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Abstract

Galaxy surveys are an important tool for cosmology. The distribution of galax-
ies allow us to study the formation of structures and their evolution, which
are needed ingredients to study the evolution and content of the Universe.
However, according to the standard model of cosmology, the so-called ACDM
model, most of the matter is made of dark matter, which gravitates but does not
interact with light. Hence, the galaxies that we observe from our telescopes
only represent a small fraction of the total mass of the Universe. Because of
this, we need to understand the connection between galaxies and dark matter in

order to infer the total mass distribution of the Universe from galaxy surveys.

Simulations are an important tool to predict the structure formation and evo-
lution of dark matter and galaxy formation. In simulations dark matter is also
usually characterized by dark matter haloes, which correspond to gravitation-
ally collapsed overdensities of dark matter. Simulations allow us to study the
impact of different cosmologies and galaxy formation models on the final large
scale structures that galaxies and matter form. Simulations are also useful to

calibrate our tools before applying them to real surveys.

At large scales, galaxies trace the matter distribution. In particular, the galaxy
density fluctuations at large scales are proportional to the underlying matter
fluctuations by a factor that is called galaxy bias. This factor allows us to
infer the total matter distribution from the distribution of galaxies, and hence
knowledge of galaxy bias has a very important impact on our cosmological
studies. This PhD thesis is focused on the study of galaxy and halo bias at
large scales.

There are several techniques to study galaxy bias, in this thesis we focus on
two of them. The first technique uses the fact that galaxy bias can be mod-
elled from a galaxy formation model. One of the most common models is the
Halo Occupation Distribution (HOD) model, that assumes that galaxies popu-
late dark matter haloes depending only on the halo mass. With this hypothesis,

and assuming a halo bias model, we can relate galaxy clustering with matter



clustering and halo occupation. However, this hypothesis is not always accu-
rate enough. We use the Millennium Simulation to study galaxy and halo bias,
the halo mass dependence of halo bias, and its effects on galaxy bias predic-
tion. We find that he occupation of galaxies in haloes does not only depend on
mass, and assuming so causes an error in the galaxy bias predictions. We also
study the environmental dependence of halo bias, and we show that environ-
ment constrains much more bias than mass. When a galaxy sample is selected
by properties that are correlated with environment, the assumption that halo
bias only depends on mass fails. We show that in these cases using the envi-
ronmental dependence of halo bias produces a much better prediction of galaxy
bias. We finally suggest to use information of environment and not only halo

mass to constrain bias in galaxy surveys.

Another technique to study galaxy bias is by using weak gravitational lensing
to directly measure mass in observations. Weak gravitational lensing is the
field that studies the weak image distortions of galaxies due to the light de-
flections produced by the presence of a foreground mass distribution. Theses
distortions can then be used to infer the total mass (baryonic and dark) distribu-
tion at large scales. We develop and study a new method to measure galaxy bias
from the combination of weak lensing and galaxy density fields. The method
consists on reconstructing the weak lensing maps from the distribution of the
foreground galaxies. Bias is then measured from the correlations between the
reconstructed and real weak lensing fields. We test the different systematics of
the method and the regimes where this method is consistent with other meth-
ods to measure linear bias. We find that we can measure galaxy bias using this
technique. This method is a good complement to other methods to measure
bias because it uses different assumptions. Together the different techniques

will allow to constrain better bias and cosmology in future galaxy surveys.



Resum

Els cartografiats galactics s6n una eina important per la cosmologia. La dis-
tribuci6 de galaxies permet estudiar la formacio d’estructures i la seva evolucio,
que son ingredients necessaris per a estudiar I’evolucié i el contingut de I’uni-
vers. No obstant aix0, segons el model estandard de cosmologia, 1’anomenat
model ACDM, la majoria de la materia esta en forma de materia fosca, que no
interacciona amb la llum. Per tant, les galaxies que observem des dels nostres
telescopis son una petita fraccié de la materia total de I'univers. Per aixo és
necessari entendre la connexio entre galaxies 1 materia fosca per tal d’inferir la

distribuci6 de tota la materia de I'univers a partir dels cartografiats galactics.

Les simulacions s6n una eina important per a predir la formaci6 i evolucié
de les estructures de materia fosca 1 per estudiar la formacié de galaxies. En
les simulacions la materia fosca sovint €s caracteritzada per halos, que corres-
ponen a sobredensitats de materia fosca col-lapsades gravitacionalment. Les
simulacions permeten estudiar I’impacte de diferents cosmologies i models de
formaci6 de galaxies en les estructures a gran escala finals que formen les
galaxies 1 la materia. Les simulacions també son ttils per calibrar les nostres

eines abans d’aplicar-les als cartografiats reals.

A gran escala, les galaxies tracen la distribuci6é de materia. En particular, les
fluctuacions de densitat de galaxies a gran escala s6n proporcionals a les fluc-
tuacions de materia per un factor anomenat bias galactic. Aquest factor permet
inferir la distribucié de materia total a partir de la distribucio de galaxies, 1 per
tant el coneixement del bias galactic té un impacte molt important en els nos-
tres estudis cosmologics. Aquesta tesi doctoral esta focalitzada en 1’estudi del

bias galactic i el bias d’halos a grans escales.

Hi ha diferents tecniques per a estudiar el bias galactic, en aquesta tesi ens fo-
calitzem en dues d’elles. La primera tecnica utilitza el fet que el bias galactic
pot ser modelat a partir d’un model de formacié de galaxies. Un dels mo-
dels més comuns és I’anomendat Halo Occupation Distribution (HOD), o dis-

tribucié d’ocupacié en halos, que assumeix que les galaxies poblen halos de



materia fosca només segons la massa dels halos. Amb aquesta hipotesi, i as-
sumint que el bias d’halos només depen de la massa, podem relacionar 1’agru-
pament de galaxies amb 1’agrupament de materia i I’ocupacié d’halos. No
obstant aix0, aquesta hipotesi no sempre és suficientment precisa. Fem us
de la simulaci6 Millennium per a estudiar el bias galactic i d’halos, la de-
pendencia en la massa del bias d’halos i els seus efectes en les prediccions del
bias galactic. Trobem que 1’ocupacié de galaxies en halos no depen només de
la seva massa, i assumir aixo causa un error en la prediccié del bias galactic.
També estudiem la dependencia del bias d’halos en 1’ambient, i mostrem que
I’ambient restringeix molt més el bias que la massa. Quan un conjunt de
galaxies €s seleccionat per propietats que estan correlacionades amb I’ambient,
I’assumpcié de que el bias d’halos només depen de la massa falla. Mostrem
que en aquests casos utilitzant la dependencia en 1’ambient del bias d’halos
produeix una prediccid del bias galactic molt més bona. Finalment, suggerim
utilitzar informaci6 sobre 1’ambient i no només la massa d’halos per restringir

el bias galactic en cartografiats galactics.

Una altra tecnica per estudiar el bias galactic €s utilitzant Weak gravitational
lensing (referent a les lents gravitacionals debils) per mesurar directament la
massa en observacions. Weak gravitational lensing és el camp que estudia
les distorsions lleus en les imatges de les galaxies degut a la deflexi6 de la
llum produida per la distribucié de materia del davant de la galaxia. Aques-
tes distorsions permeten inferir la distribucié a gran escala de la materia total
(barionica 1 fosca). Desenvolupem i estudiem un nou metode per mesurar el
bias galactic a partir de la combinaci6 dels mapes de weak lensing 1 el camp de
distribucié de galaxies. El metode consisteix en reconstruir el mapa de weak
lensing a partir de la distribuci6 de les galaxies de davant del mapa. El bias és
mesurat a partir de les correlacions entre el mapa de weak lensing reconstruit i
el real. Testegem diferents sistematics del metode 1 estudiem en quins regims
el metode és consistent amb altres metodes per mesurar el bias lineal. Trobem
que podem mesurar el bias galactic utilitzant aquesta tecnica. Aquest metode
€s un bon complement d’altres metodes per mesurar el bias galactic, perque
utilitza assumpcions diferents. Juntes, les diferents técniques per mesurar el
bias galactic permetran restringir millor el bias galactic i la cosmologia en els

futurs cartografiats galactics.
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Chapter 1

Introduction

1.1 ACDM Cosmology

Our Universe offers plenty of mysteries and unanswered questions. What is Universe made
of? How did the Universe begin? Which are the fundamental laws of physics? And why?
For many years people have been studying cosmology in order to answer all these questions
from the study of the Universe as a whole. Many discoveries have been done, such as the
fact that we live in the Milky Way, that the Universe is plenty of galaxies and the accelerated
expansion of the Universe.

Nowadays, the ACDM is the most accepted cosmological model, also known as the
Standard Model of cosmology. It is based on the Einstein’s theory of gravity and assumes
the presence of dark matter and dark energy. According to the model, the Universe was
originated from an explosion known as the Big Bang and a phase of exponential expansion
called inflation. Inflation generated the primordial conditions, and the ACDM model de-
scribes the evolution of the Universe from these primordial conditions measured from the
Cosmic Microwave Background (CMB) up to nowadays. This evolution depends on the
laws of physics and the content of the Universe, which we can constrain from observations.
The model is consistent with our observations, but requires the presence of the mysterious
dark matter and dark energy, which nature is unknown.

In the last decades we have experienced important advances in cosmology. We discov-
ered that the Universe is expanding and therefore is not stationary [107,/136]. The discovery
of the Cosmic Microwave Background (CMB) by Penzias and Wilson in 1964 and its con-
firmation by the Wilkinson Microwave Anisotropy Probe (WMAP) Satellite [16] allowed
us to study the geometry and matter content of the Cosmos, and its density fluctuations at
380,000 years after the Big Bang. This, together with our knowledge of General Relativity,

and the cosmological principle, that states that Universe is homogeneous and isotropic at



large scales, allow us to describe the dynamics of our Universe, since the evolution of the
Universe depends on its content and the laws of physics.
The ACDM model describes the evolution of the Universe throw the Friedmann equa-

tion, that in natural units is:

H*(a) = (é)zzﬁp(@—ﬁ- (1.1)

In this equation, the scale factor a describes the size of the Universe, and H corresponds
to the Hubble constant, that can be interpreted as the expansion rate of the Universe. By
definition, a = 1 today, so at some different time ¢ the size of the Universe is a(¢) times the
actual size. The constant G is the gravitational constant, p refers to the energy density of
the Universe, including all the components, and k is the curvature constant of the geometry
of the Universe. Observations seem to indicate that k ~ 0, meaning that Universe is flat
or almost flat [[16,/108,|131]. Then, equation (1.1)) shows that the rate of expansion of the
Universe depends on its energy density and the curvature. From the Friedmann equation
we can derive the cosmic acceleration:

i —4nG

a 3

p(a)(1+30) (1.2)

where o relates the pressure p with the energy density p as p = wp. We see that the
cosmic acceleration depends on the energy density and pressure. The recent discovery
of the present accelerated expansion of the Universe by the Nobel prizes Saul Perlmutter,
Adam Riess and Brian Schmidt [[169,/178]] implied the addition into the energy content of
the Universe of a cosmological constant A, also known as dark energy. If this dark energy
has negative pressure, with @ = —1, then it can cause an accelerated expansion. With this

new element, the cosmic energy content can be decomposed as:

pla)=pma > +pa*+pa (1.3)

where p,,,, pr and py are the energy density of matter (including dark and baryonic matter),
radiation and dark energy at the present. Note that the energy density of dark energy is
constant in time (or in the scale factor a), while matter and radiation densities are diluted
as the universe expands.

Sometimes these components are shown in terms of the critical density p, in the fol-



lowing way:

Q, = P (1.4)
b
Q = o (1.5)
Q = —H% (1.6)
Qp = 3’\75 (1.7)
where 2
Pe=g o (1.8)

and Hj is the Hubble expansion rate today. Using these terms, the Friedmann equation has

the form:
H*(a) = H}[Quma > +Q,a* + Qa2 + Q4] (1.9)

whose redshift dependence, obtianed from the definition of the scale factor:

1
a=—- 1.10
I+z (1.10)
has the following expression:
H?(z) = Hy [Qu(1+2)° + (1 +2)* + Qu(1 +2)* + Q4] (1.11)

In other words, the rate of expansion of the Universe at large scales depends on the amount
of matter (dark and baryonic), the amount of radiation, the value of the cosmological con-
stant A (the dark energy content), and the curvature. Then, the knowledge of these pa-
rameters (£, Q,, & and Q,) allows us to predict the evolution of the cosmic expansion.
Or, on the other way, if we can measure the evolution of the Universe, these cosmolog-
ical parameters can be constrained. But these parameters and cosmological models do
not only affect to the expansion of the Universe, they also have an imprint on other prop-
erties and statistics such as the formation of structures, galaxy formation and clustering,
the Cosmic Microwave Background anisotropies, the Barionic Accoustic Oscillations, or
the gravitational lensing effects, to mention some examples [[129]. Then, the study of all
these observables is also crucial to infer the fundamental cosmological parameters, test the
ACDM and constrain other possible cosmological models.

The actual observations indicate that our Universe is dominated by dark energy and dark
matter. In Figure we show a graphic of the fractions of dark matter, dark energy and
baryonic matter in the Universe according to the last measurements from Planck [171]. We



matter

69%  Dark Energy

Figure 1.1: A graphic of the energy fractions of dark matter, dark energy and baryonic
matter in the Universe according to Planck [[171].

see that dark energy represents almost the 70% of the energy content, dark matter represents
the 26% and baryonic matter, the matter of atoms, stars, planets etc., only represents the
5% of the total energy content. Note that the light of the galaxies that we observe in galaxy
surveys only comes from this 5% of the content, which is only a 16% of the total matter of
the Universe. Because of this, it is important to understand the relation between the light
(galaxies) distribution and the matter (including dark matter) distribution in order to study

our Universe from the observations of galaxies.

1.2 Large Scale Structure

1.2.1 Structure formation

According to the ACDM cosmology, at early times the Universe suffered an exponential
expansion that is known as cosmological inflation. This expansion produced small quantum
fluctuations in the matter density of the early Universe. After this, the Universe evolved and
expanded according to the Friedmann equation, so equation (I.I). Due to this evolution,
the small matter fluctuations started to form larger structures, producing the large scale
structures that we see in the present Universe.

The matter density fluctuations are usually defined as:
—_— (1.12)

where p is the matter density and p is the mean matter density of the Universe. When the

matter density perturbations are small, § < 1, these perturbations grow according to linear

4



theory [[165]:
D(t)
D(t)’

where D(t) represents the growth factor, that describes the growth of structures in the evo-

O(x,t) = 0(x,tp) (1.13)

lution of the Universe and depends on the scale and expansion rate of the Universe for a
ACDM cosmological model.

Large-scale structures in the Universe arise through the gravitational clustering of mat-
ter. In the ACDM paradigm of hierarchical structure formation, gravitational evolution
causes matter to cluster around peaks in the initial density field and collapse later into viri-
alized objects. According to the Spherical Collapse model (e.g. [[152,/167,/173]]), when a
perturbation exceeds the critical density 6. = 1.868, this overdensity collapses gravitation-
ally to form a dark matter halo. This structure formation is hierarchical, in the sense that
small structures form first and larger structures form later, either from a continuous mass
accretion or from the merging of smaller haloes. As baryons are also affected by the gravi-
tational potentials, they also fall and concentrate into the dark matter haloes. These systems
provide the potential well and the conditions for galaxy formation [228]]. It is therefore ex-
pected that the large-scale structures of galaxies are correlated with the ones of dark matter
and haloes.

One of the important keys for cosmology is to understand the relation between the
spatial distribution of galaxies and the underlying distribution of matter. Since galaxy for-
mation depends on non-gravitational processes and complex baryonic physics, it is inter-
esting to relate statistics of galaxies with the distribution of matter and haloes in order to

parametrize their relation.

1.2.2 two-point correlation functions

One common way to study the distribution and clustering of galaxies is by measuring the
two-point correlation function (2PCF), & (r), which describes the amplitude of galaxy clus-
tering as a function of scale. This quantity defines the excess of probability dP of finding a
galaxy in a volume dV separated a distance r from another galaxy with respect to a random
distribution:

dP=n(1+&(r))av, (1.14)

where 7 is the number density of galaxies [[167]]. There are several estimators of the 2PCF

of a galaxy sample. An early estimator commonly used is the one from [64]:



_ ng DD(r)
() = DR

where DD(r) and DR(r) are the number of pairs in the data (galaxies) sample and between

—1, (1.15)

the data and random points respectively separated a distance r, and np and ng are the
number density of data and random points respectively. In order to improve the statistical
errors of the estimator, [98] proposed the following expression:
DD(r)RR(r)
E(r)=——F7——-—1, (1.16)
(DR(r))?
where RR(r) refers to the number of pairs of random points separated a distance r. Finally,

the most commonly used estimator is the one from [|130]:

_ (nR>2 DD(r) _,nr DR(r)

np

RR() mp RR(r) " (17

which optimizes the statistical errors and the edge effects of the samples. If we want to
focus on large scales, we can approximate the distribution of galaxies to the galaxy density
field 0, obtained from the galaxy density fluctuations in space. In this case, the 2PCF

becomes:

§(r12) = (8(r1)8(r2)), (1.18)

where 6 (7 2) refers to the density fluctuation at the position 7 », and rj, corresponds to the
separation between 71 and 2. This expression is consistent with the previous ones when
r17 is large compared to the scales used to compute 6 (where we would not be sensitive to
the small separations between galaxies in the same 0).

In Fig. [I.2) we show the 2PCF of the dark matter field in the Millennium Simulation
[206] as a function of scale. It has been calculated from equation (1.18]), calculating & in
cubic grids of 500/256~ ! Mpc of side. We see a high amplitude at small scales, which
means that dark matter tends to cluster and form structures at these scales. The smaller the
distance, the stonger gravity acts to concentrate matter, and the bigger are the structures
with respect to a uniform (or random) distribution. At large scales the 2PCF goes to zero,
that would correspond to a uniform distribution. The fact that the Universe at large scales

i1s homogeneous implies that the 2PCF goes to zero at large scales.

1.2.3 Galaxy bias

If galaxies and clusters are formed from the initial high-density regions of the Universe,

then their clustering is an amplification of the clustering of the underlying dark matter
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Figure 1.2: Dark matter 2PCF from the Millennium Simulation as a function of scale.

field [116]. In other words, the galaxies trace the matter distribution, and the 2PCF of
galaxies is proportional to the correlation function of dark matter. This is often expressed

as:
Ee(r) =b*(r)&(r) (1.19)
where &, (r) is the galaxy 2PCFS, & (r) is the matter 2PCF and b is called the “bias factor”.

This bias factor allows us to translate the galaxy (or another tracer) distribution into the
matter distribution, which is important to constrain our cosmological models from obser-
vations. Indeed, the knowledge of the bias factor produces a significant improvement on
the precision of our measurements of cosmological parameters [87]. However, galaxy bias
depends on many aspects, such as the scale, the galaxy properties (luminosity, colour...),
the sample selection, redshift, etc.

[83] studied the relation between galaxy or halo distribution and dark matter distribu-
tion by assuming a local and non-linear relation between the density fluctuations of galaxies
or haloes and the density fluctuations of dark matter. In the local bias model, the density
fluctuation of galaxies (or haloes) is considered a function of the matter fluctuation at the

same position:

n(1) = f1Om(r)] (1.20)

where 0y,(r) and 6, (r) are the density fluctuations at the position r of the galaxies (or
haloes) and matter respectively, and f[5] can be any function. As explained in [83}/184],

this expression assumes no non-local dependencies that might come from some properties



as the local velocity field, or derivatives of the local gravitational potential. In that case, for
Onm < 1, the equation (1.20) can be expanded in a Taylor series as:

() = f3n(r)] = ¥ L0K(r) = bo+biBu(r) + 283(r) + (121)

where by = 0 since it is restricted to give (0;,) = () = 0, by definition. Then, the correla-
tion function can be described in the following form:

= bjb

En(x,x2) = (G(x1)&(x2)) = Y, me(xl)j(sm(xz)k) (1.22)
Jk=0 /%"

= Db ((8n(x1)) + (80 (x2))) + D38 (x1)n(x2)) + O(8)  (1.23)

= bH(Su(x1)8n(x2)) +0O(8%). (1.24)

The step form equation (1.23) to equation (1.24) is trivial because (8) = 0 for every

density fluctuation by definition. As it is shown in [88], if we are in the regime where
Om < 1, we can approximate equation (1.24)) to:

&n(r) 2 b1 {8 (x1)8n(x2)) = bTEn (1), (1.25)
which is the definition of bias given in equation (1.19). Equation (1.25) shows that in

the linear regime b, is the bias factor. If we define 0, at large enough scales, where the
density fluctuations are small, the local bias factor is consistent with the bias from equation
(I.19). [[142]] showed that the local bias shows this consistency for scales larger than R >
30 — 60Mpc h~!. In this linear and local bias regime, the bias factor does not depend on
scale and can be considered as a constant factor:

Eo(r) =D*E(r) (1.26)

that can also be defined as:
58 =bd,,. (1.27)

This linear bias factor can be seen as a parametrization of the clustering amplitude of galax-
ies with respect to the dark matter. This constant factor depends on how galaxies occupy
the dark matter field and depend on many properties and conditions. As galaxy clusters are
generally formed in the highest density peaks of the dark matter density field, they present
a high bias. In general, for a Gaussian field with initial mass fluctuations, the density peaks
that first form show a higher clustering amplitude [8]]. As massive galaxies and haloes are
generally formed in these peaks, they also present a higher bias. Bias also depends on red-
shift, since at high redshift the first galaxies formed only in the highest density peaks, and

because of this bias increases with redshift [[82,211]].
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1.2.4 Halo model and Halo Occupation Distribution

The halo model [|19,/55133,166,/187,188,194./]195,201,209,231]] is one of the most common
approaches used to interpret and model the distribution and clustering of galaxies. Accord-
ing to this model, the dark matter field is characterized by dark matter haloes, and these
haloes, although they can have different size and mass, present a universal profile [[158].

