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Advanced illumination and view-selection techniques for
volume rendering and its application to medical imaging

Abstract: Volume visualization is a method of extracting meaningful information from
volumetric data using interactive graphics and imaging. Volume visualization aims to
assist visual interpretation of (medical) data by creating three-dimensional models that
reproduce real three-dimensional objects with sufficient detail and speed to support
interactive manipulation. Illustrative rendering is used to enhance the perception of
structure, shape, orientation, and depth relationships in a volume model.

There are two major goals in volume rendering. The first one is to obtain high quality
images with a low computational cost, allowing real time exploration. The second goal
is to determine how to explore volume datasets in an effective way.

In this thesis we want to advance in these two research lines. We propose several
methods to approximate global illumination with low computational cost, permitting
realistic and illustrative rendering. We also present a method to automatize the trans-
fer function definition given a target distribution. In addition, we introduce a method
to automatize the creation of exploded views. Finally, we explore a few techniques to
select the best viewpoints for a volume. An important part of our contributions are
based on information theory.




Tecniques avancades d’il-luminacid i seleccid de vistes per a
la visualitzacio de volums i la seva aplicacié a imatge medica

Resum: La visualitzacié de volums és un metode per extreure informacié util de dades
volumeétriques mitjancant imatges interactives. L'objectiu de la visualitzacié de volums
és assistir la interpretacié visual de dades (médiques) creant models tridimensionals
que reprodueixen objectes tridimensionals reals amb suficient detall i velocitat per
permetre’n la manipulacié interactivament. La visualitzaci6 il-lustrativa s’utilitza per
millorar la percepcié de l'estructura, la forma, I'orientacio i la profunditat en un model
de volum.

Hi ha dos objectius principals en la visualitzacié de volums. El primer és obtenir imat-
ges d’alta qualitat amb un cost computacional baix, permetent I'exploracié en temps
real. El segon objectiu és determinar com explorar volums d’una manera efectiva.

En aquesta tesi ens proposem avancar en aquestes dues linies de recerca. En aquest
sentit proposem diversos metodes per aproximar la il-luminacié global amb un cost
computacional baix, permetent visualitzacio realista i il-lustrativa. També presentem un
meétode per automatitzar la definicié de funcions de transferencia donada una distribu-
ci6 objectiu. A més a més, presentem un metode per automatitzar la creacié d’exploded
views. Finalment, explorem algunes tecniques per seleccionar els millors punts de vista
d’un volum. Una part important de les nostres contribucions estan basades en la teoria
de la informacid.
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CHAPTER 1

Introduction

Contents
1.1 MOtivation . . . . v v vt it it e it et e et ettt 1
1.2 ODbjJectives . . ..t v ittt ittt et e e e e e 2
1.3 Thesisoutline . ... ...... ... .. 3

1.1 Motivation

Graphical representations are a key component in the description of scientific processes
and the comprehension of scientific data sets. In medical applications, for instance,
data acquired by medical devices can be interpreted once medical images have been
generated. Another example are oil explorations where the visualization of geoseismic
data is crucial for determining the right perforation place. As these, many different
examples can be found in many scientific fields and application areas, such as mate-
rial sciences, fluid dynamics, or environmental sciences, just to name a few. Obtaining
graphical representations has always been of human interest and the applied strate-
gies have evolved from the hand made representations, such as the Da Vinci’s ones,
to current computer-based images. Obviously, the basis of these approaches are very
different. While in the former drawing skills are required, in the latter specialized al-
gorithms and data structures capable to transform data into visually comprehensible
images are needed (see Figure 1.1). The development of such algorithms has become
an important focus of research and it has led to one of the major lines of investigation
in computer science: visualization.

The aim of visualization is to communicate information clearly and effectively
through graphical means. To reach this objective several approaches have been pro-
posed. They can be classified according to different features, such as the input data
they deal with (one-, two-, three-, or four-dimensional), the rendering primitive used
to generate the image (point-, line-, triangle-, or voxel-based), the method applied
to generate the final rendering (backward or forward projection), the rendering style
(photorealistic or non-photorealistic), or the degree of user interaction required to per-
form the processes involved in the rendering. In this thesis, we deal with 3D volume
data sets with special emphasis on medical data. An important feature of this data
sets is its regular spacial distribution which allows them to be represented in a regular
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(a) (b)

Figure 1.1: Graphical representations of the skull (a) from Da Vinci’s anatomical note-
books and (b) generated from computed tomography data using advanced volume
rendering techniques.

grid known as voxel model. Due to the importance of medical visualization, this has
established itself as a research area.

In this thesis we will focus our interest on how to obtain high quality realistic and
illustrative volume renderings. Our research topics will also include the automation of
the procedures involved in volume rendering, as well as volume exploration strategies.
We also want to go one step further towards overcoming some of the limitations related
to these topics. Most of our contributions will be based on information theory.

1.2 Objectives

The main goal of this thesis is to develop new strategies to enhance the volume render-
ing process and the way to explore data, with special interest on medical environments.
To reach this objective we aim to:

e Achieve high quality realistic and illustrative renderings.

— Approximate global illumination for volume rendering.

Global illumination techniques allow to obtain high quality renderings by
simulating physical light interactions. However, their application to volume
rendering is difficult because of their high computational cost. In polygo-
nal rendering there are several techniques, such as ambient occlusion and
obscurances, that approximate global illumination at low cost. We aim to
adapt these techniques to volume rendering.

— Develop a filtering-based technique to produce illustrative renderings.

Ilustrative visualization enhances the expressiveness of volume rendering
by applying hand-crafted illustrative techniges. These techniques enhance
the perception of structure, shape, orientation, and depth relationships in



1.3. Thesis outline 3

a volume model. We want to develop a technique based on image filtering
that allows to obtain such kind of renderings.

— Use separable filtering to compute volumetric ambient occlusion.

A novel interpretation of ambient occlusion measures the portion of the
tangent sphere of a surface that belongs to the set of occluded points. We
aim to extend this approximation to volumetric models and implement it
using separable filtering to achieve a real time interaction.

— Use information theory to produce realistic and illustrative renderings.

Information theory deals with the transmission, storage, and processing of
information and is used in fields such as image processing and computer
graphics. We want to develop a volume rendering framework based on the
information channel constructed between the volumetric dataset and a set
of viewpoints. Using information theory measures obtained from this chan-
nel, we want to produce both realistic and non-photorealistic visualizations.

— Develop a semi-automatic method to create opacity transfer functions.

The transfer function definition is a main step in volume rendering. The
transfer function maps scalar values in volume datasets to optical properties
such as color and opacity. Manually creating a transfer function is a tedious
and time-consuming process. We want to automate the process of defin-
ing the opacities. Our approach will be based on an information channel
between the a set of viewpoints and the intensities of the volume dataset.

e Develop new exploration techniques.

— Exploded views of volume models.

Exploded views are often used in illustration to overcome the problem of
occlusion when depicting complex structures. To create exploded views,
first the parts to be separated have to be found. We want to automate the
definition of these parts or slabs with the help of information theory.

— Use information theory to select the best viewpoints.

One of the problems in volume visualization is to find the best views of the
volume, the ones that are more helpful to the user. On the one hand, the
information channel between the volume dataset and the viewpoints that
we have proposed previously should also provide information that allows
to find the best views. On the other hand, information-theoretic tools could
also help us to find the most structured viewpoints.

1.3 Thesis outline

This dissertation is organized in nine chapters. Following this introduction, the follow-
ing eight chapters remain:
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e Chapter 2: State of the art

In this chapter, the background on volume rendering required for the comprehen-
sion of the main issues that are going to be analyzed in this thesis is introduced.
The main concepts of information theory are also reviewed since it is the basis of
most of our contributions.

e Chapter 3: Visibility channel

This chapter introduces a volume rendering framework based on the information
channel constructed between the volumetric data set and a set of viewpoints. In-
formation obtained from this channel is used to produce realistic and illustrative
renderings and also to select the most informative views.

e Chapter 4: Similarity-based exploded views

Exploded views are often used in illustration to overcome the problem of occlu-
sion when depicting complex structures. This chapter presents an information-
theoretic technique that automatically decides how to partition the volume to
create exploded views. The thickness of slabs is driven by the similarity between
partitions.

e Chapter 5: Obscurance-based volume rendering framework

Obscurances is a technology that produces natural-looking lighting effects in a
faster way than global illumination. An obscurance-based framework that allows
to obtain realistic and illustrative renderings interactively is presented in this
chapter. The concept of saliency as the gradient of obscurances is also introduced
and used to enhance volume visualization and to select the most salient views.

e Chapter 6: Volumetric ambient occlusion for volumetric models

In this chapter, volumetric ambient occlusion is defined as the proportion of the
tangent sphere of a surface that is occluded, and statistically robust estimates for
the ambient occlusion value are proposed. Separable filters are used to compute
the data needed to estimate this proportion at interactive rates.

e Chapter 7: Interactive volume illustration using intensity filtering

This chapter presents a simple and interactive technique for volume illustration
that uses the difference between the original intensity values and a low-pass
filtered copy. This difference provides a spatial importance map that captures
salient and separability information about regions in the volume. This map is
used to produce different illustrative effects.

e Chapter 8: Automatic transfer functions based on informational divergence

In this chapter, a framework to define transfer functions from a target distribution
provided by the user is presented. The basis of the framework is a communication
channel between a set of viewpoints and a set of bins of a volume data set, and it
supports 1D as well as 2D transfer functions including the gradient information.
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e Chapter 9: Conclusions

In this last chapter, conclusions of the thesis and future work will be presented,
along with a summary of the publications related with this thesis.
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State of the art

Contents
2.1 Introduction . . . . . . vt vt i ittt it et e 7
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2.2.2 Dataprocessing. . . . . .. ..ot 10
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274 ENropyrate . . .. . ... ...ttt e 30
2.7.5 Entropyandcoding . ......... ... ... 31
2.7.6 Information bottleneck method . . . ... ... .. ... ......... 32
2.8 Information theory in computer graphics .................. 33

2.9 Viewpoint selection and visibility channel in volume visualization .. 34

2.1 Introduction

Volume visualization is a method of extracting meaningful information from volumetric
data using interactive graphics and imaging, and it is concerned with volume data
representation, modeling, manipulation and rendering [Kaufman 1990]. In the last
decades, different techniques have been proposed to render volumetric data. At broad
level these can be classified, according to the used graphic primitive, into direct or



8 Chapter 2. State of the art

indirect volume rendering techniques. In this thesis we will focus on direct volume
rendering techniques, which attempt to capture all the volume data in a single 2D
image without considering any intermediate representation, i.e. operating on samples
from the actual data.

Volume visualization aims to assist visual interpretation of (medical) data by creat-
ing three-dimensional models that reproduce real three-dimensional objects with suf-
ficient detail and speed to support interactive manipulation. Although many different
strategies have been proposed with this objective, it is still a challenge to obtain render-
ings that adapt the appearance of the data to user needs in an interactive manner. The
difficulty is to obtain high quality images fast enough to ensure efficient exploration.
Moreover, one has to take into account user needs. For instance, while in a medical
environment realistic renderings are suitable for diagnosis and pre-operative planning,
non-photorealistic techniques are preferred in educational environments since they are
able to simplify data, producing clearer images than traditional photorealistic methods.
One handicap in this area is that computing global illumination is an expensive oper-
ation, thus it has to be approximated using techniques such as ambient occlusion and
obscurances, which will be explained in Section 2.5.2. Providing strategies to explore
volume data in an efficient manner is also of great interest. To ensure interactivity
when exploring volume data, different strategies to accelerate the rendering process
can be considered. Among them, focus+context and viewpoint-based strategies, with
GPU-based implementations that exploit hardware capabilities.

This chapter is structured as follows. Section 2.2 provides an overview of the vol-
ume visualization pipeline common to most rendering methods. Section 2.3 describes
more detailedly the steps that are common among direct volume rendering methods,
and also presents the main algorithms in this category. Section 2.4 introduces the main
problems in transfer function definition and cites several currently proposed solutions.
In Section 2.5 local and global illumination models are compared, and various meth-
ods to approximate global illumination effects at a low cost are introduced, giving
emphasis on obscurances. Section 2.6 gives an overview on illustrative volume render-
ing, citing several approaches by different authors. Section 2.7 explains the concepts
on information theory that will be used in this thesis. Section 2.8 briefly reviews sev-
eral applications of information theory to computer graphics. Section 2.9 presents an
information channel between a set of viewpoints and the set of voxels of the volume
model. The reversion of this channel is the basis of some of the methods proposed in
this thesis.

2.2 The volume visualization pipeline

The so-called volume visualization pipeline defines the different steps that are required
to generate an image from abstract volume data. The main steps of this pipeline are
represented in Fig. 2.1 and described below.
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Figure 2.1: Volume rendering pipeline.

