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Identification, synchronisation and composition of user-generated videos

Abstract

The increasing availability of smartphones is facilitating people to capture videos of their

experience when attending events such as concerts, sports competitions and public rallies. The

captured User-Generated Videos(UGVs) aremadeavailableon mediasharing websites. Search-

ing and mining of UGVs of the same event are challenging due to inconsistent tags or incorrect

timestamps. A UGV recorded fromafixed locationcontainsmonotonic content andunintentional

cameramotions, which may makeit less interesting to playback. Smartphonesareequipped with

inertial sensors which could be beneficial for event understanding. In this thesis, wepropose the

following identification, synchronisation and video composition frameworks for UGVs.

We propose a framework for the automatic identification and synchronisation of unedited

multi-cameraUGVswithinadatabase. Theproposed framework analysesthesound to matchand

cluster UGVsthat capturethesamespatio-temporal event, and estimatetheir relativetime-shift to

temporally align them. Wedesign anovel descriptor derived from thepairwisematching of audio

chromafeaturesof UGVs. Thedescriptor facilitatesthedefinition of aclassification threshold for

automatic query-by-example event identification. We contribute a databaseof 263 multi-camera

UGVs of 48 real-world events. We evaluate the proposed framework on this database and com-

pareit with state-of-the-art methods. Experimental resultsshow theeffectivenessof theproposed

approach in thepresence of audio degradations (channel noise, ambient noise, reverberations).

Moreover, we present an automatic audio and visual-based camera selection framework for

composing uninterrupted recording from synchronised multi-camera UGVs of the same event.

We design an automatic audio-based cut-point selection method that provides a common refer-

ence for audio and video segmentation. To filter low quality video segments, spatial and spatio-

temporal assessments are computed. The framework combines segments of UGVs using a rank-

based camera selection strategy by considering visual quality scores and view diversity. The

proposed framework is validated on a dataset of 13 events (93 UGVs) through subjective tests

and compared with state-of-the-art methods. Suitable cut-point selection, specific visual qual-
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ity assessments and rank-based camera selection contribute to the superiority of the proposed

framework over theexisting methods.

Finally, we contribute a method for Camera Motion Detection using Gyroscope for UGVs

captured from smartphones and design a gyro-based quality score for video composition. The

gyroscope measures the angular velocity of the smartphone that can be use for camera motion

analysis. We evaluate the proposed camera motion detection method on a dataset of 24 multi-

modal UGVscaptured by us, and compare it with existing visual and inertial sensor-based meth-

ods. By designing a gyro-based score to quantify the goodness of the multi-camera UGVs, we

develop a gyro-based video composition framework. A gyro-based score substitutes the spatial

and spatio-temporal scores and reduces the computational complexity. We contribute a multi-

modal dataset of 3 events (12 UGVs), which is used to validate the proposed gyro-based video

composition framework.
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Chapter 1

Introduction

1.1 Motivation

Worldwide smartphone users are reported to be 1.63 billion at the end of year 2014 [100]. With

the proliferation of smartphones, more people capture videos of their experience of attending

events such as concerts, festivals, sporting competitions and public rallies, from different view-

points. Social mediasitesthen act asadistribution channel for theusersto sharetheir experiences

by givingaccessto theseUser-Generated Videos(UGVs). 300 hoursof videocontent isuploaded

to YouTube every minute that is impossible to be watched by a person in a life span [5]. This

has invoked a new research direction involving search and organisation of multimedia data of

the sameevent [14, 111]. We definean event as acontinuous action captured simultaneously by

multipleuser-devicesfromdifferent positionslocated in proximity with eachother. Multi-camera

UGVs of the same event are unorganised due to different starting and ending times. Moreover,

it is non-trivial to automatically retrieve UGVs of the same event from a database. The tradi-

tional metadata-based methodsfor event retrieval [62, 147], may not alwaysbeeffectivebecause

meta-dataassociated with uploaded videos may lack consistent and objective tagging, or correct

timestamps [39, 71]. By performing content-based event search, powerful event browsing can

be enabled, which in turn can improve web search tools. The existing audio-based methods do

not perform event retrieval from a database of multiple real-world events, and consider only the

organisation of multi-camera UGVs recorded at thesameconcert or public event [20, 32, 76].

Multi-cameraUGVsorganised on acommon timelinecan bebeneficial for theRegion of In-

21
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(a)

(b)

Figure 1.1: Synchronised frames from two different events, namely (a) Olympic torch rally and
(b) Nickelback concert, recorded from 7 handheld cameras. Variation in the field of views,
lighting conditionsand video resolution can be observed.

terest (ROI) extraction, video composition and video summarisation [6, J2, 122, 133]. Moreover,

smartphones nowadays are equipped with inertial sensors (accelerometer, gyroscope, magne-

tometer) whose data can be logged along with the video [1]. The inertial sensor data can substi-

tutethevisual datain developing cameramotion detection and event understanding methodswith

an added advantage of reduced computational complexity [35, 36]. The existing inertial sensor-

based method for camera motion detection utilises accelerometer and magnetometer data [35].

Theperformanceof such method can beimproved by using gyroscopedata instead, asgyroscope

directly gives ameasureof theangular velocity of the smartphone [C1].

Professional recordings (e.g. film production) are staged and planned beforehand. On the

other hand, UGV recordings are unplanned (i.e. not staged) and are dependent on the interest of

theuser holding thecapturingdevice. They areoften relatively short asthemotivation isto record

a surprising and interesting event. The visual quality of UGVs is influenced by the presence of

visual degradations due to varying lighting conditions, changing field of views, unintentional

camera motions and different video resolutions. The visual clues may not be similar across

cameras recording in close proximity (Fig. 1.1), however, similarity exists in their audio signals.
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Audio quality in UGVs is affected by the presence of audio degradations such as ambient noise

(background noise), channel noise (low-level sound due to varying quality of microphones),

reverberations (echo in theenvironment) and varying distancefrom thesound source [102, 116].

The recorded audio in UGVs can be generated from an amplified source (e.g. concerts) or from

a non-amplified source (e.g. local gatherings and protests). In recordings that captured the non-

amplified source of sound, usually the ambient noise is dominating while the audio clues of the

sound sourceare weak.

Synchronisation involves spatio-temporal alignment of a set of UGVs of a particular event.

Manual synchronisation is cumbersome and may not result in accurate alignment. Automatic

synchronisation is hindered due to the presence of various audio and visual degradations. Syn-

chronisationof UGVsusing audio featuresisgenerally basedon onsets(startingpoint of an audio

instant) [132] or fingerprints (compact content-based audio signatures) [132, 76, 20]. However,

onsets are sensitive to audio degradations and fingerprints may not be robust in the presence of

reverberations [132]. The existing methods do not consider events containing the non-amplified

sourceof sound, which may influence their performance [J1].

The multi-camera UGVs of the same event have limited fields of view, incomplete temporal

coverageof the event, and may contain audio and visual degradations. Instead of recording sev-

eral videos, the user tends to perform camera panning to cover its surroundings. These factors

may influence their perceived quality making thecontent boring when playback individually. To

enhance the viewing experience, video composition can be performed, that aims at generating

a coherent and time continuous video from the synchronised multi-camera UGVs of the same

event. The perceived audio-visual quality is akey factor which makes thecontent enjoyableand

interesting to playback [15, 104]. The existing methods exploited visual content analysis for

video composition from multi-camera UGVs [122, 133]. Global feature analysis is performed

for understanding the content by attention detection [65], and for filtering the low-quality con-

tent by camera motion analysis [21, 65]. Although audio content plays an important part in the

judgement of the overall perceived quality [15], it has not been utilised in the existing meth-

ods [122, 133].
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Figure 1.2: Multi-camera UGVs identification, synchronisation and composition. For a query,
all UGVs belonging to the same event are identified from the database, that are organised (syn-
chronised) on a common timeline. Video composition is then performed to produce a single
continuous video.

1.2 Problem formulation

Let C= f CmgM
m= 1 beadatabaseof M unorganised and unsynchronised UGVs. We are interested

in solving the following problems: clustering recordings corresponding to the same event, syn-

chronising the clustered recordings on a common timeline, associating a new camera recording

to an existing cluster, detecting camera motions in a recording and composing a single video

from synchronised multi-cameraUGVsof an event (Fig. 1.2).

1.2.1 Video event cluster ing

Let E= f EkgK
k= 1 betheset of eventsrepresented in C, whereK �M. Each event Ek= f Ck;nkg

Nk
nk= 1

contains Nk UGVs recorded from hand-held user-devices located in proximity and have at least

partial temporal overlap with each other. Video event clustering aims to organise thedatabaseC

into K clusters, such that each cluster k represents an event Ek.

1.2.2 Multi-camera synchronisation

Multi-camerasynchronisation aims to temporally align the set of UGVs of an event Ek. Without

loss of generality, let us consider two videos Ck;i and Ck; j of the same event Ek, and having the
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same frame rate. Ck;i and Ck; j are considered to be synchronised when the recording time tp
i

at the pth frame of Ck;i and tq
j at the qth frame of Ck; j correspond to the same moment in the

universal time t, an instant referring to the continuous physical time. Let the synchronisation

time-shift Dti j begiven by

4 ti j = t p
i � tq

j : (1.1)

Somerecording devicesmight yield the problem of audio drifting out of sync with the video

when the recording time is long. Audio drift is generally caused by audio sample rates that do

not match the audio settings in the recording device. In this work, we assume that no UGV is

affected by the audio drifting out of sync with thevideo issue.

1.2.3 Association of a new camera recording

The problem of associating a new video Cq to a cluster k involves identifying the set Ek =

f Ck;nkg
Nk
nk= 1 of UGVs that matches Cq.

1.2.4 Camera motion detection

Without loss of generality, let us now consider C = f CngN
n= 1 be the set of N synchronised and

continuousmulti-cameraUGVsof an event. Let V = f VngN
n= 1, A = f AngN

n= 1 and G = f GngN
n= 1

denoteN visual, audio and gyroscopedata contained in C, respectively. Each Vn is given by

Vn = (vn1; :::;vnk; :::;vnKv
n
); (1.2)

where vnk is the kth visual frame, and is re-sampled to a common frame rate1 sv and contains Kv
n

number of visual frames. Likewise, each An isgiven by

An = (an1; :::;ank; :::;anKa
n
); (1.3)

where ank is the kth audio sample, and is re-sampled to a common sampling rate sa and contains

Ka
n audio samples. Each Gn = f Gnx, Gny, Gnzg is sampled at sg and contains Kg

n gyroscope data

samples. Camera motion detection aims at detecting the unwanted pan Pnd, tilt Tnd and shake

Snd motions in Cn.

1.2.5 Video composition

Each Cn istemporally ordered on acommon timeline, such that thefirst video framecorresponds

to the first recorded frame in C and the last video frame, Iv, corresponds to the last video frame

1All UGVsareconverted to thesame framerateusing VirtualDub [86].
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in C. Likewise for theaudio A which goes from 1 to Ia and gyroscopedatawhich goes from 1 to

Ig. Thus, thecoverage duration Dc (in seconds (s)) of theevent is then given by

Dc =
Iv
sv =

Ia
sa =

Ig
sg : (1.4)

Let the stitched audio Ast for the coverageduration Dc of theevent be

Ast = (ast
1 ;���;ast

i ;���ast
Ia); (1.5)

where ast
i be the ith audio sample. Let thesuitablecut-pointsU be

U = (u1;���;u j ;���;uJ); (1.6)

whereu j is thetime-stamp of the jth cut-point and J is thenumber of segments. Let S = f SngN
n= 1

denote thespatial score, T = f TngN
n= 1 denote thespatio-temporal scoreand Y = f YngN

n= 1 denote

the gyro-based score for C, respectively. The problem of automatic video composition can be

described as to select J segments from Cto generate asinglecoherent video M, given by

M = (M1; :::M j ; :::;MJ); (1.7)

where each segment M j belongs to one of the video recording Cn.

1.3 Contr ibutions

The variations in the audio and visual qualities of UGVs make their identification, synchroni-

sation and composition challenging. Composing a single multi-view video from multi-camera

UGVs of the same event provides scene understanding, which can improve the viewing experi-

ence of the user. Camera motion is a key element of UGVs that effects the visual quality. The

main contributions of this thesis areas follows:

1. We propose a framework for the automatic identification and alignment of unedited multi-

camera UGVs within a database [J1]. We design a descriptor derived from the pairwise

matching of audio chroma features of UGVs. The descriptor facilitates the definition of

a classification threshold for automatic query-by-example event identification. The frame-

work analyses thesound to match and cluster UGVs that capture the same spatio-temporal

event and estimate their relative time-shift for synchronisation.

2. Weproposeagyro-based cameramotion detection method for UGVscaptured from smart-

phones [C1]. The proposed method is independent of visual degradations due to the useof
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gyroscope data. Video and gyroscopedata are correlated as they are captured concurrently

fromthesamedevice. To detect pan and tilt motions, weextract thedominant motionsfrom

the gyroscope, whereas shake is detected by analysing high frequencies in the gyroscope

data.

3. Weproposean automatic audio-visual cameraselection framework for composing uninter-

rupted recordings from multiple UGVs of the same event [J2]. We develop an automatic

audio-based cut-point selection method to segment the UGV. The proposed framework

combines segments of UGVs using a rank-based camera selection strategy by consider-

ing audio-visual quality and view diversity. To filter video segments which contain visual

degradations, we perform spatial and spatio-temporal assessment. Furthermore, we design

agyro-based score for quantifying thegoodnessof theUGVs, and use it to develop agyro-

based video composition framework.

4. Wecontributeadatabaseof 263multi-cameraUGVsof 43 different concert eventscollected

fromtheYouTubeand 5 different self-captured events. Theseeventsareused for thevalida-

tionof theproposed identification, synchronisation and video composition frameworks. For

analysing theproposed gyro-based cameramotion detection method, wecaptured 24 multi-

modal (audio, visual and inertial data) recordingsat various real-world scenariosusing dif-

ferent smartphones. For validating theproposed gyro-based video composition framework,

wecaptured multi-modal dataof 4 events(12 UGVs) at amusical performance. To thebest

of our knowledge, similar multi-modal datasetsarenot availableto theresearch community.

1.4 Organisation of the thesis

This thesis is organised as follows:

Chapter 1: The introduction and motivation for the thesis are described in Sec. 1.1, followed

by theproblem formulation in Sec. 1.2. Thecontributionsof the thesis arediscussed in Sec. 1.3.

Chapter 2: The introduction to the chapter is provided in Sec. 2.1. Related audio and visual

content retrieval, and video composition applications are presented in Sec. 2.2, followed by an

introduction to the features used for the content analysis of UGVs (Sec. 2.3). Inertial sensors

are introduced in Sec. 2.4. The review of existing identification and synchronisation methods is

presented in Sec. 2.5 and Sec. 2.6, respectively. This is followed by the state-of-the-art review



Chapter 1: Introduction 28

of camera motion analysis (Sec. 2.7), and multi-camera video composition (Sec. 2.8). Finally,

Sec. 2.9 summaries thechapter.

Chapter 3: Sec. 3.1 presents the introduction to the chapter. Details of the chroma feature

that we utilise to design the event identification and synchronisation framework are presented in

Sec. 3.2. The audio and visual analyses that are performed for the proposed video composition

framework arepresented in Sec. 3.4 and Sec. 3.5, respectively. Gyro-based analysisof UGVsfor

theproposed cameramotion detection method isdetailed in Sec. 3.3. Thechapter issummarised

in Sec. 3.6.

Chapter 4: Theintroduction to thechapter isprovided in Sec. 4.1. An overview of theproposed

framework is presented in Sec. 4.2. Theproposed event identification framework is described in

Sec. 4.3, followed by the details of time-shift estimation and cluster membership validation in

Sec. 4.4. Sec. 4.6 provides theexperimental analysis and comparison with the existing methods.

Thechapter issummarised in Sec. 4.7.

Chapter 5: The chapter is introduced in Sec. 5.1. The proposed audio and visual-based video

composition framework is described in Sec. 5.2, and audio and gyro-based video composition

framework is detailed in Sec. 5.3. Subjective test designed for the evaluation of the proposed

frameworks is detailed in Sec. 5.4. Experimental evaluation of the gyro-based camera motion

detection is presented in Sec. 5.5. This is followed by subjective evaluation and analysis of the

proposed frameworks in Sec. 5.6. Thechapter is summarised in Sec. 5.7.

Chapter 6: The chapter presents a summary of the achievements of the thesis (Sec. 6.1) and

futuredirections of work (Sec. 6.2).

Appendix A: Detailsof thecollected dataset for theanalysisof theidentification and synchroni-

sation framework (Sec. A.1), gyro-based camera motion detection method (Sec. A.2) and video

composition frameworks (Sec. A.3) are presented in thisappendix.
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Related work

2.1 Introduction

Content identification within adatabaseof multimediarecordingsinvolves identifying all record-

ings that match in space and time with the query recording provided by the user [91]. Multi-

camera synchronisation involves spatio-temporal alignment of a set of recordings of a particular

event. Methods for content identification and synchronisation can be categorised into visual-

based and audio-based. Visual-based methods identify Near-DuplicateVideos (NDVs) that con-

tain the same visual content as that of the query from a database [28, 67, 91, 120, 136, 137].

Video-basedsynchronisation isperformedonrecordingscaptured inconstraint environments[26,

45, 88, 93, 118, 149]. Audio-based methods utilise audio features to analyse UGVs for event

identification [20, 32, 76] and synchronisation [20, 23, 32, 74, 76, 132].

Editing of synchronised UGVs of the same event can be performed to generate a single

coherent multi-camera video. Camera motion analysis is a key component in designing video

editing methods [21, 35, 60, 81]. The video editing process can be split into two main blocks,

namely, audio and visual content analysis, and cameraview selection. Theselection of audio and

visual features, and camera view are dependent on the application (editing of lecture, meeting

room, homevideos, sports videos or UGVs) [9, 42, 104, 117, 122, 133, 152, 156].

This chapter presents a review of the related work on content identification, synchronisa-

tion and video editing. First we present the content identification and video editing overview

(Sec. 2.2), followed by an introduction of the features for content analysis (Sec. 2.3). An in-

29
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troduction to inertial sensors is then presented in Sec. 2.4. We review the existing visual-based

(Sec. 2.5, Sec. 2.6) and audio-based (Sec. ??) methods for the content identification and syn-

chronisation. Wedetail therelated work for cameramotion analysis(Sec. 2.7), and multi-camera

video editing and composition (Sec. 2.8). Finally, summary and discussion are presented in

Sec. 2.9.

2.2 Content identification and video composition overview

Content-based retrieval in multimedia recordings can be grouped into two main categories, i.e.

to identify similar [64] or same[91] content as that of thequery. Identification of similar content

involves retrieving events which aresimilar but not necessarily occur at thesame place and time

(e.g. different parties, different sports games). Identification of same content involves retrieving

events that occur at the same place and time (e.g. the same party, the same sport game). The

focus of this thesis ison the latter category.

Videos that contain thesamesemantic information but differ in appearance (change in view-

points, illumination, background, foreground) are termed as NDVs [91]. Identification of NDVs

forms thebasis for developing several applications such as copyright protection, usage monitor-

ing, re-ranking and recommendation [91]. UGVs, as the name suggests, are the videos captured

by people using their hand-held devices (e.g. smartphones). Identification and organisation of

multi-cameravideos isnecessary for video summarisation [62], composition [122, 133, J2], shot

detection [145], region of interest detection [35] and content analysis [6]. Identification in UGVs

and NDVs is similar as both aim at retrieving the videos containing the same spatio-temporal

information. However, they significantly differ dueto thenatureof thevisual content under anal-

ysis. NDVs are transformed copies of an original professionally recorded and edited video (e.g.

movies, music videos, television news). On the other hand, multi-camera UGVs recorded at the

sameevent differ significantly dueto varying fieldsof view, lighting conditions, cameramotions,

devicesettingsand location of theusers. Thesevariationsintroducevisual degradations in UGVs

making their content identification non-trivial.

Content identification in music involvesmatching professionally recorded music (e.g. album

songs) against their database. It is used for copyright protection, usage monitoring, tagging,

play-listing and taste profiling [18, 24, 27, 33]. Methods include those used for Shazam [143]

and TrackID [2], which are based on the fingerprinting method by Wang [144] for audio identi-
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fication. Some patents for audio identification and classification also came in recent years [78,

47, 95]. Audio from UGVs differ from professionally produced content (such as music albums,

films) as it contains degradationsdue to devicesettings, user-handling and surrounding noise.

Video composition findsapplications in lectureand meeting rooms recordings, sports games

broadcast and highlights, home video summarisation and multi-camera UGVs composition [9,

42, 104, 122, 133, 152, 156]. In video summarisation, the continuity of the event is not con-

sidered and only key frames are included in the output video. In video composition, a time

continuous video is generated by selecting video segments from multiple cameras. Home video

refers to the single camera recording of a home event (wedding, birthday party). Multi-camera

UGVscomposition isclosely linked with homevideo editing dueto thesimilarity of thecontent,

but differ in terms of the input information and target application, as in thecaseof video compo-

sition, multiple UGVs of an event areavailable for the generation of acontinuous video. Unlike

professional recordings, which are scripted and recorded from stable cameras, home videos and

UGVs are recorded from hand-held devicesand are dependent on the interest of theuser.

2.3 Features

Audio features such as onsets [16, 126] and fingerprints [57, 144]) are utilised for the identi-

fication and synchronisation in UGVs. For UGVs’ editing, global features are extracted from

the visual data for the analysis of camera motion [6, 122, 133]. In this section, we present an

introduction to the audio and visual features, which are commonly used for the content analysis

of UGVs.

2.3.1 Audio onset

Onset isdefined asthestart of atransient region in an audio signal, during which spectral changes

occur due to an increase in signal energy [16]. In the onset detection method [126], multiple

frequency bandsbased on equivalent rectangular bandwidth (ERB) scalearefirst computed. ERB

provides an approximation to the frequency bands in human hearing [126] An audio signal is

divided into 8, 16 or 24 bands based on the ERB. A fixed or an adaptive threshold is applied

on the ERB for onsets detection [23, 132]. In a fixed threshold-based approach [132], ERB is

computed in each audio frame and a threshold is applied on the difference of energy between

two consecutive frames to detect an onset. The threshold is selected heuristically based on a
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Figure 2.1: Onset [126] visualisation for the first band of three synchronised recordings. Onsets
for C3 appear lesscorrelated with C1 and C2 due to the presenceof audio degradations.

perceptual test [126]. In an adaptive threshold-based approach [23], an audio signal is divided

into 8 bands, and apeak detector is applied at each band. The threshold for peak detection is set

adaptively by relating it to theaverageaudio energy at each band. At aparticular time instant, an

onset is detected if peaks are obtained in multiple bands. For visualisation, a band of extracted

onsets for three synchronised recordings is shown in Fig. 2.1. It can be observed that C1 and C2

show high correlation, however, C3 doesnot as it containsaudio degradations.