With this, the dark matter 2PCF can be split into two components, the 1- and 2-halo terms:

E(r) = &un(r) +&an(r) (1.28)

The 1-halo term of the 2PCF (&;},) is obtained from the contribution of the matter cor-
relation inside the same halo, which basically depends on the universal halo matter profile
assumed. The 2-halo term (&) contains the contribution of the correlation of matter lo-
cated in different haloes, that can be predicted from linear perturbation theory. While the
1-halo term of the 2PCF is the dominant term at small scales (the characteristic scales of the
haloes), the large-scale 2PCF is dominated by the 2-halo term. The large-scale clustering
of dark matter haloes is biased with respect to dark matter, and halo bias is usually assumed
to be a function of mass [152,(194,218|].

According to the halo model, galaxies are formed inside dark matter haloes. Hence,
the 2PCF of galaxies depends on how the galaxies are populated in these haloes. The
Halo Occupation Distribution (HOD) model [17,(19,/113,/187,/188,236] is based on the
halo model and describes the galaxy population in terms of central galaxies, located at
the centre of haloes, and satellite galaxies, distributed in the haloes assuming some radial
profile. With this, the 2PCF of galaxies can be parametrized from the occupation of galaxies
in haloes. Again, the 2PCF have contributions from the 1-halo term, that comes from the
galaxy pairs that are occupying the same haloes, and the 2-halo term, that comes from the
pairs of galaxies that occupy different haloes. The most common approach is to describe
the HOD as the probability that a halo of a given mass M hosts N galaxies, P(N|M). The
expected galaxy occupation can be parametrized in terms of central and satellite galaxies
as:

(N(M)) = (Ne(M)) + (Ns(M)), (1.29)

where N refers to the total number of galaxies per halo of mass M and N, and N; refer to the
number of central and satellite galaxies per halo respectively. As the occupation is assumed
to depend on M, (N(M)) can be parametrized in order to connect galaxy clustering with
galaxy occupation using a set of free parameters. The most common parametrization is the
following [233,1234,236]:
o
(N(M)) = % [1 +erf (logM_long"”ﬂ {1 + (M_MO) } : (1.30)

OlogM M,
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where erf is the error function erf(x) = % fé‘ e~ dt and Ologm> Mo, My, o and My, are
free parameters. M,,;, characterizes the minimum halo mass that hosts a central galaxy.
My and M constrain the halo mass needed to be populated by satellite galaxies, and o
describes how quickly the number of satellite galaxies increases with halo mass. These
parameters, then, can be fitted from observations in order to learn about galaxy formation

and the occupation of galaxies in haloes [57,[233].

1.3 Weak Gravitational Lensing

According to General Relativity, space and time are curved due to the presence of matter
and energy. As the trajectories of the bodies (including light) follow the geodesics of space-
time, light is deflected when it propagates through an inhomogeneous gravitational field.
As a result of this, the images of distant galaxies that we observe are distorted due to the
presence of mass in the trajectory that light follows from the source galaxies to the observer.
The field that studies these distortions is called gravitational lensing. See [9,/157,/177] for
a review of this field.

The strength of this effect depends on several aspects. First of all, it depends on the
matter distribution between the source galaxies and the observer. Strong gravitational po-
tentials cause large distortions of the image. But the strength of the light deflection and
its impact on the final image distortion also depends on the relative distances between
the sources and these gravitational potentials (or lenses). Finally, the effect is stronger if
sources and lenses are better aligned with the observer.

The strongest effects can be easily recognised as distortions in the images, usually in
the form of arcs or rings around a foreground galaxy or galaxy cluster (that is acting as a
lens), or in the form of multiple images of the same galaxy around a given lens galaxy or
cluster. Strong gravitational lensing is the field that studies these large distortions. These
effects can be used to infer the mass of the foreground cluster. As the light deflection is
caused by the gravitational potential due to the presence of any kind of mass (either dark
or baryonic), this can be used to measure the presence of not only baryonic matter, but also
dark matter.

However, the majority of the lensing effects are much smaller. Galaxy images are in
general distorted at the percent level, causing basically a small change on its luminosity
and shape. In these cases we cannot consider galaxies individually, since the main contri-
bution to the galaxy image comes from its intrinsic shape. But instead we can study them
statistically. Assuming some intrinsic properties of the galaxies (e.g. that the galaxies are

randomly aligned or that they present a specific intrinsic alignment) we can study the large
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Figure 1.3: Scheme of light deflection due to gravitational lensing from [9]].

scale distribution of matter. The field that studies the weak lensing distortions is called
weak gravitational lensing, or simply weak lensing. The potential of this field of study
depends on several statistical properties: the total area of the source galaxy samples, the
number density of source galaxies, the scales that we study, intrinsic alignments, the shape
noise measurements, etc.

A schematic picture of the light deflection due to the gravitational lensing effect is
shown in Fig. [[.3] where we approximate the source and lens in two planes and the light
trajectory as two straight lines with a deflection angle &. In the weak lensing regime, and

in General Relativity, the angle deflection presents the following expression:

AGM
0=—— 1.31
o (1.31)
where G is the gravitational constant, M is the mass of the lens centred in the line-of-sight
and far from the light trajectory, c is the speed of light and & is the impact parameter
specified by the distance between the position of the lens and the point where the light

crosses the lens plane. When the lens is not a point in a plane but a continuous gravitational
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field, & is a more complicated vector function:

00
-0

1

()= - d*0'x(6") (1.32)

where & = D;0 and « is known as the convergence field and it is a projection of the fore-

ground mass distribution, weighted by some geometrical factors:

K(0,xs) =

2 s —
3HOQm/ dy X =2) (0. %) (1.33)
0

2¢2 Xs a(x)
where y; is the comoving distance to the source, a(}) is the scale factor at the correspond-
ing redshift in comoving distance y, and §(0, ) is the total (baryon and dark) mass density
fluctuation. « can also be expressed in terms of the lensing potential y:

a=Vy, (1.34)

With all this, the image of a source galaxy in the weak lensing regime can be described

by the distortion matrix A:

A:(I—K)( 1__;;1 1__‘5’;1 ) (1.36)

where g; » are the two components of the reduced shear g = g1 +ig>. The reduced shear

can be related to the shear 7 as:
Y

1-x
Finally, the shear can be related to the convergence x through the lensing potential as:

g= (1.37)

K=(yi1+v2n)/2 (1.38)
Nn=Win—-—vyn)/2 (1.39)
=V12 (1.40)

with Y= +ip and y;; = 9%y /06,00;.

These expressions give us a mathematical connection between the image distortions of
the galaxies, the shear and the projected mass distribution in the foreground of the source
galaxies. This allows to study statistics of the projected mass distribution in the Universe
from the galaxy shears obtained from the images of distant galaxies [147,223]. Weak
lensing is also a good tool to constrain cosmology from observations [|15,/140], and a very
good complement to other statistics, since the systematics involved in weak lensing are

very different compared to other comological observations.
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1.4 Galaxy Surveys

Our knowledge of the large-scale structures of the Universe has increased during the last
years thanks to the recent galaxy surveys. Surveys such as the 2-degree Field Galaxy Red-
shift Survey (2dFGRS) [50], the Sloan Digital Sky Survey (SDSS) [232] and the Wiggle-
Z [29] supposed a step forward in the study of the distribution of galaxies in the Universe.
The Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) allowed the study of
weak lensing fields with unprecedented accuracy (e.g. [[15,/105,/192]).

Present and up-coming surveys such as the Dark Energy Survey (DES) [75,213], the
Hyper SuprimeCam (HCS) [[151]], the Kilo Degree Survey (KIDS) [[65]], the Large Synoptic
Survey Telescope (LSST) [139], the Euclid mission [[132], the Dark Energy Spectroscopic
Instrument (DESI) [137] and the Wide-Field Infrared Survey Telescope (WFIRST) [94]
will offer the possibility to explore new fields and increase the precision of our comoslogi-
cal analyses.

Part of the work of this thesis has been implemented in DES. DES is a broad-band
photometric survey designed to combine different analysis of type Ia Supernovae, Baryon
Acoustic Oscillations, Weak Lensing and Galaxy cluster number counts in order to study
the nature of Dark Energy and the accelerated expansion of the Universe. This survey
consists on a 570 Megapixel camera (DECam) with 74 CCDs, located on the 4-m diameter
Blanco Telescope, at Cerro Tololo, in Chile. The observing plan aims to cover 5000 deg? of
the sky in 525 nights. It uses the grizY filtering system and will record around 300 million
galaxies with an absolute magnitude of i < 24.5.

1.5 Simulations

The large-scale structures that we see today in the Universe come from initial conditions
that have evolved suffering complex processes involving nonlinear gravitational interac-
tions, baryonic physics, gravitational collapses, merging of dark matter haloes, galaxy for-
mation, etc. Although our theories can explain the fundamental laws of physics, we cannot
predict analytically the evolution of such complex systems. However, the link between the
early and almost uniform Universe and the final structures can be provided by numerical
simulations. Simulations are an important tool to predict the structure formation of differ-
ent cosmologies and theories, as well as to calibrate observations, test new tools to apply
to observations and study the numerical effects of nonlinear and complex processes.
There has been a great progress in the development of simulations for the last decades.

This progress consists on new codes for the numerical computation of structure formation
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[36,56,/70L/71,(120,{125,[150,/162, /168,176,204, 206,207,[212], the increase in the volume
of the simulations [6,/60,(78,(79]], the decrease in the mass of the simulation particles [96),
205], the development of different algorithms to define dark matter haloes (see [121] and
references therein) and subhaloes (see [161] and references therein), the application of
different galaxy formation models (see [[122] and references therein), the development of
hydrodynamic simulations (e.g. [224]) and the current implementation of fast simulation
codes (e.g. [143,{154//155,|186.210]). The advances in our simulations have an impact on
the understanding of cosmological models and evolution and our precision in the analysis
and measurements of observational data.

In this work we make use of two N-body simulations, the Millennium Simulation [206]]
and the MICE Grand Challenge [60.,|78,79|] simulation.

The Millennium Simulation is a project from the Virgo Consortiunﬂ and at the time
when it was run it was the largest N-body simulation of a ACDM cosmology ever done. It
was run in the principal supercomputer at the Max Planck Society’s Supercomputing Centre
in Garching, Germany, and it consists of around 10'° particles in a cube of 5004~ Mpc of
side. Several galaxy catalogues are implemented in the simulation by following different
Semi-Analytic Model (SAM) prescriptions, which are galaxy formation models based on
analytic prescriptions of the baryonic physics in the process of galaxy formation.

The MICE Grand Challenge Simulation was run by the Institut de Ciencies de I’Espai
(ICE) at the Marenostrum Supercomuter in Barcelona. The output is a lightcone of 34~ Gpc
of radius containing around 70 billion dark matter particles. Galaxies are populated in the
simulations with an algorithm based on the HOD model [42]] designed to reproduce clus-
tering observations. Some galaxy catalogues of this simulations are designed in order to
be comparable to DES Science Verification data. The goal of these catalogues is to use
them to calibrate and study the systematics and methods that will be applied to DES data
analysis.

The Millennium and MICE Grand Challenge simulations are described in more detail

in and §4.3.1|respectively.

1.6 Outline of the thesis

This thesis focuses on the study of linear bias and the relation between galaxy, halo and
matter distributions. We study the large scale bias of galaxies and haloes in simulations

and the connection between both, and we also develop a method to measure local bias

Thttp://www.virgo.dur.ac.uk/
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in observations from the correlation between the galaxy distribution and the weak lensing
fields.

In §2] we use the Millennium Simulation and its SAM galaxy catalogues to study galaxy
and halo bias. We present a test of the halo mass dependence of bias and halo occupation
that consists on a reconstruction of galaxy bias from halo bias and the HOD. We show
deviations between the bias reconstruction and the galaxy bias measured in the simulation,
specially for small haloes, that indicate that halo bias and occupation do not depend only
on mass, and has implications in the galaxy bias predictions. In §3| we continue the analysis
by studying the halo bias dependence on mass and environment. Apart from mass, we also
define the environment of each halo from the surrounding dark matter density. We show that
environmental density constrains much more bias than mass, meaning that environment is
much more correlated with bias than mass. We see that massive haloes only occupy dense
regions, while small haloes can live in any environment. The study implies that small
haloes in dense environments have a high bias. If the galaxy properties are correlated with
environment, galaxy bias reconstructions do not recover the real bias. We finally show that
using the environmental density instead of mass for the bias reconstructions allow us to
recover much better the real galaxy bias. This suggests that including information about
environment when analysing galaxy clustering is important in order to avoid errors in the
estimations of the HOD.

In §4{we present a new method to measure local bias from the combination of the galaxy
density and weak lensing fields. We use the density field of galaxies to construct a template
of the convergence field. Bias is then obtained from the zero-lag correlations between the
reconstructed convergence field and the real convergence field obtained from the shape of
the galaxies. We describe the theoretical contribution of the correlations as a function of
redshift, that allow us to make measurements of local bias in tomographic redshift bins. We
use the MICE simulations to test the method and explore the regimes where the method is
valid and consistent with linear bias. We study the sensitivity of the method on different
effects such as redshift binning, angular resolution, galaxy number density, nonlinearities of
bias, etc. We show measurements of galaxy bias as a function of redshift using this method
that are consistent with other estimators of linear bias. This method is a good complement
to other measurements of bias because it does not depend strongly on og, while most of
the methods to measure bias in observations do. After studying this method in the MICE
simulations, we discuss its application to data by presenting the main results of [44]], where
we have applied the method to DES Science Verification data.

We finish in §5| with a summary of the results of the thesis and the main conclusions.
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Chapter 2

Halo Mass dependence of bias and its
effects on galaxy clustering

Abstract

In this chapter we study how well we can reconstruct the 2-point clustering of galaxies on
linear scales, as a function of mass and luminosity, using the halo occupation distribution
(HOD) in several semi-analytical models (SAMs) of galaxy formation from the Millen-
nium Simulation. We find that HOD with Friends of Friends groups can reproduce galaxy
clustering better than gravitationally bound haloes. This indicates that Friends of Friends
groups are more directly related to the clustering of these regions than the bound particles
of the overdensities. In general we find that the reconstruction works at best to ~ 5% ac-
curacy: it underestimates the bias for bright galaxies. This translates to an overestimation
of 50% in the halo mass when we use clustering to calibrate mass. We also find a degener-
acy on the mass prediction from the clustering amplitude that affects all the masses. This
effect is due to the clustering dependence on the host halo substructure, an indication of
assembly bias. We show that the clustering of haloes of a given mass increases with the
number of subhaloes, a result that only depends on the underlying matter distribution. As
the number of galaxies increases with the number of subhaloes in SAMs, this results in a
low bias for the HOD reconstruction. We expect this effect to apply to other models of
galaxy formation, including the real universe, as long as the number of galaxies incresases
with the number of subhaloes. We also find that the reconstructions of galaxy bias from the
HOD model fails for low mass haloes with M <3 —5 x 10" A= M,,. We find that this is

because galaxy clustering is more strongly affected by assembly bias for these low masses.
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2.1 Introduction

Understanding the link between galaxies and dark matter is one of the fundamental prob-
lems that makes precision cosmology difficult to reach. Nowadays cosmological simula-
tions provide accurate measurements of the dark matter distribution of the Universe, but we
need to relate the dark matter to galaxy distributions in order to compare to observations.

There are several empirical models of galaxy formation that allow us to populate dark
matter simulations with galaxies. On one side, the Halo Occupation Distribution (HOD)
(e.g. [19]]) formalism uses the Halo Model (e.g. [55]]) to describe the population of galaxies
in haloes according to the properties of the host haloes. In many cases the models of
galaxy formation assume that the properties and population of galaxies depend only on
the halo mass. The population of galaxies is then described by the probability P(N|M)
that a halo of virial mass M contains N galaxies of a given type. One can then calculate
galaxy clustering from the combination of the HOD with the clustering of halos if we
assume that the clustering of haloes depends only on the halo mass. [194] used the GIF
simulations [[119] to model the 2-point clustering of galaxies from the clustering of haloes
and the HOD. They found a good agreement with semi-analytical models.

If these assumptions are valid we can use galaxy surveys to obtain the relations between
properties of galaxies and halo mass, to measure the clustering of dark matter haloes, as
well as halo masses [57.90,233,234,236]. [200] used the assumptions from [234] to study
the relation between halo mass and satellite and central luminosities, finding a strong re-
lation between central galaxy luminosities and halo mass, and weak dependence for the
satellite galaxies. [156] assumed the HOD to study the relation between the stellar mass
of galaxies and halo mass, finding agreement with galaxy clustering in the SDSS. [123]]
found a relation between the halo mass dependence of populations of subhaloes and the
HOD of baryonic simulations and semi-analytical models of galaxies, an indication that
the distribution of galaxies can be closely related to the distribution of subhaloes.

However, some studies indicate that several properties of galaxy and halo clustering
depend on properties of dark matter haloes other than mass, such as halo formation time,
density concentration or subhalo occupation number [61},84,[226]. [226] also saw that the
dependence of halo clustering on halo formation time changes with mass. Some studies
suggested the idea of adding a second halo property to the HOD model []1,[219,226]. [61]
studied the clustering dependence of haloes on the occupation number of subhaloes, and
found that for fixed masses, the halo bias depends strongly on the number of subhaloes
per halo. They found that, for fixed occupation number of subhaloes, the halo bias de-

pends on mass. They also found a strong anticorrelation between clustering and mass for
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highly occupied haloes. As galaxies possibly follow subhalo gravitational potentials, this
dependence can also be found for galaxies, as we show in

Moreover, the clustering of haloes have an impact on galaxy clustering. [84] showed
that the clustering of haloes also depends on the halo formation time, the first indication of
assembly bias. [62] studied the effects of assembly bias in galaxy clustering and showed
that for fixed halo mass red galaxies are more clustered than blue galaxies. Other authors
have studied the effects of assembly bias in galaxy clustering using other environmental
dependencies of haloes such as density and studied these effects in observations [2,200,
216]]. [2235] studied the correlation between colour and clustering of clusters of the same
mass and they found the red clusters (or with a red central galaxy) to be more clustered
than blue. However, [[18] seem to find the opposite result.

On the other hand, semi-analytical models (SAM) populate galaxies in the dark matter
haloes by modelling baryonic processes such as gas cooling, disk formation, star formation,
supernova feedback, reionization, ram pressure or dust extinction [10,|11},48] according to
the potentials of dark matter. These processes contain free parameters that can be con-
strained by observations. Because of these processes, semi-analytical models of galaxy
formation follow the evolution of the dark matter haloes, mergers, and they are more phys-
ical than HOD models in terms of environmental dependences and evolution.

In this chapter we study the consequencies of the assumption that the galaxy population
and clustering only depends on the halo mass in SAMs. We use the Millennium Simulation
[206] to measure the halo bias. We also compare different definitions of halo mass. We
study the public SAMs of galaxies of the Millennium Simulation to see if we can reproduce
the galaxy bias from this HOD assumption, thereby assuming that the clustering of galaxies
only depends on the mass of the host halo. We do this by measuring both the halo bias and
the HOD in the same simulation and for the same galaxies that we want to reproduce the
bias. This analysis is similar to that of [[194]] but with some important differences. First of
all, [[194]] model the halo bias, while we use the measurement in the simulation, and we also
compare it to modelling the bias. Moreover, we include the errors of the reconstructions
of galaxy clustering in order to see numerically their success. Another difference with the
study of [194] is that we study several and newer SAMs in order to compare the results
between them. Finally, the Millennium Simulation presents a better resolution than GIF
simulations and therefore we can study smaller masses, and larger volume so we can study
the 2-halo term properly. We also focus on large scales, where no assumptions are needed
for the distribution of galaxies inside the haloes. [[194] assumed the galaxies to be tracers of

dark matter particles of the haloes, an assumption that has an impact on the 1-halo term of
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the 2-point clustering. Here we only look at the 2-halo term. We also analyse the clustering
dependence of the halo occupation of subhaloes, and its dependence on halo mass.