2.2.1 Data acquisition

The first step of the volume rendering pipeline is data acquisition. There are three
main data sources: simulation, modeling, and scanning. This last one is the most com-
mon in medical environments and requires specialized medical scanners to sample
data from real models. Scanners represent information as a specific type of image such
as computed tomography (CT), magnetic resonance imaging (MRI), positron emission
tomography (PET), single photon emission computed tomography (SPECT), and ultra-
sound (US). The physical principles of the scanner determine the type of data that will
be acquired and represented in the images. For instance, CT represents density and is
suitable for bone exploration, MRI represents oscillation and is suitable for soft tissue
exploration, and US represents echoes and is suitable for vessel exploration.

Scanned data is provided at a specific spatial intensity resolution and scale with
a given range of capture error. Most devices capture information following a regular
planar distribution, which allows to represent data in a regular grid known as a voxel
model. Although other representation schemes are possible, the voxel model is the most
common in our context.

The voxel model is based on the decomposition of the 3D space into a regular set
of identical cuboids, known as voxels, whose edges are parallel to the coordinate axis.
This spatial structure allows for voxels to be directly represented by a 3D point (i, j, k),
where 1 <1i,j,k < n;, nj,ny, being n;, nj, ny the number of voxels per axis from which
the whole geometrical and topological information may be retrieved.

The acquired data is usually represented as a set of tuples (x, y,2,v), representing
the value v of some property at a certain 3D location (x, y,z). Samples may be taken
along time, and then we have one more component: (x, y,z,t,v). The value v can be
a scalar, a vector, or a tensor. In this thesis we will deal with 3D volumes with scalar
values.

While it is straightforward to consider each voxel as a cube with an homogeneous
value in its whole volume (also known as the voxel approach), it is more useful for
rendering purposes to interpret each value in the dataset as a sample obtained from a
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continuous three-dimensional function (also known as the cell approach):
f(p)eR with peR3. 2.1

With this interpretation we can reconstruct the information at any location of the
model. Two of the most common reconstruction filters are nearest neighbour and tri-
linear interpolation. Nearest neighbour or zero order interpolation takes the value of
the closest cell vertex; it is very fast but models look blocky. On the other hand, trilin-
ear or first order interpolation computes linear interpolation from the closest values in
each axis; the result is smoother than with nearest neighbour interpolation, but it can
produce blurry images or 3D diamond-like structures. More sophisticated interpolation
methods exist, like tricubic or spline-based interpolations, but their cost is high and
thus they are not frequently used. When rendering with the GPU, nearest neighbour
and linear interpolation are already provided by the hardware, but higher order meth-
ods can be programmed [Ruijters 2008, Hadwiger 2009]. The main requirements of
reconstruction filters are high quality reconstruction but small performance overhead.

2.2.2 Data processing

Data processing is the second step of the visualization pipeline. It includes the different
techniques that are applied to extract and communicate information more effectively
according to user and application requirements. Below, we review some of the most
representative techniques.

o Filtering

Acquired images may be filtered to minimize undesirable effects such as noise
or artifacts, commonly produced in the acquisition process. Some of the most
popular filters are Gaussian filters, which have a blurring effect, and anisotropic
diffusion filters, which preserve the edges of the image. [Gerig 1992, Castafio
Moraga 2007]

o Registration

Image registration is a process that determines the spatial transformation that
will bring two different images into alignment. This operation is of special in-
terest in clinical practice since it allows us to combine in a single model the
information acquired with different devices, at different times or from different
patients. Image registration allows us, for instance, to complement different data
in order to complete the anatomical representation or combine functional infor-
mation with anatomical representation. This capability is of special interest if we
are interested in performing studies between different patients and carrying out
studies along time or intrapatient studies. For a review of registration techniques,
see [Pluim 2003].

e Segmentation
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Segmentation is defined as the division of an image or volume into coherent
regions using some local image characteristic criteria. After segmentation each
region is labeled with a distinct value. Segmentation is useful for applications
that need to differentiate regions that represent different tissues but have over-
lapping ranges of scalar values, in the identification of pathological areas, for
measuring the volume of a lesion, etc. For a detailed review of segmentation
strategies, see [Wirjadi 2007, Withey 2007, Sharma 2010].

2.2.3 Data rendering

The last phase of the volume rendering pipeline is rendering. Rendering methods can
be divided among those that require a previous mapping to geometric primitives and
those that render volume data directly considering the voxel model as the primitive.
The first set are known as indirect volume rendering' techniques. These strategies
are classified according to the dimension of the graphical primitives into the following:

e Point or particle mapping (0D)

0D mapping uses points or particles as the primitive to render. Points and parti-
cles both encapsulate a 3D position and related information, although particles
are more general because they can have any visual representation. Particles are
created at the locations of features that have to be visualized. Then, they can be
redistributed to cover the entire feature, and filtered to remove particles from
hidden areas. Finally, geometry is created for the particles according to a desired
visual style, and this geometry is sent to the rendering pipeline to be projected
onto the final image. [Busking 2008, van Pelt 2010]

e Contour mapping (1D)

1D mapping extracts contour lines from the model. Object contours are rendered
visualizing areas with locally high gradient magnitude, independently of the
voxel value. This way, 3D structures become visible without being obstructed by
visual representations of continuous regions in the volume. [Csébfalvi 2001, Isen-
berg 2006]

e Surface mapping (2D)

This mapping technique generates a polygonal approximation of an isosurface,
i.e. the surface that approximates the volume points with a given value, known as
isovalue. This approach is well suited to objects with sharply determined borders,
like bones in CT, but it is inappropriate for amorphous objects that are difficult
to represent by thin surfaces. The most popular isosurface extraction method is
the marching cubes algorithm, proposed by Lorensen and Cline [Lorensen 1987,
Newman 2006].

!Indirect volume rendering is normally used to refer only to surface mapping, but here, for the sake of
simplicity, we also include point and contour mapping into it.
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The algorithms corresponding to each mapping technique are, respectively, point or
particle rendering [Rusinkiewicz 2000, Csébfalvi 2003], contour rendering [Csébfalvi
2001], and surface rendering [Tiede 1990]. The most popular among these are sur-
face rendering algorithms, that represent surfaces as triangle meshes. There are also
other indirect volume rendering techniques that do not fit in any of the above cate-
gories, such as methods that operate on the frequency domain instead of the spatial
one [Malzbender 1993].

The second set of visualization methods are known as direct volume rendering tech-
niques. These were developed to capture the entire 3D data in a 2D image, contrary to
the previous approaches that extract just a subset of the information. Since there is no
mapping, the whole dataset is passed directly to the renderer. This is the approach that
has been used in this thesis, so in the next section we will explain it in detail.

2.3 Direct volume rendering

Direct volume rendering (DVR) techniques consider volume data as a transparent gel
and simulate the effect of light travelling through this gel. To carry out this process
three main steps are required: shading, classification, and compositing. In this section,
first we review these steps and then the major algorithms for direct volume rendering
are explained.

2.3.1 Direct volume rendering steps

Direct volume rendering techniques perform the three steps illustrated in the last box
of Figure 2.1 and described below.

2.3.1.1 Shading

Shading or illumination aims to enhance the appearance of a rendered object by mod-
eling effects like shadows, light scattering, and absorption. The subset of these effects
that is actually used depends on the chosen optical model [Max 1995]. There are sev-
eral different models: from only absorption or emission, to both, to models that include
scattering and advanced shadowing. Usually, a simple absorption and emission model
is used because it is relatively cheap to evaluate and gives good enough results. In
this model, it is considered that each sample of the data absorbs and emits light. The
absorption is simulated by an opacity value assigned to the sample, while emission is
determined by a color. Both color and opacity are defined in a classification process.
The sampling rate determines the number of samples we are going to consider for each
ray (see Figure 2.2).

Given the optical model, we still can distinguish between local illumination and
global illumination. Local lighting shades each object —each sample in this case— in-
dependently, ignoring the rest of the scene, so it cannot produce shadows or scattering,
but it has the advantage of being cheap to compute. Global lighting can simulate any
effect and so gives better results, but it is expensive and seldom used in real time. Some
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(a) Low sampling rate (b) High sampling rate

Figure 2.2: Comparison of the results obtained by rendering the same volume with (a)
low and (b) high sampling rates.

shadowing effects of global illumination can be approximated with techniques such as
ambient occlusion or obscurances, and then used to enhance local illumination. The
application of obscurances to volume rendering is one of our main research foci. For
this reason, a more thorough explanation will be given in Section 2.5.

2.3.1.2 Classification

As we have said, the absorption and emission optical model requires that each sample is
given a color and an opacity. This is done in the classification step. Classification allows
to extract important parts of the data by mapping primitives to graphical attributes
such as color and opacity. This mapping is done with a transfer function, which in the
simplest case takes as input the sample value and returns its corresponding color and
opacity. It can be more complex, though: for example, the transfer function may take
the gradient magnitude as an additional input to return an opacity, or it can have an
additional output such as the shininess. The definition of the transfer function is a
challenging task. Several methods have been developed to aid the user in this process,
as it will be seen in Section 2.4.

Classification can be done before or after reconstruction, with different results.
The former approach is known as pre-classification and consists of classifying voxel
values and then interpolating the colours and the opacities. On the other hand, post-
classification involves classifying sampled values gotten through interpolation. Choos-
ing one alternative or the other will result in different image quality and artifacts, as it
can be seen in Figure 2.3. Post-classification (Fig. 2.3(a)) produces images with defined
edges, but is prone to aliasing because high frequency details may be missed. On the
contrary, pre-classification (Fig. 2.3(b)) produces blurred images when the resolution
of the image is higher than that of the volume and it is prone to color bleeding if col-
ors and opacities are interpolated independently. However, this artifact is eliminated
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if color interpolation is done with opacity-weighted colors, i.e., colors that have been
multiplied by their corresponding opacity.

(a) Post-classification (b) Pre-classification

Figure 2.3: Comparison of the results obtained by rendering the same volume with (a)
post-classification and (b) pre-classification.

2.3.1.3 Compositing

Compositing is the process by which samples with the optical properties given in clas-
sification and shading are integrated along viewing rays. This integration follows the
volume rendering integral from light transport theory [Meifsner 2000]. The theoretical
form of the integral is

L S
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where I, (x, r) is the amount of light of wavelength A coming from ray direction r that
is received at location x on the image plane, L is the length of ray r, C,(s) is the light
of wavelength A reflected and/or emitted at location s in the direction of r, u(s) is the
density at s, and the exponential is an attenuation function.

Since the volume rendering integral cannot be computed analytically in general,
it is usually approximated by a Riemann sum of the emitted and absorbed light in
intervals i of width As:
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Here the density has been substituted by the opacity a and the exponential has been
approximated by a Taylor series. The opacity has to be normalized for As # 1.
From this approximation we get the familiar compositing equations. In front-to-
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back order these are:

C/=C_,+(1-A_))C, (2.4
A=A +(1-A_)A;. (2.5)

The advantage with this approach is an optimization called early ray termination,
which cuts a ray once the accumulated opacity (or remaining transparency) reaches
a threshold where further contributions are negligible, i.e., 0.99 (or 0.01). In back-to-
front order it is not necessary to keep track of accumulated opacity:
C/=C+(1-A)C,,. (2.6)

This way the algorithm is simpler but we cannot do early ray termination.

There are other combining functions that can be used instead of compositing. One
of the most popular is maximum intensity projection (MIP), which keeps the sample
with the highest intensity value.

2.3.2 Direct volume rendering algorithms

Direct volume rendering can be achieved using different algorithms. The most popu-
lar are ray casting, splatting, shear-warp, and 3D texture mapping. These algorithms
have been developed and refined over the years, beginning with simple software im-
plementations (except for 3D texture mapping), and in recent years exploiting graphics
hardware capabilities. All of them have a similar structure with the common steps of
classification, shading, and compositing, but they differ in how each step is performed.
In this section we give an overview of each of these algorithms.

2.3.2.1 Ray casting

Ray casting [Levoy 1988] is an image-order direct volume rendering algorithm, and
it is the most popular. It is conceptually very simple. A ray is cast for each pixel into
the volume. Samples of the volume are taken along the ray at equi-spaced intervals
and mapped to optical properties according to the transfer function. Then samples are
shaded and finally composited to obtain the pixel color.

Both pre- and post-classification are possible with ray casting. The most used re-
construction filters are nearest neighbour for fast visualization and trilinear interpo-
lation for high quality. Both front-to-back and back-to-front compositing are possible,
although the former is the most usual to take advantage of early ray termination.

Refinements include jittering in the sample positions to avoid patterned sampling
artifacts, and space-leaping to quickly traverse empty regions.

