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Abstract

This thesis presents some contributions to the state-of-the-art of the fields of gain-

scheduling and fault tolerant control (FTC).

In the area of gain-scheduling, the connections between the linear parameter varying

(LPV) and Takagi-Sugeno (TS) paradigms are analyzed, showing that the methods for

the automated generation of models by nonlinear embedding and by sector nonlinear-

ity, developed for one class of systems, can be easily extended to deal with the other

class. Then, two measures, based on the notions of overboundedness and region of at-

traction estimates, are proposed in order to compare different models and choose which

one can be considered the best one. Later, the problem of designing state-feedback con-

trollers for LPV systems has been considered, providing two main contributions. First,

robust LPV controllers that can guarantee some desired performances when applied

to uncertain LPV systems are designed, by using a double-layer polytopic description

that takes into account both the variability due to the varying parameter vector and the

uncertainty. Then, the idea of designing the controller in such a way that the required

performances are scheduled by the varying parameters is explored, which provides an

elegant way to vary online the behavior of the closed-loop system. In both cases, the

problem reduces to finding a solution to a finite number of linear matrix inequalities

(LMIs), which can be done efficiently using the available solvers.

In the area of fault tolerant control, the thesis first shows that the aforementioned

double-layer polytopic framework can be used for FTC, in such a way that different

strategies (passive, active and hybrid) are obtained depending on the amount of avail-

able information. Later, an FTC strategy for LPV systems that involves a reconfigured

reference model and virtual actuators is developed. It is shown that by including the

saturations in the reference model equations, it is possible to design a model reference

FTC system that automatically retunes the reference states whenever the system is af-

fected by saturation nonlinearities. In this way, a graceful performance degradation in

presence of actuator saturations is incorporated in an elegant way. Finally, the problem

of FTC of unstable LPV systems subject to actuator saturations is considered. In this

case, the design of the virtual actuator is performed in such a way that the convergence

of the state trajectory to zero is assured despite the saturations and the appearance of

faults. Also, it is shown that it is possible to obtain some guarantees about the tolerated

delay between the fault occurrence and its isolation, and that the nominal controller

can be designed so as to maximize the tolerated delay.
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Resum

Aquesta tesi presenta diverses contribucions a l’estat de l’art del control per planificació

del guany i del control tolerant a fallades (FTC).

Pel que fa al control per planificació del guany, s’analitzen les connexions entre els

paradigmes dels sistemes lineals a paràmetres variants en el temps (LPV) i de Takagi-

Sugeno (TS). Es demostra que els mètodes per a la generació automàtica de models

mitjançant encastament no lineal i mitjançant no linealitat sectorial, desenvolupats per

una classe de sistemes, es poden estendre fàcilment per fer-los servir amb l’altra classe.

Es proposen dues mesures basades en les nocions de sobrefitació i d’estimació de la

regió d’atracció, per tal de comparar diferents models i triar quin d’ells pot ser consid-

erat el millor. Després, es considera el problema de dissenyar controladors per reali-

mentació d’estat per a sistemes LPV, proporcionant dues contribucions principals. En

primer lloc, fent servir una descripció amb doble capa politòpica que té en compte tant

la variabilitat deguda al vector de paràmetres variants i la deguda a la incertesa, es dis-

senyen controladors LPV robustos que puguin garantir unes especificacions desitjades

quan s’apliquen a sistemes LPV incerts. En segon lloc, s’explora la idea de dissenyar el

controlador de tal manera que les especificacions requerides siguin programades pels

paràmetres variants. Això proporciona una manera elegant de variar en línia el com-

portament del sistema en llaç tancat. En tots dos casos, el problema es redueix a trobar

una solució d’un nombre finit de desigualtats matricials lineals (LMIs), que es poden

resoldre fent servir algorismes numèrics disponibles i molt eficients.

En l’àrea del control tolerant a fallades, primerament la tesi mostra que la descripció

amb doble capa politòpica abans esmentada es pot utilitzar per fer FTC, de tal manera

que, en funció de la quantitat d’informació disponible, s’obtenen diferents estratègies

(passiva, activa i híbrida). Després, es desenvolupa una estratègia de FTC per a sis-

temes LPV que fa servir un model de referència reconfigurat combinat amb la tècnica

d’actuadors virtuals. Es mostra que mitjançant la inclusió de les saturacions en les

equacions del model de referència, és possible dissenyar un sistema de control tolerant

a fallades que resintonitza automàticament els estats de referència cada vegada que el

sistema es veu afectat per les no linealitats de la saturació en els actuadors. D’aquesta

manera s’incorpora una degradació elegant de les especificacions en presència de sat-

uracions d’actuadors. Finalment, es considera el problema de FTC per sistemes LPV

inestables afectats per saturacions d’actuadors. En aquest cas, es porta a terme el dis-

seny de l’actuador virtual de tal manera que la convergència a zero de la trajectòria

d’estat està assegurada tot i les saturacions i l’aparició de fallades. A més, es mostra

que és possible obtenir garanties sobre el retard tolerat entre l’aparició d’una fallada i
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el seu aïllament, i que el controlador nominal es pot dissenyar maximitzant el retard

tolerat.
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ê estimated error vector

f fault vector

xvi



Symbols xvii

f̂ estimated fault vector

fa additive fault vector

f̂a estimated additive fault vector

g nonlinear state function

h nonlinear output function

k time sample (discrete-time)

s continuous-time complex variable

sat saturation function

t time variable (continuous-time)

tf fault occurrence time

tI fault isolation time

x state vector

x̂ estimated state vector

xc controller state vector

xref reference state vector

xv virtual actuator state vector

u input vector

uc controller output vector

uref reference input vector

uMAX saturation vector

w disturbance vector

y output vector

yref reference output vector

z discrete-time complex variable

z∞ H∞ performance output vector

z2 H2 performance output vector

Γ auxiliary variable to convert BMIs into LMIs

γ∞ H∞ performance

γ2 H2 performance

µi i-th coefficient of a polytopic decomposition

ρi level of activation of the i-th local model

ε output error vector

ςi i-th saturation scheduling parameter



Symbols xviii

σ generic complex variable

θ vector of varying parameters

ϑ vector of premise variables

ϕ roll angle

ψ yaw angle

τ generic time variable

τD generic fault detection time

τI generic fault isolation time

% pitch angle

Φ actuator fault distribution matrix

Θ domain of variation of θ

Ω rotor speed

D subset of the complex plane

E ellipsoid

L region of the state-space in which the actuators do not saturate

S domain of attraction of the origin



List of publications

Papers included in the thesis

The following papers are included in the thesis.

Journal papers

• D. Rotondo, F. Nejjari, and V. Puig. Robust state-feedback control of uncertain

LPV systems: an LMI-based approach. Journal of the Franklin Institute, 351:2781-

2803, 2014 [253].

• D. Rotondo, F. Nejjari, and V. Puig. A virtual actuator and sensor approach for

fault tolerant control of LPV systems. Journal of Process Control, 24(3):203-222, 2014

[254].

• D. Rotondo, V. Puig, F. Nejjari, and M. Witczak. Automated generation and com-

parison of Takagi-Sugeno and polytopic quasi-LPV models. Fuzzy Sets and Sys-

tems, 277:44-64, 2015 [275].

• D. Rotondo, F. Nejjari, and V. Puig. Design of parameter-scheduled state-feedback

controllers using shifting specifications. Journal of the Franklin Institute, 352:93-116,

2015 [266].

• D. Rotondo, F. Nejjari, V. Puig, and J. Blesa. Model reference FTC for LPV systems

using virtual actuator and set-membership fault estimation. International Journal

of Robust and Nonlinear Control, 25(5):735-760, 2015 [269].

xix



List of publications xx

• D. Rotondo, F. Nejjari, and V. Puig. Robust quasi-LPV model reference FTC of a

quadrotor UAV subject to actuator faults. International Journal of Applied Mathe-

matics and Computer Science, 25(1):7-22, 2015 [265].

• D. Rotondo, J.-C. Ponsart, D. Theilliol, F. Nejjari, and V. Puig. A virtual actuator

approach for the fault tolerant control of unstable linear systems subject to actu-

ator saturation and fault isolation delay. Annual Reviews in Control, 39:68-80, 2015

[270].

• D. Rotondo, V. Puig, F. Nejjari, and J. Romera. A fault-hiding approach for the

switching quasi-LPV fault tolerant control of a four-wheeled omnidirectional mo-

bile robot. IEEE Transactions on Industrial Electronics, 62(6):3932-3944, 2015 [274].

• D. Rotondo, F. Nejjari, V. Puig. Fault tolerant control of a PEM fuel cell using

Takagi-Sugeno virtual actuators. Submitted to Journal of Process Control.

Conference papers

• D. Rotondo, F. Nejjari, and V. Puig. A shifting pole placement approach for the

design of parameter-scheduled state-feedback controllers. In Proceedings of the

12th European Control Conference (ECC), pages 1829-1834, 2013 [248].

• D. Rotondo, F. Nejjari, and V. Puig. Passive and active FTC comparison for poly-

topic LPV systems. In Proceedings of the 12th European Control Conference (ECC),

pages 2951-2956, 2013 [249].

• D. Rotondo, F. Nejjari, and V. Puig. Fault tolerant control design for polytopic un-

certain LPV systems. In Proceedings of the 21st Mediterranean Conference on Control

and Automation (MED), pages 66-72, 2013 [250].

• D. Rotondo, F. Nejjari, A. Torren, and V. Puig. Fault tolerant control design for

polytopic uncertain LPV systems: application to a quadrotor. In Proceedings of the

2nd International Conference on Control and Fault-Tolerant Systems (SYSTOL), pages

643-648, 2013 [251].

• D. Rotondo, F. Nejjari, and V. Puig. Shifting finite time stability and bounded-

ness design for continuous-time LPV systems. In Proceedings of the 32nd American

Control Conference (ACC), pages 838-843, 2015 [267].



List of publications xxi

• D. Rotondo, J.-C. Ponsart, D. Theilliol, F. Nejjari, and V. Puig. Fault tolerant con-

trol of unstable LPV systems subject to actuator saturations using virtual actua-

tors. In Proceedings of the 9th IFAC Symposium on Fault Detection, Supervision and

Safety for Technical Processes (SAFEPROCESS), pages 18-23, 2015 [271].

Papers not included in the thesis

The following papers were published/prepared during the development of this PhD

thesis, but are not included in this manuscript.

Journal papers

• D. Rotondo, F. Nejjari, and V. Puig. Quasi-LPV modeling, identification and con-

trol of a twin rotor MIMO system. Control Engineering Practice, 21(6):829-846, 2013

[247].

• J. Blesa, D. Rotondo, V. Puig, and F. Nejjari. FDI and FTC of wind turbines using

the interval observer approach and virtual actuators/sensors. Control Engineering

Practice, 24:138-155, 2014 [38].

• J. Blesa, P. Jiménez, D. Rotondo, F. Nejjari, and V. Puig. An interval NLPV parity

equations approach for fault detection and isolation of a wind farm. IEEE Trans-

actions on Industrial Electronics, 62(6):3794-3805, 2015 [39].

• M. Witczak, D. Rotondo, V. Puig and M. Witczak. A practical test for assessing the

reachability of discrete-time Takagi-Sugeno fuzzy systems. Journal of the Franklin

Institute, 352(12):5936-5951, 2015 [348].

• D. Rotondo, F. Nejjari, V. Puig. Dilated LMI characterization for the robust finite

time control of discrete-time uncertain linear systems. Automatica, 63:16-20, 2016

[276].

• M. Witczak, M. Buciakowski, V. Puig, D. Rotondo, and F. Nejjari. An LMI ap-

proach to robust fault estimation for a class of non-linear systems. Accepted in

International Journal of Robust and Nonlinear Control [346].



List of publications xxii

• D. Rotondo, R. Fernández-Cantí and S. Tornil Sin and J. Blesa and V. Puig. Ro-

bust fault diagnosis of PEM fuel cells using a Takagi-Sugeno interval observer

approach. Accepted in the International Journal of Hydrogen Energy [243].

Conference papers

• D. Rotondo, F. Nejjari, and V. Puig. FTC design for polytopic LPV systems sub-

ject to actuator saturations. In Proceedings of the 20th Mediterranean Conference on

Control and Automation (MED), pages 524-529, 2012 [244].

• F. Nejjari, D. Rotondo, V. Puig, and M. Innocenti. Quasi-LPV modelling and non-

linear identification of a twin-rotor system. In Proceedings of the 20th Mediterranean

Conference on Control and Automation (MED), pages 229-234, 2012 [208].

• D. Rotondo, F. Nejjari, V. Puig, and J. Blesa. Fault tolerant control of the wind

turbine benchmark using virtual sensors/actuators. In Proceedings of the 8th IFAC

Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFE-

PROCESS), pages 114-119, 2012 [246].

• D. Rotondo, F. Nejjari, and V. Puig. Fault estimation and virtual actuator FTC ap-

proach for LPV systems. In Proceedings of the 8th IFAC Symposium on Fault Detec-

tion, Supervision and Safety for Technical Processes (SAFEPROCESS), pages 824-829,

2012 [245].

• D. Rotondo, V. Puig, J. M. Acevedo Valle, and F. Nejjari. FTC of LPV systems

using a bank of virtual sensors: application to wind turbines. In Proceedings of the

2nd International Conference on Control and Fault-Tolerant Systems (SYSTOL), pages

492-497, 2013 [252].

• J. Blesa, F. Nejjari, D. Rotondo, and V. Puig. Robust fault detection and isolation of

wind turbines using interval observers. In Proceedings of the 2nd International Con-

ference on Control and Fault-Tolerant Systems (SYSTOL), pages 353-358, 2013 [36].

• D. Rotondo, V. Puig, and F. Nejjari. A bank of virtual sensors for active fault tol-

erant control of LPV systems. In Proceedings of the 13th European Control Conference

(ECC), pages 252-257, 2014 [259].



List of publications xxiii

• D. Rotondo, J. Romera, V. Puig, and F. Nejjari. Identification and switching quasi-

LPV control of a four wheeled omnidirectional robot. In Proceedings of the 22nd

Mediterranean Control Conference (MED), pages 1105-1110, 2014 [263].

• D. Rotondo, V. Puig, and F. Nejjari. Model reference gain-scheduling control of

a PEM fuel cell using Takagi-Sugeno modelling. In Proceedings of the 15th In-

ternational Conference on Information Processing and Management of Uncertainty in

Knowledge-Based Systems (IPMU), pages 518-527, 2014 [261].

• D. Rotondo, F. Nejjari, and V. Puig. Model reference switching quasi-LPV control

of a four wheeled omnidirectional robot. In Proceedings of the 19th World Congress

of the International Federation of Automatic Control (IFAC), pages 4062-4067, 2014

[257].

• D. Rotondo, V. Reppa, V. Puig, and F. Nejjari. Adaptive observer for switching

linear parameter-varying (LPV) systems. In Proceedings of the 19th World Congress

of the International Federation of Automatic Control (IFAC), pages 1471-1476, 2014

[262].

• D. Rotondo, V. Puig, and F. Nejjari. A virtual actuator approach for fault tolerant

control of switching LPV systems. In Proceedings of the 19th World Congress of the

International Federation of Automatic Control (IFAC), pages 11667-11672, 2014 [260].

• J. Blesa, P. Jiménez, D. Rotondo, F. Nejjari, and V. Puig. Fault diagnosis of a wind

farm using interval parity equations. Proceedings of the 19th World Congress of the

International Federation of Automatic Control (IFAC), pages 4322-4327, 2014 [37].

• A. Soldevila, J. Cayero, J. C. Salazar, D. Rotondo, and V. Puig. Control of a quadru-

ple tank process using a mixed economic and standard MPC. In Actas de las XXXV

Jornadas de Automatica, 2014 [298].

• D. Rotondo, F. Nejjari, and V. Puig. Model reference quasi-LPV control of a

quadrotor UAV. In Proceedings of the IEEE Conference on Control Applications (CCA),

pages 736-741, 2014 [256].

• D. Rotondo, F. Nejjari, and V. Puig. Fault tolerant control of a omnidirectional

robot using a switched Takagi-Sugeno approach. In Proceedings of the IEEE Inter-

national Symposium on Intelligent Control (ISIC), pages 2183-2188, 2014 [258].



List of publications xxiv

• M. Witczak, V. Puig, D. Rotondo, M. de Rozprza Faygel, and M. Mrugalski. A

robustH∞ observer design for unknown input nonlinear systems: application to

fault diagnosis of a wind turbine. In Proceedings of the 23rd Mediterranean Control

Conference (MED), pages 162-167, 2015 [347].

• D. Rotondo, V. Puig, and F. Nejjari. Linear quadratic control of LPV systems

using static and shifting specifications. In Proceedings of the 14th European Control

Conference (ECC), pages 3085-3090, 2015 [272].

• D. Rotondo, V. Puig, and F. Nejjari. Fault tolerant control of a PEM fuel cell using

qLPV virtual actuators. In Proceedings of the 9th IFAC Symposium on Fault Detection,

Supervision and Safety for Technical Processes (SAFEPROCESS), pages 271-276, 2015

[273].

• J. M. Acevedo Valle, V. Puig, S. Tornil Sin, M. Witczak, and D. Rotondo. Predictive

fault tolerant control for LPV systems using model reference. In Proceedings of the

9th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes

(SAFEPROCESS), 2015 [335].

• D. Rotondo, A. Cristofaro, T. A. Johansen, F. Nejjari, and V. Puig. Icing detection

in unmanned aerial vehicles with longitudinal motion using an LPV unknown

input observer. In Proceedings of the IEEE Conference on Control Applications (CCA),

pages 984-989, 2015 [264].

• D. Rotondo, F. Nejjari, and V. Puig. Shifting linear quadratic control of con-

strained continuous-time descriptor LPV systems. In Proceedings of the 1st IFAC

Workshop on Linear Parameter Varying systems (LPV), pages 25-30, 2015 [268].

Book chapters

• D. Rotondo, F. Nejjari, and V. Puig. Robust fault tolerant control framework using

uncertain Takagi-Sugeno fuzzy models. In Fuzzy Modelling and Control: Theory and

Applications, pages 117-133. Atlantis Computational Intelligence Systems, 2014

[255].



To my Non, Sabrina, who enlightens my days with her smile. . .

xxv



Chapter 1

Introduction

1.1 Context of the thesis

The results presented in this thesis have been developed at the Research Center for

Supervision, Safety and Automatic Control (CS2AC) of the Universitat Politècnica de

Catalunya (UPC) in Terrassa, Spain. The research was jointly supervised by Dr. Fatiha

Nejjari and Dr. Vicenç Puig, and was sponsored partly by UPC through an FPI-UPC

grant and by the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) through

contracts FI-DGR. The supports are gratefully acknowledged.

1.2 Motivations

The development of gain scheduling and fault tolerant control (FTC) techniques has

attracted a lot of attention in the last decades, as testified by the increasing number of

publications dealing with these topics.

In the first case, the interest of the research community has been attracted by the pos-

sibility of dealing with nonlinear control problems. In particular, the linear parameter

varying (LPV) [287] and the fuzzy Takagi-Sugeno (TS) [317] paradigms have provided

an elegant way to apply linear techniques to nonlinear systems with theoretical guar-

antees of stability and performance. Some recent works have presented some clues

about the existence of a close connection between the LPV theory and the fuzzy TS

paradigms [29, 193, 194, 242]. However, even if from theoretical analysis and design

points of view it is difficult to find clear differences between the two paradigms, they

are still considered different and their equality is dubious [329].
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Introduction 2

Most of the available results about the design of controllers for LPV systems make

the assumption that the model is perfectly known. Only a few works, e.g. [16, 20]

have stated the importance of considering robustness against uncertainties. Hence, de-

signing controllers for uncertain LPV systems that can guarantee some desired perfor-

mances in spite of the uncertainties is still an open problem. Furthermore, an interest-

ing twist on the application of LPV/TS theory, that has never been considered before, is

designing the controller in such a way that different values of the varying parameters

imply different performances of the closed-loop system.

On the other hand, the increasing need for safety and reliability has motivated the

development of FTC techniques, which are able to maintain the overall system stability

and acceptable performance in presence of faults [372]. The LPV paradigm has been

successfully applied in the FTC field, due to the time-varying nature of systems affected

by faults and the need of dealing not only with linear plants, but also with nonlinear

ones. In this case, open issues that motivate further research consist in how to take into

account effectively the uncertainties in the fault estimation, and how to improve the

behavior of fault tolerant control systems subject to constraints on the actuator action.

This last problem is of particular importance in the case of open-loop unstable systems,

because neglecting it could lead to instability under fault occurrence [90].

1.3 Thesis objectives

The objectives of this thesis are the following:

• to state clearly the analogies and connections between LPV and TS systems;

• to show how methods developed for the LPV representation could be easily ex-

tended in order to be applied to the TS one, and vice versa;

• to propose measures in order to compare different LPV/TS models and choose

which one can be considered the best one;

• to propose an approach for the design of robust LPV state-feedback controllers for

uncertain LPV systems that can guarantee some desired performances in spite of

the uncertainties;

• to propose an approach for the design of LPV state-feedback controllers such that

different values of the varying parameters imply different performances of the

closed-loop system;
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• to use the robust LPV controller design method for FTC, giving rise to different

strategies (passive/active/hybrid) depending on the available information about

the faults;

• to take into account the presence of actuator saturations in the FTC scheme, such

that guarantees of convergence to zero of the state trajectory are obtained, even

in presence of delays between the fault occurrence and its isolation.

1.4 Outline of the thesis

The thesis is organized in two parts:

Part I presents the results that constitute a contribution to the state-of-the-art of gain-

scheduling. It is made up of four chapters:

• Chapter 2 recalls some background on gain-scheduling, with particular empha-

sis on LPV and TS systems. Known results about modeling, analysis and control

of LPV/TS systems are presented and discussed. In particular, it is shown how

LPV/TS representations can be obtained starting from a given nonlinear system,

using different approaches, i.e. Jacobian linearization, state transformation, func-

tion substitution, sector nonlinearity and local approximation in fuzzy partition

spaces. Then, the analysis and design of LPV control systems using the quadratic

framework is reviewed, discussing several possible specifications, as stability, D-

stability (pole clustering in a subset of the complex plane), H∞/H2 performance

and finite time stability/boundedness.

• Chapter 3 addresses the presence of strong analogies between LPV and TS mod-

els. In particular, the connections between LPV and TS systems are clearly stated.

It is shown that the method for the automated generation of LPV models by non-

linear embedding [168] can be easily extended to solve the corresponding prob-

lem for TS models. Similarly, it is shown that the method for the generation of a

TS model for a given nonlinear multivariable function based on the sector non-

linearity approach [216] can be extended to the problem of generating a polytopic

LPV model for a given nonlinear system. Finally, two measures, the first based

on the notion of overboundedness, while the second based on region of attraction

estimates, are proposed in order to compare different models and choose which

one can be considered the best one. The chapter is concluded by a mathematical

example that shows an application of the proposed methodologies.
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• Chapter 4 considers the problem of designing a robust LPV state-feedback con-

troller for uncertain LPV systems that can guarantee some desired performances.

In the proposed approach, the vector of varying parameters is used to schedule

between uncertain linear time invariant (LTI) systems. The resulting idea consists

in using a double-layer polytopic description so as to take into account both the

variability due to the parameter vector and the uncertainty. The first polytopic

layer manages the varying parameters and is used to obtain the vertex uncertain

systems, where the vertex controllers are designed. The second polytopic layer is

built at each vertex system so as to take into account the model uncertainties and

add robustness into the design step. Under some assumptions, the problem re-

duces to finding a solution to a finite number of linear matrix inequalities (LMIs),

a problem for which efficient solvers are available nowadays. The proposed tech-

nique is applied to numerical examples, showing that it achieves the desired per-

formances, whereas the traditional LPV gain-scheduling technique fails.

• In chapter 5, by taking advantage of the properties of polytopes and linear ma-

trix inequalities (LMIs), new problems that can be seen as extensions of the more

classical D-stability, H∞ performance, H2 performance, finite time boundedness

and finite time stability specifications are solved. In these new problems, referred

to as shifting D-stability, shifting H∞ performance, shifting H2 performance, shifting

finite time stability and shifting finite time boundedness, by introducing some vary-

ing parameters, or using the existing ones, the controller is designed in such a

way that different values of these parameters imply different performances of the

closed-loop system. The results obtained with an academic example are used to

demonstrate the effectiveness and some characteristics of the proposed approach.

Part II presents the results that constitute a contribution to the state-of-the-art of fault

tolerant control. It is made up of four chapters:

• Chapter 6 recalls some background on fault tolerant control. Different approaches

are resumed, following the well-established distinction between hardware redun-

dancy and analytical redundancy techniques and, with regards to the latter, the ad-

ditional distinction between passive and active approaches. The last part of the

chapter resumes recent developments of fault tolerant control theory, highlight-

ing some open issues that motivate further investigation in this topic.

• Chapter 7 shows how the framework proposed in Chapter 4 for the design of ro-

bust LPV controllers can be used for FTC, with the advantage that, depending on

how much information is available, it gives rise to different strategies. If the faults

are considered as perturbations, a passive FTC would arise. On the other hand, if



Introduction 5

the faults are used as additional scheduling parameters, an active FTC would be

obtained. Finally, if the fault estimation uncertainty is taken into account explic-

itly during the design step, the robust LPV polytopic technique would lead to

hybrid FTC. The different controllers are obtained using LMIs, in order to achieve

regional pole placement and H∞ performance constraints. Results obtained us-

ing a quadrotor unmanned aerial vehicle (UAV) simulator are used to show the

effectiveness of the proposed approach.

• Chapter 8 concerns the development of an FTC strategy for LPV systems involv-

ing a reconfigured reference model and virtual actuators. The use of the refer-

ence model framework allows assuring that the desired tracking performances

are kept despite the fault occurrence, thanks to the action brought by the vir-

tual actuator. By including the saturations in the reference model equations, it

is shown that it is possible to design a model reference FTC system that auto-

matically retunes the reference states whenever the system input is affected by

saturation nonlinearities. Hence, another contribution of this chapter is to take

into account the saturations as scheduling parameters, such that their inclusion

in both the reference model and the system provides an elegant way to incorpo-

rate a graceful performance degradation in presence of actuator saturations. The

potential and performance of the proposed approach are demonstrated with two

different examples: a twin rotor multiple-input multiple-output (MIMO) system

(TRMS) and a four wheeled omnidirectional mobile robot.

• Chapter 9 deals with the design of an active FTC strategy for unstable LPV sys-

tems subject to actuator saturation. Under the assumption that a nominal con-

troller has been already designed, a block is added to the control loop for achiev-

ing fault tolerance against a predefined set of possible faults. In particular, faults

affecting the actuators and causing a change in the system input matrix are con-

sidered. The design of this block is performed in such a way that, if at the fault

isolation time the closed-loop system state is inside a region defined by a value

of the Lyapunov function, the state trajectory will converge to zero despite the

appearance of the faults. Also, it is shown that it is possible to obtain some guar-

antees about the tolerated delay between the fault occurrence and its isolation.

Moreover, the design of the nominal controller can be performed so as to maxi-

mize the tolerated delay. A numerical example is used to show the effectiveness

of the proposed approach.

Finally, the thesis is concluded by:
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• Chapter 10, which summarizes the main conclusions and suggests possible lines

of future research;

• Appendix A, which provides new characterizations for the analysis of finite time

boundedness and finite time stability. This new characterization allows consider-

ing parameter-dependent Lyapunov functions easily, thus decreasing the conser-

vativeness with respect to other approaches available in the literature;

• Appendix B, which completes the results presented in Chapter 8, by demonstrat-

ing that a particular matrix is independent from the values of the faults.

1.5 Notation

Following the notation used by [16], σ stands for the Laplace variable s in the continuous-

time (CT) case and for the Z-transform variable z in the discrete-time (DT) case. Simi-

larly, τ will stand for the time t ∈ R+ in the CT case and for the time samples k ∈ Z+ in

the DT case. The notation σ.x(τ) stands for ẋ(t) for CT systems and for x(k + 1) for DT

systems.

For a complex number σ, its complex conjugate will be denoted by σ∗.

Given a vector v ∈ Rnv , its i-th element will be denoted as vi. For a given matrix

M = [mkl]k∈{1,...,nr},l∈{1,...,nc} ∈ Rnr×nc , the i-th row will be denoted as Mi, and the

element located in its i-th row and j-th column as mkl. The notation MT will indicate

the transpose operation, and MH will denote the Hermitian transpose operation. For

brevity, symmetric elements in a matrix are denoted by ∗ andM+MT will be indicated

as He {M}. If a matrix M ∈ Rn×n is symmetric, then M ∈ Sn×n. A matrix M ∈ Sn×n is

said positive definite (M � 0) if all its eigenvalues are positive, and negative definite (M ≺
0) if all its eigenvalues are negative. Moreover, the symbol ⊗ denotes the Kronecker

product, † denotes the Moore-Penrose pseudoinverse and Tr the trace of a matrix.
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Chapter 2

Background on gain-scheduling

2.1 Gain-scheduling: LPV systems and TS systems

After World War II, the development of advanced jet aircrafts, the advent of guided

missiles and the need of stability and performance requirements for a wide set of oper-

ating conditions pushed towards a rapid adoption of gain scheduled autopilot systems

[277]. As examples of first proposed solutions, the B-52 autopilot, developed around

1951, incorporated an airspeed-based mechanism to compensate for changes in the

aero-surface effectiveness [277]. The autopilot of the Talos missile, developed in the

early 1950s, adjusted the gains to compensate for changes in altitude and speed, thus

exhibiting a rudimentary form of gain-scheduling [223]. Since then, gain-scheduling

began to play an important role not only in military applications, but in commercial

ones too. For example, in response to the dual imperatives of improved fuel economy

and reduction of exhaust emissions, gain scheduling began to be used in automobile

engine controllers for electronic fuel control [277], starting from [238], in which a closed-

loop electronic fuel injection control with a gain influenced by measured variables was

described.

The first gain scheduled controller design approach involved selecting several oper-

ating points, covering the range of the plant’s working conditions, where linear time

invariant (LTI) controllers were designed. Then, between these operating points, the

parameters (gains) of the controller were interpolated (scheduled) [127]. However, this

approach lacked in providing stability and performance guarantees for all the possi-

ble operating conditions and, moreover, it needed the assumption of slow variation

in time of the parameters [289]. For this reason, the necessity for systematic analy-

sis and design tools for gain-scheduled controllers arised. Among the most successful

8
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approaches, there are the linear parameter varying (LPV) and the Takagi-Sugeno (TS)

paradigms.

LPV systems were introduced by Shamma [287] to distinguish such systems from LTI

and linear time varying (LTV) ones [288]. More specifically, LPV systems are a par-

ticular class of LTV systems, where the time-varying elements depend on measurable

parameters that can vary over time [344]. The LPV framework has proved to be suitable

for controlling nonlinear systems by embedding the nonlinearities in the varying pa-

rameters, that will depend on some endogenous signals, e.g. states, inputs or outputs.

In this case, the system is referred to as quasi-LPV, to make a further distinction with

respect to pure LPV systems, where the varying parameters only depend on exogenous

signals [195].

Since the introduction of this paradigm, a lot of research has concerned the develop-

ment of design techniques for LPV systems. At first, the small gain theorem was ap-

plied to LPV systems with a linear fractional transformation (LFT) form [15, 222]. How-

ever, this approach took into account complex varying parameters, that did not appear

in real plants, thus introducing a strong source of conservatism [344]. For this reason,

Lyapunov-based approaches were developed, allowing to take into account not only

arbitrarily fast parameter variations [16], but also known bounds on the rate of param-

eter variation [105, 353, 354]. A unified scheme combining the small gain theorem and

the Lyapunov-based approach was developed by [350].

The LPV paradigm has evolved rapidly in the last two decades and has been applied

successfully to a big number of applications, e.g. active vision systems [316], airplanes

[14, 314], bioreactors [185], canals [82], CD players [75], container crane load swing

[128], control moment gyroscopes [1], electromagnetic actuators [102], engines [51],

flexible ball screw drives [121], fuel cells [32, 69], glycemic regulation [60], induction

motors [233], internet web servers [234], inverted pendula [239], ionic polymer-metal

composites [181], magneto-rheological dampers [294], robots [122], unmanned aerial

vehicles (UAVs) [184, 211], vehicle suspensions [101, 231, 232], wafer scanners [114],

wind turbines [293] and winding machines [241]. Recently, the LPV paradigm has also

been applied to time delay systems with time varying delays [44–46].

On the other hand, TS systems, introduced by [317], basically provide an effective way

of representing nonlinear systems with the aid of fuzzy sets, fuzzy rules and a set of

local linear models which are smoothly connected by fuzzy membership functions [97].

TS fuzzy models are universal approximators, since they can approximate any smooth

nonlinear function to any degree of accuracy [91, 148, 321, 364, 368], such that they can

represent complex nonlinear systems.
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The design approaches for TS systems can be classified into six categories [97]: i) local

controller design, where feedback controllers are designed for each local model and

combined to obtain the global controller, and some stability criteria is used to check

stability [50, 99]; ii) stabilization based on a nominal linear model with nonlinearities

considered as uncertainties [93, 98]; iii) stabilization based on a common quadratic Lya-

punov function [52, 61, 145, 163, 165, 171, 189, 320, 341]; iv) stabilization based on a

piecewise quadratic Lyapunov function [93, 95, 96, 149]; v) stabilization based on a

fuzzy Lyapunov function [115, 322]; vi) adaptive control, when the parameters of the

TS fuzzy models are unknown [94, 100, 225].

Also the TS paradigm has been successfully applied in several fields, among which ac-

tive suspension of vehicles [49], aircrafts [83], electromechanical systems [172], energy

production systems [164], missiles [367], robotic systems [25], spark ignition engines

[158], transmission systems [65] and time delay systems [180].

2.2 Modeling of LPV systems

In this section, some basic concepts about modeling of LPV systems are recalled. Since

the thesis deals with methods developed for LPV models with polytopic parameter de-

pendence, the case of LFT parameter dependence [15, 222] will not be considered. This

does not cause a loss of generality, since [344] has demonstrated that an LPV model

with LFT parameter dependence can be converted into an LPV model with polytopic

parameter dependence. Also, the thesis will focus on LPV state-space (SS) represen-

tations, even though LPV input-output (IO) models have been proposed too [7]. [332]

has suggested practically applicable approaches for the conversion of an LPV IO model

in a discrete-time LPV SS representation; thus, considering SS models does not cause a

loss of generality. Finally, the methods recalled hereafter provide an LPV model start-

ing from a nonlinear model that is assumed to be available. In cases different from this,

LPV models can be identified from IO data [186, 329].

An LPV system is defined as a finite-dimensional LTV system whose state space matri-

ces are fixed functions of some varying parameters θ(τ) ∈ Rnθ , assumed to be unknown

a priori, but measured or estimated in real-time [290]:

σ.x(τ) = A (θ(τ))x(τ) +B (θ(τ))u(τ) (2.1)

y(τ) = C (θ(τ))x(τ) +D (θ(τ))u(τ) (2.2)
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where x ∈ Rnx , u ∈ Rnu and y ∈ Rny are the state, the input, and the output vec-

tor, respectively, and A (θ(τ)), B (θ(τ)), C (θ(τ)) and D (θ(τ)) are varying matrices of

appropriate dimensions.

Among the available analysis/synthesis approaches, the most popular, at least taking

into account the number of publications, is the polytopic approach [127]. An LPV sys-

tem is called polytopic when it can be represented by matricesA (θ(τ)),B (θ(τ)),C (θ(τ))

and D (θ(τ)), where the parameter vector θ(τ) ranges over a fixed polytope Θ, and the

dependence of the matrices on θ is affine [16], resulting in the following representation:

σ.x(τ) =
N∑
i=1

µi (θ(τ)) (Aix(τ) +Biu(τ)) (2.3)

y(τ) =

N∑
i=1

µi (θ(τ)) (Cix(τ) +Diu(τ)) (2.4)

where the quadruples (Ai, Bi, Ci, Di) define the so-called vertex systems, and µi are the

coefficients of the polytopic decomposition, such that:

N∑
i=1

µi (θ(τ)) = 1, µi (θ(τ)) ≥ 0, ∀i = 1, . . . , N, ∀θ ∈ Θ (2.5)

In the following, some methods for obtaining an LPV model starting from an avail-

able nonlinear SS model are recalled. For sake of simplicity, only continuous-time (CT)

nonlinear systems in the form:

ẋ(t) = g (x(t), u(t)) (2.6)

y(t) = h (x(t), u(t)) (2.7)

are considered. Notice that most of the physical systems of interest for control pur-

poses are CT, and if discrete-time (DT) LPV representations are desired for digital im-

plementation, such models can be obtained from CT LPV models using discretization

techniques, such as Euler or more sophisticated ones [330, 331].

2.2.1 Jacobian linearization

The Jacobian linearization approach is the simplest technique that can be applied for

obtaining LPV models. It assumes that the nonlinear system can be linearized around

some equilibrium points of interest [195]. The basis of the method is to use a first-order

Taylor-series approximation of (2.6)-(2.7), and then an interpolation of the obtained LTI
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models, when the system is working in operating points different from the equilibrium

ones.

Despite its simplicity, the behavior of the obtained LPV model could diverge from the

behavior of the nonlinear model [195]. The use of higher-order Taylor expansions could

alleviate this issue, but would lead to impractical implementations [176]. Also, it is

essentially impossible to capture the transient behavior of the nonlinear plant using

this method [224].

Hereafter, an example of the application of the Jacobian linearization technique, taken

from [291], is shown.

Consider the nonlinear system [177]:(
ẋ1(t)

ẋ2(t)

)
=

(
−x1(t)

x1(t)− |x2(t)|x2(t)− 10

)
+

(
1

0

)
u(t) (2.8)

y(t) = x2(t) (2.9)

The set of linearized models obtained from (2.8)-(2.9) is:(
δẋ1(t)

δẋ2(t)

)
=

(
−1 0

1 −2 |xeq2 (t)|

)(
δx1(t)

δx2(t)

)
+

(
1

0

)
δu(t) (2.10)

δy(t) =
(

0 1
)( δx1(t)

δx2(t)

)
(2.11)

Then, by considering the scheduling parameter θ(t) = |xeq2 (t)|, the model (2.10)-(2.11)

would appear in the form (2.1)-(2.2). The resulting system would be referred to as

quasi-LPV, due to the dependence of θ(t) on xeq2 (t).

2.2.2 State transformation

In the state transformation approach, a coordinate change is performed with the aim of

removing any nonlinear term not dependent on the scheduling parameters [290]. This

method assumes that the nonlinear system is in the following form:(
ż(t)

l̇(t)

)
= g (z(t)) +A (z(t))

(
z(t)

l(t)

)
+B (z(t))u(t) (2.12)

where z(t) ∈ Rnz are the scheduling states, and l(t) ∈ Rnh are the non-scheduling ones,

with nz = nu. Under the assumptions that there exists a family of equilibrium states
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parameterized by z(t), such that:

0 = g (z(t)) +A (z(t))

(
z(t)

leq (z(t))

)
+B (z(t))ueq (z(t)) (2.13)

with leq (z(t)) and ueq (z(t)) continuously differentiable functions, and thatA (z(t)) and

B (z(t)) are partitioned as:

A (z(t)) =

(
A11 (z(t)) A12 (z(t))

A21 (z(t)) A22 (z(t))

)
(2.14)

B (z(t)) =

(
B1 (z(t))

B2 (z(t))

)
(2.15)

it is possible to rewrite the state dynamics as:

(
ż(t)

l̇(t)− l̇eq (z(t))

)
=

 0 A12 (z(t))

0 A22 (z(t))− ∂leq(z)
∂z

∣∣∣
z(t)

A12 (z(t))

( z(t)

l(t)− leq(t)

)

+

 B1 (z(t))

B2 (z(t))− ∂leq(z)
∂z

∣∣∣
z(t)

B1 (z(t))

 (u(t)− ueq (z(t)))

(2.16)

thus obtaining a quasi-LPV form different from the one obtained by performing the

Jacobian linearization, and exactly representing the original nonlinear system. How-

ever, the presence of an inner-loop feedback due to the term ueq (z(t)) can deteriorate

the properties of the system by adversely exciting flexible mode dynamics [287, 289].

Hence, special care should be taken when applying this technique.

For the example (2.8)-(2.9), the quasi-LPV model:(
˙̃x1(t)

˙̃x2(t)

)
=

(
−1− 2 |x̃2(t)| 0

1 0

)(
x̃1(t)

x̃2(t)

)
+

(
1

0

)
ũ(t) (2.17)

would be generated by changing the state coordinates as [291]:

x̃1(t) = x1(t)− xeq1 (x2(t)) (2.18)

x̃2(t) = x2(t) (2.19)

ũ(t) = u(t)− ueq (x2(t)) (2.20)

with:

ueq(t) = xeq1 (x2(t)) = |x2(t)|x2(t) + 10 (2.21)
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2.2.3 Function substitution

An alternative approach to obtain a quasi-LPV model is the function substitution ap-

proach [318, 319], which consists in replacing the so-called decomposition function with

functions that are linear with respect to the scheduling parameters. This decomposition

function is formed by combining all the terms of the nonlinear system that are not both

affine with respect to the non-scheduling states and control inputs, and function of the

scheduling parameters alone (after a coordinate change with respect to a single equi-

librium point has been performed) [195]. The decomposition is carried out through a

minimization procedure, which leads to numerical optimization problems [186].

For the example (2.8)-(2.9), the nonlinear system is rewritten as [291]:(
˙̃x1(t)

˙̃x2(t)

)
=

(
−1 0

1 0

)(
x̃1(t)

x̃2(t)

)
+

(
1

0

)
ũ(t)+

(
−xeq1 + ueq

xeq1 − |x̃2(t) + xeq2 | (x̃2(t) + xeq2 )− 10

)
(2.22)

where:

x̃1(t) = x1(t)− xeq1 (2.23)

x̃2(t) = x2(t)− xeq2 (2.24)

ũ(t) = u(t)− ueq (2.25)

with trim point (xeq1 , x
eq
2 ) = (11, 1). Then, by replacing the nonlinearity in (2.22) with:

g (x̃2(t)) =


[|xeq2 |xeq2 −|x̃2(t)+xeq2 |(x̃2(t)+xeq2 )]

x̃2(t) x̃2(t) 6= 0

0 x̃2(t) = 0
(2.26)

the following quasi-LPV model is obtained:(
˙̃x1(t)

˙̃x2(t)

)
=

(
−1 0

1 g (x̃2(t))

)(
x̃1(t)

x̃2(t)

)
+

(
1

0

)
ũ(t) (2.27)

2.2.4 Other approaches and current directions of research

The problem of modeling a nonlinear system as a quasi-LPV model is still a hot topic of

research. For example, [147] have suggested that linearization and local controller de-

sign should be carried out not only at equilibrium states, but also in transient operating

regimes.

In [168], a method for automated generation of LPV models, to be used when affine

representations of polytopic models are desired, has been presented. The affine LPV
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representations are generated from a general nonlinear model by hiding the nonlin-

earities in the scheduling parameters. These LPV representations are not unique and

different models have different properties that may facilitate, complicate, or even make

impossible, the controller synthesis. For instance, two representations of the same sys-

tem may differ in the number of parameters, in the property of stabilizability, or in the

degree of overbounding of the admissible parameter set. Hence, [168] also proposed a

heuristic measure for the quality of different LPV models.

In the case of overbounding, i.e. when the obtained quasi-LPV model displays more

behaviors than the underlying nonlinear model, it is possible to use the method pro-

posed in [169]. This method is based on parameter set mapping (PSM) [167] and leads

to the generation of less conservative representations.

A SS model interpolation of local estimates (SMILE) technique has been presented in

[67] for estimating LPV SS models, based on the interpolation of LTI models estimated

for constant values of the scheduling parameters. The interpolation is based on the for-

mulation of a linear least-squares problem that can be efficiently solved, yielding homo-

geneous polynomial LPV models that are numerically well-conditioned and therefore

suitable for LPV control synthesis.

In [2], inspired by the feedback linearization theory, a systematic procedure is proposed

to convert control affine nonlinear SS representation into state minimal LPV SS repre-

sentations in an observable canonical form, where the scheduling parameter depends

on the derivatives of the inputs and outputs of the system. In addition, if the states of

the nonlinear model can be measured or estimated, then the procedure can be modified

to provide LPV models scheduled by these states.

2.3 Modeling of TS systems

In this section, some basic concepts about modeling of TS systems are recalled. Also in

this case, as in the LPV modeling, the approach that constructs a TS fuzzy model using

an identification procedure applied to IO data is not considered. The interested reader

may find some details about this approach, suitable for plants that cannot or are too

difficult to be represented by means of analytical/physical models, in [307, 308].
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TS systems, as proposed by Takagi and Sugeno [317], are described by local models

merged together using fuzzy IF-THEN rules [321], as follows:

IF ϑ1(τ) is Mi1 AND · · · AND ϑp(τ) is Mip

THEN

{
σ.xi(τ) = Aix(τ) +Biu(τ)

yi(τ) = Cix(τ) +Diu(τ)
i = 1, . . . , N

(2.28)

where ϑ1(τ), . . . , ϑp(τ) are the premise variables, that can be functions of the state vari-

ables, controlled inputs, external disturbances and/or time. Each linear consequent

equation represented byAix(τ)+Biu(τ) is called a subsystem. Given a pair (x(τ), u(τ)),

the state and output of the TS system can be inferred easily as:

σ.x(τ) =

N∑
i=1

$i (ϑ(τ)) (Aix(τ) +Biu(τ))

N∑
i=1

$i (ϑ(τ))

=
N∑
i=1

ρi (ϑ(τ)) (Aix(τ) +Biu(τ)) (2.29)

y(τ) =

N∑
i=1

$i (ϑ(τ)) (Cix(τ) +Diu(τ))

N∑
i=1

$i (ϑ(τ))

=

N∑
i=1

ρi (ϑ(τ)) (Cix(τ) +Diu(τ)) (2.30)

where ϑ(τ) = (ϑ1(τ), . . . , ϑp(τ))T is the vector containing the premise variables, and

$i (ϑ(τ)) and ρi (ϑ(τ)) are defined as follows:

$i (ϑ(τ)) =

p∏
j=1

Mij (ϑj(τ)) (2.31)

ρi (ϑ(τ)) =
$i (ϑ(τ))
N∑
i=1

$i (ϑ(τ))

(2.32)

where Mij (ϑj(τ)) is the grade of membership of ϑj(τ) in Mij and ρi (ϑ(τ)) is such that:

N∑
i=1

ρi (ϑ(τ)) = 1, ρi (ϑ(τ)) ≥ 0, ∀i = 1, . . . , N (2.33)

In the following, some methods for the CT TS modeling will be recalled.

2.3.1 Sector nonlinearity

The main idea behind this method appeared for the first time in [154]. Given a nonlin-

ear system ẋ(t) = g (x(t)) with g(0) = 0, this approach aims at finding a global sector
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such that ẋ(t) ∈ [a1 a2]x(t). This approach guarantees an exact model construction

[321], but in some cases it is hard to apply, and local sector nonlinearities should be

considered instead.

The following example, taken from [321], shows an application of this approach.

Consider the nonlinear system:(
ẋ1(t)

ẋ2(t)

)
=

(
−x1(t) + x1(t)x3

2(t)

−x2(t) + (3 + x2(t))x3
1(t)

)
x1(t) ∈ [−1, 1]

x2(t) ∈ [−1, 1]
(2.34)

Eq. (2.34) can be rewritten as:(
ẋ1(t)

ẋ2(t)

)
=

(
−1 x1(t)x2

2(t)

(3 + x2(t))x2
1(t) −1

)(
x1(t)

x2(t)

)
(2.35)

By choosing the premise variables ϑ1(t) = x1(t)x2
2(t) and ϑ2(t) = (3 + x2(t))x2

1(t), and

calculating the minimum and maximum values of ϑ1(t) and ϑ2(t) over the considered

intervals, i.e. ϑ1(t) ∈ [−1, 1] and ϑ2(t) ∈ [0, 4], the fuzzy model (2.28) is obtained, with:

M11 = M21 =
z1(t) + 1

2
(2.36)

M31 = M41 =
1− z1(t)

2
(2.37)

M12 = M32 =
z2(t)

4
(2.38)

M22 = M42 =
4− z2(t)

4
(2.39)

and:

A1 =

(
−1 1

4 −1

)
A2 =

(
−1 1

0 −1

)

A3 =

(
−1 −1

4 −1

)
A4 =

(
−1 −1

0 −1

) (2.40)

It is worth mentioning that the choice of the premise variables is not unique, and dif-

ferent TS representations of the same nonlinear system are possible. This fact will be

further investigated in the next chapter.
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2.3.2 Local approximation in fuzzy partition spaces

The spirit of this approach is to approximate nonlinear terms by judiciously choosing

linear terms, thus reducing the number of fuzzy rules, being this particularly important

at the control system design step [321]. However, since the obtained model does not

represent exactly the original nonlinear system, the designed control system could fail

in guaranteeing the stability of the original nonlinear system.

The following example, taken from [321], shows an application of this approach.

Let us consider the equations of motion for an inverted pendulum [48]:

ẋ1(t) = x2(t) (2.41)

ẋ2(t) =
g sin (x1(t))− amlx2

2(t) sin (2x1(t))
/

2− a cos (x1(t))u(t)

4l/3− aml cos2 (x1(t))
(2.42)

where x1(t) denotes the angle of the pendulum from the vertical, and x2(t) is the an-

gular velocity; g is the gravity constant, m is the mass of the pendulum, M is the mass

of the cart, 2l is the length of the pendulum, u is the force applied to the cart, and

a = 1/(m+M).

When x1(t) is near zero, (2.42) can be simplified as:

ẋ2(t) =
gx1(t)− au(t)

4l/3− aml
(2.43)

On the other hand, when x1(t) is near ±π/2, (2.42) can be simplified as:

ẋ2(t) =
2gx1(t)/π − aβu(t)

4l/3− amlβ2
(2.44)

with β = cos(88◦).

Then, a TS fuzzy model with two subsystems can be obtained:

A1 =

(
0 1
g

4l/3−aml 0

)
B1 =

(
0

− a
4l/3−aml

)

A2 =

(
0 1
2g

π(4l/3−amlβ2)
0

)
B2 =

(
0

− aβ
4l/3−amlβ2

) (2.45)

Notice that by applying the sector nonlinearity approach described in Section 2.3.1,

sixteen subsystems would have been obtained. Hence, the reduction of fuzzy rules is

considerable.
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2.4 Analysis of LPV and TS systems

This section recalls some of the most popular approaches for analyzing an LPV or a

TS system. As it will be shown in the next chapter, there are strong analogies between

the two frameworks, and the tools developed for a class of system usually apply to the

other one too. For this reason, the definitions and theorems recalled in this section are

shown for the LPV framework only.

First of all, let us recall some definitions.

Definition 2.1. (Poles of an LPV system) [110] Given an autonomous LPV system:

σ.x(τ) = A (θ(τ))x(τ) (2.46)

where x ∈ Rnx is the state, θ(τ) ∈ Θ ⊂ Rnθ is the varying parameter vector, A (θ(τ)) is a

varying matrix of appropriate dimensions, the poles of (2.46) are the set of all the poles

of the LTI systems obtained by freezing θ(τ) to all its possible values θ ∈ Θ.

Definition 2.2. (D-stability of an LPV system) Given a subset D of the complex plane, the

autonomous LPV system (2.46) is said to be D-stable if all its poles lie in D.

Notice that, unlike the LTI case, in general the notions of stability and D-stability are

not related. In fact, a D-stable system could be unstable even if D is contained within

the left-hand semiplane Re(s) < 0 in the CT case or the unit circle in the DT case [356].

Also, an LPV system could have some unstable poles, and yet be stable [126].

Definition 2.3. (LMI regions) [55] A subsetD of the complex plane is called a linear matrix

inequality (LMI) region if there exist matrices α = [αkl]k,l∈{1,...,m} ∈ Sm×m and β =

[βk,l]k,l∈{1,...,m} ∈ Rm×m such that:

D = {σ ∈ C : fD(σ) ≺ O} (2.47)

where fD(σ) is the characteristic function defined as:

fD(σ) = α+ βσ + βTσ∗ = [αkl + βklσ + βlkσ
∗]k,l∈{1,...,m} (2.48)

In other words, LMI regions are subsets of the complex plane that are represented by

an LMI in σ and σ∗. In [55], it was shown that LMI regions do not only include a

wide variety of typical clustering regions, but also form a dense subset of the convex

regions that are symmetric with respect to the real axis. Among the regions that are

representable as LMI regions, there are:
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• Left-hand semiplanes Re(σ) < λ

α = −2λ β = 1

• Right-hand semiplanes Re(σ) > λ

α = 2λ β = −1

• Disks of radius r and center (−q, 0)

α =

(
−r q

q −r

)
β =

(
0 1

0 0

)

• Horizontal strips −ω < Im(σ) < ω

α =

(
−2ω 0

0 −2ω

)
β =

(
0 1

−1 0

)

Definition 2.4. (H∞ norm) [103] For a stable real-rational transfer matrix T (σ), the H∞
norm is defined as:

‖T (s)‖∞ = sup
ω∈R

σmax (T (jω)) CT systems

‖T (z)‖∞ = sup
ω∈[−π,π]

σmax

(
T (ejω)

)
DT systems

(2.49)

where σmax(M) denotes the largest singular value of the matrix M .

The H∞ norm measures the system input-output gain for finite energy signals across

all input/output channels.

Definition 2.5. (H∞ performance of an LPV system) The LPV system:

σ.x(τ) = A (θ(τ))x(τ) +Bw (θ(τ))w(τ) (2.50)

z∞(τ) = Cz∞ (θ(τ))x(τ) +Dz∞w (θ(τ))w(τ) (2.51)

has H∞ performance γ∞ if ‖Tz∞w(σ, θ)‖∞ < γ∞ ∀θ ∈ Θ, where Tz∞w(σ, θ) denotes the

closed-loop transfer function from w(τ) to z∞(τ).

TheH∞ performance can be interpreted as a disturbance rejection performance, and is

convenient to enforce robustness against model uncertainty, and to express frequency-

domain specifications such as bandwidth, low-frequency gain, and roll-off [285].



Background on gain-scheduling 21

Definition 2.6. (H2 norm) [285] For a stable real-rational transfer matrix T (σ), the H2

norm is defined as:

‖T (s)‖2 =

√
1

2π

+∞∫
−∞

Tr (T (jω)HT (jω)) dω CT systems

‖T (z)‖2 =

√
1

2π

π∫
−π

Tr (T (ejω)HT (ejω)) dω DT systems

(2.52)

where Tr(M) denotes the trace of the matrix M .

The H2 norm is equal to the root-mean-square of the impulse response of the system.

It measures the steady-state covariance (or power) of the output response z2 = T (σ)w

to unit white noise inputs w.

Definition 2.7. (H2 performance of an LPV system) The LPV system (2.50) and:

z2(τ) = Cz2 (θ(τ))x(τ) (2.53)

has H2 performance γ2 if ‖Tz2w(σ, θ)‖2 < γ2 ∀θ ∈ Θ, where Tz2w(σ, θ) denotes the

closed-loop transfer function from w(τ) to z2(τ).

The H2 performance is useful to handle stochastic aspects such as measurement noise

and random disturbances [285].

Definition 2.8. (Finite time stability) [11, 12] The autonomous LPV system (2.46) is said to

be finite time stable (FTS) with respect to (c1, c2, T,R) with c2 > c1 > 0 and R � 0 if:

x(0)TRx(0) ≤ c1 ⇒ x(τ)TRx(τ) < c2
∀t ∈ [0, T ] CT systems

∀k ∈ {1, . . . , T} DT systems
(2.54)

The idea of finite time stability, originally formulated by [79], concerns the bounded-

ness of the state of a system over a finite time interval for given initial conditions. No-

tice that this definition of finite time stability is different from the one provided in other

works, e.g. [31], where the property of a given system to be driven to the equilibrium

point in finite time is considered instead.

Definition 2.9. (Finite time boundedness) [11, 12] The CT LPV system:

ẋ(t) = A (θ(t))x(t) +Bw (θ(t))w(t) (2.55)

and the DT LPV system:{
x(k + 1) = A (θ(k))x(k) +Bw (θ(k))w(k)

w(k + 1) = W (θ(k))w(k)
(2.56)
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are said to be finite time bounded (FTB) with respect to (c1, c2, T,R, d), with c2 > c1 > 0,

R � 0 and d > 0 if:{
x(0)TRx(0) ≤ c1

w(t)Tw(t) ≤ d
⇒ x(τ)TRx(τ) < c2

∀t ∈ [0, T ] CT systems

∀k ∈ {1, . . . , T} DT systems
(2.57)

The idea of state boundedness is more general and concerns the behavior of the state

in presence of external disturbances. Notice that FTS can be recovered as a special case

of FTB when w = 0.

2.4.1 Analysis based on a common quadratic Lyapunov function

The simplest approach for the analysis of LPV/TS systems is the one based on a com-

mon quadratic Lyapunov function. In this case, the Lyapunov candidate function used

to assess the chosen specification is:

V (x(τ)) = x(τ)TPx(τ) (2.58)

where P � O.