The chapter is organized as follows. In we introduce the Millennium Simulation
as well as the semi-analytical models of galaxy formation. In we present the measure-
ments of galaxy and halo bias and the HODs that we use to reconstruct the galaxy bias and
compare it to the measurements in the simulation, which is developed in We finish

with a summary and discussion in

2.2 Simulation

For this study we use the Millennium Simulation [206], carried out by the Virgo Consor-
tium using the GADGET?2 [207] code with the TREE-PM (Xu 1995) algorithm to compute
the gravitational interaction. The simulation corresponds to a ACDM cosmology with the
parameters: Q,, = Qg ,, +Q;, =0.25, Q, =0.045, h =0.73, Q5 =0.75,n =1 and 63 = 0.9.
It contains 21603 = 10,077,696, 000 particles of mass 8.6 X 108n1 M in a comoving box
of size 5004~ Mpc, with a spatial resolution of 54! Kpc. The Boltzmann code CMB-
FAST [190] has been used to compute the initial conditions based on WMAP [203]] and 2
degree Field Galaxy Redshift Survey (2dFGRS) data [49]]. The simulation output starts at
z =127 and it has 64 snapshots from this time to z = 0.

2.2.1 Haloes

In each snapshot, the haloes are identified as Friends-of-Friends (FOF) groups with a link-
ing length of 0.2 times the mean particle separation. All the FOF with fewer than 20
particles are discarded. Then, subhaloes are identified in the FOF groups using the SUB-
FIND [207] algorithm, discarding all the subhaloes with fewer than 20 particles. The
largest object found by SUBFIND in the FOF is located in its centre, and usually has
approximately the 90% of the FOF mass. In SUBFIND all the particles gravitationally un-
bound to the subhalo are discarted, giving a gravitationally bound object. For this reason,
the largest SUBFIND object can be seen as the gravitationally bound core of the FOF, and
in this chapter we will call it halo.

We must notice that these FOF and halo catalogues are independent of the galagxy
catalogues of the simulation. In Fig. we show the mass function of FOF and haloes, in
red and blue lines respectively, compared to the theoretical models of Tinker et al. (2008)
[215]] and Sheth, Mo & Tormen (2001) [194] (hereafter SMT 2001). The mass function
has been multiplied by M?/p for clarity. We define the masses of the FOF as the total

number of particles belonging to the FOF, and the halo mass as the total number of particles
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Figure 2.1: Normalized Mass Function of FOFs (red) and haloes (blue) compared to theo-
retical models. Black dashed line represent the theoretical mass function from Tinker et al.
2008 [215]]. Green dotted line shows the model from Sheth, Mo & Tormen 2001 [[194]].

belonging to the halo (the largest SUBFIND of the FOF). We can see that the haloes have
a mass function close to the model of SMT 2001, where the ellipsoidal collapse model has
been used. On the other hand, the mass function of FOF is closer to the model of Tinker et
al. (2008). We can also see that the mass function of haloes is very close to the one of FOF
at low masses, meaning that most of the small haloes are contained in small FOFs, while at
large masses the mass function of haloes is lower, meaning that the differences in the mass

definition of haloes and FOFs become larger.

2.2.2 Galaxies

Galaxy catalogues of several semi-analytical models (SAM) are available in the public
database of the simulation. In this chapter we study several SAMs ( [27,38,,66./77,97]. In
the models of Bertone, De Lucia & Thomas 2007, De Lucia & Blaizot 2007 and Guo et
al. 2011 (BDLTO07, DLBO7 and G11 respectively hereafter), developed at the Max-Planck-
Institute for Astrophysics (MPA) in Garchindﬂ, the galaxies are placed and evolved in the
subhaloes according to their properties and their merger trees [63,/66,/206]. In the case of
Bower et al. 2006 and Font et al. 2008 models (BO6 and FO8 hereafter), developed at the

Institute for Computational Cosmology in Durhanﬂ the merger trees are constructed using

'http://gavo.mpa-garching.mpg.de/MyMillennium/
"http://galaxy-catalogue.dur.ac.uk:8080/MyMillennium/
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Figure 2.2: Luminosity Function of SAMs compared to the SDSS DR2 data [32]. Solid
lines represent the different SAMs, and the dashed line shows the Luminosity Function
from SDSS [32].

the Dhaloes, a different definition of halo consisting in groups of subhaloes [[104,|111].
In most of the cases, the Dhaloes consist in the set of subhaloes of the same FOEF, but in
some cases EI these sets are divided in different Dhaloes [[99,/149]]. Then the evolution of
the latter models is related to halo (Dhalo) evolution, while the first models are associated
to subhaloes.

In Fig. we compare the luminosity function of all the SAMs studied with the lu-
minosity function of SDSS DR2 [32]]. To make coherent comparisons, we have used the
luminosities in SDSS r filter of galaxies including dust extinction of the SAMs. We applied
a factor of Slogh, with h = 0.73, in the MPA models, since this factor was not included in
the database. In this Figure we can see an evident excess of bright galaxies in all the mod-
els. There is also a slight excess of galaxies in the faint end in the models DLB07, BO6 and
FO8. However, [22]] studied different algorithms to obtain galaxy magnitudes and argued
that the luminosity function from [33]] in r band is probably underestimated for galaxies
brighter than M, < —22, so these differences do not necessarily reflect problems for the
SAMs. These results are in agreement with [51], where they present a deeper comparison
of the different semi-analytical models of the Millennium Simulation. [51] studied how
much the clustering and HOD of these semi-analytical models depend on stellar mass, cold

gas mass and star formation rate.

3if the subhalo is outside twice the half mass radius of the parent halo or the subhalo has retained 75% of
the mass it had at the last output time where it was an independent halo.
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2.3 Bias and HOD

In this section we present our measurements of FOF, halo and galaxy bias that we use to
analyse if galaxy bias depends only on halo mass. We estimate the 2-Point Correlation

Function (2PCF) using density pixels and the expression

§(ri2) = (8(r1)8(r2)), 2.1

where 6(r) refers to the density fluctuation defined by 8(r) = p(r)/p — 1 in pixels. From

that, we measure the bias using the local bias model [83]:

Se(r)
b(r) = (2.2)

Em(r)
where &,(r) corresponds to the 2PCF of the studied object (haloes or galaxies), b(r) is
the bias factor, and &,,(r) is the 2PCF of the dark matter field. As we assume b(r) to be
constant at large scales, where § < 1, we define the mean value by fitting b(r) to a constant

in the scale range 204~ Mpc < r < 3072~ Mpc. Although theoretically the bias may not
be in the linear regime for these scales, we have checked that it behaves as a constant, so
our fit can be assumed as valid. Moreover, the size of the Millennium Simulation does not
allow us to go to larger distances with precision. The errors are measured with a Jack-Knife
method [[160] of this measurement of b, using 64 cubic subsamples. The errors are taken
from the standard deviation of these subsamples. The distribution of these subsamples is
close to a gaussian, and the errors obtained from the percentiles are very similar to those

from the standard deviation.

2.3.1 Bias

In Fig. we present the FOF (top) and halo (bottom) bias as a function of mass. We
refer to them as bpop (M), by, (M) and we compare the results with some analytical models.
Using the mass function developed by [[173] assuming the spherical collapse model, Mo &
White (1996) [[152] derived the following expression for the halo bias:

|

b(v)=1+ 5

(2.3)

where 0, = 1.686 is the linear density of collapse and v = 6./ (M), where o (M) is the

linear rms mass fluctuation in spheres of radius r = (3M/47p)'/3. Sheth, Mo & Tormen
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Figure 2.3: FOF (top) and halo (bottom) bias as a function of mass at 3 different redshifts
compared to theoretical expressions. The squares show the measurements of bias from
the Millennium Simulation. Dashed lines show the analytic model from [194], dashed-
dotted lines correspond to the [218|] model and dotted lines are the analytic expressions
from [152]]. Each colour represents a different redshift, as specified.

23



(2001) (hereafter SMT 2001) [[194] generalized and improved the expression using an el-

lipsoidal collapse model and they obtained the result:

1
Vade

Va(av?)++/ab(av?)' ¢

(av?)©
(av?)e+b(1—c)(1—c¢/2)’

b(v)=1+

(2.4)

with the parameters a = 0.707, b = 0.5 and ¢ = 0.6 tuned to work in N-body simulations.
Finally, Tinker et al. (2010) [218]] presented a more flexible expression:

a

b(v)=1-A +BvP 4+ Cve. (2.5)

Va4 §¢
The values of the parameters of this expression used in our comparisons correspond to the
values shown in Table 2 of [218]] with A = 200.

First of all, we can see that the SMT 2001 model tends to overpredict bpor (M) and
by(M), especially at low masses. We can see a difference in the high mass region between
FOF and haloes because for each FOF the mass of the halo is reduced (and then shifted to
a lower mass) due to the SUBFIND unbinding process. On the other hand, Mo & White
(1996) model tends to produce an overprediction at high masses and an underprediction at
low masses for all the cases. One possible reason for this is that Mo & White (1996) assume
the Press-Schechter mass function, but this mass function fails to reproduce the halo mass
function in simulations [92,95,/110}/134,/196]]. Finally, the agreement of the Tinker et al.
(2010) expression with bpop (M) and by, (M) is remarkable.

In Fig. we show galaxy bias as a function of luminosity, b4(L), for the SAMs. The
first 5 panels show b, (L) in bins of luminosity for each of the studied SAMs, in the » band
at 3 different redshifts, as specified. We also show in bottom right panel the comparison
of these models with observations in the SDSS DR7 [233]] using luminosity thresholds. To
compute b, (L) from the SDSS DR7 data, [233]] used a prediction of the dark matter cor-
relation function from a ACDM cosmological model [202]]. Solid lines show the different
SAMs, while the dashed-dotted line shows b, (L) from [233]]. As the cosmology assumed
in [233] is different than the one from Millennium, the dashed line corresponds to mul-
tiply the SDSS measurement by a factor 0.8/0.9. This factor is an approximation of the
difference in the amplitude of the dark matter field of both cosmologies if we assume that
be(L) behaves as og. Then, the dashed line shows an approximation of b, (L) of the SDSS
galaxies normalized by the Millennium cosmology.

First of all, we can see that b,(L) increases with z, although the brightest galaxies tend

to show higher clustering amplitude at low z. From the last panel, however, we observe
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Figure 2.4: Luminosity dependence (in absolute r band magnitude) of galaxy bias for 5
SAMs and comparison with observations (bottom-right panel). The first 5 panels corre-
spond to by(L) at z=0,0.5,1 for each SAM as labelled in magnitude bins. In the bottom
right panel, b, (L) of all the SAMs at z = 0 are compared to bg(L) from SDSS DR7 [233] in
magnitude thresholds instead of bins. Solid lines represent the Millennium catalogues. The
black dashed-dotted line corresponds to the SDSS DR7 data. The black dashed line shows
a correction of 0.8/0.9 to approximate the amplitude of b4 (L) from SDSS if the 2PCF were
normalized to a cosmology of og = 0.9 instead of oy = 0.8.
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discrepancies for all the models with observations from SDSS DR7 presented in [233]].
We notice the good agreement between FO8 and BO6 models in the brightest galaxies. In
general, the predicted bg(L) is lower than in the observations for the brightest galaxies, and
the shape of by (L) steepens only for the brightest galaxies in the SAMs, showing a shift with
respect to the SDSS DR7 data. This shift depends strongly on the different cosmologies
adopted between the SDSS analysis and the Millennium Simulation. As the value of oy is
higher in the Millennium Simulation, their galaxy clustering is underpredicted due to the
lower clustering of the dark matter of the simulation. The dashed line shows the comparison
between the models and SDSS assuming the same dark matter field cosmology parameter
og. Here we can see that the agreement is better in the brightest galaxies, but worse in the
faint end. From this panel, we can say that the agreement on bg(L) between the models and
the observations is strongly dependent on the cosmologies that we assume, but anyway the
shape of bg(L) of the models is different than that of SDSS data. If M, in SDSS is shifted
up as suggested by the luminosity function of Fig. then the agreement will be better.

2.3.2 HOD

SAMs of galaxy formation are not based on the halo model and hence they do not use the
HOD prescription to populate galaxies into haloes. But effectively the models produce an
HOD as an output, and we can measure the occupation of galaxies in haloes and study
the mass dependence of the different populations. For each galaxy catalogue, we calcu-
late the HOD by counting the galaxies per halo as a function of the halo mass. For the
reconstructions of bg(L) in we will assume the HOD to be only dependent of halo
mass (FOF or halo mass). We also analyse the luminosity dependence of these HODs.
These distributions are shown in Fig. where the HOD of some models are compared
to the measurements from SDSS DR7 [233]]. [233]] inferred the HOD measurements from
the clustering of different samples of galaxies assuming that the clustering of galaxies can
be expressed in terms of the probability distribution that a halo of a given virial mass M
hosts N galaxies of a given type. In this calculation they assume a ACDM cosmology with
Q,, =0.25, Q, =0.045, 03 = 0.8, Hy = 70kms ! Mpc_] and ng = 0.95. Dashed lines
in Fig. show the best fit of the HODs of the SDSS RD7 presented in [233] using the
equation:
(N(M,)) =

1 logM;, — logM,,; My, — M\ *
1 [1+erf( ogmp — 10g mm)} |:1+ ( h : O) :| ’ (2.6)
2 GlogM Ml
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Figure 2.5: HOD of galaxies for the different SAMs (solid lines) compared to the HOD
found by [233] from the SDSS DR7 data (dashed lines). Top panels correspond to the
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where Myin, Ologm> Mo, M| and « are parameters to be fitted. The SAM measurements
are shown by solid lines and each colour corresponds to a different threshold in magnitude,
M, using the FOF mass. The values of the HOD of the SAMs using the haloes instead of
the FOF groups, although it is not shown, is pretty similar. Given the fact that the haloes
have always lower mass than their respective FOF (since the difference with respect to the
FOF is due to the application of the unbinding processes for dark matter particles), N(M},)
always has to be higher than N(Mpor) for a given mass if the slope of the HOD is positive,
as it is. At high masses, we note that although the original SAMs tend to have a higher
population, the agreement with observations is remarkable, and very good in the particular
case of G11 model. At low masses, the level of agreement is model dependent, but in
general the change of slope at (N,(MFpor)) ~ 1 tends to be softer in the SAMs than in the
SDSS DR7 measurements.

We must mention, however, that the HOD measurements depend on cosmology, and
different assumptions on cosmology can give different fits of the HOD in observations.
Since the cosmology assumed in [233] is different than the Millennium cosmology, the

HOD measurements of both cases do not need to agree.

2.4 Bias Reconstructions

In this section we want to measure if we can recover galaxy bias by assuming that the HOD
and galaxy clustering depend only on halo mass. To do this we make a reconstruction
of by(L), that we call by..(L), from the measurements of brpor(M) (or by(M)) and the
occupation of galaxies in these haloes. If we are in the linear regime (as we are) and the
occupation of galaxies is only halo mass dependent, then the value of b, (L) must coincide

with the reconstruction b,..(L) obtained from the following expression [52,57,/187.[226]:

N, g,h (M aL)
ng(L)

where n corresponds to the number density of the galaxies or haloes and N, (M, L) is the

mean number of galaxies per halo (or FOF) of mass M. We test these b,,.(L) for both FOF

and haloes. As we use a range in halo mass, the galaxy sample is restricted to those objects

brec(L) = [ dMy(M)m, (M) @.7)

that are inside the considered haloes, excluding those which are outside the range of halo
mass. Because the FOFs and haloes represent exactly the same objects, one could think
that they should give the same results. But their definitions of mass are different, and these
differences are important for large and unrelaxed haloes. For this, the mass dependencies

of clustering and the relations between mass and galaxy occupation can be stronger for
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Figure 2.6: Reconstructions of bg(L) from bror(M) at z= 0 and z = 1. The grey shaded
region corresponds to the predicted b..(L) £ 10, while solid line represents the real mea-
sured value of b, (L), and the dashed line corresponds to the reconstructions using the values
of bpor(M) from the Tinker et al. (2010) model. Left panels corresponds to G11 model,
while right panels show predictions for the BO6. On top, z = 0. On bottom, z = 1.
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Figure 2.7: The same as in Fig. but the reconstructions are obtained from by, (M) instead

of bFOF (M)
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one definition than for the other, and the effects of large and unrelaxed haloes will produce
differences in the reconstructions.

The error is obtained by calculating the Jack-Knife error of the reconstruction using 64
cubic subsamples. Finally, in all the reconstructions 2 /v is calculated according to the

formula:

XV = —Z (2.8)

i GM5+GR1
where N is the number of data points, M and R are the measured and reconstructed points
respectively, and oy ; and og; are the respective errors of M and R. We assume that the
reconstructions of each subsample is independent of each other.

We focus on the G11 and BO6 models in M, as representatives of MPA and Durham
models to analyse the reconstructions. Although the SAMs have clear differences in the
luminosity dependence of b, (L), the results of the reconstructions of all the SAMs present
similar behaviours and the same qualitative conclusions than in G11 and B06.

Fig.[2.6|shows the reconstructions of b4(L) from FOFs of these two models at z = 0 and
1. The reconstructions b,..(L) are shown as a grey shaded region representing b, (L) + 10,
and they are compared to the real values, in solid lines. We also show as dashed lines
brec(L) using the Tinker et al. (2010) [218] model for b(M) instead of the measurements
of the simulation in order to compare the differences between modelling and measuring
bror (M) for the reconstruction. Top panels show z = 0 and bottom panels are at z = 1.
Finally, in the left panels we see the reconstructions of G11, and in the right panels we used
the BO6 model. In Fig. we show the reconstructions of b,(L) from haloes instead of
FOFs for the same SAMs and redshifts.

First of all, we can see that the reconstructions using the Tinker et al. (2010) [218]]
model differ with respect to the reconstructions from the measurements of bpop (M) or
by(M) by the order of 16. The errors of the reconstructions reflect the fluctuations of the
measurements of brop (M) and by(M) in the simulation. Given the agreement between
modelling and measuring bias from Fig. [2.3] this difference in the reconstructions can be
seen as a measurement of the effects of the fluctuations of brpor(M) and b,(M) in the
reconstruction. But, as the galaxies are located in the haloes of the simulation, these fluctu-
ations in the bias should be included in the reconstruction if we want to study the relation
between the galaxies and their haloes, so we focus in comparing by (L) with b,,.(L) from
the measured halo bias (i. e. shaded region instead of dashed lines).

Secondly, for the haloes we can see that the agreement between measurements and

reconstructions tend to be better at low redshift, although for FOFs this is not so clear.
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On the other hand, the reconstructions tend to be different from the SAM measurements
by a factor of 6 — 7% at the level of 10 for both FOFs and haloes. This differences in
clustering corresponds to a 50% difference in halo mass (see Fig. [2.3). Another important
result independent of the SAMs and redshift is the fact that FOFs predict better b, (L) than
haloes. This reflects that the unbinding processes, somehow, lose information about the
galaxy clustering. In some sense, the mass of the FOF groups is more directly related
to the clustering of these regions than the mass restricted to the bound particles in these
overdensities, maybe because the FOF groups include more environment of the overdensity.
Finally, we can see that the reconstructions tend to underpredict bg(L). This is a constant
effect in z and appears using brpor(M) or by,(M) and for all the SAMs. This effect is
analysed more in detail in §2.4.1|and §2.4.2]

For equation (2.7) to be accurate we need to satisfy on of the following to conditions.

The first condition is that all the haloes of the same mass have the same clustering. If this is
the case, all the galaxies in these haloes have the same clustering and then we are assigning
the correct clustering for the galaxies. The second condition is that galaxies populate haloes
only according to their mass. If this is the case, even if the first condition is not satisfied
the galaxies in the same masses must statistically have the same mean clustering. We
have seen that the reconstructions differ from the measurement of b,(L), so this means
that both conditions fail. So, for a fixed halo mass, different haloes must have different
clustering (assembly bias). Moreover, the population of galaxies in haloes of the same
mass must be correlated with the halo bias. In order to study this correlation, in
we study the subhalo occupation dependence of bias. We do this because we expect the
number of subhaloes to be directly related with the number of galaxies but at the same time
it is independent of the SAM. In we study the halo mass ranges where we see the

assembly bias effects in the reconstructions.

2.4.1 Subhalo population

In this section we study the subhalo occupation dependence of halo and galaxy bias. The
idea is to separate the haloes and their content depending on the amount of subhaloes
inside the haloes, Ny, to see if clustering depends on their halo substructure. This is an
indirect measurement of environment, since the amount of subhaloes in a halo depends on
the merging history of the halo, which is related to the environmental abundance of haloes.
This is also interesting since the number of subhaloes in the haloes is related to the number
of galaxies in it.