Using current graphics cards it is possible to achieve very fast implementations of
the ray casting algorithm. The basic idea is to store the volume in a single 3D texture
and use the fragment shader to cast rays into the volume. Each pixel corresponds to
a single ray. The direction of each ray can be computed from the camera position and
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the screen space coordinates of the pixel, or be obtained via rasterization, by comput-
ing the distance between pixels of the rasterized front and back faces of the volume
bounding box. There is extensive literature on GPU-based volume ray casting [Kriiger
2003, Hadwiger 2009, Pavlik 2009].

2.3.2.2 Splatting

Splatting is an object-order direct volume rendering algorithm first proposed by West-
over [Westover 1992]. It represents the volume as an array of overlapping basis func-
tions, commonly Gaussian kernels with amplitudes scaled by the voxel values. These
basis functions generate footprints that spread the energy of voxels over multiple pix-
els. The basis functions are projected to the screen and composited to generate the
image.

Both pre- and post-classification are possible with splatting, but compositing can
only be performed in back-to-front order.

To improve the performance of this technique, footprints can be precomputed and
stored in a lookup table. In addition, only voxels relevant to the image must be pro-
jected. Splatting can use a concept similar to early ray termination: early splat elimina-
tion, based on a dynamically computed screen occlusion map, that conservatively culls
invisible splats early from the rendering pipeline [Mueller 1999].

Splatting can also be GPU-accelerated using several techniques [Neophytou 2005,
Neophytou 2006].

2.3.2.3 Shear-warp

Shear-warp was proposed by Lacroute and Levoy [Lacroute 1994]. This algorithm
transforms the view and the volume in order to perform axis-aligned renderings so it
can take advantage of memory alignment and fixed scaling and blending factors. The
method starts by transforming the viewing transformation so that slices of the volume
become axis-aligned with an off-screen image buffer, where rendering is performed. To
compensate for this transformation, the volume is sheared so that the same parts of it
are viewed. Then, rendering is performed using a ray casting-like scheme, where rays
are perpendicular to the slices and sample values are reconstructed from the values in
the slice. After compositing, a warping step transforms the off-screen image so it has
the desired orientation and perspective.

Both pre- and post-classification are possible, but the former allows an optimiza-
tion. Sampled values are usually reconstructed using bilinear interpolation. The sam-
pling rate is fixed given the view.

Improvements of the basic method include a pre-processing step where voxel runs
are run-length-encoded based on pre-classified opacities. This requires the construction
of a separate encoded volume for each of the three major viewing directions, incurring
in a higher memory overhead than other methods, but allows to skip opaque image
regions and transparent voxels.
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2.3.2.4 3D texture mapping

The use of 3D texture mapping was popularized by Cabral et al. [Cabral 1994] for non-
shaded volume rendering. The volume is usually pre-classified and then uploaded as a
3D texture to the graphics card, and then the GPU rasterizes polygonal slices through
the volume parallel to the viewpoint. The slices are blended in back-to-front order to
form the final image.

3D texture mapping usually employs pre-classification, although post-classification
is also possible with multi-pass variants. Both nearest neighbour and trilinear interpo-
lation are possible.

With this algorithm all the voxels are always rendered, it is not possible to skip
unseen voxels. Another drawback is that if the volume is too large it has to be cut in
subvolumes that have to be swapped in and out of texture memory in order to render
them all.

In sections 2.2 and 2.3 we have made a broad introduction to volume rendering. In the
following sections we will focus on the specific problems that we will take on.

2.4 Transfer function definition

A crucial step in volume rendering is the transfer function definition. This function
assigns optical properties, such as color and opacity, to the data being visualized, de-
termining which structures of the volume will be visible and how they will be rendered.
A good transfer function reveals the important structures in the data without obscuring
them with unimportant regions. The simplest approach to find a good transfer function
is by trial and error, i.e., colors and opacities are manually entered and then modified
if the obtained visualization is not the desired one. Obviously, this strategy is tedious
and time-consuming. Therefore, several techniques have been proposed to aid the user
in transfer function design. A significant part of these works involve special user inter-
faces to assist the user in editing the transfer functions or to define the parameters for
the algorithms that generate these transfer functions. In this section, we review some
of these strategies.

Pfister et al. [Pfister 2001] classified transfer functions into two different cate-
gories: data-centric or image-centric.

Data-centric transfer functions define visual properties based on volume data val-
ues and their derived attributes, such as the gradient magnitude [Levoy 1988], first
and second order gradient-aligned derivatives [Kindlmann 1998], or curvature mea-
sures [Hladtivka 2000, Kindlmann 2003]. Levoy [Levoy 1988] proposed the use of the
gradient magnitude to identify surfaces in volume data. Kindlmann and Durkin [Kindl-
mann 1998] used the first and second derivatives along the gradient direction to cal-
culate a boundary emphasis to be included in the opacity transfer function. In addi-
tion to the design of the opacity transfer function, general multi-dimensional trans-
fer functions were studied to better convey the boundaries and features in volume
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data [Kindlmann 2003, Kniss 2002a, Kniss 2003, Lum 2004]. These methods create
two-dimensional histograms where each entry represents the number of voxels at a
given feature space pair at which the user in a trial-and-error manner assigns color and
opacity until the desired visualization is obtained. To avoid this trial-and-error process,
Maciejewski et al. [Maciejewski 2009] proposed the addition of non-parametric clus-
tering within the transfer function feature space in order to extract patterns and guide
transfer function generation. A special class of multidimensional transfer functions,
called distance-based, consider distance as a second data dimension [Kanda 2002].
Roettger et al. [Roettger 2005] introduced spatialized transfer functions, a special
variant of local transfer functions where connected components are identified and the
positional information is mapped to color. In this way, different objects with the same
values can be isolated. Lundstrém et al. [Lundstrém 2006] introduced local histograms
to detect and identify materials with similar intensities. Sereda el al. [Sereda 2006b]
proposed an extension of the local histograms capable of detecting the materials that
form the boundaries of the objects.

As an alternative, image-centric transfer functions are designed considering param-
eters that can be derived from the rendered images. He et al. [He 1996] treated the
transfer function specification as a parameter optimization problem and addressed it
with stochastic search techniques. Marks et al. [Marks 1997] introduced design gal-
leries as a general approach for selecting visualization parameters in a multidimen-
sional space. Transfer function specification with this approach is accomplished by se-
lecting previews from a randomized selection to guide the search process. Kénig and
Groller [Konig 2001] introduced a user interface paradigm with a set of specification
tools assisted with real time rendering to aid the user in the selection of the transfer
function. Wu and Qu [Wu 2007] proposed a method that uses editing operations and
stochastic search of transfer function parameters to maximize the similarity between
rendered images given by the user. In general, image-centric methods are more goal-
oriented and require less user interaction.

Correa and Ma [Correa 2009a] presented a method for classifying volume data
based on the ambient occlusion of voxels. They detected occlusion patterns that reveal
the spatial structure of materials or features of a volume and represented them in an
occlusion spectrum. This occlusion spectrum leads to better two-dimensional transfer
functions that can help classify complex data sets in terms of the spatial relationships
among features. Correa and Ma [Correa 2009b] also proposed to use the visibility to
guide the transfer function design. They introduced the notion of visibility histogram,
which represents the contribution of each sample in the final resulting image, as an in-
teractive aid for generating effective transfer functions. Later, Correa and Ma [Correa
2011] also generalized the notion of visibility histogram along a number of dimen-
sions and proposed a semiautomated method for generating transfer functions, which
progressively explores the transfer function space towards the goal of maximizing the
visibility of important structures. A main limitation of reported techniques is that they
require user interaction. Automatic transfer function specification is still a challenge
and few methods support it. Salama et al. [Salama 2006] introduced a high level se-
mantic model with a simple user interface that allows visualization experts to design
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transfer function models for specific application areas, which can then be used intu-
itively by non-expert users. Sereda et al. [Sereda 2006a] proposed hierarchical clus-
tering of material boundaries for automating the transfer function design. Zhou and
Takatsuka [Zhou 2009] presented an approach for automating transfer function gen-
eration by utilizing topological attributes derived from the contour tree of a volume
that acts as a visual index to volume segments. Wang et al. [Wang 2010] presented
an interactive transfer function design tool based on ellipsoidal Gaussian transfer func-
tions. These techniques generally require a previous segmentation or classification of
the volume data set to automate the process.

In Chapter 8 we propose a new technique to deal with the problem of the transfer
function definition. Our approach is semiautomatic and based on information theory.

2.5 Illumination models and obscurances

The absorption and emission optical model has become the most used in volume ren-
dering. Two main strategies can be considered depending on the data used to approxi-
mate the model: local illumination and global illumination (see Figure 2.4).

Local illumination (Fig. 2.4(a)) computes the light arriving at each object indepen-
dently, without taking into account the other objects. This kind of illumination gives
acceptable results and is cheap to compute, so it is suitable for real time applications.

Global illumination (Fig. 2.4(b)), on the other hand, computes light interactions
between all the objects in the scene, being able to simulate any lighting effect. In
the absorption and emission model it takes into account occlusions to produce more
realistic shadings. However, having to compute interactions between all the objects
incurs a heavy penalty in computation time. So, although global illumination gives
very good results and is a well-known technique for producing realistic scenes, its high
computational cost makes it inappropriate for real time rendering.

(a) Local illumination (b) Global illumination

Figure 2.4: Comparison of the results obtained by rendering the same volume with (a)
local illumination and (b) global illumination.
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2.5.1 Volume shadowing

Different strategies have been proposed to simulate global illumination effects while
preserving interactive frame rates. Behrens and Ratering [Behrens 1998] integrated
in a texture-based volume renderer shadow maps that store the intensities computed
according to light and transfer function conditions. Shadows can also be computed
with half-angle slicing, either by using simultaneous slicing for rendering and shadow
computation [Kniss 2002b], or combined with splatting [Zhang 2003]. Mavridis et
al. [Mavridis 2010] used voxelization of polygonal scenes to compute illumination at
discrete locations and apply it back to the polygons. The illumination is computed
by iteratively propagating the radiance of each voxel to its neighbours. Kronander et
al. [Kronander 2011] developed a method to achieve real time dynamic lighting in
direct volume rendering by encoding local and global volumetric visibility using spher-
ical harmonic basis functions stored in a multiresolution grid. Their technique allows
directional lights, point lights, and environment maps.

Other strategies are based on the ambient occlusion technique introduced by Lan-
dis [Landis 2002], a simplified version of the obscurances illumination model [Zhukov
1998]. A volumetric version of the technique, called vicinity shading, was proposed by
Stewart [Stewart 2003]. Vicinity shading simulates illumination of isosurfaces by tak-
ing into account neighboring voxels. An occlusion volume is computed and stored in a
shading texture that is accessed during rendering. This volume has to be re-computed
each time that the rendering parameters are modified and the method does not sup-
port color bleeding. Tarini et al. [ Tarini 2006] refined this model to increase the perfor-
mance. Wyman et al. [Wyman 2006] presented a method that supports the simulation
of direct lighting, shadows and interreflections by storing pre-computed global illu-
mination in an additional volume to allow viewpoint, lighting and isovalue changes.
Despite the improvements achieved with these methods they still have a main limita-
tion, they only allow to represent one of the surfaces of the volume.

This limitation is overcome by Ropinski et al. [Ropinski 2008] and Hernell et
al. [Hernell 2007] using a local volumetric shadowing effect. Ropinski et al. compute a
local histogram for each voxel from the voxel’s neighbourhood, by accumulating inten-
sities weighted by inverse squared distances. These local histograms can be combined
interactively with the user-defined transfer function to give an effect similar to local
ambient lighting. Hernell et al. [Hernell 2007] obtain the incident light intensity, ar-
riving at a voxel, by integrating for each voxel and within a sphere surrounding it
the attenuated transfer function density. This comes to compute, in the usual way, the
visibility arriving at a voxel, using the opacities, averaged for all directions.

Desgranges and Engel [Desgranges 2007] proposed a method which combines am-
bient occlusion volumes terms from a plurality of different filtered volumes. Recompu-
tation is also required whenever the transfer function is changed.

Jainek et al. [Jainek 2008] combined ambient occlusion calculations with illustra-
tive display styles to enhance the clarity of the visual output in brain studies.

Soltészova et al. [Soltészova 2010] proposed a technique that simulates directional
light scattering, based on the directional occlusion shading model. Their method does
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not need any pre-computation and allows interactive modification of all illumination
and rendering parameters.

In this thesis we have focused our interest on obscurances and ambient occlusion,
therefore we describe them in detail below.

