of the interdependences of the binding sites and study of the gene-TF

interaction.

2. Construction of a Q-residuals detector. Converting the DNA matrix into a numer-

ical matrix, a Principal Component Analysis of the numerical matrix is used to

model the binding sites and then the Q-residuals are used to distinguish between

binding sites and other genomic sequences.

3. Construction of a Quadratic discriminant analysis (QDA) detector. Convert-

ing the DNA sequences into a cube a PARAFAC analysis can be applied which

has biological information of the sequences. The scores and the Q-residuals of

PARAFAC can be combined to construct a QDA detector.
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Binding Sites Characterization

Even if all transcription factors affect the regulation gene expression, they can not be

considered a single group of proteins, as it can be seen with the huge variety of existing

transcription factor families, depending on the binding domain. The specific function

in gene regulation can also be very different, going from the TF needed for transcription

to occur in almost all genes to the ones that are activated after some cell signalling.

This is translated in a large variety of motifs. In this chapter I will characterize the

TF and its binding sites, studying first the number of genes regulated for each TF

and the number of TF needed for the regulation of each gene and after moving to

binding sites and looking at the interdependences between binding site positions. The

characterisation will end with an study of the interdependences of some binding sites

separated by families.

2.1 Study of interactions between genes and transcription

factors

Some transcription factors actuate in a cell type specific or tissue specific manner, others

like the transcription factors contained in the TATA-box are needed in the expression of

most of the genes. CTCF can bind to many sites in the genome, mostly as an insulator

but also as an enhancer or repressor of gene expression (Phillips and Corces, 2009).

Summarising, transcription factors vary widely in the number of binding sites across

the genome (Whitfield et al., 2012).

Using the large amount of data released by the ENCODE project, the statistics about
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2. BINDING SITES CHARACTERIZATION

the genes and its associated TF can be studied in a cell-type manner (Wang et al., 2012).

This kind of studies can help to separate functional biding sites from sites that are only

positive in vitro. A more general way to calculate TF-gene relationships, without doing

it in a cell-type basis, is to retrieve the known TF-gene functional relationships from

databases. Even if the statistics are not as accurate as the analysis of the experimental

biological events in ENCODE, they can proportionate information for a larger number

of TF and any cell type.

2.1.1 Data

In order to study the interactions between transcription factors and the corresponding

genes, all genes from NCBI genbank database (Benson et al., 2012) for Homo sapi-

ens were retrieved, a total of 22812. The interactions between transcription factors

and these genes were extracted from STRING and SabioSciences databases, using the

StringSabio R-package described in the Appendix B. Extracted in June 2012, the total

number of found TF-gene interactions is 193882. From these 103152 were reported

from the STRING database and 89986 were reported from the SabioSciences database.

The overlap between databases was only 744 interactions.

2.1.2 Results

The number of interactions depends on the studied gene. In figure 2.1 the genes have

been classified according to the TF interactions that regulate them. The most numerous

group is the one that is regulated by an interval between 5 and 10 transcription factors

which is comprised by 7003 genes. Specifically, the group which is regulated by 8

transcription factors is the largest, with 1773 genes. The table 2.1 summarizes the

number of transcription factors participating in the regulation of genes.

TF were classified according to the number of genes that they regulate, and the result

can be observed in figure 2.2. Most of the studied TF regulate between 1 and 5 genes,

and 280 of TF of them regulate only one. The last step is to study the variability

of the distribution of genes respect to transcription factors. It can be observed in the

figure 2.3 where the change in the number of genes regulated by a number n of TF

is shown with a scale where red is maximum and blue is 0, that the number of TF

regulating a gene increases quickly until it achieves a stationary value of 10 TF per
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Figure 2.1. Histogram showing the number of TF regulating each gene. The most numerous group

is regulated by 8 transcription factors and a peak can be seen between 5 and 10.

Table 2.1. Information about the classification of genes according to the number of TF regulating its

summarized.

Number of TF Number of genes

1 < N < 5 1809

5 < N < 10 7003

10 < N < 15 3147

15 < N < 20 1245

20 < N < 30 1030

30 < N < 50 665

50 < N < 100 324

N > 100 61
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Figure 2.2. Histogram showing the number of genes regulated by each TF. Most TF regulate between

1 and 5 genes, then the number decreases.

gene.

2.2 Study of the interdependences

In 2001, an experimental study revealed for first time evidence of interdependences

between neighbouring positions in some binding sites. Since then, many experimental

data showed that the interdependences where not only in neighbouring positions, and

computational studies tried to calculate these interdependences using binding sites data

from transcription factor databases (Tomovic and Oakeley, 2007; Zhou and Liu, 2004)
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Table 2.2. Information about the classification of TF according to the number of genes that they

regulate. The most numerous group is the TF regulating between 1 and 5 genes.

Number of genes Number of TF

1 < N < 5 467

5 < N < 10 178

10 < N < 15 128

15 < N < 20 112

20 < N < 30 220

30 < N < 50 331

50 < N < 100 404

N > 100 404

Figure 2.3. Variabilty of the number TF regulating a protein. The maximum increase is represented

in red and the 0 (no change) in blue. The number of TF regulating a protein increases until it reaches

a stationary value at 10 Transcription factor per protein.

2.2.1 Data

Two JASPAR (2010) collections were used to study the interdependences between po-

sitions, the JASPAR core and the JASPAR families. Four organisms were chosen
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Table 2.3. Information about the transcription factor families and the motifs included in each family

Family TF motifs

bHLH TAL1 TCF3, Hand1 Tcfe2a, Mycn, USF, ARNT, MAX, MYC MAX, Ahr ARNT

bZIP HLF, NFIL3, bZIP910, bZIP911, CREB1

ETS GAPBA, ELK4, EIP74EF, ELK1, SPI1 1, SPIB, ETS1

Forkhead FOXD1, Foxq1, Foxd3

HMG SOX17, SRY, Sox 5, HMG IY, HMG 1

Homeo HNF1A, Nkx2 5, Ubx 1, En1

MADS SRF, SQUA

Nuclear usp, PPARG, RXRA VDR, RORA 1, RORA 2, NR2F1, PPARgamma RXRA

REL NFKB1, RELA, REL, dl 1, dl 2

TRP IRF2, IRF1, GAMYB

from JASPAR core:Homo sapiens, Drosophila melanogaster, Mus musculus and Rattus

norvegicus, and the motifs having more than 10 binding sites were extracted. In total

there are 181 sequences: 43 from humans, 26 from the mouse, 11 from rat and 102 from

fly.

From JASPAR families database all sequences corresponding to the families: bHLH,

bZip, ETS, forkhead, HMG, Homeo, MADS, nuclear, REL and TRP were extracted.

The table with the families and the binding sites included as a representation of each

one of these families is presented in table 2.3.

2.2.2 Measurement of the interdependences

A first attempt to calculate the interdependence between two binding site nucleotides,

situated in the position i and j of the binding site can be made using mutual informa-

tion, shown in equation (2.1).

MIi,j =
∑
bi,bj

Pbi,bj ,i,jlog2

Pbi,bj ,i,j

Pbi,i, Pbj ,j
(2.1)

where bi and bj correspond to the nucleotides in the studied positions i, j and Pbi is

the probability of the bi nucleotide in the position i. The joint probability of having

nucleotide bi in position i and bj in position j is described by Pbi,bj . The main problem
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of this approach is that it is not straightforward to calculate whether the obtained

mutual information value means a significant interdependence or not.

Tomovic and Oakeley (2007) proposed different methods to calculate only the signif-

icant interdependences, a χ2 test, an exact method using Montecarlo simulations and

the Bayes Factor. Giving two Hypothesis H0 and H1, the Bayes factor is an alternative

to hypothesis testing which gives the posterior probability of the null hypothesis when

the prior probability is 0.5 (Kass and Raftery, 1995). The equation 2.2 defines the

Bayes factor, giving the posterior distribution pr and the data D.

BF =
pr(D|H0)

pr(D|H1)
(2.2)

The less restrictive method is the χ2, then the Bayes Factor and finally the exact

method which is the one finding less significant interdependences but that it has a

large computational cost. In order to achieve a compromise between the restrictiveness

to consider significant interactions and the computational time, the Bayes Factor was

used to calculate interdependences. This method was also chosen by Zhou and Liu

(2004). In the study of interdependences, the Bayes Factor (BF) described in equation

(2.3) was used to test the Null hypothesis, H0, of independence between positions i

and j against H1, the alternative hypothesis of dependence, in order to determine the

significance of the dependencies found:

BF (H0;H1) =
Γ (
∑

bi,bj
αbi,bj

Γ (M +
∑

bi,bj
αbi,bj

∏
bi

Γ (N(bi, i) + αbi)

Γ (αbi)∏
bj

Γ (N(bj , j) + αbj )

Γ (αbj )

∏
bi,bj

Γ (αbi,bj )

Γ (N(bi, bj , i, j) + αbi,bj )
(2.3)

where M is the size of the bindings sites sequences, N(bi, i) is the number of bi

nucleotides in position i, and α refers to the parameter of the Dirichlet prior distribu-

tion. When αbi,bj = 1 and αbi =
∑

bj
αbi,bj the Bayes Factor is related to the mutual

information as shown in equation (2.4) (Minka, 2003).

log2(BF (H0;H1)) ≈ −MMIi,j (2.4)

Formula (2.4), where MIi,j is the mutual information and M the number of sequences

in a binding site motif, was used to calculate the Bayes Factor, BF (H0;H1). And as

in Tomovic and Oakeley (2007), a threshold of BF < 0.1 was set to indicate strong
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evidence of interdependences between positions. For each motif, the proportion of

positions showing interdependences was named Complexity of the factor or Comp and

calculated as in equation2.5.

Complexity = Comp =
NPinterdep
NPTotal

(2.5)

Where NPinterdep is the number of positions that have significant interdependences

according to the Bayes Factor calculation and NPTotal is the total number of position

within the binding site.

2.2.3 Results of interdependences

2.2.3.1 General Results

The interdependences were calculated for all the retrieved binding motifs from JAS-

PAR database. The minimum Complexity of a motif is 0, when all the positions are

independent, and the maximum is Comp = 0.37, corresponding to the binding sites of

PPARγ transcription factor in humans. PPARγ is a transcription factor of the nu-

clear family that regulates adypocite differentiation and it has been implicated in many

diseases including obesity and cancer. Some studies have shown that PPARγ binds to

sites composed by the repeat of two hexanucleotides separated by one nucleotide, and

also that some upstream nucleotides have influence in the binding specificity. The fact

that the hexanucleotides should ideally be equal is a good explanation for the large

number of positions with interdependences (Okuno et al., 2001).

The histogram of the complexity of the database is presented in figure 2.4, where it

can be observed that most of the motifs have interdependences. There is not a clear

peak in the number of interdependences, but it can be noted that most of the motifs

have a Complexity Compl between 0.2 and 0.3. The percentage on binding sites that

do not have interdependences is very low, just a 6.62%. Even if the motifs without

interdependences do not have a large number of positions, there is no clear correlation

between the number of positions or sequences and the percentage of interdependences

of a binding site.

While in our study more than 90% of the motifs have some interdependence, previous

studies showed smaller percentages of motifs with interdependences, a 25% in TRANS-

FAC database from Zhou and Liu (2004) and a 62.62% in Tomovic and Oakeley (2007)
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Figure 2.4. Histogram of the Complexity of the JASPAR motifs. The simplest binding sites have a

Compl = 0 Complexity, meaning that all the positions are independent, and the maximum complexity

is Compl = 0.37, corresponding to the PPARγ binding sites.

using the same methodology that we applied and the JASPAR (2006) database. The

differences can be due to different factors, for example the new data included in the

databases (94 sequences in JASPAR 2006 and 181 sequences from four organisms in

JASPAR 2010). The other factor is that we did not take into account the motifs that

have less than 10 binding sites from the same database and they did, this is supported

by the fact that they found no interdependences in the motifs having less sequences.

2.2.3.2 Interdependences for Families

Binding sites are classified in families according to their DNA binding domain, which

means that all members of a family have a similar structure that binds to DNA. The

sequences from JASPAR (2010) family have been analysed in order to see if the Com-

plexity of a motif can be identified with its family.
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2. BINDING SITES CHARACTERIZATION

The results show that the binding sites cannot be classified by families using the Com-

plexity, because all families have binding sites with different complexities. This is shown

in figure 2.5 where the complexity of the different families is presented, each one in a

different colour. This database is smaller than the JASPAR core, but the distribution

of the Complexity of the sites does not change significantly.

Similar to the families but more general, are the structural classes of TF. Each struc-
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Figure 2.5. Complexity for families. The different families are presented in a different colour. It can

be seen that the complexity of the TF in a family has a high variability and that the families cannot

be separated using the Complexity value.

tural class comprises some families and it can be characterized by its binding domain.

The structural classes included in the JASPAR database are: Beta-hairpin ribbon,

beta-sheet, Helix-turn-helix, Ig-fold, Other alpha-helix, Winged Helix-turn-helix, zinc

coordinating zipper type and others (which include the binding sites that cannot be

classified in any of the mentioned structural classes). The distribution of the structural

classes on the studied motifs is summarized in table 2.4
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2.2 Study of the interdependences

Table 2.4. Summary of the number of TF that belong to each structural class.

Structural Class Number of TF

Beta-Hairpin-Ribbon 1

Beta-Sheet 0

Helix-turn-Helix 90

Ig-fold 13

Other Alpha-Helix 4

Winged Helix-turn-Helix 16

Zinc-coordinating 32

Zipper-type 19

Other 3

The results show that the structural classes cannot be classified using just the

Complexity, but that more complex classifiers are needed (Narlikar et al., 2006). In the

figure 2.6 the histograms for the Helix-turn Helix class (a) and the Zinc coordinating

class (b) are represented. The histograms show a similar distribution of the Complexity

in the different classes. This fact can be explained because the DNA-protein bindings

depend also on sequence-based specific conformation or distortion of the structure or

water-mediated contacts. Moreover, the binding affinity can be affected by neighbour-

ing amino acids, specially if there are collaborative effects between transcription factors.
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Figure 2.6. Histograms of the Helix-turn-Helix and the Zinc coordinating structural classes. Both

classes have complexities which go from the range from 0 to 0.4, showing that there is not a clear

difference in the complexity of the families.
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3

Q-Residuals Detector

The objective of the chapter is to construct a subspace model of the binding sites using

the covariance matrix of the aligned DNA sequences. The Q-residuals of this covariance

model can be used to construct a binding sites detector which takes into account inter-

dependences between positions. In this chapter I first explain the conversion from an

aligned DNA binding motif to a numerical matrix and then I explain the TFBS mod-

elling by means of PCA and how the Q-residuals detector can be built. Finally, the

Q-residuals detector is compared to state-of-the-art modelling algorithms. The results

of this analysis were published by Pairó et al. (2012)

3.1 Methodology

3.1.1 Data sets

3.1.1.1 TFBS data

The transcription factor motifs were extracted from JASPAR 2010 release and TRANS-

FAC 7.0 (2005) databases (section 1.2.4). From TRANSFAC database, all the motifs

with more than 10 binding sequences were chosen. The motifs correspond to different

organisms: Homo sapiens, Drosophila melanogaster, Mus musculus, Rattus norvegicus,

Gallus gallus and Saccharomyces cerevisiae. After downloading, the sequences were

aligned using CLUSTALW (Larkin et al., 2007) and a leave-one-out cross validation

method in order to see which sequences have more than five consecutive positions with-

out gaps. Only those sequences fulfilling this latter condition were chosen. The studied

sequences from TRANSFAC totalled 23 samples.
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3. Q-RESIDUALS DETECTOR

Table 3.1. Information about TFBS used for each database, the organisms and the

Organism JASPAR TRANSFAC

Saccharomyces cerevisiae 0 6

Drosophila melanogaster 10 3

Mus musculus 25 5

Rattus norvegicus 11 4

Homo sapiens 43 4

Gallus gallus 0 1

TOTAL 89 23

Four organisms were chosen from JASPAR database:Homo sapiens, Drosophila melanogaster,

Mus musculus and Rattus norvegicus. Following the same criteria, the motifs with more

than 10 binding sequences available in JASPAR were extracted. From the organism

Drosophila melanogaster only 10 of the motifs were used. Table 3.1 shows the summary

of the motifs classified by organisms and databases.