In Fig. we can see bror (M) (top left), b, (M) (top right) and bg(L) (bottom left)
separating the samples of FOFs, haloes and galaxies according to the number of subhaloes
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number of subhaloes Ny, inside. Bottom left: b(L) for galaxies in haloes with different Ny,
for G11 model. Bottom right: number of galaxies (Ng) vs number of subhaloes (Nyy,) of the
FOFs. The grey shaded regions represent the 68 and 95 percentiles. The red line shows
Ng = Ng,. All the panels are at z = 0.
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in the halo. The bottom right panel shows the relation between the number of galaxies (N,)
of the G11 model and the number of subhaloes (Ny;,) in the FOFs. The red line represents
Ny, = Ng. Two conclusions can be obtained from Fig. about galaxies and haloes: (1)
for a fixed mass (at low masses at least) or luminosity, the dependence of b on subhalo
occupation, Ny, is very strong, and (2) for a fixed N, the dependence of b, (L) on L is weak.
So, galaxy clustering has a strong dependence on Ny, meaning that for a fixed luminosity
we are mixing galaxies with different clustering for the same reconstruction, and this can
cause a deviation between the reconstruction and the real value of b,(L). Moreover, for
a fixed mass, bpor(M) and by, (M) present different clustering according to the number of
subhaloes, while in the reconstruction we are wrongly assuming that bias only depends on
mass. This is an indication of assembly bias. From bottom right panel we can see that the
number of subhaloes increases with the number of galaxies. We can see that the haloes with
a high number of subhaloes tend to have even more galaxies. As the haloes with higher
Ny, have more galaxies, the reconstructions produce an underestimation of b, (L), since we
are assuming the same mean bias for these galaxies, while the haloes with more galaxies
have a higher bias than the mean value of these masses. We used the number of subhaloes
instead of the number of galaxies because it is independent of the SAM, and this is only
dependent on the dark matter distribution, so we should see this effect in any simulated
galaxy catalogue where the number of galaxies increases with the number of subhaloes.
This is likely what should also happen in the real Universe. Note that this is not the case in
HOD assuming P(N|M), by construction.

This can be seen as a galaxy clustering consequence of assembly bias, since we see
that haloes of the same mass have different clustering, and we also see that this has conse-
quences on the galaxy clustering predictions. This means that for a fixed mass the galaxies
are not randomly distributed, so they depend on other properties than mass. If their distri-
bution were random for each mass, then the reconstruction should work by definition. If
we include Ny, as another variable in the reconstructions, then the predictions of galaxy
clustering are improved. We have checked this by reconstructing b, (L) and selecting the
galaxies according to the number of subhaloes in their haloes. The results are significantly
improved in this case (but they are not shown here).

From Fig. we can see that the subhalo occupation dependence of clustering is
stronger for low masses. In order to see explicitly the masses where we see this effect,
in we study the mass dependence of the reconstructions.
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Figure 2.9: by(M) and by..(M) (from FOFs on top and haloes on bottom) for different
luminosity bins for G11 galaxies. Solid lines represent galaxy bias as a function of FOF
mass (top) or halo mass (bottom) of their host haloes with different luminosities represented
by different colours. The grey shaded zone refer to the range of b,..(M) + 1o from brop
(top) and from by, (bottom). As the reconstructions are binned by halo mass, b.(M) =
brorM (top) and byec(M) = by (M) (bottom).
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2.4.2 Halo mass dependence

To study the mass dependence of the success in the reconstructions, we measure by (MroF)
and bg(M},) in several luminosity bins. Fig. shows bg(MFor) (top) and bg(M},) (bot-
tom) for galaxies at different luminosities. Each colour corresponds to a luminosity. The
lines show bg(M) for galaxies in FOFs or haloes with the respective luminosity, and the
grey shaded regions represent the measured ranges b,..(M) 4 1¢ obtained from FOFs (top)
and from haloes (bottom). This figure, then, allows to see explicitly how the reconstruc-
tions of galaxy bias work at different masses. We have only used one mass bin for each
reconstruction. For a narrow mass bin, the HOD reconstruction prediction equals the halo
model value, so the shaded predictions in Fig.[2.9]equal those of Fig.[2.3] Then, the recon-
struction works if the values of b, (M) are close to bror (M) (and the same for b, (M)). In
Fig.[2.9) we can see two different behaviours. At high masses, bg(M) is close to bror (M)
and b, (M), since the solid lines tend to be close or inside their shaded zones. This means
that the reconstruction of b, (L) at these masses works, and the halo mass gives sufficient
information to predict galaxy clustering. However, we note that there is an underestimation
of by of the order of 10 when haloes are used instead of FOFs. In the low mass regions
there is a strong disagreement between bg(M) and bror (M), and also with b, (M), espe-
cially for the brightest galaxies. The bias of the brightest galaxies is much higher than the
mean one of the haloes of the corresponding mass. So, in these low masses, the galaxies
are populated precisely in a way that the brightest galaxies are in the most clustered haloes
of the corresponding mass. This means, again, that the clustering of these galaxies does
not only depend on mass, and this is also another indication of assembly bias, since haloes
of the same mass must have a different clustering. We also notice that the disagreement
between by (M) and b, (M) tends to be stronger than between by (M) and bror (M). This is
another indication that MroF is more strongly related to galaxy clustering than Mj,. This
means that when the haloes and FOFs present important differences in their masses, Mror
tends to reflect better b, (L) than Mj,.

We see that the distortions in the reconstructions appear at Mj, <3 —5 x 101! M. Then,
the reconstructions of b,(L) when we exclude haloes of these low masses and their galaxies
work, and the predictions of galaxy clustering are correct. This low mass problem can be
due to different aspects or a combination of them. First of all, it can reflect the consequences
of assembly bias on galaxy clustering. Secondly, it can be affected by the strong stripping
and mass distortions of haloes of the Millennium Simulation. When haloes interact with
others or pass through high density environments, sometimes the masses are artificially
distorted, and this effect is stronger for lower masses. Finally, the SAMs could be affected
by assembly bias more strongly than reality. If this is the case, the clustering of SAMs at
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these masses would not be correct and we would need to exclude from the analysis those
galaxies that reside in low mass haloes, regardless of their properties. But if we exclude
these galaxies, then b, (L) is distorted and an excess of clustering for galaxies of M, > —20
is found, meaning that we need to include these galaxies for clustering studies if we want

to recover observations.

2.5 Conclusions

We used the Millennium Simulation to study the clustering of galaxies as predicted by
semi-analytical models (SAM) of galaxy formation and the dependence of clustering on
luminosity in the SDSS r band filter. We measured the clustering of haloes and we found
good agreement with theoretical models, specially for the Tinker et al. (2010) model [218]].
We have found discrepancies in the galaxy clustering with respect to observations [233]]
that can be due in part to their excess of bright galaxies and in part due to the differences
on the assumed cosmology for the analysis, in particular the difference in og. Although
the SAMs are not based on the HOD model, their populations agree with the observations
of the HOD from the SDSS DR7 [233]]. We try to reproduce galaxy bias from the bias
of FOF groups and gravitationally bound haloes as a function of mass, by assuming that
the population of galaxies only depends on the mass of these objects. From our study we
obtain the following results:

(i) Although in some cases the reconstructions can provide a good y2/v, the recon-
structions tend to underpredict b, (L) by a factor of 2 5%. This translates to an error in the
inferred halo mass of the order of 50%.

(ii) FOF groups make better reconstructions of b,(L) than haloes, specially at high
redshift, which could be due to the fact that FOF groups include more information about
the environment than the main haloes.

(ii1) The clustering of haloes and galaxies depends strongly on the amount of substruc-
ture in their host haloes. For a fixed halo occupation (of subhaloes), the luminosity depen-
dence of by is very weak. For a fixed halo mass, there is a strong dependence of b;, on the
occupation of subhaloes, an indication of assembly bias. This result is independent of the
SAMs.

(iv) The reconstructions of b, from haloes work better at high masses, but some di-
agreements with b, come from the low mass haloes, where the assembly bias effect is
stronger. This effect is stronger for haloes than for FOFs. This means that when the masses
of haloes and FOFs are significantly different, the mass of the FOFs reflects better b, (L)
than the mass of the haloes. This effect occurs for M;, < 3 —5 x 101! M. The suppression
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of galaxies in the smallest haloes avoids the problems of the reconstructions of be(L), but
changes the shape of the luminosity dependence of b, (L), which makes it inconsistent with
observations from SDSS DR7 [233]].

Our results can also depend on the halo and subhalo finders and the SAMs. On one
hand, subhaloes in the Millennium Simulation suffer very strong stripping when they in-
teract with high density environments, and this can have consequences on the assembly
bias found at low masses. On the other hand, SAMs have been modelled from these dark
matter objects, and their clustering consequences could also present artificial dependences
on assembly bias. A galaxy catalogue constructed from an HOD model only using halo
mass would not reflect this effect. However, we expect to find this effect for all the galaxy
formation models where the number of galaxies increases with the number of subhaloes,
and also in the real Universe.

Recent studies [183,220] indicate that we need to take into account baryonic effects on
the dark matter haloes. The density profile of haloes change substantially when baryons are
included, and this change can produce important effects on the galaxy formation models
applied [220]. [183] also saw that baryonic physics reduces the mass and abundance of
haloes below M), < 1022~ M. Our study indicates that it would be premature to use the
HOD interpretation for such halo masses to study these baryonic effects using the clustering
of galaxies.

The agreement of Tinker et al. (2010) model, together with the convergence of Fig.[2.9]
at the largest masses studied, seem to indicate that the SAMs agree with our assumptions at
large masses. However, other dependences than mass are needed to predict the clustering
of the SAMs on small masses, then care must be taken when assuming the HOD model
at masses below 3 — 5 x 10'1M,, especially when assuming that galaxy clustering only
depends on mass. We have seen that the halo clustering depends strongly on Ny, for a fixed
halo mass, and this explains the discrepancies between the measurements in SAM and the
HOD modelling. For any galaxy formation model where N, o N, we would expect a
similar assembly bias. In this case, we will underestimate the galaxy bias with the HOD
modelling.

Frequently, the HOD is assumed to relate galaxy properties and halo masses [54,/57,
233]]. In the case of [233]], they measure the HOD parameters form the clustering of galax-
ies assuming that the clustering only depends on the halo mass. But these results can be
affected by the halo bias dependence on the subhalo occupation for fixed masses if the
number of galaxies increases with the number of subhaloes. This conclusion seems quite
generic in the light of our Fig. 2.8} for a fix halo mass, clustering is stronger for halos with

more substructure. The standard implementation of the HOD assumes that the clustering
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of galaxies only depends on the mass of the haloes. If for a fixed halo mass there are more
galaxies in the halos with more subhalos, then the mean clustering of these galaxies will be
higher than the mean clustering of the haloes and we will wrongly conclude that they are
in more massive haloes. This results in an overestimation of the halo mass using cluster-
ing. We have shown that this is the case in SAM, but we expect this to also be true in any
other model of galaxy formation where the number of galaxies correlate with the number
of subhalos.

In order to do a simple estimation of the order of magnitude of this overprediction, in
Figure[2.10|we show the relation between the real mass of the haloes and the mass predicted
from the clustering of their galaxies. As the mean clustering of the galaxies is higher than
the mean clustering of their haloes, the galaxy bias corresponds to the bias of a higher halo
mass. In this figure we see the overprediction for galaxies brighter than M, < —20.

We note the degeneracy on the predicted mass over the real mass. We can see for exam-
ple that a predicted mass of 10'3M, corresponds to both a real mass of 2 —3 x 10! A= M,
and a real mass of 7— 8 x 10'> A~ M. This means that we cannot strictly predict the mass
from the clustering amplitude only, since this degeneracy affects all the masses. In partic-
ular we will never get the true mass for the lower mass halos.

From Table 3 of [233]] we see that the best HOD parameters obtained are log M, =
11.83, logMy = 12.35 and log M = 13.08. If the relation of Figure 2.10| were correct, the
parameters should be corrected to log M,,;, ~ 11.74 — 11.83, logMy ~ 12.18 — 12.25 and
logM; ~ 12.90 — 12.92. For this rough estimation we ignore the degeneracy and choose
the closest M., since for these masses most of the galaxies are populating large haloes.
In detail we should weight the prediction by the number of objects. Similar considerations
could be applied to other HOD analysis [54},57] where assembly could play a role, specially

for the lower masses.
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Figure 2.10: Comparison between the halo mass of the host haloes of galaxies with M, <
—20 with the predicted halo mass obtained from the galaxy clustering. This can be obtained
from figure [2.9] by translating the bias to halo mass for galaxies with M, < 20. In green
we used FOF, while in red we show the predictions for haloes. The dashed line shows
Mpred = Mreal-
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Chapter 3

Environmental dependence of bias

Abstract

We continue the study form §2|by studying the large scale halo bias b as a function of the
environment (defined here as the background dark matter density fluctuation, §) and we
show that environment, and not halo mass m, is the main cause of large scale clustering.
More massive haloes have a higher clustering because they live in denser regions, while
low mass haloes can be found in a wide range of environments, and hence they have a
lower clustering. Using a Halo Occupation Distribution (HOD) test, we can predict b(m)
from b(8), but we cannot predict b(8) from b(m), which shows that environment is more
fundamental for bias than mass. This has implications for the HOD model interpretation
of the galaxy clustering, since when a galaxy selection is affected by environment, the
standard HOD implementation fails. We show that the effects of environment are very
important for colour selected samples in semi-analytic models of galaxy formation. In
these cases, bias can be better recovered if we use S instead of m as the HOD variable.
This can be readily applied to observations as the background density of galaxies is shown

to be a very good proxy of environment.

3.1 Motivation

In the standard cosmological framework, the so-called ACDM paradigm, galaxies form,
evolve, and reside in dark matter haloes that grow and assemble in a hierarchical way [228].
Therefore, the evolution and the properties of the host haloes will have a strong impact in
determining the galaxy properties themselves. The unknown nature of the dark matter
(and dark energy) can be unveiled through the study of the baryonic observables (such as

galaxies) once we model the co-evolution with their host dark matter haloes. Modelling the
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relation between the observed galaxy distribution and the underlying dark matter field is a
fundamental problem in modern cosmology.

Given a cosmological model, the halo mass function, the halo concentration, and the
halo bias can be defined, leaving the galaxy clustering as the next step to complete such
a model. In order to model the galaxy clustering statistics it is necessary to specify the
number and spatial distribution of galaxies within the dark matter haloes. The probability
that a halo of mass M hosts N, galaxies of a given property is given by the quantity
P(Ngqi|M). This statistical halo distribution is known as the *Halo Occupation Distribution’
[17,19055,/113,/187,/188]] (hereafter referred to as HOD). Therefore, its simplicity resides
in the assumption that the derived parameters for the cosmological model and the physical
properties of the galaxies are determined solely by the mass of the halo in which they
reside.

The HOD has been proven to be a very powerful theoretical tool to constrain both
the galaxy-halo connection and the fundamental parameters in cosmology [53,217, 221,
231,233,1234,236]. By the use of the HOD mock galaxy catalogues are constructed for
studies of galaxy formation as well as for the preparation and analysis of observational
surveys [19,/179,236]. However, it has become clear that the clustering of dark matter
haloes depends on other properties besides mass [74,844/85,|114,|126,/128,,197,226,[227].

The construction of mock galaxy catalogues through N-body simulations has shown
that the amplitude of the two-point correlation function of dark matter haloes with masses
lower than 1013 4~! M, on large scales depends on halo formation time (e.g. [84]). Addi-
tionally, halo properties such as concentration, shape, halo spin, major merger rate, triax-
iality, shape of the velocity ellipsoid and velocity anisotropy show correlations with other
properties than halo mass [28,|62,/127]. Moreover, in §2| we show that haloes of equal
mass can have different galaxy occupation statistics, depending on their environment (or
number of substructures). Ignoring the effects of properties other than mass in the HOD
modelling can distort the conclusions and interpretations of the observational results [235]].
The galaxy bias reconstructions used in can be seen as a test of the HOD standard
implementation, that assumes that mass is the only halo property needed to describe galaxy
clustering properly.

Several studies point in the direction of taking into account halo properties linked with
the environment and their formation history to modify the standard HOD. These properties
are incorporated in the formulation of more flexible schemes of HOD used to produce mock
catalogues comparable with observations. Such mock catalogues have recently been pre-
sented by [62] and [[146], who introduced a rank ordering of galaxy colours or SFR. They

found that for fixed halo mass, red galaxies are more clustered than blue galaxies. These
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and the "age matching’” models of [101}/103]] have been shown to successfully reproduce
a number of observed signals such as the two-point clustering and galaxy-galaxy lensing
signal of SDSS galaxies [128].

In this chapter we study the dependence of large scale halo bias on mass and envi-
ronment, in order to compare how well mass and environment allow to correctly determine
galaxy bias. Our analysis is based on haloes from the Millennium simulation [206]] and their
Semi-Analytical Models (SAM) of galaxy formation of [97] as in The SAM populate
haloes with galaxies that are evolved and followed in time inside the complex structure of
merger-trees. The baryonic processes included are laws for metal dependent gas cooling,
reionization, star formation, gas accretion, merging, disk instabilities, AGN and supernovae
feedback, ram pressure stripping and dust extinction, among others (e.g. [10,[86,112]). Be-
cause of these processes, the resulting galaxy population produced by SAMs is sensitive to
the environment and evolution of haloes. Depending on the galaxy selection, the informa-
tion from halo mass alone could be insufficiently correlated with the clustering of galaxies.
In these cases, environmental density allows to determine galaxy bias better than halo mass.
Thus, we propose to use the information from environment to improve the HOD analyses
on surveys and theory.

The method employed in our study is similar to the one used in §2| which performs a
direct HOD reconstruction instead of a HOD fit. We compare the measured halo and galaxy
bias with a HOD reconstruction based on direct measurements of the halo occupation, so
there are not assumptions or fitting involved. Then, these predictions can be compared with
the true bias in the simulation.

The chapter is organized as follows. In section [3.2] we describe the data used and the
methodology for our measurements of clustering, bias and for our HOD reconstructions.

The results are shown in section and we summarize the conclusions of the paper in

section [3.4]

3.2 Methodology

3.2.1 Simulation data

In this study we use the same data from the Millennium Simulation |1_-I [206] than in the
previous chapter. We remind that the simulation corresponds to a A-CDM cosmology
with the following parameters: Q,, = 0.25, Q;, = 0.045, h =0.73, Q5 = 0.75, n =1 and

"http://www.mpa-garching.mpg.de/millennium/
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o3 = 0.9. It contains 2160° particles in a comoving box of 5004~ ! Mpc of size. We refer to
for more details about the simulation. For this chapter we focus the analysis at z = 0.

In this chapter we define the halo mass from the total number of particles belonging
to the Friends-of-Friends (FOF) groups. Although galaxy catalogues of several Semi-
Analytical Models (SAM) are available in the public database of the simulation, for this
analysis we use the G11 [97]] model. The conclusions of this chapter do not depend on the
SAM used.

3.2.2 Clustering and bias

Spatial fluctuations of the matter or tracer density p are defined as normalised deviations

from the mean density p at the position r, i.e.

—_—, 3.1)

We measure §(r) by dividing the simulation into cubical grid cells, with side length of
500/64 ~ 8 h~! Mpc and assigning a density contrast § to each cell. We then estimate the

two-point correlation function

ﬁAB(r) = <5A(r1)53(r2)>, (32)

which is a function of the scale r = |r, —ry|. The average (...) is taken over all pairs of
0 in the analysed volume, independently of their orientation. The indices A and B refer
to the different density tracer (here haloes or galaxies, which we generically call Jg) or
to the matter density contrasts, which we denote by J,,, so that A = B = m is the matter
auto-correlation, &, and &g, is the cross-correlation between the tracer G and matter m.

We then estimate the bias by the ratio:

_ Eom(r)
N gmm’") ’

At large scales r > 20h~ ! Mpc, where & < 1, this ratio is well described by a constant,

b(r) (3.3)

which is in good agreement with the linear bias, and tends to the value 8¢ ~ b1, (e.g. see
[13]). We estimate this linear bias b, which we just call b from now on, by fitting b(r) with
a constant in the scale range of 204~ Mpc < r < 30h~! Mpc as in the previous chapter.
For larger scales, the measurements start to be noisy due to the size of the simulation.
The covariance of these measurements are derived by jack-knifing [160], using 64 cubical
subvolumes.

The value of b depends on how the tracers are selected. In galaxy surveys the limits of

the observed galaxy luminosities roughly correspond to a selection by host halo mass. The
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Figure 3.1: Illustration of peak-background split model, § = &; + &, showing in red the
location of haloes that form above some critical value J.;. The clustering of those haloes
is stronger than the rest (in green). But note how once the environment, given by the large-
scale background density ) (black curve) is fixed at 0., the large scale clustering of haloes
(red) does not depend on the peak-hight (halo mass).

mass dependence of the bias can be predicted from the peak-background split model (see
e.g. [[106] and references therein) where the matter density field is described by the superpo-
sition of small scale fluctuations (peaks) J; with large-scale fluctuations of the background
matter density & around each peak (i.e. § = & + §). In this model background fluctua-
tions can lift the peak-heights above a critical density d,,;; at which they collapse to haloes
as illustrated by Fig[3.1] The mass of these haloes then corresponds to the peak-heights.
Consequently massive haloes tend to reside in environments where the background density
is high, while low mass haloes can reside in a broader range of environmental densities
(we demonstrate this effect with haloes from the Millennium simulation in Section [3.3.1).
Massive haloes are therefore more strongly clustered than low mass haloes, which causes
a mass dependence of the bias parameter.