2.5.2 Obscurances and ambient occlusion

Zhukov et al. introduced ambient occlusion with the term obscurances [Zhukov 1998,
Tones 2003] as an efficient technique that gives perceptually similar results to global
illumination with a small fraction of the computational cost. Roughly speaking, obscu-
rance measures the part of the hemisphere obscured by the neighboring surfaces. For
instance, a corner of a room is more obscured than the center. From the physics of light
transport, obscurance expresses the lack of secondary (reflected) light rays coming to
the specific parts of the scene, thus making them darker. Computation was done as a
preprocess and the obscurance values were used as an ambient term during rendering.
Since the obscurance computation was a property of the geometry and not of the light-
ing conditions, results could be combined with an arbitrary direct illumination. The
method was also useful for interactive applications because the results were indepen-
dent from the viewpoint. Landis detailed how ambient occlusion could be used to add
realism to models [Landis 2002] and Méndez et al. extended the use of obscurances to
ray tracing [Méndez 2003b]. For a survey see [Méndez 2009].

Figure 2.5: Illustration of the main parameters involved in the obscurances computa-
tion.

The obscurance O of a point p is defined as the integral

1
O(p) = ;J p(d(p, w)) cos 6 dw, (2.7)
(0]

where p is a function of the distance d(p, w) of the first intersection of a ray shot from
point p with direction w, p is a surface point, 8 is the angle between the normal vector
at p and direction w, and the integration is over the hemisphere oriented according to
the surface normal. Some of the variables are depicted in Figure 2.5. We only consider
a neighborhood of p, i.e. function p is set to 1 for distances greater than a maximum
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distance d,,¢. Therefore, the integral function O(p) captures occlusion (or openness)
information of the environment of point p. Considering the extreme cases, an obscu-
rance value of 1 means that the point is completely open, i.e. not occluded, and a value
of 0 means that it is completely occluded.

Ambient occlusion [Landis 2002] is a simplified version of the obscurances illumi-
nation model. Ambient occlusion

Alp) = 1 J V(p, w) cos 8 dw, (2.8)
Tla

substitutes the p function in the obscurances equation (2.7) by the visibility function
V(p, w) that has value 0 when no geometry is visible in direction w and 1 otherwise.

Extensive background on obscurances and ambient occlusion will be provided in
Chapter 5.

2.6 Volume illustration

The concept of volume illustration was introduced by Rheingans and Ebert [Rhein-
gans 2001], combining the familiarity of a physics-approximated illumination model
with the ability to enhance important features using non-photorealistic rendering tech-
niques. They propose a powerful unified framework for producing a wide range of
illustration styles using local and global properties of the volume model to control
opacity accumulation and illumination enhancing the perception of structure, shape,
orientation, and depth relationships in a volume model.

The most popular styles, such as stippling (Fig. 2.6), hatching, and silhouettes,
are from the pen-and-ink family. Csébfalvi et al. [Csébfalvi 2001] present a technique
to visualize object contours, characterized by locally high gradient values. Lu et al.
[Lu 2002] developed an interactive direct volume illustration system that simulates
traditional stipple drawing.

Hauser et al. [Hauser 2001] proposed the two-level volume rendering concepts
which allows focus+context visualization of volume data. Different rendering styles,
such as direct volume rendering and maximum intensity projection, are used to em-
phasize objects of interest while still displaying the remaining data as context. Viola
et al. [Viola 2004] introduced importance-driven volume rendering, where features
within the volumetric data are classified according to object importance. Bruckner et
al. [Bruckner 2006] presented context-preserving volume rendering, where the opac-
ity of a sample is modulated by a function of shading intensity, gradient magnitude,
distance to the eye point, and previously accumulated opacity.

Kindlmann et al. [Kindlmann 2003] utilized curvature-based transfer functions to
incorporate illustrative effects in a volume renderer.

Cut-aways, exploded views, and high-level abstraction strategies, are also illustra-
tive techniques used to reveal insights and represent essential structures of the volume
in a clear way while less important details are subjugated [Correa 2006]. Clipping away
or removing away parts of the data to eliminate occlusion is a well-known and exten-
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Figure 2.6: Example image of a volume rendered with a stipple effect.

sively used approach. The loss of context due to removed parts is the main limiting fac-
tor of such a technique. To overcome this limitation, strategies with more complex clip-
ping geometry have been proposed. Wang and Kaufman [Wang 1995] introduced vol-
ume sculpting as a flexible approach to explore data. Weiskopf et al. [Weiskopf 2003]
proposed several interactive clipping techniques that are capable of using complex clip
geometries. Konrad-Verse et al. [Konrad-Verse 2004] described a method which is based
on a deformable cutting plane for virtual resection. Viola et al. [Viola 2005] presented
an importance-driven approach capable of enhancing important features while pre-
serving the necessary context by generating cut-away views and ghosted images from
volumetric data. Bruckner et al. [Bruckner 2006] proposed an alternative to conven-
tional clipping techniques in order to avoid loss of context. Their context-preserving
volume rendering model uses a function of shading intensity, gradient magnitude, dis-
tance to the eye point, and previously accumulated opacity to selectively reduce the
opacity in less important data regions.

Exploded views and deformations are a common strategy for communicating the
structure of complex 3D objects that are composed of many subparts. Deformation
metaphors for browsing structures in volumetric data were introduced in volume vi-
sualization by McGuffin et al. [McGuffin 2003]. They presented an approach for vol-
ume exploration based on deformations that allows the users to cut into and open up,
spread apart, or peel-away layers of the volume while still retaining the surrounding
context. The explosion of the parts is set manually. Bruckner et al. [Bruckner 2006]
went one step further by automating the explosion. Their method uses a continuous
degree-of-interest function to distinguish between focus and context and is capable of
re-arranging the parts dynamically based on the viewpoint. In these techniques, a pri-
ori knowledge of the volume data to define the layers or to set the focus of interest is
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assumed — the data has been explicitly partitioned by the user.

In this thesis we apply illustrative effects in many occasions. In Chapter 3 we use
voxel mutual information to produce several illustrative effects, including cool-and-
warm and opacity modulation, and combine them with other effects not dependent on
voxel mutual information, such as contours and color quantization. In Chapter 4 we
explain an automatic method to automatically partition the volume based on charac-
teristics of the data, in order to create exploded views. In Chapter 5 we define saliency
as the gradient of obscurances, and then use this saliency to modulate the opacity of
the volume. In Chapter 7 we use a spatial importance map obtained with a filtering
method to modulate both the opacity of the volume and the density of points in stipple
rendering.

2.7 Information theory tools

In 1948, Claude Shannon published a paper entitled “A mathematical theory of com-
munication” [Shannon 1948] which marks the beginning of information theory. In
this paper, Shannon defined measures such as entropy and mutual information?, and
introduced the fundamental laws of data compression and transmission. Information
theory deals with the transmission, storage, and processing of information and is used
in fields such as physics, computer science, mathematics, statistics, economics, biology,
linguistics, neurology, learning, image processing, and computer graphics.

In information theory, information is simply the outcome of a selection among a
finite number of possibilities and an information source is modelled as a random vari-
able or a random process. The classical measure of information, Shannon entropy,
expresses the information content or the uncertainty of a single random variable. It is
also a measure of the dispersion or diversity of a probability distribution of observed
events. For two random variables, their mutual information is a measure of the de-
pendence between them. Mutual information plays an important role in the study of a
communication channel, a system in which the output depends probabilistically on its
input [Cover 1991, Verdu 1998, Yeung 2008].

This section presents Shannon’s information measures (entropy, conditional en-
tropy, and mutual information) and their most basic properties. The information bot-
tleneck method is also introduced. Good references of information theory are the books
by Cover and Thomas [Cover 1991], and Yeung [Yeung 2008].

2.7.1 Entropy

Let X be a discrete random variable with alphabet & and probability distribution
{p(x)}, where p(x) = Pr[X = x] and x € &. In this thesis, {p(x)} will be also de-
noted by p(X) or simply p. This notation will be extended to two or more random
variables.

2In Shannon’s paper, the mutual information is called rate of transmission.
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The entropy H(X) of a discrete random variable X is defined by

H(X)=— Y p(x)logp(x), 2.9)

XEX

where the summation is over the corresponding alphabet and the convention 0log0 =
0 is taken.

In this thesis, logarithms are taken in base 2 and, as a consequence, entropy is ex-
pressed in bits. The convention 0log 0 = 0 is justified by continuity since x logx — 0 as
x — 0. The term —log p(x) represents the information content (or uncertainty) asso-
ciated with the result x. Thus, the entropy gives us the average amount of information
(or uncertainty) of a random variable. Note that the entropy depends only on the prob-
abilities. We can use interchangeably the notation H(X) or H(p) for the entropy, where
p stands for the probability distribution p(X).

Some relevant properties [ Shannon 1948] of the entropy are:

e 0<H(X)<log|¥]|.

- H(X) = 0 if and only if all the probabilities except one are zero, this one
having the unit value, i.e., when we are certain of the outcome.

— H(X) =log|% | when all the probabilities are equal, i.e., we have maximum
uncertainty.

o If the probabilities are equalized, entropy increases.

The binary entropy (Fig. 2.7) of a random variable X with alphabet {x;, x5} and
probability distribution {p,1 — p} is given by

H(X)= —plogp — (1 —p)log(1 —p). (2.10)
Note that the maximum entropy is H(X) = 1 bit when p = %
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Figure 2.7: Plot of binary entropy.

The definition of entropy is now extended to a pair of random variables. The joint
entropy H(X,Y) of a pair of discrete random variables X and Y with a joint probability
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distribution p(X,Y) = {p(x, y)} is defined by

HX,Y) ==Y > p(x,)logp(x,y), (2.11)

XEX ye¥

where p(x,y) =Pr[X = x,Y = y] is the joint probability of x and y.
The conditional entropy H(Y |X) of a random variable Y given a random variable
X is defined as the expected value of the entropies of the conditional distributions:

H(YIX)= Y p()H(YIX =x)= ) p(x) (— >, p(y|x)1ogp(y|x))

XEX XEX YE¥
== Z Z p(x, y)logp(ylx), (2.12)
XEX YE¥Y

where p(y|x) =Pr[Y = y|X = x] is the conditional probability of y given x.
The Bayes theorem relates marginal probabilities p(x) and p(y), conditional prob-
abilities p(y|x) and p(x|y), and joint probabilities p(x, y):

p(x,y)=pL)p(ylx) =p(y)p(x|y). (2.13)

If X and Y are independent, then p(x,y) = p(x)p(y). Marginal probabilities can be
obtained from p(x, y) by summation: p(x) = Zye@p(x,y) and p(y) = er%p(x,y).

The conditional entropy can be thought of in terms of a communication or infor-
mation channel X — Y whose output Y depends probabilistically on its input X. This
information channel is characterized by a transition probability matrix which deter-
mines the conditional distribution of the output given the input [Cover 1991]. Hence,
H(Y|X) corresponds to the uncertainty in the channel output from the sender’s point of
view, and vice versa for H(X|Y). Note that in general H(Y|X) # H(X|Y). In this thesis,
the conditional probability distribution of Y given x will be denoted by p(Y|x) and the
transition probability matrix (i.e., the matrix whose rows are given by p(Y|x)) will be
denoted by p(Y|X).

The following properties hold:

e H(X,Y)=HX)+H(Y|X)=H(Y)+HX|Y).
e H(X,Y)<H(X)+H(Y).
e H(X)>H(X|Y)>0.

e If X and Y are independent, then H(Y|X) = H(Y) since p(y|x) = p(y) and,
consequently, H(X,Y) = H(X) + H(Y) (i.e., entropy is additive for independent
random variables).

2.7.2 Kullback-Leibler divergence and mutual information

We now introduce two new measures, Kullback-Leibler divergence and mutual infor-
mation, which quantify the distance between two probability distributions and the
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shared information between two random variables, respectively.

The relative entropy or Kullback-Leibler divergence [Kullback 1951] Dg;(pllq) be-
tween two probability distributions p and g, that are defined over the alphabet &, is
defined by

Die(pllg) = )| plx)log——

XEX

p(x)
(2.149)
q(x)’
The conventions that Ologg =0 and alog% = o0 if a > 0 are adopted. The Kullback-
Leibler divergence satisfies the information inequality

Dy (pllg) = 0, (2.15)

with equality if and only if p = q. The Kullback-Leibler divergence is also called infor-
mation divergence [Csiszar 2004] or informational divergence [Yeung 2008], and it is
not strictly a metric® since it is not symmetric and does not satisfy the triangle inequal-
ity. The Kullback-Leibler divergence is “a measure of the inefficiency of assuming that
the distribution is ¢ when the true distribution is p” [Cover 1991].