Theorem 2.1. (Quadratic stability of CT LPV systems) The autonomous LPV system (2.46)

with t = τ is quadratically stable:

1. if there exists P � O such that [24]:

A(θ)TP + PA(θ) ≺ O ∀θ ∈ Θ (2.59)

2. if there exists Q � 0 such that [111]:

QA(θ)T +A(θ)Q ≺ O ∀θ ∈ Θ (2.60)

Proof: It is straightforward to obtain (2.59) by calculating V̇ (x(t)), replacing ẋ(t) with

(2.46), and imposing the condition V̇ (x(t)) < 0. Then, (2.60) can be obtained from (2.59)

with Q = P−1 [111]. A relevant consequence is that the stability of the dual system:

ẋ(t) = A (θ(t))T x(t) (2.61)

is also characterized by (2.59)-(2.60). �

Theorem 2.2. (Quadratic stability of DT LPV systems) The autonomous LPV system (2.46)

with τ = k is quadratically stable:
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1. if there exists P � O such that [161]:

A(θ)TPA(θ)− P ≺ O ∀θ ∈ Θ (2.62)

2. if there exists P � O such that:(
−P PA(θ)

A(θ)TP −P

)
≺ O ∀θ ∈ Θ (2.63)

3. if there exists Q � O such that [97]:(
−Q A(θ)Q

QA(θ)T −Q

)
≺ O ∀θ ∈ Θ (2.64)

Proof: It is straightforward to obtain (2.62) by calculating ∆V (x(k)), replacing x(k +

1) with (2.46) and imposing the condition ∆V (x(k)) < 0. Then, (2.63) can be easily

obtained from (2.62) by using the Schur complement. Finally, (2.64) can be obtained

from (2.63) with P = Q−1. �

Theorem 2.3. (Quadratic D-stability of LPV systems) Given an LMI region D defined as in

(2.47), the autonomous LPV system (2.46) is quadratically D-stable:

1. if there exists P � O such that [209]:

α⊗ P + β ⊗ PA(θ) + βT ⊗A(θ)TP

=
[
αklP + βklPA(θ) + βlkA(θ)TP

]
k,l∈{1,...,m} ≺ O ∀θ ∈ Θ

(2.65)

2. if there exists Q � 0 such that:

α⊗Q+ β ⊗A(θ)Q+ βT ⊗QA(θ)T

=
[
αklQ+ βklA(θ)Q+ βlkQA(θ)T

]
k,l∈{1,...,m} ≺ O ∀θ ∈ Θ

(2.66)

Proof: The proof follows from the reasoning provided in [55], and (2.66) can be obtained

as the dual matrix inequality of (2.65) [111]. �

For an LPV system quadratically D-stable, it is assured that its poles are in D. As

shown by [110], the quadratic D-stability also affects the dynamical behavior of the

system, justifying from the engineering point of view the definition of LPV poles given

in Definition 2.1. It should be highlighted that in the case of CT systems, it can be

proved that some transient properties, usually defined in terms of pole location in the

case of LTI systems, hold for the LPV case too. This fact has been shown by [209], taking

into account the reasoning in [56].
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Corollary 2.1. (Exponential decay/growth of LPV systems) Let V (x(t)) be defined as in

(2.58), and let the autonomous LPV system (2.46) be quadratically D stable, i.e. (2.65)

holds. Then, the Lyapunov function V (x(t)) satisfies, for all x(t) 6= 0:

1

2

V̇ (x(t))

V (x(t))
∈ D ∩ R (2.67)

Proof: Pre-multiplying (2.65) by I ⊗ x(t)T, and post-multiplying it by I ⊗ x(t), respec-

tively, the following is obtained for all x(t) 6= 0:

α⊗ x(t)TPx(t) + β ⊗ x(t)TPA (θ(t))x(t) + βT ⊗ x(t)TA (θ(t))T Px(t) ≺ O (2.68)

Recalling that:

1

2
V̇ (x(t)) = x(t)TPA (θ(t))x(t) = x(t)TA (θ(t))T Px(t) (2.69)

and dividing (2.68) by V (x(t)), this process leads to:

α⊗ 1 + β ⊗ 1

2

V̇ (x(t))

V (x(t))
+ βT ⊗ 1

2

V̇ (x(t))

V (x(t))
≺ O (2.70)

which implies (2.67). �

As a consequence of Corollary 2.1, the system’s decay/growth rate lies within the LMI

regionD. [209] have shown that the concept ofD-stability can also be used for imposing

limits on the energy of the rate of state change, thus imposing a limit on the system’s

oscillatory behaviors.

Theorem 2.4. (QuadraticH∞ performance of CT LPV systems) The LPV system (2.50)-(2.51)

with τ = t has quadraticH∞ performance γ∞ [55]:

1. if there exists P � O such that:
A(θ)TP + PA(θ) PBw(θ) Cz∞(θ)T

Bw(θ)TP −I Dz∞w(θ)T

Cz∞(θ) Dz∞w(θ) −γ2
∞I

 ≺ O ∀θ ∈ Θ (2.71)

2. if there exists Q � O such that:
A(θ)Q+QA(θ)T Bw(θ) QCz∞(θ)T

Bw(θ)T −I Dz∞w(θ)T

Cz∞(θ)Q Dz∞w(θ) −γ2
∞I

 ≺ O ∀θ ∈ Θ (2.72)
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Proof: See [284]. �

It is worth recalling that (2.71)-(2.72) can be replaced with [16]:
A(θ)TP + PA(θ) PBw(θ) Cz∞(θ)T

Bw(θ)TP −γ∞I Dz∞w(θ)T

Cz∞(θ) Dz∞w(θ) −γ∞I

 ≺ O ∀θ ∈ Θ (2.73)


A(θ)Q+QA(θ)T Bw(θ) QCz∞(θ)T

Bw(θ)T −γ∞I Dz∞w(θ)T

Cz∞(θ)Q Dz∞w(θ) −γ∞I

 ≺ O ∀θ ∈ Θ (2.74)

Theorem 2.5. (QuadraticH∞ performance of DT LPV systems) The LPV system (2.50)-(2.51)

with τ = k has quadraticH∞ performance γ∞ [71]:

1. if there exists P � O such that:
P PA(θ) PBw(θ) O

A(θ)TP P O Cz∞(θ)T

Bw(θ)TP O I Dz∞w(θ)T

O Cz∞(θ) Dz∞w(θ) γ2
∞I

 � O ∀θ ∈ Θ (2.75)

2. if there exists Q � O such that:
Q A(θ)Q Bw(θ) O

QA(θ)T Q O QCz∞(θ)T

Bw(θ)T O I Dz∞w(θ)T

O Cz∞(θ)Q Dz∞w(θ) γ2
∞I

 � O ∀θ ∈ Θ (2.76)

Proof: See [284]. �

Also in this case, (2.75)-(2.76) can be rewritten as [16]:
P PA(θ) PBw(θ) O

A(θ)TP P O Cz∞(θ)T

Bw(θ)TP O γ∞I Dz∞w(θ)T

O Cz∞(θ) Dz∞w(θ) γ∞I

 � O ∀θ ∈ Θ (2.77)


Q A(θ)Q Bw(θ) O

QA(θ)T Q O QCz∞(θ)T

Bw(θ)T O γ∞I Dz∞w(θ)T

O Cz∞(θ)Q Dz∞w(θ) γ∞I

 � O ∀θ ∈ Θ (2.78)
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The results provided in Theorems 2.4 and 2.5 are also known as the bounded real lemma

(BRL). Several results developed throughout this thesis based on (2.71)-(2.72) and (2.75)-

(2.76) can be easily extended to the alternative formulations given by (2.73)-(2.74) and

(2.77)-(2.78).

Theorem 2.6. (Quadratic H2 performance of CT LPV systems) The LPV system (2.50) and

(2.53) with τ = t has quadraticH2 performance γ2 [55]:

1. if there exist P � O and Y (θ) ∈ Snz2×nz2 such that Tr (Y (θ)) < γ2
2 ∀θ ∈ Θ and:(

A(θ)TP + PA(θ) Bw(θ)

Bw(θ)T −I

)
≺ O ∀θ ∈ Θ (2.79)

(
Y (θ) Cz2(θ)

Cz2(θ)T P

)
� O ∀θ ∈ Θ (2.80)

2. if there exist Q � O and Y (θ) ∈ Snz2×nz2 such that Tr (Y (θ)) < γ2
2 ∀θ ∈ Θ and:(

A(θ)Q+QA(θ)T Bw(θ)

Bw(θ)T −I

)
≺ O ∀θ ∈ Θ (2.81)

(
Y (θ) Cz2(θ)Q

QCz2(θ)T Q

)
� O ∀θ ∈ Θ (2.82)

Proof: See [55]. �

Theorem 2.7. (Quadratic H2 performance of DT LPV systems) The LPV system (2.50) and

(2.53) with τ = k has quadraticH2 performance γ2 [71]:

1. if there exist P � O and Y (θ) ∈ Snz2×nz2 such that Tr (Y (θ)) < γ2
2 ∀θ ∈ Θ and:

P PA(θ) PBw(θ)

A(θ)TP P O

Bw(θ)TP O I

 � O ∀θ ∈ Θ (2.83)

(
Y (θ) Cz2(θ)

Cz2(θ)T P

)
� O ∀θ ∈ Θ (2.84)

2. if there exist Q � O and Y (θ) ∈ Snz2×nz2 such that Tr (Y (θ)) < γ2
2 ∀θ ∈ Θ and:

Q A(θ)Q Bw(θ)

QA(θ)T Q O

Bw(θ)T O I

 � O ∀θ ∈ Θ (2.85)
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(
Y (θ) Cz2(θ)Q

QCz2(θ)T Q

)
� O ∀θ ∈ Θ (2.86)

Proof: See [71]. �

Notice that, according to Schur’s complements [286], in case a multiobjective specifica-

tion is considered, some of the provided conditions are redundant. For example, the

stability conditions provided in Theorems 2.1-2.2 can be found in the upper-left parts

of (2.71)-(2.79), (2.81), (2.83) and (2.85). Also, if bothH∞ andH2 performances are con-

sidered at the same time, (2.79), (2.81), (2.83) and (2.85) are not needed, since they are

already included in (2.71)-(2.76).

Theorem 2.8. (Quadratic FTB of CT LPV systems) The LPV system (2.55) is quadratically

FTB with respect to (c1, c2, T,R, d) if, letting Q̃1 = R−1/2Q1R
−1/2, there exist positive

scalars a, λ1, λ2, λ3 and two positive definite matrices Q1 ∈ Snx×nx and Q2 ∈ Snw×nw

such that: (
A (θ) Q̃1 + Q̃1A (θ)T − aQ̃1 Bw (θ)Q2

Q2Bw (θ)T −aQ2

)
≺ O ∀ θ ∈ Θ (2.87)

λ1I ≺ Q1 ≺ I (2.88)

λ2I ≺ Q2 ≺ λ3I (2.89)
c2e
−aT √

c1

√
d

√
c1 λ1 0
√
d 0 λ2

 � O (2.90)

Proof : It is obtained straightforwardly, taking into account that the conditions presented

in Lemma 6 of [12] should hold for every possible value of θ. �

Theorem 2.9. (Quadratic FTB of DT LPV systems) The discrete-time LPV system (2.56) is

quadratically FTB with respect to (c1, c2, T,R, d) if there exist positive scalars a, λ1, λ2

with a ≥ 1 and two positive definite matrices Q1 ∈ Snx×nx and Q2 ∈ Snw×nw such that:
−aQ1 Q1A (θ)T O O

A (θ)Q1 −Q1 Bw (θ) O

O Bw (θ)T −aQ2 W (θ)TQ2

O O Q2W (θ) −Q2

 ≺ O ∀ θ ∈ Θ (2.91)

λ1R
−1 ≺ Q1 ≺ R−1 (2.92)

O ≺ Q2 ≺ λ2I (2.93)
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(
c2
aT
− λ2d

√
c1

√
c1 λ1

)
� O (2.94)

Proof : It is obtained straightforwardly, taking into account that the conditions presented

in Lemma 1 of [11] should hold for every possible value of θ. �

Theorem 2.10. (Quadratic FTS of CT LPV systems) The autonomous LPV system (2.46)

with τ = t is quadratically FTS with respect to (c1, c2, T,R) if, letting Q̃1 = R−1/2Q1R
−1/2,

there exist positive scalars a, λ1 and a positive definite matrix Q1 ∈ Snx×nx such that

(2.88) and:

A (θ) Q̃1 + Q̃1A (θ)T − aQ̃1 ≺ O ∀θ ∈ Θ (2.95)(
c2e
−aT √

c1
√
c1 λ1

)
� O (2.96)

hold.

Proof: It is a direct consequence of Theorem 2.8, when Bw (θ(t)) = O and d = 0. �

Theorem 2.11. (Quadratic FTS of DT LPV systems) The autonomous LPV system (2.46)

with τ = k is quadratically FTS with respect to (c1, c2, T,R) if there exist positive scalars

a, λ1 with a ≥ 1 and a positive definite matrix Q1 ∈ Snx×nx such that:(
−aQ1 Q1A (θ)T

A (θ)Q1 −Q1

)
≺ O ∀ θ ∈ Θ (2.97)

(
c2
aT

√
c1

√
c1 λ1

)
� O (2.98)

λ1R
−1 ≺ Q1 ≺ R−1 (2.99)

Proof: It is a direct consequence of Theorem 2.9, when W (θ(k)) = Bw (θ(k)) = O and

d = 0. �

The problem with the conditions provided in Theorems 2.1-2.11 is that they rely on

the satisfaction of infinite constraints. However, this difficulty can be overcome by

considering the polytopic approach, as recalled in Section 2.2. In the following, for

each theorem, an appropriate corollary is obtained. A mathematical proof is provided

for Corollary 2.2 only, while it is omitted for the other corollaries, due to the similarity

of the reasoning behind their proofs with the provided one.

Corollary 2.2. (Quadratic stability of CT LPV systems, polytopic version) The autonomous

polytopic CT LPV system:

ẋ(t) =
N∑
i=1

µi (θ(t))Aix(t) (2.100)
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with coefficients µi such that (2.5) holds, is quadratically stable:

1. if there exists P � O such that:

AT
i P + PAi ≺ O ∀i = 1, . . . , N (2.101)

2. if there exists Q � O such that:

QAT
i +AiQ ≺ O ∀i = 1, . . . , N (2.102)

Proof: Due to a basic property of matrices [131], any linear combination of (2.101) and

(2.102) with non-negative coefficients, of which at least one different from zero, is nega-

tive definite. Hence, using the coefficients µi (θ(t)), and taking into account (2.5), (2.59)

and (2.60) are obtained. �

Corollary 2.3. (Quadratic stability of DT LPV systems, polytopic version) The autonomous

polytopic DT LPV system:

x(k + 1) =
N∑
i=1

µi (θ(k))Aix(k) (2.103)

with coefficients µi such that (2.5) holds, is quadratically stable:

1. if there exists P � O such that:(
−P PAi

AT
i P −P

)
≺ O ∀i = 1, . . . , N (2.104)

2. if there exists Q � O such that:(
−Q AiQ

QAT
i −Q

)
≺ O ∀i = 1, . . . , N (2.105)

Proof: Similar to that of Corollary 2.2, thus omitted. �

Corollary 2.4. (Quadratic D-stability of LPV systems, polytopic version) Given an LMI re-

gion D defined as in (2.47), the autonomous polytopic LPV system:

σ.x(τ) =

N∑
i=1

µi (θ(τ))Aix(τ) (2.106)

with coefficients µi such that (2.5) holds, is quadratically D-stable:
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1. if there exists P � O such that:

α⊗ P + β ⊗ PAi + βT ⊗AT
i P

=
[
αklP + βklPAi + βlkA

T
i P
]
k,l∈{1,...,m} ≺ O ∀i = 1, . . . , N

(2.107)

2. if there exists Q � O such that:

α⊗Q+ β ⊗AiQ+ βT ⊗QAT
i

=
[
αklQ+ βklAiQ+ βlkQA

T
i

]
k,l∈{1,...,m} ≺ O ∀i = 1, . . . , N

(2.108)

Proof: Similar to that of Corollary 2.2, thus omitted. �

Corollary 2.5. (Quadratic H∞ performance of CT LPV systems, polytopic version) The poly-

topic CT LPV system:

ẋ(t) =

N∑
i=1

µi (θ(t)) [Aix(t) +Bw,iw(t)] (2.109)

z∞(t) =
N∑
i=1

µi (θ(t))
[
Cz∞,ix(t) +Dz∞w,iw(t)

]
(2.110)

with coefficients µi such that (2.5) holds, has quadraticH∞ performance γ∞:

1. if there exists P � O such that:
AT
i P + PAi PBw,i CT

z∞,i

BT
w,iP −I DT

z∞w,i

Cz∞,i Dz∞w,i −γ2
∞I

 ≺ O ∀i = 1, . . . , N (2.111)

2. if there exists Q � O such that:
AiQ+QAT

i Bw,i QCT
z∞,i

BT
w,i −I DT

z∞w,i

Cz∞,iQ Dz∞w,i −γ2
∞I

 ≺ O ∀i = 1, . . . , N (2.112)

Proof: Similar to that of Corollary 2.2, thus omitted. �

Corollary 2.6. (Quadratic H∞ performance of DT LPV systems, polytopic version) The poly-

topic DT LPV system:

x(k + 1) =
N∑
i=1

µi (θ(k)) [Aix(k) +Bw,iw(k)] (2.113)
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z∞(k) =
N∑
i=1

µi (θ(k)) [Cz∞,ix(k) +Dz∞w,iw(k)] (2.114)

with coefficients µi such that (2.5) holds, has quadraticH∞ performance γ∞:

1. if there exists P � O such that:
P PAi PBw,i O

AT
i P P O CT

z∞,i

BT
w,iP O I DT

z∞w,i

O Cz∞,i Dz∞w,i γ2
∞I

 � O ∀i = 1, . . . , N (2.115)

2. if there exists Q � O such that:
Q AiQ Bw,i O

QAT
i Q O QCT

z∞,i

BT
w,i O I DT

z∞w,i

O Cz∞,iQ Dz∞w,i γ2
∞I

 � O ∀i = 1, . . . , N (2.116)

Proof: Similar to that of Corollary 2.2, thus omitted. �

Corollary 2.7. (Quadratic H2 performance of CT LPV systems, polytopic version) The poly-

topic CT LPV system (2.109) and:

z2(t) =
N∑
i=1

µi (θ(t))Cz2,ix(t) (2.117)

with coefficients µi such that (2.5) holds, has quadraticH2 performance γ2:

1. if there existP � O andN matrices Yi ∈ Snz2×nz2 such that Tr(Yi) < γ2
2 ∀i = 1, . . . , N

and: (
AT
i P + PAi Bw,i

BT
w,i −I

)
≺ O ∀i = 1, . . . , N (2.118)

(
Yi Cz2,i

CT
z2,i

P

)
� O ∀i = 1, . . . , N (2.119)

2. if there existQ � O andN matrices Yi ∈ Snz2×nz2 such that Tr(Yi) < γ2
2 ∀i = 1, . . . , N

and: (
AiQ+QAT

i Bw,i

BT
w,i −I

)
≺ O ∀i = 1, . . . , N (2.120)

(
Yi Cz2,iQ

QCT
z2,i

Q

)
� O ∀i = 1, . . . , N (2.121)
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Proof: Similar to that of Corollary 2.2, thus omitted. �

Corollary 2.8. (Quadratic H2 performance of DT LPV systems, polytopic version) The poly-

topic DT LPV system (2.113) and:

z2(k) =
N∑
i=1

µi (θ(k))Cz2,ix(k) (2.122)

with coefficients µi such that (2.5) holds, has quadraticH2 performance γ2:

1. if there existP � O andN matrices Yi ∈ Snz2×nz2 such that Tr(Yi) < γ2
2 ∀i = 1, . . . , N

and: 
P PAi PBw,i

AT
i P P O

BT
w,iP O I

 � O ∀i = 1, . . . , N (2.123)

(
Yi Cz2,i

CT
z2,i

P

)
� O ∀i = 1, . . . , N (2.124)

2. if there existQ � O andN matrices Yi ∈ Snz2×nz2 such that Tr(Yi) < γ2
2 ∀i = 1, . . . , N

and: 
Q AiQ Bw,i

QAT
i Q O

BT
w,i O I

 � O ∀i = 1, . . . , N (2.125)

(
Yi Cz2,iQ

QCT
z2,i

Q

)
� O ∀i = 1, . . . , N (2.126)

Proof: Similar to that of Corollary 2.2, thus omitted. �

Corollary 2.9. (Quadratic FTB of CT LPV systems, polytopic version) The polytopic CT LPV

system (2.109), with coefficients µi such that (2.5) holds, is quadratically FTB with re-

spect to (c1, c2, T,R, d) if, letting Q̃1 = R−1/2Q1R
−1/2, there exist positive scalars a, λ1,

λ2, λ3 and two positive definite matrices Q1 ∈ Snx×nx and Q2 ∈ Snw×nw such that:(
AiQ̃1 + Q̃1A

T
i − aQ̃1 Bw,iQ2

Q2B
T
w,i −aQ2

)
≺ O ∀i = 1, . . . , N (2.127)

and (2.88)-(2.90) hold.

Proof: Similar to that of Corollary 2.2, thus omitted. �
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Corollary 2.10. (Quadratic FTB of DT LPV systems, polytopic version) The polytopic DT

LPV system (2.113) and:

w(k + 1) =
N∑
i=1

µi (θ(k))Wiw(k) (2.128)

with coefficients µi such that (2.5) holds, is quadratically FTB with respect to (c1, c2, T,

R, d) if there exist positive scalars a, λ1, λ2, with a ≥ 1 and two positive definite matri-

ces Q1 ∈ Snx×nx and Q2 ∈ Snw×nw such that:
−aQ1 Q1A

T
i O O

AiQ1 −Q1 Bw,i O

O BT
w,i −aQ2 WT

i Q2

O O Q2Wi −Q2

 ≺ O ∀i = 1, . . . , N (2.129)

and (2.92)-(2.94) hold.

Proof: Similar to that of Corollary 2.2, thus omitted. �

Corollary 2.11. (Quadratic FTS of CT LPV systems, polytopic version) The autonomous

polytopic CT LPV system (2.100), with coefficients µi such that (2.5) holds, is quadrati-

cally FTS with respect to (c1, c2, T,R) if, letting Q̃1 = R−1/2Q1R
−1/2, there exist positive

scalars a, λ1 and a positive definite matrix Q1 ∈ Snx×nx such that:

AiQ̃1 + Q̃1A
T
i − aQ̃1 ≺ O ∀i = 1, . . . , N (2.130)

(2.88) and (2.96) hold.

Proof: Similar to that of Corollary 2.2, thus omitted. �

Corollary 2.12. (Quadratic FTS of DT LPV systems, polytopic version) The autonomous

polytopic DT LPV system (2.103), with coefficients µi such that (2.5) holds, is quadrati-

cally FTS with respect to (c1, c2, T,R) if there exist positive scalars a, λ1 with a ≥ 1 and

a positive definite matrix Q1 ∈ Snx×nx such that:(
−aQ1 Q1A

T
i

AiQ1 −Q1

)
≺ O ∀ θ ∈ Θ (2.131)

and (2.98)-(2.99) hold.

Proof: Similar to that of Corollary 2.2, thus omitted. �
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2.4.2 Analysis based on other Lyapunov functions

In some situations, using a common quadratic Lyapunov function, as shown in Section

2.4.1, could not be enough, due to the introduction of conservativeness of these func-

tions. In these cases, other types of Lyapunov functions could be used, even though at

the expense of increasing the complexity of the analysis. This section reviews some of

the results in this field. Mathematical details will not be provided, but the interested

reader could find easily further informations in the references provided throughout

this section.

The main weakness of quadratic stability is that it considers arbitrarily fast parameter

variations. As a consequence, the analysis performed using the conditions presented

in Section 2.4.1 can be very conservative for constant or slowly-varying parameters.

In order to reduce the conservatism, [22] proposed extending the class of Lyapunov

functions to include parameter-dependent Lyapunov functions:

V (x(τ)) = x(τ)TP (θ(τ))x(τ) (2.132)

Also, [64] showed that robust stability of a time-varying system is equivalent to the

existence of a parameter-dependent Lyapunov function (2.132) for some augmented

system. However, the approaches proposed in [22] and [64] are non-convex, and thus

hardly tractable from a computational point of view. For this reason, [105] proposed

a way to convexify the problem by imposing additional constraints on the parameter-

dependent Lyapunov functions, obtaining a numerically tractable LMI feasibility prob-

lem. Since the bounds on the derivatives of the scheduling parameters are explicitly

taken into account, the approach proposed in [105] provides a smooth transition be-

tween time invariant parameters and arbitrarily fast parameter variations. Further de-

velopment of this approach can be found in [354], where H∞ control synthesis was

considered, in [74], where H2 control synthesis was considered, and in [72], where an

extended characterization of H2 and H∞ norms was provided, allowing to further de-

crease the conservatism when using parameter-dependent Lyapunov functions. Ho-

mogeneous polynomially parameter-dependent quadratic Lyapunov functions were

proposed by [54], demonstrating their effectiveness with respect to linearly parameter-

dependent Lyapunov functions. A systematic procedure for constructing a family of

LMI conditions of increasing precision is given in [218]. At each step, a set of LMIs

provides sufficient conditions for the existence of an affine parameter-dependent Lya-

punov function. Necessity is asymptotically attained through a relaxation based on a

generalization of Pólya’s theorem. A robust stability approach based on a Lyapunov



Background on gain-scheduling 35

function which depends quadratically both on the system state and the varying param-

eters (biquadratic stability) has been proposed by [333]. [73, 173, 219] have shown that,

by employing Lyapunov functions associated with higher-order time-derivatives of the

state, simpler inequalities in a higher-dimensional space can be obtained, leading to not

only simple and tractable, but also less conservative LMI conditions.

Notice that the use of parameter-dependent Lyapunov functions in the case of LPV

systems is akin to the use of fuzzy Lyapunov functions in TS systems, as proposed in

[57, 115].

It is worth recalling an additional line of research, that tries to enhance the concept of

LMI region provided in Definition 2.3. For example, [227] have introduced DR regions,

obtained modifying the characteristic function (2.48), as follows:

fDR(σ) = α+ βσ + βTσ∗ + χσσ∗ = [αkl + βklσ + βlkσ
∗ + χklσσ

∗]k,l∈{1,...,m} (2.133)

with χ = [χk,l]k,l∈{1,...,m} ∈ Sm×m. Without any assumption on the matrix χ,DR regions

are not convex, but when χ is positive semidefinite, DR are only a slight modification

of LMI regions [227], that allow applying parameter-dependent Lyapunov functions

for assessing the pole clustering property. On the other hand, [19] have developed an

approach that allows specifying not only a simple convex region, but also a non-convex

region, defined as a number of convex subregions. The introduction of extra variables

and the use of additional LMIs have been considered by [175], requiring greater com-

putational effort, but providing sufficient conditions that are much more close to ne-

cessity. A Kalman-Yakubovich-Popov (KYP) lemma for LMI regions, to guarantee the

satisfaction of a frequency domain inequality, has been discussed in [125].

2.5 Control of LPV and TS systems

Taking into account the analysis conditions presented in Section 2.4, the problem of

designing a control law such that the resulting closed-loop system has some desired

properties will be analyzed hereafter.

For the sake of simplicity, only the case of a state-feedback control law of the form:

u(τ) = K (θ(τ))x(τ) (2.134)

will be considered. Even though in many situations the state is not available, in most of

them the system is observable, thus it is possible to add a state observer to the control

loop. Then, the state observer would provide an estimation of the state to be fed back
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to the controller [124]. In cases where this would not be possible, other approaches

may be viable, e.g. output-feedback controller synthesis [68, 229, 279] or IO controller

synthesis [7, 8, 349].

The following theorems can be easily obtained taking into account the results presented

in the previous section.

Theorem 2.12. (Quadratic stabilization of CT LPV systems) The LPV system (2.1) with con-

trol law (2.134) and τ = t is quadratically stabilizable if there exist Q � O and a matrix

function K(θ) ∈ Rnu×nx such that:

He {A(θ)Q+B(θ)K(θ)Q} ≺ O ∀θ ∈ Θ (2.135)

Proof: It is obtained straightforwardly from Theorem 2.1, by considering the closed-loop

state matrix A(θ) +B(θ)K(θ) instead of the autonomous state matrix A(θ). �

Theorem 2.13. (Quadratic stabilization of DT LPV systems) The LPV system (2.1) with con-

trol law (2.134) and τ = k is quadratically stabilizable if there exist Q � O and a matrix

function K(θ) ∈ Rnu×nx such that:(
−Q A(θ)Q+B(θ)K(θ)Q

∗ −Q

)
≺ O ∀θ ∈ Θ (2.136)

Proof: It is obtained straightforwardly from Theorem 2.2, by considering the closed-loop

state matrix A(θ) +B(θ)K(θ) instead of the autonomous state matrix A(θ). �

Theorem 2.14. (QuadraticD-stabilizability of LPV systems) Given an LMI regionD defined

as in (2.47), the LPV system (2.1) with control law (2.134) is quadraticallyD-stabilizable

if there exist Q � O and a matrix function K(θ) ∈ Rnu×nx such that:

α⊗Q+He {β ⊗ [A(θ)Q+B(θ)K(θ)Q]} ≺ O ∀θ ∈ Θ (2.137)

Proof: It is obtained straightforwardly from Theorem 2.3, by considering the closed-loop

state matrix A(θ) +B(θ)K(θ) instead of the autonomous state matrix A(θ). �

Theorem 2.15. (QuadraticH∞ state-feedback for CT LPV systems) The CT LPV system:

ẋ(t) = A (θ(t))x(t) +B (θ(t))u(t) +Bw (θ(t))w(t) (2.138)

z∞(t) = Cz∞ (θ(t))x(t) +Dz∞u (θ(t))u(t) +Dz∞w (θ(t))w(t) (2.139)
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with control law (2.134) has quadratic H∞ performance γ∞ if there exist Q � O and a

matrix function K(θ) ∈ Rnu×nx such that:
He {A(θ)Q+B(θ)K(θ)Q} ∗ ∗

Bw(θ)T −I ∗
Cz∞(θ)Q+Dz∞u(θ)K(θ)Q Dz∞w(θ) −γ2

∞I

 ≺ O ∀θ ∈ Θ (2.140)

Proof: It is obtained straightforwardly from Theorem 2.4 by considering the closed-loop

state matrix A(θ) + B(θ)K(θ) instead of the state matrix A(θ), and the closed-loop z∞

output matrix Cz∞(θ) +Dz∞u(θ)K(θ) instead of the z∞ output matrix Cz∞(θ). �

Theorem 2.16. (QuadraticH∞ state-feedback for DT LPV systems) The DT LPV system:

x(k + 1) = A (θ(k))x(k) +B (θ(k))u(k) +Bw (θ(k))w(k) (2.141)

z∞(k) = Cz∞ (θ(k))x(k) +Dz∞u (θ(k))u(k) +Dz∞w (θ(k))w(k) (2.142)

with control law (2.134) has quadratic H∞ performance γ∞ if there exist Q � O and a

matrix function K(θ) ∈ Rnu×nx such that:
Q A(θ)Q+B(θ)K(θ)Q Bw(θ) O

∗ Q O QCz∞(θ)T +QK(θ)TDz∞u(θ)T

∗ ∗ I Dz∞w(θ)T

∗ ∗ ∗ γ2
∞I

 � O ∀θ ∈ Θ

(2.143)

Proof: It is obtained straightforwardly from Theorem 2.5 by considering the closed-loop

state matrix A(θ) + B(θ)K(θ) instead of the state matrix A(θ), and the closed-loop z∞

output matrix Cz∞(θ) +Dz∞u(θ)K(θ) instead of the z∞ output matrix Cz∞(θ). �

Theorem 2.17. (QuadraticH2 state-feedback for CT LPV systems) The CT LPV system (2.138)

and:

z2(t) = Cz2 (θ(t))x(t) +Dz2u (θ(t))u(t) (2.144)

with control law (2.134) has quadratic H2 performance γ2 if there exist Q � O and

matrix functions K(θ) ∈ Rnu×nx , Y (θ) ∈ Snz2×nz2 such that Tr (Y (θ)) < γ2
2 ∀θ ∈ Θ and:(

He {A(θ)Q+B(θ)K(θ)Q} Bw(θ)

∗ −I

)
≺ O ∀θ ∈ Θ (2.145)

(
Y (θ) Cz2(θ)Q+Dz2u(θ)K(θ)Q

∗ Q

)
� O ∀θ ∈ Θ (2.146)
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Proof: It is obtained straightforwardly from Theorem 2.6 by considering the closed-loop

state matrix A(θ) + B(θ)K(θ) instead of the state matrix A(θ), and the closed-loop z2

output matrix Cz2(θ) +Dz2u(θ)K(θ) instead of the z2 output matrix Cz2(θ). �

Theorem 2.18. (Quadratic H2 state-feedback for DT LPV systems) The DT LPV system

(2.141) and:

z2(k + 1) = Cz2 (θ(k))x(k) +Dz2u (θ(k))u(k) (2.147)

with control law (2.134) has quadratic H2 performance γ2 if there exist Q � O and

matrix functions K(θ) ∈ Rnu×nx , Y (θ) ∈ Snz2×nz2 such that Tr (Y (θ)) < γ2
2 ∀θ ∈ Θ and:

Q A(θ)Q+B(θ)K(θ)Q Bw(θ)

∗ Q O

∗ ∗ I

 � O ∀θ ∈ Θ (2.148)

(
Y (θ) Cz2(θ)Q+Dz2u(θ)K(θ)Q

∗ Q

)
� O ∀θ ∈ Θ (2.149)

Proof: It is obtained straightforwardly from Theorem 2.7 by considering the closed-loop

state matrix A(θ) + B(θ)K(θ) instead of the state matrix A(θ), and the closed-loop z2

output matrix Cz2(θ) +Dz2u(θ)K(θ) instead of the z2 output matrix Cz2(θ). �

Theorem 2.19. (Quadratic FTB state-feedback for CT LPV systems) The CT LPV system

(2.138) with control law (2.134) is quadratically FTB with respect to (c1, c2, T,R, d) if,

letting Q̃1 = R−1/2Q1R
−1/2, there exist positive scalars a, λ1, λ2, λ3, two positive def-

inite matrices Q1 ∈ Snx×nx and Q2 ∈ Snw×nw , and a matrix function K(θ) ∈ Rnu×nx

such that: He
{
A(θ)Q̃1 +B(θ)K(θ)Q̃1

}
− aQ̃1 Bw(θ)Q2

∗ −aQ2

 ≺ O ∀θ ∈ Θ (2.150)

and (2.88)-(2.90) hold.

Proof: It is obtained straightforwardly from Theorem 2.8 by considering the closed-loop

state matrix A(θ) +B(θ)K(θ) instead of the state matrix A(θ). �

Theorem 2.20. (Quadratic FTB state-feedback for DT LPV systems) The DT LPV system

(2.141) and:

w(k + 1) = W (θ(k))w(k) (2.151)

with control law (2.134) is quadratically FTB with respect to (c1, c2, T,R, d) if there exist

positive scalars a, λ1, λ2 with a ≥ 1, two positive definite matrices Q1 ∈ Snx×nx and
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Q2 ∈ Snw×nw and a matrix function K(θ) ∈ Rnu×nx such that:
−aQ1 ∗ ∗ ∗

A(θ)Q1 +B(θ)K(θ)Q1 −Q1 ∗ ∗
O Bw(θ)T −aQ2 ∗
O O Q2W (θ) −Q2

 ≺ O ∀θ ∈ Θ (2.152)

and (2.92)-(2.94) hold.

Proof: It is obtained straightforwardly from Theorem 2.9 by consideringA(θ)+B(θ)K(θ)

instead of A(θ). �

Theorem 2.21. (Quadratic finite time stabilization of CT LPV systems) The LPV system (2.1)

with control law (2.134) and τ = t is quadratically finite time stabilizable with respect to

(c1, c2, T,R) if, letting Q̃1 = R−1/2Q1R
−1/2, there exist positive scalars a, λ1, a positive

definite matrix Q1 ∈ Snx×nx and a matrix function K(θ) ∈ Rnu×nx such that:

He
{
A(θ)Q̃1 +B(θ)K(θ)Q̃1

}
− aQ̃1 ≺ O ∀θ ∈ Θ (2.153)

(2.88) and (2.96) hold.

Proof: It is obtained straightforwardly from Theorem 2.10 by consideringA(θ)+B(θ)K(θ)

instead of A(θ). �

Theorem 2.22. (Quadratic finite time stabilization of DT LPV systems) The LPV system (2.1)

with control law (2.134) and τ = k is quadratically finite time stabilizable with respect

to (c1, c2, T,R) if there exist positive scalars a, λ1 with a ≥ 1, a positive definite matrix

Q1 ∈ Snx×nx and a matrix function K(θ) ∈ Rnu×nx such that:(
−αQ1 ∗

A(θ)Q1 +B(θ)K(θ)Q1 −Q1

)
≺ O ∀θ ∈ Θ (2.154)

and (2.98)-(2.99) hold.

Proof: It is obtained straightforwardly from Theorem 2.11 by consideringA(θ)+B(θ)K(θ)

instead of A(θ). �

However, similarly to the previous section, Theorems 2.12-2.22 imply infinite constraints

to be checked, that can be reduced to a finite number using the polytopic approach de-

scribed in Section 2.2. In this case, the matricesA (θ(τ)),Bw (θ(τ)),Cz∞ (θ(τ)),Dz∞w (θ(τ)),
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Cz2 (θ(τ)), W (θ(k)) are assumed to be polytopic, as follows:

A (θ(τ))

Bw (θ(τ))

Cz∞ (θ(τ))

Dz∞w (θ(τ))

Cz2 (θ(τ))

W (θ(k))


=

N∑
i=1

µi (θ(τ))



Ai

Bw,i

Cz∞,i

Dz∞w,i

Cz2,i

Wi


(2.155)

where the coefficients µi satisfy the property (2.5). On the other hand, the matrices B,

Dz∞u and Dz2u are assumed to be constant. This assumption is not restrictive, since

in the case of varying matrices B (θ(τ)), Dz∞u (θ(τ)) and Dz2u (θ(τ)), a prefiltering of

the input u(τ) would lead to obtain a new system with constant matrices B̃, D̃z∞u and

D̃z2u [16]. More specifically, for the system:

σ.x(τ) = A (θ(τ))x(τ) +B (θ(τ))u(τ) +Bw (θ(τ))w(τ) (2.156)

z∞(τ) = Cz∞ (θ(τ))x(τ) +Dz∞u (θ(τ))u(τ) +Dz∞w (θ(τ))w(τ) (2.157)

z2(τ) = Cz2 (θ(τ))x(τ) +Dz2u (θ(τ))u(τ) (2.158)

let us define a new control input ũ(τ) such that:

σ.xu(τ) = Au (θ(τ))xu(τ) +Buũ(τ) (2.159)

u(τ) = Cuxu(τ) (2.160)

with Au (θ(τ)) stable. Then, the resulting LPV system would be:(
σ.x(τ)

σ.xu(τ)

)
=

(
A (θ(τ)) B (θ(τ))Cu

O Au (θ(τ))

)(
x(τ)

xu(τ)

)
+

(
O

Bu

)
ũ(τ) +

(
Bw (θ(τ))

O

)
w(τ)

(2.161)

z∞(τ) =
(
Cz∞ (θ(τ)) Dz∞u (θ(τ))Cu

)( x(τ)

xu(τ)

)
+Dz∞w (θ(τ))w(τ) (2.162)

z2(τ) =
(
Cz2 (θ(τ)) Dz2u (θ(τ))Cu

)( x(τ)

xu(τ)

)
(2.163)

that are in the desired form.

It is worth recalling that some recent research has developed design conditions that

would work in the case where the matrices B (θ(τ)), Dz∞u (θ(τ)) and Dz2u (θ(τ)) are
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varying, without the need of resorting to the input prefiltering [116]. Since these condi-

tions are in some way conservative, many works try to reduce their pessimism. Among

these works, [334] is recognized to lead to a good compromise between complexity and

conservatism.

The following corollaries are obtained from Theorems 2.12-2.22, and consider a poly-

topic state-feedback control law (2.134), as follows:

u(τ) =
N∑
i=1

µi (θ(τ))Kix(τ) (2.164)

The mathematical proof is provided only for Corollary 2.13, since the proofs of the

remaining ones can be presented by a similar reasoning.

Corollary 2.13. (Design of a quadratically stabilizing polytopic state-feedback controller for CT

LPV systems) Let Q � O and Γi ∈ Rnu×nx , i = 1, . . . , N be such that:

He {AiQ+BΓi} ≺ O ∀i = 1, . . . , N (2.165)

Then, the closed-loop system made up by the LPV system (2.1), with τ = t, B (θ(t)) =

B, and polytopic matrices as in (2.155), and the polytopic state-feedback control law

(2.164) with gains calculated as Ki = ΓiQ
−1, i = 1, . . . , N , is quadratically stable.

Proof: By considering that Ki = ΓiQ
−1 is equivalent to Γi = KiQ, (2.165) can be rewrit-

ten as:

He {AiQ+BKiQ} ≺ O ∀i = 1, . . . , N (2.166)

Then, taking into account the basic property of matrices [131] that any linear combina-

tion of (2.166) with non-negative coefficients, of which at least one different from zero,

is negative definite, using the coefficients µi (θ(τ)), and taking into account (2.155) and

(2.164), (2.135) is obtained. �

Corollary 2.14. (Design of a quadratically stabilizing polytopic state-feedback controller for DT

LPV systems) Let Q � O and Γi ∈ Rnu×nx , i = 1, . . . , N , be such that:(
−Q AiQ+BΓi

∗ −Q

)
≺ O ∀i = 1, . . . , N (2.167)

Then, the closed-loop system made up by the LPV system (2.1), with τ = k, B (θ(k)) =

B, and polytopic matrices as in (2.155), and the polytopic state-feedback control law

(2.164) with gains calculated as Ki = ΓiQ
−1, i = 1, . . . , N , is quadratically stable.

Proof: Similar to that of Corollary 2.13, thus omitted. �
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Corollary 2.15. (Design of a quadratically D-stabilizing polytopic state-feedback controller for

LPV systems) Given an LMI region D defined as in (2.47), let Q � O and Γi ∈ Rnu×nx ,

i = 1, . . . , N , be such that:

α⊗Q+He {β ⊗ [AiQ+BΓi]} ≺ O ∀i = 1, . . . , N (2.168)

Then, the closed-loop system made up by the LPV system (2.1), with B (θ(τ)) = B, and

polytopic matrices as in (2.155), and the polytopic state-feedback control law (2.164)

with gains calculated as Ki = ΓiQ
−1, i = 1, . . . , N , is quadratically D-stable.

Proof: Similar to that of Corollary 2.13, thus omitted. �

Corollary 2.16. (Design of a quadraticH∞ polytopic state-feedback controller for CT LPV sys-

tems) Let Q � O and Γi ∈ Rnu×nx , i = 1, . . . , N , be such that:
He {AiQ+BΓi} ∗ ∗

BT
w,i −I ∗

Cz∞,iQ+Dz∞uΓi Dz∞w,i −γ2
∞I

 ≺ O ∀i = 1, . . . , N (2.169)

Then, the closed-loop system made up by the LPV system (2.138)-(2.139), withB (θ(t)) =

B, Dz∞u (θ(t)) = Dz∞u, and polytopic matrices as in (2.155), and the polytopic state-

feedback control law (2.164) with gains calculated as Ki = ΓiQ
−1, i = 1, . . . , N , has

quadraticH∞ performance γ∞.

Proof: Similar to that of Corollary 2.13, thus omitted. �

Corollary 2.17. (Design of a quadratic H∞ polytopic state-feedback controller for DT LPV

systems) Let Q � O and Γi ∈ Rnu×nx , i = 1, . . . , N , be such that:
Q AiQ+BΓi Bw,i O

∗ Q O QCT
z∞,i

∗ ∗ I DT
z∞w,i

∗ ∗ ∗ γ2
∞

 � O ∀i = 1, . . . , N (2.170)

Then, the closed-loop system made up by the LPV system (2.141)-(2.142), withB (θ(k)) =

B, Dz∞u (θ(k)) = Dz∞u, and polytopic matrices as in (2.155), and the polytopic state-

feedback control law (2.164) with gains calculated as Ki = ΓiQ
−1, i = 1, . . . , N , has

quadraticH∞ performance γ∞.

Proof: Similar to that of Corollary 2.13, thus omitted. �

Corollary 2.18. (Design of a quadratic H2 polytopic state-feedback controller for CT LPV sys-

tems) Let Q � O, Γi ∈ Rnu×nx and Yi ∈ Snz2×nz2 , i = 1, . . . , N , be such that:

Tr(Yi) < γ2
2 ∀i = 1, . . . , N (2.171)
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(
He {AiQ+BΓi} Bw,i

∗ −I

)
≺ O ∀i = 1, . . . , N (2.172)

(
Yi Cz2,iQ+Dz2uΓi

∗ Q

)
� O ∀i = 1, . . . , N (2.173)

Then, the closed-loop system made up by the CT LPV system (2.138) and (2.144), with

B (θ(t)) = B,Dz2u (θ(t)) = Dz2u, and polytopic matrices as in (2.155), and the polytopic

state-feedback control law (2.164) with gains calculated as Ki = ΓiQ
−1, i = 1, . . . , N ,

has quadraticH2 performance γ2.

Proof: Similar to that of Corollary 2.13, thus omitted. �

Corollary 2.19. (Design of a quadratic H2 polytopic state-feedback controller for DT LPV sys-

tems) Let Q � O, Γi ∈ Rnu×nx and Yi ∈ Snz2×nz2 , i = 1, . . . , N , be such that:

Tr(Yi) < γ2
2 ∀i = 1, . . . , N (2.174)

Q AiQ+BΓi Bw,i

∗ Q O

∗ ∗ I

 � O ∀i = 1, . . . , N (2.175)

(
Yi Cz2,iQ+Dz2uΓi

∗ Q

)
� O ∀i = 1, . . . , N (2.176)

Then, the closed-loop system made up by the DT LPV system (2.141) and (2.147),

with B (θ(k)) = B, Dz2u (θ(k)) = Dz2u, and polytopic matrices as in (2.155), and

the polytopic state-feedback control law (2.164) with gains calculated as Ki = ΓiQ
−1,

i = 1, . . . , N , has quadraticH2 performance γ2.

Proof: Similar to that of Corollary 2.13, thus omitted. �

Corollary 2.20. (Design of a quadratic FTB polytopic state-feedback controller for CT LPV

systems) Fix a > O, and let λ1 > 0, λ2 > 0, λ3 > 0, Q1 � O, Q2 � O, and Γi ∈ Rnu×nx ,

i = 1, . . . , N , be such that: He
{
AiQ̃1 +BΓi

}
− aQ̃1 Bw,iQ2

∗ −aQ2

 ≺ O ∀i = 1, . . . , N (2.177)

and (2.88)-(2.90) hold, where Q̃1 = R−1/2Q1R
−1/2. Then, the closed-loop system made

up by the CT LPV system (2.138), with B (θ(t)) = B, and polytopic matrices as in

(2.155), and the polytopic state-feedback control law (2.164) with gains calculated as

Ki = ΓiQ̃
−1
1 , i = 1, . . . , N , is quadratically FTB with respect to (c1, c2, T,R, d).
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Proof: Similar to that of Corollary 2.13, thus omitted. �

Corollary 2.21. (Design of a quadratic FTB polytopic state-feedback controller for DT LPV

systems) Fix a ≥ 1, and let λ1 > 0, λ2 > 0, Q1 � O, Q2 � O and Γi ∈ Rnu×nx ,

i = 1, . . . , N , be such that:
−aQ1 ∗ ∗ ∗

AiQ1 +BΓi −Q1 ∗ ∗
O BT

w,i −aQ2 ∗
O O Q2Wi −Q2

 ≺ O ∀i = 1, . . . , N (2.178)

and (2.92)-(2.94) hold. Then, the closed-loop system made up by the DT LPV system

(2.141) and (2.151), with B (θ(k)) = B, and polytopic matrices as in (2.155), and the

polytopic state-feedback control law (2.164) with gains calculated as Ki = ΓiQ
−1
1 , i =

1, . . . , N , is quadratically FTB with respect to (c1, c2, T,R, d).

Proof: Similar to that of Corollary 2.13, thus omitted. �

Corollary 2.22. (Design of a quadratically finite time stabilizing polytopic state-feedback con-

troller for CT LPV systems) Fix a > 0, and let λ1 > 0, Q1 � O and Γi ∈ Rnu×nx ,

i = 1, . . . , N , be such that:

He
{
AiQ̃1 +BΓi

}
− aQ̃1 ≺ O ∀i = 1, . . . , N (2.179)

(2.88) and (2.96) hold, where Q̃1 = R−1/2Q1R
−1/2. Then, the closed-loop system made

up by the CT LPV system (2.1), with τ = t, B (θ(t)) = B, and polytopic matrices as

in (2.155), and the polytopic state-feedback control law (2.164) with gains calculated as

Ki = ΓiQ̃
−1
1 , i = 1, . . . , N , is quadratically FTS with respect to (c1, c2, T,R).

Proof: Similar to that of Corollary 2.13, thus omitted. �

Corollary 2.23. (Design of a quadratically finite time stabilizing polytopic state-feedback con-

troller for DT LPV systems) Fix a ≥ 1, and let Q1 � O and Γi ∈ Rnu×nx , i = 1, . . . , N , be

such that: (
−aQ1 ∗

AiQ1 +BΓi −Q1

)
≺ O ∀i = 1, . . . , N (2.180)

and (2.98)-(2.99) hold. Then, the closed-loop system made up by the DT LPV system

(2.1), with τ = k, B (θ(k)) = B, and polytopic matrices as in (2.155), and the polytopic

state-feedback control law (2.164) with gains calculated as Ki = ΓiQ
−1
1 , i = 1, . . . , N , is

quadratically FTS with respect to (c1, c2, T,R).

Proof: Similar to that of Corollary 2.13, thus omitted. �
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2.6 Conclusions

This chapter has presented some background on gain-scheduling. Some basic con-

cepts about modeling of LPV and TS systems have been recalled, and different meth-

ods for obtaining such models starting from an available nonlinear state-space model

have been illustrated using some examples. For LPV systems, the following methods

have been recalled: (a) the Jacobian linearization approach, based on the interpolation

of LTI models obtained as first-order Taylor-series approximations of the nonlinear sys-

tems around some equilibrium points of interest; (b) the state transformation approach,

where a coordinate change is performed with the aim of removing any nonlinear term

not dependent on the scheduling parameters; and (c) the function substitution ap-

proach, that replaces a decomposition function with functions that are linear with respect

to the scheduling parameters. For TS systems, the following methods have been re-

called: (d) the sector nonlinearity approach, that aims at finding global sectors through

which an exact model representation is guaranteed; and (e) the local approximation in

fuzzy partition spaces, where nonlinear terms are approximated by judiciously choos-

ing linear terms, with the effect of reducing the number of fuzzy rules.

Afterwards, the problem of analyzing whether or not some properties hold for a given

LPV system has been considered. The definitions in the case of LPV systems of poles,

LMI regions,H∞ norm,H∞ performance,H2 norm,H2 performance, finite time stabil-

ity and finite time boundedness have been provided. Detailed conditions to perform

the analysis based on a common quadratic Lyapunov function have been listed, and

it has been shown that a finite number of LMIs can be obtained by considering the

polytopic approach.

Finally, it has been shown how the analysis conditions can be taken into account for

designing a state-feedback control law such that the resulting closed-loop system has

some desired properties.



Chapter 3

Automated generation and

comparison of Takagi-Sugeno and

polytopic quasi-LPV models

The content of this chapter is based on the following work:

• [275] D. Rotondo, V. Puig, F. Nejjari, M. Witczak. Automated generation and

comparison of Takagi-Sugeno and polytopic quasi-LPV models. Fuzzy Sets and

Systems, 277:44-64, 2015.

3.1 Introduction

Despite the strong similarities of the two paradigms, LPV and TS systems have nearly

always been treated as though as they belonged to two different worlds. In fact, the

research for each of them has been performed in an independent way and, as a result,

cross-references between papers dealing with the LPV theory and those dealing with

the TS theory are quite uncommon. As a consequence, some theoretical results that

could be useful for both types of systems have been applied only to one type.

However, in some recent works, some clues that there is a close connection between

the LPV theory and the fuzzy TS paradigms have been presented [193, 194]. In [242],

Rong and Irwin have pointed out that LPV systems can describe TS fuzzy models if

the scheduling functions of the former paradigm are treated as membership functions

of the latter one. Bergsten and his co-workers [29] have pointed out that, since it has

46
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been proved that a TS fuzzy system, where the local affine dynamic models are off-

equilibrium local linearizations, leads to an arbitrarily close approximation of an LTV

dynamical system about an arbitrary trajectory [148], the results concerning observers

for TS fuzzy systems are also relevant to LPV systems. In [59], Collins has commented

that, even though the results in [321] seem to be very related to existing results on LPV

control, they are not put in perspective with those existing for LPV systems. He also

claimed that it is apparent that the fuzzy TS model is a special case of an LPV model.

However, even if from theoretical analysis and design points of view it is difficult to

find clear differences between the two paradigms [323], LPV and TS systems are still

considered different and their equality is dubious [329].

This chapter openly addresses the presence of strong analogies between LPV and TS

models, in an attempt to establish a bridge between these two worlds, so far considered

to be different. In particular, this chapter considers the modeling problem, with the

following important contributions:

• the analogies and connections between LPV and TS systems are clearly stated;

• it is shown that the method for the automated generation of LPV models by non-

linear embedding presented in [168] can be easily extended to solve the corre-

sponding problem for TS models;

• it is shown that the method for the generation of a TS model for a given nonlinear

multivariable function based on the sector nonlinearity concept [216], can be ex-

tended to the problem of generating a polytopic LPV model for a given nonlinear

dynamical system;

• two measures are proposed in order to compare the obtained models and choose

which one can be considered the best one. The first measure is based on the notion

of overboundedness. The second measure is based on region of attraction estimates;

Notice that the resulting method for automated generation of TS models by nonlinear

embedding has been already used by the fuzzy community in an intuitive way. For

example, one can verify that the TS models obtained by Tanaka and Wang in [321]

are contained within the set of TS models obtained through the method proposed in

this chapter. Hereafter, the method used in [321] is automated adapting a technique

developed by the LPV community that had never been used for TS systems until now.
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3.2 Analogies between polytopic LPV and TS systems

There are strong analogies between polytopic LPV and TS systems. In fact, the only

remarkable difference between the two frameworks is the set of mathematical tools

that are used for obtaining the system description. In the LPV case, these tools belong

to the standard mathematics; on the other hand, in the TS case, they belong to the fuzzy

theory. In particular, the correspondences between polytopic LPV and TS systems are

as follows:

• the scheduling parameter θ of LPV systems correspond to the premise variables

ϑ of TS systems;

• the coefficients of the polytopic decomposition µi correspond to the coefficients

ρi that describe the level of activation of each local model;

• the vertex systems in the polytopic LPV case correspond to the subsystems in the TS

case.

These analogies can be strongly exploited for extending techniques and results that

have been developed for polytopic LPV systems to the TS case, and viceversa.

3.3 Measures for comparison between LPV and TS models

3.3.1 Overboundedness-based measure

Given a nonlinear system of the form:

σ.x(τ) = g (x(τ), u(τ), w(τ)) (3.1)

y(τ) = h (x(τ), u(τ), w(τ)) (3.2)

where x ∈ Rnx is the state, u ∈ Rnu is the control input, w ∈ Rnw is some exogenous

signal and y ∈ Rny is the output, the approaches for automated generation of polytopic

LPV and TS models proposed in this chapter provide a systematic methodology for

building a whole set of LPV/TS models representing the nonlinear system (3.1)-(3.2).

Hence, it is interesting to compare the obtained models in order to choose which one is

the best.

Hereafter, a measure based on the notion of overboundedness is proposed, similar to the

one presented in [168]. The idea is to calculate the volume of the (hyper)region con-

tained between the vertices/subsystems (hyper)planes: the smaller is this volume, the
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better is the approximation offered by the polytopic LPV/TS model. To obtain the mea-

sure, subsets S1, . . . , Snx of {X,U,W,F1} , . . . , {X,U,W,Fnx}must be chosen, where X,

U, W and Fi, i = 1, . . . , nx are the state space, the input space, the exogenous signal

space and the i-th state variable derivative space, respectively. Then, if V (S)
1 , . . . , V

(S)
nx

are the volumes of the subsets S1, . . . , Snx , and V1, . . . , Vnx are the volumes of the (hy-

per)regions contained between the vertices/subsystems (hyper)planes in S1, . . . , Snx , a

measure of the goodness of the polytopic LPV/TS model is given by:

M =
V1V2 · · ·Vnx

V
(S)

1 V
(S)

2 · · ·V (S)
nx

(3.3)

where the smaller is this measure, the better is the model1.

Notice that in some situations, calculating the volumes V1, . . . , Vnx can be a hard task.

Then, an approximate measure can be used as follows:

M̃ =
Ṽ1Ṽ2 · · · Ṽnx

V
(S)

1 V
(S)

2 · · ·V (S)
nx

(3.4)

where Ṽi is an approximation of Vi. In particular, in this chapter, each factor Ṽi/V
(S)
i is

obtained generating randomly a certain number N of points inside the subset Si, and

then calculating the ratio between the points that can be described by a polytopic com-

bination through the model taken into consideration, and the total number of points.

Obviously, M̃ approaches M in the limit as N → ∞. However, it is impossible to set

N = ∞. Thus, the problem becomes the one of selecting N in such a way that M̃ , i.e.

the estimation of M , has some desired properties. In order to do this, notice that the

process of generating points in the subset Si and checking whether or not they can be

described by the model taken into consideration is a Bernoulli process [30] with a lim-

ited number N of Bernoulli trials. Hence, the estimator M̃ can be analyzed using the

results coming from the theory of statistics and probability [203].

3.3.2 Region of attraction estimates-based measure

It is often believed that a closed-loop quasi-LPV/TS system, obtained from a nonlinear

system using an exact transformation procedure, that satisfies stability (or some other

goal) for all parameters varying in a convex region, e.g. a bounding box, implies that

stability is satisfied for the underlying nonlinear system. This is not always true, as

1The measure M usually decreases when the number of vertex systems/subsystems used in the con-
sidered polytopic LPV/TS model increases. In some cases, e.g. controller synthesis, this could lead to an
increase in the computational effort that is not taken into account by the proposed measure M . If it is
desired to include such an effect in the evaluation of the goodness of the model, a slight modification of
M should be done.
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shown in [47], where a Van der Pol equation with reversed vector field example was

used to demonstrate that the LPV/TS analysis of the nonlinear system does not guar-

antee local asymptotic stability. However, [47] also shows that the LPV/TS analysis

can be used to estimate the region of attraction for the underlying nonlinear system. In

fact, even though finding the exact region of attraction analytically might be difficult

or even impossible [156], the Lyapunov functions can be used to estimate the region of

attraction.