3.2.3 Background density

The bias of a given halo sample can also depends on additional halo properties besides the
halo mass, such as the concentration of the mass density profile, or on the properties of
the galaxies hosted by the halo, such as the halo spin, the formation time, or the age of the
stellar population (see e.g. [74,/84,/102]]). These additional properties can be related to the
merging history of haloes and lead to the so-called assembly bias. Furthermore, the bias of
a given halo sample is affected by the tidal forces from the large-scale environment, which

is known as non-local bias (see [7,/13,143]).
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Figure 3.2: Distribution of haloes with different dark matter environmental densities 8 in
a 2h~ ! Mpc slice of the Millennium simulation. The top left panel shows all haloes, while
the top right shows haloes in under-densities. The bottom left shows haloes with mean
background densities while the bottom right shows haloes in over-dense regions.

These effects can lead to wrong predictions of models which rely on the assumption
that the mass of a halo sample completely determines the bias, such as self-calibration
techniques (e.g. [230]) or HOD models [|174,235]]. A way to circumvent problems for the
HOD model is to use a halo property different from the mass, which completely determines
the bias of a given halo population. The peak-background split argument described in
Subsection [3.2.2] suggests that the clustering of peaks (which correspond to tracers such
as haloes) is determined by fluctuations of the large-scale background density 8. Hence,
for fixed background densities the bias should be independent of the tracer properties (see
Fig[3.1] for illustration).

For obtaining a visual impression of this argument we show in Fig. [3.2] the spatial
distribution of haloes which reside in different environments, defined by the value of 5
estimated around each halo, smoothed on cubical cell of side I = 144~ ! Mpc as explained
below. By comparing the four panels of the figure one can see that the large-scale clustering
and hence the bias strongly changes with the local dark matter background density & (as
we will show in Section [3.3.2). On the other hand, the large-scale clustering is nearly
independent of halo mass (not shown in this figure), when haloes are selected by 8. Note

that a weak mass dependence of the bias for fixed § can be expected from non-local bias
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Figure 3.3: Halo bias b, as a function of halo enviroment S for [ = 26h_1Mpc (red),
I = 14h~ ' Mpc (black) and [ = 64~ Mpc (blue). The corresponding dashed line shows a
simple prediction b ~ &/ Gg where & is the linear density corresponding to § (according
to the spherical collapse model) and Gg is the linear variance at Lagrangian scale Ry =
R(1+8)'/3.

contributions.

When determining § around a given halo we face the problem that the dark matter
density distribution of the Millennium Simulation is publicly available only as a 500/256 ~
2h~ ! Mpc grid. We therefore assign the density in a cubical volume around each halo, with
length [ ~ 6,14 and 26 A~ Mpc, which have the same volume as a sphere of radius R =
3.72,8.68 and 16.13 4~ Mpc respectively. The position of these volumes has a 24~ Mpc
inaccuracy, which results from the grid cell size. We will focus on the intermediate scale
[ = 14, but we find similar results for other scales.

Inspired by [3], the linear halo bias by, is shown as a function of § in Fig. using
haloes of all masses. The bias increases with the density of the environment and becomes
negative in underdense environments. Note that we find negative bias because we study
the halo-matter cross-correlation, while in the case of the auto-correlation the bias would
remain positive. The dependence of b;, on § become weaker when § is defined at smaller

scales R. For a study of the galaxy clustering for different environmental densities applied
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to data see [3]].

Since the large-scale clustering of the tracers corresponds to the clustering of the back-
ground density fluctuations in which they reside we can compare our measurements to
predictions for the clustering of large-scale peaks, given by [116] for high fluctuations of

the density field with a minimum value of &,

b~ ﬁ;, (3.4)
&0
where §pA is the initial linear overdensity, which is related to § via the spherical collapse
model (see also [81]) and oy is the corresponding linear variance on Lagrangian scale Ry =
R(1+ 5 )1/ 3. These predictions are in general in a good agreement with the measurements
and do not include any free parameters. Note that some of the differences at small 6 could
come from the fact that we measure the bias in bins of 5, while the prediction are for
threshold values of &, so we expect them to be systematically higher. This can be easily
corrected, but is beyond the scope of this study.
In the next subsection we will directly use these bias measurements bh(S ) to study the
bias predictions from the HOD model, and to present a new HOD reconstruction test, based

on environment &, which is less affected by assembly bias.

3.2.4 Mass and density HOD bias reconstruction

The standard HOD model is based on the assumption that halo bias is determined solely
by the halo mass m of the sample. We will therefore refer to it as the mHOD model in this
chapter. In this mHOD model the bias of galaxies (b,) which are selected by an arbitrary
property P, can be reconstructed from the halo bias as a function of mass b,(m) and the

mean number of galaxies with property P per halo of mass m, (Ng(m|P)) as

m o Jdmby(m) (Ng(m|P))
brec(P) = fdz]; <Ng("jp)>

This equation can be seen as a weighted average of by (m), where the weight is given

(3.5)

by (Ng(m|P)), and it represents equation [2.7|in a more general way, for any selection of
galaxies. The mHOD model provides a way to infer the average mass of host haloes in
which a given galaxy population is residing by varying (N, (m|P)) in order to reproduce

the observed bias, i.e. b

" -(P) = bg(P). However, it relies on the assumption that the bias

of a galaxy population selected by the property P is completely determined by their host
halo mass, which might not be correct as discussed in Section [3.2.2] Cosmological N-body

simulations allow us to test the mHOD model, as we can measure by(m) and (N, (m|P))
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Figure 3.4: Left: halo bias as a function of mass. Each line corresponds to haloes in a fixed
density environment &. Right: halo bias as a function of the environmental density 8. Each
line corresponds to a different halo mass bin. In both panels & is defined as the Eulerian
density fluctuation around a cubic box of 144~! Mpc of side.

and compare the predicted b,.(P) to measurements of be(P). This is what we call the bias

reconstruction method and we explore in §2| The test reveals that the mHOD model fails to
predict the correct bias in the low halo mass range but it works with 5-10% bias accuracy
for the high mass end.

In the previous subsection we considered to redefine the HOD model using the local
background density & around a given halo instead of the halo mass. This approach has the
advantage that § is expected to determine the bias of a given halo or galaxy population
better than the mass (we study this in §3.3)). In this chapter we call the density HOD model
(hereafter referred to as dHOD model) to the analogous of the mHOD model using density
instead of mass. The corresponding bias reconstruction is obtained simply by replacing the
halo mass in equation by 8,

b3 (p) = 195 2u(8) (Ne(51P))
Jdm (N, (8|P))
In the next section we test how well our new dHOD model predicts the bias compared
to the standard mHOD model.

(3.6)

3.3 Results

3.3.1 halo bias

In this subsection we analyse the dependence of halo bias on halo mass and dark matter

density contrast 8 (smoothed with a [ = 14~ ! Mpc side cubical top hat filter) in the envi-
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ronment of each halo. The measurement of the latter is described in Similar results
are found for other smoothing scales.

In the left panel of Fig. we show the halo bias, measured via equation (here-
after referred to as b;,) as a function of the halo mass m for haloes within different ) ranges.
The black line corresponds to b, (m) for all haloes, regardless of 5. This measurement is
consistent with the theoretical model of [218]] and with the red points of the top panel of Fig
We can see that b, (m) does not change significantly (less than a 10%) with halo mass
when § is fixed, while it changes significantly when all the haloes are included (around a
factor of 2 in the range of masses shown here). In the right panel we show the same anal-

ysis from a different point of view. Here we present b;,(9) for different m bins. Each line
corresponds to a range in m, while the black solid line shows by,(8) for all the haloes. We
can see a strong dependence of b;, on &, and that bh(S ) depends weakly on m.

We conclude from these measurements that the bias of a given halo sample is well con-
strained when the haloes are solely selected by the density contrasts of their environment &,
almost independently of the halo mass. This important result confirms our considerations
from

If § is left as a free parameter a mass dependence of the bias arises from the fact that
high mass haloes tend to reside in high density regions and low mass haloes in regions
with lower density. This tendency can be seen in the central panel of Fig. [3.5] where we
show the mass versus the environmental § for each halo in the simulation. The colours
describe the number of haloes with the corresponding mass and density. By integrating
this distribution over 8 we derive the Halo Mass Function (hereafter referred to as HMF),
(Np(m,8)/(V1og(m)))s, (where V is the simulation volume and N}, the absolute number
of haloes). The HMF is well described by the [215] model, as shown in the top panel of
Fig. By integrating over the mass m we obtain the Probability Distribution Function
(hereafter referred to as PDF) of §, or (Nj,(8,m)/n(m)),,, which is roughly log-normal, as
shown in the right panel of Fig. [3.5]

The aforementioned tendency that high mass haloes tend to reside in high density re-
gions and low mass in regions with lower density can be seen more clearly in Fig. [3.6] In
the top panel of this figure we show the HMF of haloes with different background densities
5. We find that the fraction of massive haloes decreases in low density environments, while
fraction of low mass haloes is similar. The same effect can be seen in the bottom panel of
this figure, where we show the PDF of § for haloes in different mass bins. We find that
massive haloes (i.e m > 104 h~! M,,) reside almost exclusively in very dense regions and
are unlikely to be found in regions with low density, while low mass haloes can be found

in a wide range of densities, with preference to average values of § = 0.
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The dependence of the by (m) measurements on the local halo background density &
is in consistency with [3|] and the fact that the largest scales are the ones that determine
better bias. The standard HOD model assumes that halo bias is determined solely by the
halo mass, but the environmental density contains additional information that constraints
bias. We therefore test the accuracy of mHOD reconstructions in the next subsection and
compare it to reconstructions from our new dHOD model from equation (3.6)), which is
based on the assumption that the bias is determined solely by &, as discussed in §3.2|and

suggested by the results of this subsection.

3.3.2 HOD tests using Mass and Density

In this subsection we study how well mass m and environmental density & determine the
linear bias of a given halo sample. We do this by testing how well the mHOD model can
predict the halo bias as a function of background density & and how well the dHOD model
can predict the halo bias as a function of halo mass m. The reconstruction for b,(P = §)
from the mHOD model is derived by averaging the b, (m) measurement using the measured
(N;,(m|8)) as weight, as given by equation . This reconstruction is then compared with
measurements of by, (8), derived from the two-point correlation functions via equation .
The dHOD reconstructions for b, (P = m) is tested in an analogous way using b;(5) and
(N;(8|m)) measurements in combination with equation .

We can see in the top panel of Fig. that the HMF depends on & only in the high
mass end, while it is similar for different & in the low mass end. Since the low mass end

of the HMF dominates the integral of the of the mHOD bias reconstruction »7..(8) from
equation , we do not expect b () to be strongly dependent on . The PDF of § in
the bottom panel of Fig. shows that haloes of different m are differently distributed in
5. Therefore we expect a strong dependence of béec(m) from equation ll on m.

The bias reconstructions b _.(8) and bfec(m) are compared with the measured bias
b;(8) and by,(m) in Figure In the top panel of Figure we show in a solid black
line the measurement of by,(8). The hatched line corresponds to 5 _(§). The bottom panel
shows bj,(m), in solid black, and b3 (m), in hatched red lines. The region of the hatched

rec

lines corresponds to the 10 errors of the reconstructions, derived from the jack-knife sub-

m

m.(g ) reconstruction does not show

samples. As expected from our considerations, the b
a significant § dependence and therefore it deviates from the measured by,(8). This find-
ing means that, once & is fixed, the halo mass (or peak height) does not contain additional
information about the large-clustering, which already became apparent in the weak mass
dependence of the bias of haloes with fixed §, shown in Fig. Hence the clustering of a

given halo sample selected by & cannot be reconstructed via the standard mHOD model.
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Figure 3.7: Halo bias reconstructions compared to the measured bias from the simulation.
The solid black lines show the measurement of b;, from the simulation. The hatched lines
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The by, (m) dHOD reconstruction, béec(m), shown in the bottom panel of Figure is
in much better agreement with the measurement. This finding demonstrates that the bias is
well determined by 8. The over prediction of b, by the JHOD model at high halo masses
results from the fact that by, is not completely independent of the mass at fixed 8, as we see
in the left panel of Fig

3.3.3 HOD modelling of galaxy bias

The results presented in the previous subsection have important implications on HOD mod-
elling of galaxy clustering as galaxy properties are not only determined by the mass of its
host halo, but also by its interaction with the environment.

In cases where a galaxy sample is affected by the environment, assuming that bias only
depends on the halo mass can lead to a misinterpretation of the HOD (e.g. the fraction of
red satellites) and wrong predictions of galaxy bias as a function of galaxy properties, such
as colour or luminosity [235]]. In these cases, it can be worthwhile to use the environmental
density for HOD bias predictions, since we have shown that it determines the bias better
than halo mass.

In Fig. [3.8 we show the comparison of the different HOD reconstruction methods in
two different samples of central galaxies from the G11 [97] SAM. In this analysis we focus
on central galaxies, since their properties are more correlated with the halo properties than
satellite or orphans galaxies, and the implications of the environmental dependence of halo
bias are more directly connected to this population.

The top panel shows the bias of central galaxies as a function of the colour index
g —r= Mg —M,, where M, and M, are the absolute magnitudes in the SDSS g- and r-band,
taking into account dust extinction. The bottom panel shows the bias of red central galaxies
(g —r > 0.6) versus M,. The cut in colour applied is arbitrary, with the goal of showing
a galaxy population with fixed colour cut and different luminosities. The solid black line
shows the galaxy bias b, measured from the clustering via equation . In vertically
hatched black lines we show the 1o interval of the mHOD reconstruction for bg from
equation (3.5)), that indicates how well m determines bias for these samples of galaxies. In
diagonally hatched red lines we show the 1o interval of the dHOD reconstruction of b,
from equation , that reflects how well § determines bias for these galaxies.

We can clearly see that the dHOD reconstruction is much closer to the measured bias
than reconstruction from the mHOD model. This finding indicates that § determines b,
much better than m. The environmental density can be related to the formation times of
the haloes and their assembly history. In terms of galaxy formation, SAMs show that

galaxy colours are affected by the merging events (see [112] and references therein) which
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Figure 3.8: Galaxy bias compared to different reconstructions. The black solid lines show
the measurements of b, from the simulation. The hatched lines show the 10 level of the

different reconstructions of b, from by,(m) (so b™., in black), from b;,(8) (so bfec, in red)

and from bh(Sg) (so bfggc, in blue). The top panel b, is for central galaxies as a function

of colour g —r, and in the bottom panel by is displayed as a function of absolute r-band
magnitude for red central galaxies (red defined as g —r > 0.6).
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occur more often in high density environments. We conclude that, when galaxy properties
are affected by the halo environment, the standard mHOD model can fail in predicting
the bias as a function of that property. In this case HOD bias predictions based on the
more fundamental halo property (8), i.e. the dHOD model, delivers more accurate bias
predictions. This effect is not always as important as in Fig. as we can see from
In 42} b, is shown as a function of absolute magnitude, and since magnitude and mass are
well related for these galaxies, the mHOD reconstruction works well.

In real galaxy catalogues, it is very hard to measure &, but instead we can easily measure
Sg, the density fluctuations of galaxies. In Fig. we also show the bias reconstruction
using Sg instead of &, so bfﬁc, represented as horizontally hatched blue lines. We measure Sg
from galaxies of M, < —19, and we clearly see that the result is equivalent to that of using
S, in fact it is even better. This means that Sg determines bias in a similar way or better
than 8. This result can be expected from the fact that the large scale fluctuations § and Sg
are simply related to each other by the linear bias of the background galaxy sample. Also
note that Sg is more closely related to the galaxy distribution than & (the relation between
Sg and & might have stochasticity, for example) so is not totally surprising that Sg gives a

slightly better reconstruction than §.

3.4 Conclusions

In this chapter we use the Millennium Simulation [206] and their public catalogues to study
the impact of halo mass and environmental density on the prediction of linear bias.

We study the dependence of halo bias on mass (FOF mass) and environmental density,
defined as the density fluctuation 8 within a given volume around each halo. Although for
this study we used a cubical box of side / = 144~ Mpc, we validated that the results are
similar if we use other scales. We also find similar results when we use Lagrangian instead
of Eulerian densities for the background.

We find that bias depends much more strongly on & than on mass, and once & is fixed,
the halo bias depends very weakly on mass. This is important, since it reflects that the halo
bias is well constrained when the haloes are selected by the environmental density, almost
independently on the mass. More massive haloes have a higher clustering because they are
statistically in denser regions, but not because mass is the fundamental cause of cluster-
ing. In particular, low mass haloes can be found in a wide range of densities, and hence
these haloes present different clustering. This is in contradiction with the standard HOD
implementation which assumes that halo bias only depends on the mass. The environmen-

tal density can be seen as a property that is sensitive to other dependencies of halo bias
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apart from mass, such as assembly bias. Assembly bias usually refers to the difference in
clustering from haloes of equal mass but different formation time or concentration. These
differences can indeed be related to environment, as haloes in high background densities
form first and have higher concentrations. This can also explain the concept of galactic con-
formity (see [163]] and references there in) by which galaxy properties, such as luminosity
and colour, are not solely determined by the mass of the halo. Thus our finding that halo
environment, and not halo mass, is the key variable to understand the large scale clustering
of haloes is in line with this previous results.

To study the implication of our finding for the clustering predictions in the HOD frame-
work, we use the method of reconstructing the linear bias from the halo bias and the occu-
pation distribution in haloes, as explained in and in this chapter. This can be seen as
a test of how well mass and environmental density constrain bias. More exactly, these bias
reconstructions measure how well linear bias can be reproduced by assuming that the halo
bias and occupation only depend on one variable (either mass or density around the halo).
We show that we can predict by, (M) from by(8), but we cannot predict by,(8) from by,(M).
This means that § determines bias better than M. This is important for HOD analysis,
since it is usually assumed that bias only depends on halo mass, but some galaxy popula-
tions might be affected by environment as well. According to our results, the dependencies
of galaxies on the environmental density have a stronger impact on the large scale clus-
tering than the dependencies on halo mass. With the exception of the higher mass range,
which is strongly correlated with background density, as shown in Fig. and therefore
shows similar tendencies than environment.

Some of the galaxy properties can be sensitive to assembly bias and environment. In
these cases, assuming that linear bias only depends on halo mass causes and error in our
estimation of clustering or in the estimation of HOD parameters. Instead, we can use the
environmental density as a proxy for bias, since it determines bias better than mass on large
scales.

We show two examples of galaxy samples, b(M,) of red central galaxies and b(g —r)
of central galaxies, where the galaxy clustering does not depend only on halo mass. We see
that the reconstruction using the environmental density & around the haloes makes a good
prediction of galaxy bias, but the standard reconstruction using halo mass does not recover
well the galaxy bias. This means, on one side, that the occupation of this population of
galaxies in haloes is affected by the environmental density even for fixed mass, and on
the other side, that even if the occupation of this galaxies in haloes depends on mass, the
clustering of these galaxies is mainly due to the dependence on the environmental density.

We also used Sg instead of & to measure the environmental density of haloes and the results
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are equivalent to those using 8, meaning that both & and Sg are good estimators of bias.
This result is expected, since at large scales Sg is biased with respect to 8, but the nature of
both properties is the same, and hence they disclose similar information about environment.
The advantage of using Sg is that it can be directly measured in observations, while & or
halo mass are more difficult to estimate.