The mutual information I(X;Y) between two random variables X and Y is defined
by

I(X;Y) = HX) — HX|Y) = H(Y) — H(Y|X)
=3 plx,y)log—— plx.y) =>p(x) > pyIx)lo gp%',))- (2.16)

XEX ye¥ ( ) (y) XEX YE¥

Mutual information represents the amount of information that one random variable,
the input of the channel, contains about a second random variable, the output of the
channel, and vice versa. That is, mutual information expresses how much the knowl-
edge of Y decreases the uncertainty of X, and vice versa. I(X;Y) is a measure of the
shared information or dependence between X and Y. Thus, if X and Y are independent,
then I(X;Y) = 0. Note that the mutual information can be expressed as the relative
entropy between the joint distribution and the product of marginal distributions:

I(X;Y) = D (p(X, V)llp(X)p(Y)). 2.17)
Mutual information I(X;Y) fulfills the following properties:
e I(X;Y) > 0 with equality if and only if X and Y are independent
o I(X;Y)=I(Y;X)
e I(X;Y)=HX)+H(Y)-H(X,Y)

o I(X;Y) < min{H(X),H(Y)}

3A metric between x and y is defined as a function d(x, y) that fulfills the following properties: (1)
non-negativity: d(x,y) = 0, (2) identity: d(x,y) = 0 if and only if x = y, (3) symmetry: d(x,y) =
d(y,x), and (4) triangle inequality: d(x,y)+ d(y,2) = d(x,2).
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o I(X;X)=H(X)

The relationship between Shannon’s information measures can be expressed by a
Venn diagram, as shown in Fig. 2.8*. The correspondence between Shannon’s informa-
tion measures and set theory is discussed in [Yeung 2008].

H(Y)

H(X)Y)

Figure 2.8: The information diagram represents the relationship between Shannon’s
information measures. Observe that I(X;Y) and H(X,Y) are represented, respectively,
by the intersection and the union of the information in X (represented by H(X)) with
the information in Y (represented by H(Y)). H(X|Y) is represented by the difference
between the information in X and the information in Y, and vice versa for H(Y |X).

2.7.3 Inequalities

In this section, we introduce a group of inequalities that are essential in the study of
information theory.

2.7.3.1 Jensen’s inequality

In this section, we introduce the concepts of convexity and concavity. Many important
inequalities and results in information theory are obtained from the concavity of the
logarithmic function.

A function f(x) is convex over an interval [a, b] (the graph of the function lies
below any chord) if for every x;,x5 € [a,b] and 0 < A <1,

FAx;+ (1= A)xz) < Af (1) + (1= A)f (x2). (2.18)

A function is strictly convex if equality holds onlyif A=0o0r A = 1.

A function f (x) is concave (the graph of the function lies above any chord) if — f (x)
is convex.

For instance, x2 and x log x (for x > 0) are strictly convex functions, and log x (for
x > 0) is a strictly concave function.

*The information diagram does not include the universal set as in a usual Venn diagram.
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Jensen’s inequality can be expressed as follows. If f is a convex function on the

interval [a, b], then
D Mfe)—f (Z kixi) >0, (2.19)
i=1 i=1

where 0 <A <1, Z?:l A; =1,and x; € [a, b]. If f is a concave function, the inequality
is reversed. A special case of this inequality is when A; = % because then

1 1
;;f(xi)_f (;in) >0, (2.20)

i=

that is, the value of the function at the mean of the x; is less or equal than the mean of
the values of the function at each x;.

Jensen’s inequality can also be expressed in the following way: if f is convex on
the range of a random variable X, then

fEX]D <E[f(X)], (2.2

where E denotes expectation (i.e., E[f (X)] = er% p(x)f (x)). Observe that if f (x) =
x? (convex function), then E[X2] — (E[X])? > 0. Thus, the variance is always positive.

2.7.3.2 Log-sum inequality

The log-sum inequality can be obtained from Jensen’s inequality (Eq. (2.19)). For non-
negative numbers a;,ds,,...,a, and by, by, ..., b,, the log-sum inequality is expressed

as
n n n
ai Zizl a;
Zai log — — (Z ai) log =—— =0, (2.22)
i=1 b; i=1 Zizl b

with equality if and only if % is constant for all i. The conventions that 0log0 = O,
Ologg =0, and alog% = oo if a > 0 are again adopted.

From this inequality, it can be proved that H(X) is a concave function of p [Cover
1991].

From this inequality, the following properties can be proved [Cover 1991]:
e Dy (pllg) is convex in the pair (p, q).
e H(X) is a concave function of p.

e If X and Y have the joint distribution p(x,y) = p(x)p(y|x), then I(X;Y) is a
concave function of p(x) for fixed p(y|x) and a convex function of p(y|x) for
fixed p(x).

2.7.3.3 Jensen-Shannon inequality

The Jensen-Shannon divergence, derived from the concavity of entropy, is used to
measure the dissimilarity between two probability distributions and has the impor-
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tant feature that a different weight can be assigned to each probability distribution.
The Jensen-Shannon (JS) divergence is defined by

n n
JS(TELnz:--‘:nn;p1:p2:--wpn):H (anpl) _ZniH(pi)) (2-23)
i=1 i=1

where py, po, ..., p, are a set of probability distributions defined over the same alphabet
with prior probabilities or weights 71, 7y, ..., T, fulfilling >/, m; = 1,and >, m;p;
is the probability distribution obtained from the weighted sum of the probability dis-
tributions pq, pa,-- -, Pp-

From the concavity of entropy (Section 2.7.3.2), the Jensen-Shannon inequality
[Burbea 1982] is obtained:

JS(7Tq, oy o s T3 P15 P25 -+ -» Pr) = 0. (2.24)

The JS-divergence measures how far the probabilities p; are from their mixing dis-
tribution Z?zl 7;p;, and equals zero if and only if all the p; are equal. It is important
to note that the JS-divergence is identical to the mutual information I(X;Y) when
m; = p(x;) (i.e., {m;} corresponds to the marginal distribution p(X)), p; = p(Y|x;)
for all x; € X (i.e., p; corresponds to the conditional distribution of Y given x;), and
n =|%| [Burbea 1982, Slonim 2000].

2.7.3.4 Data processing inequality

The data processing inequality is expressed as follows. If X — Y — Z is a Markov
chain®, then
I(X;Y) > I1(X;2). (2.25)

This result proves that no processing of Y, deterministic or random, can increase
the information that Y contains about X. In particular, if Z = f(Y), then X - Y —
f(Y) and, consequently, I(X;Y) > I(X; f(Y)) [Cover 1991].

2.7.4 Entropy rate

Using the property H(X;,X,) = H(X;) + H(X,|X;) (Sec. 2.7.1) and the induction on
n [Yeung 2008], it can be proved that the joint entropy of a collection of n random
variables X, ...,X,, is given by

H(X,,...,X,)= ZH(Xile,...,Xi_l). (2.26)
i=1

We now introduce the entropy rate that quantifies how the entropy of a sequence
of n random variables increases with n. The entropy rate or entropy density Hy of a

SFor random variables X, Y, and Z, X — Y — Z forms a Markov chain if p(x, y,2) = p(x)p(y|x)p(z|y).
That is, the probability of the future state depends on the current state only and is independent of what
happened before the current state.
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stochastic process® {X;} is defined by

1
Hy = lim ~H(X1,X, .., X,) (2.27)

when the limit exists.
Entropy rate represents the average information content per symbol in a stochastic
process. For a stationary stochastic process’, the entropy rate exists and is equal to

Hy = lim Hy(n) (2.28)

where Hy(n) = H(Xy,...,X,,) —HX4,...,X,—1) = HX,|X,_1,...,X;). Entropy rate
can be seen as the uncertainty associated with a given symbol if all the preceding sym-
bols are known. It can also be interpreted as the irreducible randomness in sequences
produced by an information source [Feldman 1998].

2.7.5 Entropy and coding

In this section, we present different interpretations of the Shannon entropy:

e As we have seen in Sec. 2.7.1, —log p(x) represents the information associated
with the result x. The value —logp(x) can also be interpreted as the surprise
associated with the outcome x. If p(x) is small, the surprise is large; if p(x) is
large, the surprise is small. Thus, entropy (Eq. (2.9)) can be seen as the expecta-
tion value of the surprise [Feldman 2002].

e A fundamental result of information theory is the Shannon source coding the-
orem, which deals with the encoding of information in order to store or trans-
mit it efficiently. This theorem can be formulated in the following ways [Cover
1991, Feldman 2002]:

— Given a random variable X, H(X) fulfills
HX)<{<HX)+1, (2.29)

where £ is the expected length of an optimal binary code for X. An example
of an optimal binary code is the Huffman instantaneous coding®.

SA stochastic process or a discrete-time information source {X;} is an indexed sequence of random
variables characterized by the joint probability distribution p(xi,xs,...,x,) = Pr[(X{,X,,...,X,) =
(21, %9, ..., x,)] with (xq,x5,...,x,) € X" for n > 1 [Cover 1991, Yeung 2008].

7A stochastic process {X;} is stationary if two subsets of the sequence, {X;,X,,...,X,} and
{X1405X2415- - -, X1}, have the same joint probability distribution for any n,l > 1: Pr[(X;,...,X,) =
(1, %0, x,)] = Pr{Xip, Xogts e+ > Xpgt) = (%1,X5,...,x,)]. That is, the statistical properties of the
process are invariant to a shift in time. At least, Hy exists for all stationary stochastic processes.

8A code is called a prefix or instantaneous code if no codeword is a prefix of any other codeword.
Huffman coding uses a specific algorithm to obtain the representation for each symbol. The main charac-
teristic of this code is that the most common symbols use shorter strings of bits than the ones used by the
less common symbols.
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— If we optimally encode n identically distributed random variables X with a
binary code, the Shannon source coding theorem can be enunciated in the
following way:

HX)<(,<HX)+ % (2.30)

where £, is the expected codeword length per unit symbol. Thus, by using
large block lengths, we can achieve an expected codelength per symbol
arbitrarily close to the entropy [Cover 1991].

- For a stationary stochastic process, we have

H(X{,X,,...,X - H(X{,X5,...,X
( 1 2 n)§€n< ( 1 2 n)+1 (231)

n n

and, from the definition of entropy rate Hy (Eq. (2.27)),

lim ¢, — Hy. (2.32)
n—oo
Thus, the entropy rate is the expected number of bits per symbol required
to describe the stochastic process.

2.7.6 Information bottleneck method

The information bottleneck method, introduced by Tishby et al. [Tishby 1999], is a
technique that extracts a compact representation of the variable X, denoted by X,
with minimal loss of mutual information with respect to another variable Y (i.e., X
preserves as much information as possible about the control variable Y). Thus, given
an information channel between X and Y, the information bottleneck method tries to
find the optimal tradeoff between accuracy and compression of X when the bins of this
variable are clustered.

Soft [Tishby 1999] and hard [Slonim 1999] partitions of X can be adopted. In
the first case, every x € & can be assigned to a cluster X € & with some conditional
probability p(X|x) (soft clustering). In the second case, every x € & is assigned to only
one cluster € Z (hard clustering).

In this thesis, we consider hard partitions and we focus our attention on the ag-
glomerative information bottleneck method [Slonim 1999]. Given a cluster X defined
by & = {xq,...,x;}, where x;,, € Z for all k € {1,...,1}, and the probabilities p(x) and
p(y|x) defined by

[
p(®) = p(xy), (2.33)
k=1
~ 1 Z
p(yl2) = ﬁ;p(xk,y) Vyew, (2.34)

the following properties are fulfilled:
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e The decrease in the mutual information I(X;Y) due to the merge of x1,...,x; is
given by
61; =p(x)JS(my,...,75pP15---,P1) =0, (2.35)
where the weights and probability distributions of the JS-divergence are given
by m; = i)((’;")) and p; = p(Y|x;) for all k € {1,...,1}, respectively. An optimal
clustering algorithm should minimize 61;.

e An optimal merge of [ components can be obtained by [ — 1 consecutive optimal
merges of pairs of components.

2.8 Information theory in computer graphics

Two excellent surveys of the application of information theory to computer graphics are
by Chen and Jénicke [Chen 2010], and by Wang and Shen [Wang 2011]. A summary
of information theory tools for computer graphics is presented in [Sbert 2009].

In computer graphics, the most basic information-theoretic measures have been
used in scene complexity [Feixas 1999], global illumination [Rigau 2003], light po-
sitioning [Gumhold 2002], and viewpoint selection for polygonal scenes [VAzquez
2001, Sbert 2005, Feixas 2009]. In the latter field, entropy [Vazquez 2001], Kullback-
Leibler distance [Sbert 2005], and mutual information [Feixas 2009] have been ap-
plied to quantify the quality of a viewpoint. From an information channel between the
set of viewpoints and the polygons of an object, all these measures can be presented in
a unified framework, enabling to compute other aspects such as the similarity of two
viewpoints, both the stability and the saliency of a viewpoint, and both the information
and the saliency associated with a polygon [Feixas 2009, Gonzélez 2008].