Assume that the autonomous LPV system with θ(τ) dependent on the state x(τ):

σ.x(τ) = A (θ (x(τ)))x(τ) (3.5)

satisfies some stability and performance conditions, as the ones proposed in Section

2.4.1 ∀θ ∈ Θ, in the sense of decreasing the Lyapunov function (2.58):

V (x(τ)) = x(τ)TPx(τ) (3.6)

with P � O. Moreover, let us define the following sets:

X = {x ∈ D|θ(x) ∈ Θ} (3.7)

Γβ = {x ∈ D|V (x) ≤ β} (3.8)

where D ⊂ Rnx is a given domain containing x = 0, and, for the nonlinear system:

σ.x(τ) = g(x(τ)) (3.9)

with the origin being an equilibrium point, let us define the region of attraction as the

set:

RA =
{
x(0)| lim

τ→∞
φ (τ ;x(0)) = 0

}
(3.10)

where φ (τ ;x(0)) denotes the solution that starts at initial state x(0) at time τ = 0.

Then, the following theorem holds:

Theorem 3.1. Consider the nonlinear system (3.9), with the exact quasi-LPV representa-

tion (3.5). If Γβ ⊆ X then Γβ ⊆ RA, where RA is the region of attraction.

Proof: See [47].

A consequence of this theorem is that an approximation of the region of attraction is

given by the (hyper)ellipsoid provided by the positive definite matrix P of the Lya-

punov function (3.6). Hereafter, a measure based on the approximation of the region

of attraction is proposed in order to compare quasi-LPV and TS models obtained from
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the same nonlinear system, as follows:

Mβ =
Vβ
VΘ

(3.11)

where Vβ is the volume of Γβ , and VΘ is the volume of the polytopic region Θ within

which the parameter vector θ (or the premise variables ϑ in the case of TS representa-

tion) can take values.

3.4 Generation of TS models via nonlinear embedding

A method for the automated generation of LPV models, when affine or polytopic mod-

els are desired, has been presented in [168]. These models are generated from a general

nonlinear model by hiding the nonlinearities in the scheduling parameters. In this sec-

tion, it is shown that this method can be used for generating a TS model from a given

nonlinear model.

Consider the nonlinear state2 equation (3.1). The automated generation of TS models

via nonlinear embedding consists of the following five steps:

• In the first step, (3.1) is rewritten in a standard form, that is, each of its rows is

expanded into its summands gij :

σ.xi =

Ti∑
j=1

gij(x, u, w), i = 1, . . . , nx (3.12)

where Ti is the total number of summands of that row. Then, each summand is

decomposed into its numerator αij , denominator βij and constant factor κij :

σ.xi =

Ti∑
j=1

κij
αij(x, u, w)

βij(x, u, w)
, i = 1, . . . , nx (3.13)

Finally, the numerator is factored as the product of non-factorisable terms lij and

integer powers of the states xq, q = 1, . . . , nx and the inputs ur, r = 1, . . . , nu:

αij =

nx∏
q=1

nu∏
r=1

lij(x, u, w)x
µijq
q u

νijr
r (3.14)

• In the second step, two classes of summands are distinguished: (a) constant or

non-factorisable numerator, K0, when neither a power of the state xi nor of an input
2The method can be applied to the output equation (3.2) without significant differences.
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ui is a factor of the numerator; and (b) arbitrary positive power of factor, KP , when

the summand has a numerator with positive integer powers of a state variable xi
or input ui;

• In the third step, according to the classification of each summand, components

ϑaijk and ϑbijk that link the summand to the entries of the state and input matrices

A andB are chosen. If the summand gij belongs toK0, one can obtain nx possible

assignments to the state matrixA and nu possible assignments to the input matrix

B, with ϑaijk and ϑbijk defined as follows:

ϑaijk = κij
αij(x, u, w)

βij(x, u, w)xk
, k = 1, . . . , nx (3.15)

ϑbijk = κij
αij(x, u, w)

βij(x, u, w)uk
, k = 1, . . . , nu (3.16)

Otherwise, if the summand gij belongs to Kp, one can choose to assign the sum-

mand to an element of the state or input matrix, as long as the element is a factor

of the numerator, i.e. if there exists a k for which µijk 6= 0 or νijk 6= 0;

• In the fourth step, the premise variables ϑ are derived from ϑaijk and ϑbijk. This

can be done either by direct assignment or by superposition. In the direct assignment

case, the premise variables are directly chosen as ϑaijk and ϑbijk, such that:

aik =

ζa∑
j=1

ϑaijk bik =

ζb∑
j=1

ϑbijk (3.17)

where ζa and ζb are the number of components of the same equation σ.xi that are

assigned to the same state xk or input uk, respectively, but have been obtained

from different summands. In the superposition case, the premise variables, de-

noted by ϑaik and ϑbik, are obtained through a sum of all the contributions of a

summand to the same element of A or B:

ϑaik =

ζa∑
j=1

ϑaijk ϑbik =

ζb∑
j=1

ϑbijk (3.18)

such that the premise variables correspond to the elements of the state space ma-

trices:

aik = ϑaik bik = ϑbik (3.19)
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In both cases, the premise variables need to be renumbered in order to be coherent

with the numbering presented in (2.28):

IF ϑ1(τ) is Mi1 AND · · · AND ϑp(τ) is Mip

THEN

{
σ.xi(τ) = Aix(τ) +Biu(τ)

yi(τ) = Cix(τ) +Diu(τ)
i = 1, . . . , N

(3.20)

• In the final step, an adaptation of the technique used in [311] for obtaining poly-

topic LPV models, often referred to as bounding box method, is used to complete the

generation of the TS model. The minimum and maximum values of each premise

variable ϑi over the possible values of x, u and w, are obtained as follows:

ϑi = min
x,u,w

ϑi ϑi = max
x,u,w

ϑi (3.21)

From the maximum and minimum values, ϑi can be represented as:

ϑi = M1i(ϑi)ϑi +M2i(ϑi)ϑi (3.22)

with the additional constraint:

M1i(ϑi) +M2i(ϑi) = 1 (3.23)

such that the membership functions are calculated as:

M1i(ϑi) =
ϑi − ϑi
ϑi − ϑi

and M2i(ϑi) =
ϑi − ϑi
ϑi − ϑi

(3.24)

Finally, the subsystems are obtained by considering each possible combination of

membership functions in the IF clauses of the TS model.

3.5 Generation of polytopic LPV models via sector nonlinear-

ity

The idea of using sector nonlinearity in TS model construction first appeared in [154],

where the single variable system case was considered, and extended to the multivari-

able case in [216]. In this section, it is shown that this method can also be used for

generating a polytopic LPV model from a given nonlinear model.

Consider the nonlinear state equation (3.1), under the hypothesis that the function

g(x, u, w) is differentiable everywhere (as in the previous method, the application to
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the output equation (3.2) can be performed without significant differences). The auto-

mated generation of polytopic LPV models via sector nonlinearity concept consists of

the following steps:

• In the first step, the space {X,U,W} is partitioned into its 2nx+nu+nw quadrants.

Each quadrant is denoted by:

R
(
s

(x)
1 , . . . , s(x)

nx , s
(u)
1 , . . . , s(u)

nu , s
(w)
1 , . . . , s(w)

nw

)
(3.25)

where: {
s

(x)
j = 1⇔ xj ≥ 0

s
(x)
j = 0⇔ xj ≤ 0

(3.26)

{
s

(u)
j = 1⇔ uj ≥ 0

s
(u)
j = 0⇔ uj ≤ 0

(3.27)

{
s

(w)
j = 1⇔ wj ≥ 0

s
(w)
j = 0⇔ wj ≤ 0

(3.28)

Then, each quadrant R is associated to its symmetric quadrant R∗ to obtain Q =

2nx+nu+nw−1 regions:

Rq

(
s

(x)
1 , . . . , s

(u)
j , . . . , s(w)

nw

)
∪R∗q

(
¬s(x)

1 , . . . ,¬s(u)
j , . . . ,¬s(w)

nw

)
(3.29)

where ¬ denotes the negation operator and q = 1, . . . , Q.

• In the second step, for each of the regions Rq ∪ R∗q , q = 1, . . . , Q defined in (3.29),

after partially differentiating each row fi of (3.1) with respect to x1, . . . , xnx ,

u1, . . . , unu , the minimum and maximum values in the region Rq ∪R∗q are found:

a
(q)
ij = max

x,u,w∈Rq∪R∗q

∂gi(x, u, w)

∂xj

i = 1, . . . , nx

j = 1, . . . , nx
(3.30)

a
(q)
ij = min

x,u,w∈Rq∪R∗q

∂gi(x, u, w)

∂xj

i = 1, . . . , nx

j = 1, . . . , nx
(3.31)

b
(q)
ij = max

x,u,w∈Rq∪R∗q

∂gi(x, u, w)

∂uj

i = 1, . . . , nx

j = 1, . . . , nu
(3.32)

b
(q)
ij = min

x,u,w∈Rq∪R∗q

∂gi(x, u, w)

∂uj

i = 1, . . . , nx

j = 1, . . . , nu
(3.33)
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• In the third step, the vertex matrices
(
A

(q)
j , B

(q)
j

)
are obtained by taking into

consideration all the possible combinations of the row vectors
[
_
a

(q)
i ,

_

b
(q)

i

]
and[

^
a

(q)
i ,

^

b
(q)

i

]
, as follows:

A
(q)
j

(
t
(j)
1 , . . . , t

(j)
i , . . . , t(j)nx

)
=



ã
(q)
1
...

ã
(q)
i
...

ã
(q)
nx


(3.34)

B
(q)
j

(
t
(j)
1 , . . . , t

(j)
i , . . . , t(j)nx

)
=



b̃
(q)
1
...

b̃
(q)
i
...

b̃
(q)
nx


(3.35)

where:

ã
(q)
i =


_
a

(q)
i =

[
_
a

(q)
i1

_
a

(q)
i2 . . .

_
a

(q)
inx

]
if t

(j)
i = 1

^
a

(q)
i =

[
^
a

(q)
i1

^
a

(q)
i2 . . .

^
a

(q)
inx

]
if t

(j)
i = 0

(3.36)

b̃
(q)
i =


_

b
(q)

i =
[

_

b
(q)

i1

_

b
(q)

i2 . . .
_

b
(q)

inx

]
if t

(j)
i = 1

^

b
(q)

i =
[

^

b
(q)

i1

^

b
(q)

i2 . . .
^

b
(q)

inx

]
if t

(j)
i = 0

(3.37)

and:
_
a

(q)
ij =

{
a

(q)
ij if s

(x)
j (q) = 1

a
(q)
ij if s

(x)
j (q) = 0

(3.38)

^
a

(q)
ij =

{
a

(q)
ij if s

(x)
j (q) = 1

a
(q)
ij if s

(x)
j (q) = 0

(3.39)

_

b
(q)

ij =

{
b
(q)
ij if s

(u)
j (q) = 1

b
(q)
ij if s

(u)
j (q) = 0

(3.40)

^

b
(q)

ij =

{
b
(q)
ij if s

(u)
j (q) = 1

b
(q)
ij if s

(u)
j (q) = 0

(3.41)

Then, (3.1) can be reconstructed from
(
A

(q)
j , B

(q)
j

)
as follows:

σ.x = g(x, u, w) =

Q∑
q=1

2nx∑
j=1

α
(q)
j (x, u, w)

(
A

(q)
j x+B

(q)
j u

)
(3.42)
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where:

α
(q)
j (x, u, w) =

nx∏
i=1

[
t
(j)
i

_
α

(q)
i (x, u, w) +

(
1− t(j)i

)
^
α

(q)
i (x, u, w)

]
(3.43)

with:

_
α

(q)
i (x, u, w) =

gi(x, u, w)− ^
a

(q)
i x−

^

b
(q)

i u

_
a

(q)
i x+

_

b
(q)

i u− ^
a

(q)
i x−

^

b
(q)

i u

R∈q (x, u, w) (3.44)

^
α

(q)
i (x, u, w) =

_
a

(q)
i x+

_

b
(q)

i u− gi(x, u, w)

_
a

(q)
i x+

_

b
(q)

i u− ^
a

(q)
i x−

^

b
(q)

i u

R∈q (x, u, w) (3.45)

where R∈q (x, u, w) is an operator that returns 1 if (x, u, w) belongs to the region

Rq ∪R∗q and 0 otherwise.

Remark: Notice that the polytopic system (3.42) is equivalent to the following quasi-

LPV system:

σ.x = A(x, u, w)x+B(x, u, w)u (3.46)

with:

A(x, u, w) =

Q∑
q=1

2nx∑
j=1

α
(q)
j (x, u, w)A

(q)
j (3.47)

B(x, u, w) =

Q∑
q=1

2nx∑
j=1

α
(q)
j (x, u, w)B

(q)
j (3.48)

Remark: The obtained polytopic system exhibits discontinuities in the polytopic de-

composition coefficients α(q)
j (x, u, w) at the region boundaries, i.e. along the axes that

define the quadrants. In order to avoid this phenomenon, [216] suggests to add some

compatibility conditions. In particular, this is obtained by replacing a(q)
ij , a(q)

ij , b(q)ij and

b
(q)
ij in (3.38)-(3.41) with aij , aij , bij , bij , defined as follows:

aij = max
q=1,...,Q

ā
(q)
ij

i = 1, . . . , nx

j = 1, . . . , nx
(3.49)

aij = min
q=1,...,Q

a
(q)
ij

i = 1, . . . , nx

j = 1, . . . , nx
(3.50)

bij = max
q=1,...,Q

b
(q)
ij

i = 1, . . . , nx

j = 1, . . . , nu
(3.51)

bij = min
q=1,...,Q

b
(q)
ij

i = 1, . . . , nx

j = 1, . . . , nu
(3.52)
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3.6 Application Example

Consider the following nonlinear system:
ẋ1 = x1 + 3 sinx1 + x2 − 2 sinx2 + u1

ẋ2 = x2
1

√
1 + x2

2 + x1x2 + u2

ẋ3 = x1 + x2 − x3

(3.53)

with:

x1, x2, x3 ∈ P = [−π, π]× [−π, π]× [−π, π]

Hereafter, the methods described in Sections 3.4 and 3.5 will be used to obtain TS and

quasi-LPV representations of (3.53), and the measures introduced in Section 3.3 will be

used to compare the obtained models.

3.6.1 Generation of TS models via nonlinear embedding

The TS representations are obtained applying the nonlinear embedding method de-

scribed in Section 3.4, where the final step is done by superposition, such that eight dif-

ferent TS models are generated. The general form for each TS model is the following:

IF ϑ
(j)
11 is M

(j)
i11 AND ϑ

(j)
12 is M

(j)
i12 AND ϑ

(j)
21 is M

(j)
i21 AND ϑ

(j)
22 is M

(j)
i22

THEN ẋ(t) = A
(j)
i x(t) +


1 0

0 1

0 0

u(t)
i = 1, . . . , Nj

j = 1, . . . , 8

(3.54)

where for the j-th TS model, the Nj ∈ {4, 8, 16} linear models are obtained taking

into consideration all possible combinations of minimum and maximum values of the

premise variables ϑ(j)
11 , ϑ(j)

12 , ϑ(j)
21 and ϑ(j)

22 .

In particular, the premise variables are defined as follows3:

ϑ
(1)
11 (x1, x2) = ϑ

(2)
11 (x1, x2) = 1 + 3

sinx1

x1
− 2

sinx2

x1

ϑ
(3)
11 (x1) = ϑ

(4)
11 (x1) = 1 + 3

sinx1

x1

ϑ
(5)
11 (x1, x2) = ϑ

(6)
11 (x1, x2) = 1− 2

sinx2

x1

3Notice that the real premise variables can be a subset of those listed in (3.54), when some of them are
constants, i.e. ϑ(1)

12 = ϑ
(2)
12 = ϑ

(7)
11 = ϑ

(8)
11 = 1, ϑ(1)

22 = ϑ
(3)
22 = ϑ

(5)
22 = ϑ

(7)
22 = 0.
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ϑ
(3)
12 (x2) = ϑ

(4)
12 (x2) = 1− 2

sinx2

x2

ϑ
(5)
12 (x1, x2) = ϑ

(6)
12 (x1, x2) = 1 + 3

sinx1

x2

ϑ
(7)
12 (x1, x2) = ϑ

(8)
12 (x1, x2) = 1 + 3

sinx1

x2
− 2

sinx2

x2

ϑ
(1)
21 (x1, x2) = ϑ

(3)
21 (x1, x2) = ϑ

(5)
21 (x1, x2) = ϑ

(7)
21 (x1, x2) = x1

√
1 + x2

2 + x2

ϑ
(2)
21 (x1, x2) = ϑ

(4)
21 (x1, x2) = ϑ

(6)
21 (x1, x2) = ϑ

(8)
21 (x1, x2) = x1

√
1 + x2

2

ϑ
(2)
22 (x1) = ϑ

(4)
22 (x1) = ϑ

(6)
22 (x1) = ϑ

(8)
22 (x1) = x1

Among the obtained models, the ones that are considered to be more suitable for repre-

senting the original nonlinear system (3.53) are those given by j = 3 and j = 4. This is

motivated by the fact that in the remaining six TS models, i.e. j ∈ {1, 2, 5, 6, 7, 8}, terms

of the type sinx1/x2 or sinx2/x1 appear, which are not defined in some subsets of the

region P .

For the models obtained with j = 3 and j = 4, the subsystems in (3.54) are defined

by the following state matrices (see Figs. 3.1-3.3 for a graphical representation of the

nonlinear system equations and their subsystem counterparts):

A
(3)
1 =


4 1 0

kπ 0 0

1 1 −1

 A
(3)
2 =


4 −1 0

kπ 0 0

1 1 −1

 A
(3)
3 =


4 1 0

−kπ 0 0

1 1 −1



A
(3)
4 =


4 −1 0

−kπ 0 0

1 1 −1

 A
(3)
5 =


1 1 0

kπ 0 0

1 1 −1

 A
(3)
6 =


1 −1 0

kπ 0 0

1 1 −1



A
(3)
7 =


1 1 0

−kπ 0 0

1 1 −1

 A
(3)
8 =


1 −1 0

−kπ 0 0

1 1 −1

 A
(4)
1 =


4 1 0

qπ π 0

1 1 −1



A
(4)
2 =


4 1 0

qπ −π 0

1 1 −1

 A
(4)
3 =


4 1 0

−qπ π 0

1 1 −1

 A
(4)
4 =


4 1 0

−qπ −π 0

1 1 −1



A
(4)
5 =


4 −1 0

qπ π 0

1 1 −1

 A
(4)
6 =


4 −1 0

qπ −π 0

1 1 −1

 A
(4)
7 =


4 −1 0

−qπ π 0

1 1 −1


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A
(4)
8 =


4 −1 0

−qπ −π 0

1 1 −1

 A
(4)
9 =


1 1 0

qπ π 0

1 1 −1

 A
(4)
10 =


1 1 0

qπ −π 0

1 1 −1



A
(4)
11 =


1 1 0

−qπ π 0

1 1 −1

 A
(4)
12 =


1 1 0

−qπ −π 0

1 1 −1

 A
(4)
13 =


1 −1 0

qπ π 0

1 1 −1



A
(4)
14 =


1 −1 0

qπ −π 0

1 1 −1

 A
(4)
15 =


1 −1 0

−qπ π 0

1 1 −1

 A
(4)
16 =


1 −1 0

−qπ −π 0

1 1 −1


where kπ and qπ are constants defined as:

kπ = π
√

1 + π2 + π qπ = π
√

1 + π2
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1/d

t(
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2)

FIGURE 3.1: Representation of the nonlinear equation ẋ1 = x1 + 3 sinx1 +x2− 2 sinx2

in P and its approximation using the subsystems described by A(3)
i or A(4)

i .

The membership functions M (3)
i11 , M (3)

i12 , M (3)
i21 , M (4)

i11 , M (4)
i12 , M (4)

i21 , M (4)
i22 are defined using

(3.24):

M
(3)
i11

(
ϑ

(3)
11 (x1)

)
=

{
sinx1/x1 i = 1, 2, 3, 4

1− sinx1/x1 i = 5, 6, 7, 8
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FIGURE 3.2: Representation of the nonlinear equation ẋ2 = x2
1

√
1 + x2

2 + x1x2 in P
and its approximation using the subsystems described by A(3)

i .
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FIGURE 3.3: Representation of the nonlinear equation ẋ2 = x2
1

√
1 + x2

2 + x1x2 in P
and its approximation using the subsystems described by A(4)

i .
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M
(3)
i12

(
ϑ

(3)
12 (x2)

)
=

{
1− sinx2/x2 i = 1, 3, 5, 7

sinx2/x2 i = 2, 4, 6, 8

M
(3)
i21

(
ϑ

(3)
21 (x1, x2)

)
=


x1

√
1+x2

2+x2+kπ
2kπ

i = 1, 2, 5, 6

kπ−x1

√
1+x2

2−x2

2kπ
i = 3, 4, 7, 8

M
(4)
i11

(
ϑ

(4)
11 (x1)

)
=

{
sinx1/x1 i = 1, 2, 3, 4, 5, 6, 7, 8

1− sinx1/x1 i = 9, 10, 11, 12, 13, 14, 15, 16

M
(4)
i12

(
ϑ

(4)
12 (x2)

)
=

{
1− sinx2/x2 i = 1, 2, 3, 4, 9, 10, 11, 12

sinx2/x2 i = 5, 6, 7, 8, 13, 14, 15, 16

M
(4)
i21

(
ϑ

(4)
21 (x1, x2)

)
=


x1

√
1+x2

2+qπ
2qπ

i = 1, 2, 5, 6, 9, 10, 13, 14

qπ−x1

√
1+x2

2

2qπ
i = 3, 4, 7, 8, 11, 12, 15, 16

M
(4)
i22

(
ϑ

(4)
22 (x1)

)
=

{
x1+π

2π i = 1, 3, 5, 7, 9, 11, 13, 15
π−x1

2π i = 2, 4, 6, 8, 10, 12, 14, 16

Finally, the coefficients that describe the level of activation of each local model are ob-

tained using (2.32):

ρi (ϑ(τ)) =
wi (ϑ(τ))
N∑
i=1

wi (ϑ(τ))

(3.55)

as:

ρ
(3)
i (x1, x2) =

M
(3)
i11M

(3)
i12M

(3)
i21

8∑
i=1

M
(3)
i11M

(3)
i12M

(3)
i21

ρ
(4)
i (x1, x2) =

M
(4)
i11M

(4)
i12M

(4)
i21M

(4)
i22

16∑
i=1

M
(4)
i11M

(4)
i12M

(4)
i21M

(4)
i22

Remark: Notice that the obtained TS models can be interpreted as if they were poly-

topic quasi-LPV systems as follows:
ẋ1

ẋ2

ẋ3

 = A3 (x1, x2)


x1

x2

x3

+


1 0

0 1

0 0


(
u1

u2

)


ẋ1

ẋ2

ẋ3

 = A4 (x1, x2)


x1

x2

x3

+


1 0

0 1

0 0


(
u1

u2

)
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where:

A3 (x1, x2) =


ϑ

(3)
11 (x1) ϑ

(3)
12 (x2) 0

ϑ
(3)
21 (x1, x2) 0 0

1 1 −1

 =
8∑
i=1

ρ
(3)
i (x1, x2)A

(3)
i

A4 (x1, x2) =


ϑ

(4)
11 (x1) ϑ

(4)
12 (x2) 0

ϑ
(4)
21 (x1, x2) ϑ

(4)
22 (x1) 0

1 1 −1

 =

16∑
i=1

ρ
(4)
i (x1, x2)A

(4)
i

where ρ(3)
i (x1, x2) and ρ

(4)
i (x1, x2) can be interpreted as coefficients of a polytopic de-

composition.

3.6.2 Generation of polytopic LPV models via sector nonlinearity

Hereafter, a polytopic representation for (3.53) is obtained applying the method de-

scribed in Section 3.5.

The space {X1,X2} is partitioned into 4 quadrants, that give rise to the following 2

regions as described by (3.29):

R1 : [−π, 0]× [−π, 0] ∪ [0, π]× [0, π]

R2 : [−π, 0]× [0, π] ∪ [0, π]× [−π, 0]

Then, the partial derivatives of (3.53) are calculated:

∂g1

∂x1
= 1 + 3 cosx1

∂g1

∂x2
= 1− 2 cosx2

∂g2

∂x1
= 2x1

√
1 + x2

2 + x2
∂g2

∂x2
=

x2
1x2√
1+x2

2

+ x1

and their minimum and maximum values in R1 and R2 are found:

a
(1)
11 = max

R1

∂g1

∂x1
= 4 a

(1)
11 = min

R1

∂g1

∂x1
= −2

a
(2)
11 = max

R2

∂g1

∂x1
= 4 a

(2)
11 = min

R2

∂g1

∂x1
= −2

a
(1)
12 = max

R1

∂g1

∂x2
= 3 a

(1)
12 = min

R1

∂g1

∂x2
= −1

a
(2)
12 = max

R2

∂g1

∂x2
= 3 a

(2)
12 = min

R2

∂g1

∂x2
= −1

a
(1)
21 = max

R1

∂g2

∂x1
= rπ + π a

(1)
21 = min

R1

∂g2

∂x1
= − (rπ + π)
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a
(2)
21 = max

R2

∂g2

∂x1
= rπ − π a

(2)
21 = min

R2

∂g2

∂x1
= −rπ + π

a
(1)
22 = max

R1

∂g2

∂x2
= wπ + π a

(1)
22 = min

R1

∂g2

∂x2
= − (wπ + π)

a
(2)
22 = max

R2

∂g2

∂x2
= wπ − π a

(2)
22 = min

R2

∂g2

∂x2
= −wπ + π

where:

rπ = 2π
√

1 + π2 wπ = π3
√

1+π2

Afterwards, using (3.34)-(3.41), the state matrices of the vertex systems are calculated,
resulting in the following eight matrices (see Figs. 3.4 and 3.5 for a graphical represen-
tation):

A
(1)
1 =


−2 −1 0

− (rπ + π) − (wπ + π) 0

1 1 −1

 A
(1)
2 =


−2 −1 0

rπ + π wπ + π 0

1 1 −1



A
(1)
3 =


4 3 0

− (rπ + π) − (wπ + π) 0

1 1 −1

 A
(1)
4 =


4 3 0

rπ + π wπ + π 0

1 1 −1



A
(2)
1 =


−2 −1 0

−rπ + π wπ − π 0

1 1 −1

 A
(2)
2 =


−2 −1 0

rπ − π −wπ + π 0

1 1 −1



A
(2)
3 =


4 3 0

−rπ + π wπ − π 0

1 1 −1

 A
(2)
4 =


4 3 0

rπ − π −wπ + π 0

1 1 −1


such that (3.53) results expressed in the following polytopic LPV form:

ẋ1

ẋ2

ẋ3

 =

4∑
j=1

α
(1)
j (x1, x2)A

(1)
j


x1

x2

x3

+

4∑
j=1

α
(2)
j (x1, x2)A

(2)
j


x1

x2

x3

+


1 0

0 1

0 0


(
u1

u2

)

(3.56)

where the coefficients of the polytopic decomposition are obtained using (3.43)-(3.45),

as follows:

α
(1)
1 (x1, x2) =

_
α

(1)
1 (x1, x2)

_
α

(1)
2 (x1, x2)R∈1 (x1, x2)

α
(1)
2 (x1, x2) =

_
α

(1)
1 (x1, x2)

^
α

(1)
2 (x1, x2)R∈1 (x1, x2)

α
(1)
3 (x1, x2) =

^
α

(1)
1 (x1, x2)

_
α

(1)
2 (x1, x2)R∈1 (x1, x2)

α
(1)
4 (x1, x2) =

^
α

(1)
1 (x1, x2)

^
α

(1)
2 (x1, x2)R∈1 (x1, x2)

α
(2)
1 (x1, x2) =

_
α

(2)
1 (x1, x2)

_
α

(2)
2 (x1, x2)R∈2 (x1, x2)
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α
(2)
2 (x1, x2) =

_
α

(2)
1 (x1, x2)

^
α

(2)
2 (x1, x2)R∈2 (x1, x2)

α
(2)
3 (x1, x2) =

^
α

(2)
1 (x1, x2)

_
α

(2)
2 (x1, x2)R∈2 (x1, x2)

α
(2)
4 (x1, x2) =

^
α

(2)
1 (x1, x2)

^
α

(2)
2 (x1, x2)R∈2 (x1, x2)

with:
_
α

(1)
1 (x1, x2) =

3x1 + 2x2 − 3 sinx1 + 2 sinx2

6x1 + 4x2

^
α

(1)
1 (x1, x2) =

3x1 + 2x2 + 3 sinx1 − 2 sinx2

6x1 + 4x2

_
α

(2)
1 (x1, x2) =

3x1 − 2x2 − 3 sinx1 + 2 sinx2

6x1 − 4x2

^
α

(2)
1 (x1, x2) =

3x1 − 2x2 + 3 sinx1 − 2 sinx2

6x1 − 4x2

_
α

(1)
2 (x1, x2) =

(rπ + π)x1 + (wπ + π)x2 − x2
1

√
1 + x2

2 − x1x2

2 [(rπ + π)x1 + (wπ + π)x2]

^
α

(1)
2 (x1, x2) =

(rπ + π)x1 + (wπ + π)x2 + x2
1

√
1 + x2

2 + x1x2

2 [(rπ + π)x1 + (wπ + π)x2]

_
α

(2)
2 (x1, x2) =

(rπ − π)x1 + (π − wπ)x2 − x2
1

√
1 + x2

2 − x1x2

2 [(rπ − π)x1 + (π − wπ)x2]

^
α

(2)
2 (x1, x2) =

(rπ − π)x1 + (π − wπ)x2 + x2
1

√
1 + x2

2 + x1x2

2 [(rπ − π)x1 + (π − wπ)x2]

R∈1 (x1, x2) = max (0, sgn(x1)sgn(x2))

R∈2 (x1, x2) = max (0,−sgn(x1)sgn(x2))

where sgn denotes the sign function.

Remark: Notice that the quasi-LPV representation of (3.53) obtained using this method

has the following structure:
ẋ1

ẋ2

ẋ3

 =


a11(x1, x2) a12(x1, x2) 0

a21(x1, x2) a22(x1, x2) 0

1 1 −1




x1

x2

x3

+


1 0

0 1

0 0


(
u1

u2

)
(3.57)

Remark: The obtained quasi-LPV system can be interpreted as a TS model, if a11(x1, x2),

a12(x1, x2), a21(x1, x2), a22(x1, x2) in (3.57) and sgn(x1)sgn(x2) are considered to be the

premise variables, and _
α

(1)
1 , ^α

(1)
1 , _α

(2)
1 , ^α

(2)
1 , _α

(1)
2 , ^α

(1)
2 , _α

(2)
2 , ^α

(2)
2 ,R∈1 ,R∈2 the membership

functions.

Remark: If the conditions (3.49)-(3.52) are used in order to avoid the discontinuity

phenomenon, as described in Section 3.5, the matrices A(2)
1 , A(2)

2 , A(2)
3 and A

(2)
4 change
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FIGURE 3.4: Representation of the nonlinear equation ẋ1 = x1 + 3 sinx1 +x2− 2 sinx2

in P and its approximation using the vertex systems of (3.56).
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FIGURE 3.5: Representation of the nonlinear equation ẋ2 = x2
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2 + x1x2 in P
and its approximation using the vertex systems of (3.56).
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as follows:

A
(2)
1 =


−2 −1 0

−(rπ + π) wπ + π 0

1 1 −1

 A
(2)
2 =


−2 −1 0

rπ + π −(wπ + π) 0

1 1 −1



A
(2)
3 =


4 3 0

−(rπ + π) wπ + π 0

1 1 −1

 A
(2)
4 =


4 3 0

rπ + π −(wπ + π) 0

1 1 −1



3.6.3 Comparison

Hereafter, the comparison criteria between the models described in Section 3.3 are ap-

plied to the proposed example.

The subsets S1 ⊂ X1 × X2 × Ẋ1 and S2 ⊂ X1 × X2 × Ẋ2 are chosen as follows:

S1 = [−π, π]× [−π, π]× [−7π, 7π] (3.58)

S2 = [−π, π]× [−π, π]× [−hπ, hπ] (3.59)

with:

hπ = π2

(
2 + 2

√
1 + π2 +

π2

√
1 + π2

)
so that:

V
(S)

1 = 56π3 V
(S)

2 = 8π2hπ

The volumes Ṽi have been calculated using (3.4) on the basis of N = 16588 points4,

generated randomly using a uniform distribution:

Model generated via nonlinear embedding A(3)
i :

Ṽ1

V
(S)

1

=
5856 + 3.3179

16588 + 6.6358
= 0.35

Ṽ2

V
(S)

2

=
6178 + 3.3179

16588 + 6.6358
= 0.37 M̃ =

Ṽ1Ṽ2

V
(S)

1 V
(S)

2

= 0.13

Model generated via nonlinear embedding A(4)
i :

Ṽ1

V
(S)

1

=
5856 + 3.3179

16588 + 6.6358
= 0.35

Ṽ2

V
(S)

2

=
4866 + 3.3179

16588 + 6.6358
= 0.29 M̃ =

Ṽ1Ṽ2

V
(S)

1 V
(S)

2

= 0.10

4This particular value of N is chosen using statistical reasoning, in order to guarantee that the semi-
length of the 99% Agresti-Coull confidence interval will be less than 0.01 [5].
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Model generated via sector nonlinearity concept:

Ṽ1

V
(S)

1

=
7546 + 3.3179

16588 + 6.6358
= 0.45

Ṽ2

V
(S)

2

=
9844 + 3.3179

16588 + 6.6358
= 0.59 M̃ =

Ṽ1Ṽ2

V
(S)

1 V
(S)

2

= 0.27

Model generated via sector nonlinearity concept (conservative):

Ṽ1

V
(S)

1

=
7546 + 3.3179

16588 + 6.6358
= 0.45

Ṽ2

V
(S)

2

=
11197 + 3.3179

16588 + 6.6358
= 0.67 M̃ =

Ṽ1Ṽ2

V
(S)

1 V
(S)

2

= 0.30

Hence, according to the measure of overboundedness (3.4), the best model is the one

generated via nonlinear embedding and described by the matrices A(4)
i . In general,

models obtained via nonlinear embedding tend to be less conservative than the ones

obtained via sector nonlinearity concept. This is probably due to the fact that the non-

linear embedding method tries to find the maximum and minimum value of g(x)/xi,

whereas the other method finds the maximum and minimum value of ∂g(x)/∂xi. Then,

according to the mean-value theorem, g(x)/xi is bounded by ∂g(x)/∂xi, so that the ex-

treme values of the former are smaller than those of the latter.

To conclude the comparison between the models, let us consider the measure based

on the region of attraction as introduced in Section 3.3.2, with controllers designed in

order to achieve quadratic D-stability in the following LMI region:

D = {z ∈ C : Re(z) < −1} (3.60)

Figs. 3.6-3.9 show the phase-space (red arrows), the trajectories (blue lines) obtained

starting from a grid of possible initial conditions (blue circles) and the region of attrac-

tion estimated using Theorem 3.1 (black dots) for the models generated via nonlinear

embedding and the models generated via sector nonlinearity concept. It can be seen

that in all the cases, the trajectories converge towards the ellipsoid and eventually go

to the origin.

The measure Mβ defined in (3.11) has been calculated for each model, giving the fol-

lowing results:

Model generated via non-linear embedding A(3)
i :

Mβ =
Vβ
VΘ

=
122.7323

248.0502
= 0.4948
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FIGURE 3.6: Trajectories and estimated region of attraction for the closed-loop system
obtained using the model generated via nonlinear embedding with matrices A(3)
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FIGURE 3.7: Trajectories and estimated region of attraction for the closed-loop system
obtained using the model generated via nonlinear embedding with matrices A(4)
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FIGURE 3.8: Trajectories and estimated region of attraction for the closed-loop system
obtained using the model generated via sector nonlinearity concept.
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FIGURE 3.9: Trajectories and estimated region of attraction for the closed-loop system
obtained using the model generated via sector nonlinearity concept (conservative).
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Model generated via non-linear embedding A(4)
i :

Mβ =
Vβ
VΘ

=
122.8700

248.0502
= 0.4953

Model generated via sector non-linearity concept:

Mβ =
Vβ
VΘ

=
122.7605

248.0502
= 0.4949

Model generated via sector non-linearity concept (conservative):

Mβ =
Vβ
VΘ

=
122.6771

248.0502
= 0.4946

It can be seen that, also in this case, the model generated via nonlinear embedding with

matrices A(4)
i performs slightly better than the others, thus confirming to be the best

obtained model.

3.7 Conclusions

In this chapter, the presence of strong analogies between polytopic LPV and TS systems

and the automated generation of polytopic LPV and TS models have been addressed.

In particular, it has been shown that the method for the automated generation of LPV

models by nonlinear embedding can be easily extended to generate automatically TS

models from a given nonlinear system. Similarly, a method already used in the TS

framework for finding a model that describes in a fuzzy way a given nonlinear function

has been extended to the case of polytopic LPV description of nonlinear systems.

Results obtained with a mathematical example have been presented and it has been

shown, using an overboundedness measure, that the automated generation via non-

linear embedding provides less conservative models than the automated generation

via sector nonlinearity concept. Also, a measure based on the region of attraction esti-

mates has been introduced for comparing the closed-loop performances of the different

models.

The overboundedness measure has shown to be an objective criterion that can be used

to select which model can be considered the best one. However, in the general case,

which model is the best one also depends on the context in which the model is used,

i.e. whether it is used for stabilization or observation, and which structure of con-

troller/observer is used for achieving the desired goal. Some information in this sense
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has been provided by the measure based on the region of attraction estimates, that al-

lows comparing the closed-loop performances obtained with the different models. The

proposed measure could be easily extended to the observation case. However, it has

the limit of providing an indication of which model is the best only a posteriori. It seems

clear that an important path for future research is the development of a procedure that

automatically selects the best model during the design step, taking into account what

the model is used for and the used controller/observer structure.



Chapter 4

Robust state-feedback control of

uncertain LPV systems

The content of this chapter is based on the following work:

• [253] D. Rotondo, F. Nejjari, V. Puig. Robust state-feedback control of uncertain

LPV systems: an LMI-based approach. Journal of the Franklin Institute, 351(5):2781-

2803, 2014.

4.1 Introduction

LMI-based results have been used to cope with both uncertain LTI systems and cer-

tain LPV systems throughout the last two decades. However, the design of controllers

for LPV systems has been usually performed under the assumption that there was no

model uncertainty. Only a few papers have stated the importance of considering ro-

bustness against uncertainty [3, 15, 16, 20, 33, 74, 229, 309, 315, 352]. In recent years,

works dealing with inexactly measured parameters have been an important field of re-

search. The realistic case, where only some of the parameters are measured and there-

fore available for feedback and the remaining parameters are treated as uncertainty,

was analyzed by [166], where an affine dependence on the measurable parameters and

an LFT dependence on the uncertain parameters were assumed. A solution in the con-

vex programming framework with the use of LMI solvers in the case of polytopic pa-

rameter dependence was proposed by [63]. In this case, the measurement errors were

modeled by imposing an a priori bound on the distance between the real and the mea-

sured parameters. The uncertainty was modeled as a hypersphere of a certain radius,

and the analysis/design conditions were given in function of this radius. The same

72
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problem was analyzed in the works of Sato and his coworkers [278, 280–282], where an

additive uncertainty on the scheduling parameter was considered. Hence, both the real

scheduling parameter and the uncertainty were assumed to lie in two hyper-rectangles,

and the analysis/design conditions were given at the vertices of these hyper-rectangles.

Some recent results in this area were presented in [112], where an a posteriori analysis

is used to verify that the closed-loop system is robust against deviations within known

bounds in the scheduling signals, and in [188], where the design technique has been

performed taking into account a stochastic description of the parameter uncertainty.

Finally, it is worth recalling the work [336], where a general framework for the system-

atic synthesis of robust gain-scheduling controllers by convex optimization techniques

for uncertain dynamical systems in LFT form has been presented.

In this chapter, the problem of designing an LPV state-feedback controller for uncer-

tain LPV systems that can guarantee some desired performances is considered. In the

proposed approach, the vector of varying parameters is used to schedule between un-

certain LTI systems. The resulting idea consists in using a double-layer polytopic de-

scription so as to take into account both the variability due to the parameter vector and

the uncertainty. The first polytopic layer manages the varying parameters and is used

to obtain the vertex uncertain systems, where the vertex controllers are designed. The

second polytopic layer is built at each vertex system so as to take into account the model

uncertainties and add robustness into the design step. Under some assumptions, the

problem reduces to finding a solution to a finite number of LMIs, a problem for which

efficient solvers are available nowadays [182, 305]. It is worth highlighting that the

proposed approach allows to cope with the problem of inexactly measured scheduling

parameters as long as the vertex uncertain systems are obtained taking into account the

uncertainty in the measurement of the varying parameters.

The solution proposed in this chapter differs from [15, 166] in not assuming an LFT

dependence, but a polytopic description of the system matrices dependence on the

scheduling parameters and the uncertainties. In contrast with [16, 33, 112, 352], the

robustness in the proposed approach is guaranteed a priori during the design phase.

This is different from [20] because it does not use weighting transfer functions; from

[74] because the matrices obtained for different values of the uncertainty are not set

to zero, but assume constant values; from [63] where the uncertainty is expressed as a

hypersphere; from [278, 280–282] in that the proposed method copes with the general

case of uncertain matrices while the works by Sato and coworkers consider only the

case of uncertain scheduling parameters. It is also different from [188] in not assuming

a stochastic description of the parameter uncertainty.
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4.2 Problem formulation

Consider the following uncertain LPV system:

σ.x(τ) = Ã (θ(τ))x(τ) + B̃u(τ) + B̃w (θ(τ))w(τ) (4.1)

z∞(τ) = C̃z∞ (θ(τ))x(τ) + D̃z∞uu(τ) + D̃z∞w (θ(τ))w(τ) (4.2)

z2(τ) = C̃z2 (θ(τ))x(τ) + D̃z2uu(τ) (4.3)

where u ∈ Rnu is the control input, w ∈ Rnw is a vector of exogenous inputs (such as

reference signals, disturbance signals, sensor noise), z∞ ∈ Rnz∞ is a vector of output

signals related to the H∞ performance of the control system (see Definition 2.5), z2 ∈
Rnz2 is a vector of output signals related to the H2 performance of the control system

(see Definition 2.7), and θ ∈ Θ ⊂ Rnθ is the vector of varying parameters.

Remark: In cases of LPV systems with varying input matrices B̃ (θ(τ)), D̃z∞u (θ(τ)),

D̃z2u (θ(τ)), it is possible to obtain a system in the form (4.1)-(4.3) by prefiltering the

inputs u(τ) as proposed in [16], and recalled in (2.156)-(2.163).

The system state-space matrices take values inside a polytope, as follows:
Ã (θ(τ)) B̃ B̃w (θ(τ))

C̃z∞ (θ(τ)) D̃z∞u D̃z∞w (θ(τ))

C̃z2 (θ(τ)) D̃z2u

 =
N∑
i=1

µi (θ(τ))


Ãi B̃ B̃w,i

C̃z∞,i D̃z∞u D̃z∞w,i

C̃z2,i D̃z2u


(4.4)

with the coefficients µi satisfying (2.5):

N∑
i=1

µi (θ(τ)) = 1, µi (θ(τ)) ≥ 0, ∀i = 1, . . . , N, ∀θ ∈ Θ (4.5)

The matrices Ãi, B̃w,i, C̃z∞,i, C̃z2,i, D̃z∞w,i denote the values of Ã (θ(τ)), B̃w (θ(τ)),

C̃z∞ (θ(τ)), C̃z2 (θ(τ)), D̃z∞w (θ(τ)) at the i-th vertex of the polytope. Each of these

matrices, together with B̃, D̃z∞,u and D̃z2u, is uncertain, with an uncertainty that can

be described as well in a polytopic way by Mi LTI systems, as follows:
Ãi B̃ B̃w,i

C̃z∞,i D̃z∞u D̃z∞w,i

C̃z2,i D̃z2u

 =

Mi∑
j=1

ηij


Aij Bj Bw,ij

Cz∞,ij Dz∞u,j Dz∞w,ij

Cz2,ij Dz2u,j

 (4.6)
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The goal is to compute an LPV static state-feedback control law of the form (2.134):

u(τ) = K (θ(τ))x(τ) (4.7)

that meets one (or more) of the following specifications on the closed-loop behavior in

the robust LPV sense, i.e. for each possible value that the parameter θ and the uncertain

matrices Ã, . . . , D̃z2u in (4.1)-(4.3) can take:

• stability

• D-stability

• H∞ performance

• H2 performance

• finite time boundedness

• finite time stability

4.3 Design using a common quadratic Lyapunov function

The design conditions presented in Section 2.5 can be extended so as to cope with un-

certain LPV systems and solve the problem formulated in Section 4.2 with the use of a

common quadratic Lyapunov function, as in (2.58):

V (x(τ)) = x(τ)TPx(τ) (4.8)

Indeed, an LPV state-feedback gain K (θ(τ)) that meets the desired specifications for

each possible value taken by the scheduling parameters θ and in spite of the uncer-

tainty in the matrices Ã (θ(τ)) , B̃w (θ(τ)) , . . . , D̃z2u (θ(τ)), should satisfy the conditions

presented in the Theorems 2.12-2.22 with the following changes:

A(θ)→ Ã(θ)

B(θ)→ B̃

Bw(θ)→ B̃w(θ)

Cz∞(θ)→ C̃z∞(θ)

Dz∞u(θ)→ D̃z∞u
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Dz∞w(θ)→ D̃z∞w(θ)

Cz2(θ)→ C̃z2(θ)

Dz2u(θ)→ D̃z2u

Then, by choosing K (θ(τ)) in (4.7) to be polytopic, as in (2.164):

u(τ) =
N∑
i=1

µi (θ(τ))Kix(τ) (4.9)

it is possible to obtain the following theorems, that are based on a finite number of

LMIs.

Theorem 4.1. (Design of a robust quadratically stabilizing polytopic state-feedback controller

for uncertain CT LPV systems) Let Q � O and Γi ∈ Rnu×nx , i = 1, . . . , N , be such that:

He {AijQ+BjΓi} ≺ O ∀i = 1, . . . , N ∀j = 1, . . . ,Mi (4.10)

Then, the closed-loop system made up by the uncertain CT LPV system (4.1), with τ =

t, B̃w (θ(t)) = O, and matrices Ã (θ(t)) and B̃ satisfying (4.4) and (4.6), and the polytopic

state-feedback control law (4.9) with gains calculated as Ki = ΓiQ
−1, i = 1, . . . , N , is

quadratically stable in the robust LPV sense.

Proof: The uncertain CT LPV system (4.1), with τ = t and B̃w (θ(t)) = O, is quadratically

stable in the robust LPV sense if the following condition, derived from (2.135) with the

changes A(θ)→ Ã(θ) and B(θ)→ B̃, holds:

He
{
Ã(θ)Q+ B̃K(θ)Q

}
≺ O ∀θ ∈ Θ (4.11)

Taking into account (4.4), (4.6) and (4.9), (4.11) can be rewritten as:

He


N∑
i=1

µi(θ)

Mi∑
j=1

ηijAijQ+

Mi∑
j=1

ηijBj

N∑
i=1

µi(θ)Γi

 ≺ O (4.12)

with Γi = KiQ.

Then, from a basic property of matrices [131], which states that any linear combination

of negative definite matrices with non-negative coefficients, whose sum is positive, is

negative definite, (4.10) is obtained, completing the proof. �
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Theorem 4.2. (Design of a robust quadratically stabilizing polytopic state-feedback controller

for uncertain DT LPV systems) Let Q � O and Γi ∈ Rnu×nx , i = 1, . . . , N , be such that:(
−Q AijQ+BjΓi

∗ −Q

)
≺ O ∀i = 1, . . . , N ∀j = 1, . . . ,Mi (4.13)

Then, the closed-loop system made up by the uncertain DT LPV system (4.1), with

τ = k, B̃w (θ(k)) = O, and matrices Ã (θ(k)) and B̃ satisfying (4.4) and (4.6), and the

polytopic state-feedback control law (4.9) with gains calculated as Ki = ΓiQ
−1, i =

1, . . . , N , is quadratically stable in the robust LPV sense.

Proof: Similar to that of Theorem 4.1, thus omitted. �

Theorem 4.3. (Design of a robust quadraticallyD-stabilizing polytopic state-feedback controller

for uncertain LPV systems) Given an LMI region D defined as in (2.47):

D = {σ ∈ C : fD(σ) ≺ 0} (4.14)

with the characteristic function fD(σ) given by (2.48):

fD(σ) = α+ βσ + βTσ∗ = [αkl + βklσ + βlkσ
∗]k,l∈{1,...,m} (4.15)

where α = [αkl]k,l∈{1,...,m} ∈ Sm×m and β = [βk,l]k,l∈{1,...,m} ∈ Rm×m, let Q � O and

Γi ∈ Rnu×nx , i = 1, . . . , N , be such that:

α⊗Q+He {β ⊗ [AijQ+BjΓi]} ≺ O ∀i = 1, . . . , N ∀j = 1, . . . ,Mi (4.16)

Then, the closed-loop system made up by the uncertain LPV system (4.1), with B̃w (θ(τ))

= O, and matrices Ã (θ(τ)) and B̃ satisfying (4.4) and (4.6), and the polytopic state-

feedback control law (4.9) with gains calculated asKi = ΓiQ
−1, i = 1, . . . , N , is quadrat-

ically D-stable in the robust LPV sense.

Proof: Similar to that of Theorem 4.1, thus omitted. �

Theorem 4.4. (Design of a robust quadraticH∞ polytopic state-feedback controller for uncertain

CT LPV systems) Let Q � O and Γi ∈ Rnu×nx , i = 1, . . . , N , be such that:
He {AijQ+BjΓi} ∗ ∗

BT
w,ij −I ∗

Cz∞,ijQ+Dz∞uΓi Dz∞w,ij −γ2
∞I

 ≺ O ∀i = 1, . . . , N ∀j = 1, . . . ,Mi

(4.17)

Then, the closed-loop system made up by the uncertain CT LPV system (4.1)-(4.2) with

τ = t and matrices Ã (θ(t)), B̃, B̃w (θ(t)), C̃z∞ (θ(t)), D̃z∞u and D̃z∞w (θ(t)) satisfying

(4.4) and (4.6), and the polytopic state-feedback control law (4.9) with gains calculated
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as Ki = ΓiQ
−1, i = 1, . . . , N , has quadratic H∞ performance γ∞ in the robust LPV

sense.

Proof: Similar to that of Theorem 4.1, thus omitted. �

Theorem 4.5. (Design of a robust quadraticH∞ polytopic state-feedback controller for uncertain

DT LPV systems) Let Q � O and Γi ∈ Rnu×nx , i = 1, . . . , N , be such that:
Q AijQ+BjΓi Bw,ij O

∗ Q O QCT
z∞,ij

∗ ∗ I DT
z∞w,ij

∗ ∗ ∗ γ2
∞

 � O ∀i = 1, . . . , N ∀j = 1, . . . ,Mi

(4.18)

Then, the closed-loop system made up by the uncertain DT LPV system (4.1)-(4.2) with

τ = k and matrices Ã (θ(k)), B̃, B̃w (θ(k)), C̃z∞ (θ(k)), D̃z∞u and D̃z∞w (θ(k)) satisfying

(4.4) and (4.6), and the polytopic state-feedback control law (4.9) with gains calculated

as Ki = ΓiQ
−1, i = 1, . . . , N , has quadratic H∞ performance γ∞ in the robust LPV

sense.

Proof: Similar to that of Theorem 4.1, thus omitted. �

Theorem 4.6. (Design of a robust quadraticH2 polytopic state-feedback controller for uncertain

CT LPV systems) LetQ � O, Γi ∈ Rnu×nx and Yij ∈ Snz2×nz2 , i = 1, . . . , N , j = 1, . . . ,Mi,

be such that:

Tr(Yij) < γ2
2 ∀i = 1, . . . , N ∀j = 1, . . .Mi (4.19)(

He {AijQ+BjΓi} Bw,ij

∗ −I

)
≺ O ∀i = 1, . . . , N ∀j = 1, . . . ,Mi (4.20)

(
Yij Cz2,ijQ+Dz2uΓi

∗ Q

)
� O ∀i = 1, . . . , N ∀j = 1, . . . ,Mi (4.21)

Then, the closed-loop system made up by the uncertain CT LPV system (4.1) and (4.3)

with τ = t and matrices Ã (θ(t)), B̃, B̃w (θ(t)), C̃z2 (θ(t)) and D̃z2u satisfying (4.4) and

(4.6), and the polytopic state-feedback control law (4.9) with gains calculated as Ki =

ΓiQ
−1, i = 1, . . . , N , has quadraticH2 performance γ2 in the robust LPV sense.

Proof: Similar to that of Theorem 4.1, thus omitted. �

Theorem 4.7. (Design of a robust quadratic H2 polytopic state-feedback controller for uncer-

tain DT LPV systems) Let Q � O, Γi ∈ Rnu×nx and Yij ∈ Snz2×nz2 , i = 1, . . . , N ,

j = 1, . . . ,Mi, be such that:

Tr(Yij) < γ2
2 ∀i = 1, . . . , N ∀j = 1, . . . ,Mi (4.22)
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
Q AijQ+BjΓi Bw,ij

∗ Q O

∗ ∗ I

 � O ∀i = 1, . . . , N ∀j = 1, . . . ,Mi (4.23)

(
Yij Cz2,ijQ+Dz2uΓi

∗ Q

)
� O ∀i = 1, . . . , N ∀j = 1, . . . ,Mi (4.24)

Then, the closed-loop system made up by the uncertain DT LPV system (4.1) and (4.3)

with τ = k and matrices Ã (θ(k)), B̃, B̃w (θ(k)), C̃z2 (θ(k)) and D̃z2u satisfying (4.4)

and (4.6), and the polytopic state-feedback control law (4.9) with gains calculated as

Ki = ΓiQ
−1, i = 1, . . . , N , has quadraticH2 performance γ2 in the robust LPV sense.

Proof: Similar to that of Theorem 4.1, thus omitted. �

Theorem 4.8. (Design of a robust quadratic FTB polytopic state-feedback controller for uncertain

CT LPV systems) Fix α > 0, and let λ1 > 0, λ2 > 0, λ3 > 0, Q1 � O, Q2 � O, and

Γi ∈ Rnu×nx , i = 1, . . . , N , be such that: He
{
AijQ̃1 +BjΓi

}
− αQ̃1 Bw,ijQ2

∗ −αQ2

 ≺ O ∀i = 1, . . . , N ∀j = 1, . . . ,Mi

(4.25)

and (2.88)-(2.90):

λ1I ≺ Q1 ≺ I (4.26)

λ2I ≺ Q2 ≺ λ3I (4.27)
c2e
−αT √

c1

√
d

√
c1 λ1 0
√
d 0 λ2

 � O (4.28)

hold, where Q̃1 = R−1/2Q1R
−1/2. Then, the closed-loop system made up by the uncer-

tain CT LPV system (4.1), with τ = t and matrices Ã (θ(t)), B̃ and B̃w (θ(t)) satisfying

(4.4) and (4.6), and the polytopic state-feedback control law (4.9) with gains calculated

as Ki = ΓiQ̃
−1, i = 1, . . . , N , is FTB with respect to (c1, c2, T,R, d) in the robust LPV

sense.

Proof: Similar to that of Theorem 4.1, thus omitted. �

Theorem 4.9. (Design of a robust quadratic FTB polytopic state-feedback controller for uncertain

DT LPV systems) Fix α ≥ 1, and let λ1 > 0, λ2 > 0, Q1 � O, Q2 � O and Γi ∈ Rnu×nx ,
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i = 1, . . . , N , be such that:
−αQ1 ∗ ∗ ∗

AijQ1 +BjΓi −Q1 ∗ ∗
O BT

w,ij −αQ2 ∗
O O Q2Wij −Q2

 ≺ O ∀i = 1, . . . , N ∀j = 1, . . . ,Mi

(4.29)

and (2.92)-(2.94):

λ1R
−1 ≺ Q1 ≺ R−1 (4.30)

O ≺ Q2 ≺ λ2I (4.31)(
c2
αT
− λ2d

√
c1

√
c1 λ1

)
� O (4.32)

hold. Then, the closed-loop system made up by the uncertain DT LPV system (4.1),

with τ = k, matrices Ã (θ(k)), B̃ and B̃w (θ(k)) satisfying (4.4) and (4.6), and input w(k)

given by:

w(k + 1) =
N∑
i=1

µi (θ(k))

Mi∑
j=1

ηijWijw(k) (4.33)

and the polytopic state-feedback control law (4.9) with gains calculated as Ki = ΓiQ
−1,

i = 1, . . . , N , is FTB with respect to (c1, c2, T,R, d) in the robust LPV sense.

Proof: Similar to that of Theorem 4.1, thus omitted. �

Theorem 4.10. (Design of a robust quadratically finite time stabilizing polytopic state-feedback

controller for uncertain CT LPV systems) Fix α > 0, and let λ1 > 0, Q1 � O and Γi ∈
Rnu×nx , i = 1, . . . , N , be such that (4.26) holds together with:

He
{
AijQ̃1 +BjΓi

}
− αQ̃1 ≺ O ∀i = 1, . . . , N ∀j = 1, . . . ,Mi (4.34)

and (2.96): (
c2e
−αT √

c1
√
c1 λ1

)
� O (4.35)

where Q̃1 = R−1/2Q1R
−1/2. Then, the closed-loop system made up by the uncertain

CT LPV system (4.1), with τ = t, B̃w (θ(t)) = O, and matrices Ã (θ(t)) and B̃ satisfying

(4.4) and (4.6), and the polytopic state-feedback control law (4.9) with gains calculated

asKi = ΓiQ̃
−1, i = 1, . . . , N , is FTS with respect to (c1, c2, T,R) in the robust LPV sense.