This analysis is focused on linear scales, where the 2-halo term dominates, so that we
do not need to assume anything about the distribution of galaxies inside the haloes. But this
does not mean that a similar analysis for the 1-halo term is not worth, since small scales
can also depend on environment. For example, the satellite distribution can depend on the
halo concentration for fixed mass. Also, these linear scales now become more accessible
with upcoming surveys. As § is a better estimator of large scale clustering than mass, and
it is also easier to measure it in observations (at large scales Sg is just a biased version of
5), this method can be applied in observations to measure the bias as a function of §, and

to study galaxy clustering from the modeling of bj,(8) instead of b, (M) without missing

the information from assembly bias and environmental dependencies of bias.
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Chapter 4

Measuring local bias by combining
galaxy density and weak lensing fields

Abstract

We present a new method to measure the redshift-dependent galaxy bias by combining in-
formation from the galaxy density field and the weak lensing field. This method is based
on [4]], where they use the galaxy density field to construct a bias-weighted convergence
field x,. The main difference between [4] and our new implementation is that here we
present another way to measure galaxy bias using tomography instead of bias parameter-
izations. The correlation between k, and the true lensing field k allows us to measure
galaxy bias using different zero-lag correlations, such as (k,k)/(kk) or (K.K,)/(K,K).
This analysis is the first that studies and systematically tests the robustness of this method
in simulations. We use the MICE simulation suite, which includes a set of self-consistent
N-body simulations, lensing maps, and mock galaxy catalogues. We study the accuracy and
systematic uncertainties associated with the implementation of the method, and the regime
where it is consistent with the linear galaxy bias defined by projected 2-point correlation
functions (2PCF). We find that our method is consistent with linear bias at the percent level
for scales larger than 30 arcmin, while nonlinearities appear at smaller scales. We also
find that projection along the redshift direction can cause up to a 5% deviation between the
different galaxy bias estimators. This measurement is a good complement to other mea-
surements of bias, since it does not depend strongly on og as the 2PCF measurements. We

apply this method to the Dark Energy Survey Science Verification data in [44]].
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4.1 Introduction

The formation and evolution of the large scale structures in the Universe is an important
tool for cosmology studies. But since most of the mass in the Universe is in the form of dark
matter, which cannot be directly observed, we need to understand the connection between
the observable universe (galaxies and stars) and dark matter. In the ACDM paradigm,
structures form in the initial density peaks causing dark matter to gravitationally collapse
and form virialized objects. Galaxies are expected to follow these gravitational potentials
(e.g. [228]), and because of this they are tracers of the dark matter density peaks. The
relation between the galaxy and mass distributions can be described theoretically with the
galaxy bias prescription [20,83},[116,/142, /144, 152,/]196]]. Galaxy bias allows us to connect
the distribution of galaxies with that of dark matter, and a good knowledge of galaxy bias
would be very important to improve the precision of our cosmological measurements [73].
Many papers have studied halo and galaxy bias in simulations [5, 42,47, 74,124,142,
164,(174,/175,/189,218,1235]], and the different ways to measure bias [[13,21,/106,(124,/142,
172,/180]]. Observationally, several measurement techniques exist for constraining galaxy
bias. The most common approach is to measure galaxy bias through the 2-point correlation
function (2PCF) of galaxies [30,/57,58./72,145,(199,233]]. Counts-in-cells (CiC) is another
method where the higher moments of the galaxy probability density function (PDF) are
used to constrain galaxy bias [31}68,,208,229]. Alternatively, one can combine galaxy
clustering with measurements from gravitational lensing, which probes the total (baryonic
and dark) matter distribution. Such measurements include combining galaxy clustering
with galaxy-galaxy lensing [39,/115,141,/198]] and lensing of the cosmic microwave back-
ground (CMB) [91,/185]]. The method we present in this work also belongs to this class.
Gravitational lensing is the effect of light deflection due to the perturbations in the grav-
itational potential from mass distribution. It is a powerful tool to measure the mass distri-
bution in the Universe, since the gravitational potential is affected by both baryonic and
dark matter. Weak lensing refers to the statistical study of small distortions (around 1%)
in the shapes of a large number of galaxies due to this effect. Several ongoing and future
galaxy surveys aim to obtain large weak lensing data sets that will allow us to better con-
strain cosmology, including the Hyper Suprime-Cam (HSC) [151]], the Dark Energy Survey
(DES) [[75,1213]], the Kilo Degree Survey (KIDS) [65]], the Panoramic Survey Telescope
and Rapid Response System (PanSTARRS) [117], the Large Synoptic Survey Telescope
(LSST) [139], Euclid [132], and Wide-Field Infrared Survey Telescope (WFIRST) [94].

From the shape of the galaxies one can statistically infer the lensing fields, which contain
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information of the projected matter distribution and can be used to generate 2D and 3D
mass maps [[147,222,223]].

The combination of weak lensing and galaxy density information gives us a powerful
handle for measuring galaxy bias. [4]] used the COSMOS field to measure galaxy bias by
reconstructing a bias-weighted shear map from the galaxy density field. The galaxy bias is
estimated from the zero-lag cross correlation between this bias-weighted shear map from
the galaxy density field and the shear measured from galaxy shapes. Different parameteri-
zations of bias are used to measure constant, non-linear and redshift-dependent bias. In this
chapter we explore and extend the method from [4]. We analyze whether the galaxy bias
measured with our method is consistent with the linear bias obtained from the projected
2-point correlation functions (2PCF). We find that our method can be affected by different
parameters in the implementation such as redshift binning, the redshift range used, angular
scales, survey area and shot noise. Finally, we show how to measure the redshift-dependent
galaxy bias by using tomographic redshift binning. Although this method is very similar to
the one presented in [4], there are few notable differences. First of all, in [4] they explore
different smoothing schemes for the density field, while we explore pixelizing the maps
and applying a Top Hat filter. In [4] the lensing shear is estimated for each galaxy, and the
bias is measured from the predicted and measured shear of the galaxies, while we measure
galaxy bias from the generated lensing maps. Finally, [4] fit different parametric biases
using a wide range of redshift for the galaxy density field, while here we implement a to-
mographic measurement, where we measure bias in redshift bins by using the density field
of galaxies in each particular bin. We apply this method to the DES Science Verification
(SV) data in [44].

The chapter is organized as follows. In we give an overview of the theory for our
analysis. In we present the method used to measure bias from the galaxy density and
weak lensing fields and the numerical effects associated with the implementation of the
method. In we present the results of the different tests and the final measurement of
redshift-dependent galaxy bias. We show in the results of applying this method to
DES SV data from [44]. We finally close in with discussion and conclusions.

4.2 Theory

4.2.1 Galaxy Bias

The distribution of galaxies traces that of dark matter, and one of the common descriptions

for this relation is galaxy bias, which relates the distribution of galaxies with that of dark

62



matter. There are several ways to quantify galaxy bias [13,21,/106}|142,/180], and one of
the most common ones is from the ratio of the 2PCFs of galaxies and dark matter:

Eg(r) =b*(r)&(r), (4.1)

where b(r) is the galaxy bias, and &g(r) and £ (r) are the scale-dependent galaxy and matter

2PCFs respectively, which are defined as:

Ee(r12) = (84(11) 8¢ (72)), E(r12) = (8(r1)6(r2)). (4.2)

where &, = (pg — Pg)/P, is the density fluctuation of galaxies (p, is the galaxy number
density), and 8 = (p — p)/p is the density fluctuation of dark matter (p is the dark matter
density). As can be seen from this equation, galaxy bias generally depends on the scale r;
(defined as the distance between 1 and r2). However, it has been shown that at sufficiently
large scales in the linear bias regime, bias is constant (e.g. [[142]).

Bias can also be defined from the projected 2PCFs:
0 (0) = b*(0)w(®), (4.3)

where @w,(®) and w(®) refer to the projected 2PCF of galaxies and dark matter respec-
tively. This definition of bias will be used in the analysis of this chapter. In this case, the
bias dependence is on angle ® instead of distance r.

In the local bias model approach [83], the density field of galaxies is described as a
function of its local dark matter density, so that §; = F[6]. We can express this relation as

a Taylor series:

b - ;
Sg:bo+b16+3252+...:Zbi(z)él, (4.4)
i=0

where b; are the coefficients of the Taylor expansion. In the linear regime, 6 < 1, and as

by = 0 because (J,) = (0) = 0, then the equation becomes:
§,=b16 4.5)

According to [[142], at large scales this definition of bias is consistent with the bias
obtained from the 2PCFs: for rj; > 40h~! Mpc, b from equation (4.1) is indeed constant
and equivalent to b; from equation (.5]). This b; can then be measured from the different

zero-lag correlations between 9, and 6:

by =

(4.6)



L)

by = 6,59 4.7)
g6
by = <<§55;> (4.8)

Although these relations appear to measure the same parameter b, the results can be af-
fected by the stochasticity in the relation between 9, and 0, that can come from different
effects, such as the intrinsic stochasticity of bias and the projection effects.

Galaxy bias from equations depend on the smoothing angular scale 0 used to
measure 0 and ;. For small angle 6 nonlinearities in the relation between & and &, appear,
and by is no longer consistent with equation (4.3)). The relation between both scales of bias
© and 6 is complex, since the smoothing of d and &, involves the correlations of all the
scales below 6. However, in the linear and local regime bias is constant in both 8 and ®

and then all the estimators can be compared.

4.2.2 Weak Lensing

Weak gravitational lensing (see e.g. [9,/177]]) measures the small changes of galaxy shapes
and brightnesses due to the foreground mass distribution in the line-of-sight of the (source)
galaxies. By studying this effect statistically, assuming that (lensed) galaxies are randomly
oriented in the absence of lensing, one can infer the mass distribution in the foreground of
these source galaxies. As the light distortion is affected by gravity, weak lensing allows us
to measure the total mass distribution, including baryonic and dark matter.

The gravitational potential & of a given density distribution 6 can be defined as:

=0t (4.9)

where Hj and €, are the Hubble parameter and the matter density today, and a is the scale
factor assuming a spatially flat Universe. Assuming General Relativity and no anisotropic
stress, the lensing potential for a given source at position (8, x;) is given by the weighted

line-of-sight projection of ®:

Xs _
wo.z) =2 decb(O,x), (4.10)

where @ is the angular position on the sky, x refers to the comoving radius and y; is
the comoving distance to the sources. The distortion of the source galaxy images can be

described by the convergence x and shear 7 fields that are defined as:

1
K= §V2w, 4.11)
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1
Y=n-+ip= 5(!//,11 — W) +iy o, (4.12)

where y;; = d;d;y. Focusing on the convergence field, combining equations (4.9), (4.10)
and (4.11) we obtain:

3HGQum (% x(xs—X) 6(6, %)
K(6,25) = — / dy == : 4.13

( ) 2¢2 0 Xs a(x) ( )

For simplicity, we define g() as the lensing kernel of the integral of § at y:

3HyQun 2 (s — %)
9(x: %) = 2 2ea(1) (4.14)
so that .

K(0.2) = | 4. 2)8(0.2)dx. (4.15)

Note that K corresponds to a weighted integral of the matter density fluctuations in the
line-of-sight of the source galaxies. ¥ and k are related between them through equations
(@.11) and (4.12). In the flat-sky approximation, conversion between y and x in Fourier
space follows [118]] KS conversion:

K(£) — Ko = D™ (O)¥(€); ¥(£) — 7o = D(O)R(L), (4.16)

where “X” indicates the Fourier transform of the field X, / is the spatial frequency, K and
Yo are small constant offsets which cannot be reconstructed and are often referred to as the

“mass-sheet degeneracy”. D is a combination of second moments of ¢:

f% — f% + 2014,
s

D(¢) = (4.17)

4.3 Methodology

4.3.1 Simulation

For the analysis we use the MICE Grand Challenge simulation [60,78,79], an N-body sim-
ulation of a ACDM cosmology with the following cosmological parameters: €, = 0.25,
og = 0.8, ny = 0.95, Q, = 0.044, Q4 = 0.75, h = 0.7. It has a volume of (3.072h~! Gpc)?
with 4096 particles of mass 2.927 x 10'°4~'M.. The galaxy catalogue has been run
according to a Halo Occupation Distribution (HOD) and a SubHalo Abundance Matching
(SHAM) prescriptions [42]. The parameters of the model have been fitted to reproduce
clustering as a function of luminosity and colour from the Sloan Digital Sky Survey [233],

as well as the luminosity function [33}[34] and colour-magnitude diagrams [35]]. We use the
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MICECATV2 catalogue, an extension of the publicly available MICECATv1 catalogueﬂ
The galaxy catalogue is complete for i < 24 from z = 0.07 to z = 1.4. The catalogue also
contains the lensing quantities (71, % and x) at the position of each galaxy, calculated from
the dark matter field with a resolution of Nside=8192 in healpix (corresponding to a pixel

size of ~ 0.43 arcmin), so the lensing quantities of the galaxies do not have shape noise.

4.3.2 Bias estimation

In this section, we introduce the method used to estimate galaxy bias from the lensing
and density maps of galaxies in the MICE simulation. It consists on the construction of a

template K, for the lensing map k from the density distribution of the foreground galaxies
assuming equation (4.5). Substituting 0 with &, in equation (4.13) gives:

XS
Ke(6) = /O 92 2:)8:(0,%)dx 4.18)

When computing &, numerically, the integral becomes a sum over all lenses in the fore-

ground of the sources:
K(0)= ) 78,(0)Ax, (4.19)

all lens bins

where we have split the foreground galaxies into redshift bins. Ay’ refers to each redshift
bin width in comoving coordinates, ' is the mean lensing weight that corresponds to each
redshift bin and 5§(0) is the galaxy density fluctuation in each redshift bin at position 8,
where 6 now represents a pixel in the sky plane. &,(@) is calculated through &,(0) =
(Pg(8) — Pg)/Pg» Where pg(0) is the density of galaxies projected in the line-of-sight in
each redshift bin and position (pixel) 8. Notice that 5g’(0) is calculated taking into account
all the galaxies inside the volume of the cell corresponding to each pixel and redshift bin.
This means that 5;,(9) is constant inside the bin, and it corresponds to a projection of the
galaxy density weighted by the volume of the corresponding cell.

In Figure we show a schematic picture of the effects of equation (4.19). Dahsed
black line shows ¢(z,z;), while red solid line shows ¢’ in redshift bins of Az =0.2. We
used z; = 1.3 for this figure. The blue shaded region represents J,(z) in a random (just for
the example) pixel in the sky using narrow redshift bins (Az = 0.05). The blue solid line
represents &, for the redshift bins of Az = 0.2. Equation then is equivalent to the
integral of the product of the blue and red solid lines.

Equation is an approximation of (4.18), that assumes that the small fluctuations

in redshift of 5g inside the bins do not affect the results. It also assumes that the mean

"http://cosmohub.pic.es/
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Figure 4.1: Schematic comparison of equations {@.1§J4.19). Dahsed black line shows
q(z,z5), while red solid line shows g’ from equation in redshift bins of Az =0.2.
The blue shaded region represents J,(z) using narrow redshift bins (Az = 0.05). The blue
solid line represents 5(4 for the redshift bins of Az =0.2.

of q(x)0(x) inside the bins is equivalent to the product of the means ¢'8;(6). These
approximations are correct at large scales and when ¢'() and J,(x) are not correlated.
We focus on the simplest case, where the galaxy bias is linear, local and redshift-

independent. In this case, we can estimate b from the following zero-lag correlations of

K and Kg:
_ (KeK)
b= (k) — (ki) (4.20)
b (KeKg) — <K§VK(§V>7 4.21)

(Kgik)
where k" and Kév are the sampling and shot-noise correction factors obtained by random-
izing the galaxy positions and re-calculating x and k,. K is obtained from the mean k of
the galaxies in each pixel. This is affected by the number of source galaxies in the pixel,
causing a noise in (k) that depends on the angular resolution used, reaching a 10% error
for a pixel size of 5 arcmin. This noise is cancelled by subtracting (k¥ x"). On the other
hand, (k,%,) is affected by shot noise, causing an error that increases with the angular res-
olution up to a 20% for a pixel size of 5 arcmin. This noise is cancelled by subtracting
(Ké,v Kév ). This correction assumes a Poisson distribution. To test how well this correction
works for this method, we calculated (i, k,) — (k' k}') using the dark matter particles in-
stead of galaxies, and we compared the results with the true (k) maps from the simulation.
We did this with different dilutions (from 1/70 to 1/700) of the dark matter particles, and
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Figure 4.2: Comparison of k vs k,. Top left shows the k field from the source galaxies
within 0.9 < z < 1.1 and using a Top Hat filter of 50 arcmin of radius. Top right panel
shows K, obtained from equation , using the same smoothing scheme. Bottom panel
shows the comparison between &, and k for the pixels of the maps, with the specified bias
and error obtained. The red line corresponds to a line crossing the origin and its slope
corresponds to b. It is consistent with the linear fit of the distribution of the points.

recover (Kk) better than 1% independently on the dilution, indicating that the shot-noise
subtraction is appropriate.

These are the estimators of bias used in this study. Since the galaxies used from the
MICE simulation do not have shape noise, the estimators in this analysis are not affected
by shape noise. This is not the case in observations, where shape noise is the most important
source of noise of this method and needs to be corrected.

To measure the errors on b, we use the Jack-Knife (JK) method. We divide the area into
16 subsamples. We evaluate b 16 times excluding each time a different subsample. The

error of b is estimated from the standard deviation of these 16 measurements as:

Njg— 1%
_2 b: —b)2
Nk (bi =b)%,

i=1

o(b) ~ (4.22)

where Nk refers to the number of Jack-Knife subsamples used and b; is the bias measured
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by excluding the ith subsample. We checked that the error does not change if we use a
different number of subsamples (between 9 and 100) instead of 16.
Note that we can also measure bias from the following cross correlations, which was

originally used in [4]:
(Yig¥)
v — (B )

b= (i) — (V1) =12 (4.24)

)

As this is not the focus of the study, and we can obtain k from the simulation, we measure
b from equations (4.20]4.21]) in this study. However, in observations we measure the shape
of the galaxies, that is directly related to ;. Because of this, applying this method to data

(4.23)

requires a conversion from kg to ¥; o or from ¥; to k. We address this issue in [44], where
we use conversions based on [[118] to apply this method to DES SV data. Another aspect
to take into account for data analysis is that since shape noise is the main source of noise
in the measurement, we want to avoid the terms that involve variance of lensing quantities

(xKk) and (%), since these terms are the most affected by shape noise.

4.3.3 Implementation

In Figure 4.2] we illustrate our procedure. We used a ~ 900 square degree area from the
MICE simulation corresponding to 0° < RA < 30° and 0° < DEC < 30°. The top left panel
shows the convergence map k, located at z ~ 1. The top right panel shows the constructed
convergence template, K, derived via equation (#.19). Both maps have been smoothed
using a circular top hat filter of 50 arcmin radius. We can see that K, is a biased version of
Kk at large scales. In the bottom panel we show the scatter plot of k versus kg, using pixels
of 7 arcmin of side in each map. The bias b shown in the plot is estimated via equation
(4.20), and the error corresponds to the Jack-Knife errors from equation . In red, we
show a line crossing the origin and with the slope corresponding to this estimated bias. We
have checked that the b value derived from the zero-lag statistics is in agreement with a
linear fit to the scatter plot at the 0.1% level. This is another indication that we are in the
linear regime, where we can assume equation (#4.5).

We note that the expression for the bias from equations (#.20[4.2T)) assumes equation
(@.5). However, k is a projection of & in the line-of-sight weighted by the lensing kernel, as
well as K,. Thus, the relation between k and K, is a constant that comes from the redshift
dependence of bias weighted by the redshift dependence of the lensing kernel. Hence, the

bias obtained in this example is a weighted mean of galaxy bias as a function of redshift.
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But we can take this dependence into account to measure bias at different redshifts using
tomography as we explain in §4.3.5|below.

4.3.4 Numerical effects and parameters

There are different parameters that can affect our implementation presented in We
have studied in which regime our method is valid, or consistent with the linear bias from
equation @), and what are the dependences when it is not valid. With this, we can ei-
ther calibrate our results or restrict to the regimes where our bias measurement is carried
out. Here we describe the main numerical effects and our choice of parameters for our

implementation.

Catalogue selection

We used an area of 0° < RA, DEC < 30°. This is the same area we used for the fiducial bias
measurements from equation (4.3), so that our comparison of both bias is not affected by
differences in area or sample variance. This area is similar to DES Y1 data, so this study
can be seen as an estimation of the theoretical limitations of this method on DES Y1.

We apply a magnitude cut for the foreground galaxies of i < 22.5, to be able to compare
it with measurements in the DES SV data [59]]. However, other selections can be done for
this method, such us selecting galaxies by colour or luminosity, in order to measure colour
and luminosity dependent bias, that would give information about galaxy formation and

evolution.

Redshift bin width

We use redshift bins of Az = 0.2 for the foreground galaxies. In this analysis we use the
true redshift from the simulation, but in data this method would be also affected by photo-z
erTors.

For the choice of Az we need to take into account two effects. On one side, the use of
wide redshift bins would mean losing information from the small scale fluctuations of &, in
the line-of-sight, since we project the galaxies in the same bin to measure &,. We have seen
that this produces a deviation in the value of galaxy bias that is larger than 5% for Az > 0.2,
and it can be larger than 10% for Az > 0.3. We explore this in Figure and in
We take this effect into account when we estimate bias in tomographic bins at the end of
the chapter. When we have photo-z errors, the redshift binning effect is not as important as

for the ideal case. If the photo-z errors dominate, the dilution of the small scale fluctuations
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come from the photo-z errors, and the redshift binning does not affect much. We address
the effects of photo-z errors in [44].

On the other hand, the use of narrow redshift bins requires a smoothing of the estimation
of pg(z). If we calculate p, for each redshift bin alone, for narrow bins p,(z) is affected by
the structure fluctuation in each particular redshift bin, and this causes a smoothing in the
final estimation of J,. Some smoothing of p, in redshift is needed to avoid this effect when

using narrow bins. This is relevant for Az < 0.03.

Angular scale

To generate the maps we pixelize the sky using a sinusoidal projection (which consists
on redefining RA as (RA — 15)cos(DEC) in order to obtain a symmetric map with pixels
of equal area) with an angular resolution of 50 arcmin, so that the area of the pixels is
(50 arcmin)?. Then galaxies are projected in different redshift bins according to their true
redshift.

The bias estimated from this method is not necessarily consistent with the bias from
equation (4.3 at small scales. These two methods are only expected to agree at large
scales, in the linear bias regime. Moreover, this method requires a projection in the line-
of-sight, so that different scales (weighted differently according to the lensing kernel) are
mixed for the same angular scale. However, we have seen that bias is constant for angular
scales larger than ® = 30 arcmin, meaning that linear scales are dominant in this regime.
In Figure [4.3| we show the agreement of galaxy bias between equations and
when we use a pixel scale of 50 arcmin, as a visual example of this.