For multi-camera UGVs synchronisation [132], cross-correlation of the multiple frequency

bands of a pair of recordings is computed to estimate the time-shift for alignment. Detected

onsets can also be integrated with the visual data for audio dependent visual event detection and

synchronisation [23].

2.3.2 Audio fingerpr int

Audio fingerprint [22] providesacondensed digital representation of an audio segment. It isused

to identify audio signals from an audio database that aresimilar to thequery and for audio-based

synchronisation of UGVs [76, 132]. There are two key methods used for the extraction of audio

fingerprints, namely frame-based [57] and landmark-based [144] methods.

In the frame-based method [57], the audio signal is first segmented into frames. A set of

features, such as Fourier coefficients [52], Mel-Frequency Cepstral Coefficient (MFCC) [94],

spectral flatness [34], and sharpness [34] are then computed for each frame. These features are

mapped on a compact representation by performing quantisation [58], and are referred as sub-

fingerprints. A collection of consecutive sub-fingerprints sufficient for audio identification is

called fingerprint-block. Fingerprint-blocks from each pair of recordings are matched by com-
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(a) (b) (c)

Figure 2.2: Visualisation of frame-based [57] and landmark-based [144] fingerprints.
(a) Fingerprint-block of two synchronised recordings and their difference. (b) Fingerprint-block
of two unsynchronised recordings and their difference. (c) Landmark-based fingerprints visuali-
sation [46] in which aquery ismatched with thedatabase recordings to identify and synchronise
the samecontent.

puting Bit Error Rate (BER) for multi-cameraUGVssynchronisation [132]. Figure2.2(a) shows

the fingerprint-block from two synchronised recordings and their difference. Fingerprint-blocks

for unsynchronised recordingsareshown in Fig. 2.2(b) for visualisation.

Landmark-based method [144] is proposed by Wang and is used widely for content identi-

fication [78, 95, 143]. In this method, the Short-Time Fourier Transform (STFT) of the audio

segment is computed, and landmarks are identified as the spectrogram peaks. Landmarks are in

areas of high energy. To extract the fingerprints, each landmark is associated with nine closet

landmarks present in its target zone by using the time and frequency difference among them.

Thisgivesthehash valuefor each landmark. Figure2.2(c) showsthevisualisation of fingerprints

matched between aquery (of 30s duration) and database recording [46].

2.3.3 Audio chroma

Audio chroma feature is advantageous in distinguishing different types of sound, such as voice

and musical instruments [12, 109]. This feature is mainly use in professional music recordings

for the identification, chord recognition, genre classification, audio thumbnailing, matching and

synchronisation [12, 48, 49, 72, 109].

Audio chroma gives a 12-dimensional representation of the tonal content of an audio signal

derived by combining bandsbelonging to twelvepitch classes (C, C#, D, D#, E, F, F#, G, G#, A,

A#, B) corresponding to the same distinct semitones (or chromas). The chroma feature vector is
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represented as v= (v0; ;���;vr ;���;v11) 2 R12�1, where v0 corresponds to the energy of chroma

C, v1 corresponds to theenergy of chromaC#, and so on. Each chromavr iscomputed as [110]

vr = Â
s:t l (mod 12)= r

f (l ) ; (2.1)

where r 2 [0;11] indicates thechromanumber and l denotes thepitch class index corresponding

to aparticular spectrum bin index. Thepitch class index l dependson their centre frequency f (l )

in a logarithmic way, and is given by [110]

l = Vd log2

�
f (l )
fs

�

+ ls; (2.2)

where fs= 440Hzis thestandard frequency for pitch tuning [110] that correspondsto theconcert

pitch ls= 69 (A4) and Vd= 12 which represents the 12 dimensions (semitones) of the chroma

vector. Concert pitch is the reference pitch to which musical devices are tuned. A pitch class is

the set of all pitches which share the same chroma. For instance, the pitch class corresponding

to chromaC is (C0;C1;C2; :::;C8) and relates to thepitch sub-bands(12;24;36; :::;108). This is

represented using a chromagram. Figure 2.3 illustrates the process of extraction of the chroma

feature for a particular audio frame fr .

2.3.4 Luminance projection correlation

Luminance Projection Correlation (LPC) [112] is a visual method for computing the horizon-

tal and vertical displacements of a camera. This method was introduced by Nagasaka and

Miyatake [112, 141]), and is widely used for video content analysis and camera motion de-

tection [21, 122, 133]. Further, it can be extended to detect shake motion [21], and is useful for

analysing thespatio-temporal quality of the visual data [J2, 122, 133].

Given the video frame intensity v(x;y;t) at time t, its horizontal Py(t;x) and vertical Px(t;y)

projectionsarecomputed as [141]

Py(t;x) =
1
h

h

Â
y= 1

v(x;y;t) ; (2.3)

Px(t; y) =
1
w

w

Â
x= 1

v(x;y;t) ; (2.4)

where h is the height and w is the width of v(x;y;t). The horizontal Lx(t) and vertical Ly(t)

displacements at the timet are then calculated as

Lx(t) = arg min
d p

w(d p�0)
w�d p(dp< 0)

Â
x= 1+ d p(d p�0)

x= 1(d p< 0)

DPy(t; x;dp); (2.5)
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Figure2.3: An exampleillustrating chromafeatureextraction. Thespectrumof aparticular audio
frame fr (highlighted in red) isdivided into sub-bands and achromagram is formed by summing
all pitch bands corresponding to aparticular chroma.

Ly(t) = arg min
d p

h(d p�0)
h�d p(dp< 0)

Â
y= 1+ dp(d p�0)

y= 1(d p< 0)

DPx(t; y;dp); (2.6)

where DPx and DPy are theprojection distances computed as

DPy(t;x;dp) = f Py(t;x)�Py(t + 1;x�dp)g2;

DPx(t;y;dp) = f Px(t;y)�Px(t + 1;y� dp)g2;

and dp isapanning parameter ranging from -20 to 20 pixels displacement. Thehorizontal Lx(t)

and vertical Lx(t) displacements are also referred as camera pan (left-right) and tilt (up-down)

motions, respectively.
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2.3.5 Optical flow

Optical flow is the apparent motion in an image caused due to the movement of a camera or

object in thescene. It findsapplications in motion estimation, action recognition, video indexing

and retrieval, crowd motion and pedestrian behaviour analysis, image sequence compression

(MPEG), robotics (obstacle detection, time to contact) [51].

Optical flow assumes that the brightness of a physical point in the image does not change

over the time. If an image v(x;y;t) is displaced by dx and dy between two frames dt, than the

brightness constancy constraint can begiven by

v(x;y;t) = v(x+ dx;y+ dy;t + dt): (2.7)

Assuming the displacement to be very small, we get

v(x+ dx;y+ dy;t + dt) = v(x;y;t) +
dv
dx

dx+
dv
dy

dy+
dv
dt

dt; (2.8)

dv
dx

dx
dt

+
dv
dy

dy
dt

+
dv
dt

dt
dt

= 0; (2.9)

that gives
dv
dx

VOF
x +

dv
dy

VOF
y +

dv
dt

= 0; (2.10)

where VOF
x and VOF

y are the optical flow x and y components. Eq. 2.10 has two unknowns and

cannot be solved without additional constraints. Several optical flow estimation methods have

been introduced that impose additional constraints for computing the flow [13], among which

differential methods are the most common ones [63, 97]. Horn and Schunck [63] proposed a

global method that assumed the optical flow to be smooth over the entire image. While Lucade

and Kanade [97] proposed a local method by assuming the optical flow to be constant on the

current feature point neighborhood.

2.4 Iner tial sensors

Smartphonesareequipped with sensors, such asaccelerometer, compass, gyroscope, GPS, prox-

imity detector, microphone, and camera, which are providing new directions toward the devel-

opment of sensing applications [82]. These sensors when logged while capturing an image or

recording a video are of significant importance for geo-tagging, localisation and video annota-

tion [130, 90]. Additionally, inertial sensors (i.e. accelerometers, gyroscopes, magnetometers)

are useful for camera motion analysis and can provide better understanding of the environment

and event of interest in UGVs [35].
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2.4.1 Accelerometer

Tri-axial accelerometer measurestheproper acceleration (in x, y and zaxes) experienced relative

to the free fall by a device. The gravitational component of the acceleration (g = 9:8m=s2) is

always present in the proper acceleration, such that an accelerometer at rest on the surface of

the earth measures 1g in the upward direction [92]. Integral of measured acceleration gives the

velocity and double integral gives the displacement of the device. However, the double integral

introduces an accumulated position drift [17].

Accelerometer was initially included in smartphones for detecting its rotation by observing

the switching of the gravitational component from one axis to another [92]. The motivation was

to enhancetheviewing experienceof theuser by rotating thedisplay according to theorientation

of the device [82]. Accelerometer data in smartphone is found to be beneficial for developing

real-time activity recognition applications for fitness, sports and health monitoring by inferring

different activities (e.g. walk, jog, run, sit, stand) [68, 107, 114]. It is also used for detecting

driver’s behaviour while driving by understanding vehicle’s motion [92], and for tracking phone

gestures for virtual hand-writing experience [92]. Furthermore, accelerometer data is also used

for computing thetilt angleof thedevice[35]. However, thesametilt anglecan beobtain directly

from theorientation sensor (i.e. an internal software-typesensor).

2.4.2 Gyroscope

Tri-axial gyroscope is an angular speed sensor which measures the rate of rotation (angular ve-

locity) around their own x, y and zaxes. Therateof rotation isgiven in rad=sunits. Therotations

around thex, y and zaxesaretermed asroll, pitch and yaw, respectively (asshown in Fig. 2.4(a)).

Unlike accelerometer and magnetometer, gyroscope is neither effected by gravity nor magnetic

field. Gyroscope is not influenced by environmental conditions, which makes it useful for navi-

gation in spacewheremagnetometer doesnot works(e.g. hubblespacetelescope). This isuseful

for maintaining theorientation of adevice, and is thereforeutilised for thestability in navigation

of unmanned aerial vehicle, aircraft, helicopter and largeboat [10].

Gyroscope is more sensitive, precise and robust compared to an accelerometer. In smart-

phones, it is used for the development of 3D dynamic games [125]. Gyroscope is also sensitive

to acoustic signals in the close proximity of a smartphone, that is exploited for speech recog-

nition [105]. Gyroscope combined with accelerometer provides more accurate orientation and
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Figure 2.4: Smartphone inertial sensors. (a) Visualisation of device’s and earth’s coordinate
systems, and rotation around x, y and z axes. (b) The response of accelerometer, gyroscope and
magnetometer when roll and pitch motions are performed between time 1s to 9s and 11s to 19s,
respectively. Roll motion is observed by gyroscope and magnetometer but not by accelerometer
as thegravitational component of thedevice remainsunaffected.

motion-sensing information, as their fusion facilitates in compensating for the angle and dis-

placement drifts. It is therefore used in conjugation with an accelerometer for applications such

as activity recognition, indoor navigation and tracking, mobile security, etc [68, 92, 160]. It can

also be exploited for cameramotion analysis (i.e. pan and tilt detection) [C1].

2.4.3 Magnetometer

Tri-axial magnetometer measures the orientation of a device with respect to the Earth’s mag-

netic field. An accelerometer and gyroscopemeasure the relativedisplacement and rotation with

respect to thedevice’scoordinatesystem. A magnetometer isused to obtain theabsoluteorienta-

tion of thedevicewith respect to theearth coordinatesystem. A visualisation of deviceand earth

coordinate systems are shown in Fig. 2.4(a). Magnetometer is sensitive to drift and magnetic

field induced by thepresence of nearby magnetic objects.

In smartphones, magnetometer is mainly used to complement accelerometer and gyroscope

information [11] to compensate for the drift error. It is sometimes used in conjugation with

an accelerometer and/or gyroscope for activity recognition, localisation and navigation [30, 68,

85]. It can also be used for estimating camera pan movement in UGVs [35]; but the obtained

estimation may not be reliabledue to electromagnetic noise.
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2.4.4 Inertial sensor-based features

Data acquired from the inertial sensors can be further processed for extracting different time

and frequency domain features [84]. Most commonly utilised time domain features include

mean, standard deviation, mean absolute deviation, minimum and maximum, energy, entropy.

Frequency domain features include frequency spectrum skewness, kurtosis and spectral energy,

and energy of different frequency bands. In human activity recognition applications, these fea-

tures areextracted from theaccelerometer and gyroscopedata, and are then used for training the

classifiers (e.g. Support Vector Machine (SVM), neural network, decision tree) for recognising

different activities [84, 114, 123].

The response of accelerometer, gyroscope and magnetometer when roll and pitch motions

are performed is shown in Fig. 2.4(b). Gyroscope data gives a direct estimate of pan (roll) and

tilt (pitch) motions as it measures theangular velocity of thesmartphone.

2.5 Identification

Content analysis of UGVs is mainly performed using audio fingerprinting [20, 32, 76, 132].

Near-DuplicateVideo Retrieval (NDVR) can berelated to the identificationof UGVsasboth aim

at determining whether the database videos contain the same content as that of the query video.

NDVR utilisesspatial and temporal features(suchasappearance, texture, temporal dynamics) for

video matching [91, 137, 136, 43, 120, 67, 28]. A general framework for NDVR first represents

a video as a set of descriptors extracted from each frame or keyframes [43, 136, 137]. A video

signature is then formed that represents a video at local or global level [91]. At local level,

each keyframe forms a signature, while at global level, each video forms a single signature.

The query video signature is matched with the signatures of the database videos to compute the

similarity. Temporal constraints are applied on the matched signatures by weak alignment [155]

or Hough voting [43] for NDVR. A review of existing video signature methods is presented

by Paschalakis et al. [115]. Audio-based identification mainly involves feature extraction and

feature matching. Feature matching is performed by computing pairwise cross-correlation or

hash-value similarity of the extracted features [20, 32, 76]. Detailed below is the state-of-the-art

for NDVR and audio-based identification.
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2.5.1 Local signature-based identification

Local signature-based methods [43, 28, 159, 153] arecomputationally expensiveascompared to

global signature-basedmethodsbecauseall keyframes’ signaturesof thequery arecomparedwith

all keyframes’ signatures of the database followed by temporal verification. Douze et al. [43]

used hessian detector and Center-Symmetric Local Binary Pattern (CSLBP) as descriptor to de-

sign a compact signature for each frame, and applied modified Hough voting for the retrieval.

Chou et al. [28] used Features from Accelerated Segment Test (FAST) detector and Histograms

of Orientations of Optical Flow (HOOP) descriptor for spatio-temporal feature extraction from

keyframes, followed by encoding them into symbols. A pattern-based prefix tree is constructed

offline from thesymbols, which facilitated thequery search in aconstant time. Zhou et al. [159]

used Principal Component Analysis-based Scale-Invariant Feature Transform (PCA-SIFT) for

feature extraction and constructed an adaptive structure video tensor series. A dimensionality

reduction method is designed, and an efficient distance function is proposed to measure thesim-

ilarity between the query and database tensor series. Wu and Aizawa [153] used Conditional

Entropy (CE) and Local Binary Pattern (LBP) to construct the Self-Similarity Belt (SSBelt),

which gave the local signatureof avideo.

2.5.2 Global signature-based identification

Global signature-based methods[136, 137, 67, 120] can performvideo identification in real-time,

however, they may become less effective in representing long duration videos. Song et al. [136,

137] used multiple features hashing to learn the hash codes and hash functions of the training

data. Hash functions facilitated inferring the hash codes of videos that were not included in the

training data. Hamming distance was then computed to obtain the similarity between each pair

of videos. Huang et al. [67] performed NDVs clustering and used histogram intersection of all

pairs of training videos for theadaptiveclassification of videos. Revaud et al. [120] proposed an

event retrieval framework from largevideo collectionsand contributed theEVent VidEo (EVVE)

database. This method [120] jointly encoded the spatial and temporal information of a video in

frequency domain to get the signature for the query video. Match score was computed between

pair of video by component-wisematching of their signatures in the frequency domain.

Table2.1 summarises thestate of the art for NDVR. Thesemethods aremainly designed for

copy detection in professional videosthat haveno or narrow view-point change, and arecaptured
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Table 2.1: State of the art for Near Duplicate Video Retrieval (NDVR). Key: LS - local signa-
ture; GS - global signature; LBP - local binary pattern; SIFT - scale-invariant feature transform;
CSLBP - centre-symmetric LBP; FAST - features from accelerated segment test; HOOF - his-
tograms of orientations of optical flow; DoG - difference of Gaussian; PCA-SIFT - principal
component analysis-based SIFT; HSV - huesatuation value.

Ref. Signature type Features NDV databaseused Comments

LS GS

[43] X hessian, CSLBP TRECVID20081, self-collected data
compact representation and modified

hough voting

[28] X FAST, HOOF
MUSCLE VCD2, CC WEB VIDEO,

UQ VIDEO

symbols and pattern-based prefix tree

from spatio-temporal feature

[159] X
DoG,

PCA-SIFT

TV boardcast, TREVID2008,

CC WEB VIDEO

adaptivestructure tensor series for

spatio-temporal featuresencoding

[153] X CE, LBP
CC WEB VIDEO, MUSCLE VCD,

TREVID2008

self-similarity belt assignatureand

intensity mark for alignment

[136, 137] X HSV, LBP CC WEB VIDEO3, UQ VIDEO4
multiple feature hashing and real-time

implementation

[120] X dense SIFT
TREVID2008, CC WEB VIDEO,

EVVE5

joint representation of appearance and

temporal information

[67] X
histogram

intersection
CC WEB VIDEO

adaptiveclassification and integrated

voting for clustering

mainly using fixed cameras.

2.5.3 Audio-based identification

Event identificationusingaudio featureshasbeenaddressed in [20, 32, 76], whichused landmark-

based audio fingerprinting [144], where the landmarks are the onsets of local frequency peaks

and are identified from the STFT of the audio (see Sec. 2.3.2). Kennedy and Naaman [76] pre-

sented an approach for the synchronisation and organisation of a collection of recordings from

three concerts, in which the classification threshold was computed based on the mean and stan-

dard deviation of thematches. For each set of concert recordings, synchronisation time-shift was

obtained to align the recordings on a common timeline. Cotton and Ellis [32] used matching

pursuit to obtain a prominent representation of audio events and tested their identification ap-

proach on a public speech dataset that contained multiple recordings of the same event. Both

1http://www-nlpir.nist.gov/projects/tv2008/tv2008.html
2https://www.rocq.inria.fr/imedia/civr-bench/data.html
3http://vireo.cs.cityu.edu.hk/webvideo/
4http://itee.uq.edu.au/shenht/UQ_VIDEO/ (link broken)
5http://pascal.inrialpes.fr/data/evve/
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Table 2.2: State of the art methods for identification of multi-camera UGVs. Key: AF: audio
fingerprint; AC : audio chroma; ILD: insensitive to local degradations; IGD: insensitive to global
degradations; K: total number of events; M: total number of recordings; PP: professional produc-
tion recordings; AS: amplified sound recordings; NAS: non-amplified sound recordings.

Ref. Feature Properties Matching approach Dataset Properties

AF AC ILD IGD K M PP AS NAS

[76] X X Hash-value similarity maximisation 3 608 X

[20] X X Cross-correlation maximisation 9 203 X X

[32] X X Hash-value similarity maximisation 1 733 X

[J1] X X X Featuresimilarity maximisation 48 263 X X

approaches [76, 32] used hash valuesimilarity maximisation for matching pairsof recordings. A

similar approach was presented by Bryan et al. [20] for event identification and synchronisation.

This method used landmark cross-correlation for matching and afixed classification threshold to

cluster aspeech dataset of 180 professional recordings and 23 UGVs of concerts.

Table2.2 summarisesthestateof theart for identification of multi-cameraUGVsusing audio

features. We categorise audio degradations into two groups, namely, local and global degrada-

tions. Local degradations are caused by recording device settings, channel and surrounding

noise, and reverberations. Global degradations are common to some or all recording devices

(e.g. a crowd cheering, a whistle blowing during a specific event) and may help during the syn-

chronisation process. The existing methods mainly considered amplified sound recordings and

showed robustnessonly to local degradations.

2.6 Synchronisation

Several methods for visual-based multi-camera synchronisation are proposed in the literature,

which exploit local or global features to achieve synchronisation [25, 88, 138, 149]. Most of

the existing methods made use of the multi-view geometry between the stationary cameras and

the object been recorded [25, 26, 138]. Synchronisation of UGVs is performed using audio fin-

gerprinting, audio onset, audio feature-based classification and audio-visual event-based meth-

ods [23, 132, 134]. Presented below is the related work for visual and audio-based synchronisa-

tion methods.
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2.6.1 Local feature-based synchronisation

Feature-based synchronisation methodsexploit trackingof objectsor featurepointsbetween each

pair of static cameras[26, 45, 93, 118, 138, 148, 161] or acrossthreecameras[88, 150], or interest

points detection in spaceand time [149, 154] for estimating thesynchronisation time-shift.

Trajectory-based methods extract the trajectory of objects or interest points by using back-

ground subtraction or feature trackers [29, 97]. These methods assume that the moving objects

are captured from a pair of stationary cameras [45, 93, 138, 148], with the exception of few

which also consider jointly moving cameras [25, 26]. Once the trajectories are computed, these

methodssolvethehomography (2D projectivetransformation) [25, 26, 138] or epipolar geometry

[45, 148] between the two cameras for estimating thesynchronisation time-shifts. In multi-view

geometry, fundamental matrix [59] relates the 3D scene points with their projections in the 2D

camera images. Homography [59] is a special case of fundamental matrix which assumes that

the distance between two cameras (C1 and C2) is negligible compared to their distances from

the scene. The transformation required to map the 2D image from C2 to the 2D image in C1

is termed as homography. Homography from C2 to C1 is computed using the trajectories of

single/multiple interest points or objects. The time-shift is estimated by minimising the sum

of squared differences [25, 26] or by optimising the RANdom SAmple Consensus (RANSAC)

algorithm between the original and transformed trajectories. Other methods exploit the kinetic

changes of moving objects captured against stationary background to estimate the synchronisa-

tion time-shift [148, 93]. Zini et al. [161] computed the frame-level correspondences between

two camera recordings using theactionsof articulated objects. Themethod assumed objects’ as-

sociation to beknown a priori and computed Histogram of Oriented Gradients(HOG) to identify

and synchronise the repeated pattern that exists in actions of articulated objects.

Tri-focal tensor [59] is used for the synchronisation of multi-camera recordings of a scene

captured using threestationary cameras [88, 150]. Tri-focal tensor is ageneralisation of the fun-

damental matrix that relatesthefeaturesacrossthreeviewsinstead of two [59]. Lei andYang [88]

computed the correspondence of trajectories across three camera views by maximising the fea-

ture geometric alignment measure. Instead of solving the trajectory correspondence, White-

head et al. [150] identified the inflection points (change in a trajectory’s direction) across three

camerasfor computing thesynchronisation time-shift. Themain constraint of [88] and [150] was

that the three cameras should remain stationary throughout the recording. Additionally, White-
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head et al. [150] assumed that themotion of objects in thescene to benon-periodic.

