
 
 
 
 
 
 

ADVANCED ILLUMINATION AND VIEW-
SELECTION TECHNIQUES FOR VOLUME 
RENDERING AND ITS APPLICATION TO 

MEDICAL IMAGING 
 
 
 

Marc Ruiz Altisent 
 
 
 
 

 
 
 
 
 
Per citar o enllaçar aquest document:   
Para citar o enlazar este documento: 
Use this url to cite or link to this publication: 
http://hdl.handle.net/10803/371154  
 
 

 
 
http://creativecommons.org/licenses/by/4.0/deed.ca  
 
 
 
Aquesta obra està subjecta a una llicència Creative Commons Reconeixement  
 
Esta obra está bajo una licencia Creative Commons Reconocimiento 
 
This work is licensed under a Creative Commons Attribution licence 
 
 

 

http://hdl.handle.net/10803/132xxx
http://creativecommons.org/licenses/by/4.0/deed.ca


PHD THESIS

Advanced illumination and
view-selection techniques for

volume rendering and its
application to medical imaging

Author:
Marc RUIZ ALTISENT

2012

Programa de Doctorat en Tecnologia

Advisors:
Dra. Imma BOADA OLIVERAS

Dr. Miquel FEIXAS FEIXAS

Dr. Mateu SBERT CASASAYAS

Memòria presentada per optar al títol de doctor per la Universitat de Girona





Advanced illumination and view-selection techniques for
volume rendering and its application to medical imaging

Abstract: Volume visualization is a method of extracting meaningful information from
volumetric data using interactive graphics and imaging. Volume visualization aims to
assist visual interpretation of (medical) data by creating three-dimensional models that
reproduce real three-dimensional objects with sufficient detail and speed to support
interactive manipulation. Illustrative rendering is used to enhance the perception of
structure, shape, orientation, and depth relationships in a volume model.

There are two major goals in volume rendering. The first one is to obtain high quality
images with a low computational cost, allowing real time exploration. The second goal
is to determine how to explore volume datasets in an effective way.

In this thesis we want to advance in these two research lines. We propose several
methods to approximate global illumination with low computational cost, permitting
realistic and illustrative rendering. We also present a method to automatize the trans-
fer function definition given a target distribution. In addition, we introduce a method
to automatize the creation of exploded views. Finally, we explore a few techniques to
select the best viewpoints for a volume. An important part of our contributions are
based on information theory.



Tècniques avançades d’il·luminació i selecció de vistes per a
la visualitzacio de volums i la seva aplicació a imatge mèdica

Resum: La visualització de volums és un mètode per extreure informació útil de dades
volumètriques mitjançant imatges interactives. L’objectiu de la visualització de volums
és assistir la interpretació visual de dades (mèdiques) creant models tridimensionals
que reprodueixen objectes tridimensionals reals amb suficient detall i velocitat per
permetre’n la manipulació interactivament. La visualització il·lustrativa s’utilitza per
millorar la percepció de l’estructura, la forma, l’orientació i la profunditat en un model
de volum.

Hi ha dos objectius principals en la visualització de volums. El primer és obtenir imat-
ges d’alta qualitat amb un cost computacional baix, permetent l’exploració en temps
real. El segon objectiu és determinar com explorar volums d’una manera efectiva.

En aquesta tesi ens proposem avançar en aquestes dues línies de recerca. En aquest
sentit proposem diversos mètodes per aproximar la il·luminació global amb un cost
computacional baix, permetent visualització realista i il·lustrativa. També presentem un
mètode per automatitzar la definició de funcions de transferència donada una distribu-
ció objectiu. A més a més, presentem un mètode per automatitzar la creació d’exploded
views. Finalment, explorem algunes tècniques per seleccionar els millors punts de vista
d’un volum. Una part important de les nostres contribucions estan basades en la teoria
de la informació.
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1.1 Motivation

Graphical representations are a key component in the description of scientific processes
and the comprehension of scientific data sets. In medical applications, for instance,
data acquired by medical devices can be interpreted once medical images have been
generated. Another example are oil explorations where the visualization of geoseismic
data is crucial for determining the right perforation place. As these, many different
examples can be found in many scientific fields and application areas, such as mate-
rial sciences, fluid dynamics, or environmental sciences, just to name a few. Obtaining
graphical representations has always been of human interest and the applied strate-
gies have evolved from the hand made representations, such as the Da Vinci’s ones,
to current computer-based images. Obviously, the basis of these approaches are very
different. While in the former drawing skills are required, in the latter specialized al-
gorithms and data structures capable to transform data into visually comprehensible
images are needed (see Figure 1.1). The development of such algorithms has become
an important focus of research and it has led to one of the major lines of investigation
in computer science: visualization.

The aim of visualization is to communicate information clearly and effectively
through graphical means. To reach this objective several approaches have been pro-
posed. They can be classified according to different features, such as the input data
they deal with (one-, two-, three-, or four-dimensional), the rendering primitive used
to generate the image (point-, line-, triangle-, or voxel-based), the method applied
to generate the final rendering (backward or forward projection), the rendering style
(photorealistic or non-photorealistic), or the degree of user interaction required to per-
form the processes involved in the rendering. In this thesis, we deal with 3D volume
data sets with special emphasis on medical data. An important feature of this data
sets is its regular spacial distribution which allows them to be represented in a regular
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(a) (b)

Figure 1.1: Graphical representations of the skull (a) from Da Vinci’s anatomical note-
books and (b) generated from computed tomography data using advanced volume
rendering techniques.

grid known as voxel model. Due to the importance of medical visualization, this has
established itself as a research area.

In this thesis we will focus our interest on how to obtain high quality realistic and
illustrative volume renderings. Our research topics will also include the automation of
the procedures involved in volume rendering, as well as volume exploration strategies.
We also want to go one step further towards overcoming some of the limitations related
to these topics. Most of our contributions will be based on information theory.

1.2 Objectives

The main goal of this thesis is to develop new strategies to enhance the volume render-
ing process and the way to explore data, with special interest on medical environments.
To reach this objective we aim to:

• Achieve high quality realistic and illustrative renderings.

– Approximate global illumination for volume rendering.

Global illumination techniques allow to obtain high quality renderings by
simulating physical light interactions. However, their application to volume
rendering is difficult because of their high computational cost. In polygo-
nal rendering there are several techniques, such as ambient occlusion and
obscurances, that approximate global illumination at low cost. We aim to
adapt these techniques to volume rendering.

– Develop a filtering-based technique to produce illustrative renderings.

Illustrative visualization enhances the expressiveness of volume rendering
by applying hand-crafted illustrative techniqes. These techniques enhance
the perception of structure, shape, orientation, and depth relationships in
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a volume model. We want to develop a technique based on image filtering
that allows to obtain such kind of renderings.

– Use separable filtering to compute volumetric ambient occlusion.

A novel interpretation of ambient occlusion measures the portion of the
tangent sphere of a surface that belongs to the set of occluded points. We
aim to extend this approximation to volumetric models and implement it
using separable filtering to achieve a real time interaction.

– Use information theory to produce realistic and illustrative renderings.

Information theory deals with the transmission, storage, and processing of
information and is used in fields such as image processing and computer
graphics. We want to develop a volume rendering framework based on the
information channel constructed between the volumetric dataset and a set
of viewpoints. Using information theory measures obtained from this chan-
nel, we want to produce both realistic and non-photorealistic visualizations.

– Develop a semi-automatic method to create opacity transfer functions.

The transfer function definition is a main step in volume rendering. The
transfer function maps scalar values in volume datasets to optical properties
such as color and opacity. Manually creating a transfer function is a tedious
and time-consuming process. We want to automate the process of defin-
ing the opacities. Our approach will be based on an information channel
between the a set of viewpoints and the intensities of the volume dataset.

• Develop new exploration techniques.

– Exploded views of volume models.

Exploded views are often used in illustration to overcome the problem of
occlusion when depicting complex structures. To create exploded views,
first the parts to be separated have to be found. We want to automate the
definition of these parts or slabs with the help of information theory.

– Use information theory to select the best viewpoints.

One of the problems in volume visualization is to find the best views of the
volume, the ones that are more helpful to the user. On the one hand, the
information channel between the volume dataset and the viewpoints that
we have proposed previously should also provide information that allows
to find the best views. On the other hand, information-theoretic tools could
also help us to find the most structured viewpoints.

1.3 Thesis outline

This dissertation is organized in nine chapters. Following this introduction, the follow-
ing eight chapters remain:
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• Chapter 2: State of the art

In this chapter, the background on volume rendering required for the comprehen-
sion of the main issues that are going to be analyzed in this thesis is introduced.
The main concepts of information theory are also reviewed since it is the basis of
most of our contributions.

• Chapter 3: Visibility channel

This chapter introduces a volume rendering framework based on the information
channel constructed between the volumetric data set and a set of viewpoints. In-
formation obtained from this channel is used to produce realistic and illustrative
renderings and also to select the most informative views.

• Chapter 4: Similarity-based exploded views

Exploded views are often used in illustration to overcome the problem of occlu-
sion when depicting complex structures. This chapter presents an information-
theoretic technique that automatically decides how to partition the volume to
create exploded views. The thickness of slabs is driven by the similarity between
partitions.

• Chapter 5: Obscurance-based volume rendering framework

Obscurances is a technology that produces natural-looking lighting effects in a
faster way than global illumination. An obscurance-based framework that allows
to obtain realistic and illustrative renderings interactively is presented in this
chapter. The concept of saliency as the gradient of obscurances is also introduced
and used to enhance volume visualization and to select the most salient views.

• Chapter 6: Volumetric ambient occlusion for volumetric models

In this chapter, volumetric ambient occlusion is defined as the proportion of the
tangent sphere of a surface that is occluded, and statistically robust estimates for
the ambient occlusion value are proposed. Separable filters are used to compute
the data needed to estimate this proportion at interactive rates.

• Chapter 7: Interactive volume illustration using intensity filtering

This chapter presents a simple and interactive technique for volume illustration
that uses the difference between the original intensity values and a low-pass
filtered copy. This difference provides a spatial importance map that captures
salient and separability information about regions in the volume. This map is
used to produce different illustrative effects.

• Chapter 8: Automatic transfer functions based on informational divergence

In this chapter, a framework to define transfer functions from a target distribution
provided by the user is presented. The basis of the framework is a communication
channel between a set of viewpoints and a set of bins of a volume data set, and it
supports 1D as well as 2D transfer functions including the gradient information.
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• Chapter 9: Conclusions

In this last chapter, conclusions of the thesis and future work will be presented,
along with a summary of the publications related with this thesis.
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2.9 Viewpoint selection and visibility channel in volume visualization . . 34

2.1 Introduction

Volume visualization is a method of extracting meaningful information from volumetric
data using interactive graphics and imaging, and it is concerned with volume data
representation, modeling, manipulation and rendering [Kaufman 1990]. In the last
decades, different techniques have been proposed to render volumetric data. At broad
level these can be classified, according to the used graphic primitive, into direct or
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indirect volume rendering techniques. In this thesis we will focus on direct volume
rendering techniques, which attempt to capture all the volume data in a single 2D
image without considering any intermediate representation, i.e. operating on samples
from the actual data.

Volume visualization aims to assist visual interpretation of (medical) data by creat-
ing three-dimensional models that reproduce real three-dimensional objects with suf-
ficient detail and speed to support interactive manipulation. Although many different
strategies have been proposed with this objective, it is still a challenge to obtain render-
ings that adapt the appearance of the data to user needs in an interactive manner. The
difficulty is to obtain high quality images fast enough to ensure efficient exploration.
Moreover, one has to take into account user needs. For instance, while in a medical
environment realistic renderings are suitable for diagnosis and pre-operative planning,
non-photorealistic techniques are preferred in educational environments since they are
able to simplify data, producing clearer images than traditional photorealistic methods.
One handicap in this area is that computing global illumination is an expensive oper-
ation, thus it has to be approximated using techniques such as ambient occlusion and
obscurances, which will be explained in Section 2.5.2. Providing strategies to explore
volume data in an efficient manner is also of great interest. To ensure interactivity
when exploring volume data, different strategies to accelerate the rendering process
can be considered. Among them, focus+context and viewpoint-based strategies, with
GPU-based implementations that exploit hardware capabilities.

This chapter is structured as follows. Section 2.2 provides an overview of the vol-
ume visualization pipeline common to most rendering methods. Section 2.3 describes
more detailedly the steps that are common among direct volume rendering methods,
and also presents the main algorithms in this category. Section 2.4 introduces the main
problems in transfer function definition and cites several currently proposed solutions.
In Section 2.5 local and global illumination models are compared, and various meth-
ods to approximate global illumination effects at a low cost are introduced, giving
emphasis on obscurances. Section 2.6 gives an overview on illustrative volume render-
ing, citing several approaches by different authors. Section 2.7 explains the concepts
on information theory that will be used in this thesis. Section 2.8 briefly reviews sev-
eral applications of information theory to computer graphics. Section 2.9 presents an
information channel between a set of viewpoints and the set of voxels of the volume
model. The reversion of this channel is the basis of some of the methods proposed in
this thesis.

2.2 The volume visualization pipeline

The so-called volume visualization pipeline defines the different steps that are required
to generate an image from abstract volume data. The main steps of this pipeline are
represented in Fig. 2.1 and described below.
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Figure 2.1: Volume rendering pipeline.

2.2.1 Data acquisition

The first step of the volume rendering pipeline is data acquisition. There are three
main data sources: simulation, modeling, and scanning. This last one is the most com-
mon in medical environments and requires specialized medical scanners to sample
data from real models. Scanners represent information as a specific type of image such
as computed tomography (CT), magnetic resonance imaging (MRI), positron emission
tomography (PET), single photon emission computed tomography (SPECT), and ultra-
sound (US). The physical principles of the scanner determine the type of data that will
be acquired and represented in the images. For instance, CT represents density and is
suitable for bone exploration, MRI represents oscillation and is suitable for soft tissue
exploration, and US represents echoes and is suitable for vessel exploration.

Scanned data is provided at a specific spatial intensity resolution and scale with
a given range of capture error. Most devices capture information following a regular
planar distribution, which allows to represent data in a regular grid known as a voxel
model. Although other representation schemes are possible, the voxel model is the most
common in our context.

The voxel model is based on the decomposition of the 3D space into a regular set
of identical cuboids, known as voxels, whose edges are parallel to the coordinate axis.
This spatial structure allows for voxels to be directly represented by a 3D point (i, j, k),
where 1 ≤ i, j, k ≤ ni , n j , nk, being ni , n j , nk the number of voxels per axis from which
the whole geometrical and topological information may be retrieved.

The acquired data is usually represented as a set of tuples (x , y, z, v), representing
the value v of some property at a certain 3D location (x , y, z). Samples may be taken
along time, and then we have one more component: (x , y, z, t, v). The value v can be
a scalar, a vector, or a tensor. In this thesis we will deal with 3D volumes with scalar
values.

While it is straightforward to consider each voxel as a cube with an homogeneous
value in its whole volume (also known as the voxel approach), it is more useful for
rendering purposes to interpret each value in the dataset as a sample obtained from a
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continuous three-dimensional function (also known as the cell approach):

f (p) ∈ R with p ∈ R3. (2.1)

With this interpretation we can reconstruct the information at any location of the
model. Two of the most common reconstruction filters are nearest neighbour and tri-
linear interpolation. Nearest neighbour or zero order interpolation takes the value of
the closest cell vertex; it is very fast but models look blocky. On the other hand, trilin-
ear or first order interpolation computes linear interpolation from the closest values in
each axis; the result is smoother than with nearest neighbour interpolation, but it can
produce blurry images or 3D diamond-like structures. More sophisticated interpolation
methods exist, like tricubic or spline-based interpolations, but their cost is high and
thus they are not frequently used. When rendering with the GPU, nearest neighbour
and linear interpolation are already provided by the hardware, but higher order meth-
ods can be programmed [Ruijters 2008, Hadwiger 2009]. The main requirements of
reconstruction filters are high quality reconstruction but small performance overhead.

2.2.2 Data processing

Data processing is the second step of the visualization pipeline. It includes the different
techniques that are applied to extract and communicate information more effectively
according to user and application requirements. Below, we review some of the most
representative techniques.

• Filtering

Acquired images may be filtered to minimize undesirable effects such as noise
or artifacts, commonly produced in the acquisition process. Some of the most
popular filters are Gaussian filters, which have a blurring effect, and anisotropic
diffusion filters, which preserve the edges of the image. [Gerig 1992, Castaño
Moraga 2007]

• Registration

Image registration is a process that determines the spatial transformation that
will bring two different images into alignment. This operation is of special in-
terest in clinical practice since it allows us to combine in a single model the
information acquired with different devices, at different times or from different
patients. Image registration allows us, for instance, to complement different data
in order to complete the anatomical representation or combine functional infor-
mation with anatomical representation. This capability is of special interest if we
are interested in performing studies between different patients and carrying out
studies along time or intrapatient studies. For a review of registration techniques,
see [Pluim 2003].

• Segmentation
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Segmentation is defined as the division of an image or volume into coherent
regions using some local image characteristic criteria. After segmentation each
region is labeled with a distinct value. Segmentation is useful for applications
that need to differentiate regions that represent different tissues but have over-
lapping ranges of scalar values, in the identification of pathological areas, for
measuring the volume of a lesion, etc. For a detailed review of segmentation
strategies, see [Wirjadi 2007, Withey 2007, Sharma 2010].

2.2.3 Data rendering

The last phase of the volume rendering pipeline is rendering. Rendering methods can
be divided among those that require a previous mapping to geometric primitives and
those that render volume data directly considering the voxel model as the primitive.

The first set are known as indirect volume rendering1 techniques. These strategies
are classified according to the dimension of the graphical primitives into the following:

• Point or particle mapping (0D)

0D mapping uses points or particles as the primitive to render. Points and parti-
cles both encapsulate a 3D position and related information, although particles
are more general because they can have any visual representation. Particles are
created at the locations of features that have to be visualized. Then, they can be
redistributed to cover the entire feature, and filtered to remove particles from
hidden areas. Finally, geometry is created for the particles according to a desired
visual style, and this geometry is sent to the rendering pipeline to be projected
onto the final image. [Busking 2008, van Pelt 2010]

• Contour mapping (1D)

1D mapping extracts contour lines from the model. Object contours are rendered
visualizing areas with locally high gradient magnitude, independently of the
voxel value. This way, 3D structures become visible without being obstructed by
visual representations of continuous regions in the volume. [Csébfalvi 2001, Isen-
berg 2006]

• Surface mapping (2D)

This mapping technique generates a polygonal approximation of an isosurface,
i.e. the surface that approximates the volume points with a given value, known as
isovalue. This approach is well suited to objects with sharply determined borders,
like bones in CT, but it is inappropriate for amorphous objects that are difficult
to represent by thin surfaces. The most popular isosurface extraction method is
the marching cubes algorithm, proposed by Lorensen and Cline [Lorensen 1987,
Newman 2006].

1Indirect volume rendering is normally used to refer only to surface mapping, but here, for the sake of
simplicity, we also include point and contour mapping into it.
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The algorithms corresponding to each mapping technique are, respectively, point or
particle rendering [Rusinkiewicz 2000, Csébfalvi 2003], contour rendering [Csébfalvi
2001], and surface rendering [Tiede 1990]. The most popular among these are sur-
face rendering algorithms, that represent surfaces as triangle meshes. There are also
other indirect volume rendering techniques that do not fit in any of the above cate-
gories, such as methods that operate on the frequency domain instead of the spatial
one [Malzbender 1993].

The second set of visualization methods are known as direct volume rendering tech-
niques. These were developed to capture the entire 3D data in a 2D image, contrary to
the previous approaches that extract just a subset of the information. Since there is no
mapping, the whole dataset is passed directly to the renderer. This is the approach that
has been used in this thesis, so in the next section we will explain it in detail.

2.3 Direct volume rendering

Direct volume rendering (DVR) techniques consider volume data as a transparent gel
and simulate the effect of light travelling through this gel. To carry out this process
three main steps are required: shading, classification, and compositing. In this section,
first we review these steps and then the major algorithms for direct volume rendering
are explained.

2.3.1 Direct volume rendering steps

Direct volume rendering techniques perform the three steps illustrated in the last box
of Figure 2.1 and described below.

2.3.1.1 Shading

Shading or illumination aims to enhance the appearance of a rendered object by mod-
eling effects like shadows, light scattering, and absorption. The subset of these effects
that is actually used depends on the chosen optical model [Max 1995]. There are sev-
eral different models: from only absorption or emission, to both, to models that include
scattering and advanced shadowing. Usually, a simple absorption and emission model
is used because it is relatively cheap to evaluate and gives good enough results. In
this model, it is considered that each sample of the data absorbs and emits light. The
absorption is simulated by an opacity value assigned to the sample, while emission is
determined by a color. Both color and opacity are defined in a classification process.
The sampling rate determines the number of samples we are going to consider for each
ray (see Figure 2.2).

Given the optical model, we still can distinguish between local illumination and
global illumination. Local lighting shades each object —each sample in this case— in-
dependently, ignoring the rest of the scene, so it cannot produce shadows or scattering,
but it has the advantage of being cheap to compute. Global lighting can simulate any
effect and so gives better results, but it is expensive and seldom used in real time. Some
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(a) Low sampling rate (b) High sampling rate

Figure 2.2: Comparison of the results obtained by rendering the same volume with (a)
low and (b) high sampling rates.

shadowing effects of global illumination can be approximated with techniques such as
ambient occlusion or obscurances, and then used to enhance local illumination. The
application of obscurances to volume rendering is one of our main research foci. For
this reason, a more thorough explanation will be given in Section 2.5.

2.3.1.2 Classification

As we have said, the absorption and emission optical model requires that each sample is
given a color and an opacity. This is done in the classification step. Classification allows
to extract important parts of the data by mapping primitives to graphical attributes
such as color and opacity. This mapping is done with a transfer function, which in the
simplest case takes as input the sample value and returns its corresponding color and
opacity. It can be more complex, though: for example, the transfer function may take
the gradient magnitude as an additional input to return an opacity, or it can have an
additional output such as the shininess. The definition of the transfer function is a
challenging task. Several methods have been developed to aid the user in this process,
as it will be seen in Section 2.4.

Classification can be done before or after reconstruction, with different results.
The former approach is known as pre-classification and consists of classifying voxel
values and then interpolating the colours and the opacities. On the other hand, post-
classification involves classifying sampled values gotten through interpolation. Choos-
ing one alternative or the other will result in different image quality and artifacts, as it
can be seen in Figure 2.3. Post-classification (Fig. 2.3(a)) produces images with defined
edges, but is prone to aliasing because high frequency details may be missed. On the
contrary, pre-classification (Fig. 2.3(b)) produces blurred images when the resolution
of the image is higher than that of the volume and it is prone to color bleeding if col-
ors and opacities are interpolated independently. However, this artifact is eliminated
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if color interpolation is done with opacity-weighted colors, i.e., colors that have been
multiplied by their corresponding opacity.

(a) Post-classification (b) Pre-classification

Figure 2.3: Comparison of the results obtained by rendering the same volume with (a)
post-classification and (b) pre-classification.

2.3.1.3 Compositing

Compositing is the process by which samples with the optical properties given in clas-
sification and shading are integrated along viewing rays. This integration follows the
volume rendering integral from light transport theory [Meißner 2000]. The theoretical
form of the integral is

Iλ(x , r) =

∫ L

0

Cλ(s)µ(s)e
�

−
∫ s

0
µ(t)dt

�

ds, (2.2)

where Iλ(x , r) is the amount of light of wavelength λ coming from ray direction r that
is received at location x on the image plane, L is the length of ray r, Cλ(s) is the light
of wavelength λ reflected and/or emitted at location s in the direction of r, µ(s) is the
density at s, and the exponential is an attenuation function.

Since the volume rendering integral cannot be computed analytically in general,
it is usually approximated by a Riemann sum of the emitted and absorbed light in
intervals i of width ∆s:

Iλ(x , r)≈

L
∆s
∑

i=0

Cλ(si)α(si) ·
i−1
∏

j=0

(1−α(s j)). (2.3)

Here the density has been substituted by the opacity α and the exponential has been
approximated by a Taylor series. The opacity has to be normalized for ∆s 6= 1.

From this approximation we get the familiar compositing equations. In front-to-
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back order these are:

C ′i = C ′i−1+ (1− A′i−1)Ci , (2.4)

A′i = A′i−1+ (1− A′i−1)Ai . (2.5)

The advantage with this approach is an optimization called early ray termination,
which cuts a ray once the accumulated opacity (or remaining transparency) reaches
a threshold where further contributions are negligible, i.e., 0.99 (or 0.01). In back-to-
front order it is not necessary to keep track of accumulated opacity:

C ′i = Ci + (1− Ai)C
′
i+1. (2.6)

This way the algorithm is simpler but we cannot do early ray termination.
There are other combining functions that can be used instead of compositing. One

of the most popular is maximum intensity projection (MIP), which keeps the sample
with the highest intensity value.

2.3.2 Direct volume rendering algorithms

Direct volume rendering can be achieved using different algorithms. The most popu-
lar are ray casting, splatting, shear-warp, and 3D texture mapping. These algorithms
have been developed and refined over the years, beginning with simple software im-
plementations (except for 3D texture mapping), and in recent years exploiting graphics
hardware capabilities. All of them have a similar structure with the common steps of
classification, shading, and compositing, but they differ in how each step is performed.
In this section we give an overview of each of these algorithms.

2.3.2.1 Ray casting

Ray casting [Levoy 1988] is an image-order direct volume rendering algorithm, and
it is the most popular. It is conceptually very simple. A ray is cast for each pixel into
the volume. Samples of the volume are taken along the ray at equi-spaced intervals
and mapped to optical properties according to the transfer function. Then samples are
shaded and finally composited to obtain the pixel color.

Both pre- and post-classification are possible with ray casting. The most used re-
construction filters are nearest neighbour for fast visualization and trilinear interpo-
lation for high quality. Both front-to-back and back-to-front compositing are possible,
although the former is the most usual to take advantage of early ray termination.

Refinements include jittering in the sample positions to avoid patterned sampling
artifacts, and space-leaping to quickly traverse empty regions.

Using current graphics cards it is possible to achieve very fast implementations of
the ray casting algorithm. The basic idea is to store the volume in a single 3D texture
and use the fragment shader to cast rays into the volume. Each pixel corresponds to
a single ray. The direction of each ray can be computed from the camera position and
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the screen space coordinates of the pixel, or be obtained via rasterization, by comput-
ing the distance between pixels of the rasterized front and back faces of the volume
bounding box. There is extensive literature on GPU-based volume ray casting [Krüger
2003, Hadwiger 2009, Pavlík 2009].

2.3.2.2 Splatting

Splatting is an object-order direct volume rendering algorithm first proposed by West-
over [Westover 1992]. It represents the volume as an array of overlapping basis func-
tions, commonly Gaussian kernels with amplitudes scaled by the voxel values. These
basis functions generate footprints that spread the energy of voxels over multiple pix-
els. The basis functions are projected to the screen and composited to generate the
image.

Both pre- and post-classification are possible with splatting, but compositing can
only be performed in back-to-front order.

To improve the performance of this technique, footprints can be precomputed and
stored in a lookup table. In addition, only voxels relevant to the image must be pro-
jected. Splatting can use a concept similar to early ray termination: early splat elimina-
tion, based on a dynamically computed screen occlusion map, that conservatively culls
invisible splats early from the rendering pipeline [Mueller 1999].

Splatting can also be GPU-accelerated using several techniques [Neophytou 2005,
Neophytou 2006].

2.3.2.3 Shear-warp

Shear-warp was proposed by Lacroute and Levoy [Lacroute 1994]. This algorithm
transforms the view and the volume in order to perform axis-aligned renderings so it
can take advantage of memory alignment and fixed scaling and blending factors. The
method starts by transforming the viewing transformation so that slices of the volume
become axis-aligned with an off-screen image buffer, where rendering is performed. To
compensate for this transformation, the volume is sheared so that the same parts of it
are viewed. Then, rendering is performed using a ray casting-like scheme, where rays
are perpendicular to the slices and sample values are reconstructed from the values in
the slice. After compositing, a warping step transforms the off-screen image so it has
the desired orientation and perspective.