3.1.1.2 Background Data

All promoter sequences from the used multicellular organisms were extracted from the

EPD database version based on the EMBL release 105 (sept 2010). The sequences

from -1000 to +500 relative to the TSS were used to construct a background model for

each organism, calculating the probability of each nucleotide in the promoter sequences.

Then, two background sequences from each organism were randomly chosen to study

the binding site detectors.

For the Saccharomyces cerevisiae binding sites, the promoter sequences used belong

to positions 44730-46230 in chromosome 1, 678930-680430 in chromosome 16 and a

region comprising 11410-12910 in chromosome 1. In table 3.2 the details of the genes

whose promoter was used for each organism are explained, except for saccharmoyces

cerevisiae.
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3.1 Methodology

Table 3.2. Information about the background sequences for each organism. The backgrounds corre-

spond to the positions -1000 bp to +500 bp relative to the TSS from the genes in the table

Organism gene 1 gene 2

Mus musculus Igk′T Igk′MPC11

Rattus norvegicus LC3fP2 PSBPC2

Homo sapiens RPS9P2+ PSMA2

Gallus gallus apoV LDLII a′A− globin

3.1.2 Conversion to Numerical Matrix

The TRANSFAC motifs were aligned using ClustalW, in order to construct a matrix

of DNA binding sequences. JASPAR sequences did not need any further preprocessing

because the sequences are stored as an aligned matrix in the database.

To convert the aligned DNA motif into a numerical matrix, the 3-dimensional conver-

sion where all the nucleotides are placed at the vertex of a regular tetrahedron with

distance D = 1 between nucleotides, explained in section 1.6.1 was used. This conver-

sion that can be observed in equation (3.1) where A,C,G,T are the three-dimensional

conversion for the a,c,g,t nucleotides respectively was chosen because it is symmetric

for all nucleotides and has been extensively used in genomic signal processing (Liew

et al., 2005).

A ≡ (0, 0, 1)

C ≡ (−
√

2

3
,

√
6

3
,−1

3
)

G ≡ (−
√

2

3
,−
√

6

3
,−1

3
)

T ≡ (2

√
2

3
, 0,−1

3
) (3.1)

The numerical vectors corresponding to each position are concatenated. Therefore,

the result of the numerical conversion is a N × 3M matrix of numerical sequences.

Where N is the number of sequences and M the number of positions per sequence.

Due to the differences in length of the non-aligned binding sites, some gaps at the

beginning and the end of the sequences can appear during the alignment process. The
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3. Q-RESIDUALS DETECTOR

numerical value of these gaps is imputed taking into account the probability of each

nucleotide in the promoter model, as it can be seen in equation (3.2).

GAP = P (a)A+ P (c)C + P (g)G+ P (t)T (3.2)

where GAP is the position of the gap in the tetrahedron, P (a), P (c), P (g) and P (t)

are the background probabilities of each nucleotide and A, C, G, T are the positions

of the a,c,g,t nucleotide in the vertex of the tetrahedron. Only when the nucleotide is

available at least for 50% of the sequences the gap is imputed, otherwise the position

is neglected.

3.2 Subspace Model

3.2.1 Building the model

In order to build the model a PCA is applied to the N × 3M numerical TFBS matrix,

using equation (1.15) (X is, in our case the numerical DNA motif). The A scores rep-

resent the N ×nPCS matrix with the projected DNA data and B is the (3M)×nPCS
loadings defining the subspace which captures the maximum of the motif variance. The

N×(3M) error matrix corresponds to the square of the euclidean distance of the TFBS

to the subspace defined by the loadings.

To biologically interpret the model, we must look at the 3M × 3M covariance matrix

which captures the interdependences between the numerical positions. If the covari-

ance is a diagonal matrix it means that all the positions of the studied motif are not

correlated, and the non-zeros out of the diagonal indicate interdependences between

the binding sites positions. In the PCA model, this information is explained in the

loadings which in this case, due to the 3-dimensional representation of the DNA and its

conversion to a matrix, must be interpreted in a per 3 basis. The variance of a position

can be seen in the 3 components of the loading representing this position, if the three

of them are almost zero, then the position is conserved and if they differ from zero the

position varies. To analyse the covariance, between two positions is needed to look at

the loadings of these two positions.

In the figure 3.1 the covariance matrix, the first loading and the binding sequences

from the Drosophila melanogaster DL motif are shown. This motif has some interde-

pendences that can be observed looking at the sequences (e.g interdependences between
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3.2 Subspace Model

positions 4 and 5). The interdependences are reflected into the covariance matrix and

then, into the loadings which are large in absolute value, while the loadings of the most

conserved positions are smaller.

0.3

0.0

    1  2  3  4  5  6  7
1   G  G  G  T  T  T  T
2   G  G  G  T  T  T  C
3   T  G  G  T  T  T  T
           ....
21  G  C  C  A  A  C  C
22  G  C  A  A  A  A  C
23  A  A  T  A  A  C  C
24  G  A  T  G  A  C  C

0.0

0.5

a)

b)

c)

Figure 3.1. Covariance matrix (a), first loading (b) and binding site sequences (c) for the DL motif

from the organism Drosophila melanogaster. The 3M × 3M covariance matrix shows the interde-

pendences between numerical positions, that can also be observed looking at the aligned motif. The

covariance is then explained by the loadings, which are closer to zero when a position is more conserved.

3.2.2 Construction of the Detector

The Q-residuals detector can be built using the Q-residuals statistics of the numerical

DNA sequences. When a candidate sequence is projected to the principal components
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3. Q-RESIDUALS DETECTOR

subspace, the hypothesis done is that the residuals of the binding sites sequences will

be smaller than the residuals of the other genomic sequences. The Q-residuals statistics

threshold can be directly estimated from the confidence interval calculated in equation

(1.19), using the equation (3.3).

Qα = Θ1[
cα
√

2Θ2h2
0

Θ1
+

Θ2h0(h0 − 1)

Θ2
1

]1/h0 (3.3)

Where, as in equation (1.19), Θ1, Θ2, Θ3 and h0 are the new variables used to

transform the Q-residuals distribution into a normal distribution, Qα is the Q-residuals

threshold and cα is the chosen confidence interval.

To show how this detector works, one example of the construction of the detector using

promoter sequences and PPARG binding site sequences is represented in the figure 3.2.

To plot this example, a 3-components model of the PPARG numerical binding sites

matrix was calculated, and then the Q-residuals of these binding sites and promoter

sequences projected to the model were represented using a histogram. The Q-residuals

of the PPARG sequences are represented in blue and the Q-residuals of the promoter

sequences in red; it can be observed that in this example a Q-residuals threshold can

be used to detect binding sites within genomic sequences.

3.3 Comparison to Other Algorithms

3.3.1 PSSM Algorithms

To compare our detector to existing PSSM methods the MEET R package, available in

the R-forge project http://r-forge.r-project.org/projects/meet, was developed

(Pairó et al., 2011). This R package allows us to combine several alignment methods

with different algorithms to search for TFBS within a large sequence. The package can

be configured to call external alignment methods including CLUSTALW2, MUSCLE

(Edgar, 2004), and MEME which has as an internal multiple alignment method. The

current version of the package, MEET 5.1 is described in the Appendix A.

The proposed Q-residuals method is compared with MAST and an implementation

of MATCH algorithm that takes into account the probability distribution of the nu-

cleotides in the promoter sequences of each organism.

66

http://r-forge.r-project.org/projects/meet


3.3 Comparison to Other Algorithms

Q−residuals (56.6%)

P
ro

ba
bi

lit
y

0 5 10 15 20 25 30

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Figure 3.2. Q-residuals for the PPARG model using 3 principal components, in blue, and the Q-

residuals of a human promoter in red. Selecting a Q-residuals threshold the binding sites can be easily

distinguished from the non-binding sequences.

CLUSTALW2 with the default parameters, gapextend = 0.2, gapopen = 10 was used

to align the sequences in all the compared methods in TRANSFAC.

3.3.1.1 MAST Algorithm

The comparison with MAST algorithm was done using the source available to down-

load at MEME suite, MEME 4.4.0, which allows us to combine different alignment

algorithms to construct the PSSM and then use the PSSM as an input to MAST. To

calculate the PCA model and the Q-residuals in R, the pcaMethods R package was

used (Stacklies et al., 2007).

3.3.1.2 MATCH Algorithm

To implement MATCH, the same algorithm explained in (Kel et al., 2003) was used.

The only difference between the implementation and the algorithm described in the

paper is the use of the background nucleotide probability distribution specific for each

organism as it is described in equation 1.2, instead of a 0.25 background probability
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of each nucleotide. The use of a specific background probability usually improves the

detection of binding sites using PSSM methods.

3.3.1.3 Validation of the Detector

The measurements chosen to assess the performance of the algorithms are the ROC

curves and the Area under the ROC curve (AUC). The ROC curve shows the True

Positive Rate (TPR) against the False positive Rate (FPR) and its AUC goes from 0

to 1 being closer to one when the performance of the detector is good.

The validation was done by the MEET R package using a double leave-one-out method.

First a sequence A is removed and inserted into the background sequence. Then, the

rest N−1 sequences of the same motif are used for a standard LOO to construct models

with N−2 sequences. These N−2 sequences are first aligned and the chosen algorithm

is applied to build a model. Finally each one of the N − 1 models of the L.O.O. is used

to detect the sequence A within the known position of the background. After that,

sequence A is inserted again into the group and a second sequence B is used to repeat

the process N times. The methodology allows the calculation of the ROC curves the

AUC and also the variance associated to these measurements.

As the location of the true positives is known, the threshold of the detectors can be

moved in order to generate the N different ROC curves and their AUC. This threshold

varies upon the detector, in the Q-residuals is the residuals statistics of the PCA model,

in MATCH is the sequence similarity and in MAST is the p-value. Once the N ROC

curves are generated, the standard deviation is used to estimate the variability of the

ROC curve points and the AUC.

In the case of the Q-residuals detector, the AUC was calculated for a range from 1 to

10 principal components, and in the case of MATCH, the varying parameter was the

Core Similarity, going from 0.5 to 0.95 by 0.05. Only one set of ROC curves and AUCs

were calculated in MAST because the length of the sequence (parameter to optimize

in MEME) is defined by the number of positions of the PSSM constructed using the

aligned sequences.

The mean and the variance of AUC for the studied range of principal components were

calculated for each motif. Models built using different numbers of principal components

can have an equivalent performance when the AUC mean and the AUC variance are
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taken into account. Between these models, the one with a smaller AUC variance aver-

aging between backgrounds 1 and 2 was chosen as the best model. The same criteria

was used to choose the threshold of Core Similarity in MATCH algorithm.

As the number of negative examples greatly exceeded the number of positive examples

in this study, it was also convenient to compare the algorithms using Precision-Recall

(PR) curves (Buckland and Gey, 1994). These curves plot the precision which is the

rate of found positives that are actually true positives against the recall which indicates

the true positive rate.

There exists a unique correspondence between the PR curves and the ROC curves, and

when an algorithm dominates in the ROC spaces it also dominates in the PR space,

however optimizing the AUC under the two different methods is not the same thing

(Davis and Goadrich, 2006). To show that the PR curves confirm the results obtained

with the ROC curves,the curves were calculated for the optimal parameters for each

detector. The ROC curves, the AUC and the PR curves were calculated using the

ROCR package (Sing et al., 2005).

3.3.1.4 Comparison Results

In this section we first present the results of the comparison between the Q-residuals

detector, MATCH and MAST using the 112 motifs presented above and two different

backgrounds for each organism. Then we describe in more detail the comparison be-

tween MAST and Q-residuals, and we show a study of the interdependences.

One example of detection can be seen in the cMyB motif in figure 3.3, a set of tran-

scription factor binding sites belonging to Homo sapiens. The ROC curves show the

performance of the three algorithms using the first background for Homo sapiens. A

significant improvement is observed when the Q-residuals detector is used instead of

MAST or MATCH.

Another example, for the FOXO3 motif also from the Homo sapiens organism can be

observed in the figure 3.4, but in this case the curve represented is the Precision-Recall

curve. In the figure the average PR curve is presented for the Q-residuals detector in

black, the MAST algorithm in red and MATCH in green. Using the Precision-recall,

the Q-residuals detector also performs better than the studied PSSM methods.

In order to quantify the differences in performance among the Q-residuals detector
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Figure 3.3. ROC curve for Q-residuals in black, MAST in red and MATCH in green using the cMyB

transcription factor and the Homo Sapiens background 1. The ideal number of components and the

ideal MATCH Core Similarity have been used to compute the ROC curve. The error bars correspond

to the variation in detection using the LOO cross validation. The figure shows the improvement of the

detection using the Q-residuals algorithm

and the other algorithms a Wilcoxon rank-test (Wilcoxon, 1945) was performed in the

AUC distributions, using as a null hypothesis that the two distributions are the same

and as an alternative hypothesis that AUC using Q-residuals is closer to 1 than using

MAST or MATCH. In the table 3.3 the performance of the three different detectors

Q-residuals, MATCH and MAST is shown for the two different backgrounds in each

organism and the TRANSFAC motifs. The best number of components, which is usu-

ally between 1 and 4 is shown together with the mean AUC for each background and

method. The increment in AUC and the p-value of the Wilcoxon-Rank the test are

also represented.

The table 3.4 summarizes the results for all the studied TF motifs , showing for each

organism, the total number of motifs and in how many of them Q-residuals performs

significantly better than MATCH or MAST. It can be seen that Q-residuals performs
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Figure 3.4. Precision-Recall (PR) curve for Q-residuals in black, MAST in red and MATCH in green

using the FOXO3 transcription factor and the Homo Sapiens background 1. The ideal number of

components and the ideal MATCH Core Similarity have been used to compute the PR curve. The

depicted curve is the average for each leave-one-out iteration.

significantly better than Match in 57 of the 112 studied motifs and significantly better

than MAST in 63 of them, with p− value < 0.05.

For a better visualization of the performance detectors, we represented the AUC box

plots in figure 3.5. The box plots represent the AUC and its variation when the leave-

one-out cross validation is applied. The figure 3.5 shows the box-plots for the first

background and the JASPAR motifs corresponding to Mus musculus comparing the

Q-residuals detector to MAST. In most cases, not only the mean AUC is closer to

one in Q-residuals but also the variance is smaller, which suggests that the Q-residuals

detector behaves more robustly.

The proportion of positions showing interdependences calculated using equation (2.3),

complexity or Comp, varies among the studied binding sites as it can be observed in fig-

ure 3.5 (where it is named Idep). A correlation test was performed between the Comp

71



3. Q-RESIDUALS DETECTOR

Table 3.3. Results for Q-residuals detector compared to MATCH and MAST algorithms, correspond-

ing to the 2 backgrounds of each organism in TRANSFAC. The AUC shown for each method is the

mean of the areas using the cross-validation method and the number of principal components for Q-

residuals is chosen as the number of components with less variance in the AUC. The ∆AUC is the

mean AUC improvement of Q-residuals vs. MATCH and MAST, respectively. The level of significance

corresponds to the p-value calculated when a Wilcoxon-rank test is performed, with the null hypothesis

being that the AUC distributions using Q-residuals detector and the other algorithm are the same and

the alternative hypothesis being that the AUC distribution calculated with the Q-residuals detector is

closer to one. A relation of the 89 JASPAR motifs and 23 TRANSFAC motifs can be found in the

supplementary material 2.