Space-Time Interest Points (STIP) are also used for the synchronisation of a pair of video

recordings captured from stationary cameras [154, 149]. STIPs [83] are derived from spatial

interest points (Harris corner detector) to detect an interest point both in space and time. Yan

and Pollefeys[154] correlated thehistogramsof STIPs’ distribution of apair of video recordings

to obtain the synchronisation time-shift. Wedge et al. [149] applied RANSAC-based temporal

model and homography or fundamental matrix-based spatial model on STIPs of a pair of videos

to estimate the time-shift.

2.6.2 Global feature-based synchronisation

Direct alignment methods are based on image intensity [25, 142] or luminance changes [132,

134]. These methods do not require feature detection and object or interest point tracking. In-

stead, they rely on spatio-temporal variations in pixel intensities (e.g. fireworks, cameraflashes)

for thealignment.

Caspi and Irani [25] proposed adirect alignment method to synchroniseapair of videoscap-

tured using stationary calibrated cameras. A Gaussian spatio-temporal pyramid iscomputed, and

an iterativealgorithm isapplied to minimisethesum of squared differencesin pixel intensitiesat

each level of the pyramid using the estimate of the spatio-temporal model. Likewise, Ukrainitz

and Irani [142] maximised thespace-timecorrelation of local pixel variationsof a pair of videos

to estimate thesynchronisation offset.

Shrestha et al. [132, 134] proposed a global brightness variation (flashes) based method for

multi-camera synchronisation. Flash enabled cameras produce instantaneous flashes of light

which illuminate the scene [132]. The luminance histogram of a frame containing flash shows

concentration of pixels in the higher bins of the histogram. To detect flashes, luminance differ-

ence curve was computed by taking the difference of accumulated high brightness pixels (range

171 to 255) across consecutive frames. A locally adaptive threshold was applied on the lumi-

nance difference curve to detect flashes. The flash patterns of a pair of videos were matched to

determinethesynchronisation time-shift. Flashesareused only in indoor or night events and are

not alwayscaptured in videosdue to camera shutter closure or field of view variation.

Table2.3summarisesthestateof theart for visual-basedmulti-camerasynchronisation. Most

of thesemethodshaveconstraintson thenumber of cameras, rigidity of camerasandfieldof view.
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Table 2.3: State-of-the-art of visual-based multi-camera synchronisation. Key: NRC: non-rigid
camera; UE: unconstrained environment; N: Number of cameras to be synchronised; ’ * ’ indi-
cates that atleast three cameras are fixed; The letters a, b in Ref. indicates different methods
proposed in thesame paper.

Ref. Feature type Featureused Cameraconstraints

Local Global NRC UE N

[138] X trajectory 2

[25]a X trajectory 2

[148] X trajectory 2

[88] X trajectory X � 3

[150] X trajectory X � 3

[118] X trajectory 2

[45] X trajectory 2

[93] X trajectory 2

[154] X space-time interest point 2

[149] X space-time interest point 2

[161] X histogram of oriented gradient 2

[132] X flashes X X > 2

[25]b X pixel intensity 2

[142] X pixel intensity 2

2.6.3 Audio-based synchronisation

Existing methods for multi-camera UGV synchronisation involve extraction and matching of

features (audio fingerprints [132, 76, 20] and audio onsets [132]), audio feature-based classi-

fication [131], and audio-visual events [23]. Also, Kammerl et al. [74] proposed graph-based

methods for temporal synchronisation inferred by analysing the consistency in pairwise cross-

correlation of threeaudio features, namely, spectral flatness, zero-crossing and signal energy.

The audio fingerprinting method of Haitsma and Kalker [57] was exploited by Shrestha

et al. [131, 132]: a 32-bit sub-fingerprint (binary) was generated based on spectrum-temporal

analysis of the audio in an overlapping window (see Sec. 2.3.2). Two fingerprint-blocks of 256

consecutive sub-fingerprints were considered to be matching if the number of error bits (BER)

was smaller than a threshold [57]. The landmark-based fingerprinting approach by Wang [144]

was used by Kennedy and Naaman [76] and Bryan et al. [20] for the synchronisation of col-

lections of concert recordings. The same approach [144] was used by Duong and Thudor [44]
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for the synchronisation and identification of removed and re-ordered segments of movies. Au-

dio fingerprinting-based methods are commonly used due to their robustness to audio degrada-

tions. However, they might become sensitive to reverberations [132] and strong local degrada-

tions [102].

An onset-based method was presented by Shrestha et al. [132], which performed cross-

correlation of multiplefrequency bandsof two recordingsto compute their synchronisation time-

shift (see Sec. 2.3.1). In comparison to audio fingerprints, onset-based methods [132] are more

sensitiveto audio degradationsasfalsepositiveonsetsmay get detected dueto channel and back-

ground noise.

An audio feature classification method for multi-camera synchronisation was presented in

[131], which was based on low-level signal properties, i.e. MFCC, roughness, loudness, sharp-

ness and temporal envelope fluctuations model. Quadratic discriminant analysis [103] was per-

formed to estimate the probabilities of silence, music, speech, noise and crowd classes for each

audio frameof size11:6ms. Cross-correlation was then computed to estimate the time-shift.

2.6.4 Audio-visual synchronisation

Casanovas and Cavallaro [23] presented an audio-visual events-based method for multi-camera

synchronisation in which an audio-visual event was defined to be a simultaneous change in the

audio and video streams. The method first detected an audio event using audio onsets (see

Sec. 2.3.1). A space-time visual block was then defined around each detected audio event, and

the local variation of pixel intensities were analysed in each block for visual event detection. A

space-time block was considered to be active if its local variation was greater than a threshold,

and an audio-visual event wasdetected when several activeblockswere in close proximity. This

method is sensitive to audio degradations, in the same way as the onset-based method [132] is.

Additionally, it is dependent on camera motion, and near or far fields of view. Table 2.4 sum-

marises the state of the art for synchronisation of multi-camera UGVs using audio and audio-

visual features.

2.6.5 Audio chroma for music alignment

Chroma features are mainly use in professional music recordings for the identification, chord

recognition, genreclassification, audio thumbnailing, matching and synchronisation [12, 48, 49,

72, 109, 98]. Muller et al. [109] presented an audio matching approach using Chroma Energy
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Table 2.4: State of the art methods for synchronisation of multi-camera UGVs. Key: AFC:
audio feature classification; AF: audio fingerprint; AO: audio onset; PI: pixel intensity; AC :
audio chroma; ILD: insensitive to local degradations; IGD: insensitive to global degradations;
BER: Bit Error Rate; K: total number of events; M: total number of recordings; PP: professional
production recordings; AS: amplified sound recordings; NAS: non-amplified sound recordings.
The letters aand b in Ref. indicatedifferent methods proposed in thesamepaper.

Ref. Feature Properties Matching approach Dataset Properties

AFC AF AO PI AC ILD IGD K M PP AS NAS

[131] X Cross-correlation maximisation 5 11 X

[132]a X Cross-correlation maximisation 7 30 X

[132]b X X BER minimisation 7 30 X

[76] X X Hash-valuesimilarity maximisation 3 608 X

[44] X Hash-valuesimilarity maximisation 11 264 X X

[20] X X Cross-correlation maximisation 9 203 X X

[23] X X Cross-correlation maximisation 8 40 X X

[J1] X X X Featuresimilarity maximisation 48 263 X X

distribution Normalised Statistics(CENS), which isavariant of chromafeatures. In thismethod,

either the number of matches to be retrieved or the threshold value for the distance of a re-

trieved match need to be pre-defined. Ewert et al. [49] proposed a method of score-to-audio

alignment in music that combines chroma with onset features and performs matching using Dy-

namic Time Warping (DTW). The testing is performed on noise-free synthesised music files.

Macraeet al. [98] extracted chromafeatures from an input music and the corresponding stream-

ing music video, and used DTW for their real-timesynchronisation.

2.7 Camera motion analysis

Cameramotion analysis isperformed for detecting shot boundariesand unwanted cameramove-

ments in home videos and UGVs [6, 21, 104, 141]. The majority of methods for camera motion

analysisutilisevisual content by templatematching, optical flow and LuminanceProjection Cor-

relation (LPC) [21, 60, 81]. To the best of our knowledge, there exists only one method that

used inertial sensors to detect cameramotion [35]. Table2.5 lists thestateof theart methods for

cameramotion detection.

2.7.1 Visual-based methods

Template matching-based methods [60, 81] are used for the video-shot classification in cine-

matographic, homeand sportsvideos. Templatematching involvesdividing aframe into smaller
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Table 2.5: State of the art for camera motion detection. Key: VM - visual method; IS - inertial
sensor; TM - template matching; OF - optical flow; LPC - luminance projection correlation; A -
accelerometer; M - compass; G - gyroscope; CMDG - proposed method.

Ref. [60] [81] [101] [7] [99] [112] [141] [80] [35] [C1]

VM

TM X X X

OF X X X

LPC X X X

IS

A X

M X

G X

blocks and matching each block across consecutive frames to estimate object or camera mo-

tion. Hassan et al. [60] applied block matching between two consecutive frames to obtain mo-

tion vector field. Each block was then processed to give a camera motion histogram descriptor.

Lan et al. [81] used templatematching with full search to estimatehorizontal, vertical and radial

background camera motions. This method was used by [6] for UGV analysis. Lan et al. [81] la-

belled cameramotion into zoom, fast motion, shakeand stablebased on adecision treestructure.

Features , namely average velocity, average acceleration, variance of acceleration, and average

number of direction changes in vertical and horizontal directions were extracted for training the

SVM classifiers for camera motion detection.

Optical flow-based methodsarecommonly used for cameramotion analysis[7, 87, 101, 113].

Optical flow measures the relative velocity of objects in the scene with respect to the camera.

Most of the existing methods used magnitude and orientation of the optical flow for detecting

and classifying the motion [87, 101, 113]. In [101], the matched feature points were obtained

from the optical flow of two consecutive frames, that were then used to detect change points by

applying a threshold. A frame was considered to contain significant motion if the percentage

of change points was greater than a threshold. To detect pan, orientations of the optical flow

vectors were calculated between two consecutive frames. An eight bin orientation histogram

was then constructed, that detected the dominant motion with respect to a threshold. In [7],

linear combination of optical flow models for pan, tilt, zoom and roll was utilised for camera

motion estimation. In [87, 113], optical flow combined with template matching was also used

for camera motion analysis. A frame was divided into four sub-regions, each occupying one of

the four edges of the frame. Templates were build based on these sub-regions such that each
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templaterepresented oneof thesix cameramotions, namely, pan left, pan right, tilt up, tilt down,

zoom in and zoom out. The magnitude of optical flow vectors within each sub-region was used

to detect motion with respect to a pre-defined threshold. The optical flow vectors of the motion

detected framewerematched against each template to classify it into one of thesix motions.

LPC isexploited for thecameramotion estimation in homevideosand UGVs[21, 122, 133].

LPC computes thepan and tilt motionsby projecting a frameon thehorizontal and vertical axes,

and correlating theprojectionsof two consecutive frames(seeSec. 2.3.4). Campanellaet al. [21]

used LPC for shake detection, by computing the normalised differences of the detected pan and

tilt with the filtered pan and tilt signals. It is also used for camera-work judgement for the video

shooting navigation (stable, pan, tilt, zoom) [141, 80].

Visual-based method are computationally expensive as compared to inertial sensor-based

methods. These methods may get influenced by moving objects present in the frame and low

brightness (e.g. recording fireworks at night). Either a threshold is applied to extract dominant

motion in a frame or a template isused to suppress theeffect of objects’ motion.

2.7.2 Inertial sensor-based methods

Cricri et al. [35] proposed theonly inertial sensor-based method, with application to event under-

standing in UGVs. This method detected pan by calculating angular speed of the camera from

the low-pass filtered compass data (sampled at 10Hz). Tilt angle acquired from the unfiltered

accelerometer data (sampled at 40Hz) was differentiated for tilt detection. Shake was computed

from thehigh-passfiltered accelerometer data. An inertial sensor-based method reducesthecom-

putational cost due to the reduction in the amount of data to be processed. However, compass

is sensitive to drifts and errors induced by nearby magnetic objects. Furthermore, the unfiltered

accelerometer datacontains noise which may reduce theaccuracy of [35].

2.8 Video composition

Video composition is used for camera selection in lecture webcast [40, 152] and meetings [117,

156], sportsvideo broadcast [38, 42, 145], home-video summarisation [21, 65] and multi-camera

mashup generation [122, 133]. Video editing and composition frameworks can be split into two

main blocks, namely, content analysis and camera view selection. Content analysis involves the

extraction of audio and visual features mainly for scoring the recording content. These scores
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are then utilised for camera view selection. In this section, we present the state-of-the-art with

respect to these two blocks. Table 2.6 summaries the current state-of-the-art methods for multi-

cameraediting and composition along with the scenario for which they aredesigned.

2.8.1 Audio and visual content analysis

The type of features extracted for vision-based sports game analysis vary based on the appli-

cation and may include dominant colour, colour histogram, camera motion, corner points, ball

and player detection, field characteristics detection, texture and player recognition [42]. Multi-

camera sports videos are recorded using fixed professional cameras capable of performing pan,

tilt and zoom [42]. For theautomatic boardcast of sportsvideo, Wang et al. [145] computed fea-

tures like field line, goalmouth, centre circle, ball trajectory, camera motion and audio keyword,

and used them for event moment detection by training a SVM for three event classes, namely,

attack, foul and miscellaneous. In [38], features like amount of activity, objects’ trajectory, size

and location are used for the designing of a video composition framework, which was tested on

multi-camerabasketball game, airport surveillanceand outdoor videos datasets.
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Table 2.6: State of the art for multi-camera editing and composition. Key: AQ: audio quality; AC: audio continuity; VQ: visual quality; CM: camera
motion analysis; VD: view diversity; K: Number of events tested (mentioned only for UGVs); ED: editing; CP: composition; MVF: motion vector field;
LPC: luminance projection correlation; AMM: affine motion model; DBN: dynamic bayesian network; BRISQUE: blind/referenceless image spatial quality
evaluator; ’ -’ - not used.

Ref. Type AQ AC VQ CM VD Featuresused Cameraselection method Data type K Comments

[65, 66] ED X MVF Entropy, motion intensity, attention & sentencedetection Sub-shot boundary alignment with onset & sentence Homevideos Beat detection in incidental music

[21] ED - - X LPC Brightness, contrast, shake, facedetection Highest suitability scoreand edit whilewatching Homevideos Video segmentation by removing shaky frames

[104] ED - - X AMM Stable, jerk, infidelity, brightness, blur, orientation Maximisation of quality metric Homevideos User study, rule& learning-based quality metrics

[145] CP MVF Field line, goalmouth, centrecircle, ball trajectory Likelihood scoremaximisation for sub-shots Soccer videos Event detection using extracted features

[38] CP - - Object detection, tracking, sizeestimation DBN for cameraselection Basketball, Surveillance Event detection using extracted features

[9] CP 3D CM Stability, camera roll, 3D joint attention Optimisation of featurecost in Trellis graph UGVs 10 3D reconstruction of thescene

[133] CP X LPC X Blockiness, blur, brightness, shake Optimisation of the weighted sum of scores UGVs 3 Manual segmentation for cut-point selection

[122] CP X LPC X Blockiness, blur, contrast, brightness, occlusion, tilt, shake Optimisation of the weighted sum of scores UGVs 3 Manual cut-point & cameraview selection

[J2] CP X X X LPC X BRISQUE, shake Rank-based camera-selection UGVs 14 Automatic cut-point selection
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For homevideo editing, Huaet al. [65, 66] performed sub-shot detection (obtained using pre-

defined video length and frame differencecurve maximisation), attention detection (obtained by

analysing camera and object motion), sentence detection [96], low quality video filtering (ob-

tained using entropy and motion intensity) and analysis of user-supplied music (by computing

onset and tempo). In [21], brightness, contract, shakiness, and face detection were used for

obtaining suitability score for home video sub-shots. Each sub-shot was extracted by filtering

frames containing unwanted camera motion. Mei et al. [104] analysed spatio-temporal factors

for home video summarisation, where unstableness and jerkiness were considered as temporal

factors, and low fidelity (imagewith low contrast), brightness, blur and orientation were consid-

ered as spatial factors.

Mashup generation systems from UGVs have been proposed by Shrestha et al. [133] (First-

Fit) and Saini et al. [122] (MoViMash). FirstFit [133] analysed video quality features such

as blockiness, blur, brightness, shake, while MoViMash [122] additionally used occlusion and

tilt for assigning scores to each frame. MoViMash [122] also introduced an offline learning

stagewhich incorporated video editing rules, such as shooting angle, shooting distanceand shot

length. Thesemethodsperformed manual segmentation of video clips. Further, MoViMash man-

ually categorised the videos into right, left, centre, near and far for learning the shot-transition

distributions. Low-quality audio decreases the perceived quality of the video as well [15], but

audio signals were not analysed in FirstFit and MoViMash. In FirstFit [133], the audio was

selected from the same media segment which contributed to camera selection, thus resulting in

audio with varying quality. This sounded unpleasant when playing back the generated video.

For MoViMash [122], the audio was not aligned with the video within the resulting mashups.

Wilk and Effelsberg [151] studied the influence of visual degradations on the perceived quality

of UGVs. In particular, they studied the effect of camera shake, harmful occlusion and camera

misalignment and rated video clips of 9-12 s duration on a 5-point scale corresponding to dif-

ferent levels of degradations. Their results showed that these degradations, in particular camera

shakehighly affected the perceived quality of UGVs. In [9], 3D structureof thescene [135] was

reconstructed from multi-cameraUGVs, and cameras’ positionsand orientationswereestimated

to compute their 3D joint attention. The 3D motion of a camera was used to estimate its sta-

bilisation cost. The stabilisation, camera roll and joint attention cost were then used as features

for camera-view selection. 3D reconstruction from hand-held cameras may fail if the number
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of cameras are not sufficient, scene is not well textured, or visual degradations (low luminance,

poor contrast, motion blur) arepresent [9].

2.8.2 Camera view selection

Camera view selection is required to give the best viewing experience to the user. Most of the

existing methods[38, 21, 133, 122, 104] select cameraviewsby optimising thecombined feature

scoresalong with theintroduction of sub-shot length constraint. Cameraview selection strategies

aredetailed below for different video editing and composition frameworks for which thecontent

analysisdetails werepresented in theprevious section (Sec. 2.8.1).

Camera selection in lectures [40, 152] focuses on the lecturer, slides or audience. Frame

differencing in fixed cameras [40], or online detection and tracking in Pan-Tilt-Zoom (PTZ)

cameras [152] isperformed for the localisation of the lecturer. Similarly for meeting room video

editing [117, 156], mainly person identification, speaker localisation, recognition and tracking are

performed to select different cameraviews. Thevideos aregenerally captured from high quality

fixed or stable moving cameras having constraint environments in a lecture and meeting rooms,

and adequate lighting conditions, hence providing favourableconditions for speaker localisation

and recognition. Though linked with cameraselection, thesemethods arenot directly applicable

for multi-cameraselection inUGVsinwhich thevisual quality variesfromonecamerato another.

For the automatic boardcast of sports videos [145], the main camera is selected for most of

the duration and sub-cameras are selected by maximising the likelihood score of suitable sub-

camera segments. The sub-camera segments are classified by exploiting camera motion. For

content and task-based best cameraselection, Daniyal et al. [38] computed framescoreby using

number of objects, amount of activity, cumulative object score and event score, and applied

Dynamic Bayesian Network (DBN) model for avoiding too frequent camera switching and for

cameraview selection.

For home video-editing, Hua et al. [65, 66] filtered the low quality video sub-shots by ex-

ploiting camera motion, and aligned the boundaries of better quality sub-shots with the selected

music tempo, while preserving the detected sentence portions of the video. In [21], home video

editing was performed by selecting sub-shots with the highest suitability score and by allowing

theuser to perform theediting whilewatching. Mei et al. [104] proposed threequality metric for

home video summarisation, namely, user study-based (weighted average of all spatio-temporal

factors), rule-based (nonlinear fusion [66]) and learning-based (offlinetwo-classquality training)
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methods. A skim ratio (corresponding to the length of thefinal video summary) was defined and

the sub-shots with maximised quality metric wereselected to compose thesummarised video.

In UGVs, cameraselection isgenerally performed by selecting theshot with maximum qual-

ity score [133, 122]. Firstfit [133] applied an optimisation approach for camera view selection

using imagequality, cut-point, view diversity and user-preferencescore. In MoViMash [122], all

videos were ranked based on the linear combination of visual quality, diversity and shake score.

Thecameraswitching instant wasdetermined using theoffline learned relationship between shot

category (centre, left, right, near, far) and shot length. Center shots were generally selected for

longer duration. At every second, occlusion and shake were also checked against a threshold to

trigger camera switching. due to which frequent camera switching occurred. This introduced an

unpleasant effect during video playback. In [9], the cost for stabilisation, camera roll and joint

attention were optimised to compose the video, while adding a constraint on the minimum and

maximum length of thesub-shot.

2.9 Summary

Wereviewed thestate-of-the-art video-based and audio-based identification and synchronisation

methods. Video-based methods are designed for professional or controlled environment record-

ings, captured mostly using static and stable professional cameras (Sec. 2.5 and 2.6). Due to

the sharpness of these recordings, the extraction and analysis of visual features are possible.

Extending these approaches to UGVs is not trivial because there might not exist thesame visual

evidencebetween pairsof UGVsdueto variationsin thefield of view, changing and poor lighting

conditions, and visual quality. On theother hand, audio-based areused to organisemulti-camera

recordings of the same event (Sec. ??). A fixed classification threshold is used for matching a

pair of recordings [20], that limits the generalisation of these methods for the identification and

synchronisation of multiple events. Synchronisation of UGVs using audio features is generally

based on onsets, fingerprints or audio-visual events. The performance of the existing audio-

based methods is limited due to their sensitivity towards audio degradations. There is a need for

an event identification and synchronisation framework for the automatic organisation of UGVs

of several real-world events.

We discussed the existing video-based and inertial sensor-based camera motion detection

methods (Sec. 2.7). Video-based methods are computationally expensive (e.g. 1s of 720�480



Chapter 2: Related work 55

pixels resolution video at 30 fps contains 10 million pixels) and less accurate in the presence of

moving objects and low luminance. An inertial sensor-based method reduces the computational

cost due to the reduction in the amount of data to be processed (e.g. 1s of an inertial sensor

contains50 samples). Accelerometer and compassareused for cameramotion detection [35] but

the performance is limited by error introduced by the compass, and noise that exists due to the

use of unfiltered accelerometer data. The use of gyroscope data can facilitate in camera motion

detection as it providesa direct estimateof theangular velocity of the recording device.