Smoothing

An alternative way to calculate the maps in a given smoothing scale is possible by using
small pixels and applying a smoothing kernel of the corresponding scale to these pixels,
instead of directly using large pixels. This smoothing scheme has two advantages. First of
all, the area that can be used is optimized, since the pixels affected by the edges are only
the closest to the mask (see Fig. 4.9). This is important for small areas and irregular masks.
The other advantage of this scheme is that the maps produced give also a good visual image
of the structures and how the field changes in the sky. However, the JK estimator has to be
rescaled to obtain the correct errors, since neighbour JK subsamples are correlated due to
the smoothing kernel. We address this in [44]].

The results for a given scale are equivalent using this smoothing scheme or just enlarg-
ing the pixels, so in this chapter we do not use any smoothing kernel in order to avoid the

need of calibrating the JK estimator. For irregular masks, as in [44], smoothing allows to
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optimize the area used, and because of this we apply a smoothing kernel into very small
pixels.

Exceptionally, in Figure 4.2 we apply the second scheme, and we use pixels of 7 arcmin
and we apply a Top Hat filter of 50 arcmin to smooth the field. We do this only in this
figure in order to have a better visibility of the structures of the maps and the shape of the
area used. For the rest of the analysis of the chapter, we use pixels of 50arcmin’® and no
smoothing kernel afterwards. We then obtain the values of bias, and we do not need to

rescale the JK errors obtianed.

Edge effects

We use a limited area and we project the sky to obtain the maps. When we pixelize the
map with a definite pixel scale, due to the projection and the shape of the area used, part of
the pixels in the edges are partially affected by the edges. We exclude these pixels from the
analysis.

When a smoothing kernel is applied to the pixelized map, the pixels that are close to
the edges are also affected by them. We exclude the pixels whose distance to the edges is

smaller than the smoothing radius.

Source redshift

We estimate the k field at z ~ 1.3 by calculating the mean k of the source galaxies with
1.2 < z < 1.4 in each pixel. The redshift range used ensures we have enough density of
galaxies to correctly calculate k.

Theoretically one should take into account the redshift distribution of the source galax-
ies so that each galaxy contributes to &, with its position x;. However, approximating these

galaxies to a plane in their mean position at z ~ 1.3 causes less than a 1% effect.

Foreground galaxy redshift range

Equation (4.19) is strongly dependent on the redshift range used for the foreground galax-
ies. If we use only a partial redshift range for the construction of kg, the values of «,
obtained have a lower amplitude, since in the sum we are missing the contribution coming
from the unused redshift range. Moreover, as bias depends on redshift, using a wide red-
shift range for the foreground galaxies involves averaging this redshift dependent bias in the

final result. However, this can be corrected for and used to obtain the bias in tomographic

bins, as discussed in
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We use single redshift bins of Az = 0.2 for the foreground galaxies in the range of 0.2 <
7 < 1.2 to estimate the bias in each of these bins. This produces a galaxy bias estimation of

5 points in the whole redshift range available (for this method) in the simulation.

4.3.5 Redshift dependence

This method involves an integral (or a sum in practice) along the redshift direction, and
because of this the bias obtained is a weighted average of the redshift dependent bias.
However, we can estimate galaxy bias in a given redshift bin if we restrict the calculation to
the foreground galaxies in that redshift bin, assuming that bias does not change significantly
in the bin. If this is the case, we can measure the redshift-dependent bias using tomographic
redshift bins.

Since K, is obtained from the contribution of all the galaxies in front of the sources, if
we restrict the redshift range for the calculation of k, we need to renormalize the result by
taking into account the contribution from the unused redshift range. Here is a description
of the correction that we apply to estimate redshift dependent bias using tomographic bins.

Taking into account the sum from equation (4.19)), and using 0 instead of Bg, we have:

k@)= Y 768(0)Ar, (4.25)

all lens bins
where we remind the reader that ¢’ is the weak-lensing efficiency kernel of each bin. If we
only use the foreground galaxies (or the dark matter field) in a single redshift bin between

comoving coordinates Y, and Ynqx,» then we call this partial convergence field k’, where

<(0) =q0y'8 = gay' [ dx (2)5(6.2). (4.26)

and . ( )
-/ — max d & (4.27)

q /Xmin x AX

AX = Xmax — Xmin> and p’() is the radial selection function (constant for the dark matter
field in comoving coordinates, since the dark matter density is constant in these coordi-
nates), normalized to 1 and restricted to the bin ¥,in < X < Xmax- 10 simplify the notation,
when the limits are not specified in the integral, the integral will go through the whole
range between 0 and . Note that, as p’()) = 0 for all )y outside the bin, only the range
Amin < X < Xmax contributes to the integral in equation (4.26)), and p’(x) implies a projec-
tion inside the bin. The factor §’ appears to be outside the integral [dyp’(x)6(0,) when
working in bins. This is exact for infinitely thin bins, and is also correct if ¢() is not corre-
lated with p’(x )& () inside the bin. So, to summarize, the expression from equation
is affected by the projection in the bin, and the correlation between ¢ () and p’(x)d(x).
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For our purpose we are interested in the factors (k'x), (k'k’) and (kx) to be able to
measure galaxy bias in tomographic redshift bins. According to these definitions, together

with equation (4.15)), we have:

K'k(0) ZQIAX//P/(Xl)dm OXX dx2q(x2)E(r12) (4.28)

K'k'(®) = (7Ax')? / P (n)dx / dx2p' (x2)€ (r12) (4.29)
Xs Xs

K (©) = /O a(0)dx /0 a()dxat (ma), (430)

with 73, = x? + x5 + 22122 c0s 6, & (r12) is the 2PCF and @ is the angular separation.

The quantities we are interested in are the ratios:

S1= <<’1<</1§)> 4.31)
and .
= <<KK,’,‘<>> (4.32)
For the general case,
(Kakp) = 2% / * dnn / * drars / " dnous(©), (4.33)
T=R* Jo 0 0

where @2 = 1 +r3 — 2riracos1, k4 and kg can be k, k/, k, or Ky, 1 is the angular
separation between the vectors 1 and 2 and @(®) is the two-point angular correlation
function of the two fields A and B, defined as

045(0) = /O Cdi /0 " dxsa(en)a(es)p (o) (xs)Eas (1), (4.34)

where p’(xap) are the corresponding selection functions of the fields A and B, and Exp(r)
is the 3D two-point cross-correlation function, that in this case corresponds to the dark
matter & (r).

Equations can be obtained analytically and they are weakly dependent on
cosmology (the only dependence comes from the ratios between the lensing kernels). Equa-
tions (.31]4.32)) describe the contribution of these zero-lag correlations of x in a given
redshift bin for the dark matter field. As the dark matter field has a bias of 1 by definition,
using the galaxies instead of the dark matter field to compute these equations would give
b f1 2 instead of fi, , where b’ is the galaxy bias in the redshift bin used (assuming that
galaxy bias is constant inside the redshift bin). Then, to estimate galaxy bias in these bins,
we need to obtain the bias from equations using only the galaxies of these bins,

and then rescale the bias according to the values of f; (or f) as described here:
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Figure 4.3: Comparison of different definitions of bias. Solid cyan line shows the bias as
defined in equation (#.3)). The dashed black, dash-dotted green and dotted red lines show
bias according to the different definitions from equations (4.614.8]).

S S L)

P T () 3
1 () — (Vi)
V= o1 , (4.36)

where Kk and KéN are obtained from the galaxies in a given redshift bin.

4.4 Results

4.4.1 Testing

In this study we test our method against a fiducial galaxy bias. For this, we measure ®(®)
and wg(O) of dark matter and galaxies in the simulation for different redshift bins, using
the same area and galaxies that we use for our method. We also estimate bias from the
definitions in equations (4.64.8) in the same simulation to study the consistency between
the different bias definitions.

In Figure we compare different estimations of galaxy bias from the MICE Simu-
lation, using an area of 0° < RA, DEC < 30°. The solid cyan line represents the bias
definition from equation (#.3). We measure ®(®) and @,(®) as a function of the angular
scale, and to obtain the bias we fit the ratio as constant between 6 and 60 arcmin. The angu-

lar correlation function involves different comoving scales for different redshifts, and then
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fixing the same angular scales for the galaxy bias implies a mix of physical scales. How-
ever, for large enough scales, bias is constant and is not affected by this. We have checked
that bias is constant at these scales and in all redshift bins, an indication that we are in
the linear regime. The galaxy bias obtained from equations ({.6}4.8) are shown in dashed
black line, dotted red line and dash-dotted green line as specified in the legend. This has
been calculated in each redshift bin by pixelating § and &, in pixels of area (50 arcmin)?
using redshift bins of Az = 0.2. The agreement between the solid cyan and the dashed
black lines confirms that linear bias from @(®) converges to local bias at large scales. On
the other hand, the differences in the different expressions of equations (#.6}{4.8)) implies a
noise between 9, and  that affects our estimations of bias. The differences between these
estimators can also be seen as an indirect measurement of this noise, that can come from
stochasticity or other effects as projections and pixelization. We see that the same effect
appears when using equation (4.39)) to estimate galaxy bias, and this can be explained by
the projection effect due to the redshift binning, as discussed below in Figures and 4.5]
We take into account this effect to estimate tomographic bias in
For testing purposes, we construct here the bias-corrected k, map, K,, defined as:
5,(6)

’A(g(e) = Z q/g—

AL (4.37)

all lens bins

where &', or b(z), corresponds to the linear bias that can be obtained from equations (4.3)
or (4.6/4.8). In analogy with equations (4.20[4.2T)), we can calculate the corresponding

normalized bias between the fcg and « fields:

a (Ko K)
b= (4.38)
b (KgKg) — <Kév7<év> (4.39)

(Rgi)
Under this definition, b = 1 suggests that this method is measuring linear bias, since it is
basically assuming equation (4.5).

Figure shows how the estimator b changes as a function of the angular scale, de-
fined by the pixel scale, using different estimators of b and b(z). For the dashed red and
blue lines we used b(z) from equation to obtain b from (&, k) /(xk) and (KK, ) / (R,
respectively (we omit the (k"Vk™) factors for visual simplicity). We can see that the mea-
surements are constant for ® > 30 arcmin, meaning that we are in the linear regime in
these scales. However, there is a 5% difference between the two estimators at large scales

(at small scales nonlinearities appear and the difference is larger). This can be interpreted
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Figure 4.4: Normalized bias from the zero-lag cross correlations of k and K, as a function
of the angular smoothing scale, normalized by the redshift dependent bias from different
estimators. Dashed red line shows (k;k)/(kk), where &, has been obtained normalizing
K by the bias from equation . The solid red line shows the same, but normalizing
K, from the bias obtained from (0,0)/(60). For the dashed blue line, (k,X,)/(kK,k) has
been obtained by normalizing K, by bias from equation . The solid blue line shows the
same, but normalizing &, by the bias from (8,8)/(0,0)

from Figure (4.3), where we see that the estimators (5,8)/(86) and (5,0,)/(0,0) are
slightly different. In fact, (K;k)/(Kkk) is indirectly measuring (5,0)/(00), which is con-
sistent with bias from equation (at the 1% level), while (&, Ky)/(K;k) is indirectly
measuring (8, 0;)/(J,6), which is slightly higher than bias from equation (#.3). If we use
b = (8,6)/(85) for the bias normalization of (K;x)/(xk) (shown in the solid red line)
and b = (8,8,)/(0,0) for the bias normalization of (K,K,)/(K, k) (shown in the solid blue
line), then both estimations are consistent, as expected. As in Figure @ for b, the differ-
ence between both estimators of b coming from this test can be seen as an indication (and
a measurement) of the noise in the relation between J, and 0, giving a factor of 5%.

In order to go deeper in the analysis of these numerical effects and see whether these
differences between both estimators come from the intrinsic relation between d, and & or

from numerical systematics, we constructed the following template x;,:
N
Kn(0) =Y 4'8'(0)AY, (4.40)
i=0

which corresponds to the same exact calculation than equation (#.19) for k,, but using
dark matter particles instead of galaxies. This field x;, is expected to reproduce k exactly
except for the numerical differences between the method and how the original x is obtained,

which basically come from the redshift binning and projection discussed below equations
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Figure 4.5: b, defined in equations (4.41l4.42), as a function of the redshift bin width
used, Az, for the two b,, estimators.

(4.19)4.27). In order to avoid noise in the K map, we use k7, defined as the true map directly
obtained from the high resolution map of the simulation [[79,80,89], and calculated the bias

of these two estimators of x as:

_ (KuKr)
"= Cerkr) (4.41)
/NN
bm — <KmKn<11>< K<T7§m Km> (4_42)

that should give b,, = 1 if there are no numerical systematics.

We have found that b, behaves as b in our tests, meaning that the differences be-
tween the different estimators can be seen as a measurement of the numerical effects on
the method. In fact, we have found that the differences mainly come from the projection
effect in the redshift bins, as shown in Figure[4.5] Here we show the two estimators of by, as
a function of the redshift bin width, Az. We use a pixel scale of 50 arcmin, a source redshift
of z; = 1 and we use all the dark matter particles (diluted with respect to the total number
of particles, but this does not affect the result) within z < 1. We see that the two estimators
agree when we use narrow redshift bins, but the difference between both increases with Az.
For Az = 0.2, the difference is the 5% that we see in Figure for the galaxies. This test
measures the redshift binning and the projection impacts on this method, and can also be
used to calibrate the measurements. In fact, f; and f> can be used to take into account these
projections, specified by the selection function p’(), and the redshift binning. But in the
case of Figures [4.4] and [4.5] we use all the redshift range in the foreground of the sources
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and we have not corrected by fi and f>. In the case of Figure 4.4] instead of using f; and
2, we correct for this effect by using the bias which is estimated using the same redshift
bin width as in the k estimates. For narrow redshift bins these corrections are negligible.

In the next section we will apply the fi and f, corrections to the tomographic estimations.

4.4.2 Redshift dependent bias

In Figure 4.6] we show a comparison between the theoretical predictions (in dashed black
lines) of fi and the measurements in the MICE simulation (in green points) of (K, k) /(kk),
in 6 different redshift bins of Az = 0.2, using a redshift for the sources of z; = 1.3. Here
fcg, is obtained from equation but restricting the galaxies to each bin. To obtain the
values for the simulation, we computed & in the corresponding bins, using b = (5,6) /(5)
for the normalization of k. Then, fcé’, can be seen as an estimator of x obtained from 5g /b.
We see a good agreement between theory and simulations. Note that the amplitude of f;
is higher at the intermediate redshifts, due to the contribution of the lensing kernel, but
this curve also reflects effects such as the projections due to the binning (so the fact that
we ignore that g(x) and p’(x)6(x) might be correlated inside the bin), the correlation
functions of different distances (so the fact that (k'x) has a contribution coming from the
correlation between the dark matter distribution inside and outside the bin) or the redshift
dependence of the smoothing scale of ®(®) (different redshifts have different smoothing
comoving scales). The final amplitude corresponds to fi, so this reflects the contribution
to b of each of these redshift bins.

Equations (4.35]4.36) give a tool that can be used for tomographic measurements of
galaxy bias, since we can estimate the bias using different redshift bins of the foreground
galaxies if we take this correction into account. That is, we can measure b’ for a given
redshift by calculating kg in that bin and using equations (#.35]4.36).

Figure shows the estimation of the tomographic bias using different redshift bins
of Az = 0.2 for both estimators from equations ({.35]4.36)), represented as blue and red
points as specified in the legend. We compare them with the fiducial bias from equations
(4.3114.6/4.7) shown in solid cyan, dashed black and dash-dotted green lines respectively.
We see that the method we present in this chapter gives consistent results with linear bias.
There are some slight differences for the estimator from equation which, as mentioned
above, is due to the effects of projection and binning. But this effect is not shown from the
tomographic bias obtained from our method, because we take into account these effect in
the factors f; and f,. Note also that the two methods, represented by the red and blue

points, give very similar results (apart from the fourth bin).
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Figure 4.6: Comparison of (k') /(xk) between theory (dashed black line) and simulation
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Figure 4.7: Redshift dependent bias estimated form our method, shown in red and blue
points as specified in the legend. For this we used tomographic redshift bins of Az = 0.2
and a source redshift of zg = 1.3. The solid cyan line shows linear bias from equation
(.3), fitting bias as constant between 6 and 60 arcmin. The dashed black line shows bias
estimated from (8,6)/(66), using the same redshift bins of Az = 0.2. The dash-dotted
green line shows bias estimaed from (6,0,)/(8;8) in the same redshift bins.
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We can see that the errors are very large for the highest redshift bin. This is due to the
fact that, due to the lensing kernel, f; and f, are very small, and then the measurements in
this bin are very sensitive to small changes. The best error bars appear where the lensing
kernel is higher, so the potential of this method is optimal in the maximum of the lensing
kernel. Hence, different source redshifts might be combined in order to optimize the anal-
ysis for all redshifts. In [44] we combine the results using multiple redshift bins for the
source galaxies, and we fit the galaxy bias from the combination of these measurements,
using both k; and ¥, and doing a full-covariance analysis. In this chapter we do not ap-
ply any fit, since we directly measure bias from equations (4.35]4.36) using a fixed source
redshift bin.

This study proves that we can use this method to measure linear bias, since our method
is consistent with the linear bias measured from equation (4.3). This method has some
advantages with respect to other estimators of bias. First of all, it can be applied to ob-
servations, as discussed in In this case, we do not need to assume a dark matter
distribution, since we can obtain this information from the weak lensing maps, and hence
this method is able to measure bias from the direct comparison between the galaxy and dark
matter distributions. Moreover, this method does not depend strongly on 0g, as most of the
common methods to measure bias. However, it depends on ,,, but it is weakly dependent
on the other cosmological parameters. The combination of this method with other estima-
tors of bias that depend on og allow us to constrain at the same time bias and cosmology.

Because of this, this method is a very good complement to other measurements of bias.

4.5 Application to data

When applying this method to data, we need to take into account other aspects for the
measurements. First of all, we cannot measure k directly from observations, since the
lensing information comes from the ellipticity of the galaxies. Then, we need to obtain y
from the measured ellipticities, assuming some shape noise, and then convert y to K or K, to
¥, to measure bias from equations (4.20[4.21)) or (4.23]4.24). [223]] explored the conversion

from ellipticities to k for the DES SV data, obtaining the largest mass map from weak

lensing ever observed. They also showed the consistency between the mass map and the
foreground galaxy distribution. However, it is important to mention that, since shape noise
is the most important source of uncertainty for this method in observations, the terms (k)
and (yy) are very noisy and are not optimal for the analysis.

Moreover, for photometric surveys we need to take into account the photo-z estimation.

The uncertainty in the redshift of the galaxies causes an smoothing of K, that has to be
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calibrated from the understanding of the photo-z errors, as well as from the distribution
of the galaxies in redshift. This has to be taken into account when defining the selection
functions in the calculation of f; and f5.

Other aspects from observations, such as the mask and the shape measurements, can
affect our measurements and must be taken into account. In this section we show the main
results and a summary of [44]], where we apply this method to DES SV data to measure

galaxy bias.

4.5.1 Bias estimation from the galaxy density field and the weak lens-
ing field

The information of galaxy bias can be extracted through the cross- and auto-correlation of

the k¥ and K‘é fields. In this case, we calculate

,_ (k)

- (ikgK)

For infinitely thin redshift bins, or constant bias, " in equation directly measures
the galaxy bias b of the lens. However, once the lens and source samples span a finite

(4.43)

redshift range (see e.g. Figure[4.8)), &' is a function of the source p, and lens ¢’ distribution
and is different from b by some factor f(¢’, ps), so that

b= f(¢",ps)b. (4.44)

Note that f can be determined if b(z) is known. Since we have b(z) = 1 for the case of dark

matter, we can calculate f by calculating b" and setting b(z) = 1, or
(K) _ (K(6,0',2)K(0.9'. 7))
<K/K> <K/(67¢/7ZS)K<67PS)> ’
where f here corresponds to f; in equation (4.32).

We use a slightly different estimator for ' compared to equation (4.43) in practice.

Combined with equation (#.44)), our estimator for galaxy bias is:

h— l <’)/a,g’}/(x,g> - <Ya]\,]g’)éx]\fg> :
I Wog¥e) = (Yag¥a)

where o = 1,2 refers to the two components of 7.

f(¢'.ps) = (4.45)

(4.46)

Here we replaced k' by ¥,,, which is possible since the two quantities are interchange-
able through equation (4.16). In this work we follow the implementation of equation (4.16)

as described in [223]] and [45]] to construct K and Y maps as needed. The main reason to
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work with 7, is that in our data set, ¥, is much noisier compared to the k; due to the pres-
ence of the shape noise, therefore converting ¥,, to k, would be suboptimal to converting
Ké to }/a?g. This choice depends somewhat on the specific data quality at hand. In addition,
the term (}/g‘\f g}/g‘\f g> is introduced to account for the shot noise arising from the finite number
of galaxies in the galaxy density field. The term is calculated by randomizing the galaxy
positions when calculating 7, ,. Similarly, the <ng gj/gv ) term in the denominator is a small
correction that accounts for any spurious correlation that can come from the mask.