TF nPCs Q-residuals 1 Q-residuals 2 Match 1 Match 2 ∆AUC Match 1 MAST 1 MAST 2 ∆AUC MAST 1

ABF1 4 0.9991 0.9975 0.9902 0.9964 5 · 10−3 *** 0.9957 0.9986 1.14 · 10−3

BCD 3 0.9961 0.9952 0.9912 0.9884 5.85 · 10−3*** 0.9913 0.9947 2.68 · 10−3*

CAT8 3 0.9998 0.9995 0.9971 0.9978 2.21 · 10−3*** 0.9999 0.9992 9.02 · 10−5

CEBP β 35 3 0.9931 0.9965 0.9863 0.9878 7.75 · 10−3 ** 0.9936 0.9946 6.66 · 10−4

cJun 1 0.9868 0.9915 0.9700 0.9813 1.35 · 10−2 ** 0.9575 0.9880 1.64 · 10−2*

cMyB 1 0.9905 0.9907 0.9714 0.9714 1.92 · 10−2*** 0.9818 0.9869 6.21 · 10−3*

DL 1 0.9982 0.9962 0.9835 0.9864 1.23 · 10−2 *** 0.9682 0.9917 1.73 · 10−2*

E2F 4 0.9997 0.9998 0.9991 0.9998 3.00 · 10−4 * 0.9988 0.9995 5.26 · 10−4

GAL4 1 0.9998 0.9999 0.9742 0.9759 2.48 · 10−2 *** 0.9875 0.9653 2.34 · 10−2*

GCN4 1 0.9988 0.9997 0.9936 0.9937 5.68 · 10−3 *** 0.9951 0.9935 5.06 · 10−3***

HNF1 α 9 0.9945 0.9940 0.9807 0.9850 1.14 · 10−2 * 0.9943 0.9921 2.1 · 10−3

HNF4 α 4 0.9957 0.9972 0.9870 0.9938 6.05 · 10−3 * 0.9937 0.9957 1.79 · 10−3

HNF6 α 1 0.9977 0.9996 0.9961 0.99358 3.81 · 10−3*** 0.9838 0.9949 9.37 · 10−3*

IRF1 2 0.9992 0.9994 0.9727 0.9912 1.74 · 10−2** 0.9970 0.9992 1.22 · 10−3

IRF8 3 0.9991 0.9981 0.9926 0.9791 1.28 · 10−2 *** 0.9928 0.9967 3.86 · 10−3**

KR 3 0.9923 0.9965 0.9933 0.9838 5.85 · 10−3 * 0.9926 0.9929 1.69 · 10−3

LyF1 3 0.9952 0.9958 0.9689 0.9823 1.99 · 10−2*** 0.9903 0.9853 7.68 · 10−3**

MIG1 1 0.9986 0.9954 0.9766 0.9475 3.49 · 10−2 *** 0.9895 0.9896 7.49 · 10−3*

NF κ B 2 0.9998 0.9999 0.9995 0.9999 3.08 · 10−4* 0.9991 0.9998 4.38 · 10−4 ***

p50 2 0.9996 0.9999 0.9995 0.9999 4.86 · 10−5 0.9994 0.9998 1.72 · 10−4 *

RFX1 7 0.9921 0.9969 0.9721 0.9867 1.51 · 10−2 *** 0.9871 0.9837 9.09 · 10−3*

ROX1 8 0.9998 0.9985 0.9997 0.9993 −3.5 · 10−4 0.9996 0.9980 3.40 · 10−3*

T3R α 6 0.9923 0.9919 0.9754 0.9852 1.18 · 10−2*** 0.9854 0.9757 1.15 · 10−2**

and the improvement in binding site detection when Q-residuals detector is compared

to MAST. The improvement in binding site detection was calculated subtracting the

mean AUC for each binding site calculated using each method. Results show a signif-

icant correlation between the number of strong interdependent sites within a binding

locus and the amount of improvement of the Q-residuals detector over MAST, in terms

of AUC. Performing the test in the results for JASPAR database, p − value = 0.004,

and in TRANSFAC database p− value = 0.04.

The computational time of the Q-residuals detector MAST and our R implementation

of MATCH have been compared when they are used to detect TFBS within promoter
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Table 3.4. Summary of the results of the Q-residuals detector compared to MAST and MATCH,

classified by organisms. The table shows in how many binding motifs for each organism the Q-residuals

detector performs better than MAST or MATCH, and the total number of motifs for each organism.

Organism motifs Comp MAST Comp MATCH

Saccharomyces cerevisiae 7 4 6

Drosophila melanogaster 13 10 8

Mus musculus 30 17 12

Rattus norvegicus 15 9 10

Homo sapiens 47 20 18

Gallus gallus 1 1 1

TOTAL 112 63 57

sequences. To compare the three algorithms the MAST algorithm (MEME version

4.4.0) installed in the computer, the C code for Q-residuals using the ideal number of

components, and the implementation of MATCH algorithm in R with the ideal Core

Similarity have been used. The background corresponds to the background 1 for each

organism, which consists in 1500 nucleotides, and the threshold for each method was

set in a way that the number of positives is similar. In the case of MAST a p-value

of p=0.001 was chosen, in Q-residuals a confidence interval of C=0.95 and in MATCH

the Similarity was set to S=0.85. The time was calculated in 100 iterations of the

program. The averages of the computational times in detection for the TRANSFAC

database motifs are 0.003±0.001s using the Q-residuals detector, 0.0191±0.001s using

MAST and 0.33 ± 0.03s for the R implementation of MATCH. The results show that

Q-residuals detector is faster than MAST and the R implementation of MATCH in all

the studied binding sites. The table 3.5 shows the mean computational time for the 23

transcription factors of the TRANSFAC database.

3.3.2 Graph-based algorithm

3.3.2.1 Motifscan Algorithm

PSSM can be easily extended in order to model pairwise dependencies between posi-

tions, but transcription factor binding sites can have more complex dependencies. To
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Figure 3.5. Box plot of the AUC and its variation for the studied transcription factors, comparing

Q-residuals detector with the chosen number of components in white to MAST in grey. The results

correspond to the background 1 of Mus musculus. Comp corresponds to the rate of positions within a

binding site that have significant interdependences

model these dependencies Naughton et al. (2006) developed Motifscan, a graph-based

algorithm which is similar to a k-nearest neighbours applied to binding motifs. The

evaluation of a k-mer is based on its Hamming distance to the nearest k-mers of the

motif instead of being based on the distance to a centroid as in the PSSM models.

They used 94 JASPAR (2006) motifs to compare Motifscan to PSSM methods. To do

the comparison, they calculated the ROCN curves, which are equivalent to the ROC

curves but taking into account just the first N false positives, where N is the number of
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3.3 Comparison to Other Algorithms

Table 3.5. Computing time comparison between Q-residuals detector implemented in C, MAST down-

loaded from MEME suite (MEME 4.4.0) and MATCH implementation in R. The p-value for MAST was

chosen p = 0.001, the threshold in Q-residuals as c = 0.95 and the Similarity in MATCH as S = 0.85,

to have the similar numbers of TFBS detected. The background was chosen as the Background 1 of

each organism and the parameters for Q-residuals and MATCH correspond to the ideal number of PC

and ideal Core Similarity for each motif. All results have been computed used a AMD Athlon(tm) 64

X2 Dual Core Processor.

TF Q-residuals (s) Mast (s) MATCH (s)

ABF1 0.0037 0.0196 0.3396

BCD 0.0034 0.0191 0.3293

CAT8 0.0024 0.0191 0.3372

CEBP β 35 0.0041 0.0188 0.3564

cJun 0.0043 0.0186 0.4259

cMyB 0.0034 0.0188 0.3474

DL 0.0026 0.0190 0.3199

E2F 0.0025 0.0193 0.3067

GAL4 0.0034 0.0208 0.3739

GCN4 0.0041 0.0196 0.2652

HNF1 α 0.0044 0.0194 0.3631

HNF4 α 0.044 0.0183 0.3391

HNF6 α 0.0036 0.0185 0.3519

IRF1 0.0036 0.0190 0.3456

IRF8 0.0038 0.0191 0.3413

KR 0.0033 0.0204 0.2977

LyF1 0.0040 0.0191 0.3095

MIG1 0.0024 0.0197 0.3520

NF κ B 0.0035 0.0182 0.3047

p50 0.0035 0.0182 0.3061

RFX1 0.0045 0.0185 0.3061

ROX1 0.0102 0.0186 0.3394

T3R α 0.0036 0.0193 0.3395

sequences available for the selected motif. A significant improvement of one algorithm

over anoother is considered when a 5% increase in the ROCN AUC is achieved.

Using the same methodology and 93 of the 94 motifs of the old JASPAR version (the

old version of the remaining one was not available), the AUCs of the ROCN curves were
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3. Q-RESIDUALS DETECTOR

calculated for the Q-residuals detector, and the results used to compare the detectors.

3.3.2.2 Comparison Results

Using the same criteria as Naughton et al. (2006), a 5% increase in the ROCN AUC is

required to consider a significant improvement. The results show that in 34 of the 93

studied motifs Motifscan performs better than the Q-residuals detector and the PSSMs

methods, Q-residuals is the best detector in 25 of the 93 motifs and PSSM just in

1 of them. The three detectors perform equally good in 16 motifs, Q-residuals and

Motifscan equally good but better than PSSM in 16 motifs, Q-residuals and PSSM

better than Motifscan in 3 motifs and Motifscan and PSSM are better than Q-residuals

in 9 of the 93. A visualization of the results in figure 3.6 shows that the performance

of Q-residuals is more sensitive to the number of positions. When the sequences are

short, the number of false positives using the Q-residuals detector increases leading to

a smaller AUC. Motifscan performs better in this situation but, on the other hand, it

needs more training sequences, and when the number of sequences is small, Q-residuals

performs better than Motifscan. Focusing on the 37 motifs which have less than 20

sequences available, in the 43.24% of the cases the AUC of Q-residuals is significantly

the best algorithm, while motifscan is the best just in a the 27.02% of this instances.

In most cases, even if Motifscan is significantly better than Q-residuals, the Q-residuals

algorithm performs better than PSSM methods also for this comparison.
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4

Three way detectors

From the results in the previous chapter, it is demonstrated that a covariance analysis

of numerical DNA sequences can be used to model and predict binding sites and also

to find correlations between different positions. The information in each position is

difficult to recover due to the arrangement of the numerical data into a 2-way matrix

(e.g. loadings should be grouped into length-3 vectors and the correlation matrix

into 3 × 3 submatrices in order to study the original sequence). The DNA binding

matrix can also be arranged in a 3-way array, where the first dimension is related

to the sequences, the second to the positions of the nucleotides within the binding

site and the third represents the numerical DNA conversion for a particular nucleotide.

Multiway techniques can then be applied to the DNA 3-way array to model the binding

sites and find interdependences between positions. Thanks to the characteristics of

these techniques, the resulting models could be more interpretable than PCA models.

Detectors can also be built using 3-way techniques, in an analogous way to the PCA

Q-residuals detector. Because of the uniqueness of PARAFAC models, the scores can

be used to construct a combined QDA detector which produces similar results than the

Q-residuals detectors.

4.1 Methodology

4.1.1 Datasets

A preliminary study of the application of PARAFAC analysis to model DNA motifs was

done using the 5 motifs from the homo sapiens organism and the JASPAR database
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which have more than a 30% of positions with interdependences (equation (2.3)). These

5 motifs are: ESR1, INSM1, NFATC2. NR3C1 and PPARG. Also the motif with

highest dependences from TRANSFAC database, the DL binding motif, was chosen

for this first analysis. DL binding sites were the ones used to show the loadings, the

correlation matrix and the kind of information that we could extract from a PCA

model. The idea of this study was to see how PARAFAC models can fit to DNA 3-way

data and how interdependences are captured in 3-way models, choosing manually the

model that could explain more features for each binding motif.

To compare the 3-way detectors to the other detectors, the 93 motifs from the JASPAR

(2006) database have been used. Using this database, the 3-way detectors can be

directly compared to algorithms which take into account interdependences and also to

the Q-residuals detector.

4.2 PARAFAC models

4.2.1 3-way Conversion

The same numerical conversion, defined in equation (3.1) can be used to transform the

symbolical DNA matrix into a numerical cube. This conversion produces a three-way

data set. The data reflects the numerical conversion of the different positions of a motif

for all the binding site sequences.

Given a motif with N binding sequences, each one having M positions the dimension-

ality of the cube is N×M×d where d is the dimensionality of the numerical conversion

which in this study is d = 3. An scheme of the cube with an example of the conversion

of a single sequence with 6 positions is represented in the figure 4.1. Each one of the 6

nucleotides (second mode) is converted into its numerical representation (third mode),

and the process is applied to each one of the sequences of the motif (first mode).

4.2.2 PARAFAC Analysis

The PARAFAC analysis of the numerical DNA cubes was done following the equation

(1.20) where R refers to the number of components. In this case, xi,j,k are the elements

of the numerical N ×M × d cube X of DNA sequences. ai,r are the elements of the

matrix A, a N×R matrix of loadings corresponding to the first mode, the sequences. B

is a M×R matrix of loadings with elements in the equation (1.20) bj,r corresponding to

80



4.2 PARAFAC models

Figure 4.1. Scheme of the numerical conversion of sequences using the cube. The first mode represents

the number of sequences, the second the position within the motif and the third mode represents the

numerical conversion. An example of numerical conversion of a sequence is shown.

the positions of each sequence (second mode) and ck,r refer to the elements of C which

is a d×R matrix of loadings corresponding to the third mode, the different nucleotides.

ei,j,k are each one of the elements of the error cube.

If the PARAFAC models are interpretable, the A matrix will have information about

the different sequences of the model and the B matrix will have information about the

nucleotides in each position of the motif. To recover the motif information the best

PARAFAC model with the ideal number of components needs to be chosen manually.

The models from 1 to 5 principal components were run for all the chosen motifs. In

order to choose the ideal model several steps need to be followed.

1. Construct the model for several components

2. Study of the stability of the solutions

3. Interpretation of the models

4.2.3 Building the model

In the first step the criteria to choose the number of components was the variance

explained for each component and the variance that can be explained just using that
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component. When a component is just a linear combination of the others, the dif-

ference between the variance explained by that component and the variance that can

be explained just using that component is large, and adding more components is not

translated in a better fit of the model to our data.

In the figure 4.2 the differences of the variance explained per component, in blue, and

the variance explained just using that component, in red, are shown for a valid and an

invalid model. In the valid model, the figure 4.2 (a) corresponding to the 3-components

model of the ESR1 binding sites, the differences between the variance per component

and the unique variance are small. That means that the components are almost uncor-

related to each other and that the total explained variance can be calculated adding

the variance explained for each component. In the figure 4.2 (b), which represents

the variance of a ESR1 4-components model, it can be observed that the differences

between variances are large. Some components are linear combinations of the others,

and a increase in the number of components does not translate into an increase of the

explained variance nor into a more interpretable model.

Once the maximum number of components was chosen, using the difference of vari-

ance criteria, two main issues with PARAFAC model needed to be addressed: avoiding

the local minima, and the robustness of the model. To avoid the local minima, the

PARAFAC algorithm was run 100 times using different initial values, and then the

residues were plotted to show the differences. If the model is reaching a global mini-

mum then the residuals should be the same in all runs, but, as it can be seen in the

figure 4.3 where the residuals of 30 runs of an INSM1 unstable model are represented,

if the PARAFAC algorithm is reaching a local minimum the residuals change when

different initialisations are used.

The second issue was studied looking at the stability of the model when sequences are

removed from the training data. Because the number of sequences is typically small, a

l.o.o. cross-validation was used, and the scores of the different models were compared

to show the robustness. After this validation, 2 or 3 models which satisfy the main

conditions (independent components, no local minima and robustness) were chosen as

valid models for each motif. In the table 4.1 the number of components of the valid

models for the 5 different motifs are shown.
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(a) Correct number of components

(b) Too many components

Figure 4.2. The variance captured per component (in blue) and the variance captured using a simple

component (in red) are presented for the 3 and 4 components PARAFAC models of the Homo sapiens

ESR1 motif. In the example (a) a 3-components PARAFAC model is fitted to the data, and the

differences between the variance per component and the variance explained using just one component

are small. As the number of components increases to four, as in the example (b), the differences

between the variances increase, showing that the four components are just linear combinations of each

other. This means that too many components are being used.
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Figure 4.3. Q-residuals of 30 different runs of INSM1 motif 4-components model. The residuals vary

over the different runs, indicating that the model is stuck in local minima.

Table 4.1. Table showing for each of the studied motifs which PARAFAC models are valid from a

mathematical point of view and which one has the best reproduction of the sequence Logo. The one

with the best reproduction of the sequence Logo was chosen as best model.