Both pre- and post-classification are possible, but the former allows an optimiza-
tion. Sampled values are usually reconstructed using bilinear interpolation. The sam-
pling rate is fixed given the view.

Improvements of the basic method include a pre-processing step where voxel runs
are run-length-encoded based on pre-classified opacities. This requires the construction
of a separate encoded volume for each of the three major viewing directions, incurring
in a higher memory overhead than other methods, but allows to skip opaque image
regions and transparent voxels.
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2.3.2.4 3D texture mapping

The use of 3D texture mapping was popularized by Cabral et al. [Cabral 1994] for non-
shaded volume rendering. The volume is usually pre-classified and then uploaded as a
3D texture to the graphics card, and then the GPU rasterizes polygonal slices through
the volume parallel to the viewpoint. The slices are blended in back-to-front order to
form the final image.

3D texture mapping usually employs pre-classification, although post-classification
is also possible with multi-pass variants. Both nearest neighbour and trilinear interpo-
lation are possible.

With this algorithm all the voxels are always rendered, it is not possible to skip
unseen voxels. Another drawback is that if the volume is too large it has to be cut in
subvolumes that have to be swapped in and out of texture memory in order to render
them all.

In sections 2.2 and 2.3 we have made a broad introduction to volume rendering. In the
following sections we will focus on the specific problems that we will take on.

2.4 Transfer function definition

A crucial step in volume rendering is the transfer function definition. This function
assigns optical properties, such as color and opacity, to the data being visualized, de-
termining which structures of the volume will be visible and how they will be rendered.
A good transfer function reveals the important structures in the data without obscuring
them with unimportant regions. The simplest approach to find a good transfer function
is by trial and error, i.e., colors and opacities are manually entered and then modified
if the obtained visualization is not the desired one. Obviously, this strategy is tedious
and time-consuming. Therefore, several techniques have been proposed to aid the user
in transfer function design. A significant part of these works involve special user inter-
faces to assist the user in editing the transfer functions or to define the parameters for
the algorithms that generate these transfer functions. In this section, we review some
of these strategies.

Pfister et al. [Pfister 2001] classified transfer functions into two different cate-
gories: data-centric or image-centric.

Data-centric transfer functions define visual properties based on volume data val-
ues and their derived attributes, such as the gradient magnitude [Levoy 1988], first
and second order gradient-aligned derivatives [Kindlmann 1998], or curvature mea-
sures [Hladůvka 2000, Kindlmann 2003]. Levoy [Levoy 1988] proposed the use of the
gradient magnitude to identify surfaces in volume data. Kindlmann and Durkin [Kindl-
mann 1998] used the first and second derivatives along the gradient direction to cal-
culate a boundary emphasis to be included in the opacity transfer function. In addi-
tion to the design of the opacity transfer function, general multi-dimensional trans-
fer functions were studied to better convey the boundaries and features in volume
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data [Kindlmann 2003, Kniss 2002a, Kniss 2003, Lum 2004]. These methods create
two-dimensional histograms where each entry represents the number of voxels at a
given feature space pair at which the user in a trial-and-error manner assigns color and
opacity until the desired visualization is obtained. To avoid this trial-and-error process,
Maciejewski et al. [Maciejewski 2009] proposed the addition of non-parametric clus-
tering within the transfer function feature space in order to extract patterns and guide
transfer function generation. A special class of multidimensional transfer functions,
called distance-based, consider distance as a second data dimension [Kanda 2002].
Roettger et al. [Roettger 2005] introduced spatialized transfer functions, a special
variant of local transfer functions where connected components are identified and the
positional information is mapped to color. In this way, different objects with the same
values can be isolated. Lundström et al. [Lundström 2006] introduced local histograms
to detect and identify materials with similar intensities. Šereda el al. [Šereda 2006b]
proposed an extension of the local histograms capable of detecting the materials that
form the boundaries of the objects.

As an alternative, image-centric transfer functions are designed considering param-
eters that can be derived from the rendered images. He et al. [He 1996] treated the
transfer function specification as a parameter optimization problem and addressed it
with stochastic search techniques. Marks et al. [Marks 1997] introduced design gal-
leries as a general approach for selecting visualization parameters in a multidimen-
sional space. Transfer function specification with this approach is accomplished by se-
lecting previews from a randomized selection to guide the search process. König and
Gröller [König 2001] introduced a user interface paradigm with a set of specification
tools assisted with real time rendering to aid the user in the selection of the transfer
function. Wu and Qu [Wu 2007] proposed a method that uses editing operations and
stochastic search of transfer function parameters to maximize the similarity between
rendered images given by the user. In general, image-centric methods are more goal-
oriented and require less user interaction.

Correa and Ma [Correa 2009a] presented a method for classifying volume data
based on the ambient occlusion of voxels. They detected occlusion patterns that reveal
the spatial structure of materials or features of a volume and represented them in an
occlusion spectrum. This occlusion spectrum leads to better two-dimensional transfer
functions that can help classify complex data sets in terms of the spatial relationships
among features. Correa and Ma [Correa 2009b] also proposed to use the visibility to
guide the transfer function design. They introduced the notion of visibility histogram,
which represents the contribution of each sample in the final resulting image, as an in-
teractive aid for generating effective transfer functions. Later, Correa and Ma [Correa
2011] also generalized the notion of visibility histogram along a number of dimen-
sions and proposed a semiautomated method for generating transfer functions, which
progressively explores the transfer function space towards the goal of maximizing the
visibility of important structures. A main limitation of reported techniques is that they
require user interaction. Automatic transfer function specification is still a challenge
and few methods support it. Salama et al. [Salama 2006] introduced a high level se-
mantic model with a simple user interface that allows visualization experts to design
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transfer function models for specific application areas, which can then be used intu-
itively by non-expert users. Šereda et al. [Šereda 2006a] proposed hierarchical clus-
tering of material boundaries for automating the transfer function design. Zhou and
Takatsuka [Zhou 2009] presented an approach for automating transfer function gen-
eration by utilizing topological attributes derived from the contour tree of a volume
that acts as a visual index to volume segments. Wang et al. [Wang 2010] presented
an interactive transfer function design tool based on ellipsoidal Gaussian transfer func-
tions. These techniques generally require a previous segmentation or classification of
the volume data set to automate the process.

In Chapter 8 we propose a new technique to deal with the problem of the transfer
function definition. Our approach is semiautomatic and based on information theory.

2.5 Illumination models and obscurances

The absorption and emission optical model has become the most used in volume ren-
dering. Two main strategies can be considered depending on the data used to approxi-
mate the model: local illumination and global illumination (see Figure 2.4).

Local illumination (Fig. 2.4(a)) computes the light arriving at each object indepen-
dently, without taking into account the other objects. This kind of illumination gives
acceptable results and is cheap to compute, so it is suitable for real time applications.

Global illumination (Fig. 2.4(b)), on the other hand, computes light interactions
between all the objects in the scene, being able to simulate any lighting effect. In
the absorption and emission model it takes into account occlusions to produce more
realistic shadings. However, having to compute interactions between all the objects
incurs a heavy penalty in computation time. So, although global illumination gives
very good results and is a well-known technique for producing realistic scenes, its high
computational cost makes it inappropriate for real time rendering.

(a) Local illumination (b) Global illumination

Figure 2.4: Comparison of the results obtained by rendering the same volume with (a)
local illumination and (b) global illumination.
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2.5.1 Volume shadowing

Different strategies have been proposed to simulate global illumination effects while
preserving interactive frame rates. Behrens and Ratering [Behrens 1998] integrated
in a texture-based volume renderer shadow maps that store the intensities computed
according to light and transfer function conditions. Shadows can also be computed
with half-angle slicing, either by using simultaneous slicing for rendering and shadow
computation [Kniss 2002b], or combined with splatting [Zhang 2003]. Mavridis et
al. [Mavridis 2010] used voxelization of polygonal scenes to compute illumination at
discrete locations and apply it back to the polygons. The illumination is computed
by iteratively propagating the radiance of each voxel to its neighbours. Kronander et
al. [Kronander 2011] developed a method to achieve real time dynamic lighting in
direct volume rendering by encoding local and global volumetric visibility using spher-
ical harmonic basis functions stored in a multiresolution grid. Their technique allows
directional lights, point lights, and environment maps.

Other strategies are based on the ambient occlusion technique introduced by Lan-
dis [Landis 2002], a simplified version of the obscurances illumination model [Zhukov
1998]. A volumetric version of the technique, called vicinity shading, was proposed by
Stewart [Stewart 2003]. Vicinity shading simulates illumination of isosurfaces by tak-
ing into account neighboring voxels. An occlusion volume is computed and stored in a
shading texture that is accessed during rendering. This volume has to be re-computed
each time that the rendering parameters are modified and the method does not sup-
port color bleeding. Tarini et al. [Tarini 2006] refined this model to increase the perfor-
mance. Wyman et al. [Wyman 2006] presented a method that supports the simulation
of direct lighting, shadows and interreflections by storing pre-computed global illu-
mination in an additional volume to allow viewpoint, lighting and isovalue changes.
Despite the improvements achieved with these methods they still have a main limita-
tion, they only allow to represent one of the surfaces of the volume.

This limitation is overcome by Ropinski et al. [Ropinski 2008] and Hernell et
al. [Hernell 2007] using a local volumetric shadowing effect. Ropinski et al. compute a
local histogram for each voxel from the voxel’s neighbourhood, by accumulating inten-
sities weighted by inverse squared distances. These local histograms can be combined
interactively with the user-defined transfer function to give an effect similar to local
ambient lighting. Hernell et al. [Hernell 2007] obtain the incident light intensity, ar-
riving at a voxel, by integrating for each voxel and within a sphere surrounding it
the attenuated transfer function density. This comes to compute, in the usual way, the
visibility arriving at a voxel, using the opacities, averaged for all directions.

Desgranges and Engel [Desgranges 2007] proposed a method which combines am-
bient occlusion volumes terms from a plurality of different filtered volumes. Recompu-
tation is also required whenever the transfer function is changed.

Jainek et al. [Jainek 2008] combined ambient occlusion calculations with illustra-
tive display styles to enhance the clarity of the visual output in brain studies.

Šoltészová et al. [Šoltészová 2010] proposed a technique that simulates directional
light scattering, based on the directional occlusion shading model. Their method does
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not need any pre-computation and allows interactive modification of all illumination
and rendering parameters.

In this thesis we have focused our interest on obscurances and ambient occlusion,
therefore we describe them in detail below.

2.5.2 Obscurances and ambient occlusion

Zhukov et al. introduced ambient occlusion with the term obscurances [Zhukov 1998,
Iones 2003] as an efficient technique that gives perceptually similar results to global
illumination with a small fraction of the computational cost. Roughly speaking, obscu-
rance measures the part of the hemisphere obscured by the neighboring surfaces. For
instance, a corner of a room is more obscured than the center. From the physics of light
transport, obscurance expresses the lack of secondary (reflected) light rays coming to
the specific parts of the scene, thus making them darker. Computation was done as a
preprocess and the obscurance values were used as an ambient term during rendering.
Since the obscurance computation was a property of the geometry and not of the light-
ing conditions, results could be combined with an arbitrary direct illumination. The
method was also useful for interactive applications because the results were indepen-
dent from the viewpoint. Landis detailed how ambient occlusion could be used to add
realism to models [Landis 2002] and Méndez et al. extended the use of obscurances to
ray tracing [Méndez 2003b]. For a survey see [Méndez 2009].

p

Ω ωθ

Figure 2.5: Illustration of the main parameters involved in the obscurances computa-
tion.

The obscurance O of a point p is defined as the integral

O(p) =
1

π

∫

Ω

ρ(d(p,ω)) cosθ dω, (2.7)

where ρ is a function of the distance d(p,ω) of the first intersection of a ray shot from
point p with direction ω, p is a surface point, θ is the angle between the normal vector
at p and direction ω, and the integration is over the hemisphere oriented according to
the surface normal. Some of the variables are depicted in Figure 2.5. We only consider
a neighborhood of p, i.e. function ρ is set to 1 for distances greater than a maximum
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distance dmax. Therefore, the integral function O(p) captures occlusion (or openness)
information of the environment of point p. Considering the extreme cases, an obscu-
rance value of 1 means that the point is completely open, i.e. not occluded, and a value
of 0 means that it is completely occluded.

Ambient occlusion [Landis 2002] is a simplified version of the obscurances illumi-
nation model. Ambient occlusion

A(p) =
1

π

∫

Ω

V (p,ω) cosθ dω, (2.8)

substitutes the ρ function in the obscurances equation (2.7) by the visibility function
V (p,ω) that has value 0 when no geometry is visible in direction ω and 1 otherwise.

Extensive background on obscurances and ambient occlusion will be provided in
Chapter 5.

2.6 Volume illustration

The concept of volume illustration was introduced by Rheingans and Ebert [Rhein-
gans 2001], combining the familiarity of a physics-approximated illumination model
with the ability to enhance important features using non-photorealistic rendering tech-
niques. They propose a powerful unified framework for producing a wide range of
illustration styles using local and global properties of the volume model to control
opacity accumulation and illumination enhancing the perception of structure, shape,
orientation, and depth relationships in a volume model.

The most popular styles, such as stippling (Fig. 2.6), hatching, and silhouettes,
are from the pen-and-ink family. Csébfalvi et al. [Csébfalvi 2001] present a technique
to visualize object contours, characterized by locally high gradient values. Lu et al.
[Lu 2002] developed an interactive direct volume illustration system that simulates
traditional stipple drawing.

Hauser et al. [Hauser 2001] proposed the two-level volume rendering concepts
which allows focus+context visualization of volume data. Different rendering styles,
such as direct volume rendering and maximum intensity projection, are used to em-
phasize objects of interest while still displaying the remaining data as context. Viola
et al. [Viola 2004] introduced importance-driven volume rendering, where features
within the volumetric data are classified according to object importance. Bruckner et
al. [Bruckner 2006] presented context-preserving volume rendering, where the opac-
ity of a sample is modulated by a function of shading intensity, gradient magnitude,
distance to the eye point, and previously accumulated opacity.

Kindlmann et al. [Kindlmann 2003] utilized curvature-based transfer functions to
incorporate illustrative effects in a volume renderer.

Cut-aways, exploded views, and high-level abstraction strategies, are also illustra-
tive techniques used to reveal insights and represent essential structures of the volume
in a clear way while less important details are subjugated [Correa 2006]. Clipping away
or removing away parts of the data to eliminate occlusion is a well-known and exten-
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Figure 2.6: Example image of a volume rendered with a stipple effect.

sively used approach. The loss of context due to removed parts is the main limiting fac-
tor of such a technique. To overcome this limitation, strategies with more complex clip-
ping geometry have been proposed. Wang and Kaufman [Wang 1995] introduced vol-
ume sculpting as a flexible approach to explore data. Weiskopf et al. [Weiskopf 2003]
proposed several interactive clipping techniques that are capable of using complex clip
geometries. Konrad-Verse et al. [Konrad-Verse 2004] described a method which is based
on a deformable cutting plane for virtual resection. Viola et al. [Viola 2005] presented
an importance-driven approach capable of enhancing important features while pre-
serving the necessary context by generating cut-away views and ghosted images from
volumetric data. Bruckner et al. [Bruckner 2006] proposed an alternative to conven-
tional clipping techniques in order to avoid loss of context. Their context-preserving
volume rendering model uses a function of shading intensity, gradient magnitude, dis-
tance to the eye point, and previously accumulated opacity to selectively reduce the
opacity in less important data regions.

Exploded views and deformations are a common strategy for communicating the
structure of complex 3D objects that are composed of many subparts. Deformation
metaphors for browsing structures in volumetric data were introduced in volume vi-
sualization by McGuffin et al. [McGuffin 2003]. They presented an approach for vol-
ume exploration based on deformations that allows the users to cut into and open up,
spread apart, or peel-away layers of the volume while still retaining the surrounding
context. The explosion of the parts is set manually. Bruckner et al. [Bruckner 2006]
went one step further by automating the explosion. Their method uses a continuous
degree-of-interest function to distinguish between focus and context and is capable of
re-arranging the parts dynamically based on the viewpoint. In these techniques, a pri-
ori knowledge of the volume data to define the layers or to set the focus of interest is
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assumed — the data has been explicitly partitioned by the user.
In this thesis we apply illustrative effects in many occasions. In Chapter 3 we use

voxel mutual information to produce several illustrative effects, including cool-and-
warm and opacity modulation, and combine them with other effects not dependent on
voxel mutual information, such as contours and color quantization. In Chapter 4 we
explain an automatic method to automatically partition the volume based on charac-
teristics of the data, in order to create exploded views. In Chapter 5 we define saliency
as the gradient of obscurances, and then use this saliency to modulate the opacity of
the volume. In Chapter 7 we use a spatial importance map obtained with a filtering
method to modulate both the opacity of the volume and the density of points in stipple
rendering.

2.7 Information theory tools

In 1948, Claude Shannon published a paper entitled “A mathematical theory of com-
munication” [Shannon 1948] which marks the beginning of information theory. In
this paper, Shannon defined measures such as entropy and mutual information2, and
introduced the fundamental laws of data compression and transmission. Information
theory deals with the transmission, storage, and processing of information and is used
in fields such as physics, computer science, mathematics, statistics, economics, biology,
linguistics, neurology, learning, image processing, and computer graphics.

In information theory, information is simply the outcome of a selection among a
finite number of possibilities and an information source is modelled as a random vari-
able or a random process. The classical measure of information, Shannon entropy,
expresses the information content or the uncertainty of a single random variable. It is
also a measure of the dispersion or diversity of a probability distribution of observed
events. For two random variables, their mutual information is a measure of the de-
pendence between them. Mutual information plays an important role in the study of a
communication channel, a system in which the output depends probabilistically on its
input [Cover 1991, Verdú 1998, Yeung 2008].

This section presents Shannon’s information measures (entropy, conditional en-
tropy, and mutual information) and their most basic properties. The information bot-
tleneck method is also introduced. Good references of information theory are the books
by Cover and Thomas [Cover 1991], and Yeung [Yeung 2008].

2.7.1 Entropy

Let X be a discrete random variable with alphabet X and probability distribution
{p(x)}, where p(x) = Pr[X = x] and x ∈ X . In this thesis, {p(x)} will be also de-
noted by p(X ) or simply p. This notation will be extended to two or more random
variables.

2In Shannon’s paper, the mutual information is called rate of transmission.
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The entropy H(X ) of a discrete random variable X is defined by

H(X ) =−
∑

x∈X
p(x) log p(x), (2.9)

where the summation is over the corresponding alphabet and the convention 0 log 0=
0 is taken.

In this thesis, logarithms are taken in base 2 and, as a consequence, entropy is ex-
pressed in bits. The convention 0 log0= 0 is justified by continuity since x log x → 0 as
x → 0. The term − log p(x) represents the information content (or uncertainty) asso-
ciated with the result x . Thus, the entropy gives us the average amount of information
(or uncertainty) of a random variable. Note that the entropy depends only on the prob-
abilities. We can use interchangeably the notation H(X ) or H(p) for the entropy, where
p stands for the probability distribution p(X ).

Some relevant properties [Shannon 1948] of the entropy are:

• 0≤ H(X )≤ log |X |.

– H(X ) = 0 if and only if all the probabilities except one are zero, this one
having the unit value, i.e., when we are certain of the outcome.

– H(X ) = log |X | when all the probabilities are equal, i.e., we have maximum
uncertainty.

• If the probabilities are equalized, entropy increases.

The binary entropy (Fig. 2.7) of a random variable X with alphabet {x1, x2} and
probability distribution {p, 1− p} is given by

H(X ) =−p log p− (1− p) log(1− p). (2.10)

Note that the maximum entropy is H(X ) = 1 bit when p = 1
2
.
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Figure 2.7: Plot of binary entropy.

The definition of entropy is now extended to a pair of random variables. The joint
entropy H(X , Y ) of a pair of discrete random variables X and Y with a joint probability
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distribution p(X , Y ) = {p(x , y)} is defined by

H(X , Y ) =−
∑

x∈X

∑

y∈Y
p(x , y) log p(x , y), (2.11)

where p(x , y) = Pr[X = x , Y = y] is the joint probability of x and y .
The conditional entropy H(Y |X ) of a random variable Y given a random variable

X is defined as the expected value of the entropies of the conditional distributions:

H(Y |X ) =
∑

x∈X
p(x)H(Y |X = x) =

∑

x∈X
p(x)



−
∑

y∈Y
p(y|x) log p(y|x)





=−
∑

x∈X

∑

y∈Y
p(x , y) log p(y|x), (2.12)

where p(y|x) = Pr[Y = y|X = x] is the conditional probability of y given x .
The Bayes theorem relates marginal probabilities p(x) and p(y), conditional prob-

abilities p(y|x) and p(x |y), and joint probabilities p(x , y):

p(x , y) = p(x)p(y|x) = p(y)p(x |y). (2.13)

If X and Y are independent, then p(x , y) = p(x)p(y). Marginal probabilities can be
obtained from p(x , y) by summation: p(x) =

∑

y∈Y p(x , y) and p(y) =
∑

x∈X p(x , y).
The conditional entropy can be thought of in terms of a communication or infor-

mation channel X → Y whose output Y depends probabilistically on its input X . This
information channel is characterized by a transition probability matrix which deter-
mines the conditional distribution of the output given the input [Cover 1991]. Hence,
H(Y |X ) corresponds to the uncertainty in the channel output from the sender’s point of
view, and vice versa for H(X |Y ). Note that in general H(Y |X ) 6= H(X |Y ). In this thesis,
the conditional probability distribution of Y given x will be denoted by p(Y |x) and the
transition probability matrix (i.e., the matrix whose rows are given by p(Y |x)) will be
denoted by p(Y |X ).

The following properties hold:

• H(X , Y ) = H(X ) +H(Y |X ) = H(Y ) +H(X |Y ).

• H(X , Y )≤ H(X ) +H(Y ).

• H(X )≥ H(X |Y )≥ 0.

• If X and Y are independent, then H(Y |X ) = H(Y ) since p(y|x) = p(y) and,
consequently, H(X , Y ) = H(X ) + H(Y ) (i.e., entropy is additive for independent
random variables).

2.7.2 Kullback-Leibler divergence and mutual information

We now introduce two new measures, Kullback-Leibler divergence and mutual infor-
mation, which quantify the distance between two probability distributions and the
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shared information between two random variables, respectively.
The relative entropy or Kullback-Leibler divergence [Kullback 1951] DKL(p‖q) be-

tween two probability distributions p and q, that are defined over the alphabet X , is
defined by

DKL(p‖q) =
∑

x∈X
p(x) log

p(x)
q(x)

. (2.14)

The conventions that 0 log 0
0
= 0 and a log a

0
=∞ if a > 0 are adopted. The Kullback-

Leibler divergence satisfies the information inequality

DKL(p‖q)≥ 0, (2.15)

with equality if and only if p = q. The Kullback-Leibler divergence is also called infor-
mation divergence [Csiszár 2004] or informational divergence [Yeung 2008], and it is
not strictly a metric3 since it is not symmetric and does not satisfy the triangle inequal-
ity. The Kullback-Leibler divergence is “a measure of the inefficiency of assuming that
the distribution is q when the true distribution is p” [Cover 1991].

The mutual information I(X ; Y ) between two random variables X and Y is defined
by

I(X ; Y ) = H(X )−H(X |Y ) = H(Y )−H(Y |X )

=
∑

x∈X

∑

y∈Y
p(x , y) log

p(x , y)
p(x)p(y)

=
∑

x∈X
p(x)

∑

y∈Y
p(y|x) log

p(y|x)
p(y)

. (2.16)

Mutual information represents the amount of information that one random variable,
the input of the channel, contains about a second random variable, the output of the
channel, and vice versa. That is, mutual information expresses how much the knowl-
edge of Y decreases the uncertainty of X , and vice versa. I(X ; Y ) is a measure of the
shared information or dependence between X and Y . Thus, if X and Y are independent,
then I(X ; Y ) = 0. Note that the mutual information can be expressed as the relative
entropy between the joint distribution and the product of marginal distributions:

I(X ; Y ) = DKL(p(X , Y )‖p(X )p(Y )). (2.17)

Mutual information I(X ; Y ) fulfills the following properties:

• I(X ; Y )≥ 0 with equality if and only if X and Y are independent

• I(X ; Y ) = I(Y ; X )

• I(X ; Y ) = H(X ) +H(Y )−H(X , Y )

• I(X ; Y )≤min{H(X ), H(Y )}

3A metric between x and y is defined as a function d(x , y) that fulfills the following properties: (1)
non-negativity: d(x , y) ≥ 0, (2) identity: d(x , y) = 0 if and only if x = y , (3) symmetry: d(x , y) =
d(y, x), and (4) triangle inequality: d(x , y) + d(y, z)≥ d(x , z).
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• I(X ; X ) = H(X )

The relationship between Shannon’s information measures can be expressed by a
Venn diagram, as shown in Fig. 2.84. The correspondence between Shannon’s informa-
tion measures and set theory is discussed in [Yeung 2008].

H(X) H(Y)

H(X,Y)

H(X|Y) H(Y|X)I(X;Y)

Figure 2.8: The information diagram represents the relationship between Shannon’s
information measures. Observe that I(X ; Y ) and H(X , Y ) are represented, respectively,
by the intersection and the union of the information in X (represented by H(X )) with
the information in Y (represented by H(Y )). H(X |Y ) is represented by the difference
between the information in X and the information in Y , and vice versa for H(Y |X ).

2.7.3 Inequalities

In this section, we introduce a group of inequalities that are essential in the study of
information theory.

2.7.3.1 Jensen’s inequality

In this section, we introduce the concepts of convexity and concavity. Many important
inequalities and results in information theory are obtained from the concavity of the
logarithmic function.

A function f (x) is convex over an interval [a, b] (the graph of the function lies
below any chord) if for every x1, x2 ∈ [a, b] and 0≤ λ≤ 1,

f (λx1+ (1−λ)x2)≤ λ f (x1) + (1−λ) f (x2). (2.18)

A function is strictly convex if equality holds only if λ= 0 or λ= 1.
A function f (x) is concave (the graph of the function lies above any chord) if− f (x)

is convex.
For instance, x2 and x log x (for x > 0) are strictly convex functions, and log x (for

x > 0) is a strictly concave function.

4The information diagram does not include the universal set as in a usual Venn diagram.
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Jensen’s inequality can be expressed as follows. If f is a convex function on the
interval [a, b], then

n
∑

i=1

λi f (x i)− f

 

n
∑

i=1

λi x i

!

≥ 0, (2.19)

where 0≤ λ≤ 1,
∑n

i=1λi = 1, and x i ∈ [a, b]. If f is a concave function, the inequality
is reversed. A special case of this inequality is when λi =

1
n

because then

1

n

n
∑

i=1

f (x i)− f

 

1

n

n
∑

i=1

x i

!

≥ 0, (2.20)

that is, the value of the function at the mean of the x i is less or equal than the mean of
the values of the function at each x i .

Jensen’s inequality can also be expressed in the following way: if f is convex on
the range of a random variable X , then

f (E[X ])≤ E[ f (X )], (2.21)

where E denotes expectation (i.e., E[ f (X )] =
∑

x∈X p(x) f (x)). Observe that if f (x) =
x2 (convex function), then E[X 2]− (E[X ])2 ≥ 0. Thus, the variance is always positive.

2.7.3.2 Log-sum inequality

The log-sum inequality can be obtained from Jensen’s inequality (Eq. (2.19)). For non-
negative numbers a1, a2, . . . , an and b1, b2, . . . , bn, the log-sum inequality is expressed
as

n
∑

i=1

ai log
ai

bi
−

 

n
∑

i=1

ai

!

log

∑n
i=1 ai

∑n
i=1 bi

≥ 0, (2.22)

with equality if and only if ai

bi
is constant for all i. The conventions that 0 log0 = 0,

0 log 0
0
= 0, and a log a

0
=∞ if a > 0 are again adopted.