Proof: Similar to that of Theorem 4.1, thus omitted. �

Theorem 4.11. (Design of a robust quadratically finite time stabilizing polytopic state-feedback

controller for uncertain DT LPV systems) Fix α ≥ 1, and let λ1 > 0, Q1 � O and Γi ∈
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Rnu×nx , i = 1, . . . , N , be such that (4.30) holds together with:(
−αQ1 ∗

AijQ1 +BjΓi −Q1

)
≺ O ∀i = 1, . . . , N ∀j = 1, . . . ,Mi (4.36)

and (2.98): (
c2
αT

√
c1

√
c1 λ1

)
� O (4.37)

Then, the closed-loop system made up by the uncertain DT LPV system (4.1), with

τ = k, B̃w (θ(k)) = O, and matrices Ã (θ(k)) and B̃ satisfying (4.4) and (4.6), and the

polytopic state-feedback control law (4.9) with gains calculated as Ki = ΓiQ
−1, i =

1, . . . , N , is FTS with respect to (c1, c2, T,R) in the robust LPV sense.

Proof: Similar to that of Theorem 4.1, thus omitted. �

The idea that lies behind Theorems 4.1-4.11 is to use a double-layer polytopic descrip-

tion so as to take into account both the variability due to the parameter vector θ and

the variability due to the uncertainty, as shown in Fig. 4.1. The first polytopic layer

manages the parameter θ and is used to obtain the vertex uncertain systems, where the

vertex controllers are designed. The second polytopic layer is built at each vertex sys-

tem so as to take into account the model uncertainties and add robustness in the design

step.

4.4 Design using a parameter-dependent Lyapunov function

The solution proposed in the previous section, despite the advantage of simplicity, has

the drawback of the conservativeness due to matrix P being constant in (4.8). This

source of conservativeness can be eliminated by using a parameter-dependent Lya-

punov function as in (4.38):

V (x(τ)) = x(τ)TP (θ(τ))x(τ) (4.38)

At the end of the last century, the authors of [70, 72] showed that, in a DT setting, the di-

lation of the matrix inequality characterizations and the introduction of auxiliary vari-

ables allowed to achieve decoupling between the Lyapunov variables and the controller

variables. In this way, some technical issues that had hindered the use of parameter-

dependent Lyapunov functions up to that point were overcome. Similar results for CT

systems were obtained in [85, 86] via a particular application of the Schur complement

technique. Hereafter, these results are extended to the case of uncertain LPV systems,
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FIGURE 4.1: The robust LPV polytopic technique.

to solve the problem formulated in Section 4.2 with the use of a parameter-dependent

quadratic Lyapunov function, as in (4.38).

To the best of our knowledge, the cases of FTB and FTS were never treated using the

dilation approach. Appendix A shows how new dilated LMIs for the FTB and the

FTS analysis can be obtained in the case of DT systems, thus allowing the use of a

parameter-dependent quadratic Lyapunov function for solving the problem of robust

finite time state-feedback control of uncertain LPV systems. The obtention of dilated

LMIs for the FTB/FTS analysis of CT systems is still under investigation, and will be

addressed in future work.

Theorem 4.12. (Design of a robust stabilizing polytopic state-feedback controller for uncertain

CT LPV systems) Let Qi � O, Γi ∈ Rnu×nx , i = 1, . . . , N , j = 1, . . . ,Mi, and S ∈ Rnx×nx

be such that:(
O −Qij
−Qij O

)
+He

{(
AijS +BjΓi

S

)}
≺ O ∀i = 1, . . . , N ∀j = 1, . . . ,Mi

(4.39)

Then, the closed-loop system made up by the uncertain CT LPV system (4.1), with τ =

t, B̃w (θ(t)) = O, and matrices Ã (θ(t)) and B̃ satisfying (4.4) and (4.6), and the polytopic

state-feedback control law (4.9) with gains calculated as Ki = ΓiS
−1, i = 1, . . . , N , is

stable in the robust LPV sense.
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Proof: The uncertain CT LPV system (4.1), with τ = t and B̃w (θ(t)) = O, is stable in

the robust LPV sense if the following condition, derived from (2.135) with the changes

A(θ)→ Ã(θ), B(θ)→ B̃ and Q→ Q(θ), holds:

He
{
Ã(θ)Q(θ) + B̃K(θ)Q(θ)

}
≺ O ∀θ ∈ Θ (4.40)

Following [85], (4.40) is equivalent to:(
O −Q(θ)

−Q(θ) O

)
+He

{(
Ã(θ) + B̃K(θ)

I

)
S

}
≺ O ∀θ ∈ Θ (4.41)

that, through the change of variables Γ(θ) = K(θ)S, becomes:(
O −Q(θ)

−Q(θ) O

)
+He

{(
Ã(θ)S + B̃Γ(θ)

S

)}
≺ O ∀θ ∈ Θ (4.42)

By choosing:

Q(θ) =
N∑
i=1

µi(θ)

Mi∑
j=1

ηijQij (4.43)

and taking into account (4.4), (4.6) and (4.9), (4.40) can be rewritten as:

N∑
i=1

µi(θ)

Mi∑
j=1

ηij

{(
O −Qij
−Qij O

)
+He

{(
AijS +BjΓi

S

)}}
≺ O (4.44)

with Γi = KiS.

Then, from a basic property of matrices [131], which states that any linear combination

of negative definite matrices with non-negative coefficients, whose sum is positive, is

negative definite, (4.39) is obtained, completing the proof. �

Theorem 4.13. (Design of a robust stabilizing polytopic state-feedback controller for uncertain

DT LPV systems) Let Qij � O, Γi ∈ Rnu×nx , i = 1, . . . , N , j = 1, . . . ,Mi, and S ∈ Rnx×nx

be such that:(
Qij AijS +BjΓi

∗ S + ST −Qij

)
� O ∀i = 1, . . . , N ∀j = 1, . . . ,Mi (4.45)

Then, the closed-loop system made up by the uncertain DT LPV system (4.1), with

τ = k, B̃w (θ(k)) = O, and matrices Ã (θ(k)) and B̃ satisfying (4.4) and (4.6), and the

polytopic state-feedback control law (4.9) with gains calculated as Ki = ΓiS
−1, i =

1, . . . , N , is stable in the robust LPV sense.
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Proof: The uncertain DT LPV system (4.1), with τ = k and B̃w (θ(k)) = O, is stable in

the robust LPV sense if the following condition, derived from (2.136), holds:(
−Q(θ) Ã(θ)Q(θ) + B̃K(θ)Q(θ)

∗ −Q(θ)

)
≺ O ∀θ ∈ Θ (4.46)

Following [70], (4.46) is equivalent to:(
Q(θ) Ã(θ)S + B̃K(θ)S

∗ S + ST −Q(θ)

)
� O ∀θ ∈ Θ (4.47)

The remaining of the proof follows a reasoning similar to the one of Theorem 4.12, and

thus is omitted. �

In order to apply efficiently the parameter-dependent Lyapunov framework to the

problem of pole clustering, the concept of LMI regions (see Definition 2.3) has been

slightly revised by [227], as follows:

Definition 4.1. (DR regions) [227] A subsetDR of the complex plane is called aDR region

if there exist matrices α = [αkl]k,l∈{1,...,m} ∈ Sm×m, β = [βk,l]k,l∈{1,...,m} ∈ Rm×m and

χ = [χk,l]k,l∈{1,...,m} ∈ Sm×m such that:

DR = {σ ∈ C : fDR(σ) ≺ 0} (4.48)

where fDR(σ) is the characteristic function defined as:

fDR(σ) = α+ βσ + βTσ∗ + χσσ∗ = [αkl + βklσ + βlkσ
∗ + χklσσ

∗]k,l∈{1,...,m} (4.49)

Without any assumption on the matrix χ, DR regions are not convex, but with the

assumption χ ≥ 0,DR regions are a slight modification of the characterization provided

by LMI regions.

Theorem 4.14. (Design of a robust quadratically DR-stabilizing polytopic state-feedback con-
troller for uncertain LPV systems) Given a DR-region defined as in (4.48), let Qij � O,
Γi ∈ Rnu×nx , i = 1, . . . , N , j = 1, . . . ,Mi, and S ∈ Rnx×nx be such that:
[
αklQij + βklUij (S,Γi) + βlkUij (S,Γi)

T
]
k,l∈{1,...,m}

∗[
βkl (Qij − S) + χklUij (S,Γi)

T
]
k,l∈{1,...,m}

[
χkl
(
Qij − S − ST

)]
k,l∈{1,...,m}

 ≺ O
(4.50)

∀i = 1, . . . , N , ∀j = 1, . . . ,Mi, with:

Uij (S,Γi) = AijS +BjΓi (4.51)
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Then, the closed-loop system made up by the uncertain LPV system (4.1), with B̃w (θ(τ)) =

O, and matrices Ã (θ(τ)) and B̃ satisfying (4.4) and (4.6), and the polytopic state-feedback

control law (4.9) with gains calculated as Ki = ΓiS
−1, i = 1, . . . , N , is DR-stable in the

robust LPV sense.

Proof: The proof uses the results obtained by [227], and is similar to the one of Theorem

4.12, thus omitted. �

Theorem 4.15. (Design of a robust H∞ polytopic state-feedback controller for uncertain CT

LPV systems) Let Qij � O, Γi ∈ Rnu×nx , i = 1, . . . , N , j = 1, . . . ,Mi, and S ∈ Rnx×nx be

such that:
He {Uij (S,Γi)} −Qij + ST − Uij (S,Γi) Bw,ij Vij (S,Γi)

T

∗ −He {S} O −Vij (S,Γi)
T

∗ ∗ −I DT
z∞w,ij

∗ ∗ ∗ −γ2
∞I

 ≺ O (4.52)

∀i = 1, . . . , N , ∀j = 1, . . . ,Mi, with Uij(S,Γi) defined as in (4.51), and:

Vij (S,Γi) = Cz∞,ijS +Dz∞u,jΓi (4.53)

Then, the closed-loop system made up by the uncertain CT LPV system (4.1)-(4.2) with

τ = t and matrices Ã (θ(t)), B̃, B̃w (θ(t)), C̃z∞ (θ(t)), D̃z∞u and D̃z∞w (θ(t)) satisfying

(4.4) and (4.6), and the polytopic state-feedback control law (4.9) with gains calculated

as Ki = ΓiS
−1, i = 1, . . . , N , hasH∞ performance γ∞ in the robust LPV sense.

Proof: The proof uses the results obtained by [85], and is similar to the one of Theorem

4.12, thus omitted. �

Theorem 4.16. (Design of a robust H∞ polytopic state-feedback controller for uncertain DT

LPV systems) Let Qij � O, Γi ∈ Rnu×nx , i = 1, . . . , N , j = 1, . . . ,Mi, and S ∈ Rnx×nx be

such that: 
Qij Uij (S,Γi) Bw,ij O

∗ S + ST −Qij O Vij (S,Γi)
T

∗ ∗ I DT
z∞w,ij

∗ ∗ ∗ γ2
∞I

 � O (4.54)

∀i = 1, . . . , N , ∀j = 1, . . . ,Mi, with Uij(S,Γi) defined as in (4.51), and Vij (S,Γi) de-

fined as in (4.53). Then, the closed-loop system made up by the uncertain DT LPV

system (4.1)-(4.2) with τ = k and matrices Ã (θ(k)), B̃, B̃w (θ(k)), C̃z∞ (θ(k)), D̃z∞u and

D̃z∞w (θ(k)) satisfying (4.4) and (4.6), and the polytopic state-feedback control law (4.9)

with gains calculated as Ki = ΓiS
−1, i = 1, . . . , N , has H∞ performance γ∞ in the

robust LPV sense.
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Proof: The proof uses the results obtained by [72], and is similar to the one of Theorem

4.12, thus omitted. �

Theorem 4.17. (Design of a robustH2 polytopic state-feedback controller for uncertain CT LPV

systems) Let Qij � O, Γi ∈ Rnu×nx , Yij ∈ Snz2×nz2 , i = 1, . . . , N , j = 1, . . . ,Mi, and

S ∈ Rnx×nx be such that (4.19) and:(
Yij Wij (S,Γi)

∗ S + ST −Qij

)
� O (4.55)


He {Uij (S,Γi)} −Qij + ST − Uij (S,Γi) Bw,ij

∗ −He {S} O

∗ ∗ −I

 ≺ O (4.56)

hold ∀i = 1, . . . , N , ∀j = 1, . . . ,Mi, with Uij(S,Γi) defined as in (4.51), and:

Wij (S,Γi) = Cz2,ijS +Dz2u,jΓi (4.57)

Then, the closed-loop system made up by the uncertain CT LPV system (4.1) and (4.3)

with τ = t and matrices Ã (θ(t)), B̃, B̃w (θ(t)), C̃z2 (θ(t)) and D̃z2u satisfying (4.4) and

(4.6), and the polytopic state-feedback control law (4.9) with gains calculated as Ki =

ΓiS
−1, i = 1, . . . , N , hasH2 performance γ2 in the robust LPV sense.

Proof: The proof uses the results obtained by [86], and is similar to the one of Theorem

4.12, thus omitted. �

Theorem 4.18. (Design of a robust H2 polytopic state-feedback controller for uncertain DT

LPV systems) Let Qij � O, Γi ∈ Rnu×nx , Yij ∈ Snz2×nz2 , i = 1, . . . , N , j = 1, . . . ,Mi, and

S ∈ Rnx×nx be such that (4.19), (4.55) and:
Qij Uij (S,Γi) Bw,ij

∗ He {S} −Qij O

∗ ∗ I

 � O (4.58)

hold ∀i = 1, . . . , N , ∀j = 1, . . . ,Mi, with Uij(S,Γi) defined as in (4.51), and Wij (S,Γi)

defined as in (4.57). Then, the closed-loop system made up by the uncertain DT LPV

system (4.1) and (4.3) with τ = k and matrices Ã (θ(k)), B̃, B̃w (θ(k)), C̃z2 (θ(k)) and

D̃z2u satisfying (4.4) and (4.6), and the polytopic state-feedback control law (4.9) with

gains calculated as Ki = ΓiS
−1, i = 1, . . . , N , hasH2 performance γ2 in the robust LPV

sense.

Proof: The proof uses the results obtained by [72], and is similar to the one of Theorem

4.12, thus omitted. �



Robust state-feedback control of uncertain LPV systems 87

Theorem 4.19. (Design of a robust FTB polytopic state-feedback controller for uncertain DT

LPV systems) Fix α ≥ 1, and let λ1,ij > 0, λ2,ij > 0, Q1,ij � O, Q2,ij � O, Γi ∈ Rnu×nx ,

i = 1, . . . , N , j = 1, . . . ,Mi, S1 ∈ Rnx×nx and S2 ∈ Rnw×nw be such that:
−α

(
S1 + ST

1 −Q1,ij

)
∗ ∗ ∗

AijS1 +BjΓi −Q1,ij ∗ ∗
O BT

w,ij −Q2,ij ∗
O O ST

2 Wij Q2,ij − S − ST

 ≺ O (4.59)

λ1,ijR
−1 ≺ Q1,ij ≺ R−1 (4.60)

O ≺ Q2,ij ≺ λ2,ijI (4.61)(
c2
αT
− λ2,ijd

√
c1

√
c1 λ1,ij

)
� O (4.62)

hold ∀i = 1, . . . , N , ∀j = 1, . . . ,Mi. Then, the closed-loop system made up by the un-

certain DT LPV system (4.1), with τ = k, matrices Ã (θ(k)), B̃ and B̃w (θ(k)) satisfying

(4.4) and (4.6), and input w(k) given by (4.33), and the polytopic state-feedback control

law (4.9) with gains calculated as Ki = ΓiS
−1
1 , i = 1, . . . , N , is FTB with respect to

(c1, c2, T,R, d) in the robust LPV sense.

Proof: Similar to the proof of Theorem 4.12, taking into account a modified version of

Theorem A.1 (see Appendix A), where the open-loop state matrix A is replaced with

the closed-loop state matrix A+BK, and the change of variable KS1 = Γ is applied. �

Theorem 4.20. (Design of a robust finite time stabilizing polytopic state-feedback controller for

uncertain DT LPV systems) Fix α ≥ 1, and let λij > 0,Qij � O, Γi ∈ Rnu×nx , i = 1, . . . , N ,

j = 1, . . . ,Mi, and S ∈ Rnx×nx be such that:(
−α

(
S + ST −Qij

)
∗

AijS +BjΓi −Qij

)
≺ O (4.63)

λijR
−1 ≺ Qij ≺ R−1 (4.64)(
c2
αT

√
c1

√
c1 λij

)
� O (4.65)

hold ∀i = 1, . . . , N , ∀j = 1, . . . ,Mi. Then, the closed-loop system made up by the

uncertain DT LPV system (4.1), with τ = k, B̃w (θ(k)) = O, and matrices Ã (θ(k)) and

B̃ satisfying (4.4) and (4.6), and the polytopic state-feedback control law (4.9) with gains

calculated as Ki = ΓiS
−1, i = 1, . . . , N , is FTS with respect to (c1, c2, T,R) in the robust

LPV sense.
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Proof: Similar to the proof of Theorem 4.12, taking into account a modified version of

Theorem A.2 (see Appendix A), where the open-loop state matrix A is replaced with

the closed-loop state matrix A+BK, and the change of variable KS = Γ is applied. �

4.5 Examples

4.5.1 Example 1: D-stability

Consider an uncertain CT LPV system described by (4.1) with:

Ã (θ(t)) =

(
ν1 ν2θ(t)

−2 −4ν2

)
B̃ =

(
1 0

0 ν1

)

and B̃w (θ(t)) = O, with the varying parameter θ(t) ∈ [2, 4] and the uncertainty given

by ν1 ∈ [0.9, 1.1] and ν2 ∈ [0.9, 1.1]. This system can be described as a polytopic combi-

nation of uncertain LTI systems as in (4.4), as follows:

Ã (θ(t)) = µ1 (θ(t)) Ã1 + µ2 (θ(t)) Ã2

with:

Ã1 =

(
ν1 2ν2

−2 −4ν2

)
Ã2 =

(
ν1 4ν2

−2 −4ν2

)

µ1 (θ(t)) =
4− θ(t)

2
µ2 (θ(t)) =

θ(t)− 2

2

The pair (Ã1, B̃) can be described in a polytopic way by four LTI systems, as in (4.6):(
Ã1

B̃

)
= η11

(
A11

B1

)
+ η12

(
A12

B2

)
+ η13

(
A13

B3

)
+ η14

(
A14

B4

)

with:

A11 =

(
0.9 1.8

−2 −3.6

)
A12 =

(
0.9 2.2

−2 −4.4

)

A13 =

(
1.1 1.8

−2 −3.6

)
A14 =

(
1.1 2.2

−2 −4.4

)

B1 = B2 =

(
1 0

0 0.9

)
B3 = B4 =

(
1 0

0 1.1

)
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In the same manner, the pair (Ã2, B̃) can be described in the polytopic form (4.6), as

follows:(
Ã2

B̃

)
= η21

(
A21

B1

)
+ η22

(
A22

B2

)
+ η23

(
A23

B3

)
+ η24

(
A24

B4

)

with:

A21 =

(
0.9 3.6

−2 −3.6

)
A22 =

(
0.9 4.4

−2 −4.4

)

A23 =

(
1.1 3.6

−2 −3.6

)
A22 =

(
1.1 4.4

−2 −4.4

)

Let us solve the design problem of finding a state-feedback gain:

u(t) = K (θ(t))x(t) = µ1 (θ(t))K1x(t) + µ2 (θ(t))K2x(t)

that places the closed-loop poles in a disk of radius r and center (−q, 0).

In this case, the problem can be solved either using Theorem 4.3, i.e. a common quadratic

Lyapunov function, or using Theorem 4.14, i.e. a parameter-dependent Lyapunov func-

tion. In the first case, the LMIs (4.16) take the following form:(
−rQ qQ+AijQ+BjΓi

∗ −rQ

)
≺ O

with i = 1, 2, j = 1, 2, 3, 4, while in the second case, the LMIs (4.50) become:( (
q2 − r2

)
Qij + qHe {AijS +BjΓi} q

(
Qij − ST

)
+AijS +BjΓi

∗ Qij − S − ST

)
≺ O

with i = 1, 2, j = 1, 2, 3, 4.

In this example, the desired circle has been chosen as the one with center (−10, 0) and

radius r = 10. By applying Theorem 4.14, the robust controller vertex gains are ob-

tained using YALMIP toolbox [182] with SeDuMi solver [305]:

K1 =

(
−1.4754 3.8629

0.7617 2.7419

)
K2 =

(
−1.5504 2.9062

0.5752 2.6576

)

with:

S =

(
0.1421 −0.0116

0.0081 0.0293

)
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Q11 =

(
0.1442 −0.0008

−0.0008 0.0301

)
Q12 =

(
0.1435 −0.0012

−0.0012 0.0312

)

Q13 =

(
0.1422 −0.0013

−0.0013 0.0296

)
Q14 =

(
0.1420 −0.0011

−0.0011 0.0305

)

Q21 =

(
0.1437 −0.0014

−0.0014 0.0304

)
Q22 =

(
0.1438 −0.0025

−0.0025 0.0313

)

Q23 =

(
0.1424 −0.0016

−0.0016 0.0294

)
Q24 =

(
0.1427 −0.0029

−0.0029 0.0306

)

In the following, a comparison with a controller obtained applying a classical LPV tech-

nique that does not take into account the uncertainty (denoted as fragile) is done. The

vertex gains of the fragile controller are:

K1 =

(
−1.3170 0.6347

0.1779 3.6717

)
K2 =

(
−1.4257 −0.3826

−0.5024 3.5638

)

Fig. 4.2 shows the results of the pole placement when the proposed approach is used

(see Fig. 4.3 for a zoom). The closed-loop poles of the vertex systems are depicted

as blue dots, and it can be seen that they are always inside the desired region, thus

demonstrating that the proposed technique can guarantee pole clustering in presence

of model uncertainties. When the problem is solved using the classical approach that

takes into account during the design phase only the varying parameters (but not the

uncertainties), the pole placement specification is satisfied only for the nominal system

(cyan dots in Fig. 4.2), and fails in achieving the goal as soon as the uncertainties are

taken into consideration (red dots in Fig. 4.2).

Fig. 4.2 shows that for some realizations of the uncertainty the robust controller would

be stable, whereas the fragile controller would be unstable. This fact can be seen from

simulation analysis, for example by considering the time response obtained with ν1 =

1.1, ν2 = 0.9 and θ(t) = 3 + sin t, starting from the initial condition x(0) =
(

1 0
)T

.

The evolutions of the states x1 and x2 are depicted in Fig. 4.4 and Fig. 4.5, respectively,

in both the cases when a robust controller is applied and when the fragile controller is

applied. While in the first case the closed-loop state trajectory converges to zero, in the

second case the closed-loop state trajectory exhibits divergence.
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FIGURE 4.2: Robust D-stability: comparison between robust and fragile controller.
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FIGURE 4.4: Robust D-stability: closed-loop response of x1(t).
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4.5.2 Example 2: H∞ performance

Consider an uncertain CT LPV system described by (4.1) with:

Ã (θ(t)) =

(
ν1 ν2θ(t)

−2 −4ν2

)
B̃ =

(
1 0

0 ν1

)
B̃w (θ(t)) =

(
ν1θ(t)

0

)

with the varying parameter θ(t) ∈ [2, 4] and the uncertainty given by ν1 ∈ [0.6, 1.4] and

ν2 ∈ [0.6, 1.4]. This system can be described as a polytopic combination of uncertain

LTI systems as in (4.4), as follows:(
Ã (θ(t))

B̃w (θ(t))

)
= µ1 (θ(t))

(
Ã1

B̃w,1

)
+ µ2 (θ(t))

(
Ã2

B̃w,2

)

with:

Ã1 =

(
ν1 2ν2

−2 −4ν2

)
B̃w,1 =

(
2ν1

0

)
Ã2 =

(
ν1 4ν2

−2 −4ν2

)
B̃w,2 =

(
4ν1

0

)

µ1 (θ(t)) =
4− θ(t)

2
µ2 (θ(t)) =

θ(t)− 2

2

The triplet (Ã1, B̃, B̃w,1) can be described in a polytopic way by four LTI systems, as in

(4.6):
Ã1

B̃

B̃w,1

 = η11


A11

B1

Bw,11

+ η12


A12

B2

Bw,12

+ η13


A13

B3

Bw,13

+ η14


A14

B4

Bw,14


with:

A11 =

(
0.6 1.2

−2 −2.4

)
A12 =

(
0.6 2.8

−2 −5.6

)

A13 =

(
1.4 1.2

−2 −2.4

)
A14 =

(
1.4 2.8

−2 −5.6

)

B1 = B2 =

(
1 0

0 0.6

)
B3 = B4 =

(
1 0

0 1.4

)

Bw,11 = Bw,12 =

(
1.2

0

)
Bw,13 = Bw,14 =

(
2.8

0

)
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In the same manner, the triplet (Ã2, B̃, B̃w,2) can be described in the polytopic form

(4.6), as follows:
Ã2

B̃

B̃w,2

 = η21


A21

B1

Bw,21

+ η22


A22

B2

Bw,22

+ η23


A23

B3

Bw,23

+ η24


A24

B4

Bw,24


with:

A21 =

(
0.6 2.4

−2 −2.4

)
A22 =

(
0.6 5.6

−2 −5.6

)

A23 =

(
1.4 2.4

−2 −2.4

)
A22 =

(
1.4 5.6

−2 −5.6

)

Bw,21 = Bw,22 =

(
2.4

0

)
Bw,23 = Bw,24 =

(
5.6

0

)

Let us solve the design problem of finding a state-feedback gain:

u(t) = K (θ(t))x(t) = µ1 (θ(t))K1x(t) + µ2 (θ(t))K2x(t)

such that the closed-loop system has H∞ performance less than 1 in the robust LPV

sense (this specification corresponds to the attenuation of the exogenous input across

all frequencies).

In this case, the problem can be solved either using Theorem 4.4 (common quadratic

Lyapunov function) or using Theorem 4.15 (parameter-dependent Lyapunov function).

By applying the latter, the robust controller vertex gains are obtained using YALMIP

toolbox [182] with SeDuMi solver [305]:

K1 =

(
−12.6028 −3.3688

−1.8928 −1.8585

)
K2 =

(
−28.7550 −7.3552

−3.2000 −3.1281

)

with:

S =

(
0.7395 −0.2440

−0.4165 1.0987

)

Q11 =

(
7.9460 0.4642

0.4642 4.6821

)
Q12 =

(
8.6724 −0.9988

−0.9988 7.6659

)

Q13 =

(
7.2706 0.5011

0.5011 6.1806

)
Q14 =

(
8.0755 −1.1003

−1.1003 8.9602

)
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Q21 =

(
17.6562 0.7993

0.7993 5.2005

)
Q22 =

(
19.1482 −0.8789

−0.8789 7.8580

)

Q23 =

(
17.8220 0.3148

0.3148 7.8933

)
Q24 =

(
19.4641 −2.1891

−2.1891 9.9042

)

In the following, a comparison with a fragile controller, obtained applying a classical

LPV technique without taking into account the uncertainty, is done. The vertex gains

of the fragile controller are:

K1 =

(
−9.5607 −3.0468

−1.8819 0.8398

)
K2 =

(
−19.1879 −5.7774

−4.7960 0.1083

)

Fig. 4.6 shows the Bode diagrams of the closed-loop system obtained with ν1 = 1.4,

ν2 = 0.6 and θ = 2. It can be seen that for low frequencies, the desired specification is

not attained by the fragile controller. On the other hand, the robust controller success-

fully achieves the performance (the magnitude plot is always below the threshold of

0 dB).
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FIGURE 4.6: RobustH∞ performance: Bode plot

Finally, to complete the analysis, a simulation with ν1 = 1.4, ν2 = 0.6, θ(t) = 3 + sin(t),

w(t) = sin(0.01t), and initial condition x(0) =
(

0 0
)T

is considered. The evolution

of the output related to the H∞ (z∞ = x1) is plotted in Fig. 4.7. It is confirmed that the



Robust state-feedback control of uncertain LPV systems 96

robust controller successfully achieves the attenuation of the exogenous disturbance

w(t), whereas the fragile controller does not.
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FIGURE 4.7: RobustH∞ performance: closed-loop response of z∞(t).

4.6 Conclusions

In this chapter, the problem of designing an LPV state-feedback controller for uncertain

LPV systems has been considered. The controller has been designed such that some

desired performances are achieved in the robust LPV sense, i.e. for each possible value

that the scheduling parameters and the uncertainty can take.

Some well-known results obtained in the last decades in the robust and in the LPV

control fields have been extended to obtain conditions that can be used to solve this

problem. The provided solution relies on a double-layer polytopic description that

takes into account both the variability due to the scheduling parameter vector and the

uncertainty. The first polytopic layer manages the varying parameters and is used to

obtain the vertex uncertain systems, where the vertex controllers are designed. The

second polytopic layer is built at each vertex system so as to take into account the

model uncertainties and add robustness into the design step.
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The problem has been tackled using both a common quadratic Lyapunov function and

a parameter-dependent Lyapunov function. In both cases, under some assumptions, a

finite number of LMIs, that can be solved efficiently using available solvers, is obtained.

The proposed technique has been applied to numerical examples, showing that it achieves

correctly the desired performances, i.e. robust D-stability and robustH∞ performance,

whereas the traditional LPV gain-scheduling technique fails.

An open issue that requires further investigation is the obtention of dilated LMIs for the

FTB/FTS analysis of CT systems. This step is necessary in order to obtain conditions

for the design of robust FTB/FTS polytopic state-feedback controllers for uncertain CT

LPV systems.



Chapter 5

Shifting state-feedback control of

LPV systems

The content of this chapter is based on the following works:

• [248] D. Rotondo, F. Nejjari, V. Puig. A shifting pole placement approach for the

design of parameter-scheduled state-feedback controllers. In Proceedings of the

12th European Control Conference (ECC), pages 1829-1834, 2013;

• [266] D. Rotondo, F. Nejjari, V. Puig. Design of parameter-scheduled state-feedback

controllers using shifting specifications. Journal of the Franklin Institute, 352(1): 93-

116, 2015;

• [267] D. Rotondo, F. Nejjari, V. Puig. Shifting finite time stability and bounded-

ness design for continuous-time LPV systems. In Proceedings of the 32nd American

Control Conference (ACC), pages 838-843, 2015.

5.1 Introduction

In this chapter, the problem of designing a parameter-scheduled state-feedback con-

troller is investigated. In particular, this chapter takes advantage of the properties of

polytopes and LMIs to solve new problems, that can be seen as extensions of the more

classical D-stability, H∞ performance, H2 performance, finite time boundedness and

finite time stability specifications, that will be referred to as shifting D-stability, shift-

ing H∞ performance, shifting H2 performance, shifting finite time stability and shifting finite

time boundedness. In these new problems, by introducing some parameters, or using

the existing ones, the controller can be designed in such a way that different values of

98
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these parameters imply different performances. Notice that this is akin to the approach

described in [239], where a methodology for designing a sampling period dependent

controller with performance adaptation has been proposed.

From a practical point of view, reasons for which such a problem can be of interest

include all situations where some performance degradation could be desirable, e.g.

high-/low-gain control, control of systems with saturation nonlinearities [355], grace-

ful performance degradation for active fault tolerant control [373] and actuator health

degradation avoidance [157].

5.2 Problem formulation

Consider the LPV system given by (2.156)-(2.158):

σ.x(τ) = A (θ(τ))x(τ) +B (θ(τ))u(τ) +Bw (θ(τ))w(τ) (5.1)

z∞(τ) = Cz∞ (θ(τ))x(τ) +Dz∞u (θ(τ))u(τ) +Dz∞w (θ(τ))w(τ) (5.2)

z2(τ) = Cz2 (θ(τ))x(τ) +Dz2u (θ(τ))u(τ) (5.3)

and divide the nθ-dimensional set Θ into three subsets, i.e. an nθs-dimensional set Θs,

an nθr -dimensional set Θr, and an nθp-dimensional set Θp, such that:

Θ = Θs ×Θr ×Θp (5.4)

where:

• θs(τ) are varying parameters used to schedule the controller (they would corre-

spond to variables that can be either measured or estimated);

• θr(τ) are parameters that are not used to schedule the controller, and robustness

must be guaranteed against their variations (these parameters would correspond

to unmeasurable variables that cannot be estimated, but also to unknown but

bounded uncertainties affecting the system, e.g. the ones arising from noise or

estimation errors);

• θp(τ) are varying parameters used to schedule not only the controller as in the

case of θs(τ), but also the shifting specifications D (θp(τ)), γ∞ (θp(τ)), γ2 (θp(τ)),

c1 (θp(τ)) and c2 (θp(τ)), defined formally in the following (see Definitions 5.1-

5.7).
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Θs, Θr and Θp are assumed to be polytopes, such that:

θs(τ) =
S∑
i=1

si (θs(τ))θs,i ,
S∑
i=1

si (θs(τ)) = 1 , si (θs(τ)) ≥ 0 , i = 1, . . . , S (5.5)

θr(τ) =
R∑
j=1

rj (θr(τ))θr,j ,
R∑
j=1

rj (θr(τ)) = 1 , rj (θr(τ)) ≥ 0 , j = 1, . . . , R (5.6)

θp(τ) =

P∑
h=1

πh (θp(τ))θp,h ,

P∑
h=1

πh (θp(τ)) = 1 , πh (θp(τ)) ≥ 0 , h = 1, . . . , P (5.7)

with S, R and P the numbers of vertices, denoted by θs,i, θr,j and θp,h of Θs, Θr and Θp,

respectively. Then, Θ is a Cartesian product of polytopes [228], such that:

θ(τ) =

S∑
i=1

si (θs(τ))

R∑
j=1

rj (θr(τ))

P∑
h=1

πh (θp(τ))θijh (5.8)

where θijh is defined as:

θijh =
[
θs,i θr,j θp,h

]T
(5.9)

In this chapter, the problem of designing the controller:

u(τ) = K (θs(τ), θp(τ))x(τ) (5.10)

so as to satisfy one of the following specifications:

• shifting D-stability

• shiftingH∞ performance

• shiftingH2 performance

• shifting finite time stability

• shifting finite time boundedness

is considered. These specifications are defined in the following.

Definition 5.1. (ShiftingD-stability of an LPV system) Given the following scheduled sub-

set of the complex plane:

D(θp) =
{
σ ∈ C : fD(θp)(σ, θp) < O

}
(5.11)
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where fD(θp)(σ, θp) is the shifting characteristic function defined as:

fD(θp)(σ, θp) = α(θp) + β(θp)σ + β(θp)
Tσ∗ = [αkl(θp) + βkl(θp)σ + βlk(θp)σ

∗]k,l∈{1,...,m}

(5.12)

where α(θp) = [αkl(θp)]k,l∈{1,...,m} ∈ Sm×m and β(θp) = [βk,l(θp)]k,l∈{1,...,m} ∈ Rm×m, the

autonomous LPV system (2.46):

σ.x(τ) = A (θ(τ))x(τ) (5.13)

with θ ∈ Θ, and Θ as in (5.4), is shifting D-stable with respect to D(θp) if, for every

possible θ ∈ Θ, the poles of (5.13) are inside D(θp).

Definition 5.2. (ShiftingH∞ performance of an LPV system) The LPV system (2.50)-(2.51):

σ.x(τ) = A (θ(τ))x(τ) +Bw (θ(τ))w(τ) (5.14)

z∞(τ) = Cz∞ (θ(τ))x(τ) +Dz∞w (θ(τ))w(τ) (5.15)

has shifting H∞ performance γ∞(θp) if ‖Tz∞w(σ, θ)‖∞ < γ∞(θp) ∀θ ∈ Θ, with Θ as in

(5.4), and Tz∞w(σ, θ) denoting the closed-loop transfer function from w(τ) to z∞(τ).

Definition 5.3. (Shifting H2 performance of an LPV system) The LPV system (5.14) and

(2.53):

z2(τ) = Cz2 (θ(τ))x(τ) (5.16)

has shifting H2 performance γ2(θp) if ‖Tz2w(σ, θ)‖2 < γ2(θp) ∀θ ∈ Θ, with Θ as in (5.4),

and Tz2w(σ, θ) denoting the closed-loop transfer function from w(τ) to z2(τ).

Definition 5.4. (Shifting finite time stability of CT LPV systems) The autonomous LPV sys-

tem (5.13), with τ = t, is said to be shifting finite time stable (SFTS) with respect to

(c1(θp), c2(θp), T (θp), R) with c2(θp) > c1(θp) > 0 ∀θp ∈ Θp and R � O if:{
x(t0)TRx(t0) ≤ c1(θp0)

θp(t) = θp0 ∀t ∈ [t0, t0 + T (θp0)]
⇒

x(t)TRx(t) ≤ c2(θp0)

∀t ∈ [t0, t0 + T (θp0)]
(5.17)

Definition 5.5. (Shifting finite time stability of DT LPV systems) The autonomous LPV sys-

tem (5.13), with τ = k, is said to be shifting finite time stable (SFTS) with respect to

(c1(θp), c2(θp), T (θp), R) with c2(θp) > c1(θp) > 0 ∀θp ∈ Θp and R � O if:{
x(k0)TRx(k0) ≤ c1(θp0)

θp(k) = θp0 ∀k ∈ {k0, . . . , k0 + T (θp0)− 1}
⇒

x(k)TRx(k) ≤ c2(θp0)

∀k ∈ {k0 + 1, . . . , k0 + T (θp0)}
(5.18)
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Definition 5.6. (Shifting finite time boundedness of CT LPV systems) The CT LPV system

(2.55):

ẋ(t) = A (θ(t))x(t) +Bw (θ(t))w(t) (5.19)

is said to be shifting finite time bounded (SFTB) with respect to

(c1(θp), c2(θp), T (θp), R, d(θp)) with c2(θp) > c1(θp) > 0 ∀θp ∈ Θp and R � O if:
x(t0)TRx(t0) ≤ c1(θp0)

w(t)Tw(t) ≤ d(θp0)

θp(t) = θp0

∀t ∈ [t0, t0 + T (θp0)]
⇒

x(t)TRx(t) ≤ c2(θp0)

∀t ∈ [t0, t0 + T (θp0)]

(5.20)

Definition 5.7. (Shifting finite time boundedness of DT LPV systems) The DT LPV system

(2.56): {
x(k + 1) = A (θ(k))x(k) +Bw (θ(k))w(k)

w(k + 1) = W (θ(k))w(k)
(5.21)

is said to be SFTB with respect to (c1(θp), c2(θp), T (θp), R, d(θp)) with
c2(θp) > c1(θp) > 0 ∀θp ∈ Θp and R � O if:

x(k0)TRx(k0) ≤ c1(θp0)

w(k)Tw(k) ≤ d(θp0)

θp(k) = θp0
∀k ∈ {k0, . . . , k0 + T (θp0)− 1}

⇒
x(k)TRx(k) ≤ c2(θp0)

∀k ∈ {k0 + 1, . . . , k0 + T (θp0)}

(5.22)

Despite the problem of design using shifting specifications is being considered for the

case of LPV systems, the proposed method is useful for LTI systems too. In this case, a

vector θp(t), exogenous with respect to the system to be controlled, is introduced, and

used to schedule the controller, such that, even though the plant to be controlled is LTI,

the overall system is LPV and the mathematical reasoning developed hereafter can be

applied. The reason behind doing so is that in this way the performance of the closed-

loop system can be varied in time according to some criterium, e.g. energetic issues.

The introduction of an exogenous θp(t) can also be done in the case of LPV systems,

when it is desired to vary the performance according to criteria that are not connected

with the intrinsic varying parameters of the LPV system.

5.3 Design using a common quadratic Lyapunov function

The following theorems provide some conditions for designing the controller (5.10) in

order to satisfy the shifting specifications introduced in Definitions 5.1-5.7. For the sake
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of simplicity, only the case where a common quadratic Lyapunov function, as in (2.58):

V (x(τ)) = x(τ)TPx(τ) (5.23)

will be considered.

Theorem 5.1. (Quadratic shifting D-stabilizability of LPV systems) Given an LMI region

scheduled by θp, as in (5.11), the LPV system (5.1) with Bw (θ(τ)) = O and control law

(5.10) is quadratically shifting D-stable with respect to D(θp) if there exist Q � O and

K(θs, θp) ∈ Rnu×nx such that:

α(θp)⊗Q+He {β(θp)⊗ [A(θ)Q+B(θ)K(θs, θp)Q]} ≺ O ∀θ ∈ Θ (5.24)

Proof: The condition (5.24) is obtained from (2.137), by considering that α and β are not

constant, but functions of θp, and that K depends only on θs and θp. �

Theorem 5.2. (Quadratic shiftingH∞ state feedback for CT LPV systems) The CT LPV system

(5.1)-(5.2) with τ = t and control law (5.10) has quadratic shifting H∞ performance

γ∞(θp) if there exist Q � O and K(θs, θp) ∈ Rnu×nx such that:
He {A(θ)Q+B(θ)K(θs, θp)Q} ∗ ∗

Bw(θ)T −I ∗
Cz∞(θ)Q+Dz∞u(θ)K(θs, θp)Q Dz∞w(θ) −γ∞(θp)

2I

 ≺ O ∀θ ∈ Θ

(5.25)

Proof: The condition (5.25) is obtained from (2.140), by considering that γ∞ is not con-

stant, but function of θp, and that K depends only on θs and θp. �

Theorem 5.3. (Quadratic shifting H∞ state feedback for DT LPV systems) The DT LPV sys-
tem (5.1)-(5.2) with τ = k and control law (5.10) has quadratic shiftingH∞ performance
γ∞(θp) if there exist Q � O and K(θs, θp) ∈ Rnu×nx such that:


Q A(θ)Q+B(θ)K(θs, θp)Q Bw(θ) O

∗ Q O QCz∞(θ)T +QK(θs, θp)
TDz∞u(θ)T

∗ ∗ I Dz∞w(θ)T

∗ ∗ ∗ γ∞(θp)
2I

 � O ∀θ ∈ Θ

(5.26)

Proof: The condition (5.26) is obtained from (2.143), by considering that γ∞ is not con-

stant, but function of θp, and that K depends only on θs and θp. �

Theorem 5.4. (Quadratic shiftingH2 state feedback for CT LPV systems) The CT LPV system

(5.1) and (2.158) with τ = t and control law (5.10) has quadratic shifting H2 perfor-

mance γ2(θp) if there exist Q � O, K(θs, θp) ∈ Rnu×nx and Y (θ) ∈ Snz2×nz2 such that
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Tr (Y (θ)) < γ2(θp)
2 ∀θ ∈ Θ and:(

He {A(θ)Q+B(θ)K(θs, θp)Q} Bw(θ)

∗ −I

)
≺ O ∀θ ∈ Θ (5.27)

(
Y (θ) Cz2(θ)Q+Dz2u(θ)K(θs, θp)Q

∗ Q

)
� O ∀θ ∈ Θ (5.28)

Proof: It follows from the conditions of Theorem 2.17, by considering that γ2 is not

constant, but function of θp, and that K only depends on θs and θp. �

Theorem 5.5. (Quadratic shifting H2 state feedback for DT LPV systems) The DT LPV sys-

tem (5.1) and (5.3) with τ = k and control law (5.10) has quadratic shifting H2 perfor-

mance γ2(θp) if there exist Q � O, K(θs, θp) ∈ Rnu×nx and Y (θ) ∈ Snz2×nz2 such that

Tr (Y (θ)) < γ2(θp)
2 ∀θ ∈ Θ and:

Q A(θ)Q+B(θ)K(θs, θp)Q Bw(θ)

∗ Q O

∗ ∗ I

 � O ∀θ ∈ Θ (5.29)

(
Y (θ) Cz2(θ)Q+Dz2u(θ)K(θs, θp)Q

∗ Q

)
� O ∀θ ∈ Θ (5.30)

Proof: It follows from the conditions of Theorem 2.18, by considering that γ2 is not

constant, but function of θp, and that K depends only on θs and θp. �

Theorem 5.6. (Quadratic SFTB state feedback for CT LPV systems) The CT LPV system (5.1)

with τ = t and control law (5.10) is quadratically SFTB with respect to (c1(θp), c2(θp), T (θp), R, d(θp))

if, letting Q̃1 = R−1/2Q1R
−1/2, there exist a positive scalar α, positive functions λ1(θp),

λ2(θp), λ3(θp), positive definite matrices Q1 ∈ Snx×nx and Q2 ∈ Snw×nw , and a matrix

function K(θs, θp) ∈ Rnu×nx such that: He
{
A(θ)Q̃1 +B(θ)K(θs, θp)Q̃1

}
− αQ̃1 Bw(θ)Q2

∗ −αQ2

 ≺ O ∀θ ∈ Θ (5.31)

λ1(θp)I ≺ Q1 ≺ I ∀θp ∈ Θp (5.32)

λ2(θp)I ≺ Q2 ≺ λ3(θp)I ∀θp ∈ Θp (5.33)
c2(θp)e

−αT (θp)
√
c1(θp)

√
d(θp)√

c1(θp) λ1(θp) 0√
d(θp) 0 λ2(θp)

 � O ∀θp ∈ Θp (5.34)
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Proof: From Definition 5.6, by introducing the new time variable t̃ = t − t0, (5.20) be-

comes:
x(0)TRx(0) ≤ c1(θp0)

w(t̃)Tw(t̃) ≤ d(θp0)

θp(t̃) = θp0

∀t̃ ∈ [0, T (θp0)]
⇒

x(t̃)TRx(t̃) ≤ c2(θp0)

∀t̃ ∈ [0, T (θp0)]
(5.35)

Since θp(t) is constant during the considered time interval, it follows that in order to ob-

tain (5.35), the property of finite time boundedness, as defined in Definition 2.9, should

hold ∀θp ∈ Θp. The remaining of the proof follows from the conditions of Theorem

2.19, taking into account that K depends only on θs and θp. �

Theorem 5.7. (Quadratic SFTB state feedback for DT LPV systems) The DT LPV system (5.1)

with τ = k and (2.151):

w(k + 1) = W (θ(k))w(k) (5.36)

with control law (5.10) is quadratically SFTB with respect to (c1(θp), c2(θp), T (θp), R,

d(θp)) if there exist a positive scalar α ≥ 1, positive functions λ1(θp), λ2(θp), positive

definite matrices Q1 ∈ Snx×nx and Q2 ∈ Snw×nw and a matrix function K(θs, θp) ∈
Rnu×nx such that:

−αQ1 ∗ ∗ ∗
A(θ)Q1 +B(θ)K(θs, θp)Q1 −Q1 ∗ ∗

O Bw(θ)T −αQ2 ∗
O O Q2W (θ) −Q2

 ≺ O ∀θ ∈ Θ (5.37)

λ1(θp)R
−1 ≺ Q1 ≺ R−1 ∀θp ∈ Θp (5.38)

O ≺ Q2 ≺ λ2(θp)I ∀θp ∈ Θp (5.39)(
c2(θp)

αT (θp) − λ2(θp)d(θp)
√
c1(θp)√

c1(θp) λ1(θp)

)
� O ∀θp ∈ Θp (5.40)

Proof: From Definition 5.7, by introducing the new time variable k̃ = k − k0, (5.22)
becomes:

x(0)TRx(0) ≤ c1(θp0)

w(k̃)Tw(k̃) ≤ d(θp0)

θp(k̃) = θp0
∀k̃ ∈ {0, . . . , T (θp0)− 1}

⇒
x(k̃)TRx(k̃) ≤ c2(θp0)

∀k̃ ∈ {1, . . . , T (θp0)}
(5.41)

Since θp(k) is constant during the considered time interval, it follows that in order

to obtain (5.41), the property of finite time boundedness, as defined in Definition 2.9,

should hold ∀θp ∈ Θp. The remaining of the proof follows from the conditions of

Theorem 2.20, taking into account that K only depends on θs and θp. �
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Theorem 5.8. (Quadratic shifting finite time stabilization of CT LPV systems) The CT LPV

system (5.1), with τ = t, Bw (θ(t)) = O, and control law (5.10), is quadratically shifting

finite time stabilizable with respect to (c1(θp), c2(θp), T (θp), R) if, letting Q̃1 = R−1/2Q1R
−1/2,

there exist a positive scalar α, a positive function λ1(θp), a positive definite matrix

Q1 ∈ Snx×nx , and a matrix function K(θs, θp) ∈ Rnu×nx such that:

He
{
A(θ)Q̃1 +B(θ)K(θs, θp)Q̃1

}
− αQ̃1 ≺ O ∀θ ∈ Θ (5.42)

(
c2(θp)e

−αT (θp)
√
c1(θp)√

c1(θp) λ1(θp)

)
� O ∀θp ∈ Θp (5.43)

and (5.32) hold.

Proof: It is a direct consequence of Theorem 5.6 when Bw (θ(t)) = O and d(θp) = 0. �

Theorem 5.9. (Quadratic shifting finite time stabilization of DT LPV systems) The DT LPV

system (5.1), with τ = k, Bw (θ(k)) = O, and control law (5.10), is quadratically shifting

finite time stabilizable with respect to (c1(θp), c2(θp), T (θp), R) if there exist a positive

scalar α ≥ 1, a positive function λ1(θp), a positive definite matrix Q1 ∈ Snx×nx and a

matrix function K(θs, θp) ∈ Rnu×nx such that:(
−αQ1 ∗

A(θ)Q1 +B(θ)K(θs, θp)Q1 −Q1

)
≺ O ∀θp ∈ Θp (5.44)

(
c2(θp)

αT (θp)

√
c1(θp)√

c1(θp) λ1(θp)

)
� O ∀θp ∈ Θp (5.45)

and (5.38) hold.

Proof: It is a direct consequence of Theorem 5.7 when W (θ(k)) = Bw (θ(k)) = O and

d(θp) = 0. �

In the CT case, it can be proved that the quadratic shifting D-stability specification al-

lows varying in time the transient performance of the closed-loop system, i.e. its decay

or growth rate. This is stated by the following corollary, that is based on Corollary 2.1

[56, 209].

Corollary 5.1. Let V (x(t)) be defined as in (5.23), and let the autonomous LPV system

(5.13) be quadratically shifting D-stable with respect to D(θp), i.e. (5.24) holds. Then,

the Lyapunov function V (x(t)) satisfies, for all x(t) 6= 0:

1

2

V̇ (x(t))

V (x(t))
∈ D(θp) ∩ R (5.46)
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Proof: It follows the reasoning of the proof of Corollary 2.1, thus it is omitted. �

Looking at Corollary 5.1, it can be seen that using a shifting D-stability specification,

it is possible to modify online the constraint on the minimum decay rate (if D (θp(t))

is contained in the left half plane), or the maximum possible growth rate of the Lya-

punov function used to assess the shifting D-stability. From a practical point of view,

it is possible to vary online other transient performances using the proposed shifting

specifications, also in the case of DT systems.

However, the conditions provided in Theorems 5.1-5.9 cannot be used for the controller

design, since they impose an infinite number of constraints. This difficulty can be alle-

viated under the following assumptions:

• β (θp(τ)) is a constant matrix and:
α (θp(τ))

γ∞ (θp(τ))2

γ2 (θp(τ))2√
c1 (θp(τ))

 =
P∑
h=1

πh (θp(τ))


κ1,h

κ2,h

κ3,h

κ4,h

 (5.47)

(
c2 (θp(t)) e

−αT (θp(t))√
d (θp(t))

)
=

P∑
h=1

πh (θp(t))

(
κ5,h

κ6,h

)
CT systems (5.48)

 c2(θp(k))

αT(θp(k))

d (θp(t))

 =

P∑
h=1

πh (θp(k))

(
κ5,h

κ6,h

)
DT systems (5.49)

Looking at the examples of LMI regions provided in Chapter 2, it can be seen

that the assumption of a constant β matrix corresponds to fixing the shape of the

shifting LMI region.

• The matrices B (θ(τ)), Dz∞u (θ(τ)) and Dz2u (θ(τ)) only depend on θr(τ) and:

A (θ(τ))

Bw (θ(τ))

Cz∞ (θ(τ))

Dz∞w (θ(τ))

Cz2 (θ(τ))

W (θ(τ))

Y (θ(τ))


=

S∑
i=1

si (θs(τ))

R∑
j=1

rj (θr(τ))

P∑
h=1

πh (θp(τ))



Aijh

Bw,ijh

Cz∞,ijh

Dz∞w,ijh

Cz2,ijh

Wijh

Yijh


(5.50)
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
B (θr(τ))

Dz∞u (θr(τ))

Dz2u (θr(τ))

 =

R∑
j=1

rj (θr(τ))


Bj

Dz∞u,j

Dz2u,j

 (5.51)

Notice that when the assumption that B (θ(τ)), Dz∞u (θ(τ)) and Dz2u (θ(τ)) only

depend on θr(τ) introduces too much conservativeness, it is possible to relax this

assumption by filtering the inputs, as proposed by [16].

Then, it is possible to consider the following control law:

u(τ) =
S∑
i=1

si (θs(τ))
P∑
h=1

πh (θp(τ))Kihx(τ) (5.52)

and reduce the conditions provided by Theorems 5.1-5.9 to a finite number of matrix

inequalities, by rewriting them at the S · R · P vertices of Θ, as stated by the following

corollaries.

Corollary 5.2. (Design of a quadratically shifting D-stabilizing polytopic state-feedback con-

troller for LPV systems) Given an LMI region scheduled by θp, as in (5.11), with β (θp(τ)) =

β, let Q � O and Γih ∈ Rnu×nx , i = 1, . . . , S, h = 1, . . . , P , be such that:

κ1,h ⊗Q+He {β ⊗ [AijhQ+BjΓih]} ≺ O (5.53)

∀i = 1, . . . , S, ∀j = 1, . . . , R, ∀h = 1, . . . , P . Then, the closed-loop system made up by

the LPV system (5.1), withBw (θ(τ)) = O and polytopic matrices as in (5.50)-(5.51), and

the polytopic state-feedback control law (5.52) with gains calculated as Kih = ΓihQ
−1,

i = 1, . . . , S, h = 1, . . . , P , is quadratically shifting D-stable with respect to D(θp).

Proof: It follows from the basic property of matrices [131] that any linear combination

of negative definite matrices with non-negative coefficients, whose sum is positive, is

negative definite, and it uses a reasoning similar to the one used in previous theorems,

thus it is omitted. �

Corollary 5.3. (Design of a quadratic shifting H∞ polytopic state-feedback controller for CT

LPV systems) Let Q � O and Γih ∈ Rnu×nx , i = 1, . . . , S, h = 1, . . . , P , be such that:
He {AijhQ+BjΓih} ∗ ∗

BT
w,ijh −I ∗

Cz∞,ijhQ+Dz∞u,jΓih Dz∞w,ijh −κ2,hI

 ≺ O
∀i = 1, . . . , S

∀j = 1, . . . , R

∀h = 1, . . . , P

(5.54)

Then, the closed-loop system made up by the CT LPV system (5.1)-(5.2), with τ = t,

and polytopic matrices as in (5.50)-(5.51), and the polytopic state-feedback control law
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(5.52) with gains calculated as Kih = ΓihQ
−1, i = 1, . . . , S, h = 1, . . . , P , has quadratic

shiftingH∞ performance γ∞(θp).

Proof: Similar to that of Corollary 5.2, thus omitted. �

Corollary 5.4. (Design of a quadratic shifting H∞ polytopic state-feedback controller for DT

LPV systems) Let Q � O and Γih ∈ Rnu×nx , i = 1, . . . , S, h = 1, . . . , P , be such that:
Q AijhQ+BjΓih Bw,ijh O

∗ Q O QCT
z∞,ijh

+ ΓT
ihD

T
z∞u,j

∗ ∗ I DT
z∞w,ijh

∗ ∗ ∗ κ2,hI

 � O
∀i = 1, . . . , S

∀j = 1, . . . , R

∀h = 1, . . . , P

(5.55)

Then, the closed-loop system made up by the DT LPV system (5.1)-(5.2), with τ = k,

and polytopic matrices as in (5.50)-(5.51), and the polytopic state-feedback control law

(5.52) with gains calculated as Kih = ΓihQ
−1, i = 1, . . . , S, h = 1, . . . , P , has quadratic

shiftingH∞ performance γ∞(θp).

Proof: Similar to that of Corollary 5.2, thus omitted. �

Corollary 5.5. (Design of a quadratic shifting H2 polytopic state-feedback controller for CT

LPV systems) Let Q � O, Γih ∈ Rnu×nx and Yijh ∈ Snz2×nz2 , i = 1, . . . , S, j = 1, . . . , R,

h = 1, . . . , P , be such that:

Tr (Yijh) < κ3,h (5.56)(
He {AijhQ+BjΓih} Bw,ijh

∗ −I

)
≺ O (5.57)

(
Yijh Cz2,ijhQ+Dz2u,jΓih

∗ Q

)
� O (5.58)

Then, the closed-loop system made up by the CT LPV system (5.1) and (5.3), with τ = t,

and polytopic matrices as in (5.50)-(5.51), and the polytopic state-feedback control law

(5.52) with gains calculated as Kih = ΓihQ
−1, i = 1, . . . , S, h = 1, . . . , P , has quadratic

shiftingH2 performance γ2(θp).

Proof: Similar to that of Corollary 5.2, thus omitted. �

Corollary 5.6. (Design of a quadratic shifting H2 polytopic state-feedback controller for DT

LPV systems) Let Q � O, Γih ∈ Rnu×nx and Yijh ∈ Snz2×nz2 , i = 1, . . . , S, j = 1, . . . , R,
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h = 1, . . . , P , be such that (5.56), (5.58) and:
Q AijhQ+BjΓih Bw,ijh

∗ Q O

∗ ∗ I

 � O (5.59)

hold ∀i = 1, . . . , S, ∀j = 1, . . . , R, ∀h = 1, . . . , P . Then, the closed-loop system made

up by the DT LPV system (5.1) and (5.3), with τ = k, and polytopic matrices as in

(5.50)-(5.51), and the polytopic state-feedback control law (5.52) with gains calculated

as Kih = ΓihQ
−1, i = 1, . . . , S, h = 1, . . . , P , has quadratic shifting H2 performance

γ2(θp).