TF Stable models Best model

ESR1 1,2,3 3

INSM1 1,2,3 2

NFATC2 1,2,3,4 3

NR3C1 1 1

PPARG 1,2,3 3

DL 1,2 2

4.2.4 Model Interpretability

The final step on the decision of the validity of the models is to study the biological

information that the model contains. In order find the model with more relevant

information, we tried to identify the Logo of the sequence using the PARAFAC mode-2

loadings which are the ones referring to the positions. If the PARAFAC model has

a biological meaning, the second mode should have information about the nucleotides
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present in each position in a similar way than the PSSM models have.

The process to recover this information was as follows: first a position which all the

nucleotides are the same (e.g. vector of A in all the N sequences), was projected into

the model. In a PARAFAC model, this is equivalent to let the two matrices A and

C fixed and use a least-squares to fit the second mode matrix B. This process was

performed for all four nucleotides, and then the distance between the model in each

of the M positions and the projection of each one of the nucleotides was calculated.

Figure 4.4 shows the projection of the four nucleotides in the PPARG 2-mode using

a 2-components model. The consensus sequence of the different positions is presented

in different symbols and colours. Positions with an A as a consensus are presented in

blue, positions with a C in magenta, the ones with a T in red and positions with a

majority of G are presented in green. As it can be seen each position is closer to the

nucleotide represented in the consensus sequence and more distant to the nucleotides

less represented in that position. Calculating the distances of each position to each of

the projected nucleotides, the Logo sequence can be recovered.

If the Logo could be recovered from the PARAFAC 2-mode scores, then the model

was considered to have a meaning and therefore was considered the best model. The

best model for each motif is represented in table 4.1.

The first mode of the PARAFAC model consists in a N × R matrix, being N the

number of sequences of the motif and R the number of components of the PARAFAC

model. The interpretation of the first mode is related to the conservation of different

positions among the different sequences of the motif. Each one of the components of

the PARAFAC first mode models a group of conserved positions within the binding

site.

If a motif has a well defined consensus sequence, with some well conserved groups of

positions, the projection of the consensus sequence in each component has a extreme

value (maximum or minimum). The difference between the score of a single sequence

and the score of the consensus is related to how this sequence differs from the consensus.

The sequences are modelled in a similar way than with the PSSM models. One example

of these motifs is the PPARG motif from Homo sapiens, whose different components

(1,2 and 3) of the first mode in a 3-components PARAFAC model are represented in

the figure 4.5. Figure 4.5 (a) presents the scores of the different motif sequences and the

consensus sequence in the first and second mode, and (b) shows the same scores for the
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Figure 4.4. First and second components of the second mode of the PPARG 2-components model. In

black the projection of each one of the nucleotides is shown, and the consensus nucleotide for each of

the positions is presented in a different colour (A in blue, G in magenta, C in green and T in red). As

it can be seen each position is closer to the nucleotide corresponding to its consensus sequence.
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second and third mode. In both the motif sequences are represented using a blue point

and the consensus sequence is represented with a red triangle. In figure 4.5 (c), the

different sequences are shown together with the Logo. Looking at figure 4.5 (a) and (b),

it can be seen that the consensus sequence has the highest score (in absolute value) for

the three components, and sequences with differences in the most conserved positions,

as the ones highlighted in yellow in the figure 4.5 (c) where the T in the second position

has been substituted by an A among other changes, have low scores in absolute value.

Some other motifs cannot be well described using a simple consensus. The example

used to show the covariances in chapter 3, the DL motif from the organism Drosophila

melanogaster is one example. In this case, there are two groups of conserved positions:

some sequences have a group of A nucleotides at the beginning of the sequence and

some others have a group of G nucleotides at the end. In this example, shown in the

figure 4.6 a 2-components PARAFAC model can be used to describe the sequences.

The first component is related to the group of G-conserved positions, and the second

group to the A-nucleotide. A sequence having G-conserved positions has a high score

in the first component, and a sequence with the A-conserved group has higher second

component score. The consensus is not a extreme value in this case, and it can be

found among the other sequences. PSSM models are not useful to model this kind of

motifs.

4.3 PARAFAC detectors

4.3.1 Residuals Detector

4.3.1.1 Construction of the Detector

Following the Q-residuals detector constructed using PCA, we can also use the residuals

of the PARAFAC model in order to detect transcription factor binding sites within a

DNA promoter sequence. The Q-residuals follow, in a PARAFAC analysis, the same

distribution as in PCA. They can be converted in the same way to follow a Gaussian

distribution (Durante et al., 2011).
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Figure 4.5. Scores for the PPARG 3-components model in a blue circle and the consensus PPARG

sequence in a red triangle. Figure (a) represents the first and second components and (b) the second

and the third and (c) shows the sequences and the logo, and some of the most diverging sequences

from the consensus have been highlighted in yellow. As PPARG has a clear consensus sequence with

highly conserved positions, the consensus sequence is an extreme value and as the difference between a

sequence and the PPARG consensus increase,the score of the sequence differs more from the consensus

sequence.
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Table 4.2. Summary of the performances of the different algorithms: PARAFAC, Q-residuals PCA

and Motifscan using the JASPAR (2006) database.

Method Best

Motifscan 32

PARAFAC 15

Q-residuals 9

PSSM 0

None 39

4.3.1.2 Detection Results

To compare the PARAFAC Q-residuals detector with the one constructed using a PCA,

and at the same time to the other detectors, we used the database of Motifscan and we

compared the ROCN curves for the 93 TF.

The results using the PARAFAC detector are comparable to those using the other

detectors, even if PARAFAC only captures the trilinearities.

When compared only to the Q-residuals detector, the results show that PARAFAC and

Q-residuals performances are similar. In 34 motifs Q-Residuals is better with more

than a 5% increase in the AUCN , in 35 motifs Parafac is better with more than a

5% and in 28 motifs there is no significant difference between the methods. As it can

be seen in the figure 4.7 no differences in performing are related to the length of the

sequences or the number of sequences available for modelling.

Motifscan and PSSM results where also added to the comparison with the Q-residuals

PARAFAC. The results do not change very much respect to the previous comparison

with the PCA Q-residuals detector. The Motifscan algorithm performs better in 32 of

the 93 studied TF binding motifs, and it was better in 34 of them when it was compared

to the PCA Q-residuals. The two that changed perform better with PARAFAC. The

PCA Q-residuals performs better in 9 of the 93 motifs, and PARAFAC in 15. A

summary of the comparison results can be seen in the table 4.2
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unlike in the comparison between Motifscan and PCA Q-residuals.
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Figure 4.8. Scores and Q-residuals for the PARAFAC model of a 2-components model of the INSM1

binding sites in black and the scores and Q-residuals of 100 random sequences projected into this model

in red. The Q-residuals and the scores can be combined to produce a binding sites detector.

4.3.2 QDA Detector

4.3.2.1 Construction of the Detector

The advantage of the PARAFAC model is that the scores represent properties of the

sequence, meaning that the scores from the binding sites sequences should be different

than the scores from random or other genomic sequences. The figure 4.8 shows the

scores and the Q-residuals of the INSM1 2-components models in black and the scores

and the residuals predicted for 100 random sequences in red. Both the Q-residuals and

the scores can be used to differentiate the binding sites from the genomic sequences and

thus, a combined detector can be constructed to improve the PARAFAC Q-residuals

detector results.

To incorporate multiple measurements in a discrimination problem Ronald A. Fisher

(1936) developed the linear discriminant analysis (LDA). LDA is a discrimination tech-
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nique which uses a linear combination of features in order to separate classes of objects

or events. It assumes that the classes are normally distributed and also that the co-

variance is the same for all the different classes. The Quadratic discriminant analysis

(QDA) is closely related to the LDA, but the covariance of the classes is not assumed to

be identical (McLachlan, 1992). As the covariance of the Q-residuals and the scores of

the binding sites and the other genomic sequences should not be the same, QDA seems

more appropriate than LDA in order to construct a binding site detector.The Quadratic

discriminant detector, when there are two classes K = 0, 1 uses the log-likelihood ratio

as a measure for discrimination, as it is shown in equation (4.1)

√
2π | Σk=1 |

−1
exp(−1

2(x− µk=1)TΣ−1
k=1(x− µk=1))√

2π | Σk=0 |
−1
exp(−1

2(x− µk=0)TΣ−1
k=0(x− µk=0))

< t, (4.1)

where Σk is the variance of the class k, and µk is the mean. x is the vector of values

used for discrimination and t is the threshold that makes the separation of the classes

maximum. In our case the two classes represent the binding sites and the genomic

sequences and x is the vector joining the scores and Q-residual for the studied sentence

The main difference between the QDA and the LDA is that with QDA, instead of

having a linear separation between classes, there is a quadratic surface of separation.

In bioinformatics QDA has been widely used, for example, to identify protein coding

regions (Zhang, 1997), or to detect splice sites (Zhang, 2003).

The methodology that was used to compare the QDA detector is as follows: Using

a l.o.o cross-validation, N − 1 the binding motif and 1000 random sequences were used

to create a training set and to construct a detector. The left-out sequence was then

detected within a promoter, and with the N points the ROCN curve was computed

and used to calculate the AUCN . The procedure was followed for a range between 1

and 3 PARAFAC components. The best number of components was used to compare

the QDA to the other detectors.

4.3.2.2 Detection Results

In the comparison between the QDA detector and the PARAFAC Q-residuals detector,

the results show that the QDA detector performs at least as well as the PARAFAC

Q-residuals detector in most of the motifs.

Only in 7 of the motifs, the Q-residuals PARAFAC performs significantly better than
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Table 4.3. Summary of the performances of the different algorithms when QDA is compared to

PARAFAC, Motifscan, Q-residuals and PSSM.

Method Best

Motifscan 28

PARAFAC 1

Q-residuals 5

QDA 11

PSSM 0

None 48

the QDA. Most of them coincide with the motifs that have a QDA training matrix

with singular covariance. In 28 of the 93 motifs QDA performs better than Q-residuals

PARAFAC with a 5% increase in the AUCN , and in all the others they perform similar.

Doing a global comparison, the Motifscan detector is still the best detector in 28 of the

93 motifs, the Q-residuals detector is the best in 5 motifs, the Q-residuals PARAFAC

just in 1 and the QDA detector in 11. The table 4.3, summarizes the results when all

the methods are taken into account

If we look at the Motifscan detector, it was the best detector in 34 of the 93 motifs

when it was compared only to the PCA Q-residuals detector, and it was the best in 28

when the two other numerical detectors are included in the comparison. The results of

the comparison do not change very much as we include numerical detectors. On the

other hand, when the numerical detectors are included in the comparison, the results

of these detectors change. It can be inferred that there are some motifs that are best

detected with numerical detectors and others that are best detected with Motifscan.

And also that both motifscan and the numerical detectors perform significantly better

than the PSSM algorithms.

The comparison between the numerical and non-numerical detectors is shown in

figure 4.9. In the figure the number of sequences and the number of positions of the

motifs are shown, the motifs where the numerical detectors perform better are depicted

in blue, and the ones where the non-numerical detectors are better are depicted in red.

If the two detectors perform similar, the motifs are depicted in black. As it happened in

the comparison with the Q-residuals detector, it can be seen that when the number of
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Figure 4.9. Comparison between numerical and Non-numerical detectors. The number of sequences

and the number of positions per sequence of each of the 93 JASPAR(2006) motifs are depicted. If the

best detector is Motifscan the motifs are depicted in blue, if the best detector is a numerical detector

the motifs are depicted in red, and if the performance is similar they are depicted in black. The results

show again that the numerical detectors need less sequences to perform better, but in the other hand

they need more positions per sequence.

available sequences is small, the numerical detectors perform better than the Motifscan,

but that they need longest sequences.
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Conclusions

In this thesis a new methodology to detect binding sites using a set of known binding

sequences was studied. The new methods use multivariate signal processing techniques,

PCA and PARAFAC, in order to model the binding motifs. The detectors built using

these techniques outperform the PSSM methods in all the studied datasets and need

less sequences than the methods that take into account interdependences.

• Some TF participate in the transcription of almost all genes, as the TATA-box,

and others are only involved in the transcription of genes in response to some

signal or associated to some tissue. The relationship between the number of genes

regulated by a TF and the number of TF that are involved in the regulation of a

gene was studied for Homo sapiens. Most TF are involved in the regulation from

5 to 10 genes, and most genes are regulated by a range varying from 1 to 10 TF.

• A characterization of the interdependences between positions can be performed

using the Bayes factor. Almost all binding motifs have significant interdepen-

dences, but a simple study of the percentage of interdependences between posi-

tions is not enough to separate binding sites within families or classes, because

of the complexity of the binding (e.g. TF cooperation to start gene expression,

binding to small molecules).

• Converting DNA into numerical sequences can be used to apply known signal

processing techniques to the study of binding sequences. The variance of the

97



5. CONCLUSIONS

numerical sequences, in spite of being a second order statistics, is able to capture

interdependences between the different positions of the binding sites.

• A PCA model was applied to the numerical binding site motifs and the Q-residuals

of this PCA model were used to distinguish between binding sites and genomic se-

quences. When there are no interdependences the Q-residuals detector performs

as good as the studied PSSM models, MATCH and MAST, and there is a corre-

lation between the improvement in AUC and the percentage of positions showing

interdependences into a TFBS motif. This result proves that a covariance-based

model can be useful to detect TFBS within large databases.

• The average computational time of the Q-residuals detector, for a background

sequence of 1500 bp is 0.0191±0.001s, compared to the 0.03±0.001s of the MAST

algorithm, also implemented in C, or the 0.33 ± 0.01s of an R implementation

of MATCH . The constructed Q-residuals is faster than PSSM based methods

in contrast with other methods that take into account interdependences which

usually have a high computational cost.

• Compared to a method that takes into account interdependences, the Q-residuals

detector shows a significant improvement on the performance when the number

of sequences is small, but it shows a larger sensitivity to the number of positions.

It needs more positions than Motifscan or PSSM-based methods to decrease the

number of false positives.

• Converting the aligned motifs to 3-way numerical data allows the use of N-

way methods as PARAFAC which can provide an interpretation of the models.

PARAFAC captures some of the features of the binding motif, e.g. the consensus

sequence if there is one, or different sequences when the motif can bind to two

consensus. PSSM models are unable to model the second kind of motifs.

• Binding sites can be detected using the Q-residuals of the PARAFAC model,

analogously than using the Q-residuals PCA model. The PARAFAC detector

performs similar than the PCA detector. The scores of the PARAFAC model

can also be used to construct a quadratic detector that performs better than the

PARAFAC Q-residuals detector.

98



• When PARAFAC and PCA detectors are compared to MotifScan, which takes

into account interdependences, it can be seen that the numerical detectors usually

need less sequences in order to construct a reliable model (which means a reliable

detector) of the binding motifs. On the other hand, they are more sensitive to

the number of positions.

The future work can go into different directions: the first one is to apply the current

detectors and the constructed models in order to find binding sites whose mutations

can be related to some diseases, and the second one is to incorporate some external

information in order to find functional binding sites and reduce the number of in vivo

false positives. This could be done taking into account the presence of other binding

sites and the absence of nucleosomes or compacted chromatin structure.
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6

Resum en català: Detecció de

punts d’unió de factors de

transcripció mitjançant tècniques

de processament de senyal

6.1 Introducció

Els organismes tenen la seva informació genètica codificada en els quatre nucleòtids de

l’àcid desoxirribonucleic o ADN. La mı́nima unitat d’informació són els gens, curtes

cadenes d’ADN que contenen la informació necessària per crear una protëına.

El dogma general de la biologia molecular diu que la informació codificada en l’ADN és

primer transcrita cap a l’àcid ribonucleic (ARN) i després tradüıda a protëınes. I tot

i que, com a idea general es considera encara vàlida, en realitat el procés d’expressió

genètica és molt més complex. De fet, més del 90% de l’ADN forma part de seqüències

no codificants la majoria de les quals tenen la funció de regular l’expressió dels diferents

gens.

