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To Alma and Daniela

“For there are these three things that endure: Faith, Hope and Love,

but the greatest of these is Love.”
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and Hugo Morales-Tecotl, for their unconditional support for me to move abroad.

Special thanks to Joan Soto for his constant assistance during these years.

I wish to express my sincere gratitude to Francesco Aprile for his invaluable

help and advise during my doctoral studies. I am indebted to you, my dear

Francesco. I also wish to thank Diederik Roest and Andrea Borghese for our

fruitful collaboration.

My thanks go to Alejandro Barranco and Daniel Fernandez, comrades-in-

PhD on whose support and companionship I could always rely. I also thank

Miguel Escobedo, Albert Puig and Cedric Potterat, the best friends I could

ever hope for. I would like to express my deepest appreciation to Elias Lopez,

Antonio Perez-Calero, Dani Puigdomenech, Blai Garolera, Markus Fröb, Ivan
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Introduction

“The history of science is rich in the example of the fruitfulness of

bringing two sets of techniques, two sets of ideas, developed in separate

contexts for the pursuit of new truth, into touch with one another.”

– J. Robert Oppenheimer

The AdS/CFT correspondence [1, 2] is one of the most important develop-

ments in the history of theoretical physics. Using as a binding bridge super-

string theory, or, more concretely, some theoretical aspects in the interaction

between superstrings and D-branes, the Maldacena conjecture establishes that

the physics of a strongly-coupled, perturbatively-inaccessible quantum field the-

ory in d-dimensions can be described equivalently in terms of the dynamics of a

dual classical gravitational theory in (d+1)-dimensional AdS space. Two partic-

ular aspects of the duality are of great importance. First, the duality ascertains

that the quantum field theory lives in the boundary of the AdS space in which

the dual gravitational system exists, and that the two-point functions of the dual

field theory are computed in terms boundary-to-bulk propagators [3, 4]. This

difference between the dimensions of the theories makes the duality holographic,

so giving evidence to the idea that a quantum theory of gravity should be indeed

a holographic in nature [5, 6].

The second important aspect we must mention is that the AdS/CFT cor-

respondence is a strong/weak-coupling duality: it allows one to formulate a

strongly-coupled quantum problem in terms of the classical Einstein equations

of the dual higher-dimensional gravitational system. Because of this particular

nature of the duality, it provides a promising new way of studying quantum gauge

theories in the strongly-coupled regime, where the usual perturbative methods

fail to apply. The gauge/gravity duality has thus been used to gain insight in

a wide variety of physical systems where a satisfactory description in terms of



standard methods is lacking, such as the quark-gluon plasma or in condensed

matter theory.

This thesis will be devoted to the study through holographic techniques of

one of such “problematic” systems, namely high-Tc superconductors, or cuprates.

As will be seen in Chapter 1, the main problem with a standard theoreti-

cal description of the cuprates can be tracked down to their temperature vs.

doping phase diagram. In it one finds that the normal phase of the material

above optimum doping is described by Non-Fermi Liquid physics. In partic-

ular, this will mean that the strong interactions between the components of

the system will make the usual quasi-particle description of electrons near the

Fermi surface to break down, and therefore make the description of the mecha-

nism behind Cooper-pairing intractable by the usual field theory methods. As

we will see throughout this thesis, the AdS/CFT correspondence, because of

its strong/weak-coupling duality, can be very fruitfully applied to show us that

strongly-coupled field theories indeed present a superconducting phase and, even

more importantly, it will allow us to study such phases in a non perturbative

fashion with the aid of holographic techniques. In this sense, the AdS/CFT

correspondence can be said to provide a natural theoretical definition of super-

conductivity in the strong-coupling regime. The holographic models of supercon-

ductivity we will study are called holographic superconductors [7] and currently

represent a very exciting and active area of research.

All the systems studied in these thesis are s-wave holographic supercon-

ductors. Even though high-Tc superconductors have condensates with d-wave

symmetry, it is nevertheless expected that the main results obtained in the s-

wave case remain valid in a d -wave case. Similarly, it is also believed that the

technology developed through the study of s-wave holographic superconductors

can be equally applied to d -wave ones. The construction of a d-wave holographic

superconductor is a currently open challenge in the area [8, 9, 10].

When constructing phenomenological bulk models in the bottom-up ap-
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proach, we will focus our attention on the D = 5 case. The reason for this

choice of dimension is that, as noted in [11, 12], dimensionality may play an im-

portant role in the way external magnetic fields act in the dual superconducting

system. The standard argument is that in a 2 + 1 (D = 4) dimensional super-

conductor an external 3+1 dimensional magnetic field will always penetrate the

material because the energy needed to expel the field scales as the volume, while

the energy that the system gains from being in a superconducting state scales

as the area. This results in the system being a Type II superconductor. In the

case of a 3 + 1 (D = 5) dimensional system such as the ones we study, both en-

ergies scale as the volume and one has therefore a direct competition that does

not exclude the possibility of obtaining a Type I superconductor. Also, while

high-Tc samples are typically composed of 2-dimensional CuO2 layers (cuprate

superconductors), it is important to examine the effect of thickness when the

system is probed by external magnetic fields.

This thesis is organized in three parts.

• Chapters 1, 2 and 3. Introductory Concepts.

These chapters provide an introduction to the topics relevant for the rest of

the thesis. Chapter 1 is a general overview of superconductivity. We detail the

phenomenological description of superconductors provided by Ginzburg-Landau

theory. We then review the general theoretical aspects of Fermi Liquid theory

and use this to introduce the most successful microscopic theory of standard

superconductivity, BCS theory. We then continue with an introduction to high-

temperature superconductors showing their basic phenomenology and, finally,

we briefly summarize some of the most challenging problems in the construction

of a satisfactory theoretical description of the system using standard field theory

techniques.

Chapter 2 provides an introduction to the AdS/CFT correspondence. We

review the general theoretical aspects of Type IIB supergravity, N = 4 Super
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Yang-Mill theory and D-brane theory. We then present the Maldacena conjec-

ture and its various limits. Finally, because of its importance to the holographic

superconducting models of the remaining chapters, we present and account of

scalar fields in AdS and their holographic description

Chapter 3 attempts to merge the preceding two chapter by providing an

introduction to the proper subject of this thesis, holographic superconductivity.

We begin by introducing the main ingredients needed for a consistent holographic

superconducting model. We then continue to describe the general details, both

theoretical and computational, of an holographic superconductor using as an

example the phenomenological HHH model of holographic superconductivity.

We finish by describing how magnetic phenomena are introduced in the subject.

• Chapters 4 and 5. Bottom-Up Approach to Holographic superconductivity.

These chapters describe bottom-up models of holographic superconductivity, that

is, bulk models that do not arise from a particular truncation of string theory,

but are rather constructed by hand to probe the phenomenology of the su-

perconducting physics of the dual field theory. In Chapter 4, we construct a

family of minimal phenomenological models for holographic superconductors in

d = 4 + 1 AdS spacetime and study the effect of scalar and gauge field fluctua-

tions. By making a Ginzburg-Landau interpretation of the dual field theory, we

determine through holographic techniques a phenomenological Ginzburg-Landau

Lagrangian and the temperature dependence of physical quantities in the super-

conducting phase. We obtain insight on the behaviour of the Ginzburg-Landau

parameter and whether the systems behave as a Type I or Type II supercon-

ductor. Finally, we apply a constant external magnetic field in a perturbative

approach following previous work by D’Hoker and Kraus, and obtain droplet

solutions which signal the appearance of the Meissner effect.

In Chapter 5 we continue our bottom-up research in the Ginzburg-Landau

approach to holographic superconductivity. We investigate the effects of Lifshitz
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dynamical critical exponent z on a family of minimal D = 4+1 holographic su-

perconducting models, with a particular focus on magnetic phenomena. We see

that it is possible to have a consistent Ginzburg-Landau approach to holographic

superconductivity in a Lifshitz background. By following this phenomenological

approach we are able to compute a wide array of physical quantities. We also

calculate the Ginzburg-Landau parameter for different condensates, and con-

clude that in systems with higher dynamical critical exponent, vortex formation

is more strongly unfavored energetically and exhibit a stronger Type I behav-

ior. Finally, following the perturbative approach proposed by Maeda, Natsuume

and Okamura, we calculate the critical magnetic field of our models for differ-

ent values of z. These two chapters are based on the original research done in

[12, 13].

• Chapter 6. Top-Down Approach to Holographic Superconductivity.

This chapter is meant to provide a working example of top-down holographic

superconducting models, which are bulk-models that arise naturally as smaller

sector of consistent truncation of Type IIB supergravity, and whose holographic

dual field theories present superconducting behaviour. We construct a one-

parameter family of five-dimensional N = 2 supergravity Lagrangians with an

SU(2, 1)/U(2) hypermultiplet. For certain values of the parameter, these are

argued to describe the dynamics of scalar modes of superstrings on AdS5×T 1,1,

and therefore to be dual to specific chiral primary operators of Klebanov-Witten

superconformal field theory. We demonstrate that, below a critical temperature,

the thermodynamics is dominated by charged black holes with hair for the scalars

that are dual to the operator of lowest conformal dimension ∆ = 3/2. The

system thus enters into a superconducting phase where ⟨Tr[AkBl]⟩ condenses.

This chapter is based on the original research presented in [14].
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Compendi de la Tesi i Resultats

Obtinguts

Compendi de la Tesi

Aquesta tesi s’organitza en tres parts.

• Caṕıtols 1, 2 i 3. Conceptes Introductoris

Aquests caṕıtols ofereixen una introducció als temes d’interès per a la resta de

la tesi. El Cap̀ıtol 1 és una revisió general de la superconductivitat. Detallem

la descripció fenomenològica dels superconductors proporcionada per la teoria

de Ginzburg-Landau. A continuació, repassem els aspectes teòrics generals de

la teoria del Ĺıquid de Fermi i fem servir això per introduir la descripció mi-

croscòpica de més èxit de la superconductivitat estàndard, la teoria BCS. Con-

tinuem amb una introducció als superconductors d’alta temperatura mostrant

la seva fenomenologia bàsica i, finalment, es resumeixen breument alguns dels

problemes més dif́ıcils que apareixen a la construcció d’una descripció teòrica

satisfactòria d’aquests sistemes quan es ultilizan tècniques de teoria de camps

estàndard .

El Caṕıtol 2 ofereix una introducció a la correspondència AdS/CFT. Es re-

visen els aspectes teòrics generals de supergravetat Tipus IIB, la teoria de Super

Yang-Mill N = 4 i teoria de D-branas. A continuació, presentem la conjec-

tura de Maldacena i els seus diversos ĺımits. Finalment, per la seva importància

per als models de la superconductivitat hologràfiques dels caṕıtols restants, es

presenta una descripció de camps escalars en espai AdS i la seva interpretació

hologràfica.

El Caṕıtol 3 intenta combinar els dos caṕıtols anteriors en proporcionar una

introducció a la matèria pròpia d’aquesta tesi, la superconductivitat hologràfica.



Comencem amb la introducció dels principals ingredients necessaris per a un

model hologràfic superconductor consistent. Continuem descrivint els detalls

generals, tant teòrics i computacionals, d’un superconductor hologràfic usant

com a exemple el model fenomenològic HHH de la superconductivitat hologràfica.

Acabem amb una descripció de com s’introdueixen els fenòmens magnètics en el

tema.

• Caṕıtols 4 i 5. Aproximació Bottom-Up a la superconductivitat hologràfica

Aquests caṕıtols descriuen models bottom-up de la superconductivitat holográfica,

és a dir, models en el bulk que no es deriven d’un truncament particular de la

teoria de cordes, sinó que estan constrüıts a mà per sondejar la fenomenologia

de la fase superconductora en la teoria de camps dual. En el Caṕıtol 4 es con-

strueix una famı́lia de models fenomenològics mı́nims per als superconductors

hologràfiques en espai-temps d = 4+1 AdS i estudiem l’efecte de fluctuacions en

els camps escalars i gauge. En fer una interpretació Ginzburg-Landau de la teo-

ria de camps dual, determinem a través de tècniques hologràfiques un Lagrangià

fenomenològic tipus Ginzburg-Landau, aix́ı com la dependència en la temper-

atura de certes quantitats f́ısiques en la fase superconductora. Obtenim infor-

mació sobre el comportament del paràmetre de Ginzburg-Landau i si el sistema

dual es comporta com superconductor Tipus I o Tipus II. Finalment, s’aplica un

camp magnètic extern constant en un enfocament perturbatiu seguint a D’Hoker

i Kraus, i obtenim solucions que assenyalen l’aparició de l’efecte Meissner.

En el Caṕıtol 6 investiguem els efectes de l’exponent dinàmic cŕıtic de Lif-

shitz z en una famı́lia de models mı́nims de la superconductivitat hologràfica en

d = 4+1, amb un enfocament particular en els fenòmens magnètics. Veiem que

és possible tenir un interpretació Ginzburg-Landau consistent per superconduc-

tivitat hologràfica en un fons Lifshitz. Seguint aquest enfocament fenomenològic

som capaços de calcular una àmplia gamma de quantitats f́ısiques. També cal-

culem el paràmetre de Ginzburg-Landau per diferents condensats i vam con-
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cloure que en els sistemes amb major exponent cŕıtic dinàmic la formació de

vòrtex està més fortament desfavorecidad energèticament i exhibeixen un com-

portament de Tipus I més fort. Finalment, seguint l’enfocament perturbatiu

proposat per Maeda, Natsuume i Okamura, calculem el camp magnètic cŕıtic

dels nostres models per a diferents valors de z. Aquests dos caṕıtols estan basats

en la investigació original realitzada en [12, 13].

• Caṕıtol 6. Aproximació Top-Down a la Superconductividad Hologràfica

Aquest caṕıtol té per objecte proporcionar un exemple d’un model superconduc-

tor hologràfic Top-Down, que són models en el bulk que sorgeixen naturalment

com un sector petit d’un truncament consistent de supergravetat Tipus IIB, i on

la teoria de camps dual presenta comportament superconductor. Constrüım una

famı́lia d’un sol paràmetre de Lagrangianes de supergravetat N = 2 en cinc di-

mensions amb un hypermultiplet SU(2, 1)/U(2). Per certs valors del paràmetre,

vam argumentar que aquests descriuen la dinàmica dels modes escalars de su-

percordes en AdS5×T 1,1, i per tant han de ser duals a certs operadors primaris

quirals espećıfics de la teoria de camps superconforme Klebanov-Witten. Es de-

mostra que, per sota d’una temperatura cŕıtica, la termodinàmica està dominada

per forats negres carregats amb cabells escalars duals a l’operador de menor di-

mensió conforme ∆ = 3/2. El sistema entra aix́ı en una fase superconductora

on l’operador ⟨Tr[AkBl]⟩ condensa. Aquest caṕıtol està basat en investigacion

original presentada en [14].

Resultats Obtinguts en Aquesta Tesi

En aquesta tesi s’ha demostrat que la correspondència AdS/CFT ofereix una

nova manera d’estudiar la fase superconductora de les teories large-N al règim

fortament acoblat. En discutir els cuprats al final del Caṕıtol 1, veiem ia algunes

de les deficiències que els acercaminentos usuals basats en teories de camps

tenen quan es tracta d’abordar sistemes de molts cossos fortament acoblats.
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Potser que la més greu d’aquestes deficiències és el col·lapse del concepte de

quasi-part́ıcula a causa de les fortes interaccions involucrades. Com hem vist, la

dualitat gauge/gravity ens permet plantejar problemes gairebé intractables en

sistemes quàntics de molts cossos en termes de la dinàmica clàssica d’un sistema

dual de gravetat en l’espai AdS. Usant aquest nou punt de vista hologràfic, la

condensació de parells de Cooper al costat de la teoria del camps es tradueix en

la creació espontània de solucions amb pèl carregat al costat gravitatori de la du-

alitat. Això dóna lloc a una fase en la teoria del camps dual, on es recuperen els

aspectes fenomenològics fonamentals de la superconductivitat. Crida l’atenció

que amb només observar al problema des d’un punt de vista hologràfic, es pot de-

mostrar q’aquests sistemes completament intractables en el règim d’acoblament

fort presenten una fase superconductora. a causa de l’èxit del mètode hologràfic

i les dificultats ja esmentades sobre els enfocaments estàndard basats en teories

de camps, pot ser que no sigui massa agosarat imaginar que, efectivament, la

definició teòrica natural de la superconductivitat en el règim fort acoblament

està donada pel sistema dual de gravetat.

Amb aquestes consideracions generals en ment, en aquesta tesi ens hem es-

forçat a presentar una imatge el més completa possible dels diferents enfocaments

seguits en la superconductivitat hologràfica. Aix́ı, hem presentat exemples, tant

en la de apropaments bottom-up (Caṕıtols 4 i 5) i top-down (Caṕıtol 6). Vegem

ara algunes conclusions de cada un d’aquests caṕıtols.

En el Caṕıtol 4 hem pres com a punt de partida una famı́lia de models super-

conductors hologràfics mı́nims en espai-temps d = 4+ 1 AdS, caracteritzats per

càrrega q del seu camp escalar (o, equivalentment, per la seva temperatura cŕıtica

Tc). Hem introdüıt primer una petita pertorbació magnètica en la component x1

del camp gauge, aix́ı com una petita pertorbació del camp escalar al voltant de

la solució condensada. En fer una interpretació fenomenològica tipus Ginzburg-

Landau de la teoria de camps dual, es van calcular els paràmetres de Ginzburg-

Landau i longituds caracteŕıstiques en funció de la temperatura. Hem trobat
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que tenen un comportament consistent amb el dels sistemes superconductors

habituals descrits per la teoria de camp mig. També es va calcular el paràmetre

de Ginzburg-Landau κ per a diferents valors de la càrrega del camp escalar q. A

partir d’aquest càlcul trobem que, en augmentar el valor de q, el paràmetre de

Ginzburg-Landau s’acosta asimptòticament al valor κ ∼ 0.55 < 1/
√
2. D’això

podem concloure que el sistema es comportarà com un superconductor de Tipus

I per a tots els valors de q considerats. També hem calculat la densitat d’energia

lliure de Helmholtz del sistema utilitzant l’enfocament de Ginzburg-Landau

proposat, i l’hem comparat amb l’energia lliure calculada amb les tècniques

hologràfiques estàndard. Es va trobar que tots dos enfocaments són consistents

entre si prop de Tc. També, a través de càlculs de l’energia lliure del sistema,

l’enfocament Ginzburg-Landau es va comparar amb el mètode desenvolupat en

[15] per al càlcul dels paràmetres α i β. Tots dos mètodes van demostrar estar

en excel·lent acord.

A continuació, hem apaguat la fluctuació magnètica i vam sondejar el nostre

sistema amb un camp magnètic constant B. Això es va fer mitjançant l’ús de

la solució de brana negra de [16] a d = 4 + 1 AdS fins a ordre B2. Amb

aquesta solució perturbativa com a fons fix mostrem la formació de solucions

amb condensat tipus gota i calculem el camp magnètic cŕıtic per sobre del qual

la fase superconductora es trenca. El camp obtingut d’aquesta manera es va

comparar amb el camp magnètic cŕıtic obtingut per mitjà del nostre enfocament

Ginzburg-Landau. Encara que tots dos camps mesuren diferents aspectes de la

resposta del sistema a un camp magnètic, es va trobar que prop de Tc tots dos

camps es comporten com Bc ∼ B0(1−T/Tc) i que els seus corresponents factors

B0 es comporten com ∼ 1/q1/3 (o, equivalentment, com ∼ 1/Tc) per a valors

grans q. Un dels principals resultats d’aquest treball és mostrar que a partir d’un

model fenomenològic molt simple en espai-temps d = 4+1 AdS podem construir

una descripció consistent tipus Ginzburg-Landau de la teoria de camps a la

frontera, on tots els paràmetres de Ginzburg-Landau i longituds caracteŕıstiques
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es poden calcular utilitzant mètodes hologràfics, i el comportament s’ajusta al

predit per la teoria de camp mitjà tradicional. D’altra banda, també s’observa

que, en augmentar el valor de la càrrega del camp escalar q, el paràmetre de

Ginzburg-Landau del model tendeix asimptòticament a un valor ben definit que

caracteritza el sistema superconductor dual com Tipus I.

El Caṕıtol 5 és una continuació natural de l’anterior. En aquest caṕıtol hem

optat per estudiar un model mı́nim en D = 5 de superconductivitat hologràfica

en el probe limit, amb un fons de forat negre Lifshitz. Dins d’aquest marc, hem

estudiat diferents casos de condensació, variant dins de cada un d’ells l’exponent

cŕıtic dinàmic a fi d’obtenir una visió sobre com el sistema es veu afectat per z

respecte al seu comportament isotròpic usual. Igual que en el caṕıtol anterior,

hem afegit petites flucutaciones escalars i de camp gauge als camps components

originals, per tal de calcular holográficamente les longituds de penetració i la

coherència del sistema superconductor. Observem que les dues longituds car-

acteŕıstiques prop de Tc tenen la depencia funcional estàndard respecte a la

temperatura, per a tots els casos de condensat i tots els valors de z. No obstant

això, l’exponent cŕıtic z si afecta la magnitud de les longituds caracteŕıstiques,

com es fa evident en el canvi del valor del seu ràtio, donat pel paràmetre de

Ginzburg-Landau κ. També hem vist que és possible construir una interpretació

fenomenològica Ginzburg-Landau consistent fins i tot en una teoria dual amb

escalament de Lifshitz. Hem calculat a través de tècniques hologràfiques dels

coeficients de Ginzburg-Landau α i β i, igual que en el cas de les longituds car-

acteŕıstiques, la conclusió és que, prop de Tc, tenen una dependència funcional

estàndard respecte a la temperatura, per a tots els casos de condensat i tots els

valors de z. No obstant això, la presència de z té un efecte no trivial en aque-

sts paràmetres fenomenològics, disminuint el valor dels seus coeficients numèrics

mentre el valor de z augmenta.

També hem calculat amb tècniques hologràfiques el paràmetre de Ginzburg-

Landau κ del sistema. Per tot cas de condensació i tots els valors de z, observem
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que κ < 1/
√
2. Aixó vol dir que per a tots els casos el sistema dual es comportarà

com un superconductor Tipus I. D’altra banda, també es va observar que, per

a cada cas de condensació considerat, el valor de κ disminueix a mesura que el

valor de z augmenta. Això significa que en els sistemes amb major anisotropia,

la formació de vòrtex és més fortament desfavorida energèticament i aquests

exhibeixen un comportament de Tipus I més fort.

Finalment, es va calcular el camp magnètic cŕıtic Bc necessari per trencar la

fase superconductora del sistema, seguint el procediment perturbatiu desenvolu-

pat primer en [17]. Hem observat que el camp cŕıtic prop de Tc té la dependència

funcional amb la temperatura que prediu la teoria de Ginzburg-Landau. No ob-

stant això, també observem que el valor del camp magnètic cŕıtic és cada vegada

menor mentre el valor de z augmenta. A més, dins d’aquest enfocament per-

turbatiu, hem confirmat holográficamente la conjectura plantejada en [18], que

diu que el camp magnètic cŕıtic és inversament proporcional al quadrat de la

longitud de correlació, en acord amb la teoria de Ginzburg-Landau.

El càlcul hologràfic del paràmetre de Ginzburg-Landau κ presentat en aque-

sts dos caṕıtols pot servir com una sonda útil per posar a prova la viabilitat d’un

model superconductor hologràfic com una possible descripció d’un superconduc-

tor d’alta Tc del món real. De fet, tots els cuprats fins ara descoberts presenten

un comportament de Tipus II. Per tant, seria una propietat molt desitjable en

un superconductor hologràfic que tingués valor de κ a la regió de Tipus II. Una

cosa similar es pot dir dels sistemes estudiats en el Caṕıtol 5, on es va concloure

que els sistemes amb major anisotropia tenen un comportament de Tipus I més

fort. En aquest sentit, és natural preguntar-se com el paràmetre de Ginzburg-

Landau obtingut en aquests caṕıtols podria canviar amb l’elecció d’altres models,

com ara, per exemple, superconductors hologràfics d’ona-d [8, 9, 10], supercon-

ductors hologràfics d’ona-p [19], models amb correccions d’ordre mayors en el

potencial del camp escalar, com ara els que apareixen en els enfocaments top-

down [20, 21, 14] o models menys convencionals, com ara els que tenen termes
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de Chern-Simons, acoblaments amb derivades d’ordre superior, o aquells dins

el context de New Massive Gravity [22, 23, 24]. Això requereix d’una major

investigació.

Passem ara al sistema top-down estudiat al Caṕıtol 6. En resum, hem

constrüıt expĺıcitament una Lagrangiana per supergravetat N = 2 galgada,

acoblada a un hypermultiplete escalar SU(2, 1)/U(2). El model resultant està

determinat únicament per un sol paràmetre β, que representa la barreja entre

els generadors U(1) de SU(2) amb U(1). Quan β = 1, el sistema descriu dos

escalars complexos ζ1, ζ2 amb masses m2
1 = −3 i m2

2 = 0. En aquest cas, la

Lagrangiana resultant coincideix exactament amb la Lagrangiana de [20], amb

l’extensió que incorpora el dilatón complex que es troba en [25, 26, 27, 28].

Aquest aparellament implica un potencial escalar no trivial i acoblaments no

trivials, i no ens hauria de sorprendre que no hi hagi un altre model possible per

a un hypermultiplete SU(2, 1)/U(2) amb aquestes masses

De la mateixa manera, la pròpia naturalesa única de la Lagrangiana indica

fortament que el model amb β = 0 certament ha de descriure els dos camps

escalars complexos de masses m2 = −15/4 que són duals a l’operador de di-

mensió més baixa ∆ = 3/2 en la teoria superconformal Klebanov-Witten. Hem

demostrat expĺıcitament que aquest mode domina la termodinàmica a baixes

temperatures. Seria molt interessant veure si la el model β = 0 representa un

truncament consistent de supergravetat Tipus IIB. Tot i que els camps escalars

tenen números quàntics de Kaluza-Klein no trivials (1/2, 1/2), són tanmateix

els estats més baixos en l’espectre KK, el que suggereix que el truncament pot

ser consistent. Demostrar aixó últim pot requerir una construcció expĺıcita d’un

ansatz Tipus IIB que reprodueixi les mateixes equacions de moviment.
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1

Superconductivity

One of the main objectives in the research on Holographic Superconductiv-

ity is to provide an holographic theoretical description of the strongly-coupled

phenomenon of high-temperature superconductivity. In order to get a general

picture of the former subject and why holographic methods may be applicable

in its study, it is reasonable to start by explaining the basic features of conven-

tional superconductors. We do this by introducing two very successful theoreti-

cal descriptions of superconductivity: Ginzburg-Landau theory and BCS theory.

Ginzburg-Landau theory provides an effective, phenomenological description of

superconductors near the critical temperature in terms of very simple degrees

of freedom. We review it because it introduces some important concepts like

spontaneous symmetry breaking in the context of condensed matter and the

Meissner effect, and because it also explains in very simple fashion some im-

portant superconducting phenomena that will become relevant in the remaining

chapters.

BCS theory, on the other hand, is a microscopical theory of superconduc-

tivity, based on the concept of quasi-particle fermionic interaction. We review it

because it is the most successful description of conventional superconductivity
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1.1. Ginzburg-Landau Theory

and provides a starting point to understand the problems related to having a

similar theory for high-Tc superconductivity. Before introducing BCS theory, we

briefly review some aspects of Fermi liquid theory which will give us important

physical insights on both conventional and high-Tc superconductors. Finally, we

briefly review the most important aspects of high-Tc superconductivity, focusing

on the particular case of cuprate superconductors and briefly reviewing some of

its more important physical properties. We comment on one of the most promis-

ing attempts to provide a theoretical description of the phenomenon by means

of standard methods, and its limitations. By doing this, it will become clear

why holographic methods can be of importance when studying these systems.

1.1 Ginzburg-Landau Theory

In presenting this topic we will follow the exposition made by [29, 30, 31]. The

Ginzburg-Landau theory [33] is a phenomenological description of superconduc-

tivity. One of its strongest points is that it is an universal theory in the sense

that it describes superconducting phenomena regardless of the microscopic de-

tails of the material. Its weakness relies on the fact that it is only valid near the

critical temperature Tc, more precisely in the transition region

|T − Tc|
Tc

≪ 1 . (1.1.1)

Ginzburg-Landau theory is exceptionally well suited to provide a phenomeno-

logical description of the physics of superconductors in presence of external elec-

tromagnetic fields. A superconducting material’s reaction to external magnetic

fields provide one of the two main phenomenological definitions of superconduc-

tivity, the first one being the loss of resistivity. The second is perfect diamag-

netism. Indeed, a superconductor has the physical property of expelling external

magnetic fields from its volume, a phenomenon called the Meissner effect [32].

Furthermore, one of the most important ways of classifying superconducting ma-

terials is related also to magnetic phenomena. Briefly stated, a superconductor

26



1.1. Ginzburg-Landau Theory

B

T/Tc

Condensed Phase

Bc(T )

Normal State

(a) Type I

B

T/Tc

Condensed Phase

Bc1(T )

Vortex Phase
Bc2(T )

Normal State

(b) Type II

Figure 1.1: Schematic magnetic phase diagram of Type I and Type II supercon-

ductors

can be classified in two classes. In a Type I superconductor the system goes

from the superconducting to the normal phase in a first order transition as the

value of the external magnetic is increased beyond a critical value Bc. On the

other hand, a Type II superconductor has two critical values: below the first

critical value Bc1 the system is in a superconducting phase, but as the value of

the field is increased, a stable vortex lattice (Abrikosov vortices) begins to form

inside the material where the magnetic field can penetrate until a second critical

value Bc2 is reached and the system enters fully in the normal phase. In this case

the phase transitions are second order in B. In any case, it is experimentally

observed that the value of the critical field near the critical temperature behaves

as

Bc ∼ (1− T/Tc) . (1.1.2)

In figures (1.1a) and (1.1b) we show an schematic magnetic phase diagram for

Type I and Type II superconductors, respectively.

The first attempt to provide a description of the diamagnetic currents that

expel magnetic fields from a material in the superconducting phase was the

27



1.1. Ginzburg-Landau Theory

phenomenological London theory [34], which used the number density of super-

conducting carriers ns as an order parameter for the system, and related the

current with the applied electromagnetic potential in the London equation

J = −e
2

m
nsA , (1.1.3)

were e and m are the charge and mass of the superconducting carriers, re-

spectively. However, the London theory relied on the approximation that ns

is a constant, an assumption that cannot hold with increasing magnetic fields.

Landau therefore constructed a phenomenological theory that reproduced and

extended the London theory results in the case of a non-homogenous number

density. Therefore he proposed the complex Ginzburg-Landau order parameter

as

Ψ(r) =
√
ns(r)e

iφ(r) , (1.1.4)

so that

|Ψ|2 = ns , (1.1.5)

and where φ(r) is a phase that we will set to zero in the following, for simplicity.

Then, using as a starting point Landau’s own theory of second order tran-

sitions, Ginzburg-Landau theory proposes that the system’s free energy density

difference can be expanded near the critical temperature as

∆f = α(T ) |Ψ|2 + 1

2
β(T ) |Ψ|4 + ~2

2m

∣∣∣∣(∇− ie

~
A

)
Ψ

∣∣∣∣2 + B2

2µ0
, (1.1.6)

where ∆f = fsc − fn, with fsc and fn being the free energy densities in the su-

perconducting and normal phases of the system, respectively. Also, α and β are

phenomenological parameters that have a temperature dependence in general.

We note the addition of the gauge field Ai and the corresponding magnetic en-

ergy in order to describe a charged system. We will adopt the usual convention

α < 0, β > 0.

When the external field and gradients are negligible, the free energy density
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1.1. Ginzburg-Landau Theory

difference (1.1.6) can be approximated by

∆f = α |Ψ|2 + 1

2
β |Ψ|4 , (1.1.7)

which is minimized at

|Ψ∞| =

√
|α|
β
. (1.1.8)

Since deep inside the superconductor the external fields and gradients can be

neglected, the critical parameter Ψ will approach the value Ψ∞ as it goes deeper

into the volume of the system. Inserting this value back in (1.1.6), we get inside

the material

∆f = −α
2

2β
. (1.1.9)

This last equation can be related to the critical magnetic field Hc, which is the

value of the magnetic field needed to be applied to the system in a condensed

phase in order to break superconductivity. Indeed, this field is determined by

the specific magnetic energy density that needs to be added to the condensation

energy to take the system into the normal phase, that is

fsc +
µ0
2
H2
c = fn , (1.1.10)

or, equivalently

∆f = −µ0
2
H2
c . (1.1.11)

Equating (1.1.9) and (1.1.11), we obtain

H2
c =

α2

µ0β
. (1.1.12)

which corresponds to the value where the magnetic field destroys superconductiv-

ity in the system, since for values H > Hc it will be energetically more favorable

for the system to be in the normal phase.

A few words about the functional dependence on temperature of the coeffi-

cients α and β. Since at T = Tc we must have |Ψ|2 = 0 and a finite value for
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1.1. Ginzburg-Landau Theory

T < Tc, then from (1.1.8) we must have α = 0 at T = Tc and α < 0 for T < Tc.

A simple assumption is therefore

α ∼ (T/Tc − 1) . (1.1.13)

Comparing the near-Tc behaviour (1.1.2) of the critical magnetic field and rela-

tion (1.1.12), we see that such a functional dependence for α is only possible if

β behaves as a positive constant near the critical temperature. This finally let

us conclude from (1.1.8) that the order parameter behaves near-Tc as

Ψ ∼ (1− T/Tc)
1/2 , T < Tc , (1.1.14)

which is a result that is confirmed experimentally and in BCS theory.

Minimizing (1.1.6) with respect to A, and using ∇×B = µ0J, we arrive at

J = −e
2

m
|Ψ|2A , (1.1.15)

from which, when substituting |Ψ|2 = ns, one recovers the original expression

for the London current (1.1.3).

Continuing with the gauge field equations, one arrives at the following equa-

tion

∇2B =
1

λ2
B , (1.1.16)

which has magnetic field solutions that decay exponentially inside the supercon-

ductor, with decay length λ, called the penetration length, and given by

λ2 =
m

µ0e2ns
. (1.1.17)

This length corresponds to the inverse mass of the gauge field after symmetry

breaking. Combining (1.1.8), (1.1.12) and (1.1.17), we arrive at the following

expressions for α and β

α = −e
2µ20
m

H2
c λ

2 , (1.1.18)

β =
e4µ30
m2

H2
c λ

4 . (1.1.19)
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1.1. Ginzburg-Landau Theory

Now, minimizing (1.1.6) with respect to the order parameter Ψ∗, one obtains

αΨ+ β |Ψ|2Ψ− ~2

2m

(
∇− ie

~
A

)2

Ψ = 0 . (1.1.20)

Then, if we consider the case without fields present A = 0, we have

αΨ+ βΨ3 − ~2

2m
Ψ′′ = 0 , (1.1.21)

where for simplicity we assumed that Ψ is real and only depends on the dimension

x. Expanding around the minimum as

Ψ(x) =

√
|α|
β

+ η(x) , |η| ≪ 1 , (1.1.22)

and inserting in (1.1.21), we have, up to second order the equation

2 |α| η − ~2

2m
η′′ = 0 , (1.1.23)

which has the physical solution

η(x) ∼ e
− |x|

ξ0 , (1.1.24)

where ξ0, defined as

ξ20 =
~2

4m |α|
, (1.1.25)

is the superconductor correlation length, and it is a measure of the spatial decay

of a small perturbation of Ψ from its equilibrium value. It is customary, however,

to work with the Ginzburg-Landau correlation length ξ, given by ξ2 = 2 ξ20 , that

is

ξ2 =
~2

2m |α|
. (1.1.26)

Finally, from the characteristic lengths λ and ξ one can construct theGinzburg-

Landau parameter κ, defined as:

κ =
λ

ξ
, (1.1.27)
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1.2. Fermi Liquid

whose value, based on surface energy calculations made by Abrikosov [35], char-

acterizes the behaviour of the system in a superconducting phase as:

κ <
1√
2

Type I Superconductor (1.1.28)

κ >
1√
2

Type II Superconductor (1.1.29)

where, as said before, a Type II superconductor is one which allows partial

penetration of a magnetic field, while a Type I superconductor is one where the

magnetic field is fully expelled from its volume by the Meissner effect.

We conclude by saying that, even though Ginzburg-Landau theory can be

consider a triumph in physical intuition and that it correctly describes many

superconducting phenomena, it is nevertheless a phenomenological theory that

gives us little information about the microscopic mechanism behind supercon-

ductivity.

1.2 Fermi Liquid

Before presenting BCS theory, it is useful to have a general knowledge of Fermi

Liquid Theory. For a more detailed treatment, see [36, 37, 38]. Briefly stated,

Fermi Liquid theory is a general microscopical description of electrons in a metal,

and is constructed as a quantum theory of interacting many-fermions. It also

introduces some very important concepts that will become very relevant in our

discussion of both conventional and high-Tc superconductivity.