From this inequality, it can be proved that H(X ) is a concave function of p [Cover
1991].

From this inequality, the following properties can be proved [Cover 1991]:

• DKL(p‖q) is convex in the pair (p, q).

• H(X ) is a concave function of p.

• If X and Y have the joint distribution p(x , y) = p(x)p(y|x), then I(X ; Y ) is a
concave function of p(x) for fixed p(y|x) and a convex function of p(y|x) for
fixed p(x).

2.7.3.3 Jensen-Shannon inequality

The Jensen-Shannon divergence, derived from the concavity of entropy, is used to
measure the dissimilarity between two probability distributions and has the impor-
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tant feature that a different weight can be assigned to each probability distribution.
The Jensen-Shannon (JS) divergence is defined by

JS(π1,π2, . . . ,πn; p1, p2, . . . , pn) = H

 

n
∑

i=1

πi pi

!

−
n
∑

i=1

πiH(pi), (2.23)

where p1, p2, . . . , pn are a set of probability distributions defined over the same alphabet
with prior probabilities or weights π1,π2, . . . ,πn, fulfilling

∑n
i=1πi = 1, and

∑n
i=1πi pi

is the probability distribution obtained from the weighted sum of the probability dis-
tributions p1, p2, . . . , pn.

From the concavity of entropy (Section 2.7.3.2), the Jensen-Shannon inequality
[Burbea 1982] is obtained:

JS(π1,π2, . . . ,πn; p1, p2, . . . , pn)≥ 0. (2.24)

The JS-divergence measures how far the probabilities pi are from their mixing dis-
tribution

∑n
i=1πi pi , and equals zero if and only if all the pi are equal. It is important

to note that the JS-divergence is identical to the mutual information I(X ; Y ) when
πi = p(x i) (i.e., {πi} corresponds to the marginal distribution p(X )), pi = p(Y |x i)
for all x i ∈ X (i.e., pi corresponds to the conditional distribution of Y given x i), and
n= |X | [Burbea 1982, Slonim 2000].

2.7.3.4 Data processing inequality

The data processing inequality is expressed as follows. If X → Y → Z is a Markov
chain5, then

I(X ; Y )≥ I(X ; Z). (2.25)

This result proves that no processing of Y , deterministic or random, can increase
the information that Y contains about X . In particular, if Z = f (Y ), then X → Y →
f (Y ) and, consequently, I(X ; Y )≥ I(X ; f (Y )) [Cover 1991].

2.7.4 Entropy rate

Using the property H(X1, X2) = H(X1) + H(X2|X1) (Sec. 2.7.1) and the induction on
n [Yeung 2008], it can be proved that the joint entropy of a collection of n random
variables X1, . . . , Xn is given by

H(X1, . . . , Xn) =
n
∑

i=1

H(X i|X1, . . . , X i−1). (2.26)

We now introduce the entropy rate that quantifies how the entropy of a sequence
of n random variables increases with n. The entropy rate or entropy density HX of a

5For random variables X , Y , and Z , X → Y → Z forms a Markov chain if p(x , y, z) = p(x)p(y|x)p(z|y).
That is, the probability of the future state depends on the current state only and is independent of what
happened before the current state.
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stochastic process6 {X i} is defined by

HX = lim
n→∞

1

n
H(X1, X2, . . . , Xn) (2.27)

when the limit exists.
Entropy rate represents the average information content per symbol in a stochastic

process. For a stationary stochastic process7, the entropy rate exists and is equal to

HX = lim
n→∞

HX (n), (2.28)

where HX (n) = H(X1, . . . , Xn) − H(X1, . . . , Xn−1) = H(Xn|Xn−1, . . . , X1). Entropy rate
can be seen as the uncertainty associated with a given symbol if all the preceding sym-
bols are known. It can also be interpreted as the irreducible randomness in sequences
produced by an information source [Feldman 1998].

2.7.5 Entropy and coding

In this section, we present different interpretations of the Shannon entropy:

• As we have seen in Sec. 2.7.1, − log p(x) represents the information associated
with the result x . The value − log p(x) can also be interpreted as the surprise
associated with the outcome x . If p(x) is small, the surprise is large; if p(x) is
large, the surprise is small. Thus, entropy (Eq. (2.9)) can be seen as the expecta-
tion value of the surprise [Feldman 2002].

• A fundamental result of information theory is the Shannon source coding the-
orem, which deals with the encoding of information in order to store or trans-
mit it efficiently. This theorem can be formulated in the following ways [Cover
1991, Feldman 2002]:

– Given a random variable X , H(X ) fulfills

H(X )≤ ` < H(X ) + 1, (2.29)

where ` is the expected length of an optimal binary code for X . An example
of an optimal binary code is the Huffman instantaneous coding8.

6A stochastic process or a discrete-time information source {X i} is an indexed sequence of random
variables characterized by the joint probability distribution p(x1, x2, . . . , xn) = Pr[(X1, X2, . . . , Xn) =
(x1, x2, . . . , xn)] with (x1, x2, . . . , xn) ∈ X n for n≥ 1 [Cover 1991, Yeung 2008].

7A stochastic process {X i} is stationary if two subsets of the sequence, {X1, X2, . . . , Xn} and
{X1+l , X2+l , . . . , Xn+l}, have the same joint probability distribution for any n, l ≥ 1: Pr[(X1, . . . , Xn) =
(x1, x2, . . . , xn)] = Pr[(X1+l , X2+l , . . . , Xn+l) = (x1, x2, . . . , xn)]. That is, the statistical properties of the
process are invariant to a shift in time. At least, HX exists for all stationary stochastic processes.

8A code is called a prefix or instantaneous code if no codeword is a prefix of any other codeword.
Huffman coding uses a specific algorithm to obtain the representation for each symbol. The main charac-
teristic of this code is that the most common symbols use shorter strings of bits than the ones used by the
less common symbols.
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– If we optimally encode n identically distributed random variables X with a
binary code, the Shannon source coding theorem can be enunciated in the
following way:

H(X )≤ `n < H(X ) +
1

n
, (2.30)

where `n is the expected codeword length per unit symbol. Thus, by using
large block lengths, we can achieve an expected codelength per symbol
arbitrarily close to the entropy [Cover 1991].

– For a stationary stochastic process, we have

H(X1, X2, . . . , Xn)
n

≤ `n <
H(X1, X2, . . . , Xn)

n
+ 1 (2.31)

and, from the definition of entropy rate HX (Eq. (2.27)),

lim
n→∞

`n→ HX . (2.32)

Thus, the entropy rate is the expected number of bits per symbol required
to describe the stochastic process.

2.7.6 Information bottleneck method

The information bottleneck method, introduced by Tishby et al. [Tishby 1999], is a
technique that extracts a compact representation of the variable X , denoted by bX ,
with minimal loss of mutual information with respect to another variable Y (i.e., bX
preserves as much information as possible about the control variable Y ). Thus, given
an information channel between X and Y , the information bottleneck method tries to
find the optimal tradeoff between accuracy and compression of X when the bins of this
variable are clustered.

Soft [Tishby 1999] and hard [Slonim 1999] partitions of X can be adopted. In
the first case, every x ∈ X can be assigned to a cluster x̂ ∈ cX with some conditional
probability p( x̂ |x) (soft clustering). In the second case, every x ∈ X is assigned to only
one cluster x̂ ∈ cX (hard clustering).

In this thesis, we consider hard partitions and we focus our attention on the ag-
glomerative information bottleneck method [Slonim 1999]. Given a cluster x̂ defined
by x̂ = {x1, . . . , x l}, where xk ∈ X for all k ∈ {1, . . . , l}, and the probabilities p( x̂) and
p(y| x̂) defined by

p( x̂) =
l
∑

k=1

p(xk), (2.33)

p(y| x̂) =
1

p( x̂)

l
∑

k=1

p(xk, y) ∀y ∈ Y , (2.34)

the following properties are fulfilled:
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• The decrease in the mutual information I(X ; Y ) due to the merge of x1, . . . , x l is
given by

δI x̂ = p( x̂) JS(π1, . . . ,πl ; p1, . . . , pl)≥ 0, (2.35)

where the weights and probability distributions of the JS-divergence are given
by πk =

p(xk)
p( x̂) and pk = p(Y |xk) for all k ∈ {1, . . . , l}, respectively. An optimal

clustering algorithm should minimize δI x̂ .

• An optimal merge of l components can be obtained by l − 1 consecutive optimal
merges of pairs of components.

2.8 Information theory in computer graphics

Two excellent surveys of the application of information theory to computer graphics are
by Chen and Jänicke [Chen 2010], and by Wang and Shen [Wang 2011]. A summary
of information theory tools for computer graphics is presented in [Sbert 2009].

In computer graphics, the most basic information-theoretic measures have been
used in scene complexity [Feixas 1999], global illumination [Rigau 2003], light po-
sitioning [Gumhold 2002], and viewpoint selection for polygonal scenes [Vázquez
2001, Sbert 2005, Feixas 2009]. In the latter field, entropy [Vázquez 2001], Kullback-
Leibler distance [Sbert 2005], and mutual information [Feixas 2009] have been ap-
plied to quantify the quality of a viewpoint. From an information channel between the
set of viewpoints and the polygons of an object, all these measures can be presented in
a unified framework, enabling to compute other aspects such as the similarity of two
viewpoints, both the stability and the saliency of a viewpoint, and both the information
and the saliency associated with a polygon [Feixas 2009, González 2008].

In visualization, information theory has been applied to fields such as view selec-
tion, flow visualization, time-varying volume visualization, and transfer function defi-
nition. Viewpoint entropy has been introduced by Bordoloi and Shen [Bordoloi 2005]
and Takahashi et al. [Takahashi 2005] to select the best views in volume rendering.
Bordoloi and Shen [Bordoloi 2005] also used the Jensen-Shannon divergence to com-
pute the stability of a viewpoint and the conditional entropy for time varying volume
data. Viola et al. [Viola 2006] introduced the mutual information between a set of
viewpoints and a set of objects to calculate the representativeness of a viewpoint. Xu
et al. [Xu 2010] used entropy to measure the information content in the local regions
across a vector field and conditional entropy to evaluate the effectiveness of streamlines
to represent the input vector field. Lee et al. [Lee 2011] used entropy for viewpoint se-
lection and streamline filtering for flow visualization. Wang and Shen [Wang 2006]
used entropy to validate the quality of each individual data block in a LOD and the
relationships among them. In time-varying volume visualization, Ji and Shen [Ji 2006]
applied entropy to dynamic view selection, and Wang et al. [Wang 2008] introduced
the conditional entropy to quantify the information a data block contains with respect
to other blocks in the time sequence. Haidacher et al. [Haidacher 2008] introduced
the decomposition of mutual information for transfer function design in multimodal
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volume visualization. They proposed a new 2D space for manually defining transfer
functions. Bruckner and Möller [Bruckner 2010] introduced isosurface similarity maps
to present structural information of a volume data set by depicting similarities between
individual isosurfaces quantified by mutual information. The maps are used to guide
the transfer function design and the visualization parameter specification.

2.9 Viewpoint selection and visibility channel in volume vi-
sualization

Automatic selection of the most informative viewpoints is a very useful focusing mech-
anism in visualization of scientific data, guiding the viewer to the most interesting
information of the data set. Best view selection algorithms have been applied to com-
puter graphics domains, such as scene understanding and virtual exploration [Vázquez
2003, Sokolov 2006], and volume visualization [Bordoloi 2005, Takahashi 2005, Chan
2006, Viola 2006].

As we have mentioned in the previous section, Shannon’s information measures,
such as entropy and mutual information, have been used in computer graphics and sci-
entific visualization to measure the quality of a viewpoint from which a given scene is
rendered. Viewpoint entropy, first introduced in [Vázquez 2001] for polygonal models,
has been applied to volume visualization in [Bordoloi 2005, Takahashi 2005]. In par-
ticular, Bordoloi and Shen [Bordoloi 2005] obtained the goodness of a viewpoint from
the entropy of the visibility of the volume voxels. Viola et al. [Viola 2006] proposed
a visibility channel and used the viewpoint mutual information to automatically de-
termine the most expressive view on a selected focus. A unified information-theoretic
framework for viewpoint selection, ambient occlusion, and mesh saliency for polygo-
nal models has been presented in [González 2008, Feixas 2009]. Next we review the
definitions of visibility channel, viewpoint mutual information, and viewpoint entropy
in volume visualization.

To select the most representative or relevant views of a volume data set, a viewpoint
quality measure, the viewpoint mutual information, was defined [Viola 2006] from an
information channel V → Z between the random variables V (input) and Z (output),
which represent, respectively, a set of viewpoints V and the set of objects (or voxels)
Z of a volume data set (see Figure 2.9(a)). Viewpoints are indexed by v and voxels
by z. The capital letters V and Z as arguments of p() are used to denote probability
distributions. For instance, while p(v) denotes the probability of a single viewpoint v,
p(V ) denotes the input probability distribution of the set of viewpoints.

The information channel V → Z is characterized by a probability transition matrix
(or conditional probability distribution) which determines, given the input, the output
probability distribution (see Figure 2.9(b)). The main elements of this channel are the
following:

• The transition probability matrix p(Z |V ), where each conditional probability
p(z|v) is given by the quotient vis(z|v)

vis(v) , where vis(z|v) is the visibility of voxel z
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p(V ) p(Z |V )

p(v1) p(z1|v1) p(z2|v1) · · · p(zn|v1)
p(v2) p(z1|v2) p(z2|v2) · · · p(zn|v2)

...
...

...
. . .

...
p(vm) p(z1|vm) p(z2|vm) · · · p(zn|vm)

p(Z) p(z1) p(z2) · · · p(zn)

(a) (b)

Figure 2.9: Visibility channel. (a) Sphere of viewpoints of a voxel model. (b) Probabil-
ity distributions of channel V → Z .

from viewpoint v and vis(v) =
∑

z∈Z vis(z|v) is the captured visibility of all vox-
els over the sphere of directions. The visibility vis(z|v) of a voxel z is considered
as the contribution of this voxel to the final image as rendered from viewpoint v.
Conditional probabilities fulfill that

∑

z∈Z p(z|v) = 1.

• The input probability distribution p(V ) is given by the probabilities of selecting
each viewpoint, where an element p(v) of this probability distribution can be
interpreted as the importance of viewpoint v. In this paper, p(V ) is obtained from
the normalization of the captured visibility of the data set over each viewpoint.
Thus, p(v) = vis(v)

∑

v∈V vis(v) expresses how much volume is visible from viewpoint v.

In [Viola 2006], uniform importance was assigned to each viewpoint.

• From p(V ) and p(Z |V ), the output probability distribution p(Z) is given by

p(z) =
∑

v∈V
p(v)p(z|v), (2.36)

which expresses the average visibility of each voxel.

The degree of dependence or correlation between a set of viewpoints V and the
volume data set Z , expressed by the mutual information (MI) between V and Z , is
given by

I(V ; Z) =
∑

v∈V
p(V )

∑

z∈Z
p(z|v) log

p(z|v)
p(z)

=
∑

v∈V
p(v)I(v; Z), (2.37)

where

I(v; Z) =
∑

z∈Z
p(z|v) log

p(z|v)
p(z)

(2.38)

is defined as the viewpoint mutual information (VMI), which measures the degree of
dependence between the viewpoint v and the set of voxels. Note that I(v; Z) is not
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properly a mutual information, but the contribution of viewpoint v to mutual informa-
tion I(V ; Z). In this framework, the most representative viewpoint is defined as the one
that has minimum VMI. Low values correspond to more independent views, showing
the maximum possible number of voxels in a balanced way. The term ‘balance’ is used
here to express that the visibility distribution p(Z |v) of v is similar to p(Z). This similar-
ity is expressed by the Kullback-Leibler distance between p(Z |v) and p(Z) (see [Feixas
2009, Viola 2006]). This distance is zero when p(Z |v) = p(Z). On the other hand, high
values of I(v; Z) mean a high dependence between viewpoint v and the object, indi-
cating a highly coupled view (for instance, between the viewpoint and a small number
of voxels with low average visibility). In [Viola 2006], it has been shown that one of
the main properties of VMI is its robustness to deal with any type of discretisation or
resolution of the volume data set. The same behavior can be observed for polygonal
data [Feixas 2009].

From the visibility channel, the viewpoint entropy (VE) of viewpoint v is defined by

H(Z |v) =−
∑

z∈Z
p(z|v) log p(z|v). (2.39)

VE measures the degree of uniformity of the visibility distribution p(Z |v) at viewpoint
v. The best viewpoint is defined as the one that has maximum VE, that would be
obtained when a certain viewpoint can see all the voxels with the same projected visi-
bility. On the other hand, minimum VE would be obtained when most of the visibility
is captured from few voxels.
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3.1 Introduction

In the last decades many different strategies have been proposed to visualize and ex-
plore volume data sets efficiently. One of the main challenges is to obtain realistic or
illustrative renderings that adapt the appearance of the data to the specific task satisfy-
ing user requirements. Moreover, the demand of interactivity when exploring volume
data has led to the development of new strategies to accelerate the rendering process.
In this context, focus+context and viewpoint-based strategies improve the exploration
efficiency by directing the users to the most informative parts of the data. GPU-based
implementations which exploit hardware capabilities have been also proposed.

In this chapter, we propose a volume visualization system based on the information
channel defined between the voxels of a volume data set and a set of viewpoints.
This channel is obtained from the reversion of the visibility channel defined in Viola
et al. [Viola 2006] and explained in Section 2.9. Thus, instead of analyzing how a
viewpoint sees the volume data set, we focus on how a voxel “sees” the viewpoints.
The shared information of each voxel with the set of visible viewpoints is interpreted
as a visibility quality descriptor of a voxel that provides a natural ambient occlusion
value [Landis 2002, Zhukov 1998].

The proposed framework results in a flexible system for producing realistic and
non-photorealistic renderings in an automatic way. The use of the voxel information
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combined with the assignation of color to each viewpoint and non-photorealistic effects
produces an enhanced visualization of the volume data set. Voxel information is also
applied to modulate the transfer function in order to focus on or highlight the most
informative parts of the data set. Finally, a new viewpoint selection measure based
on voxel information is introduced and compared with other information-theoretic
viewpoint measures. The proposed framework has been partially implemented using
Compute Unified Device Architecture (CUDA)1, allowing to exploit the capabilities of
modern GPUs.

The chapter is organized as follows. Section 3.2 reminds of previous work related
to volumetric shadowing, volume illustration, and viewpoint selection, that has been
reviewed in detail in Chapter 2. Section 3.3 introduces an information channel which
enables us to calculate the information associated to each voxel. Section 3.4 presents
different visualization applications that can be derived from the voxel information.
Section 3.5 defines a viewpoint quality measure based on voxel information. Finally,
Section 3.6 presents the conclusions and future work.

3.2 Background

In this section, we give a brief reminder of the concepts from Chapter 2 that are relevant
to this chapter.

3.2.1 Volume shadowing and illustrative techniques

Although the integration of global illumination effects in direct volume rendering en-
hances volume data interpretation, its high computational cost overcomes its applica-
tion. In Section 2.5.1 we have reviewed several strategies that have been proposed to
simulate these effects preserving interactive frame rates. The approaches of ambient
occlusion by Landis [Landis 2002] and vicinity shading by Stewart [Stewart 2003] are
especially relevant for comparison purposes in this chapter. We will also compare to
our own obscurances method explained in Chapter 5.

Illustrative techniques are suitable for emphasizing certain features or properties
while omitting or greatly simplifying less important details. Several techniques in this
field are reviewed in Section 2.6. The most relevant to this chapter is the opacity mod-
ulation by Bruckner et al. [Bruckner 2006].

3.2.2 Visibility channel

Viola et al. [Viola 2006] defined an information channel V → Z between the random
variables V (input) and Z (output), which represent, respectively, a set of viewpoints
V and the set of objects (or voxels) Z of a volume data set (see Section 2.9). From
this channel, several information measures can be computed. In particular, mutual

1www.nvidia.com/cuda

www.nvidia.com/cuda
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p(Z) p(V |Z) MIM(Z; V )

p(z1) p(v1|z1) p(v2|z1) · · · p(vm|z1) I(z1; v1) I(z1; v2) · · · I(z1; vm)
p(z2) p(v1|z2) p(v2|z2) · · · p(vm|z2) I(z2; v1) I(z2; v2) · · · I(z2; vm)

...
...

...
. . .

... → ...
...

. . .
...

p(zn) p(v1|zn) p(v2|zn) · · · p(vm|zn) I(zn; v1) I(zn; v2) · · · I(zn; vm)

p(V ) p(v1) p(v2) · · · p(vm)

(a) (b)

Figure 3.1: (a) Probability distributions of channel Z → V , used to compute the voxel
mutual information. (b) The elements of matrix MIM(Z; V ) are given by I(zi; v j) =

p(v j|zi) log
p(v j |zi)
p(v j)

and used to calculate the color ambient occlusion in Section 3.4.1.

information (MI) between V and Z ,

I(V ; Z) =
∑

v∈V
p(V )

∑

z∈Z
p(z|v) log

p(z|v)
p(z)

=
∑

v∈V
p(v)I(v; Z), (3.1)

which expresses the degree of dependence or correlation between the set of viewpoints
and the volume data set, viewpoint mutual information (VMI),

I(v; Z) =
∑

z∈Z
p(z|v) log

p(z|v)
p(z)

, (3.2)

which measures the degree of dependence between the viewpoint v and the set of
voxels, and viewpoint entropy (VE),

H(Z |v) =−
∑

z∈Z
p(z|v) log p(z|v), (3.3)

which measures the degree of uniformity of the visibility distribution p(Z |v) at view-
point v.

A complete definition of this visibility channel can be found in Section 2.9.

3.3 Voxel information

As we have seen in Section 2.9, the information associated with each viewpoint (VMI)
is obtained from the definition of the channel between the sphere of viewpoints and
the voxels (or objects) of the volume data set. In this section, the voxel information is
defined from the reversed channel Z → V , so that Z is now the input and V the output.
The probability distributions of this channel are shown in Fig. 3.1(a). Note that MI is
invariant to the reversion of the channel: I(V ; Z) = I(Z; V ). The idea of reversing the
channel was introduced in [González 2008] for polygonal models, together with the
computation of the information associated to a polygon.
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From the Bayes theorem p(v, z) = p(v)p(z|v) = p(z)p(v|z), MI (see Eq. (3.1)) can
be rewritten as

I(Z; V ) =
∑

z∈Z
p(z)

∑

v∈V
p(v|z) log

p(v|z)
p(v)

=
∑

z∈Z
p(z)I(z; V ), (3.4)

where

I(z; V ) =
∑

v∈V
p(v|z) log

p(v|z)
p(v)

(3.5)

is the contribution of voxel z to I(Z; V ) and is defined as the voxel mutual information
(VOMI). This represents the degree of correlation between the voxel z and the set of
viewpoints, and can be interpreted as the information associated with voxel z. Anal-
ogous to VMI, low values of VOMI can correspond to voxels seen by a large number
of viewpoints in a balanced way. That is, the lowest values of VOMI correspond to the
voxels with conditional probability distribution p(V |z) similar to p(V ). The opposite
happens for high values.

Fig. 3.2 shows for different data sets the VOMI maps computed using 42 viewpoints
and colored using the thermal scale represented in Fig. 3.2(e). Warm colors correspond
to high VOMI values and cool colors to low ones.

(a) (b) (c) (d) (e)

Figure 3.2: VOMI maps generated using 42 viewpoints for different models and trans-
fer functions: (a) CT-body, (b) CT-body (skeleton), (c) CT-beetle, and (d) CT-salmon.
Maps are colored using the thermal scale in (e).

The great potential of VOMI is that it allows varied interpretations that can be
used in different visualization applications, such as volume illustration and viewpoint
selection. Both will be discussed in detail in Sections 3.4 and 3.5, respectively.

In Fig. 3.3 we represent the different steps required for computing the VOMI of
a voxel model. The process starts classifying the volume data by defining a transfer
function. Then, a ray casting is performed considering the volume data set centered in
a sphere of viewpoints and the camera looking at the center of this sphere. For each
viewpoint a histogram of visibilities is created and then used to estimate p(Z |v). Using
Eq. (2.36) and the Bayes theorem, p(Z) and p(V |Z) can be obtained from both p(V )
and p(Z |V ). Finally, the VOMI map is obtained.

Since p(Z |V ) is a very huge matrix it cannot be stored in memory and we have
to compute its rows, p(Z |v), every time we need them. Thus, the VOMI computation
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requires executing the ray casting stage three times, to compute p(V ), then p(Z), and
then the VOMI map.

We have implemented the most costly computations of our framework (ray cast-
ing, computation of p(Z), and VOMI) using CUDA in order to speed up the process
compared to a pure CPU implementation.

Figure 3.3: Overview of the VOMI pipeline.

The first and most complex part done in CUDA is the ray casting needed to compute
p(Z |v) for a viewpoint v. In this ray casting we need to fill a table with the visibility of
each voxel from a given viewpoint, from which p(Z |v) can be obtained. This visibility
is a real value equal to the contribution of the voxel to the final image according to its
opacity and also to the opacity of the preceding voxels in each ray that visits it [Levoy
1988]. For example, a voxel that is seen from one ray, that is fully opaque, and that is
not occluded at all by any other voxel in this ray, has a visibility of 1. To update the
visibility table, we need atomic operations in order to avoid race conditions (the same
voxel may be visited by two or more neighboring rays), but unfortunately CUDA doesn’t
support atomic operations with floating point values. To overcome this limitation we
multiply the visibility by a big constant (we have used 1 million) and truncate the result
to obtain an integer that is atomicly added to the visibility table; this is equivalent to
working with fixed point precision. At the end of the process, we divide each value by
the same constant to get real values. So, we have two kernels for this whole task: the
first one does the ray casting and fills the integer table, and the second converts this
table to a table of floating point numbers.

The other two parts that we have implemented in CUDA are fairly simple. One of
them is the computation of the voxel probabilities p(Z) (see Eq. (2.36)), with a kernel
that just accumulates p(v)p(Z |v) for a given viewpoint v. The other part is the com-
putation of VOMI, where the kernel accumulates the term p(v|z) log p(v|z)

p(v) . Remember

that p(v|z) = p(v) p(z|v)
p(z) , for each voxel z and viewpoint v.

Table 3.1 shows the times to compute the VOMI map for different data sets and
transfer functions with 42 viewpoints. We also report the individual times to do the
ray casting and fill the visibility histogram, accumulate p(Z) and accumulate VOMI,
each for 1 viewpoint, because these are the processing bottlenecks that we have imple-
mented in CUDA. The total time is the result of adding the ray casting 3× 42 times,
plus p(Z) 42 times, plus VOMI 42 times, plus additional costs (CPU, synchronizations,
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memory transfers, etc.).

Ray casting (1 v) p(Z) (1 v) VOMI (1 v) Total (42 v)
Body 141.99 ms 13.09 ms 14.02 ms 29.716 s
Skeleton 108.09 ms 13.09 ms 13.41 ms 26.262 s
Beetle 158.93 ms 21.54 ms 19.92 ms 40.184 s
Salmon 114.65 ms 14.96 ms 14.78 ms 28.416 s

Table 3.1: Times to compute the VOMI maps for the data sets shown in Fig. 3.2.
First and second rows: body and skeleton (256× 256× 415); third row: beetle (416×
416 × 247); fourth row: salmon (336 × 173 × 511). First column: mean time to do
a ray casting and compute the visibility histogram for 1 viewpoint; second column:
time to accumulate p(Z) for 1 viewpoint; third column: time to accumulate VOMI for
1 viewpoint; fourth column: total time to compute the VOMI map for 42 viewpoints.

3.4 Illustrative visualization using voxel information

In this section we describe how to achieve interactive visualization of realistic and
non-photorealistic styles based on VOMI.