Proof: Similar to that of Corollary 5.2, thus omitted. �

Corollary 5.7. (Design of a quadratic SFTB polytopic state-feedback controller for CT LPV

systems) Fix α > 0, and let λ1,h > 0, λ2,h > 0, λ3,h > 0, Q1 � O, Q2 � O, and

Γih ∈ Rnu×nx , i = 1, . . . , S, h = 1, . . . , P , be such that: He
{
AijhQ̃1 +BjΓih

}
− αQ̃1 Bw,ijhQ2

∗ −αQ2

 ≺ O (5.60)

λ1,hI ≺ Q1 ≺ I (5.61)

λ2,hI ≺ Q2 ≺ λ3,hI (5.62)
κ5,h κ4,h κ6,h

κ4,h λ1,h 0

κ6,h 0 λ2,h

 � O (5.63)

hold ∀i = 1, . . . , S, ∀j = 1, . . . , R, ∀h = 1, . . . , P , where Q̃1 = R−1/2Q1R
−1/2. Then,

the closed-loop system made up by the CT LPV system (5.1), with τ = t, and polytopic

matrices as in (5.50)-(5.51), and the polytopic state-feedback control law (5.52) with

gains calculated as Kih = ΓihQ̃
−1
1 , i = 1, . . . , S, h = 1, . . . , P , is quadratically SFTB with

respect to (c1(θp), c2(θp), T (θp), R, d(θp)).

Proof: Similar to that of Corollary 5.2, thus omitted. �

Corollary 5.8. (Design of a quadratic SFTB polytopic state-feedback controller for DT LPV

systems) Fix α ≥ 1, and let λ1,h > 0, λ2 > 0, Q1 � O, Q2 � O and Γih ∈ Rnu×nx ,

i = 1, . . . , S, h = 1, . . . , P , be such that:
−αQ1 ∗ ∗ ∗

AijhQ1 +BjΓih −Q1 ∗ ∗
O BT

w,ijh −αQ2 ∗
O O Q2Wijh −Q2

 ≺ O (5.64)
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λ1,hR
−1 ≺ Q1 ≺ R−1 (5.65)

O ≺ Q2 ≺ λ2I (5.66)(
κ5,h − λ2κ6,h κ4,h

κ4,h λ1,h

)
� O (5.67)

hold ∀i = 1, . . . , S, ∀j = 1, . . . , R, ∀h = 1, . . . , P . Then, the closed-loop system made

up by the DT LPV system (5.1) and (5.36), with τ = k, and polytopic matrices as in

(5.50)-(5.51), and the polytopic state-feedback control law (5.52) with gains calculated

as Kih = ΓihQ
−1
1 , i = 1, . . . , S, h = 1, . . . , P , is quadratically SFTB with respect to

(c1(θp), c2(θp), T (θp), R, d(θp)).

Proof: Similar to that of Corollary 5.2, thus omitted. �

Corollary 5.9. (Design of a quadratically shifting finite time stabilizing polytopic state-feedback

controller for CT LPV systems) Fix α > 0, and let λ1,h > 0, Q1 � O, and Γih ∈ Rnu×nx ,

i = 1, . . . , S, h = 1, . . . , P , be such that:

He
{
AijhQ̃1 +BjΓih

}
− αQ̃1 ≺ O (5.68)

(
κ5,h κ4,h

κ4,h λ1,h

)
� O (5.69)

and (5.61) hold ∀i = 1, . . . , S, ∀j = 1, . . . , R, ∀h = 1, . . . , P , where Q̃1 = R−1/2Q1R
−1/2.

Then, the closed-loop system made up by the CT LPV system (5.1), with τ = t,Bw (θ(t)),

and polytopic matrices as in (5.50)-(5.51), and the polytopic state-feedback control law

(5.52) with gains calculated asKih = ΓihQ̃
−1
1 , i = 1, . . . , S, h = 1, . . . , P , is quadratically

SFTS with respect to (c1(θp), c2(θp), T (θp), R).

Proof: It is a direct consequence of Corollary 5.7 when Bw,ijh = O and κ6,h = 0. �

Corollary 5.10. (Design of a quadratically shifting finite time stabilizing polytopic state-feedback

controller for DT LPV systems) Fix α ≥ 1, and let λ1,h > 0, Q1 � O and Γih ∈ Rnu×nx ,

i = 1, . . . , S, h = 1, . . . , P , be such that (5.65), (5.69) and:(
−αQ1 ∗

AijhQ1 +BjΓih −Q1

)
≺ O (5.70)

hold ∀i = 1, . . . , S, ∀j = 1, . . . , R, ∀h = 1, . . . , P . Then, the closed-loop system made

up by the DT LPV system (5.1), with τ = k, Bw (θ(k)), and polytopic matrices as in

(5.50)-(5.51), and the polytopic state-feedback control law (5.52) with gains calculated

as Kih = ΓihQ
−1
1 , i = 1, . . . , S, h = 1, . . . , P , is quadratically SFTS with respect to

(c1(θp), c2(θp), T (θp), R).



Shifting state-feedback control of LPV systems 112

Proof: It is a direct consequence of Corollary 5.8 when Wijh = Bw,ijh = O and κ6,h = 0.

�

5.4 Examples

5.4.1 Example 1: shifting D-stability

Let us consider a CT LPV system described by (5.1) with:

A (θ(t)) =


0 1 0 0

−θp(t) −θs(t) θp(t) 0

0 0 0 1

θp(t) 0 −θp(t) −θr(t)

 B (θr(t)) =


0 0

θr(t) 0

0 0

0 1

 Bw (θ(t)) = O

with the varying parameters θs ∈ [2, 3], θr ∈ [2, 3] and θp ∈ [1, 2] (in this example,

the subscripts s, r and p are used following the notation explained in Section 5.3). No-

tice that the assumption about the matrix B depending only on the subset of varying

parameters θr(t) is verified.

The LPV system matrices can be described as polytopic combinations of LTI system

matrices as in (5.50)-(5.51):

A (θ(t)) = s1 (θs(t)) r1 (θr(t))π1 (θp(t))A111 + s1 (θs(t)) r1 (θr(t))π2 (θp(t))A112

+s1 (θs(t)) r2 (θr(t))π1 (θp(t))A121 + s1 (θs(t)) r2 (θr(t))π2 (θp(t))A122

+s2 (θs(t)) r1 (θr(t))π1 (θp(t))A211 + s2 (θs(t)) r1 (θr(t))π2 (θp(t))A212

+s2 (θs(t)) r2 (θr(t))π1 (θp(t))A221 + s2 (θs(t)) r2 (θr(t))π2 (θp(t))A222

B (θr(t)) = r1 (θr(t))B1 + r2 (θr(t))B2

with:

A111 =


0 1 0 0

−1 −2 1 0

0 0 0 1

1 0 −1 −2

 A112 =


0 1 0 0

−2 −2 2 0

0 0 0 1

2 0 −2 −2



A121 =


0 1 0 0

−1 −2 1 0

0 0 0 1

1 0 −1 −3

 A122 =


0 1 0 0

−2 −2 2 0

0 0 0 1

2 0 −2 −3


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A211 =


0 1 0 0

−1 −3 1 0

0 0 0 1

1 0 −1 −2

 A212 =


0 1 0 0

−2 −3 2 0

0 0 0 1

2 0 −2 −2



A221 =


0 1 0 0

−1 −3 1 0

0 0 0 1

1 0 −1 −3

 A222 =


0 1 0 0

−2 −3 2 0

0 0 0 1

2 0 −2 −3



B1 =


0 0

2 0

0 0

0 1

 B2 =


0 0

3 0

0 0

0 1


Let us solve the design problem of finding a state-feedback gain:

K (θs(t), θp(t)) = s1 (θs(t))π1 (θp(t))K11 + s1 (θs(t))π2 (θp(t))K12

+s2 (θs(t))π1 (θp(t))K21 + s2 (θs(t))π2 (θp(t))K22

that places the closed-loop poles in a disk of radius r (θp(t)) and center (−q (θp(t)) , 0),

described by the characteristic function:

fD(θp) (z, θp(t)) =

(
−r (θp(t)) q (θp(t)) + z

q (θp(t)) + z∗ −r (θp(t))

)

with r (θp(t)) and q (θp(t)) defined as:

r (θp(t)) = 1 + θp(t) q (θp(t)) = −1 + 3θp(t)

The design is done using Corollary 5.2, such that (5.53) becomes a set of eight LMIs

with variables Q (Q � O being the ninth LMI), K11, K12, K21, K22:

(
−2Q 2Q+A111Q+B1Γ11

2Q+QAT
111 + ΓT

11B
T
1 −2Q

)
≺ O

(
−3Q 5Q+A112Q+B1Γ12

5Q+QAT
112 + ΓT

12B
T
1 −3Q

)
≺ O

(
−2Q 2Q+A121Q+B2Γ11

2Q+QAT
121 + ΓT

11B
T
2 −2Q

)
≺ O



Shifting state-feedback control of LPV systems 114

(
−3Q 5Q+A122Q+B2Γ12

5Q+QAT
122 + ΓT

12B
T
2 −3Q

)
≺ O

(
−2Q 2Q+A211Q+B1Γ21

2Q+QAT
211 + ΓT

21B
T
1 −2Q

)
≺ O

(
−3Q 5Q+A212Q+B1Γ22

5Q+QAT
212 + ΓT

22B
T
1 −3Q

)
≺ O

(
−2Q 2Q+A221Q+B2Γ21

2Q+QAT
221 + ΓT

21B
T
2 −2Q

)
≺ O

(
−3Q 5Q+A222Q+B2Γ22

5Q+QAT
222 + ΓT

22B
T
2 −3Q

)
≺ O

Then, using the YALMIP toolbox [182] with SeDuMi solver [305], the controller vertex

gains are obtained:

K11 =

(
−1.5769 −0.9760 −0.4146 −0.0109

−0.9610 0.0224 −4.2662 −2.0773

)

K12 =

(
−4.1989 −2.1903 −0.8467 −0.0156

−1.8680 0.0333 −11.0760 −5.1844

)

K21 =

(
−1.5692 −0.5853 −0.4143 −0.0107

−0.9637 0.0206 −4.2667 −2.0774

)

K22 =

(
−4.1541 −1.7798 −0.8423 −0.0148

−1.8749 0.0225 −11.0776 −5.1848

)
with:

Q =


0.0949 −0.2352 −0.0020 0.0072

−0.2352 0.7420 0.0026 −0.0214

−0.0020 0.0026 0.0875 −0.2230

0.0072 −0.0214 −0.2230 0.7340


Table 5.1 lists the eigenvalues of the vertex closed-loop matrices Aijh + BjKih. Also,

Fig. 5.1 shows how the closed-loop poles shift according to different values of the

scheduling parameter θp, proving that the shifting D-stability specification is correctly

satisfied. In particular, it can be seen that in contrast with the classical D-stability ap-

proach, where a region is selected and all the poles of the closed-loop system are forced

to be in such region, the shifting D-stability approach allows to select different regions
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TABLE 5.1: Shifting D-stability: closed-loop eigenvalues of the matrices Aijh +BjKih

Aijh +BjKih Eig. 1 Eig. 2 Eig. 3 Eig. 4
A111 +B1K11 −1.973 + 0.500i −1.973− 0.500i −2.042 + 1.054i −2.042− 1.054i
A112 +B1K12 −3.216 + 0.442i −3.216− 0.442i −3.567 + 0.422i −3.567− 0.422i
A121 +B2K11 −1.4539 −1.8811 −3.0436 −3.6267
A122 +B2K12 −2.1872 −2.3338 −6.0023 −6.2321
A211 +B1K21 −1.6266 −2.040 + 1.053i −2.040− 1.053i −2.5405
A212 +B1K22 −2.5932 −3.584 + 0.449i −3.584− 0.449i −3.9844
A221 +B2K21 −1.4538 −2.377 + 0.235i −2.377− 0.235i −3.626
A222 +B2K22 −2.1850 −2.4509 −5.8787 −6.0097

for different values of the scheduling parameter θp. According to Corollary 5.1, the de-

cay rate of the Lyapunov function varies with the value of θp. In fact, by taking a look

at the dominant poles of the vertex systems (denoted as Eig. 1 in Table 5.1), one can

see that the range of the real parts of the dominant poles for θp = 1 (index h = 1) is

[−1.973,−1.4538], while when θp = 2 (index h = 2) such range is [−3.216,−2.1850].
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FIGURE 5.1: Shifting D-stability: closed-loop poles.

The effect of the shifting pole placement specification on the transient dynamics of the

closed-loop system can be effectively seen by taking a look at the free responses of

the state variables, shown in Figs. 5.2-5.5. These free responses have been obtained

starting from the initial state x(0) = [ 1 0 1 0 ]T in four different cases, three of

which with constant values of the scheduling parameter θp(t) (θp = 1, θp = 1.5 and
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θp = 2, corresponding to the blue, purple and red lines, respectively), and one with a

varying scheduling parameter θp(t) = 1.5 + 0.5 sin(πt/2) (corresponding to the black

line). The remaining scheduling parameters have been chosen as θs(t) = 2.5 + 0.5 cos t

and θr(t) = 2.5 + 0.5 sin t.
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FIGURE 5.2: Shifting D-stability: closed-loop response of x1(t).

It can be seen from these figures that the closed-loop system behaves as expected: a big

value of θp corresponds to faster dynamics of the closed-loop system. In the fourth case,

that is, with a time-varying θp, the dynamics of the closed-loop system around t = 0s

is the same as the one of the closed-loop system scheduled by the constant θp = 1.5. As

the time increases, so does the value of θp and the system gets faster until t = 1s when

θp begins to decrease and the trend reverses, with the system getting slower. However,

this last effect and the increasing of speed from time t = 3s are not appreciable because

the steady-state has almost been reached. The input signals u1 and u2 are shown in Fig.

5.6 and Fig. 5.7. It can be seen that the bigger is θp, the bigger are the control signals,

and vice versa. This is consistent with the fact that strong control actions are required

to make the controlled system faster.
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FIGURE 5.3: Shifting D-stability: closed-loop response of x2(t).

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t [s]

x 3(t
)

 

 
θ

p
=1

θ
p
=1.5

θ
p
=2

θ
p
=1.5+0.5*sin(πt/2)

FIGURE 5.4: Shifting D-stability: closed-loop response of x3(t).
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FIGURE 5.5: Shifting D-stability: closed-loop response of x4(t).
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FIGURE 5.6: Shifting D-stability: input signal u1(t).
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FIGURE 5.7: Shifting D-stability: input signal u2(t).

5.4.2 Example 2: shiftingH∞ performance

Let us consider a CT LPV system described by (5.1)-(5.2) with matrices A (θ(t)) and

B (θr(t)) defined as in the previous example, Dz∞u (θr(t)) = O, Dz∞w (θ(t)) = O and:

Bw (θ(t)) = Bw =


1

0

0

0

 Cz∞ (θ(t)) = Cz∞ =
(

1 0 0 0
)

and let us solve the problem of finding a state-feedback gain:

K (θs(t), θp(t)) = s1 (θs(t))π1 (θp(t))K11 + s1 (θs(t))π2 (θp(t))K12

+s2 (θs(t))π1 (θp(t))K21 + s2 (θs(t))π2 (θp(t))K22

such that the transfer function from w to z∞ satisfies the following desired bound on

theH∞ norm:

γ∞ (θp(t)) =
√

0.01 + 0.24 (θp(t)− 1) θp ∈ [1, 2]
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Notice that the particular structure of the shifting bound allows to obtain:

γ∞ (θp(t))
2 = π1 (θp(t))κ2,1 + π2 (θp(t))κ2,2

as in (5.47), with κ2,1 = 0.01 and κ2,2 = 0.25 and:

π1 (θp(t)) = 2− θp(t) π2 (θp(t)) = θp(t)− 1

The design is done using Corollary 5.3, solving the LMIs (5.54) using the YALMIP tool-

box [182] with SeDuMi solver [305], obtaining the following controller vertex gains:

K11 =

(
−1588.9 −107.2 −2.5 −2.2

155.7 11.0 −1.0 −0.9

)

K12 =

(
−12.8 −5.2 −2.4 −2.4

4.9 3.8 −0.5 −1.4

)

K21 =

(
−1570.2 −105.6 −2.4 −2.2

154.6 10.9 −1.0 −0.9

)

K22 =

(
−12.6 −4.8 −2.4 −2.5

5.8 4.2 −0.5 −1.4

)
with:

Q =


0.0562 −0.7985 0.0120 0.0042

−0.7985 11.9183 −0.2890 −0.0497

0.0120 −0.2890 12.1721 −6.0386

0.0042 −0.0497 −6.0386 6.1784

 (5.71)

It can be seen from the figures that the closed-loop system behaves as expected. The

shifting H∞ performance specification results satisfied for each possible value of the

scheduling parameter θp, as depicted in Fig. 5.8. It can be seen that the relevant feature

of the proposed approach with respect to the classical H∞ design is that it allows to

specify different bounds for the H∞ norm corresponding to different values of θp(t),

thus allowing to vary online the exogenous input rejection characteristics.

The effect of the shifting H∞ specification on the closed-loop system can be seen from

the plots of Tz∞w for different values of the parameter θp (see Fig. 5.9). In particular, it

can be seen that the higher the value of θp is, the higher is the peak of the magnitude

of Tz∞w. This result is consistent with the definition of the H∞ norm and its shifting

counterpart.
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Finally, to conclude this analysis, let us consider a sinusoidal exogenous input w =

sin(t), and let us analyse the response of the closed-loop system to this input, starting

from zero initial condition. As in the previous example, the simulations are performed

with θs(t) = 2.5 + 0.5 cos(t) and θr(t) = 2.5 + 0.5 sin(t), and different values of θp(t)

have been considered for comparison purpose. The obtained results are plotted in Fig.

5.10. As expected, a stronger rejection of the exogenous input corresponds to a small

value of θp (blue line, corresponding to θp = 1). By increasing θp, e.g. to values of

θp = 1.5 (purple line) and θp = 2 (red line), the rejection performance of the control

system decreases. When considering a varying θp(t) = 1.5 + 0.5 sin(0.5πt), the rejection

characteristics vary in time: at the beginning of the simulation, when θp(t) is approx-

imately 1.5, the response of the system with the varying θp (black line) equals the one

with a constant θp = 1.5 (purple line). As the time increases, so does θp(t), and the gain

of the transfer function from w to z∞ increases. Hence, the effect of the sinusoidal sig-

nal on z∞ becomes stronger until time t = 1 s, when the varying parameter θp(t) starts

decreasing again, and the trend reverses.
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FIGURE 5.10: Shifting H∞ performance: response of the closed-loop system to an
exogenous input w = sin(t).
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5.5 Conclusions

In this chapter, the problem of designing a parameter-scheduled state-feedback con-

troller that satisfies a new kind of specifications, referred to as shifting specifications, has

been investigated. In particular, the concepts of D-stability, H∞ performance, H2 per-

formance, finite time boundedness and finite time stability have been extended in a

shifting sense, introducing the shifting D-stability, shifting H∞ performance, shifting H2

performance, shifting finite time boundedness and shifting finite time stability specifications.

The problem has been analyzed in the LPV case, and the solution, expressed as LMIs

for which a feasible solution should be found, has been obtained using a common

quadratic Lyapunov function.

The results obtained with CT LPV academic examples have demonstrated the effective-

ness and some characteristics of the proposed approach. In particular, in contrast with

the classical specifications, the design using the shifting ones allows to select different

performances for different values of the scheduling parameter θp, thus allowing to vary

online the control system performance.

As a future work, since the use of a common quadratic Lyapunov function is potentially

conservative, the application of other types of Lyapunov functions, e.g. parameter-

dependent ones, can be investigated. Also, a future comparison of the proposed ap-

proach with the use of parameter-dependent weighting functions could be interesting.
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Chapter 6

Background on fault tolerant control

6.1 Motivation

Fault tolerant control (FTC) is the name given to all those techniques that are capable of

maintaining the overall system stability and acceptable performance in the presence of

faults. In other words, a closed-loop system which can tolerate component malfunc-

tions, while maintaining desirable performance and stability properties is said to be

a fault tolerant control system (FTCS). Starting from the 80s, FTC applications began to

appear in the scientific literature, mainly motivated by aircraft flight control system

designs. The goal was to provide self-repairing capability in order to ensure a safe

landing in the event of severe faults in the aircraft [88]. Since then, a lot of effort has

been put in developing FTC schemes. Interests in diagnostics and fault tolerant control

have been intensified since the Three Mile Island incident on March 28, 1979 and the

tragedy at the Chernobyl nuclear power plant on April 26, 1986. The FTC problem has

begun to draw more and more attention in a wider range of industrial and academic

communities, due to the increased safety and reliability demands beyond what a con-

ventional control system can offer. FTC applications include aerospace, nuclear power,

automotive, manufacturing and other process industries.

The existing FTC techniques can be divided into three categories:

• Hardware redundancy techniques

• Analytical redundancy techniques: passive fault tolerant control (PFTC)

• Analytical redundancy techniques: active fault tolerant control (AFTC)

The hardware redundancy techniques (see Fig. 6.1) try to achieve fault tolerance by ex-

ploiting hardware redundancy in the system. Its main advantage is simplicity, but at
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FIGURE 6.1: Hardware redundancy conceptual scheme.

the cost of an increased hardware and maintenance cost that can be avoided using an-

alytical redundancy techniques. The passive FTC techniques (see Fig. 6.2) are control

laws that take into account the fault appearance as a system perturbation. Thus, within

certain margins, the control law has inherent fault tolerant capabilities, allowing the

system to cope with the fault presence, thanks to its robustness against a class of faults.

This approach has the advantage of needing neither fault diagnosis nor controller re-

configuration, but it has limited fault tolerance capabilities (for example, it needs to

take all possible faults of a system in consideration during the design stage, thus it can-

not be guaranteed that unanticipated failures are handled). Moreover, there is a loss

of performance with respect to the nominal case. On the other hand, the active FTC

techniques (see Fig. 6.3) adapt the control law using the information given by the fault

diagnosis. With this information, some automatic adjustments in the control loop are

done after the fault appearance, trying to satisfy the control objectives with minimum

performance degradation.

FIGURE 6.2: Passive fault tolerant control conceptual scheme.
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FIGURE 6.3: Active fault tolerant control conceptual scheme.

Several reviews on FTCS have appeared since the 80s. A good recent review can be

found in [372], where a comparison of different approaches according to different cri-

teria such as design methodologies and applications is carried out and 376 references,

dating back to 1971, are compiled to provide an overall picture of historical, current,

and future developments in this area. A few books on this subject have been published

in recent years too, e.g. [35].

Some of the existing techniques will be briefly discussed in this chapter.

6.2 Hardware redundancy techniques

In principle, the tolerance to control system failures can be improved if two or more

sensors/actuators, each separately capable of satisfactory control, are implemented in

parallel. This approach is referred to as hardware redundancy. A voting scheme is used

for the redundancy management, comparing control signals to detect and overcome

failures. With two identical channels, a comparator can determine whether or not the

control signals are identical; hence, it can detect a failure but cannot identify which

component has failed. Using three identical channels, the control signal with the mid-

dle value can be selected (or voted), assuring that a single failed channel never controls

the plant. A two-channel system is considered fail-safe because the presence of a failure

can be determined, but it is left to additional logic to select the unfailed channel for

control. The three-channel system is fail-operational, as the task can be completed fol-

lowing a single failure. Systems with four identical control channels can tolerate two

failures and still yield nominal performance. Problems encountered in implementing
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hardware redundancy include: selection logic, reliability of voting, increased hardware

and maintenance costs.

6.3 Passive fault tolerant control techniques

The passive FTC techniques synthesize a controller so that the closed-loop system is

stable, or has some desired performance, for some combinations of failure elements

defined a priori. This is done by using the results in the robust control area, considering

faults as if they were uncertainties or system perturbations. In particular, the term

passive indicates that no actions are required by the FTCS after the prescribed faults

have occurred during the system’s operation.

This approach has the advantage of needing neither fault diagnosis schemes nor con-

troller reconfiguration, but it has limited fault tolerant capabilities and the price to pay

for its simplicity is a loss of performance with respect to the nominal case. Also, in

passive FTC no time delay exists between the fault occurrence and the corresponding

action. For these reasons, the design of passive FTCS has attracted a lot of attention

from the academic community [142].

A good historical overview about development and research of passive FTC techniques

can be found in [141]. Some of the passive FTC approaches found in the literature are:

reliable linear quadratic (LQ),H∞ robust control and passive FTC using LMIs.

6.3.1 Reliable linear quadratic (LQ) approach

The LQ approach is one of the most established passive FTC techniques, and relies

on the robustness of the LQ theory. This approach was first used to accommodate

requirements for robustness against sensor failures by [4]. Later, [338] developed a

methodology for the design of reliable centralized and decentralized control systems

that provided guaranteed stability and performance not only when all control compo-

nents are operational, but also for sensor or actuator outages in the centralized case,

or for control-channel outages in the decentralized case. In [337], the LQ regulator

technique has been exploited to design a reliable controller against a class of actuator

outages using Riccati equations. A method based on robust pole region assignment and

a pre-compensator that modifies the dynamic characteristics of the redundant actuator

control channels has been presented by [375] to synthesize a reliable controller for dy-

namic systems possessing actuator redundancies. The results obtained by [337] were



Background on fault tolerant control 129

extended to deal with nonlinear systems in [178], where Hamilton-Jacobian inequali-

ties were employed instead of the Riccati equations. Despite being a well-established

technique, reliable LQ control is still a subject of investigation, e.g. [366]. The main

problem with this technique is that the stability is not guaranteed for faults outside the

pre-selected ones, and since there is no reconfiguration of the controller, the nominal

performance is not optimal.

6.3.2 H∞ robust control

Another control approach widely used for passive FTC is H∞ robust control, that uses

the results developed by [80]. Important results were obtained by [338], where theH∞
performance has been guaranteed not only in the nominal case, but also in presence

of control component outages, as long as these results do not affect the observability

and controllability of the system. The results obtained by [338] were extended by [361],

by considering not only outages but also loss of effectiveness in sensors and actuators.

Recent research has also dealt with the same problem for networked control systems

[340]. However, when the magnitude of the fault goes beyond the range considered

for the design, the H∞ norm performance can no longer be guaranteed. Also, since

the reference signal is assumed to be arbitrary, the controller is conservative because it

takes into account the worst case reference signal [179].

6.3.3 Passive FTC using linear matrix inequalities (LMIs)

The goal of this approach is to achieve optimal performance in the nominal situation

and acceptable level of performance under occurrence of faults in the control com-

ponents. In [53], the robust FTC problem has been formulated in an LMI setting, in

which satisfactory performance and stability robustness are introduced. In particular,

a multi-objective approach is used to establish a matrix inequality formulation for FTCS

design. Later, in [362], a reliable output-feedback controller has been designed using

an iterative LMI approach. In this case, the design goal is to find an internally stabi-

lizing controller such that the nominal performance of a closed-loop transfer matrix is

optimized. The designed controller also satisfies the reliability constraint, in terms of

stability and performance, under the actuator/sensor faults condition.
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6.4 Active fault tolerant control techniques

As pointed out in [372], an active FTC system can be typically divided into four sub-

systems:

• a reconfigurable controller;

• a fault diagnosis scheme;

• a controller reconfiguration mechanism;

• a command/reference governor.

The inclusion of both a fault diagnoser and a reconfigurable controller within the over-

all control system scheme is the main feature distinguishing active FTC from passive

FTC. Key issues in active FTC consist in how to design:

• a controller that can be reconfigured;

• a fault diagnosis scheme with high sensitivity to faults and robustness against

model uncertainties, variations of the operating conditions, and external distur-

bances;

• a reconfiguration mechanism that allows recovering the pre-fault system perfor-

mance as much as possible, in presence of uncertainties and time delays in the

fault diagnosis, as well as constraints on the control inputs and the allowed sys-

tem states.

Based on the online information of the post-fault system, the reconfigurable controller

should be designed to maintain stability, desired dynamic performance and steady-

state performance. In addition, in order to ensure that the closed-loop system can track

a desired trajectory under fault occurrence, a reconfigurable feedforward controller of-

ten needs to be synthesized. Also, a command/reference governor that adjusts the ref-

erence trajectory automatically should be added to avoid potential actuator saturation

and to take into consideration the degraded performance after fault occurrence.

Some of the existing active FTC techniques that can be found in the literature are the

following: linear quadratic (LQ), pseudo-inverse method (PIM), intelligent control (IC),

gain-scheduling (GS), model following (MF), adaptive control (AC), multiple model

(MM), integrated diagnostic and control (IDC), eigenstructure assignment (EA), feed-

back linearization (FL)/dynamic inversion (DI), model predictive control (MPC), quan-

titative feedback theory (QFT) and variable structure control (VSC)/sliding mode con-

trol (SMC).
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Anyway, even if each individual control design method has been developed separately,

in practice a combination of several of these methods may be more appropriate to

achieve the best performance.

6.4.1 Linear quadratic (LQ) approach

The LQ approach has been used also for active FTC in several papers. For example,

[183] has presented an LQ-based approach for the automatic redesign of flight control

systems for aircrafts that have suffered control element failures. [201] have developed

a self-repairing flight control system concept in which the control law is reconfigured

after actuator and/or control surface damage to preserve stability and pilot command

tracking. In [199], the use of integral control achieves reconfiguration and acceptable

performance in the presence of several simultaneous control actuator failures and ex-

ogenous disturbances.

6.4.2 Pseudo-inverse method (PIM)

The main idea of the PIM is to modify the feedback gain so that the reconfigured system

approximates the nominal system in some sense. It is an attractive approach because

of its simplicity in computation and implementation. The main drawback of the PIM

is that the stability of the reconfigured system is not guaranteed. As a result, if applied

without appropriate care, the PIM can lead to instability. The theoretical basis for this

approach have been developed by [108], where the lack of stability guarantees has been

pointed out and an approach that provides stability constraints for the solution of the

PIM has been proposed. The PIM has later been revisited by Staroswiecki [300], where

the use of a set of admissible models, rather than searching for an optimal one which

does not provide any stability guarantee, has been proposed.

6.4.3 Intelligent Control (IC)

IC uses expert systems, fuzzy logic, neural networks and similar tools to detect and

accommodate faults. Its advantage is the possibility to use easily heuristic knowledge

for achieving fault tolerance, but it also requires a high computational power and a

very precise knowledge of the fault. [120] presents a controller that uses a rule-based

expert system approach to transform the task of failure accommodation into a problem

of search, with the advantage of enhancing the existing redundancy. [92] presented

a methodology that accommodates unanticipated faults using learning techniques. In
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[170], the fuzzy model reference learning controller has been used to reconfigure the

nominal controller in an F-16 aircraft to compensate for various actuator failures with-

out using explicit failure information. An expert supervision strategy is also applied,

such that the performance of the control reconfiguration is increased. [206] have pro-

posed the use of online learning neural network controllers that have the capability

of bringing a system affected by substantial damage back to an equilibrium condition.

This goal has been achieved through the use of a specific training algorithm and proper

collection of the architectures for the neural network controllers. [230] has presented

a learning methodology for failure accommodation that uses online approximators,

i.e. generic function approximators with adjustable parameters, such as polynomials,

splines and neural network topologies, e.g. sigmoidal multilayer networks and radial

basis function networks. [21] has presented an approach that integrates a fuzzy TS

model-based adaptive control with the reconfiguration concept. [339] have proposed

a neural network-based FTC for unknown nonlinear systems that introduces an extra

neural network-based fault compensation loop under fault occurrence. The learning

capabilities of neural networks and fuzzy systems have been exploited for FTC in [76],

where online approximation-based stable adaptive neural/fuzzy control has been stud-

ied for a class of input-output feedback linearizable time-varying nonlinear systems. In

this work, a fault diagnosis unit designed by interfacing multiple models with an expert

supervisory scheme is also used for improving the fault tolerance ability of the adaptive

controller. [130] have presented the architecture and synthesis of a damage-mitigating

control system where the objective is to achieve high performance, with increased re-

liability, availability, component durability, and maintainability. Such an objective is

accomplished using a fuzzy controller that makes a trade-off between system dynamic

performance and structural durability in critical components.

6.4.4 Gain-scheduling (GS)

The idea of this method is to generate a control law that depends on varying parame-

ters that include the fault signals generated by the fault diagnosis unit. For example,

in [201], a self-repairing flight control system concept, where the scheduled gain stabi-

lizes a collection of models representing the aircraft in various control failure modes,

has been described. A similar approach has been used later by [106] for the recon-

figurable LPV control of a Boeing 747-100/200, where the controller was scheduled

by three parameters: flight altitude, velocity, and a fault identification signal. The gain

scheduling approach has been coupled to an adaptive Kalman filter estimation in [292].

A static output feedback synthesis in presence of multiple actuator failures is developed
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by [240], such that the closed-loop stability can be maintained for any combination of

multiple actuator failures.

6.4.5 Model following (MF)

The basic idea of the MF approach is to design a control system that makes the output

or the state vector trajectories of the real plant follow the ones of a reference system

as closely as possible [150]. If the MF is achieved even in the presence of faults, the

control system is fault tolerant. This idea has been first exploited by [302], where a

restructurable control using proportional-integral implicit MF has been presented. Fre-

quency domain necessary and sufficient conditions for perfect MF are developed and

used by [109] to design reconfigurable control systems. The case of output feedback

control, both using the implicit MF and the explicit MF principles, has been used for

aircraft FTC in [306].

6.4.6 Adaptive Control (AC)

An AC scheme is able to deal with a time-varying uncertain system. Thus, it can be

efficiently used to deal with faults. AC has been used in [6] to accommodate failures in

the F-16 aircraft. In [40], three adaptive algorithms for reconfigurable flight control are

compared, and their advantages and disadvantages concerning the complexity and the

assumptions that they require are discussed. The direct adaptive reconfigurable flight

control approach described by [345] uses a mix of dynamic inversion controller in an

explicit MF architecture, neural network, control allocation scheme and system identi-

fication module to achieve fault tolerance of a tailless fighter aircraft. The case where

some inputs are stuck at some fixed or varying values which cannot be influenced by

the control action has been analysed in [324] and [325] for the state feedback and the

output feedback case, respectively.

6.4.7 Multiple Model (MM)

The idea of this approach is to compute a bank of models offline, each of which de-

scribes the system behavior in the presence of a particular fault, and to calculate the

corresponding control law for each of them. When a fault is detected, the most suit-

able model is selected, and the corresponding control law becomes active, allowing to

increase the performance under faulty situation. This idea has been considered first

by [198] for designing an aircraft flight control system with reconfigurable capabilities.
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In [205], an MM Kalman filtering approach has been introduced for the estimation of

the model of a damaged aircraft, and used as the basis for the reconfiguration of the

flight control system. MM adaptive estimation methods have been incorporated into

the design of a flight control system for an F-16 aircraft in [197], providing it with the

capability to detect and compensate for sensor and control surface/actuator failures.

In particular, the algorithm consists of an estimator, composed of a bank of parallel

Kalman filters, each matched to a specific hypothesis about the failure status of the

system, a means of blending the filter outputs through a probability-weighted aver-

age, and an algorithm that redistributes the control commands, that would normally

be sent to the detected failed surfaces, to the non-failed surfaces, accomplishing the

same control action on the aircraft. An integrated fault detection, diagnosis, and recon-

figurable control scheme based on interacting MM approach, with the relevant feature

of being able to deal not only with actuator and sensor faults, but also with failures

in the system components, has been proposed by [369]. A combination between MM

and adaptive reconfiguration control has been developed by [118] to compensate for

the effect of actuator faults and asymptotically track a reference model.

6.4.8 Integrated diagnostics and control (IDC)

Another possible approach for achieving fault tolerance is to design together the con-

troller and the diagnostic module, instead of designing them independently, thus ac-

counting for the interactions which occur between these two components [139]. In

[304], it has been shown how a combined module for control and diagnosis can be

designed, such that references are tracked, disturbances are robustly rejected, unde-

tected faults do not have disastrous effects, the number of false alarms are reduced and

the faults which have occurred are identified. Demonstrations of the applicability of

this approach to valve fault accommodation on rocket engines, heat exchangers and

autonomous underwater vehicles have been provided in [138], [21] and [153], respec-

tively.

6.4.9 Eigenstructure assignment (EA)

EA is a technique used to control multiple input multiple output (MIMO) systems,

that has been applied to FTC systems with the aim of designing the eigenstructure of

the reconfigured system to be as similar as possible to the nominal one, as shown in

[140]. The application of EA to FTC has been further developed in [17], where the
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problem of robust reconfigurable controller design, which makes the after-fault closed-

loop insensitive as much as possible to the parameter uncertainties of the after-fault

model, has been considered.

6.4.10 Feedback linearization (FL)/Dynamic inversion (DI)

The idea of applying FL in FTC dates back to [215], that presented a restructurable flight

control system design method based on this technique. In a subsequent work, the idea

has been extended to DT systems and applied to aircraft failures occurring with the

control effectors [214]. A DI-based adaptive/reconfigurable control system has been

designed to provide fault and damage tolerance for an X-33 on the ascent flight phase

in [78].

6.4.11 Model predictive control (MPC)

In MPC, a model of the system is used to predict its behavior over a future time interval.

Then, based on these predictions, the sequence of inputs is calculated by minimizing

a cost function. The first input of the sequence is applied and, at the following time

sample, the process is repeated over a shifted time interval [174]. The idea of applying

MPC to FTC dates back to [221], where it was used for maximizing aircraft tracking

performance before and after control surface failure, preventing instability. In [190],

the approach proposed for reconfiguring control systems in the event of major fail-

ures makes use of a combination of constrained MPC and other technologies, such as

high-fidelity nonlinear simulation models, effective approximation and identification

algorithms, and fault detection and isolation (FDI) capability. Formulations and exper-

imental evaluations of various MPC schemes applied to a realistic full envelope nonlin-

ear model of a fighter aircraft are presented in [151]. In [213], two FTC strategies based

on MPC are proposed and compared: passive fault tolerant MPC, that takes advantage

of natural tolerance of MPC, and active fault tolerant MPC, that uses active fault toler-

ance techniques in combination with MPC. The comparison is performed through an

application over a portion of the Barcelona sewage network.

6.4.12 Quantitative feedback theory (QFT)

QFT, developed by [132] in the early 1970s, is a frequency domain based design tech-

nique where the controllers can be designed to achieve a set of performance and sta-

bility objectives over a specific range of plant parameter uncertainty. The QFT method
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takes into account quantitative information on the variability of the plant, the robust

performance requirements, the tracking performance specifications, the expected dis-

turbance amplitude and its attenuation requirements [358]. The feasibility of utilizing

a robust QFT controller that meets flying quality specifications for an aircraft subject to

control surface failures has been investigated by [155]. A reconfigurable flight control

system that uses the series of a robust QFT controller and an adaptive filter has been

presented in [297]. The design and experimental evaluation of a fault tolerant controller

for an electrohydraulic servo positioning system subject to sensor failures or faults in

the servovalve and supply pump has been performed in [212].

6.4.13 Variable structure control (VSC) / Sliding mode control (SMC)

VSC systems are characterized by a suite of feedback control laws and a decision rule

[87]. The decision rule, named switching function, decides which feedback controller

should be used at a given instant, based on the system state. A VSC system can be

regarded as a combination of subsystems, where each subsystem has a fixed control

structure and is valid for a specific subset of system states. SMC is a particular type of

VSC, where the state of the system is driven and constrained to lie in a neighbourhood

of the switching function, with the advantage of making the system insensitive to a

particular class of uncertainty. VSC/SMC has been used successfully in many applica-

tions of FTC [9, 10]. A reconfigurable SMC that achieves robust tracking after damage

in an aircraft has been designed in [295] and [296]. A MF scheme, based on VSC, that

possesses a fault tolerance property has been proposed by [160]. The combination of

integral SMC methodology and observers with hypothesis testing has been used for

FTC of a spark ignition engine in [162].

6.5 Recent developments of fault tolerant control

This section resumes some recent developments of FTC theory [372], highlighting some

open issues that motivate further investigation in this topic.

• Redundancy: since the introduction of the concept of analytical redundancy, i.e.

the use of a mathematical model of the system for FDI/FTC, important research

efforts on how to efficiently utilize this concept have been made [119, 220]. The

following challenging issues regarding redundancy can be detected [372]: (i) the

design of the overall fault tolerant and redundant system architecture; (ii) the

optimal configuration of redundancy, achieving a tradeoff between specifications
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and cost; (iii) the design and implementation of a fault tolerant controller that

utilizes at best both the hardware and the analytical redundancy to achieve the

control objectives; and (iv) the introduction of quantitative measures of the degree

of redundancy [144, 357, 375].

• Integrated design of fault diagnosis/fault tolerant control: as remarked by [372],

in order to obtain a functional active FTCS, it is important to ensure an adequate

cooperation between the fault diagnosis and the FTC algorithms. In fact, an incor-

rect information provided by the fault diagnoser can lead potentially to undesired

behaviors and overall degradation of the FTCS performance. For this reason, the

way how to integrate both the subsystems is an important topic of research, and

recent papers have addressed this issue [129, 152, 310, 363]. Also, another impor-

tant issue worth investigating is how to mitigate the adverse interactions between

each subsystem [84]. For further discussion about the integration of fault diagno-

sis and fault tolerant control, the reader is referred to the survey paper in [371].

• Design for graceful performance degradation: recently, some techniques have

tried to achieve fault tolerance without aiming at recovering the original system

performance, but accepting some performance degradation instead. These tech-

niques are of particular interest in the case of actuator faults. In fact, once an

actuator is affected by a fault, maintaining the original performance will typically

increase the effort distributed on the remaining actuators, which is highly unde-

sirable in practice, due to physical constraints on the actuators. Therefore, recent

works have considered the design of FTCS with graceful performance degrada-

tion, e.g. [143, 370].

• Stability and stability robustness: in the case of active FTCS, stability require-

ments are specified under different situations: (i) fault-free operation; (ii) tran-

sient during reconfiguration; (iii) steady-state after reconfiguration. In all these

situations, it is important to investigate the stability robustness [226]. As re-

marked by [372], despite much work has been done, e.g. [191], stability analysis

and stability robustness for real-time reconfigurable control systems in practical

environments still need further investigation.

• FTC design for nonlinear systems: several strategies have been proposed to

deal with nonlinear systems, such as feedback linearization [107], nonlinear dy-

namic inversion [78], backstepping [360] and neural networks [365] among oth-

ers. However, as stated by [372], the development of effective design methods for

dealing with nonlinear FTCS issues is still an open research problem.

• FTC of constrained systems: the design of FTCS subject to actuator amplitude

and rate saturation constraints has been investigated by a few works, such as
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[41] and [221]. However, there are still many open problems in the framework of

MIMO systems [372].

• Dealing with fault diagnosis uncertainties/delays: the presence of errors in the

fault diagnosis process are inevitable [192]. Also, time delays and false alarms

are associated with fault diagnosis decisions [196]. Hence, it is important to take

into account these undesired effects to reduce their impact on the FTCS, and the

development of new and practical approaches to accomplish this goal is an inves-

tigation hot topic [372].

• Self-designing FTC: recent research activities have focused on FTC laws which

rely on online estimation of plant parameters [207, 299, 342]. There are still some

challenges in this field, e.g. dealing with poor input excitation and the adverse

interactions between the identification and the control in a closed-loop setting

[372].

• Control allocation: in presence of actuator redundancy, control allocation tech-

niques aim at choosing how to use the available actuators in order to achieve a

specified objective. In case of actuator faults, these techniques try to make the

best use of the remaining healthy actuators [66, 374]. As remarked by [146], there

are still computational issues in the application of control allocation to nonlinear

systems.

• Transient management: undesired transients during the reconfiguration process

may be harmful to the safe operation of an FTCS, and lead to undesired conse-

quences, such as saturations in the actuators, and damage to the components. For

this reason, these transients should be minimized as much as possible which, in

spite of a few results available in the literature, e.g. [117], is still an open problem.

• Real-time issues: all the subsystems in an AFTCS should operate in real-time,

and for this reason there should be hard deadlines for controller reconfiguration,

in order to avoid risky situations. This issue, despite its criticality, has not been

dealt with satisfactorily, and there are only a few works addressing it, e.g. [119].

• Fault-tolerant networks: FTC in networked control systems is a challenging prob-

lem due to timing issues, network-induced delays and packet losses, whose ef-

fects should be carefully taken into consideration [135, 283].



Background on fault tolerant control 139

6.6 Conclusions

In this chapter, a review of the available FTC approaches has been performed. The

ability to maintain stability and acceptable performance in spite of faults has moti-

vated a lot of effort in developing FTC strategies. FTC techniques can be divided into

three categories. Hardware redundancy approaches achieve fault tolerance by exploiting

extra components, providing a simple but expensive solution. Different passive FTC

approaches have been recalled (reliable linear quadratic control,H∞ control, and LMI-

based design). They all increase the robustness of the nominal controller against some

predefined set of faults, and share the advantage of needing neither fault diagnosis nor

controller reconfiguration, but at the expense of limited fault tolerance capabilities. Fi-

nally, the active FTC approaches (reconfigured linear quadratic control, pseudo-inverse

method, intelligent control, gain-scheduling, model following, adaptive control, mul-

tiple model, integrated diagnostics and control, eigenstructure assignment, feedback

linearization/dynamic inversion, model predictive control, quantitative feedback the-

ory, variable structure control/sliding mode control) use the information given by the

fault diagnosis to perform some automatic adjustments after the fault appearance, in

order to achieve fault tolerance.

Despite the strong development of FTC theory in the last decades, a lot of open issues,

resumed in the last part of the chapter, motivate further investigation in this topic.



Chapter 7

Fault tolerant control of LPV

systems using robust state-feedback

control

The content of this chapter is based on the following works:

• [249] D. Rotondo, F. Nejjari, V. Puig. Passive and active FTC comparison for poly-

topic LPV systems. In Proceedings of the 12th European Control Conference (ECC),

pages 2951-2956, 2013.

• [250] D. Rotondo, F. Nejjari, V. Puig. Fault tolerant control design for polytopic

uncertain LPV systems. In Proceedings of the 21st Mediterranean Control Conference

(MED), pages 66-72, 2013.

• [251] D. Rotondo, F. Nejjari, A. Torren, V. Puig. Fault tolerant control design for

polytopic uncertain LPV systems: application to a quadrotor. In Proceedings of the

2nd International Conference on Control and Fault-Tolerant Systems (SysTol), pages

643-648, 2013.

• [265] D. Rotondo, F. Nejjari, V. Puig. Robust quasi-LPV model reference FTC of

a quadrotor UAV subject to actuator faults. International Journal of Applied Mathe-

matics and Computer Science, 25(1):7-22, 2015.

7.1 Introduction

In Chapter 4, the idea of the robust LPV polytopic technique, obtained merging known

results from the robust polytopic control area and the traditional LPV polytopic control

140
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area, has been introduced. In the proposed technique, the vector of varying parameters

is used to schedule between uncertain LTI systems. The resulting approach consists

in using a double-layer polytopic description to take into account both the variability

due to the varying parameter vector and the uncertainty. The first polytopic layer man-

ages the varying parameters and is used to obtain the vertex uncertain systems, where

the vertex controllers are designed. The second polytopic layer is built at each vertex

system to take into account the model uncertainties and add robustness in the design

step.

In this chapter, it is shown that the proposed framework can be used for FTC, with the

advantage that, depending on how much information is available, it gives rise to differ-

ent strategies. If the faults are considered as though as they were perturbations, a pas-

sive FTC would arise. On the other hand, if the faults are used as additional scheduling

parameters, an active FTC would be obtained. Finally, if the fault estimation uncertainty

is taken into account explicitly during the design step, the robust LPV polytopic tech-

nique would lead to a hybrid FTC. The different controllers are obtained using LMIs,

in order to achieve regional pole placement and H∞ performance constraints. Results

obtained using a quadrotor UAV simulator are used to show the effectiveness of the

proposed approach.

7.2 Problem formulation

Consider the following slight modification of the LPV system (2.1):

σ.x(τ) = A (θ(τ))x(τ) +B (θ(τ))u(τ) + c(τ) (7.1)

where c(τ) is a known exogenous input, and let us consider the problem of designing

a control scheme in order to achieve the goal of tracking a desired trajectory. The con-

ditions provided in Chapter 2 for the analysis and state-feedback controller design for

LPV systems cannot be directly applied, since they refer to the stability of the origin. In

order to assure the convergence of the system trajectory to the desired one, the idea of

LPV model reference control is considered. Originally developed for the LTI case [81],

this technique has been successfully extended to the LPV case [3, 51] and relies on the

use of a reference model, as follows:

σ.xref (τ) = A (θ(τ))xref (τ) +B (θ(τ))uref (τ) + c(τ) (7.2)

where xref ∈ Rnx is the reference state vector and uref ∈ Rnu is the reference input

vector. The reference model gives the trajectories to be followed by the real system.



Fault tolerant control of LPV systems using robust state-feedback control 142

Thus, considering the tracking error, defined as e(τ) , xref (τ) − x(τ), the following

error system is obtained:

σ.e(τ) = A (θ(τ)) e(τ) +B (θ(τ)) ∆u(τ) (7.3)

with ∆u(τ) = uref (τ)− u(τ).

Then, the results presented in Chapter 2 can be applied for the design of an error-

feedback control law of the form:

∆u(τ) = K (θ(τ)) e(τ) (7.4)

that constitutes a slight modification of (2.134):

u(τ) = K (θ(τ))x(τ) (7.5)

Hence, the control action to be applied to the system will be made up by the sum of

two components, the feedforward one uref (τ), and the feedback one ∆u(τ).

However, in presence of faults, the equation (7.1), in the following denoted as nominal

system, does not describe correctly the system dynamics anymore, and the obtained

results in terms of stability and performance could not hold anymore. In particular,

in this chapter, two types of faults are considered: i) parametric faults, affecting the

matrix A (θ(τ)) and changing it into Af (θ(τ), f(τ)); and ii) actuator faults, affecting the

matrix B (θ(τ)) and changing it into Bf (θ(τ), f(τ)). Hence, under fault occurrence, the

equation (7.1) becomes:

σ.x(τ) = Af (θ(τ), f(τ))x(τ) +Bf (θ(τ), f(τ))u(τ) + c(τ) (7.6)

that will be referred to as the faulty system, and the error system changes into:

σ.e(τ) = A (θ(τ))xref (τ) +B (θ(τ))uref (τ)−Af (θ(τ), f(τ))x(τ)−Bf (θ(τ), f(τ))u(τ)

(7.7)

from which is evident that a controller in the form (7.4), designed to behave in some

desired way when applied to (7.1), could lead to a very different behavior when applied

to the error faulty system (7.7).

In the following section, the problem to be solved is the one of adding fault tolerance

to the control scheme. This will be done by redefining the reference model and by

designing the error-feedback controller using some results about the robust feedback

control of uncertain LPV systems presented in Chapter 4.
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7.3 Fault tolerant control

7.3.1 Passive FTC reference model

In passive FTC, no information about the fault is available on-line. Hence, the same

reference model used for the nominal case, i.e. (7.2), should be used.

7.3.2 Active FTC reference model

In active FTC, an estimation of the faults, denoted in the following by f̂(τ), is available.

This information is added to the reference model by changingA (θ(τ)) intoAf
(
θ(τ), f̂(τ)

)
and B (θ(τ)) into Bf

(
θ(τ), f̂(τ)

)
, such that (7.2) becomes:

σ.xref (τ) = Af

(
θ(τ), f̂(τ)

)
xref (τ) +Bf

(
θ(τ), f̂(τ)

)
uref (τ) + c(τ) (7.8)

7.3.3 Passive FTC error model

In order to obtain the passive FTC error model, some manipulation is performed on

(7.7), in order to obtain a structure suitable for applying the design technique pre-

sented in Chapter 4. The typical way to do so would be to rewrite Af (θ(τ), f(τ)) and

Bf (θ(τ), f(τ)), as follows:

Af (θ(τ), f(τ)) = A (θ(τ)) + ∆A (θ(τ), f(τ)) (7.9)

Bf (θ(τ), f(τ)) = B (θ(τ)) + ∆B (θ(τ), f(τ)) (7.10)

where ∆A (θ(τ), f(τ)) and ∆B (θ(τ), f(τ)) contain the changes to the state space matri-

ces brought by the faults. Hence, (7.7) can be rewritten as:

σ.e(τ) = A (θ(τ)) e(τ) +B (θ(τ)) ∆u(τ)−∆A (θ(τ), f(τ))x(τ)−∆B (θ(τ), f(τ))u(τ)

(7.11)

Then, by doing some manipulations and rewriting f(τ) as ∆f(τ) = f(τ)− 1, (7.11) can

be brought to the following form:

σ.e(τ) = A (θ(τ)) e(τ) +B (θ(τ)) ∆u(τ) +D (θ(τ), x(τ), u(τ),∆f(τ)) ∆f(τ) (7.12)
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where D (θ(τ), x(τ), u(τ),∆f(τ)) is the matrix such that:

D (θ(τ), x(τ), u(τ),∆f(τ)) ∆f(τ) = −∆A (θ(τ), f(τ))x(τ)−∆B (θ(τ), f(τ))u(τ)

(7.13)

Through the introduction of a new varying parameter vector θp(τ), containing θ(τ),

x(τ) and u(τ), and by taking into account the uncertainty due to ∆f(τ), (7.12) can be

reshaped as follows:

σ.e(τ) = A (θp(τ)) e(τ) +B (θp(τ)) ∆u(τ) + D̃ (θp(τ)) ∆f(τ) (7.14)

where D̃ (θp(τ)) is obtained by rewriting D (θ(τ), x(τ), u(τ),∆f(τ)) as a function of

θp(τ).

Notice that (7.14) is in a form similar to (4.1):

σ.x(τ) = Ã (θ(τ))x(τ) + B̃u(τ) + B̃w (θ(τ))w(τ) (7.15)

where A and B are known matrices1 (a constant input matrix that does not depend

on θp(τ) can be obtained easily by prefiltering ∆u(τ) as proposed in [16], see (2.156)-

(2.163)) and D̃ is uncertain due to the fact that the exact value of ∆f(τ) at a given

moment is not known. Hence, if ∆f(τ) is considered a disturbance that should be re-

jected, fault tolerance can be achieved through the robust LPVH∞ (orH2) performance

approach proposed in Chapter 4.

7.3.4 Active FTC error model

In order to obtain the active FTC error model, the assumption that f̂(τ) = f(τ) is done,

such that subtracting (7.6) from (7.8) leads to:

σ.e(τ) = Af

(
θ(τ), f̂(τ)

)
e(τ) +Bf

(
θ(τ), f̂(τ)

)
∆u(τ) (7.16)

Then, by introducing a new parameter vector θa(τ), containing θ(τ) and f̂(τ), the fol-

lowing is obtained:

σ.e(τ) = Af (θa(τ)) e(τ) +Bf (θa(τ)) ∆u(τ) (7.17)

1Notice that the reasoning can be easily generalized to uncertain LPV systems subject to actuator faults,
i.e. to the case where A and B are replaced by uncertain Ã and B̃. However, this has not been done in
order to keep the formulation simple.



Fault tolerant control of LPV systems using robust state-feedback control 145

that is in a quite standard form for applying the LPV framework for designing an error-

feedback controller scheduled by both the varying parameters θ(τ) and the fault esti-

mation f̂(τ), as follows:

∆u(τ) = K (θa(τ)) e(τ) (7.18)

7.3.5 Hybrid FTC error model

Fault estimation algorithms are affected by uncertainties that will cause the estimated

value given by the algorithm to differ from the real fault value. Among the causes of

uncertainty, there are the presence of external disturbances, the mismatch between the

real and modeled dynamics, due to unmodeled nonlinearities and errors in the calibra-

tion of the model parameters during the identification phase, and the noise affecting the

measurements given by the sensors. The presence of these uncertainties in the fault es-

timation, if not properly taken into account, can degrade the FTC system performances

and give rise to undesired behaviors. This fact motivates combining the benefits of the

passive and the active FTC strategies in order to obtain a hybrid passive/active FTC.

In order to obtain the hybrid FTC error model, let us rewrite f(τ) = f̂(τ) + ∆f(τ),

where ∆f(τ) is the unknown error on the fault estimation2, such that (7.6) is rewritten

as:

σ.x(τ) = Af

(
θ(τ), f̂(τ) + ∆f(τ)

)
x(τ) +Bf

(
θ(τ), f̂(τ) + ∆f(τ)

)
u(τ) (7.19)

Then, some manipulation is performed on (7.19), in order to obtain a structure suitable

for applying the design technique presented in Chapter 4, similar to what has already

been done in Section 7.3.3 for obtaining the passive FTC error model. In particular,

Af

(
θ(τ), f̂(τ) + ∆f(τ)

)
and Bf

(
θ(τ), f̂(τ) + ∆f(τ)

)
are rewritten as follows:

Af

(
θ(τ), f̂(τ) + ∆f(τ)

)
= Af

(
θ(τ), f̂(τ)

)
+ ∆Af

(
θ(τ), f̂(τ),∆f(τ)

)
(7.20)

Bf

(
θ(τ), f̂(τ) + ∆f(τ)

)
= Bf

(
θ(τ), f̂(τ)

)
+ ∆Bf

(
θ(τ), f̂(τ),∆f(τ)

)
(7.21)

where ∆Af

(
θ(τ), f̂(τ),∆f(τ)

)
and ∆Bf

(
θ(τ), f̂(τ),∆f(τ)

)
contain the effects that

the fault estimation uncertainty ∆f(τ) has on the faulty state space matrices. Hence,

by subtracting (7.19) from the active FTC reference model (7.8), and taking into account

2Notice that the ∆f(τ) used in the passive FTC error model is different from the ∆f(τ) used in the
hybrid FTC error model.
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(7.20)-(7.21), the following is obtained:

σ.e(τ) = Af

(
θ(τ), f̂(τ)

)
e(τ) +Bf

(
θ(τ), f̂(τ)

)
∆u(τ)

−∆A
(
θ(τ), f̂(τ),∆f(τ)

)
x(τ)−∆B

(
θ(τ), f̂(τ),∆f(τ)

)
u(τ)

(7.22)

that, through some manipulations, can be reshaped as:

σ.e(τ) = Af

(
θ(τ), f̂(τ)

)
e(τ)+Bf

(
θ(τ), f̂(τ)

)
∆u(τ)+Df

(
θ(τ), x(τ), u(τ), f̂(τ),∆f(τ)

)
∆f(τ)

(7.23)

where Df

(
θ(τ), x(τ), u(τ), f̂(τ),∆f(τ)

)
is the matrix such that:

Df

(
θ(τ), x(τ), u(τ), f̂(τ),∆f(τ)

)
∆f(τ) =

−∆A
(
θ(τ), f̂(τ),∆f(τ)

)
x(τ)−∆B

(
θ(τ), f̂(τ),∆f(τ)

)
u(τ)

(7.24)

Through the introduction of a new parameter vector θh(τ), containing θ(τ), x(τ), u(τ),

f̂(τ), ∆f(τ) and possibly their powers and/or some combinations of them, the follow-

ing is obtained:

σ.e(τ) = Af (θh(τ)) e(τ) +Bf (θh(τ)) ∆u(τ) + D̃f (θh(τ)) ∆f(τ) (7.25)

where D̃f (θh(τ)) is obtained by rewriting Df

(
θ(τ), x(τ), u(τ), f̂(τ),∆f(τ)

)
as a func-

tion of θh(τ).