We begin by writing the generic microscopic Hamiltonian

HFL =
∑
kσ

εkc
†
kσckσ +Hint. , (1.2.1)

where ckσ and c†k,σ are fermionic creation and annihilation operators for one-

particle states with momentum k and spin σ. Also, εk = ϵk − µ, with kinetic

energy ϵk = k2/(2m). The interaction term can be giving in very general terms
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1.2. Fermi Liquid

as

Hint. = −
∑

kk′qq′

c†kcqV̂ c
†
k′cqδ(k+ k′ − q− q′) . (1.2.2)

For the purposes of our present discussion, we will not be concerned with its

particular details.

We now recall that, according to the Pauli exclusion principle in a many-

body fermionic system at zero temperature, the ground state is obtained by

filling all energy levels up to µ. This defines a sphere in momentum space with

radio given by kF =
√
2mµ, called the Fermi surface of the system. This is

a very important concept that will continue to appear in the remaining of this

chapter.

We proceed our description of Fermi liquid theory from view point of its

Green’s function, which is defined in general as

G(k, t) = −i⟨Ψ0|T{ckc†k}|Ψ0⟩ (1.2.3)

where |Ψ0⟩ is the ground state of the system and ck is an operator of the theory.

For a system of free fermions, one obtains by direct calculation in frequency

space that

G0(k, ω) =
1

ω − εk + iδk
, (1.2.4)

where δk is a real infinitesimal quantity defined to go around the pole at ω−εk =

ω − (ϵk − µ) as

δk =


+δ If ϵk − µ > 0

−δ If ϵk − µ < 0

(1.2.5)

Before we deal with interactions between fermions, we bring out an impor-

tant conceptual development first put forward by Landau. In general terms,

Landau proposed that when interaction couplings are slowly turned on by an

adiabatic process, the states of the free theory evolve smoothly into states in

the interacting theory. More precisely, this means that during this process the

quantum numbers of the free states, namely charge, momentum and spin, remain
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1.2. Fermi Liquid

unchanged, and therefore continue to label the interacting states. Such states

are called quasi-particles, since they can almost be treated as non-interacting

states. However, as will be seen below, the quasi-particle concept is well-defined

only in the vicinity of the Fermi surface.

Taking into account interactions, we must instead consider the dressed Green’s

function

G(k, ω) =
1

ω − εk − Σ(k, ω) + iδk
(1.2.6)

were Σ(k, ω) is the irreducible self-energy calculated through perturbation the-

ory, and where again εk = ϵk − µ. Its real part ReΣ(k, ω) represents a shift in

the quasi-particles kinetic energy, while its imaginary part ImΣ(k, ω) is related

to the quasi-particles lifetime τ . Additionally, the imaginary part of the Green

function is always non-positive1.

At this point, we introduce two conditions that serve as a definition of a

Fermi Liquid from the self-energy point of view. First, for a Fermi liquid the

imaginary part of the self-energy always has the following specific form

ImΣ(k, ω) = −Ck ω
2 , (1.2.9)

where ω is close to zero and Ck is a positive constant. Because of this functional

dependence of ImΣ on ω, the denominator of G(k, 0) is real. The second condi-

tion is that there always exists a momentum vector kF where the denominator

vanishes. That is, for a Fermi liquid there always exists a value kF such that

µ− ϵkF
− ReΣ1(kF , 0) = 0 . (1.2.10)

1This can be seen from the spectral density, defined as

A(k, ω) = − 1

π
ImG(k, ω) , (1.2.7)

which can be written in term of the self energy as

A(k, ω) = − 1

π

ImΣ(k, ω)

(ω − µ− ϵk − ReΣ(k, ω))2 + ImΣ(k, ω)2
. (1.2.8)

Since the spectral density is positive, then ImΣ(k, ω) ≤ 0.
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1.2. Fermi Liquid

Basically, this condition tells us that in a Fermi Liquid there is always a well-

defined Fermi surface even in the presence of interactions.

Since we are interested in the low-energy physics, we perform a Taylor ex-

pansion of ReΣ(k, ω) around k = kF (where we are denoting k = |k|) and ω = 0

ReΣ(k, ω) = ReΣ(kF , 0)+(k−kF )∂kReΣ(kF , 0)+ω∂ωReΣ(k, 0)+ · · · (1.2.11)

and we also expand the kinetic energy ϵk around k = kF

ϵk = ϵkF
+ (k − kF )

kF
m

+ · · · (1.2.12)

In this approximation the dressed Green’s function is

G(k, ω) =
Z

ω − (k − kF )
kF
m∗ + iZCkF

ω2
, (1.2.13)

where we have defined

1

Z
= 1− ω∂ωReΣ(kF , 0) , (1.2.14)

1

m∗ = Z

(
1

m
+

1

kF
∂kReΣ(kF , 0)

)
. (1.2.15)

The quantities Z and m∗ are called the quasi-particle residue and the effective

mass, respectively. When ω → 0, the ω2 term becomes negligible and one has a

pole at

ω = Ek − µ , (1.2.16)

where we have defined

Ek = µ+
kF
m∗ (k − kF ) . (1.2.17)

With this value of ω, the dressed Green’s function can be written as

G(k, ω) =
Z

ω − (k − kF )
kF
m∗ + i/(2τ)

(1.2.18)

where the quasi-particle lifetime τ is defined as

1

τ
≡ 2ZCk(Ek − µ)2 ∼ ω2 . (1.2.19)
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1.3. BCS Theory

In this form, (1.2.18) represents the dressed Green’s function of a quasi-particle

of mass m∗ and energy Ek. Its lifetime τ near the Fermi surface is

1

τ
∼ (k − kF )

2 . (1.2.20)

We then conclude that the quasi-particle’s lifetime goes to infinity at k = kF

and its states are stable and well defined in that limit. This is a very important

result of Fermi-Liquid theory.

In relation to the quasi-particle residue Z, we note the following [39]. The

value of the particle number operator ⟨nk⟩ is related to the Green function by

⟨nk⟩ = −i lim
t→0

G(k, ω) , (1.2.21)

which in the case of the dressed function (1.2.18) takes the form

⟨nk⟩ = Z θ(µ− Ek) , (1.2.22)

where θ is the Heaviside step function. This result has an important implication,

namely that in an interacting system the Fermi surface exists, provided Z ̸= 0

and that perturbation theory is applicable under the interaction considered. The

existence and stability of the Fermi surface in turn guarantees that the quasi-

particles are well defined and that the low-energy physics of the system can be

determined by these quasi-particles excitations near the Fermi surface as in the

free case.

1.3 BCS Theory

In 1957, Bardeen, Cooper and Schrieffer (BCS) published one of the most suc-

cessful theories in the history of physics [40]. Starting from very general physical

assumptions and sensible simplifications, BCS theory provides a microscopic de-

scription of conventional superconductors that accounts for a wide array of their

physical phenomena. One of the most important clues necessary for the con-

struction of BCS theory can be found in the experimental observation of the
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1.3. BCS Theory

isotope effect [41]

Tc ∝M−1/2 , (1.3.1)

where Tc is the superconductor critical temperature and M is the mass of the

crystal lattice ions. This dependence indicates that electron-phonon interactions

play an important role in conventional superconductivity.

Indeed, BCS theory is ultimately a theory of electron-phonon interaction.

The first physical intuition of how this interaction can be realized came from

Fröhlich [42], who made the observation that conduction electrons could attract

each other due to interaction with the material’s ion cores. The physical picture

would be that, on passing through the metallic grid, a first electron conduction

attracts a positive ions in its vicinity, while this excess of positive ions in turns

attracts a second electron, creating an effective attractive interaction between

both electrons. Another way to look at it is that the lattice deformation creates

phonons, which mediate attractively between electrons. Starting from a very

general model of electron-phonon interaction, Fröhlich arrived at the following

Hamiltonian [43]

HFrölich =
∑
k,σ

εkc
†
k,σckσ +

∑
k

ωk

(
B†

kBk +
1

2

)
+

∑
kk′q ,σσ′

Vkqc
†
k′−q,σ′c

†
k+q,σck,σck′,σ′ + · · · (1.3.2)

where the first term represents free quasi-electrons, the second term represents

free phonons, and the third term represents electron-phonon interaction. Here,

εk is the quasi-electron energy measured with respect to the Fermi energy, and

ωk is the phonon frequency. The interaction Vkk′ is given as

Vkk′ =
4πe2

k′2 + λ2
+

2ωk′ |Mk′ |2

(εk − εk+k′)2 − ω2
k′
. (1.3.3)

The first term corresponds to the shielded Coulomb interaction in the Fermi-

Thomas approximation, λ is related to the screening length, and |Mq| is propor-

tional to the shielded electron-phonon coupling. We now make some observations

about the second term in (1.3.3). First, we substitute ωk → ωD, where ωD is
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1.3. BCS Theory

the Debye frequency. The reason for this substitution is that ωD is the typical

phonon frequency and acts as a cutoff scale in the electron-phonon interaction.

The second thing we note is the experimental observation that superconductivity

comes from electrons near the Fermi surface. This observation is in agreement

with the Fermi Liquid theory result, that quasi-particles have well defined mean-

ing near-kF . Therefore we arrive at the original BCS assumption, based on Fermi

Liquid theory, that the relevant quasi-electrons have energies in a thin shell of

width ±ωD near the Fermi surface.

|εk| < ωD . (1.3.4)

With these assumptions, the second term is negative and represents an attractive

interaction. Moreover, in a superconductor the electron-phonon coupling |Mk|

is large, with the result that the second term is dominant and the effective total

interaction between quasi-particles is attractive.

The next building block in BCS theory was set by Cooper in 1956 [44],

when he showed the surprising result that two electrons outside the Fermi sea

subjected to an attractive interaction between them would form a bound state,

regardless of how weak the interaction is. More precisely stated, the Fermi sea

is unstable against the “pairing” of an electron in a state k, ↑ with an electron

with −k, ↓, forming a Cooper Pair.

A simple way to see this in looking at the two-particle wave function for

such electrons2

Ψ(r1, σ1; r2, σ2) = ϕ(r1 − r2)φσ1σ2 , (1.3.5)

where φσ1σ2 represents the spin part of the wave function, which can be a spin

singlet or triplet. The function ϕ(r1 − r2) can be written as

ϕ(r1 − r2) =
∑
k

g(k) eik(r1−r2) , (1.3.6)

where |g(k)|2 is the probability of finding a electron with momentum k and the

other with momentum −k. Since according to the Pauli exclusion principle all

2We are working in the center of mass frame.
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electronic states with |k| < |kF | are completely filled and cannot be occupied by

other electrons, then

g(k) = 0, If |k| < |kF | . (1.3.7)

The Schrödinger equation for the two electrons system is given by

1

2m

(
∇2

1 +∇2
2

)
Ψ+ V (r1, r2)Ψ = (E + 2ϵF )Ψ , (1.3.8)

where ϵF is the Fermi energy and V (r1, r2) is the attractive interaction potential.

Substituting (1.3.6) in (1.3.8) we get the following equation

k2

m
g(k) +

∑
k′

Vkk′g(k′) = (E + 2ϵF )g(k) . (1.3.9)

Since we know that only electrons that fulfill condition (1.3.4) are relevant to su-

perconductivity, we follow the BCS approximation that the interaction potential

has the form

Vkk′ = −V , If |εk| , |εk′ | < ωD , (1.3.10)

and equal to zero otherwise. Then the equation (1.3.9) is

g(k)

(
E + 2ϵF − k2

m

)
= −V

∑
k′

g(k′) = λ , (1.3.11)

where λ is a separation constant. We then obtain the consistency equation

1 = V
∑
k

1
k2

m − E − 2ϵF
. (1.3.12)

We now introduce the density of electron states per spin direction

N(ξ) =
4π k2

(2π)2
dk

dξ
, (1.3.13)

and the summation can be substituted by the integral

1 = V

∫ ωD

0
N(ξ)

1

2ξ −E
dξ . (1.3.14)

We can now replaceN(ϵ) ≈ N(0), withN(0) = mk2F /2π
2 (the density of electron

states at the Fermi surface), since in metals ωD ≪ ϵF . Then we have

1 =
N(0)V

2
ln
E − 2ωD

E
, (1.3.15)
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from where we finally obtain

Ecrit. ≈ −2ωDe
−1/N(0)V , (1.3.16)

where we have taken the limit N(0)V ≪ 1. This approximation is justified by

the fact that most standard superconductors have N(0)V < 0.3. Indeed, this

dimensionless quantity N(0)V characterizes the strength of the interaction and

therefore we conclude that BCS is a weakly coupled theory. Since Ecrit. < 1,

the two electrons form a bound state, regardless of how small the value of V is.

The same pairing process can be realized for the case of many electrons. This

leads us to take only in consideration interaction terms in (1.3.2) that occur in

Cooper pairs. The result is the effective pairing or reduced Hamiltonian

Hpair. =
∑
kσ

εkckσc
†
kσ +

∑
kk′

Vkk′c†k↑c
†
−k↓c−k′↓ck′↑ . (1.3.17)

The Hamiltonian written above represents a fully interacting system, which is

difficult to solve it exactly. We can further simplify it by nothing that the

ground state will be composed of coherent Cooper pairs that can have non-zero

expectation values

bk = ⟨c−k↓ck↑⟩ . (1.3.18)

and that any fluctuation around these expectation values bk can be neglected

because of the large number of particles. We can therefore write

c−k↓c−k↑ = bk + (c−k↓c−k↑ − bk) , (1.3.19)

and neglect any bilinear terms in the fluctuation term in parenthesis. We then

finally obtain the model Hamiltonian

Hmod. =
∑
k

εkc
†
kσck,σ +

∑
kk′

Vkk′

(
bk′c†k↑c

†
−k↓ + b†kc−k′↓ck′↑ − b∗kbk′

)
. (1.3.20)

We now define

∆k = −
∑
k′

Vkk′bk′

= −
∑
k′

Vkk′⟨c−k′↓ck′↑⟩ . (1.3.21)
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Substituting in (1.3.20) we obtain

H =
∑
kσ

εkc
†
kσckσ −

∑
k

(
∆kc

†
k↓c−k↓ +∆∗

kc−k↓ck↑ −∆kb
∗
k

)
, (1.3.22)

which is now put in an bilinear form which can be diagonalized. Following

Bogoliubov and Valatin [45], we propose the canonical transformation

ck↑ = ukαk + vkβ
†
k , (1.3.23)

c−k↓ = ukβk − vkα
†
k . (1.3.24)

with the unitarity condition

u2k + v2k = 1 . (1.3.25)

These transformations simplifies our system to that of two different types of

quasi-fermions αk and βk, each in a ideal Fermi gas model, if we set

u2k =
1

2

1 +
ξk√

∆2
k + ξ2k

 , (1.3.26)

v2k =
1

2

1− ξk√
∆2

k + ξ2k

 , (1.3.27)

ukvk = − ∆k√
ξ2k + |∆k|2

. (1.3.28)

These very specific values for the coefficients uk and vk can alternatively be

obtained by making a variational analisis in order to find a minimal BCS ground-

state wave-function for the pairing Hamiltonian. (See, for instance [29]). Then

the operators αk and βk obey the algebra{
αk, α

†
k′

}
=
{
βk, β

†
k′

}
= δkk′ , (1.3.29)

and other commutation combinations are equal to zero. The resulting diagonal

Hamiltonian is

H = E0 +
∑
k

√
ε2k + |∆k|2

(
α†
kαk + β†kβk

)
, (1.3.30)
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where

E0 =
∑
k

(
εk −

√
ε2k + |∆k|2 +∆kbk

)
(1.3.31)

is a constant term and represents the ground state energy of the interacting

superconductor. The second term in (1.3.30) represent the increase of energy

above the ground state. In this sense, the operators αk and βk represent the

quasi-particle excitations of the superconductor. These quasi-particles are called

Bogoliubons, and have energy

Ek =

√
ε2k + |∆k|2 . (1.3.32)

We see that ∆k represents an energy gap between the ground state energy and

that of the first excited state. The quantity ∆k is known as the order param-

eter of the superconductor, and is of great physical significance. As proved by

Gorkov [46], it can be directly related to the Ginzburg-Landau order parameter

Ψ introduced in Section 1.1.

We now will try to determine the order parameter ∆k. We can do it by

going back to its original definition (1.3.21), which can be rewritten in terms of

the operators αk, βk as

∆k = −
∑
k′

Vkk′⟨c−k′↓ck′↑⟩

= −
∑
k′

Vkk′uk′vk′⟨1− α†
k′αk′ − β†k′βk′⟩ . (1.3.33)

Since the total average number of quasi-particles αk, βk is not fixed as in the

electron case, their chemical potential is zero in thermal equilibrium. Also, as

noted in the Hamiltonian (1.3.30), the quasiparticles do not interact, thanks

to our choice of coefficients uk, vk. Therefore, the quasi-particles will have

occupation given by the Fermi-Dirac distribution

f(Ek) =
1

eβEk + 1
, (1.3.34)

with β = 1/(kT ). Then (1.3.33) becomes

∆k = −
∑
k′

Vkk′uk′vk′ (1− f(Ek)) =
∑
k′

Vkk′
∆k′

2Ek′
tanh

βEk′

2
. (1.3.35)
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Equation (1.3.35) is called the gap equation and is very important in BCS theory

since it predicts the temperature dependence of ∆k and the critical temperature

Tc of the system. We now make the BCS approximation (1.3.10) and assume

that Vkk′ is equal to a constant value Vkk′ = −V in a thin shell around the

Fermi surface. We also assume a similar behavior for the order parameter and

set ∆k = ∆. Then the gap equation is

1 =
V

2

∑
k

tanh(βEk/2)

Ek
. (1.3.36)

Since we are working within the thin shell of states around the Fermi energy,

with |ξk| < ~ωD, we can replace the summation (1.3.36) with the integral

1 =
N(0)V

2

∫ ~ωD

−~ωD

tanh(βE/2)

E
dξ , (1.3.37)

where E =
√
ξ2 +∆2. From this equation in the limit ∆ ≈ 0 one can estimate

the value of the critical temperature Tc

Tc ≈ 1.13ωDe
−1/(N(0)V ) , (1.3.38)

and similarly, in the limit T = 0 on finds

∆(0) ≈ 2ωDe
−1/(N(0)V ) , (1.3.39)

where we used the small coupling limit. From these equation we can deduce the

famous BCS result

Tc = 0.56∆(0) , (1.3.40)

which holds in numerous superconductors. Additionally, from (1.3.37) one finds

that the order parameter behaves near the critical temperature as

∆(T ≈ Tc) ∼ (1− T/Tc)
1/2 , (1.3.41)

which is a robust functional dependence and confirms the Ginzburg-Landau

theory result (1.1.14).
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To finish this section, lets consider BCS theory from the point of view of the

Green’s function, just as we did with the Fermi Liquid theory. We follow closely

[37]. We consider the Bogoliubon’s Hamiltonian (1.3.30). The Green’s function

should be of the form

G(k, ω) ∼ 1

ω −
√
ε2k + |∆|2k + iδ

. (1.3.42)

One can expand the Green’s function (1.3.42) in term of Feynman diagrams in

the usual fashion, where the interaction will be given by originally by (1.3.3) that

can be set to a constant −V in the BCS approximation. However, when one

calculates the Green function perturbatively, one finds that there are some classes

of one-loop diagrams that render the expansion unstable. These diagrams in fact

represent physical processes where particles with momenta of equal magnitude

but opposite direction (that is, Cooper pairs) scatter against each other. (See [37]

for details on the calculation.) Calculating the contribution of these diagrams

to the self energy up to one-loop level one can obtain the result that the dressed

vertex is

Ṽ (ω) = − V

1− V N(0)
{

1
2 ln
∣∣∣ (2ωD−ω2)

ω2

∣∣∣+ iπ2 θ2ωD−ωθω+2ωD

} (1.3.43)

where ωD has been taken as a cutoff. We observe that there is a pole in the

denominator of (1.3.43) which in the ω ≪ ωD limit is given by

ωpole = i 2ωD e
1/(N(0)V ). (1.3.44)

The pole is purely imaginary and is located on the half upper side of complex

frequency space. Moreover, it is also to be found in the retarded Green’s function,

which must be analytic in the upper-half plane. This leads to the conclusion that

the perturbation series leading to (1.3.43) is invalid and indicates that the normal

system is unstable and will undergo a phase transition into a superconducting

phase. This breakdown of perturbation theory, according to our Fermi Liquid

theory discussion, means that the states in the normal phase and those in the
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superconducting phase are qualitatively different and that an adiabatic process is

invalid when there is a phase transition involved in the middle. This observation

will bear relevance in the following section.

1.4 High-Temperature Superconductivity

The area of High-Temperature Superconductivity was inaugurated by the discov-

ery by Bednorz and Müller in 1986 of the onset of superconductivity around

Tc = 35K [47]. In general, a material is considered a high-Tc superconductor

if its critical temperature is Tc ∼ 30K or higher. In their original discovery,

Bednorz and Müller used a kind of material called cuprate. Given that many

high-Tc superconductors belong to this class of materials, one should provide a

general description of them. For more details on the physical properties and

phenomenology of the cuprates, see [48]. Cuprates are originally antiferromag-

netic Mott Insulators that, after being slightly doped, become superconducting

on cooling. Regarding their specific microscopic structure, they are a variation

of the crystal type known as Perovskite. These are minerals with tetragonal

structure whose chemical formula is given in general by ABX3 or AB2X3, where

the element X is usually oxygen.

As a very important property, we note that they are structurally composed

of 2-dimensional CuO2 layers, and superconductivity in fact occurs in these

copper-oxide planes. The CuO2 layers are mediated by layers of other elements,

called charge reservoirs, which provide the charge carriers necessary for super-

conductivity. It is found experimentally that the distance between the charge

reservoirs and the CuO2 planes has a high impact on the value of the critical

temperature, and that higher-Tc is correlated with shorter layer distances.

Apart from the inter-layer distance mentioned above, cuprate superconduc-

tors have many other parameters that affect the value of their critical tempera-

ture. Because of its importance, we will focus on the doping p of the material.

In conventional superconductors, one finds a linear relation between doping an
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Figure 1.2: Generic phase diagram of a high-Tc superconductor. We show the

regions corresponding to the antiferromagnetic phase, superconducting phase,

Fermi liquid phase and strange metal phase. Inside the superconducting dome

(dashed line) we find a quantum critical point.

critical temperature, Tc(p) ∼ p. This is very much changed in the case of high-Tc

superconductivity, where the relation is non-monotonic. Indeed, one finds in the

case of hole-doped cuprates a general dependency

Tc(p) ∼ Tc,max

(
1− α(p− β)2

)
, (1.4.1)

where α, β are fitting parameters. In either hole or electron-doped cuprates, one

finds a bell-like profile, with a particular value of p, called the optimal doping,

where the critical temperature attains its highest value Tc,max. This optimum

value for Tc is taken as the critical temperature for the system.

High-Tc superconductors have a very rich phase diagram in terms of the dop-

ing parameter. In figure (1.2) we show an schematic phase diagram for cuprate
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superconductors. The same basic structure is found in a wide variety of cuprates.

Some observations regarding this diagram are in order. We first observe that

at low doping the system finds itself in the anti-ferromagnetic phase of its par-

ent compound. Then, after more doping the system enters the superconducting

phase, in a region which has the bell profile mentioned above and that known as

the superconducting dome. In the high doping region, the system enters a region

of Fermi-Liquid behaviour. Above the superconducting dome, in the normal

phase of the superconductor, the system finds itself in a strange metal region,

meaning that the material has Non Fermi Liquid behaviour. For instance, ex-

perimental evidence reveals that near optimal doping and in the normal phase,

the cuprates quasi-particles have lifetime behaviour

1

τ
∼ ω , (1.4.2)

as opposed to the quadratic Fermi Liquid behaviour described in (1.2.19). An-

other different behavior can be found in the temperature dependence of the

resistivity in cuprates above Tc, which is of the form ρ ∼ T , whereas Fermi Liq-

uid theory predicts a dependency of the form ρ ∼ T 2 for 3-dimensional systems

and ρ ∼ T 2 log(1/T ) for 2-dimensional systems. One of the proposed explana-

tions for this Non Fermi Liquid behaviour is that the normal state is close to a

quantum phase transition for some value of doping, where strong quantum fluc-

tuations would cause the deviation from standard Fermi Liquid theory. Thus,

removing the superconducting dome, the conjecture is that there is a quantum

critical point separating the antiferromagnetic and the Fermi Liquid phases.

This is shown in figure (1.2).

Let us pause for a second and go back to the superconducting phase of the

cuprates. By means of ARPES3 measurements on the copper-oxide layers, the

3In Angle Resolved Photo Emission (ARPES), an X-ray photon of know energy and mo-

mentum excites an electron out of the surface of the superconductor. By measuring the emitted

electron’s energy and momentum one can determine its original energy and crystal momen-

tum. Finally, by comparing the spectra as a function of temperature, one can map the order
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order parameter of the superconductor was found to be of the form

∆k ∼ (cos(kx)− cos(ky)) . (1.4.3)

This means that a cuprate behaves as an unconventional superconductor, where

the latter type is defined in general terms as superconductivity where the ground

state has different symmetry from that of the BCS ground state. More precisely,

given a symmetry transformation T̂ in momentum space, a superconductor is

unconventional if

∆k ̸= ∆T̂k , (1.4.4)

while the equality holds in the conventional case. For an unconventional super-

conductor the order parameter can be written as

∆k =
∑
Γ

ηΓfΓ(k) , (1.4.5)

where fΓ(k) are a set of functions defined in terms of the irreducible represen-

tations Γ of the symmetry group, and ηΓ are expansion coefficients.

The cuprate order parameter ∆k has dx2−y2 symmetry and describes a su-

perconductor with a spin-singlet, l = 1 pairing state. It is called a d-wave order

parameter, since it has the same symmetry as an atomic d spherical harmonic

function. The particular symmetry of ∆k suggest that the kind of pairing mech-

anism relies on strong electron-electron repulsion at short range. The most likely

type of pairing mechanism that leads to dx2−y2 Cooper pairs are based on sys-

tems with strong electron-electron repulsion. In materials with strong repulsive

energy it is favorable to form wave functions that are zero at r1 = r2, which

can be accomplished by paired states with l ̸= 0. This is further supported by

the fact that the parent compound of the cuprates are antiferromagnetic Mott

insulators, which have this kind of strong interaction.

This symmetry therefore makes it reasonable to introduce spin degrees in a

theory describing the strange-metal phase of the cuprates. These spin fluctua-

parameter |∆k| at any point of the Fermi surface.
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tions would be similar to those found in the well known Fermi Liquid descrip-

tion of 3He, where in that case ferromagnetic spin fluctuations take the place

of phonons in the electronic interactions4. One of the proposed models trying

to describe the strange metal physics of the cuprates while incorporating the

physical clues mentioned above is the Spin-Fermion model. We review it very

briefly, but knowledge of it may provide us with the general flavor of some rele-

vant difficulties that appear when applying standard theoretical methods in this

problem.

1.5 A Field Theoretical Model.

The theoretical model we will now consider, the Spin-Fermion model [49, 50],

is a low energy theory which attempts to provide a generic description of the

quantum phase transition between the Fermi-Liquid and the antiferromagnetic

phases. In this sense, it is an attempt to explain the anomalous normal state

properties of high Tc materials. It has the natural fermionic degrees of freedom

ck, given that electrons have arbitrary low energy near the Fermi surface. It

however introduces spin degrees of freedom, based on the proximity of the an-

tiferromagnetic phase. These spin fluctuations are given by the Spin Density

Wave Sk, and are bosonic collective modes of the fermions. The main idea is

that at low energies there is a dominant channel in the fermion-fermion inter-

action which introduces as spin collective mode that mediates between them.

In this sense, as mentioned above, they are spinful analogs of phonons in BCS

theory. The Hamiltonian of the theory can be written as [49]

HS-F =
∑
kα

G0(k, ω)c
†
kαckα+

∑
k

χ−1
0 (k, ω)SkS−k+ g

∑
kk′αβ

c†k+k′,ασα,βckβ ·S−k′ ,

(1.5.1)

4Phonon interactions are believed not to play an important role in high-Tc superconductivity.

Indeed, the isotope effect (1.3.1) is experimentally found to be extremely small in the cuprates.

This is usually taken as evidence that phonons should play a negligible part in a theory of

cuprate superconductivity.
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where G0(k, ω) is the fermions bare green’s function, χ0(k, ω) is the bare spin

propagator, σi are the Pauli matrices and α, β are spin projection indexes. The

first term in (1.5.1) represents free fermions; the second represents free spin

degrees of freedom, and the third represents the spin-fermion interaction. The

first result comes from the bare spin propagator. It is given by the Ornstein-

Zernike form

χ0(k, ω) =
χ0

ξ−2 + (k−K)2 − (ω/vs)
2 , (1.5.2)

where ξ is the spin correlation length and vs is the spin velocity of the order vF ,

since the spin degrees of freedom are made of fermions. We have also introduced

the ordering spin wave vector K. In this case it was found that the spin-singlet

gap equation is

∆k = −3

2
g2
∫
χ0(k− q)∆k

tanh
(
β
√
E2

q +∆2
q

/
2
)

2
√
E2

q +∆2
q

dq , (1.5.3)

where the minus sign comes from projection to the spin singlet channel. Com-

paring with (1.3.35), we note that a BCS-like s-wave solution is not possible

because of this negative sign. However, since χ(k, ω) is peaked near K, the pair-

ing interaction relates the gap at momentum k and k+K. Thus we can eliminate

the minus sign by proposing the ansatz ∆k = −∆k+K. For the cuprates one has

K = (π, π) and this implies dx2−y2 symmetry for ∆k. Thus, the spin fluctuation

proposed gives rise to d -wave order parameter ∆k ∼ (cos(kx)− cos(ky)).

However, although the spin-fermion model correctly predicts the d -wave

behavior of the order parameter, it also predicts that the system is strongly

coupled. Indeed, so far the theory relies on the parameters g, χ0, ξ and vF .

From the first two, we can construct the effective coupling g = g2χ0, which is a

combination that appears naturally in perturbation theory. From the renamed

parameter one can construct the energy scale vF /ξ. From these two energies one

can construct the dimensionless constant

λ =
3g

4πvF ξ−1
. (1.5.4)
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(a) Fermi Liquid Phase

K

(b) Antiferromanetic Order

Figure 1.3: The transformation of the cuprate Fermi surface by antiferromag-

netism. In figure (a) we show the Fermi surface in the Fermi Liquid phase.

The central point represents momentum k = (0, 0). In figure (b) we show the

original Fermi surface along with the Fermi surface shifted by the wave vector

K = (π, π). These surfaces intersect at the hot spots, represented by the filled

circles. Electrons near the hot spots, separated by K, have opposite sign in the

pairing amplitude ∆k = −∆k+K, leading to unconventional superconductivity.

As it turns out, the dimensionless constant λ is the natural coupling in the

perturbative calculations for the fermionic and bosonic self energies, and is thus

the effective coupling for the system. In the case of cuprates, experimental

observations estimate a value of λ ∼ 2 near optimal doping, making thus the

system strongly-coupled. This sets a limit to the applicability of weak-coupling

perturbative methods.

More characteristics of the spin fermion model can be obtained from the

structure of the Fermi surface for the cuprates. In general, the addition of anti-

ferromagnetic spin fluctuations alter the dispersion relation εk for the fermions,

which in turn also changes the structure of the Fermi surface. More concretely,

the antiferromagnetic order mixes electrons states with k and k + K, shifting
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the Fermi surface by K, where, as said before, for the cuprates takes the value

K = (π, π). This is shown in figures (1.3a) and (1.3b), where we see how the

Fermi surface is shifted, intersecting at eight points, usually called hot spots.

The hot spots are of great importance, as can be seen in the following.

We very generally present the results of [51, 52], where the authors made an

study of the spin-fermion model (1.5.1) near the hot spots. In the proximity of

one hot spot there are two Fermi lines, and the relevant fermionic quasi-particles

along these lines are referred as ψ1a, ψ2a, with a =↑, ↓, with their momentum

measured with respect to the hot spot momentum kh. Near the hot spots the

fermions are described by the Lagrangian [52]

L = ψ†
1a (∂t − iv1 · ∇)ψ1a + ψ†

2a (∂t − iv2 · ∇)ψ2a , (1.5.5)

where vi is the Fermi velocity at kh. These fermions are to be coupled to the spin

density wave represented by the ferromagnetic parameter ϕa, with a = x, y, z

spin components. These are described by the Lagrangian term [52]

Lψϕ =
1

2
(∇ϕa)2 +

r

2
ϕ2a +

u

4

(
ϕ2a
)2

+ Uϕασ
α
ab

(
ψ†
1aψ2b + ψ†

2aψ1b

)
, (1.5.6)

where σ are the Pauli matrices. We see in (1.5.5) and (1.5.6) the same structure

as in (1.5.1). Very interestingly, the authors find a vertex instability similar to

the one encountered in the BCS case (1.3.43) that could lead to a superconduct-

ing phase. However, they also find that, in the vicinity of the hot spot, the ψ1

Green’s function has the general structure

Ghot spot ∼
1√

iω − v1 · k
, (1.5.7)

so there is no quasi-particle pole and therefore quasi-particles are not well defined

at the hot spots of the cuprates Fermi surface.

We thus see in the spin fermion model some of the virtues and defects of the

usual field-theoretical approaches to high-temperature superconductivity. We

find that the theory’s effective coupling is strong, which seriously limits the

extent in which perturbation theory is applicable. Furthermore, we observe
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the breakdown of the quasi-particle picture, a fact that is more profound and

could point to the unsuitability of standard physical assumptions when trying to

describe the cuprates. It is therefore necessary to look for different theoretical

approaches to the problem, and holographic methods are suited to achieve just

that.
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AdS/CFT. An Introduction

The AdS/CFT correspondence is the most important recent development in

theoretical physics. In its strongest form, it suggests that every non-Abelian

gauge theory is equivalent to a consistent theory of gravity. The bridge con-

necting these apparently disconnected areas of physics is string theory, and its

construction involves some of the fundamental actors of modern physics: non-

abelian gauge symmetries, quantum field theory, general relativity, black hole

physics, supersymmetry, physics in higher dimensions, etc. The AdS/CFT du-

ality is a profound advancement in the understanding of fundamental physics

both because of its conceptual depth and the wide range of its implications and

applications.

The most studied example of AdS/CFT correspondence, or Maldacena du-

ality, is the duality between Type IIB superstring and N = 4 SU(N) Super

Yang-Mills theory. It is therefore sensible to start this chapter with a brief

summary of these two theories. In particular, the correspondence relates the

quantum physics of the strongly coupled gauge quantum field theory with the

classical dynamics of gravity in higher dimensions. Therefore, in sections 1.3 to

1.5 of this chapter, this is the particular path we will follow when introducing the
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2.1. Type IIB Supergravity

duality, first by looking at how the duality can be motivated by different string

theory perspectives, by analyzing its different limits and by looking at evidence

in favor of the conjecture. Finally, in section 1.6 we will review the basic aspects

of scalar field holography, since this topic will be of particular importance for

the holographic superconducting models we will be considering in the remaining

of this thesis. Having thus set this basic theoretical background, in the next

chapter we will merge the present discussion on the AdS/CFT duality with the

one in preceding chapter on superconductivity, thereby introducing the subject

of holographic superconductors, and explaining how these models can be real-

ized in their simplest setup and illustrating their fundamental properties. This

chapter follows closely the expositions of the duality presented in [53, 54, 55, 56].

2.1 Type IIB Supergravity

2.1.1 Field Content and Symmetries.

Ten-dimensional Type IIB supergravity [57, 58, 59, 60] is one of the two halves of

the AdS/CFT correspondence, and we will briefly describe its basic characteris-

tics. We start by its Lagrangian. Type IIB supergravity is the low-energy limit

of Type IIB string theory, and the particle content of the former is given by the

massless spectrum of the latter. We will only focus on the bosonic field content

of Type IIB supergravity, which in the NS-NS sector is composed of the metric

(zehnbein), the dilaton Φ and the two form B2 with field strength H3 = dB2,

while in the R-R sector one has the form fields C0, C2, C4. The latter has a

self-dual strength given by F̃5 = dC4. The existence of this self dual strength in

the theory is a very particular property of Type IIB supergravity.

In opposition to the case of Type IIA gravity, the corresponding effective

Lagrangian for Type IIB supergravity cannot be obtained from dimensional re-

duction of eleven-dimensional supergravity, which would corresponding to the

low-energy limit of M theory. Furthermore, the presence self-dual five form
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2.1. Type IIB Supergravity

becomes an impediment to formulating in a manifestly covariant form the ac-

tion of the theory. Instead, the way to construct the Type IIB supergravity

Lagrangian is to start from the covariant equations of motion, consistent with

gauge invariance and supersymmetry, and then construct an action that yields

these particular equations. The self duality of F̃5 is then implemented as an

additional field equation.