We detailed the existing video composition methods designed for lecture webcast and meet-

ings, sports video broadcast, home-video summarisation and multi-camera mashup generation

(Sec. 2.8). Theselection of features for audio/visual content analysis is dependent on the typeof

application under consideration. In UGVs, the perceived audio and visual quality is a key factor

which makes the content enjoyable and interesting to playback [15, 151]. Therefore, audio con-

tinuity and uniformity is also required along with the appropriate view selection. Existing video

composition methods [133, 122] for UGVs performed visual quality analysisonly and manually

selected the cut-points. Analysis of audio content for audio quality and continuity may facilitate

in improving theoverall perceived quality of thecomposed video.

In the next chapter, we present the multi-modal feature analysis for the designing of our

proposed identification, synchronisation and video composition framework.
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Multi-modal feature analysis

3.1 Introduction

In thischapter, we introduceand analysetheaudio, visual and inertial featuresused to design our

proposed event identification and synchronisation [J1], and video composition [J2] frameworks.

Identification or synchronisation of UGVs has been mainly performed by utilising audio fea-

tures[20, 32, 76, 132], however theexisting methodsconsider organisation of asingleevent only,

and are sensitive to audio degradations (see Table ??). We exploit audio chroma feature [53] to

develop an automatic query-by-exampleevent identification and synchronisation framework [J1].

Details of the feature extraction, matching and analysis are presented in Sec. 3.2. Camera mo-

tion analysis of the synchronised UGVs can contribute in the designing of a video composition

framework. The introduction of inertial sensors in smartphones iseasing UGVs content analysis

for camera motion detection and semantic information extraction [36, 37]. Therefore, we utilise

gyroscopedata for thecameramotion analysisof UGVs[C1], and present thedetails in Sec. 3.3.

Existing methods of video composition from overlapping multi-camera UGVs considered the

visual content analysis only (seeTable2.6). Audio quality also playsakey role in enhancing the

viewing experience [15]. Therefore, weanalyseboth audio and visual features to design amulti-

camera video composition framework [J2]. Analyses of audio and visual features are presented

in Sec. 3.4 and Sec. 3.5, respectively. Thechapter is summarised in Sec. 3.6.

56
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3.2 Audio-based identification and synchronisation

Automatic identification and synchronisation of UGVs involve feature extraction and matching

to identify time overlapping recordings of the same event, and to estimate their synchronisation

time-shifts. To achieve this goal, we use audio chroma feature as it gives the distribution of

energy along different pitch classes (as presented in Sec. 2.3.3). Below we give details of the

extraction, matching and analysis of the audio chromafeature.

3.2.1 Feature extraction

We first decompose a given audio signal An of a UGV into overlapping audio frames and then

compute chroma features for each audio frame. Each audio frame is composed of an audio

segment of frame size fr and overlap shift hp between two consecutive frames (as shown in

Fig. 2.3). The number of audio frames Gn in An is a function of the number of audio samples Ka
n

and iscomputed as

Gn =
Ka

n

sa
n fr hp

: (3.1)

The frequency spectrum f (l ) of each audio frame is then computed by applying the Discrete

Fourier Transform (DFT), and is mapped into the pitch class using Eq. 2.2. The chroma vector

for aparticular audio frameis thusrepresented asvp 2 R12�1, such that p definesthetime-stamp

of aparticular frameposition. ChromafeaturesFn for thenth audio signal An, segmented into Gn

audio framesaregiven by

Fn = f vp
ngGn

g= 1; (3.2)

where vp
n2 R12�1 is thechromafeature vector for the pth frameof thenth camera’s audio signal.

3.2.2 Feature matching

After feature extraction, feature matching is performed for computing the similarity and time-

shiftsbetweenpairsof video recordings. Our proposed matchingmethod operatesby maximising

the feature similarity between two video recordings. For a pair of recordings Ci and C j , the

distance between their chroma features Fi and Fj is given by dpq
i j = E(vp

i ;vq
j ), where E(�) is the

Euclidean distance [140] between the pth and qth feature vector, and p 2 [1;Gi ] and q 2 [1;Gj ]

give the range of framenumbers for Ci and C j , respectively. Thedistancematrix ^ i j between Fi

and Fj is then given by

^ i j = [dpq
i j ]RGi�Gj : (3.3)
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Figure 3.1: Feature matching using the distance matrix for two test audio signals of duration
2s is shown. The main diagonal of the distance matrix corresponds to zero, the lower diagonal
correspondsto negativeand theupper diagonal correspondsto positivetime-shifts. Theminimum
across each row is calculated and the count of minimum distances is accumulated across each
diagonal to give the histogram Hi j (Dt). Peak in thehistogram corresponds to the time-shift.

Figure 3.1 shows the distance matrix ^ i j for two feature vectors obtained from two overlapping

video recordings, each of 2s duration. The distance matrix ^ i j contains information about the

featurematching of two recordings. In order to interpret this information, thepointsof minimum

distanceacrosseach row of thedistancematrix ^ i j arecalculated. Thesecorrespond to thepoints

c where the likely matches occur:

c = argmin
s

[dst ]; 8t 2 [1;Gj ]: (3.4)

The distance matrix ^ i j is a rectangular matrix in which the main diagonal corresponds to zero

time-shift. The upper and lower diagonals correspond to positive and negative time-shifts, re-

spectively. We calculate the matching histogram Hi j (Dt) for video recordings Ci and C j from

the distance matrix ^ i j , that gives the count of the number of minimum distances along each

diagonal. This is illustrated in Fig. 3.1. Thex and y-axes in Hi j (Dt) correspond to thetime-shifts

and counts, respectively. If a pair of recordings is overlapping, we get a dominant peak in the

matching histogram which represents the synchronisation time-shift, otherwise, it is unlikely to

haveadominant peak.
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3.2.3 Feature analysis

In order to find the lowest dimension of chromafeaturewhich can providethecorrect synchroni-

sation time-shift, weconducted an experiment by analysing pairs of audio signals from different

events. For Fi and Fj , we computed the synchronisation time-shifts for all combinations of 1 to

12 dimensions of chroma features, which are 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12

and 1, respectively. Figure 3.2 shows the effect of varying the dimension of the chroma feature

on six pairs of video recordings, where the first and third rows depict the maximum, mean and

minimum time-shift error when testing with all possible combinations. The second and fourth

rows show the occurrence of true and false matches which correspond to correct and incorrect

synchronisation time-shifts with a �0:05s tolerance, normalised over all the combinations of

varying dimensions of thechroma feature.

From this analysis, we observe that when the overlap between two signals is greater than

20% (18s) (Fig. 3.2 (b), (c), (e) and (f)), any combination of chroma beyond 6-dimensions is

sufficient for achieving synchronisation. Otherwise, if the two audio signals are only partially

overlapping and the length of one signal with respect to the other is short (7s with minimum

8% overlap), the synchronisation time-shift is not achieved until the 11th and 12th dimensions

of the chroma feature as shown in Fig. 3.2 (a) and (d), respectively. In the case of Fig. 3.2 (a),

a concert event pair containing amplified sound, the minimum overlap is 8% (7s) with respect

to the longer recording. In the case of Fig. 3.2 (d), a public event pair containing strong audio

degradations along with non-amplified sounds, the minimum overlap is 14% (12s) with respect

to the longer recording. This overlap is required to get the correct synchronisation time-shift.

Note that audio fingerprinting [132] is unable to give the correct synchronisation time-shift for

these cases. It is observed that the minimum value of 8% overlap between a pair of recordings

is required when performing feature matching. In the proposed feature matching, we use the

minimum distance across each row c for the estimation of time-shift. This results in outliers in

the matching histogram that may dominate when one of the recording is shorter than the other.

This effect can be overcome by setting an empirical threshold on c for outlier removal or by

using all 12 dimensions of chroma.
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Figure3.2: Effect of varying thedimensionsof thechromafeature. Thefirst and third rowsshow
the maximum, mean and minimum time-shift errors for pairs of camera recordings. The second
and fourth rows show the normalised true and false matches as counted for all combinations of
varying dimensionsof thechromafeature. (a) Nickelback Event3 recordingpair of duration 3:18
and 0:18s, (b) Nickelback Event14 recording pair of duration 3:29and 4:45s, (c) Madonna Event
recording pair of duration 2:59 and 1:20s, (d) Olympic torch Sheffield Event recording pair of
duration 1:28 and 0:39s, (e) Olympic torch Mile end Event recording pair of duration 6:22 and
6:27s, and (f) Xmas dinner event recording pair of duration 3:19 and 2:17s.

3.3 Gyro-based camera motion detection

Camera motion can be classified into four types, namely, pan/tilt, shake, stable and zoom [6].

We aim to detect the first three types using gyroscope, while zoom is not considered as it is

independent of theinertial sensors. Gyroscopeismoreaccuratefor rotation estimation than other

inertial sensors(i.e. accelerometer and magnetometer) as it measurestheangular velocity around
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Figure 3.3: A sample multi-modal recording containing pan, tilt and shake motions. (i)(ii) Pan,
(iv)(v) tilt, (vii)(viii) shake, and (iii)(vi) stablemotions are labelled for visualisation.

the device’s x, y and z axes. These angular velocities correspond to the camera pan, tilt and roll

motions, respectively (Fig. 2.4(a)). High correlation exists between visual and gyroscope data

whencaptured fromasingledevice. Figure3.3showsasamplemulti-modal recordingcontaining

dominant cameramotions.

Thefrequency of involuntary human body movement lieswithin fi = 20Hz[75]. Inertial sen-

sors are logged and analysed at sI = 50Hz> 2fi , thus satisfying the Nyquist theorem [55]. The

magnitude of G(t) is never zero for a smartphone video captured without tripod because of the

involuntary human body movement. In the absence of intentional camera motion, the involun-

tary body movement results in low magnitude camera motion. This information is sufficient for

the video and gyroscope data synchronisation (as detailed in Sec. 3.3.1). We propose CMDG, a

gyroscope-based method for cameramotion detection in UGVs[C1]. Weassumethat there isno

translational motion of the camera. We utilise the dominant motions in the polar representation

of the low-pass filtered gyroscope data for pan and tilt detections, and consider shake as domi-

nant high frequency movements. We further apply morphology to remove outliers and identify

timecontinuousmotions. Theproposed method ispresented below in detail.

3.3.1 Gyro-visual synchronisation

In sensor-based activity recognition [8, 124], inertial and visual data are recorded independently

from twodevices. Thesemodalitiesaresynchronised either by time-stamp or manual observation

of an intentional event in both devices. The process of synchronisation can be simplified and

automated if both modalities are logged from asingledevicegiving an ego-centric view.

Visual data when logged with sensors has an unknown delay due to the time taken by the

camera to start the recording. We correlate the gyroscope and visual data to correct this delay.
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(a) (b)

(c) (d)

Figure 3.4: Gyro-visual synchronisation. (a) LPC pan Lx(t) and gyroscope Gx(t), (b) LPC tilt
Ly(t) and gyroscopeGy(t). Correlation (c) R x(t) and (d) R y(t).

WeuseLPC [112, 141]) for computing thehorizontal Lx(t) and vertical Ly(t) displacementsfrom

V(t) (as detailed in Sec. 2.3.4). Lx(t) and Ly(t) are referred as pan (left-right) and tilt (up-down)

motions, and correspond with Gx(t) and Gy(t), respectively (Fig. 3.4(a) and (b)). We down-

sample G(t) by re-sampling it at the same rate as of V(t), and compute the cross-correlation

R x(t) as

R x(t) =
1

Â
k=�1

Gx(k)Lx(k+ t);

t̂x = argmax
t

R x(t);

êx = max
t

R x(t);

(3.5)

where t̂x is the estimated delay and êx is the correlation peak from the pan signals. Likewise,

R y(t), t̂y and êx are computed from the tilt signals. t̂x and t̂y are equal for recordings containing

pan and tilt, and are only approximately equal if only one of the motion exists. The overall

estimated delay t̂ is selected as

t̂ =

8
><

>:

t̂x if (êx > êy);

t̂y if (êy > êx):
(3.6)

Figure3.4(c) and (d) show thecross-correlations R x(t) and R y(t), and their peaks.

3.3.2 Camera motion detection using gyroscope data

In order to find the cut-off frequency fc for the Low-Pass Filter (LPF) to detect pan and tilt, we

captured a set of recordings by performing as fast panning as possible. LPF is then applied by

varying fc from 2.5Hz to 6Hz, and the Root Mean Square Error (RMSE) between the raw Gx(t)
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Figure 3.5: Analysis of the cut-off frequency for the LPF. (a) The RMSE between the Gx(t)
and LPF GL

x(t) signals for 10 sample recordings containing fast pan. The cut-off frequency is
varied from 2:5Hzto 6:0Hz. (b) Theraw Gx(t) (for the fast pan) for oneof the recordingsand its
low-passed signal at different cut-off frequencies.

and filtered GL
x(t) signal iscomputed (shown in Fig. 3.5(a)). RMSE ishigh when fc� 3Hz, asthe

signals lose substantial information. The same affect is observed from Fig. 3.5(b), where Gx(t)

(for fast pan) and GL
x(t) at different fc are shown for one of the recordings. We select fc = 4Hz

as it givesavery small valueof theaverageRMSE for theset of fast pan recordings, showing the

signals’ information is retained.

A panning motion produces high magnitude of Gx(t), and ideally zero magnitude of Gy(t)

which is also true for tilt motion. An independent threshold on LPF GL
x(t) and GL

y(t) might

be applied for camera motion detection but this would require to verify if for the detected pan

in GL
x(t), there is no detected tilt in GL

y(t), and vice versa (Fig. 3.6(a)). To overcome this, we

jointly analyse GL
x(t) and GL

y(t) by transforming them into polar coordinates to get the magni-

tude GL
r (t) =

q
GL

x(t)2 + GL
y(t)2 and angle GL

q(t) = arctan
�

GL
y (t)

GL
x (t)

�

(Fig. 3.7). Pan P(t) is the

displacement along the horizontal (Fig. 3.7(b)) and is detected as

P(t) =

8
>>>><

>>>>:

+ 1 if (0� a � GL
q(t) � 0+ a );

�1 if (180� a � GL
q(t) � 180+ a );

0 otherwise;

(3.7)

wherea (indegrees) isthetoleranceangle, and + 1 and�1 denotepan left and right, respectively.

Fig. 3.6(d) shows theabsolutedetected pan jP(t)j.
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Likewise, tilt T (t) is thedisplacement along thevertical (Fig. 3.7(c)) and is detected as

T (t) =

8
>>>><

>>>>:

+ 1 if (90� a � GL
q (t) � 90+ a );

�1 if (270� a � GL
q (t) � 270+ a );

0 otherwise;

(3.8)

where+ 1and�1denotetilt downand up, respectively. Figure3.6(e) showstheabsolutedetected

tilt jT (t)j. A typical value of a should be the one which facilitates the detection of horizontal

and vertical motions. In real-world scenarios, when a smartphone user performs freehand pan

during recording, the magnitude of Gx(t) is high but Gy(t) also has some low magnitude value.

This is because freehand pan is not strictly along x-axis which is also true for the tilt. Hence, a

can not be close to zero. Through extensive experimentation, we selected a = 30o, and showed

the effect of varying a in Fig. 5.5(a) (to bediscussed in Sec. 5.5).

For shake detection, we obtain GH
r (t) and GH

q (t) from GH
x (t) and GH

y (t) (Fig. 3.7(d)). GH
q (t)

can take any direction but GH
r (t) defines the amount of data to be classified as shake. Therefore,

shakeS(t) isdetected as

S(t) =

8
><

>:

1 if GH
r (t) > b;

0 otherwise;
(3.9)

whereb isthetolerancemagnitude. GH
r (t) rangesfrom 0 to 0.5. Theinvoluntary body movement

in freehand recordings lies in the high frequency, and needs to be thresholded in order to effec-

tively detect the shake. A value of b close to zero makes the detection extremely sensitive and

detects the involuntary movement as well. A valuehigher than 0.1 thresholdssignificant amount

of GH
r (t), making the detection ineffective. We selected b = 0:06 through experimentation, and

presented theeffect of varying b in Fig. 5.5(b) (to be discussed in Sec. 5.5).

jP(t)j, jT (t)j and S(t) give binary signals for samples with detected pan, tilt and shake

motions(Fig. 3.6(d-f)). It ispossibleto detect falsemotion in few samplesastill now wehavenot

considered time continuity. In order to remove outliers and to detect time continuous segments,

we apply morphological operations of Opening and Closing [55]. We apply Opening to jP(t)j

and jT (t)j that performs erosion to remove false detection followed by dilation to detect the

continuous segments, and obtain the final detection Pd(t) and Td(t) (Fig. 3.6(g-h)). To detect

continuoussegments of shake, weapply Closing that performsdilation to connect discontinuous

segments followed by erosion to maintain the original length of the shake detected segments.

Segmentssmaller than 0:25sareconsidered asoutliers, and areremoved to obtain thefinal shake
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.6: Pan, tilt and shake detection. For pan, (a) GL
x(t), (d) jP(t)j, (g) Pd(t) along with

GL
x(t); for tilt, (b) GL

y(t), (e) jT (t)j, (h) Td(t) along with GL
y(t); for shake, (c) GH

x (t) and GH
y (t),

(f) S(t), (i) Sd(t) along with GH
x (t) and GH

y (t), areshown.

(a) (b) (c) (d)

Figure 3.7: Analysis of Gx(t) and Gy(t) in polar coordinate. (a) GL
r (t) and GL

q(t) for pan and
tilt detection, (b) detected pan vectors, (c) detected tilt vectors, (d) GH

r (t) and GH
q (t) for shake

detection, are shown.

detection Sd(t) (Fig. 3.6(i)). We perform binary classification to independently detect pan, tilt

and shake. Therefore, it is possible to detect samples containing pan and shake, or tilt and shake

motions as well. We can also detect stable samples by combining Pd(t), Td(t) and Sd(t) using

logic ORand inverting theresulting binary signal. Thestablesamplesareuseful for shot selection

applications.

Theexperimental validation of theproposed CMDG is presented in Sec. 5.6.
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3.4 Audio analysis for video composition

We analyse the audio quality of multiple overlapping video recordings for the multi-camera

video composition, and propose an audio-stitching method that involves obtaining consistent

and uniform audio, Ast , for the coverage duration, Dc, of the event. We also propose a cut-

point selection method, which aims at finding the binary signal, Ast
U , for the suitable cut-points,

U = (u1;���;u j ;���;uJ), where U is in second (s) to be used as a common reference point for

both audio and video segmentation. We obtain U by analysing three audio features, namely root

mean square, ARMS, spectral entropy, ASE, and spectral centroid, ASC, of the stitched audio, Ast .

Theproposed audio-stitching and cut-point selection methods arepresented below in detail.

3.4.1 Audio-quality analysis for audio ranking

The set of synchronised and overlapping audio signals, A, of an event contains sound recorded

by different devices at different locations. Hence, the quality of audio varies from one video to

another. For audio-stitching, we need to know which audio is better in A. In order to achieve

this, weanalyse thespectral rolloff [89] of theset of audio signals, A, to rank their quality.

Spectral rolloff estimates the amount of the right-skewedness of the frequency spectrum by

calculating thefrequency (rolloff point) below which 85% of thesignal energy iscontained [89].

Real-world degradations present in UGVs introduce high frequencies in the audio signal and

shifts the resulting spectral rolloff point to a higher frequency bin of the spectrum. Therefore,

for designing theranking strategy, weassumethat theoverlapping audio signal with low spectral

rolloff point contains less noise than the audio signals with high spectral rolloff point. This is

illustrated with the help of an example in Fig. 3.8. The spectrum in Fig. 3.8(b) is more con-

centrated towards low frequency bins and contains less noise as compared to the spectrum in

Fig. 3.8(a).

For ranking theaudio signals, wedecomposeeach An for theoverlap duration, Do = [Ia0; Ia00],

into non-overlapping frames1;���;gR;���;GR using framesizefr3 = 1s(selected empirically). GR

is the total number of audio frames in Do of each An. We varied the frame size, fr3, from 0:5s

to 3:0s to calculate the ranks (using the below mentioned method), and found 1s to be the most

appropriateastheranksbecomeconsistent at andbeyond thisframesize. Tocomputethespectral

rolloff point, wefirst obtain theFourier transform of theaudio signals, A. Cumulative frequency

is then computed within each frame, gR, of A to estimate the spectral rolloff point. The spectral
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Figure 3.8: Spectral rolloff analysis for audio ranking. (a) and (b) show the spectra of a syn-
chronised audio frame from two audio signals, and (c) and (d) show their respective cumulative
spectra. The spectral rolloff is shown in red. Spectrum in (b) contains less noise as compared to
the spectrum in (a) since thespectrum in (b) is moreconcentrated towards low frequency bins.

rolloff point, ASR, for A is given by

ASR = [ASR(1);���; ASR(gR);���; ASR(GR)]; (3.10)

where,

ASR(gR) = [ASR
1 (gR);���ASR

n (gR);���; ASR
N (gR)]T : (3.11)

ASR(gR) is thespectral rolloff at thegR
th framefor all N recordings in A and ASR

n (gR) is thevector

listing spectral rolloff at the gR
th frame of An. This is followed by computing the rank matrix

RSR within each frame by sorting each ASR(gR) in ascending order and obtaining its argument.

Themost frequently occurring audio signal in each row of RSR is selected to be theone with the

best quality, followed by others. Thisgivestherank vector RSR = [r(1);���;r(n);���; r(N)]T that

contains the indicesof the N audio recordings in descending order of their quality.

3.4.2 Audio-stitching using the rank vector

To obtain a continuous audio track from the earliest starting video till the last ending one, we

performaudio-stitching using therank vector, RSR. Synchronisation providestherelativestarting,



Chapter 3: Multi-modal featureanalysis 68

if Lr(2) < Lr(1) & Er(2) > Er(1) then

Ȧst = (aLr(2) ;���;aEr(2) )

else if Lr(2) < Lr(1) & Er(2) < Er(1) then

Ȧst = (aLr(2) ;���;aLr(1) ;���;aEr(1) )

else if Lr(2) > Lr(1) & Er(2) > Er(1) then

Ȧst = (aLr(1) ;���;aEr(1) ;���;aEr(2) )

else

Ȧst = (aGr(1) ;���;aEr(1) )

end

Algor ithm 1: Audio stitching algorithm at level 2.

Ln, and ending, En, times of each An. Our audio-stitching algorithm contains N levels, but it

terminates as soon as stitched audio, Ast = (ast
1 ;���;ast

i ;���ast
Ia), for the coverage duration, Dc, is

obtained. At level 1 of the stitching, Ar(1) is selected to span for the duration Lr(1) to Er(1) , thus

resulting in intermediate stitched audio, Ȧst = (aLr(1) ;���;aEr(1) ). At level 2, in order to reduce

the number of stitched points, we compromise between the quality and the number of stitched

points. Therefore, we update Ȧst by checking if Ar(2) is completely, before (earlier starting time)

or after (later ending time) contained within Ar(1) (see Algo. 1). In a situation where Ar(2) is

completely contained within Ar(1) , we do not update Ȧst and move to the next level. Theprocess

continues until we obtain Ast for the coverage duration, Dc. This process of audio ranking and

stitching is illustrated in Fig. 3.9.