In visualization, information theory has been applied to fields such as view selec-
tion, flow visualization, time-varying volume visualization, and transfer function defi-
nition. Viewpoint entropy has been introduced by Bordoloi and Shen [Bordoloi 2005]
and Takahashi et al. [Takahashi 2005] to select the best views in volume rendering.
Bordoloi and Shen [Bordoloi 2005] also used the Jensen-Shannon divergence to com-
pute the stability of a viewpoint and the conditional entropy for time varying volume
data. Viola et al. [Viola 2006] introduced the mutual information between a set of
viewpoints and a set of objects to calculate the representativeness of a viewpoint. Xu
et al. [Xu 2010] used entropy to measure the information content in the local regions
across a vector field and conditional entropy to evaluate the effectiveness of streamlines
to represent the input vector field. Lee et al. [Lee 2011] used entropy for viewpoint se-
lection and streamline filtering for flow visualization. Wang and Shen [Wang 2006]
used entropy to validate the quality of each individual data block in a LOD and the
relationships among them. In time-varying volume visualization, Ji and Shen [Ji 2006]
applied entropy to dynamic view selection, and Wang et al. [Wang 2008] introduced
the conditional entropy to quantify the information a data block contains with respect
to other blocks in the time sequence. Haidacher et al. [Haidacher 2008] introduced
the decomposition of mutual information for transfer function design in multimodal
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volume visualization. They proposed a new 2D space for manually defining transfer
functions. Bruckner and Moéller [Bruckner 2010] introduced isosurface similarity maps
to present structural information of a volume data set by depicting similarities between
individual isosurfaces quantified by mutual information. The maps are used to guide
the transfer function design and the visualization parameter specification.

2.9 Viewpoint selection and visibility channel in volume vi-
sualization

Automatic selection of the most informative viewpoints is a very useful focusing mech-
anism in visualization of scientific data, guiding the viewer to the most interesting
information of the data set. Best view selection algorithms have been applied to com-
puter graphics domains, such as scene understanding and virtual exploration [VAazquez
2003, Sokolov 2006], and volume visualization [Bordoloi 2005, Takahashi 2005, Chan
2006, Viola 2006].

As we have mentioned in the previous section, Shannon’s information measures,
such as entropy and mutual information, have been used in computer graphics and sci-
entific visualization to measure the quality of a viewpoint from which a given scene is
rendered. Viewpoint entropy, first introduced in [Vazquez 2001] for polygonal models,
has been applied to volume visualization in [Bordoloi 2005, Takahashi 2005]. In par-
ticular, Bordoloi and Shen [Bordoloi 2005] obtained the goodness of a viewpoint from
the entropy of the visibility of the volume voxels. Viola et al. [Viola 2006] proposed
a visibility channel and used the viewpoint mutual information to automatically de-
termine the most expressive view on a selected focus. A unified information-theoretic
framework for viewpoint selection, ambient occlusion, and mesh saliency for polygo-
nal models has been presented in [Gonzalez 2008, Feixas 2009]. Next we review the
definitions of visibility channel, viewpoint mutual information, and viewpoint entropy
in volume visualization.

To select the most representative or relevant views of a volume data set, a viewpoint
quality measure, the viewpoint mutual information, was defined [Viola 2006] from an
information channel V — Z between the random variables V (input) and Z (output),
which represent, respectively, a set of viewpoints ¥ and the set of objects (or voxels)
% of a volume data set (see Figure 2.9(a)). Viewpoints are indexed by v and voxels
by z. The capital letters V and Z as arguments of p() are used to denote probability
distributions. For instance, while p(v) denotes the probability of a single viewpoint v,
p(V) denotes the input probability distribution of the set of viewpoints.

The information channel V — Z is characterized by a probability transition matrix
(or conditional probability distribution) which determines, given the input, the output
probability distribution (see Figure 2.9(b)). The main elements of this channel are the
following:

e The transition probability matrix p(Z|V), where each conditional probability
p(z|v) is given by the quotient %, where vis(z|v) is the visibility of voxel z
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Figure 2.9: Visibility channel. (a) Sphere of viewpoints of a voxel model. (b) Probabil-
ity distributions of channel V — Z.

from viewpoint v and vis(v) = Y _,. vis(z|v) is the captured visibility of all vox-
els over the sphere of directions. The visibility vis(z|v) of a voxel z is considered
as the contribution of this voxel to the final image as rendered from viewpoint v.
Conditional probabilities fulfill that Y, p(z|v) = 1.

e The input probability distribution p(V) is given by the probabilities of selecting
each viewpoint, where an element p(v) of this probability distribution can be
interpreted as the importance of viewpoint v. In this paper, p(V) is obtained from
the normalization of the captured visibility of the data set over each viewpoint.
Thus, p(v) = % expresses how much volume is visible from viewpoint v.
In [Viola 2006]: eJniform importance was assigned to each viewpoint.

e From p(V) and p(Z|V), the output probability distribution p(Z) is given by

p()= Y, p()p(zlv), (2.36)

veY
which expresses the average visibility of each voxel.
The degree of dependence or correlation between a set of viewpoints ¥ and the

volume data set %, expressed by the mutual information (MI) between V and Z, is
given by

1(V;2) = Zp(V)Zp(zwog = pMI(;2), (2.37)

vey 2€EZX ) vey

where

Iv;Z)= Zp(zlv)logp( Z1v) (2.38)

2€EZX ( )

is defined as the viewpoint mutual information (VMI), which measures the degree of
dependence between the viewpoint v and the set of voxels. Note that I(v;Z) is not
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properly a mutual information, but the contribution of viewpoint v to mutual informa-
tion I(V; Z). In this framework, the most representative viewpoint is defined as the one
that has minimum VMI. Low values correspond to more independent views, showing
the maximum possible number of voxels in a balanced way. The term ‘balance’ is used
here to express that the visibility distribution p(Z|v) of v is similar to p(Z). This similar-
ity is expressed by the Kullback-Leibler distance between p(Z|v) and p(Z) (see [Feixas
2009, Viola 2006]). This distance is zero when p(Z|v) = p(Z). On the other hand, high
values of I(v;Z) mean a high dependence between viewpoint v and the object, indi-
cating a highly coupled view (for instance, between the viewpoint and a small number
of voxels with low average visibility). In [Viola 2006], it has been shown that one of
the main properties of VMI is its robustness to deal with any type of discretisation or
resolution of the volume data set. The same behavior can be observed for polygonal
data [Feixas 2009].

From the visibility channel, the viewpoint entropy (VE) of viewpoint v is defined by

H(ZIV) == p(z|v)logp(z|v). (2.39)
2€ZX

VE measures the degree of uniformity of the visibility distribution p(Z|v) at viewpoint
v. The best viewpoint is defined as the one that has maximum VE, that would be
obtained when a certain viewpoint can see all the voxels with the same projected visi-
bility. On the other hand, minimum VE would be obtained when most of the visibility
is captured from few voxels.
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3.1 Introduction

In the last decades many different strategies have been proposed to visualize and ex-
plore volume data sets efficiently. One of the main challenges is to obtain realistic or
illustrative renderings that adapt the appearance of the data to the specific task satisfy-
ing user requirements. Moreover, the demand of interactivity when exploring volume
data has led to the development of new strategies to accelerate the rendering process.
In this context, focus+context and viewpoint-based strategies improve the exploration
efficiency by directing the users to the most informative parts of the data. GPU-based
implementations which exploit hardware capabilities have been also proposed.

In this chapter, we propose a volume visualization system based on the information
channel defined between the voxels of a volume data set and a set of viewpoints.
This channel is obtained from the reversion of the visibility channel defined in Viola
et al. [Viola 2006] and explained in Section 2.9. Thus, instead of analyzing how a
viewpoint sees the volume data set, we focus on how a voxel “sees” the viewpoints.
The shared information of each voxel with the set of visible viewpoints is interpreted
as a visibility quality descriptor of a voxel that provides a natural ambient occlusion
value [Landis 2002, Zhukov 1998].

The proposed framework results in a flexible system for producing realistic and
non-photorealistic renderings in an automatic way. The use of the voxel information
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combined with the assignation of color to each viewpoint and non-photorealistic effects
produces an enhanced visualization of the volume data set. Voxel information is also
applied to modulate the transfer function in order to focus on or highlight the most
informative parts of the data set. Finally, a new viewpoint selection measure based
on voxel information is introduced and compared with other information-theoretic
viewpoint measures. The proposed framework has been partially implemented using
Compute Unified Device Architecture (CUDA)?, allowing to exploit the capabilities of
modern GPUs.

The chapter is organized as follows. Section 3.2 reminds of previous work related
to volumetric shadowing, volume illustration, and viewpoint selection, that has been
reviewed in detail in Chapter 2. Section 3.3 introduces an information channel which
enables us to calculate the information associated to each voxel. Section 3.4 presents
different visualization applications that can be derived from the voxel information.
Section 3.5 defines a viewpoint quality measure based on voxel information. Finally,
Section 3.6 presents the conclusions and future work.

3.2 Background

In this section, we give a brief reminder of the concepts from Chapter 2 that are relevant
to this chapter.

3.2.1 Volume shadowing and illustrative techniques

Although the integration of global illumination effects in direct volume rendering en-
hances volume data interpretation, its high computational cost overcomes its applica-
tion. In Section 2.5.1 we have reviewed several strategies that have been proposed to
simulate these effects preserving interactive frame rates. The approaches of ambient
occlusion by Landis [Landis 2002] and vicinity shading by Stewart [Stewart 2003] are
especially relevant for comparison purposes in this chapter. We will also compare to
our own obscurances method explained in Chapter 5.

Illustrative techniques are suitable for emphasizing certain features or properties
while omitting or greatly simplifying less important details. Several techniques in this
field are reviewed in Section 2.6. The most relevant to this chapter is the opacity mod-
ulation by Bruckner et al. [Bruckner 2006].

3.2.2 Visibility channel

Viola et al. [Viola 2006] defined an information channel V — Z between the random
variables V (input) and Z (output), which represent, respectively, a set of viewpoints
¥ and the set of objects (or voxels) Z of a volume data set (see Section 2.9). From
this channel, several information measures can be computed. In particular, mutual

lwww.nvidia.com/cuda
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Figure 3.1: (a) Probability distributions of channel Z — V, used to compute the voxel
mutual information. (b) The elements of matrix MIM(Z;V) are given by I(z;;V J) =

p(\)

p(vjlz; )log and used to calculate the color ambient occlusion in Section 3.4.1.

information (MI) between V and Z,

1v;2)= 35 Y penlog BA2 = 37 picv; 2), (3.1)

vey 2€X ( ) vey

which expresses the degree of dependence or correlation between the set of viewpoints
and the volume data set, viewpoint mutual information (VMI),

Iv;Z)= Zp(zlv)logp( Z) (3.2)

2€EZ ( )

which measures the degree of dependence between the viewpoint v and the set of
voxels, and viewpoint entropy (VE),

H(Z|v) == p(zlv)logp(z ), (3.3)

2€EX

which measures the degree of uniformity of the visibility distribution p(Z|v) at view-
point v.
A complete definition of this visibility channel can be found in Section 2.9.

3.3 Voxel information

As we have seen in Section 2.9, the information associated with each viewpoint (VMI)
is obtained from the definition of the channel between the sphere of viewpoints and
the voxels (or objects) of the volume data set. In this section, the voxel information is
defined from the reversed channel Z — V, so that Z is now the input and V the output.
The probability distributions of this channel are shown in Fig. 3.1(a). Note that MI is
invariant to the reversion of the channel: I(V;Z) = I(Z;V). The idea of reversing the
channel was introduced in [Gonzalez 2008] for polygonal models, together with the
computation of the information associated to a polygon.
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From the Bayes theorem p(v,z) = p(v)p(z|v) = p(z)p(v|z), MI (see Eq. (3.1)) can
be rewritten as

p(vlz)

1Z;V) =Y ,p(z) Y, p(v]z)log = p(@I(zV), (3.4)
Z2€EX vey p(V) 2€EX
where
I(z;V) = ;p(wmlogppf(v—f)) (3.5)

is the contribution of voxel z to I(Z; V) and is defined as the voxel mutual information
(VOMI). This represents the degree of correlation between the voxel z and the set of
viewpoints, and can be interpreted as the information associated with voxel z. Anal-
ogous to VMI, low values of VOMI can correspond to voxels seen by a large number
of viewpoints in a balanced way. That is, the lowest values of VOMI correspond to the
voxels with conditional probability distribution p(V|z) similar to p(V). The opposite
happens for high values.

Fig. 3.2 shows for different data sets the VOMI maps computed using 42 viewpoints
and colored using the thermal scale represented in Fig. 3.2(e). Warm colors correspond
to high VOMI values and cool colors to low ones.

(a) (b) (© (d (e)

Figure 3.2: VOMI maps generated using 42 viewpoints for different models and trans-
fer functions: (a) CT-body, (b) CT-body (skeleton), (c) CT-beetle, and (d) CT-salmon.
Maps are colored using the thermal scale in (e).