Constructed in this fashion, the bosonic part of the Type IIB supergravity

action is given by

SIIB = SNS + SR + SCS , (2.1.1)

with each term being

SNS =
1

2κ2

∫
d10x

√
−ge−2Φ

(
R+ 4∂µΦ∂

µΦ− 1

2
|H3|2

)
, (2.1.2)

SR = − 1

4κ2

∫
d10x

√
−g
(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)
, (2.1.3)

SCS = − 1

4κ2

∫
C4 ∧H3 ∧ F3 , (2.1.4)

and where the field strengths are written as Fn+1 = dCn, H3 = dB2 and we

defined the gauge-invariant combinations

F̃3 = F3 − C0H3 , (2.1.5)

F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 . (2.1.6)

The self duality condition for the five-form

F̃5 = ∗F̃5 , (2.1.7)

has to be imposed as an additional constraint to the equations of motion that

arise from (2.1.1).

Type IIB gravity has a hidden non-compact global symmetry SL(2,R). In

particular, the two-form fields B2 and C2 transform as a doublet under this

symmetry group. Then to make the global symmetry apparent, we introduce
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the following transformation Λ

Λ =

 d c

b a

 ∈ SL(2,R) , (2.1.8)

with a, b, c, d real numbers such that ad− bc = 1. Now we rename the two-form

fields as B2 = B
(1)
2 , C2 = B

(2)
2 and define the column vector

B2 =

 B
(1)
2

B
(2)
2

 , (2.1.9)

which in turns gives us the vector H3 = dB2, whose entries are given by the

two-forms field strengths. This vector transforms under Λ as

B2 → ΛB2 , (2.1.10)

and similarly for H3. We also introduce the complex scalar field

τ = C0 + ie−Φ , (2.1.11)

which is called the axion-dilaton field because of its component fields and trans-

forms under SL(2,R) as

τ → aτ + b

cτ + c
. (2.1.12)

We now rewrite the action (2.1.1) using the matrix

M = eΦ

 |τ |2 −C0

−C0 1

 , (2.1.13)

which transforms under Λ as

M′ = (Λ−1)TMΛ−1 . (2.1.14)

With these definitions, the action (2.1.1) is finally rewritten as

S =
1

2κ2

∫
d10x

√
−gE

(
RE − 1

12
HT
µνρMHµνρ +

1

4
tr
(
∂µM∂µM−1

))
− 1

8κ2

(∫
d10x

√
−gE

∣∣∣F̃5

∣∣∣2 + ∫ εIJC4 ∧HI
3 ∧HJ

3

)
, (2.1.15)
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which is manifestly invariant under global the SL(2,R) symmetry, and where we

have used the Einstein-frame metric gEµν , which is defined in terms of the usual

string-frame metric gµν as

gEµν = e−Φ/2gµν . (2.1.16)

2.1.2 Brane Solutions in Type IIB Supergravity.

Brane supergravity solutions were historically the starting point to formulating

the AdS/CFT correspondence. In this section we briefly review some of its

general aspects. We start by recalling the definition of a (p+ 1)-form

Ap+1 =
1

(p+ 1)!
Aµ1···µp+1dx

µ1 ∧ · · · ∧ dxµp+1 , (2.1.17)

Similarly to the manner in which a charged point particle couples to a gauge

field, a (p + 1)-form can be coupled naturally to a geometrical object Σp+1 of

space-time dimension (p+ 1) by means of an action term

Sp+1 = Qp

∫
Σp+1

Ap+1 , (2.1.18)

where there is a pullback from the bulk space to Σp+1∫
Σp+1

Ap+1 =
1

(p+ 1)!

∫
Σp+1

Aµ1···µp+1

∂xµ1

∂σ0
· · · ∂x

µp+1

∂σp
dp+1σ . (2.1.19)

Supergravity solutions with non-trivial Ap+1 charge are called p-branes, and they

represent geometrical objects with space dimension p and well defined charge

Qp. From (2.1.17) we can construct a gauge invariant (p+2)-form field strength

Fp+2 = dAp+1, with

Fp+2 =
1

(p+ 2)!
Fµ1µ2···µp+2dx

µ1 ∧ · · · ∧ dxµp+2 , (2.1.20)

and which is invariant under gauge transformations δAp+1 = dΛp, since the

exterior derivative is closed, d 2 = 0. In complete analogy to the case of a charged

point-particle, the charge of a p-brane is computed by encircling it by a SD−p−2

sphere and calculating its flux. Then, by Gauss’s law in general D-dimensions

Qp =

∫
SD−p−2

∗Fp+2 , (2.1.21)
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where ∗Fp+2 is the Hodge-dual to the field strength. In general, given a charged

p-brane, there is a dual magnetic (D − p − 4)-brane, whose magnetic charge

QD−p−4 is computed from

QD−p−4 =

∫
Sp+2

Fp+2 . (2.1.22)

In the particular case when Fp+2 = ∗Fp+2, one says that the field strength is

self-dual.

In the case of D = 10 Type IIA/B supergravity, p-branes are referred to as

Dp-branes when the charge they carry come from a (p+1)-form in the R-R sector.

In the context of string perturbation theory, a Dp-brane may be described as as

(p+1)-dimensional hypersurface in flat 10-dimensional space-time on which open

string can end [62]. In the particular case of Type IIB supergravity, these forms

are given by C0, C2 and C4 introduced above. Then, if we wish to construct

Dp-branes solutions in Type IIB theory, we must consider the action

S(p) =
1

2κ2

∫
d10x

√
−g

(
e−2Φ(R+ 4/(∂Φ)2)− 1

2
|Fp+2|2

)
, (2.1.23)

where we have already taken into considerations that in Dp-brane solutions,

the NS-NS two-form B2 vanishes. In the special case p = 3, the self-duality

constraint F5 = ⋆F5 has to be imposed by hand and an extra 1/2 factor should

be added in the term |Fp+2|2.

Before presenting the general Dp-brane solution to (2.1.23), it is useful to

make some general considerations about its geometry. We consider the case

of general dimension D, for generality. As said above, a Dp-brane is a (p+1)-

dimensional flat hypersurface, with Poincaré invariance Rp+1×SO(1, p). There-

fore, the transverse space is (D − p − 1)-dimensional and one can always find

solutions with maximal rotational symmetry SO(D-p-1). Thus, the total sym-

metry of the Dp-brane solutions in D = 10 Type IIB supergravity is given by

Rp+1 × SO(1, p) × SO(9 − p). The symmetry of a Dp-brane just described can

tell us a great deal of the general form of the solution: the Poincaré invariance

in the space parallel to the Dp-brane tells us that the metric solution in those
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directions has to be a rescaling of the Minkowski metric, while the rotational

invariance in the transverse directions tells us that the metric in those directions

has to be a rescaling of the Euclidean metric. With this in consideration , one

finds that the extremal Dp-brane solution is given for every p by [61]

ds2 = Hp(r)
−1/2ηijdx

idxj +Hp(r)
1/2
(
dr2 + r2dΩ8−p

)
, (2.1.24)

where r is a “radial” coordinate transverse to the brane. Assuming maximal

SO(9-p) symmetry in the transverse directions, and using the fact that the metric

should tend to flat-space time at r → ∞, the most general solution for Hp(r) is

given by the harmonic function

Hp(r) = 1 +

(
Lp
r

)7−p
, (2.1.25)

where Lp is a numerical constant to be determined latter. The first part of the

solution (2.1.24) correspond to the (p+1)-dimensional Lorentz metric along the

brane, while the second term corresponds to the (9 − p)-dimensional euclidean

metric in the transversal directions. The solution to the R-R field is given by

Fp+2 = dH−1
p ∧ dx0 ∧ dx1 ∧ · · · ∧ dxp , (2.1.26)

while the dilaton solution is

eΦ = gsHp(r)
(3−p)/4 . (2.1.27)

We note that in the limit r → ∞, then Hp → 1 and the dilaton is equal to gs.

Then, the parameter gs is the string coupling constant at infinity.

If we consider the important case of N -coincident Dp-branes, the above

solutions remain unchanged. The flux from the N Dp-branes can be written as

N =

∫
S8−p

∗Fp+2 , (2.1.28)

where we are stating the fact that the N coincident Dp-branes carry a total

amount of N units of charge. The constant Lp can be deduced to be [63]

L7−p
p = (2

√
π)5−pΓ

(
7− p

2

)
gsN α′(7−p)/2 . (2.1.29)
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AdS5 × S5

R10

L

Figure 2.1: Schematic representation of the throat-like geometry of D3-branes

solutions.

One relevant particularity about extremal Dp-branes solutions in Type IIA/B

supergravity is that they preserve 16 out of the original 32 supersymmetries of

the theory. This will mean that the associated open-string spectrum will have

this much supersymmetry and will result to be tachyon free. Thus, these solu-

tions are also referred to as half-BPS Dp-branes.

2.1.3 D3-Brane Solutions.

We now consider the particular case of D3-branes. D3-branes solutions in

Type IIB supergravity are associated to the four-form C4. We note that its

field strength F5 and its corresponding Hodge-dual ∗F5 are self-dual five-forms.

Therefore, C4 couples both to an electric and a magnetic D3-branes. Moreover,

since the field strength is self-dual, the D3-branes carry then a self-dual charge,

and the two branes are in fact the same.

The D3-brane solution has a total R4 × SO(1, 2)× SO(8) symmetry, and is
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obviously given by the p = 3 case of the general solution presented above

ds2 = H(r)−1/2ηijdx
idxj +H(r)1/2

(
dr2 + r2dΩ5

)
, (2.1.30)

with

H(r) = 1 +
L4

r4
, (2.1.31)

where we have dropped the subindexes in the harmonic function and the constant

L, which is given by

L4 = 4πgsNα
′ 2 . (2.1.32)

The five-form is given by

F5 = dH−1 ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 . (2.1.33)

with flux

N =

∫
S5

F5 . (2.1.34)

Meanwhile, the dilaton field has solution

eΦ = gs , (2.1.35)

while for the axion field C0 and the two forms C2, B2 we have

C0 = constant. , (2.1.36)

B2 = 0 , C2 = 0 . (2.1.37)

We note the important fact that the D3-brane solution for the dilaton (2.1.35)

is a constant.

Regarding the geometry of the metric solution (2.1.30), we first note in

(2.1.30) that in the regime r ≫ L we recover flat space-time R10. On the other

hand, in the region r < R we find a curved geometry referred customarily as

the throat. (See figure (2.1).) The radius of the throat approaches the value

L asymptotically at r → 0. Another very important fact about the solution
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(2.1.30) comes from the way it can be decomposed. Indeed, if we define the

inverse coordinate

z =
L2

r
, (2.1.38)

then the metric (2.1.30) in the near-throat region (z ≫ L) becomes

ds2 = L2

[
1

z2
(
ηijdx

idyj + dz2
)
+ dΩ2

5

]
, (2.1.39)

which is manifestly regular and describes the product geometry AdS5×S5, where

both factors have radius L. Again, we note that this characteristic about the

metric solution is only attainable when p = 3.

An important general property of Dp-branes is that they are objects that

carry mass, so they can backreact to the surrounding geometry. Clearly then,

in order to see how strong the deformation of space-time in the presence of a

Dp-branes, we need to calculate its mass. This can be realized by dimensional

reduction of the Dp-brane on its spatial directions and by then reading the large

r behaviour of the gE00 metric component in the Einstein frame. The result of

this calculation for the case of N D3-branes yields the result

M

V3
=

N

(2π)3α′2
1

gs
. (2.1.40)

The gravitational field produced by an object is proportional to its mass time

the Newton constant, which goes as GN ∼ g2s . (See equation (2.3.6).) Then we

conclude that the gravitational field goes as ∼ gs, and that in the limit gs → 0

(which means a vanishing throat radius L) the metric reduces to Minkowski.

Therefore, Dp-branes in the small string coupling regime admit a flat theory

description.

The D3-brane solution is of essential importance to formulating the AdS/CFT

correspondence from the gravity side. To finish this section, we summarize some

of its unique properties that will prove relevant when explaining the duality: it

is a half-BPS solution, it is asymptotically flat, it has a AdS5 × S5 near-throat

geometry and it has a constant dilaton.
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2.2 N = 4 Super Yang-Mills

2.2.1 Field Content and Symmetries.

In the preceding section we have outlined the “gravity” side of the AdS/CFT

correspondence. Here we will describe the other half of the duality, corresponding

to the full quantum N = 4 Super Yang-Mills theory. We begin by writing the

theory’s Lagrangian [64]

LSYM = tr

{
− 1

2g2
FµνF

µν +
θI
8π2

εµνρσFµνFρσ −
∑
a

iλ̄aσ̄µDµλa

−
∑
i

DµX
iDµXi +

∑
a,b,i

(
g Cabi λa

[
Xi, λb

]
+ g C̄iabλ̄

a
[
Xi, λ̄b

])
+
g2

2

∑
i,j

[
Xi, Xj

]}
, (2.2.1)

where the constants Cabi and Ciab are related to the Clifford Dirac matrices for

the internal R-symmetry group SO(6)R ∼ SU(4)R. The Lagrangian (2.2.1) is

invariant under N = 4 Poincaré symmetry, whose transformation laws are

δX i =
[
Qaα, X

i
]
= Ciabλαb ,

δλb = {Qaα, λβb} = F+
µν (σ

µν)αβ δ
a
b +

[
Xi, Xj

]
εαβ (Cij)

a
b ,

δλ̄b
β̇

=
{
Qaα, λ̄

b
β̇

}
= Cabi σ̄

µ

αβ̇
DµX

i ,

δAµ = [Qaα, Aµ] = (σµ)
β̇
α λ̄a

β̇
, (2.2.2)

where F±
µν = 1

2

(
Fµν ± i

2ε
µνρσFρσ

)
and the constants (Cij)

a
b are related to bilin-

ears in Clifford Dirac matrices for SO(6)R.

An important property of LSYM is that it is classically scale invariant. In-

deed, the standard mass dimension for the theory’s fields and couplings is

[Aµ] =
[
Xi
]
= 1 , [λa] =

3

2
, [g] = [θI ] = 0 , (2.2.3)

so all terms in the Lagrangian have dimension 4. Furthermore, upon pertur-

bative quantization it is found that the β function of the theory vanishes, and

therefore the scale invariance is preserved at quantum level. In this manner, scale
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2.2. N = 4 Super Yang-Mills

invariance and Poincaré invariance combine to form a larger conformal symme-

try SO(2, 4) ∼ SU(2, 2). In turn, this symmetry combined with the N = 4

supersymmetry produce a superconformal symmetry, given by SU(2, 2|4). In

more detail, the components of SU(2, 2|4) are [53]

• The R-symmetry group SO(6)R ∼ SU(4)R, with generators TA, A =

1, . . . , 15.

• The N = 4 Poincaré supersymmetry, generated by the supercharges Qaα

and their complex conjugates Q̄α̇a, a = 1, . . . , 4.

• The conformal group SO(2, 4) ∼ SU(2, 2), generated by translations Pµ,

Lorentz transformations Mµν , dilations D and special conformal transfor-

mations Kµ.

• The conformal supersymmetries, generated by the supercharges Sαa and

their complex conjugates S̄aα̇. These symmetries arise from the fact that

the special conformal transformations Kµ and the Poincaré supercharges

Qaα do not commute and, since both are symmetries, their commutator is

also a symmetry. These commutators are precisely the generators Sαa.

The dimension of these various generators is

[D] = [Mµν ] =
[
TA
]
= 0 ,

[Pµ] = +1 , [Kµ] = −1 ,

[Q] = +1/2 , [S] = −1/2 . (2.2.4)

2.2.2 Local Operators and Multiplets.

We are now interested in the construction and classification of local gauge invari-

ant operators. These class of operators are to be built from the gauge covariant

fields Xi, λa, Fµν and the covariant derivative Dµ, whose dimension is [Dµ] = 1,

and the operators are to be polynomials in the mentioned components. This
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2.2. N = 4 Super Yang-Mills

restriction will result in gauge invariant operators of definite positive dimension

and that the number of operators whose dimension is less than a given number

is finite. In particular, the only operator with dimension 0 will be the unity

operator.

Since the conformal supercharges S have dimension −1/2, then the suc-

cessive application of S to any of the mentioned combinations will eventually

yield 0. Otherwise, one would start generating operators of negative dimension,

which is impossible in a unitary representation. We then define a superconformal

primary operator O to be a non-vanishing operator such that

[S,O] = 0 , (2.2.5)

and the same for the anticommutator in the fermionic case. An alternate, equiva-

lent definition of a superconformal primary operator is as the lowest dimensional

operator in a given superconformal representation.

An operator O′ is called an superconformal descendant operator of a local

polynomial gauge invariant operator O if it is obtained as

O′ = [Q,O] , (2.2.6)

and the same for the anticommutator in the fermionic case. The dimensions

of both operators are related by ∆O′ = ∆O + 1/2, and therefore O′ cannot be

a primary operator. Furthermore, if an operator O′ is a descendant from O,

then both operators belong to the same superconformal representation. Then,

in a given irreducible superconformal representation there is always a single

superconformal primary operator and a tower of superconformal descendants

arising from this primary.

In the case of N = 4 super Yang-Mills theory, it is useful to begin by looking

for which operators are not superconformal primary operators. These would be

operators that arise from the commutation with the supercharge Q, for in that

case, we would instead have a descendant, according to (2.2.6). We need to see
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2.2. N = 4 Super Yang-Mills

then how the gauge covariant operators of N = 4 SYM commute with Q. These

commutation relations are given schematically as

{Q,λ} = F+ + [X,X] , [Q,X] = λ ,{
Q, λ̄

}
= DX , [Q,F ] = Dλ . (2.2.7)

Therefore any local polynomial operator containing any of the elements in the

right-hand side of the relations above cannot be primary. In particular, we

note that they cannot be composed of the gauginos λ, the field strength F , or

the derivative and commutators of X. This means that superconformal primary

operators are gauge invariant scalars involving just X. The simplest one of these

are single trace operators, which are of the form

tr
(
X{I1XI2 · · ·XIn}

)
, (2.2.8)

where the indexes Ik, k = 1, . . . , n are symmetrized and belong to the fundamen-

tal SO(6)R representation. Since trXi = 0, then the simplest primary operators

are

∑
I

trXIXI ∼ Konishi multiplet ,

trX{IXJ} ∼ Supergravity multiplet . (2.2.9)

By contrast, one defines multitrace operators as those operators built from the

product of single trace operators.

The unitary representation of the superconformal algebra can be labeled by

the quantum numbers of the bosonic group

SO(1, 3)× SO(1, 1)× SU(4)R . (2.2.10)

The first factor corresponds to the Lorentz group, and has (s+, s−) spin quantum

numbers. The second group has quantum number ∆, which corresponds to the

positive or zero dimension of the operator, while the third group corresponds

to the R-symmetry, whose representation is determined by Dynkin label given
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by the triplets [r1, r2, r3] [65]. Each representation of SU(4)R can be labeled in

terms of its dimension, given by

dim[r1, r2, r3] =
1

12
r̄1r̄2r̄3(r̄1 + r̄2)(r̄2 + r̄3)(r̄1 + r̄2 + r̄3) , (2.2.11)

where r̄n = rn + 1. In unitary representations, the number ∆ is bounded from

below by the other quantum numbers. In the case of primary operators, which as

we know have the lowest dimension in a given multiplet, the spin number vanish

since the operator is a scalar. In those cases, one can find primary operators

that commute with at least one of the supercharges Q. Such representations are

shortened and are called BPS multiplets. These have the particularity that their

dimension is protected from having quantum corrections, and play a special role

in the AdS/CFT correspondence.

2.3 Type IIB Strings: Two Perspectives

In the preceding sections we have described two very different theories: Type

IIB supergravity in D = 10 dimensions on one hand, and N = 4 super Yang-

Mills theory on D = 4 on the other. Furthermore, we have stated that the

AdS/CFT correspondence proposes an equivalence between both theories, and

that the bridge to constructing the duality comes from string theory. More

concretely, the starting point is Type IIB string theory in the presence of N

coinciding D3-branes. Since we will be working in the limit of very low energies,

the effective action for the system will be given by the Type IIB supergravity

solutions already described. In order to provide evidence for the conjecture, we

will follow the following steps

• Identify SU(N) super Yang-Mills theory as a sector of the low-energy limit

of Type IIB strings in the presence of N parallel D3-branes in the weak

coupling limit [66].

• Identify the space-time geometry arising from the D3-branes as an AdS5×
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S5 throat embedded in an asymptotically flat region whose gravitational

modes decouple from the string modes on the throat.

• Compare the two low-energy descriptions to identify the super Yang-Mills

sector with the gravitational AdS5×S5 sector, with a very specific mapping

of each theory’s parameters.

The first two points are achieved by analyzing Type IIB string theory in the

presence of N parallel D3-branes from two different perspectives. The first one,

which we will call the D-brane perspective, will be related to N = 4 super Yang-

Mills theory. The second one, which we shall call the black-brane perspective, will

be related to Type IIB supergravity in a AdS5×S5 background. When studying

both perspectives, we will recur to some very particular limits of the theory in

order to make it more tractable. The most important of such limits is called

the Maldacena limit, which will be explained in detail in the remaining of this

section. Taking this limit will result in a particular decoupling of the theory in

distinct sectors as seen from the two different point of views. Finally, since both

point of views are in fact different equivalent descriptions of the same theory,

the decoupled sectors can be identified, leading to the AdS/CFT conjecture.

2.3.1 The D-brane perspective.

Let us begin by consider again D = 10 Type IIB string theory with N coinciding

D3-branes. This theory will have two kind of excitations. These will consist of

closed strings living in the bulk of the theory, and of open strings with its ends

attached to the D3-branes.

An open string with both its ends attached to one of these branes can have

arbitrarily short length, and therefore must be massless. (See figure (2.2).) In

general, the massless modes coming from open strings with both ends on the

same D3-brane generate a U(1) gauge theory living in the D = 4 brane world

volume. Naively one would have U(1)N for the case of the whole N D3-brane
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Figure 2.2: Schematic representation of a stack of N coincident D3-branes, with

open string attached.

system, but one must also consider strings whose ends are attached to different

branes. Since the N branes are coinciding, the string modes remain massless,

so that U(1)N gauge symmetry is enhanced to a U(N) gauge symmetry. We

ignore the diagonal U(1) factor, which corresponds to the overall center-of-mass

position of the D3-branes. These translational degrees of freedom will decouple

in the low-energy limit and will pay no role in the AdS/CFT correspondence. We

are then left with a theory with SU(N) gauge symmetry living in an effectively

flat space-time in D = 4 [67]. Furthermore, since as we know the brane solutions

break half of the total number of supersymmetries, the gauge theory must then

have N = 4 Poincaré supersymmetry. In the low-energy limit, as we shall see,

the open-string degrees of freedom are described by N = 4 SYM, with SU(N)

gauge group.

For energies E ≪ 1/ℓs, the massive states of the spectrum of theory become

inaccessible and one is left with massless excitations. We will be mainly inter-

ested in the massless spectrum, and therefore it is sensible to be more accurate

about the regime where we wish to work. So far in the discussion, we have

introduced the number of D3-branes N . Furthermore, Type IIB string theory

contains the string coupling gs, and the Regge slope α′ = ℓ2s. Then, the low-
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2.3. Type IIB Strings: Two Perspectives

energy limit can be achieved by keeping all energies fixed and taking α′ → 0.

We define the Maldacena low-energy limit [2] as

• Maldacena Limit. gs and N are kept fixed, as well as all dimensionless

parameters, while taking α′ → 0.

Then, in the Maldacena limit the effective action for the massless fields can

then be written as

S1 = Sbrane + Sbulk + Sinteraction , (2.3.1)

where Sbrane describes the open string modes on the 4-dimensional brane world-

volume, Sbulk describes the closed string modes in the 10-dimensional bulk of

the theory, and Sinteraction describes open-closed string interactions.

In the α′ → 0 limit, the D3-brane theory reduces to N = 4 SU(N) super

Yang-Mills theory. This can be seen from the DBI action of the D3-brane

Sbrane = −TD3

∫
d4x e−Φ

√
Gαβ + Fαβ + · · · (2.3.2)

with Fαβ = Bαβ +(2πα′)Fαβ and where Fαβ is the usual Maxwell field strength

and Gαβ and Bαβ incorporate supersymmetry explicitly. Furthermore, the D3-

brane tension TD3 is given by

TD3 =
1

(2π)3gsα′ 2 . (2.3.3)

For a flat target space-time, the D3-brane action (2.3.2) can be expanded as

Sbrane =
1

2g2YM

∫
d4x FαβF

αβ + · · ·+O(α′)

= SN=4 +O(α′) , (2.3.4)

where the N = 4 super Yang-Mills theory coupling is given in terms of the string

coupling as

g2YM = 4πgs . (2.3.5)

Regarding the Sbulk term, in the Maldacena limit we may do an expansion

for small powers of κ, which is given in terms of gs and α
′ as

κ2 = 64π7g2sα
′ 2 . (2.3.6)
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Then, expanding the metric as gµν = ηµν + κhµν we obtain schematically

Sbulk =
1

2κ2

∫
d10x

√
−g R+O(R2)

∼
∫
d10x

{
(∂h)2 + κ(∂h)2h+ · · ·

}
, (2.3.7)

where other massless bulk fields have not been explicitly indicated, for simplicity.

Likewise, the interaction terms between open-closed strings in Sint. are propor-

tional to positive powers of κ. Therefore, taking the Maldacena limit α′ → 0, the

dynamics in the bulk decouple from the brane dynamics and gravity becomes

IR-free.

We see then that, within the D-brane perspective and in the Maldacena

limit, Type IIB string theory decouples in two distinct systems

SI = AI + BI , (2.3.8)

where

• System AI : N = 4 SU(N) Super Yang-Mills theory in R4.

• System BI : Free supergravity in R10.

2.3.2 The Black-Brane Perspective

Let us now study the same system from a different perspective, by taking the

Maldacena limit in the non-linear sigma model for string theory on a D3-brane

background. We rewrite the solution (2.1.30) using the inverse coordinate z =

L2/r. The result is

ds2 =
L2

z2

[
H̃(z)−1/2ηµνdx

µdxν + H̃(z)1/2
(
dz2 + z2dΩ2

5

)]
= GMNdx

MdxN , (2.3.9)

with

H̃(u) = 1 +
L4

z4
. (2.3.10)
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Substituting this metric in the Polyakov action, one has

Sp =
1

4πα′

∫
d2σ

√
−hhabGMN (x)∂ax

M∂bx
N

=
L2

4πα′

∫
d2σ

√
−hhabG̃MN (x)∂ax

M∂bx
N , (2.3.11)

where we have made a rescaling of the metric as G̃MN (x) = GMN (x)/L
2. We

notice that the prefactor in (2.3.11) can be rewritten as

L2

4πα′ =

√
λ

4π
, (2.3.12)

where we have introduced the t’Hooft coupling

λ = gsN . (2.3.13)

In the Maldacena limit, gs and N (and consequently λ) are kept fixed while

α′ → 0. This means

L4 = 4πλα′ 2 → 0 , (2.3.14)

from which we have Ĥ(z) → 1 and the metric G̃MN becomes

G̃MNdx
MdxN =

1

z2
(
ηµνd

µdxν + dz2 + z2dΩ2
5

)
. (2.3.15)

Then, in this regime the metric is AdS5 × S5, with unit radius. Therefore, the

Maldacena limit “zooms” into the near-throat region of the D3-brane solution

and the Polyakov action reduces to a string sigma-model on AdS5 × S5, with

string tension proportional to T ∼ 1/
√
λ. Physically, this means that in the

Maldacena limit only the the near-horizon AdS5 × S5 region contributes dy-

namically to the physical description of the system, while the dynamics of the

asymptotically flat region decouples from the theory. A simple schematic way

to how this can be so, is by proposing a series expansion on α′ of the effective

action in a background with Riemann tensor R

Leff. = c1α
′R+ c2α

′ 2R2 + c3α
′ 3R3 + · · · . (2.3.16)

The asymptotically flat region is characterized by scales r ≫ R, where we note

that we are using the original radial coordinate for the metric, r. Then, one
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proposes that in this region the Riemann tensor scales as R ∼ 1/r2. We then

obtain

Leff. = c1α
′r−2 + c2α

′ 2r−4 + c3α
′ 3r−6 + · · · , (2.3.17)

so, if one keeps the scale r fixed, then in the limit α′ → 0 the contribution from

the asymptotic modes vanish.

In this manner then, the system is decoupled in low energy massless super-

gravity modes in the asymptotically flat region of the bulk on the one hand, and

in arbitrary energy excitations near the AdS throat on the other. Let the energy

in string-length units of these near-throat excitations as measured from the ra-

dial position r be
√
α′Er = const. These near-throat energies can in principle be

arbitrarily large. However, because of the gravitational red-shift, from the point

of view of an observer at r → ∞ these excitations look like

E∞ =
√
−g00Er =

(
1 +

L4

r4

)−1/4

Er . (2.3.18)

Since we want to consider modes that are in the near-throat region, then, while

taking the Maldacena limit the radial distance of these modes must satisfy

r

α′ Fixed . (2.3.19)

With this condition in mind, the red-shift factor is(
1 +

L4

r4

)−1/4

=

(
1 +

4πλα′ 2

r4

)−1/4

=

(
1 + 4πλ

(
α′

r

)2 1

r2

)−1/4

≈

(
4πλ

(
α′

r

)2 1

r2

)−1/4

(2.3.20)

where in the second line we have used the fact that λ and r/α′ remain fixed

while r → ∞. Then

E∞ ∼ r√
α′
Er ∼

r

α
= const. (2.3.21)

The conclusion is that one can have any kind of string excitations close to r = 0,

since their energy measured at the asymptotic flat region is finite. These modes

are then decoupled from the massless modes in the bulk region.
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From these discussions we conclude that, from the black-brane perspective,

in the Maldacena limit our original Type IIB string theory decouples in two

systems

SII = AII + BII , (2.3.22)

where

• System AII : Full quantum superstring theory on AdS5 × S5.

• System BII : Free supergravity on R10.

2.4 The Maldacena Conjecture

The main conclusion from the discussion in the previous section is that, both in

the black-brane perspective and the D-brane perspective, the Maldacena limit

realizes a decoupling of the original Type IIB theory in two well-defined and

distinct systems, A and B. Moreover, one finds that system B, which is super-

gravity in flat space-time, is the same in both perspectives: BI = BII . Since the

actions SI and SII provide equivalent descriptions to the same system, then one

is led to identify AI = AII . This conjecture would implies in fact to identify

N = 4 SU(N) Super-Yang-Mills theory in 3 + 1 flat space-time with Type IIB

superstring theory on a AdS5 × S5 background. This is the main essence of the

Maldacena conjecture, which we now state in its strong form. The AdS/CFT

correspondence conjectures the equivalence of two theories:

• N = 4 SU(N) Super Yang-Mills theory in R4, generated by massless open

string modes.

• Type IIB Superstring the theory on AdS5 × S5, with integer flux of the

five-form Ramond-Ramond field strength N =
∫
S5 F5, generated by the

massless closed string modes.

The parameters of both theories are related by

gs = 4πg2YM , L4 = 4πgsNα
′ 2 , (2.4.1)
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and the parameter N , which labels the the gauge group of the field theory,

corresponds to the five-form flux in the dual Type IIB string theory description.

As said, this is the strong statement of the conjecture. We have already seen

that in order to motivate the conjecture, one has to take the Maldacena low-

energy limit. However, for us to gain a better understanding, we must investigate

additional limits. One of them is given by

• t’Hooft Limit. Take N → ∞, while keeping the t’Hooft coupling λ =

g2YMN = gsN fixed.

The consequences of taking the t’Hooft limit are well known in both sides

of the duality. In the N = 4 super Yang-Mills theory, this limit corresponds to

the planar sector in perturbation theory. Indeed, in large N theory, the theory

has a convenient topological expansion. Starting from double-line notation for

adjoint U(N) fields [68], it is found that each Feynman diagram can be mapped

into a two-dimensional surface, which can be assigned an Euler characteristic

χ = 2 − 2g, where g is the genus of the surface. It is found that vacuum-to-

vacuum diagrams are proportional to

N2−2gλE−V , (2.4.2)

where E and V are the number of propagators and vertices, respectively. Then,

since g ≥ 0, in the large N limit diagrams whose associated surface have g ̸=

0 are suppressed by 1/N2g, leaving only the planar (genus g = 0) diagrams

contribution in the perturbative expansion.

Meanwhile, in the gravity side of the duality, the string coupling can be

expressed as gs = λ/N , so the regime of fixed λ and N → ∞ means that gs → 0.

This corresponds to weak-coupling string perturbation theory. The perturbation

expansion of string theory is a genus expansion of the world-sheet. Correlators

on a surface of genus g scale as g2g−2
s . Then, since in this regime gs → 0,

contributions from higher-genus surfaces are dropped. From this we conclude

that the t’Hooft limit corresponds to classical string theory.
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We see then that this weaker form of the original conjecture nevertheless

still proposes a very non-trivial equivalence between the large N , planar limit of

N = 4 SYM on R4 and classical Type IIB string theory on AdS5×S5. However,

as opposed the flat space-time case, classical string theory in curved backgrounds

with R-R fluxes is still poorly understood. It is then convenient to look for a

more tractable regime. Given that in the t’Hooft limit one is left with λ as the

only free parameter, one can take the additional limit

• Large λ Limit. Take both N → ∞ with fixed λ = g2YMN , and then

consider λ≫ 1.

In this limit, the N = 4 super Yang-Mills theory enters the strongly-coupled,

non-perturbative sector. However, in the gravity side of the duality, we find

that the Type IIB string theory reduces to classical supergravity. To see this,

we repeat the expansion on α′ performed in (2.3.16), only that in this case we

focus on the near-throat region, where the relevant scale is given by the radius

L. Then the Riemann tensor scales as R ∼ 1/L2 ∼ λ−1/2/α′, so the effective

Lagrangian has a power series expansion in λ−1/2

Leff. = c1α
′R+ c2α

′ 2R2 + c3α
′ 3R3 + · · ·

= c1λ
−1/2 + c2λ

−1 + c3λ
−3/2 + · · · . (2.4.3)

The substitution of α′ by λ as the effective expansion parameter in the near-

throat region is in agreement with the sigma model action (2.3.12). Therefore,

by taking the large λ limit, any higher-curvature derivatives drop out from the

effective Lagrangian and the superstring theory reduces to classical supergravity.

From this form of the AdS/CFT conjecture, we observe an equivalence be-

tween classic Type IIB supergravity on AdS5 × S5 and N = 4 super Yang-Mills

in flat 4D at strong coupling. We then see clearly that when the field theory

side of the duality is strongly coupled, the dual string theory finds itself on

the classical supergravity regime. This strong/weak coupling nature of the du-
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ality will be a very important property when studying holographic models of

superconductivity.

2.5 Evidence for the Conjecture.

2.5.1 Mapping of Global Symmetries.

If the AdS/CFT conjecture is to be truth, then both dual theories should have

the same global symmetries. Since these symmetries do not depend on param-

eters λ or N , it does not matter if any side of the duality is in the strongly-

coupled regime. The superconformal group of N = 4 super Yang-Mills theory is

SU(2, 2|4), which has a maximal bosonic subgroup given by

SU(2, 2|4) ⊃ SO(2, 4)× SU(4)R , (2.5.1)

where the first factor corresponds to the conformal group and the second corre-

sponds to the internal R-symmetry group. These two groups are matched by the

isometry group of AdS5 × S5, given by SO(2, 4) and SO(6) ∼= SU(4)R, respec-

tively. The completion into the full SU(2, 2|4), which has 32 supersymmetries

is less straightforward. The N D3-branes present in the Type IIB string theory

are half-BPS, which preserve only half of the theory’s original Poincaré super-

symmetries 32 → 16. The remaining 16 supersymmetries needed to a complete

match are supplemented by 16 conformal supersymmetries in the AdS limit [69].

2.5.2 Mapping Bulk Fields to Boundary States.

In a previous section, we have described how irreducible representations ofN = 4

SYM theory can be described by the spectrum of superconformal local operators,

and the special importance of primary superconformal operators in the construc-

tion of such a given irreducible representation. We now need to describe how

such representation of the gauge theory can be mapped to the bulk theory. To do

this, one focus on the massive and massless Type IIB string degrees of freedom
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living in AdS5 × S5. Let one such stringy generic degree of freedom be referred

as ϕ(z, y), where zµ, µ = 0, 1, . . . , 4 are AdS5 coordinates and ym, m = 1, . . . , 5

are S5 coordinates. Such a generic field can then be decomposed as

ϕ(z, x) =

∞∑
∆=0

Y∆(y)ϕ∆(z) , (2.5.2)

where ϕ∆(z) lives on AdS5, Y∆(y) is a complete basis of spherical harmonics on S5

and ∆ labels the SO(6)R representations. Because of this compactification, the

fields receive a mass contribution. Computing the eigenvalues of the Laplacian

on S5 for different spins, one finds the following relations between bulk-field

masses and boundary operator’s scaling dimensions [70, 71]

Scalar m2L2 = ∆(∆− 4) (2.5.3)

Spin 1/2, 3/2 |m|L = ∆− 2 (2.5.4)

p-form m2L2 = (∆− p)(∆ + p− 4) (2.5.5)

Spin 2 m2L2 = ∆(∆− 4) (2.5.6)

Therefore, the stringy degrees of freedom are compactified in a Kaluza-Klein

reduction and organized in terms of the quantum numbers of the shared global

symmetries of both theories. Then they are matched to the boundary-theory’s

superconformal operators in a given representation labeled by those same num-

bers.