A la figura 6.1, on les regions no codificants estan representades en blau, es poden

observar els diferents passos que porten des de l’ADN fins la protëına. La representació

de l’ADN abans de començar el procés d’expressió ens mostra com el gen es troba

precedit d’una seqüencia no codificant, anomenada seqüència promotora o simplement

promotor, on molts dels elements que controlen la transcripció del gen s’uneixen. Dins
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Figure 6.1. Descripció del procés d’expressió genètica, que dóna lloc a les protëınes. El gen es troba

precedit per una seqüència regulatòria, el promotor del gen, on unes protëınes s’uniran per tal de

començar la seva expressió. Dins el gen hi ha també altres seqüencies, anomenades introns, que no

formaran part de la protëına final. En un primer pas, el gen és transcrit a ARN, incloent exons i

introns, i després, mitjancant el splicing alternatiu¸ els introns són tallats donant pas l’ARN final que

després de la traducció dóna lloc a una protëına.

el gen es poden obervar també diferents regions codificants o exons i no codificants o

introns. En el procés de transcripció el DNA és convertit a la seva cadena de ARN

complementària, i el resultat és el ARN missatger (mRNA) que conté tots els introns

i exons. Un altre procés anomenat splicing alternatiu comença en aquest moment, i

els introns es tallen donant pas al ARN missatger madur, format només per seqüencies

codificants i que, després del procés de traducció donarà lloc a la protëına.

Els genomes dels primers organismes van ser descoberts a mitjans dels 90, des de llavors

i sobretot des que el genoma humà va ser descobert, hi ha hagut el què s’anomena la

revolució genòmica, i cada vegada tenim accés a més bases de dades que ens permeten

estudiar més a fons el procés d’expressió. En aquesta tesis ens centrarem en la regulació

de la transcripció i, sobretot, en la regió promotora on unes protëınes anomenades

factors de transcripció s’uneixen per tal de començar-lo i regular-lo.
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6.1.1 Regulació gènica

Tal i com hem comentat abans, la regulació de l’expressió dels diferents gens és molt

complexa, i té lloc a tots els diferents processos que van des de l’ADN fins a la protëına

final.

6.1.1.1 Regulació de la transcripció

El primer mecanisme regulatori és el control de l’accés a l’ADN a la maquinària que el

transcriu mitjançant l’estructura de la cromatina a l’entorn del gen.

La cromatina és la estructura formada per l’ADN i les histones. La seva unitat bàsica

és el nucleosoma que consisteix en l’ADN enrotllat 2 vegades en 8 histones. Després

aquesta estructura pot estar més compacta, formant un solenoid quan es vol evitar la

transcripció dels gens, o més oberta si es vol permetre.

A través del que s’anomenen factors de remodelació de la protëına, i també a través

de mecanismes més complexes, l’estructura de la cromatina es modifica al voltant d’un

gen per tal de permetre el següent pas en la seva regulació que és la unió de factors

de transcripció a la seqüència promotora. Els mecanismes d’actuació són normalment

tres: alterar l’associació de les histones al cromosoma, moure les histones a una altra

regió de l’ADN i posar el nucleosoma a una altra molècula.

El segon pas en la regulació de la transcripció ve donada pels factors de transcripció

que són protëınes que s’uneixen a seqüències espećıfiques a l’ADN, i donen la senyal

per iniciar o impedir l’expressió del gen regulat. Aquestes seqüencies, anomenades

punts d’unió dels factors de transcripció, són seqüencies curtes i degenerades, és a dir,

que poden canviar alguns nucleòtids sense perdre la funció i, tot i que generalment es

troben a la zona promotora del gen hi ha molta varietat. Hi ha factors de transcripció

que s’uneixen a seqüències més distants i actuen com a enhancers (o augmentadors),

augmentant la quantitat de mRNA transcrit, o com a insulators (äılladors) que äıllen

el gen de l’acció d’altres factors de transcripció. Per tant, tot i que el coneixement

d’aquestes seqüències ens donaria moltes claus per entendre l’expressió genètica, no

podem buscar una sola seqüència en un lloc espećıfic de l’ADN, sinó que hem de desen-

volupar mecanismes més complexes, siguin experimentals o computacionals (tal i com

explicarem a la secció de mètodes per a descobrir punts d’unió).

En general, la unió d’un sol factor de transcripció no és suficient per a la transcripció
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PROCESSAMENT DE SENYAL

d’un gen, sinó que diferents factors i altres molècules cooperen per fer-la possible.

6.1.1.2 Regulació post-transcripcional

El resultat de la transcripció s’anomena pre-mRNA i, des del mateix moment en

què es comença a crear, comença la segona part de la regulació: la regulació post-

transcripcional.

El primer pas consisteix simplement en alterar l’extrem 5’ de l’ADN per tal d’impedir

la seva degradació. Un segon pas té lloc encara dins el nucli, l’alternative splicing,

que consisteix en la separació d’introns i exons que permet la combinació dels diferents

exons de formes diferents de forma que donin lloc a diferents mRNA madurs que seran

després expressats en protëınes. Després el mRNA madur és transportat fora del nucli

i altra vegada regulat pel que s’anomena micro RNA (miRNA) que actua evitant la

traducció a protëınes. Finalment, les protëınes també poden ser regulades mitjançant

processos com la degradació.

6.1.2 Bases de dades de punts d’unió de factors de transcripció

Trobar els punts d’unió per als diferents factors de transcripció és un procés molt

important de cara a poder entendre la regulació genètica. Per tant, hi ha bases de

dades que emmagatzemen els punts d’unió per a factors de transcripció que s’han

pogut verificar experimentalment. Les més famoses són TRANSFAC que té una versió

pública que data del 2005 i JASPAR que continua sent pública.

6.1.2.1 TRANSFAC

TRANSFAC és una base de dades que conté punts d’unió que han estat anotats man-

ualment i també experimentalment validats. La seva última versió pública TRANSFAC

7.0 és del 2005 i conté informació de 2397 gens i 6133 factors de transcripció.

Des de llavors TRANSFAC forma part de la companyia BioBase i no té més versions

públiques. A la versió actual s’inclou també informació de miRNA, i el número de

factors de transcripció estudiat puja fins a 18211.
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6.1.2.2 JASPAR

La base de dades JASPAR és, a hores d’ara, la base de dades de punts d’unió de factors

de transcripció d’accés públic més gran que existeix. La majoria de punts d’unió han

estat verificats in vivo tot i que a les noves versions s’hi han començat a afegir alguns

factors de transcripció validats in vitro.

La versió actual disposa de punts d’unió per a 590 factors de transcripció per a diferents

organismes, des de vertebrats fins a fongs o plantes. Els punts d’unió estan organitzats

de forma matricial, de manera que és fàcil modelar els diferents factors de transcipció.

A part dels punts d’unió inclosos a la base de dades principal, el que s’anomena JAS-

PAR core, hi ha altres punts d’unió que no reuneixen els criteris de qualitat per a

pertànyer a la base de dades, però que poden ser punts d’unió reals i es troben també

catalogats. El número de factors de transcripcó final és 840.

A la última versió s’ha inclòs un paquet de Python i un de R que permeten treballar

fàcilment amb JASPAR.

6.1.2.3 Altres bases de dades

També hi ha altres bases de dades més petites de factors de transcripció, algunes com

ABS i Mapper contenen dades de diferents organismes, altres com VISTA es centren

en enhancers, i finalment algunes altres com Redfly només tenen dades d’un organisme

en concret (en aquest cas la Drosophila melanogaster).

6.1.3 Aĺıniament de seqüències

El concepte d’aĺıniament de seqüències va aparèixer en biologia per respondre la pre-

gunta de quines seqüències eren homòlogues, ja que es pensa que aquest tipus de

seqüències provinents d’un ancestre comú són similars i a més, tenen funcions simi-

lars. En el nostre contexte és important ja que els punts d’unió són seqüències similars

però no idèntiques i per a modelar-los cal saber quines són les posicions corresponents

a cada seqüència.

Per tal d’aliniar dues seqüències les podem escriure una sota l’altre, posant els nu-

cleòtids iguals a la mateixa posició i considerant els diferents una mutació, una inserció
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PROCESSAMENT DE SENYAL

o una deleció. Si volem saber si aquest aĺıniament és bo o no, podem crear un mar-

cador que ens indiqui quants nucleòtids són iguals i quants difereixen entre les dues

seqüències, els més simple dels quals seria posar un +1 a cada nucleòtid coincident i −1

a cada mutació, inserció o deleció. Per a cada parell de seqüencies, aquell aĺıniament

amb un marcador més alt és el que considerarem millor.

Aquest concepte d’aĺıniament es pot extendre fàcilment a l’estudi de N seqüències, per

poder crear per exemple, un arbre filogenètic que ens doni les relacions entre totes elles.

Hi ha dues preguntes però que necessiten resposta: (1) Com podem evaluar l’aĺıniament

múltiple i (2) Quin mètode es pot fer servir per trobar l’aĺıniament ideal? Tot i que no

hi ha una resposta exacta per aquestes dues preguntes, hi ha molts algoritmes que han

trobat bones aproximacions, i es poden dividir en dos grans grups: mètodes progressius

i mètodes iteratius.

En els mètodes progressius primer es construeix un arbre filogenètic per trobar les dues

seqüències més similars, aquestes dues s’alinien i després les altres seqüències es van

afegint a l’aĺıniament. El principal problema que tenen aquests mètodes és la gran

dependència en l’arbre inicial, ja que si és de mala qualitat, l’aĺıniament no serà bo. Un

exemple és el CLUSTALW. En els mètodes iteratius l’arbre inicial i l’aĺıniament es van

construint iterativament fins que l’algoritme convergeix, un exemple seria el MUSCLE.

Finalment, en els darrers any han aparegut mètodes d’aĺıniament més complexes, com

algoritmes genètics o cadenes de Markov.

6.1.4 Detecció de punts d’unió

Tot i que els mètodes experimentals per detectar punts d’unió han millorat molt, con-

tinuen sent cars i complexes. La detecció de punts d’unió mitjançant mètodes com-

putacionals és doncs un bon complement, o fins i tot una forma de substituir aquests

mètodes experimentals. Les tres grans dificultats que els algoritmes de detecció de

punts d’unió han de superar i que coverteixen la seva detecció en un repte són:

1. Els punts d’unió són degenerats, és a dir, canvis en la seqüència poden no tenir

cap efecte en la seva funció.

2. Són seqüències curtes (uns 20 bp)
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3. Es poden trobar en qualsevol lloc del genoma, tot i que principalment es troben

a la regió promotora dels gens.

Tots els algoritmes tenen dos principals passos: la construcció del model i després la

puntuació dels punts d’unió. Alguns algoritmes utilitzen seqüències conegudes d’un

punt d’unió per crear un model i detectar-ne d’altres dins el genoma, altres algoritmes

intenten descobrir nous punts d’unió a partir de seqüències no aliniades o relacions

filogenètiques, aquests s’anomenen algoritmes de descobriment de punts d’unió.

Els primers algoritmes que es van crear, són algoritmes que representen els punts d’unió

com oligunucleòtids, A cada posició li correspon el nucleòtid més comú creant aix’i la

seqüència consensus, que seria la que millor s’uniria al punt d’unió. Evidentment per

detectar els punts d’unió cal una certa flexibilitat en aquesta seqüència consensus, per

exemple permetent un número de mutacions, o representant-la en el codi IUPAC on

diferents lletres simbolitzen que hi ha més d’un nucleòtid possible en una posició. Tot

i la seva antiguitat i simplicitat, aquests mètodes són encara utilitzats degut a la seva

eficàcia, un exemple seria el WEEDER.

Aquestes primeres representacions van evolucionar en el que es coneix com Position

Specific Scoring Matrices (PSSM) o matrius de pesos. Tenint les seqüències d’un motiu

aliniades, la PSSM consisteix en una matriu de 4×M dimensions, onM són les posicions

del punt d’unió, que conté les freqüències de cadascun dels nucleòtids en cada posició.

Per a evaluar si una seqüència forma part d’un punt d’unió, es sumen les freqüències

dels nucleòtids de la seqüència a cada posició, obtenint aix́ı un valor final que indica la

probabilitat de la seqüència de ser un punt d’unió. Noves versions d’aquestes matrius

calculen la informació per posició enlloc de la freqüència, i assumeixen que les seqüències

de punts d’unió tenen més posicions conservades i, per tant, un valor basat en la

informació per posició es pot fer servir per a calcular la probabilitat que una seqüència

sigui un punt d’unió o no. Fent servir la informació per posició es pot construir el

que s’anomena un Logo que indica per a cada posició quina és la informació. A la

figura 6.2 es veuen les diferents seqüències corresponents a un motiu, la construcció de

la consensus (code IUPAC), la matriu de pesos i el Logo.

Des de l’any 2000 han aparegut molts estudis experimentals i computacionals suggerint

que les diferents posicions ens els punts d’unió tenen dependències i, per tant, uns

models com les PSSM, que només tenen en compte la freqüència en cada posició,no
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Figure 6.2. Exemple de punts d’unió per a un factor de transcripció, construcció de la seqüència

consensus, de la matriu de pesos i del Logo que indica la informació per posició.
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són prou adequats per modelar els punts d’unió. Des de llavors alguns algoritmes han

començat a afegir les dependències entre posicions, la forma més simple és també afegir

di-nucleòtids a les PSSM però això normalment no és suficient i per tant nous models

han aflorat.

Les cadenes de Markov d’ordre n són una bona forma de modelar les interdependències,

però tenen l’inconvenient que el número de paràmetres creix exponencialment. Les

cadenes de Markov d’ordre variable, o les xarxes bayesianes redueixen els paràmetres a

estimar, tot i que computacionalment són models costosos. Una altra bona alternativa,

i la que es va fer servir per comparar els nostres algoritmes és un model que utilitza

grafs.

6.1.5 Processament de senyal per l’ADN

L’ADN està codificat en un alfabet de 4 lletres i, per tant, es pot considerar com a

informació digital. La seva conversió a seqüències numèriques permet l’aplicació de

tècniques de processament de senyal clàssiques a l’anàlisi genòmic.

La transformació més comú de l’ADN és aquella en què cada base es transforma en un

vector de 4 dimensions. A=(1,0,0,0), C=(0,1,0,0), G=(0,0,1,0), T=(0,0,0,1). Ja que la

suma de les 4 dimensions sempre serà 1, podem reduir la dimensionalitat sense perdre

cap generalitat. Aix́ı doncs, podem fer servir una conversió tridimensional on cada

nucleòtid es troba al vèrtex d’un tetraèdre regular, tal i com es pot veure a la figura

6.3

Aquesta conversió és simètrica, ja que les distàncies entre els diferents nucleòtids són

iguals (D=1). Una nova reducció de dimensions, on cada nucleòtid es troba a a l’extrem

d’un quadrat perd aquesta simetria, tot i que pot ser útil si es vol donar més similaritat

entre diferents nucleòtids. Finalment, també existeixen representacions unidimensionals

de l’ADN on cada nucleòtid es pot representar per un simple número.

Les aplicacions d’aquestes conversions numèriques es troben sobretot en l’àmbit de la

detecció de gens, ja que les seqüències codificants tenen una periodicitat, però també hi

ha altres aplicacions com trobar correlacions a llargues distàncies a l’ADN, o simplement

la visualització de llargues seqüències.
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Figure 6.3. Conversió tridimensional de l’ADN simbòlic a ADN numèric. Cada nucleòtid es troba

situat a un vèrtex d’un tetraèdre regular, amb distància entre nucleòtids D=1.

6.1.6 Mètodes d’anàlisi multivariant

La conversió d’ADN simbòlic en ADN numèric permet l’aplicació de tècniques d’anàlisi

multivariant a les seqüències de factors de transcripció. En aquesta tesis s’han fet servir

dues tècniques: anàlisis de components principals i PARAFAC

6.1.6.1 Anàlisis de components principals

L’anàlisis de components principals o PCA és una tècnica d’anàlisis multivariant que

consisteix en la reducció de la dimensionalitat d’unes dades intercorrelades tot i man-

tenint la màxima variança.