Similar to the passive FTC case described in Section 7.3.3, if ∆f(τ) is considered as

a disturbance that should be rejected, the robustness of the FTC against fault estima-

tion uncertainties can be achieved through the robust LPV H∞ (or H2) performance

approach proposed in Chapter 4.

Notice that, differently from the passive FTC case, the hybrid FTC error model is sched-

uled also by the fault estimation f̂(τ), embedded into the new scheduling vector θh(τ).

In other words, the proposed hybrid FTC approach adds the rejection characteristic of

the passive FTC method to the active FTC strategy.

7.4 Reconfigurable controller strategy

In this section, it is shown how the FTC strategy proposed in Section 7.3 can be used for

the implementation of a bank of controllers, such that the signal provided by the fault

diagnosis unit determines which controller should be active at a given moment.
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It is assumed that the faults belong to a set F , that can be expressed as:

F = {f1, . . . , fnx} =
[
f1, f1

]
×
[
f2, f2

]
× · · · ×

[
fnx , fnx

]
(7.26)

7.4.1 Passive FTC

In the passive FTC approach, it is assumed that no information about the faults is avail-

able. Hence, tolerance against faults can only be achieved by considering faults as if

they were uncertainties. A single controller is designed in such a way that it exhibits

some robustness properties. More specifically, a single controller K is designed so as

to be scheduled by the parameter vector θ(τ) and to be robust against the faults, that

are considered as if they were additional uncertainties, as shown in Section 7.3.3. This

strategy has the advantage of not needing a fault diagnosis algorithm but, on the other

hand, the controller has the highest possible conservativeness.

7.4.2 Active FTC without controller reconfiguration

The conservativeness of the passive approach can be overcome by considering that

some information available about the faults can be used to schedule accordingly the

controller. In this case, the faults are considered to be varying parameters θf (τ), whose

values are known or can be estimated through the information coming from a fault esti-

mation module, and can be used to schedule accordingly a single controllerK (θ(τ), θf (τ)),

designed as shown either in Section 7.3.4 or in Section 7.3.5. Notice that the controller

is not reconfigured, as it is the same in both the nominal and the faulty case.

7.4.3 Reconfigured FTC with fault detection

In this case, the faults are considered as uncertainty, similar to what has been described

in Section 7.4.1, but a fault detection algorithm can detect the fault occurrence at time

instant τD. Then, two controllers are designed and switched according to the following

law:

K =

{
K0 (θ(τ))

KD (θ(τ))

if τ < τD

if τ ≥ τD
(7.27)

where:

• K0 (θ(τ)) is the nominal controller, designed without taking into account the un-

certainty introduced by the faults;
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• KD (θ(τ)) is the reconfigured controller, designed to be robust against all the pos-

sible faults.

This approach is less conservative in the nominal case than approaches without con-

troller reconfiguration. Notice that the case when K0 (θ(τ)) = KD (θ(τ)) corresponds

to the active FTC without controller reconfiguration.

7.4.4 Reconfigured FTC with FDI

In this case, the faults are considered as uncertainty, and an FDI algorithm can detect

the fault occurrence at time instant τD and isolate the fault at time instant τI . Then,

nf + 2 controllers are designed and switched according to the following law:

K =


K0 (θ(τ))

KD (θ(τ))

Ki
I (θ(τ))

if τ < τD

if τD ≤ τ < τI

if τ ≥ τI

(7.28)

where:

• K0 (θ(τ)) is the nominal controller, designed without taking into account the un-

certainty introduced by the faults;

• KD (θ(τ)) is the reconfigured post-detection controller, designed to be robust against

all the possible faults;

• the nf controllers K1
I (θ(τ)) , . . . ,K

nf
I (θ(τ)) are the reconfigured post-isolation

controllers, each one designed to be robust against a specific fault fi;

Notice that the case when K0 (θ(τ)) = KD (θ(τ)) = Ki
I (θ(τ)) corresponds to the active

FTC without controller reconfiguration.

7.4.5 Reconfigured FTC with fault detection, isolation and estimation

In this case, an estimation of the fault fi is provided by a fault estimation algorithm,

and this estimation can be used as a scheduling parameter, denoted as θif . Moreover, it

is assumed that the FDI algorithm can detect the fault occurrence at time instant τD and

isolate the fault at time instant τI . Then, nf + 2 controllers are designed and switched
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according to the following law:

K =


K0 (θ(τ))

KD (θ(τ))

Ki
I

(
θ(τ), θif (τ)

)
if τ < τD

if τD ≤ τ < τI

if τ ≥ τI

(7.29)

where:

• K0 (θ(τ)) is the nominal controller, designed without taking into account the un-

certainty introduced by the faults;

• KD (θ(τ)) is the reconfigured post-detection controller, designed to be robust against

all the possible faults;

• the nf controllers K1
I

(
θ(τ), θif (τ)

)
, . . . ,K

nf
I

(
θ(τ), θif (τ)

)
are the reconfigured

post-isolation controllers, each one scheduled not only by the vector of varying

parameters θ(τ) but by the estimation of the specific fault fi too, through θif (τ).

This controller would be designed following either Section 7.3.4 or Section 7.3.5.

It is evident that the advantage of the reconfigured controllers with respect to the non-

reconfigured ones lies in that the formers have to cope only with specific faults and

allow to improve the performances in the non-faulty case using the nominal controller,

whose design does not take into account the possibility of fault occurrence.

7.5 Application to a quadrotor system

In this application, the problem of fault tolerant tracking for a quadrotor UAV will

be solved using the robust state-feedback control technique, as shown in the previous

sections of this chapter.

7.5.1 Quadrotor modeling

A quadrotor is a vehicle that has four propellers in a cross configuration. Two pro-

pellers can rotate in a clockwise direction, while the remaining two can rotate anticlock-

wisely. The quadrotor is moved by changing the rotor speeds. For example, increasing

or decreasing together the four propeller speeds, vertical motion is achieved. Chang-

ing only the speeds of the propellers situated oppositely produces either roll or pitch

motion. Finally, yaw rotation results from the difference in the counter-torque between

each pair of propellers.
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FIGURE 7.1: Quadrotor scheme.

Let us consider a body fixed frame {xb, yb, zb} with origin in the quadrotor center of

mass (see Fig. 7.1). Under the assumptions that the body is rigid and symmetrical, and

the propellers are rigid, i.e. no blade flapping occurs, the quadrotor dynamic model is

described by the following equations [42]:

ẍb(t) = (cosϕ(t) sin %(t) cosψ(t) + sinϕ(t) sinψ(t))
U1(t)

m
(7.30)

ÿb(t) = (cosϕ(t) sin %(t) sinψ(t) + sinϕ(t) cosψ(t))
U1(t)

m
(7.31)

z̈b(t) = −g + cosϕ(t) cos %(t)
U1(t)

m
(7.32)

ϕ̈(t) = %̇(t)ψ̇(t)
Iy − Iz
Ix

− JTP
Ix

%̇(t)Ω(t) +
lU2(t)

Ix
(7.33)

%̈(t) = ϕ̇(t)ψ̇(t)
Iz − Ix
Iy

+
JTP
Iy

ϕ̇(t)Ω(t) +
lU3(t)

Iy
(7.34)

ψ̈(t) = ϕ̇(t)%̇(t)
Ix − Iy
Iz

+
U4(t)

Iz
(7.35)

where ϕ(t) is the roll angle, %(t) is the pitch angle, ψ(t) is the yaw angle and the inputs

U1(t), U2(t), U3(t), U4(t), Ω(t) are defined as follows:

U1(t) = b
(
Ω1(t)2 + Ω2(t)2 + Ω3(t)2 + Ω4(t)2

)
(7.36)

U2(t) = b
(
Ω4(t)2 − Ω2(t)2

)
(7.37)

U3(t) = b
(
Ω3(t)2 − Ω1(t)2

)
(7.38)

U4(t) = d
(
Ω2(t)2 + Ω4(t)2 − Ω1(t)2 − Ω3(t)2

)
(7.39)

Ω(t) = Ω2(t) + Ω4(t)− Ω1(t)− Ω3(t) (7.40)
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TABLE 7.1: Quadrotor parameters description and values

Param. Description Value
Ix Body moment of inertia around the x-axis 8.1× 10−3 [Nms2]
Iy Body moment of inertia around the y-axis 8.1× 10−3 [Nms2]
Iz Body moment of inertia around the z-axis 14.2× 10−3 [Nms2]
m Mass of the quadrotor 1 [kg]
g Acceleration due to gravity 9.81 [ms−2]
JTP Total rotational moment of inertia around the propeller axis 104× 10−6 [Nms2]
l Center of quadrotor to center of propeller distance 0.24 [m]
b Thrust factor 54.2× 10−6 [Ns2]
d Drag factor 1.1× 10−6 [Nms2]

where Ωi(t) denotes the i-th rotor speed. For a description of the system parameters, as

well as the values used in the simulations taken from [43], see Table 7.1.

Hereafter, only the problem of attitude/altitude tracking control will be addressed.

Hence, the dynamics of the system along the xb and yb axes, i.e. Eqs. (7.30)-(7.31), will

be neglected.

By introducing the state x(t), the input u(t) and the varying parameter vector θ(t), as

follows:

x(t) =



ϕ(t)

ϕ̇(t)

%(t)

%̇(t)

ψ(t)

ψ̇(t)

zb(t)

żb(t)


u(t) =


Ω1(t)

Ω2(t)

Ω3(t)

Ω4(t)

 θ(t) =



θ1(t)

θ2(t)

θ3(t)

θ4(t)

θ5(t)

θ6(t)

θ7(t)

θ8(t)


=



ϕ̇(t)

%̇(t)

ψ̇(t)

Ω1(t)

Ω2(t)

Ω3(t)

Ω4(t)

cosϕ(t) cos %(t)


the system (7.30)-(7.40) can be brought to the form (7.1) with:

A (θ(t)) =



0 1 0 0 0 0 0 0

0 0 0
(Iy−Iz)

2Ix
θ3(t) 0

(Iy−Iz)
2Ix

θ2(t) 0 0

0 0 0 1 0 0 0 0

0 (Iz−Ix)
2Iy

θ3(t) 0 0 0 (Iz−Ix)
2Iy

θ1(t) 0 0

0 0 0 0 0 1 0 0

0
(Ix−Iy)

2Iz
θ2(t) 0 (Ix−Iz)

2Iz
θ1(t) 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0


(7.41)
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B (θ(t)) =



0 0
JTP
Ix
θ2(t) −JTP

Ix
θ2(t)− lb

Ix
θ5(t)

0 0

−JTP
Iy
θ1(t)− lb

Iy
θ4(t) JTP

Iy
θ1(t)

0 0

− d
Iz
θ4(t) d

Iz
θ5(t)

0 0
b
mθ4(t)θ8(t) b

mθ5(t)θ8(t)

· · ·

· · ·

0 0
JTP
Ix
θ2(t) −JTP

Ix
θ2(t) + lb

Ix
θ7(t)

0 0

−JTP
Iy
θ1(t) + lb

Iy
θ6(t) JTP

Iy
θ1(t)

0 0

− d
Iz
θ6(t) − d

Iz
θ7(t)

0 0
b
mθ6(t)θ8(t) b

mθ7(t)θ8(t)


(7.42)

c(t) = −g (7.43)

By considering multiplicative faults in the actuators, that change Ωi → fiΩi, i = 1, . . . , 4,

in (7.36)-(7.40), the faulty system (7.6) is obtained, with Af (θ(t), f(t)) = A (θ(t)), and:

Bf (θ(t), f(t)) =



0 0
JTP
Ix
θ2(t)f1(t) −JTP

Ix
θ2(t)f2(t)− lb

Ix
θ5(t)f2(t)2

0 0

−JTP
Iy
θ1(t)f1(t)− lb

Iy
θ4(t)f1(t)2 JTP

Iy
θ1(t)f2(t)

0 0

− d
Iz
θ4(t)f1(t)2 d

Iz
θ5(t)f2(t)2

0 0
b
mθ4(t)θ8(t)f1(t)2 b

mθ5(t)θ8(t)f2(t)2

· · ·

· · ·

0 0
JTP
Ix
θ2(t)f3(t) −JTP

Ix
θ2(t)f4(t) + lb

Ix
θ7(t)f4(t)2

0 0

−JTP
Iy
θ1(t)f3(t) + lb

Iy
θ6(t)f3(t)2 JTP

Iy
θ1(t)f4(t)

0 0

− d
Iz
θ6(t)f3(t)2 − d

Iz
θ7(t)f4(t)2

0 0
b
mθ6(t)θ8(t)f3(t)2 b

mθ7(t)θ8(t)f4(t)2


(7.44)
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7.5.1.1 Passive FTC error model of the quadrotor

By following the reasoning provided in Section 7.3.3, through the introduction of the

new varying parameter vector:

θp(t) =



θ(t)

θ9(t)

θ10(t)

θ11(t)

θ12(t)


=



θ(t)

Ω1(t)2

Ω2(t)2

Ω3(t)2

Ω4(t)2


the passive FTC error model of the quadrotor can be brought to the form (7.14) with:

D̃ (θp(t)) =



0 0

−JTP
Ix
θ2(t)θ4(t) JTP

Ix
θ2(t)θ5(t) + lb(2+∆f2(t))

Ix
θ10(t)

0 0
JTP
Iy
θ1(t)θ4(t) + lb(2+∆f1(t))

Iy
θ9(t) −JTP

Iy
θ1(t)θ5(t)

0 0
d(2+∆f1(t))

Iz
θ9(t) −d(2+∆f2(t))

Iz
θ10(t)

0 0

− b(2+∆f1(t))
m θ8(t)θ9(t) − b(2+∆f2(t))

m θ8(t)θ10(t)

· · ·

· · ·

0 0

−JTP
Ix
θ2(t)θ6(t) JTP

Ix
θ2(t)θ7(t)− lb(2+∆f4(t))

Ix
θ12(t)

0 0
JTP
Iy
θ1(t)θ6(t)− lb(2+∆f3(t))

Iy
θ11(t) JTP

Iy
θ1(t)θ7(t)

0 0
d(2+∆f3(t))

Iz
θ11(t) −d(2+∆f4(t))

Iz
θ12(t)

0 0

− b(2+∆f3(t))
m θ8(t)θ11(t) − b(2+∆f4(t))

m θ8(t)θ12(t)


(7.45)
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7.5.1.2 Active FTC error model of the quadrotor

By following the reasoning provided in Section 7.3.4, through the introduction of the

new varying parameter:

θa(t) =



θ(t)

θ13(t)

θ14(t)

θ15(t)

θ16(t)

θ17(t)

θ18(t)

θ19(t)

θ20(t)



=



θ(t)

f̂1(t)2

f̂1(t)

f̂2(t)2

f̂2(t)

f̂3(t)2

f̂3(t)

f̂4(t)2

f̂4(t)


the active FTC error model of the quadrotor can be brought to the form (7.17) with

Af (θa(t)) = A (θ(t)) and:

Bf (θa(t)) =



0 0
JTP
Ix
θ2(t)θ14(t) −JTP

Ix
θ2(t)θ16(t)− lb

Ix
θ5(t)θ15(t)

0 0

−JTP
Iy
θ1(t)θ14(t)− lb

Iy
θ4(t)θ13(t) JTP

Iy
θ1(t)θ16(t)

0 0

− d
Iz
θ4(t)θ13(t) d

Iz
θ5(t)θ15(t)

0 0
b
mθ4(t)θ8(t)θ13(t) b

mθ5(t)θ8(t)θ15(t)

· · ·

· · ·

0 0
JTP
Ix
θ2(t)θ18(t) −JTP

Ix
θ2(t)θ20(t) + lb

Ix
θ7(t)θ19(t)

0 0

−JTP
Iy
θ1(t)θ18(t) + lb

Iy
θ6(t)θ17(t) JTP

Iy
θ1(t)θ20(t)

0 0

− d
Iz
θ6(t)θ17(t) − d

Iz
θ7(t)θ19(t)

0 0
b
mθ6(t)θ8(t)θ17(t) b

mθ7(t)θ8(t)θ19(t)


(7.46)
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7.5.1.3 Hybrid FTC error model of the quadrotor

By following the reasoning provided in Section 7.3.5, through the introduction of the

new parameter vector:

θh(t) =


θp(t)

θ13(t)
...

θ20(t)


the hybrid FTC error model of the quadrotor can be brought to the form (7.25) with

Af (θh(t)) = A (θ(t)), Bf (θh(t)) = Bf (θa(t)) and:

D̃f (θh(t)) =



0 0

−JTP
Ix
θ2(t)θ4(t) JTP

Ix
θ2(t)θ5(t) + lb(2θ16(t)+∆f2(t))

Ix
θ10(t)

0 0
JTP
Iy
θ1(t)θ4(t) + lb(2θ14(t)+∆f1(t))

Iy
θ9(t) −JTP

Iy
θ1(t)θ5(t)

0 0
d(2θ14(t)+∆f1(t))

Iz
θ9(t) −d(2θ16(t)+∆f2(t))

Iz
θ10(t)

0 0

− b(2θ14(t)+∆f1(t))
m θ8(t)θ9(t) − b(2θ16(t)+∆f2(t))

m θ8(t)θ10(t)

· · ·

0 0

−JTP
Ix
θ2(t)θ6(t) JTP

Ix
θ2(t)θ7(t)− lb(2θ20(t)+∆f4(t))

Ix
θ12(t)

0 0
JTP
Iy
θ1(t)θ6(t)− lb(2θ18(t)+∆f3(t))

Iy
θ11(t) −JTP

Iy
θ1(t)θ7(t)

0 0
d(2θ18(t)+∆f3(t))

Iz
θ11(t) −d(2θ20(t)+∆f4(t))

Iz
θ12(t)

0 0

− b(2θ18(t)+∆f3(t))
m θ8(t)θ11(t) − b(2θ20(t)+∆f4(t))

m θ8(t)θ12(t)



7.5.2 Reference inputs calculation for trajectory tracking

To make the quadrotor track a desired trajectory, proper values of the reference inputs,

in the following denoted as Ω1,ref , Ω2,ref , Ω3,ref and Ω4,ref , respectively, should be fed

to the reference model, such that its state equals the one corresponding to the desired

trajectory.

Here, for illustrative purpose, the case of sinusoidal trajectories is considered, as fol-

lows:

ϕref (t) = Φ sin

(
2πt

Nϕ

)
(7.47)
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%ref (t) = P sin

(
2πt

N%

)
(7.48)

ψref (t) = Ψ sin

(
2πt

Nψ

)
(7.49)

zref (t) = Z sin

(
2πt

Nz

)
(7.50)

where Φ, P, Ψ, Z are the amplitudes, and Nϕ, N%, Nψ, Nz are the periods. Taking the

derivatives of (7.47)-(7.50) and considering the reference model equivalent of (7.32)-

(7.35), i.e.:

ϕ̇ref (t) = vrefϕ (t) (7.51)

v̇refϕ (t) = %̇(t)v̇refψ (t)
Iy − Iz

2Ix
+ v̇ref% (t)ψ̇(t)

Iy − Iz
2Ix

− JTP
Ix

%̇(t)Ωref (t) +
lU ref2 (t)

Ix
(7.52)

%̇ref (t) = vref% (t) (7.53)

v̇ref% (t) = ϕ̇(t)v̇refψ (t)
Iz − Ix

2Iy
+ v̇refϕ (t)ψ̇(t)

Iz − Ix
2Iy

+
JTP
Iy

ϕ̇(t)Ωref (t) +
lU ref3 (t)

Iy
(7.54)

ψ̇ref (t) = vrefψ (t) (7.55)

v̇refψ (t) = vrefϕ (t)%̇(t)
Ix − Iy

2Iz
+ ϕ̇(t)vref% (t)

Ix − Iy
2Iz

+
dU ref4 (t)

Iz
(7.56)

żref (t) = vrefz (t) (7.57)

v̇refz (t) = −g + cosϕ(t) cos %(t)
U ref1 (t)

m
(7.58)

with:

U ref1 (t) = b
(
f̂1(t)2Ω1(t)Ω1,ref (t)+ f̂2(t)2Ω2(t)Ω2,ref (t)

+f̂3(t)2Ω3(t)Ω3,ref (t) + f̂4(t)2Ω4(t)Ω4,ref (t)
) (7.59)

U ref2 (t) = b
(
f̂4(t)2Ω4(t)Ω4,ref (t)− f̂2(t)2Ω2(t)Ω2,ref (t)

)
(7.60)

U ref3 (t) = b
(
f̂3(t)2Ω3(t)Ω3,ref (t)− f̂1(t)2Ω1(t)Ω1,ref (t)

)
(7.61)

U ref4 (t) = d
(
f̂2(t)2Ω2(t)Ω2,ref (t)+ f̂4(t)2Ω4(t)Ω4,ref (t)

−f̂1(t)2Ω1(t)Ω1,ref (t)− f̂3(t)2Ω3(t)Ω3,ref (t)
) (7.62)

Ωref = f̂2(t)Ω2,ref (t) + f̂4(t)Ω4,ref (t)− f̂1(t)Ω1,ref (t)− f̂3(t)Ω3,ref (t) (7.63)

where Ωi,ref denotes the i-th reference rotor speed, then the following is obtained:

ϕ̇ref (t) = vrefϕ (t) = Φ cos

(
2πt

Nϕ

)
2π

Nϕ
(7.64)
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%̇ref (t) = vref% (t) = P cos

(
2πt

N%

)
2π

N%
(7.65)

ψ̇ref (t) = vrefψ (t) = Ψ cos

(
2πt

Nψ

)
2π

Nψ
(7.66)

żref (t) = vrefz (t) = Z cos

(
2πt

Nz

)
2π

Nz
(7.67)

Then, another differentiation of (7.64)-(7.67) leads to:

ϕ̈ref (t) = v̇refϕ (t) = −Φ

(
2π

Nϕ

)2

sin

(
2πt

Nϕ

)
(7.68)

%̈ref (t) = v̇ref% (t) = −P

(
2π

N%

)2

sin

(
2πt

N%

)
(7.69)

ψ̈ref (t) = v̇refψ (t) = −Ψ

(
2π

Nψ

)2

sin

(
2πt

Nψ

)
(7.70)

z̈ref (t) = v̇refz (t) = −Z
(

2π

Nz

)2

sin

(
2πt

Nz

)
(7.71)

and, by properly replacing (7.64)-(7.71) into (7.52), (7.54), (7.56) and (7.58), and taking

into account (7.59)-(7.63), we obtain:

%̇(t)Ψ cos
(

2πt
Nψ

)
2π
Nψ

Iy−Iz
2Ix

+ ψ̇(t)P cos
(

2πt
N%

)
2π
N%

Iy−Iz
2Ix

+ Φ
(

2π
Nϕ

)2
sin
(

2πt
Nϕ

)
−JTP

Ix
%̇(t)

(
f̂2(t)Ω2,ref (t) + f̂4(t)Ω4,ref (t)− f̂1(t)Ω1,ref (t)− f̂3(t)Ω3,ref (t)

)
+ lb
Ix

[
f̂4(t)2 (Ω4,ref (t)−∆u4(t)) Ω4,ref − f̂2(t)2 (Ω2,ref (t)−∆u2(t)) Ω2,ref (t)

]
= 0

(7.72)

ϕ̇(t)Ψ cos
(

2πt
Nψ

)
2π
Nψ

Iz−Ix
2Iy

+ ψ̇(t)Φ cos
(

2πt
Nϕ

)
2π
Nϕ

Iz−Ix
2Iy

+ P
(

2π
N%

)2
sin
(

2πt
N%

)
+JTP

Iy
ϕ̇
(
f̂2(t)Ω2,ref (t) + f̂4(t)Ω4,ref (t)− f̂1(t)Ω1,ref (t)− f̂3(t)Ω3,ref (t)

)
+ lb
Iy

[
f̂3(t)2 (Ω3,ref (t)−∆u3(t)) Ω3,ref (t)− f̂1(t)2 (Ω1,ref (t)−∆u1(t)) Ω1,ref (t)

]
= 0

(7.73)

%̇(t)Φ cos
(

2πt
Nϕ

)
2π
Nϕ

Ix−Iy
2Iz

+ ϕ̇(t)P cos
(

2πt
N%

)
2π
N%

Ix−Iy
2Iz

+ Ψ
(

2π
Nψ

)2
sin
(

2πt
Nψ

)
+ d
Iz

[
f̂2(t)2 (Ω2,ref (t)−∆u2(t)) Ω2,ref (t) + f̂4(t)2 (Ω4,ref (t)−∆u4(t)) Ω4,ref (t)

]
− d
Iz

[
f̂1(t)2 (Ω1,ref (t)−∆u1(t)) Ω1,ref (t) + f̂3(t)2 (Ω3,ref (t)−∆u3(t)) Ω3,ref (t)

]
= 0

(7.74)

b cosϕ(t) cos %(t)
m

[
f̂1(t)2 (Ω1,ref (t)−∆u1(t)) Ω1,ref (t) + f̂2(t)2 (Ω2,ref (t)−∆u2(t)) Ω2,ref (t)

]
+ b cosϕ(t) cos %(t)

m

[
f̂3(t)2 (Ω3,ref (t)−∆u3(t)) Ω3,ref (t) + f̂4(t)2 (Ω4,ref (t)−∆u4(t)) Ω4,ref (t)

]
−g + Z

(
2π
Nz

)2

sin
(

2πt
Nz

)
= 0

(7.75)
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7.5.3 Results

The results presented hereafter compare the proposed FTC strategies. Since the input

matrices B (θ(t)) and Bf (θa(t)) are not constant, a prefiltering of the inputs is needed

in order to obtain constant input matrices [16]. This is done by adding the states xu1,

xu2, xu3 and xu4 to the error vector, such that ∆ui(t) = xui(t), i = 1, . . . , 4, together with

the state equations:

ẋui(t) = −ωixui(t) + ωi∆ũi(t) (7.76)

where ∆ũi(t), i = 1, . . . , 4, are the new inputs, and ωi has been chosen as ωi = 100,

i = 1, . . . , 4.

The polytopic approximation of the quadrotor quasi-LPV passive FTC error model

(7.14), with matrices A (θp(t)), B (θp(t)) and D̃ (θp(t)) defined as in (7.41), (7.42) and

(7.45), respectively, has been obtained by considering:

θ1 ∈ [min(ϕ̇),max(ϕ̇)] = [−0.25, 0.25]

θ2 ∈ [min(%̇),max(%̇)] = [−0.25, 0.25]

θ3 ∈ [min(ψ̇),max(ψ̇)] = [−0.25, 0.25](
θi+3

θi+8

)
∈ Tr

{(
min (Ωi)

min (Ωi)
2

)
,

(
max (Ωi)

min (Ωi)
2

)
,

(
max (Ωi)

max (Ωi)
2

)}

with min (Ωi) = 100, max (Ωi) = 500, i = 1, 2, 3, 4 and Tr denoting a triangular poly-

topic approximation, that has been preferred to a bounding box one in order to reduce

the conservativeness. Finally, θ8 ∈ [0.5, 1], that corresponds to the interval of possible

values of θ8 when ϕ ∈ [−π/4, π/4] and % ∈ [−π/4, π/4].

The polytopic approximation of the quadrotor quasi-LPV active FTC error model (7.17)

withAf (θa(t)) = A (θ(t)) andBf (θa(t)) defined as in (7.41) and (7.46), respectively, has

been obtained by considering:

θ1 ∈ [min(ϕ̇),max(ϕ̇)] = [−0.25, 0.25]

θ2 ∈ [min(%̇),max(%̇)] = [−0.25, 0.25]

θ3 ∈ [min(ψ̇),max(ψ̇)] = [−0.25, 0.25]

θi+3 ∈ [min(Ωi),max(Ωi)] = [100, 500] i = 1, 2, 3, 4

θ8 ∈ [0.5, 1]
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(
θ2i+11

θ2i+12

)
∈ Tr

{(
min (fi)

2

min (fi)

)
,

(
min (fi)

2

1

)
,

(
1

1

)}

Similar considerations have been applied to the quadrotor quasi-LPV hybrid FTC error

model for obtaining its polytopic approximation. In particular, the results presented

hereafter have been obtained considering min (fi) = 0.7.

The passive/active/hybrid controllers have been designed using Theorem 4.3 and 4.4,

to assure pole clustering in:

D =
{
z ∈ C : Re(z) < −0.5,Re(z)2 + Im(z)2 < 10000, tan(0.3)Re(z) < − |Im(z)|

}
and aH∞ performance bound γ∞ = 1000, considering:

z∞(t) =


ϕ(t)

%(t)

ψ(t)

zb(t)



It must be remarked that, due to the exponential growth of the vertices with the num-

ber of faults taken into consideration (28 ·3i vertices in the passive and active FTC cases,

28−i · 32i vertices in the hybrid FTC case, where i is the number of considered faults),

the time needed to solve the LMIs grows exponentially too. However, the strong calcu-

lating capacity available nowadays, and the fact that the controller design is performed

offline and only the coefficients of the polytopic decomposition must be calculated on-

line, make this issue less critical.

The results shown hereafter refer to simulations which last 30 s, where the quadrotor is

driven from the initial state:

ϕ(0) = π/6 %(0) = π/6 ψ(0) = π/6 zb(0) = 0

ϕ̇(0) = 0 %̇(0) = 0 ψ̇(0) = 0 żb(0) = 0

to the desired trajectory defined as in (7.47)-(7.50) with Φ = P = Ψ = 0.1, Z = 0,

Nϕ = N% = Nψ = Nz = 10. The desired trajectory has been generated by the reference
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model (7.51)-(7.58) starting from the initial reference state:



ϕref (0)

vrefϕ (0)

%ref (0)

vref% (0)

ψref (0)

vrefψ (0)

zref (0)

vrefz (0)


=



0

2πΦ/Nϕ

0

2πP/N%

0

2πΨ/Nψ

0

2πZ/Nz



Figs. 7.2-7.5 present a comparison between the responses obtained with a nominal

controller and the ones obtained with the proposed FTC approach. A fault in the first

actuator acts starting from the time instant t = 15 s. It can be seen that even a small

fault, e.g. f1 = 0.9, is enough to drive the system to instability if the nominal controller

is used (see green lines). On the other hand, the passive FTC shows some tolerance

capability since, for f1 = 0.8 and f1 = 0.9 (purple and cyan lines, respectively), the

stability is preserved, even though with a steady-state error due to the effect of the

fault3.

On the other hand, the proposed active FTC technique can achieve a perfect fault tol-

erance as long as the fault is correctly estimated, as shown in Figs. 7.6-7.9 (green lines),

where a fault f1 = 0.7 acting from t = 15 s is considered. However, as the uncertainty

in the fault estimation, in this work modeled as uniformly bounded noise, increases, so

does the error between the real trajectory and the reference one.

By applying the proposed hybrid FTC method, the overall performance can be im-

proved, thus reducing the effect that the fault estimation error has on the closed-loop

response, as shown in Figs. 7.10-7.13.

In order to quantify numerically the improvement brought by the considered FTC

strategies, let us introduce the following performance measures:

Jϕ =

3000∑
k=1500

(
ϕr
(
k

100

)
− ϕ

(
k

100

))2
1500

(7.77)

J% =

3000∑
k=1500

(
%r
(
k

100

)
− %

(
k

100

))2
1500

(7.78)

3Adding an integral action to the controller could eliminate the steady-state error, even though at the
expense of worsening the dynamical transient performance of the closed-loop system.
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FIGURE 7.2: Roll angle response (comparison between the nominal controller and the
passive FTC).
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FTC, f1 = 0.7).
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TABLE 7.2: Comparison of nominal controller with passive/active/hybrid FTC

Type of FTC Fault/uncertainty Jϕ J% Jψ Jz J
strategy magnitude
Nominal f1 = 1 3.9 · 10−9 3.4 · 10−9 4.1 · 10−9 1.6 · 10−11 1.1 · 10−8

f1 = 0.9 105.2 593.6 388.5 1.6 · 103 2.7 · 103

Passive f1 = 1 1.4 · 10−10 1.4 · 10−10 1.2 · 10−10 2.7 · 10−10 6.7 · 10−10

f1 = 0.9 2.0 · 10−4 0.047 0.012 0.027 0.087
f1 = 0.8 0.002 0.329 0.084 0.143 0.558
f1 = 0.7 7.0 · 104 2.3 · 103 2.3 · 104 1.5 · 105 2.5 · 105

Active f1 = 0.7
∆f1 = 0 4.9 · 10−10 1.2 · 10−8 9.4 · 10−10 7.3 · 10−11 1.3 · 10−8

∆f1 ∈ [−.01, .01] 5.5 · 10−7 1.8 · 10−4 5.7 · 10−7 5.5 · 10−8 1.8 · 10−4

∆f1 ∈ [−.05, .05] 3.2 · 10−5 0.015 5.0 · 10−5 4.8 · 10−6 0.015
∆f1 ∈ [−.10, .10] 3.8 · 10−5 0.027 8.5 · 10−5 8.9 · 10−6 0.027

Hybrid
f1 = 0.7

∆f1 ∈ [−.10, .10]
2.0 · 10−5 8.0 · 10−4 1.5 · 10−4 3.4 · 10−4 0.001

Jψ =

3000∑
k=1500

(
ψr
(
k

100

)
− ψ

(
k

100

))2
1500

(7.79)

Jz =

3000∑
k=1500

(
zr
(
k

100

)
− z

(
k

100

))2
1500

(7.80)

J = Jϕ + J% + Jψ + Jz (7.81)

A comparison of the performance measures obtained in the different cases, as resumed

in Table 7.2, shows the improvement brought by the proposed FTC strategies with re-

spect to the nominal one, as well as the one brought by the hybrid FTC with respect to

the passive and active FTC strategies.

7.6 Conclusions

In this chapter, the idea of the robust LPV polytopic technique, introduced in Chapter

4, has been applied to FTC, giving rise to different strategies. A passive FTC strategy

has been obtained by considering the faults as exogenous perturbations that should

be rejected. An active FTC strategy has been obtained by considering the faults as

additional scheduling parameters. Finally, a hybrid FTC strategy has been obtained by

taking into account explicitly the fault estimation uncertainty during the design step.

It has also been shown how the proposed FTC strategy can be used for the implemen-

tation of a bank of controllers, such that the signal provided by the fault diagnosis unit

determines which controller should be active at a given moment. The advantage of

the reconfigured controllers with respect to the non-reconfigured ones lies in that the

formers have to cope with specific faults and allow to improve the performances in the
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non-faulty case using the nominal controller, whose design does not take into account

the possibility of fault occurrence.

The proposed method has been applied to solve the FTC problem for a quadrotor UAV.

The results presented have shown the relevant features of the proposed FTC strategy,

that is able to improve the performances under fault occurrence. In particular, whereas

the passive FTC shows some limited tolerance capability, due to the appearance of

steady-state errors due to the fault effect, the active FTC technique can achieve a perfect

fault tolerance as long as the fault is correctly estimated. However, as the uncertainty in

the fault estimation increases, so does the error between the real trajectory and the ref-

erence one. By applying the proposed hybrid FTC method, the overall performance can

be improved, thus reducing the effect that the fault estimation error has on the closed-

loop response. The introduction and comparison of some performance measures have

allowed confirming numerically such analysis.
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8.1 Introduction

In recent years, the fault-hiding paradigm has been proposed as an active strategy to

obtain fault tolerance [301]. In this paradigm, the controller reconfiguration (CR) unit

reconfigures the faulty plant instead of the controller/observer. The nominal controller

is kept in the loop by inserting a reconfiguration block between the faulty plant and the

nominal controller/observer when a fault occurs. The reconfiguration block is chosen

so as to hide the fault from the controller point of view, allowing it to see the same plant

as before the fault. In case of actuator faults, as the ones considered in this chapter, the

reconfiguration block is named virtual actuator. Initially proposed in a state space for-

mulation for LTI systems [187], this active FTC strategy has been extended successfully

to many classes of systems, e.g. LPV [202], TS [83], piecewise affine [237], Lipschitz

[159] and Hammerstein-Weiner [236] systems.

The work presented in this chapter is concerned with the development of an FTC strat-

egy for LPV systems involving a reconfigured reference model and virtual actuators.

The use of the reference model framework allows to assure that the desired tracking

performances are kept despite the fault occurrence, thanks to the action brought by the

virtual actuator.

In all controlled systems, the actuator capacity is limited by physical constraints and

limitations of the actuators. The effects of saturations on the control loop could be per-

formance degradation, large overshoot and possible instability in spite of satisfactory

performances predicted from the linear design [77, 327]. While the system analysis, in-

cluding saturated actuators, is relatively easy, the controller synthesis problem in pres-

ence of input nonlinearities is a much more involved task. In [355], a systematic anti-

windup control synthesis approach for systems with actuator saturation is provided

within an LPV design framework. The advantage of this approach is that it directly

utilizes saturation indicator parameters to schedule accordingly the parameter-varying

controller.

In this chapter, by including the saturations in the reference model equations, it is

shown that it is possible to design a model reference FTC system that automatically

retunes the reference states whenever the system input is affected by saturation non-

linearities. Hence, another contribution of this chapter is to take into account the satu-

rations as scheduling parameters, such that their inclusion in both the reference model

and the system provides an elegant way to incorporate a graceful performance degra-

dation in presence of actuator saturations.
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8.2 FTC using reconfigured reference model and virtual actua-

tors

8.2.1 Model reference control

Let us consider an LPV system in state-space form, described by (2.1)-(2.2) (for the sake

of simplicity, D (θ(τ)) = O in further deliberations):

σ.x(τ) = A (θ(τ))x(τ) +B (θ(τ))u(τ) + c(τ) (8.1)

y(τ) = C (θ(τ))x(τ) (8.2)

where c(τ) is a known exogenous input. Similar to what has been done in Chapter 7,

the idea of LPV reference model control is considered to assure the convergence of the

system trajectory to the desired one [3, 51]. Hence, the following reference model is

considered for the synthesis of the LPV controller:

σ.xref (τ) = A (θ(τ))xref (τ) +B (θ(τ))ucref (τ) + c(τ) (8.3)

yref (τ) = C (θ(τ))xref (τ) (8.4)

where xref ∈ Rnx is the reference state vector, ucref ∈ Rnu is the nominal reference input

vector, and yref ∈ Rny is the reference output vector.

Thus, considering the tracking error, defined as e(τ) , xref (τ) − x(τ), the following

error system is obtained:

σ.e(τ) = A (θ(τ)) e(τ) +B (θ(τ)) ∆uc(τ) (8.5)

εc(τ) = C (θ(τ)) e(τ) (8.6)

with ∆uc(τ) , ucref (τ)− u(τ) and εc(τ) , yref (τ)− y(τ).

The LPV error system (8.5)-(8.6) is controlled by an error-feedback control law:

∆uc(τ) = K (θ(τ)) ê(τ) (8.7)

where ê(τ) is an estimation of the error e(τ), provided by the following LPV error ob-

server:

σ.ê(τ) = A (θ(τ)) ê(τ) +B (θ(τ)) ∆uc(τ) + L (θ(τ)) [C (θ(τ)) ê(τ)− εc(τ)] (8.8)
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where the gain L (θ(τ)) ∈ Rnx×ny is a design parameter. Notice that the information

given by the error observer can be used directly to obtain the state estimation, since

x̂(τ) = xref (τ)− ê(τ).

8.2.2 Fault definition

In this chapter, the considered actuator faults change the nominal state equation of the

system (8.1), as follows:

σ.x(τ) = A (θ(τ))x(τ) +Bf (θ(τ), f(τ))u(τ) + Φ (θ(τ), f(τ)) fa(τ) + c(τ) (8.9)

where fa(τ) ∈ Rnu denotes the additive actuator faults, being Φ (θ(τ), f(τ)) ∈ Rnu×nx

the actuator fault distribution matrix. The multiplicative actuator faults are embedded

in the matrix Bf (θ(τ), f(τ)), as follows:

Bf (θ(τ), f(τ)) = B (θ(τ))F (f(τ)) (8.10)

with:

F (f(τ)) =


f1(τ) 0 · · · 0

0 f2(τ) · · · 0
...

...
. . .

...

0 0 · · · fnu(τ)

 (8.11)

where fi(τ) ∈ [0, 1], i = 1, . . . , nu, represents the effectiveness of the i-th actuator, such

that the extreme values fi = 0 and fi = 1 represent a total failure of the i-th actuator

and the healthy i-th actuator, respectively.

8.2.3 Fault tolerant control strategy

The fault tolerant control strategy proposed in this chapter is based on a reconfiguration

of the reference model (8.3)-(8.4), and the addition of a virtual actuator block. At first,

the reference model state equation (8.3) is slightly modified to take into account the

actuator faults, as follows:

σ.xref (τ) = A (θ(τ))xref (τ) +Bf

(
θ(τ), f̂(τ)

)
uref (τ) + Φ

(
θ(τ), f̂(τ)

)
f̂a(τ) + c(τ)

(8.12)

where f̂(τ) and f̂a(τ) are estimations of f(τ) and fa(τ), respectively, and uref (τ) ∈ Rnu

is the reconfigured reference input vector. Hence, under the assumption that f̂(τ) ∼=
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f(τ) and f̂a(τ) ∼= fa(τ), the error system equation (8.5) becomes:

σ.e(τ) = A (θ(τ)) e(τ) +Bf

(
θ(τ), f̂(τ)

)
∆u(τ) (8.13)

with ∆u(τ) , uref (τ)− u(τ).

Then, the concept of virtual actuator introduced in [187] for LTI systems is extended to

LPV systems, such that it can be applied to the error model (8.13). The main idea of this

FTC method is to reconfigure the faulty plant such that the nominal controller could

still be used without need of retuning it. The plant with the faulty actuators is modified

adding the virtual actuator block that masks the fault and allows the controller to see

the same plant as before the fault.

The virtual actuator can be either a static or a dynamic block, depending on the satis-

faction of the following rank condition:

rank (Bf (θ(τ), f(τ))) = rank
(
B (θ(τ)) Bf (θ(τ), f(τ))

)
(8.14)

If (8.14) holds (e.g. when the fault has only changed the actuator gain, but it has not

completely broken it), the reconfiguration structure is static and can be expressed as:

∆u(τ) = N
(
θ(τ), f̂(τ)

)
∆uc(τ) (8.15)

where ∆uc(τ) is the controller output, and the matrix N
(
θ(τ), f̂(τ)

)
is given by:

N
(
θ(τ), f̂(τ)

)
= Bf

(
θ(τ), f̂(τ)

)†
B (θ(τ)) (8.16)

Cases where (8.14) does not hold should be described through values of the matrix

B∗ (θ(τ)), such that the following condition holds:

B∗ (θ(τ)) = Bf (θ(τ), f(τ))N
(
θ(τ), f̂(τ)

)
(8.17)

Notice that the matrixB∗ (θ(τ)) does not depend on f(τ) because the matrixN
(
θ(τ), f̂(τ)

)
eliminates the effects of partial faults, as discussed in Appendix B.

In such cases, the reconfiguration structure is expressed by:

∆u(τ) = N
(
θ(τ), f̂(τ)

)
(∆uc(τ)−M (θ(τ))xv(τ)) (8.18)
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where M (θ(τ)) is the gain of the LPV virtual actuator, while the virtual actuator state

xv(τ) is calculated as:

σ.xv(τ) = (A (θ(τ)) +B∗ (θ(τ))M (θ(τ)))xv(τ) + (B (θ(τ))−B∗ (θ(τ))) ∆uc(τ) (8.19)

In these cases, the LPV error observer (8.8) is also modified, as follows:

σ.ê(τ) = A (θ(τ)) ê(τ) +B (θ(τ)) ∆uc(τ) + L (θ(τ)) (C (θ(τ)) ê(τ)− ε(τ)) (8.20)

where:

ε(τ) = εc(τ) + C (θ(τ))xv(τ) (8.21)

Thanks to the introduction of the virtual actuator block, the separation principle holds for

the augmented system made up by the LPV error system, the LPV virtual actuator, the

LPV error-feedback controller and the LPV error observer, i.e. the augmented system

can be brought to a block-triangular form, as shown by the following theorem.

Theorem 8.1. (Separation principle for the augmented system) Consider the augmented model

that includes the faulty LPV error system state (8.13) and output (8.6) equations, the

LPV virtual actuator (8.18)-(8.19), the LPV error-feedback controller (8.7) and the LPV

error observer (8.20), as shown1 in Fig. 8.1:
σ.ê(τ)

σ.e(τ)

σ.xv(τ)

 =


A+BK + LC −LC −LC

B∗K A −B∗M
(B −B∗)K O A+B∗M




ê(τ)

e(τ)

xv(τ)

 (8.22)

Then, there exists a similarity transformation such that the state matrix of the aug-

mented system in the new state variables is block-triangular, as follows:

Aaug (θ(τ)) =


A+ LC O O

BK A+BK O

(B −B∗)K (B −B∗)K A+B∗M

 (8.23)

Proof: The proof is straightforward, and comes from introducing the new state vari-

ables:

x1(τ) = ê(τ)− xv(τ)− e(τ) (8.24)

x2(τ) = e(τ) + xv(τ) (8.25)

1In the remaining of the theorem, and in its proof, the dependence of the matrices on the vector of
scheduling parameters θ(τ) and the multiplicative faults f(τ), or their estimation f̂(τ), will be omitted.
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FIGURE 8.1: Virtual actuator FTC scheme.

x3(τ) = xv(τ) (8.26)

that correspond to a similarity transformation using the following change of basis ma-

trix:

T =


I −I −I
O I I

O O I

 . (8.27)

�

Looking at (8.23), it can be seen that the state x1(τ) is affected by the matrix L (θ(τ))

through the matrix A (θ(τ)) + L (θ(τ))C (θ(τ)); the state x2(τ) is influenced by the ma-

trix A (θ(τ)) + B (θ(τ))K (θ(τ)); finally, the matrix M (θ(τ)) affects the behavior of the

state x3(τ) through the matrix A (θ(τ)) +B∗ (θ(τ))M (θ(τ)). This means that, thanks to
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the reconfiguration of the reference model and the introduction of the virtual actuator,

the nominal location of the poles of the closed-loop system and the error observer are

not modified by the fault occurrence. Hence, the gains K (θ(τ)) and L (θ(τ)) do not

need to be retuned, and the overall system is modified only by the additional poles

introduced by the virtual actuator.

Remark: The location of the virtual actuator poles will have certain effects on the per-

formance of the reconfigured system. In general, it is wished the virtual actuator to

be faster than the controller. However, this specification is limited by the problem of

actuator saturations and by the observer poles, that should be faster than the virtual

actuator ones.

8.2.4 Graceful performance degradation in presence of actuator saturations

Physical systems have maximum and minimum limits or saturations on their control

signals and, as a consequence, the system input is different from the controller output.

This difference is usually referred to as controller windup [18] and can result in a signifi-

cant performance degradation, large overshoots and even instability, if saturations are

not taken into account properly [77, 327].

An advantage of the model reference control strategy proposed in this chapter is that,

by including the saturations in the reference model equations, it is possible to design

an FTC system that automatically retunes the reference states whenever uref (τ) is such

that the saturation nonlinearities become active. In fact, uref (τ) (or ucref (τ) in nominal

conditions) is usually calculated such that the reference model shows some desired

behavior, e.g. some subset of the reference model states are driven to some desired

steady-state values. In general, ucref (τ) should be such that it does not activate the

saturation nonlinearities when the system is working in nominal conditions. However,

under fault occurrence, the reconfigured uref (τ) could be such that some saturation

nonlinearities are activated. In this case, the desired performance is not achievable. The

inclusion of the saturation nonlinearities in the reference model equations provides an

elegant way to incorporate a graceful performance degradation in presence of actuator

saturations.

More specifically, let sat : Rnu → Rnu be a saturation function that specifies the limited

actuator capacity on the control input u(τ) in (8.1). The saturation is assumed to be a

decoupled, sector-bounded, static actuator nonlinearity with a constant saturation limit
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uMAX
i in the i-th input, such that:

sat(u) =



sat1(u1)
...

sati(ui)
...

satnu(unu)


sati(ui) =


uMAX
i

ui

−uMAX
i

if ui > uMAX
i

if |ui| ≤ uMAX
i

if ui < −uMAX
i

(8.28)

for i = 1, . . . , nu, where uMAX =
(
uMAX

1 , . . . , uMAX
nu

)T ∈ Rnu is a given vector with

positive entries. Consequently, (8.9) is changed to:

σ.x(τ) = A (θ(τ))x(τ) +Bf (θ(τ), f(τ)) sat (u(τ)) + Φ (θ(τ), f(τ)) fa(τ) + c(τ) (8.29)

Then, the reference model (8.12) is changed accordingly, as follows:

σ.xref (τ) = A (θ(τ))xref (τ)+Bf

(
θ(τ), f̂(τ)

)
sat (uref (τ))+Φ

(
θ(τ), f̂(τ)

)
f̂a(τ)+ c(τ)

(8.30)

This modification of the reference model equation, under the assumption that f̂(τ) ∼=
f(τ) and f̂a(τ) ∼= fa(τ), allows to write the error model as follows:

σ.e(τ) = A (θ(τ)) e(τ) +Bf (θ(τ), f(τ)) (sat (uref (τ))− sat (u(τ))) (8.31)

In order to assess stability or performance using LPV techniques, it is possible to apply

a slight modification of the anti-windup control design approach proposed in [355],

where the actuator saturation nonlinearities are directly taken into account by rep-

resenting the status of each saturated actuator as a varying parameter. In particular,

through the introduction of the following saturation scheduling parameter:

ςi (ui,ref (t), ui(t)) =
sati (ui,ref (τ))− sati (ui(τ))

ui,ref (τ)− ui(τ)
(8.32)

the error model (8.31) becomes:

σ.e(τ) = A (θΣ(τ)) e(τ) +BΣf (θΣ(τ), f(τ)) ∆u(τ) (8.33)

where:

BΣf (θΣ(τ), f(τ)) = BΣ (θΣ(τ))F (f(τ)) (8.34)

BΣ (θΣ(τ)) = B (θ(τ)) diag (ς1 (u1,ref (τ), u1(τ)) , . . . , ςnu (unu,ref (τ), unu(τ))) (8.35)
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with:

θΣ(τ) =


θ(τ)

ς1 (u1,ref (τ), u1(τ))
...

ςnu (unu,ref (τ), unu(τ))

 (8.36)

and:

ςi (ui,ref (τ), ui(τ)) =


1 if |ui,ref (τ)| < uMAX

i , |ui(τ)| < uMAX
i

ui,ref (τ)−sign(ui(τ))uMAX
i

ui,ref (τ)−ui(τ) if |ui,ref (τ)| < uMAX
i , |ui(τ)| ≥ uMAX

i

sign(ui,ref (τ))uMAX
i −ui(τ)

ui,ref (τ)−ui(τ) if |ui,ref (τ)| ≥ uMAX
i , |ui(τ)| < uMAX

i

[sign(ui,ref (τ))−sign(ui(τ))]uMAX
i

ui,ref (τ)−ui(τ) if |ui,ref (τ)| ≥ uMAX
i , |ui(τ)| ≥ uMAX

i

(8.37)

ςi can take values between 0 and 1, where 1 corresponds to the case where both the

system and the reference model work in the linear zone, and 0 corresponds to the case

that both the system and the reference model are in the saturation zone with ui(τ) and

ui,ref (τ) of the same sign (see Fig. 8.2 for a graphical representation of the function

ςi (ui,ref (τ), ui(τ)) with uMAX
i = 2.5).
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FIGURE 8.2: Graphical representation of ςi (ui,ref (τ), ui(τ)) with uMAX
i = 2.5.
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8.2.5 Effects of the fault estimation errors

Hereafter, the effects of the fault estimation errors over the FTC system, i.e. the more

realistic case where f̂(τ) 6= f(τ) and f̂a(τ) 6= fa(τ), will be briefly discussed. By con-

sidering f(τ) = f̂(τ) + ∆f(τ) and fa(τ) = f̂a(τ) + ∆fa(τ), where ∆f(τ) and ∆fa(τ)

are the uncertainties in the estimation of the multiplicative fault and the additive fault,

respectively, then the faulty system (8.29) can be rewritten as:

σ.x(τ) = A (θ(τ))x(τ) +Bf

(
θ(τ), f̂(τ) + ∆f(τ)

)
sat (u(τ))

+Φ
(
θ(τ), f̂(τ) + ∆f(τ)

)(
f̂a(τ) + ∆fa(τ)

)
+ c(τ)

(8.38)

that, taking into account the reference model (8.30), under the assumption that:

Φ (θ(τ), f(τ)) = Ψ (θ(τ))F (f(τ)) (8.39)

and by neglecting the terms arising of the type ∆fi(τ)∆fa,i(τ), can be brought to the

following error model:

σ.e(τ) = A (θΣ(τ)) e(τ) +BΣf (θΣ(τ), f(τ)) ∆u(τ)− Φ
(
θΣ(τ), f̂(τ)

)
∆fa(τ)

−
[
Bsat (θΣ(τ), u(τ)) + Ψf

(
θΣ(τ), f̂a(τ)

)]
∆f(τ)

(8.40)

where BΣf (θΣ(τ), f(τ)) and θΣ(τ) are defined as in (8.34)-(8.36) and:

Bsat (θΣ(τ), u(τ)) = B (θΣ(τ)) diag (sat1 (u1(τ)) , . . . , satnu (unu(τ))) (8.41)

Ψf

(
θΣ(τ), f̂a(τ)

)
= Ψ (θΣ(τ)) diag

(
f̂a1(τ), . . . , f̂anu(τ)

)
(8.42)

By considering the output equation (8.6), the LPV virtual actuator (8.18)-(8.19), the LPV

error-feedback controller (8.7) and the LPV error observer (8.20), and by using the sim-

ilarity transformation of Theorem 8.1, the following is obtained:
σ.x1(τ)

σ.x2(τ)

σ.x3(τ)

 =


A+ LC O O

BK A+BK O

(B −B∗)K (B −B∗)K A+B∗M




x1(τ)

x2(τ)

x3(τ)


+


Bsat (θΣ(τ), u(τ)) + Ψf

(
θΣ(τ), f̂a(τ)

)
Φ
(
θΣ(τ), f̂(τ)

)
−
[
Bsat (θΣ(τ), u(τ)) + Ψf

(
θΣ(τ), f̂a(τ)

)]
−Φ

(
θΣ(τ), f̂(τ)

)
O O


(

∆f(τ)

∆fa(τ)

)

(8.43)

It can be seen that, taking advantage of the boundedness of u(τ), it would be possible to

improve the robustness of the FTC system against the uncertainties in the multiplicative
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and additive fault estimations using perturbation rejection techniques, such asH2\H∞
norm optimization.

8.3 Design using LMIs

8.3.1 Properties of block-triangular LPV systems

Let us consider the following block-triangular LPV system:(
σ.x1(τ)

σ.x2(τ)

)
=

(
A11 (θ(τ)) O

A21 (θ(τ)) A22 (θ(τ))

)(
x1(τ)

x2(τ)

)
= Atriang (θ(τ))

(
x1(τ)

x2(τ)

)
(8.44)

and assume that:

• the subsystem:

σ.x1(τ) = A11 (θ(τ))x1(τ) (8.45)

is quadratically stable, that is, there exists Q1 � O such that (see Theorems 2.1-

2.2):

Q1A11(θ)T +A11(θ)Q1 ≺ O ∀θ ∈ Θ (8.46)

or: (
−Q1 A11(θ)Q1

Q1A11(θ)T −Q1

)
≺ O ∀θ ∈ Θ (8.47)

for CT and DT systems, respectively.

• the subsystem obtained from (8.44) when x1(τ) = 0:

σ.x2(τ) = A22 (θ(τ))x2(τ) (8.48)

is quadratically stable, i.e there exists Q2 � O such that:

Q2A22(θ)T +A22(θ)Q2 ≺ O ∀θ ∈ Θ (8.49)

or: (
−Q2 A22(θ)Q2

Q2A22(θ)T −Q2

)
≺ O ∀θ ∈ Θ (8.50)

for the CT and the DT case, respectively.

Then, an interesting question is whether the system (8.44) is quadratically stable too.

In fact, even though its asymptotic stability is guaranteed by well-known results in the
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control systems theory [312], the quadratic stability is a stronger requirement, because

it implies the existence of a common matrix Q � O such that:

QAtriang(θ)
T +Atriang(θ)Q ≺ O ∀θ ∈ Θ (8.51)

or: (
−Q Atriang(θ)Q

QAtriang(θ)
T −Q

)
≺ O ∀θ ∈ Θ (8.52)

In the remainder of this section, it is shown that if (8.46) and (8.49) hold, then there

exists Q � O such that (8.51) hold. Similarly, if (8.47) and (8.50) hold, then there exists

Q � O such that (8.52) hold. The proofs make use of the following lemma.

Lemma 8.1. Given Z � O and a matrix W of the same order, there exists κ > 0 such that

κZ −W � O.

Proof: Z has some minimum singular value σZ such that σZ > 0 and W has some

maximum singular value σW . Also, for any non-zero vector v:

vTZv ≥ ‖v‖2 σZ (8.53)

vTWv ≤ ‖v‖2 σW (8.54)

So vT(κZ −W )v ≥ ‖v‖2 (κσZ − σW ) and ‖v‖2 (κσZ − σW ) > 0 whenever κσZ � W .