2.6 Scalar Fields in AdS5 and their Holographic descrip-

tion.

We now focus on the study of scalar fields on the bulk side of the duality. We

consider the Klein-Gordon Lagrangian for such field in the general case AdSd+1,

which we write as

ds2 =
1

z2
(
ηµνdx

µdxν + dz2
)
, (2.6.1)
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where we have set L = 1 for simplicity. Then the Klein-Gordon Lagrangian for

the scalar field is

S = −1

2

∫
dz ddx

√
−g
(
gMN∂Mϕ∂Nϕ+m2ϕ2

)
= −1

2

∫
dz ddx

1

zd+1

(
z2(∂zϕ)

2 + z2ηµν∂µϕ∂νϕ+m2ϕ2
)
. (2.6.2)

We rescale ϕ as ϕ = zd/2ψ and define the coordinate y = − ln z such that the

kinetic term for ψ becomes canonical

S = −1

2

∫
dy ddx

{
(∂yψ)

2 + e−2yηµν∂µψ∂νψ +

(
m2 +

d2

4

)
ψ2

}
+
d

4

∫
ddxψ2

∣∣y=∞
y=−∞ .

(2.6.3)

Focusing in the ψ field’s mass, we will have a positive Hamiltonian if m2 satisfies

m2 ≥ −d
2

4
, (2.6.4)

which is called the Breitenlohner-Freedman (BF) bound [72]. Therefore the

system is stable for scalars with mass-squared above the BF bound. We note

that the BF-bound gives a window of possibility for the existence of tachyonic

scalar fields. This is a consequence of the AdS geometry.

In addition to the bound on the mass, we can obtain similar bounds on the

dimension ∆. These bounds come from the requirement of having normalizable

scalar field solutions. In general terms, any scalar field solution ϕ(z, x) such that

the action remains finite S[ϕ] < ∞ is called a normalizable solution. One can

have in fact two ways to define the scalar field norm, which differ to one another

by boundary terms [73]. The first of these norms comes directly from the scalar

field action. Indeed, starting from (2.6.2) and assuming a general near-boundary

behavior ϕ ∼ F (x)z∆ one can easily find that the z-integral is finite near z = 0

only if

∆ >
d

2
(2.6.5)

On the other hand, one can define a second norm by taking the original scalar
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field action (2.6.2) and by integrating it by parts to obtain

S = −1

2

∫
dz ddx

√
−g ϕ

(
−∇2 +m2

)
ϕ

= −1

2

∫
dz ddx

1

zd+1
ϕ

{(
−∂2zϕ+

d− 1

z
∂zϕ− m2

z
ϕ

)
− d ηµν∂µϕ∂νϕ

}
,

(2.6.6)

where in the second line we expanded the operator ∇2. If we again propose a

near-horizon decomposition ϕ ∼ z∆F (x), then the term inside the parenthesis

in the second line is proportional to (∆(d−∆)+m2)F (x) and vanishes on-shell.

We are then left with the contribution from the kinetic energy in the transverse

x-coordinate space, and in order to have an finite action near z = 0 the mass

must satisfy

∆ >
d

2
− 1 . (2.6.7)

The different normalization bounds (2.6.5) and (2.6.7) also set additional

bounds on the scalar field mass. As a starting point to see this, one must first

look at the asymptotic z → 0 fallout of the scalar field, which can be found from

its equation of motion

1√
−g

∂M
(√

−ggMN∂Nϕ(z, x)
)
−m2ϕ(z, x) = 0 . (2.6.8)

Proposing a plane wave ansatz ϕ(z, x) = eik·xϕ(z), one has

zd+1∂z

(
z1−d∂zϕ

)
−
(
m2 + k2z2

)
ϕ = 0 . (2.6.9)

In the asymptotic AdS boundary z → 0, the k2 term can be neglected and the

field solution behaves as

ϕ(z, x) ≈ ϕ1(x)z
∆+ + ϕ0(x)z

∆− + · · · , (2.6.10)

where we define

∆± =
d

2
±
√
d2

4
+m2 . (2.6.11)

We note that (2.6.11) can be obtained from the equation

∆(∆− d) = m2 , (2.6.12)
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which is a d-dimensional generalization of the relation between mass and scaling

dimension already found in (2.5.3).

We now return to the normalization conditions and compare them with

(2.6.11). In the case of the first condition (2.6.5) we find that, for instance

in the m2 > 0 case, only the ∆+ is normalizable, while the ∆− is divergent.

If one lowers the mass in the range −d2/4 < m2 < 0 one finds that both

modes vanish but only one is normalizable. On the other hand, comparing the

alternative normalization condition (2.6.7) one finds that in the range −d2/4 <

m2 < −d2/4+1 both ∆± modes are normalizable. We note that the lower limit

coincides with the BF bound (2.6.4). In the limit case m2 = −d2/4 one finds

that ∆+ = ∆− and there is the appearance of a non-normalizable logarithmic

term. For lower values, one has complex dimensions ∆, which reflects the fact

that the theory is unstable as mentioned before.

We will now show how the bulk field modes ∆± can be matched holograph-

ically to expectation values of operators on the boundary field theory. For sim-

plicity, the normalization status of each mode is referred with respect to the first

of the possible norms explained above. We then accordingly refer to the ∆+ and

∆− modes as the normalizable and non-normalizable modes, respectively. The

normalizable solution describes bulk excitations and decay at the AdS boundary.

On the other hand, the non-normalizable modes define boundary fields given by

ϕ0(x) = lim
z→0

z−∆−ϕ(z, x) . (2.6.13)

An important fact to see how the non-normalizable mode can be interpreted

holographically is that the boundary data ϕ0 entirely determines the bulk field

ϕ(z, x) and in consequence the regular mode ϕ1(x) follows from ϕ0 and the

equations of motion. The freedom with which one can specify the boundary field

ϕ0 corresponds to the freedom of adding an arbitrary source in the boundary

field theory. Therefore ϕ0 should be seen as the source for an operator O∆(x)

living on the boundary. From the field theory side then one has a generating
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functional Γ[ϕ0] given by

e−Γ[ϕ0] ≡
⟨
exp

(
−
∫
ddxϕ0(x)O∆(x)

)⟩
. (2.6.14)

One now relates holographically the field theory generating functional with the

partition functional on the string theory side Zstring(ϕ0) by [3, 4]

e−Γ[ϕ0] ≡
⟨
exp

(
−
∫
ddxϕ0(x)O∆(x)

)⟩
= Zstring(ϕ0) . (2.6.15)

where Zstring(ϕ0) is evaluated on-shell with boundary value ϕ0. Equation (2.6.15)

is sometimes referred to as the master equation of the AdS/CFT duality. The

generating functional can be expanded as

Γ[ϕ0] = Γ[0] +

∫
ddxϕ0(x) ⟨O∆(x)⟩c

−1

2

∫
ddx1d

dx2ϕ0(x1)ϕ0(x2) ⟨O∆(x1)O∆(x2)⟩c

+ · · · , (2.6.16)

which clearly satisfies the usual quantum field theory relation for the generating

functional

δΓ[ϕ0]

δϕ0(x)
= ⟨O∆(x)⟩c , (2.6.17)

δ2Γ[ϕ0]

δϕ0(x1)δϕ0(x2)
= −⟨O∆(x1)O∆(x2)⟩c , (2.6.18)

...

δ(n)Γ[ϕ0]

δϕ0(x1) · · · δϕ0(xn)
= (−1)n ⟨O∆(x1) · · · O∆(xn)⟩c , (2.6.19)

and where in the right hand side of these equations we always refer to the QFT

connected correlation functions ⟨· · · ⟩c.

Meanwhile, in the supergravity limit, the action in the string partition func-

tion Zstring(ϕ0) is the classical action (2.6.2), and one obtains on-shell

Zstring(ϕ0) = − lim
z→0

zd+1−2∆

∫
dxd

(
z∆−dϕ(z, x)

)
∂z

(
z∆−dϕ(z, x)

)
, (2.6.20)
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But near the boundary one can substitute

z∆−dϕ(z, x) → ϕ0(x) , (2.6.21)

∂z

(
z∆−dϕ(z, x)

)
→ (2∆− d)z2∆−d−1ϕ1(x) . (2.6.22)

So comparing (2.6.16) and (2.6.21) one identifies the non-normalizable mode

with the vacuum expectation value of the field theory operator O∆

⟨O∆(x)⟩ ∼ ϕ1(x) . (2.6.23)

We then see that the holographic relation (2.6.15) identifies the scalar field

asymptotic coefficient ϕ1 with the field theory operator O∆(x), of scaling di-

mension ∆+ as given by (2.6.11), while it interprets ϕ0 with an external source

to that same operator.

Regarding the secondary definition of scalar field norm, as we already pointed

out, there is an interval of masses in which both ∆± are normalizable, which leads

to the matter of how these modes are to be interpreted holographically. It turns

out that when both modes are normalizable, it is possible to choose from either

one of them which one is to be dual to a boundary operator of scaling dimension

given by the mode of choice. The choice of the ∆+ mode is called the standard

quantization, while that of the ∆− mode is called the alternative quantization.

Thus, by choosing the alternative quantization, one then has to interpret the

asymptotic coefficient ϕ1(x) as the external field theory source to an operator

of dimension ∆−. Then one concludes that in this case it is the choice of mode

as much as the particular value of the mass that defines the field theory on the

boundary in the sense that, for masses in the interval −d2/4 < m2 < −d2/4+1,

one can have two different AdS theories that correspond to different CFT’s, one

with an operator of dimension ∆+ and the other with an operator of dimension

∆−. Furthermore, the generating functionals Γ[ϕ1] and Γ[ϕ0] are related by a

Legendre transformation [73].
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3

Holographic Superconductivity

In this chapter we will intend to merge our previous discussions on high temper-

ature superconductivity and on the AdS/CFT duality. Our principal aim will be

to realize a consistent holographic description of superconducting phenomena, to

which we will refer to as holographic superconductivity. For additional reviews on

applications of the AdS/CFT duality in condensed matter system in general, and

in holographic superconductivity in particular, see e.g. [74, 75, 76, 77, 78, 79, 80].

As we have already seen from the spin-fermion model at the end of Chapter 1,

there is strong indication that any microscopic theory attempting to describe the

high-Tc superconductivity will be in the strong-coupling regime, so that the usual

perturbative techniques will no longer be applicable. Furthermore, one also finds

that the standard quasi-particle picture of interactions may not longer be suited

to this kind of systems, and that there is need for a different kind of fundamental

approach in order to describe high-Tc superconductors. Now, as we have seen in

the previous chapter, the AdS/CFT correspondence is a strong/weak coupling

duality, meaning that one can describe a strongly coupled boundary quantum

field theory in terms of the dynamics of a dual classical supergravity theory living

on the bulk. It should be noted that in the holographic setup the dual field theory
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will be a SU(N) gauge theory in the large-N regime. This class of theories can

in principle have a different microscopic Lagrangian, with different degrees of

freedom and mechanisms for fermion-fermion coupling than that of usual high-Tc

superconductors, like the cuprates. However, they are nevertheless theories in a

strong-coupling regime which, as will be shown, indeed exhibit superconducting

phenomenology. There is also some indication that these holographic models of

strongly-coupled superconducting theories do exhibit some universal phenomena

that are shared by the cuprates [81, 82]. In any case, being able to solve toy-

models supplied by holographic superconductivity may help us to gain important

physical insight on how real world systems work.

Concerning holographic superconducting models, there are two possible ap-

proaches one can follow in their construction. The first one of these is the

bottom-up approach. This approach was introduced and is best exemplified in

[83, 84, 7]. In this approach, one constructs reasonably simple bulk models

which are intended to generate specific superconducting phenomena in the dual

field theory. In this sense, it is an effective approach in the bulk-theory side,

whose main purpose is to give a phenomenological description of the physics of

the dual field theory. The drawback to the wide array of physical phenomena

that can be modeled in this approach is that there may not be a clear way to

embedded these simple bulk models in the context of a full blown supergravity

or string theory, with a well understood dual field theory. In order to address

this question, one can instead follow the opposite way in a top-down approach,

and start with a well defined, higher-dimensional gravitational theory, like string

theory, M -theory or supergravity and then compactify and make a consistent

truncation to a particular, definite sector of this “parent” theory. This trun-

cated sector would in turn be dual through the AdS/CFT correspondence to a

gauge theory with superconducting behavior. For some excellent examples of

research in this approach, see [20, 85, 86, 21]. However, although by following

this approach one could have obtained a consistent holographic description of
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superconductivity which is traceable to a full supergravity theory, this approach

also has a drawback. These truncations usually constrain the parameters of the

resulting relevant bulk sector so much that there is not much room for accom-

modating the phenomenology of real systems. In any case, both approaches are

complementary to each other and needed in equal share if one wishes to have a

complete, consistent understanding of holographic superconductivity.

3.1 Minimal Superconductivity.

When confronted to determine the particular minimal components and form

of a holographic superconductor, one can gain valuable insight from general

phenomenological considerations. In particular, one can look for the very basic

symmetries and components of any given superconducting theory, so one can

get an idea of what sort of bulk-theory characteristics are needed to generate

them holographically. In order to do this, we will follow the arguments posed

by Weinberg in [87]. In very general terms, one starts by assuming that any

superconducting system allows a theoretical description as a quantum gauge

theory. More concretely, this theory will posses the usual electromagnetic gauge

invariance, which means the presence of a U(1) field. One then must demand

invariance under the gauge transformation

Aµ(x) → Aµ(x) + ∂µα(x) , (3.1.1)

where the transformation acts in the usual manner in the theory’s fermionic or

bosonic degrees of freedoms. The next step is to make the phenomenological

assumption that the superconducting phase transition is caused by spontaneous

symmetry breaking of the U(1). This generates a massless Goldstone boson

which behaves as a phase and therefore transforms under U(1) as a shift

G(x) → G(x) + α(x) . (3.1.2)

89



3.1. Minimal Superconductivity.

Gauge invariance of the theory means that the Lagrangian describing the gauge

and Goldstone fields must have the general structure

L =

∫
d4x F [Aµ − ∂µG] , (3.1.3)

where the function F depends on the combination Aµ− ∂µG, which is invariant

under the gauge transformation described above. The electric and charge density

are then given by

J i =
δF
δAi

, (3.1.4)

J0 = ρ =
δF
δA0

= − δF
δ(∂tG)

, (3.1.5)

where in the last equation one uses that fact that F depends on the gauge

invariant combination A − dG. From (3.1.5) one sees that −ρ is the conjugate

momentum to G. Therefore, in the Hamiltonian description the energy density

H is a function of ρ and G, and the Hamilton equation to G is then

∂tG = −δH
δρ

. (3.1.6)

This equation represents the change of energy density due to a variation of the

charge density ρ, i.e. the electric potential V . Then, one can relate the time

derivative of the Goldstone boson with the potential as

∂tG = −V . (3.1.7)

One can now consider the stationary case, which physically means a steady

current flow. Since in that case there is no explicit time dependence, then

∂tG = 0 and the electric potential is therefore zero. One has then obtained a

system with a steady flow of current through it and without any electric potential

to sustain it. This is then a system with infinite conductivity, i.e. a system in a

superconducting state.

We have thus found that a minimal theory describing basic, defining super-

conducting physics can be obtained from very simple phenomenological assump-

tions, namely, the presence of U(1) gauge symmetry and its simultaneous break-

ing. Furthermore, the particular microscopic details of the fermion-pairing or of
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the symmetry breaking mechanism are not essential in this minimal description.

This explains the fact that an effective description such as Ginzburg-Landau the-

ory can provide such a good phenomenological description of superconductivity

starting from rough physical intuition.

3.2 Minimal Bulk Field Content.

From the analysis in the previous section we have obtained a very general idea

of the indispensable physical characteristics that any bulk gravitational theory

should be able to generate holographically in the dual field theory at the bound-

ary. In the most basic setup, the U(1) symmetry in the field theory requires a

U(1) gauge field in the bulk theory, while the requirement for symmetry break-

ing calls for the introduction of a scalar field, charged under the U(1). In this

line of thought, we can the list the very minimal ingredients any bulk model of

holographic superconductivity (in its simplest setting) must contain:

• U(1) local symmetry. According to the AdS/CFT dictionary, a local

U(1) symmetry in the bulk theory will correspond to a global U(1) sym-

metry in the boundary. It is important to note, however, that the theoreti-

cal description of superconducting phenomena require a dynamical photon

and that a global U(1) symmetry in the boundary theory is actually more

suited to the description of a superfluid. Nonetheless, when studying mag-

netic phenomena in holographic superconductors, one observes that the

bulk gravitational models do actually give rise to diamagnetic currents in

the boundary field theory that account for the Meissner effect, which is an

eminently dynamical phenomena. As we shall argue latter, one can always

assume that the global U(1) symmetry can be weakly gauged.

• U(1) gauge field Aµ. This field is required by U(1) symmetry invariance

and is holographically dual to a global U(1) current in the boundary. Ad-

ditionally, its temporal component will introduce the presence of a charge
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density in the boundary theory. This charge density will in turn add an

energy scale to the system.

• Complex Scalar field Ψ. This bulk degree of freedom represents the

charged condensate as it will be dual to a s-wave order parameter in the

superconducting theory. It can be physically interpreted as an effective

holographic description of the bosonic condensate of some multi-fermion

bound state in the dual field theory. Furthermore, when following a phe-

nomenological bottom-up approach, the scalar field’s mass and charge in-

troduce the most basic set of input parameters in the bulk model.

• Gravity. In the minimal setup, one considers Einstein-Hilbert gravity

with a negative cosmological constant in order to have AdS vacuum so-

lutions. Since superconductivity is a thermal theory, one introduces tem-

perature by considering black-hole solutions in the bulk. This way, the

Hawking temperature of the black hole is translated to the temperature of

the superconducting system, according to the AdS/CFT dictionary [88].

Since we want our dual field theory to have a chemical potential or charge

density, we must look for charged black hole solutions. Indeed, as we shall

see, the presence of a charged black hole in the system will allow us to

have gauge field solutions that will add a chemical potential or a charge

density needed to describe superconductivity in the dual field theory.

3.3 Minimal Bulk Theory.

Having proposed the minimal ingredients of the bulk theory, one now determines

their dynamics by writing the simplest action, which in the general dimensional

case is

S =
1

2κ2

∫
dd+1x

√
g

{
R− 1

4
FµνFµν +

d(d− 1)

L2
+ (DµΨ)∗DµΨ−m2 |Ψ|2

}
(3.3.1)
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where R is the scalar curvature and the Einstein-Hilbert action is coupled to the

complex scalar field Ψ and the gauge field Aµ. Also, the field strength is given

by Fµν = ∂µAν − ∂νAµ and the gauge-covariant derivative is

DµΨ = ∂µΨ− iqAµΨ . (3.3.2)

The Lagrangian (3.3.1) contains the parameters m2 and q, which are the scalar

field’s mass and charge, respectively. In a phenomenological approach, these are

considered input parameters which can be varied within the acceptable ranges

in order to probe some physical properties of the dual field theory, like its tem-

perature. In more refined approaches one can modify the action (3.3.1) with

different structure functions and potentials [89, 90].

The choice of dimension of the bulk model (3.3.1) is phenomenological. As

we saw in Chapter 1, in the case of the cuprates superconductivity is realized

in the copper-oxide planes, so it can be regarded as a quasi-two dimensional

system. Therefore, for most models of holographic superconductivity, the dual

bulk theory lives in AdS4 or AdS5. We call attention in particular to the D =

3 + 1 case, by which the general subject of holographic superconductivity was

introduced in [7], and to which we will refer to as the HHH model, that we review

in what follows.

The equations of motion arising from (3.3.1) are given in general by

DµD
µΨ = m2Ψ , (3.3.3)

∇µFµν = iq (Ψ∗DνΨ−Ψ(DνΨ)∗) , (3.3.4)

Rµν −
R

2
gµν −

d(d− 1)

2L2
gµν =

1

2
FµλF

λ
ν −

FαβF
αβ

8
gµν −

m2 |Ψ|2

2
gµν −

|DΨ|2

2
gµν

+
1

2

(
DµΨD

∗
νΨ

∗ +DνΨD
∗
µΨ

∗) , (3.3.5)

where we have set 2κ2 = 1, for simplicity. We check that, in the absence of

scalar and gauge fields, the theory does contain the AdSd+1 solution

ds2 =
r2

L2

(
−dt2 + dx2d−1

)
+ L2dr

2

r2
,

Ψ(t, r, x⃗) = 0 , Aµ(t, r, x⃗) = 0 . (3.3.6)
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In order to solve the equations of motion (3.3.3)-(3.3.5), one proposes the

following ansatz for the metric and fields

ds2 = −g(r)e−χ(r)dt2 + dr2

g(r)
+
r2

L2
dx2d−1 , (3.3.7)

A = Φ(r)dt , Ψ = Ψ(r) . (3.3.8)

In taking the gauge field ansatz (3.3.8), we have implicitly chosen the radial

gauge Ar(r, t, x⃗) = 0. This choice has the particular advantage that it results in

a constant phase for the complex scalar field, which can then be set to zero. We

then redefine the scalar field in term of a real function ψ(r) as

Ψ(r) = ψ(r) . (3.3.9)

For the case of D = 3+1 bulk-dimensions, the equations of motion under ansatz

(3.3.7)-(3.3.8) are

ψ′′ +

(
g′

g
− χ′

2
+

2

r

)
ψ′ +

q2ϕ2eχ

g2
ψ − m2

2g
ψ = 0 , (3.3.10)

ϕ′′ +

(
χ′

2
+

2

r

)
ϕ′ − 2q2ψ2

g
ϕ = 0 , (3.3.11)

χ′ + rψ′2 +
rq2ϕ2ψ2eχ

g2
= 0 , (3.3.12)

1

2
ψ′2 +

ϕ′2eχ

4g
+
g′

gr
+

1

r2
− 3

gL2
+
m2ψ2

2g
+
q2ψ2ϕ2eχ

2g2
= 0 , (3.3.13)

where we have set L = 1, for simplicity. We see from the equation for the scalar

field ψ the presence of an effective mass, given by

m2
eff. = m2 − q2ϕ2eχ

g
, (3.3.14)

and where we note a negative sign in the gauge contribution. The presence of

this relative sign is a very important fact since, as will be explained below, it

will ultimately result in making the gravitational system unstable and produce

condensation in the dual field theory.

In looking for solutions for the system, one can make use of the following

scaling symmetries

r → ar , (t, xi) → (t, xi)/a , g → a2g , ϕ→ aϕ , (3.3.15)
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and

eχ → a2eχ , t→ at , ϕ→ aϕ , (3.3.16)

which leave the equations of motion and the metric unchanged. By means of

these symmetries one can set rh = 1 and χ(rh) = 1 at the moment of solv-

ing the equations of motion, thus simplifying the numerical computations in a

considerable degree.

In order to solve the equations of motion (3.3.10)-(3.3.13), one has to impose

boundary conditions. Regarding the metric ansatz (3.3.7), one must demand

that it behaves asymptotically AdS. This means that the functions f(r) and

χ(r) must behave at r → ∞ as

g(r) ≈ r2 + · · · , χ(r) ≈ 0 + · · · , (3.3.17)

where the dots denote subleading corrections in r. In addition to this, one must

also impose the condition g(rh) = 0 in order to obtain a black hole solution

with horizon rh. As said before, this introduces a finite temperature at the dual

field theory through the Hawking temperature of the black hole, which can be

obtained by analyzing the near-horizon behavior of g(r). Indeed, making the

change to euclidean time t = iτ and the near-horizon coordinate z2 = (r − rh),

the metric ansatz (3.3.7) becomes

ds2 ≈ dz2 +

(
g′(rh)e

−χ(rh)/2

2

)2

z2dτ2 + · · · . (3.3.18)

Asking for the absence of a conical singularity at the origin, one then requires

the euclidean time to have the periodicity

τ ∼ τ +
4π

g′(rh)e−χ(rh)/2
, (3.3.19)

and recalling that the inverse period of the Euclidean times is equal to the

temperature one has

T =
g′(rh)e

−χ(rh)/2

4π
. (3.3.20)
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3.3. Minimal Bulk Theory.

Regarding the gauge field, one notes that, because of the presence of a horizon

in the metric, the norm of the gauge field’s time component At = ϕ(r) diverges

near the horizon

gtt(rh)ϕ(rh)
2 → ∞ . (3.3.21)

Therefore, in order to obtain finite physical quantities, one imposes the following

horizon regularity condition

ϕ(rh) = 0 . (3.3.22)

Regarding its asymptotic, near-boundary (r → ∞) behaviour, from the equa-

tions of motion one obtains in the general dimensional case

ϕ(r) = µ+
ρ

rd−2
+ · · · . (3.3.23)

The asymptotic coefficients ρ and µ are identified holographically with the charge

density and the chemical potential, respectively. To see this, one remembers

that, according to the AdS/CFT dictionary, the leading, non-normalizable bulk

mode µ is associated with a source of the temporal component of a U(1) current

Jµ in the boundary field theory, while the subleading term is proportional to

the vacuum expectation value of Jt. Generally speaking, the source Aµ(∞) is

coupled to a vector current Jµ as∫
ddx Aµ(0)Jµ , (3.3.24)

where Aµ(0) ≡ Aµ(∞) is the boundary value of the bulk gauge field. Since in our

particular ansatz only the gauge field’s time component is different from zero,

we have ∫
ddx ϕ(0)Jt =

∫
ddx ϕ(0)ρ , (3.3.25)

where we used the fact that the temporal component of the current density is

the charge density of the system. Since from (3.3.23) ϕ(0) = µ, with µ depending

only on the radial coordinate, then

µ

∫
ddx ρ = µ Q , (3.3.26)
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3.3. Minimal Bulk Theory.

where we have now used the fact that the integral on the left-hand-side of (3.3.26)

represents the system’s total charge Q. In this manner we see that the holo-

graphic identification of the bulk gauge field’s asymptotic modes is physically

consistent and that the charged black hole solutions in the bulk represent a dual

field theory with finite charge density. We choose to fix the value of the charge

density of the system to unity ρ = 1, for simplicity. By fixing this value, we

are effectively choosing to work in the canonical ensemble. On the other hand

one could choose to set a fixed chemical potential µ, thus working in the grand

canonical ensemble. As it turns out, both ensembles are connected by a Legen-

dre transformation [15]. For more on boundary conditions for vector fields, see

[91].

Regarding the asymptotic r → ∞ behaviour of the bulk scalar field ψ, one

finds through the equations of motion

ψ ≈ ψ−
r∆−

+
ψ+

r∆−
+ · · · , (3.3.27)

where, as has already been seen in the previous chapter, ∆± come from solving

the equationm2 = ∆(∆−d). As we have discussed in the previous chapter, one of

the modes ψ− or ψ+ (depending on whether we are using standard or alternative

quantization) will be fixed and will correspond to a source in the dual theory.

It will be fixed to 0 as a boundary condition, while the remaining mode will be

associated with the vacuum expectation value of a conjugate operator. In this

manner, one has two different quantization schemes that correspond to different

boundary field theories.

In choosing a particular quantization scheme, we are interested in obtain-

ing spontaneous condensation of the scalar field. Indeed, a non-zero profile for

the bulk scalar field will correspond to a non-trivial expectation value for the

dual field theory operator. Since this operator is charged under a global U(1)

symmetry, then this symmetry will be spontaneously broken. This spontaneous

symmetry breaking will lead the dual boundary system to a superconducting

phase. Therefore, we will look for bulk solutions that translate into a scalar op-
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erator that acquires an unsourced, non-trivial vacuum expectation value. This

means setting one of the modes to zero, and the quantization schemes are sum-

marized as

ψ− = 0 , ψ+ = ⟨O+⟩ , (3.3.28)

or, for the alternative quantization (when possible)

ψ+ = 0 , ψ− = ⟨O−⟩ . (3.3.29)

From the point of view of the boundary field theory, the operators ⟨O±⟩ are

interpreted physically as the superconducting order parameters of the system.

In the concrete case of the HHH model, and setting the value of the mass

as m2 = −2, then the asymptotic behaviour of the scalar field will be given by

ψ ≈ O1

r
+

O2

r2
+ · · · , (3.3.30)

so that the quantization schemes (3.3.28) or (3.3.29) we can consider will result

in condensates O1, O2 of dimension ∆ = 1 or ∆ = 2, respectively.

3.4 The Normal Phase.

In a superconductor in the normal phase, the order parameter vanishes. This fact

translates holographic to a gravitational solution with a null bulk scalar field.

The normal phase of the superconductor is then equal to a hairless, asymptoti-

cally AdS, Reissner-Nordström black hole solution. This is given in the general

dimensional case by

g(r) = r2 − 1

rd−2

(
rdh +

Q2

rd−2
h

)
+
d− 2

d− 1

ρ2

2r2d−4
, χ(r) = 0 , (3.4.1)

with

Q2 =
d− 2

2(d− 1)
ρ2 , (3.4.2)

while the gauge field solution is

ϕ(r) = ρ

(
1

rd−2
h

− 1

rd−2

)
. (3.4.3)
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We note that all solutions are expressed in terms of the charge density, thus

effectively representing the normal phase solutions in the canonical ensemble.

They are also expressed in terms of rh, which is then traded by temperature.

(See equation (3.5.1) below.)

3.5 The Superconducting Instability.

We now study the zero-temperature limit of the Reissner-Nordström black hole

solution. This limit describes a finite charge density state analog to a Fermi

Liquid. As we have seen, in Fermi Liquid theory the superconducting instability

comes from calculating the scattering amplitude in the Cooper channel. In an

analogous line of reasoning, we now investigate whether scalar field perturbations

are able to destabilize the background gravitational solution in this limit. If the

Reissner-Nordström background is unstable under such scalar perturbations,

then the full backreacted solution will give rise to a non-trivial scalar field profile

in an holographic analogous to the Cooper instability. For interesting research on

scalar instabilities under different AdS setups, see for example [92, 93, 94, 95, 96].

We will follow the arguments of [7, 73, 83, 97]. The Hawking temperature

of the Reissner-Nordström black hole (3.4.1) is given in the general dimensional

case as

T =
2d(d− 1)rh − (d− 2)2r3−2d

h ρ2

8(d− 1)π
. (3.5.1)

We can make use of the scaling symmetries (3.3.15)-(3.3.16) in order to set

rh = 1. Then, in order to have zero-temperature solution we require

ρ =
(d− 2)√
2d(d− 1)

. (3.5.2)

Now, we can make an expansion of the function g(r) around the horizon

g(r) = g(1) + g′(1)(r − 1) +
1

2
g′′(1)(r − 1)2 + · · · , (3.5.3)

and since

g(1) = 0 , g′(1) ∼ T = 0 , g′′(1) = 2d(d− 1) , (3.5.4)
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3.5. The Superconducting Instability.

then we obtain

g(r) = d(d− 1)(r − 1)2 + · · · . (3.5.5)

Then, defining the coordinate r̃ = r − 1, the metric near the horizon can be

written as

ds2 ≈ −d(d− 1)r̃2dt2 +
1

d(d− 1)r̃2
dr̃2 + dx2d−1 , (3.5.6)

which can be recognized as AdS2×Rd−1. If we were to recover the original AdS

radius L which we have previously set to one, one would find that the radius

squared of the AdS2 part is

L2
(2) =

L2

d(d− 1)
. (3.5.7)

By plugging this near-horizon, zero-temperature limit of the metric into the

equation of motion for the scalar field, one obtains

ψ′′ +
2

r̃
ψ′ +

2q2 −m2

d(d− 1)r̃2
ψ = 0 , (3.5.8)

where we notice that the effective mass of the scalar field is now given by

m2
eff. =

m2 − 2q2

d(d− 1)
. (3.5.9)

As we have already seen before, an AdSd+1 background is unstable under

scalar field perturbations if the field’s mass in below the Breitenlohner-Friedman

bound. In the case of AdS2, this bound is given bym2
BF = −1/4, so in the present

case the system is unstable if

m2 − 2q2 < −d(d− 1)

4
. (3.5.10)

Therefore, remembering that the mass already satisfies the AdSd+1 bound, we

obtain the following range of values for m2

−d
2

4
< m2 < 2q2 − d(d− 1)

4
. (3.5.11)

Then, by complying to these bounds, one obtains an asymptotic AdSd+1 geom-

etry and an instability in the near-horizon AdS2.
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3.6 The Helmholtz Free Energy

In general terms, the grand-canonical potential is given by

Ω = −T logZ , (3.6.1)

where Z is the field theory’s thermal partition function. According to the

AdS/CFT prescription, one can compute Z in terms of the gravitational ac-

tion, evaluated on-shell. In the semi-classical approximation, one will have

Z ≈ exp
[
−Sgravity

on-shell

]
, (3.6.2)

so one obtains

Ω = −TSgravity
on-shell . (3.6.3)

Therefore, in order to calculate the grand-canonical potential of the field theory,

one must compute the on-shell action of the gravitational system. For definite-

ness, let us now consider the HHH-model. We start from the Euclidean version

of the original bulk action (3.3.1)

SE = − 1

2κ2

∫
d4x

√
−gL , (3.6.4)

and where we will set 2κ2 = 1 in the following. In order to have a simple

expression for the on-shell Lagrangian, we consider the Einstein tensor

Gµν = Rµν −
1

2
Rgµν , (3.6.5)

whose trace is given by

Gµµ = −R . (3.6.6)

We now note that, since our ansatz (3.3.7)-(3.3.8) has null spatial gauge field

components and has only dependence on the coordinate r, then the xx and yy

components of the Einsteins equations are

Gxx = Gyy =
1

2
r2 (L −R) . (3.6.7)
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Therefore, substituting (3.6.7) in (3.6.6), one obtains

−R = Gtt +Grr + L −R , (3.6.8)

which yields the simple expression

L = −Gtt −Grr = − 1

r2
(
(rg)′ + (rge−χ)′eχ

)
. (3.6.9)

Substituting back in (3.6.4) and simplifying, we obtain

SE =

∫
d3x

∫ r∞

rh

dr
(
2rge−χ/2

)′
=

∫
d3x

(
2rge−χ/2

) ∣∣∣
r∞
. (3.6.10)

In the case of an unsourced theory such as ours, where one of the asymptotic

coefficients in (3.3.27) is set to zero, the asymptotic analysis of the Einstein

equations reveals

e−χg = r2 − ϵ

2r
+ · · · , (3.6.11)

where we have denoted the black hole mass as ϵ, which will be interpreted holo-

graphically as the dual theory energy density [7, 98]. Substituting this asymp-

totic expansion in (3.6.10), we clearly see that the action is divergent at r → ∞

because of the first term in (3.6.11). In order to make the integral finite, we

follow [7, 99] and regulate the action by adding as counter-terms the Gibbons-

Hawking-York term plus a boundary cosmological constant term

SGH =

∫
d3x

√
−h
(
2K +

4

L

)
, (3.6.12)

where h is the induced boundary metric and K is the trace of the extrinsic

curvature

Kµν = −1

2
(∇µnν +∇νnµ) , (3.6.13)

with nµ a unit vector normal to the boundary, pointing outwards. With the

addition of this counter-term, the renormalized action is

Sren. = SE + SGH , (3.6.14)

which is written explicitly as

Sren = −1

2

∫
d3x ϵ . (3.6.15)

102



3.6. The Helmholtz Free Energy

Then, the grand canonical potential is

Ω = T Sren = −T
2

∫
d3x ϵ

= −V2
2
ϵ = −E

2
, (3.6.16)

where V2 is the volume obtained by integrating over the spatial dimensions of

the boundary and where E is the total energy of the dual system. We have also

performed an integration over the compact time dimension, giving the inverse

temperature and canceling T from the last expression.

In order to study the thermodynamical properties of the system in the canon-

ical ensemble (ρ fixed), we must look into the Helmholtz free energy F . It is

related to the grand canonical potential Ω by a Legendre transformation

F = Ω+ µQ = −PV + µQ . (3.6.17)

Substituting the result (3.6.16) for Ω in the second equality, we have

PV =
E

2
. (3.6.18)

We now consider the Euler equation

E = −P V + S T + µQ , (3.6.19)

where S is the total entropy of the system. Then, substituting (3.6.18) in (3.6.19)

we get

µQ =
3

2
E − ST , (3.6.20)

and substituting this result and (3.6.16) back in the first equation (3.6.17), we

finally have

F = E − TS , (3.6.21)

which is the definition for F , showing thus that our framework is consistent. It

is usually more useful to rewrite (3.6.21) in terms of energy densities

f = ϵ− s T , (3.6.22)
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where we have rescaled each thermodynamical potential with the total boundary

spatial volume V2 and where s is the entropy density.

We call attention to the fact that the relation (3.6.18) can alternatively

be obtained by considering that the boundary stress-energy tensor is traceless.