L’anàlisis de components principals es pot descriure com una descomposició bilinial de

les dades, on la variança perpendicular a l’espai de components principals és minim-

itzada, cosa que és equivalent a trobar la matriu de valors propis de la covariança. Es

pot descriure amb l’equació (6.1)

X = ABT + E (6.1)

on X és la matriu de dades originals, amb N mostres i M variables, A és la matriu de

dades projectadad al nou espai o scores que consisteix en N mostres i nPCS (compo-

nents principals) columnes i B és la matriu dels loadings amb dimensions M × nPCs
que representa el canvi de base. E és l’error associat al model.

Per calcular si una mostra s’ajusta bé al model de components principals es fan servir

dues mesures. El Hotelling T-square que consisteix en la distància de la mostra al centre
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del subespai, dins el subespai i els Q-residus que són la distància de la mostra perpen-

dicular al subespai de components principals i que es poden calcular amb l’equació

(6.2)

Q = EET (6.2)

Fent servir els Q-residus es pot definir un interval de confiança, que ens indica quina

és la probabilitat que una mostra no pertanyi al model de components principals.

6.1.6.2 PARAFAC

PARAFAC és un model multilinial que serveix per descriure N-way data, com per ex-

emple diverses mesures de diversos subjectes al llarg d’un interval de temps, cosa molt

comú en psicologia.

En un model PARAFAC, el cub inicial de dades es decomposa en una suma de matrius,

tal i com s’explica a l’equació (6.3).

xi,j,k =
r=R∑
r=1

ai,rbj,rck,r + ei,j,k (6.3)

on xi,j,k és el cub de dades originals, ai,r, bj,r i cj,r són els elements de les matrius de

loadings A,B,C i ei,j,k és l’error del model. Es pot veure com una extensió del model

bilinial de PCA, tot i que hi ha algunes diferències com que no s’imposa ortogonalitat

i que els models de PARAFAC no es poden rotar sense canviar el model.

Els principal problema de PARAFAC és que els algoritmes poden convergir cap a una

solució no òptima, trobant un mı́nim local. Tot i això, quan les dades son trilinials,

PARAFAC ens pot proporcionar un model més fàcil d’interpretar que PCA.

6.1.7 Objectiu

Determinar a quins llocs de l’ADN es troben els punts d’unió dels factors de transcripció

és clau per entendre diferents processos, com la diferenciació cel•lular o la regulació

depenent del tipus de cèl•lula.

Els mètodes de detecció de punts d’unió es poden dividir entre aquells que no tenen

en compte les dependències entre posicions, i aquells que les tenen en compte, que nor-

malment tenen un cost computacional molt elevat.

L’objectiu general d’aquesta tesis és la costrucció d’un detector de punts d’unió capaç
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FACTORS DE TRANSCRIPCIÓ MITJANÇANT TÈCNIQUES DE
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d’identificar-los enmig de seqüències genòmiques. Aquest detector farà servir tècniques

d’estad́ıstica multivariant per modelar les seqüències i també la covariança, una es-

tad́ıstica de segon ordre, per modelar les dependències entre posicions. Els objectius

més espećıfics són:

1. Caracterització dels punts d’unió i la seva relació amb els gens regulats.

2. Construcció d’un detector de Q-residus. Convertint l’ADN en una seqüència

numèrica, es pot fer servir un anàlisis de components principals per tal de modelar

el punt d’unió i els Q-residus de les seqüències per crear un detector.

3. Construcció d’un detector mitjançant un Quadratic discriminant analysis (QDA).

En aquest cas les seqüències del punt d’unió es converteixen en un cub numèric

i es modelen fent servir PARAFAC. Els Q-residus i el model es poden combinar

per donar lloc a un detector quadratic, QDA.

6.2 Caracterització dels punts d’unió

Els factors de transcripció són un grup molt heterogeni de protëınes, que es classifiquen

en diferents famı́lies depenent del domini d’unió a l’ADN. Les seves funcions també

són molt variades, des d’aquells factors de transcripció necessàris per a l’expressió de

la majoria de gens, fins aquells que només s’activen sota alguns est́ımuls i en alguns

teixits espećıfics.

És interessant, doncs, intentar fer una caracterització dels factors de transcripció mirant

primer el nombre de protëınes regulades per cada factor i el nombre de factors que

regulen cada protëına i també fent un estudi de les interdependències que es poden

trobar entre els diferents punts d’unió.

6.2.1 Relació entre gens i factors de transcripció

Per tal d’estudiar la relació entre factors de transcripció i gens, ens vam baixar els

gens de Homo sapiens de la base de dades NCBI, i vam fer servir dues bases de dades

STRING, que indica relacions funcionals entre protëınes, i Sabiosciences, una base de

dades privada, per a trobar factors de transcripció que afectessin els diferents gens. Per

a fer l’estudi es va construir el paquet en R StringSabio.

Com era d’esperar, el número de gens regulats per a cada factor de transcripció varia
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molt, però té un màxim al voltant de 5. De forma similar, en un estudi del nombre de

TF que regulen cada gen, podem veure que el màxim és entre 5 i 10.

6.2.2 Estudi de les interdependències

Per tal d’estudiar les interdependències entre posicions, vam fer servir la base de dades

de JASPAR (2010), la JASPAR core, amb informació sobre tots els punts d’unió i

també aquella part de la base de dades que té informació sobre les famı́lies. Per a

calcular les interdependències vam fer servir el factor de Bayes (Bayes Factor), que

dóna la probabilitat de la hipòtesis nul •la quan la probabilitat a priori és 0.5. En el

nostre cas es pot calcular com una constant multiplicada per a la informació mútua tal

i com es veu en l’equació (6.4)

log2(BF (H0, H1)) = −MMi,j (6.4)

on Mi,j és la informació entre les posicions i i j, M el número de seqüències del punt

d’unió i BF el factor de Bayes. Un llindar de BF < 0.1 es va fer servir per a considerar

les interdependències significants. La proporció de posicions amb interdependències en

un motiu es va anomenar Complexitat del motiu o Comp i és el valor que es va fer

servir per a anàlisis posteriors.

Els resultats generals indiquen que la majoria de punts d’unió tenen interdependències,tot

i que en una proporció no molt alta, entre el 0.2 i el 0.3 de posicions essent el màxim

valor Comp = 0.37 per a PPARGγ, un factor de transcripció amb dos hexòmers molt

similars, separats per dues bases.

Un estudi de les interdependències per famı́lies indica que un valor simple, com la com-

plexitat, no pot classificar els punts d’unió, ja que, a part d’unir-se a l’ADN hi ha molts

altres factors involucrats, com molècules petites, o altres punts d’unió propers.

6.3 Detector mitjançant els Q-residus

En aquesta secció es descriu primer la conversió a ADN numèric, i després la construcció

del model fent servir la covariança de les seqüencies numèriques aliniades i la detecció

dels punts d’unió.
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6.3.1 Dades

6.3.1.1 Bases de dades de punts d’unió

Les seqüencies dels punts d’unió es van extreure de les bases de dades TRANSFAC

public (2005) i JASPAR (versió del 2010. De la base de dades de TRANSFAC vam

triar totes aquells motius que contenien més de 10 seqüencies, i les vam aliniar fent

servir CLUSTALW i una validació de leave-one-out. Aquells motius sense més de 5

posicions consecutives aliniades en totes les seqüències no van ser considerats.

Per extreure motius de la base de dades JASPAR vam considerar 4 organismes, i vam

triar aquells motius que tenien més de 10 seqüencies. En aquest cas, com que les

seqüencies ja estan aliniades a la base de dades no vam necessitar cap procediment

extra. En total vam fer servir 89 motius de JASPAR i 23 de TRANSFAC.

6.3.1.2 ADN de les seqüencies promotores

Les seqüències promotores fetes servir per la detecció dels punts d’unió provenen de

la Eukaryotic promoter database (EPD) excepte pel Saccharomyces Cerevisiae on vam

utilitzar seqüències extretes del genoma de l’organisme. Per a cada organisme es van

fer servir dues regions promotores (des de −0.5Kb fins a 1Kb) escollides a l’atzar.

Per tal de calcular la probabilitat de cada nucleòtid en les regions promotores dels

diferents organismes, es van fer servir totes les dades obtingudes de les diferents regions

promotores.

6.3.2 Model del subespai

El primer pas per poder calcular el model és convertir les seqüències aliniades dels punts

d’unió en matrius de seqüències numèriques. Els punts d’unió provinents de TRANS-

FAC cal aliniar-los, es va fer fent servir l’algoritme CLUSTALW, mentres que els punts

d’unió de JASPAR ja vénen aliniats.

La transformació feta servir, és la que posa cada nucleòtid al vèrtex d’un tetraèdre reg-

ular, ja que és simètrica per a tots els nucleòtids. Els vectors numèrics corresponents

a cada nucleòtid o posició es van concatenar i les diferents seqüències aliniades es van

posar una sota l’altra donant lloc a una matriu numèrica de dimensions M × 3N on

M és el número de seqüències i N el número de posicions de cada seqüència. El model

de components principals es va construir aplicant l’equació (6.1). En aquest cas els

114



6.3 Detector mitjançant els Q-residus

scores A representen la matriu del DNA projectat al nou espai, els loadings B són el

nou subespai que captura la màxima covariança i E és l’error. Per tal d’interpretar

aquest model hauŕıem de mirar la 3M × 3M matriu de covariança, que és diagonal si

les posicions no estan correlades i té elements fora de la diagonal indicant correlacions

(cal recordar que la matriu s’ha de dividir en submatrius de 3×3 ja que cada nucleòtid

correspon a un vector de 3 components). En el model PCA la informació de les cor-

relacions es troba en els loadings, però degut a la compressió de les dades a una matriu

enlloc d’un cub són dif́ıcils d’interpretar, tot i que es poden observar diferències entre

els loadings de posicions més conservades i de posicions variables.

6.3.3 Construint el detector

Fent servir la estad́ıstica dels Q-residus del nostre model de PCA podem construir

un detector de punts d’unió. La hipòtesis que fem servir és que quan una seqüència

candidata és projectada al subespai de components principals, tindrà uns Q-residus

menors si és un punt d’unió (s’ajusta al model) que si és una seqüència genòmica que

no s’assembla a les seqüències dels putns d’unió i per tant no es pot modelar mitjançant

el nostre PCA. Un exemple es pot veure a la figura 6.4 on els Q-residus per als punts

d’unió del factor de transcripció fent servir un model PCA de 3 components es mostren

juntament amb els Q-residus de 1000 seqüències corresponents a una regió promotora.

A la figura es pot observar que definint un llindar es pot crear un detector de punts

d’unió.

6.3.4 Comparació amb altres algoritmes

6.3.4.1 Algoritmes de matrius de pesos o PSSM

Per comparar el detector de Q-residus amb altres detectors es va construir el paquet

de R MEET, que es pot trobar a R-forge i al CRAN i que permet combinar diferents

mètodes d’aĺıniament amb diferents algoritmes de detecció. Dos detectors basats en

PSSM es poden utilitzar des de MEET, el MAST que forma part del conjunt de pro-

grames de MEME i una implementació del MATCH que utilitza la un score per a la

informació per posició de la matriu i un altre per a les 5 posicions consecutives més

conservades.
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Figure 6.4. Exemple del càlcul dels Q-residus per a punts d’unió en blau i 1000 seqüències promotores

en vermell fent servir el model PCA de 3 components dels punts d’unió del factor de transcripció

PPARG. Definint un llindar, els punts d’unió es poden separar fàcilment de les seqüències promotores.
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Per evaluar els detectors es van fer servir les corbes ROC que mostren la proporció de

verdaders positius contra la proporció de falsos i l’àrea sota la corba (auc). El paquet

MEET, per tal d’evaluar si les diferències entre detectors són significants, fa servir

una doble validació. Primer una seqüència A es treu de la matriu i s’inserta dins el

background, després amb les resta de N −1 seqüències es fa una validació de leave-one-

out (deixa un fora), i es construeixen N − 2 models que es fan servir per detectar la

seqüència A. Després la seqüència A s’inserta altra vegada a la matriu i es fa el mateix

amb una segona seqüència B, i aix́ı amb les N seqüències del punt d’unió. Aix́ı es poden

construir N ROC curves, i N auc, de forma que es pot estimar no només el valor mitjà

de l’auc sinó també quina és la seva variança. Les corbes ROC i la seva AUC es van

calcular per un rang de 1 a 10 components principals, i també per diferents valors dels

paràmetres de MATCH (MAST no té paràmetres a optimitzar). El paràmetre òptim

es va calcular fent servir l’auc.Per tal de quantificar les diferències es va calcular un

Wilcoxon-rank test, que indica la diferència entre dues distribucions. L’algoritme de

Q-residus obté millores significants (p − valor <= 0.05) en 57 dels 112 punts d’unió

estudiats si el compares amb MATCH i en 63 si el compares amb MAST. Una altra

caracteŕıstica és que el detector de Q-residus és també més robust.

Per tal de comprobar que el nostre detector pot capturar les interdependències entre

els diferents nucleòtids vam calcular la correlació entre la millora en l’auc i el número

de interdependències entre posicions, trobant una correlació significativa amb p-valor

0.004 en JASPAR i p-valor 0.4 en TRANSFAC.

Finalment vam mesurar els temps computacionals necessaris per a la detecció de factors

de transcripció en seqüències promotores. Per a fer aquesta comparació vam instal•lar

l’algoritme MAST a l’ordinador i vam fer servir el codi en C pel detector de Q-residus

i la nostra implementació de MATCH en R. També vam ajustar els paràmetres per tal

que el número de seqüències detectades fos similar, i vam fer 100 iteracions per a la

detecció de cada motiu en un background de 1500 bases. Els temps computacionals

per a TRANSFAC són 0.003 ± 0.001s en el detector de Q-residus, 0.0191 ± 0.001s en

MAST i 0.033± 0.003s en la implementació de MATCH.

6.3.4.2 Algoritmes amb interdependències

Per a fer la comparació amb algoritmes que tenen en compte interdependències es va

triar Motifscan, un algoritme que fa servir grafs per a modelar els punts d’unió. En un
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article del 2006, es va fer servir la base de dades de JASPAR (2006) per a comparar

Motifscan amb algoritmes de PSSM. Per evaluar els detectors es van fer servir les

corbes ROCN ( les corbes ROC quan només es tenen en compte els primers N falsos

positius), i es va escollir N com el número de seqüències del punt d’unió. Finalment

es va considerar que una millora significativa en la detecció era un augment del 5% en

l’auc de la ROCN

Fent servir la mateixa metodologia i 93 seqüències de JASPAR (2006), es pot veure

que Motifscan millora el detector de Q-residus i els algoritmes PSSM en 34/93 motius,

Q-residus és el millor en 25 i els algoritmes PSSM només en 1.

Un estudi més profund dels punts d’unió on un algoritme és millor que l’altre permet

identificar que el detector de Q-residus necessita seqüències amb més posicions per tal

de crear un model bo, mentres que Motifscan és més sensible al número de seqüències

que hi ha per a cada punt d’unió.

6.4 Detectors de ”three-way”

La conversió de les seqüencies d’ADN a matrius numèriques requereix la compressió de

la informació. Una forma més natural de fer la conversió és utilitzant cubs on la primera

dimensió es refereix al nombre de seqüències, la segona al nombre de posicions en cada

seqüència i la tercera a la conversió numèrica de cada nucleòtid. Algunes tècniques de

processament de senyal, com PARAFAC, es poden utilitzar en aquests cubs donant lloc

a nou detectors que són més fàcilment interpretables.

6.4.1 bases de dades

Per a un estudi preliminar, sobre la utilitat i interpretació dels models PARAFAC per

a la detecció de punts d’unió vam fer servir les seqüències de 5 punts d’unió de la

base de dades JASPAR i l’organisme Homo sapiens. Vam agafar aquelles amb més

interdependències, ja que és el que volem modelar. També vam repetir l’estudi amb les

seqüències del factor de transcripció DL, que vam agafar com a exemple per a intentar

explicar el model PCA.

Per a fer la comparació amb altres mètodes es van fer servir les seqüències de JASPAR

(2006), utilitzades en la secció anterior.
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6.4.2 Models PARAFAC

Per a convertir les seqüències d’ADN en seqüències numèriques, es va fer servir la

mateixa conversió que en el model PCA. Aquest cop, però, les seqüències es van arran-

jar en un cun de N ×M × d on N és el número de seqüències, M el de posicions i d és

la dimensionalitat de la conversió (3 en el nostre cas).