3.4.3 Cut-point selection using audio features

According to professional film-editing rules, every cut-point should have a motivation such as

camera motion, occlusion or silence to voice transition [41]. We select cut-points by analysing

the dynamics of Ast . This is supported by our two assumptions: (i) change in camera view is

meaningful when a transition in audio occurs (e.g. silence to audio/music, change or addition

of an instrument, low to high volume, music to vocal), and (ii) transition within an audio/music

signal causes asignificant change in the dynamicsof its features.

Weproposeacut-point selection method by analysing three low-level audio featuresof Ast to

detect thoseaudio sampleswherethechangeoccurs. Thesefeaturesareroot mean square, ARMS,

spectral centroid, ASC, and spectral entropy, ASE, [89]. Root mean square, ARMS, is useful for

detecting silenceperiods in audio signalsand for discriminating between different audio classes.
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(a) (b)

(c)

Figure 3.9: Audio-stitching illustration (audio signals represented by coloured bars). (a) Syn-
chronised An are decomposed into non-overlapping frames (GR) using fr3 for the Do = [Ia0; Ia00]
duration. (b) Rank vector (RSR) is then obtained by analysing audio quality within each frame.
(c) Finally, audio-stitching is performed to obtain a continuous audio signal for the coverage
duration Dc of theevent.

Spectral centroid, ASC, is effective in describing the spectral shape and predicting the brightness

of the audio as it measures the centre of mass of the audio spectrum. A sudden change in ASC is

interpreted as an instrumental change in music [89, 127]. Spectral entropy, ASE, isused to detect

silence and voice segments of the speech [119]. It is also used to discriminate between speech

and music. We compute the change in these features and use their agreement for the cut-point

selection.

In our method, we first decompose Ast into non-overlapping frames 1;���;gC;���;GC with

frame size, fr4, (see Sec. 3.4.4), and compute the low level features ARMS, ASC, ASE within each

frame gC as

ARMS = [aRMS(1);���; aRMS(gC);���; aRMS(GC)]; (3.12)

ASC = [aSC(1);���; aSC(gC);���; aSC(GC)]; (3.13)

ASE = [aSE(1);���; aSE(gC);���; aSE(GC)]; (3.14)

where aRMS(gC), aSC(gC) and aSE(gC) are the root mean square, spectral centroid and spectral

entropy values at the gC
th frame, respectively. The total number of frames are computed as
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Figure 3.10: Audio features extraction and cut-point selection. Root mean square (top left),
spectral centroid (middle left) and spectral entropy (bottom left) of the input audio signal. The
respective derivatives are shown (on the right). A dynamic threshold is applied within an anal-
ysis window (Wa) and the cut points are computed while staying within the minimum lmin and
maximum lmax video-shot duration limits.

GC = Dc
fr4

. We then compute thederivative DRMS, DSC, DSE of the features ARMS, ASC, ASE as

DRMS = [dRMS(1);���; dRMS(gC);���; dRMS(GC)]: (3.15)

Likewise, we obtain DSC and DSE. The response of the three features computed for the stitched

audio Ast along with their derivatives is shown in Fig. 3.10.

For statistical analysis, we inspect the dynamics of the feature derivatives DRMS, DSC, DSE

within an analysis window, Wa, by computing the mean, m̄a = [mRMS
a , mSC

a , mSE
a ]T , and standard

deviation, Sa = [s RMS
a , s SE

a , s SC
a ]T . The threshold, t̄ a= [t RMS

a , t SC
a , t SE

a ]T , is computed as

t̄ a = m̄a + hSa; (3.16)
2

4
t RMS

a
t SC

a
t SE

a

3

5 =

2

4
mRMS

a
mSC

a
mSE

a

3

5 + h

2

4
s RMS

a
s SC

a
s SE

a

3

5 ; (3.17)

whereh definestheweight for thestandard deviation Sa to beapplied for computing theoutliers

within each Wa. For initialisation, we set h = 2:5 by considering that the data under Wa is

normally distributed which gives aconfidence interval of 0.985 [77]. The threshold t̄ a is applied

locally to each feature vector. The values of feature vector derivatives above t̄ a correspond to
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outliers representing significant changes in the dynamics of Ast . These values are marked as one

while thevalues below t̄ a are marked as 0. This results in thebinary value

bRMS(gC) =
�

0 dRMS(gC) < t RMS
a ;

1 otherwise;
(3.18)

for thebinary vector

BRMS = [bRMS(1);���; bRMS( f );���; bRMS(F)]: (3.19)

Likewise, BSC and BSE are computed. The three binary vectors are then fused together with a

logic AND (�) operator to get the binary cut-points

Ast
U = BRMS

�BSC
�BSE: (3.20)

Finally, we overlay the binary cut-points vector, Ast
U , on the audio signal, Ast , to get the time-

stamps for its suitable cut-points, U. Figure 3.10 (right) shows the DRMS, DSC and DSE along

with theapplied threshold, t̄ a, and the resulting segmented audio signal.

3.4.4 Parameters for cut-point selection

To decompose an audio signal into frames for the feature extraction, we select the frame size

fr4 = 0:05s. Typical value for the frame size is between 0.01s to 0.05s [54, 128]. The frame

size should be large enough to have sufficient data for the feature extraction and short enough

to make the signal (approximately) stationary [54]. In order to validate the frame size selection,

we manually labelled an audio signal (of 8 minutes duration) to obtain the ground-truth cut-

points. We evaluate our proposed cut-point detection method by varying fr4 from 0.01s to 0.07s

(Fig. 3.11(a)). It is observe that the F1-score is comparatively high for the typical value range.

The performance decreases when the frame size is increased beyond 0.05s, which suggests that

frames are not (approximately) stationary beyond this value. Likewise, the typical value for the

analysis window sizeWa is between 1s to 10s [54]. Weselect Wa = 5s for our proposed method.

We demonstrate the effect of varying Wa in Fig. 3.11(b). It is observe that the F1-score does not

vary significantly between the typical value range and the mean F1-score is 86% with standard

deviation of 1:4%.

We select the minimum, lmin, and maximum, lmax, limits for the video-shot duration, and

adjust the cut-point selection method to satisfy this condition. The lmin and lmax are dependent

on theaudio genreunder study. A segment longer than lmax isperceived asboring and asegment
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Figure 3.11: Analysis of frame fr4 and analysis window Wa size. (a) The effect of varying fr4

while fixingWa = 5s. (b) Theeffect of varying Wa whilefixing fr4 = 0:05s.

shorter than Imin may not be understandable [9, 157]. In this work, we set the lmin and lmax to 3s

and 10s, respectively, and use them to define a meaningful transition from one field of view of

a camera to another. We adjust the threshold t̄ a (Eq. 3.17) to enforce shot duration limits on the

cut-point selection method. When h is high, t̄ a within Wa is high and less frames are detected

as outliers, resulting in few cut-points with possible length longer than lmax. The threshold t̄ a is

lowered iteratively by decreasing h until the lmax condition is satisfied. In order to satisfy the

lmin condition, two adjacent segments which are less than lmin apart are merged to obtain one

segment.

3.5 Visual analysis for video composition

For multi-cameravideo composition, weanalysethevisual content V of Cfor computing certain

visual assessment scores to account for the visual quality, camera motion and view diversity.

The video quality assessment aims at obtaining spatial S = f SngN
n= 1 and spatio-temporal T =

f TngN
n= 1 quality scores from V, where Sn = (sn1;���;sni ;���;snIv) and Tn = (tn1;���;tni ;���; tnIv),

respectively. Detailed below are the spatial and spatio-temporal quality assessments, and view

diversity strategy that weemployed for designing theproposed video composition framework.

3.5.1 Spatial quality assessment

In order to filter low-quality video frames, we perform spatial quality analysis of UGVs. We

useBRISQUE (Blind/ReferencelessImageSpatial Quality Evaluator) [108] for theimagespatial

quality-assessment. BRISQUE quantifiesseveral degradationscaused by video compression, im-

ageblur andadditivewhiteGaussian noise, ascompared toother approachesthat aredegradation-
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specific [50, 129, 139, 158]. It isanon-referencebased imagequality measure, which isdesigned

using Mean Subtracted Contrast Neutralized (MSCN) coefficients [121]. MSCN coefficients re-

fer to a property of natural scene statistics, which states that the subtraction of local means from

imageluminancesand normalisation by local variancesproducesdecorrelated coefficients [121].

BRISQUE computes features by fitting a generalised Gaussian distribution to the MSCN co-

efficients, and by fitting asymmetric generalised Gaussian distribution to pairwise products of

neighbouring MSCN coefficients. In order to obtain a measure of image quality, BRISQUE

learns a mapping between features and human Differential-Mean Opinion Score (DMOS) by

using aSVM regressor.

For each Vn in V, the spatial quality score, Sn, is computed using BRISQUE. Each Sn in

S= f SngN
n= 1 is synchronised such that an assessment scores1i for C1 at ith framecorresponds to

the same time instant for the score s2i for C2. Value of s1i lies between 0 and 1, where a higher

value indicates better visual quality. Figure 3.12 shows the computed BRISQUE score for three

synchronised UGVs of an event. Thespatial quality scores Sarenormalised using thez-score.

3.5.2 Spatio-temporal quality assessment

In order to filter video frames containing unwanted camera movements, we perform spatio-

temporal quality analysis of UGVs. We use the approach of Nagasaka and Miyatake [112] in

which they estimate the camera pan and tilt using Luminance Projection Correlation (LPC) (de-

tailed in Sec. 2.3.4). We use this approach [112] as opposed to other optical flow-based [7] and

template matching-based [6] approaches which are computationally expensive. Furthermore,

LPC has been previously tested for hand-held camera’s video analysis [21]. We obtain the pan

signal by projecting the image on the horizontal axis, and by correlating it with the projection

of the previous image. Likewise, we obtain the tilt signal. A threshold [112] is applied to these

signals for detecting thepan and tilt. Pan left is labelled as positive and right asnegative. Tilt up

is labelled as positiveand down as negative.

In order to estimatespatio-temporal quality scorewhich isgiven by camerashake, weusethe

method proposed by Campanellaet. al [21] in which they apply low passfiltering to thepan and

tilt signals [112], and compute thecamerashakeby taking thedifferencesof original and filtered

pan and tilt signals. Thehigher thevalueof tni (scorefor theith frameof thenth camera) themore

stable the video. Figure 3.12 shows the computed spatio-temporal score for three synchronised

UGVs of an event. Thecomputed T = f TngN
n= 1 is normalised using the z-scorenormalisation.
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Figure 3.12: The spatial and spatio-temporal score without z-score normalisation for three syn-
chronised camera recordings. Representative frames at three time instantsareshown for visuali-
sation. The two scores arenot comparablebecauseof been independent from each other.

The magnitudes of spatial and spatio-temporal scores are not comparable without normali-

sation because they havedifferent scales. The z-score normalises each score to have mean equal

to zero and standard deviation equal to one, thus allowing their comparison. S and T are shown

after z-scorenormalisation in Fig. 3.13.

3.6 Summary

In this chapter, we presented the extraction, matching and analysis of the audio chroma feature

that we exploit for designing the proposed identification and synchronisation [J1] framework.

We selected audio chroma feature as it gives the distribution of audio energy along different

pitch classes, making it discriminant even in thepresenceof audio degradations. Sinceperceived
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(a) (b)

Figure 3.13: Spatial S and spatio-temporal T scores after z-score normalisation for the time
duration shown in Fig. 3.12. The two scores are comparable after normalisation.

visual quality is influenced by camera motion [151], we proposed a method for camera motion

detection using gyroscope data for UGVs [C1]. The proposed method used tri-axial gyroscope

data captured simultaneously with the video to time synchronise sensor-visual data, and to de-

tect pan, tilt and shake motions. We analysed both audio and visual content for designing the

proposed multi-cameravideo composition framework [J2]. In order to rank multipleoverlapping

audio signals of an event in descending order of their quality, we analysed their spectral rolloff.

We used this ranking to obtain consistent and uniform audio for the coverage duration of the

event. We proposed a suitable cut-points detection method by analysing three audio features,

namely root mean square, spectral entropy and spectral centroid. Weanalysed thevisual content

of multiple overlapping UGVs to obtain spatial and spatio-temporal quality assessments. Fur-

ther, we presented a view diversity strategy to be employed for camera selection during video

composition.

In the subsequent chapters, we use the above mentioned features and present the proposed

identification and synchronisation framework, and video composition framework in detail. We

also exploit gyroscope data for designing a variant of our proposed video composition frame-

work.



Chapter 4

Identification and synchronisation of multi-camera

user-generated videos

4.1 Introduction

Multi-camera event identification in UGVs requires a discriminant descriptor for obtaining the

event representation followed by learning for the automatic retrieval of all UGVs that are over-

lapping with thequery. Synchronisation involvesspatio-temporal matching of features from two

or moreUGVsof thesameevent to estimate theperfect alignment between them. Existing meth-

ods use audio fingerprinting for organising UGVs of the same event [76, 32, 20] by applying

a fixed classification threshold. Audio onsets [132], audio fingerprintings [132, 76] or audio-

visual events [23] are used for multi-camera UGVs synchronisation. However, most of these

methods are sensitive to reverberations and local degradations. We proposean automatic query-

by-exampleevent identification and synchronisation framework using audio chromafeature[J1].

Although the recording of a specific event captured by multiple devices might differ in loudness

due to thevarying quality of recording devices, thedistance of thedevice from thesound source

and surrounding noise, the pitch of the recorded remains constant [31]. For this reason, we use

chromaasan audio feature[53], asit givesthedistribution of energy along different pitch classes.

Thenovelty of thiswork lies in thedesign of adescriptor from match and non-match histograms

that facilitates the definition of an automatic classification threshold for event identification and

clustering. We show the robustness of the proposed synchronisation method compared to alter-

nativemethods over variousaudio degradations.

76
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Figure 4.1: Block diagram of the proposed framework, which is composed of two stages, event
identification (discovery) and synchronisation (organisation). For agiven query video Cq, feature
extraction is performed with fr1 (s1 = 1;s2 = OFF), and its feature matching is done with the
feature database of M UGVs to generate the feature matching histogram Hmq. Post-processing
is then performed and a classification threshold ° is applied to identify theset of N overlapping
recordings. The time-shift estimation Dtn is then performed with fr2 (s1 = 2;s2 = ON) for these
N recordings in order to synchronise them. A multi-cameravisualiser isused for playback of the
N synchronised UGVs.

This chapter is organised as follows. In Sec. 4.2, we present an overview of the proposed

framework. In Sec. 4.3, we describe our proposed event identification framework, which is

followed by time-shift estimation and cluster membership validation in Sec. 4.4. In Sec. 4.6, we

describeour dataset of UGVs, assessour method and comparethemethod with theexisting state

of theart. Finally, the chapter is summarised in Sec. 4.7.

4.2 Proposed framework

Our proposed framework can be split into two main stages, namely, event identification and

synchronisation, as depicted in Fig. 4.1. For a query video Cq, the set of UGVs, f Ck;ngNk
n= 1, be-

longing to event, Ek, is identified, then thesynchronisation time-shifts, Dtq;1:Nk, with reference to

the query are estimated. Feature extraction and matching (detailed in Sec. 3.2.1 and Sec. 3.2.2)

are the key components of the proposed framework. In order to eliminate false identifications,

a validation of the synchronisation time-shifts is performed. A multi-camera visualiser is devel-

oped to playback the set of synchronised UGVs belonging to Ek. In this section, we present the

proposed framework and themain assumptions.

Weextract thechromafeaturevector, Fm, using an audio framesize, fr . Our proposed feature

matching strategy maximises thesimilarity of pairsof overlapping featurevectors Fi and Fj , and

providesahistogram representation for thematch and non-match recording pairs(seeSec. 3.2.2).
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Thehistogramdepictstheoccurrenceof thevalueof similarity between Fi and Fj . Theframesize,

fr , in featureextraction is important for thedesign of theevent identification and synchronisation

framework. By making fr coarser, we can build an efficient event identification framework to

identify the cluster of videos belonging to an event Ek. By refining fr for the identified cluster

Ek, we can estimate the synchronisation time-shift. For event identification, a small value of fr

would make the identification process extremely slow, while a large fr might not give accurate

results.

For video event identification, weassumethat thehistogramsfor match and non-match video

pairs are separable. For example, when audio signals Ai and A j from Ci and C j belong to the

same Ek event, matching of their feature vectors Fi and Fj shows strong correlation represented

by a high peak in the matching histogram Hi j (Dt), otherwise, there is no dominant peak. Unlike

existing methods for event identification [20, 76], which used a fixed or mean and standard

deviation-based classification threshold to detect the matching recording pairs, we propose an

automatic classification threshold strategy. Wedesign anovel descriptor from thehistogramsfor

match and non-match video pairs (detailed in Sec. 4.3.1). We learn the classification threshold

from thehistogram descriptorsby training using SVM (detailed in Sec. 4.3.2).

For synchronisation, we assume that the time difference of arrival of a sound is negligible.

Two recording devices, Ck;i and Ck; j , observing thesameevent, Ek, might havea timedifference

of arrival of sound, ei j , dueto their different distancesfrom thesound source[116]. Let theaudio

signal of the ith video recording beAi(t
p
i ), t p

i = p
sA
n
, 0� p < Ka

n, where p is the index of theaudio

sample, tp
i is thetimeat the pth samplefor theith video recording, Ai istheamplitudeof theaudio

sampleat timetp
i , sa

n is theaudio sampling rateand Ka
n is the total number of audio samples. The

estimated time-shift obtained between Ck;i and Ck; j is

Dti j = tp
i � tq

j + ei j ; (4.1)

where ei j = Ddi j
us

is the time difference of arrival, in which Ddi j= di�d j depicts the distance dif-

ferencebetween Ck;i and Ck; j from thesound sourceand us= 340 m/s is thespeed of sound. Let

us consider that the videos are recorded at a frame rate of sv = 25 fps. The separation allowed

between two cameras while staying in a video frame tolerance of �1 frame (ei j = 0:04 sec) is

Ddi j = 14m(metres). In thecaseof UGVs, Ddi j isunknown, aswhen sharing thesevideoson the

Internet, the information about the geographical location of the cameras and their distance from

the sound source is generally not available. We assume that the cameras recording a particular
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event lie in thevicinity of each other such that Ddi j < 14m, thus making ei j negligible.

4.3 Event identification

In this section, we present our video event clustering approach which aims to identify multi-

cameraUGVsof thesameevent Ek. The two main blocks of thisapproach are featureextraction

and feature matching (Fig. 4.1). We present the novel histogram descriptor, and propose an ap-

proach for learning the classification threshold ° from thematch/non-match histograms descrip-

tors of the training video events. Event clustering is then performed followed by the association

of anew video Cq to the database.

4.3.1 Histogram descr iptor extraction

Let ustake bC� C of UGVssuch that bC = f bCmg bM
m= 1, where bM� M for training theclassification

threshold such that these recordings are not included in the test data. The database bC contains

bM videos for bE = f Ebkg
bK
bk= 1

events, where bK � K, such that we have at least two overlapping

videos for each bEk. For these bM videos, we extract the features f Fmg bM
m= 1 using frame size fr1.

The selection of fr1 is done empirically and will be discussed in Sec. 4.6.1. We compute the

matching histograms H for all bM� bM video recording pairs (as discussed in Sec. 3.2.2). The

matching histograms are given by

H = f Hi j (Dt)g; 8i; j 2 [1; bM]: (4.2)

Wethen computethedelay matrix D for all video recording pairs, such that D = [Dti j ]
bM� bM, where

each element of D is given by

Dti j = argmax
Dt

Vi j (Dt): (4.3)

We propose a method for the extraction of descriptors from histograms H, which are invariant

within the match and non-match classes. Using these descriptors, we train a SVM classifier for

bC to obtain theclassification threshold ° (Sec. 4.3.2).

From the histogram Hi j (Dt), we compute the descriptor P0
i j by performing a post-processing

step to removethedependency of match count on thetimeaxis(Fig. 4.1). Each histogramHi j (Dt)

is first normalised with respect to its maximum valueat Dt:

bHi j (Dt) =
Hi j (Dt)

maxDt Hi j (Dt)
: (4.4)
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(a)

(b)

Figure 4.2: Post-processing of matching histogram Hi j (Dt): (a) example histogram obtained
for the match class, and (b) example histogram obtained for the non-match class. Histogram
descriptorsP0

i j arecomputed for all Hi j (Dt) by scanning from top to bottom using 0:0� Tr � 1:0
and taking their derivative.

A scanning threshold parameter 0 � Tr � 1 is then defined, which scans bHi j (Dt) from top to

bottom counting the number of matches on each incremental step h (where h = 0:01 of Tr).

This gives the match count Pi j with respect to the scanning threshold parameter Tr making it

independent of the time-shifts (Fig. 4.2). The derivative P0
i j which reflects the change in Pi j

is then computed thus giving a 100�point descriptor of the histogram Hi j (Dt). Pi j is a step

representation which shows theaccumulation of thenumber of matches. By taking its derivative

P0
i j , weget auniquerepresentation in which thedescriptor only showshigh valueat the instances

of change and remains zero elsewhere. Therefore, the descriptor P0
i j 2 R100 is distinguishable

for match and non-match classes in the same way as their histogram Hi j (Dt) is, but it gives a

common representation for all variations of match and non-match classes. Figure 4.2 illustrates

the process of thehistogram descriptor P0
i j extraction from match and non-match histograms.
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4.3.2 Classification threshold

Theobtained histogram descriptorsP0
i j arerearranged and labelled asbelonging to thematch and

non-match classes for training theclassifier. P0
i j are rearranged row-wise to give theset

P
0
= f P

0

11;P
0

12; :::;P
0

bM bM
g: (4.5)

P
0

contains Np match descriptors and Nn non-match descriptors, where Np + Nn = bM� bM. In

order to obtain a compact representation of the data, we use a bag-of-words [73] like approach.

We perform k-means clustering for match and non-match class vectors by selecting kNp and kNn

as the number of clusters which are determined using the elbow method [79]. The returned

cluster centres represent thepossiblevariations within aclass in the training datawhich are then

considered as the training set. The clustered set of training vectors T belonging to match and

non-match classes aregiven by

T = f (P
0

1;1);���; (P
0

k ;1);���; (P
0

kNp
;1); (P

0

1;�1);���;P
0

k ;�1);���; (P
0

kNn
;�1)g; (4.6)

where P
0

k represents the histogram descriptor corresponding to the k th cluster centre. We use

a linearly separable SVM [146] for separating the two classes and computing the classification

threshold °. SVM learns° using thetraining dataT, such that it maximisesthedistancebetween

the support vectors of the two classes. The learned classification threshold ° is then used to

classify and cluster thetesting database(Sec. 4.3.3). For each identified cluster Ek, the time-shift

estimation and validation is then performed for synchronisation (Sec. 4.4).