Indeed, from this fact we have

0 =

∫
d2x T = −

∫
d2x T tt + 2

∫
d2x T ii = −E + 2P V , (3.6.23)

leading to (3.6.18).

A much more convenient expression for F , from the computational point of

view, can be obtained by rewriting (3.6.20) as

E =
2

3
(S T + µQ) , (3.6.24)

and substituting this result in (3.6.21), we obtain

F =
1

3
(2µQ− S T ) , (3.6.25)

or, in terms of energy, entropy and charge densities

f =
1

3
(2µρ− s T ) , (3.6.26)

We see that, in this form, the Helmholtz free energy can be computed holo-

graphically in terms of the asymptotic bulk-gauge field modes and on the black

hole area and temperature. In the following, the relevant quantity we will want

to compute is given by

∆f = fSupercond. − fnorm. , (3.6.27)

which is the difference between the free energy in the superconducting and nor-

mal phases. Thus, ∆f < 0 will mean that the superconducting phase has a

lower free energy than the normal phase, implying that the hairy solution is

thermodynamically favorable.
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3.7 Condensation.

To summarize, in the previous sections we have set a consistent general the-

oretical frame for a model of holographic superconductivity. To do this, we

have proposed a very simple bulk theory, consistent with the minimal features

required for superconducting behavior in the dual boundary theory. Through

the AdS/CFT dictionary, we have given a physical interpretation to each of the

components of the gravity theory, and explained how every allowed bulk theory

solution translates to a different superconducting phase in the dual field the-

ory. In particular, the holographic interpretation asserts that hairy black hole

solutions with well-defined boundary conditions correspond to a spontaneous

symmetry breaking phase in the dual theory. We have also investigated the gen-

eral conditions on the bulk side for instability against hair creation, and claimed

that this bulk instability can be interpreted as an holographic dual of the Cooper

instability in the boundary side of the duality.

Referring to the details of the bulk computations, by making use of the

scaling symmetries (3.3.15)-(3.3.16) and by setting the input parameters m2

and q at fixed values from the beginning, we have engineered our system to

depend only on the temperature T . By solving the equations of motion for each

field numerically with the prescribed boundary conditions through the shooting

method, one can find the desired solutions for the bulk scalar field which, as said

before, will be dual do the superconducting order parameter in the boundary

field theory. These solutions are found to undergo a phase transition at some

definite value T = Tc.
1 Below this critical temperature, the system admits

two different solutions, one being the usual Reissner-Nordström solution with

null scalar field, and the other one being a hairy black hole solution with non-

trivial scalar profile. Both below-Tc solutions are characterized by a particular

1In the present HHH model, the phase transition is second-order. Other models of holo-

graphic superconductivity, however, can show a first-order phase transition behaviour. One of

such models is presented in Chapter 6.
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Figure 3.1: Value of the condensate as a function of temperature, for value of

the scalar field charge q = 1. Figure (a) shows the O1 condensate, while figure

(b) shows the O2 condensate.

behaviour of the free energy, and the solution with a lower free energy is to be

thermodynamically favored over the other. In figures (3.1a) and (3.1b) we show

the value of the condensates of the HHH model as a function of temperature,

for each quantization scheme as described by the asymptotic expansion (3.3.30),

and where we have set the scalar mass and charge as m2 = −2 and q = 1.

A very non-trivial result can be observed in the near-Tc behaviour of the

condensates. Indeed, in that region the condensate has a functional dependence

on temperature

⟨O⟩ ∼ (1− T/Tc)
1/2 , (3.7.1)

which, as we have seen in Chapter 1, is the typical mean-field behaviour for

the superconducting order parameter. As we have already commented, the pro-

posed bulk theory model is very phenomenological in nature, in the sense that

is intended to describe holographically through a simple scalar field the phys-

ical behaviour of the dual field theory’s order parameter. This approach can

therefore be interpreted as a holographic mean-field description of the supercon-

ducting system. Non-mean field behaviour should then be found moving away
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from the large-N supergravity approximation, and therefore deviations from the

standard behaviour (3.7.1) should be controlled by 1/N corrections.

3.8 Magnetic Phenomena.

Since in the following chapters we will be very interested in studying magnetic

phenomena in holographic superconductivity, it could prove of great usefulness

to give a general overview of how magnetic phenomenology is implemented in the

holographic context. We will follow the standard treatment, as first introduced

in [77, 100, 101, 102, 103].

3.8.1 The Meissner Effect

The main focus of our interest in magnetic phenomena will be given by the

Meissner effect and the holographic determination of the critical magnetic field

Bc. As already said in Chapter 1, the behaviour of a superconducting system

under the presence of an external magnetic field provides the means for the

phenomenological classification of the material as a Type I or Type II super-

conductor. Whether an holographic superconductor can present Type I or II

behaviour is a subject we will treat in detail in the following chapters. For the

present account, let is suffice to say that the critical magnetic field Bc we will

be computing holographically will be the greater critical magnetic field, that is,

the value of the magnetic field mediating within the normal phase and any of

the superconducting (Type I) or quasi-superconducting (Type II) phases.

The usual way to define the critical magnetic field Bc is to start in the

superconducting phase and no magnetic field present and, for each value of

temperature T < Tc, increase the magnitude of the magnetic field and look for

the particular value above which the system returns to the normal phase. An

equivalent but more useful point of view, however, could be to start in the normal

phase with a large value of the magnetic field and, for each value of temperature
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T < Tc, lower the magnitude of the magnetic field until one finds a particular

value Bc under which condensation occurs. Holographically, this would mean

starting from a normal, magnetic solution and look for values of the magnetic

field that develop an instability for a hairy black hole solution in the bulk theory

scalar. In the particular D = 3 + 1 case of the HHH model, such a vacuum,

magnetic solution is given exactly by the dyonic metric [104]

ds2 = −g(r)dt2 + dr2

g(r)
+ r2

(
du2 + u2dφ2

)
, (3.8.1)

with

g(r) = r2 − 1

4rrh

(
4r4h + ρ2 +B2

)
+

1

4r2
(
ρ2 +B2

)
, (3.8.2)

and where we are working in polar coordinates for the spatial dimensions of the

boundary theory, dx2 + dy2 = du2 + u2dφ2. The gauge field now includes a

magnetic term

A = ρ

(
1

rh
− 1

r

)
dt+

1

2
Bu2dφ , (3.8.3)

from where a boundary magnetic field perpendicular to the x-y plane can be

read

Fxy
∣∣
r→∞ =

1

u
Fuφ

∣∣
r→∞ = B . (3.8.4)

The Hawking temperature of this black hole solution is then given by

T =
12r4h − ρ2 −B2

16πr3h
. (3.8.5)

In order to look for hairy solutions, we will fix the dyonic solution described

above and treat the scalar field ψ as a perturbation under this background,

with boundary conditions at the boundary given by any quantization scheme

we choose from the asymptotic fall-off (3.3.30). We also choose the scalar field

to depend only on the bulk-radial coordinate r and on the boundary-radial

coordinate u, that is, ψ = ψ(r, u). As always with the HHH model, we set the

scalar mass as m2 = −2. In this manner, the equation of motion for ψ is given

by

1

u
∂u (u∂uψ) + ∂r

(
r2g∂rψ

)
+

(
q2ρ2

gr2h
(r − rh)

2 − q2u2

4
B2 + 2r2

)
ψ = 0 , (3.8.6)
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Figure 3.2: Value of the critical magnetic field Bc as a function of temperature,

for various values of the scalar field charge q. Figure (a) shows the case where O1

condenses, while figure (b) shows the case where O2 condenses. In both figures,

going from the top to the bottom figure, the value of the charge is q = 12, 6, 3, 1.

which can be solved by separation of variables

ψ(r, u) = R(r)U(u) , (3.8.7)

so that the equation we obtain are

U ′′ +
1

u
U ′ +

(
quB

2

)2

U = −λU , (3.8.8)

(
r2gR′)′ + (q2ρ2(r − rh)

2

gr2
+ 2r2

)
R = λR , (3.8.9)

with the separation constant λ = qnB. The equation (3.8.8) for the function

U(u) is that of a harmonic oscillator with frequency determined by B. We will

expect the lowest mode n = 1 of this oscillating boundary profile to be the most

stable solution after condensation. Therefore, the solution for U(u) is given by

the simple Gaussian profile

U(u) = exp
(
−qBu2/4

)
. (3.8.10)

In this manner, the superconducting solution will be localized as a droplet con-

densate in the boundary field theory. This is customarily called the droplet
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solution. Meanwhile, the asymptotic behaviour of the scalar field (3.3.30) is now

carried by R(r), so that one sets the boundary conditions for the equation (3.8.9)

following the quantization scheme for ψ that one wishes to follow. Solving the

system in this manner, the result will be a curve of solutions (T,Bc). In figures

(3.2a) and (3.2b) we show the behaviour of the critical field as a function of

temperature, for both quantizations schemes and for various values of the scalar

charge q. It is very important to note that the critical magnetic field has a

near-Tc behaviour

Bc ∼ (1− T/Tc) , (3.8.11)

which is in agreement with the behaviour predicted by mean-field theory.

3.8.2 London Currents and Dynamical Photons

In standard superconductivity, the physical picture behind the Meissner effect

is the generation, by the external magnetic field, of diamagnetic currents in

the superconductor. Such currents will in turn generate a magnetic field of

equal magnitude and opposite direction that will cancel the external field inside

the sample. This generation of currents clearly requires the presence of a dy-

namic electromagnetic field. In fact, the introduction of such a dynamical vector

field was the main cause behind the success of the phenomenological description

of superconductivity provided by Ginzburg-Landau theory, as we have seen in

Chapter 1. In this description, superconductivity is generated by the breaking of

a local U(1) symmetry, a fact that provides the photon with mass and explains,

for instance, the superconductor penetration length λ, among other phenomeno-

logical features. However, when we match this field theory expectation with our

holographic setup that we have built in order to model superconductivity, we

inmediately face some issues. Indeed, according to the AdS/CFT dictionary,

the local U(1) symmetry breaking in the bulk theory that we have been using

to generate hairy black hole solutions, translates to a global U(1) symmetry

breaking in the dual field theory, as mentioned earlier. This means that the
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dual boundary theory does not contain a dynamical photon, that the material

cannot produce its own opposite magnetic fields and that, strictly speaking, the

Meissner effect should not exist in a holographic superconductor. As first noted

in [7] the solution to this comes from the fact that holographic superconduc-

tors do generate the currents required to expel external magnetic fields (London

currents), and that the dual field theory can be consistently gauged.

To see how the London currents arise in holographic superconductivity, let

us first discuss the London equation (1.1.3) in frequency-momentum space

Ji (ω, k) = −nsAi (ω, k) , (3.8.12)

which, as we have already seen in Chapter 1, was proposed to explain both the

infinite conductivity and the Meissner effect. In the limit k = 0 and ω → 0 we

can take a time derivative of both sides of the London equation and find

Ji (ω, 0) =
ins
ω
Ei (ω, 0) . (3.8.13)

This relation explains infinite DC conductivity. On the other hand, by con-

sidering the curl of the London equation and the limit k → 0 and ω = 0 we

obtain

iϵijlk
jJ l (0, k) = −nsBi (0, k) . (3.8.14)

This relation together with the Maxwell equation ∇ × B = µ0J results in the

magnetic field equation ∇2B = B/λ2 (1.1.16) which has as solution an exponen-

tially decaying field inside the superconductor. (See section 1.1 in Chapter 1.)

It is important that both the superconductivity and the Meissner effect follow

from the London equation.

To see how the London equation (3.8.12) can be consistently accommodated

in the holographic setup, let us allow for the presence of bulk gauge field per-

turbations in our holographic superconducting model, with a momentum and

frequency dependence of the kind

δA = e−iωt+ikyAx(r)dx . (3.8.15)
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In order to simplify things, let us work in the probe limit [84], which amounts

to taking the limit q → ∞ and in which the metric can be safely kept fixed to

be simply the Schwarzschild AdS black hole

ds2 = −g(r)dt2 + dr2

g(r)
+ r2

(
dx2 + dy2

)
, (3.8.16)

where g(r) = r2 − r3h/r. Assuming then that we have consistently solved for the

gauge field ϕ and scalar field ψ, the differential equation for the perturbation Ax

will be given by (
ω2

g
− k2

r2

)
Ax +

(
gA′

x

)′
= 2q2ψ2Ax . (3.8.17)

Ignoring the radial dependence at infinity, this equation describes a vector field

with mass proportional to q2ψ2. This mass, which implies an underlying Higgs

mechanism in the bulk theory, should give rise to the usual effects of supercon-

ductivity and therefore equation (3.8.17) can be thought of as the holographic

dual of the London equation (3.8.12).

Finally, in order to expel any external magnetic field, the London currents

should be able to couple to dynamical photons [7]. These are introduced by

gauging the dual field theory. The 2 + 1 dimensional boundary theory can be

coupled to a photon through the standard JµA
µ interaction. To make the photon

dynamical, we add an F 2 term to the action, with F = dA. Electromagnetic

phenomena are described by the effective action for the photon. We can obtain

this effective action by integrating out all the other degrees of freedom. Starting

from the Euclidean partition function, one has

Z =

∫
DADY exp

{
−S[Y]− 1

4

∫
d3xF 2 −

∫
d3xJµA

µ

}
(3.8.18)

=

∫
DA exp {−Seff.[A]} , (3.8.19)

where Y denotes the remaining degrees of freedom of the boundary field theory.

The effective action Seff. can be obtained by expanding the exponent in (3.8.18),

integrating over Y and finally exponentiating back. The result is

Seff.[A] =
1

4

∫
d3xF 2+

1

2

∫
d3xd3y ⟨JµJν⟩c (x− y)Aµ(x)Aν(y)+ · · · , (3.8.20)
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where ⟨JµJν⟩c is the connected 2-point function of the current, and where the

expectation value is evaluated in the theory without the dynamical photons. In

writing (3.8.20) we have omitted additional terms that do not contribute to the

dynamics and neglected higher order terms in A because they are suppressed in

the large-N limit [7].

Examining (3.8.20), we see that it is possible to obtain the photon mass

from ⟨JµJν⟩c. Since we are working in a field theory where Lorentz invariance

is broken by the presence of a background charge density, we therefore choose

to define the photon mass as the energy of photons in a frame where they are at

rest relative to such charge density. Therefore, to find the photon mass we need

to exhibit an on-shell photon mode with k = 0 and the energy ω of this mode

will be photon mass mγ .

In order to obtain the photon spectrum, we go back to action (3.8.20) and

derive the corresponding equations of motion. We restrict to a mode in which

Ax is the only nonvanishing component and is of the magnetic form

Ax(ω) = B y e−iωt , (3.8.21)

where the y dependence has been included so that the mode is not pure gauge

at ω = 0. Rotating back to Lorentzian signature, the equation of motion for this

mode is (
ω2 +GRJxJx(ω)

)
Ax(ω) = 0 , (3.8.22)

where we have used the fact that the retarded Green’s function in momentum

space is the Fourier transform of the Euclidean Green’s function in momentum

space. For a more detailed account, see [105]. Using the result from linear

response theory, we have GRJxJx(ω) = iωσ(ω), where σ(ω) is the conductivity.

Thus, equation (3.8.22) becomes

ω (ω + iσ(ω)) = 0 . (3.8.23)

The solution to this equation gives the photon mass mγ = ω. From (3.8.23)

we can see that ω = 0 (a massless photon) is a solution, provided that the
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3.8. Magnetic Phenomena.

conductivity does not have a pole at ω → 0. The intuitive expectation we

have is to have a massive photon in phases where the electromagnetic U(1) is

broken and, conversely, to have a massless photon where the electromagnetic

symmetry remains unbroken. Holographic studies in the conductivity, such as

[84, 7, 89, 90], show that this intuition turns in fact to be right. When studying

the superconducting phase of holographic superconductors, the imaginary part

of σ(ω) has a pole as ω → 0, so that the photon will have a nonzero mass.

Meanwhile, in the normal phase one finds that the conductivity σ is a constant,

meaning that there is no pole as ω → 0 and the photon is therefore massless.
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4

Bottom-Up Approach, Part I:

Ginzburg-Landau Approach to

Holographic Superconductivity

In this and in the following chapter, we will be working using an holographic

superconducting model in a phenomenological bottom-up approach. The fol-

lowing models are characterized by a very minimal bulk action that, through

tractable computations, gives rise holographically to superconducting behaviour

in the dual field theory. Furthermore, the bulk model contains input parame-

ters, such as the mass of the scalar field charge, that can be varied in order to

gain insight on the phenomenological behaviour of these dual superconducting

physical quantities.

Having set the basic phenomenology of this simple model, we will then im-

plement an effective description of the dual field theory on terms of Ginzburg-

Landau theory. Using the gauge/gravity duality and some basic physical as-

sumptions, we will be able to compute in a self-consistent fashion the main in-

put parameters of an effective Ginzburg-Landau action to the dual field theory

115



near the critical temperature. Using this phenomenological description, we will

the compute the characteristic lengths of the system and the Ginzburg-Landau

parameter κ of the holographic superconductor. This parameter is of particular

importance in the general theory of superconductivity, since it value is related

to the basic classification of superconducting materials as Type I or Type II.(See

Chapter 1.) In the present model, it will be shown that the system always shows

a Type I behaviour, irrespective of the values of the input parameters considered.

Additionally, since this classification is directly related to magnetic phenomena

in superconductivity, we will also submit our system to an external magnetic

field, using the perturbative gravitational solution constructed by D’Hoker and

Kraus [16], for the first time in the context of holographic superconductivity.

As we have already said in Chapter 3, the area of holographic superconduc-

tivity in its present form is very phenomenological in nature. It can, for example,

give us insight on the physical properties of, say, the dual condensing operators,

although without describing the microscopic details behind the pairing mech-

anism leading to condensation. In this sense, a Ginzburg-Landau approach to

the dual theory is very well suited: Ginzburg-Landau theory is itself a very

successful “coarse-grained” description of superconductors, which focuses on the

phenomenology of physical quantities and which does not require an underlying

microscopical theory for these phenomena. This is principal the reason of why

Ginzburg-Landau theory can be used to describe the phenomenology, within its

reaches of validity, of a very wide array of different physical systems, including

high-Tc superconductors. This universality of Ginzburg-Landau theory is also

in tune with one of the main motivations behind holographic superconductiv-

ity, where one aims to construct models of strongly-coupled superconducting

theories that could exhibit some universal phenomena shared by the cuprates.

In this and the following chapter, we will choose to work with a bulk model

in 4 + 1 dimensions, meaning that the dual field theory will live in 3 + 1 di-

mensions. In a 3 + 1 dimensional system subjected to a 3 + 1 electromagnetic
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4.1. A Minimal Holographic Superconductor in d = 4 + 1 AdS

field, both free energies scale with the volume (see Chapter 1), and hence there

is a direct thermodynamical competition that can drive the system to a Type

I superconducting state. In contrast, there is some evidence that holographic

superconductors describing 2+ 1 dimensional field theories mostly exhibit Type

II behaviour [7, 106]. The standard argument [7] is that, when applying an

external 3 + 1 dimensional magnetic field to a 2 + 1 dimensional system, the

free energy needed to expel it scales as the volume, while the free energy that

the system gains from being in a superconducting state scales as the area. This

indicates that in most of these 2 + 1 dimensional systems, Bc1 must be zero.

However, recently 2+1 dimensional models exhibiting Type I behaviour in some

region of parameter space have been constructed in the interesting paper [11].

4.1 A Minimal Holographic Superconductor in d = 4+1

AdS

4.1.1 The Model

We will work using a minimal phenomenological model in d = 4+ 1 AdS space-

time, in the same spirit as in [7], containing a scalar field Ψ and a U(1) gauge

field Aµ

L = R+
12

L2
− 1

4
FµνFµν − |DΨ| 2 −M2 |Ψ|2 , (4.1.1)

where, Fµν = ∇µAν − ∇νAµ, and DµΨ = ∇µΨ − iqAµΨ. The parameter q

corresponds to the charge of the scalar field and, as it will be shown below,

different values of q will correspond to superconducting systems with different

critical temperature. The general equations of motion for this system are

D 2Ψ = M2Ψ , (4.1.2)

∇µF
µ ν = qJν + q2 |Ψ|2Aν , (4.1.3)

Rµν −
1

2
gµν

(
R+

12

L2

)
=

1

2
gµν

(
−1

4
F 2 − |DΨ|2 −M2 |Ψ|2

)
+
1

2
F λµFλν +D(µΨD

∗
ν)Ψ

∗ , (4.1.4)
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4.1. A Minimal Holographic Superconductor in d = 4 + 1 AdS

where

Jµ = i (Ψ∗∇µΨ−Ψ∇µΨ
∗) . (4.1.5)

We will set L = 1 for the rest of this chapter.

4.1.2 The Normal and Superconducting Phases

In this section we will briefly review the normal and superconductor regimes of

our model, with no external magnetic field to begin with, and with full backre-

action included. As is usual, we use the following ansatz for the metric

ds2 = −g(r)e−χ(r)dt2 + dr2

g(r)
+ r2

(
dx21 + dx22 + dx23

)
, (4.1.6)

which is the most general ansatz with space-rotation and time-translation sym-

metry. We will demand that solutions for this ansatz are asymptotically AdS

and that they have a black hole geometry, with an event horizon at some r = rh.

For the scalar and gauge field we use the ansatz

A = ϕ(r)dt , Ψ(r) =
1√
2
ψ(r) , (4.1.7)

where ψ is a real function. Introducing the new coordinate z = rh/r, equations

(4.1.2-4.1.4) under this ansatz turn to be

ψ′′ +

(
−χ

′

2
− 1

z
+
g′

g

)
ψ′ +

r2h
z4

(
eχq2ϕ2

g2
− M2

g

)
ψ = 0 ,(4.1.8)

ϕ′′ +

(
χ′

2
− 1

z

)
ϕ′ −

r2hq
2ψ2

z4g
ϕ = 0 ,(4.1.9)

3χ′ − zψ′2 − eχq2ϕ2ψ2

z3g2
= 0 ,(4.1.10)

1

2
ψ′2 +

eχϕ′2

2g
− 3g′

zg
+

6

z2
−

12r2h
z4g

+
r2hM

2ψ2

2z4g
+
eχr2hq

2ϕ2ψ2

2z4g2
= 0 .(4.1.11)

This system of equations admit a ψ(z) = 0 solution. This no-hair solution

is given by

g(r) =
r2h
z2

+
z4ρ2

3r4h
−
z2
(
3r6h + ρ2

)
3r4h

, (4.1.12)

χ(r) = 0 , (4.1.13)

ϕ(r) =
ρ

r2h

(
1− z2

)
, (4.1.14)
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4.1. A Minimal Holographic Superconductor in d = 4 + 1 AdS

which is the usual Reissner-Nordström-AdS solution, and corresponds to the

normal phase of the superconductor.

We will now consider solutions with scalar hair ψ ̸= 0. We will set M2L2 =

−3 for the scalar field mass, which is above the Breitenlohner-Freedman bound

M2
BFL

2 = −4. This choice of mass appears naturally in top-down models of

holographic superconductors coming from consistent truncations of supergravity

[20, 21]1. With this choice, ψ behaves at z → ∞ as

ψ ≈ O1
z

rh
+O3

z3

r3h
+ . . . (4.1.15)

while for the gauge field the near-boundary behaviour is

ϕ ≈ µ− ρ
z2

r2h
+ . . . (4.1.16)

According to the gauge-gravity correspondence, O3 corresponds to the vac-

uum expectation value of an operator of dimension 3 in the dual field theory,

while O1 corresponds to a source to that same operator. Also, µ and ρ will

correspond to the chemical potential and charge density of the dual field theory,

respectively. To solve our equations of motion, we will impose the boundary

condition O1 = 0 in (4.1.15) and take O3 as the superconductor order parame-

ter. Setting the source to zero will result in spontaneous breaking of the global

U(1) symmetry in the dual field theory and the system enters then in a super-

conducting phase [7, 83].

We will choose to work in the canonical ensemble, fixing ρ = 1. As mentioned

above, we will also impose g(z = 1) = 0 for some non-zero value of rh in order to

have black hole solutions to our ansatz and introduce temperature to the dual

field theory. The Hawking temperature of the system will be given by

TH = − eχg′

4πrh

∣∣∣∣∣
z=1

. (4.1.17)

1These models have a different potential from ours, arising from higher order terms in ψ.

However, they have the same critical temperature, since this only depends on the values of m

and q.
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Figure 4.1: The value of the condensate as a function of temperature, for q = 1.

In this case, Tc = 0.0055 approximately.

From equation (4.1.8) for ψ we see that regularity of the solutions at the horizon

z = 1 requires that

ψ′(1) =
r2hM

2ψ(1)

g′(1)
. (4.1.18)

Regularity at the horizon also requires ϕ(1) = 0. The model has the following

scaling symmetries

eχ → a2eχ , t→ at , ϕ→ ϕ/a , (4.1.19)

r → ar , (t, xi) → (t, xi) /a g → a2g , ϕ→ aϕ . (4.1.20)

This scale invariance helps us to further reduce the number of independent pa-

rameters in our model to only one, which we will take to be the temperature of

the black hole. Solutions to equations (4.1.8)-(4.1.11) are found via the shooting

method, enforcing the no-source condition mentioned above for ψ.

In figure (4.1) we show the behaviour of the order parameter O3 as a function

of temperature for the case q = 1, signaling condensation below some critical

temperature Tc. One can find by a numerical analysis for different values of q

that near Tc the condensate behaves as

O3 ∼ O0 (1− T/Tc)
1/2 . (4.1.21)

120



4.1. A Minimal Holographic Superconductor in d = 4 + 1 AdS

0 5 10 15 20 25 30
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

q

O0

Ρ

Figure 4.2: The value of the near-Tc coefficient O0 (see eq. (4.1.21)) as a

function of the scalar field charge q.
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Figure 4.3: The solid line represents the value of the critical temperature Tc as a

function of the charge q. The dashed line represents the analytical approximation

(4.1.22).

The behaviour of the coefficient O0 as a function of the scalar field charge q is

shown in figure (4.2). For large values of q, we find that O0 ∼ const.

In the bold line of figure (4.3) we show how the critical temperature Tc be-

haves for different values of the charge q. As in the 2 + 1 dimensional case of

[7], the behaviour of Tc near zero q is caused because the charged scalar field
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4.2. Ginzburg-Landau Description.

backreacts to the metric more strongly in that region, decreasing the tempera-

ture. Since we have a one-to-one relation between Tc and q, we will use q to vary

the critical temperature of our model. Therefore, we will have a set of different

superconducting systems characterized by different q.

For large values of q (the probe limit) one can obtain a fair analytical ap-

proximation for Tc using the matching method introduced in [107], getting

T large q
c =

1

π

(√
5

309
2ρ q

) 1
3

. (4.1.22)

This is shown as a dashed line in figure (4.3).2

4.2 Ginzburg-Landau Description.

We introduce our Ginzburg-Landau interpretation of the dual field theory by

first studying the system under a small perturbation of the gauge field on the

bulk.

4.2.1 A Magnetic Perturbation

We now add a small magnetic perturbation of the gauge field, in the specific

form

A = ϕ(r) dt+ δAx(r, t, y) dx; (4.2.1)

with

δAx(t, r, y) = e−i ω t+i k yAx(r) , |Ax| ≪ 1 (4.2.2)

This perturbation has an harmonic dependence on time and carries momentum

along the y-direction. To linearized level, the equation of motion for Ax in the

z coordinate is given by

A′′
x +

(
g′

g
+

1

z
− χ′

2

)
A′
x +

r2h
z2g

(
eχω2

z2g
− k2

r2h
− q2ψ2

z2

)
Ax = 0 . (4.2.3)

2For applications of the matching method on the study of magnetic effects in holographic

superconductors, see. e.g. [108, 109].
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4.2. Ginzburg-Landau Description.

We will work in the low-frequency/small-momentum regime, where k , ω are

much smaller than the scale of the condensate, so that quadratic terms in k, ω

can be neglected in (4.2.3). To solve this equation, we use the following boundary

conditions

Ax(1) = A0 , A′
x(1) = −

6q2r2hψ
2
0

eχ0ϕ20 + r2h
(
M2ψ2

0 − 24
) A0 , (4.2.4)

where we use the notation ψ0 = ψ(1), ϕ′0 = ϕ(1), and where the second condition

is needed for regularity at the horizon. As before, M2 = −3. Since the equation

(4.2.3) is linear, with no loss of generality we set A0 = 1.

From equation (4.2.3) we can read the behaviour of Ax at z → 1

Ax = A(0)
x + Jx

z2

r2h
+ . . . . (4.2.5)

According to the AdS/CFT dictionary, A
(0)
x and Jx correspond to a vec-

tor potential and the conjugated current on the dual field theory, respectively.

We can identify these asymptotic values with the London current on the dual

superconducting field theory (see eq. (1.1.3))

Jx = −q
2

m
nsA

(0)
x , (4.2.6)

were ns is the number density of superconducting carriers and q and m are the

charge and mass of the superconducting carriers, respectively. At this point,

it is worth mentioning that, as stated in [7], the London equation is valid only

when k and ω are small compared to the scale of the condensate, in consistency

with our low-frequency/small-momentum regime. From (4.2.6) we can read the

value of the quantity q2ns/m holographically as

q2

m
ns = − Jx

A
(0)
x

. (4.2.7)

For simplicity, we define the quantity

ñs ≡
q2

m
ns , (4.2.8)

which is a rescaling of the carrier number density. Numerically one finds that ñs

behaves near Tc as ñs ∼ (1− T/Tc). The value of ñs as a function of temperature

for charge q = 4 is shown in figure (4.4).
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Figure 4.4: Value of ñ = q2

mns as a function of temperature, for the q = 4 case.

4.2.2 Ginzburg-Landau Interpretation of the Dual Field Theory

In this section we will implement a phenomenological Ginzburg-Landau descrip-

tion of our superconducting system by assuming that the dual d = 3 + 1 field

theory at non-zero temperature can be described phenomenologically by an ef-

fective Ginzburg-Landau field theory. This will be given by a vector field Aµ,

µ = 0 , . . . , 3, and a scalar field ΨGL which acts as an order parameter for the

theory and effectively represents the operator that condenses in the underlying

dual field theory, which in principle could have very different degrees of freedom.

This Ginzburg-Landau description is only valid near the critical temperature,

where the order parameter ΨGL is small, and where the effective action for the

dual field theory can be written as

Seff ≈ 1

T

∫
d3x

{
α |ΨGL|2 +

β

2
|ΨGL|4 +

1

2m
|DiΨGL|2 + . . .

}
, (4.2.9)

where Di = ∂i − iqAi, and α and β are phenomenological parameters with a

temperature dependence3. According to the AdS/CFT dictionary, the vector

3For a discussion about effective field approximations in the dual field theory, see [106].

For other works on aspects of Ginzburg-Landau theory in the context of holography, see, e.g.

[15, 110, 111, 22].
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4.2. Ginzburg-Landau Description.

components A0 and Ax correspond respectively to the chemical potential µ in

(4.1.16) and to A
(0)
x in (4.2.5). We have consistently identified the charge of the

superconducting carrier of the phenomenological Ginzburg-Landau Lagrangian

with the charge of the bulk scalar field q. We will be mainly interested in electro-

magnetic phenomena present in superconductivity, which require a dynamical

gauge field in the boundary theory. However, we know that the U(1) local

symmetry in the bulk translates to a global U(1) symmetry in the boundary

according to the gauge/gravity dictionary. In order to overcome this, we will as-

sume that the U(1) global symmetry in the boundary can be promoted to local,

by adding a F 2 term using the procedure described in [7]. Indeed, this is the un-

derlying procedure behind most studies of magnetic phenomena in holographic

superconductivity. In terms of our current effective field theory description of

the boundary theory, this will mean that the Ginzburg-Landau theory approach

to electromagnetic phenomena can be applied in our case, especially concerning

its determination of the critical magnetic field and of the Ginzburg-Landau pa-

rameter κ, which requires a balance between the superconducting and the purely

magnetic parts of the free energy of the system (see Chapter 1).

The VEV of the scalar operator that condenses in the underlying dual field

theory will be proportional to O3 to the required power to match dimensions.

The Ginzburg-Landau order parameter ΨGL has mean field critical exponent

1/2. Then, in order to match this critical exponent with the critical exponent

of O3 we must identify

|ΨGL|2 = NqO2
3 , (4.2.10)

where Nq is a proportionality constant that depends on the value of the charge

q of the scalar bulk field.

Regarding the parameters α, β shown in (4.2.9), one sets β > 0 in order for

the lowest free energy to be at finite |ΨGL|2. Also, in order to have a supercon-

ducting phase, one requires that α < 0. All definitions and conventions that will

be used regarding the Ginzburg-Landau theory can be found in the Chapter 1,
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Figure 4.5: Comparison between qO2
3/ñs, corresponding to red points, and

C0Tc(q), corresponding to continuous line.
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q = 4.

where we have set the physical constants ~ = 1 and µ0 = 4π (their values in

natural units), while preserving numerical factors. The superconducting carrier

mass m can be absorbed into a redefinition of the other parameters, so, with no

loss of generality, we will set m = 1.

At this point, we have two phenomenological Ginzburg-Landau parameters
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4.2. Ginzburg-Landau Description.

α and β, and introduced the proportionality constant Nq. We should be able

to fully determine them in order for our Ginzburg-Landau description to be as

complete and consistent as possible. In order to do it, we will make use of the

numeric identity

q
O2

3

ñs
= C0Tc(q) , (4.2.11)

where the ratio at the left hand side is evaluated at the critical temperature,

and C0 is a proportionality constant, approximately equal to C0 ≈ 41.99. In

figure (4.5) we show how this equality holds for various values of q. To have a

better understanding of this equality, one can see through the matching method

in the large q limit that O3 ∼ T 3
c
q (1− T/Tc)

1/2 and ñs ∼ T 2
c (1− T/Tc), so the

left hand side of the equality goes as qO2
3/ñs ∼ T 4

c /q, and because q ∼ T 3
c (see

(4.1.22)), we indeed have qO2
3/ñs ∼ Tc. Another point worth mentioning is that

the left hand side of equation (4.2.11) is constant as a function of temperature,

for most values of q. This is shown in figure (4.6), where we plot qO2
3/ñs versus

temperature, for the q = 4 case.

Rewriting (4.2.11) in terms of ns instead of ñs, we have

O2
3

q ns
= C0Tc . (4.2.12)

According to the Ginzburg-Landau theory, the relation between the order pa-

rameter |ΨGL| and the charge carrier density ns is given by (see (1.1.5))

|ΨGL|2 = ns . (4.2.13)

Substituting our identification (4.2.10) in (4.2.13), and matching with (4.2.12)

we obtain

Nq =
1

q C0Tc(q)
. (4.2.14)

The behaviour of Nq as a function of q is shown in figure (4.7). For large q we

find Nq ∼ q−4/3.

In order to determine the remaining parameters, we must calculate first the

Ginzburg-Landau coherence length ξ. To do this, we consider small fluctuations
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Figure 4.7: Value of the proportionality factor Nq as a function of the scalar

field charge q.

around the condensed phase of our system in the bulk. More concretely, we

write the original complex scalar field Ψ in our model (4.1.1) as

Ψ(r, y) =
1√
2

(
ψ(r) + ei k yη(r)

)
, (4.2.15)

where ψ is the full back-reacted solution associated with the order parameter

O3 described in section 2, and the term ei k yη(r) is a small fluctuation (|η| ≪ 1)

around this condensed solution. The equation of motion for η to linearized level

is

η′′ +

(
g′

g
− χ′

2
− 1

z

)
η′ +

1

z2g

(
eχq2r2hΦ

2

z2g
−
M2r2h
z2

− k2
)
η = 0 , (4.2.16)

which can be put as in the form of an eigenvalue equation

L{η} = k2η , (4.2.17)

with L the same linear operator that acts on ψ. The boundary conditions at the

horizon z = 1 are:

η(1) = η0 , η′(1) = −
6
(
k2 +M2r2h

)
eχ0Φ2

0 + r2h
(
M2ψ2

0 − 24
)η0 , (4.2.18)
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Figure 4.8: Value of the wave number k as a function of temperature, for the

case q = 4.

while near z = 0 we will have the asymptotic behaviour

η(z) ≈ (δO1)
z

rh
+ (δO3)

z3

rh3
+ · · · , (4.2.19)

and will demand the same conditions as for ψ, namely (δO1) = 0. Since, as will

be seen below, we will not be concerned with the absolute normalization of η,

we will take advantage of the linearity of (4.2.16) and set η0 = 1.