Els models PARAFAC es van construir fent servir l’equació 6.3, on xi,j,k són els ele-

ments del cub d’ADN. Si els models PARAFAC són interpretables, els elements ai,r

tindran informació sobre les diferents seqüències d’un punt d’unió i els elements bj,r so-

bre les diferents posicions. Per aquells punts d’unió triats per a l’estudi d’interpretació

de model es van seguir tres passos: (1) construir models per diferents número de com-

ponents, (2) Estudiar l’estabilitat de les solucions i (3) estudiar la interpretabilitat dels

models.

Un criteri per tal de saber quants components són masses per a un model PARAFAC és

mirar quina és la variança explicada per cada component i quina és la variança explicada

només per aquell component. Un cop la variança explicada arriba a un cert llindar, afe-

gir components només fa que crear components que són combinacions linials d’altres, i

per tant no afegeixen valor al model final. Això es pot veure quan la variança explicada

per un component és alta però al treure aquell component la variança explicada pel

model no varia. Seguint aquest criteri vam triar un número màxim de components (en-

tre 1 i 5), i vam estudiar l’estabilitat dels models amb menys components. L’estabilitat

es pot calcular simplement calculant el model diverses vegades i comparant l’error, si el

model es troba en mı́nims locals, l’error variarà. Un cop obtinguts els models estables,

vam decidir estudiar la informació biològica que els models PARAFAC poden tenir. El

primer pas, va ser intentar recuperar la seqüència consensus del motiu, i la distància de

cada seqüència a aquesta consensus. Per a fer-ho primer vam projectar cadascun dels

nucleòtids a la nostra matriu de posicions (mode 2 del model PARAFAC, o matriu B),

i vam calcular la distància de cadascuna de les posicions als 4 nucleòtids (per exemple,

si en una posició tots els nucleòtids són A, la distància de la posició a la projecció de

A, hauria de ser 0). La distància mı́nima de la posició a un nucleòtid, es considera el

nucleòtid per a la seqüència consensus, i calculant les diferents distàncies es pot recu-

perar el Logo de la seqüència.

El primer mode, o la matriu A, del model PARAFAC conté informació sobre les
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seqüències i la seva similitud amb la seqüència consensus. Per a estudiar-ho vam pro-

jectar la seqüència consensus i vam mirar on es trobava de l’espai i on eren les altres

seqüències. Si un motiu té una seqüència consensus ben definida, llavors aquesta té

un valor extrem i la distància de cada seqüència a la consensus es pot entendre com

a diferències en els nucleòtids (sobretot els més conservats). Altres motius, com el

del factor DL, no tenen una consensus definida, i al projectar la consensus al model,

aquesta no té un valor extrem sinó mig, i les seqüències dels punts d’unió simplement

s’agrupen per similaritat.

6.4.3 Detectors fent servir PARAFAC

6.4.3.1 Detector de Q-residus

El detector basat ens els Q-residus creat pels models PCA es pot fàcilment general-

itzar per a un model de PARAFAC. Al comparar els dos detectors fent servir JASPAR

(2006), es pot veure que tenen resultats similars, sent el Q-residus PARAFAC millor en

35 i el Q-residus PCA millor en 34. les diferències en aquest cas no es poden relacionar

ni amb el número de posicions ni amb el número de seqüències disponibles. Quan es

compara amb Motifscan, aquest continua essent encara millor en 32 dels punts d’unió

(comparat amb els 34 d’abans).

6.4.3.2 Detector quadràtic QDA

Ja que els scores corresponents a una seqüència poden representar propietats d’aquesta,

un detector que combini la matriu A de model PARAFAC i els residus pot donar mil-

lors resultats que un detector que simplement faci servir els residus. Per tant, es va

construir un detector de Quadratic Discriminant analysis, que fa servir una combinació

linial de caracteŕıstiques per a classificar entre diferents classes (en aquest cas dues)

creant una superf́ıfice de separació entre les classes quadràtica.

Per a entrenar el detector es feien servir a cada pas N − 1 seqüències del motiu i 1000

seqüències aleatòries. Després aquest es feia servir per detectar la seqüència que faltava,

i aix́ı construir les corbes ROCN .

La comparació entre aquest detector i els altres mostra que detecta almenys tan bé com
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els detectors de Q-residus (PCA i PARAFAC) en la majoria dels motius. Afegint tots

els altres detectors a la comparació podem veure que, si bé QDA és el millor detector en

11 dels motius, motifscan encara ho és en 28. Es pot concloure, doncs, que el número de

motius pels quals motifscan és millor no varia massa encara que anem afegint detectors

numèrics millorats. Això és perquè els detectors numèrics só més sensibles al número

de posicions dels punts d’unió dels factors de transcripció, mentres que motifscan és

més sensible al número de seqüències disponibles per a crear el model.

6.5 Conclusions

• Alguns factors de transcripció participen en la transcripció d’un gran nombre de

gens, mentres que altres responen a senyals espećıfiques. La majoria de factors

de transcripció regulen uns 5 gens, i els gens estan regulats per un nombre proper

a 10 factors de transcripció.

• Les interdependències entre posicions es poden calcular mitjançant el Bayes fac-

tor. La majoria de factors de transcripció tenen interdependències, però aquest

simple número no permet fer una classificació entre famı́lies.

• Convertir l’ADN en seqüències numèriques permet aplicar tècniques de processa-

ment de senyal a l’estudi dels punts d’unió dels factors de transcripció.

• Els Q-residus d’un model PCA de matrius numèriques representant els punts

d’unió es poden fer servir per a distingir-los de seqüències promotores. Si no hi

ha interdependències aquest model funciona tan bé com els models PSSM, però

si n’hi ha, els millora.

• Si es compara amb un mètode que té en compte interdependències, el detector de

Q-residus el pot millorar quan el número de seqüències disponible és petit, però

és molt sensible al número de posicions.

• Convertir les seqüencies dels punts d’unió en un cub, permet l’aplicació de models

PARAFAC, que poden contenir informació sobre les seqüències com la distància

a la consensus, o el Logo.
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• De forma anàloga als Q-residus es pot construir un detector amb PARAFAC. Els

scores també es poden utilitzar i aix́ı construir un detector quadràtic que millora

els detectors de Q-residus.

• Quan tots els detectors es comparen junts, es pot veure que normalment els de-

tectors numèrics són menys sensibles al número de seqüències però més al número

de posicions.
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Appendix A

MEET

MEET 5.1 is a modular R package that integrates a set of tools for the detection of

cys-regulatory sequences. Besides from allowing the user to create a new motif model

to look for binding sites with the available tools, MEET also incorporates a library of

models for 181 TFBS which can be directly used to find TFBS.

A.1 Motivation and Background

Most of the computational methods to detect transcripiton factors binding sites have

been benchmarked employing different datasets and resulting different models of input

and output parameters. This fact makes difficult a systematic comparison between

different detection algorithms.

Some studies address the question of which motif discovery algorithm is better opti-

mized (D’haeseleer, 2006; Osada et al., 2004). In these studies the parameters used for

the comparison of the different algorithms have to be manually chosen (Tompa et al.,

2005) or to be restricted to a few ones, even if there is a large dependence of the per-

formance of the algorithms on the input parameters (Hu et al., 2005).

Most of the developed algorithms have only an on-line version of the algorithm, e.g.

VOMBAT (Grau et al., 2006), and sometimes also a package to download the al-

gorithms as the MEME suite (Bailey et al., 2009). Some other web tools allow to

choose between different algorithms, but they have the inconvenience that cannot be

automated. The comparison between algorithms cannot be done systematically, some
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examples are SCOPE (Carlson et al., 2007) or CREDO (Hindemitt and Mayer, 2005).

The first problem can be addressed using packages such as BEST (Che et al., 2005)

or RSAT (Thomas-Chollier et al., 2011) which integrate a wide collection of tools to

analyze DNA sequences looking for binding sites, but the problem with the systematic

comparison remains. Focusing on R packages, Rtfbs in the CRAN repository allows to

search for binding sites, but only a PSSM method is implemented.

MEET 5.1 is an R-package that includes a TF models library and a set of tools for

motif search and discovery algorithms. The different models were built using multiple

sequence alignments of binding sites compiled from the JASPAR (Bryne et al., 2008)

database. MEET 5.1 can be used to optimize the parameters of the included detectors,

allowing a systematic comparison between the different algorithms. Once the parame-

ters of the detector are chosen, MEET 5.1 can be also used to detect possible binding

sites within large DNA sequences. MEET allows not only to compare detectors, but

also returns the best model for each motif giving the possibility to directly run the

detection without worrying about the parameters. MEET 5.1 also incorporates calcu-

lated models for 181 JASPAR (Bryne et al., 2008) motifs which can be directly used

to detect these binding motifs within chromosomic sequences.

MEET 5.1 includes a set of developed algorithms, ITEME (Maynou et al., 2010a)

and Q-residuals (Pairó et al., 2012). Both algorithms capture the information among

binding site positions. ITEME uses non-linear models based on information theory

to evaluate the information gain and Q-residuals constructs a subspace based on the

covariance of the numerical DNA sequences. External algorithms can be used when

they are installed in the computer, such as MEME (Bailey and Elkan, 1994), a mo-

tif discovery tool which uses expectation maximization, MAST (Bailey and Gribskov,

1998) that is part of the MEME suite and uses a Q-FAST algorithm for motif finding

and MDscan (Liu et al., 2002) which is an algorithm that mixes the enumeration of

combined words with the Bayesian inference. Finally, MEET 5.1-package also includes

an R custom implementation of MATCH algorithm (Kel et al., 2003) which is a tool

based on the information content per site.

Some external alignment algorithms that are also supported by MEET 5.1 software

when they are installed in the computer. These algorithms are MUSCLE (Multiple

Sequence Comparison by Log-Expectation) (Edgar, 2004), and ClustalW (Thompson

et al., 1994). MEME can also be used as a motif discovery method with the aligned
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Figure A.1. Description of the MEET architecture including the internal and the external programs

(in grey).

motifs as an output. In order to carry out the detection, the user can insert an aligned

matrix as input parameter or to use the external alignment algorithms. Using MEET

5.1 R-package the alignment and detection algorithms can be combined in order to

choose the combination that better satisfies the user needs.

A.2 Architecture of MEET

MEET has two main functionalities, training and detection. The training mode can be

used to study the performance of different detectors, and to choose the best parameters

of any of the included detectors, the output includes the chosen model and the chosen

parameters. The detection mode can use the constructed model, some inputed param-

eters or any model in the library to detect binding sites. The Architecture of MEET

can be seen in the next figure A.1
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A.2.1 Training mode

The main purpose of the training mode is to output the best model for a given TF and

a given algorithm. This mode uses a double l.o.o cross-validation to calculate the ROC

curves and the error associated to them. The magnitude used to assess the performance

of the algorithms is the area under the ROC curve (AUC). In order to find a model

with the highest AUC but also to consider the stability of the detector MEET uses a

heuristic formula to choose the best model (A.1)

C = µ(AUC)(1− σ(AUC)), (A.1)

where µ is the mean and σ the variance of the AUC.

A tree diagram with the functions of the training mode is presented in the figure A.2.

The function Construct model calls one of the algorithms to perform the double l.o.o.

Then the ROC curve and the AUC are computed and these results are used to create the

best model. The output is the best model, the AUC and the ROC curve corresponding

to the best parameters.

An example to run the training mode is:

library(MEET)

pathMEET<-system.file("exdata", package=MEET)

TrainingResult <- MEET( TF=paste(pathMEET),"AP1.fa", sep="/")

seqin=paste(pathMEET),"DNAhomo.fa", sep="/") ,

alg="NONE",

mode="training",

vector=c(1:8),

org="Homo sapiens",

method="Qresiduals")

The output is a list that can be divided in three parts: two generic parts which have

the consensus sequence of the motif and the input parameters of the MEET function

(organism, algorithm, etc.) and the third part that has the results. This results part is

also a list which incorporates the chosen model, the AUC for the range of parameters

studied and the ROC curve of the chosen model. The AUC and the ROC curve can be

used to compare the performance of different detectors, and also to compare the AUC

of the studied detector in the range of studied parameters. This allows the user to have
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ConstructModel

kfold.Divergence kfold.Entropy kfold.MATCHkfold.MEME kfold.PCA kfold.transMEME

MEET

ModelDivergenceModelEntropyModelMATCH ModelMDscanModelMEME ModelPCA

Models

ModeltransMEME

ROCmodel

Figure A.2. Diagram of the training mode of the MEET R-package. The main function Construct

model calls one of the k-fold functions, corresponding to the chosen algorithm. After the validation,

the ROC curves and their AUC are computed, and with that the best model is chosen. The chosen

model is constructed with a specific function for each algorithm.
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Figure A.3. Boxplot of the AUC of the AP1 binding sites and the Q-residuals detector changing the

number of components from 1 to 8. The boxplot can be directly plotted from the MEET output.

another criteria to choose the optimal model and to build a custom motif detector.

The chosen model can be easily recovered from the MEET results. If the user prefers

to visualize how the performance of the detector changes as the main parameter is

changed, a simple boxplot of the AUC can be helpful to visualize the mean and the

variance of the AUC using each one of the parameters. In the example above, with

the Q-residuals detector and the AP1 motif from Homo sapiens, the following text will

recover the model and plot the AUC for the number of principal components going

from 1 to 10 as it can be seen in the figure A.3.

FinalModel <- TrainingResult$Results$Model

boxplot(TrainingResult$Results$Area, xlab="Parameter", ylab="AUC", outline=TRUE)
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A.2.2 Detection mode

The detection mode of the MEET R-package can be used to look for binding sites within

genomic sequences. The input can be (1)one of the models included in the library (2)

one model constructed using the training mode (3) the parameters needed to construct

one model. As in the case of the training mode, the generic function Detection calls a

specific function for one of the algorithms. It can be directly a prediction function which

looks for binding sites or, in case the inputed values are the parameters, first a model

function. When the prediction function has looked for binding sites within the inputed

problem sequence, the ouput given is: the sequences of binding sites found, its p-value

and its position within the larger sequence. The summary of this architecture can be

seen in the figure A.4. If the searched binding sites belong to the models included in the

MEET library the found sequences can also be visualized with a generated HTML file,

using the function writeResultsHTML. In the next example the FinalModel obtained

with the training method and the Qresiduals algorithm shown above is used for the

detection of the AP1 binding sites in a Homo sapiens promoter. As the output of the

training mode is directly used as a model for the detection mode there is no need to

include the parameters of the algorithm. In the example, seqin is a DNA sequence

with unknown binding sites, mode is detection, model refers to the built model usin

the trainig mode in the example above, threshold is the desired p-value threshold and

method is the used algorithm, in this case Q-residuals

library(MEET)

pathMEET<-system.file("exdata", package=MEET)

Detection <- MEET(seqin=paste(pathMEET, "DNAmeet.fa", sep="/"),

mode="detection",

model=FinalModel,

threshold=0.01,

method="Qresiduals")

To make use of one of the models included in the library, instead of the model, the

parameter needed is nameTF. The other input parameters should be the same. The

example of the R code to run the detection mode using the a1 Drosophila melanogaster

model built using the Divergence algorithm and a p-value threshold threshold = 0.001

is as follows:
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Figure A.4. Tree dependencies of the detection mode of the MEET R-package. Using this mode,

the input can be a calculated model or the parameters to calculate a new model. If the input are the

parameters, first a model with the chosen parameters is constructed and then the model is used to run

the prediction function specific for each algorithm. If the input is a model, then the prediction function

is run directly
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library(MEET)

pathMEET<-system.file("exdata", package=MEET)

Detection <- MEET(nameTF="a1",

seqin=paste(pathMEET, "DNAmeet.fa", sep="/"),

system="detection",

threshold=0.01,

organism="Drosophila melanogaster",

method="Entropy")

The output of the detection mode is also a three items list. The first two items,

summary and consensus, coincide with the output of the training mode. The third

item, the Results, is different. As is is said above, in the detection mode, the Results

item of the detection mode consist on a list of found binding sites with its position and

its p-value.