3.4.1 Ambient occlusion

A first application of the VOMI is by interpreting it as an ambient occlusion (AO) term
(see Sec. 2.5.2). AO is a measure of the visibility around a voxel, but while classical
AO takes into account only local visibility, VOMI considers the whole volumetric data
visibility around a voxel, from viewpoints surrounding the volume. VOMI measures
how this visibility is distributed between viewpoints. Thus, the more uniform the visi-
bility the less important is which viewpoint we consider, meaning that the voxel is less
interesting or informative. In that case the VOMI value is low. On the other hand, the
less uniform the visibility, the more important is which viewpoint we consider, meaning
that the voxel is more interesting or informative. In that case the VOMI value is high.

To obtain the AO of each voxel, the VOMI of all voxels has been normalized between
0 and 1 and subtracted from 1, because low values of VOMI, represented in the grey
map by values near 1, correspond to non-occluded or visible (from many viewpoints)
voxels, while high values of VOMI, represented in the grey map by values near 0,
correspond to highly occluded voxels.

In Fig. 3.4 we show the results of computing AO using different numbers of view-
points. Note that a sphere of 42 viewpoints provides enough quality for the AO maps,
although 162 viewpoints is preferable for better quality.

In Fig. 3.5, we compare the AO maps corresponding to the models of column (a)
generated using different strategies. From column (b) to (e), respectively, we present
the approaches by Landis [Landis 2002], Stewart [Stewart 2003], our obscurances
(Chap. 5), and finally our current proposed technique. Landis’ approach is obtained by
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(a) (b) (c) (d)

Figure 3.4: Ambient occlusion obtained from VOMI of the CT-body model for 12, 20,
42, and 162 viewpoints.

(i.a) (i.b) (i.c) (i.d) (i.e)

(ii.a) (ii.b) (ii.c) (ii.d) (ii.e)

Figure 3.5: AO maps generated using (b) Landis’, (c) Stewart’s, (d) obscurances, and
(e) VOMI approaches for the CT-body model with (a) two different transfer functions.



44 Chapter 3. Visibility channel

the application of the ambient occlusion technique [Landis 2002] to volume render-
ing. Observe that, as expected, the all-or-nothing technique by Landis produces a too
contrasted effect, due to too sharp transitions within the discrete set of occlusion val-
ues. On the other hand, Stewart’s and obscurances methods generate smoother maps
because of the continuous range of these values. These AO techniques take only in
consideration the local occlusion of the voxel. The VOMI technique works in a differ-
ent way since it considers the whole visibility, and thus occlusions, from the voxel to
all viewpoints. This way, it integrates information of the whole volume with respect to
the given voxel. This information will result in an AO map which will capture differ-
ent effects from the volumetric model, as will be seen below. In the examples, we will
consider Stewart’s method as representative of local occlusion methods.

The simplest effect is obtained considering the AO value as an ambient lighting AL
term. In this case the color of a voxel z is obtained as

C(z) = AL(z) = ki AO(z)CTF(z), (3.6)

where ki is a constant factor that modulates the intensity of AO(z) and CTF(z) is the
pure color of the voxel as defined in the transfer function.

In Fig. 3.6 we illustrate the applications of the AO maps as an ambient lighting
term, comparing the result of applying a local, classic ambient occlusion method [Stew-
art 2003] (Fig. 3.6(b)) with our approach (Fig. 3.6(c)). As we have commented above,
VOMI takes into account the whole volume visibility, offering a more shaded result
than local ambient occlusion. This is clearly visible in the skeleton. The overall informa-
tion given by VOMI (Fig. 3.6(c)) produces better results than local ambient occlusion
(Fig. 3.6(b)) with respect to the raw color information (Fig. 3.6(a)).

A different effect is obtained by adding the AO term to the local lighting equation,
as in the global illumination case where ambient occlusion fakes indirect illumination
[Iones 2003]. Then, the final color of a voxel is obtained as

C(z) = (1−wAO)((kd N(z) · L)CTF(z) + ks(N(z) ·H)n) +wAOAL(z) (3.7)

where, kd and ks are the diffuse and specular lighting coefficients, N(z) is the normal of
the voxel, L is the light vector, H is the half-angle vector between L and the direction
to the viewer, AL(z) is the ambient lighting, and wAO is the weight of the ambient
occlusion in the final color.

In Fig. 3.7 we illustrate the application of the AO maps as an additive term to the
local lighting, comparing the result of applying Stewart’s method (Fig. 3.7(b)) with our
approach (Fig. 3.7(c)). Here again, as in Fig. 3.6, VOMI (Fig. 3.7(c)) produces better
results with respect to the direct illumination image of column Fig. 3.7(a) than classic
ambient occlusion (Fig. 3.7(b)). Observe that the overall features of the volume model
are more distinguishable. Context information is better captured, giving an enhanced
depth perception. This is clearly visible in the ribs: while in Fig. 3.7(ii.b) all ribs appear
in the same intensity due to the fact that local information is the same for all of them,
in Fig. 3.7(ii.c) the inner ribs are darker.
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(i.a) (i.b) (i.c)

(ii.a) (ii.b) (ii.c)

Figure 3.6: The original CT-body model is shown (a) without illumination effects, and
illuminated using AO computed with (b) Stewart’s method and (c) VOMI, both applied
as an ambient lighting term.
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(i.a) (i.b) (i.c)

(ii.a) (ii.b) (ii.c)

Figure 3.7: The original CT-body model is shown with (a) local lighting, and with AO
computed with (b) Stewart’s method and (c) VOMI, both applied as an additive term.
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3.4.2 Color ambient occlusion

Another effect that can be derived from the voxel information is the color ambient
occlusion, which simulates the use of colored light sources at the different viewpoints.
When all sources have the same color we recover the original AO. This can be obtained
from the mutual information matrix and the color associated with each viewpoint.
From Eq. (3.4), we can consider that the mutual information matrix MIM(Z; V ) is
constituted by the terms I(z; v) = p(v|z) log p(v|z)

p(v) (see Fig. 3.1). Each term represents
the shared information between voxel z and viewpoint v. The color ambient occlusion
CAOα(z; V ) associated with the voxel z is defined by the scalar product of row z of
matrix MIM(Z; V ) and the complement of a color vector C(V ) assigned to the set of
viewpoints:

CAOα(z; V ) =
∑

v∈V
I(z; v)(1− Cα(v)), (3.8)

where α stands for each color channel, Cα(v) is the normalized vector for channel α,
and I(z; v) is a matrix element of MIM(Z; V ). After computing VOMI for each channel,
the final color ambient occlusion is given by the combination of the color channel
values. We can get a color vector by assigning certain colors to specific viewpoints
and then interpolating the colors for the rest. In this way, a color is assigned to each
viewpoint.

These relighting effects can be easily combined with other illustrative effects, such
as color quantization, contours, and cool-and-warm. Fig. 3.8 shows some of these ef-
fects applied to the CT-body model considering different transfer functions. Figs. 3.8(a–
c) show, respectively, the AO map, the corresponding color ambient occlusion, and the
AO map colored using a cool-and-warm technique [Gooch 1998]. Figs. 3.8(d–f) show
the use of color ambient occlusion combined with contours and color quantization.

3.4.3 Focus+context

The last application of VOMI is as a focus+context strategy. In this case, VOMI is inter-
preted as a measure of importance and is used to modulate the opacity of a transfer
function. The focus of interest is considered as the most informative part of the volume.
Then, the opacity of the most informative voxels is increased (or preserved) while the
opacity of the least informative is reduced. This opacity modulation effect is driven by
the following equation:

A′(z) =







A(z)kl I(z; V ), if I(z; V )< tl,

A(z)kh I(z; V ), if I(z; V )> th,

A(z), otherwise,

(3.9)

where A(z) is the opacity of the voxel z before modulation, tl and th are the low
and high thresholds respectively, kl and kh are factors to regulate the effect of the
modulation, I(z; V ) is the normalized VOMI, and A′(z) is the opacity of the voxel after
modulation.
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(a) (b) (c)

(d) (e) (f)

Figure 3.8: CT-body model with different transfer functions and illustrative effects: (a)
grayscale AO map, (b) color AO map, (c) cool-and-warm AO map, (d) color AO map
with contours, (e) and (f) different color AO maps with contours and color quantiza-
tion.
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In the next figures we present the different effects that can be obtained varying
the thresholds and factors, the transfer function, or the viewpoints considered for the
visualization. In all the cases we have computed VOMI using a set of 162 viewpoints.
Fig. 3.9 has been obtained modifying the thresholds and factors in order to emphasize
a selected part of the model while preserving the context. Figs. 3.9(a) and 3.9(d) corre-
spond to the original CT-body with tl = 0 and th = 1 viewed from different viewpoints
and with different transfer functions. In Figs. 3.9(b) and 3.9(c) our target is the skele-
ton. As this is a highly occluded part, i.e., it has a high VOMI, to reach our objective,
we have to decrease the opacity of less occluded parts, such as muscles, which have
low VOMI. In Fig. 3.9(b) we obtain this effect by setting tl to 0.5 and th, kl and kh to
1. In Fig. 3.9(c) we get a more extreme effect by changing kl to 0.5, thus making less
occluded parts even more transparent. In Fig. 3.9(e) we focus on the ribs, therefore,
we want to make the muscles around them more transparent. We achieve this with
tl = 0.3, th = 1, kl = 0.1, kh = 1.

(a) (b) (c) (d) (e)

Figure 3.9: CT-body model visualized with different transfer functions: (a) and (d)
in their original states, (b) and (c) modulated from (a) by VOMI to emphasize the
skeleton, (e) modulated from (d) by VOMI to emphasize the ribs.

VOMI depends on the transfer function used to visualize the model. In the previous
example, we modulate the transfer function of the volume with the VOMI computed
with that same transfer function. However, it is also possible to compute the VOMI with
one transfer function and use it to modulate another one over the same model. To show
this effect, we use the VOMI computed with the transfer function used in Fig. 3.9(a), to
modulate the one used in Fig. 3.10(a). Fig. 3.10(b) is obtained setting the parameters
to the same values as in Fig. 3.9(b). Since muscle in Fig. 3.9(a) is more transparent
than in Fig. 3.10(a), modulating the opacity of the latter with the VOMI map of the
former makes the muscle more transparent than it would be with its own VOMI map.

Until now, we have always computed VOMI from a set of viewpoints uniformly
distributed over the surface of a sphere, but it is also possible to compute it from a
subset consisting of one of the viewpoints and its neighbours. This can be useful to
emphasize a part of the volume seen from that viewpoint while preserving the rest. For
instance, in order to emphasize the right hip and the femur we compute the VOMI map
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(a) (b) (c) (d) (e)

Figure 3.10: CT-body model visualized with the transfer function: (a) of the original
model, (b) modulated by VOMI computed with the transfer function used in Fig. 3.9(a),
(d) and (e) modulated by VOMI computed from the viewpoint in (c).

considering the viewpoint at the right side of the model and its neighbours. Fig. 3.10(c)
shows the obtained VOMI map, and Fig. 3.10(d) and Fig. 3.10(e) show the modulation
of Fig. 3.10(a) using this map. Note how our target is emphasized.

3.5 Viewpoint selection using voxel information

In this section we introduce a new viewpoint selection measure based on voxel in-
formation. Then we analyze the behavior of viewpoint entropy and viewpoint mutual
information compared with the new measure.

Once we have calculated the information associated to the voxels of a volume data
set, this information can be “projected” on a viewpoint in order to obtain its informa-
tiveness. This method has been previously used to select the most informative views for
polygonal models [Feixas 2009]. The information projection over a viewpoint v can be
done weighting the VOMI of voxel z by the transition probability p(v|z) and summing
over all voxels. Thus, the informativeness (INF) of a viewpoint v is defined by

INF(v) =
∑

z∈Z
p(v|z)I(z; V ). (3.10)

This represents the total voxel information seen by each viewpoint. Thus, high values
of INF will correspond to viewpoints which see a lot of voxel information, i.e., highly
occluded parts of the model. In many cases, these parts with high voxel information
values show relevant details of the model. On the other hand, low values of INF cor-
respond to low voxel information that is usually associated with smooth changes in
visibility and less detail. This will be seen in the examples.

As we have seen in Section 2.9, different information-theoretic viewpoint measures
have been introduced to select the “best” views. But the “goodness” of a view cannot
be separated of the pursued objective. Thus, if our objective is to see the maximum
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number of voxels, viewpoint entropy (Eq. (3.3)) can be the most appropriate measure.
This is due to the fact that the maximum entropy would be obtained when all the voxels
were seen with the same projected visibility. Minimum entropy would be obtained
when only one voxel was visible. On the other hand, viewpoint mutual information
(Eq. (3.2)) can be used to detect the most representative views. That is, the views that
are most similar to the virtual view of the object obtained from the projection of all
viewpoints. The main difference between VE and VMI is that, while VE is very sensitive
to the resolution of the volumetric data set, VMI is very robust to deal with any type
of segmentation [Viola 2006]. Due to the regular discretization of the volume data set
in voxels, the behavior of VE and VMI is not significantly different in the experiments
shown below.

Fig. 3.11 shows the views which capture the maximum and minimum VE, VMI,
and INF. For each model, the first row corresponds to the “best” views (maximum VE,
minimum VMI, and maximum INF) and the second row to the “worst” views (mini-
mum VE, maximum VMI, and minimum INF). Observe the different behaviour of the
presented viewpoint measures. While maximum VE and minimum VMI present a rel-
atively similar behaviour, showing respectively the maximum number of voxels in a
uniform way and the most representative view, maximum INF is devoted to show the
maximum number of highly occluded voxels.

3.6 Conclusions

In this chapter, we have presented a visibility channel to obtain illustrative renderings
of volume data sets. The viewpoints and the voxels are the input and output distribu-
tions, respectively, for an information channel which is further defined by the visibility
values of the voxels referred to each viewpoint. By reversing this channel we assign to
each voxel an information value which can be shown to represent an ambient occlusion
value. This quantity has been used for illustrative rendering purposes and combined
with a lighting texture to further enhance the volume data. In addition, we have an-
alyzed how the voxel information can be used to modulate transfer functions. Finally,
we have used the voxel information to select the most informative viewpoints.
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(i.a) max VE (i.b) min VMI (i.c) max INF

(ii.a) min VE (ii.b) max VMI (ii.c) min INF

(iii.a) max VE (iii.b) min VMI (iii.c) max INF

(iv.a) min VE (iv.b) max VMI (iv.c) min INF

(v.a) max VE (v.b) min VMI (v.c) max INF

(vi.a) min VE (vi.b) max VMI (vi.c) min INF

(vii.a) max VE (vii.b) min VMI (vii.c) max INF

(viii.a) min VE (viii.b) max VMI (viii.c) min INF

Figure 3.11: Selected viewpoints over a set of 162 with various models according to
(a) viewpoint entropy, (b) viewpoint mutual information, and (c) informativeness.
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4.1 Introduction

Volume visualization aims at gaining insight into volumetric data using interactive
graphics and imaging techniques. Current volume data sets generated by scientific do-
mains contain large amounts of data of complex structures. Effective visualization of
such data sets that clearly shows all contained structures is challenging.

Illustrative visualization enhances the expressiveness of volume rendering by ap-
plying hand-crafted illustrative techniques. Cut-aways, exploded views or high-level
abstraction strategies, amongst others, are used to reveal insights and represent es-
sential structures of the volume in a clear way while less important details are sub-
jugated. To employ these techniques, certain controlling mechanisms based on data
or higher semantical levels (e.g. segmentation into objects from the domain perspec-
tive and the assigning of object importance based on the given domain scenario) are
required. These mechanisms vary from fully interactive steered by user (e.g. voxel-by-
voxel segmentation) to fully automatic techniques (e.g. shape analysis of the acquired
data based on higher-order derivatives). To explore unclassified data sets, automatic
controlling mechanisms for steering expressive visualization are useful, and possibly
can be combined with interactive techniques that fine-tune the first automatic educated
guess.

Our interest is now focused on exploded views, which partition the volume into
different parts that are displaced away from each other as if there had been a small
controlled explosion emanating from the focus of interest. Exploded views enable to



54 Chapter 4. Similarity-based exploded views

see details of otherwise overlapping structures, exploiting the observer’s understand-
ing of the original spatial arrangement. In this chapter, a new partitioning approach for
automatic generation of exploded views is presented. This method divides the data set
into a set of slabs defined by parallel planes, combining in this way the advantages of
2D and 3D views. While 3D visualization provides a global view of the entire model,
the 2D cross sectional views reveal insights. To partition the volume, two alternative
strategies are proposed. The first one starts with the entire volume and partitions it
recursively guided by a maximum dissimilarity criterion. The second one considers ini-
tially all individual slices and groups them together according to a similarity criterion.
In both cases, the controlling mechanism is the similarity value that is computed auto-
matically using information-theoretic measures. The only necessary interaction of the
user with the data is a single threshold parameter which determines when the parti-
tioning (or grouping) has to stop. An important advantage of this approach is that no a
priori information or pre-processing of the data is required. This is suitable, especially,
for computer-guided exploration of histology volume data.

4.2 Background

The main limiting factor when exploring volume data is the occlusion between struc-
tures. For complex volumetric data sets it is difficult to achieve a visual representation
that not only shows all the internal structures but also preserves the global representa-
tion of the model. To enhance volume data interpretation Rheingans and Ebert [Rhein-
gans 2001] introduced the volume illustration approach, combining the familiarity of
a physics-approximated illumination model with the ability to enhance important fea-
tures using non-photorealistic rendering techniques. Several illustrative techniques are
reviewed in Section 2.6. One of the limitations of the technique relevant to this paper,
exploded views, is to decide the parts that have to be exploded. We aim to automati-
cally partition the volume based on characteristics of the data.

Viewpoint selection background is also relevant to this chapter. Several methods on
this topic have been reviewed in sections 2.8 and 2.9.

4.3 Similarity-steered visualization

To automatically obtain the partitioning planes for the exploded views, we propose
a two-step process. First, we select the view of the model along which the organs or
components will be better separated. This view is called the most structured view of
the model. Second, we calculate the partitions of the model along the most structured
view. Such partitions will be obtained using two complementary approaches: a top-
down strategy that divides the model according to the maximum information gain and
a bottom-up method that joins the slices according to a similarity criterion. Then, the
explosion of the model is visualized in the interactive system VolumeShop [Bruckner
2005]. The two steps of the method are described below.
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(a) (b) (c) (d)

Figure 4.1: Main steps of the selection of the most structured view. (a) Sphere of
viewpoints, (b) sampling process for one viewpoint, (c) samples considered for the
entropy rate computation, and (d) colored viewpoint sphere (using a thermic scale,
from blue to red) representing the values of the viewpoint entropy rate.

1. Selection of splitting axis

The goal of this step is to obtain the most structured view of the model. To reach
this objective a viewpoint measure able to capture the structure of the volumetric
dataset along any view axis is used. In information theory, entropy rate is defined
as a measure of the irreducible randomness of an object or the degree of unpre-
dictability of a sequence of values. Since a high randomness corresponds to a
low structure and vice versa, we can use the entropy rate to quantify the degree
of structure or predictability of a model. We proceed as illustrated in Figure 4.1.
First of all, the model is centered in a viewpoint sphere built from the recursive
discretisation of an icosahedron (Fig. 4.1(a)). Then, for each viewpoint the en-
tropy rate is computed as described in Section 4.4 (Fig. 4.1(b) and Fig. 4.1(c)).
Finally, we identify the lowest entropy rate value which corresponds to the most
structured view of the model (Fig. 4.1(d)). This direction is used as axis to which
similarity-based partitioning planes are perpendicular to.

2. Volume partitioning

This task consists of selecting the optimal partitions of the model from the most
structured view. To carry out this process two different strategies are presented:

(a) Top-down approach. Initially, the entire volume is considered as a single
slab and partitioning planes are taken perpendicular to the most structured
view (Fig. 4.2(i.a)). To divide the dataset into different parts, we use a
greedy algorithm which successively selects the partition that provides us
with the maximum gain of information. According to the information bot-
tleneck method [Tishby 1999, Slonim 1999], the information gain can be
calculated using the Jensen-Shannon divergence between two parts of the
model (Fig. 4.2(i.b)). This measure can be interpreted as the degree of dis-
similarity between the parts and attempts to divide the model into homoge-
neous regions (Fig. 4.2(i.c)). A more detailed description of this approach
is given in Section 4.5.1.

(b) Bottom-up approach. All the slices of the volume, perpendicular to the
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most structured view, are considered as the initial slabs (Fig. 4.2(ii.a)).
Neighboring slabs are iteratively grouped (Fig. 4.2(ii.b)) when mutual in-
formation between them is higher than a given threshold (Fig. 4.2(ii.c)).
Dealing with similarity between slabs instead of individual slices, we avoid
an incorrect grouping, for instance, due to smooth changes along many con-
secutive slices. The grouping process is further described in Section 4.5.2.

(i.a) (i.b) (i.c)

(ii.a) (ii.b) (ii.c)

Figure 4.2: (i) Top-down volume partition: (i.a) partitioning planes are taken perpen-
dicular to the most structured view, (i.b) dissimilarity between subvolumes is given by
the Jensen-Shannon divergence, and (i.c) examples showing two different partitions.
(ii) Bottom-up volume partition: (ii.a) slices are taken perpendicular to the most struc-
tured view direction, (ii.b) similarity between slices or slabs is computed using mutual
information, and (ii.c) two examples resulting from the grouping process.

4.4 Selection of structured views

To quantify the degree of structure of a volumetric data set along a given viewing direc-
tion, we estimate the entropy rate of the sequence of values (intensities) obtained by
casting a bundle of parallel lines along that direction. These lines act as probes to sam-
ple the intensity of the model. The view with the lowest entropy rate will correspond
to the most structured view.

The definitions of both Shannon entropy and entropy rate [Cover 1991] are now
reviewed (see Section 2.7). In this chapter, the notation used (inspired by the work of
Feldman and Crutchfield [Feldman 2003]) is slightly different from the one presented
in Section 2.7.
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LetX be a finite set and X a random variable taking values x inX with probability
distribution p(x) = Pr[X = x]. The Shannon entropy H(X ) of a random variable X is
defined by

H(X ) =−
∑

x∈X
p(x) log p(x). (4.1)

The Shannon entropy measures the average uncertainty of random variable X . If the
logarithms are taken in base 2, entropy is expressed in bits.

Given a sequence X1X2 . . . of random variables X i taking values in X , a block of
L consecutive random variables is denoted by X L = X1 . . . X L . The probability that the
particular L-block x L occurs is denoted by joint probability p(x L) = p(x i+1, . . . , x i+L).
The joint entropy of a block of L consecutive symbols or L-block entropy is defined by

H(X L) =−
∑

x L∈X L

p(x L) log p(x L), (4.2)

where the sum runs over all possible L-blocks.
The entropy rate or entropy density is defined by

h= lim
L→∞

H(X L)
L

(4.3)

and measures the average amount of information per symbol x [Cover 1991].
It can also be rewritten as

h= lim
L→∞
(H(X L)−H(X L−1)). (4.4)

The entropy rate of a sequence of symbols is a measure of its uncertainty, random-
ness or unpredictability. The entropy rate is also a measure of the compressibility of
a sequence: the higher the uncertainty, the lower the compressibility. For instance, in
a text, if there are strong correlations between letters (or words), knowledge of all
previous letters (or words) will significantly decrease our uncertainty about the next
one [Feldman 2003].

How to compute the entropy rate for a given viewpoint is now shown. Consider
the scheme in Figure 4.1. For each viewpoint, a sequence of samples (intensity values)
to compute the measure is obtained performing a ray casting from a plane centered at
the viewpoint. We proceed as follows:

• From the plane at each viewpoint, parallel rays with a regular horizontal and
vertical spacing x are cast. Along the ray within the volume, equidistant samples
at distance y are taken.

• To build the two joint histograms of X L and X L−1 required for the entropy rate
computation, we take into account all possible groups of consecutive samples
of length L and L − 1, respectively. For example, with the samples shown in
Figure 4.1(c), we can form three blocks of length 3 (x0 x1 x2, x1 x2 x3 and x2 x3 x4)
and four of length 2 (x0 x1, x1 x2, x2 x3 and x3 x4) for X 3 and X 2 histograms,
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respectively.

• The joint probability distributions p(x L) and p(x L−1) are estimated from the joint
histograms of X L and X L−1, and then the joint entropies H(X L) and H(X L−1) are
calculated.

• Due to the potentially high dimensionality of the histograms and, consequently,
the high number of components, a trade-off between the number of symbols
(intensities) and the length L of the blocks has to be considered. Note that the
size (number of entries) of the highest histogram is O(N L), where N is the num-
ber of different property values and L is the length of the blocks. Usually voxel
models have property values of 8 bits or more, so this problem is untreatable
even with short blocks. As entropy rate is a limit quantity (4.4), its computation
would require an infinite number of elements and blocks infinitely long. It has
to be approximated using a block of finite length. From the two possible approx-
imations coming from (4.3) and (4.4), we have selected the last one because it
approximates more accurately the entropy rate for low values of L. In our exper-
iments, we have taken L = 3. We have also reduced the number of symbols of X
(intensity bins in the histogram) to 32, rescaling the intensity bins.

(a) (b) (c) (d)

Figure 4.3: Different volumes (first row) and their corresponding most structured
views (second row). From left to right: (a) a synthetic model, (b) a CT scan of a patient
with hemorrhage, (c) a CT scan of a tooth and (d) a CT scan of the human body.

The strategy for the selection of the most structured view has been applied to dif-
ferent volume data sets. The obtained results are illustrated in Figure 4.3 where the
first row represents the original model and the second row the most structured view.
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From left to right, the proposed models correspond to: (a) a synthetic model, created
considering six different materials (each one represented with a different color) which
follow a diagonal distribution through the volume, (b) a CT-scan of a patient with an
hemorrhage, (c) a CT-scan of a tooth and (d) a CT-scan of the human body. Observe
how the best views show the maximum of structure in the model. This is specially
noticeable in the phantom model (Fig. 4.3(a)) where the different regions have an
inclination relative to the cube axis.

4.5 Evaluating similarity

To obtain the optimal partitions for the explosion of a 3D data set, two different strate-
gies are presented. First, we analyze a top-down approach which partitions the model
using a criterion of maximum gain of information. Second, we study a bottom-up strat-
egy that groups the slices according to a similarity measure between them.

4.5.1 Model partitioning

Once the most structured direction of the model has been selected, a sequence of
perpendicular partitions in that direction can be obtained using a simple greedy al-
gorithm. This is a top-down hierarchical application of the information bottleneck
method [Tishby 1999, Slonim 1999] which permits us to measure the gain of informa-
tion when a model is divided into different slabs. This gain of information is computed
using the Jensen-Shannon divergence (see Section 2.7.3.3).

The Jensen-Shannon divergence [Burbea 1982] between probability distributions
p1, p2, . . . , pN with prior probabilities or weights π1,π2, . . . ,πN is defined by

JS(π1,π2, . . . ,πN ; p1, p2, . . . , pN ) = H

 

N
∑

i=1

πi pi

!

−
N
∑

i=1

πiH(pi), (4.5)

where
∑N

i=1πi = 1. The JS-divergence measures how far the probabilities pi are from
their likely joint source

∑N
i=1πi pi and equals zero if and only if all the pi are equal.

From [Slonim 1999] (see also Eq. (2.35)), it can be seen that the gain in information
when a dataset is divided into two slabs is given by

δI =
v1+ v2

vT
JS
�

v1

v1+ v2
,

v2

v1+ v2
; p1, p2

�

, (4.6)

where v1 and v2 are, respectively, the volumes of slabs 1 and 2, vT is the total volume
of the 3D dataset, p1 and p2 are, respectively, the normalized intensity histograms of

slabs 1 and 2, and JS
�

v1

v1+v2
, v2

v1+v2
; p1, p2

�

is the Jensen-Shannon divergence between

p1 and p2 with the corresponding weights v1

v1+v2
and v2

v1+v2
.

The gain of information when a model is divided into two parts is given by the
dissimilarity between them (measured by JS) weighted by their relative volume. Note
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that a slab highly structured along a given direction will have all possible partitions
very similar and thus will not need to be partitioned.