4.3.3 Event cluster ing

In order to identify thegroup of UGVsthat belongs to thesameevent Ek, weextract thedescrip-

torsP0
i j ; 8i; j 2 [1;M], such that bM video recordings used for training are not included. Theclas-

sification threshold ° is then used to identify overlapping UGVs belonging to the same events.

As a result, we get an identification matrix I= f I i j ; j I i j 2 Z [�1;1]g; I 2 ZM�M, which is sym-

metric. I i j takes the value 1 if an overlapping video is identified, otherwise its value is�1. Our

proposed method does not require initialisation by the number of clusters to be identified. The

group of identical rows in I corresponds to the videos identified as belonging to the same event

Ek. Theset of videos aregrouped to form an event cluster Ek = f Ck;ngNk
n= 1. Once theclusters are

identified, the longest UGV within each cluster, eCk, is taken as the representative for each event

cluster Ek in order to facilitate overlaps with the rest of the recordings belonging to that cluster.
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As a result of event clustering, we obtain the set of representative videos eC for the set of event

clusters E,

eC = f eCk : 8k 2 [1;K]g: (4.7)

4.3.4 Association of new videos to the database

Let Cq beaquery video to beassigned to an event. Sincewealready performed event clustering,

instead of matching Cq with C, we perform its matching with eC. The feature vector Fk for all

representative video recordings eC are precomputed using frame size fr1. We compute chroma

features Fq for the query video using fr1. The matching histograms Hkq and descriptors P0
qk :

8k 2 [1;K] are obtained as discussed in Sec. 4.3.1. The descriptors are then mapped on to the

classification threshold °, which identifiestheevent cluster Ek containing theset of UGVshaving

the sameoverlapping event as Cq.

4.4 Time-shift estimation and cluster membership validation

Once each event cluster Ek containing the set of overlapping videos is identified, the next step

is to synchronise these UGVs on a common timeline. In this section, we present our time-shift

estimation and validation approach.

Without loss of generality, let us consider Ck;1 = eCk as the reference video with the longest

duration in Ek. To achieve high precision for the synchronisation, the feature vectors f Fk;ngNk
n= 1

for f Ck;ngNk
n= 1 are computed using a frame size of fr2 < fr1 (as discussed in Sec. 4.2). Feature

matching is then performed between all recording pairs(Nk�Nk) to estimatethesynchronisation

time-shifts, which results in the delay matrix D = [Dti j ]Nk�Nk (Eq. 4.3). The delay matrix D is

anti-symmetric (Dti j = �Dt j i) if all UGVs are partially or completely overlapping. However, if

falsepositive identification occurs thedelay matrix D might not beanti-symmetric. Theanalysis

of D is thus required for the validation of the identification results, elimination of any false

identifications and for thecalculation of consistent time-shifts.

We analyse the delay matrix D using the time-shift validation method of Casanovas and

Cavallaro [23] for validating the cluster membership. We generate the histogram hii0 where i 6=

i0; 8 i; i02 [1;Nk]. The histogram hii0 contains the count for the consistent time-shifts detected

between i and i0columns, and i0and i rowsof the delay matrix D. This is given by

hii0 = f (Di j �Di0 j ) [ (D j i0�D j i)g; (4.8)
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Figure 4.3: Cluster membership validation using [23]: (a) example delay matrix for N = 8 be-
longing to the same event, (b) histogram h12 for the time-shift between C1 and C2, showing its
consistency, (c) histogram h15 for the time-shift between C1 and C5, showing its inconsistency.

where j 2 [1;Nk]. The returned hii0 is quantised to the first decimal place for consistency. The

most frequently occurring value on this histogram is selected as the consistent time-shift Dtii0. A

video that does not belong to the same event as that of the other videos contained in the cluster

will have no consistency, and this information is used to remove false identifications. Figure

4.3 illustrates this validation process with the help of a delay matrix in which video Ck;5 is

intentionally selected to bedifferent from all other UGVs for thepurposeof demonstration.

4.5 Multi-camera visualiser

We developed a multi-camera visualiser using VLC multimedia player library [3], to further

validate the obtained results and to coherently playback the identified UGVs. The visualiser
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Figure 4.4: Multi-camera visualiser. A snapshot of the synchronised videos of Olympic torch
event.

loads multiple video players (equal to the number of identified UGVs), align the videos using

the estimated time-shifts, and simultaneously playback them for visualisation. Figure 4.4 shows

asnap-shot of thevisualiser.

4.6 Results

In thissection wepresent theexperimental setup, thevalidation of theproposed method for video

identification and synchronisation, and a comparison with state-of-the-art methods. The dataset

used in this experimentation is detailed in Sec. ??.

4.6.1 Exper imental setup

For the computation of audio features, the audio signal from a UGV Ci is segmented into over-

lapping audio frames Gn with hop hp = 25% of fr and frame size fr2 = 0:04 sec for time-shift

computation, which givesan accuracy of 0.01 sec for synchronisation. For video identification, a

value of fr1 = 3:0 sec was found to be an appropriate compromise between efficiency and accu-

racy. The energy spectrum of the audio frames is computed on the logarithmic scale, where the

minimum and maximum are set to 100Hz and 5000Hz [56]. The computed spectrum energy is

then redistributed along the 12 pitch classes (chroma) and matching is performed using the pro-

posed method detailed in Sec. 3.2.2. To compute theclassification threshold ° weused atraining

dataset of 7 events containing 42 UGVs. This dataset gave 1764 matching pairs, out of which

288 belonged to the match class. We trained the classifier by selecting kNp = 15 and kNn = 28

determined using theelbow method for selecting thenumber of clusters. Asa result weobtained
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Figure4.5: Video identification framework result showing theperformancefor two sets of query
(Cq): 41 events containing 221 UGVs (which are contained in the database), and 60 additional
videosalong with 221 UGVs (where theadditional UGVsarenot contained in thedatabase).

the classification threshold °.

4.6.2 Discussion and compar isons

For video identification and event clustering, testing is performed on two sets of UGVs: (a)

41 events containing 221 UGVs which forms our database, (b) 60 additional events along with

221 UGVs (of 41 events) where the additional 60 UGVs are not contained in our database. All

(a) 221� 221 = 48;841 and (b) (221+ 60)� 221 = 62;101 possible match pairs are computed

and the ground-truth for video identification is generated. Figure 4.5 shows the precision-recall

curve for the two test sets. High precision is achieved in both test cases with the area under the

precision-recall curve to be 0.97 and 0.96, respectively. This shows the robustness of the pro-

posed framework even with the additional UGVs. Video identification is followed by automatic

event clustering using which we identified 41 clusters.

To perform synchronisation, we use the complete dataset of 48 events (263 UGVs) for the

evaluation, as we are interested in synchronising all the events. The synchronisation results are

shown in Fig. 4.6(a). Despiteseveral audio degradations, all videos aresynchronised with errors

between estimated and ground-truth time-shifts smaller than 0:03 sec. Theproposed synchroni-

sation approach is even effective for videos of a short duration (as analysed in Sec. 3.2.3) and

fails to correctly show the time-shifts for only one UGV (belonging to Olympic Torch Mile End

dataset) out of the 263 in the test. The error is due to the recording device malfunctioning and

not capturing theaudio signal for most of thetimeduring recording. Time-shift validation isalso

performed in order to verify that theobtained cluster of recordings belongsto thesameevent.
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(a) (b)

Figure4.6: Comparison resultsshowing thepercentageof synchronised videosversus time-shift
error with respect to the ground truth. (a) Synchronisation results on the whole dataset (Tab.
A.2). (b) Synchronisation results for the dataset used in [23, 132]. Key: AO indicates the audio
onset based method [132]; AF indicates theaudio fingerprinting method [132]; AV indicates the
audio-visual event method [23]; AC indicates theproposed method.

In order to further validateour proposed Audio Chroma(AC) based synchronisation method,

we compare it with state-of-the-art methods based on Audio Onset (AO) [132], Audio Finger-

printing (AF) [132] and Audio-Visual Event (AV) [23] using our dataset (Fig. 4.6(b)). AO and

AV are comparable, while at times AV gave slightly worse results than AO. Since these two

methods are highly sensitive to audio degradations, they failed to synchronise a large number of

UGVs. Likewise, Audio Fingerprinting (AF) [132] is robust to ambient noise but failed to give

thecorrect result for somerecordingscontaining reverberationsand channel noise. Furthermore,

AF failed to synchroniseUGVs of ashort duration (< 30 sec). AC outperformed the other three

methods as it was able to synchronise 262 out of 263 UGVs, followed by AF, giving an overall

accuracy of 99:62% and 94:79%, respectively.

To have a fair comparison with the state of the art, we also perform testing with the dataset

used in [23, 132] (Fig. 4.6(b)). The same trend can be observed as for our dataset: the results

obtained with AC and AF are comparable, but AC outperforms the other methods. The best

overall performance isachieved by AC, followed by AF, AO and AV.

The association and synchronisation for a concert (Nickelback Event1) and the Olympic

torch (OlympicTorchMileEnd) event are shown in Fig. 4.7, where row one shows Cq and the

identified cluster videos are shown in the subsequent rows. Each column represents the syn-

chronised frame for these video recordings. Note the different visual quality (C4 and C5 in

Fig. 4.7(b)), variations in the field of views (C1 and C4 shows far field of views as compared to

Cq and C6 in Fig. 4.7(a)), lighting (C2 and C3 in Fig. 4.7(a)) and cameramotion (C6 in Fig. 4.7(a)
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(a)

(b)

Figure 4.7: The association and synchronisation result for (a) a concert (Nickelback Event1 as
named in Tab. A.2) and (b) the Olympic torch (OlympicTorchMileEnd as named in Tab. A.2)
event. Row 1 represents a snapshot frame from the query video. Each row represents a different
video from the identified cluster event. Each column corresponds to temporally aligned frames
from thevideos.

and (b) showing zooming in motion) in thesnapshot frames.
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To test therobustnessof theproposed framework, association isalso performed using similar

UGVs (using an additional dataset of 60 UGVs, which is detailed in Sec. ??). Though depicting

similar eventsbut withno timeoverlap, noevent cluster is identified when performing association

with theseadditional UGVs. Thisisalso shown in Fig. 4.5, which further validatestherobustness

of our framework.

4.7 Summary

In this chapter, we presented an automatic identification and synchronisation framework for

multi-camera UGVs and query-by-example video event search. The proposed framework used

audio chroma feature to cluster UGVs belonging to the same event and to estimate their relative

time-shifts. Coarser frame size for audio feature extraction facilitated in efficient video identifi-

cation, while refining it for the identified cluster gaveprecise time-shift estimation. Wedesigned

anovel descriptor from thehistogramsfor match and non-match video pairs that gaveadiscrim-

inant representation for match and non-match classes. Unlike existing identification methods

[20, 76], we proposed an automatically determined classification threshold using the novel de-

scriptor for clustering and association of new incoming videos. The classification threshold is

trained using a relatively smaller dataset, and testing for the video identification is performed on

unseen event dataset. We demonstrated the robustness of the proposed method to audio degra-

dations including high ambient and channel noise, and discussed a comparative analysis with

existing state-of-the-art methods.

Thegoal of thischapter wasto identify all UGVsbelonging to thesameevent and to organise

the identified videos on a common timeline. Once organised, applications can be developed for

better understanding the event, localising the region of interest, multi-cameravideo composition

and summarisation [122, 133, 35]. In the next chapter, we propose a framework for composing

atimecontinuousvideo from multi-camerasynchronised UGVsby considering audio and visual

qualities of UGVs (as detailed in Sec. 3.4 and 3.5). Gyroscope data is useful for the estimation

of camera motions with reduced computational cost as compared to the visual data (Sec 3.3).

Therefore, we design a gyro-based video composition framework as well, by considering audio

and gyro-based qualities of UGVs.
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Video composition from multi-camera

user-generated videos

5.1 Introduction

Video composition from multi-cameraUGVsof thesameevent aimsat generating acoherent and

timecontinuousvideo providing amulti-view experience[122, 133, J2]. Video composition may

involve discarding low-quality and less interesting visual segments. Among a pair of time over-

lapping visual segments, the segment recorded from a stablehand-held devicewith better visual

quality can be considered as interesting. The composed video contains non-overlapping seg-

ments of multi-cameraUGVsselected to improve theview diversity. Wedefineview diversity as

the introduction of variety of views in thecameraselection process in order to enrich thecontent

of the composed video. Theperceived audio-visual quality is a key factor which makes the con-

tent enjoyableand interesting to playback [104]. Existing video composition methods[122, 133]

for UGVs perform visual quality analysis and manual cut-point selection. We propose an au-

tomatic video composition framework (ViComp) for UGVs recorded from different viewpoints

in an event [J2]. ViComp exploits visual quality and view diversity to select segments using

a rank-based camera selection. ViComp maintains audio uniformity and exploits audio-content

analysisto automatically select cut-pointsfor visual segmentsgeneration. Wedesign asubjective

test for the comparative evaluation of the proposed framework. Gyroscope data when captured

coherently with the video facilitates in camera motion analysis [C1]. Therefore, we design a

gyro-based assessment scorefor qualifying thevisual quality and used it to develop agyro-based

89
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Figure 5.1: Block diagram of the proposed multi-camera UGV composition framework. The
audio signals are analysed for audio stitching, followed by suitable cut-points selection. For Vi-
Comp (s1 = OFF, s2 = ON), spatial and spatio-temporal assessmentsarecomputed by analysing
video quality. For ViCompG (s1 = ON; s2 = OFF), gyro-based assessment iscomputed by con-
sidering camera motion analysis. ViComp and ViCompG integrate their respective assessments
with theview diversity for thedesigning of the rank-based camera-selection method.

video composition framework (ViCompG).

In thischapter, wefirst present theproposed video composition frameworks, namely ViComp

(Sec. 5.2) and ViCompG (Sec. 5.3). Subjective test designed for the evaluation of the proposed

frameworks is detailed in Sec. 5.4. Experimental evaluation of the gyro-based camera motion

detection is presented in Sec. 5.5. This is followed by experimental validation and analysis of

ViComp and ViCompG in Sec. 5.6. Thechapter issummarised in Sec. 5.7.

5.2 ViComp: Audio and visual-based video composition

We develop ViComp, a video composition framework, by considering audio and visual feature

analyses (as described in Sec. 3.4 and Sec. 3.5). The block diagram of the proposed framework

is shown in Fig. 5.1. To maintain audio uniformity, we propose a method for audio stitching by

ranking the set of audio signals, A, from an event based on their quality. This results in coherent

audio, Ast, for the coverage duration, Dc, of the event. An automatic cut-point selection method

is then designed by analysing the change in the dynamics of the audio features (as detailed in

Sec. 3.4.3). The selected cut-points, U, are used for the segmentation of theset of video record-

ings, V. Weusespatial, S, and spatio-temporal, T, scores as thequality assessment measures for

each segment. To compose the video, we rank the segments using visual quality and impose the

view diversity condition. Detailed below is the proposed view diversity condition, followed by
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Figure 5.2: View diversity illustration. Camera selection is shown for three cases: (a) No di-
versity condition is applied. (b) History of the previous selected segment is considered for the
diversity. (c) Proposed view diversity condition in which history of the previous two selected
segments is considered.

the rank-based cameraselection method.

5.2.1 View diversity

View diversity enhances the viewing experience and is a component of professionally edited

videos [19, 157]. UGVs of thesameevent differ in viewing anglesand distances from theobject

of interest. Therefore, we assume that if at least the previous two consecutive selected cameras

aredifferent from thecurrent selection, sufficient view diversity isachieved. A video selected for

the segment M j is not the one selected for the previous two segments M j�1 and M j�2 provided

that weat least have threevideo recordings of theevent at that time instant. This is given by

M j 2 Cn j M j�1 =2 Cn & M j�2 =2 Cn: (5.1)

Figure5.2 showsan illustration of theproposed view diversity condition (Fig. 5.2(c)) in compar-

ison to when no diversity (Fig. 5.2(a)), or history of thepreviousselected segment (Fig. 5.2(b)) is

applied for the camera selection. Without view diversity, camera selection is merely a selection

of the top ranked cameras, and does not introduce variety of views. In the proposed view diver-

sity condition, switching between three or more cameras take place by considering their ranks.

The rank-based cameraselection strategy is presented in the following section.

5.2.2 Rank-based camera selection

In order to construct a camera selection strategy, we analyse the spatial, S, and spatio-temporal,

T, assessmentswithin each cut-point segment, u j , whileconsidering theproposed view diversity
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condition. We analyse the segment vnj for all N cameras by using both spatial, Sn, and spatio-

temporal, Tn, quality scores. We first perform the best camera selection independently with

respect to the Sn and Tn scores, and store the selected camera indices in QS = f QS
j g

J
j= 1 and

QT = f QTgJ
j= 1, respectively. For thecut-point segment u j , theselected camera indices for Sare

given by QS
j = (QS

j1;���;QS
jk;���;Q

S
jKv

j
) 2 u j , whereKv

j is the total number of samples in u j . The

same is applicable for QT
j . We then compute the spatial score-based normalised occurrence of

cameraCn in each u j as

OS
nj =

Â
Kv

j
k= 1 QS

jk

Kv
j

(5.2)

where QS
jk 2 Cn. By varying 1� n� N, weget thenormalised occurrence for all the cameras in

u j . Similarly, we compute OT
nj for QT

j , and arrange OS
nj and OT

nj in descending order to get the

rank vectors RS
j and RT

j , respectively, for all Cn. The spatial and spatio-temporal rank matrices

aregiven by RS = [RS
1;���;RS

j ;���;R
S
J] and RT = [RT

1 ;���;RT
j ;���;RT

J ], respectively. Wecompute

the combined rank matrix RC using RS and RT that ensures that the segments with better visual

quality always get higher ranks. The combined rank vector RC
j for u j is computed by combining

the unique stable values from RS
j and RT

j . At cut-point segment u j , we assign the top combined

rank RC
j (1) to M j followed by imposing the proposed view diversity condition. The complete

algorithm for ViComp is detailed in Algorithm 2.

5.3 ViCompG: Audio and gyro-based video composition

ViCompG replaces the visual quality assessments (S, T) with a gyro-based quality assessment,

Y = f YngN
n= 1, that aims at obtaining the quality scores from the gyroscope data, G, for the set

of synchronised UGVs, C (Fig. 5.1). Each Yn is given by Yn = (yn1;���;yni ;���;ynIg), such that

the first sample corresponds to the first recorded gyroscope sample in C and the last sample, Ig,

corresponds to the last gyroscopesample in C.

Unintentional camera motions influence the perceived quality of UGVs [151]. For example,

fast pan, tilt and shake results in blurred frames. In Sec. 3.3, weutilised gyroscopedatarecorded

simultaneously with the video for camera motion analysis. We exploit these findings to obtain

the gyro-based quality assessment, Y, for UGVs. The magnitude of the gyroscope data, Gn, for

Cn video recording is given by

jGnj =
q

(G2
nx) + (G2

ny) + (G2
nz); (5.3)



Chapter 5: Video composition frommulti-camera user-generated videos 93

Input: lmin, lmax, A, V, N % N is thenumber of UGVs

Output: (M)

RSR  Audio ranking (A)

Ast  Audio stitching (A, RSR)

(U, J)  Cut-point selection (A, RSR) % J is the number of segments

S  Spatial assessment (V)

T  Spatio-temporal assessment (V)

RS  Spatial rank matrix (S, U, J)

RT  Spatio-temporal rank matrix (T, U, J)

RC  Unique rank (RS, RT)

for j  1 to J do

if j = 1 then

M j = RC
j (1) % first segment selection

else

M j = RC
j (1)

if M j = M j�1 & RC
j (2) 6= 0 then

M j = RC
j (2) % diversity check provided N � 2

end

end

if ( j �2) > 0 then

if M j = M j�1 & RC
j (3) 6= 0 then

M j = RC
j (3) % diversity check provided N � 3

end

end

end

Algor ithm 2: The algorithm for ViComp. The rank-based camera selection method is
described in detail.

whereGnx, Gny and Gnz arethegyroscopesignalswith respect to thex, y and z axes, respectively

for the Cn recording. In th presence of camera motions, the magnitude of gyroscope is not

zero. The higher the magnitude, the lower is the perceived visual quality. To normalise the

magnitudefor all Cn in C, and to compute thegyro-based assessment score, Yn, weperform min-

max normalisation followed by computing the inverse. Let the minimum, Gmin, and maximum,
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Figure 5.3: Visualisation for gyro-based assessment score, Y, for the event titled
Caramel Event2. The snap-shots of each recording at four time instances (marked by the black
upward arrows) areshown.

Gmin, magnitudevalues be

Gmin = min(jG1j;���; jGnj;���; jGNj); (5.4)

Gmax = max(jG1j;���; jGnj;���; jGNj); (5.5)

respectively. Then the gyro-based assessment score is computed as

Yn =
Gmax� jGnj
Gmax�Gmin

: (5.6)

The visualisation of Y is shown in Fig. 5.3 for the event titled Caramel Event2 that comprises

four UGV recordings. At time 274s, motion blur occurred in C3 that lowered the score. The

intentional dancemotion while recording in C2 lowered thescoredueto shake. Recordingsfrom

C1 and C4 arecomparatively stablewith respect to C2 and C3.
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5.4 Subjective test design

A subjective test is designed to analyse the overall quality of the proposed ViComp and Vi-

CompG methods in comparison with Firstfit [133], MoViMash [122], ViCompCD (Sec. 5.6.1)

and ViRand (Sec. 5.6.1). Astherearemany waysof showing videosto subjectsin order to record

their assessment, the ITU-R recommendation [70] presented four standardised methods for the

subjective video-quality assessment. We selected Pair Comparison (PC) [70]-like method for

analysing the composed multi-camera video based on a subject’s level of interest. Our choice

is motivated by the fact that in order to have a fair comparison, a subject must watch all three

composed videos of an event before ranking them. For example, if the subject is asked to assess

one video at a time, he/she will not be sure what is the reference that defines a good quality. In

each test set, we presented the test videos from three different methods one after another and

asked the subject to provide a comparative rank from the best to the worst quality video. The

subjects were not disclosed about the method used to compose these videos. In order for the

subject to stay involved in the test and to remember the properties of the videos, the length of

each test video is selected to be approximately of 60s. Therefore, the videos in a particular test

set took 3-4 minutes to be watched and ranked by the subjects. We designed a web-page1 for

the distribution of the test, in which guidelines for taking the test are given to the subjects. The

subject’s information (name, age, gender) is recorded before the test begins.

Weconducted asurvey on thequality of thegenerated videos obtained in pair of threemeth-

ods(Table5.2). Thenull and alternatehypothesis are formulated as

• Ho = There is no significant difference among the videos generated by the three different

methods.

• Ha = There is a significant difference among the videos generated by the three different

methods.