## Position Value Direction Sequence

## 1 "66" "0" "f" "TATTGAAG"

## 2 "279" "0.0006689" "f" "TGTTAAAA"

The MEET 5.1 R-package includes a function that allows to show the detection

results in HTML format when the library of models is used in the detection mode. As

it can be seen in the next example the function arguments are the output obtained

from running the detection mode and, optionally, the name of the HTML file that will

be generated – index.html is the default name.

writeResultsHTML(Detection$Results)

The output is an HTML file – index.html in this example case – that will be stored in

the R working directory. This HTML file can be seen in a browser and its content is

similar to the one shown in Figure A.5. Basically it consists in a table with the found

binding

The web service of the detection mode is publicly available through http://sisbio.

recerca.upc.edu/webtools/MEET/. This platform is mainly based on the Python

platform and is developed using a web framework named web.py (http://webpy.org/ ).

In order to access R from Python in a simple and robust way it is used the RPy2
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Figure A.5. Output of the Detection mode using the HTML file
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Table A.1. Summary of the models included for each organism and method to the models library of

the MEET R-package

Organism Entropy Divergence Qresiduals TOTAL

Drosophila melanogaster 92 92 102 286

Homo sapiens 43 43 43 129

Rattus norvegicus 11 11 11 33

Mus musculus 25 25 25 75

TOTAL 171 171 181 523

package. The web pages are created in HyperText Markup Language (HTML) and, to

make the user interface dynamic and user friendly, it is used JavaScript, Asynchronous

JavaScript And XML (AJAX ) and JQuery (http://jquery.com/ ), is employed to make

the result similar to a dynamic online application rather than a static Web site. The

Figure A.6 shows the configuration step where the user needs to upload or paste a DNA

sequence in FASTA format, select one or more models provided by the application

(Transcription Factors), select the detection algorithm (Method) and select the p-value

used as the threshold in detection (Threshold). The models provided by the application

are grouped by organism and each organism contains a set of TF that can be selected.

A.2.3 Library of TF models

The MEET R-package includes a library of 523 models from 181 motifs extracted from

the JASPAR (2010) database. This library consists on the Q-residuals, the Divergence

and the Entropy models of the TFBS that have more than 10 available sequences in the

JASPAR (2010) database and correspond to the organisms: Drosophila melanogaster,

Rattus norvegicus, Mus musculus and Homo sapiens.

In order to construct the models, the training mode of MEET has been used. The

model chosen by MEET for each motif, according to equation (A.1) has been included

in the library. A relation with the number of models for each organism and algorithm

can be seen in table A.1
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Figure A.6. Initial view of the web of the MEET R-package. The user can choose several motifs for

each organism, paste or upload a sequence in .fasta format and then then the package will look for

binding sites within the sequence.
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A.3 Implementation of MEET

A.3.1 Alignment algorithms

Two alignment algorithms can be used when they are installed in the computer, MUS-

CLE version ≤ 3.8, CLUSTALW version ≤ 2.1. The parameters, as gap penalty or gap

extension, can be modified directly from the MEET 5.1 input options.

Muscle is an iterative alignment tool. It first aligns two sequences and then the other

sequences are added progressively while it realigns the pair of sequences established at

the beginning. On the other hand, ClustalW is based on a progressive model, when

sequences are added sequentially, the first pair of sequences is not aligned again.

The MEME version 4.4.0 can also be used to construct a motif model from unaligned

sequences. MEME is based on expectation-maximization algorithm. The number of

motifs and the width of the motifs can also be controlled from MEET 5.1 input param-

eters.

A.3.2 Detection algorithms

A.3.2.1 ITEME and Q-residuals

The package includes three algorithms, ITEME (Entropy and Divergence) (Maynou

et al., 2010a) and Q-residuals. ITEME calculates the information of an aligned set of

binding sites, and then the variation of this information when a candidate sequence is

added to the model. The assumption made is that, when the new sequence is a binding

site, the information gain will be near zero, because the sequence will be similar to the

previous ones, but when the sequence is not a binding site the information added will be

larger. To calculate the information, two approaches can be taken: to consider that the

position within the binding sites are independent, as in equation (A.2) where the Rényi

entropy is calculated (Renyi, 1961), or to take into account position interdependences

using the divergence (Kullback and Leibler, 1951) as it is described in equation (A.3).

Hq =
1

1− q
log2

N∑
i=1

pqi (x) (A.2)

Dq(X;Y ) =
1

q − 1
log2

N∑
i=1

N∑
j=1

P (x, y)qi,jQ
1−q
i,j , (A.3)
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where Hq and Dq are the entropy and divergence, respectively, q is a positive number

different from 1, N is the number of nucleotides, x and y are two positions in the binding

site, P (x, y) and Q(x, y) are probability distribution and p(x)i the probability of having

the nucleotide i ∈ {A,C,G, T} in the position x. Specifically, P (x, y) = p(x, y)i,j is the

joint probability of having a nucleotide i in the position x and another nucleotide j in the

position y and Q(x, y) = p(x)i ·p(y)j . The Rnyi entropy and divergence are nonnegative

measurements for all q ≥ 0. When q tends to 1, the Rnyi entropy converges to Shannon

entropy (Shannon, 1948) and Rényi divergence converges to Kullback-Leibler divergence

(Kullback and Leibler, 1951).

The Q-residuals (Pairó et al., 2012) detector is explained in chapter 3.

A.3.2.2 External algorithms

The package allows the use of MATCH, MDscan and MEME/MAST (Bailey and Elkan,

1994; Bailey and Gribskov, 1998) if these programs are detected as available on the

installation system. The package also includes a custom implementation of the MATCH

algorithm in R, also explained in the chapter 3.

MEME/MAST can be downloaded from the MEME suite (Bailey and Elkan, 2006)

and MDscan from the MDscan web page (Liu et al., 2002). The current version of

MEET 5.1 is prepared to work with MEME version 4.4.0. and MDscan (2004).

A.4 Examples

A.4.1 Alignment

A.4.1.1 Data

The detection results depend on several factors. One of this factors is the alignment

quality. TRANSFAC 7.0 (2005) database (Wingender et al., 2000) and chromosome 12

from Saccharomyces cerevesiae have been used to test the influence of the alignment

in the detection process.

A.4.1.2 Parameters effect

MEET 5.1 can also overcome the difficulty in choosing the best alignment parameters,

making possible an automated comparison between the external alignment algorithms,
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AUC

ClustalW

Muscle 500

Muscle 100

Muscle 50

0.985 0.990 0.995 1.000

Figure A.7. Comparison of the detection using different alignment algorithms. The results are shown

for the Q-residuals detector, and the ABF1 binding sites from Saccharomyces cerevesiae. The figure

represents the AUC for different alignments, Clustalw with the default gapopen = 10, and Muscle

with different values of the gapopen, 500, 100, 50. There is a decrease in the AUC as the value of the

gapopen is decreased.

as it is show in Figure A.7. The figure shows the AUC of the ABF1 binding sites, cal-

culated using the MEET 5.1 validation mode, for different alignments, the Q-residuals

algorithm and the ABF1 motif. It can be observed that the quality of the detection

changes depending on the alignment algorithms and the alignment parameters. Chang-

ing the gapopen parameter in the alignment using muscle from 500 to 50 produces a

decrease of the AUC, while the comparison between the default parameter of ClustalW

(gapopen = 10.0) and the muscle with gapopen = 500 shows that the two alignments

produce similar results for ABF1 binding sites.

A.4.2 Comparison

A.4.2.1 Parameters effect

The use of MEET 5.1 allows to explore directly the parameters space, as it can be seen in

figure A.8 where a range of parameters has been studied for the included detectors. The
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Figure A.8. The mean and the variance for the AUC are represented for MATCH, Q-residuals and

ITEME, both divergence and Entropy. The parameters are ordered from best to worst, and in the x

axis the first best parameters for each algorithm are represented. It can be seen that, in general, mean

decreases while the variance increases, making the algorithm less sensitive and less robust. Choosing

the ideal parameter is crucial to compare the performance of different algorithms.

parameters for each detector are: number of principal components in Q-residuals, the q

in ITEME, and the Core similarity in MATCH. MAST does not have any parameters

to choose, because the width of the motif is determined by the Position Specific Scoring

Matrix (PSSM) used as an input.

Different parameter values have been studied for each detector and then the mean and

variance of the AUC have been plotted for this values, ordered from best to worst in

each case. The motif studied is the AP1 motif, from JASPAR database Bryne et al.

(2008) The changes show a decrease in the mean and an increase in the variance, that

means that, when the parameter of the detector changes, the detectors become less

sensitive and less robust. MEET 5.1 directly choses the best detector according to

equation A.1.

Another functionality of the MEET 5.1 training mode is that its output can be used

to directly compare the different detectors. Using the data described above and the

best parameter outputted by MEET 5.1, the package has been used to compare the

different detectors. The results can be observed in table A.2 where the mean AUC for

all the algorithms is shown.
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Table A.2. Table with the comparison of the performance of the detectors included in MEET 5.1 using

10 sets of transcription factor binding sites in JASPAR and TRANSFAC database and backgrounds

corresponding to promoters of each organism (human, mouse and yeast). The result shown is the mean

of the AUC for each TFBS and each method. The best method depends on the binding sites.

TF Qresiduals Entropy Divergence MATCH MAST

AP1 0.9893 0.9921 0.979 0.9868 0.9925

E2F1 0.9998 0.9979 0.9992 0.9995 0.9999

ETS1 0.9965 0.9956 0.9972 0.9922 0.9931

HLF 0.9985 0.9974 0.9965 0.9953 0.9688

NFLI3 0.9993 0.9992 0.9997 0.9980 0.9999

ARNT 0.9998 0.9998 0.9998 1 0.9999

FOXO3 0.9914 0.9747 0.9663 0.9765 0.9947

NFκB 0.9998 0.9747 0.9663 0.9765 0.9865

SPZ1 0.9944 0.9931 0.9960 0.9910 0.9913

ROX1 0.9999 0.9992 0.9941 0.9997 0.9937

The output of the MEET 5.1 R package can also be used to plot the AUC boxplots,

as it can be seen in figure A.9. In this figure the boxplot of the AUC for AP1, ETS1,

FOXO3 and SPZ1 are shown using the ideal model chosen by the package. The figure

A.9 shows that the mean and the variance depend on the method and the transcription

factor.

A.4.3 Detection

The detection mode of the MEET 5.1 R-package can also be used to detect binding

sites within a large genomic sequence. The input of the detection can be the parameters

of the algorithm or the model built using the training mode. As MEET 5.1 includes

the optimal models for many JASPAR (Bryne et al., 2008) binding motifs, a genomic

sequence can be explored in order to find binding sites of these motifs using the model

included in the package.

In the table A.3, the detection is performed using all the algorithms available in

MEET 5.1. The motif searched is the AP1 in humans, and the background used is

the same background used in the training data, with a AP1 binding sequence inserted.

The table shows the algorithm used, the p-value or Score of the AP1 sequence and how

139



A. MEET

h

AP1
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0.975 0.980 0.985 0.990 0.995 1.000

(a) AP1

ETS1

AUC

Q−residuals

Entropy
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0.988 0.990 0.992 0.994 0.996 0.998 1.000

(b) ETS1

FOXO3

AUC
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Entropy
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MATCH
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0.90 0.92 0.94 0.96 0.98 1.00

(c) FOXO3
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AUC
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(d) SPZ1

Figure A.9. The comparison between five detectors: MATCH, MAST, ITEME (Entropy and Diver-

gence) and Q-residuals are shown in four different studied TFBS: AP1, ETS1, FOXO3 and SPZ1. The

results show the robustness of the detectors, and that a single detector cannot be chosen as the best

one for all TFBS
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Table A.3. Table with the results in detection using all the algorithms available in the MEET 5.1

R package. The sequence models used are the best ones obtained with AP1 binding sites and the

training mode, the background is a mus musculus promoter sequence with an AP1 binding site inserted

in a certain position. The table shows the sequence with highest score, the position and the score

corresponding to this sequence.

Algorithm Order Score

Entropy 1 0

Divergence 1 0

Q-residuals 1 2.9× 10−6

MAST 8 0.01

MATCH 1 0.97

MDscan 14 1.71

many sequences have a higher score.

A.5 Availability and requirements

Project name: MEET 5.1

Project home page: http://r-forge.r-project.org/projects/meet

Operating system(s): Platform independent

Programming language: : R (>= 2.11.0)

Library: seqinr, fields, pcaMethods, Matrix, ROCR, Hmisc, KernSmooth

License: GNU GPL

Any restrictions to use by non-academics: none
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Appendix B

StringSabio

StringSabio is an R library which extracts the interaction between TF and genes from

the String and SabioSciences databases. The R package is available from http://

sisbio.recerca.upc.edu/R/StringSabio.1.0.tar.gz.

B.1 Motivation and Background

Data about the interaction between proteins is stored in large databases. Some of the

databases take into account just physical proein-protein interactions such as MINT

database (Chatr-aryamontri et al., 2007), while others take into account more interac-

tions as co-ocurrence, and also include predicted data, as STRING (Szklarczyk et al.,

2011).

These databases have been largely analyzed to study the interactome, usually using

graph theory . Each protein can be represented by a vertex and each interaction is

represented as an edge. But the current algorithms only study the direct interactions

between proteins.

Adding information about the regulatory interactions would allow to obtain more use-

ful information about the interactome. In this study an R package was constructed

that can extract the information about the regulatory interactions from the STRING

and Sabiosciences databases. The information is obtained in an automatic and non-

redundant way.
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Table B.1. Summary of the functions included into the stringsabio package. The name of the function

is included together with the database used in the function and also a short description .

Function Origin Description

idString String ID extraction

intSring String PPI extraction

bioString String Choosing regulatory interactions

intSabioSciences SabioSciences Extracting regulatory interactions

SabiotoString String/Sabio Homogeneizing ID

StringSabio String/Sabio Eliminating redundant information

B.2 Architecture of the package

The StringSabio package contains different functions for a non-redundant extraction of

the interaction data. The interactions can be obtained independently from each one of

the databases, but also the search can be done combining both databases in order to

retrieve as much information as possible.

The functions can be thus divided in three main groups, the String functions, the

SabioSciences functions, and those functions that homgeneize the results and avoid

redundant interactions. A summary of the functions included in the StringSabio R-

package is shown in table B.1. A function called AllStringSabio allows to run all the

functions and obtain all data just using one R command.

The basic functionality of the R-package is that, given a protein, interaction between

transcription factors and this protein are output.

B.3 Description of the databases

STRING database includes experimental and predicted interactions between proteins.

It has a score which gives the confidence of a given interaction, a higher score means a

more reliable interaction. The STRING 9.0 version, which was used in the construction

of the package contains the interactions between near 5 milion of proteins from 1133

organisms. The total amount of interactions exceeds the 100 milions.

SabioSciences contains the TFBS of each transcription factor. It combines a data
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Table B.2. Regulatory interactions between F7 and transcription factors binding sites resulting from

the extraction of the StringSabio package. The results include the query protein, the interacting

transcription factors and the database where the interaction has been found. .

Protein A Protein B Interaction Origin

FVII HNF4G Regulation String

FVII SP1 Regulation String

FVII HNF4A Regulation String/Sabio

FVII BATF Regulation SabioSciences

mining algorithm which extracts regulations from published articles with the UCSC

genome browser annotation of the TFBS.

B.4 Example

In the next example, the interactions for the FV II protein in humans are retrieved

from the databases.

First we load the needed packages, and then we run the string and sabio functions in

order to retrieve the interactions. The easiest way to run the programs is to use the

AllStringSabio function which also returns an error when the protein cannot be found

the databases.

library(Rcurl)

library(XML)

library(string)

interactions<-AllStringSabio("F7", 0)

In the example above, 0 is the Sabiosciences taxonomy code for the organism which is:

0 for Homo sapiens, 1 for Mus musculus and 2 for Rattus norvegicus. The output of this

example is shown in table B.2, where the interactions between the FV II ptotein and

the transcription factors binding sites are shown.The results include the query protein,

the interacting transcription factors and the database where the interaction has been

found.
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