(a) (b)

Figure 4.4: (a) The volume partitioning and (b) the slice grouping approaches applied
to a CT scan of the human body.

4.5.2 Slice grouping

Given a viewing direction, the slices perpendicular to it can be grouped using a sim-
ilarity measure. In this paper, the normalized mutual information is used to quantify
the degree of similarity between individual slices or groups of adjacent slices (slabs).
In medical imaging, many successful automatic image registration methods are based
on the maximization of mutual information. This method, introduced by Viola [Viola
1995] and Maes et al. [Maes 1997], is based on the conjecture that the correct reg-
istration corresponds to the maximum mutual information between the overlap areas
of the two images. Later, Studholme et al. [Studholme 1997] proposed to use the nor-
malized mutual information as it is more robust than solely mutual information due to
its greater independence of the overlap area.

Let X and Y be two random variables taking values x and y in finite sets X and Y
with probability distributions p(x) = Pr[X = x] and p(y) = Pr[Y = y], respectively.
The mutual information between X and Y is defined by

I(X ; Y ) =
∑

x∈X

∑

y∈Y
p(x , y) log

p(x , y)
p(x)p(y)

, (4.7)

where p(x , y) = Pr[X = x , Y = y] is the joint probability. Mutual information is a
measure of the shared information or the degree of dependence between X and Y .
Mutual information is zero only if the two random variables are strictly independent.
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The normalized mutual information is defined by

NMI(X , Y ) =
I(X ; Y )
H(X , Y )

, (4.8)

where H(X , Y ) is the joint entropy of X and Y . NMI takes values in the range [0, 1].
An explanation is now given to compute the NMI measure between slices and the

algorithm to group them. Given two slices A and B from the volume dataset, with
associated random variables X and Y , the joint probability distribution p(x , y) can
be estimated by simple normalization of the joint histogram h(x , y) of both slices.
This is obtained from the intensities of each pair (a, b) of corresponding voxels, where
a ∈ A and b ∈ B. Once the joint histogram has been calculated, the joint probability
distribution and the marginal probability distributions of X and Y can be estimated:
p(x , y) = h(x ,y)

∑

x∈X
∑

y∈Y h(x ,y) , p(x) =
∑

y∈Y h(x , y) and p(y) =
∑

x∈X h(x , y). The simi-

larity measure NMI is then evaluated.
The similarity between two slices can be extended to the similarity between two

slabs bA= {A1, . . . , An} and bB = {B1, . . . , Bm}. The random variables bX and bY , associated
with both slabs, represent the grouping of a set of random variables {X1, . . . , Xn} and
{Y1, . . . , Ym}, respectively. Their joint frequency histogram is obtained from the inten-
sities of each pair of corresponding voxels (ai , b j), where ai ∈ Ai and b j ∈ B j ∀i, j.
As mentioned above, the joint and marginal probability distributions can be estimated
and thus the NMI measure is obtained.

Given the similarity measure NMI, the algorithm proceeds by joining the two ad-
jacent slabs with maximum similarity. This process stops when the similarity between
them is above a user-defined threshold or a number of slabs has been reached. At
the beginning, every slab consists of only one slice. Then, the most similar slabs are
progressively joined. To group n slices, the algorithm proceeds as follows:

• Assign n slabs such that each slab contains exactly one slice.

• Compute NMI for each pair of consecutive slabs.

• Find the two closest consecutive slabs i and i + 1 (with maximum NMI). If the
similarity between them is higher than the given threshold, then create a new
slab bi by combining i and i + 1 and recalculate NMI for the neighboring slabs of
bi. This step stops when the similarity between each pair of consecutive slabs is
lower than a fixed threshold or a number of slabs is achieved.

4.5.3 Results

The proposed approaches have been implemented and integrated into the VolumeShop
framework [Bruckner 2005]. To test the methods, different synthetic and real data sets
have been considered. In all the tests a sphere of 42 viewpoints has been used and the
stopping criterion has been fixed by the number of slabs entered by the user.

For the first tests, the CT scan of the human body of Figure 4.4 has been used.
The results obtained with the model partitioning approach for 2, 4 and 8 partitions are
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Volume Best view P(2) P(4) P(8) G(8) G(4) G(2)
Human body 111.0 0.4 0.9 2.0 28.9 36.2 70.5
Hematoma 55.5 0.2 0.6 1.2 6.3 10.8 14.4
Histological data 722.6 2.3 5.8 12.6 214.0 324.7 525.0

Table 4.1: Time cost in seconds for computing the most structured view, and for volume
partitioning (P) and slice grouping (G) in 2, 4, and 8 slabs, respectively, for three
different volume models: Human body (256×256×415), Hematoma (512×512×45),
and Histological data (587× 342× 499).

illustrated in Fig. 4.4(a). In Fig. 4.4(b) the partitions obtained with the slice grouping
approach using the same user parameters are shown. In Figures 4.5(a) and 4.5(b)
we illustrate the results obtained by applying the volume partitioning and the slice
grouping approaches on a CT scan of a patient with a brain hemorrhage. Observe that
the damaged region is located in the second slab from top to bottom.

In Figures 4.5(c) and 4.5(d), the results obtained with the volume partitioning
and the slice grouping approaches applied to an histologic data model are shown.
It is important to emphasize that these techniques have been applied without prior
pre-processing. Time cost for computing the most structured view, and for volume
partitioning and slice grouping are given in Table 4.1. Times are given for a system
equipped with an Intel Core 2 Quad Q6600 CPU at 2.4 GHz and 2 GiB of memory.
Several video sequences are available as supplementary material in www.gametools.
org/smartgraphics/.

(a) (b) (c) (d)

Figure 4.5: (a) The volume partitioning and (b) the slice grouping approaches ap-
plied to a CT scan of a patient with a brain hemorrhage. An histological data model
decomposed with the (c) volume partitioning and (d) slice grouping methods.

www.gametools.org/smartgraphics/
www.gametools.org/smartgraphics/
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4.6 Conclusions

New partitioning techniques for volumetric data decomposition and visualization using
exploded views have been introduced. These techniques use an information-theoretic
two-step approach to automatically partition the model. First, the view with the highest
structure is identified and, then, the model is divided along this view following two
alternative similarity-based methods. The presented techniques provide us an efficient
tool for volume data exploration without neither a priori knowledge nor pre-processing
of the data.

The proposed approach has been evaluated on different medical data sets and the
obtained results have been analyzed by a group of physicians; they consider that the
proposed method is potentially useful for automation of certain medical processes, such
as the location of lesions. As future work we plan to do a broader study with a more
exhaustive analysis of behaviour and usability of the proposed approach for different
image modalities and anatomical structures. We plan to test and validate this new
method in a large cohort of patients to determine its clinical effectiveness. In addition,
we will study how many slices should be presented and whether additional information
about the similarity distances can help the user for an optimal understanding of the vol-
ume. Also, the trade-off between quality and cost for the different parameters involved
in the determination of most structured views (distances between rays, subsequences
of samples on those rays, sub-sampling of intensity values) will be investigated. As fur-
ther improvement, we can also investigate if a neural network trained with physicians
knowledge can be incorporated into our algorithm as a guide.
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5.1 Introduction

Global illumination is a well-known technique for producing realistic scenes. However,
although it might play a decisive role in 3D volume visualization since it provides vi-
sual cues that enhance data interpretation, its application is still challenging in direct
volume rendering. The main limiting factor is the computational cost of simulating
global effects of light in a volume, making interactive exploration difficult [Max 1995].
On the other hand, illustrative methods aim at creating visualizations which convey
information to the viewer as opposed to physically correct light interaction. Volume
illustration enhances the expressiveness of volume rendering by highlighting impor-
tant features within a volume while subjugating insignificant details and rendering
the result in a way that resembles an illustration [Rheingans 2001]. Ideally, a volume
rendering system should be able to support both realistic and illustrative renderings.

Obscurances have been introduced by Zhukov et al. [Zhukov 1998] and Iones et
al. [Iones 2003] as an efficient technique that gives perceptually similar results to
global illumination with a small fraction of the computational cost. Moreover, without



66 Chapter 5. Obscurance-based volume rendering framework

adding computational cost, obscurances also allow us to compute color bleeding, which
consists in the effect that the objects around another object with intense coloration
are dyed with this color [Méndez 2003a]. The obscurance technique was first used in
video-game environments. Its application to volume rendering, called vicinity shading,
was introduced by Stewart [Stewart 2003].

In this chapter, we present an obscurance-based volume rendering system that al-
lows to obtain realistic and illustrative volume visualizations in an interactive manner.
One important aspect of our work shows that obsurances are not only useful for real-
istic depiction but also for illustrative rendering. As obscurances can be interpreted as
general information about the neighborhood of a voxel, they can be used as a bias for
the generation of more expressive illustrative depictions of a data set (see Figure 5.1).

Saliency typically arises from contrasts between items and their neighborhood [Itti
2001, Tsotsos 2005, van de Weijer 2006] and it is considered that the most salient
voxels in a 3D data set will attract the attention of the viewer. In our approach, voxel
saliency is determined by the obscurance gradient, which measures the maximum vari-
ation of the obscurance field. Once the saliency of the volume is obtained, we implicitly
have the saliency map of any structure contained in the volume. This saliency map can
be applied to viewpoint selection and to enhance visualization. This can help to dis-
cover relevant characteristics of the model otherwise unnoticed by the observer.

(a) (b) (c)

Figure 5.1: CT-human body data set rendered with the proposed obscurance-based vol-
ume rendering framework. The images have been obtained by modifying interactively
the transfer function and the way in which obscurances are applied to the model.

5.2 Background

In this section, obscurances, ambient occlusion, and related illumination models are
described.

5.2.1 Obscurances and ambient occlusion

For a complete background on this topic refer to Section 2.5.2. Here we briefly recall
the equations for obscurances and ambient occlusion.
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The obscurance O of a point p is defined as the integral

O(p) =
1

π

∫

Ω

ρ(d(p,ω)) cosθ dω, (5.1)

where ρ is a function of the distance d(p,ω) of the first intersection of a ray shot from
point p with direction ω, p is a surface point, θ is the angle between the normal vector
at p and direction ω, and the integration is over the hemisphere oriented according to
the surface normal. We only consider a neighborhood of p, i.e. function ρ is set to 1 for
distances greater than a maximum distance dmax. Therefore, the integral function O(p)
captures occlusion (or openness) information of the environment of point p. Consid-
ering the extreme cases, an obscurance value of 1 means that the point is completely
open, i.e. not occluded, and a value of 0 means that it is completely occluded.

Ambient occlusion [Landis 2002] is a simplified version of the obscurances illumi-
nation model. Ambient occlusion

A(p) =
1

π

∫

Ω

V (p,ω) cosθ dω, (5.2)

substitutes the ρ function in the obscurances equation (5.1) by the visibility function
V (p,ω) that has value 0 when no geometry is visible in direction ω and 1 otherwise.

Color bleeding consists in the effect that the objects around another object with
intense coloration are dyed with this color. To obtain color bleeding, Méndez et al.
[Méndez 2003a] included in Equation (5.1) the diffuse reflectivity R(q):

W (p) =
1

π

∫

Ω

R(q)ρ(d(p,ω)) cosθ dω, (5.3)

where q is the first point in direction ω that occludes p. When no occlusion is found
within dmax, the average reflectivity is used. Observe that adding color bleeding to
obscurances is almost free.

5.2.2 Volume shadowing versus obscurances

The obscurances/ambient occlusion technique was first used in video-game environ-
ments [Zhukov 1998]. A few methods have been presented to adapt this technique
to volume rendering. In particular, Stewart proposed vicinity shading [Stewart 2003],
which simulates illumination of isosurfaces by taking into account neighboring vox-
els. An occlusion volume is computed and stored in a shading texture that is accessed
during rendering. This volume has to be re-computed each time that the rendering pa-
rameters are modified and the method does not support color bleeding. In addition, it
only allows to represent one of the surfaces of the volume. Since this first work, several
models to illuminate the isosurfaces have been proposed. For a complete review on
these techniques, see Section 2.5.1.

Note that there is a twofold difference between those local volumetric shadowing
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effects and the classic obscurances (or ambient occlusion) used in our approach. Firstly,
obscurances technique uses a ρ function (see discussion in Section 5.3.2) to modulate
the effect of the occlusion with the distance. Secondly, obscurances compute explicitly
visibility tests. This means that, although the test can be made up to a predefined max-
imum distance, if an occlusion is found, the rest of the environment in this direction is
ignored, contrarily to local volumetric shadowing which integrates for the whole dis-
tance. In Figure 5.2, the essential difference between the local volumetric shadowing
and the obscurances approach is illustrated. Observe that obscurances only take into
account the distance from a voxel to the next occluding one, not what is in between.
This is indeed different from Hernell’s algorithm, which considers the accumulated vis-
ibility of the whole environment, being nearer to the physical realism (or at least more
coherent with the transfer functions).

Obscurances (and later ambient occlusion) never claimed to be physically realistic,
it was introduced as a fast photorealistic approximation to indirect illumination. Lo-
cal volumetric methods have a much higher cost, with complexity proportional to the
square of the number of voxels, against the complexity of obscurances computation,
proportional to the number of voxels times the number of directions. Thus, on a scale
of physical realism (and cost) the different strategies can be sorted into increasing or-
der as follows: ambient occlusion (the lowest), obscurances, Hernell’s [Hernell 2007]
and Ropinski’s [Ropinski 2008] approaches, and global illumination (the highest).

5.3 Obscurances for volume rendering

In this section we go further into the obscurance-based volume rendering by testing
different distance functions for computing obscurances and providing discussion on
quality assumptions.

5.3.1 Algorithm

We take as a basic implementation of the obscurance-based volume rendering approach
the one proposed by Stewart in [Stewart 2003]. First, the volume data set is centered
in a sphere built from the recursive subdivision of an icosahedron and the lines from
each vertex to the center of the volume are taken as the directions to consider (12,
42, and 162 directions have been taken in our experiments). Then, for each direction,
the volume is swept using Bresenham’s algorithm. This is equivalent to casting parallel
rays covering all voxels. Obscurance computation for a given voxel is based on the
presence (and the distance) of occluders within a certain radius along the processed
direction. A visibility test compares the densities of two voxels which can be intensity
values, which are independent of the transfer function, or opacity values assigned by
the transfer function. In each case, we say that voxel vi occludes vi−1 if the density of
vi is greater than that of vi−1. To process the voxels we use a stack which stores the
previously visited and yet unoccluded voxels in a density-based decreasing order. All
the voxels in a ray are traversed and for each one we check if it is the nearest occluder
to one of the previous unoccluded voxels (i.e. the ones stored in the stack), and in the



5.3. Obscurances for volume rendering 69

Figure 5.2: Local volumetric shadowing (option 1) and obscurance computation (op-
tion 2) for a volume model consisting of three concentric spheres with densities
d1 < d2 < d3.
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occlusion test we check the distance. In each step, we start to check if the current voxel
vi occludes the one on the top of the stack vs. If vs is occluded then we can remove it
from the stack so that it will not be processed anymore and continue applying the same
procedure to vs−1. If vs is unoccluded, the rest of the stack voxels do not need to be
processed since vs is the voxel of the stack with lower density. Then, the next voxel of
the ray is processed. This pre-computed obscurance is stored as vicinity shading values
in a separate texture volume which is used during rendering.

In order to integrate color bleeding effects, we multiply the obscurance value by the
color of the occluding voxel, and add an ambient color constant (in our case, white) to
the unoccluded voxels. In this way, spectral obscurances are accumulated.

5.3.2 Analysis of ρ function

In this section, the meaning and shape of the ρ function in the obscurances definition
(5.1) is discussed. First, this function should be a monotonically increasing function
of d. Second, this function is bounded from above. This reflects the fact that normally
ambient lighting of a given point is primarily affected by its neighborhood. This is
especially true for scenes without bright light sources that may affect the illumination
at large distances. From 0 to a determined value dmax, the function increases from 0
to 1, and for values greater than dmax the returned value is 1. This means that only a
limited environment around the point p is considered and beyond this the occlusions
will not be taken into account.

The shape of the ρ function is deduced from the fact that we are interested in what
happens in the vicinity of a point (or voxel). The nearer the occlusion, the higher the
influence it should have. This influence diminishes with increasing distance. This is
reinforced by interpreting the obscurance model with the ρ(d) = 1− e−τd function as
the illumination at the non-reflecting boundaries of a non-scattering gas with opacity
τ and constant volume emittance. If we consider the occlusions of the environment as
having a similar damping opacity effect over the ambient light, we should use a func-
tion as similar as possible to ρ(d) = 1− e−τd [Iones 2003]. Some candidate functions
(see Figure 5.3) are: (a) all-or-nothing, ρ(d) = 0, used in the ambient occlusion ap-
proach (it does not allow color bleeding as the contribution of a hit is 0); (b) linear,

ρ(d) = d
dmax

, used in the vicinity shading approach; (c) exponential, ρ(d) = 1−e−
d

dmax ;

and (d) square root, ρ(d) =
q

d
dmax

, introduced in [Méndez 2003a]. Note that we have

considered the exponential function without normalization since the normalized expo-
nential would become very similar to the linear function.

Different data sets have been used to analyze the effect of each function in the final
visualization. The obtained images are shown in Figure 5.4 where each column repre-
sents a different ρ: (a) all-or-nothing, (b) linear, (c) exponential, and (d) square root.
In the first row, we show the behavior of the above functions (including color bleed-
ing) on a cubic phantom model with 1283 voxels, where except for three adjacent faces
with opacity = 1 (left wall: green, right wall: blue, floor: white), the rest of the vox-
els are transparent. The effects at the corner illustrate the behaviour of the distance
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Figure 5.3: Different ρ(d) functions.

function. The linear function ρ (column (b)) corrects in some way the non-smoothed
effect of the all-or-nothing function (column (a)), but it considers a wider than nec-
essary environment. The exponential ρ (column(c)) produces darker values, similar
to the all-or-nothing case, due to the discontinuity leap at d = dmax. The square root
function (column (d)) is a good compromise, as it considers a nearer environment and
the darkness decays smoothly. This is appropriate to enhance the details of the model.
We also study the results of applying the different ρ functions on a CT-human body of
256×256×415 voxels. The obscurance volumes and the visualizations obtained using
an obscurance-based illumination model (see Section 5.5.1) are shown, respectively,
in the second and third rows of Figure 5.4. They have been obtained considering 162
viewing directions and a maximum distance equivalent to 64 voxels. Ambient occlu-
sion (column (a)), linear (column (b)), and exponential (column (c)) become darker,
and square root (column (d)) appears less dark and more pleasant to the eye.

In the obscurances computation, dmax is also a key parameter to be considered since
it controls the number of voxels in a determined direction that have to be taken into ac-
count to compute occlusions (see Equation (5.1)). Therefore, if dmax has a high value,
the probability of finding an occlusion increases, and hence the obscurance value, lead-
ing to darker images. Conversely, if dmax has a low value, the probability to be occluded
decreases, leading to low obscurance values and hence lighter images. Figure 5.5 illus-
trates this effect in two data sets considering different dmax values (8, 64, and 256, re-
spectively). As expected, we can observe how the darkness of the image increases when
dmax increases. The other images in this paper have been computed using dmax = 64.
In Figure 5.5, the effect of the number of directions in the obscurances values is also
shown. Results for three different number of directions (12, 42, and 162) are given.
Observe that although 12 directions could be considered for fast editing, we need at
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(a) (b) (c) (d)

Figure 5.4: From top to bottom, obscurances with color bleeding for a synthetic model,
obscurances for the CT-human body data set, and a rendering of this data set using
an obscurance-based illumination model, all of them obtained considering different ρ

functions. From left to right: (a) ρ(d) = 0, (b) ρ(d) = d
dmax

, (c) ρ(d) = 1− e−
d

dmax and

(d) ρ(d) =
q

d
dmax

.
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least 42 directions for a good quality final image. We have used the high quality ob-
scurances given by 162 directions for the rest of the images shown in this paper. While
the obscurances volume of the CT-body has been computed from its opacity (given
by the transfer function), the obscurances of the aneurism have been computed from
its intensity values. The time cost for computing obscurances for the CT-body and the
aneurism is shown in Table 5.1. Times are given for system with an Intel Core 2 Quad
Q6600 CPU at 2.4 GHz with 2 GiB of memory. Note that, in accordance with the al-
gorithm of Section 5.3.1, the time cost is proportional to the number of voxels times
the number of directions. In the worst case, where densities are found in decreasing
order, all the voxels in a ray would be pushed to the stack, and then each one would
be popped, giving a cost proportional to the number of voxels in a ray. Thus, the cost
of the algorithm is independent of dmax.

Data Size 12 42 162
Aneurism 256× 256× 256 0:36 1:56 6:56
CT-body 256× 256× 415 1:14 4:09 15:02

Table 5.1: Time cost (minutes:seconds) for computing obscurances using 12, 42, and
162 viewing directions.

5.4 Volume saliency

The human visual system is able to reduce the amount of incoming visual data to a
small but relevant amount of information for higher-level cognitive processing. Dif-
ferent computational models have been proposed to interpret the selective visual at-
tention. The biologically-inspired model of bottom-up attention of Itti et al. [Itti 2001]
permits us to understand our ability to interpret complex scenes in real time. The selec-
tion of a subset of available sensory information before further processing appears to be
implemented in the form of a spatially circumscribed region of the visual field, called
focus of attention, while some information outside the focus of attention is suppressed.
This selection process is controlled by a saliency map which is a topographic represen-
tation of the instantaneous saliency of the visual scene and shows what humans find
interesting in visual scenes.

Inspired by Itti’s work, Lee et al. [Lee 2005] introduced the concept of mesh
saliency, a measure of regional importance for 3D meshes, computed using a center-
surround mechanism that is able to identify regions that are different from their sur-
rounding context. Mesh saliency is captured from surface curvatures and is used in
graphics applications such as mesh simplification and viewpoint selection. Feixas et al.
[Feixas 2009] defined a view-based saliency of a polygon as the average information-
theoretic dissimilarity between this polygon and its neighbors. In the volume render-
ing field, Kim and Varshney [Kim 2006] presented a visual-saliency-based operator to
enhance human perception of the volume data by guiding the viewer’s attention to
selected regions. A definition of voxel saliency is not provided and it is assumed that a
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nd = 162, dmax = 8 nd = 162, dmax = 64 nd = 162, dmax = 256

nd = 12, dmax = 64 nd = 42, dmax = 64

nd = 162, dmax = 8 nd = 162, dmax = 64 nd = 162, dmax = 256

nd = 12, dmax = 64 nd = 42, dmax = 64

Figure 5.5: The obscurance volumes of the aneurism (first and second row) and CT-
body (third and fourth row) are visualized considering different dmax values and num-
ber of directions nd. The square root function has been used in all the cases. Compu-
tation times are given in Table 5.1.
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saliency value is assigned to each voxel by using a user specification, eye-tracking data,
or feature computation. In different works on saliency, it has been shown that atten-
tion is attracted by changes in luminance, color, curvature, texture, shape, etc. [Tsotsos
2005]. That is, salient features are generally determined from the local differential
structure of images and different operators such as color or luminance gradient have
been used [van de Weijer 2006]. In González et al. [González 2008], from an informa-
tion theory perspective, ambient occlusion has been defined as the occlusion informa-
tion associated with each polygon of the model.

In this chapter, a definition of voxel saliency based on the gradient of obscurance
field is proposed. Considering that obscurance represents occlusion information associ-
ated with a voxel, its variation with respect to its surround can indeed be perceptually
salient, i.e. it can be considered as a salient feature of the volume. This saliency would
be most noticeable at edges, occlusion variations, and corners. On the other hand, a
smooth or uniform region would produce low saliency values, as it is intuitively ex-
pected.

The voxel saliency is defined as the magnitude of the gradient of obscurances esti-
mated by using the 4D linear regression method proposed in [Neumann 2000]:

S(z) =
p

A2+ B2+ C2, (5.4)

where voxel z is located at the origin of the coordinate system, and A, B, and C are
the components of the obscurance gradient [A, B, C]. These components are computed
as A =

∑

k w(k) O(k) x(k), B =
∑

k w(k) O(k) y(k), and C =
∑

k w(k) O(k) z(k),
where k stands for the voxels in the neighborhood centered at voxel z, w(k) is the
inverse of the distance between voxels z and k, O(k) is the obscurance of voxel k,
and x(k), y(k), and z(k) are, respectively, the x , y , and z components of the vector
from voxel z to voxel k. In our experiments, the neighborhood of z is given by a cube
of 53 voxels, since smoother results are obtained than by using a cube of 33 voxels
as in [Neumann 2000]. For each data volume, the saliency has been scaled ranging
from 0 to 1. Analogously to mesh saliency [Lee 2005], the gradient of obscurances
is scale-dependent (i.e., the saliency value depends on the size of the neighborhood
considered). We have to emphasize that our definition of saliency can be generalized
to the local volumetric shadowing methods [Hernell 2007, Ropinski 2008]. Figures
5.6(b), 5.6(d) and 5.6(f) show the color-coded saliency maps obtained for the CT-
human body corresponding to Figure 5.6(a).

5.5 Applications

In this section, we describe how obscurances can be applied to volume rendering to in-
teractively produce realistic and illustrative images. Two applications of saliency maps
are also presented.
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(a) (b) (c)

(d) (f)

(e) (g)

Figure 5.6: (a) Original CT-body data set. (b), (d), (f) Color-coded (from blue to red)
saliency maps corresponding to (b) the most salient view, (d) the least salient view, and
(f) the most salient view per unit area. (c), (e), (g) Illustrative visualizations obtained
with a saliency-based opacity modulation.
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5.5.1 Realistic and illustrative rendering

To apply the obscurances to the visualization, we use the Blinn-Phong shading model
where the color resulting from the local lighting of each voxel z is multiplied by its
obscurance value:

I(z) = (kdN(z) · L+ ks(N(z) ·H)n)O(z), (5.5)

where kd and ks are the diffuse and specular lighting coefficients, N(z) the normal of
the voxel, L the light vector, H the half-angle vector between L and the direction to the
viewer, n is the Phong exponent, and O(z) the obscurance of voxel z which has been
adjusted to the range [0,1]. Figure 5.4 (third row) illustrates the result of applying the
obscurance-based Blinn-Phong model on the CT-body data set.

We also introduce two parameters, low and high, such that from 0 to low obscu-
rances are set to 0 (making the voxel completely black), from low to high they follow
a linear distribution (preserving their original value), and from high to 1 their value is
set to 1 (thus the voxel becomes completely unobscured). Increasing the low threshold
will turn more voxels black, and this can be used to increase the contrast of the result-
ing image. Decreasing the high threshold means that more voxels are not darkened by
their obscurance, and so become brighter, thus increasing slightly the contrast too. In
the limit we could set low and high to the same value to have only some voxels with
obscurance 0 and others with obscurance 1. Thus, there would be voxels with their
own color (modified only by local lighting if applied) and the others would be black.
The user can modify low and high parameters to obtain the desired effect interactively.
Figure 5.1 shows different renderings of the CT-body data set. Figure 5.1(a) shows the
visualization of the model resulting from the application of obscurances with low = 0
and high = 1. Figure 5.1(b) has been obtained with low = 0.4 and high = 0.6, and
making the skeleton transparent. Finally, in Figure 5.1(c) all the structures have been
set to white and the obscurances assignment has been adjusted with low = 0.6 and
high= 0.7.

5.5.2 Saliency

As a measure of importance, the volume saliency is applied to obtain the most salient
views and to enhance volume visualization by modifying the transfer function accord-
ing to the computed saliency.

Similar to [Lee 2005], where mesh saliency was used to select the best views,
a method to calculate the saliency of a viewpoint is proposed. Given the saliency of
all the voxels, we can find the viewpoint which maximizes the visible saliency. The
viewpoint saliency is defined by

S(v) =
∑

z∈Z
S(z) vis(z|v), (5.6)

where v is a given viewpoint, Z is the set of voxels of the volume data, S(z) is the
saliency of voxel z, and vis(z|v) is the visibility of voxel z from v.
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We also present an automated technique to enhance volume visualization by em-
phasizing (increasing the opacity of) the most salient voxels and de-emphasizing (re-
ducing the opacity of) the least salient ones. So, the viewer’s attention is guided to-
wards the most salient parts of the model.