The test is designed as a k-related sample test in which the subjects are told to assign rank 1 to

the method which appears to them as the best in terms of visual quality, rank 2 to the second

best and rank 3 to the worst. In order to test the consistency in ranking patterns, we used the

Friedman Two-Way ANOVA by ranks [69]. In the Friedman Two-Way ANOVA test, the data is

arranged in atabular form in which the rowscorrespond to blocks (subject’srank for each event)

and columns correspond to treatments (the three methods under test). The Friedman Chi-square

1http://www.eecs.qmul.ac.uk/˜andrea/vicomp
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statistic (X2) and p-value are then computed for the recorded data for the analysis (Sec. 5.6.2).

5.5 Exper imental evaluation of gyro-based camera motion detection

In this section, we present the experimental results of the proposed gyro-based camera motion

detection (CMDG) method (detailed in Sec. 3.3) and compare it with an existing visual [141, 21]

and inertial sensor [35] based methods. The multi-modal dataset used for the validation of the

proposed method is detailed in Sec. A.2.

For gyro-visual synchronisation, wedown-sample thegyroscopedata to thesameframerate

as that of the video. Theobtained delay is in seconds (s) and is applied to the gyroscope data (at

the original sampling rate) to align it with the video. The proposed CMDG is then applied for

pan, tilt and shake detection.

The results for gyro-visual synchronisation are shown in Fig. 5.4. Acceptabledelays areob-

tained for all UGVswith an absoluteerror of 0.7sbetween theGT and theestimate. Thiserror is

mainly due to the imprecise GT labels as it was difficult to manually observe a coherent motion

both in the video and gyroscope data for labelling. By jointly visualising the synchronised data,

we cross-validated the correctness of the obtained results. LPC used for synchronisation (see

Sec. 3.3.1) is dependent on the change of illumination. Although the illumination is extremely

low in someLB recordings(e.g. fireworks) that resulted is low magnitudeof Lx(t) and Ly(t) and

inaccurate camera motion detection, correlation existed between the gyroscope and visual data.

A slight clueof brightness(e.g. exploding fireworks) issufficient for establishing thecorrelation.

Thus, acceptable delay is achieved even in the presence of slight camera motion. To investigate

the robustness of gyro-visual synchronisation, we varied the overlap duration between the gyro-

scopeand visual datafor all UGVs. OverlapN denotesthat thecompletevisual dataand only N%

of the duration of the gyroscope dataare used. For Overlap80, Overlap60, Overlap40 and Over-

lap20, thepercentageof synchronised recordingsare91%, 87%, 78% and 48%, respectively (see

Fig. 5.4). Notethat thevisual quality and frameratearelow in someof thenight-timerecordings,

which affect Lx(t) and Ly(t), and decrease theperformance when theoverlap is decreased.

For the evaluation of the proposed CMDG, we analyse its performance with respect to the

GT. To select a and b for pan, tilt and shake detection, we analysed the effect of varying these

parameters on the detection results (Fig. 5.5). At a = 30o, the best F1-score of 0:94 for pan

and tilt, and at b = 0:06, the best F1-score of 0:85 for shake were achieved and selected for the
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Figure 5.4: Gyroscope-visual synchronization. % of synchronized multi-modal data w.r.t the
absolute time-shift error. OverlapN meansN% of theduration of thegyroscope is used.

experimentation. Wecomparetheproposed CMDG with an existing visual [141, 21] (referred as

VISUAL) and inertial sensor-based [35] (referred as ISENSOR) methods (shown in Table 5.1).

In order to investigate their performance, we divided the UGVs into HB and LB recordings

having total durations of 30 mins and 40 mins, respectively. To have a fair comparison, the

parameters within the VISUAL and ISENSOR are adjusted to give the best possible results. In

our dataset, most events of interest existed in the latitudinal plane (e.g. singer, crowd, parade),

with the exception of few that existed in the longitudinal plane (e.g. fireworks, flying balloons),

resulting in fewer tilt samples (seeTable5.1). CMDG outperformed theexisting methodsgiving

theF1-scoreof 94%, 82% and 83% for Pd(t), Td(t) and Sd(t), respectively, for theHB recordings,

and 93%, 85% and 86% for the LB recordings. VISUAL and ISENSOR are the second best for

the HB and LB recordings, respectively.

VISUAL is effected by the motion of objects and light conditions, thus reducing its perfor-

mance in LB recordings as compared to CMDG and ISENSOR, which are independent of these

factors. ISENSOR is designed using compass and accelerometer, and is effected by magnetic

noise, low sampling rate and unfiltered processing, resulting in false detections. CMDG gives

a better solution for camera motion detection because of the use of more accurate sensor (gyro-

scope), and inclusion of the post-processing stage that suppresses the outliers. Pan signals from

CMDG and VISUAL are comparable in HB recordings. However, ISENSOR is less accurate

due to low sampling rate (of 10Hz) of the compass [35]. Increasing the sampling rate to 50Hz

increases the effect of noise, and makes thederivative of compass signal ineffective.
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(a) (b)

Figure 5.5: F1-score of the proposed CMDG method with respect to the varying values of (a) a
and (b) b.

Table 5.1: Results for CMDG and its comparison with a VISUAL [141, 21] and ISENSOR [35]
methods. Key: HB: high brightnessrecordings; LB: low brightnessrecordings; TP: truepositive;
FP: falsepositive; P - precision; R - recall; F1 - F1 score.

Pan Tilt

Method Type GT TP FP P R F1 GT TP FP P R F1

CMDG

HB 294

272 11 0.96 0.93 0.94

36

29 6 0.83 0.81 0.82

VISUAL [141, 21] 217 64 0.77 0.74 0.75 19 42 0.31 0.53 0.39

ISENSOR [35] 175 52 0.77 0.60 0.67 14 46 0.23 0.39 0.29

CMDG

LB 123

117 12 0.91 0.95 0.93

49

41 7 0.85 0.84 0.85

VISUAL [141, 21] 31 44 0.41 0.25 0.31 10 48 0.17 0.20 0.19

ISENSOR [35] 44 40 0.52 0.36 0.43 23 24 0.49 0.47 0.48

(a) Pan and tilt detections in HB and LB recordings

Shake

Method Type GT TP FP P R F1

CMDG

HB 389

365 129 0.74 0.94 0.83

VISUAL [141, 21] 260 118 0.69 0.67 0.68

ISENSOR [35] 188 93 0.67 0.48 0.56

CMDG

LB 272

235 37 0.86 0.86 0.86

VISUAL [141, 21] 200 606 0.25 0.74 0.37

ISENSOR [35] 213 129 0.62 0.78 0.69

(b) Shakedetection in HB and LB recordings

5.6 Exper imental validation of video composition

We compare the proposed ViComp with Firstfit [133], MoViMash [122], ViRand, and ViCom-

pCD (seeSec. 5.6.1) using thedesigned subjectivetest (Sec. 5.4). Theperformanceof ViCompG

is tested against ViComp and ViRand. A dataset of 16 events (105 UGVs) is used to for the
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Figure5.6: Example timeline for adataset that illustrates thedefinition of the coverage (Dc) and
overlap (Do) durations.

evaluation of the proposed frameworks. The dataset isdetailed in Sec. A.3.

5.6.1 Exper imental setup

The UGVs are pre-processed before feeding into the ViComp and ViCompG frameworks as the

video frame rate (sv) and frame size are varying among the UGVs of the same event. All UGVs

have been re-sampled to 25 fps using VirtualDub [86]. All frames have been re-scaled to the

samesize for all the videos before camera selection. Also, all UGVs belonging to an event have

been synchronised to a common timeline using [J1]. For the selection of suitable cut-points, we

fixed the value of lmin and lmax to 3 and 10s, respectively (Sec. 3.4.4). For the evaluation test,

we used the overlap duration (as shown in Table A.4) that is the duration for which all UGVs in

an event are available (as shown in Fig. 5.6). The overlap duration has been used as opposed to

the coverage duration to avoid monotonic camera views that might occur when the recording is

available from one cameraonly.

For comparison, we implemented two morestrategies, ViRand, and ViCompCD. In ViRand,

the visual segments are selected randomly at each cut-point while the segment length lmin and

lmax are fixed. We also design the Clustering-based Diversity (CD) condition and included it in

ViCompCD for comparison. For implementing the CD condition, we cluster the video frames

from N camerasat ith time instant into similar and dissimilar views by matching view points. At

a time instant i, theviews areorganised into cluster-1 and cluster-2, where cluster-1 contains the

indices of all views similar to the last frame (i� 1) of the previously selected segments M j�1,

and cluster-2 contains the indices of all the dissimilar views. At a time instant i, we apply the
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Harris affine detector [106] to extract affine invariant regions followed by applying the Scale

Invariant Feature Transform (SIFT) descriptor to extract features FSF
n (i)2 RKSF

n �128, where KSF
n

is the number of extracted features from the ith frame in the nth camera. We used this detector

as it is capable of identifying similar regions in pairs of video frames captured from different

viewpoints. For a camera Cn0, we calculate its feature matching with the features FSF
n (i) of

all other cameras. The match count between current Cn0 and all Cn at the ith frame is given

by L(i)= [l n01(i);���;l n0n(i);���; l n0N(i)]T. The highest number of matches is obtained when

n0= n. We make this value l n0n0(i) equal to the second highest match value in order to avoid

bias in the clustering stage; as when a frame is matched with itself a sufficiently large number

of matches occurs as compared to when it is matched with video frames from another camera

recordings. Next, we apply k-means clustering by initialising two clusters such that cluster-1

is with the highest mean value. Ideally, this ensures that cluster-1 always contains frames with

similar camera views as of n0. However, this is not always true as visual degradations reduce

the sharpness of the video frame; thus making the feature matching insignificant. In order to

implement the CD condition in the camera selection process, we select a camera index from

cluster-1 for which the combined rank RC
j (in the jth cut-point segment) is high and satisfies

the proposed diversity condition. Figure 5.7 shows an example of CD strategy. Matching is

performed between last frame of previously selected camera C7 and all Cn, as a result frames

similar to C7 form thecluster-1 whiledissimilar frames form thecluster-2.

The validation is performed by conducting five experiments as detailed in Table 5.2. In the

first and the second experiments, we selected Event1-4 and Event5-8, respectively, that con-

tain UGVs of the same artist for the same concert, and tested three methods, namely ViComp,

ViCompCD and ViRand. This selection is done in order to avoid a subject’s bias towards a par-

ticular artist. The output mashup obtained using Firstfit [133] and MoViMash [122] were made

available by their authors for Event9-11 and Event12-13, respectively. In the third experiment,

weused Event9-11 and tested ViComp, ViCompCD and FirstFit [133]. In thefourth experiment,

we used Event12-13 and tested ViComp, ViCompCD and MoViMash [122]. Finally, in the fifth

experiment, we used Event14-16 for which the inertial sensor data is available, and tested Vi-

Comp, ViCompG and ViRand. The audio in Firstfit [133] is varying and discontinuous which

may negatively influence the subject’s decision while ranking [15]. In order to remove this bias,

weused thesameaudio track that weobtained from audio stitching for all methods.
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Figure 5.7: Clustering-based diversity example. C7 is the last frame of the previously selected
segment which is matched with all Cn. This process divides the cameras into similar (C1) and
dissimilar (C2) clusters.

Table 5.2: Details of the conducted subjective experiments and their evaluation. Median age of
subjectsin all theexperimentscameout to beapprox. 30 years. Key: Exp. - Experiment number;
M - Malesubjects; F - Femalesubjects; X2 - Chi-squarestatistic.

Exp. Events Methods under test Gender

ViComp ViCompG ViCompCD ViRand Firstfit MoViMash M F X2 p-value

(proposed) (proposed)

1 1-4 X X X 21 9 120:46 6:9e�27

2 5-8 X X X 18 9 113:56 2:2e�25

3 9-11 X X X 26 9 56:11 6:6e�13

4 12-13 X X X 26 9 51:54 6:4e�12

5 14-16 X X X 13 6 59:75 1:1e�13

5.6.2 Subjective test results

In total 146 subjects took part in the five experiments. The age of the subjects who took part in

the first and second experiments ranged from 19-50 years (median 29.5 years), for the third and

fourth experiments ranged from 23 to 53 years (median 30 years) and for the fifth experiment

ranged from 16 to 39 years (median 28 years). The recorded ranks for the experiments are

presented in Fig. 5.8 and Fig. 5.10(a).

TheFriedman Chi-squarestatistic (X2) and p-valuearecomputed for all fiveexperimentsand
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(a) (b)

(c) (d)

Figure 5.8: Subjective evaluation test: (a) Experiment 1: Ranks assigned by subjects for the
videos composed by ViComp (proposed), ViCompCD and ViRand for the Nickelback concert,
(b) Experiment 2: Ranks assigned by subjects for the videos composed by ViComp (proposed),
ViCompCD and ViRand for the Evanescence concert, (c) Experiment 3: Ranks assigned by
subjects for the videos composed by ViComp (proposed), ViCompCD and Firstfit [133] for the
Events from Firstfit, (d) Experiment 4: Ranks assigned by subjects for the videos composed by
ViComp (proposed), ViCompCD and MoViMash [122] for the Events from MoViMash.

are detailed in Table 5.2. All results are statistically significant as the p-values are close to zero,

hence wecan reject thenull hypothesis (See. 5.4). These sufficiently small p-valuessuggest that

there isat least onecolumn median in each experiment that is significantly different from others.

Generally, if thep-value is less than 0.05 or 0.01, it casts doubt on the null hypothesis.

In order to determine which pairs of column effects are significantly different, we perform

multiplecomparison tests[61] for thefiveexperiments. For thefirst two experiments(Fig. 5.9(a)-

(b)), the proposed ViComp and ViCompCD appeared to be significantly different from the Vi-

Rand. For the third experiment (Fig. 5.9(c)), the mean column rank of the ViComp was signifi-

cantly different from theFirstfit [133]. Sincetheeventsused in thisexperiment areof poor visual

quality and with limited number of UGVs, thesubjects found difficulty to judgetheoverall qual-

ity (Sec. 5.6.3). For the fourth experiment (Fig. 5.9(d)), the proposed ViComp and ViCompCD

performed better than MoViMash [122]. For thefifth experiment (Fig. 5.10(b)), themean column
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Figure 5.9: The corresponding multiple comparison of mean column ranks for subjective test
shown in Fig. 5.8: Comparison is shown for the (a) Experiment 1 (Event1-4), (b) Experiment 2
(Event5-8), (c) Experiment 3 (Event9-11), and (d) Experiment 4 (Event12-13).

(a) (b)

Figure5.10: Subjectiveevaluation results areshown for thefifth experiment. (a) Ranks assigned
by subjects for the videos composed by ViComp (proposed), ViCompG (proposed) and ViRand
for theCaramel events (Event14-16). (b) Multiple comparison test.

ranks of ViCompG and ViComp were significantly different from theViRand one.

5.6.3 Discussion and compar isons

Thesubjectiveevaluation showsthat thequality of ViComp iscomparabletoViCompCD in some

eventsbut overall ViComp outperformed all theother methods(Fig. 5.8 and Fig. 5.9). Moreover,

the quality of ViComp and ViCompG in all three tested events is comparable.

The ranks for ViComp and ViCompCD were comparable in the first experiment, while Vi-
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Rand was ranked low (Fig. 5.8(a)). Only for Event4, ViRand received a sufficiently high rank

but not higher than ViComp and ViCompCD. This is because Event4 contained 5 UGVs, all of

them having comparable visual quality, which made difficult for asubject to takea decision.

For the second experiment (Fig. 5.8(b)), ViComp and ViCompCD outperformed ViRand for

Event5, 6 and 8. An interesting case is theoneof Event7, in which thesubjectsseemed confused

about thequality of thevideos and found difficult to takea decision. This isbecauseall 6 UGVs

in this event were either from far field of view (with less shake) or near field of view (with high

shake). The composed videos were not interesting as far fields of view give less information

about theevent and near fields of view seemed unpleasant becauseof high camera-shake.

For the third experiment (Fig. 5.8(c)), ViComp outperformed the other two methods. All

three events used in this experiment contained 4-5 overlapping UGVs, having low resolution

(320�240 pixels). Subject’sagreement wasnot achieved for Event11 becauseof thepoor visual-

quality (jerky and shake,compression artifacts) of all 4 UGVs contained in this event.

For thefourth experiment (seeFig. 5.8(d)), thetwo eventsunder analysiscontained 12 UGVs

of comparable quality that were recorded from near field, which resulted in comparable ranks

for both ViComp and ViCompCD. MoViMash was ranked low because UGVs containing high

brightness (and poor visual quality) wereselected asaconsequenceof learning thefield-of-view

distributions. Also, sometimesthelength of aselected visual segment in MoViMash wasassmall

as 1s. This is because at every second, MoViMash checked for occlusions and shake against a

threshold to trigger camera switching, which created an unpleasant effect.

For thefifth experiment (Fig. 5.10), ViComp and ViCompG both gavecomparableresults for

all threeeventsunder consideration. ViCompsuppressed thelow quality segmentsby considering

spatial and spatio-temporal scores, whileViCompG solely consideredspatio-temporal scorefrom

the gyro-based assessment. The composed videos from both ViComp and ViCompG mainly

contained stablesegments. Thesubjects, therefore found difficulty in assigning 1st and 2nd ranks

to these composed videos. ViCompG can be a preferred choice when the inertial sensor data is

availabledue to the less amount of data that requiresprocessing.

In some cases ViComp outperformed ViCompCD and vice versa (e.g. Event1 and Event2

in Fig. 5.8(a)) because of the CD condition. Since dissimilar and similar clusters were formed

in the CD condition, visual segments which received lower total rank (based on quality) got

selected if they belonged to the dissimilar cluster. Without the CD condition, visual segments
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with better quality wereselected whileconsidering theview diversity. As these two methods are

sometimes comparable, a better choice would be to select ViComp as it is computationally less

expensive. In general, ViComp outperformed ViCompCD. Furthermore, it wasobserved that CD

and SSIM-based diversity (MoViMash [122]) lowered theoverall quality of thegenerated videos.

5.7 Summary

In this chapter, we proposed ViComp, a framework for the automatic multi-camera composition

from user-generated videos (UGVs) of the same event. The framework combined audio-visual

quality and view diversity to generate a coherent recording of the completeevent to enhance the

viewing experience. Our method is similar to Firstfit [133] and MoViMash [122] as we also

perform visual quality and cameramotion analysis for video composition; but differ significantly

as we further proposed an audio stitching, automatic cut-point detection and rank-based camera

selection methods. Audio stitching is used to avoid audio variation that occurs when switching

camera views. As opposed to manual cut-point selection [133, 122], we proposed an automatic

cut-point selection method for UGV segmentation. We used a single holistic spatial quality

measure (BRISQUE [108]) instead of multiplication-based combination of individual quality

measures [133, 122]. Multiplication-based combination might suppress the effect of one indi-

vidual score over the other. We designed a rank-based camera selection strategy to combine the

effect of the spatial and spatio-temporal quality scores along with the view diversity condition.

Furthermore, we contributed ViCompG, avariant of ViComp, that solely considered gyro-based

cameramotion assessment for ranking low quality visual segments. Our frameworkswere tested

on a dataset of 16 events (105 UGVs). In order to analyse the user satisfaction, we designed a

subjective test by considering the ITU-R recommendations. The subjective evaluation showed

better or comparable results of ViComp with ViCompCD, and ViComp outperformed ViRand,

FirstFit [133] and MoViMash [122]. ViCompG was also found to becomparablewith ViComp.

We also presented the results for camera motion detection using gyroscope. The method

aligned themulti-modal dataand used the tri-axial gyroscopedatacaptured simultaneously with

the video to detect pan, tilt and shake motions. Our proposed method outperformed existing

inertial sensor-based and visual methods by giving the collective F1-score of 89% for pan, tilt

and shake detection. The method showed potential towards designing real-time applications for

cameramotion analysis and video composition.



Chapter 6

Conclusions

6.1 Summary of achievements

This thesis focused on designing an end-to-end framework for the automatic identification of

multi-cameraUGVs of thesameevent from adatabase, synchronisation of the identified UGVs,

camera motion detection and composition of a continuous video. We exploited multi-modal

(audio, visual and gyroscope) data for the development of the proposed framework. Detailed

below arethespecific achievements of this thesis.

Existing audio-based event clustering methods only organised UGVs recorded at the same

concert or public address [32, 76], and used a fixed classification threshold to identify matched

recording pairs [20]. The performance of the existing audio-based synchronisation methods de-

creases in thepresenceof audio degradations (reverberations, ambient noise) [132, 76, 131]. We

proposed an automatic identification and synchronisation framework for unedited multi-camera

UGVs that considered query-by-example video event search [J1]. We contributed a novel de-

scriptor derived from the pairwise matching of audio features of UGVs. The designed descrip-

tor gave a discriminant representation that facilitated the definition of a classification threshold

for automatic query-by-example event identification. Audio chroma feature was used to cluster

UGVs of the same event and to estimate their relative time-shifts. Coarser frame size for audio

feature extraction facilitated the efficient query-by-example video event identification while re-

fining it for the identified videos gave precise time-shift estimation. We contributed a database

of 263 multi-cameraUGVsof 48 real-world eventsand used it for theevaluation of theproposed
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framework. The classification threshold was trained using a relatively smaller dataset (7 events,

42 UGVs) that contained amplified and non-amplified sound sources, and audio degradations.

Testing for the event identification was performed on an unseen event database (41 events, 221

UGVs) and additional 60 UGVs used as aquery. Thehigh valueof the areaunder theprecision-

recall curve (0.97 and 0.96) for both test cases suggested the effectiveness of our framework.

The proposed synchronisation method outperformed the existing methods [132, 132, 23] giving

an overall accuracy of 99.62%. While designing the framework, we assumed that the time dif-

ference of arrival of a sound to the recording device is negligible. When matching recording

pairs, we computed the minimum across each row of the distance matrix for the estimation of

time-shifts. This resulted in dominant outliers when onerecording isshorter than the other.

The synchronised UGVs are useful for developing event understanding and video compo-

sition applications [122, 133, J2, 35]. Camera motion analysis is an important component of

video composition applicationsasunintentional motion like fast pan, fast tilt and shakeinfluence

the perceived visual quality. Generally, visual content-based methods [6, 7, 99, 141] for cam-

era motion detection are computationally expensive and get influenced by moving objects and

brightnesschanges. Theperformanceof theexisting inertial sensor-based method [35] is limited

due to noisy compass and accelerometer data. A gyroscope is more accurate than compass and

accelerometer for the rotation estimation. Therefore, we developed a gyro-based camera motion

detection method for UGVs captured from smartphones [C1]. Pan and tilt were detected by ex-

tracting thedominant motionsfromthegyroscope, whereasshakewasdetected by analysing high

frequencies in the gyroscope data. For the experimental evaluation, we collected multi-modal

data (24 single camera UGVs, 70 mins duration) at several real-world scenarios that contained

varying brightness (day and night-time recordings). The proposed method outperformed the ex-

isting visual [141, 21] and inertial sensor-based [35] methods giving the accuracy of 0:94; 0:84

and 0:85 for pan, tilt and shake detection, respectively.