Hence, from the definition of positive definite matrix results that κZ − W is positive

definite. �

Hence, the following theorems are true.

Theorem 8.2. (Quadratic stability of a block-triangular CT LPV system) Given the block-

triangular CT LPV system (8.44) with τ = t, assume that there existQ1 � O andQ2 � O
such that (8.46) and (8.49) hold. Then, there exists κ > 0 such that (8.51) holds with:

Q =

(
Q1 O

O κQ2

)
(8.55)

Proof: Replacing (8.55) into (8.51) leads to the following condition:(
Q1A11(θ)T +A11(θ)Q1 Q1A21(θ)T

A21(θ)Q1 κ
(
Q2A22(θ)T +A22(θ)Q2

) ) ≺ O ∀θ ∈ Θ (8.56)
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Using Schur complements [286], (8.56) is equivalent toQ1A11(θ)T +A11(θ)Q1 ≺ O, that

holds due to (8.46), and:

κ
(
−Q2A22(θ)T −A22(θ)Q2

)
−A21(θ)Q1ΞCT (θ)Q1A21(θ)T � O ∀θ ∈ Θ (8.57)

with:

ΞCT (θ) =
(
−Q1A11(θ)T −A11(θ)Q1

)−1
(8.58)

The application of Lemma 8.1, taking into account that −Q2A22(θ)T − A22(θ)Q2 � O

due to (8.49), completes the proof. �

Theorem 8.3. (Quadratic stability of a block-triangular DT LPV system) Given the block-

triangular DT LPV system (8.44) with τ = k, assume that there exist Q1 � O and

Q2 � O such that (8.47) and (8.50) hold. Then, there exists κ > 0 such that (8.52) holds,

with Q defined as in (8.55).

Proof: Replacing (8.55) into (8.52) leads to the following condition:
Q1 O −A11(θ)Q1 O

O κQ2 −A21(θ)Q1 −κA22(θ)Q2

−Q1A11(θ)T −Q1A21(θ)T Q1 O

O −κQ2A22(θ)T O κQ2

 � O ∀θ ∈ Θ

(8.59)

Using Schur complements [286], (8.59) is equivalent to Q � O, which holds due to the

positiveness of Q1, Q2 and κ, and:(
Q1 −A11(θ)Q1A11(θ)T −A11(θ)Q1A21(θ)T

−A21(θ)Q1A11(θ)T Ψ22(θ)

)
� O ∀θ ∈ Θ (8.60)

with:

Ψ22(θ) = κ
(
Q2 −A22(θ)Q2A22(θ)T

)
−A21(θ)Q1A21(θ)T (8.61)

Using again Schur complements [286], (8.60) is equivalent to (8.47) and:

κ
(
Q2 −A22(θ)Q2A22(θ)T

)
−A21(θ)ΞDT (θ)A21(θ)T � O ∀θ ∈ Θ (8.62)

with:

ΞDT (θ) = Q1A11(θ)T
(
Q1 −A11(θ)Q1A11(θ)T

)−1
A11(θ) +Q1 (8.63)

The application of Lemma 8.1, taking into account (8.50), completes the proof. �
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Remark: Notice that similar versions of Theorems 8.2-8.3 hold for LPV systems in an

upper block-triangular form.

The results shown in Theorems 8.2-8.3 justify the separate design of the LPV error ob-

server, the LPV error-feedback controller and the LPV virtual actuator, because the aug-

mented model can be brought to a block-triangular form, as shown by Theorem 8.1. In

fact, the quadratic stability of the augmented system (8.23) can be obtained from the

quadratic stability of each subsystem. It is worth remarking that the separate design

of each subsystem is more conservative than the design of the augmented system as a

whole, due to the block-diagonality ofQ in (8.55). However, the separate design has the

indisputable advantage of simplicity, e.g. due to the possibility of reducing the design

conditions into LMIs.

8.3.2 Overall FTC scheme design

The design of the overall FTC scheme implies the following:

• finding the NΣ controller vertex gains Ki such that:

K (θΣ(τ)) =

NΣ∑
i=1

µi (θΣ(τ))Ki (8.64)

guarantees the quadratic stability of A (θΣ(τ)) + BΣ (θΣ(τ))K (θΣ(τ)) and some

desired performance, under the assumption that the pair:(
A (θΣ(τ))

BΣ (θΣ(τ))

)
=

NΣ∑
i=1

µi (θΣ(τ))

(
Ai

BΣ,i

)
(8.65)

is quadratically stabilizable in ΘΣ;

• finding the NΣ virtual actuator vertex gains Mi such that:

M (θΣ(τ)) =

NΣ∑
i=1

µi (θΣ(τ))Mi (8.66)

guarantees the quadratic stability of A (θΣ(τ)) + B∗Σ (θΣ(τ))M (θΣ(τ)) and some

desired performance, under the assumption that the pair:(
A (θΣ(τ))

B∗Σ (θΣ(τ))

)
=

NΣ∑
i=1

µi (θΣ(τ))

(
Ai

B∗Σ,i

)
(8.67)

is quadratically stabilizable in ΘΣ;
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• finding the N observer vertex gains Li such that:

L (θ(τ)) =
N∑
i=1

µi (θ(τ))Li (8.68)

guarantees the quadratic stability ofA (θ(τ))+L (θ(τ))C (θ(τ)) and some desired

performance, under the assumption that the pair:(
A (θ(τ))

C (θ(τ))

)
=

N∑
i=1

µi (θ(τ))

(
Ai

Ci

)
(8.69)

is quadratically detectable in Θ. Notice that the quadratic detectability of a given

system is equivalent to the quadratic stabilizability of the dual system.

Taking into account the design conditions presented in Section 2.5, it is possible to

design the matrices Ki, Mi and Li separately.

8.4 Application examples

8.4.1 Application to a twin rotor MIMO system

8.4.1.1 Description of the twin rotor MIMO system

The twin rotor MIMO system (TRMS) is a laboratory aeromechanical system, devel-

oped by Feedback Instruments Ltd. for control experiments (see Fig. 8.3). The sys-

tem is considered a challenging engineering problem due to its high nonlinearity, the

presence of cross-coupling between its axes and inaccessibility of some of its states for

measurements. In order to achieve satisfactory control objectives, an accurate model of

the system is needed [235].

The TRMS is similar in its behavior to a helicopter. At both ends of its beam, there are

two propellers driven by DC motors, each perpendicular to the other one. The beam

can rotate freely in the horizontal and vertical planes, in such a way that its ends move

on spherical surfaces. The joined beam can be moved by changing the motor supply

voltages, thus controlling the rotational speed of the propellers. A counter-weight fixed

to the beam is used for balancing the angular momentum in a stable equilibrium po-

sition. The rotor generating the vertical movement is called the main rotor. It enables

the TRMS to pitch, which is a rotation around the horizontal axis. The rotor generating

the horizontal movement is called the tail rotor. It enables the TRMS to yaw, which is a

rotation in the horizontal plane around the vertical axis.
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FIGURE 8.3: Twin rotor MIMO system (TRMS).

An accurate nonlinear model for the TRMS has been obtained by Rahideh and Sha-

heed [235] and further improved in [247], resulting in the following set of differential

equations:

ω̇h(t) =
kak1

JtrRa
uh(t)−

(
Btr
Jtr

+
k2
a

JtrRa

)
ωh(t)− f1 (ωh(t))

Jtr
(8.70)

Ω̇h(t) =
ltf2 (ωh(t)) cosαv(t)− kohΩh(t)− f3 (αh(t)) + f6 (αv(t))

KD cos2 αv(t) +KE sin2 αv(t) +KF

+
km cosαv(t)

[
kak2uv(t)/Ra −

(
Bmr + k2

a

/
Ra
)
ωv(t)− f4 (ωv(t))

]
Jmr

(
KD cos2 αv(t) +KE sin2 αv(t) +KF

) (8.71)

+
kmωv(t) sinαv(t)Ωv(t)

(
KD cos2 αv(t)−KE sin2 αv(t)−KF − 2KE cos2 αv(t)

)(
KD cos2 αv(t) +KE sin2 αv(t) +KF

)2
α̇h(t) = Ωh(t) (8.72)

ω̇v(t) =
kak2

JmrRa
uv(t)−

(
Bmr
Jmr

+
k2
a

JmrRa

)
ωv(t)−

f4 (ωv(t))

Jmr
(8.73)

Ω̇v(t) =
lmf5 (ωv(t)) + kgΩh(t)f5 (ωv(t)) cosαv(t)− kovΩv(t)

Jv

+
g [(KA −KB) cosαv(t)−KC sinαv(t)]− Ωh(t)2KH sinαv(t) cosαv(t)

Jv
(8.74)

+
kt
[
kak1uh(t)

/
Ra −

(
Btr + k2

a

/
Ra
)
ωh(t)− f1 (ωh(t))

]
JvJtr

α̇v(t) = Ωv(t) (8.75)
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where uh and uv are the input voltage of the tail and main motor, respectively, ωh and

ωv are the rotational velocity of the tail and main rotor, respectively, and Ωh and Ωv are

the angular velocity of the TRMS for the yaw and the pitch angle, respectively. Finally,

αh is the yaw angle of the beam, and αv is the pitch angle of the beam.

The nonlinear functions fi(·) that take into account the frictions and coupling effects

between the horizontal and the vertical dynamics, are defined as:

f1 (ωh(t)) =

{
kthpωh(t)2

−kthnωh(t)2

if ωh(t) ≥ 0

if ωh(t) < 0

f2 (ωh(t)) =

{
kfhpωh(t)2

−kfhnωh(t)2

if ωh(t) ≥ 0

if ωh(t) < 0

f3 (αh(t)) =

{
kchpαh(t)

kchnαh(t)

if αh(t) ≥ 0

if αh(t) < 0

f4 (ωv(t)) =

{
ktvpωv(t)

2

−ktvnωv(t)2

if ωv(t) ≥ 0

if ωv(t) < 0

f5 (ωv(t)) =

{
kfvpωv(t)

2

−kfvnωv(t)2

if ωv(t) ≥ 0

if ωv(t) < 0

f6 (αv(t)) =

{
kcvp

(
αv(t)− α0

v

)2
kcvn

(
αv(t)− α0

v

)2 if αv(t) ≥ α0
v

if αv(t) < α0
v

where α0
v is the equilibrium point for the pitch angle, corresponding to uv = 0. For a

complete description of the TRMS parameters, and their values, see Table 8.1.

8.4.1.2 Quasi-LPV error model

In the following, only the problem of controlling the yaw angle αh will be considered.

The reason for this choice is that there exists a coupling between the main motor and

the yaw angle of the beam (km 6= 0), so that the yaw angle can be controlled to some

desired value despite the complete loss of one of the two motors. On the other hand,

the same is not true in the case of the pitch angle αv, because it is driven only by the

main motor (kt = 0).

As a consequence, the problem of the FTC of the yaw angle of the TRMS allows show-

ing some features of the proposed methodology that could not be shown if the control

of the pitch angle was also considered. In particular, it will be shown that the proposed
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TABLE 8.1: TRMS parameters description and values

Param. Description Value
Bmr Viscous friction coefficient of the main propeller 0.0026 [Ω−1]
Btr Viscous friction coefficient of the tail propeller 0.0086 [Ω−1]
g Gravitational acceleration at sea level 9.81 [ms−2]
Jmr Moment of inertia of the main propeller 0.0254 [kgm2]
Jtr Moment of inertia of the tail propeller 0.0059 [kgm2]
Jv Vertical moment of inertia 0.0643 [kgm2]
KA Physical constant 0.0980 [kgm]
KB Physical constant 0.1137 [kgm]
KC Physical constant 0.0220 [kgm]
KD Physical constant 0.0553 [kgm2]
KE Physical constant 0.0058 [kgm2]
KF Physical constant 0.0059 [kgm2]
KH Physical constant 0.0591 [kgm2]
k1 Input constant of the tail motor 6.5
k2 Input constant of the main motor 8.5
ka Torque constant of the DC motors 0.0202
kchn Cable force coefficient for αh < 0 0.0111 [kgm−2s−2]
kchp Cable force coefficient for αh ≥ 0 0.0158 [kgm−2s−2]
kcvn Coupling coefficient for αv < α0

v 0.0563 [kgm−2s−2]
kcvp Coupling coefficient for αv ≥ α0

v 0.0623 [kgm−2s−2]
kfhn Aerodynamic force coefficient of the tail rotor for ωh < 0 0.0660 [kgms−2V −2]
kfhp Aerodynamic force coefficient of the tail rotor for ωh ≥ 0 0.0566 [kgms−2V −2]]
kfvn Aerodynamic force coefficient of the main rotor for ωv < 0 0.2197 [kgms−2V −2]
kfvp Aerodynamic force coefficient of the main rotor for ωv ≥ 0 0.3819 [kgms−2V −2]
kg Gyroscopic constant 0.2 [ms]
km Physical constant 0.0017 [kgm2s−1V −1]
koh Horizontal friction coefficient of the beam subsystem 0.0185 [kgm2s−1]
kov Vertical friction coefficient of the beam subsystem 0.1026 [kgm2s−1]
kt Physical constant 0 [kgm2s−1V −1]
kthn Drag friction coefficient of the tail propeller for ωh < 0 0.0028 [V −1Ω−1]
kthp Drag friction coefficient of the tail propeller for ωh ≥ 0 0.0027 [V −1Ω−1]
ktvn Drag friction coefficient of the main propeller for ωv < 0 0.0155 [V −1Ω−1]
ktvp Drag friction coefficient of the main propeller for ωv ≥ 0 0.0168 [V −1Ω−1]
lm Length of the main part of the beam 0.246 [m]
lt Length of the tail part of the beam 0.282 [m]
Ra Armature resistance of the DC motors 8 [Ω]

methodology can tolerate complete losses of actuators, as long as there is sufficient

actuator redundancy in the controlled system.

In order to obtain a quasi-LPV error model for the TRMS, the first step is to reshape the
nonlinear equations (8.70)-(8.73) into the quasi-LPV form (8.1), as follows:

ω̇h(t)

Ω̇h(t)

α̇h(t)

ω̇v(t)

 =


θ1(t) 0 0 0

θ2(t) θ3(t) θ4(t) θ5(t)

0 1 0 0

0 0 0 θ6(t)




ωh(t)

Ωh(t)

αh(t)

ωv(t)

+


b11 0

0 θ7(t)

0 0

0 b42


(

uh(t)

uv(t)

)
+


0

c2(t)

0

0


where θ(t) = (θ1(t), . . . , θ7(t))T is the vector of varying parameters, scheduled by the
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state variables ωh(t), αh(t), ωv(t) and the exogenous variable (with respect to the con-

sidered control problem) αv(t), with:

θ1(t) = −
k2
a

/
Ra +Btr + g1 (ωh(t))

Jtr

θ2(t) =
ltg2 (ωh(t)) cosαv(t)

KD cos2 αv(t) +KE sin2 αv(t) +KF

θ3(t) = − koh

KD cos2 αv(t) +KE sin2 αv(t) +KF

θ4(t) =
g3 (αh(t))

KD cos2 αv(t) +KE sin2 αv(t) +KF

θ5(t) =
km cosαv(t)

(
k2
a

/
Ra +Bmr + g4 (ωv(t))

)
Jmr

(
KD cos2 αv(t) +KE sin2 αv(t) +KF

)
θ6(t) = −

k2
a

/
Ra +Bmr + g4 (ωv(t))

Jmr

θ7(t) =
km cosαv(t)kak2

RaJmr
(
KD cos2 αv(t) +KE sin2 αv(t) +KF

)
b11 =

kak1

JtrRa

b42 =
kak2

JmrRa

c2(t) =
f6 (αv(t))

KD cos2 αv(t) +KE sin2 αv(t) +KF

where the functions gi(·) are given by:

g1 (ωh(t)) =

{
kthpωh(t)

−kthnωh(t)

if ωh(t) ≥ 0

if ωh(t) < 0

g2 (ωh(t)) =

{
kfhpωh(t)

−kfhnωh(t)

if ωh(t) ≥ 0

if ωh(t) < 0

g3 (αh(t)) =

{
kchp

kchn

if αh(t) ≥ 0

if αh(t) < 0

g4 (ωv(t)) =

{
ktvpωv(t)

−ktvnωv(t)
if ωv(t) ≥ 0

if ωv(t) < 0

g6 (αv(t)) =

{
kcvp

(
αv(t)− α0

v

)
kcvn

(
αv(t)− α0

v

) if αv(t) ≥ α0
v

if αv(t) < α0
v
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Then, using the reference model (8.5), and by defining the tracking errors eh(t) ,

ωrefh (t)−ωh(t), eΩ(t) , Ωref
h (t)−Ωh(t), eα(t) , αrefh (t)−αh(t) and ev(t) , ω

ref
v (t)−ωv(t),

and the new inputs ∆uh(t) , urefh (t) − uh(t), ∆uv(t) , urefv (t) − uv(t), the following
DT quasi-LPV error model can be obtained through an Euler approximation [89] with
a sampling time Ts = 0.01 s:


eh(k + 1)

eΩ(k + 1)

eα(k + 1)

ev(k + 1)

 =


θd1(k) 0 0 0

θd2(k) θd3(k) θd4(k) θd5(k)

0 Ts 1 0

0 0 0 θd6(k)




eh(k)

eΩ(k)

eα(k)

ev(k)

+


bd11 0

0 θd7(k)

0 0

0 bd42


(

∆uh(t)

∆uv(t)

)

where θd1(k) = 1 + Tsθ1(k), θd2(k) = Tsθ2(k), θd3(k) = 1 + Tsθ3(k), θd4(k) = Tsθ4(k),

θd5(k) = Tsθ5(k), θd6(k) = 1 + Tsθ6(k), θd7(k) = Tsθ7(k), bd11 = Tsb11 and bd42 = Tsb42.

Finally, the saturations have been taken into account following the approach proposed

in Section 8.2.4, and a polytopic model with 512 vertices has been obtained using the

nonlinear embedding approach [168] (see Chapter 3).

8.4.1.3 Reference input calculation and design of the FTC scheme

In the following, actuator faults in the tail and the main motors are considered. These

faults cause the following changes in (8.70), (8.71), (8.73) and (8.74):

uh(t)→ fh(t) (uh(t) + fah(t))

uv(t)→ fv(t) (uv(t) + fav(t))

where fh, fah, fv, fav are the multiplicative and additive faults in the tail and the main

motor, respectively.

Consequently, the reference model is changed as described in Section 8.2.3, using the

fault estimations f̂h(t), f̂ah(t), f̂v(t) and f̂av(t). Under the assumption that f̂h(t) ∼= fh(t),

f̂ah(t) ∼= fah(t), f̂v(t) ∼= fv(t) and f̂av(t) ∼= fav(t), the error model input matrix becomes:

Bf

(
θd7(k), fh(k), fv(k)

)
=


fh(k)bd11 0

0 fv(k)θd7(k)

0 0

0 fv(k)bd42



In order to drive the TRMS to a desired yaw angle αdesh (t), it is required to choose

properly urefh (t) and urefv (t). These values can be obtained from the TRMS nonlinear

model (8.70)-(8.75) by imposing all the derivatives equal to zero and αh(t) = αdesh (t).
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This leads to the following solution:

fdes2

(
αdesh (t), αv(t)

)
=
f3

(
αdesh (t)

)
− f6 (αv(t))

lt cosαv(t)

fdes5 (αv(t)) =
g [(KB −KA) cosαv(t) +KC sinαv(t)]

lm

ωdesh

(
αdesh (t), αv(t)

)
=


√

fdes2 (αdesh (t),αv(t))
kfhp

if fdes2

(
αdesh (t), αv(t)

)
≥ 0

−
√
−fdes2 (αdesh (t),αv(t))

kfhn
if fdes2

(
αdesh (t), αv(t)

)
< 0

ωdesv (αv(t)) =


√

fdes5 (αv(t))
kfvp

if fdes5 (αv(t)) ≥ 0

−
√
−fdes5 (αv(t))

kfvn
if fdes5 (αv(t)) < 0

urefh

(
αdesh (t), αv(t), f̂h, f̂ah(t)

)
=

1

f̂h

(
BtrRa + k2

a

)
ωdesh

(
αdesh (t), αv(t)

)
kak1

+
1

f̂h

f1

(
ωdesh

(
αdesh (t), αv(t)

))
Ra

kak1
− f̂ah(t)

urefv

(
αv(t), f̂v, f̂av(t)

)
=

1

f̂v

(
BmrRa + k2

a

)
ωdesv (αv(t)) + f4

(
ωdesv (αv(t))

)
Ra

kak2
− f̂av(t)

Notice that for a given desired yaw angle αdesh (t), infinite couples
(
urefh (t), urefv (t)

)
could be obtained. In particular, the correspondence between αv(t) and the couples(
urefh (t), urefv (t)

)
is a bijection. In the following, among all the possible couples(

urefh (t), urefv (t)
)

, the one that corresponds to the minimum Euclidean norm is chosen,

as follows2:

ūrefh , ūrefv : min
αv∈[αv ,αv ]

‖uref‖22 = min
αv∈[αv ,αv ]

[(
urefh

)2
+
(
urefv

)2
]

Remark: In case of a complete loss of the tail rotor, uh = 0, and urefh is chosen as the

value corresponding to αv = α0
v.

Remark: A normally distributed noise with zero mean and standard deviation 0.02

has been added to urefh and urefv in order to assure the excitation needed by the fault

estimation algorithm.

The controller and the virtual actuators (one for each possible complete loss of actuator)

have been designed considering the specifications of quadratic stability (Corollary 2.13)
2The pitch angle interval for searching the reference input values has been chosen with αv = α0

v − 0.2
and αv = α0

v + 0.3.
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and quadratic D-stability (Corollary 2.15), considering as LMI region, the half-plane

with minimum abscissa λ = 0.7, such that (2.168) is particularized as follows:

1.4Q−He {AiQ+BΓi} ≺ 0 i = 1, . . . , N

On the other hand, the observer design has been performed considering the disk of

radius r = 0.3 and center (−q, 0) = (0.5, 0), such that (2.168) becomes:(
−0.3Q −0.5Q+AT

i Q+ CTΓi

−0.5Q+QAi + ΓT
i C −0.3Q

)
≺ 0 i = 1, . . . , N

The LMIs have been solved using the YALMIP toolbox [182] and the SeDuMi solver

[305].

8.4.1.4 Results

The results shown in this section refer to simulations that last 120 s, in which the TRMS

should reach and maintain the desired yaw angle αdesh = 0.5 rad despite the initial error,

due to the difference between the TRMS initial state:


x(0)

Ωv(0)

αv(0)

 =



ωh(0)

Ωh(0)

αh(0)

ωv(0)

Ωv(0)

αv(0)


=



0

0

1

0

0

α0
v + 0.8


and the reference model initial state:

xref (0) =


ωrefh (0)

Ωref
h (0)

αrefh (0)

ωrefv (0)

 =


0

0

0

0


and the faults. In particular, a fault scenario with the values of fh(t), fah(t), fv(t) and

fav(t) resumed in Table 8.2 is considered.

The nominal closed-loop system response is shown in Figs. 8.4-8.7, where the TRMS

states are compared with the reference model ones. At steady-state, the error is zero,

and the system reaches the desired yaw angle αdesh = 0.5 rad, as expected. Fig. 8.8
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TABLE 8.2: Fault scenario description

0− 30 s 30− 60 s 60− 90 s 90− 120 s
fh(t) 1 0.5 0.5 0
fah(t) 0 0 0 0
fv(t) 1 1 0.7 0.6
fav(t) 0 0 0.1 0

depicts the response of the pitch angle αv, and Fig. 8.9 shows the control inputs. It can

be seen that after a short transient, the control inputs converge to the reference ones.
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FIGURE 8.4: Nominal tail rotor response (comparison between TRMS and reference
model states).

The proposed FTC strategy allows the system to reach the desired yaw angle αdesh =

0.5 rad in all cases except the one of complete loss of the tail actuator (see Figs. 8.10-

8.13). In this case, the reference is automatically changed to the biggest value of αh
achievable within the following range of variation of the pitch angle, αv ∈ [α0

v −
0.2 rad, α0

v + 0.3 rad], as shown in Fig. 8.12.

It should be pointed out that the oscillations that appear in the yaw angle response are

mainly due to the changes in the working point of the pitch angle, as shown in Fig.

8.14. In order to conclude the presentation of the results with FTC, the control inputs

are shown in Fig. 8.15.
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FIGURE 8.5: Nominal yaw angular velocity response (comparison between TRMS and
reference model states).
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FIGURE 8.6: Nominal yaw angle response (comparison between TRMS and reference
model states).



Fault tolerant control of LPV systems using virtual actuators 194

0 20 40 60 80 100 120
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

M
ai

n 
ro

to
r 

ro
ta

tio
na

l v
el

oc
ity

 ω
v (

V
)

time (s)

 

 
reference
nominal

FIGURE 8.7: Nominal main rotor response (comparison between TRMS and reference
model states).
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FIGURE 8.8: Nominal pitch angle response.
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FIGURE 8.9: Nominal control inputs.

The responses obtained in the case where the proposed FTC strategy is not applied are

illustrated in Figs. 8.16-8.19. It can be seen that if the faults are not taken into account

properly, some errors between the reference states and the system states appear. More-

over, the same reference model pitch angle αrefh is affected by the fault occurrence, such

that αrefh does not converge to αdesh = 0.5 rad in steady-state.
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FIGURE 8.10: Faulty tail rotor response (comparison between TRMS and reference
model states, with FTC).

8.4.2 Application to a four wheeled omnidirectional mobile robot

8.4.2.1 Description of the four wheeled omnidirectional mobile robot

Omnidirectional mobile robots are gaining popularity due to their enhanced mobility

with respect to traditional robots [217]. The omnidirectional feature provides a great

maneuverability and effectiveness, and is obtained thanks to the characteristics of the

wheels, which roll forward like normal wheels, but can also slide sideways at the same

time.

The dynamic model of the four wheeled omnidirectional mobile robot (see Fig. 8.20)

relates the wheel inputs and robot velocities with the corresponding accelerations, tak-

ing into account the traction, viscous friction and Coulomb friction forces. The model

is given by the following set of differential equations, obtained from the ones presented

in [217] by considering the linear velocities on the static axis instead of the ones on the

robot’s axis:

ẋ(t) = vx(t) (8.76)



Fault tolerant control of LPV systems using virtual actuators 197

0 20 40 60 80 100 120
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Y
aw

 a
ng

ul
ar

 v
el

oc
ity

 Ω
h (

ra
d/

s)

time (s)

 

 
reference
with FTC

FIGURE 8.11: Faulty yaw angular velocity response (comparison between TRMS and
reference model states, with FTC).
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FIGURE 8.12: Faulty yaw angle response (comparison between TRMS and reference
model states, with FTC).
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FIGURE 8.13: Faulty main rotor response (comparison between TRMS and reference
model states, with FTC).
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FIGURE 8.14: Faulty pitch angle response (with FTC).
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FIGURE 8.15: Faulty control inputs (with FTC).
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FIGURE 8.16: Faulty tail rotor response (comparison between TRMS and reference
model states, without FTC).
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FIGURE 8.17: Faulty yaw angular velocity response (comparison between TRMS and
reference model states, without FTC).
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FIGURE 8.18: Faulty yaw angle response (comparison between TRMS and reference
model states, without FTC).
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FIGURE 8.19: Faulty main rotor response (comparison between TRMS and reference
model states, without FTC).

FIGURE 8.20: Four wheeled omnidirectional mobile robot.
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TABLE 8.3: Robot parameters values

Param. Value Param. Value Param. Value
A11 −1.4904 B21 0.0089 B31 0.05
A22 −1.4904 B12 −0.0089 B32 0.05
K11 −0.5340 B23 −0.0089 B33 0.05
K22 −0.5340 B24 0.0089 B34 0.05

v̇x(t) =
(
A11 cos2 ϕ(t) +A22 sin2 ϕ(t)

)
vx(t) + [(A11 −A22) sinϕ(t) cosϕ(t)− ω(t)] vy(t)

+K11 cosϕ(t)sign (vx(t) cosϕ(t) + vy(t) sinϕ(t))−B21 sinϕ(t)u0(t) +B12 cosϕ(t)u1(t)

−K22 sinϕ(t)sign (−vx(t) sinϕ(t) + vy(t) cosϕ(t))−B23 sinϕ(t)u2(t) +B14 cosϕ(t)u3(t)

(8.77)

ẏ(t) = vy(t) (8.78)

v̇y(t) = [(A11 −A22) sinϕ(t) cosϕ(t) + ω(t)] vx(t) +
(
A11 sin2 ϕ(t) +A22 cos2 ϕ(t)

)
vy(t)

+K11 sinϕ(t)sign (vx(t) cosϕ(t) + vy(t) sinϕ(t)) +B21 cosϕ(t)u0(t) +B12 sinϕ(t)u1(t)

+K22 cosϕ(t)sign (−vx(t) sinϕ(t) + vy(t) cosϕ(t)) +B23 cosϕ(t)u2(t) +B14 sinϕ(t)u3(t)

(8.79)

ϕ̇(t) = ω(t) (8.80)

ω̇(t) = A33 (ω(t))ω(t) +B31u0(t) +B32u1(t) +B33u2(t) +B34u3(t) +K33sign (ω(t)) (8.81)

The values of the robot parameters, identified from data obtained with a real setup

[274], are provided in Table 8.3. Also, A33 (ω(t)) is defined as follows:

A33 (ω(t)) = −0.0062ω(t)2 + 0.0028ω(t)− 0.4406 (8.82)

8.4.2.2 Quasi-LPV error model

In order to obtain a quasi-LPV error model for the four wheeled omnidirectional mobile

robot, the first step is to reshape the nonlinear equations (8.76)-(8.81) into the quasi-LPV

form (8.1). Taking into account that B3 , B31 = B32 = B33 = B34, Al , A11 = A22,

Bl , B21 = −B12 = −B23 = B14, and Kl , K11 = K22, the quasi-LPV model is
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obtained as follows:

ẋ(t)

v̇x(t)

ẏ(t)

v̇y(t)

ϕ̇(t)

ω̇(t)


=



0 1 0 0 0 0

0 Al 0 −θ1(t) 0 0

0 0 0 1 0 0

0 θ1(t) 0 Al 0 0

0 0 0 0 0 1

0 0 0 0 0 θ2(t)





x(t)

vx(t)

y(t)

vy(t)

ϕ(t)

ω(t)



+



0 0 0 0

−Blθ3(t) −Blθ4(t) Blθ3(t) Blθ4(t)

0 0 0 0

Blθ4(t) −Blθ3(t) −Blθ4(t) Blθ3(t)

0 0 0 0

B3 B3 B3 B3




u0(t)

u1(t)

u2(t)

u3(t)

+



0

cx(t)

0

cy(t)

0

cϕ(t)


where θ(t) = (θ1(t), . . . , θ4(t))T is the vector of varying parameters, scheduled by the

state variables ϕ(t) and ω(t), with:

θ1(t) = ω(t)

θ2(t) = A33(ω(t))

θ3(t) = sinϕ(t)

θ4(t) = cosϕ(t)

where:
cx(t) = Kl cosϕ(t)sign (vx(t) cosϕ(t) + vy(t) sinϕ(t))

−Kl sinϕ(t)sign (−vx(t) sinϕ(t) + vy(t) cosϕ(t))

cy(t) = Kl sinϕ(t)sign (vx(t) cosϕ(t) + vy(t) sinϕ(t))

+Kl cosϕ(t)sign (−vx(t) sinϕ(t) + vy(t) cosϕ(t))

cϕ(t) = K33sign (ω(t))

Then, using the reference model (8.3), and by defining the tracking errors e1(t) ,

xref(t) − x(t), e2(t) , vrefx (t) − vx(t), e3(t) , yref(t) − y(t), e4(t) , vrefy (t) − vy(t),

e5(t) , ϕref (t)−ϕ(t), e6(t) , ωref (t)−ω(t), and the new inputs ∆ui(t) , u
ref
i (t)−ui(t),

i = 0, 1, 2, 3, the following DT quasi-LPV error model can be obtained through an Euler
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approximation [89] with a sampling time Ts = 0.04 s:

e1(k + 1)

e2(k + 1)

e3(k + 1)

e4(k + 1)

e5(k + 1)

e6(k + 1)


=



1 Ts 0 0 0 0

0 Adl 0 −θd1(k) 0 0

0 0 1 Ts 0 0

0 θd1(k) 0 Adl 0 0

0 0 0 0 1 Ts

0 0 0 0 0 θd2(k)





e1(k)

e2(k)

e3(k)

e4(k)

e5(k)

e6(k)



+



0 0 0 0

−Blθd3(k) −Blθd4(k) Blθ
d
3(k) Blθ

d
4(k)

0 0 0 0

Blθ
d
4(k) −Blθd3(k) −Blθd4(k) Blθ

d
3(k)

0 0 0 0

B3Ts B3Ts B3Ts B3Ts




∆u0(k)

∆u1(k)

∆u2(k)

∆u3(k)



(8.83)

8.4.2.3 Reference input calculation

In the following, multiplicative actuator faults in the motors are considered. These

faults cause the change ui(t)→ fi(t)ui(t), i = 0, 1, 2, 3, in (8.76)-(8.81).

Consequently, the reference model is changed as described in Section 8.2.3, using the
fault estimations f̂i(t), i = 0, 1, 2, 3. Under the assumption that f̂i(t) ∼= fi(t), i =

0, 1, 2, 3, the error model input matrix becomes:

Bf
(
θd3(k), θd4(k), f(k)

)
=



0 0 0 0

−f0(k)Blθ
d
3(k) −f1(k)Blθ

d
4(k) f2(k)Blθ

d
3(k) −f3(k)Blθ

d
4(k)

0 0 0 0

f0(k)Blθ
d
4(k) −f1(k)Blθ

d
3(k) −f2(k)Blθ

d
4(k) f3(k)Blθ

d
3(k)

0 0 0 0

f0(k)B3Ts f1(k)B3Ts f2(k)B3Ts f3(k)B3Ts



To make the robot track a desired trajectory, proper values of urefi , i = 0, 1, 2, 3, should

be fed to the reference model, such that its state equals the one corresponding to the de-

sired trajectory. In the following, a circular trajectory is chosen and defined as follows:

xref(t) = ρ cos (ϕref(t)) (8.84)

yref(t) = ρ sin (ϕref(t)) (8.85)

ϕref (t) =
2πt

T
(8.86)
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where ρ is the circle radius and T is the desired revolution period around the circle

center.

Taking the derivatives and second derivatives of (8.84)-(8.86), considering (8.76), (8.78)

and (8.80), and replacing into the faulty versions of (8.76)-(8.81), the following is ob-

tained:

Aref (t)


uref0 (t)

uref1 (t)

uref2 (t)

uref3 (t)

 = Bref (t)

with:

Aref (t) =


−f̂0(t)Bl sinϕ(t) −f̂1(t)Bl cosϕ(t) f̂2(t)Bl sinϕ(t) f̂3(t)Bl cosϕ(t)

f̂0(t)Bl cosϕ(t) −f̂1(t)Bl sinϕ(t) −f̂2(t)Bl cosϕ(t) f̂3(t)Bl sinϕ(t)

f̂0(t)B3 f̂1(t)B3 f̂2(t)B3 f̂3(t)B3



Bref (t) =


ρ2π
T

[
Al sin

2πt
T +

(
ω(t)− 2π

T

)
cos 2πt

T

]
− cx(t)

ρ2π
T

[(
ω(t)− 2π

T

)
sin 2πt

T −Al cos 2πt
T

]
− cy(t)

−A33 (ω(t)) 2π
T − cϕ(t)


Finally, the reference model inputs urefi (t), i = 0, 1, 2, 3, are obtained as:

uref0 (t)

uref1 (t)

uref2 (t)

uref3 (t)

 = Aref (t)†Bref (t)

Remark: The obtained values urefi (t), i = 0, 1, 2, 3, depend on the specifications, de-

fined by the radius ρ and revolution period T of the desired circular trajectory (8.84)-

(8.86). Special care should be taken in choosing ρ and T , such that the resulting refer-

ence inputs do not cause the motors to work near/in their saturation region.

Remark: The reference input calculation presented in this section can be applied to ob-

tain the tracking of a wider class of trajectories. In particular, if xref(t), yref(t), ϕref (t) ∈
C2 in some time interval [t0, tf ], then Bref (t) takes the following form for t ∈ [t0, tf ]:

Bref (t) =


ẍref(t)−Alẋref(t) + ω(t)ẏref(t)− cx(t)

ÿref(t)−Alẏref(t)− ω(t)ẋref(t)− cy(t)

ϕ̈ref −A33 (ω(t)) ϕ̇ref (t)− cϕ(t)


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In this way, most of the trajectories that are of interest in mobile robot applications can

be obtained, e.g. polynomials, conic and polygonal trajectories.

8.4.2.4 Design of the FTC scheme using a switching framework

When the polytopic conditions presented in Section 2.5 are applied to some polytopic

approximation of the four wheeled omnidirectional mobile robot quasi-LPV model

(8.83), it is found that a solution does not exist due to the loss of controllability oc-

curring for θd3 = θd4 = 0, values for which the input matrix becomes:

Bθd3=θd4=0 =

(
O5×1 O5×1 O5×1 O5×1

B3Ts B3Ts B3Ts B3Ts

)
(8.87)

Due to the fact that the sets described by the polytopic approximations are convex, it is

straightforward that any polytopic approximation of the admissible values for θd3(k) =

sin (ϕ(k))Ts and θd4(k) = cos (ϕ(k))Ts will contain the origin, i.e. the singularity (8.87)

of the input matrix (see the dash-dotted black line in Fig. 8.21).

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

θ
4
d

θ 3d

REGION 4 REGION 1

REGION 2REGION 3

FIGURE 8.21: Polytopic LPV and polytopic switching LPV approximations of the
scheduling variables θd3(k) and θd4(k).
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However, this problem can be avoided using a switching LPV framework, by splitting

the subset of the parameter space generated by θd3 and θd4 in more regions, such that in

each region the resulting polytopic approximation does not include the origin.

More specifically, the (quasi-)LPV error system (8.5) is modified by including a switch-

ing part, as follows:

σ.e(τ) = Aξ (θ(τ)) e(τ) +Bξ (θ(τ)) ∆uc(τ)

with ξ = 1 ∀θ ∈ Θ1, ξ = 2 ∀θ ∈ Θ2, . . ., ξ = Z ∀θ ∈ ΘZ , where Θ1, . . . ,Θz are subsets

of the varying parameter space Θ, such that Θ = Θ1 ∪ Θ2 ∪ · ∪ ΘZ . In each subset Θξ,

ξ = 1, . . . , Z, the system is described by a polytopic combination of vertex. Then, the

error-feedback control law is chosen to be:

∆uc(τ) = Kξ (θ(τ)) e(τ)

and the virtual actuator reconfiguration structure is expressed as:

∆u(τ) = Nξ

(
θ(τ), f̂(τ)

)
(∆uc(τ)−Mξ (θ(τ))xv(τ))

σ.xv(τ) =
(
Aξ (θ(τ)) +B∗ξ (θ(τ))Mξ (θ(τ))

)
xv(τ) +

(
Bξ (θ(τ))−B∗ξ (θ(τ))

)
∆uc(τ)

with:

Nξ

(
θ(τ), f̂(τ)

)
= Bξf

(
θ(τ), f̂(τ)

)
B (θ(τ))

Bξf (θ(τ), f(τ)) = Bξ (θ(τ))F (f(τ))

B∗ξ (θ(τ)) = Bξf

(
θ(τ), f̂(τ)

)
Nξ

(
θ(τ), f̂(τ)

)
Then, by using a common fixed Lyapunov function, the design conditions appear to be

only a slight modification of the ones provided in Section 2.5.

Remark: In general, other Lyapunov functions, e.g. parameter-dependent ones [123],

could be used for control design of switched LPV systems. However, in the application

to the four wheeled omnidirectional mobile robot, a common fixed Lyapunov function

has proved to be enough for stabilization and pole clustering in the desired LMI region

D, and it has been preferred due to its simplicity.

In the case of the four wheeled omnidirectional mobile robot, the quadrants have been

considered as regions, with ϕ = iπ/2, i ∈ Z being the switching condition (see Fig.
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8.21), such that:

ξ =


1 if cosϕ ≥ 0 AND sinϕ ≥ 0

2 if cosϕ ≥ 0 AND sinϕ < 0

3 if cosϕ < 0 AND sinϕ < 0

4 if cosϕ < 0 AND sinϕ ≥ 0

A triangular approximation has been used in each region, for the pair {θd3 , θd4}, with the

following structure:(
θd3

θd4

)
∈ Co

{(
±Ts

0

)
,

(
0

±Ts

)
,

(
±Ts
±Ts

)}

where Co denotes the convex set, and whether ± is + or − depends, for each varying

parameter, on the region that is being considered. In particular, the polytopic approxi-

mations for ξ = 1, ξ = 2, ξ = 3 and ξ = 4 are given by the red, the cyan, the magenta

and the green triangle in Fig. 8.21, respectively.

The polytopic approximation of the four wheeled omnidirectional mobile robot error

model (8.83) has been obtained by considering Ts = 0.04 s and ω ∈ [−2.5 rad/s, 2.5 rad/s].

The controller and the virtual actuators, one for each wheel, have been designed3 to

assure quadratic stability and quadratic D-stability in:

D =
{
z ∈ C : Re(z) > 0.40,Re(z)2 + Im(z)2 < 0.99972

}
(8.88)

The LMIs have been solved using the YALMIP toolbox [182] and the SeDuMi solver

[305].

8.4.2.5 Results

Three control experiments have been considered, where the robot started from different

initial states:

• Experiment 1

(
x(0) vx(0) y(0) vy(0) ϕ(0) ω(0)

)T
=
(

1.5 0 0 0 0 0
)T

3The state can be directly estimated from the available sensors, thus no observer has been designed.
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TABLE 8.4: Mean squared errors without and with FTC (simulation)

e2
1 e2

2 e2
3 e2

4 e2
5 e2

6

Sim.1 without FTC 0.024 0.004 0.022 0.003 1.438 0.025
Sim.1 with FTC 0.007 0.001 0.002 0.001 0.297 0.016

Sim.2 without FTC 0.018 0.003 0.022 0.003 1.440 0.029
Sim.2 with FTC 0.001 0.000 0.001 0.001 0.291 0.020

Sim.3 without FTC 0.037 0.007 0.020 0.003 1.440 0.027
Sim.3 with FTC 0.021 0.004 0.002 0.001 0.295 0.023

• Experiment 2

(
x(0) vx(0) y(0) vy(0) ϕ(0) ω(0)

)T
=
(

1 0 0 0 0 0
)T

• Experiment 3

(
x(0) vx(0) y(0) vy(0) ϕ(0) ω(0)

)T
=
(

0 0 0 0 0 0
)T

and tracked the desired trajectory, a circle centered in the origin of the (x − y) plane

with a radius of 1m and a revolution period of 20 s, generated from the initial reference

state:(
xref(0) vrefx (0) yref(0) vrefy (0) ϕref (0) ωref (0)

)T
=
(

1 0 0 π
10 0 π

10

)T

The considered fault scenario is a total loss of the first wheel motor starting from time

t = 20 s:

f0(t) =

{
1 if t < 20 s

0 if t ≥ 20 s

Fig. 8.22 shows the tracking of the desired circular trajectory in the (x−y) plane for Ex-

periment 1, obtained in a simulation environment. It can be seen that, in the case where

the proposed FTC technique is not applied, the robot trajectory (red line) deviates from

the reference trajectory (black dots) after the fault appears. On the other hand, adding

the virtual actuator to the control loop increases the tracking performance of the robot

(blue line). Table 8.4 resumes the mean squared errors for the trajectory tracking in all

the three considered experiments, obtained in a simulation environment. The improve-

ment brought by the proposed FTC strategy on the tracking performance can be seen

clearly in all the considered experiments.

Figs. 8.23-8.25 show experimental results for Experiment 1, while Table 8.5 resumes the

mean squared errors for the trajectory tracking in all the three considered experiments.
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FIGURE 8.22: Tracking of the desired circular trajectory:(x− y) plane (Simulation 1).

TABLE 8.5: Mean squared errors without and with FTC (experimental)

e2
1 e2

2 e2
3 e2

4 e2
5 e2

6

Exp.1 without FTC 0.110 0.017 0.081 0.016 7.284 0.259
Exp.1 with FTC 0.009 0.001 0.002 0.001 2.023 0.014

Exp.2 without FTC 0.048 0.006 0.038 0.010 1.814 0.158
Exp.2 with FTC 0.006 0.001 0.004 0.002 3.630 0.024

Exp.3 without FTC 0.085 0.015 0.051 0.012 1.757 0.153
Exp.3 with FTC 0.024 0.004 0.003 0.002 3.417 0.026

The results demonstrate that the omnidirectional mobile robot is able to operate under

a severe fault occurrence, e.g. the total loss of one motor, if an appropriate fault-hiding

strategy is implemented.

Fig. 8.23 and Fig. 8.24 show the tracking of the desired circular trajectory in the (x −
y) plane and a comparison between the system states and the reference ones. When

the proposed FTC strategy is applied, all the system states go to the reference ones,

i.e. the tracking errors go to zero, except for a steady-state error in the ϕ angle. The

addition of an integral action could eliminate such error, even though at the expense

of a probable decrease in the system performance, as well as the appearance of the

need to introduce anti-windup mechanisms to avoid undesired effects due to the motor

saturation nonlinearities. Finally, in Fig. 8.25, the control inputs are presented. It can

be seen that the control inputs are such that all the motors are working in their linear
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FIGURE 8.23: Tracking of the desired circular trajectory: (x− y) plane (Experiment 1)

regions. Moreover, under fault occurrence, the effect of the first wheel on the system is

redistributed among the remaining wheels to achieve fault tolerance.

8.5 Conclusions

In this chapter, an FTC strategy based on model reference control and virtual actuators

has been proposed for LPV systems subject to actuator faults. The proposed FTC strat-

egy adapts the reference model to the faults and utilizes the virtual actuator technique

in order to recover the nominal stability and behavior of the error model, with some

minimum or graceful performance degradation.

The overall control loop is made up by an LPV error feedback controller, an LPV error

observer and the LPV virtual actuator. It has been shown that the principle of sepa-

ration holds, since there exists a similarity transformation that brings the augmented

model to a block-triangular form. Hence, the stability and the satisfaction of the desired

specifications can be assessed separately.
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FIGURE 8.24: Tracking of the desired circular trajectory: states (Experiment 1)

The potential and performance of the proposed approach have been demonstrated with

two different examples: a twin rotor MIMO system and a four wheeled omnidirectional

mobile robot, showing promising results.

Future research on this topic will aim at improving the robustness of the proposed FTC

strategy against model uncertainties and errors in the fault estimation.
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FIGURE 8.25: Tracking of the desired circular trajectory: inputs (Experiment 1)



Chapter 9

Fault tolerant control of unstable

LPV systems subject to actuator

saturations and fault isolation delay

The content of this chapter is based on the following works:

• [270] D. Rotondo, J.-C. Ponsart, D. Theilliol, F. Nejjari, V. Puig. A virtual actu-

ator approach for the fault tolerant control of unstable linear systems subject to

actuator saturation and fault isolation delay. Annual Reviews in Control, 39:68-80,

2015.

• [271] D. Rotondo, J.-C. Ponsart, D. Theilliol, F. Nejjari, V. Puig. Fault tolerant

control of unstable LPV systems subject to actuator saturations using virtual ac-

tuators. In Proceedings of the 9th IFAC Symposium SAFEPROCESS-2015: Fault De-

tection, Supervision and Safety for Technical Processes, pages 18-23, 2015.

9.1 Introduction

Real-world actuators are always subject to limits in the magnitude of the manipu-

lated input. The control techniques that ignore these actuator limits can be affected

by degraded performance, and may even lead to instability of the closed-loop sys-

tem. Hence, recent research has focused on the analysis and synthesis of control sys-

tems with saturating actuators [326, 327]. The developed solutions mainly use two ap-

proaches: the two-step paradigm, also called anti-windup compensation [113, 204], where

a controller which does not explicitly take into account the saturation is designed,

214
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and then a compensator is added to handle the saturation constraints; and the one-

step paradigm, also called direct control design [62, 313], where the input constraints are

taken into account at the controller design stage.

It is important to consider the actuator saturation constraints in the application of an

FTC strategy, especially when actuator faults are considered. In fact, fault tolerance

against actuator faults is usually achieved redistributing, in some way, the control effort

corresponding to the faulty actuators among the remaining healthy ones. This redistri-

bution may lead to saturation of both the faulty and the healthy actuators. Thus, if this

fact is neglected in the FTC system design, severe performance degradation or insta-

bility may occur [90]. Some recent works have considered the problem of FTC systems

subject to actuator saturations. [26] show that failures resulting from loss of actuator

effectiveness in systems with input saturations can be dealt with in the context of ab-

solute stability theory framework. [28] present two kinds of fault tolerant controllers

(fixed-gain and adaptive) for singular systems subject to actuator saturation. Both of

these two controllers are in the form of saturation avoidance feedback. [359] develop

a fault tolerant control scheme that can achieve attitude tracking control objective for a

flexible spacecraft in the presence of partial loss of actuator effectiveness fault and ac-

tuator saturation using sliding mode control. The solution proposed by [200] avoids to

use the failed control actuators in the presence of a fault. Also, concepts such as graceful

performance degradation [143, 373] and reference reconfiguration [27, 328] have been intro-

duced in the context of FTC of systems subject to actuator saturations. In Chapter 8,

it has been shown that, by embedding the saturations in the varying parameter vector,

the LPV paradigm can be used to deal with them. However, the proposed approach

fails when applied to open-loop unstable systems, for which special care should be

taken. In spite of the importance of developing a valid FTC strategy for unstable sys-

tems subject to actuator saturations, this problem has been considered only by a few

works. [303] has proposed an LTV fault tolerant compensator, using the relevant abil-

ity of LTV compensators to achieve simultaneous stabilization of several systems. An

active FTC scheme based on gain-scheduledH∞ control and neural network for unsta-

ble systems has been proposed by [343]. Finally, [133] have developed a robust fault

tolerant scheme based on variable structure control for an orbiting spacecraft with a

combination of unknown actuator failures and input saturation.

However, even though an active FTC system can react to faults more effectively than

a passive FTC system, passive FTC techniques are preferred to the active ones when

dealing with unstable systems [90, 133, 303]. In fact, the active FTC strategies require

an FDI module, and when unstable systems are considered, the time delay between the

appearance of the fault and the moment in which the active strategy is activated (at the

fault detection or isolation time) may destabilize the system. According to the author’s
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knowledge, [343] is the only work dealing with active FTC for unstable systems. How-

ever, in this reference, the issues arising from the FDI time delay were not considered.

Also, another issue that has not been considered is the fact that, when dealing with

unstable systems, the stability properties guaranteed by the control design are regional,

i.e. hold only for inputs up to some size or for initial states inside a region of the state

space [351]. The fault appearance, and the subsequent control system reconfiguration

brought by the active FTC strategies change the regional stability properties of the con-

trol system, so it is necessary to take into account this fact explicitly when the system is

subject to actuator saturations.

The main contribution of this chapter consists in the design of an active FTC strategy

for unstable LPV systems subject to actuator saturation. Under the assumption that a

nominal controller has been already designed using the direct control design paradigm

to take into account the saturations, virtual actuators are added to the control loop for

achieving fault tolerance against a predefined set of possible faults. In particular, faults

affecting the actuators and causing a change in the system input matrix are considered.

The design of the virtual actuators is performed in such a way that, if at the fault iso-

lation time the closed-loop system state is inside a region defined by a value of the

Lyapunov function, the state trajectory will converge to zero despite the appearance

of the faults. Also, it is shown that it is possible to obtain some guarantees about the

tolerated delay between the fault occurrence and its isolation. Moreover, the design of

the nominal controller can be performed so as to maximize the tolerated delay.

It should be pointed out that, although the Hammerstein-Wiener formulation of the

virtual actuators can be used to deal with the saturations, the approach proposed in

this chapter can be distinguished from the one introduced in [236] since less restrictive

assumptions are required. In particular, some delay in the fault isolation is accepted,

and the system matrix could be non-Hurwitz. In fact, although applicable to stable

systems, the approach proposed hereafter focuses on the unstable ones.

9.2 Preliminaries

Consider the autonomous nonlinear system:

σ.x(τ) = g (x(τ)) (9.1)

where x ∈ Rnx is the state and g denotes a nonlinear function. For x(0) = x0 ∈ Rnx , let

us denote the trajectory of the system (9.1) as ψ(τ, x0). Then, the domain of attraction of
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the origin is:

S :=

{
x0 ∈ Rnx : lim

τ→+∞
ψ(τ, x0) = 0

}
(9.2)

Let P � 0 and denote:

E(P, ρ) =
{
x0 ∈ Rnx : xTPx ≤ ρ

}
(9.3)

and let V (x(τ)) = x(τ)TPx(τ) be a candidate Lyapunov function. The ellipsoid E(P, ρ)

is said to be contractively invariant if σ.V (x(τ)) < 0 for all x ∈ E(P, ρ)\{0}. Clearly, if

E(P, ρ) is contractively invariant, it is inside the domain of attraction S [134].

Remark: As stated in [34], there is a tradeoff between the degree of approximation

of the domain of attraction and the simplicity of the representation. In the literature,

several shapes for determining contractively invariant regions have been considered,

e.g. polytopes, but ellipsoids are widely used due to their simplicity. For this reason,

ellipsoids have been considered in this chapter, even though the general idea behind

the developed theory could be adapted to more complex shapes, at the expense of

increasing the complexity of the approach.

Now, let us consider the following LPV system subject to actuator saturations:

σ.x(τ) = A (θ(τ))x(τ) +Bsat (u(τ)) (9.4)

y(τ) = Cx(τ) (9.5)

where x ∈ Rnx is the state, u ∈ Rnu is the control input, y ∈ Rny is the measured output,

A (θ(τ)) ∈ Rnx×nx is the parameter varying state matrix, whose values depend on the

vector θ(τ) ∈ Θ ⊂ Rnθ , B ∈ Rnx×nu is the input matrix, C ∈ Rny×nx is the output

matrix, and sat : Rnu → Rnu is the saturation function, defined as in (8.28):

sat(u) =



sat1(u1)
...

satj(uj)
...

satnu(unu)


satj(uj) =


uMAX
j

uj

−uMAX
j

if uj > uMAX
j

if |uj | ≤ uMAX
j

if uj < −uMAX
j

(9.6)

For an output feedback law u(τ) = h (y(τ)) = h (Cx(τ)), let us define L(u, uMAX) the

region of the state space in which the actuators are not saturated.
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Let us consider the preliminary problem of designing an LPV dynamic output feedback

controller for the system (9.4)-(9.5):

σ.xc(τ) = Ac (θ(τ))xc(τ) +Bc (θ(τ)) y(τ) (9.7)

uc(τ) = Cc (θ(τ))xc(τ) +Dc (θ(τ)) y(τ) (9.8)

where xc ∈ Rnx is the controller state and uc ∈ Rnu is the controller output, such that

if u(τ) = uc(τ), then E(P, 1) ⊆ S and E(P, 1) ⊆ L(u, uMAX), i.e. the controller will be

such that for any initial closed-loop state vector satisfying:

(
x(0)T xc(0)T

)
P

(
x(0)

xc(0)

)
≤ 1 (9.9)

the control input never saturates, and the closed-loop state trajectory converges to the

origin. For the sake of simplicity, only the CT case will be considered in the following.

In order to achieve this objective, the following theorem is proposed, obtained as an

extension of a similar theorem presented for the LTI case in [136].

Theorem 9.1. (Design of a non-saturating stabilizing LPV output feedback controller) Let

X,Y ∈ Snx×nx , F (θ) ∈ Rnx×ny , K(θ) ∈ Rnu×nx and L(θ) ∈ Rnu×ny be such that:

He {XA(θ) + F (θ)C} ≺ O (9.10)

He {A(θ)Y +BK(θ)} ≺ O (9.11)
X I CL(j)(θ)

T

I Y K(j)(θ)
T

L(j)(θ)C K(j)(θ)
(
uMAX
j

)2

 � O ∀j = 1, . . . , nu

∀θ ∈ Θ
(9.12)

Then, the controller (9.7)-(9.8), with τ = t and matrices calculated as:

(
Ac(θ) Bc(θ)

Cc(θ) Dc(θ)

)
=

(
Z XB

O I

)−1

· · ·

· · ·

(
− (A(θ) +BL(θ)C)T −XA(θ)Y F (θ)

K(θ) L(θ)

)(
−Y O

CY I

)−1 (9.13)

Z = X − Y −1 (9.14)

is such that, for the closed-loop system obtained with u(t) = uc(t), E(P, 1) ⊆ S and

E(P, 1) ⊆ L(u, α) where:

P =

(
X Z

Z Z

)
(9.15)
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Proof: The proof follows the reasoning developed in [136] in the case of LTI systems,

and is based on demonstrating that if (9.10)-(9.12) hold and the controller matrices

are calculated as in (9.13), then E(P, 1) is contractively invariant, i.e. by defining the

quadratic Lyapunov function V (x(t)) = x(t)TPx(t), it is obtained that V̇ (x(t)) < 0 for

all x ∈ E(P, ρ)\{0}. Since E(P, 1) is contractively invariant, it is inside the domain of

attraction S [134] such that the stability is guaranteed over the whole set of possible

values of θ. �

The conditions provided by Theorem 9.1 rely on the satisfaction of infinite constraints,

due to the fact that (9.10)-(9.12) should hold for all the possible values of θ. However,

by considering a polytopic approach, as already described in Chapter 2, (9.10)-(9.12)

can be transformed in a finite number of LMIs, as shown by the following corollary.