In Figure 5.6, the original CT-body data set (5.6(a)), the most salient view (5.6(b),
5.6(c)), the least salient view (5.6(d), 5.6(e)), and the most salient view per unit area
(5.6(f), 5.6(g)) are shown. Images 5.6(c), 5.6(e), and 5.6(g) have been obtained by
multiplying the opacity by the saliency. Figure 5.7 shows the original CT-body data
set (5.7(a)) and two different renderings obtained by scaling the opacity according
to the saliency values (5.7(b), 5.7(c)). In Figure 5.7(b), voxels with saliency lower
than 0.2 have been made transparent and the opacity of the most salient ones has
been preserved. In Figure 5.7(c), voxels with saliency lower than 0.2 have been made
transparent while the opacity of the most salient ones has been doubled.

(a) (b) (c)

Figure 5.7: (a) Original CT-body data set. (b), (c) Images obtained by scaling the
opacity according to the saliency values.

5.6 Conclusions

In this chapter, we have analyzed obscurance-based volume rendering by evaluating
the main parameters involved in its computation, such as the obscurance function and
the number of viewing directions. From this study, we conclude that the square root
function gives better results than other analyzed functions and that 42 directions are
enough to obtain obscurances of a certain quality, although for high quality results
we have used 162 directions. In addition, we have introduced two new applications of
obscurances. The first is a technique to obtain illustrative renderings and the second is a
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method to compute the saliency map as the gradient of obscurances. Saliency has been
used to enhance visualization and to select the most salient views. All our proposals
have been integrated in a common framework and tested on several volume data sets.

As future work, we plan to program a GPU version of the obscurances algorithm to
obtain real time or interactive obscurance computation.
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Volumetric ambient occlusion for
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6.1 Introduction

Obscurances or ambient occlusion (AO) [Zhukov 1998, Iones 2003, Landis 2002] has
been proved to be an efficient technique that gives perceptually similar results to global
illumination with a small fraction of the computational cost. The obscurance/ambient
occlusion technique was first used in video-game environments. Its application to vol-
ume rendering, called vicinity shading, was introduced by Stewart [Stewart 2003]. In
Chapter 5 of this thesis we have presented another volumetric adaptation of obscu-
rances that overcomes some of the limitations in Stewart’s approach.

This chapter presents the volumetric ambient occlusion for volumetric datasets.
The proposed approach is based on the volumetric ambient occlusion model [Szirmay-
Kalos 2010, Penner 2008], where ambient occlusion is interpreted as how big portion
of the tangent sphere of a surface belongs to the set of occluded points. The integrand
of the new formula has low variation, thus can be estimated accurately with a few sam-
ples. The algorithm can effectively be used in real time systems and games to cheaply
approximate global illumination effects. In our approach we extend this interpretation
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to compute the ambient occlusion of a voxel. The proposed approach runs in inter-
active time on current GPUs due to the use of separable filtering. It does not require
any pre-processing and thus can be applied to general dynamic models, providing high
quality smooth shading.

6.2 Background

In this section we describe the obscurance and related illumination models. We also
review previous work on volumetric ambient occlusion.

6.2.1 Obscurances and ambient occlusion

As we have seen in Section 2.5.2, the obscurance O of a point p is defined as the
integral

O(p) =
1

π

∫

Ω

ρ(d(p,ω)) cosθ dω, (6.1)

where ρ is a function of the distance d(p,ω) of the first intersection of a ray shot from
point p with direction ω, p is a surface point, θ is the angle between the normal vector
at p and direction ω, and the integration is over the hemisphere oriented according to
the surface normal. Ambient occlusion

A(p) =
1

π

∫

Ω

V (p,ω) cosθ dω, (6.2)

substitutes the ρ function in the obscurances equation (2.7) by the visibility function
V (p,ω) that has value 0 when no geometry is visible in direction ω and 1 otherwise.

The evaluation of the directional integral in the previous equations ((6.1) and
(6.2)) requires rays to be traced in many directions, which is rather costly and needs
complex GPU shaders. Under the hypothesis of at most a single intersection of a traced
ray within the radius dmax and taking ρ = d3, the directional integral can be trans-
formed to a volumetric one (Equation (6.3)) and the expensive ray tracing operation
is substituted by a simple containment test [Szirmay-Kalos 2010]. The domain of inte-
gration, the hemisphere above the surface, becomes now the tangent sphere.

Thus, the volumetric ambient occlusion is the relative volume of the unoccluded
part of the tangent sphere S. Formally, the volumetric ambient occlusion function is
defined as:

VAO(p) =

∫

S
I (q)dq

|S|
, (6.3)

where I (q) is 1 if point q in the tangent sphere is in the unoccluded region and zero

otherwise, and |S| =
4
�

dmax
2

�3
π

3
is the volume of the tangent sphere, which makes sure

that the volumetric ambient occlusion is also in [0,1].
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6.2.2 Volume shadowing

Several approaches to volume shadowing are reviewed in Section 2.5.1. In addition,
Penner and Mitchell [Penner 2008] computed an approximation of ambient occlusion
using the same formula as Eq. (6.3), where the domain of integration was the neighbor-
hood around a surface point (they take both hemisphere and tangent sphere), based on
the heuristic assumption that the percentage of occluding voxels surrounding the sur-
face provides a good approximation to the percentage of rays that would be occluded
while traversing through the same space. They used one-sided Chebyshev’s inequality
to compute them as variance occlusion maps, but stated in the conclusions that, al-
though Chebyshev’s inequality was a quick method to approximate complex lighting
effects, better CDF (cumulative distribution function) approximations should be used.

This chapter is related to this approach and proposes more robust estimates for
ambient occlusion.

6.3 New approaches for volumetric ambient occlusion

We propose two methods to approximate the ambient occlusion from the Cumulative
Distribution Function (CDF) of the density values. The parameters of the estimation
are computed by separable filters. Following the basic assumptions in [Szirmay-Kalos
2010], we will keep to the tangent sphere for a more robust interpretation of the results
as Eq. (6.1).

Histogram Empirical cumulative distribution
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Figure 6.1: Ambient occlusion as the cumulative distribution function.
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6.3.1 Ambient occlusion as CDF

The ratio of the volumes of the unoccluded points of the tangent sphere and the volume
of the tangent sphere is the geometric probability that a uniformly distributed point q
in the tangent sphere belongs to the unoccluded region, i.e. its scalar value v(q) is
smaller than the scalar value vp of the shaded point p or the isosurface. If the scalar
field is defined by a voxel grid, then we have exact values at voxel centers, but have
no information about the function v(q) in between the voxel centers. Note that the
usual assumption on tri-linearly varying function is just an approximation. Instead, we
can also assume that the scalar value v(q) is a random variable whose distribution is
defined by the N voxel values v1, . . . , vN included in the tangent sphere. With these,
the geometric probability of the occlusion is

VAO(p) = Pr[v ≤ vp] =

∑N
i=1 ε(vp − vi)

N
, (6.4)

where ε(x) is the step function. Note that Pr[v ≤ vp] = F(vp) is the cumulative proba-
bility distribution of random variable v for value vp (Fig. 6.1).

Processed voxel 

Tangent sphere 

Bounding box 

Figure 6.2: The ambient occlusion of a voxel is approximated by computing the prob-
ability that the density of a voxel in the bounding box of the tangent sphere is greater
than the density of the processed voxel.

Unfortunately, the application of this formula requires N fetches from the voxel
array, which is time-consuming unless N is small. However, selecting a small tangent
sphere that contains just a few voxel centers degrades the quality of ambient occlusion
and replaces nice soft shadows by smaller hard ones. On the other hand, when the set
of voxels contained by the tangent sphere changes, there is an abrupt change in the
ambient occlusion values, which results in stripe artifacts. So it is highly desirable to
find a continuous approximation of the probability distribution, which is defined by just
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a few representative variables [Gruen 2008]. Keeping real time rendering in mind even
for dynamically evolving scalar fields, we should find these parameters to allow their
computation with separable filtering, so the computation cost of a single representative
variable is just O( 3pN) instead of O(N). To make separable filtering possible, we extend
the domain from the tangent sphere to its bounding box (see Fig. 6.2).

Approximate cumulative distribution

1

AO

v
min
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max

v
p

t = 0 t = 1

tβ

Figure 6.3: Approximation of the cumulative distribution function with tβ .

6.3.2 Reconstruction of the cumulative distribution

In this approach we reconstruct the cumulative distribution from three quantities that
can be obtained by separable filtering inside the bounding box of the tangent sphere:
the minimum density value vmin, the maximum density value vmax and the mean of the
density values E[v].

The yet unknown cumulative distribution F(vp) must be zero if vp ≤ vmin, equal to
1 if vp ≥ vmax, and non-decreasing in between. For notational simplicity, we introduce
the following normalized parameter:

t =
vp − vmin

vmax− vmin
=

vp − vmin

∆v
, (6.5)

where ∆v = vmax− vmin.
Using the normalized parameter, the cumulative distribution must be zero if t ≤ 0,

and 1 if t ≥ 1, and non-decreasing in interval [0, 1]. Considering all possible distribu-
tions of the density values, the cumulative distribution may be a step function at vmin

at one extreme case and another step function at vmax in the other extreme case. Thus,
we have to find a function that increases from 0 to 1 and has the flexibility to adapt
to the two extreme cases. A very simple function meeting all these requirements is tβ
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where β is the parameter of data fitting (Fig. 6.3). Thus the cumulative distribution is

F(vp) = tβ where vp(t) = t∆v+ vmin. (6.6)

Let us consider the constraint on the mean:

E[v] =

∫ vmax

vmin

vp dF =

∫ 1

0

vp(t)
dF

dt
dt

=

∫ 1

0

(t∆v+ vmin)β tβ−1 dt =
β∆v

β + 1
+ vmin. (6.7)

Solving this equation for β , we get:

β =
E[v]− vmin

vmax− E[v]
. (6.8)

6.3.3 Gaussian cumulative distribution

Our second approach is to approximate the distribution by a Gaussian, and thus use
the Gaussian CDF (Fig. 6.4):

F(x;µ,σ2) =

∫ x

−∞
f (t;µ,σ2)dt = Φ
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x −µ
σ

�

=
1

2

�

1+ erf
�

x −µ
σ
p

2

��

, x ∈ R, (6.9)

where µ= E[x], σ2 = E[x2]−E2[x], and erf(x) is the Gauss error function, which can
be approximated by

erf(x)≈

√

√

√

√1− exp

 

−x2
4
π
+ ax2

1+ ax2

!

, (6.10)

where

a =
8(π− 3)

3π(4−π)
≈ 0.140012; (6.11)

this approximation is better than 4 · 10−4 in relative precision [Winitzki 2008].
In this case we compute by separable filtering the mean and the variance of the

density values and use them in the previous equation to estimate the percentage of
occluding voxels of a given voxel.

6.4 Results

The proposed methods have been implemented in CUDA and their performance has
been measured on a system with an Intel Core 2 Quad Q9550 CPU and a Nvidia
GeForce GTX 280 graphics card. To evaluate them we have used two different datasets,
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Figure 6.4: The Gaussian CDF with different parameters.

a CT-body of 256× 256× 415 voxels from the Visible Human project and the Chapel
Hill CT-head of 256× 256× 113 voxels from the Volume Library.

6.4.1 Ambient occlusion maps

The proposed approaches have been compared with three different ambient occlusion
strategies: the methods of Stewart [Stewart 2003], our obscurances (Chap. 5), and
Penner [Penner 2008]. In Fig. 6.5 we present the obtained results. From Fig. 6.5(a) to
Fig. 6.5(e), respectively, the maps have been obtained with the methods of Stewart, ob-
scurances, Penner, the proposed CDF reconstruction, and the Gaussian CDF. In the case
of Stewart and obscurances, the maps have been obtained considering 42 viewpoints.
The other maps have been obtained taking a radius of 10 voxels. Observe that CDF
reconstruction and Gaussian CDF methods generate lighter and more pleasant maps
than the Penner method, and a smoother shading than the Stewart and obscurances
maps.

One of the parameters that can be modified in our approaches is the radius of the
filter kernel, that is taken equal to the diameter of the tangent sphere. To illustrate
the effect of this value on the final images we present in Fig. 6.6 the maps obtained
with different methods and radii. From row (i) to row (iii), the maps are generated
with the methods of Penner, CDF reconstruction and Gaussian CDF. Columns (a) and
(b) are obtained with a radius of 5 and 10 voxels, respectively. It can be seen that the
quality of the maps is improved when the radius is increased. Also, we can see that
CDF reconstruction and Gaussian CDF have a greater quality than Penner’s approach.
Finally, we consider the ambient occlusion value as an ambient lighting AL term. In this



88 Chapter 6. Volumetric ambient occlusion for volumetric models

(a) (b) (c)

(d) (e)

Figure 6.5: AO maps for CT-body using different methods: (a) Stewart, (b) obscu-
rances, (c) Penner, (d) reconstruction of the CDF, and (e) Gaussian CDF. (a) and (b)
have been computed with 42 viewpoints, and (c), (d), and (e) with a radius of 10
voxels.
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(i.a) (i.b)

(ii.a) (ii.b)

(iii.a) (iii.b)

Figure 6.6: AO maps for CT-head using different methods and radii. Rows: (i) Penner,
(ii) reconstruction of the CDF, and (iii) Gaussian CDF. Columns: (a) radius of 5 voxels,
and (b) radius of 10 voxels.
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Radius Penner CDF reconstruction Gaussian CDF
CT-body 5 713 565 717

10 958 734 965
CT-head 5 200 161 203

10 268 205 270

Table 6.1: Times in milliseconds to compute the AO maps for the different ambient
occlusion methods and datasets and two radii.

case the color of a voxel p is obtained as

C(p) = AL(p) = ki O(p)CTF(p), (6.12)

where ki is a constant factor that modulates the intensity of ambient occlusion O(p)
and CTF(p) is the pure color of the voxel as defined in the transfer function. In Fig-
ures 6.7 and 6.8 we illustrate the effect that can be obtained with the CT-body and
the CT-head, respectively. From (a) to (d), respectively, we show the model without
ambient occlusion, and applying the AO maps obtained with the methods of Penner,
CDF reconstruction, and Gaussian CDF, in all cases with a radius of 10. As expected, by
adding the ambient occlusion maps, the overall features of the volume models become
more distinguishable. With the CDF reconstruction and the Gaussian CDF methods,
context information is better captured, giving an improved depth perception over Pen-
ner’s method, which generates a too dark final appearance. This is because, in the
Chebyshev estimation used by Penner’s method, voxels with a value lower than the
mean are assumed to be not occluded, and this creates a big contrast.

Table 6.1 shows the times in milliseconds to compute the volumetric AO maps for
the CT-body and CT-head datasets, with radii 5 and 10, and for the three different
methods. These times include all the filtering passes, memory transfers, and synchro-
nizations.

6.4.2 Opacity modulation

As we proposed in Section 5.4, the gradient of the ambient occlusion indicates where
the salient regions are, so it is worth modulating the opacity value by this gradient,
which is estimated by a 4D regression filter [Neumann 2000]. The gradient calculation
cannot be done using a separable filter, which increases the computational cost.

Instead of the gradient we propose the application of the variance of the intensity
value, which also indicates where the volume changes quickly. The variance can be
obtained as the difference of the second moment and the square of the mean value and
both of them can be obtained by separable filtering. Thus modified opacity α′ is:

α′ = α ·min

�

σ2

σ2
max

, 1

�

= α ·min

�

E[v2]− E2[v]
σ2

max

, 1

�

, (6.13)

where σ2
max is a user-defined constant.
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(a) (b)

(c) (d)

Figure 6.7: Ambient lighting for CT-body using different methods and a radius of 10
voxels: (a) original without ambient occlusion, (b) Penner’s, (c) reconstruction of the
CDF, and (d) Gaussian CDF.
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(a) (b)

(c) (d)

Figure 6.8: Ambient lighting for CT-head using different methods and a radius of 10
voxels: (a) original without ambient occlusion, (b) Penner’s, (c) reconstruction of the
CDF, and (d) Gaussian CDF.
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In Figures 6.9 and 6.10 we present the opacity modulation effects that can be
obtained using different methods. From column (a) to (e), respectively, we show the
original model rendered with diffuse lighting, and modulated using the gradient of the
AO map obtained with the methods of Penner, CDF reconstruction, and Gaussian CDF,
and finally, with the intensity variance using a radius of 10 voxels and σ2

max = 5. The
result of this modulation is that the opacity of less occluded parts, such as muscles,
is decreased, allowing to better see the inner structures. The time for the intensity
variance computation with a radius of 10 voxels is 863 ms for the CT-body and 243 ms
for the CT-head.

(a) (b) (c) (d) (e)

Figure 6.9: Opacity modulation of CT-body using different methods: (a) original ren-
dering with diffuse lighting, (b) gradient of Penner’s AO map, (c) gradient of CDF
reconstruction AO map, (d) gradient of Gaussian CDF AO map, and (e) intensity vari-
ance with a radius of 10 voxels.

6.5 Conclusions

Volumetric ambient occlusion is a powerful technique that computes ambient occlu-
sion by considering the portion of tangent sphere that is unoccluded. We have pre-
sented here new methods for the evaluation of the volumetric ambient occlusion for
volumetric models. They produce high quality smooth shading and work at interactive
rates thanks to the use of separable filtering to compute the needed parameters, and
compare well with other ambient occlusion techniques for volumetric data. We have
also shown how the gradient of the volumetric ambient occlusion nicely modulates the
transfer function, and finally we have given a quick way to simulate this gradient.
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(a)

(b) (c)

(d) (e)

Figure 6.10: Opacity modulation of CT-head using different methods: (a) original ren-
dering with diffuse lighting, (b) gradient of Penner’s AO map, (c) gradient of CDF
reconstruction AO map, (d) gradient of Gaussian CDF AO map, and (e) intensity vari-
ance.
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7.1 Introduction

A main step in direct volume rendering is the definition of the transfer function. This
assigns optical properties such as color and opacity to the original values of the data to
visualize the internal parts of the volume. In the case of one-dimensional transfer func-
tions, there is a direct mapping between optical values and voxel scalar values. On the
other hand, multidimensional transfer functions take more information into account,
such as first and second derivatives [Kniss 2002a]. This additional gradient informa-
tion allows a better separation between materials and thus better visualizations. The
need for a good detection of boundaries becomes crucial for the quality of the render-
ing. Knowledge of boundaries facilitates the understanding of the volume data set by
focusing on the most pertinent subset of data, i.e., which can be considered as the most
salient parts of data [Itti 2001].

Although it has already been used by different authors [Kim 2006], the concept
of saliency in a volume model, different to an image or a 3D polygonal scene, is not
yet a well defined concept. Saliency should facilitate learning by focusing on the most
pertinent subset of available sensory data. On the other hand, saliency of a voxel (or



96 Chapter 7. Interactive volume illustration using intensity filtering

Figure 7.1: Main steps of the proposed approach.

region) should arise from contrast between this voxel (or region) and its neighborhood.
Thus, it should include recognition of the boundaries of the inner parts of the volume
data, as well as finding local deviations. When examining a 3D polygonal model, we
just have one isosurface, we do not have to single it out, we just want to single out the
particular oddities or irregularities of this surface. In the case of volume data, we first
have to single out the components, i.e., the boundaries that make up its structure. On
the other hand, the observation of the volume data model comes always via a transfer
function, thus modulating an original, neutral transfer function with this extended
saliency will allow us to learn about the data. A quantity very simple to compute that
fills the above requirements of generalized saliency is an unsharped mask. This is the
difference between low-pass filtered data and the original one.

Different feature enhancement strategies based on unsharp masking have been pro-
posed. Cignoni et al. [Cignoni 2005] performed unsharp masking to the normal field
over the 3D surfaces, to enhance the perception of discontinuous geometric features.
Luft et al. [Luft 2006] enhanced depth perception by unsharp masking the depth buffer.
The difference between the filtered image and the original one was called spatial im-
portance map. Ritschel et al. [Ritschel 2008] coherently enhanced the scene by un-
sharp masking the outgoing radiance field over the mesh surface. Tao el al. [Tao 2009]
use the difference between the radiance volume and the smooth radiance volume to
enhance local contrast of features. In this section, we propose a similar approach but
instead of using radiance we propose to operate with the original intensity values, hav-
ing lower memory requirements. We use the spatial importance map to obtain both an
enhanced visualization of the data, by modulating color and opacity, and illustrative
effects such as stippling.

The structure of the chapter is as follows. In Section 7.2, we review related work.
In Section 7.3, we describe the proposed approach. Then, in Section 7.4 we show the
different effects that can be obtained in the proposed approach. Finally, conclusions
are presented in Section 7.5.
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7.2 Background

Direct volume rendering techniques allow to explore the structures embedded in the
volume data set by varying the opacities and colors assigned to them. For the rendering
to be effective it is required a transfer function that assigns colors and opacities to the
different materials, but the definition of a proper transfer function is challenging. The
main limitation is the classification process required to define the density intervals cor-
responding to the structures, i.e., the boundaries that separate the different materials.
Several approaches have been presented to assist the user in transfer function design.
Refer to Section 2.4 for an overview.

Another issue of special interest in volume rendering is how to determine the re-
gions of interest of the rendered volume. Different computational models have been
proposed to interpret the selective visual attention. Several works on volume saliency
have been reviewed in Section 5.4. Considering that obscurance represents occlusion
information associated with a voxel, its variation with respect to its surround can in-
deed be perceptually salient, i.e., it can be considered as a salient feature of the volume.

7.3 Proposed approach

Detection of the structures is an important step towards the interpretation of volume
data. In general, each structure is represented by an interval of densities. The iden-
tification of these intervals can be obtained from the identification of the boundaries
that separate from each other. Spatial importance maps can be used to identify these
boundaries. The idea of our method is to exploit this fact to provide a simple strategy
for exploring volume data models and also obtain different illustrative effects that en-
hance the perceptual quality and interpretation of the images taking only the original
intensity values.

The main steps that compose the proposed approach are represented in Figure 7.1.
First, in a preprocessing step, we compute the spatial importance map by filtering the
input model and subtracting the obtained result from the original model. Then, the
spatial importance map is integrated in the visualization pipeline and used to mod-
ulate the color and/or the opacities returned from the illumination process in order
to produce different illustrative effects. A detailed description of these steps and main
implementation details are given below.

7.3.1 Spatial importance map

The first step of our approach consists in the computation of the spatial importance
map, that can be considered the core of the method. This map is the extension to 3D
of the spatial importance function ∆D proposed by Luft et al. [Luft 2006]. In contrast
to Tao et al. [Tao 2009], who used radiance, we use intensity values. The advantages
of our approach are that it does not depend on the transfer function and lighting, and
thus can be done as a preprocessing step, and that it requires less memory.
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Figure 7.2: From top to bottom, spatial importance maps obtained for CT-body (256×
256×415), CT-head (512×512×297), and CT-salmon (336×173×511). The images
of the first and second columns have been obtained with a radius of 5 and 10 for the
Gaussian filter, respectively.
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Given a volume model V : N3 → Z where Z represents the scalar values of the
voxels, we compute the spatial importance map ∆D by

∆D = G ∗ V − V , (7.1)

where G ∗ V is a Gaussian blur of the volume. A Gaussian blur is the convolution of an
image with the Gaussian function

G(x) =
1

p
2πσ

e−
x2

2σ2 , (7.2)

where x is the distance from the origin and σ is the standard deviation of the Gaussian
distribution. The above function is for the 1D case, for 2D it is the product of two
Gaussians and in 3D the product of three Gaussians, one per direction. The effect of a
Gaussian blur is the reduction of the high frequency elements of the image, so it is a
low-pass filter.

In Figure 7.2, we illustrate the spatial importance maps obtained for different mod-
els, a CT-body (256 × 256 × 415), a CT-head (512 × 512 × 297), and a CT-salmon
(336 × 173 × 511) and different radii of the Gaussian kernel. The maps are colored
using the thermal scale represented at the bottom, where warm colors correspond to
positive importance values and cool colors to negative ones. Observe that the voxels
that are near density boundaries have values different from zero, because in the blurred
volume the boundaries are smoothed and have values lower than the originals at one
side, and higher at the other side. So, positive difference values indicate voxels near a
boundary with a higher density material since this makes that those voxels have higher
intensity in the filtered volume. In a similar way, negative difference values correspond
to voxels near a boundary with a lower density material because in the filtered volume
their intensities are lowered. Note that both positive and negative values are important.

7.3.2 Implementation

The spatial importance map is the result of subtracting the original model from the fil-
tered model. Therefore, the main step is the computation of the filtered volume model.
To implement the Gaussian blur we take advantage of the separability property of the
3D Gaussian function. That is, the 3D Gaussian function can be separated into the
product of three 1D functions. From a practical point of view, this means that convolv-
ing the volume with a 3D Gaussian function is equivalent to convolving the volume
with a 1D Gaussian function along one axis, then convolving the result again with a
1D Gaussian function along another axis, and finally convolving this last result with a
1D Gaussian function along the other axis. This results in a computationally cheaper
implementation.

Moreover, we have to take into account another feature of the Gaussian function
in the implementation. The Gaussian function extends infinitely at both sides, so we
would have to take into account the full image to compute the filtered version of each
voxel. In practice, though, values further than 3σ are small enough to be negligible, so
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(a) λ=−10 (b) λ= 0 (original)

(c) λ= 10 (d) λ= 20

Figure 7.3: Color modulation driven by spatial importance map of the CT-body with
ambient lighting.
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Volume R 1D filter (ms) Subtract (ms) Total (ms)
CT-body 1 20.85 18.03 335.05

5 52.96 438.13
10 93.59 560.23

CT-head 1 57.90 51.90 928.41
5 155.61 1221.18

10 272.77 1570.10
CT-salmon 1 22.66 19.66 376.37

5 59.03 490.04
10 104.93 617.24

Table 7.1: Times in milliseconds (ms) to compute the spatial importance map for the
CT-body (256×256×415), the CT-head (512×512×297), and the CT-salmon (336×
173×511) with different radii (R) of the Gaussian kernel. The 1D filter column reports
the time to do a 1D convolution with the kernel (this process has to be done once for
each axis). The Subtract column reports the time required to do the subtraction. The
Total column includes the time to do the 3 convolutions, the subtraction, and all the
other additional operations like memory allocations and transfers.

we can clamp the function at that distance. In our implementation, we have only one
parameter regulable by the user, which is the radius of the Gaussian kernel measured
in pixels (see Figure 7.2). Then, we define σ to be one third of the radius, so that all
the values inside the radius are significant. The values in the kernel are sampled from
the Gaussian function at the center of each voxel, and then we normalize them so that
they sum 1.

The method has been implemented with CUDA to achieve real time performance.
We take advantage of the fact that both the filtering and the difference are paralleliz-
able for each voxel. The steps of the CUDA implementation are the following:

1. Prepare volume data converting it to floating point values.

2. Copy volume data to a 3D CUDA array and bind a 3D texture to it. This texture
returns the real values (not scaled), and is accessed with non-normalized texture
coordinates with clamp address mode and with nearest neighbour interpolation,
so that it works like an array.

3. Allocate space in global memory to store the result of the filtering.

4. Compute the Gaussian kernel according to the radius and copy it to global mem-
ory.

5. Filter the array data in the X axis.

6. Copy the result of the previous filtering to the volume 3D array so it is the source
in the next step.

7. Filter the array data in the Y axis.
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(a) λ=−5 (b) λ= 0 (original)

(c) λ= 5 (d) λ= 10

Figure 7.4: Color modulation driven by absolute spatial importance map of the CT-body
with local lighting.
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8. Copy the result of the previous filtering to the volume 3D array so it is the source
in the next step.