The great potential of VOMI is that it allows varied interpretations that can be
used in different visualization applications, such as volume illustration and viewpoint
selection. Both will be discussed in detail in Sections 3.4 and 3.5, respectively.

In Fig. 3.3 we represent the different steps required for computing the VOMI of
a voxel model. The process starts classifying the volume data by defining a transfer
function. Then, a ray casting is performed considering the volume data set centered in
a sphere of viewpoints and the camera looking at the center of this sphere. For each
viewpoint a histogram of visibilities is created and then used to estimate p(Z|v). Using
Eq. (2.36) and the Bayes theorem, p(Z) and p(V|Z) can be obtained from both p(V)
and p(Z|V). Finally, the VOMI map is obtained.

Since p(Z|V) is a very huge matrix it cannot be stored in memory and we have
to compute its rows, p(Z|v), every time we need them. Thus, the VOMI computation
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requires executing the ray casting stage three times, to compute p(V), then p(Z), and
then the VOMI map.

We have implemented the most costly computations of our framework (ray cast-
ing, computation of p(Z), and VOMI) using CUDA in order to speed up the process
compared to a pure CPU implementation.

Figure 3.3: Overview of the VOMI pipeline.

The first and most complex part done in CUDA is the ray casting needed to compute
p(Z|v) for a viewpoint v. In this ray casting we need to fill a table with the visibility of
each voxel from a given viewpoint, from which p(Z|v) can be obtained. This visibility
is a real value equal to the contribution of the voxel to the final image according to its
opacity and also to the opacity of the preceding voxels in each ray that visits it [Levoy
1988]. For example, a voxel that is seen from one ray, that is fully opaque, and that is
not occluded at all by any other voxel in this ray, has a visibility of 1. To update the
visibility table, we need atomic operations in order to avoid race conditions (the same
voxel may be visited by two or more neighboring rays), but unfortunately CUDA doesn’t
support atomic operations with floating point values. To overcome this limitation we
multiply the visibility by a big constant (we have used 1 million) and truncate the result
to obtain an integer that is atomicly added to the visibility table; this is equivalent to
working with fixed point precision. At the end of the process, we divide each value by
the same constant to get real values. So, we have two kernels for this whole task: the
first one does the ray casting and fills the integer table, and the second converts this
table to a table of floating point numbers.

The other two parts that we have implemented in CUDA are fairly simple. One of
them is the computation of the voxel probabilities p(Z) (see Eq. (2.36)), with a kernel

that just accumulates p(v)p(Z|v) for a given viewpoint v. The other part is the com-
plvlz)

putation of VOMI, where the kernel accumulates the term p(v|z)log Ok Remember
that p(v|z) = p(v)%, for each voxel z and viewpoint v.

Table 3.1 shows the times to compute the VOMI map for different data sets and
transfer functions with 42 viewpoints. We also report the individual times to do the
ray casting and fill the visibility histogram, accumulate p(Z) and accumulate VOMI,
each for 1 viewpoint, because these are the processing bottlenecks that we have imple-
mented in CUDA. The total time is the result of adding the ray casting 3 x 42 times,
plus p(Z) 42 times, plus VOMI 42 times, plus additional costs (CPU, synchronizations,
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memory transfers, etc.).

Ray casting (1v) | p(Z) (1v) | VOMI (1 v) | Total (42 v)
Body 141.99 ms | 13.09 ms 14.02 ms 29.716s
Skeleton 108.09 ms 13.09 ms 13.41 ms 26.262 s
Beetle 158.93 ms 21.54 ms 19.92 ms 40.184 s
Salmon 114.65ms | 14.96 ms 14.78 ms 28.416s

Table 3.1: Times to compute the VOMI maps for the data sets shown in Fig. 3.2.
First and second rows: body and skeleton (256 x 256 x 415); third row: beetle (416 x
416 x 247); fourth row: salmon (336 x 173 x 511). First column: mean time to do
a ray casting and compute the visibility histogram for 1 viewpoint; second column:
time to accumulate p(Z) for 1 viewpoint; third column: time to accumulate VOMI for
1 viewpoint; fourth column: total time to compute the VOMI map for 42 viewpoints.

3.4 Illustrative visualization using voxel information

In this section we describe how to achieve interactive visualization of realistic and
non-photorealistic styles based on VOMI.

3.4.1 Ambient occlusion

A first application of the VOMI is by interpreting it as an ambient occlusion (AO) term
(see Sec. 2.5.2). AO is a measure of the visibility around a voxel, but while classical
AO takes into account only local visibility, VOMI considers the whole volumetric data
visibility around a voxel, from viewpoints surrounding the volume. VOMI measures
how this visibility is distributed between viewpoints. Thus, the more uniform the visi-
bility the less important is which viewpoint we consider, meaning that the voxel is less
interesting or informative. In that case the VOMI value is low. On the other hand, the
less uniform the visibility, the more important is which viewpoint we consider, meaning
that the voxel is more interesting or informative. In that case the VOMI value is high.

To obtain the AO of each voxel, the VOMI of all voxels has been normalized between
0 and 1 and subtracted from 1, because low values of VOMI, represented in the grey
map by values near 1, correspond to non-occluded or visible (from many viewpoints)
voxels, while high values of VOMI, represented in the grey map by values near O,
correspond to highly occluded voxels.

In Fig. 3.4 we show the results of computing AO using different numbers of view-
points. Note that a sphere of 42 viewpoints provides enough quality for the AO maps,
although 162 viewpoints is preferable for better quality.

In Fig. 3.5, we compare the AO maps corresponding to the models of column (a)
generated using different strategies. From column (b) to (e), respectively, we present
the approaches by Landis [Landis 2002], Stewart [Stewart 2003], our obscurances
(Chap. 5), and finally our current proposed technique. Landis’ approach is obtained by
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Figure 3.4: Ambient occlusion obtained from VOMI of the CT-body model for 12, 20,
42, and 162 viewpoints.

({.a) >i.b)

(i.e)

(ii.a) (ii.b) (ii.c) Gii.d) (ii.e)

Figure 3.5: AO maps generated using (b) Landis’, (¢) Stewart’s, (d) obscurances, and
(e) VOMI approaches for the CT-body model with (a) two different transfer functions.
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the application of the ambient occlusion technique [Landis 2002] to volume render-
ing. Observe that, as expected, the all-or-nothing technique by Landis produces a too
contrasted effect, due to too sharp transitions within the discrete set of occlusion val-
ues. On the other hand, Stewart’s and obscurances methods generate smoother maps
because of the continuous range of these values. These AO techniques take only in
consideration the local occlusion of the voxel. The VOMI technique works in a differ-
ent way since it considers the whole visibility, and thus occlusions, from the voxel to
all viewpoints. This way, it integrates information of the whole volume with respect to
the given voxel. This information will result in an AO map which will capture differ-
ent effects from the volumetric model, as will be seen below. In the examples, we will
consider Stewart’s method as representative of local occlusion methods.

The simplest effect is obtained considering the AO value as an ambient lighting AL
term. In this case the color of a voxel z is obtained as

C(z) = AL(z) = k; AO(z) Crp(2), (3.6)

where k; is a constant factor that modulates the intensity of AO(z) and Cpp(z) is the
pure color of the voxel as defined in the transfer function.

In Fig. 3.6 we illustrate the applications of the AO maps as an ambient lighting
term, comparing the result of applying a local, classic ambient occlusion method [Stew-
art 2003] (Fig. 3.6(b)) with our approach (Fig. 3.6(c)). As we have commented above,
VOMI takes into account the whole volume visibility, offering a more shaded result
than local ambient occlusion. This is clearly visible in the skeleton. The overall informa-
tion given by VOMI (Fig. 3.6(c)) produces better results than local ambient occlusion
(Fig. 3.6(b)) with respect to the raw color information (Fig. 3.6(a)).

A different effect is obtained by adding the AO term to the local lighting equation,
as in the global illumination case where ambient occlusion fakes indirect illumination
[Iones 2003]. Then, the final color of a voxel is obtained as

C(2) = (1 —wao)((kqN(2) - L)Crp(2) + ks(N(2) - H)") + wpoAL(2) 3.7

where, k; and k, are the diffuse and specular lighting coefficients, N(z) is the normal of
the voxel, L is the light vector, H is the half-angle vector between L and the direction
to the viewer, AL(z) is the ambient lighting, and w,q is the weight of the ambient
occlusion in the final color.

In Fig. 3.7 we illustrate the application of the AO maps as an additive term to the
local lighting, comparing the result of applying Stewart’s method (Fig. 3.7(b)) with our
approach (Fig. 3.7(c)). Here again, as in Fig. 3.6, VOMI (Fig. 3.7(c)) produces better
results with respect to the direct illumination image of column Fig. 3.7(a) than classic
ambient occlusion (Fig. 3.7(b)). Observe that the overall features of the volume model
are more distinguishable. Context information is better captured, giving an enhanced
depth perception. This is clearly visible in the ribs: while in Fig. 3.7(ii.b) all ribs appear
in the same intensity due to the fact that local information is the same for all of them,
in Fig. 3.7(ii.c) the inner ribs are darker.
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Figure 3.6: The original CT-body model is shown (a) without illumination effects, and
illuminated using AO computed with (b) Stewart’s method and (c) VOMI, both applied
as an ambient lighting term.
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Figure 3.7: The original CT-body model is shown with (a) local lighting, and with AO
computed with (b) Stewart’s method and (c¢) VOMI, both applied as an additive term.
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3.4.2 Color ambient occlusion

Another effect that can be derived from the voxel information is the color ambient
occlusion, which simulates the use of colored light sources at the different viewpoints.
When all sources have the same color we recover the original AO. This can be obtained
from the mutual information matrix and the color associated with each viewpoint.
From Eq. (3.4), we can consider that the mutual information matrix MIM(Z;V) is
constituted by the terms I(z;v) = p(v|z)log [% (see Fig. 3.1). Each term represents
the shared information between voxel z and viewpoint v. The color ambient occlusion
CAO,(z;V) associated with the voxel z is defined by the scalar product of row z of
matrix MIM(Z;V) and the complement of a color vector C(V) assigned to the set of
viewpoints:

CAO,(z;V) = Z I(z;v)(1 — C,(v)), (3.8)

veY

where a stands for each color channel, C,(v) is the normalized vector for channel a,
and I(z;v) is a matrix element of MIM(Z; V). After computing VOMI for each channel,
the final color ambient occlusion is given by the combination of the color channel
values. We can get a color vector by assigning certain colors to specific viewpoints
and then interpolating the colors for the rest. In this way, a color is assigned to each
viewpoint.

These relighting effects can be easily combined with other illustrative effects, such
as color quantization, contours, and cool-and-warm. Fig. 3.8 shows some of these ef-
fects applied to the CT-body model considering different transfer functions. Figs. 3.8(a—
c) show, respectively, the AO map, the corresponding color ambient occlusion, and the
AO map colored using a cool-and-warm technique [Gooch 1998]. Figs. 3.8(d—f) show
the use of color ambient occlusion combined with contours and color quantization.

3.4.3 Focus+context

The last application of VOMI is as a focus+context strategy. In this case, VOMI is inter-
preted as a measure of importance and is used to modulate the opacity of a transfer
function. The focus of interest is considered as the most informative part of the volume.
Then, the opacity of the most informative voxels is increased (or preserved) while the
opacity of the least informative is reduced. This opacity modulation effect is driven by
the following equation:

Ak I(z;V), ifI(z;V)<t,
A(2) =1L Ak, I(z;V), ifI(z;V) > ty, (3.9)

Al2), otherwise,

where A(z) is the opacity of the voxel z before modulation, t; and t;, are the low
and high thresholds respectively, k; and k; are factors to regulate the effect of the
modulation, I(z; V) is the normalized VOMI, and A’(2) is the opacity of the voxel after
modulation.
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Figure 3.8: CT-body model with different transfer functions and illustrative effects: (a)
grayscale AO map, (b) color AO map, (c) cool-and-warm AO map, (d) color AO map
with contours, (e) and (f) different color AO maps with contours and color quantiza-
tion.
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In the next figures we present the different effects that can be obtained varying
the thresholds and factors, the transfer function, or the viewpoints considered for the
visualization. In all the cases we have computed VOMI using a set of 162 viewpoints.
Fig. 3.9 has been obtained modifying the thresholds and factors in order to emphasize
a selected part of the model while preserving the context. Figs. 3.9(a) and 3.9(d) corre-
spond to the original CT-body with t; = 0 and t};, = 1 viewed from different viewpoints
and with different transfer functions. In Figs. 3.9(b) and 3.9(c) our target is the skele-
ton. As this is a highly occluded part, i.e., it has a high VOMI, to reach our objective,
we have to decrease the opacity of less occluded parts, such as muscles, which have
low VOML. In Fig. 3.9(b) we obtain this effect by setting t; to 0.5 and ty,, k; and k;, to
1. In Fig. 3.9(c) we get a more extreme effect by changing k; to 0.5, thus making less
occluded parts even more transparent. In Fig. 3.9(e) we focus on the ribs, therefore,
we want to make the muscles around them more transparent. We achieve this with
t1=03,t,=1,k=0.1,k,=1.