As noted in [110], the coherence length of the superconducting system is

equal to the correlation length ξ0 of the order parameter. In turn, the correlation

length is the inverse of the pole of the correlation function of the order parameter

written in Fourier space

⟨O(k)O(−k)⟩ ∼ 1

|k|2 + 1/ξ20
. (4.2.20)

This pole will be given by the eigenvalue of (4.2.17). Therefore, we must solve

equation (4.2.16) and calculate the value of the wave number k consistent with

the desired boundary conditions for η. This was done near the critical tem-

perature. The behaviour of the wave number k as a function of temperature

is shown in figure (4.8), for q = 4. From the wave number k we obtain the
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Figure 4.9: Value of the ratio k/O3 as a function of temperature, for the case

q = 4. The dashed line corresponds to the respective value of Aq, which in this

case is close to one.

coherence length ξ0 simply as

|ξ0| =
1

|k|
. (4.2.21)

whose behaviour as a function of temperature is shown in figure (4.12a), also for

the value q = 4.

It should be pointed out that the wave number k near the critical tempera-

ture becomes equal to the order parameter O3 times a proportionality constant

Aq, which depend on the value of the charge q considered. The value of Aq is

given by the ratio between k and O3 evaluated at Tc

Aq =
k

O3

∣∣∣∣
T=Tc

, (4.2.22)

which, for every case considered, was a finite number. The value of the ratio

k/O3 as a function of temperature can be seen in figure (4.9), for q = 4. The

value of Aq as a function of the charge q is shown in figure (4.10), and is found

numerically to behave as q1/3 for large values of q . From (4.2.21) and (4.2.22),

one has near the critical temperature

1

ξ0
≈ AqO3 , (T ≈ Tc) . (4.2.23)
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Figure 4.10: Value of the proportionality constant Aq as a function of the scalar

field charge q.

With the calculation of the correlation length of the order parameter, and

its identification as the superconductor coherence length, we now resort to the

Ginzburg-Landau theory relation (1.1.25), which gives us the parameter |α| as

|α| = 1

4 ξ20
. (4.2.24)

Since, as we mentioned above, near the critical temperature ξ0 ≈ Aq/O3, then

|α| ≈
A2
q

4
O2

3 ∼ (1− T/Tc) , (T ≈ Tc) (4.2.25)

which is the correct near-critical temperature behaviour for |α| according to

Ginzburg-Landau theory. In figure (4.11a), we show the behaviour of α as a

function of temperature, for the case q = 4.

In order to calculate the remaining Ginzburg-Landau parameter β, we will

assume that the superconducting order parameter |ΨGL| does not differ signifi-

cantly from (see (1.1.8))

|Ψ∞|2 = |α|
β
, (4.2.26)

which is the value of the order parameter that minimizes the Ginzburg-Landau

free energy and physically is the value of |ΨGL| deep inside the volume of the
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Figure 4.11: Value of the Ginzburg-Landau parameters α and β as a function of

temperature, for the case q = 4.

superconductor. As stated in the Chapter 1, this can only be so in the case

where the external fields and gradients are negligible. This is indeed the case

for our gauge perturbation (4.2.1). Substituting our identification (4.2.10) in

(4.2.26) we get

NqO2
3 =

|α|
β
, (4.2.27)

from where we obtain, making use of (4.2.14) and (4.2.24)

β =
q C0Tc(q)

4

1

ξ20O2
3

. (4.2.28)

In figure (4.11b) we show the behaviour of β as a function of temperature, for

the q = 4 case.

Having determined the correlation length ξ0, we can also calculate the

remaining characteristic length of the superconductor, namely the Ginzburg-

Landau penetration length λ. This can be done directly from its definition as

(1.1.17)

λ2 =
1

4π q2ns
, (4.2.29)

or, in terms of ñs

λ2 =
1

4πñs
, (4.2.30)

132



4.2. Ginzburg-Landau Description.

0.00 0.05 0.10 0.15 0.20 0.25
0.0

0.5

1.0

1.5

2.0

2.5

3.0

T

Ρ1�3

Ρ1�3Ξ0

(a) Coherence length ξ0, q = 4

0.05 0.10 0.15 0.20 0.25
0.0

0.5

1.0

1.5

2.0

2.5

3.0

T

Ρ1�3

Ρ1�3Λ

(b) Penetration length λ, q = 4

Figure 4.12: Value of the characteristic lengths ξ0 and λ as a function of tem-

perature, for the case q = 4.
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Figure 4.13: Value of the Ginzburg-Landau parameter κ as a function of tem-

perature, for the cases q = 4, and q = 24.
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Figure 4.14: Temperature dependence of the Ginzburg-Landau parameter κ.

The dashed line corresponds to the empirical curve of the form (4.2.32) for the

high-Tc material Nb3Sn. Figure taken from [114].

where, as we have seen, ñs is given holographically by (4.2.8). In figure (4.12b)

we show its behaviour as a function of temperature, for the q = 4 case. With

both characteristic lengths, we can consequently obtain numerical values for

the Ginzburg-Landau parameter, defined as κ = λ/ξ (see (1.1.27)).4 We note

that the definition of κ uses the Ginzburg-Landau coherence length ξ, which is

related to the superconducting coherence length calculated above by ξ2 = 2ξ20 .

We obtain

κ =

√
1

8π ñs ξ20
. (4.2.31)

The behaviour of κ as a function of temperature is shown in figures (4.13a) and

(4.13b) for the cases q = 4 and q = 24, respectively. A striking feature concern-

ing the large-q Ginzburg-Landau parameter, like the q = 24 case presented in

(4.13b), is that its qualitative behaviour can be modeled using the same kind

of empirical fitting already used for high-Tc superconducting material Nb3Sn in

[113], where the authors determined the temperature dependence for κ to be

4For previous research on the κ parameter in a holographic context, see [11, 110]. See also

[112].
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Figure 4.15: Evolution of the Ginzburg-Landau parameter κ as a function of

the scalar field charge q.

given by

κ(T ) = κ(0)
(
a0 − b0(T/Tc)

2 (1− c0 log(T/Tc))
)
, (4.2.32)

with a0, b0 and c0 given empirically. This is shown in figure (4.14). This curve

has the same shape of figure (4.13b). Indeed, the same formula can be used to

fit our results to very good approximation, giving rise to the essentially same

plot shown in figure (4.13b). The same can be done with the other large-q cases.

In figure (4.15) we show the evolution of κ as the value of q increases. The

plot was made by taking the value of κ closest to the critical temperature for each

charge. We also show the line κ = 1/
√
2 (bold line) corresponding to the value

where, according to Ginzburg-Landau theory, the system turns from a Type I

to a Type II superconductor. Since numerical factors have been maintained in

our Ginzburg-Landau interpretation, this exact value still holds. What can be

seen is that the system behaves as a Type I superconductor, with the value of κ

increasing monotonically and approaching the asymptotic value κ ≈ 0.55, shown

as a dashed line in figure (4.15), which is below κ = 1/
√
2. 5

5We note that the asymptotic constant behaviour of κ as the value of q grows can be
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Figure 4.16: Value of the Ginzburg-Landau critical magnetic field BGL
c as a

function of temperature, for q = 4 , 5 , 6.
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Figure 4.17: Value of the Helmholtz free energy difference computed through

standard holographic techniques ∆f as a function of temperature, for q = 4.

seen directly from (4.2.31), where, making use of the fact that at the critical temperature

ξ0 = 1/AqO3, we can write κ as

κ =

√
A2

qO2
3

8π ñs
, (4.2.33)

and, using (4.2.11)

κ =

√
C0A2

q Tc(q)

8π q
. (4.2.34)
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Figure 4.18: Value of the Helmholtz free energy difference computed by the

Ginzburg-Landau approach ∆fGL as a function of temperature, for q = 4.

An interesting fact about the phenomenological Ginzburg-Landau descrip-

tion is that, according to it, we can calculate the value of the critical magnetic

field that breaks the superconducting phase of the theory. According to the

Ginzburg-Landau theory, this critical field, which we will refer to as BGL
c , is

given by (1.1.12)

BGL
c =

√
4π

|α|√
β
, (4.2.35)

where we used the fact that for holographic superconductors H = B/µ0. It is

important to notice that this critical field arises in Ginzburg-Landau theory from

balancing the condensate part of the free energy against its purely magnetic part

(see Chapter 1). This field points in the x3-direction, and should be related to

the real part of

Fx1,x2 = i k A(0)
x . (4.2.36)

After substitution of (4.2.24) and (4.2.28) in (4.2.35) we have

BGL
c =

√
π

q C0Tc

O3

ξ0
. (4.2.37)

Since for large q we know that both Aq and Tc behave as q1/3, then in that limit we will have

κ ∼ const.
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Figure 4.19: Comparison between free energy densities as a function of tem-

perature, for q = 4. The bold line corresponds to ∆f , while the dashed line

corresponds to ∆fGL.

In figure (4.16) we show how this critical field behaves as a function of tem-

perature for the cases q = 4, 5, 6. Near Tc, using (4.2.23), the last expression

becomes

BGL
c ≈

√
π

q C0Tc
AqO2

3 , (4.2.38)

where we see that BGL
c has a near-Tc behaviour BGL

c ∼ (1− T/Tc), consistent

with mean field theory.

Finally, we want to see how our current Ginzburg-Landau approach holds up

with regard to the Helmholtz free energy density of the system.6 The Helmholtz

free energy density f is given in general by

f = ϵ− Ts , (4.2.39)

where ϵ and s are the total energy and entropy density, respectively. In order to

calculate the Helmholtz free energy, we follow [7] and make use of the fact that

the stress-energy tensor must be traceless. For our particular case, this implies

6The Helmholtz free energy density is the appropriate thermodynamic potential in our case,

given our choice to work with fixed charge density ρ, i.e. in the canonical ensemble.
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Figure 4.20: Value of the ratio ∆f/∆fGL as a function of temperature, for

q = 4.
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Figure 4.21: Value of the ratio ∆f/∆fGL evaluated at T = Tc, for different

values of q.

that ϵ = 3P , where P is the pressure. Substituting in the thermodynamic

identity ϵ = sT + µρ − P , and in the formal definition (4.2.39) we obtain the

expression

f =
1

4
(3µρ− sT ) , (4.2.40)

which is used to compute f in both the condensed and normal phases, as a
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function of T and for different values of q. We focus on the free energy difference

∆f = fsc − fn, where fsc corresponds to the free energy in the superconducting

phase, while fn corresponds to the free energy in the normal phase. The free

energy difference ∆f of the system is shown in figure (4.17) as a function of

temperature, for the particular case q = 4.

Meanwhile, according to Ginzburg-Landau theory, the free energy difference

is given by equation (1.1.6) in the Chapter 1. Since we are working in the

approximation where the order parameter |Ψ| ≈ |Ψ∞|, near Tc we can safely

focus on the first two terms

∆fGL ≈ α |Ψ|2 + 1

2
β |Ψ|4 , (T ≈ Tc) . (4.2.41)

Substituting in (4.2.41) the values obtained holographically earlier in this section

for |Ψ|, α and β, we have

∆fGL = − 1

8 q C0Tc

O2
3

ξ20
. (4.2.42)

In figure (4.18) we show the behaviour of ∆fGL as a function of temperature,

for the q = 4 case. We then compare both free energy differences ∆f and ∆fGL.

Figure (4.19) compares the free energies computed by the two different methods.

We see that there is an excellent agreement, showing that both descriptions

should be more accurate near the critical temperature. In figure (4.20) we show

the ratio ∆f/∆fGL as a function of temperature, for the q = 4. We find that

the ratio reaches the constant value ∼ 0.99 at T = Tc. Moreover, this value of

the ratio at T = Tc is found to be the same for all values of q considered. This

is shown in figure (4.21), where the value of the ratio ∆f/∆fGL evaluated at Tc

is shown for different values of q.

It is interesting to compare the present results with the results of [15] for

a d = 3 + 1-bulk system. The authors in this paper, using a rather different

method, performed a fit of the free energy using the Ginzburg-Landau form

(4.2.41) with the corresponding order parameter Oi. By doing this, they obtain

near-Tc expressions for α and β as functions of temperature which agree with
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Figure 4.22: Near-Tc comparison of the Ginzburg-Landau parameters α and

β obtained through the method developed in [15] (dashed line) and through

our current Ginzburg-Landau approach (bold line), for the case q = 4. The

parameters computed through [15] are presented only to linear level in T .

the results of standard Ginzburg-Landau theory. Applying the same procedure

to fit the free energy in our d = 4 + 1 bulk dimensional system7, we find that,

in the particular q = 4 case, the Ginzburg-Landau parameters α and β behave

near-Tc and up to lineal level in T as

|α| = 4.41 (1− T/Tc) , β = 10.95 + 36.75 (1− T/Tc) , (4.2.43)

Meanwhile, in our current Ginzburg-Landau approach, the parameters α and β,

which are computed through equations (4.2.24) and (4.2.28) respectively, can be

expressed near-Tc and up to linear level in T as

|αGL| = 4.45 (1− T/Tc) , βGL = 11.23 + 35.2 (1− T/Tc) . (4.2.44)

Comparing (4.2.43) and (4.2.44) we see that near Tc both results are quantita-

tively very similar. In figures (4.22a) and (4.22b) we show how the expressions

7I order to apply the methods developed in [15], we note that our system is a d = 4 + 1

dimensional version of the model they work with, with no spatial component of the gauge field

(superfluid velocity ξ = 0, in the authors notation), and that we are working in the canonical

ensemble while in [15] the authors consider the grand canonical ensemble.
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(4.2.43) for α and β obtained through the methods used in [15] compare near-Tc

with the parameters computed by our Ginzburg-Landau approach. Observing

this good agreement between both results, we conclude that the methods devel-

oped in [15] and in this chapter can be viewed as complementary. We notice

that, in the Ginzburg-Landau approach, the whole functional dependency of α,

β and the free energy on T is contained entirely on simple combinations of O2
3

and ξ20 , which arise naturally when looking for consistency.

4.3 Constant External Magnetic Field

4.3.1 A Constant Magnetic Field Background

We will now introduce a uniform external magnetic field into our model. To do

this, we use the procedure described in [16] to build perturbatively an asymptotically-

AdS fixed magnetic background. The starting point is a d = 4 + 1 Einstein-

Maxwell action with a negative cosmological constant

S =

∫
d5x

√
−g
(
R+

12

L2
− 1

4
F 2

)
. (4.3.1)

We consider a magnetic ansatz for the gauge field

A = ϕ(r)dt+
B

2
(−x2dx1 + x1dx2) , (4.3.2)

which means that we will have a constant external magnetic field pointing in

the x3-direction of the dual field theory, given by Fx1,x2 = B. For the metric,

we propose the ansatz

ds2 = −g(r)dt2 + dr2

g(r)
+ e2V (r)

(
dx21 + dx22

)
+ e2W (r)dx23 . (4.3.3)

Such an ansatz has a SO(2) isometry in the x1−x2 plane, and is invariant under

translations in the x3 direction, due to the fact that the magnetic field will define

a preferred direction in the (x1, x2, x3) space. We will look for asymptotically

AdS black hole solutions for the metric. The Einstein equations for this system
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are

Rµν + gµν

(
1

12
F 2 +

4

L2

)
+

1

2
F λ
µ Fνλ = 0 . (4.3.4)

Substituting the ansatz (4.3.2) and (4.3.3) into these equations, we get

2V ′2 +W ′2 + 2V ′′ +W ′′ = 0 , (4.3.5)

B2

2
e−4V +

(
g (V −W )′

)′
+ g (2V −W )′ (V −W )′ = 0 , (4.3.6)

−B
2

3
e−4V − 2

3
ϕ′2 − 8

L2
+ g′ (2V +W )′ + g′′ = 0 , (4.3.7)

while the gauge field equation is given by

(2V +W )′ ϕ′ + ϕ′′ = 0 . (4.3.8)

One then considers the following expansion in powers of B around B = 0,

up to second order:

g(r) = g0(r) +B2g2(r) + . . . (4.3.9)

V (r) = V0(r) +B2V2(r) + . . . (4.3.10)

W (r) = W0(r) +B2W2(r) + . . . (4.3.11)

ϕ(r) = ϕ0(r) +B2ϕ2(r) + . . . . (4.3.12)

As described in [16], this expansion is reliable for B ≪ T 2. The B0-order

equations are solved by the usual AdS Reissner-Nordström solution:

ϕ0(r) =
1

2
− ρ

r2
, (4.3.13)

g0(r) =
r2

L2
+

ρ2

3r4
−

3r6h + L2ρ2

3L2r2hr
2

, (4.3.14)

V0(r) = W0(r) = log r . (4.3.15)

From now on, we will set L = 1, following our previous convention. The B2-order

equations are: (
r2 (2V2 +W2)

′)′ = 0 , (4.3.16)

1

2r
+
(
r3g0 (V2 −W2)

′)′ = 0 , (4.3.17)

− 1

3r
+
(
r3g′2

)′
+ r3g′0 (2V2 +W2)

′ = 0 , (4.3.18)

2ρ (2V2 +W2)
′ +
(
r3ϕ′2

)′
= 0 . (4.3.19)
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4.3. Constant External Magnetic Field

From (4.3.16), demanding that V2 and W2 vanish at infinity and be regular

at the horizon, we obtain

2V2 +W2 = 0. (4.3.20)

Substituting this result in (4.3.19), and demanding that ϕ2 vanishes at both the

horizon and infinity, we have ϕ2 = 0. Also, from (4.3.18) and demanding that

g2 vanishes also at the horizon and infinity, the solution for g2 is

g2(r) = − 1

6r2
log

(
r

rh

)
. (4.3.21)

Finally, from equation (4.3.17) we get

V2(r) = −1

6

∫ r

∞
dr′

log (r′/rh)

r′3g0(r′)
. (4.3.22)

and W2 given by (4.3.20). From the solution up to second order in B for g(r)

g(r) = r2 +
ρ2

3 r4
−

3 r6h + ρ2

3r2r2h
− B2 log (r/rh)

6 r2
, (4.3.23)

we can obtain the Hawking temperature of the system

TH =
24 r6h − 4ρ2 −B2 r2h

24π r5h
. (4.3.24)

Since we will continue to work in the canonical ensemble, we will set ρ = 1 for

the remainder of this section.

4.3.2 Droplet solution and critical magnetic field

We will now turn on a small scalar field in the fixed background given by the

solutions constructed in the previous subsection. This will be analogous to the

analysis made by [7, 101] in a d = 3 + 1 AdS. (For other, less conventional

models, see e.g. [23].) We propose an ansatz for the scalar field

Ψ(r, u) =
1√
2
R(r)U(u) , (4.3.25)

where we have made the change to cylindrical coordinates dx21 + dx22 = du2 +

u2dθ2. The equation (4.1.2) turns to be separable in this case, resulting in the
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4.3. Constant External Magnetic Field

equations

U ′′ +
1

u
U ′ +

(
λ−B2q2u2

)
U = 0 , (4.3.26)

R′′ +

(
g′

g
+

3

r

)
R′ +

1

g

(
q2ϕ2

g
− e−2V λ−M2

)
R = 0 , (4.3.27)

where λ is the separation constant, and must be equal to λn = n q B in order for

U(u) to be finite as u→ ∞. We choose the n = 1 mode, since this corresponds

to the most stable solution [7, 101]. In this case, the solution for (4.3.26) is a

gaussian function

U(u) = exp

(
−q B

4
u2
)
, (4.3.28)

which is the same result obtained in [7] for a d = 3 + 1-dimensional bulk.

Substituting λ1 in (4.3.27) and changing to the z = rh/r coordinate, we get

R′′ +

(
g′

g
− 1

z

)
R′ +

r2h
g z4

(
q2ϕ2

g
− 2 q B e−2V −M2

)
R = 0 , (4.3.29)

from where we derive the boundary regularity condition

R′(1) =
r2h
g′(1)

(
2 q B e−2V (1) +M2

)
R0 , (4.3.30)

where R0 = R(1). Again, we choose M2 = −3, which gives the asymptotic

behaviour

R = O1
z

rh
+O3

z3

r3h
+ . . . . (4.3.31)

Since we will not be concerned about the absolute normalization of O3, we will

take advantage of the linearity of (4.3.29) and set R0 = 1. This will leave B and

rh as the only input parameters in the equation. As in the previous section, we

will choose to setO1 = 0 and solve the differential equation (4.3.29) enforcing this

choice through the shooting method. This leaves rh, and therefore TH in (4.3.24),

as the only free parameter of the system and will allow us to determine the value

of B as a function of temperature. This magnetic field Bc will correspond to

the value above which superconductivity is broken. From the holographic point

of view, the critical magnetic field obtained above measures an instability of the
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Figure 4.23: Value of the critical magnetic field BDK
c as a function of tempera-

ture, for different values of q.
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4.3. Constant External Magnetic Field

bulk scalar field ψ. Indeed, from the effective mass of the scalar field

M2
eff =M2 − q2

g
Φ2 +

q2

4
e−2V u2B2 , (4.3.32)

we see that the magnetic term has an opposite sign to the electric term, which

is responsible for lowering the effective mass below the Breitenlohner-Freedman

bound and making the field tachyonic. The sign difference means then that

the magnetic term lowers the critical temperature under which the scalar field

becomes unstable [102]. We will refer to the critical magnetic field obtained in

this section as BDK
c , in order to distinguish it from the critical magnetic field as

given by Ginzburg-Landau theory, BGL
c , which was introduced in the preceding

section.

In figures (4.23a)-(4.23c) we show the value of the critical magnetic field BDK
c

for the cases q = 1 , 3 , 6. We only show the region near the critical temperature

where our approximation is valid. The divergence of BDK
c as the temperature

moves away from Tc is typical of the no-backreaction approach we are using, as

observed in [102].

Finally, we find numerically that near-Tc the critical magnetic field BDK
c

behaves as

BDK
c ∼ BDK

0 (1− T/Tc) , (4.3.33)

in accordance to mean field theory. The behaviour of the factor BDK
0 as a

function of the scalar field charge q is shown in figure (4.24). For large q, one

finds numerically that BDK
0 ∼ q−1/3.

It is interesting to note that the critical magnetic fields BGL
c and BDK

c mea-

sure different aspects of the response of the system to a magnetic field: with

BDK
c measuring an instability in the scalar bulk field, and BGL

c arising from

a balancing between the condensate part and the purely magnetic part of the

free energy according to Ginzburg-Landau theory. We found that near Tc both

critical magnetic fields behave as ∼ (1− T/Tc). Explicitly

BDK
c ∼ BDK

0 (1− T/Tc) , BGL
c ∼ BGL

0 (1− T/Tc) , (4.3.34)
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Figure 4.24: Behaviour of the near-Tc coefficient BDK
0 as a function of the scalar

field charge q.
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Figure 4.25: Behaviour of the ratio BGL
0 /BDK

0 as a function of the scalar field

charge q. The dashed line corresponds to the asymptotic limit ∼ 1.1

with

BGL
0 ≡

√
π

qC0Tc
AqO2

0 . (4.3.35)

(See equation (4.2.38).) Since we know that for large q we have Aq ∼ q1/3,

Tc ∼ q1/3 and O0 ∼ q0, then we conclude that, in this limit, BGL
0 ∼ 1/q1/3 (or

equivalently, BGL
0 ∼ 1/Tc) and thus, we find that both BDK

0 and BGL
0 have the

same large-q behaviour. Indeed, this can be seen in figure (4.25), where we show
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4.3. Constant External Magnetic Field

the ratio BGL
0 /BDK

0 as a function of the scalar field charge q, and where we find

numerically that it tends asymptotically to the constant value ∼ 1.1.
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5

Bottom-Up Approach, Part II:

Magnetic Phenomena in

Holographic Superconductivity

with Lifshitz Scaling

Having developed in the previous chapter the main framework for a Ginzburg-

Landau approach to holographic superconductivity, in this chapter we will be

applying this effective approach to holographic superconducting models with

Lifshitz scaling. In very general terms, the usual models of holographic super-

conductivity are built around a local gauge group symmetry breaking by one of

the component fields in the gravity side, where the gravitational solution is an

asymptotically AdS charged black hole. This symmetry breaking in the gravity

side signals the beginning of a superconducting phase in the dual field theory.

(See, e.g. [83, 7].) It has been found, however, that in some condensed mat-

ter systems phase transitions are governed by Lifshitz-like fixed points. These
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exhibit the particular anisotropic spacetime scaling symmetry

t→ λzt , x→ λx , (5.0.1)

where z is the Lifshitz dynamical critical exponent governing the degree of

anisotropy. This anisotropy breaks Lorentz invariance and the systems are non-

relativistic in nature. Therefore, in order to study such field theories holographi-

cally, the dual gravitational description has to be modified. Indeed, it was found

in [115] that these Lifshitz-like fixed points can be described by the gravitational

dual

ds2 = L2

(
−r2zdt2 + r2dr2 + r2

d∑
i=1

dx⃗2

)
, (5.0.2)

which, for z = 1 reduces back to the usual AdSd+2 metric, but for z ̸= 1 satisfies

the anisotropic scaling (5.0.1). A black hole generalization of this metric was

found in [116].

The purpose of this chapter then is to explore various aspects of holographic

superconductivity with Lifshitz-like fixed points, with a particular focus on mag-

netic phenomena. We do this by starting from a minimal bulk model and by

studying various choices of condensates. More concretely, we want to investi-

gate how the dynamical critical exponent z affects our system with respect to

its behavior in the isotropic z = 1 case. Most of the existing research on the

subject was realized in D = 4. See, for instance [117, 118, 119, 120, 121]. In

[122], the authors do make an interesting treatment of the D = 5 case, but

have their interest put mainly on studying different kinds of superconductors

(s-wave, p-wave, soliton) and on the computation of condensation and conduc-

tivity. Regarding the study of magnetic effects in a Lifshitz background, we note

in particular [123, 18]. In the first reference the authors also treat the D = 5

case, but using a different condensate as the ones we will propose, and with a

focus on the applicability of the matching method.

In this respect, in this chapter we see that it is possible to have a consistent

Ginzburg-Landau phenomenological approach to holographic superconductivity
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5.1. Minimal Holographic Superconductor in Lifshitz Background

[12] in a Lifshitz background. We then apply this Ginzburg-Landau approach

to compute, among other physical quantities, the Ginzburg-Landau parameter

of the system, and to see how it is affected by the dynamical critical exponent

z. We will also study the effect of an external magnetic field acting directly

on the system, using the approach proposed in [17]. In order to have a more

complete study of the system’s properties, we managed to study a wide array

of condensation cases, always within the D = 5 framework, so that the general

tendencies in the behavior of physical quantities become more clear.

5.1 Minimal Holographic Superconductor in Lifshitz Back-

ground

5.1.1 General Setup

As mentioned in the Introduction, the D=d+2 gravitational dual (5.0.2) can

be generalized to a black hole solution [116]

ds2 = L2

(
−r2zf(r)dt2 + dr2

r2f(r)
+ r2

d∑
i=1

dx2i

)
, (5.1.1)

where

f(r) = 1−
rz+dh

rz+d
, (5.1.2)

and where rh is the horizon of the black hole. The Lifshitz dynamical critical

exponent can take values 1 ≤ z ≤ d. The gravitational solution (5.1.1) can be

obtained from the action [124]

S =
1

16πGd+1

∫
dd+2x

√
g

(
R+ Λ− 1

2
(∂φ)2 − 1

4
eλφF2

)
, (5.1.3)

with the action-extremizing solution for the fields

Frt = qe−λφ , eλφ = rλ
√

2(z−1)d ,

λ2 =
2d

z − 1
, q2 = 2L2(z − 1)(z + d) ,

Λ = −(z + d− 1)(z + d)

2L2
, (5.1.4)
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5.1. Minimal Holographic Superconductor in Lifshitz Background

For the remaining of the chapter we will set L2 = 1. We will also prefer to work

with the coordinate u = rh/r. This change of coordinates gives

ds2 = −
r2zh f(u)

u2z
dt2 +

1

u2f(u)
du2 +

r2h
u2

d∑
i=1

dx2i , (5.1.5)

where

f(u) = 1− uz+d , (5.1.6)

and the Hawking temperature is

TH =
(z + d)

4π
rzh . (5.1.7)

It is therefore the action (5.1.3) that will provide us the gravitational Lifshitz

background (5.1.5)-(5.1.6). We will now construct our minimal phenomenologi-

cal model of holographic superconductivity by adding to (5.1.3) the action term

Sm =

∫
dd+2x

√
−g
(
−1

4
F 2 − |DΨ|2 −m2 |Ψ|2

)
, (5.1.8)

where we have introduced a charged scalar field Ψ and a U(1) gauge field Aµ,

following [7], and where Fµν = ∂µAν − ∂νAµ, and Dµ = ∇µ − iAµ. We will

assume that there is negligible interaction with the gravitational background and

therefore it remains fixed and given by the Lifshitz black hole solution (5.1.5)-

(5.1.6). This lack of back reaction means we are effectively working in the probe

limit (very large scalar field charge). As we will explain below, the scalar field

mass will be chosen so as to get particular dimensions for the condensate under

study.

The general equations of motion for these fields are

D2Ψ = m2Ψ , (5.1.9)

∇µF
µν = Jν + |Ψ|2Aν , (5.1.10)

where

Jµ = i (Ψ∗∇µΨ−Ψ∇µΨ
∗) . (5.1.11)
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5.1. Minimal Holographic Superconductor in Lifshitz Background

We propose the following ansatz for the component fields

Ψ(u) =
1√
2
ψ(u) , A = ϕ(u)dt , (5.1.12)

where ψ(u) is a real function. Under this ansatz the equations of motion (5.1.9)-

(5.1.10) become

ψ′′ +

(
f ′

f
− d+ z − 1

u

)
ψ′ − 1

u2f

(
m2 − u2zϕ2

r2zh f

)
ψ = 0 , (5.1.13)

ϕ′′ − d− z − 1

u
ϕ′ − ψ2

u2f
ϕ = 0 . (5.1.14)

This system of equations admits the no-hair solution ψ(r) = 0. In this case the

gauge field has solutions

ϕ(u) = µ− ρ
ud−z

rd−zh

, (z ̸= d) , (5.1.15)

ϕ(u) = µ− ρ log

(
ξrh
u

)
, (z = d) , (5.1.16)

where ξ is a constant. This no-hair solution will correspond to the normal phase

of the superconductor. The superconducting phase will be given by solutions

with ψ(u) ̸= 0. From the equations of motion (5.1.13)-(5.1.14) we see that the

asymptotic u→ 0 behavior of the fields is

ψ(u) ≈ O−
u∆−

r
∆−
h

+O+
u∆+

r
∆+

h

+ · · · , (5.1.17)

and

ϕ(u) ≈ µ− ρ
ud−z

rd−zh

+ · · · , (z ̸= d) , (5.1.18)

ϕ(u) ≈ µ− ρ log

(
ξrh
u

)
+ · · · , (z = d) , (5.1.19)

with

∆± =
1

2

(
(z + d)±

√
(z + d)2 + 4m2

)
, (5.1.20)

from where we get the BF-bound on the mass

m2 ≥ −(z + d)2

4
. (5.1.21)
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5.1. Minimal Holographic Superconductor in Lifshitz Background

According to the AdS/CFT dictionary, the asymptotic coefficient O+ corre-

sponds to the vacuum expectation value of an operator of dimension ∆+, while

O− corresponds to a source in the boundary theory. Meanwhile, µ and ρ corre-

spond to the chemical potential and the charge density of the dual field theory,

respectively. In order to solve Eqs. (5.1.13)-(5.1.14) we will impose the regular-

ity condition at the horizon ϕ(u = 1) = 0. Also, from Eq. (5.1.13) we obtain

the additional condition at u = 1

ψ′(1) =
m2

f ′(1)
ψ(1) . (5.1.22)

Additionally, in order to simplify the numerical calculations, we will make use

of the scaling symmetries

r → ar , t→ 1

az
t , xi →

1

a
xi , g → a2g , ϕ→ azϕ . (5.1.23)

As explained in the Introduction, we will focus on the particular case D =

5. This means we will take d = 3. When looking for hairy solutions to the

equations of motion one has two possible boundary conditions at u→ 0 (5.1.17).

Having set either one of these boundary conditions, one can proceed to solve the

equations of motion through the shooting method.

5.1.2 Different Cases of Condensation

Going back to the allowed values for the dynamical critical exponent, we see

that for the D = 5 case we can have 1 ≤ z ≤ 3. Throughout this chapter,

for both brevity and simplicity, we will choose to work with the integer values

z = 1, 2. This suits perfectly our primary objective, stated in the Introduction,

which is to have a general idea of how the dynamical critical exponent z affects

our holographic superconductor with respect to its behavior in the usual (z = 1)

isotropic realization of the gauge/gravity duality. As will be seen in the following,

the general tendency in the behavior of the physical quantities of the system will

be very clear when treating these values.
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In order to have a more comprehensive study of the effect of the dynamical

critical exponent z on our holographic superconductor, we will choose to work

in the following cases:

• Case I. We set the value of the scalar field mass as

m2 = −3 z . (5.1.24)

In this way, we have

∆− = z , ∆+ = 3 , (5.1.25)

so that the asymptotic behavior of the scalar field at u→ 0 is

ψ(u) ≈ Oz
uz

rzh
+O3

u3

r3h
+ · · · . (5.1.26)

In this case, we will set Oz = 0 for all values of z considered, so that the

superconducting order parameter of the system will be given by O3 of dimension

3.1

• Case II. We set the scalar mass as

m2 = −(z + 2) . (5.1.27)

This choice of mass results in

∆− = 1 , ∆+ = z + 2 , (5.1.28)

so that near u→ 0 we have

ψ(u) ≈ O1
u

rh
+Oz+2

uz+2

rz+2
h

+ · · · . (5.1.29)

Here we will choose to set Oz+2 = 0 and the order parameter of the supercon-

ductor will be given by O1 of dimension 1.

We must point out that, even though the O1 mode is non-normalizable (it

has the lowest dimension), it is useful to also study the case of the alternative

1The same condensate was used in [122], but magnetic properties were not studied in that

paper.
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boundary condition where Oz+2 = 0. Indeed, our main focus is to have a

general insight on the way the critical dynamical parameter z alters the system

with respect to its isotropic behavior, and, as will be seen in the following, the

study of this mode will allow us to do just that, confirming all the results and

phenomenology obtained in Case I.

In figures (5.1)-(5.2) we show the value of the condensate O∆ as a function

of temperature for each one of the cases described above. We notice that the

near-Tc the condensate behaves as

O∆ ∼ (1− T/Tc)
1/2 , (5.1.30)

for all values of z. Therefore, the dynamical critical exponent does not alter the

mean-field theory behavior of the order parameter. In Table (5.1) we show the

value of the critical temperature Tc for our different cases. We notice that the

value of the critical temperature decreases with z for all cases, and therefore a

large dynamical critical exponent inhibits superconduction.

Comparing figs. (5.1a) and (4.1), we can notice a difference in the value of

Tc, even though for Case I, z = 1, we are dealing with the same system and

studying the same condensate O3. The reason for this difference is that in the

present case we are dealing with a fixed background (the probe limit), while in

Chapter 4 we considered full backreaction. Indeed, backreaction has the property

to lower the value of Tc [7]. This can be observed in figure (4.3), where the

dashed line corresponds closely to the probe limit. According to the analytical

approximation to the critical temperature given by (4.1.22) obtained through the

matching method, the probe limit value of Tc at q = 1 is ∼ 0.201, while here we

have obtained numerically ∼ 0.198, showing good agreement within numerical

limits.
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Value of the condensate O∆ as a function of temperature, for

different cases.
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Figure 5.1: Case I.
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Figure 5.2: Case II.
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5.2. Field Fluctuations

Table 5.1: Value of critical temperature Tc, for different cases.

Tc/ρ
z/3 z = 1 z = 2

Case I 0.198 0.087

Case II 0.517 0.351

5.2 Field Fluctuations

5.2.1 Gauge Field Fluctuation

In this section we will add small fluctuations to the component fields of our

model. As explained before, we will set d = 3. We begin by adding the following

gauge field fluctuation

A = ϕ(u)dt+ δAx(t, u, y)dx , (5.2.1)

where

δAx(t, u, y) = e−iωt+ikyAx(u) . (5.2.2)

The corresponding equation of motion for Ax(u) is, to linear order

A′′
x +

(
f ′

f
− d− z − 3

z

)
A′
x +

(
u2z−2ω2

r2zh f
2

− k2

r2hf
− ψ2

z2f

)
Ax = 0 . (5.2.3)

We will consider the case where ω and k are much smaller than the scale of the

condensate (low-frequency/small-momentum regime), so that quadratic terms

in k, ω in (5.2.3) can be neglected. Demanding regularity at the horizon u = 1,

from (5.2.3) we have the following conditions

Ax(1) = Ax0 , A′
x(1) =

ψ2
0

f ′(1)
Ax0 . (5.2.4)

where ϕ′(1) ≡ ψ0. Since Eq. (5.2.3) is linear, we will set Ax0 = 1 without loss

of generality.

From (5.2.3) we see that the asymptotic behavior of Ax at u→ 0 is

Ax(u) ≈ A(0)
x + Jx

ud+z−2

rd+z−2
h

+ · · · (5.2.5)
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According to the AdS/CFT dictionary, A
(0)
x corresponds to a vector potential in

the dual field theory, while Jx corresponds to its conjugate current [7]. We can

relate both physical quantities through the London equation

Jx = − 1

m s
nsA

(0)
x , (5.2.6)

where ns is the superconducting carrier density number and ms is the supercon-

ductor carrier mass. For simplicity we define the quantity

ñs ≡
1

ms
ns , (5.2.7)

which can be computed holographically from (5.2.5) and (5.2.6) as ñs = −Jx/A(0)
x .