9. Filter the array data in the Z axis.

10. Copy the original volume data again to the 3D array.

11. Subtract the original volume from the filtered volume (the last result).

12. Copy the final result to host memory.

13. Clean up all allocated memory in the graphics card.

In Table 7.1, we collect the time required to compute the spatial importance map for
the CT-body, the CT-head, and the CT-salmon considering different radii of the Gaussian
kernel. The 1D filter column reports the time to do a 1D convolution with the kernel
(this process has to be done once for each axis). The Subtract column reports the
time required to do the subtraction. The Total column includes the time to do the
3 convolutions, the subtraction, and all the other additional operations like memory
allocations and transfers previously described.

7.3.3 Modulation and illustration

As it is illustrated in Figure 7.1, once the spatial importance map has been obtained
it is integrated at the end of the visualization pipeline to obtain different effects. The
modulation process considers the map and also the colors and/or opacities assigned by
the illumination module to the volume. The set of effects that can be obtained depends
on the considered parameters. We can use the raw importance values or convert them
to absolute values. In addition, we can consider applying the modulation to the color
assigned to the voxel or to the opacity. Moreover, we can use it to regulate the density
of the dots in a stipple rendering. In the next section, we give a detailed description of
the most representative effects.

7.4 Applications

To describe the different effects that can be obtained with the proposed approach,
we grouped them into three different sections. First, we consider the modulation of the
illumination model (effects on the colors), then the modulation of the transfer function
(effects on the opacities), and at last the modulation of dot density in stippling. In all
the following examples, the radius of the Gaussian filter is 10.

7.4.1 Color modulation

As we have shown in Section 7.3.1, the spatial importance map contains information
about the boundaries distributed in positive and negative values, which can be inter-
preted as both sides of boundaries. To emphasize them, importance values can be used
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(a) original

(b) kl = 0.5 (c) kl = 1

(d) kl = 2 (e) kl = 5

Figure 7.5: Different opacity modulation effects with different parameters applied to
the CT-head model. (a) Original model, and (b) to (e) with tl = 1, th = 1, kh = 1, and
modifying the kl parameter.
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to modulate the color and contrast of the volume dataset. We propose different strate-
gies that differ in how we consider the values of the map for the modulation. Being I
the color of a voxel, the first strategy for adding the spatial importance value ∆D is by
considering the raw values. In this case, we apply

I ′ = I +∆D ·λ, (7.3)

where λ is a factor used to modulate the effect.
The second effect we obtain is by taking absolute importance values instead of the

raw ones. In this case, we obtain the final color with

I ′ = I + |∆D| ·λ. (7.4)

All these effects can be applied both to the ambient lighting or the local illumina-
tion. In Figure 7.3, we show the effects obtained using original importance values and
ambient lighting on the CT-body. From left to right, the λ values are−10, 0, 10, and 20.
In Figure 7.4, we show the effects on the same model with local lighting and absolute
importance values. From left to right, the λ values are −5, 0, 5, and 10. Observe that
with raw values and a positive λ we obtain a darker image, due to the fact that most
values in the map are negative; on the other hand, a negative λ produces a brighter im-
age. With absolute values, the darkening and brightening effects are reversed because
all the values are positive.

7.4.2 Opacity modulation

Now we describe how to modulate the opacity. In this case, the idea is to use the
information of the spatial importance map to increase or decrease the opacity in order
to emphasize the most salient parts.

Being A(z) the opacity of the voxel z, we compute the new opacity A′(z) by

A′(z) =







A(z) kl |∆D(z)|, if |∆D(z)|< tl,

A(z) kh |∆D(z)|, if |∆D(z)|> th,

A(z), otherwise,

(7.5)

where tl and th are the low and high thresholds respectively, kl and kh are factors to
regulate the effect of the modulation, and |∆D(z)| is the absolute spatial importance
value of the voxel z normalized in the range [0,1]. We use absolute values because we
are interested in detecting the boundaries, and both positive and negative values give
this information.

In Figure 7.5, we illustrate the opacity modulation effects applied to the CT-head.
Column (a) corresponds to the original model without any modulation. Columns (b)
to (e) are obtained with tl = 1, th = 1, kh = 1 and kl set to 0.5, 1, 2, 5. From Equa-
tion (7.5) we can see that kh has no influence on the rendering since th = 1. Further-
more, since tl = 1, nearly all voxels are multiplied by the spatial importance and the
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(a) original

(b) kl = 1 (c) kl = 2

Figure 7.6: Different opacity modulation effects using a default transfer function ap-
plied to the CT-head model. (a) Original model, and (b) and (c) with tl = 1, th = 1,
kh = 1 and modifying the kl parameter.
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weighting factor kl. As kl increases, more detailed information about inner structures
is captured.

Figure 7.6 shows that the same previous effects can be applied to the original model
considering a default transfer function that is obtained by linearly mapping intensities
to opacities and gray values. Note that the proposed approach can be used for first
explorations of a volume dataset since no a priori knowledge is required.

(a) t = 0.1, f = 5 (b) t = 0.1, f = 10

(c) t = 0.1, f = 15 (d) t = 0.1, f = 20

Figure 7.7: Stipple rendering of the CT-head modulated by the spatial importance map
with different parameters.

7.4.3 Stippling

Stippling is an illustration technique in which the image is drawn using dots. This tech-
nique has been simulated algorithmically by several authors. Deussen et al. [Deussen
2000] applied half-toning techniques to arrive at an initial stipple distribution and then
interactively applied relaxation based on centroidal Voronoi diagrams. Secord [Sec-
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ord 2002] used a fast probabilistic method in which stipples are automatically packed
more densely in dark regions and more sparsely in lighter regions. Schlechtweg et
al. [Schlechtweg 2005] created a multi-agent system to position the stipples. Sousa et
al. [Sousa 2003] approximate stippling by using short, serrated ink strokes modeled
directly over the mesh’s edge.

(a) t = 0.03, f = 10 (b) t = 0.03, f = 20

(c) t = 0.1, f = 10 (d) t = 0.1, f = 20

Figure 7.8: Stipple rendering of the CT-body modulated by the spatial importance map
with different parameters.

In our approach, we propose to regulate the density of the dots according to the
normalized absolute spatial importance map |∆D|. We have two user-defined parame-
ters: a threshold t above which everything is white, and a factor f that regulates the
density scale. In addition, there is a random value r(s) generated for each sample s in
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the ray casting. The color of each sample C(s) is defined as

C(s) =

(

white, if |∆D(s)| ≥ t or f · |∆D(s)| ≥ r(s),

black, if |∆D(s)|< t and f · |∆D(s)|< r(s).
(7.6)

In Figures 7.7 and 7.8, this stippling effect has been used to render the CT-head
and the CT-body, respectively, considering different parameters. This effect can also be
applied in combination with the opacity modulation, as shown in Figure 7.9.

Figure 7.9: The CT-body rendered combining stippling (t = 1, f = 1) and opacity
modulation (tl = 1, th = 1, kl = 1, kh = 1) effects.

7.5 Conclusions

We have presented a new approach for obtaining illustrative volume renderings. The
method computes a spatial importance map that captures information about the most
salient parts of the model. This map is integrated in the visualization pipeline allowing
to modulate color and opacity values. Such modulations have been used to obtain dif-
ferent effects that enhance volume data interpretation giving visual clues about struc-
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tures contained in the volume. In addition, we have used the spatial importance map
to modulate the density of the dots in a stipple rendering.

In our future work, we will explore the use of other low-pass filters, such as the
trilateral filter, and evaluate how they behave compared to the Gaussian filter.
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Figure 8.1: Volume renderings of the tooth data set using transfer functions obtained
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importance using a mask of the nerve.
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8.1 Introduction

A crucial step in volume rendering is the transfer function definition. This function
assigns color and opacity to the data being visualized determining which structures of
the volume will be visible and how they will be rendered. Transfer functions assume
that volume values map directly to physical properties. The main issues involved in
transfer function specification are volume data classification and management of visual
properties.

As we have mentioned in Section 2.4, different strategies have been proposed to
simplify the transfer function specification [Pfister 2001]. Classical approaches use
scalar volume data to detect boundary information between tissues and then define
the transfer function. Unfortunately, overlaps between data intervals corresponding
to different materials make boundary detection difficult. To overcome this limitation,
derived attributes, such as first and second order derivatives, are considered to iso-
late materials [Levoy 1988, Kindlmann 1998, Hladůvka 2000, Kindlmann 2003]. In
this case, the transfer function definition becomes more complex and user interaction
is required. Other techniques define the transfer function on the basis of rendered
images and the user selects one or more favorite images that guide further image
selection [He 1996, Marks 1997, Wu 2007]. The goal of these methods is to obtain
good renderings but not necessarily good transfer functions. More recent strategies
for transfer function design propose to consider other parameters, such as visibil-
ity [Correa 2009b, Correa 2011], or measures that can be derived from information
theory [Haidacher 2008, Bruckner 2010]. Despite the advances of these methods, the
automatic definition of the transfer function is still an open research problem.

In this chapter, we present an automatic approach for transfer function design that
does not require previous knowledge nor segmentation of the model. Our method is
defined from a visibility channel between a set of viewpoints and a set of bins of the
volume data set, and is formulated as an optimization process that obtains the opacity
transfer function that minimizes the informational divergence between the visibility
distribution (normalized visibility histogram) captured by the set of viewpoints and a
target distribution. This target distribution is proposed by the user and reflects the data
importance, or highly relevant data value interval, or spatial segmentation. Different
target distributions, based on scalar volume data or derived attributes such as the gra-
dient, are proposed following two different strategies to obtain the transfer function:
a global strategy that assumes no a priori knowledge of the model and an importance-
based strategy that emphasizes regions or intensity bins selected by the user in the
spirit of view-dependent cutaways. The performance of the method is analyzed for
different volume data sets.

This chapter is organized as follows. In Section 8.2, we present related work on
transfer function design and on information-theoretic applications to computer graph-
ics. In Section 8.3, the framework and the motivation of the method are presented. In
Section 8.4, the proposed method is described. Experimental results are shown and dis-
cussed in Section 8.5. Finally, our conclusions and future work are given in Section 8.6.
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8.2 Background

In this section, we review different strategies that have been proposed in transfer func-
tion design. Since our approach is based on information-theoretic tools, we also present
related work concerning information theory in computer graphics.

8.2.1 Transfer function design

Transfer function design is a difficult and time-consuming task. Several approaches,
reviewed in Section 2.4, have been presented to help the user in the transfer function
definition. In our approach, as in [Correa 2011], the visibility is used as a main pa-
rameter to be considered for the transfer function specification. But, contrary to most
techniques, that require a previous segmentation or classification of the volume data set
to automate the process, in our approach no a priori knowledge is required, although
this knowledge can also be used to generate importance-driven visualizations.

8.2.2 Information theory in computer graphics

In computer graphics, the most basic information-theoretic measures have been used
in scene complexity, global illumination, light positioning, and viewpoint selection for
polygonal scenes. In visualization, information theory has been applied to fields such
as view selection, flow visualization, time-varying volume visualization, and transfer
function definition. Relevant contributions in this area are reviewed in Section 2.8.
In our approach information theory is used to define a new framework capable to
automatically generate good transfer functions.

8.3 Framework and motivation

In this section, we present the visibility channel that constitutes the framework for the
information-theoretic measures used in this paper. Then, we give motivation for our
approach to automatic transfer function definition.

8.3.1 Visibility channel

Viola et al. [Viola 2006] defined a visibility channel between a set of viewpoints and the
set of objects of a volume data set. From this channel, different information-theoretic
measures for viewpoint selection and illustrative visualization have been defined (see
Section 2.9).

In this paper, we consider an information channel V → B between random variables
V and B that are defined over the alphabets V (set of viewpoints) and B (set of
intensity bins), respectively. Thus, the visibility channel proposed by Viola et al. [Viola
2006] has been slightly modified to deal with the intensity bins of the volume data set
instead of objects or voxels. Note that in the explanation of this channel we consider
that each bin corresponds to the set of voxels that have the same intensity value but
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this perspective can be extended to consider other binning strategies such as clusters
of intensities or pairs (intensity, gradient). Viewpoints are indexed by v and intensity
bins by b, and the capital letters V and B as arguments of p() are used to denote
probability distributions. For instance, while p(v) denotes the probability of a single
viewpoint v, p(V ) denotes the input distribution of the set of viewpoints. Although
diverse configurations of viewpoints can be used, it is assumed here that all the volume
data sets are centered in a sphere of viewpoints and the camera is looking at the center
of this sphere.

The main elements of the channel V → B are the following:

• The transition probability matrix p(B|V ), that is constituted by the conditional
probabilities p(b|v), given by the normalized projected visibility of intensity bin
b over a viewpoint v. A row of that matrix is denoted by p(B|v) and satisfies that
the sum of its elements is equal to 1:

∑

b∈B p(b|v) = 1. Conditional probability
p(b|v) is given by

p(b|v) =
vis(b|v)
vis(v)

, (8.1)

where vis(b|v) is the visibility of intensity bin b from viewpoint v and vis(v) =
∑

b∈B vis(b|v) is the captured visibility of all intensity bins over the sphere of
directions centered at v. The visibility vis(b|v) of an intensity bin b from a view-
point v is the sum of the visibilities from viewpoint v of all voxels that have
intensity b: vis(b|v) =

∑

f (z)=intensity(b) vis(z|v), where f (z) is the intensity value
of voxel z. The visibility vis(z|v) of a voxel z from a viewpoint v is equal to the
contribution of voxel z to the final image according to its opacity and also to
the opacity of the preceding voxels in each ray that visits it [Levoy 1988]. For
example, a fully opaque voxel that is seen from one ray, and that is not occluded
at all by any other voxel in this ray, has a visibility of 1.

• The input distribution p(V ), that contains the probability of each viewpoint. An
element p(v) of this probability distribution can be interpreted as the importance
of viewpoint v and is given by

p(v) =
vis(v)

∑

i∈V vis(i)
. (8.2)

• The output distribution p(B), where each element p(b) is given by

p(b) =
∑

v∈V
p(v)p(b|v) (8.3)

and expresses the average projected visibility of intensity bin b from all view-
points.

Note that all probabilities of this channel depend on the applied transfer function.
Thus, different transfer functions will generate different transition probability matrices,
and input and output distributions.
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In this framework, the conditional entropy H(B|V ) is given by the weighted average
entropy for all viewpoints:

H(B|V ) =−
∑

v∈V
p(v)

∑

b∈B
p(b|v) log p(b|v) =

∑

v∈V
p(v)H(B|v), (8.4)

where H(B|v) = −
∑

b∈B p(b|v) log p(b|v) is the viewpoint entropy [Vázquez 2001] of
viewpoint v. As the viewpoint entropy quantifies the visibility uncertainty from a given
viewpoint v, the conditional entropy expresses the average visibility uncertainty from
all viewpoints.

The degree of dependence or correlation between a set of viewpoints V and the
intensity binsB is expressed by the mutual information I(V ; B):

I(V ; B) =
∑

v∈V
p(v)

∑

b∈B
p(b|v) log

p(b|v)
p(b)

=
∑

v∈V
p(v)I(v; B), (8.5)

where I(v; B) =
∑

b∈B p(b|v) log p(b|v)
p(b) is the viewpoint mutual information, which mea-

sures the degree of dependence between the viewpoint v and the set of bins (see [Viola
2006]).

For the discussion in the next subsection, we introduce the definition of the infor-
mational divergence. The informational divergence or Kullback-Leibler distance DKL(p‖q)
between two probability distributions p and q [Cover 1991, Yeung 2008], that are de-
fined over the alphabet X , is given by

DKL(p‖q) =
∑

x∈X
p(x) log

p(x)
q(x)

. (8.6)

The conventions that 0 log 0
0
= 0 and a log a

0
= ∞ if a > 0 are adopted. DKL(p‖q)

can be interpreted as a divergence measure between the true probability distribution p
(observed data) and the target probability distribution q (theoretical model or descrip-
tion). The informational divergence satisfies the information inequality DKL(p‖q) ≥ 0,
with equality if and only if p = q. The informational divergence is not strictly a metric
since it is not symmetric and does not satisfy the triangle inequality. It is important to
emphasize that both the viewpoint mutual information and the viewpoint entropy can
be obtained from the informational divergence as follows: I(v; B) = DKL(p(B|v)‖p(B))
and H(B|v) = log |B| − DKL(p(B|v)‖{1/n}), where {1/n} is the uniform distribution
(see [Cover 1991]).

8.3.2 Motivation

As we commented above, the automatic definition of a transfer function for a volumet-
ric data set is still a big challenge. This has been also emphasized in the recent survey
“Information theory in scientific visualization” by Wang and Shen [Wang 2011].

Taking into account that mutual information and conditional entropy represent,
respectively, the information transfer and the average uncertainty in a channel, one
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might wonder whether within the previous framework we can use the maximization
(or minimization) of mutual information (or conditional entropy) to find out the most
informative transfer functions. In Section 8.3.1, we have observed that the viewpoint
mutual information I(v; B) is a Kullback-Leibler distance (Equation (8.6)) between the
visibility distribution p(B|v) over the viewpoint v and the average visibility p(B) of the
intensity bins, and that the mutual information I(V ; B) is the weighted average of the
distances I(v; B). Thus, the maximization of mutual information would be achieved
when the visibility distributions p(B|v) of each viewpoint v significantly diverged from
the average visibility p(B). As I(V ; B) expresses the correlation between viewpoints
and intensity bins, its maximization would imply that each view saw a very specific
part of the volume data set and different from what the other viewpoints were see-
ing. In general, the maximization of mutual information would tend to produce a very
opaque transfer function since more occlusions would permit to see different objects
from different viewpoints. On the contrary, the minimization of mutual information
would produce a very transparent visualization due to the fact that all the viewpoints
should see all the bins of the data set with a similar projected visibility. From Equa-
tion (8.4), we observe that conditional entropy H(B|V ) is the weighted average of the
entropy H(B|v) for all viewpoints. Thus, the minimization or the maximization of the
conditional entropy would try to see, respectively, only one intensity bin from each
viewpoint (i.e., minimal uncertainty) or all the bins with the same probability (i.e.,
maximal uncertainty). In general, the previous options are too specific and, thus, are
not good candidates to accomplish our purpose of finding appropriate transfer func-
tions.

As we have mentioned in the previous section, the informational divergence can
be interpreted as a distance between the observed data and a theoretical description
which can include the relevance of data. From this reasoning and the previous consid-
erations on the convenience of using mutual information or conditional entropy, we
adopt a more global strategy to define an informative transfer function: to minimize
the informational divergence between the average projected visibility distribution from all
viewpoints (calculated for a given transfer function) and a target distribution which ex-
presses our theoretical objective. Thus, using an iterative process, the transfer function
will evolve to fulfill the requirements of the target distribution. As we will see in the
next section, all these measures can be used to deal with both 1D and multidimensional
transfer functions.

It is interesting to note that this strategy could be extended to consider the average
of the informational divergences between the visibility distribution of each viewpoint
and a global target distribution. In this case, for specific target distributions, both the
mutual information and the conditional entropy would be obtained as particular cases
(see Section 8.3.1). In this chapter, we focus our attention on the most global form of
the informational divergence and future research will be done comparing it with the
average informational divergence.
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8.4 Method

The basic idea of our transfer function specification method is to minimize the distance
between the distribution of the projected visibility of a volumetric data set (from an
initial arbitrary transfer function that evolves towards the desired transfer function)
and a target distribution that expresses the data importance, or highly relevant data
value interval, or spatial segmentation.

Figure 8.2: The volume data set, a default transfer function, and a target distribution
that reflects the data importance are all entered into the system. Then, an optimization
process is performed and the opacity function that minimizes the distance to the target
distribution is obtained.

The process of finding the optimal transfer function is represented in Figure 8.2.
This process begins with an initial transfer function given by the user (if no specific
function is provided the linear ramp is used). With this initial transfer function and
the input data, the visibility distribution is computed for a set of viewpoints. Then, the
objective function, based on the informational divergence or Kullback-Leibler distance
between the obtained visibility distribution and the target one, is evaluated. From this
value, the optimizer, based on the steepest gradient descent algorithm, assesses a new
transfer function in the direction of the gradient. The process is repeated with the new
transfer function until the value of the objective function is below a given threshold or
a given number of iterations has been performed.

One of the limitations of the steepest gradient descent is the determination of its
constant step value. If this is too high, the process converges quicker but the accuracy is
lower. On the other hand, if the step value is too low, the convergence is reached with
more iterations and the probability of falling in a local minimum is higher. In order
to improve the convergence process, we have implemented two variants of the basic
method. First, the algorithm adjusts the step value for each bin and, therefore, there is
not a single global value. Second, if the sign of the gradient at a given bin changes for
a given iteration, which means that we have exceeded the minimum, then the step size
for this intensity is halved in order to have more accuracy.

Next, the main parts of this process are described: the target distributions, the
objective function, and the optimizer.
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8.4.1 Target distribution

The target distribution represents an importance-based description of what the user
expects to be visualized, i.e., the probability of each bin at the final rendered image. We
propose two main strategies to define the target distribution: a global strategy, which
considers general features of the volume data set, and an importance-based strategy,
which exploits a priori knowledge of the data.

8.4.1.1 Global strategies

We present here different target distributions based on global properties that can be de-
rived from the volume data set. There are many possible target distributions, amongst
them:

• The uniform distribution:

q(b) =
1

NB
, (8.7)

where NB is the number of intensity bins. In this case, we are assigning the same
probability to each intensity bin. Observe that, if we have an intensity bin with
only one voxel, our algorithm will tend to give too much importance to this bin,
and too little importance to the bins with the highest occurrence.

• The probability distribution obtained from the occurrence of each intensity bin:

q(b) =
occurrence(b)

∑

i∈B occurrence(i)
. (8.8)

This approach requires that each intensity bin is visualized according to its prob-
ability in the volume data set.

• The probability distribution obtained from the depth of bins:

q(b) =
depth(b)

∑

i∈B depth(i)
, (8.9)

where depth(b) is computed as depth(b) = dmax −max f (z)=intensity(b) |z − c|, dmax

is the maximum distance of any voxel to the volume center c, z is the position of
a voxel, and f (z) is the intensity value at voxel z. In this approach, the intensities
which are close to the center of the image will have a higher probability of be-
ing projected. This strategy has an important drawback since the intensity values
located close to the image center with low occurrence could have a high target
probability, and therefore the method would try to magnify its projected probabil-
ity by increasing its opacity and decreasing the opacities of the other intensities,
giving a very transparent final solution. In order to overcome this drawback, the
depth distribution will be weighted by the occurrence of the intensity value. Note
that the new distribution will have to be normalized again.
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• The probability distribution obtained from the intensity value itself:

q(b) =
intensity(b)

∑

i∈B intensity(i)
. (8.10)

This approach assigns more probability of being projected to the highest intensi-
ties. For instance, in medical imaging, when a contrast agent enhances the vessels
in MR angiography or a PET tracer highlights metabolical spots, the highest in-
tensity values are the most relevant. As in the previous approach, we will weight
this value by the occurrence of each intensity value.

These global strategies can be easily extended to multidimensional transfer func-
tions. In particular, we use the 2D space generated by intensity and gradient. In this
case, the four previous strategies can be utilized in the same way than in the 1D transfer
function by quantizing the intensity and the gradient to a limited number of clusters.
Our experiments work with 256 intensity clusters and 16 gradient magnitude clusters
(both uniform). Thus, we are using a random variable with an affordable alphabet of
4096 possible values. Using this extension, another target can be defined:

• The probability distribution obtained from the gradient values:

q(b) =
gradient(b)

∑

i∈B gradient(i)
. (8.11)

Note that B represents now the joint variable (intensity, gradient). In this case,
the voxels with high gradients will be highlighted. As in other previous strategies,
this distribution will be commonly weighted by the occurence.

8.4.1.2 Importance-based strategies

It is very common to have a priori knowledge about which intensities are relevant or
which regions of the data should be emphasized. For instance, in CT data the intensity
ranges are determined by the Hounsfield scale. Thus, the user can manually determine
which intensity ranges are relevant and which not. It is also common to be interested
in preserving the context of the area of interest. This context has to be visualized in the
final image with less importance than the relevant areas.

To achieve the above objectives, the target distributions presented in the previous
section can be weighted by an importance function importance(b). In this way, a priori
knowledge of the data is combined with statistical features of the data. Since the sum
of all elements of the target distribution must be one, a normalization step has to be
done after the combination of the global and importance weights.

In medical imaging, physicians are usually interested on certain spatial regions
which share the same intensity ranges with other non-relevant anatomical regions.
Since the proposed basic method only deals with intensity values, it will no be able to
emphasize only the interest region. To tackle this problem, segmentation strategies that
create a mask containing the region of interest are applied. This mask can be obtained
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either by an image processing algorithm or by a manual segmentation. Our method
can be easily adapted to take this spatial information into account. If we assume that
the original volume data set takes intensity values from 0 to max, a new data set is
generated by keeping the intensity values of the voxels outside the mask and adding
the value max+1 to the intensity values of the voxels inside the mask. After this simple
process, the new volume data set can take values from 0 to 2max+1. This is equivalent
to add a bit to the volume intensity according to the mask. Then, our method can be
applied to this new data set.

8.4.2 Objective function

The kernel of our method is given by a divergence measure between the visibility
distribution and a target distribution. A common measure of probability distribution
distance in information theory is the informational divergence or Kullback-Leibler dis-
tance [Cover 1991, Yeung 2008] (see Equation (8.6)).

From the informational divergence, two different measures between the projected
visibility of each bin and a target distribution q(B) can be defined depending on how
the visibility is estimated:

• Global informational divergence (GID), which is defined as

DKL(p(B)‖q(B)) =
∑

b∈B
p(b) log

p(b)
q(b)

, (8.12)

where p(b) =
∑

v∈V p(v)p(b|v), and p(v) is obtained from the normalization of
the projected visibility of the volume data set over the viewpoint v (see Equations
(8.2) and (8.3)). Thus, p(B) represents the mean visibility of each intensity con-
sidering all the viewpoints. As p(B) has to become similar to q(B) to obtain the
desired transfer function, our objective is to minimize the global informational
divergence (Equation (8.12)).

• Viewpoint informational divergence (VID). When we only consider the current
viewpoint v, Equation (8.12) becomes

DKL(p(B|v)‖q(B)) =
∑

b∈B
p(b|v) log

p(b|v)
q(b)

, (8.13)

where p(B|v) represents the visibility of each intensity by considering only the
current viewpoint (see Equation (8.1)). Note that this measure is view dependent
and will have to be recomputed each time the viewpoint changes.

Considering that the target distribution q(B) and the set of viewpoints are constant
during the visualization, observe that the previous measures only depend on the opac-
ities of each intensity in the transfer function definition. From now on, this opacity
vector will be denoted as A = (α0,α1, . . . ,αn−1), where n is the number of intensity
bins.
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The main drawback of the minimization of informational divergence is that the
final transfer function could be given by too low opacity values, i.e., the final solution
could be too transparent. This is due to the fact that the informational divergence is
based on probability distributions, which can be seen as ratios of visibility, and not on
absolute visibility values. Since the excessive transparency is not a desired feature, an
opacity constraint can be included. Thus, a possible loss of opacity can be compensated
by the requirement of maximizing the global visibility. Hence, our objective function is
defined as

F(A) = (1− β)DKL(p‖q)− β
E

Emax
, (8.14)

where DKL(p‖q) stands for DKL(p(B)‖q(B)) or DKL(p(B|v)‖q(B)), E is the absorbed
energy for all the rays during the ray casting, Emax is the maximum achievable energy
absorption, which corresponds to the one when the transfer function is completely
opaque, and β is a parameter that weighs the contribution of the opacity constraint
term. Observe that E also depends only on the opacity vector A.

Figure 8.3 plots the visibility distributions for the CT-body using the global strategy
that considers the occurrence distribution as target. In the plot, the target distribution
is represented by a grey area, the initial visibility distribution using the default transfer
function by a blue line, and the final visibility distribution by a red line, respectively. For
this experiment, the parameter β has been set to 0 and, thus, F(A) = DKL(p‖q). For the
initial distribution, F(A) = 0.188, while for the final distribution, F(A) = 9.02 · 10−9.