Audio quality influences the perceived quality of the composed video [15]. The existing

methods for video composition [133, 122] from multi-camera UGVs did not consider audio

content analysis, and performed manual video segmentation [133] and manual classification of

camera views [122]. We proposed an automatic audio-visual camera selection framework for

composing a continuous multi-view video from multiple UGVs of the same event [J2]. We

developed a stitching method to solve the audio variation issue, which occurs when switching
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between cameraviews, followed by an automatic audio-based cut-point selection method to seg-

ment thevideos. Theproposed framework combined timecontinuousvideo segments from mul-

tipleUGVsusing arank-based cameraselection strategy by considering audio-visual quality and

view diversity. We also designed a gyro-based assessment score for ranking the quality of video

segmentsand used this score to contribute a gyro-based video composition framework. In order

to analyse the user satisfaction, we designed a subjective test by considering the ITU-R recom-

mendations [70]. Weevaluated theproposed frameworks through subjective tests on adataset of

16 real-world events (105 UGVs) and compared them with state-of-the-art methods [133, 122].

The proposed frameworks performed better than the existing methods [133, 122] due to the de-

signed suitable cut-point selection, specific visual quality assessments and rank-based camera

selection methods. The proposed gyro-based video composition framework could be preferred

when the gyroscope data is available as this significantly reduced the computational complexity

and simplified the problem. The proposed frameworks do not consider event understanding and

ROI localisation, which may further improve theperceived quality of thecomposed videos.

6.2 Future work

Below arediscussed the futuredirections of this thesis work:

1. The proposed identification and synchronisation framework [J1] automatically clustered

the database UGVs into events provided at least two recordings existed for an event. The

proposed framework generated fixed number of event clusters that cannot be updated later

on. Considering the increasing availability of UGVs, onlineupdateand dynamic growth of

the database would be an important aspect to analyse. Therefore, future work could focus

on generating a new cluster for a query video for which a matching UGV does not exist in

thedatabase.

2. In the proposed identification and synchronisation framework, we computed the minimum

across each row of the distance matrix for time-shift estimation. This resulted in dominant

outliers when the duration of one recording was short (less than 30s with 10% overlap)

than theother. Therefore, thefuturework could involvedecomposing theaudio signals into

blocks and performing block-wisematching of the recording pairs to suppress the effect of

outliers and to obtain the time-shift.

3. We utilised empirically selected thresholds for pan, tilt and shake classification in the pro-
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posed camera motion detection method [C1]. Future work could focus on designing a

probabilistic model for learning the classification boundaries.

4. We substituted the visual data with the gyroscope data in the proposed camera motion

detection method [C1] and achieved better performance with reduced computational com-

plexity. Since, the use of gyroscope data significantly reduces the amount of data to be

processed, future work could involve the designing of a real-time application for camera

motion analysis on smart devices.

5. The proposed audio and visual-based framework for video composition (ViComp) [J2]

made use of global visual feature analysis. Generally, the UGVs contain visual degra-

dations that limit their analysis using local features. Provided the visual data is recorded

from high-resolution multiple devices and in a sufficiently textured environment with high

brightness, future work could focus on 3D reconstruction of the scene [9]. This could pro-

videsemantic details of thescenario for an in-depth sceneanalysis.



Appendix A

Collection of user-generated video datasets

Multi-camera UGVs dataset of multiple events is required for the validation of our proposed

frameworks. Therefore, wecollected timeoverlappingUGVsof multipleeventsfromYouTube[4]

and by ourselves. This dataset is used for the validation of our proposed identification, synchro-

nisation and video composition frameworks(Sec. 4.6 and Sec. 5.6). A multi-modal (audio, video

and inertial sensors) dataset of different events, captured from single or multiple cameras, is

also collected by ourselves for the validation of our proposed gyro-based methods (Sec. 5.5 and

Sec. 5.6). Mentioned below are the detailsof the collected datasets.

A.1 Dataset for identification and synchronisation

Wecollected 263 multi-cameraUGVsof 43 different concert eventsand 5 different self-captured

events (Tab. A.2). Theconcert recordingsarecollected from YouTube[4], while theother events

are captured by ourselves. In total we collected multi-camera UGVs for 48 events, with a total

duration of 1200 minutes (mins). The concerts include 20 events from a Nickelback concert, 10

events from an Evansenceconcert, 9 events from AliceCooper concert, an event from Madonna,

Coldplay and Bruce Springsteen concerts, and an event from Les Miserables musical perfor-

mance (detailed in Tab. A.1). The ROI in the concert events was mainly the singer and the

musicianson the stage. Sometimes theusersperformed pan and tilt motion to capture thecheer-

ing audience, off-stage performer or sky. Some users seemed to perform activities like dancing

whilerecording that introduced motion blur and degraded thevisual quality. Moreover, recording

duration, lighting conditions, fieldsof view and distancefrom theROI varied from onerecording
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TableA.1: Description of collected datasets’ event. Key: k: number of events

Event title k Location Date Collection source

Nickelback concert 20 O2 Arena, London 01/10/2012 Youtube

Evansence concert 10 Wembley Arena, London 09/11/2012 Youtube

Alice Cooper concert 9 Wembley Arena, London 28/10/2012 Youtube

Madonna concert 1 MDNA tour, Abu Dhabi 03/06/2012 Youtube

Coldplay concert 1 Emirates Stadium, London 01/06/2012 Youtube

Les Miserables musical 1 O2 arena, London 03/10/2012 Youtube

BruceSpringsteen concert 1 Wrecking ball tour, Barcelona 17/05/2012 Youtube

Changeof guard 1 Buckingham Palace, London 01/07/2012 self

Olympic torch relay 1 Sheffield 06/07/2012 self

Olympic torch relay 1 Mile end, London 23/07/2012 self

Xmasdinner 1 London 06/12/2011 self

NYE fireworks 1 Embankment, London 31/12/2012 self+Youtube

to another. These scenarios contained amplified sound source, but the recorded audio signals

were degraded due to channel noise, background music, reverberations and crowd cheering.

The self-captured events that we recorded ourselves include the Changing of the Guard, the

Olympic torch relay, theNew Year fireworksand adinner (detailed in Tab. A.1). Theseevents in-

troduced additional challengesfor audio synchronisation asthey contained considerableambient

noise, moving cameras widely separated from each other and moving audio sources with non-

amplified sound. The ROI in Changing of the Guard and Olympic torch relay was moving, and

the cameras were well separated apart. The field of view of some cameras were not overlapping

with the other. The scenario contained high local ambient noise due to crowded environment

The audio and visual quality varied significantly because to the recording device specifications

and varying distance from the ROI. The audio signal for one of the recording in Olympic torch

event wasnot captured properly due to malfunctioning of the device. Thedinner event also con-

tained high ambient noise. The NYE fireworks contained low illumination recordings, ambient

noise and varying distance from thesound source and non-overlapping fields of view. Table A.2

summarises the main characteristics of our datasets along with their challenges. Key frames for

each collected UGV are displayed in Sec. A.4 for the visualisation of their visual quality, fields

of view and distance from theROI.
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Table A.2: Summary of the main characteristics of the dataset along with its challenges. (Key:
N: number of UGVs; sv: video frame rate; sa: audio sampling rate; -: indicates that only some
of the UGVs contain that property: MC: Moving cameras; VD: varying distance; CN: channel
noise; AN: ambient noise; NAS: non-amplified sound recordings).

No. Event title General characteristics Challenges

N sv (fps) sa (KHz)
Duration

(min:s)
MC VD CN AN NAS

1 Nickelback Event1 7 16� 30 44:1 4:01 - 5:20 X X - -

2 Nickelback Event2 9 16� 30 44:1 4:00 - 4:42 X X - -

3 Nickelback Event3 6 24� 30 44:1 0:18 - 4:29 X X - -

4 Nickelback Event4 7 16� 30 44:1 2:26 - 4:47 X X - -

5 Nickelback Event5 5 25� 30 44:1 3:20 - 4:56 X X - -

6 Nickelback Event6 4 25� 30 44:1 3:43 - 4:16 X X - -

7 Nickelback Event7 6 17� 30 44:1 2:01 - 5:25 X X - -

8 Nickelback Event8 5 24� 30 44:1 1:39 - 4:06 X X - -

9 Nickelback Event9 4 24� 30 44:1 2:59 - 8:16 X X - -

10 Nickelback Event10 4 24� 25 44:1 3:37 - 5:22 X X - -

11 Nickelback Event11 3 25� 30 44:1 1:41 - 3:35 X X - -

12 Nickelback Event12 3 24� 25 44:1 2:51 - 4:42 X X - -

13 Nickelback Event13 3 25 44:1 3:35 - 4:16 X X - -

14 Nickelback Event14 3 25� 30 44:1 3:29 - 4:45 X X - -

15 Nickelback Event15 3 25� 30 44:1 4:12 - 4:42 X X - -

16 Nickelback Event16 3 25� 30 44:1 2:58 - 3:55 X X - -

17 Nickelback Event17 3 30 44:1 3:23 - 3:52 X X - -

18 Nickelback Event18 2 24� 30 44:1 3:09 - 8:46 X X - -

19 Nickelback Event19 2 25 44:1 3:48 - 4:18 X X - -

20 Nickelback Event20 2 25� 30 44:1 4:22 - 5:04 X X - -

21 Evanescence Event1 16 25� 30 44:1 0:45 - 5:56 X X - -

22 Evanescence Event2 7 25� 30 44:1 0:59 - 3:57 X X - -

23 Evanescence Event3 10 25� 30 44:1 2:00 - 4:47 X X - -

24 Evanescence Event4 9 24� 30 44:1 0:20 - 4:03 X X - -

25 Evanescence Event5 6 25� 30 44:1 2:57 - 4:08 X X - -

26 Evanescence Event6 9 30 44:1 0:55 - 4:54 X X - -

27 Evanescence Event7 8 24� 30 44:1 2:02 - 4:04 X X - -

28 Evanescence Event8 9 24� 30 44:1 1:08 - 5:08 X X - -

Continued on next page
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TableA.2 – continued from previouspage

No. Event title General characteristics Challenges

N sv (fps) sa (KHz)
Duration

(min:s)
MC VD CN AN NAS

29 Evanescence Event9 4 24� 30 44:1 2:27 - 4:21 X X - -

30 Evanescence Event10 6 24� 25 44:1 1:37 - 3:32 X X - -

31 AliceCooper Event1 8 30 44:1 3:12 - 5:00 X X - -

32 AliceCooper Event2 11 24� 30 44:1 3:07 - 6:03 X X - -

33 AliceCooper Event3 2 29� 30 44:1 2:38 - 2:57 X X - -

34 AliceCooper Event4 3 30 44:1 3:56 - 4:10 X X - -

35 AliceCooper Event5 3 25 44:1 3:36 - 4:28 X X - -

36 AliceCooper Event6 3 25� 30 44:1 3:36 - 6:41 X X - -

37 AliceCooper Event7 3 17� 30 44:1 3:15 - 4:0 X X - -

38 AliceCooper Event8 4 24� 30 44:1 1:24 - 3:04 X X - -

39 AliceCooper Event9 2 30 44:1 3:26 - 3:27 X X - -

40 Madonna Event 11 24� 30 44:1 0:28 - 5:37 X X - -

41 Coldplay Event 7 24� 30 44:1 4:16 - 7:50 X X - -

42 LesMesirable Event 7 24� 30 44:1 2:33 - 6:44 X X - -

43 Springsteen Event 6 24� 30 44:1 3:24 - 6:35 X X - -

44 ChangeofGuard 2 25� 30 32� 44:1 0:34-2:02 X X X X

45 OlympicTorchSheffield 2 30 44:1 0:39-1:28 X X X X

46 OlympicTorchMileEnd 7 16� 30 16� 48 5:54-7:01 X X X X X

47 XmasDinner 3 30 16 2:35-3:19 X X X X

48 FireworksLondon 11 25� 30 16� 44:1 0:29-14:16 X X X X

Wealso collected 60 additional UGVs to beused as thequery Cq, which arenot overlapping

with any of the48 eventsbut belonged to similar events such as thesameconcert of Nickelback,

Evanescence, and Alice Cooper, the Changing of the Guard in different parts of the world and

the Olympic torch relay in different places in theUK.

Theground-truth for video identification and synchronisation wasgenerated for all theUGVs

by manually observingoneor moreaudio, visual or audio-visual instancesin them for each event.

Two observers logged the local time of the instance that appeared in some or all UGVs of an

event. This information was then used for aligning the UGVs within each event on a common
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Figure A.1: Distribution of UGVs duration (mins) in thecollected dataset.

timeline. When observing and matching two UGVs, an systematic error of �1 video frame

(�0:04s) becauseof annotation can occur. This error can increase if careful observationsarenot

taken.

The collected UGVs are of varying duration, the distribution of which is shown in Fig. A.1.

The video lengths are mainly clustered between 3-6 mins primarily because most of the video

recordings are from concerts, and the usual length of a song played is around 4 mins, which is

the event of interest for most of theaudience. Therearealso some videos of short length (below

2 mins), which reflects the fact that user interest varies from person to person and onemight just

want to record a particular instance within an event. There are few videos of length greater than

8 mins mainly because it might be tiring for the user to hold a hand-held camera for a longer

duration and usually an event of interest is of ashort duration.

A.2 Multi-modal dataset for camera motion detection

For analysing cameramotion using gyroscopedata, wecaptured multi-modal data(audio, video,

inertial sensors) at several real-world scenarios using Sensor Data Logger App [1]. Different

smartphones (Samsung Galaxy SII and SIII, LG Nexus 5) with embedded inertial sensors were

used for capturing the data. 24 multi-modal UGVs were captured at events such as concerts,

parade, festivals and fireworks that took place in Vilanova, Spain in 2014 (listed in Table A.3).

The data was captured in different High Brightness (HB) and Low Brightness (LB) scenarios

(e.g. day and night-time) for a total duration of 70 mins. The video frame rate and frame size

varied depending on the brightness of the recorded scene due to the programmed settings of the
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Figure A.2: Multi-modal data visualizer. The inertial sensor and video data are loaded in the
visualiser. An offset is entered to add delay in the inertial sensor data. The video frames are
incremented or decremented and accordingly the pointer in the inertial sensor data is displaced
to correspond to the sametimeas that of thecurrent video frame.

App. The collected dataset contains single camera recordings at distinct timings and locations,

changing lightsand varying cameramotions. Therepresentative framesfor each event areshown

in Fig. A.3 from which the variation in brightness can beobserved.

In order to visualise thecaptured multi-modal data, wedeveloped aGraphical User Interface

(GUI) using matlab. The GUI was designed to show the captured video and inertial sensor data

coherently (seeFig. A.2). An offset variablewasintroduced which shifted theinertial sensor data

that facilitated in the annotation of the ground-truth delay for synchronisation. This delay was

obtained by observing a pan/tilt/shake motion both in visual and gyroscope data. Each captured

video wasmanually annotated to obtain labels for pan, tilt and shake at every second.



Appendix A: Collection of user-generated video datasets 116

Table A.3: Multi-modal data collected at fr = 50 Hz. Key: No: number of non-overlapping
multi-modal recordings; sv: video frame rate; VFS: video frame size; TD: total duration; HB:
high brightness; LB: low brightness.

Event title No sv VFS TD(min:s) Time Device

HumanTower1 3 30 (720,480) 06:45 Day (HB) Samsung SII

VilanovaRambla 1 30 (720,480) 01:24 Day (HB) Samsung SII

MiniTrain 3 30 (720,480) 02:25 Day (HB) Samsung SII

Falcons 1 30 (720,480) 01:45 Day (HB) Nexus 5

MagicFountain 1 30 (720,480) 00:35 Day (HB) Nexus 5

HumanTower2 3 30 (720,480) 08:33 Day (HB) Nexus 5

Caramel 1 30 (720,480) 08:03 Day (HB) Samsung SIII

SantJordi 1 12 (854,480) 01:17 Night (LB) Nexus 5

Correfoc 3 27 (854,480) 06:27 Night (LB) Nexus 5

Orchestra 3 23 (854,480) 11:17 Night (LB) Nexus 5

Fireworks 1 12 (854,480) 13:43 Night (LB) Nexus 5

Concert 2 13 (854,480) 06:44 Night (LB) Nexus 5

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure A.3: Respresentative frames for High Brightness (HB) and Low Brightness (LB) multi-
modal recordings. HB recordingsinclude(a) HumanTower1, (b) VilanovaRambla, (c) MiniTrain,
(d) Falcons, (e) MagicFountain, (f) HumanTower2, (g) Caramel. LB recordings include (h) San-
tJordi, (i) Correfoc, (j) Orchestra, (k) Fireworks, (l) Concert.
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TableA.4: Detailsof thedataset used for testing. All recordingshaveaudio sampled at 44.1 kHz.
Key: k: event number; N: number of UGVs; sv: video frame rate; Dc: coverage duration; Do:
overlap duration; VFS: video framesize; ISD: inertial sensor data.

k Event title N sv Duration Dc Do VFS ISD

min-max (fps) min-max (min:s) (min:s) (min:s) (pixels)

1 Nickelback Event1 7 16-30 04:01 - 05:20 05:23 04:05 (640, 360)

2 Nickelback Event2 9 16-30 04:00 - 04:42 04:44 03:56 (480, 360), (640, 360)

3 Nickelback Event3 7 16-30 02:26 - 04:46 04:46 03:14 (640, 360)

4 Nickelback Event4 5 24-30 03:20 - 04:56 04:56 03:20 (640, 360)

5 Evanescence Event1 6 25-30 03:17 - 03:57 03:57 03:09 (640, 360), (568, 360)

6 Evanescence Event2 6 29-30 03:02 - 04:03 04:05 02:42 (640, 360), (480, 360)

7 Evanescence Event3 6 25-30 02:57 - 04:08 04:08 02:57 (480, 360), (640, 360)

8 Evanescence Event4 7 24-30 03:35 - 04:04 04:02 03:58 (640, 360), (480, 360)

9 Concert Event1 [133] 5 25 04:24 - 04:45 04:44 04:17 (320, 240)

10 Concert Event2 [133] 5 25-30 05:01 - 06:58 07:01 04:32 (320, 240)

11 Concert Event3 [133] 4 15-30 02:24 - 05:17 05:15 02:47 (320, 240)

12 Dance Event1 [122] 12 30 04:01 - 04:57 05:00 04:05 (720, 480)

13 Dance Event2 [122] 12 30 03:45 - 04:13 04:13 03:49 (720, 480)

14 Caramel Event1 4 30 06:49 - 09:35 11:44 04:53 (720, 480) X

15 Caramel Event2 4 30 08:01 - 10:05 11:31 06:43 (720, 480) X

16 Caramel Event3 4 30 03:08 - 10:00 14:31 07:43 (720, 480) X

A.3 Dataset for video composition

For thesubjectiveevaluation of theproposed video composition frameworks, weused thedataset

detailed in Table A.4. Weused 8 concert events from our previously collected dataset, 3 concert

events from [133], 2 danceevents from [122] and 3 carnival events that wecollected ourselves.

Each event was captured by 4 to 12 hand-held cameras which were overlapping in time.

Event1-4 comprise multiple recordings of four different songs from a Nickelback concert, and

Event5-8 comprise themultiple recordings of four different songs from an Evanescenceconcert,

that we collected from YouTube (details of Event1-8 are presented in Sec. A.1). Event9-11 are

thesamerecordings asused by theFirstFit [133] that arepop and rock concerts, and Event12-13

are the same recordings as used in MoViMash [122] that are dance sequences at a local show.

The recordings were captured in dynamic environments, and contained varying field of views,

changing lightsand moving cameras, that directly influenced thevisual quality of each recording.

Werecorded Event 14-16by ourselves, such that inertial sensor datawasalso captured. Event

14-16 are three different carnival performances that took place during the 2015 caramel festival
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in Vilanova, Spain. Four volunteerswho helped in capturing theeventswereinstructed to record

from any location of their interest in the vicinity of the performances. All recordings contained

high brightness as these events took place on a clear day in an outdoor square. Four android

devices (Samsung Galaxy SII, SIII and S5 mini and LG Nexus 5) were used to capture these

events. The scenario comprises two stages, one with a dance team, other with the singing band.

Theobject of interest varied depending on thefield of view of each volunteer.

A.4 Key-frames of multi-camera user-generated videos

Wecollected multi-cameraUGVsof 48 eventsasdetailed in Sec. A.1. Therepresentative frames

for all UGVs listed in Table A.2 are shown below for visualisation. For each event, thesynchro-

nised frames are shown from which the variation in visual quality, frame size, field of view and

distance from theROI can beobserved.

Table A.5: Key-frames of multi-cameraUGVs as listed in TableA.2.

1. Nickelback Event1

2. Nickelback Event2

3. Nickelback Event3

Continued on next page
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Table A.5 – continued from previous page

4. Nickelback Event4

5. Nickelback Event5

6. Nickelback Event6

7. Nickelback Event7

8. Nickelback Event8

9. Nickelback Event9

10. Nickelback Event10

Continued on next page
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Table A.5 – continued from previous page

11. Nickelback Event11

12. Nickelback Event12

13. Nickelback Event13

14. Nickelback Event14

15. Nickelback Event15

16. Nickelback Event16

17. Nickelback Event17

18. Nickelback Event18

19. Nickelback Event19

Continued on next page
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Table A.5 – continued from previous page

20. Nickelback Event20

21. Evanescence Event1

22. Evanescence Event2

23. Evanescence Event3

24. Evanescence Event4

Continued on next page
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Table A.5 – continued from previous page

25. Evanescence Event5

26. Evanescence Event6

27. Evanescence Event7

28. Evanescence Event8

29. Evanescence Event9

30. Evanescence Event10

Continued on next page
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Table A.5 – continued from previous page

31. AliceCooper Event1

32. AliceCooper Event2

33. AliceCooper Event3

34. AliceCooper Event4

35. AliceCooper Event5

36. AliceCooper Event6

37. AliceCooper Event7

Continued on next page
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Table A.5 – continued from previous page

38. AliceCooper Event8

39. AliceCooper Event9

40. Madonna Event

41. Coldplay Event

42. LesMesirable Event

Continued on next page
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Table A.5 – continued from previous page

43. Springsteen Event

44. Changeof Guard

45. Olympic torch Sheffield

46. Olympic torch Mile End

47. XmasDinner

Continued on next page



Appendix A: Collection of user-generated video datasets 126

Table A.5 – continued from previous page

48. Fireworks London

A.5 Summary

This appendix presented the details of the datasets that we collected and used for the validation

of our proposed frameworks. Wecollected adataset of 263 multi-cameraUGVsof 48 real-world

events that we used for analysing our proposed identification and synchronisation framework.

The proposed ViComp framework was validated on 8 events that were selected from the above

mentioned dataset and 5 events that were the same as used by [122, 133]. Moreover, we col-

lected a dataset of 24 multi-modal UGVs and 3 events (12 multi-modal UGVs) that we used for

validating the proposed CMDG method and ViCompG framework, respectively.
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