In figures (5.3)-(5.4) we show the value of ñs as a function of temperature, for

different cases. We find that ñs behaves near-Tc as

ñs ∼ (1− T/Tc) . (5.2.8)

It is found numerically that the ratio of O2
∆/ñs as a function of tempera-

ture behaves almost constantly and has a definite value at T = Tc that varies

according to the value of z within a specific case of condensation. We define this

ratio at Tc as
O2

∆

ñs
= Cz . (5.2.9)

We show in Table (5.2) how the constant Cz varies for different cases. In figure

(5.5) we show this ratio as a function of temperature, for Case I, z = 1, and

Case II, z = 1. We can observe that the ratio behaves almost like a constant

with respect to T . The fact that O2
∆ and ñs have the same temperature be-

haviour can be shown in a similar way as we did in the previous chapter, using

the matching method. The ratio (5.2.9) will be important in the next section,

when we apply the Ginzburg-Landau interpretation to our system.

5.2.2 Scalar Field Fluctuation

We now consider a small fluctuation to the scalar field of the form

Ψ =
1√
2
(ψ(u) + δψ(u, y)) , (5.2.10)
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Value of ñs as a function of temperature, for different cases.
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Figure 5.5: Value of the ratio O2
∆/ñs as a function of temperature, for different

cases.

Table 5.2: Value of Cz for different cases.

Cz/ρ
(2∆−z−1)/3 z = 1 z = 2

Case I 8.272 2.068

Case II 0.297 0.032

with

δψ(u, y) = eikyη(u) . (5.2.11)

The corresponding equation of motion is

η′′ +

(
f ′

f
− (d+ z − 1)

u

)
η′ − 1

u2f

(
m2 − u2zϕ2

r2zh f
+
u2

r2h
k2
)
η = 0 , (5.2.12)

where we set d = 3. Demanding regularity at the horizon u = 1, from (5.2.12)

we have the following conditions

η(1) ≡ η0 , η′(1) =
1

f ′(1)

(
m2 +

k2

r2h

)
η0 , (5.2.13)

while at u→ 0 we have the asymptotic behavior

η(u) ≈ (δO−)
u∆−

r
∆−
h

+ (δO+)
u∆+

r
∆+

h

+ · · · (5.2.14)
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When solving equation (5.2.12) we set the same boundary conditions at u → 0

as for the field ψ. Since we will not be concerned about the normalization of η,

we set η0 = 1.

Following [110], we can compute holographically the correlation length of

the boundary operator by calculating the wave number k. Indeed, the correla-

tion length ξ0 is the inverse of the pole of the correlation function of the order

parameter written in Fourier space

⟨O(k)O(−k)⟩ ∼ 1

|k|2 + 1/ξ20
. (5.2.15)

Following the same method as in Chapter 4, we obtain the wave number k by

solving Eq. (5.2.12) as an eigenvalue problem consistent with the boundary

conditions. This is done near the critical temperature. Once having computed

k, one obtains the correlation length simply as

|ξ0| =
1

|k|
. (5.2.16)

In figures (5.6)-(5.7) we show the value of k as a value of temperature for our

different cases. Also, in figures (5.8)-(5.9) we show the value of ξ0 as a function

of temperature, for our cases. We find that near the critical temperature, k ∼

(1− T/Tc)
1/2, and equivalently

ξ0 ∼
1

(1− T/Tc)
1/2

, (5.2.17)

for all values of z, which is in agreement with mean field theory.

5.3 Ginzburg-Landau Approach

At this point we implement a phenomenological Ginzburg-Landau approach to

our holographic superconductor, following [12]. The main assumption of this

approach is that the dual field theory can be described near the critical temper-

ature by the effective action

Seff ≈
∫
d4x

{
α |ΨGL|2 +

β

2
|ΨGL|4 +

1

2ms
|DΨGL|2 + · · ·

}
. (5.3.1)
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Value of the wave number k as a function of temperature, for

different cases.
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Value of the correlation length ξ0 as a function of temperature, for

different cases.
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5.3. Ginzburg-Landau Approach

where the component fields are a scalar field ΨGL representing the order parame-

ter of the theory, and a vector field Aµ, with µ = 0, ..., 3 and where Di = ∂i−iAi.

Also, ms is the superconductor carrier mass and α, β are phenomenological pa-

rameters with temperature dependence. According to the AdS/CFT dictionary,

the vector field components A0 and Ax correspond to the chemical potential µ in

(5.1.18) and to vector potential A
(0)
x in (5.2.5) respectively. According to mean

field theory, the order parameter |ΨGL| has critical exponent 1/2. In order to

match this critical exponent with that of O∆ we propose the identification

|ΨGL|2 = NzO2
∆ , (5.3.2)

where Nz is a proportionality constant that depends on z and changes according

to every model we consider.

In the remaining of this chapter, we adopt the same notation and conventions

of [12]. In particular, the superconducting carrier mass ms can be absorbed

in definitions of the other parameters in Ginzburg-Landau theory, and we can

therefore safely set ms = 1. Going back to (5.2.7), this means in particular that

ñs = ns and the numerical formula (5.2.9) can be written as

O2
∆

ns
= Cz . (5.3.3)

However, according to Ginzburg-Landau theory, one has the following relation

between the order parameter |ΨGL| and the charge carrier density ns

|ΨGL|2 = ns . (5.3.4)

Then, substituting (5.3.4) and our identification (5.3.2) in (5.3.3) we obtain

Nz =
1

Cz
. (5.3.5)

In Table 5.3 we show the value of the proportionality constant Nz for various

cases.

We can also calculate the penetration length λ of the superconductor, defined

as

λ =
1√
4πns

. (5.3.6)
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5.3. Ginzburg-Landau Approach

Table 5.3: Value of Nz for different cases.

ρ(2∆−z−2)/3Nz z = 1 z = 2

Case I 0.121 0.484

Case II 3.367 30.986

In figures 5.10-5.11 we show the value of λ as a function of temperature, for our

different cases. As in the case of ξ0, we have that the behavior of λ at T ≈ Tc is

λ ∼ 1

(1− T/Tc)1/2
, (5.3.7)

for all z. This result is in agreement with mean field theory.

In order to have a consistent Ginzburg-Landau description of the dual field

theory, we must be able to determine by holographic methods the parameters |α|

and β. Regarding |α|, we can determine it directly from the Ginzburg-Landau

theory relation2

|α| = 1

4ξ20
. (5.3.9)

In figures (5.12)-(5.13) we show the value of |α| as a function of temperature,

for our various cases. We see that the near-Tc behavior of |α| is

|α| ∼ α0 (1− T/Tc) , (5.3.10)

which is in agreement with usual Ginzburg-Landau theory, for all z. We find

numerically that the value of the coefficient α0 decreases as the value of z raises.

The remaining phenomenological parameter β can be computed through the

2The actual Ginzburg-Landau theory relation is

|α| = ~2

2msξ2
, (5.3.8)

where ξ is the Ginzburg-Landau coherence length. The coherence length is in turn related to

the correlation length ξ0 as ξ2 = 2ξ20 . See (1.1.25) and below.
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Value of the penetration length λ as a function of temperature, for

different cases.
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Figure 5.11: Case II.
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Value of the parameter α as a function of temperature, for different

cases.
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Figure 5.13: Case II.
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Ginzburg-Landau theory relation

|Ψ∞|2 = |α|
β
. (5.3.11)

where |Ψ∞| is the value of the condensate deep inside the superconductor, where

external fields and gradients are negligible. Since we are in the limit of small

field perturbations, we indeed find ourselves in that approximation. Substituting

(5.3.2) and (5.3.9) in (5.3.11) we obtain the following expression

β =
1

4Nz

1

O2
∆ξ

2
0

. (5.3.12)

In figures (5.14)-(5.15) we show the behavior of β as a function of temperature,

for our different condensation cases. We observe that, near-Tc, β behaves in

agreement with Ginzburg-Landau theory, having a definite value at T = Tc. We

also observe that this value decreases as the value of z raises.

Having calculated the characteristic lengths of the system ξ0 and λ, we can

compute the Ginzburg-Landau parameter κ, defined as

κ =
λ

ξ
, (5.3.13)

where ξ is the Ginzburg-Landau coherence length, which is related to our cor-

relation length ξ0 as ξ2 = 2ξ20 . (See [12].) In figures (5.16)-(5.17) we show how

the Ginzburg-Landau parameter κ behaves as a function of temperature, for our

different cases. We notice that all plots have a definite value at T = Tc. We

will take this to be the value of κ of our holographic superconductor for each

case considered. The value of κ for different cases is shown in Table 5.4. We

note that all values of κ are lower than 1/
√
2 ∼ 0.707 for all cases of z consid-

ered, which means that our system behaves always as a Type I superconductor.

Also, we notice that the value of κ is always lower for z = 2, which means that

in holographic superconductors with higher dynamical critical exponent, vortex

formation is more strongly unfavored energetically and has a stronger Type I

behavior.
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Value of the parameter β as a function of temperature, for different

cases.
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Value of the Ginzburg-Landau parameter κ as a function of

temperature, for different cases.
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Figure 5.16: Case I.
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Table 5.4: Value of the Ginzburg-Landau parameter κ, for different cases.

κ z = 1 z = 2

Case I 0.527 0.467

Case II 0.070 0.002

To finalize this section, let us change our point of view on our bulk model

(5.1.8) and give it a different physical interpretation in the dual field theory.

Indeed, instead of studying our system as a model for a dual superconducting

system, let us consider the case when we keep the U(1) symmetry ungauged

in the boundary field theory, keeping it thus global. By proceeding in this

fashion, our same gravity system will instead be considered a model of holo-

graphic superfluidity [125, 15]. Since standard Ginzburg-Landau theory makes

some precise predictions about superfluid phenomenology, we can therefore use

this holographic superfluid interpretation to test the consistency of our current

Ginzburg-Landau approach and to see how this phenomenology is altered by the

presence of the dynamical exponent z. As an example, we will compute the the

critical supercurrent Jc and will verify that its near-Tc functional dependency

on the temperature is in precise agreement with the usual formulas derived from

GL theory of the superfluid.

To introduce the critical supercurrent in this new holographic superfluid

context, we must first go back to equation (5.2.3), which, having neglected the

terms in ω and k, is just a homogeneous (only u-dependent) equation for Ax.

In holographic superfluidity, switching on a nonzero Ax(u) corresponds, as de-

scribed first in [125, 15], to turning on a supercurrent in the system . In that

context, the asymptotic coefficient A
(0)
x in (5.2.5) corresponds to the source,

or superfluid velocity vx, while Jx corresponds to the supercurrent. We note

that, since we are considering Ax as a perturbation where the backreaction on
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the fields ψ and ϕ is neglected, then one is effectively switching a perturbative

supercurrent Jx.

The relation between the supercurrent Jx and the superfluid velocity is very

well known in the context of Ginzburg-Landau theory, where it is studied in

the limit where the modulus of the order parameter |ΨGL| has a constant value.

This limit is associated with the physical situation where the charged superfluid

is confined to a thin film. (See, e.g. [29, 125].) Using holographic methods,

the relation between Jx and vx has been previously studied in [126], where the

authors started from a minimal 3+1 dimensional bulk-model in the same spirit

as ours, and considered three fields equivalent to our ψ, ϕ and Ax, and considered

them to be all of the same order and to fully backreact between them3. In the

study of the relation between Jx and vx, one the most important conclusions

they reached is that for temperatures close to Tc, the system has the same

behavior predicted by Ginzburg-Landau theory. Building on this result and on

the essential similarities between our bulk models, we can compute the critical

current Jc, that corresponds to the value of the supercurrent above which the

system passes to the normal phase [29]. According to Ginzburg-Landau theory,

it is given by the general expression

Jc = qs |Ψ∞|2
(
2

3

)3/2
√

|α|
ms

, (5.3.14)

which we can rewrite in terms of our holographically-computed quantities O∆

and ξ0 as

Jc =
1

2Cz

(
2

3

)3/2 O2
∆

ξ0
. (5.3.15)

In figures (5.18)-(5.19) we show the value of Jc as a function of temperature, for

our various cases of condensation. We note that the value of the supercurrent

decreases as the value of z rises. More importantly, we see numerically that the

3For additional studies of the supercurrent density in the presence of a superfluid velocity,

see [127, 128].
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near-Tc behavior of Jc is

Jc ∼ (1− T/Tc)
3/2 , (5.3.16)

which is in accordance with the predictions of usual Ginzburg-Landau theory.

5.4 Constant Magnetic Field

We will now study the effect of an external magnetic field to the superconducting

phase of our models. As done before, we begin with in the general dimensional

case and then focus on D = 5. We follow the procedure developed by [17] and

will proceed in a perturbative fashion by proposing a series expansion for the

component fields

Ψ(x⃗, u) = ϵ1/2Ψ(1)(x⃗, u) + ϵ3/2Ψ(2)(x⃗, u) + · · · (5.4.1)

Aµ(x⃗, u) = A(0)
µ (x⃗, u) + ϵA(1)

µ (x⃗, u) + · · · (5.4.2)

where x⃗ = (x, y), and the expansion parameter is given by

ϵ =
Bc −B

Bc
, ϵ≪ 1 , (5.4.3)

were Bc is the value of the magnetic field that breaks the superconducting phase

(critical magnetic field). Since this expansion is done near the value B = Bc, this

means that we find ourselves near the point where the condensate vanishes. We

substitute expansions (5.4.1)-(5.4.2) in the general equations on motion (5.1.9)-

(5.1.10). The zero order equation for the gauge field is

1
√
g
∂µ

(√
gFµν(0)

)
= 0 , (5.4.4)

and has solutions

A
(0)
t (u) = µ− ρ

ud−z

rd−zh

, (5.4.5)

A(0)
y (x) = Bc x , (5.4.6)
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Value of the critical current Jc as a function of temperature, for

different cases.
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and the rest of spatial components equal to zero: A
(0)
i = 0, i ̸= y. Since the

solution for A
(0)
t is equal to solution (5.1.15), we set the notation A

(0)
t = ϕ, for

simplicity. Meanwhile, the general scalar field equation is

ud+1−z∂u

(
f

uz+d−1
∂uΨ

(1)

)
−
(
m2

u2z
− ϕ2

r2zh f

)
Ψ(1) = − 1

r2hu
2z−2

δIJDIDJΨ
(1) .

(5.4.7)

where I, J = x, y. Eq. (5.4.7) is clearly separable. We follow the standard

treatment and propose

Ψ(1)(x⃗, u) = eipyφ(p)(x, u) , (5.4.8)

so on the right hand side of (5.4.7) we have

δIJDIDJΨ
(1) =

(
∂2x + (∂y − iBc x)

2
)
Ψ(1) = eipy

(
∂2x − (p−Bc x)

2
)
φ(p) ,

(5.4.9)

and we get the following equation

ud+1−z∂u

(
f

uz+d−1
∂uφ

(p)

)
−
(
m2

u2z
− ϕ2

r2zh f

)
φ(p) =

1

r2hu
2z−2

(
−∂2x + (p−Bc x)

2
)
φ(p) .

(5.4.10)

Now, we make the separation

φ(p)
n (x, u) = ρn(u)γ

(p)
n (x) , (5.4.11)

and define the variable

X =
√

2Bc

(
x− p

Bc

)
, (5.4.12)

so that the operator on the right hand side of (5.4.10) becomes[
−∂2x + (p−Bcx)

2
]
= (2Bc)

[
−∂2X +

1

4
X2

]
, (5.4.13)

and acting on γ
(p)
n we have the eigenvalue equation(

−∂2X +
1

4
X2

)
γ(p)n =

λn
2
γ(p)n , (5.4.14)

that has as a solution the eigenfunctions

γ(p)n (x) = e−X
2/4Hn(X) , (5.4.15)
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where Hn are the Hermite polynomials and

λn = 2n+ 1 , n = 0, 1 . . . (5.4.16)

We choose the n = 0 mode, which corresponds to the most stable solution

[7, 17, 101, 129]. As described originally in [17], the more general solution to the

scalar field is given by linear superposition of the solution obtained above, with

different values of p. (We adopt the authors notation in the following). Going

back to (5.4.8), (5.4.11) and (5.4.15), we write our solution explicitly as

Ψ(1) (u, x⃗) = ρ0(u)

∞∑
l=−∞

Cle
iplyγ0 (x; pl) , (5.4.17)

where

γ0 (x; pl) = exp

{
−Bc

2

(
x− pl

Bc

)2
}
, (5.4.18)

and where Cl and pl are chosen explicitly as

Cl = exp

(
−iπa2

a21
l2
)
, pl =

2π
√
Bc

a1
l , (5.4.19)

with a1, a2 real parameters. Solution (5.4.17) can be rewritten as

Ψ(1) (u, x⃗) =
1

L
ρ0(u)e

−Bcx
2

2 ϑ3(υ, τ) , (5.4.20)

where ϑ3(υ, τ) is the elliptic theta function, defined as

ϑ3(υ, τ) =

∞∑
l=−∞

eiπτl
2
e2iπυl , (5.4.21)

and where the variables υ and τ are defined as

υ ≡
√
Bc
a1

(−ix+ y) , τ ≡ 1

a21
(2iπ − a2) . (5.4.22)

Owing to the elliptical theta function ϑ3, the scalar field solution Ψ(1) has

the following pseudo-periodicity in the x− y plane

Ψ(1) (u, x, y) = Ψ(1)(u, x, y + a1) , (5.4.23)

Ψ(1)

(
u, x+

2π√
Bca1

, y +
a2√
Bca1

)
= exp

[
2πi

a1

(√
Bcy +

a2
2a1

)]
Ψ(1) (u, x, y) .

(5.4.24)
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Value of the critical magnetic field Bc as a function of temperature,

for different cases.
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Figure 5.20: Case I.
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In addition to this, the ϑ3 function has zeros located periodically at

V⃗ =

(
m+

1

2

)
v⃗1 +

(
n+

1

2

)
v⃗2 , (5.4.25)

where the v⃗i vectors are given by

v⃗1 =
a1√
Bc

∂

∂y
, v⃗2 =

2π√
Bca1

∂

∂x
+

a2√
Bca2

∂

∂y
. (5.4.26)

Thus, the Ψ(1) solution has a lattice profile in the (x − y) plane, spanned

by the vectors v⃗i. We note that, in our given approximation, we will get a 2-

dimensional plane, orthogonal to the remaining (d − 2)-dimensional boundary

space, where the vortices live. We should note that the presence of the vortex

solutions given above does not contradict the fact that our system was found in

the previous section to be Type I4. Indeed, the computation of κ presented above

comes from an energetic analysis, conducted directly from the dual system’s

Ginzburg-Landau action. (See [12].) This shows that, according to Ginzburg-

Landau theory, the formation of the above vortex solutions costs more energy to

the system than the energy needed for the system staying in a superconducting

state. (See, e.g. [29].) To be more specific, the case where B > Bc corresponds

to a physical situation where the energy of the superconducting state is bigger

than that of the normal state, while for B < Bc the inverse situation holds true,

with a phase transition occurring at B = Bc. Furthermore, since our system

was found to be Type I, the phase transition in the magnetic field is first order

and, also as a consequence of being Type I, vortex formation is not energetically

favored. Therefore the system undergoes a phase transition from a homogeneous

superconducting phase to the normal phase as the magnetic field is increased.

Returning to the scalar field equation (5.4.10) and substituting the results

given above, we obtain the following equation for the radial function ρ

ud+1−z∂u

(
f

uz+d−1
∂uρ(u)

)
−
(
m2

u2z
− ϕ2

r2zh f
+

Bc
r2hu

2z−2

)
ρ(u) = 0 , (5.4.27)

4A dynamical approach to vortex solutions in D = 4 can be found in [11], where it was

concluded that, for some values of the system’s parameters, the dual superconducting system

was Type I. For other dynamical approaches, see [106, 130].
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which can be written as

ρ′′ +

(
f ′

f
− d+ z − 1

u

)
ρ′ − 1

u2f

(
m2 − u2zϕ2

r2zh f
+
u2

r2h
Bc

)
ρ = 0 . (5.4.28)

This equation of course has the same behavior at u→ 0 as (5.1.17)

ρ ∼ C−u
∆− + C+u

∆+ , (5.4.29)

with ∆± given by (5.1.20). We set the same boundary conditions at u → 0 as

for the field ψ in (5.1.12). By applying the shooting method to Eq. (5.4.27)

we find the value of the critical magnetic field that breaks the superconducting

phase of the system. In figures (5.20)-(5.21) we show the value of the critical

magnetic field Bc as a function of temperature, for our different cases. We see

that near-Tc the critical magnetic field Bc behaves as

Bc ∼ (1− T/Tc) , (5.4.30)

which is in agreement with mean field theory, for all values of z. We also note by

comparing Eqs. (5.4.28) and (5.2.12), that the procedure to obtain the near-Tc

values of the square of the wave number k and the critical field Bc is the same.

This in turn confirms the relation between the correlation length and the critical

magnetic field put forward in [18]

Bc ≈
1

ξ20
, (T ≈ Tc) . (5.4.31)
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6

Top-Down Approach:

Superconductors from

Superstrings on AdS5 × T1,1.

Having seen in the previous two chapters an example of the phenomenological-

focused bottom-up approach to holographic superconductivity, we now turn our

attention to an example of a top-down model. To summarize, we will consider

holographic superconductors arising from a family of N = 2 supergravity bulk

theories. As it will be shown, there is strong evidence that these theories can in

fact be embedded in 10 dimensional Type IIB superstring theory on AdS5×T 1,1.

Many of the most important properties and motivations of the top-down

approach will become evident in this chapter. The first thing one should no-

tice is that, in building holographic superconducting models from consistent

truncations, we are taking advantage of the fact that superstring theory can be

framed within a relatively wide landscape of gravitational backgrounds. The

most relevant of these is of course given by AdSd × S10−d type backgrounds.

However, as we will show, a different choice of the internal manifold can have a
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dual superconducting interpretation. Moreover, one can speculate that certain

universal properties of holographic superconductors could be intimately related

to a certain class of internal manifolds chosen in the Kaluza-Klein compactifi-

cations. Another commonly appearing property in top-down models is the fact

that one usually has a very good description of the dual field theory operators.

Indeed, this is the case for the system studied in the present chapter, where

we argue that the dual field theory operators are well defined operators belong-

ing to Klebanov-Witten superconformal field theory [131]. Generally speaking,

detailed knowledge of the dual operators is a very desirable property from the

condensed matter theory point of view, since it may help to shed some light on

the microscopic details of the condensing operators.

In the case of AdS5 × S5, the dual field theory in the boundary is given

by N = 4 Super Yang Mills in four dimensions. Meanwhile, at large t’Hooft

coupling the bulk dual is given by five dimensional N = 8 supergravity. In this

case, it is the main result of the gauge/gravity duality to be able to identify

the fields living in the bulk with quantum operators in N = 4 SYM. The basic

idea in this chapter is to study consistent truncations of N = 8 supergravity

to smaller, more tractable sectors with gauge and scalar field content. Since

various of these truncations will lead to N = 2 supergravity theories, we will

then choose these as our starting point.

6.1 The Bosonic Sector of N = 2 Supergravity.

We will start by considering the bosonic sector ofN = 2 supergravity inD = 4+1

bulk-dimensions. In general terms, the theory contains the following multiplets

• The graviton multiplet. It consists of the metric and a single gauge

field referred to as the graviphoton.

• The gauge multiplet A. It consists of a vector field Aµ and a real scalar

ϕ.
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• The hypermultiplet H. It consists of two complex scalars, or equiva-

lently, by four real scalars qu, with u = 1, . . . , 4.

In addition to this bosonic content, each multiplet has also fermion degrees of

freedom, but they vanish in a classical background.

We will be now be mainly interested with a collection of the described mul-

tiplets. More concretely, we will consider

• nV gauge multiplets AI , labeled by I = 1, . . . , nV .

• nH hypermultiplets HJ , labeled by J = 1, . . . , nH .

We will refer to the real scalar fields in the nV gauge multiplets as ϕx, where

x = 1, . . . , nV . Meanwhile, the real hyperscalars will be referred to as qu, with

u = 1, . . . , nH . The whole set of scalars coming from both multiplets A and H

will be denoted by the vector v⃗, with components vi, i = 1, . . . , nV +nH . On the

other hand, the totality of gauge fields will be denoted as AIµ, with I = 0, . . . , nV .

We observe that the total number of vector fields is nV +1, since we have taken

into account the graviphoton.

Pure N = 2 supergravity consists only of the graviton multiplet, in which

case the Lagrangian is uniquely determined and its bosonic part is given simply

by Einstein-Maxwell theory with a negative cosmological constant [132]. Addi-

tional field content and matter fields are introduced to the pure theory by means

of the gauge multiplets and hypermultiplets. The couplings among matter the

additional fields and the original pure N = 2 supergravity are constrained by

the requirement that the complete Lagrangian is invariant under local N = 2

transformations. Although these supersymmetry transformations can be quite

complicated, we can mention three geometrical facts that are enough to deter-

mine this Lagrangian. For a more detailed account of the construction of the

Lagrangian, see [133, 134, 135].
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6.2 The Scalar Manifold

In order to be able to construct N = 2 supergravity, we first need to focus on the

geometry describing the scalar manifold. More formally, this scalar manifold will

be a Kähler special manifold. Let us begin then by defining a Kähler manifold:

a Kähler manifold is a Riemannian manifold M of real dimension 2n, endowed

with the almost complex structure J and the hermitian metric g, such that J is

covariantly constant with respect to the Levi-Civita connection. If we consider

a local chart of 2n real coordinates φ⃗, an almost complex structure is then given

by a real valued tensor J ji (φ⃗) living on the tangent space of the manifold, and

defined by the property J2 = −1. In particular, the hermitian metric satisfies

the relation JgJT = g. As a consequence of the definition, M will also be a

complex manifold which can then be covered by local holomorphic charts with

n complex coordinates {zα, z̄α}. In these complex coordinates the metric can be

written with indexes gαβ.

Going back to N = 2 supergravity, the scalar manifold M of the theory has

the following geometric properties:

• The scalars belonging to the hypermultiplets are coordinates for a quater-

nionic Kähler manifold Q, whose choice fixes the self-interaction of the

hypermultiplets.

• The scalar belonging to the vector multiplets are coordinates for a very

special real manifold V, whose choice fixes the self-interaction of the scalars

and their couplings to the gauge vectors.

The scalar manifold is then given by the direct product M = V ⊗Q, and is

equipped with a smooth metric gij of euclidean signature. This metric defines a

non-linear sigma-model kinetic term for the scalars v⃗ as

LKin.
N=2 ∼ gij∂µv

i∂µvj , (6.2.1)
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where the metric gij has block-diagonal form

gij =

 Gxy 0

0 Huv

 , (6.2.2)

and where Gxy, Huv correspond to the product spaces V, Q, respectively. Addi-

tionally, we simply state that the hyperscalar manifold Q is further geometrically

constrained by the R-symmetry group of the theory, SU(2).

Invariance under N = 2 supersymmetry also places constrains on the non-

linear sigma-model terms for the field strengths F I = dAI . Concretely, these

constraints result in a kinetic matrix NIJ , with indexes I, J = 0, . . . , nV , there-

fore including the graviphoton. The kinetic matrix couples the field strengths

with the scalars of the vector multiplets as NIJ = NIJ(ϕ
x) and its specific form

is determined by the geometry of the scalar manifold.

Determined in this manner by the geometry of the scalar manifold M, the

kinetic term of the bosonic part of N = 2 supergravity coupled to matter will

be given by

LN=2 ∼ R+ gij∂µv
i∂µvj +NIJF

I
µνF

µνJ . (6.2.3)

In order to complete the construction of the theory, one must now introduce

a gauge group. This gauging procedure will result in a replacement of the partial

derivatives with gauge-covariant ones and in the appearance of a scalar potential

term V (M).

In order to understand the gauging procedure, we have to first introduce

some general background. As we have seen above, the kinetic terms of the

bosonic sector of the theory are given by a non-linear sigma-model on target

space M. In particular, the metric is a non-trivial function of the scalars gij =

gij(v⃗). An isometry of this metric will be a field reparametrization v⃗ → F (v⃗)

which leaves unchanged the functional form of gij . A Killing vector is defined

as the infinitesimal generator of this isometry. The Killing symmetry associated

with a Killing vector is an infinitesimal symmetry δθ, where θ is the infinitesimal
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transformation parameter. Then, a Killing vector Ki
Λ(v⃗) can be defined by

δθv
i = θΛKi

Λ(v⃗) , (6.2.4)

where the index Λ counts the number of isometries. Meanwhile, the isometry

itself is reflected in the relation

δθgij(v⃗) = 0 . (6.2.5)

We now consider the case where the hypermultiplet scalar manifold Q is a

homogeneous space. Formally speaking, a manifoldM is said to be a homogenous

space for a group G if the map

G ×M ∋ (a, x) 7→ Ta(x) ∈ M (6.2.6)

is a diffeomorphism and it acts transitively on M, and where the Ta(x) denotes

the action of G on M. The isotropy group Ix is defined as the set of elements

of G that leaves x ∈ M unchanged. Furthermore, there turns out to be a

one-to-one mapping between the manifold M and the coset space G/I [136].

The important result that we want to consider is that, in the case when our

hyperscalar manifold Q is an homogeneous space of the type G/I, with G non-

compact and I its maximally compact isotropy group, then the R-symmetry of

the theory will be embedded in I. The particular homogeneous space we will

study is given by the coset

SU(2, 1)

U(2)
. (6.2.7)

For the gauging of N = 2 supergravity we will choose to realize the Yang-

Mills gauge group GYM as a subgroup of the isometries of the scalar manifold

M. This gauging procedure then involves the introduction of at most nV + 1

Killing vectors acting infinitesimally on M as

ϕx → ϕx + θΛKx
Λ(ϕ) , (6.2.8)

qu → qu + θΛKu
Λ(q) . (6.2.9)
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Then, the gauging procedure modifies the covariant derivatives for the hyper-

scalars and the vector multiplet scalars as

∂µq
u → Dµq

u = ∂µq
u − cYMA

Λ
µK

u
Λ(q) , (6.2.10)

∂µϕ
x → Dµϕ

x = ∂µϕ
x − cYMA

Λ
µK

x
Λ(ϕ) , (6.2.11)

while the gauge field strengths will be given by

FΛ
µν = ∂µA

Λ
ν − ∂νA

Λ
µ + cYMf

Λ
MNA

M
µ A

N
ν , (6.2.12)

where fλMN are the gauge group structure constants. We must also mention that

the gauging procedure also brings the introduction of certain “prepotentials”

PΛ, which are functionals acting on the scalar manifold. Briefly stated, the

prepotentials are introduced because the special and quaternionic Kähler nature

of the scalar manifolds allows the Killing equations to be solved in terms of them.

They bear importance to our discussion because the scalar potential V (qu, ϕx)

is expressed mostly in terms of the prepotentials, as will be seen below.

The resulting bosonic sector of the N = 2 supergravity Lagrangian after the

gauging procedure is given by [133]

LN=2 = R+ Lvectors + Lscalars + LCS , (6.2.13)

where

Lvectors = −1

2
NIJF

I
µνF

µνI , (6.2.14)

Lscalars = −GxyDµϕ
xDµϕy −HuvDµq

uDµqv − V (q, ϕ) , (6.2.15)

LCS =
1

3
√
6
CIJKϵ

µνρστF IµνF
J
ρσA

K
τ . (6.2.16)

The scalar potential term is given by

V (q, ϕ) = −2c2RP
rP r + c2RP

r
xP

r
yG

xy +
3

2
c2YMK

uKvHuv , (6.2.17)

where the factors P r, P rx are related directly to the prepotentials acting on the

scalar manifold M and which here we only mention for the sake of exposition.

For further details, see [133].
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6.3 The “Universal Multiplet” SU(2, 1)/U(2).

Before we move further on, we must briefly consider the geometry of the coset

space H = SU(2, 1)/U(2), known as the universal multiplet [137]. Formally, it

is a quaternionic manifold of real dimension four with the topology of the open

ball C2 [138], whose metric can be written in a simple fashion by introducing

the complex coordinates ζ1, ζ2

1

2
ds2 =

dζ1dζ1 + dζ2dζ2(
1− |ζ1|2 − |ζ2|2

) + (ζ1dζ1 + ζ2dζ2)(ζ1dζ1 + ζ2dζ2)(
1− |ζ1|2 − |ζ2|2

)2 , (6.3.1)

where |ζ1|2 + |ζ2|2 < 1. The metric (6.3.1) is a Kähler metric with an associated

Kähler potential

K = − log
(
1− |ζ1|2 − |ζ2|2

)
. (6.3.2)

The isotropy group of the manifold H is given by U(2) = SU(2)R × U(1),

which has four isometries and four Killing vectors associated to them. In order to

complete the gauging procedure, we must know these Killing vectors. From the

Kähler metric and potential we see that the combination |ζ1|2+ |ζ2|2 is invariant

under two independent U(1) symmetries

ζ1 → eiθ1ζ1 , ζ2 → eiθ2ζ2 , (6.3.3)

where both transformations represent independent U(1) ∼= SO(2) rotations of

the complex planes ζ1 and ζ2. The remaining isometries involve rotations of

the coordinates {ζ1, ζ2} as a doublet of SU(2). This is becomes apparent after

looking at the functional form in the metric terms

dζ1dζ1 + dζ2dζ2 , ζ1dζ1 + ζ2dζ2 , ζ1dζ1 + ζ2dζ2 . (6.3.4)

A convenient choice for this third isometry is given by ζ1

ζ2

→ R(θ3)

 ζ1

ζ2

 , (6.3.5)
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where the rotation matrix R(θ3) is given by

R(θ3) =

 cos θ3 sin θ3

− sin θ3 cos θ3

 . (6.3.6)

Finally, the last isometry of U(2) is the complex conjugate of (6.3.5), which is

independent on C2.

The four isometries described above are generated by the Killing vectors

H1 = ζ1∂ζ1 − ζ1∂ζ1 H2 = ζ2∂ζ2 − ζ2∂ζ2

L1 = ζ2∂ζ1 − ζ1∂ζ2 L1 = ζ2∂ζ1 − ζ1∂ζ2 ,
(6.3.7)

which can be rearranged in terms of the two subalgebras U(2) = SU(2)× U(1)

SU(2)× U(1) =



F1 =
1
2

(
L1 − L1

)
,

F2 =
1
2i

(
L1 + L1

)
,

F3 =
1
2 (H2 −H1) ,

F8 =
√
3
2 (H1 +H2) .

(6.3.8)

The SU(2) algebra is generated by (F1, F2, F3) and satisfies the standard algebra

[Fi, Fj ] = i ϵijkFk, with indexes running over {1, 2, 3}. Meanwhile, the U(1) alge-

bra is generated by F8, which is orthogonal to the SU(2) subgroup, [F8, Fi] = 0.

There are also additional non-linear and non-compact Killing vectors, which we

will omit. For more details, see [138, 139]. We will associate the transformation

parameters {α1, α2, α3} with the SU(2) subgroup and an α8 parameter with the

U(1) transformation.

6.4 Obtaining a One-Parameter Family of Theories.

We can now finish the construction of N = 2 gauged supergravity coupled to

the universal multiplet. Since the gauge group we consider is abelian, then no

other vectors but the graviphoton will be present. As said before, the gauging

procedure requires the abelian gauge group to be embedded in the isotropy
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group U(2) of the scalar manifold. This embedding is not unique, and can be

parametrized by the Killing vector [139]

K (ζ1, ζ2) = −i
√
6

(
α3F3 +

1√
3
α8F8

)
, (6.4.1)

where we have used the SU(2) invariance to set the parameters α1 = α2 = 0

without any loss of generality. The ratio α8/α3 specifies the direction of the

Killing vector K inside the U(2) isotropy group. We refer to this ratio as β and

will use it to parametrize a continuous family of abelian N = 2 supergravity

coupled to the universal multiplet H.