8.4.3 Optimizer

The proposed method is implemented using the steepest gradient descent optimizer
[Press 1992]. The goal of this method is to find the vector of opacities A which min-
imizes the objective function F(A) defined in Equation (8.14). This method requires
an initial step size s, which is set to 1 in our implementation. The optimization pro-
cess consists of an iterative algorithm in which each opacity value of the new transfer
function at iteration t is computed as

At = At−1− st−1∇F(A), (8.15)

where the symbol∇ represents the gradient and, therefore,∇F(A) =
�

∂ F(A)
∂ α0

, ∂ F(A)
∂ α1

, . . . ,
∂ F(A)
∂ αn−1

�

. The gradient computation is detailed in the next subsection. The higher the s
value, the faster the convergence but the lower the accuracy. In the basic method this
s value is constant for all iterations and intensity bins, but it can be easily modified
in order to have an adaptive step for each bin. In our experiments we use an adap-
tive method. Once the new transfer function is defined, the new value of the objective
function has to be computed. If this value is lower than the global minimum, the cur-
rent transfer function is considered as the new optimal one. Once the program has
converged, or has done all the iterations, the volume data set is rendered using the
optimal transfer function.

Figure 8.4 plots the F(A) values for the CT-body case using the occurrence target
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Figure 8.3: Visibility distribution obtained with GID, 6 viewpoints, and the occurrence
target distribution applied to the CT-body: (grey area) the target distribution, (blue
line) the initial visibility distribution using the linear ramp transfer function, and (red
line) the final visibility distribution.
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Figure 8.4: Evolution of the objective function F(A) for GID with respect to the number
of iterations for the CT-body using the occurrence target distribution, β = 0, and 6
viewpoints.
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distribution, β = 0, and 6 viewpoints with respect to the number of iterations. As it
can be seen, the measure tends to 0 and converges with less than 50 iterations. As
DKL(p‖q) ≥ 0, when β = 0, we will consider that the method will have converged
when F(A) achieves a value lower than a given threshold, typically 0.001.

8.4.3.1 Gradient computation

In typical gradient descent optimizer scenarios, the gradient computation is one of the
most computationally demanding steps, since its estimation requires that the objective
function is computed 2n times, where n is the number of the degrees of freedom. In our
case, n corresponds to the number of intensity bins, which can be such a large number
that can make this approach unfeasible. In this case, an analytical computation, or at
least a reasonable good approximation, becomes the best way to tackle the problem.
In this section, we describe how this approximation can be computed.

In order to compute ∇F(A), we will have to determine ∂ F(A)
∂ αi

for all intensities i.
From the linearity property of the derivative, we have that

∂ F(A)
∂ αi

= (1− β)
∂ DKL(p‖q)
∂ αi

−
β

Emax

∂ E

∂ αi
. (8.16)

Therefore, we can divide the computation into two parts: ∂ DKL

∂ αi
and ∂ E

∂ αi
.

First, we would like to compute the derivative of the Kullback-Leibler divergence
between the observed intensities distribution and the objective distribution when the
opacity of a single intensity is modified in the transfer function.

Let X be the original observed intensities with a distribution X = {p1, p2, . . . , pn}
and Y be the objective distribution Y = {q1, q2, . . . , qn}. Let see what happens in X
when the opacity αi corresponding to intensity i is modified. During the probability
computation process, the probability of the intensity i is estimated as

pi =

∑

k Ikαi
∑

i

∑

k Ikαi
=

eiαi

E
, (8.17)

where k represents a sample with intensity i, Ik is the remaining transparency cor-
responding to the sample k, and, then, ei =

∑

k Ik is a multiplicative factor which
depends on the number of samples of this intensity and their remaining transparen-
cies. Finally, E =

∑

i

∑

k Ikαi is a normalization factor (to ensure that the distribution
sums 1) which represents the absorbed energy of all intensities. Then, we can assume
that if the opacity of the intensity i is increased by ∆αi , the new probability will be
approximately

p′i =

∑

k I ′k(αi +∆αi)

E′

≈

∑

k Ik(αi +∆αi)
E

=
ei(αi +∆αi)

E
= pi

�

1+
∆αi

αi

�

. (8.18)
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We assume here that the remaining transparency will be approximately the same, since
the opacities remain the same except for ∆αi . Hence, we can define ki as

ki = 1+
∆αi

αi
. (8.19)

We can also assume that all the other probabilities will be modified by a multiplicative
factor Ki that is the same for all of them. In order to have the summation of the distri-
bution normalized to 1, we get the equation ki pi +Ki(1− pi) = 1. Thus, we can define
Ki as

Ki =
1− piki

1− pi
. (8.20)

Hence, the probability distribution X ′ of the intensities after the modification of the
opacity will be X ′ ≈ {Ki p1, Ki p2, . . . , ki pi , . . . , Ki pn}.

Then, we would like to compute the derivative of DKL(p‖q) for each intensity opac-
ity in the transfer function. In order to compute the derivative we will use

∂ DKL(p‖q)
∂ αi

= lim
∆αi→0

DKL(p′‖q)− DKL(p‖q)
∆αi

, (8.21)

where p′ is the visibility probability when the transfer function with the modified opac-
ity is applied.

Then, the Kullback-Leibler divergence between X ′ and the objective distribution Y
(which remains constant after the modification of the opacity) is computed as

DKL(p
′‖q) =

n
∑

j=1

p′j log
p′j
q j

= Ki DKL(p‖q) + (ki − Ki)pi log
pi

qi

+ Ki(1− pi) log Ki + ki pi log ki . (8.22)

To compute the derivative we use

∂ DKL(p‖q)
∂ αi

= lim
∆αi→0

DKL(p′‖q)− DKL(p‖q)
∆αi

= lim
∆αi→0

(Ki − 1)DKL(p‖q)
∆αi

+ lim
∆αi→0

(ki − Ki)pi log pi

qi

∆αi

+ lim
∆αi→0

Ki(1− pi) log Ki

∆αi

+ lim
∆αi→0

ki pi log ki

∆αi
. (8.23)
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By computing these limits, we obtain the following analytical expression:

∂ DKL(p‖q)
∂ αi

=
−pi

αi(1− pi)
DKL(p‖q) +

pi

αi(1− pi)
log

pi

qi

+
−pi

ln(2)αi
+

pi

ln(2)αi

=
pi

αi(1− pi)

�

log
pi

qi
− DKL(p‖q)

�

. (8.24)

The second derivative term in Equation (8.16) corresponds to ∂ E
∂ αi

. As we have
previously shown, we have that

E =
∑

i

∑

k

Ikαi =
∑

i

eiαi . (8.25)

Then, its derivative can be approximated by

∂ E

∂ αi
≈
∑

k

Ik = ei =
pi E

αi
, (8.26)

where pi is the visibility probability, E is the absorbed energy for all the rays during the
ray casting, and αi is the opacity of intensity i.

Observe that this computation can be done in constant time for each intensity. This
allows us to work with the initial intensity resolution with reasonably low computa-
tional costs. In our experiments, the computational time spent in this step is much
lower than the computation of DKL, where the visibility probability computation is
more demanding.

8.5 Results

In this section we present the several experiments that have been carried out to eval-
uate the proposed approach. For our tests, we have used the following data sets: the
CT-head (512 × 512 × 460 and 4096 intensity bins), the CT-body (256 × 256 × 415
and 4096 intensity bins), the CT-carp (256× 256× 512 and 2872 intensity bins), the
CT-tooth (256× 256× 161 and 1279 intensity bins), and two synthetic brain models
from the BrainWeb database [Cocosco 1997]: the MRI-healthy (181× 217× 181 and
4096 intensity bins) and the MRI-damaged (181×217×181 and 4096 intensity bins).
All the experiments have been carried out on a PC equipped with an Intel Core 2 Quad
Q9550 CPU, 4 GiB of RAM, and a NVIDIA GeForce GTX 280 graphics card.

In the following experiments, we have used by default the global informational
divergence (GID), β = 0, a stopping threshold value of the objective function equal
to 0.001, and 6 uniformly distributed viewpoints. To show the results we have applied
different predefined color transfer functions and local illumination. For comparison
purposes, the Euclidean distance proposed by Correa and Ma [Correa 2011] to define a
transfer function has been implemented using the steepest gradient descent optimizer.
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(a) GID, Occ (b) Eucl, Occ (c) GID, Occ ∗ Int

(d) GID, Occ ∗ Grad (e) Eucl, Occ ∗ Grad (f) GID, Occ ∗ Grad ∗ Depth

(g) VID, Occ ∗ Grad (h) VID, Occ ∗ Grad

Figure 8.5: Global strategy applied to the CT-head. The following target distributions
have been considered: 1D transfer functions with occurrence (Occ) and occurrence
weighted by intensity (Occ ∗ Int); 2D transfer functions with occurrence weighted by
gradient (Occ ∗ Grad) and occurrence weighted by both gradient and depth (Occ ∗
Grad ∗ Depth). The global informational divergence (GID) has been used in (a), (c),
(d), and (f), the Euclidean distance in (b) and (e), and the viewpoint informational
divergence (VID) in (g) and (h), where only the viewpoint shown has been used.
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Similarly to informational divergence, we have obtained an analytical expression of the
gradient of Euclidean distance to speed up the optimization process.

(a) (b)

Figure 8.6: Importance-based strategy applied to the CT-head assigning importance 1
to the intensities corresponding to bone structure and 0.2 to the rest, using as target
distributions: (a) occurrence and (b) occurrence weighted by gradient.

Figure 8.5 shows the results obtained with the CT-head using the global strategy for
both 1D transfer functions (8.5(a), 8.5(b), 8.5(c)) and 2D transfer functions (8.5(d),
8.5(e), 8.5(f)), and considering different target distributions. In 2D transfer functions
we have used 256 intensity bins and 16 gradient bins. Fig. 8.5(a) and 8.5(d) have been
obtained with occurrence (Occ) and occurrence weighted gradient (Occ ∗ Grad) tar-
get distributions, respectively. Fig. 8.5(b) and 8.5(e) show the visualizations obtained
with the same target distributions and the Euclidean distance. The visual results ob-
tained from both informational divergence and Euclidean distance are very similar. In
average, the time for each iteration and the number of iterations for a given threshold
are also similar. However, the use of informational divergence, which is the most nat-
ural measure of discrimination in information theory (IT) [Cover 1991, Yeung 2008],
enables us to unify in the same framework the viewpoint selection and the transfer
function design. Fig. 8.5(c) and 8.5(f) have been obtained using occurrence weighted
by intensity (Occ ∗ Int), and occurrence weighted by gradient and depth (Occ ∗ Grad
∗ Depth), respectively. In Figure 8.5(a), which corresponds to the occurrence distribu-
tion, the muscle has large visibility due to its greater volume with respect to the other
anatomical structures such as bone or skin. Observe that when weighting occurrences
by intensity (Figure 8.5(c)) the method assigns high opacities to the bone structure
because this has the highest intensity values in CT images. Note that 2D visualizations
are clearer than the ones obtained with 1D transfer functions. Since muscle has a low
gradient magnitude, it is almost transparent and allows to visualize inner structures,
specially with the target of occurrence weighted by gradient (Figure 8.5(d)). Gradi-
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ent information provides a better delineation of organ boundaries and hence a clearer
representation is obtained. We also observe that introducing depth information into
the target distribution (Figure 8.5(f)) the obtained image is more transparent, but the
boundaries of the organs can still be perceived. The last two images (Fig. 8.5(g) and
8.5(h)) have been obtained with the viewpoint informational divergence (VID) from
the viewpoint shown and the occurrence weighted by gradient target distribution. In
this case, image cluttering increases because the method assigns the opacities so that
all structures are seen according to the target distribution and, consequently, since only
one viewpoint is considered, the structures have to become more transparent.

The next experiment has been designed to illustrate the importance-driven strategy
supported by our approach. To assign importance to the volume we can consider two
alternatives: a relevant intensity range and a segmentation mask. For each alternative,
an importance value is given to the most relevant part and a lower one to the context.
The first alternative is illustrated in Figure 8.6, where the CT-head is rendered after as-
signing importance to the intensity range of the bone structure. Figure 8.6(a) has been
obtained with the target of occurrence weighted by importance (1 for the bone and 0.2
for the rest). If we compare this image with the one of Figure 8.5(a), obtained with
the same target but without importance, we can observe how the bone is highlighted.
Figure 8.6(b) has been obtained using the same importance distribution and the tar-
get distribution given by occurrence weighted by gradient. Comparing this image with
the one of Figure 8.5(d), obtained with the same target but without importance, we
can observe how the bones are more prominent. The result of giving importance to an
intensity range is also illustrated in the second image of Figure 8.1, where the target
distribution is occurrence weighted by importance, and we have given importance 1 to
the enamel and 0.5 to the rest.

To illustrate the second alternative, which uses a segmentation mask, we apply the
importance-driven strategy to the MRI brain data sets. In figures 8.7(a), 8.7(b), 8.7(c),
and 8.7(d), we show the original MRI-healthy model and the importance-based visu-
alizations obtained by assigning importance to the white matter, the grey matter, and
the glial tissue masks, respectively. The last image (Figure 8.7(e)) has been obtained
from the MRI-damaged data set by assigning importance to the damaged area. In all
the cases, we have assigned importance 1 to the mask. The rest of the model has im-
portance 0.2 in Fig. 8.7(b) and 8.7(c), and 0.1 in Fig. 8.7(d) and 8.7(e). The volume
data set is rendered in greyscale and using color in the important area. Observe that,
although the regions of interest have different sizes and occluding tissues, they are
always highly visible while the context is kept. In the fourth image of Figure 8.1, we
can see another example of giving importance to a segmented region. In this case, the
nerve has been highlighted.

The next experiments aim at showing the effects of using the parameter β and
different number of viewpoints. Figure 8.8 shows the visualization of the CT-body, using
the target distribution given by occurrence weighted by gradient. These visualizations
have been obtained by setting β to 0, 2

3
, and 8

9
. Remember that this parameter weights

the contribution of the opacity constraint in the objective function. The higher the
value of β , the higher the total opacity of volume visualization. As it can be seen, by
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(a)

(b) (c)

(d) (e)

Figure 8.7: Importance-based strategy applied to two MRI brain data sets: (a) initial
visualization of the MRI-healthy and the resulting visualization giving importance to
(b) white matter, (c) grey matter, (d) glial tissue. (e) Visualization of the MRI-damaged
giving importance to the lesion area. In (b) and (c) the importance is 1 for the masks
and 0.2 for the rest. In (d) and (e) the importance is 1 for the masks and 0.1 for the
rest.
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(a) β = 0 (b) β = 2
3

(c) β = 8
9

Figure 8.8: Visualization of the CT-body obtained from the target function given by the
occurrence weighted by gradient and β values equal to 0, 2

3
, and 8

9
, respectively.

increasing the parameter β the final transfer function becomes more opaque.

Figure 8.9: Visualization of the CT-tooth obtained from the target distribution given by
the occurrence weighted by gradient for three different viewpoints (first row) and the
same corresponding views computed with 42 viewpoints (second row).

Figure 8.9 shows the visualization of the CT-tooth obtained using the target distri-
bution occurrence weighted by gradient for three different viewpoints (first row) and
the same corresponding views computed with 42 viewpoints (second row). Note how
the transfer functions are clearly dependent on the selected viewpoints. In the case of a
single viewpoint, all structures are visible from each viewpoint, while considering more
viewpoints occlusions do not allow to perceive all structures from a single viewpoint.

Figure 8.10, shows the visualization of CT-carp obtained using the target distribu-



132 Chapter 8. Automatic transfer functions based on informational divergence

(a) 1 viewpoint

(b) 6 viewpoints

(c) 20 viewpoints

(d) 42 viewpoints

Figure 8.10: CT-carp is visualized considering 1, 6, 20, and 42 viewpoints using as
target distribution the occurrence weighted by gradient with β = 0.5.

tion occurrence weighted by gradient with β = 0.5, and for 1, 6, 20, and 42 view-
points. Note that the differences obtained using 6, 20, or 42 viewpoints are minimal
and, hence, the use of 6 viewpoints is a good trade-off between quality and speed for
the global informational divergence.

To evaluate the computation time, we have considered different data sets, target
distributions, and stopping threshold values of the objective function. Table 8.1 reports
the obtained results. From left to right, the first two columns indicate the evaluated
model and the used target distribution, and the next columns are the thresholds of
the distances considered to stop the process. For each configuration we collect the
computation time in seconds and the number of iterations required by different tar-
get distributions. In the two bottom rows, we show respectively the computation time
for the CT-carp when only one viewpoint is considered, and the computation time for
the MRI-healthy when the importance is driven by the white matter mask. The per-
formance of our methods only benefits from the GPU implementation of the visibility
computation, because the rest of computations have been done in CPU. The results
usually converge in less than 50 iterations. With more iterations, the results are barely
improved from a perceptual point of view. If we compare the computational time of
our experiments with manual editing, that ranges from 5 to 20 minutes [Kohlmann
2007], the time improvement obtained with our method is significant.
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Data set Target ≤ 0.01 ≤ 0.001 ≤ 0.0001

CT-body GID, Occ 7 it. 30 it. 50 it.
4.76 20.70 34.60

CT-tooth GID, Occ ∗ Imp 17 it. 31 it. 63 it.
5.12 9.49 19.24

CT-head GID, Occ ∗ Grad ∗ Int 15 it. 19 it. 34 it.
22.57 29.45 56.55

CT-carp VID, Occ ∗ Grad 20 it. 24 it. 32 it.
3.40 4.86 6.98

MRI-healthy GID, Occ ∗ Imp 21 it. 31 it. 55 it.
18.76 29.32 54.26

Table 8.1: Number of iterations and time cost (in seconds) for different data sets
and stopping threshold values. Target distributions are: occurrence (Occ), occurrence
weighted by importance (Occ ∗ Imp), occurrence weighted by gradient and intensity
(Occ ∗ Grad ∗ Int), and occurrence weighted by gradient (Occ ∗ Grad).

8.5.1 Limitations

The automatic definition of a good transfer function is a big challenge. There are few
methods that fully automate the transfer function design and most of them require
previous knowledge or a pre-segmentation of the volume model. Our approach requires
to define the target distribution and the parameter β has to be assigned by the user as
well. Strictly speaking, because of these user settings, the method cannot be classified
as fully automatic. However, we have experimentally observed that good results are
already achieved with β = 0. Also, the target distribution is much more intuitive to
define for the user (similarly to importance definition) than the transfer function.

In our approach, we have focused on opacity transfer functions considering that
opacity is the main factor that affects the visibility of structures. In the medical scenario
this would be sufficient as the radiologists use primarily grey levels to depict structures
when it comes to visualization of single imaging modality. In our examples we have
used pre-defined color transfer functions to increase the contrast in printed images by
additional contrast in chromatic channel. Adapting the color distribution automatically
can be seen as natural continuation of our research.

8.6 Conclusions

We have presented a new information-theoretic framework for automatic transfer func-
tion design that, based on a user-defined target distribution, obtains the opacity trans-
fer function whose visibility distribution minimizes the informational divergence to the
target. We have proposed different target distributions defined on intensities or on a 2D
space which considers the intensities and the gradient magnitudes. We provided two
strategies, a global one that considers general features of the data and an importance-
driven one that emphasizes intensity ranges or regions of interest. The different options
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of the method have been evaluated on several data sets. It has been seen that the re-
sults with a global strategy give a good overall visualization of the volume data set,
while the ones obtained with the importance-based strategy achieve focus+context
visualizations. In addition we have evaluated the results obtained using the informa-
tional divergence of only one viewpoint. With this approach the computational cost is
reduced considerably, but a recomputation is necessary when the viewpoint is changed.
The computational cost of the proposed methods is low enough to make this technique
feasible for real environments.

Future research will be done to define a new objective function that approximates
the target distribution while maximizing the projected visibility without requiring a pa-
rameter such as β . We will also investigate the use of the average of the informational
divergences for each viewpoint. In addition, we will analyze the performance of other
distances, such as f -divergences or Jensen-Shannon divergence. Future work will be
done to obtain a fully GPU implementation. To improve the computational cost, we
will also explore new optimization methods.
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In last decades, volume visualization techniques have become fundamental in many
scientific areas and specially in medical applications. These techniques aim to com-
municate information and assist interpretation of volumetric data sets in a clear and
effective manner by means of graphical representations. For instance, in a medical
environment realistic renderings are used for diagnosis and pre-operative planning,
while non-photorealistic techniques are preferred in educational environments since
they simplify data and produce clearer images than traditional photorealistic methods.
It is not easy to fulfill these objectives because of the difficulty of algorithmically pro-
ducing some types of renderings, and also because of the high computational cost of
some of the techniques, such as global illumination. The challenge is how to exploit
graphic capabilities to create visualizations suited to the user needs.

In this thesis, we have focused our interest on advanced volume illumination tech-
niques. Our purpose has been to improve volume rendering techniques to produce
high quality renderings, with both realistic and illustrative styles. We have proposed
to approximate global illumination with computationally tractable techniques such as
obscurances and ambient occlusion. We have also studied how important steps of the
volume rendering pipeline, such as the transfer function definition, can be done in
a completely automatic manner. Moreover, we have studied how volume exploration
techniques can be improved by selecting the best viewpoints of the model or automatiz-
ing illustrative strategies such as exploded views. A common theme in our techniques
is information theory.

Below we explain in more detail our contributions and the publications derived
from them.

9.1 Contributions

The main objective of this thesis was to develop new strategies to enhance the vol-
ume rendering process and the way to explore data, with special interest on medical
environments. This objective has been achieved with the following contributions:

• We have adapted obscurances to volume rendering.
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Obscurances, from which ambient occlusion is a particular case, is a technology
that produces natural-looking lighting effects in a faster way than global illu-
mination. Its application in volume visualization is of special interest since it
permits us to generate a high quality rendering at a low cost. We have proposed
an obscurance-based framework that allows us to obtain realistic and illustrative
volume visualizations in an interactive manner. Obscurances can include color
bleeding effects without additional cost. Moreover, we obtain a saliency map
from the gradient of obscurances and we show its application to enhance volume
visualization and to select the most salient views.

This work, titled Obscurance-based volume rendering framework, has been pub-
lished in Eurographics/IEEE VGTC on Volume and Point-Based Graphics, pages
113–120, 2008. [Ruiz 2008a]

• We have automatized the creation of exploded views of volume models and used
entropy rate to select the most structured views.

Exploded views are often used in illustration to overcome the problem of oc-
clusion when depicting complex structures. We have proposed a volume visual-
ization technique inspired by exploded views that partitions the volume into a
number of parallel slabs and shows them apart from each other. The thickness
of slabs is driven by the similarity between partitions. We use an information-
theoretic technique for the generation of exploded views. First, the algorithm
identifies the viewpoint which gives the most structured view of the data. Then,
the partition of the volume into the most informative slabs for exploding is ob-
tained using two complementary similarity-based strategies. The number of slabs
and the similarity parameter are freely adjustable by the user.

This work, titled Similarity-based exploded views, has been published in Smart
Graphics, volume 5166 of Lecture Notes in Computer Science, pages 154–165.
Springer Berlin / Heidelberg, 2008. [Ruiz 2008b]

• We have developed a filtering-based technique to produce illustrative renderings.

We have proposed a simple and interactive technique for volume illustration by
using the difference between the original intensity values and a low-pass filtered
copy. This difference, known as unsharped mask, provides us with a spatial im-
portance map that captures salient and separability information about regions
in the volume. We integrate this map in the visualization pipeline and use it to
modulate the color and the opacity assigned by the transfer function to produce
different illustrative effects. We also apply stipple rendering modulating the den-
sity of the dots with the spatial importance map. The core of our approach is the
computation of a 3D Gaussian filter, which is equivalent to three consecutive 1D
filters. This separability feature allows us to obtain interactive rates with a CUDA
implementation. We show results of our approach for different data sets.

This work, titled Interactive volume illustration using intensity filtering, has been
published in Workshop on Computational Aesthetics, pages 51–58, 2010. [Ruiz
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2010a]

• We have used information theory to produce realistic and illustrative renderings
and to select the best viewpoints.

We have developed a volume rendering framework based on the information
channel constructed between the volumetric data set and a set of viewpoints.
From this channel, the information associated to each voxel can be interpreted
as an ambient occlusion value that allows to obtain illustrative volume visualiza-
tions. The use of the voxel information combined with the assignation of color
to each viewpoint and non-photorealistic effects produces an enhanced visual-
ization of the volume data set. Voxel information is also applied to modulate the
transfer function and to select the most informative views.

This work, titled Viewpoint information channel for illustrative volume rendering,
has been published in Computers & Graphics, vol. 34, no. 4, pages 351–360,
2010. [Ruiz 2010b]

• We have used separable filtering to compute volumetric ambient occlusion.

We have presented new algorithms to compute ambient occlusion for volumetric
data. Ambient occlusion is used in video-games and film animation to mimic
the indirect lighting of global illumination. We extend a novel interpretation of
ambient occlusion to volumetric models, that measures how big portion of the
tangent sphere of a surface belongs to the set of occluded points, and propose
statistically robust estimates for the ambient occlusion value. The data needed by
this estimate can be obtained by separable filtering of the voxel array. As ambient
occlusion is meant to obtain global illumination effects, it can provide decisive
clues in interpreting the data. The new algorithms obtain smooth shading and
can be computed at interactive rates, being thus appropriate for dynamic models
exploration.

This work, titled Volumetric ambient occlusion for volumetric models, has been
published in The Visual Computer, vol. 26, no. 6, pages 687–695, 2010. [Ruiz
2010c]

• We have developed a semi-automatic method to create opacity transfer functions.

We have presented a framework to define transfer functions from a target distri-
bution provided by the user. A target distribution can reflect the data importance,
or highly relevant data value interval, or spatial segmentation. Our approach is
based on a communication channel between a set of viewpoints and a set of bins
of a volume data set, and it supports 1D as well as 2D transfer functions includ-
ing the gradient information. The transfer functions are obtained by minimizing
the informational divergence or Kullback-Leibler distance between the visibility
distribution captured by the viewpoints and a target distribution selected by the
user. The use of the derivative of the informational divergence allows for a fast
optimization process. Different target distributions for 1D and 2D transfer func-
tions are analyzed together with importance-driven and view-based techniques.
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This work, titled Automatic transfer functions based on informational divergence,
has been published in IEEE Transactions on Visualization and Computer Graph-
ics, vol. 17, no. 12, pages 1932–1941, 2011. [Ruiz 2011]

9.2 Future work

The work that has been done in this thesis can be extended in different directions.
In the context of exploded views, we plan to do a broader study with a more exhaus-

tive analysis of behaviour and usability of the proposed approach for different image
modalities and anatomical structures. We also plan to test and validate the method
in a large cohort of patients to determine its clinical effectiveness. Another idea is to
study how many slices should be presented and whether additional information about
the similarity distances can help the user for an optimal understanding of the volume.
Also, the trade-off between quality and cost for the different parameters involved in
the determination of most structured views (distances between rays, subsequences of
samples on those rays, sub-sampling of intensity values) can be investigated. Moreover,
the technique can be extended to be applied in medical context as a method to enhance
volume data exploration by automatically determining the damaged slabs of a model.
Finally, as further improvement, we can also investigate if a neural network trained
with physicians knowledge can be incorporated into our algorithm as a guide.

The obscurances algorithm should be implemented taking advantage of the GPU to
achieve interactive obscurance computation.

The spatial importance map may be computed using other low-pass filters, such as
the trilateral filter. Results obtained with different filters should be compared.

In the context of transfer function optimization, the main idea is to define a new
objective function that approximates the target distribution while maximizing the pro-
jected visibility without requiring a parameter such as β . It would also be interesting
to investigate the use of the average of the informational divergences for each view-
point. Other distance measures, such as f -divergences or Jensen-Shannon divergence,
can be considered and compared to Kullback-Leibler distance. The method has margin
for faster implementations using the GPU in more parts of the algorithm. Finally, new
optimization methods could reduce the computational cost even more.
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