Corollary 9.1. (Design of a non-saturating stabilizing polytopic LPV output feedback con-

troller) Assume that the LPV system (9.4) is polytopic, i.e. the matrix A (θ(t)) can be

written as:

A (θ(t)) =
N∑
i=1

µi (θ(t))Ai (9.16)

with coefficients µi (θ(t)) such that (2.5) holds:

N∑
i=1

µi (θ(τ)) = 1, µi (θ(τ)) ≥ 0, ∀i = 1, . . . , N, ∀θ ∈ Θ (9.17)

and let X,Y ∈ Snx×nx , Fi ∈ Rnx×ny , Ki ∈ Rnu×nx and Li ∈ Rnu×ny , i = 1, . . . , N , be

such that:

He {XAi + FiC} ≺ O ∀i = 1, . . . , N (9.18)

He {AiY +BKi} ≺ O ∀i = 1, . . . , N (9.19)
X I CLT

i(j)

I Y KT
i(j)

Li(j)C Ki(j)

(
uMAX
j

)2

 � O ∀i = 1, . . . , N

∀j = 1, . . . , nu
(9.20)

Then, the controller (9.7)-(9.8), with:(
Ac (θ(t)) Bc (θ(t))

Cc (θ(t)) Dc (θ(t))

)
=

N∑
i=1

µi (θ(t))

(
Ac,i Bc,i

Cc,i Dc,i

)
(9.21)

and vertex controller gains calculated as:

(
Ac,i Bc,i

Cc,i Dc,i

)
=

(
Z XB

O I

)−1(
− (Ai +BLiC)T −XAiY Fi

Ki Li

)(
−Y O

CY I

)
(9.22)
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with Z defined as in (9.14) is such that, for the closed-loop system obtained with u(t) =

uc(t), E(P, 1) ⊆ S and E(P, 1) ⊆ L(u, uMAX) with P defined as in (9.15).

Proof: It follows from the basic property of matrices [131] that any linear combination

of negative (positive) definite matrices with non-negative coefficients, whose sum is

positive, is negative (positive) definite. Hence, using the coefficients µi (θ(t)), taking

into account (9.17), (9.10)-(9.12) follow directly from (9.18)-(9.20). �

Remark: The shape of the ellipsoidal invariant set can be fixed, or forced to be opti-

mized in some desired sense, e.g. optimizing det(X) or trace(X), during the applica-

tion of Theorem 9.1/Corollary 9.1. However, this optimization could lead to an ellip-

soid that favors some state variables more than the others, which may be undesired in

some situations.

Also, the following lemma gives a constraint on the scalar product of two vectors [210].

Lemma 9.1. (Magnitude of the scalar product of two vectors) Given two vectors m and x,

the existence of Q � O such that:(
Q−1 Q−1m

mTQ−1 γ2

)
� O (9.23)

implies that |mTx| ≤ γ ∀x ∈ E(Q, 1).

Proof: This lemma is a direct consequence of applying Schur complements [286] to

(9.23). �

9.3 Problem statement

Let us consider the following LPV system subject to actuator saturations:

ẋ(t) = A (θ(t))x(t) + B(t)sat (u(t)) (9.24)

y(t) = Cx(t) (9.25)

with:

B(t) =

{
B

Bf ∈ B
(1)
f , . . . , B

(nf )
f

t < tf

t ≥ tf
(9.26)

where B ∈ Rnx×nu and the corresponding LPV system obtained from (9.24)-(9.25), that

corresponds to (9.4)-(9.5) will be referred to as nominal input matrix and nominal system,

respectively, Bf ∈ Rnx×nu and the corresponding LPV system obtained from (9.24)-

(9.25) will be referred to as faulty input matrix and faulty system, respectively, tf ∈ R+ is
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the fault occurrence time and the function sat (u(t)) is defined as in (9.6). The nf matrices

B
(1)
f , . . . , B

(nf )
f ∈ Rnx×nu are such that:

rank
(
B

(h)
f

)
< rank (B) (9.27)

and the pairs: (
A(θ), B

(h)
f

(
B

(h)
f

)†
B

)
(9.28)

are stabilizable, ∀θ ∈ Θ and ∀h = 1, . . . , nf .

Problem 1: Assume that an output feedback controller (9.7)-(9.8) has been designed for

the nominal system using Theorem 9.1, such that E(P, 1) ⊆ S and E(P, 1) ⊆ L(u, uMAX),

and let us consider the control law:

u(t) =


uc(t)

u
(1)
f (t)

...

u
(nf )
f (t)

t < tI

t ≥ tI ,B(t) = B
(1)
f

...

t ≥ tI ,B(t) = B
(nf )
f

(9.29)

where tI ∈ R+, tI ≥ tf is the fault isolation time, that is assumed to be provided by

an FDI module. Design u
(1)
f (t), . . . , u

(nf )
f (t) and maximize νf ∈]0, 1] such that, for all

t ≥ tI , E(P, νf ) is contractively invariant for the system (9.24)-(9.25) with the control

law (9.29), and E(P, νf ) ⊆ L(u, uMAX). �

In other words, in Problem 1, it is wished to design u(1)
f (t), . . . , u

nf
f (t) and maximize the

value of νf such that it is guaranteed that if at the fault isolation time tI :

(
x(tI)

T xc(tI)
T
)
P

(
x(tI)

xc(tI)

)
≤ νf (9.30)

then the control input will not saturate for all t ≥ tI , and the state trajectory will con-

verge to the origin.

It is clear that under the assumption of instantaneous fault isolation, if the closed-loop

state trajectory has reached E(P, νf ), the solution of Problem 1 guarantees the state

trajectory convergence under fault occurrence. However, this is not the case when there

is a delay in the fault isolation, i.e. tI − tf > 0. In fact, between the occurrence of the

fault, that changes the system input matrix from B to some B(h)
f , and the fault isolation

time, when the appropriate control u(h)
f begins to be applied, there is a time interval

where the system is driven by the nominal control uc(t). During this period, there is

no guarantee that, if the system has reached E(P, νf ) at time tf , it will stay inside this
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region until tI . This fact can lead to severe consequences, because if the state trajectory

leaves E(P, νf ) before tI , the system could be destabilized [343].

Given
[
x(tf )T xc(tf )T

]T
∈ E(P, νf ), let us define, for the faulty system (9.24)-(9.25)

with B(t) = B
(h)
f , h = 1, . . . , nf , under control law u(t) = uc(t), the critical fault isolation

time
_

t
(h)

I (x(tf ), xc(tf )) ≥ tf as the time instant such that: x

(
_

t
(h)

I

)
xc

(
_

t
(h)

I

)
 ∈ E(P, νf ) (9.31)

but:  x

(
_

t
(h)

I + tε

)
xc

(
_

t
(h)

I + tε

)
 /∈ E(P, νf ) (9.32)

for all tε > 0.

Hence, it is interesting to solve the following problem, that improves the overall system

robustness against the time isolation delay.

Problem 2: Find, among the output feedback controllers (9.7)-(9.8) that can be ob-

tained from Theorem 9.1, the one that maximizes minh=1,...,nf t̂
(h)
I (x(tf ), xc(tf )) for all[

x(tf )T xc(tf )T
]T
∈ E(P, νf ), where t̂(h)

I (x(tf ), xc(tf )) is an estimation of
_

t
(h)

I (x(tf ), xc(tf )).

Remark: The critical fault isolation time indicates that the guarantees of non-saturating

control input and state trajectory convergence to the origin given by the solution of

Problem 1 are lost if tI >
_

t
(h)

I (x(tf ), xc(tf )). It is worth highlighting that the conditions

given in this chapter are sufficient, as always happens when using Lyapunov theory

results. Hence, it is possible that the system exhibits state trajectory convergence to

zero with non-saturating control input even if tI >
_

t
(h)

I (x(tf ), xc(tf )).

9.4 Design of non-saturating stabilizing LPV virtual actuators

The solution to Problem 1 proposed in this chapter relies on LPV virtual actuators, with

a structure similar to the one presented in Chapter 8, but with the remarkable difference

that the reference model is not used. In particular, the considered LPV virtual actuators

are as follows:

ẋ(h)
v (t) =

(
A (θ(t)) +B

(h)
∗ M (h) (θ(t))

)
x(h)
v (t) +

(
B −B(h)

∗

)
uc(t) (9.33)
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u
(h)
f (t) = N (h)

(
uc(t)−M (h) (θ(t))x(h)

v (t)
)

(9.34)

where h = 1, . . . , nf , x(h)
v are the virtual actuators states with x(h)

v (tI) = 0, M (h) (θ(t)) ∈
Rnu×nx are the virtual actuators gains to be designed, and the matrices N (h) and B

(h)
∗

are given by:

N (h) =
(
B

(h)
f

)†
B (9.35)

B
(h)
∗ = B

(h)
f N (h) = B

(h)
f

(
B

(h)
f

)†
B (9.36)

Also, in order to obtain the fault-hiding characteristic, the output equation (9.25) is

slightly changed after tI , as follows:

y(t) = C
(
x(t) + x(h)

v (t)
)

t ≥ tI , B(t) = B
(h)
f (9.37)

The overall fault tolerant control scheme, made up by the system (9.24) with output

equation (9.37) and control law (9.29), the output feedback controller (9.7)-(9.8) and the

virtual actuators (9.33)-(9.34), is shown in Fig. 9.1 (the dependence of some matrices on

the vector of varying parameters θ(t) has been omitted).

FIGURE 9.1: Overall fault tolerant control scheme.



FTC of unstable LPV systems subject to actuator saturations and FI delay 224

Then, the following theorem provides the conditions to design the virtual actuators

with guarantees that, if at the fault isolation time tI , the closed-loop system state is

inside E(P, νf ), the state trajectory will converge to zero despite the change of the input

matrix from B to B(h)
f due to the fault.

Theorem 9.2. (Design of non-saturating stabilizing LPV virtual actuators) Let X−1
va ∈ Snx×nx

and Γ(h) (θ) ∈ Rnu×nx , h = 1, . . . , nf be such that:

He

{(
νfAcl(θ)P

−1 O2nx×nx

νfA
(h)
∗ (θ)P−1 A(θ)X−1

va +B
(h)
∗ Γ(h)(θ)

)}
≺ O (9.38)


X−1
va Γ

(h)
(k)(θ)

T

Γ
(h)
(k)(θ)

 αj∥∥∥∥N(h)
(j)

∥∥∥∥−µf
2

n
(h)
ũ

 � O j = 1, . . . , nu∥∥∥N (h)
(j)

∥∥∥ 6= 0
(9.39)

hold ∀θ ∈ Θ, where:

Acl(θ) =

(
A(θ) +BDc(θ)C BCc(θ)

Bc(θ)C Ac(θ)

)
(9.40)

A
(h)
∗ (θ) =

( (
B −B(h)

∗

)
Dc(θ)C

(
B −B(h)

∗

)
Cc(θ)

)
(9.41)

µf = max
E(P,νf )

‖uc‖ (9.42)

n
(h)
ũ is the number of non-zero elements inN (h)

(j) , and k in (9.39) takes values correspond-

ing to the indices of the non-zero elements in N (h)
(j) . Then, if the virtual actuators gains

M (h)(θ) in (9.33)-(9.34) are calculated as M (h)(θ) = Γ(h)(θ)Xva, E(P, νf ) is contractively

invariant for the system (9.24)-(9.25) with the control law (9.29), and E(P, νf ) ⊆ L(u, α),

∀t ≥ tI .

Proof: When the system is working in the region L(u, α), there exists a similarity trans-

formation that transforms the closed-loop system made up by the system (9.24), with

output equation (9.37) and control law (9.29), the nominal controller (9.7)-(9.8), and the

virtual actuator (9.33)-(9.34), in an equivalent block-triangular form:(
ẋ

(h)
cl (t)

ẋ
(h)
v (t)

)
=

(
Acl(θ) O2nx×nx

A
(h)
∗ (θ) A

(h)
v (θ)

)(
x

(h)
cl (t)

x
(h)
v (t)

)
(9.43)

where:

x
(h)
cl (t) =

(
x

(h)
w (t)

xc(t)

)
(9.44)

x(h)
w (t) = x(t) + x(h)

v (t) (9.45)
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A(h)
v (θ) = A(θ) +B

(h)
∗ M (h)(θ) (9.46)

By considering:

V2(t) =

(
x

(h)
cl (t)

x
(h)
v (t)

)T(
P
νf

O2nx×nx

Onx×2nx Xva

)(
x

(h)
cl (t)

x
(h)
v (t)

)
(9.47)

with Xva � 0 to assess the stability of (9.43), the following Lyapunov inequality is

obtained:

He

{(
P
νf

O2nx×nx

Onx×2nx Xva

)(
Acl(θ) O2nx×nx

A
(h)
∗ (θ) A

(h)
v (θ)

)}
≺ O (9.48)

that is equivalent to its dual version [111]:

He

{(
Acl(θ) O2nx×nx

A
(h)
∗ (θ) A

(h)
v (θ)

)(
νfP

−1 O2nx×nx

Onx×2nx X−1
va

)}
≺ O (9.49)

that can be brought to the LMI form (9.38) by considering Γ(h)(θ) = M (h)(θ)X−1
va .

Provided that, if (9.38) holds, then the convergence of the closed-loop trajectories of

(9.43) to zero is assured as long as the inputs u do not saturate, the remaining of the

proof will demonstrate that, if the LMIs (9.39) hold and:

(
x(tI)

T xc(tI)
T
)T
∈ E (P, νf ) (9.50)

then the additional effort brought by the virtual actuator will not cause the saturation

of the control inputs u.

To this aim, since (9.34) is equivalent to:

u
(h)
f,j (t) = N

(h)
(j)

(
uc(t)−M (h)(θ)x(h)

v (t)
)

(9.51)

where u(h)
f,j , j = 1, . . . , nu, denotes the j-th input, the condition of non-saturation can be

written as:∣∣∣u(h)
f,j (t)

∣∣∣ =
∣∣∣N (h)

(j)

(
uc(t)−M (h)(θ)x

(h)
v (t)

)∣∣∣ ≤ ∥∥∥N (h)
(j)

∥∥∥(‖uc(t)‖+
∥∥∥M (h)(θ)x

(h)
v (t)

∥∥∥)
≤
∥∥∥N (h)

(j)

∥∥∥(µf +
∥∥∥M (h)(θ)x

(h)
v (t)

∥∥∥) ≤ αi
(9.52)

that leads to: ∥∥∥N (h)
(j)

∥∥∥(µf +
∥∥∥M (h)(θ)x(h)

v (t)
∥∥∥) ≤ αj (9.53)
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For values of j such that
∥∥∥N (h)

(j)

∥∥∥ = 0, (9.53) is obviously satisfied. On the other hand,

when
∥∥∥N (h)

(j)

∥∥∥ 6= 0, (9.53) becomes:

∥∥∥M (h)(θ)x(h)
v

∥∥∥ ≤ αj∥∥∥N (h)
(j)

∥∥∥ − µf (9.54)

At the expense of introducing conservativeness, it is possible to transform (9.54), whose

left-hand side concerns the norm of a vector, into a condition about the norms of scalars.

This is done by taking advantage of the fact that only the rows of M (h)(θ) correspond-

ing to non-zero elements of N (h)
(j) will contribute to u

(h)
f,j in (9.51). By denoting these

rows as M (h)
k (θ), and the number of non-zero elements of N (h)

(j) as n(h)
ũ , (9.54) can be

replaced by: √√√√√ nu∑
k=1,N

(h)
(j)k
6=0

∣∣∣M (h)
k (θ)x

(h)
v

∣∣∣2 ≤ αj∥∥∥N (h)
(j)

∥∥∥ − µf (9.55)

that holds if:

∣∣∣M (h)
k (θ)x(h)

v

∣∣∣ ≤
(

αj∥∥∥N(h)
(j)

∥∥∥ − µf
)

√
n

(h)
ũ

k = 1, . . . , nu

N
(h)
(j)k 6= 0

(9.56)

Applying Lemma 9.1, it is obtained that the existence of Q � O such that:
Q−1 Q−1

(
M

(h)
(k) (θ)

)T

M
(h)
(k) (θ)Q−1

 αj∥∥∥∥N(h)
(j)

∥∥∥∥−µf
2

n
(h)
ũ

 � O k = 1, . . . , nu

N
(h)
(j)k 6= 0

(9.57)

implies that (9.56) holds ∀x(h)
v ∈ E(Q, 1). By choosing Q = Xva, and applying the

change of variable Γ(h)(θ) = M (h)(θ)X−1
va the LMIs (9.39) are obtained.

Finally, it is needed to demonstrate that if (9.50) holds, then x(h)
v (t) ∈ E(Xva, 1) ∀t ≥ tI .

This is straightforward, since (9.50) corresponds to (9.30), that is equivalent to

(
x(tI)

T xc(tI)
T
) P
νf

(
x(tI)

xc(tI)

)
≤ 1 (9.58)

and, since x(h)
v (tI) = 0 (see Eq. (9.33)), x(tI) in (9.58) can be replaced with x

(h)
w (tI),

thus obtaining that V2(tI) ≤ 1, where V2(t) is defined in (9.47). Due to the fact that

V̇2(t) < 0∀t ≥ tI , it follows that x(h)
v (t) ∈ E(Xva, 1). �
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By relying on a polytopic representation, it is possible to transform the infinite number

of conditions provided by Theorem 9.2 in a finite number of conditions, as stated by

the following corollary.

Corollary 9.2. (Design of non-saturating stabilizing polytopic LPV virtual actuators) Assume

that the matrices A (θ(t)), Ac (θ(t)), Bc (θ(t)), Cc (θ(t)), Dc (θ(t)) are polytopic as in

(9.16) and (9.21), with the coefficients µi (θ(t)) satisfying (9.17), and that the virtual

actuator gain is chosen as:

M (h) (θ(t)) =
N∑
i=1

µi (θ(t))M
(h)
i (9.59)

and let X−1
va ∈ Snx×nx and Γ

(h)
i ∈ Rnu×nx , h = 1, . . . , nf , i = 1, . . . , N , be such that:

He

{(
νfAcl,iP

−1 O2nx×nx

νfA
(h)
∗,i P

−1 AiX
−1
va +B

(h)
∗ Γ

(h)
i

)}
≺ O (9.60)


X−1
va

(
Γ

(h)
i(k)

)T

Γ
(h)
i(k)

 αj∥∥∥∥N(h)
j

∥∥∥∥−µf
2

n
(h)
ũ

 � O j = 1, . . . , nu∥∥∥N (h)
j

∥∥∥ 6= 0
(9.61)

hold ∀i = 1, . . . , N , where:

Acl,i =

(
Ai +BDc,iC BCc,i

Bc,iC Ac,i

)
(9.62)

A
(h)
∗,i =

( (
B −B(h)

∗

)
Dc,iC

(
B −B(h)

∗

)
Cc,i

)
(9.63)

µf is defined as in (9.42), n(h)
ũ is the number of non-zero elements in N

(h)
(j) , and k

in (9.61) takes values corresponding to the indices of the non-zero elements in N
(h)
(j) .

Then, if the vertex virtual actuators gains in (9.59) are calculated as M (h)
i = Γ

(h)
i Xva,

E(P, νf ) is contractively invariant for the system (9.24)-(9.25) with control law (9.29),

and E(P, νf ) ⊆ L(u, α), ∀t ≥ tI .

Proof: It follows the reasoning provided in Corollary 9.1 and thus it is omitted. �

Remark: The feasibility of the conditions (9.38)-(9.39) provided by Theorem 9.2 de-

pends on the value of νf . The smaller is νf , the more likely is the feasibility of (9.38)-

(9.39). Notice that, due to the block-triangularity of the state matrix in (9.43), a neces-

sary condition for the closed-loop stability is that A(h)
v (θ), defined as in (9.46), is stable.
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A necessary condition for the existence of M (h)(θ) such that A(h)
v (θ) is stable is the sta-

bilizability of the pair
(
A(θ), B

(h)
∗

)
, which explains why the stabilizability of the pairs

(9.28) ∀θ ∈ Θ and ∀h = 1, . . . , nf was requested.

Remark: Solving Problem 1 using Theorem 9.2/Corollary 9.2 involves finding µf as

in (9.42). µf can be found using optimization algorithms, e.g. the fmincon function

in the Matlab Optimization Toolbox [58]. Due to the linearity of the control input uc
with respect to the states x and xc (see Eq. (9.8)), it is possible to reduce the inequality

constraint given by E(P, νf ) to an equality constraint, by searching the maximum of uc
on the frontier of E(P, νf ).

9.5 Robustness of the controller against fault isolation delays

As a first step to solve Problem 2, let us consider the following theorem, that provides

t̂
(h)
I (x(tf ), xc(tf )) for all

[
x(tf )T xc(tf )T

]T
∈ E(P, νf ).

Theorem 9.3. (Estimation of the critical fault isolation time) Let λ(h) ∈ R+ be such that:

− 2λ(h)P +He

{
P

(
A(θ) +B

(h)
f Dc(θ)C B

(h)
f Cc(θ)

Bc(θ)C Ac(θ)

)}
≺ 0 ∀θ ∈ Θ (9.64)

and let
[
x(tf )T xc(tf )T

]T
= xf ∈ E(P, νf ). Then:

[
x(t)T xc(t)

T
]T
∈ E(P, νf ) ∀t ∈

[
tf , t̂

(h)
I (x(tf ), xc(tf ))

]
(9.65)

with:

t̂
(h)
I (x(tf ), xc(tf )) = tf +

1

2λ(h)
ln

(
νf

xT
f Pxf

)
(9.66)

Proof: The faulty system (9.24)-(9.25), with B(t) = B
(h)
f , together with the output feed-

back controller (9.7)-(9.8), can be rewritten in the closed-loop autonomous form as:(
ẋ(t)

ẋc(t)

)
=

(
A (θ(t)) +B

(h)
f Dc (θ(t))C B

(h)
f Cc (θ(t))

Bc (θ(t))C Ac (θ(t))

)(
x(t)

xc(t)

)
(9.67)

Let us apply Corollary 2.1 to (9.67) using the region Re(z) < λ(h), that corresponds to

(2.48):

fD(z) = α+ βz + βTz∗ = [αkl + βklz + βlkz
∗]k,l∈{1,...,m} (9.68)
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with α = −2λ(h) and β = 1, such that (2.65):

α⊗ P + β ⊗ PA(θ) + βT ⊗A(θ)TP

=
[
αklP + βklPA(θ) + βlkA(θ)TP

]
k,l∈{1,...,m} ≺ O ∀θ ∈ Θ

(9.69)

reads as:

− 2λ(h)P +He

{
P

(
A(θ) +B

(h)
f Dc(θ)C B

(h)
f Cc(θ)

Bc(θ)C Ac(θ)

)}
≺ 0 (9.70)

Hence, if (9.70) holds, (2.67):
1

2

V̇ (x(t))

V (x(t))
∈ D ∩ R (9.71)

is true for the quadratic function:

V (x(t), xc(t)) =
(
x(t)T xc(t)

T
)
P
(
x(t)T xc(t)

T
)T

(9.72)

that implies:

V (x(t), xc(t)) ≤ V (xf )e2λ(h)(t−tf ) = xT
f Pxfe

2λ(h)(t−tf ) (9.73)

By considering the condition V (x(t), xc(t)) ≤ νf , that defines E(P, νf ), it is straightfor-

ward to obtain (9.65). �

From (9.66) it can be seen that, to attain a solution to Problem 2, it is necessary to

minimize λ = max
h=1,...,nf

λ(h). Hence, this solution is given by the following corollary,

which is obtained combining Theorem 9.1 and Theorem 9.3.

Corollary 9.3. (Design of a robust against fault isolation delay output feedback controller) Let

X,Y ∈ Snx×nx , F (θ) ∈ Rnx×ny , K(θ) ∈ Rnu×nx , L(θ) ∈ Rnu×ny , F (h)(θ) ∈ Rnx×ny

and N (h)(θ) ∈ Rnx×nx , h = 1, . . . , nf , correspond to the solution to the following con-

strained minimization problem:

minλ (9.74)

subject to (9.10)-(9.12), λ ≥ 0 and:

−2λ

(
X I

I Y

)
+He

{(
XA(θ) + F (h)(θ)C N (h)(θ)

A(θ) +B
(h)
f L(θ)C A(θ)Y +B

(h)
f K(θ)

)}
≺ 0

∀h = 1, . . . , nf

∀θ ∈ Θ

(9.75)

Then, the output feedback controller (9.7)-(9.8), with matrices calculated as (9.13)-(9.14)

maximizes min
h=1,...,nf

t̂
(h)
I (x(tf ), xc(tf )) for all

[
x(tf )T xc(tf )T

]T
∈ E (P, νf ), where
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t̂
(h)
I (x(tf ), xc(tf )) is the estimation of

_

t
(h)

I (x(tf ), xc(tf )) obtained as (9.66) with P de-

fined as in (9.15).

Proof: The design condition (9.75) corresponds to the analysis condition (9.64) with

λ = λ(h). In fact, by applying a congruent transformation to (9.64) with:

Γ =

(
I 0

Y −Y

)
(9.76)

and λ = λ(h), the following is obtained:

−2λ

(
X I

I Y

)
+He

{(
XA(θ) +XB

(h)
f Cc(θ) Υ(h)(θ)

A(θ) +B
(h)
f Dc(θ)C A(θ)Y +B

(h)
f Dc(θ)CY −B(h)

f Cc(θ)Y

)}
< 0

(9.77)

with:

Υ(h)(θ) = XA(θ)Y +XB
(h)
f Dc(θ)CY −XB(h)

f Cc(θ)Y + ZBc(θ)CY − ZAc(θ)Y (9.78)

From (9.77), (9.75) can be obtained using the following change of variables:(
N (h)(θ) F (h)(θ)

K(θ) L(θ)

)
=

(
XA(θ)Y 0

0 0

)
+

(
Z XB

(h)
f

0 I

)(
Ac(θ) Bc(θ)

Cc(θ) Dc(θ)

)(
−Y 0

CY I

)
(9.79)

Since a common λ is being used, it is clear that λ = max
h=1,...,nf

λ(h), and by minimizing λ,

we are maximizing min
h=1,...,nf

t̂
(h)
I , defined as in (9.66). �

Also in this case, by relying on a polytopic representation, it is possible to obtain con-

ditions that can be applied for the design, as stated by the following corollary.

Corollary 9.4. (Design of a robust against fault isolation delay polytopic output feedback con-

troller) Assume that the LPV system (9.24)-(9.25) and the output feedback controller

(9.7)-(9.8) are polytopic, i.e. the matrices A (θ(t)), Ac (θ(t)), Bc (θ(t)), Cc (θ(t)), Dc (θ(t))

can be written as in (9.16) and (9.21), with the coefficients µi (θ(t)) satisfying (9.17),

and let X,Y ∈ Snx×nx , Fi ∈ Rnx×ny , Ki ∈ Rnu×nx , Li ∈ Rnu×ny , F (h)
i ∈ Rnx×ny and

N
(h)
i ∈ Rnx×nx , h = 1, . . . , nf , i = 1, . . . , N , correspond to the solution of the con-

strained minimization problem (9.74):

minλ (9.80)
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subject to (9.18)-(9.20), λ ≥ 0 and:

−2λ

(
X I

I Y

)
+He

{(
XAi + F

(h)
i C N

(h)
i

Ai +B
(h)
f LiC A(θ)Y +B

(h)
f Ki

)}
≺ 0

∀h = 1, . . . , nf

∀i = 1, . . . , N
(9.81)

Then, the controller (9.7)-(9.8), with matrices calculated as in (9.21)-(9.22) maximizes

min
h=1,...,nf

t̂
(h)
I (x(tf ), xc(tf )) for all

[
x(tf )T xc(tf )T

]T
∈ E (P, νf ), where t̂(h)

I (x(tf ), xc(tf ))

is the estimation of
_

t
(h)

I (x(tf ), xc(tf )) obtained as (9.66) with P defined as in (9.15).

Proof: It follows the reasoning provided in Corollary 9.1 and thus it is omitted. �

Finally, in case that the design of an FTC system that solves Problem 1 and Problem 2

at the same time is desired, the following algorithm summarizes the necessary steps to

do so.

Step 1: Find X , Y , Fi, Ki, Li, F
(h)
i , N (h)

i , h = 1, . . . , nf , i = 1, . . . , N that minimize

λ ≥ 0 subject to (9.18)-(9.20) and (9.81).

Step 2: Calculate the controller matrix functions Ac (θ(t)), Bc (θ(t)), Cc (θ(t)), Dc (θ(t))

using (9.21)-(9.22).

Step 3: Find X−1
va , Γ

(h)
i , h = 1, . . . , nf , i = 1, . . . , N that maximize µf subject to

(9.60)-(9.61).

Step 4: Calculate the virtual actuator vertex gains M (h)
i = Γ

(h)
i Xva.

Algorithm 1: Algorithm for solving Problem 1 and Problem 2.

9.6 Example

Let us consider an open-loop unstable LPV system subject to actuator saturations as in

(9.24)-(9.25), with:

A (θ(t)) =

(
2 + θ(t) 0

1 1.5

)
θ ∈ [−1, 1]

B(t) =


B =

(
2 0

0 1

)
t < tf

Bf =

(
2 0

0 0

)
t ≥ tf

C =

(
1 0

0 1

)
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and sat(u) defined as in (9.6), with uMAX
i = 10, i = 1, 2.

The matrix A (θ(t)) can be easily expressed in the polytopic form (9.16) with:

A1 =

(
1 0

1 1.5

)
A2 =

(
3 0

1 1.5

)

By choosingX = I in order to guarantee that, if xc(0) = 0, the input will never saturate,

and the state trajectory will converge to the origin if x1(0)2 + x2(0)2 ≤ 1, Corollary 9.1

is applied, providing the following solution to the LMIs (9.18)-(9.20):

Y =

(
20.7646 −8.5567

−8.5567 23.2966

)

F1 =

(
−16.9244 0

−1.0000 −14.6153

)
F2 =

(
−23.9527 0

−1.0000 −14.6153

)

K1 =

(
−17.3400 −2.1823

7.0320 −34.9140

)
K2 =

(
−33.9554 4.6475

8.6895 −33.2737

)

L1 =

(
−0.9980 −0.3504

−0.4759 −1.4632

)
L2 =

(
−1.7132 −0.5390

0.0046 −1.2606

)

Then, the controller matrices are calculated using (9.22), as follows:

Ac,1 =

(
−17.0033 −0.5609

−0.2593 −14.0042

)
Ac,2 =

(
−22.4814 −0.1261

−0.7687 −14.0818

)

Bc,1 =

(
−15.8464 0.4370

−0.8999 −13.8432

)
Bc,2 =

(
−21.7951 0.8325

−1.5366 −14.0479

)

Cc,1 =

(
0.0315 0.1215

−0.1473 0.1562

)
Cc,2 =

(
0.1168 −0.0663

0.2050 0.2413

)

Dc,1 =

(
−0.9980 −0.3504

−0.4759 −1.4632

)
Dc,2 =

(
−1.7132 −0.5390

0.0046 −1.2606

)
and the Lyapunov matrix is given by (9.15):

P =


1.0000 0 0.9433 −0.0208

0 1.0000 −0.0208 0.9494

0.9433 −0.0208 0.9433 −0.0208

−0.0208 0.9494 −0.0208 0.9494


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Problem 1, as described in Section 9.4, is solved applying an iterative optimization

algorithm, obtaining a maximum value νf = 0.04, that corresponds to a value of µf ,

defined as in (9.42), equal to 1.5040.

Then, by applying Corollary 9.2, the matrix Xva and the virtual actuator gains M1, M2

are given by

Xva =

(
0.2841 0.5611

0.5611 1.3431

)

M1 =

(
−3.0973 −5.9092

0 0

)
M2 =

(
−3.6264 −4.9828

0 0

)

Let us consider a simulation that lasts 20 s with x(0) =
(

1 0
)T

, xc(0) =
(

0 0
)T

,

θ(t) = sin(5t), and tf = 0.5 s. At first, the assumption of instantaneous fault isolation

is done, i.e. tI = tf . Since
(
x(0)T xc(0)T

)T
∈ E (P, 1), the state trajectory will

converge towards the origin and the control input will not saturate in the time interval

[0, tf ], as shown in Fig. 9.2 and Fig. 9.3, respectively.

Also, as shown in Fig. 9.4, the evolution of the Lyapunov function

V (t) =

(
xcl(t)

xv(t)

)T(
P O4×2

O2×4 νfXva

)(
xcl(t)

xv(t)

)

is such that V (tf ) = 0.0364 < νf = 0.04. Hence, according to Corollary 9.2, the acti-

vation of the virtual actuator at time tI = tf guarantees that the system trajectory will

converge to the origin with non-saturating control inputs despite the change in the in-

put matrix from B to Bf . This is shown in Fig. 9.2, where it can be seen clearly that,

due to the activation of the virtual actuator, the states xv1 and xv2 take values different

from zero, and in Fig. 9.3, where the reconfiguration of the control inputs brought by

the change in the control law from uc(t) to uf (t) is depicted. Also, as expected, the

Lyapunov function V (t) takes decreasing-in-time values despite the fault occurrence,

as shown in Fig. 9.4.

To conclude the analysis of the results, let us analyze the trajectories in the phase planes,

shown in Figs. 9.5-9.7. It can be seen that the evolution of x(t), xc(t) and xv(t) is such

that at time tI all the states are inside E(P, νf ), whose projections in the considered

phase plane are depicted in magenta color. After tI , the state xw(t) = x(t) + xv(t)

continues smoothly the evolution of the state x(t) before tI ; on the other hand, x(t) will

eventually converge to the origin because both xw(t) and xv(t) will do so.
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FIGURE 9.2: State trajectory, tf = tI = 0.5 s.

Let us now consider the more realistic case where tI > tf , using the results obtained in

Section 9.5. The application of Theorem 9.3 gives a value λ = 1.9197, that corresponds

to:

t̂I = tf +
1

3.8394
ln

(
0.04

xT
f Pxf

)

At time tf = 0.5 s, xT
f Pxf = 0.0364, such that t̂I = 0.025 s, i.e. if the fault isolation

is performed within 0.025 s, the system state is guaranteed to be inside E(P, νf ) for

νf = 0.04 when the control uf (t) begins to be used instead of uc(t). This is confirmed by

the simulation, as shown in Fig. 9.8. It is worth remarking that t̂I is only an estimation

of the critical fault isolation time that, for the considered example, can be determined

by various simulations as
_

t I = 0.748 s.
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FIGURE 9.3: Control inputs, tf = tI = 0.5 s.
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FIGURE 9.4: Lyapunov function V (t), tf = tI = 0.5 s.
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FIGURE 9.5: Phase plane of x(t) and xw(t), tf = tI = 0.5 s.
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FIGURE 9.8: Phase plane of x(t) and xw(t), tf = 0.5 s, tI = 0.525 s.
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By applying Corollary 9.4, a value λ = 0 is achieved with the controller matrices:

Ac,1 =

(
−15.0033 −3.8448

−4.6729 −23.0056

)
Ac,2 =

(
−14.4869 −3.9639

−4.3637 −23.0946

)

Bc,1 =

(
−11.6573 4.2273

−3.1405 −17.6345

)
Bc,2 =

(
−11.7806 2.8664

−2.7281 −17.5742

)

Cc,1 =

(
0.2476 0.0168

−0.0335 −0.1618

)
Cc,2 =

(
−0.0125 0.0227

−0.0633 −0.0698

)

Dc,1 =

(
−1.5938 −3.1773

−0.8091 −2.5079

)
Dc,2 =

(
−2.5406 −2.5509

−1.0639 −2.7606

)
and Lyapunov matrix:

P =


1.0000 0 0.9143 −0.1412

0 1.0000 −0.1412 0.6099

0.9143 −0.1412 0.9143 −0.1412

−0.1412 0.6099 −0.1412 0.6099



Notice that achieving the case λ = 0, that would correspond to t̂I = ∞ using (9.66), is

equivalent to the existence of a nominal controller that is robust against the considered

fault. In fact, by repeating the simulation with this controller, assuming that the fault

is not isolated during the simulation, it can be seen that the state trajectory with the

nominal controller will still converge to zero despite the fault occurrence (see blue line

in Fig. 9.9). On the other hand, the closed-loop system with the controller that had been

designed without applying Corollary 9.4, i.e. using Corollary 9.1, is such that the state

trajectory diverges if no fault isolation is performed (see red line in Fig. 9.9).

9.7 Conclusions

In this chapter, the problem of FTC of unstable LPV systems subject to actuator satu-

ration and fault isolation delay has been considered. The adopted solution relies on

virtual actuators, a fault-hiding active FTC strategy that reconfigures the faulty plant

instead of the controller. Some conditions have been obtained for designing the vir-

tual actuators in such a way that it is guaranteed that, if at the fault isolation time the

closed-loop system state is inside a region defined by a value of the Lyapunov function,

the state trajectory will converge to zero despite the fault and, moreover, the inputs will

not saturate at any time. Afterwards, the problem of delays in the fault isolation has



FTC of unstable LPV systems subject to actuator saturations and FI delay 239

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x
1
, x

w1
 = x

1
+x

v1

x 2, x
w

2 =
 x

2+
x v2

 

 

Projection of E(P,ν
f
) on the plane x

1
, x

2
 (without Corollary 9.4)

Projection of E(P,ν
f
) on the plane x

1
, x

2
 (with Corollary 9.4)

x(t) without Corollary 9.4
x(t) with Corollary 9.4

t
f

t
f

FIGURE 9.9: Comparison between the state trajectories obtained with the controllers
designed using Corollary 9.1 and Corollary 9.4 (λ = 0, tf = 0.5 s), respectively, when

no fault isolation is performed during the simulation.

been considered by showing that an estimation of the allowed fault isolation delay

can be obtained by analyzing the Lyapunov function using the notion of LMI regions.

Moreover, the nominal controller can be designed so as to maximize the allowed fault

isolation delay.

A numerical example has shown the effectiveness of the proposed strategy. In partic-

ular, it has been demonstrated that the proposed design strategy enhances the perfor-

mances of the control system against fault isolation delay. As a special result of the

design conditions, it has been obtained a controller that is robust against the consid-

ered fault, such that no fault isolation is needed for the system to keep its stability, and

for the state trajectory to converge asymptotically to zero under fault occurrence.
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Chapter 10

Conclusions and future work

This thesis has proposed some contributions to the field of LPV systems, with an em-

phasis to their application to FTC. This chapter summarizes the work presented in this

thesis, in order to review the main conclusions and explore the possibilities of further

research.

10.1 Conclusions

LPV and TS systems can incorporate the nonlinear and time-varying behavior of some

systems, allowing to deal with them using linear-like techniques. They have been in-

vestigated throughout the last decades, and several theoretical results have been pre-

sented in the literature. Nevertheless, there is still space for further investigation, and

this thesis has contributed to the advancement of the state-of-the-art of this field.

• Chapter 3 has addressed the strong similarities between polytopic LPV and TS

models. It has been shown how techniques developed for the former framework

can be easily extended in order to be applied to the latter, and vice versa. In par-

ticular, the method for automated generation of LPV models by nonlinear em-

bedding has been extended to generate automatically TS models from a given

nonlinear system. Similarly, the method for the generation of a TS model based

on the sector nonlinearity concept has been extended to the problem of generat-

ing a polytopic LPV model for a given nonlinear dynamical system. With these

many alternatives for the generation of LPV/TS models, it becomes relevant to

compare the obtained models in order to choose which one could be considered

the best one. To this end, two measures have been proposed, the first one based

on the notion of overboundedness, and the second one based on region of attraction
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estimates. Results obtained with a mathematical example have shown that the au-

tomated generation via nonlinear embedding provides less conservative models

than the automated generation via sector nonlinearity, which has been justified

using the mean-value theorem.

• Chapter 4 has considered the problem of designing an LPV state-feedback con-

troller for uncertain LPV systems. The controller has been designed such that

some desired performances are achieved in the robust LPV sense, i.e. for each

possible value that the scheduling parameters and the uncertainty can take. Some

well-known results obtained in the last decades in the robust and in the LPV con-

trol fields have been extended to obtain conditions that can be used to solve this

problem. The provided solution relies on a double-layer polytopic description

that takes into account both the variability due to the scheduling parameter vec-

tor and the uncertainty. The first polytopic layer manages the varying parameters

and is used to obtain the vertex uncertain systems, where the vertex controllers

are designed. The second polytopic layer is built at each vertex system so as to

take into account the model uncertainties and add robustness into the design step.

The problem has been tackled using both a common quadratic Lyapunov function

and a parameter-dependent quadratic Lyapunov function. In both cases, under

some assumptions, a finite number of LMIs, that can be solved efficiently using

available solvers, has been obtained. The proposed technique has been applied to

numerical examples, showing that it achieves correctly the desired performances,

i.e. robust D-stability and robust H∞ performance, whereas the traditional LPV

gain-scheduling technique fails.

• Chapter 5 has considered the problem of designing a parameter-scheduled state-

feedback controller that satisfies a new kind of specifications, referred to as shift-

ing specifications. In particular, the concepts of D-stability, H∞ performance, H2

performance, finite time boundedness and finite time stability have been extended

in a shifting sense, introducing the shifting D-stability, shifting H∞ performance,

shifting H2 performance, shifting finite time boundedness and shifting finite time sta-

bility specifications. The main idea behind these new specifications is to intro-

duce some varying parameters, or using the existing ones, to design the con-

troller in such a way that different values of these parameters imply different

performances. The solution to the design problem, expressed in the form of LMIs

for which a feasible solution should be found, has been obtained using a com-

mon quadratic Lyapunov function. The results obtained with academic examples

have demonstrated the effectiveness and some characteristics of the proposed ap-

proach. In particular, in contrast with the classical specifications, the design using

the shifting ones has allowed selecting different performances for different values



Conclusions and future work 243

of the scheduling parameters, thus allowing the online variation of the control

system performance.

• In Chapter 7, the idea of the robust LPV polytopic technique has been applied

to FTC, giving rise to different strategies. A passive FTC strategy has been ob-

tained by considering the faults as exogenous perturbations that should be re-

jected. An active FTC strategy has been obtained by considering the faults as

additional scheduling parameters. Finally, a hybrid FTC strategy has been ob-

tained by taking into account explicitly the fault estimation uncertainty during

the design step. It has also been shown how the proposed FTC strategy can be

used for the implementation of a bank of controllers, such that the signal pro-

vided by the fault diagnosis unit determines which controller should be active at

a given moment. The advantage of the reconfigured controllers with respect to

the non-reconfigured ones lies in that the formers have to cope with specific faults

and allow to improve the performances in the non-faulty case using the nominal

controller, whose design does not take into account the possibility of fault occur-

rence. The proposed method has been applied to solve the FTC problem for a

quadrotor UAV. The results presented have shown the relevant features of the

proposed FTC strategy, that is able to improve the performances under fault oc-

currence. In particular, whereas the passive FTC shows some limited tolerance

capability, because of the appearance of steady-state errors due to the fault effect,

the active FTC technique can achieve a perfect fault tolerance as long as the fault is

correctly estimated. However, as the uncertainty in the fault estimation increases,

so does the error between the real trajectory and the reference one. By applying

the proposed hybrid FTC method, the overall performance can be improved, thus

reducing the effect that the fault estimation error has on the closed-loop response.

The introduction and comparison of some performance measures have allowed

confirming numerically such analysis.

• Chapter 8 has proposed an FTC strategy for LPV systems subject to actuator

faults based on model reference control and virtual actuators. The proposed FTC

strategy adapts the reference model to the faults and utilizes the virtual actua-

tor technique in order to recover the nominal stability and behavior of the error

model, with some minimum or graceful performance degradation. The overall

control loop is made up by an LPV error feedback controller, an LPV error ob-

server and the LPV virtual actuator. It has been shown that the principle of sep-

aration holds, since there exists a similarity transformation that brings the aug-

mented model to a block-triangular form. Hence, the stability and the satisfaction

of the desired specifications can be assessed separately. The potential and per-

formance of the proposed approach have been demonstrated with two different
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examples: a twin rotor MIMO system and a four wheeled omnidirectional mobile

robot, showing promising results.

• In Chapter 9, a solution to the problem of FTC of unstable LPV systems subject to

actuator saturation and fault isolation delay based on virtual actuators has been

proposed. Some conditions have been obtained for designing the virtual actu-

ators in such a way that it is guaranteed that, if at the fault isolation time the

closed-loop system state is inside a region defined by a value of the Lyapunov

function, the state trajectory will converge to zero despite the fault and, moreover,

the inputs will not saturate at any time. Afterwards, the problem of delays in the

fault isolation has been considered by showing that an estimation of the allowed

fault isolation delay can be obtained by analyzing the Lyapunov function using

the notion of LMI regions. Moreover, the nominal controller can be designed so

as to maximize the allowed fault isolation delay. A numerical example has shown

the effectiveness of the proposed strategy. In particular, it has been demonstrated

that the proposed design strategy enhances the performances of the control sys-

tem against fault isolation delay. As a special result of the design conditions, a

controller that is robust against the considered fault has been obtained, such that

no fault isolation is needed for the system to keep its stability, and for the state

trajectory to converge asymptotically to zero under fault occurrence.

10.2 Perspectives and future work

This section resumes the open issues that could be addressed in future work.

• The measures proposed in Chapter 3 have shown to be objective criteria that can

be used to select which model can be considered the best one. However, in the

general case, which model is the best one also depends on the context in which the

model is used, i.e. whether it is used for stabilization or observation, and which

structure of controller/observer is used to achieve the desired goal. It seems clear

that an important issue to be addressed in future research is the development

of an automatic procedure that selects the best model during the design step,

taking into account what the model is used for, and the chosen structure for the

controller/observer.

• The dilation of the matrix inequality characterizations and the introduction of

auxiliary variables allow using parameter-dependent Lyapunov functions in or-

der to assess stability or other desired specifications. Appendix A has shown how

new dilated LMIs for the FTB and the FTS analysis can be obtained in the case of



Conclusions and future work 245

DT systems. In Chapter 4, these results allowed using a parameter-dependent

quadratic Lyapunov function for solving the problem of robust finite time state-

feedback control of uncertain LPV systems. However, the obtention of dilated

LMIs for the FTB/FTS analysis of CT systems is still an open issue that requires

further investigation. This step is necessary in order to obtain conditions for the

design of robust FTB/FTS polytopic state-feedback controllers for uncertain CT

LPV systems.

• The examples in Chapter 5 have demonstrated how the design using shifting

specifications allows varying online the control system performance. However,

the LMIs to be solved in order to design the controller, have been obtained using

a common quadratic Lyapunov function, which is potentially conservative. An

interesting line for future research would be investigating the application of other

types of Lyapunov functions, e.g. parameter-dependent ones, in order to decrease

the conservativeness of the solution. Also, a future comparison of the proposed

approach with the use of parameter-dependent weighting functions could be in-

teresting.

• The theory developed in Chapter 7 has been applied successfully to a quadro-

tor UAV simulator. Future research will be aimed at applying the proposed FTC

strategy to a real set-up. This goal brings additional challenges, due to the pres-

ence of many sources of uncertainties that must be taken into account in order

to enforce the robustness of the FTC strategy. Moreover, since the inclusion of

an FDI module can potentially allow increasing the obtainable performance, fu-

ture research could investigate FDI and fault estimation algorithms that can be

applied successfully to quadrotor UAVs.

• The technique developed in Chapter 8 has achieved fault tolerance using a mix of

reference model reconfiguration and virtual actuators. However, the theory has

been developed under the assumption of perfect knowledge of the system model

and perfect fault estimation. Future research on this topic will aim at improv-

ing the robustness of the proposed FTC strategy against model uncertainties and

errors in the fault estimation.

• The approach developed in Chapter 9 for the FTC of unstable LPV systems sub-

ject to actuator saturations and fault isolation delays has been devoted to regu-

lation, i.e. convergence of the state trajectory to zero. However, in many control

applications, it is desired that the state trajectory tracks a desired reference tra-

jectory. Future research will extend the proposed technique to solve the problem

of fault tolerant tracking of open-loop unstable LPV systems subject to actuator

saturations and fault isolation delays.



Appendix A

Dilated LMIs for the finite time

boundedness and stability analysis

of discrete-time systems

The content of this appendix is based on the following work:

• [276] D. Rotondo, F. Nejjari, V. Puig. Dilated LMI characterization for the robust

finite time control of discrete-time uncertain linear systems. Automatica, 63:16-20,

2016.

When the robust finite time control of uncertain linear systems is considered, the ex-

isting works either use a common Lyapunov function [12] or rely on differential linear

matrix inequalities (DLMIs) [13]. Recently, [70] showed that, by dilating the matrix in-

equality characterizations and introducing auxiliary variables, the technical restriction

to a common Lyapunov variable could be overcome. The suggested approach led to a

new set of matrix inequalities that included the original ones as a particular case, and

that had a structure such that parameter-dependent Lyapunov functions could be eas-

ily applied in the case of real polytopic uncertainty, with the consequence of reducing

the conservatism. This idea has been successfully applied to the case of pole clustering

[227], H2 and H∞ control [72]. However, the cases of FTS and FTB have never been

tackled before using the aforementioned approach.

In this appendix, we provide new dilated LMI characterizations for the FTB and the

FTS analysis. The dilated LMIs have the relevant feature of decoupling between the

Lyapunov and the system matrices. This fact allows considering parameter-dependent
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Lyapunov functions easily, thus decreasing the conservativeness with respect to the

classical quadratic results.

The following lemma, known as Schur complement will be used [286].

Lemma A.1. Let a matrix Φ = ΦT be such that:

Φ =

(
Φ11 Φ12

ΦT
12 Φ22

)
(A.1)

Then, the following three conditions are equivalent:

1. Φ ≺ O

2. Φ11 ≺ O, Φ22 − ΦT
12Φ−1

11 Φ12 ≺ O

3. Φ22 ≺ O, Φ11 − Φ12Φ−1
22 ΦT

12 ≺ O

Proof: See [286]. �

Also, let us recall the following result, known as Elimination Lemma [104, 137].

Lemma A.2. Let matrices E ∈ RnY ×nE , D ∈ RnD×nY and Y ∈ SnY ×nY be given. Then,

the following two conditions are equivalent:

1. The following two conditions hold:{
E⊥Y

(
E⊥
)T ≺ O

EET � O
if nY > nE

if nY ≤ nE
(A.2)

{ (
DT
)⊥
Y D⊥ ≺ O

DTD � O
if nY > nD

if nY ≤ nD
(A.3)

2. There exists a matrix F ∈ RnE×nD such that:

Y +He {EFD} ≺ O (A.4)

Proof: See [104]. �

Hereafter, new dilated LMIs for analyzing the finite time boundedness and the finite

time stability properties of discrete-time LTI systems are obtained, as stated by the fol-

lowing theorems.
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Theorem A.1. (Extended FTB of DT LTI systems) The DT LTI system:{
x(k + 1) = Ax(k) +Bww(k)

w(k + 1) = Ww(k)
(A.5)

is FTB with respect to (c1, c2, T,R, d) if there exist positive scalars α, λ1, λ2 with α ≥ 1,

two positive definite matrices Q1 ∈ Snx×nx and Q2 ∈ Snw×nw , and two matrices S1 ∈
Rnx×nx and S2 ∈ Rnw×nw such that:


−α

(
S1 + ST

1 −Q1

)
S1A

T O O

AS1 −Q1 Bw O

O BT
w −αQ2 WTS2

O O ST
2 W Q2 − S2 − ST

2

 ≺ O (A.6)

and (2.92)-(2.94):

λ1R
−1 ≺ Q1 ≺ R−1 (A.7)

O ≺ Q2 ≺ λ2I (A.8)(
c2
αT
− λ2d

√
c1

√
c1 λ1

)
� O (A.9)

hold.

Proof: The proof is inspired by the results obtained in [70]. We must show that (2.91)

with A(θ) = A, Bw(θ) = Bw and W (θ) = W :
−αQ1 Q1A

T O O

AQ1 −Q1 Bw O

O BT
w −αQ2 WTQ2

O O Q2W −Q2

 ≺ O (A.10)

is equivalent to (A.6).

We first show that (A.10) implies (A.6). In fact, if (A.10) holds, we can choose S1 =

ST
1 = Q1 and S2 = ST

2 = Q2 in (A.6) and recover (A.10).

It remains to show that (A.6) implies (A.10). To do so, let us assume that (A.6) holds,
and let us notice that it can be rewritten as:

αQ1 O O O

O −Q1 Bw O

O BT
w −αQ2 O

O O O Q2

+He




−αI O

A O

O WT

O −I


(
S1 O

O S2

)(
I O O O

O O O I

) ≺ O
(A.11)
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such that Lemma A.2 can be applied with:

Y =


αQ1 O O O

O −Q1 Bw O

O BT
w −αQ2 O

O O O Q2

 (A.12)

E =


−αI O

A O

O WT

O −I

 (A.13)

E⊥ =

(
A αI O O

O O I WT

)
(A.14)

F =

(
S1 O

O S2

)
(A.15)

D =

(
I O O O

O O O I

)
(A.16)

Hence, (A.2) becomes:(
αAQ1A

T − α2Q1 αBw

αBT
w WTQ2W − αQ2

)
≺ O (A.17)

that, using a congruence transformation with diag(α−1I, I), is equivalent to:(
α−1AQ1A

T −Q1 Bw

BT
w WTQ2W − αQ2

)
≺ O (A.18)

According to Lemma A.1, (A.10) is equivalent to (A.18), thus completing the proof. �

Theorem A.2. (Extended FTS of DT LTI systems) The DT LTI system:

x(k + 1) = Ax(k) (A.19)

is FTS with respect to (c1, c2, T,R) if there exist positive scalars α, λ, with α ≥ 1, a

positive definite matrix Q ∈ Snx×nx and a matrix S ∈ Rnx×nx such that:(
−α

(
S + ST −Q

)
STAT

AS −Q

)
≺ O (A.20)
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and (2.98)-(2.99) hold: (
c2
αT

√
c1

√
c1 λ1

)
� O (A.21)

λ1R
−1 ≺ Q1 ≺ R−1 (A.22)

Proof: It is a direct consequence of Theorem A.1, when Bw = O, W = O and d = 0. �



Appendix B

Proof of the independence of the

matrix B∗ (θ(τ )) from f (τ )

In this appendix, it is proved that the matrix B∗ (θ(τ)), introduced in (8.17), as follows:

B∗ (θ(τ)) = Bf (θ(τ), f(τ))N
(
θ(τ), f̂(τ)

)
(B.1)

with:

N
(
θ(τ), f̂(τ)

)
= Bf

(
θ(τ), f̂(τ)

)†
B (θ(τ)) (B.2)

is independent from f(τ).

Let us assume that the nominal input matrix B (θ(τ)) is full, as follows:

B (θ(τ)) =


b11 (θ(τ)) b21 (θ(τ)) · · · b1nu (θ(τ))

b12 (θ(τ)) b22 (θ(τ)) · · · b2nu (θ(τ))
...

...
. . .

...

bnx1 (θ(τ)) bnx2 (θ(τ)) · · · bnxnu (θ(τ))

 (B.3)

Without loss of generality, the case where the first nf actuators are completely lost, i.e.

where the matrix F (f(τ)) in (8.11) takes the following form:
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F (f(τ)) =



0 0 · · · 0 0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · fnf+1(τ) 0 · · · 0

0 0 · · · 0 fnf+2(τ) · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · fnu(τ)


(B.4)

is considered. Hence, the matrix Bf (θ(τ), f(τ)), calculated following (8.10), is1:

Bf (θ(τ), f(τ)) =


0 0 · · · 0 b1(nf+1)fnf+1 b1(nf+2)fnf+2 · · · b1nufnu

0 0 · · · 0 b2(nf+1)fnf+1 b2(nf+2)fnf+2 · · · b2nufnu
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 bnx(nf+1)fnf+1 bnx(nf+2)fnf+2 · · · bnxnufnu


(B.5)

that can be rewritten as:

Bf (θ(τ), f(τ)) = Λ (θ(τ)) Υ (f(τ)) (B.6)

with:

Λ (θ(τ)) =


b1(nf+1) (θ(τ)) b1(nf+2) (θ(τ)) · · · b1nu (θ(τ))

b2(nf+1) (θ(τ)) b2(nf+2) (θ(τ)) · · · b2nu (θ(τ))
...

...
. . .

...

bnx(nf+1) (θ(τ)) bnx(nf+2) (θ(τ)) · · · bnxnu (θ(τ))

 (B.7)

Υ (f(τ)) =


0 0 · · · 0 fnf+1(τ) 0 · · · 0

0 0 · · · 0 0 fnf+2(τ) · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · fnu(τ)

 (B.8)

Then, Bf
(
θ(τ), f̂(τ)

)†
can be calculated as follows [23]:

Bf

(
θ(τ), f̂(τ)

)†
= Υ

(
f̂(τ)

)T
(

Υ
(
f̂(τ)

)
Υ
(
f̂(τ)

)T
)−1 (

Λ (θ(τ))T Λ (θ(τ))
)−1

Λ (θ(τ))T

(B.9)
1Dependence of the elements bij and fj , i = 1, . . . , nx, j = nf + 1, . . . , nu, on θ(τ) and τ , respectively,

is skipped to ease the notation.
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It is quite straightforward to show that:

Υ
(
f̂(τ)

)T
(

Υ
(
f̂(τ)

)
Υ
(
f̂(τ)

)T
)−1

=



0 0 · · · 0
...

...
. . .

...

0 0 · · · 0
1

f̂nf+1(τ)
0 · · · 0

0 1
f̂nf+2(τ)

· · · 0

...
...

. . .
...

0 0 · · · 1
f̂nu (τ)


(B.10)

such that, under the assumption that f̂(τ) ∼= f(τ):

B∗ (θ(τ)) = Bf (θ(τ), f(τ))Bf (θ(τ), f(τ))†B (θ(τ))

= B (θ(τ))



0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · fnf+1(τ) 0 · · · 0

0 · · · 0 fnf+2(τ) · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · fnu(τ)


· · ·

· · ·



0 0 · · · 0
...

...
. . .

...

0 0 · · · 0
1

fnf+1(τ) 0 · · · 0

0 1
fnf+2(τ) · · · 0

...
...

. . .
...

0 0 · · · 1
fnu (τ)



(
Λ (θ(τ))T Λ (θ(τ))

)−1
Λ (θ(τ))T

= B (θ(τ))



0 0 · · · 0 0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 1 0 · · · 0

0 0 · · · 0 1 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 1



(
Λ (θ(τ))T Λ (θ(τ))

)−1
Λ (θ(τ))T

(B.11)

that does not depend on f(τ). This completes the proof.
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