The Lagrangian of gauge N = 2 supergravity has many contributions, given

by (6.2.13). Looking at the gauge kinetic term (6.2.14), we note that the kinetic

matrix in our case will be one-dimensional NIJ = N00, corresponding to the

case where there is only the graviphoton present and no vector multiplets. This

matrix is fixed by supersymmetry as N00 = 1. The standard kinetic term for the

gauge boson can be realized by rescaling A0 → A0/
√
2. Regarding the scalar

fields, we will use the complex coordinates ζ1, ζ2, since it is useful to express the

metric of manifold H in terms of holomorphic and anti-holomorphic indexes, as

in (6.3.1), which we rewrite

hijdζidζj =
dζ1 ¯dζ1 + dζ2 ¯dζ2(
1− |ζ1|2 − |ζ2|2

) + (ζ̄1dζ1 + ζ̄2dζ2)(ζ1 ¯dζ1 + ζ2 ¯dζ2)(
1− |ζ1|2 − |ζ2|2

)2 . (6.4.2)

The gauge-covariant derivatives are obtained according to (6.2.8)-(6.2.9) and

using the Killing vector (6.4.1), from where we obtain

Dµζ1 = ∂µζ1 − iAµ

√
3

2
(β + 1) ζ1 , (6.4.3)

Dµζ2 = ∂µζ2 − iAµ

√
3

2
(β − 1) ζ2 , (6.4.4)

Proceeding in this manner, the Lagrangian of the SU(2, 1)/U(2) model we are

constructing is given by

LH = R− 1

4
FµνF

µν − 2hij̄D
µζiDµζj − P (ζ1, ζ2) , (6.4.5)
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with a potential term

P (ζ1, ζ2) = −3

2

8−V(
1− |ζ1|2 − |ζ2|2

)2 , (6.4.6)

V =
(
11− 2β + 3β2

)
|ζ1|2 +

(
11 + 2β + 3β2

)
|ζ2|2

−2(β − 1)2 |ζ1|4 − 2(β + 1)2 |ζ2|4 − 4(β2 + 2) |ζ1|2 |ζ2|2 .

(6.4.7)

6.5 Holographic Superconductivity from the Hyperscalars

In the previous sections we have constructed family of N = 2 abelian super-

gravities parametrized by a real number β that specifies the gauging direction

in the U(2) isotropy group of the scalar manifold SU(2, 1)/U(2). An important

thing to notice is that the resulting gauged Lagrangian (6.4.5) has the mini-

mal required setting needed to construct a D = 5 holographic superconductor

as described in previous chapters, with field content consisting of a gauge field

Aµ and two complex scalar fields (ζ1, ζ2) coming from the graviton multiplet

and the hypermultiplet, respectively. In the special case when both scalar fields

vanish ζ1 = ζ2 = 0, one obtains for the scalar potential P (0, 0) = −12, and

the whole system has an asymptotically unit-radius-AdS5 Reissner-Nordström

black hole solution. We will in the following study holographic superconducting

behaviour arising from the dynamics of the two charged superscalars (ζ1, ζ2). To

do it, we will consider particular values of β and study how the resulting N = 2

supergravity theory at those values can be embedded in the context of Type IIB

superstring. Also, for any value of β considered, the Reissner-Nordström solution

mentioned above corresponds to the normal phase of the dual superconducting

system.

The masses of the hyperscalars depend on the value of the parameter β. To

see this, one can go to the AdS5 vacuum and read the masses directly from the

scalar potential by evaluating the Hessian matrix. The masses obtained in this
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Table 6.1: Value of scalar masses m2
i , charges ri and dual-operator dimensions

∆, for different integer values of the parameter β. The charges are defined as

qi =
√
3 ri/2, with ri = β − (−1)i.

β (m2
1,m

2
2) (r1, r2) (∆1,∆2)

0
(
−15

4 ,−
15
4

)
(1,−1)

(
3
2 ,

5
2

)
1 (−3, 0) (2, 0) (3, 4)

2
(
9
4 ,

33
4

)
(3, 1)

(
9
2 ,

11
2

)
3 (12, 21) (4, 2) (6, 7)

manner are given by

m2
1 = −3

4
(1 + β) (5− 3β) , m2

2 = −3

4
(1− β) (5 + 3β) . (6.5.1)

The Lagrangian (6.4.5) is symmetric under the transformation ζ1 ↔ ζ2 with

β ↔ −β. Therefore, without any loss of generality we can take β ≥ 0. The

parameter is related holographically to the value of the dimension ∆ of the

dual field theory operator. In Table (6.1) we show the values of the scalar

masses, charges and dual-operator dimensions for different integer values of the

parameter β.

The equations of motions arising from our SU(2, 1)/U(2) Lagrangian (6.4.5)

can be written in terms of the complex variables ζ1, ζ2 as

(∇µ − iq1Aµ) (∇µ − iq1A
µ) ζ1 + (∂µ − iq1Aµζ1)χ

µ −DV1ζ1 = 0 , (6.5.2)

(∇µ − iq2Aµ) (∇µ − iq2A
µ) ζ2 + (∂µ − iq2Aµζ2)χ

µ −DV2ζ2 = 0 , (6.5.3)

where q1 and q2 can be read directly from the gauge derivative definitions (6.4.3)-

(6.4.3). The function χµ is defined as

χµ = 2

(
ζ1Dµζ1 + ζ2Dµζ2

1− |ζ1|2 − |ζ2|2

)
, (6.5.4)
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and we define the quantities

DV1 = −3

4
(1 + γ)

(
−5 + 3β + (7− β) |ζ1|2 + (3− β) |ζ2|2

1− |ζ1|2 − |ζ2|2

)
, (6.5.5)

DV2 = −3

4
(1− γ)

(
−5− 3β + (7 + β) |ζ1|2 + (3 + β) |ζ2|2

1− |ζ1|2 − |ζ2|2

)
, (6.5.6)

where the symmetry under ζ1 ↔ ζ2 with β ↔ −β is apparent. From (6.5.5) and

(6.5.6) we can recover the masses m2
1, m

2
2 given in (6.5.1).

In the following sections we shall study the superconducting phase of the

system for different values of β. in order to solve the equations of motion we

shall propose the standard metric and gauge ansatz

ds2 = −eχ(r)f(r)dt2 + dr2

f(r)
+ dx⃗2 , A = Φ(r)dt . (6.5.7)

The superconducting solutions for the equations of motion have the following

asymptotic r → ∞ behaviour

eχf(r) = e−χ∞

(
r2 − M

r2
+ · · ·

)
, (6.5.8)

Φ(r) = µ− ρ

r2
+ · · · (6.5.9)

ζi =
Oi

r∆i
+ · · · , (6.5.10)

where i = 1, 2 and ∆1, ∆2 are the dimensions of the dual condensing operators.

We will choose to work in the canonical ensemble, so that the charge density of

the dual theory is fixed as ρ = 1. The energy and entropy density of the field

theory are given by

E =
3M

16πG
, s =

r3h
4G

, (6.5.11)

and the Helmholtz free energy of the system is given by

f = E − T s =
1

8πG

(
3

2
M − 2πr3hT

)
. (6.5.12)

In order to know which hairy solutions are thermodynamically preferred, we

will in the following compute the free energy relative to the Reissner-Nordström

solutions ∆f = fHairy − fRN.
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Figure 6.1: The condensates O for the operators of conformal dimensions ∆ =

3/2 (β = 0 case, solid blue line) and ∆ = 3 (β = 1 case, Truncation I, dashed

red line), as a function of temperature.

6.6 The β = 1 Condensate

When one sets the free parameter as β = 1, the system is then characterized by

a scalar potential term

P (ζ1, ζ2)
∣∣
β=1

= −6
(
1− |ζ2|2

)
, (6.6.1)

so that the DV1, DV2 terms in the general equations of motion become

DV1 = −3

(
1− 3 |ζ1|2 − 2 |ζ2|2(
1− |ζ1|2 − |ζ2|2

)2
)
, (6.6.2)

DV2 = 0 . (6.6.3)

Since DV2 = 0, the field ζ2 has trivial dynamics and we can focus on solutions

for ζ1. We define the real fields η and θ by

ζ1 ≡ eiθ tanh
η

2
, (6.6.4)

so that the Lagrangian (6.4.5) can be written as

Lβ=1
N=2 = −1

2

[
(∂η)2 + sinh2 η

(
∂θ −

√
3A
)2]

− 3 cosh2
η

2
(5− cosh η) . (6.6.5)
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Figure 6.2: The free energy relative to the Reissner-Nordström solution for the

operators of conformal dimensions ∆ = 3/2 (β = 0 case, solid blue line) and

∆ = 3 (β = 1 case, Truncation I, dashed red line), as a function of temperature.

From (6.6.5) we can read the asymptotic r → ∞ behaviour of η

η(r) ≈ O1

r
+

O3

r3
+ · · · . (6.6.6)

In order to have spontaneous symmetry breaking, we will set O1 = 0, so that the

dual condensate will have dimension ∆ = 3. The behaviour of the condensate as

a function of temperature can be seen in figure (6.1) (red dashed line), where we

find that system undergoes a second-order phase transition at Tc ≈ 0.083. This

can be seen in figure (6.2) (red dashed line), where we plot the free energy as

function of temperature and we find no discontinuity at the critical temperature.

6.7 The β = 0 Condensate

The β = 0 case is characterized by the scalar potential

P (ζ1, ζ2) = −3

2

(
8− 11(|ζ1|2 + |ζ2|2) + 2(|ζ1|2 + |ζ2|2) + 6 |ζ1|2 |ζ2|2(

1− |ζ1|2 − |ζ2|2
)2

)
,

(6.7.1)
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Figure 6.3: The condensates O for the operator of conformal dimension ∆ = 5/2

(β = 0 case, Truncation I) as a function of temperature.

which leads to the terms

DV1 = −3

4

(
5− 7 |ζ1|2 − 3 |ζ2|2

1− |ζ1|2 − |ζ2|2

)
, (6.7.2)

DV2 = DV1 . (6.7.3)

As one can see, the scalar fields in the β = 0 case have the same masses m2
1 =

m2
2 = −15/4 and also the same interaction terms DV1 = DV2. In order to have

a single charge scalar field, one can consider the following distinct truncations

Truncation I ζ1 = eiθ tanh
η

2
, ζ2 = 0 , (6.7.4)

Truncation II ζ1 = ζ2 ≡ ζ , ζ ≡ 1√
2
eiθ tanh

η

2
. (6.7.5)

Each truncation results in a different form for the Lagrangian, which can be

written as

Lβ=0
N=4 = −1

2
(∂η)2 − 1

2
J i(η)A2 − V i(η) , (6.7.6)
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Figure 6.4: The free energy relative to the Reissner-Nordström solution for the

operator of conformal dimension ∆ = 5/2 (β = 0 case, Truncation I) as a

function of temperature.

where the structure function J i and potential V i characterize each different

truncation. In the case of truncation (6.7.4) one has

Truncation I


J I = 3

4 sinh
2 η ,

V I = 3
8

(
cosh2 η − 12 cosh η − 21

)
,

(6.7.7)

while for the second truncation (6.7.5) one obtains

Truncation II


J II = 3 sinh2 η2 ,

V II = 3
2

(
3 + 5 cosh2 η2

)
.

(6.7.8)

In each of these cases the asymptotic r → ∞ behaviour of the field η is the

same

η(r) ≈ O1

r3/2
+

O2

r5/2
+ · · · . (6.7.9)

The value of the mass m2 = −15/4 allows us to consider both the standard and

alternative quantization schemes. Therefore, we have the possibility to consider

two distinct condensation cases within each truncation: one by setting O1 = 0,
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6.7. The β = 0 Condensate

so that the condensate has dimension ∆ = 5/2, and the other by setting O2

in which case one has a condensate of dimension ∆ = 3/2 [14]. However, as it

turns out after performing numerical computations, in both quantization cases

of Truncation II (6.7.8) one obtains a retrograde condensate [21, 140]. This

corresponds to a black hole solution where a non-trivial profile for the scalar

field appears for temperatures above a critical temperature, instead of below

as in the case of usual condensation. Furthermore, in our particular case, this

solution has a free energy than is higher that that of the Reissner-Nordström

black hole solution. Therefore this case is of not thermodynamically favored and

is of no physical interest.

Therefore, we can focus only on the condensates corresponding to the Trun-

cation I (6.7.7). The condensate of dimension ∆ = 3/2 as a function of temper-

ature can be seen in figure (6.1) (solid blue line). Just as in the case of the β = 1

condensate, the system undergoes a second-order phase transition at Tc ≈ 0.24

as can be seen in figure (6.2) (solid blue line), where we plot the free energy as

function of temperature and we find no discontinuity at the critical temperature.

In figure (6.3) we can see the ∆ = 5/2 condensate as a function of temperature.

In contrast with all of the preceding cases, the system here undergoes a first-

order phase transition at Tc ≈ 0.029. In this case the critical temperature Tc is

defined by the temperature at which the free energy becomes lower than that

of the Reissner-Nordström black hole solution. This can be seen in figure (6.4),

where the free energy of the system is plotted as a function of temperature. The

phase transition is discontinuous because the condensate has a jump at Tc from

zero to a non-zero value. The general picture of the β = 0 model is strikingly

similar to the analogous 4D model of [141].

Comparing both β = 0 and β = 1 models, we note that the ∆ = 3/2 (β = 0)

operator condenses at higher temperatures than the dimension ∆ = 3 operator

which is dual to the m2 = −3 scalar in the β = 1 model. Additionally, from

making a comparison between the free energies of these particular operators,
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we conclude that the thermodynamics is dominated by the phase in which the

∆ = 3/2 operator condenses for T < Tc, as this phase has the lowest free energy.

6.8 Embedding of the Theories

In this section we outline how both the β = 0, 1 N = 2 supergravity theories

studied here can be embedded in Type IIB superstring theory. The mathematical

details behind these embeddings are quite involved, so for simplicity we will limit

ourselves to present only the general aspects of the construction. For a more

detailed account, see [20, 25, 28].

6.8.1 The β = 1 Embedding: Sasaki-Einstein Compactification

This N = 2 supergravity theory can be directly embedded in Type IIB theory.

We first begin by generally describing the embedding of the field ζ1 [20]. In order

to do this, we start by decomposing Type IIB theory fields according to possible

deformations of a Sasaki-Einstein manifold. Briefly stated, a Sasaki-Einstein

manifold Y can be seen as a U(1) fibration over a base Kähler-Einstein manifold

B

ds2Y = ds2B + ξ ⊗ ξ , (6.8.1)

where ξ is a globally defined 1-form. An Einstein-Sasaki manifold is charac-

terized by three globally defined 2-forms {J1, J2, J3} that satisfy the following

conditions

Ja ∧ Jb = 2δabVol(B) , iξ(J
a) = 0 , (6.8.2)

dΩ2 = 3i ξ ∧ Ω2 , dξ = 2ω , (6.8.3)

where we have defined J1 = ω and Ω2 = J2 + iJ3, and where Vol(B) is the

volume of the base manifold. Thus, a Sasaki-Einstein deformation in the ten-

dimensional metric in the Einstein frame can be written as

ds2 = GMNdx
MdxM = e

4
3
(4U+V )ds25+ e

2Uds2B + e2V (ξ +A)⊗ (ξ +A) , (6.8.4)
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6.8. Embedding of the Theories

where U(x), V (x) are scalars fields and A(x) is a 1-form. The coordinates xµ,

µ = 0, . . . 4 are coordinates for ds25, while y
m, m = 5, . . . , 9 are coordinates for

the Sasaki-Einstein manifold.

The next step is to realize a Kaluza-Klein compactification of the Type IIB

theory 2-forms B2, C2 and the self-dual 4-form C4. This reduction is achieved by

performing an expansion around the structure forms ξ, ω and Ω2 [131]. The KK

compactification will in fact introduce a five-dimensional gauge transformation,

which is induced by reparametrizations of the fiber coordinate. A simple example

of how this happens can be seen in a toroidal compactification, where the metric

can be written as

ds2 = GMNdx
MdxN = Gµνdx

µdxν + e2V (dξ +Aσdx
σ)2 , (6.8.5)

and where the compact dimension is x9 = ξ. As usual, the Kaluza-Klein com-

pactification will introduce a vector Aσ(x) ∼ Gσ9 and a scalar V (x) ∼ G99.

Then, reparametrizations of the form ξ → ξ+Λ(x) will induce a transformation

Aσ → Aσ + ∂σΛ(x), signifying that Aσ is indeed a gauge field.

Having this in mind, in the case of Sasaki-Einstein compactifications, since

we want our reduction ansatz to be gauge invariant we must then look at how

the fields transform under reparametrizations. To do so, we consider the Lie

derivative along the Killing vector of the fiber isometry. We denote such Killing

vector as K = k(x)∂/∂ξ, so that the Lie derivative will be given by LK =

iK · d+ d · iK . Acting on the structure 2-forms one has

LKω = 0 , LKΩ2 = 3ik(x)Ω2 , (6.8.6)

so that we conclude that Ω2 will not be gauge invariant. Thus, the five-dimensional

harmonics of Ω2 that will appear in the expansion of the Type IIB forms B2,

C2 and C4 will be charged under the U(1) field. The expansion of the ten-

dimensional fields has to be realized in terms of ξ + A, instead of only ξ [25].

This way, the ansatz for the Type IIB fields needed for the ζ1 truncation is given
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by

e2V = cosh
η

2
, e−2U = cosh

η

2
, (6.8.7)

B2 = Re
(
bΩΩ2

)
, C2 = Im

(
cΩΩ2

)
, (6.8.8)

where we define

bΩ = eiθ tanh2
η

2
, cΩ = i bΩ , (6.8.9)

and where we have chosen for the time being to set the axion field C0 to zero,

and the dilaton field ϕ to a constant. The self-dual five form F5 is given by

F = cosh2
η

2
(5− cosh η)Vol(ds25)− (⋆5dA) ∧ ω

+
1

4
e8U sinh2 η (dθ − 3A) ∧ ω ∧ ω , (6.8.10)

⋆F =
1

2
e4U (cosh η − 5) (ξ +A) ∧ ω ∧ ω + dA ∧ (ξ +A) ∧A

+
1

2
sinh2 η (⋆ (dθ − 3A)) ∧ (ξ +A) , (6.8.11)

F5 = F + ⋆F . (6.8.12)

Finally, the resulting truncated action is the given by

Lζ1IIB = R− 3

2
(⋆5dA) ∧ dA+A ∧ dA ∧ dA

−1

2

(
dη2 + sinh2 η (dθ − 3A)2 − 6 cosh2

η

2
(5− cosh η)

)
.

(6.8.13)

The truncated Type IIB Lagrangian (6.8.13) clearly coincides with the N =

2 Lagrangian (6.6.5). However, by setting the axion and dilaton fields to zero

and constant values respectively in the ansatz (6.8.7)-(6.8.8), we have in fact

retained only half of the hypermultiplet, i.e. the ζ1 field. Indeed, the remaining

half of the hypermultiplet, given by the field ζ2, is a complex chargeless scalar

with trivial dynamics DV2 = 0 and dimension ∆ = 4. There is one candidate in

Type IIB theory with these same characteristics, namely the axion-dilaton field

τ = C0 + i e−ϕ. Therefore, in order to regain the complete β = 1 supergravity
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theory, we must give dynamics to C0 and ϕ. To do this, one proposes the ansatz

cΩ = bΩτ = eϕ/2eiθ tanh
η

2
, (6.8.14)

which results in

LH − Lζ1IIB = −1

2
cosh2

η

2

(
dϕ2 + e2ϕ cosh2

η

2
dC2

0

)
−1

2
eϕ sinh2 η dC0 (dθ − 3A) . (6.8.15)

The matching of this Lagrangian to the full β = 1, N = 2 supergravity La-

grangian (6.4.5) can be realized by making the following field definitions

ζ1 = eiθ
√

1− |ζ2|2 tanh
η

2

√
1 + i τ

1− i τ
, ζ2 =

1 + i τ

1− i τ
. (6.8.16)

We thus see how our N = 2 supergravity describes the universal hypermultiplet

belonging to the class (6.8.4) of Sasaki-Einstein compactifications. Furthermore,

since we have not specified the base space of the Sasaki-Einstein manifold, the

compactification we have performed contains in fact a large class of theories.

This fact will be of importance when discussing the possible β = 0 embedding

in the following subsection.

6.8.2 The β = 0 Embedding: Type IIB on AdS5 × T1,1

Let us now see how N = 2 supergravity with the β = 0 gauging can be connected

to Type IIB superstring theory. An important fact is that the spectrum of five-

dimensional N = 8 supergravity arising from Type IIB theory compactified on

AdS5 × S5 does not support Kaluza-Klein modes with the value of scalar field

mass m2 = −15/4 that the β = 0 truncations have. A possible solution to this

is to consider Type IIB theory compactified on spaces with an internal manifold

different from S5 and whose KK spectrum matches our β = 0 model. As we

will show, there is strong evidence that this can indeed be achieved. Following

work by Klebanov and Witten [131] we review a gauge/gravity duality where

gravitational theory has an internal manifold given by the homogeneous space

T 1,1 =
SU(2)× SU(2)

U(1)
. (6.8.17)
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Let us then very generally describe this space. Formally speaking, the space

T 1,1 is an Einstein manifold with positive curvature and can be geometrically

identified as the transverse space of the Calabi-Yau three-fold Y6. The manifold

Y6 can be realized by the surface

z21 + z22 + z23 + z24 = 0 , (6.8.18)

or equivalently by

z1z2 − z3z4 = 0 , (6.8.19)

where {z1, z2, z3, z4} are coordinates on CP4. The space Y6 has a conical singu-

larity at the origin where the metric can be written as a cone over T 1,1

ds2Y = dr2 + r2ds2T , (6.8.20)

where ds2T is the metric of T 1,1. The gauge/duality duality is then established

by studying a stack of N D3-branes located at the conical singularity, following

a similar path to the original Maldacena derivation of the standard AdS/CFT

duality. In this particular setup, supersymmetry is reduced fromN = 4 toN = 2

and the dual field theory is given by a 4-dimensional N = 1 superconformal field

theory with gauge group SU(N)×SU(N). This field theory contains two chiral

gauge superfieldsW1α,W2α and the chiral superfields (A1, A2) and (B1, B2). The

A and B fields can be seen as N × N matrices whose eigenvalues parametrize

the position of the D3-branes. This field theory has a global symmetry group

SU(2)A×SU(2)B, under which the superfields transform as a doublet. This can

be seen from equation (6.8.19), which is solved by making the substitution

z1 → A1B1 , z2 → A2B2 , z3 → A1B2 , z4 → A2B1 . (6.8.21)

In addition to all this, the N = 1 field theory has a unique superpotential

W ∼ ϵijϵklTrAiBkAjBl . (6.8.22)

In this way, there is a conjectured duality between a Type IIB superstring theory

on AdS5×T 1,1 with N units of Ramond-Ramond flux through T 1,1, and a four-

dimensional SU(N) × SU(N), N = 1 superconformal gauge theory perturbed
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by a superpotential (6.8.22). It is customary to refer to the dual field theory as

Klebanov-Witten superconformal theory.

To see how our β = 0 N = 2 theory can be related to Type IIB theory on

AdS5 × T 1,1, we go back to Table (6.1) and point out the fact that, for integer

values of β, the masses and charges of the SU(2, 1)/U(1) hypermultiplet are in

precise correspondence with those of the chiral AdS multiplets of the Klebanov-

Witten field theory, with specific global SU(2)×SU(2) quantum numbers (j, l).

In particular, one has the following two Kaluza-Klein towers [142, 143]

• A Kaluza-Klein tower coming from the complex IIB zero and two-forms

with quantum numbers satisfying 2j = 2l = β−1 with β ≥ 1. This is dual

to field theory operators

Aβ−1 = Tr
[(
W 2

1 +W 2
2

)
(AkBl)

β−1
]
+ · · · . (6.8.23)

• A Kaluza-Klein tower originating from the IIB metric, four-form and com-

plex four-form and has quantum number satisfying 2j = 2l = β + 1 with

β ≥ 0. The corresponding dual field theory operators are of the form

Bβ+1 = Tr
[
(AkBl)

β+1
]
. (6.8.24)

The resulting mass spectrum as a function of 2j = 2l is shown in figure

(6.5). Regarding the dimension ∆ of the dual operators of each KK tower Aβ−1

and Bβ+1, we note that the chiral superfields A and B have dimension ∆ = 3/4,

whereas the chiral gauge superfields WIα have also dimension ∆ = 3/2. This

means that the A operators have dimension

∆ (A) = 3 +
3

2
(β − 1) , (6.8.25)

so that the lowest state in this Kaluza-Klein tower has β = 1 and ∆ = 3.

Likewise, the B operators have

∆ (B) = 3

2
(β + 1) , (6.8.26)

206



6.8. Embedding of the Theories

æ

æ

æ

à

à

æ

æ

à

à

0.5 1.0 1.5 2.0
2 j � 2 l

-5

0

5

10

m2

Figure 6.5: The two Kaluza-Klein towers of scalar fields on T 1,1. The dotted

(dashed) line indicates hypers with 2j = β ∓ 1.

so that the lowest state in this Kaluza-Klein tower has β = 0 and ∆ = 3/2.

This is the operator that dominates the thermodynamics in the superconducting

phase of the system.

Comparing the mass spectrum and the KK tower dimensions of Klebanov-

Witten theory described above with the values in Table (6.1) of our family of

N = 2 supergravities, we can observe the same relation between mass and di-

mension when taking integer values of β. To this exact correspondence we add

the fact that the Type IIB Sasaki-Einstein embedding described for the β = 1

includes the Calabi-Yau three-fold Y6. These facts leads one to claim that the

lowest Kaluza-Klein state in the A-tower corresponds to SU(2, 1)/U(2) hyper-

multiplet with β = 1. The SU(2) × SU(2) quantum numbers in this case are

j = l = 0, which means that the hypermultiplet transforms as a singlet. On

the other hand, the lowest Kaluza-Klein state in the B-tower has β = 0 and

quantum numbers j = l = 1/2. It is only natural to ask whether the β = 0

N = 2 supergravity theory can be considered a consistent truncation within

Type IIB theory compactified on T 1,1. A major obstruction to this is that, be-
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6.8. Embedding of the Theories

cause of the non-trivial quantum numbers mentioned above, the hypermultiplet

cannot be considered a singlet under SU(2) × SU(2) and the identification is

not straightforward as in the β = 1 case.
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7

Conclusions

In this thesis we have shown that the AdS/CFT correspondence provides a new

way to study the superconducting phase of large-N theories in the strongly-

coupled regime. When discussing the cuprates at the end of Chapter 1, we have

already seen some of the shortcomings of the usual field theory approaches to

strongly-coupled many body systems, perhaps the most serious of which being

the break-down of the quasi-particle picture because of the strong interactions

involved. As we have seen, the gauge/gravity duality allows to pose intractable

many-body quantum problems in terms of the classical dynamics of a dual grav-

itational system in AdS space. Using this novel holographic point of view, the

condensation of Cooper-pairs in the field theory side is translated to the spon-

taneous creation of charged hairy black hole solutions in the gravity side. This

gives rise to a phase in the dual field theory where the core phenomenological

aspects of superconductivity are recovered. It is striking that by only looking

to the problem from an holographic point of view, these utterly intractable sys-

tems in the strong-coupling regime can be shown to present a superconducting

phase. Given the success of the holographic method and the difficulties already

mentioned about standard field theoretical approaches, it may not be too bold



to imagine that indeed the natural theoretical definition of superconductivity in

the strong coupling regime is given by the gravitational dual system.

With these general considerations in mind, in this thesis we have endeav-

ored to present a complete picture of the different approaches followed in holo-

graphic superconductivity. We have thus presented working examples in both

the bottom-up (Chapters 4 and 5) and top-down (Chapter 6) approaches. Let

us now draw some conclusions from each of these chapters.

In Chapter 4, using as a starting point a family of minimal holographic

superconducting models in d = 4+1 AdS spacetime, we have constructed a con-

sistent Ginzburg-Landau phenomenological interpretation of the corresponding

dual field theory. This was realized by making use of some non-trivial numerical

identities related to the bulk-side fields, by identifying the scalar field relevant

asymptotic mode with the Ginzburg-Landau theory order parameter and by

making some sensible and simple physical assumptions. We have checked that

our Ginzburg-Landau description consistently reproduces all expected properties

in great detail.

By making a study of small fluctuations of the gauge and scalar fields in

the bulk theory around the condensed solution, we were then able to compute

the penetration length λ and coherence length ξ of the dual superconducting

system. We found through these holographic computations that the character-

istic lengths have the expected non-trivial functional dependency on tempera-

ture near Tc, in accord with the one observed in real-world superconductors.

Next, we computed holographically the parameters α and β of the Ginzburg-

Landau Lagrangian for the dual field theory, and found in both cases that their

near-Tc functional dependence on temperature is in complete agreement with

the behaviour predicted by standard Ginzburg-Landau theory. We then pro-

ceeded to compute the Ginzburg-Landau parameter κ for different values of the

scalar field charge q. From this calculation we find that, as the value of q in-

creases, the Ginzburg-Landau parameters approaches asymptotically the value
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κ ∼ 0.55 < 1/
√
2. From this we can conclude that the system will behave as a

Type I superconductor for all values of q considered. Strikingly, we found that

the temperature dependence of the Ginzburg-Landau parameter κ found in this

paper can be modeled using the same kind of empirical fitting already used for

the high-Tc superconducting material Nb3Sn in [113]. This can be observed in

the striking qualitative similarity between figures (4.13b) and (4.14).

We have also calculated the Helmholtz free energy density of the system

using our Ginzburg-Landau approach, and compared it with the free energy

computed with the standard holographic techniques. It was found that both

approaches give mutually consistent results in the near-Tc region. Additionally,

through calculations of the free energy of the system, the Ginzburg-Landau

approach was compared with the method developed in [15] for calculating the

parameters α and β. Both methods were shown to be in excellent agreement.

Next, we probed our system with a constant magnetic field B. This was done

by using the black brane solution of [16] in d = 4+ 1 AdS up to order B2. This

is the first use of this solution in the context of holographic superconductivity.

With this perturbative solution, we showed the formation of droplet condensate

solutions in this fixed background and calculated the critical magnetic field above

which the superconducting phase is broken. The field obtained in this fashion

was compared with the critical magnetic field obtained in the Ginzburg-Landau

approach. While both fields measure different aspects of the response of the

system to a magnetic field, we found that near Tc both fields behave as Bc ∼

B0(1 − T/Tc) and that their corresponding factors B0 behave as ∼ 1/q1/3 (or

equivalently as ∼ 1/Tc) for large q. In conclusion, one of the main results

of this chapter is to show that a very simple phenomenological model in d =

4+1 AdS spacetime allows for a consistent Ginzburg-Landau description of the

boundary theory, where all the Ginzburg-Landau parameters and characteristic

lengths can be calculated using holographic methods, and whose behaviour is

in accordance to the one predicted by traditional mean field theory. Moreover,
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we also observe that, as the value of the scalar field charge q increases, the

Ginzburg-Landau parameter of the model tends asymptotically to a well defined

value that characterizes the dual superconducting system as Type I.

Chapter 5 is a natural continuation of the previous one. In this chapter we

have chosen to study aD = 5 minimal model of holographic superconductivity in

the probe limit, with a Lifshitz black hole background. Within this framework,

we have studied different cases of condensation, varying within each of them the

dynamical critical exponent in order to gain insight on how the system is affected

by z with respect to its usual isotropic behavior. As in the previous chapter, we

have added small scalar and gauge field fluctuations to the original component

fields in order to compute holographically the penetration and coherence length

of the superconducting system. We saw that both characteristic lengths have

the standard near-Tc functional dependency on temperature for all condensate

cases and all values of z. However, the dynamical critical exponent z does affect

the value of the characteristic lengths, as it becomes evident in the change of the

value of their ratio as given by the Ginzburg-Landau parameter κ. We also saw

that it is possible to construct a consistent Ginzburg-Landau phenomenological

interpretation of the dual theory with Lifshitz scaling. We computed through

holographic techniques the Ginzburg-Landau Lagrangian parameters α and β

and, as with the characteristic lengths, concluded that they have the standard

near-Tc functional dependency on temperature for all condensate cases and all

values of z. However, the presence of z does have a non-trivial effect on this phe-

nomenological parameters, diminishing the value of their numerical coefficients

as z raises.

We have also computed with holographic techniques the Ginzburg-Landau

parameter κ of the system. For all case of condensation and all values of z, we

saw that κ < 1/
√
2. This means that for all cases the dual system will behave

as a Type I superconductor. Moreover, we also observed that, for each case of

condensation considered, the value of κ became lower for higher values of z. This

212



means that in systems with higher anisotropy, vortex formation is more strongly

unfavored energetically and exhibit a stronger Type I behavior.

In addition to this, by making an holographic superfluid interpretation of

our bulk system and using as a starting point previous research on the relation

between the supercurrent density Jc and superfluid velocity vx of the system

[126], we used the Ginzburg-landau quantities obtained previously and computed

the critical supercurrent Jc, which is the value of the supercurrent above which

the system passes to its normal phase. The results obtained have a near-Tc

temperature dependence which is in complete agreement with the one predicted

by standard Ginzburg-Landau theory.

Finally, we computed the critical magnetic field Bc needed to break the su-

perconducting phase of the system, following the perturbative procedure first

developed in [17]. We observed that the critical field near-Tc functional depen-

dence on temperature is the one predicted by Ginzburg-Landau theory. However,

we also note that the value of the critical magnetic field is smaller for higher val-

ues of z. Additionally, within this perturbative approach, we have confirmed

holographically the conjecture posed in [18] that the critical magnetic field is

inversely proportional to the square of the correlation length, in accordance to

Ginzburg-Landau theory.

The holographic computation of the Ginzburg-Landau parameter κ pre-

sented in these two chapters can serve as an useful probe to test the viability

of an holographic superconducting model as a possible description of real world

high-Tc superconductors. Indeed, all the cuprates so far discovered present a

very Type II behaviour. Therefore, it would be a very desirable property of

an holographic superconductor to have a value of κ in the Type II region. A

similar thing can be said about the systems studied in Chapter 5, where we con-

cluded that the systems with greater anisotropy will be have a stronger Type I

behaviour. In this respect it is natural to ask how the Ginzburg-Landau parame-

ter obtained in these chapters could change by the choice of other models such as,
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for instance, d -wave holographic superconductors [8, 9, 10], p-wave holographic

superconductors [19], models with higher corrections to the scalar field poten-

tial such as the ones that appear in top-down approaches [20, 21, 14] or less

conventional models such as ones with Chern-Simons terms, higher-derivative

couplings or in the context of New Massive Gravity [22, 23, 24]. This calls for

further research.

Let us now turn to the top-down system studied in Chapter 6. To summa-

rize, we have explicitly constructed a Lagrangian for the five-dimensional N = 2

gauged supergravity coupled to an SU(2, 1)/U(2) scalar hypermultiplet. The

resulting model is uniquely determined by a single parameter β representing

the mixing between the U(1) generators of SU(2) and U(1). When β = 1,

the system describes two complex scalars ζ1, ζ2, with masses m2
1 = −3 and

m2
2 = 0. In this case, the resulting Lagrangian exactly coincides with the La-

grangian of [20], with the extension that incorporates the complex dilaton found

in [25, 26, 27, 28]. This match involves a non-trivial scalar potential and non-

trivial couplings, and should not come as a surprise as there is no other possible

model for an SU(2, 1)/U(2) hypermultiplet with such masses.

Similarly, the same uniqueness property of the Lagrangian strongly indi-

cates that the model with β = 0 indeed must describe the two complex scalar

fields of masses m2 = −15/4 which are dual to the operator of lowest dimension

∆ = 3/2 in the Klebanov-Witten superconformal theory. We have explicitly

demonstrated that this mode dominates the thermodynamics at low tempera-

tures. It would be extremely interesting to see if the β = 0 model represents a

consistent truncation of Type IIB supergravity. While the scalar fields have non-

trivial Kaluza-Klein quantum numbers (1/2, 1/2), they are however the lowest

states in the KK spectrum, which suggests that the truncation might neverthe-

less be consistent. Proving the latter may require an explicit construction of a

Type IIB ansatz that reproduces the same equations of motion.

In presenting both approaches in contrast, we can compare their strong and
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weak spots more clearly. For instance, by having the complete freedom to define

our bulk model and the freedom to choose the value of the input parameters

(scalar charge q in Chapter 5 and dynamical exponent z and scalar field mass

M2 in Chapter 6), we have been able to probe the general phenomenological be-

haviour of the relevant physical quantities in the condensed phase of the dual field

theory. In particular, in Chapter 5 we have seen that the Ginzburg-Landau pa-

rameter κ reaches an asymptotic upper constant value as the value of the scalar

charge increases. Therefore, in looking for possible holographic candidates to

model real world high-Tc superconductors, we could expect that a system with

a large scalar charge will be more likely to show Type II behaviour. In a similar

fashion, from Chapter 5 we can conclude that a larger degree of anisotropy will

inhibit Type II behaviour. The main downside to this bottom-up approach is

that it is not clear the manner in which any of these phenomenological simple

models could be obtained from a consistent truncation of Type IIB theory, and

how they could provide insight on the microscopical details behind the supercon-

ducting phase of the dual theory. Of course, one can always rightfully say that

these systems are not designed to have these properties, but rather to give us

practical knowledge on the phenomenology of the dual superconducting systems

and its working relation with the bulk models from where they arise.

On the other hand, in the top-down holographic superconductor described

in Chapter 6, by considering a bulk system with a different internal manifold,

we were able to construct a gravity model whose holographic dual is nothing but

the Klebanov-Witten superconformal field theory. Moreover, we found through

holographic techniques that the very specific K-W operator Tr (AkBl) (the one

with the lowest dimension) condenses and dominates the thermodynamics of the

system, thus showing that Klebanov-Witten has a well defined superconducting

phase.
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[42] H. Fröhlich, Phys. Rev. 79, 845 (1950).
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