(a) (b) (© (d (e)

Figure 3.9: CT-body model visualized with different transfer functions: (a) and (d)
in their original states, (b) and (c) modulated from (a) by VOMI to emphasize the
skeleton, (e) modulated from (d) by VOMI to emphasize the ribs.

VOMI depends on the transfer function used to visualize the model. In the previous
example, we modulate the transfer function of the volume with the VOMI computed
with that same transfer function. However, it is also possible to compute the VOMI with
one transfer function and use it to modulate another one over the same model. To show
this effect, we use the VOMI computed with the transfer function used in Fig. 3.9(a), to
modulate the one used in Fig. 3.10(a). Fig. 3.10(b) is obtained setting the parameters
to the same values as in Fig. 3.9(b). Since muscle in Fig. 3.9(a) is more transparent
than in Fig. 3.10(a), modulating the opacity of the latter with the VOMI map of the
former makes the muscle more transparent than it would be with its own VOMI map.

Until now, we have always computed VOMI from a set of viewpoints uniformly
distributed over the surface of a sphere, but it is also possible to compute it from a
subset consisting of one of the viewpoints and its neighbours. This can be useful to
emphasize a part of the volume seen from that viewpoint while preserving the rest. For
instance, in order to emphasize the right hip and the femur we compute the VOMI map
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(a) (b) (© (d (e)

Figure 3.10: CT-body model visualized with the transfer function: (a) of the original
model, (b) modulated by VOMI computed with the transfer function used in Fig. 3.9(a),
(d) and (e) modulated by VOMI computed from the viewpoint in (c).

considering the viewpoint at the right side of the model and its neighbours. Fig. 3.10(c)
shows the obtained VOMI map, and Fig. 3.10(d) and Fig. 3.10(e) show the modulation
of Fig. 3.10(a) using this map. Note how our target is emphasized.

3.5 Viewpoint selection using voxel information

In this section we introduce a new viewpoint selection measure based on voxel in-
formation. Then we analyze the behavior of viewpoint entropy and viewpoint mutual
information compared with the new measure.

Once we have calculated the information associated to the voxels of a volume data
set, this information can be “projected” on a viewpoint in order to obtain its informa-
tiveness. This method has been previously used to select the most informative views for
polygonal models [Feixas 2009]. The information projection over a viewpoint v can be
done weighting the VOMI of voxel z by the transition probability p(v|z) and summing
over all voxels. Thus, the informativeness (INF) of a viewpoint v is defined by

INF(v) = Y p(v|2)I(z; V). (3.10)

2€EZX

This represents the total voxel information seen by each viewpoint. Thus, high values
of INF will correspond to viewpoints which see a lot of voxel information, i.e., highly
occluded parts of the model. In many cases, these parts with high voxel information
values show relevant details of the model. On the other hand, low values of INF cor-
respond to low voxel information that is usually associated with smooth changes in
visibility and less detail. This will be seen in the examples.

As we have seen in Section 2.9, different information-theoretic viewpoint measures
have been introduced to select the “best” views. But the “goodness” of a view cannot
be separated of the pursued objective. Thus, if our objective is to see the maximum
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number of voxels, viewpoint entropy (Eq. (3.3)) can be the most appropriate measure.
This is due to the fact that the maximum entropy would be obtained when all the voxels
were seen with the same projected visibility. Minimum entropy would be obtained
when only one voxel was visible. On the other hand, viewpoint mutual information
(Eq. (3.2)) can be used to detect the most representative views. That is, the views that
are most similar to the virtual view of the object obtained from the projection of all
viewpoints. The main difference between VE and VMI is that, while VE is very sensitive
to the resolution of the volumetric data set, VMI is very robust to deal with any type
of segmentation [Viola 2006]. Due to the regular discretization of the volume data set
in voxels, the behavior of VE and VMI is not significantly different in the experiments
shown below.

Fig. 3.11 shows the views which capture the maximum and minimum VE, VMI,
and INE For each model, the first row corresponds to the “best” views (maximum VE,
minimum VMI, and maximum INF) and the second row to the “worst” views (mini-
mum VE, maximum VMI, and minimum INF). Observe the different behaviour of the
presented viewpoint measures. While maximum VE and minimum VMI present a rel-
atively similar behaviour, showing respectively the maximum number of voxels in a
uniform way and the most representative view, maximum INF is devoted to show the
maximum number of highly occluded voxels.

3.6 Conclusions

In this chapter, we have presented a visibility channel to obtain illustrative renderings
of volume data sets. The viewpoints and the voxels are the input and output distribu-
tions, respectively, for an information channel which is further defined by the visibility
values of the voxels referred to each viewpoint. By reversing this channel we assign to
each voxel an information value which can be shown to represent an ambient occlusion
value. This quantity has been used for illustrative rendering purposes and combined
with a lighting texture to further enhance the volume data. In addition, we have an-
alyzed how the voxel information can be used to modulate transfer functions. Finally,
we have used the voxel information to select the most informative viewpoints.
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(i.a) max VE

(ii.a) min VE

(iii.a) max VE

(iv.a) min VE

(v.a) max VE

(vi.a) min VE

(vii.a) max VE

(i.b) min VMI

(ii.b) max VMI

(iii.b) min VMI

(iv.b) max VMI

(v.b) min VMI

(vi.b) max VMI

(vii.b) min VMI

(i.c) max INF

(ii.c) min INF

(iii.c) max INF

(iv.c) min INF

(v.c) max INF

(vi.c) min INF

(vii.c) max INF

(viii.a) min VE (viii.b) max VMI (viii.c) min INF
Figure 3.11: Selected viewpoints over a set of 162 with various models according to
(a) viewpoint entropy, (b) viewpoint mutual information, and (c) informativeness.
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4.1 Introduction

Volume visualization aims at gaining insight into volumetric data using interactive
graphics and imaging techniques. Current volume data sets generated by scientific do-
mains contain large amounts of data of complex structures. Effective visualization of
such data sets that clearly shows all contained structures is challenging.

Illustrative visualization enhances the expressiveness of volume rendering by ap-
plying hand-crafted illustrative techniques. Cut-aways, exploded views or high-level
abstraction strategies, amongst others, are used to reveal insights and represent es-
sential structures of the volume in a clear way while less important details are sub-
jugated. To employ these techniques, certain controlling mechanisms based on data
or higher semantical levels (e.g. segmentation into objects from the domain perspec-
tive and the assigning of object importance based on the given domain scenario) are
required. These mechanisms vary from fully interactive steered by user (e.g. voxel-by-
voxel segmentation) to fully automatic techniques (e.g. shape analysis of the acquired
data based on higher-order derivatives). To explore unclassified data sets, automatic
controlling mechanisms for steering expressive visualization are useful, and possibly
can be combined with interactive techniques that fine-tune the first automatic educated
guess.

Our interest is now focused on exploded views, which partition the volume into
different parts that are displaced away from each other as if there had been a small
controlled explosion emanating from the focus of interest. Exploded views enable to
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see details of otherwise overlapping structures, exploiting the observer’s understand-
ing of the original spatial arrangement. In this chapter, a new partitioning approach for
automatic generation of exploded views is presented. This method divides the data set
into a set of slabs defined by parallel planes, combining in this way the advantages of
2D and 3D views. While 3D visualization provides a global view of the entire model,
the 2D cross sectional views reveal insights. To partition the volume, two alternative
strategies are proposed. The first one starts with the entire volume and partitions it
recursively guided by a maximum dissimilarity criterion. The second one considers ini-
tially all individual slices and groups them together according to a similarity criterion.
In both cases, the controlling mechanism is the similarity value that is computed auto-
matically using information-theoretic measures. The only necessary interaction of the
user with the data is a single threshold parameter which determines when the parti-
tioning (or grouping) has to stop. An important advantage of this approach is that no a
priori information or pre-processing of the data is required. This is suitable, especially,
for computer-guided exploration of histology volume data.

4.2 Background

The main limiting factor when exploring volume data is the occlusion between struc-
tures. For complex volumetric data sets it is difficult to achieve a visual representation
that not only shows all the internal structures but also preserves the global representa-
tion of the model. To enhance volume data interpretation Rheingans and Ebert [Rhein-
gans 2001] introduced the volume illustration approach, combining the familiarity of
a physics-approximated illumination model with the ability to enhance important fea-
tures using non-photorealistic rendering techniques. Several illustrative techniques are
reviewed in Section 2.6. One of the limitations of the technique relevant to this paper,
exploded views, is to decide the parts that have to be exploded. We aim to automati-
cally partition the volume based on characteristics of the data.

Viewpoint selection background is also relevant to this chapter. Several methods on
this topic have been reviewed in sections 2.8 and 2.9.

4.3 Similarity-steered visualization

To automatically obtain the partitioning planes for the exploded views, we propose
a two-step process. First, we select the view of the model along which the organs or
components will be better separated. This view is called the most structured view of
the model. Second, we calculate the partitions of the model along the most structured
view. Such partitions will be obtained using two complementary approaches: a top-
down strategy that divides the model according to the maximum information gain and
a bottom-up method that joins the slices according to a similarity criterion. Then, the
explosion of the model is visualized in the interactive system VolumeShop [Bruckner
2005]. The two steps of the method are described below.
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(a) (b) © (d

Figure 4.1: Main steps of the selection of the most structured view. (a) Sphere of
viewpoints, (b) sampling process for one viewpoint, (c) samples considered for the
entropy rate computation, and (d) colored viewpoint sphere (using a thermic scale,
from blue to red) representing the values of the viewpoint entropy rate.

1. Selection of splitting axis

The goal of this step is to obtain the most structured view of the model. To reach
this objective a viewpoint measure able to capture the structure of the volumetric
dataset along any view axis is used. In information theory, entropy rate is defined
as a measure of the irreducible randomness of an object or the degree of unpre-
dictability of a sequence of values. Since a high randomness corresponds to a
low structure and vice versa, we can use the entropy rate to quantify the degree
of structure or predictability of a model. We proceed as illustrated in Figure 4.1.
First of all, the model is centered in a viewpoint sphere built from the recursive
discretisation of an icosahedron (Fig. 4.1(a)). Then, for each viewpoint the en-
tropy rate is computed as described in Section 4.4 (Fig. 4.1(b) and Fig. 4.1(c)).
Finally, we identify the lowest entropy rate value which corresponds to the most
structured view of the model (Fig. 4.1(d)). This direction is used as axis to which
similarity-based partitioning planes are perpendicular to.

2. Volume partitioning

This task consists of selecting the optimal partitions of the model from the most
structured view. To carry out this process two different strategies are presented:

(a) Top-down approach. Initially, the entire volume is considered as a single
slab and partitioning planes are taken perpendicular to the most structured
view (Fig. 4.2(i.a)). To divide the dataset into different parts, we use a
greedy algorithm which successively selects the partition that provides us
with the maximum gain of information. According to the information bot-
tleneck method [Tishby 1999, Slonim 1999], the information gain can be
calculated using the Jensen-Shannon divergence between two parts of the
model (Fig. 4.2(i.b)). This measure can be interpreted as the degree of dis-
similarity between the parts and attempts to divide the model into homoge-
neous regions (Fig. 4.2(i.c)). A more detailed description of this approach
is given in Section 4.5.1.

(b) Bottom-up approach. All the slices of the volume, perpendicular to the
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most structured view, are considered as the initial slabs (Fig. 4.2(ii.a)).
Neighboring slabs are iteratively grouped (Fig. 4.2(ii.b)) when mutual in-
formation between them is higher than a given threshold (Fig. 4.2(ii.c)).
Dealing with similarity between slabs instead of individual slices, we avoid
an incorrect grouping, for instance, due to smooth changes along many con-
secutive slices. The grouping process is further described in Section 4.5.2.

(i.a) (i.b) (i.c)

(ii.a) (ii.b) (ii.c)
Figure 4.2: (i) Top-down volume partition: (i.a) partitioning planes are taken perpen-
dicular to the most structured view, (i.b) dissimilarity between subvolumes is given by
the Jensen-Shannon divergence, and (i.c) examples showing two different partitions.
(ii) Bottom-up volume partition: (ii.a) slices are taken perpendicular to the most struc-

tured view direction, (ii.b) similarity between slices or slabs is computed using mutual
information, and (ii.c) two examples resulting from the grouping process.

4.4 Selection of structured views

To quantify the degree of struc