The measurement from this method would depend on assumptions of the cosmological
model in the construction of Ké and the calculation of f. Except for the literal linear depen-
dence on HpQp,, due to the ratio nature of the measurement, most other parameters tend to
cancel out. Within the current constraints from Planck, the uncertainty in the cosmological
parameters affect the measurements at the percent level, which is well within the measure-
ment errors (> 10%). All cosmological parameters used in the calculation of this work are
consistent with the MICE GC simulations.

4.5.2 Multiple source-lens samples

We define several source and lens samples, or “bins”, based on their photometric redshift
(photo-z), with the lens samples labeled by i and the source samples labeled by j. We use
the notation b?‘j to represent the bias measured with Yy, using the source bin j and lens bin
i.

Our final estimate of the redshift-dependent galaxy bias and its uncertainty is calculated
by combining bf‘j estimates from the two components of shear and all source redshift bins
J. We estimate it by taking into account the full covariance between all the measurements
of the galaxy bias in the same lens bin i. Our final estimate b; and uncertainty o (b;) quoted

are derived via:

bi =M C7'Dim! ;' my) 7, (4.47)
o(b)* =M C;'M) 7, (4.48)

where D is a one dimensional array containing all the measurements b’;x’ ; of galaxy bias
in this lens bin i (including measurement from the two shear components and possibly
multiple source bins), M is a 1D array of the same length as D with all elements being
1, and C! is the unbiased inverse covariant matrix between all bix, j measurements, as
estimated by Jack-Knife (JK) resampling [[100]:

D; = {b{;}, all possible «, j (4.49)
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Figure 4.8: Normalized redshift distribution of the lens (top) and source (bottom) samples
as estimated from the photo-z code SKYNET. Each curve represents the stacked PDF for
all galaxies in the photo-z bin determined by zmean as listed in the labels.

C; ' =1Cov![Dy], (4.50)

where 7= (N —v —2)/(N —1). N is the number of JK samples, and v is the dimension
of C. Note that the matrix inversion of C; becomes unstable when the measurements b?‘j
are highly correlated. This is the case in the noiseless simulations, which we will thus
only show the weighted mean of the measurements for our results (Figure {.T1). For the
noisy simulations and data, we quote equation and equation (4.48)) as our results.
Also note that in the estimators b; and &(b;) we have not accounted for the correlation
between different lens bins i. As we discuss in §4.5.4.1] since the main contribution of the
covariance comes from the coupling of the mask, noise and large-scale structures in the
data, we estimate the covariance from a large number of simulations instead of using the
JK method.
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4.5.3 Data and simulations

We use the DES SV data collected using the Dark Energy Camera [76] from Novem-
ber 2012 to February 2013 and that have been processed through the Data Management
pipeline described in [[67,[153,159,191]. Individual images are stacked, objects are detected
and their photometric/morphological properties are measured using the software packages
SCAMP [23]], SWARP [26]], PSFEX [24] and SEXTRACTOR [25]]. The final product, the
SVAI1 Gold catalo is the foundation of all catalogues described below. We use a ~116.2
deg? subset of the data in the South Pole Telescope East (SPT-E) footprint, which is the
largest contiguous region in the SV dataset. This data set is also used in other DES weak

lensing and large-scale structure analyzes [12,145,60,91,214,223].

4.5.3.1 Photo-7 catalogue

The photo-z of each galaxy is estimated through the SKYNET code [93]]. SKYNET is a
machine learning algorithm that has been extensively tested in [182] and [37] to perform
well in controlled simulation tests. To test the robustness of our results, we also carry
out our main analysis using two other photo-z codes which were tested in [[182] and [37]:
BPZ [[14], and TPZ [40[/41]]. We discuss in §4.5.4.3|the results from these different photo-z
codes.

The photo-z codes output a PDF for each galaxy describing the probability of the galaxy
being at redshift z. We first use the mean of the PDF, zycan to separate the galaxies into
redshift bins, and then use the full PDF to calculate equation (4.45)). In Figure we show
the normalized redshift distribution for each lens and source bin as defined below.

4.5.3.2 Galaxy catalogue

To generate the Kk, maps, we use the same “Benchmark™ sample used in [91] and [60]. This
is a magnitude-limited galaxy sample at 18 < i < 22.5 derived from the SVA1 Gold catalog
with additional cleaning with color, region, and star-galaxy classification cuts (see [60]
for full details of this sample). The final area is ~ 116.2 square degrees with an average
galaxy number density of 5.6 per arcmin?. Five redshift bins were used from Zmean = 0.2
t0 Zmean = 1.2 with AZpean = 0.2. The magnitude-limited sample is constructed by using
only the sky regions with limiting magnitude deeper than i = 22.5, where the limiting

magnitude is estimated by modelling the survey depth as a function of magnitude and

“https://cdcvs.fnal.gov/redmine/projects/des-sci-verification/wiki/SVA1_Gold_
Catalog_v10
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magnitude errors [181]]. Various systematics tests on the Benchmark has been performed
in [60] and [135].

4.5.3.3 Shear catalogue

Two shear catalogues are available for the DES SV data based on two independent shear
measurement codes NGMIX [193]] and IM3SHAPE [237]]. Both catalogues have been tested
rigorously in [[109] and have been shown to pass the requirements on the systematic uncer-
tainties for the SV data. Our main analysis is based on NGMIX due to its higher effective

2 compared to 3.7 per arcmin® for IM3SHAPE).

number density of galaxies (5.7 per arcmin
However both catalogues produce consistent results. We adopt the selection cuts recom-
mended in [109] for both catalogues. This galaxy sample is therefore consistent with the
other DES SV measurements in e.g., [[12,214]]. Similar to these DES SV papers, we perform
all our measurements on a blinded catalog (for details of the blinding procedure, see [[109]),
and only un-blind when the analysis is finalized.

7 and » maps are generated from the shear catalogues for five redshift bins between
Zmean = 0.4 and Zmean = 1.4 with Azpean = 0.2. Note part of the highest redshift bin lies
outside of the recommended photo-z selection according to [37]] (zmean = 0.3 — 1.3). We
discard this bin in the final analysis due to low signal-to-noise (see §4.5.4.2), but for future

work it would be necessary to validate the entire photo-z range use

4.5.3.4 Mask

Two masks are used in this work. First, we apply a common mask to all maps used in this
work, we will refer this mask as the “map mask”. The mask is constructed by re-pixelating

2 we use to construct

the i > 22.5 depth map into the coarser (flat) pixel grid of 5x5 arcmin
all maps. The depth mask has a much higher resolution (nside = 4096 Healpix map) than
this grid, which means some pixels in the new grid will be partially masked in the original
Healpix grid. We discard pixels in the new grid with more than half of the area masked
in the Healpix grid. The remaining partially masked pixels causes effectively a ~ 3%
increase in the total area. The partially masked pixels will be taken into account later when
generating K, (we scale the mean number of galaxy per pixel by the appropriate pixel area).
We also discard pixels without any source galaxies.

Pixels on the edges of our mask will be affected by the smoothing we apply to the maps.
In addition, when performing the KS conversion, the mask can affect our results. We thus

define a second “bias mask”, where we start from the map mask and further mask pixels

3 Also note that the lowest redshift lens bin also exceeds the range that is validated. However, since the
sample is brighter, the main source of error from depth variation should not be significant.
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Figure 4.9: Mask used in this work. The black region shows where the galaxy bias is
calculated (the bias mask). The black+grey map region is where all maps are made (the
map mask).

that are closer than half a smoothing scale away from any masked pixels except for holes
smaller than 1.5 pixelﬂ

4.5.3.5 Simulations

In this work we use the same mock galaxy catalogue from the MICE simulations with
the region 0° <RA< 30°, 0° <Dec< 30°, while we use a larger region (0° <RA< 90°,
0° <Dec< 30°) to estimate the effect from cosmic variance. In addition, we incorporate
shape noise and masking effects that are matched to the data. For shape noise, we draw
randomly from the ellipticity distribution in the data and add linearly to the true shear in
the mock catalog to yield ellipticity measurements for all galaxies in the mock catalog. We
also make sure that the source galaxy number density is matched between simulation and
data in each redshift bin. For the mask, we simply apply the same mask from the data to
the simulations. Note that the un-masked simulation area is ~ 8 times larger than the data,
thus applying the mask increases the statistical uncertainty.

Finally, to investigate the effect of photo-z uncertainties, we add a Gaussian photo-z

error to each MICE galaxy according to its true redshift. The standard deviation of the

“The reason for not apodizing the small masks is that it would reduce significantly the region unmasked
and thus the statistical power of our measurement. We have tested in simulations that the presence of these
small holes do not affect our final measurements.. We consider only pixels surviving the bias mask when
estimating galaxy bias. Figure @] shows both masks used in this work.
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Gaussian uncertainty follows ¢(z) = 0.03(1 +z). This model for the photo-z error is sim-
plistic, but since we use this set of photo-z simulations mainly to test our algorithm (the
calculation of f in equation (4.45)), we believe a simple model will serve its purpose.

We note that the larger patch of MICE simulation used in this work (~ 30 x 30 square
degrees) is of the order of what is expected for the first year of DES data (~2,000 degree
square and ~ 1 magnitude shallower). Thus, the simulation measurements shown in this

work also serves as a rough forecast for our method applied on the first year of DES data.

4.5.4 Analysis and results
4.5.4.1 Simulation tests

Here we start from an ideal setup in the simulations that is very close to that used in the
previous section and gradually degrade the simulations until they match our data. Below

we list the series of steps we take:

1. use the full area (~ 900 deg?) with the true ¥ maps
2. repeat above with photo-z errors included

3. repeat above with shape noise included

4. repeat above with SV mask applied

5. repeat above with 12 different SV-like areas on the sky, and vary the shape noise 100

times

Figureillustrates an example of how the ¥; ¢ and ¥ maps degrade over these tests. The
left column shows the ¥ , maps while the right column shows the y; maps. Note that the
color bars on the upper (lower) two maps in the right panel are 2 (4) times higher compared
to the left column. This is to accommodate for the large change in scales on the right arising
from shape noise in the y; maps. The first row corresponds to (i) above, and we can visually
see the correspondence of some structures between the two maps. Note that the ¥; ¢ map
only contributes to part of the y; map, which is the reason that we do not expect even the
true ¥ , and ¥; maps to agree perfectly. The second row shows the map with photo-z errors
included, corresponding to the step (i1). We find that the real structures in the maps are
smoothed by the photo-z uncertainties, lowering the amplitude of the map. The smoothing
from the photo-z is more visible in the ¥; ¢ map, since the y; map probes an integrated effect
and is less affected by photo-z errors. The third row shows what happens when shape noise

is included, which corresponds to the step (iii) above. We find the structures in the y; map
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Figure 4.10: Example of simulation maps used in this work. The left column show ¥ ,
maps and the right column show ¥; maps. This ¥; o maps are generated from the source
redshift bin z (or zmean)= 1.0 — 1.2 and the lens redshift bin z (or Zmean)= 0.4 —0.6. The 7
maps are generated from the source redshift bin z (or Zmean)= 1.0 — 1.2. The galaxy bias
for the lens galaxies can be measured by cross-correlating the left and the right column.
From top to bottom illustrates the different stages of the degradation of the simulations to
match the data. The first row shows the ¥; , map against the true y; map for the full 30x30
deg? area. The second row shows the same maps with photo-z errors included, slightly
smearing out the structures in both maps. The third row shows the same ¥ , map as before
against the 7; that contains shape noise, making the amplitude higher. Finally, the bottom
row shows both maps with the SV mask applied, which is also marked in the third row
for reference. Note that the color scales on the y; maps is 2 (4) times higher in the upper
(lower) two panels than that of the y; , maps.
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becomes barely visible in the presence of noise, with the amplitude much higher than the
noiseless case as expected. The bottom row corresponds to the step (iv) above, where the
SV mask is applied to both maps. For the ¥, map this is merely a decrease in the area. But
for the ¥, ; map, this also affects the conversion from &, to ¥,, causing edge effects in the
Y1,¢ map which are visible in the bottom-left map in Figure .10} Step (v) is achieved by
moving the mask around and drawing different random realizations of shape noise for the
source galaxies.

With all maps generated, we then calculate the redshift-dependent galaxy bias following
equation and equation (4.48)) for each of the steps from (i) to (v). In Figure d.11| we
show the result for the different stages, overlaid with the bias from the 2PCF measurement
described in In step (1), our measurements recover the 2PCF estimates, confirming
the results from Figure that we can indeed measure the redshift-dependent bias using
this method under appropriate settings. Our error bars are smaller than that from Figure
which is due to the fact that we have combined measurements from several source bins.
Since the only difference between this test and the test from Figure[d.7]is the inclusion of the
KS conversion, we have also shown that the KS conversion in the noiseless case does not
introduce significant problems in our measurements. Although it could be the reason for the
slightly lower measurement at redshift bin 0.8 — 1.0. The error bars on the highest redshift
bin is large due to the small number of source and lens galaxies. In step (ii), we introduce
photo-z errors. We find that the photo-z errors do not affect our measurements within the
measurement uncertainties. In step (iii), the error bars increase due to the presence of
shape noise. In (iv), we apply the SV mask, which causes the error bars to expand and the
overall measurement to be lower by slightly more than 1. The larger error bars come from
the smaller area and the field-to-field variation. The lowered mean value is the result of the
noisiness of the denominator of our estimator (equation (4.46)) due to the presence of shape
noise and the KS errors from the complicated geometry of the mask. We have additionally
checked that without shape noise, the mask alone does not introduce such a strong drop. In
(v), we repeat (iv) on 12 different SV-like areas in a larger (30x90 degz) simulation area
and vary the shape noise 100 times for each. The total 1,200 simulations gives an estimate
of the full covariance due to all the measurement effects considered above, and in addition,
the coupling between the large-scale structure and the mask geometry. The red points in
Figure .11 shows the mean and standard deviation of the 1,200 measurements.

The difference between the 2PCF measurements and (v) (which we refer to as Ab) as
well as the error bars of (v) (which we refer to as 6(Ab)) will later be used to calibrate
the data measurements in We add Ab to the measured values in data, and add in

quadrature 6 (Ab) to the uncertainty in our measurements on data. This calibration scheme
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Table 4.1: Bias measurement and 1o error bars from DES SV using the method tested
in this work, with all possible lens-source combinations. We also compare here our main
measurements with that using alternative shear and photo-z catalogues. Finally we compare
our results with other measurement methods carried out on the same data set. The C15
estimates are from Tables 3 in that paper, while the G15 estimates are from Table 2 in that

paper.

Lens redshift (zmean)
02-04 0.4—-0.6 0.6-0.8 0.8—1.0

This work (NGMIX+SKYNET) 1.33+£0.18 1.194+0.23 0.99+0.36 1.66+0.56
This work IM3SHAPE+SKYNET) 1.374+0.23 1.394+0.29 1.20+0.41 1.47+1.0

This work (NGMIX+TPZ) 1.344+0.18  1.23£0.23  1.00£0.35 1.60£0.55
This work (NGMIX+BPZ) 1.244+0.18 1.16 £0.23  1.13£0.37 1.41£0.52
C15 [60] 1.07 £0.08 1.24+0.04 1.34+0.05 1.56+0.03
G15 [91] 0.57 £0.25 0.91+£0.22 0.68+0.28 1.02+0.31

assumes that we have incorporated the dominant sources of statistical errors in our simula-
tions, which we believe is a valid assumption.

With the series of simulation tests above, we have shown that although the measurement
method itself is well grounded, the presence of measurement effects and noise can affect
our final results from the data. In the following section we will use what is learned in
this section to interpret and correct for the data measurements. Note that all our tests are
based on the DES SV data set. With different data characteristics, the interplay between the
different effects (photo-z, shape noise, masking, cosmic variance) could be very different.

4.5.4.2 Redshift-dependent galaxy bias of DES SV data

We now continue to measure redshift-dependent galaxy bias with the DES SV data using
the same procedure as in the simulations. Figure @.12] shows some examples of the maps.
The right-most panel shows the y; map at redshift bin zmean = 1.0 — 1.2, while the rest of
the maps are the y; , maps at different redshift bin evaluated for this y; map. We see the
effect of the lensing kernel clearly: the left-most panel is at the peak of the lensing kernel,
giving it a higher weight compared to the other lens bins. We also see correlations between
Y1,¢ maps at different redshift bins. This is a result of the photo-z contamination.

In Figure d.13| we show the galaxy bias measurement for our magnitude-limited galaxy
sample from DES SV together with two other independent measurements with the same
galaxy sample (discussed in §4.5.5)). We have excluded the highest redshift bin since with

only a small number of source galaxies, the constraining power from lensing in that bin is
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Figure 4.11: Redshift-dependent galaxy bias measured from simulations with different
levels of degradation from the ideal scenario tested §4.4.2] The grey line shows the bias
from the 2PCF measurement, which we take as “truth”. The black, blue, green and red
points corresponding to the steps (i), (ii), (iii) and (iv)+(v) in §4.5.4.1] respectively. All
measurement are done using equation (4.46)).
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Figure 4.12: Example of maps from DES SV data. The right-most panel shows the y;
map generated from the source redshift bin zmean = 1.0 — 1.2, while the other panels show
the y1 , maps generated for the source redshift bin Zpmean = 1.0 — 1.2 and for different lens
redshifts (left: zmean = 0.4 — 0.6, middle: zmean = 0.6 — 0.8, right: zmean = 0.8 — 1.0).
The title in each panel for ¥, indicate the lens and source redshift, while the title for
7 indicates the source redshift. Note that the color bars are in different ranges, but are
matched to the simulation plot in Figure[4.10] In addition, the left-most and the right-most
panels correspond to the bottom row of that figure.
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very weak. Table[d.T|summarizes the results. The black data points are from this work, with
a best-fit linear model of: b(z) = 1.3570-28 —0.15%09;. As discussed earlier, our method
becomes much less constraining going to higher redshift, as the source galaxies become
sparse. This is manifested in the increasingly large error bars going to high redshifts.
Here we only performed a simple linear fit to the data given the large uncertainties in our
measurements. In the future, one could extend to explore more physically motivated galaxy
bias models [46,/148].

In these measurements we include the calibration factor derived from the set of 1,200
SV-like simulations. We find that the spread in the 1,200 simulation measurements is much
larger than the error bars on the JK errors on the data measurement itself. This suggests
that the field-to-field variation, and how that couples with the mask and the noise is a much
larger effect than what the JK errors capture (variation of structure within the field and
some level of shape noise). As a result, we have taken the error bars and full covariance

from the simulations as our final estimated uncertainty on the measurements.

4.5.4.3 Other systematics test

In §4.5.4.1] we have checked for various forms of systematic effects coming from the KS
conversion, finite area, complicated mask geometry, and photo-z errors. Here we perform
three additional tests. First, we check that the cross-correlation between the B-mode shear
Y and ¥, is small. Lensing B-mode refers to the divergent-free piece of the lensing field,
which is zero in an ideal, noiseless scenario. In Figure 4.14] we show all the bp measure-
ments using both shear component and all lens-source combinations. We see that all the
data points as well as the weighted mean are consistent with zero at the 1-2 ¢ level, assur-
ing that the B-modes in the shear measurements are mostly consistent with noise. We also
show the corresponding B-modes from the simulation used in (iv), where we see
that the level and scatter in the data is compatible with that in the simulations.

Next, we check that using the second DES shear pipeline, IM3SHAPE gives consistent
answers with that from NGMIX. The resulting redshift-dependent galaxy measurements are
shown in Table 4.1|and are overall slightly higher than the NGMIX measurements, but they
show a consistent linear fit.

Finally, we check that using two other photo-z codes also give consistent results. Ta-
ble 4.1|lists the results from the different photo-z catalogues. Since SKYNET and TPZ are
both machine learning codes and respond to systematic effects in a similar fashion, while

BPZ is a template fitting code, we can thus view the difference between the results from
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Figure 4.13: Redshift-dependent bias measured from the DES SV data. The black data
points show the result from this work. The red and green points show the measurements on
the same galaxy sample with different methods. The grey dashed line is the linear fit to the
black data points.

BPZ and the others as a rough measure of the potential systematic uncertainty in our photo-
z algorithm (see also the discussion in [37]), which is shown here to be much smaller than

the other sources of uncertainties.

4.5.5 Comparison with other measurements

The redshift-dependent galaxy bias has been measured on the same data set using other
approaches. Here we compare our result with two other measurements — galaxy cluster-
ing [60] (hereafter C15) and cross-correlation of galaxies and CMB lensing [91] (hereafter
G15).We note that both these analyzes assumed the most recent Planck cosmological pa-
rameters [[170]], which is slightly different from our assumptions (see §4.5.3.5). But since
our measurement depends very weakly on the assumption of cosmological parameters (as
discussed in §4.5.1)), the stronger cosmology dependencies come from the cosmological
parameters assumed in C15 and G15, which are known well within our measurement un-
certainties. We also note that the results we quote in Table are based on the photo-z
code TPZ, which means our redshift binning is not completely identical to theirs.

In C15, galaxy bias was estimated through the ratio between the projected galaxy an-
gular correlation function (2PCF) in a given redshift bin and an analytical dark matter
angular correlation function predicted at the same redshift. The latter includes both linear
and nonlinear dark matter clustering derived from CAMB [138]] assuming a flat ACDM+v
cosmological model based on Planck 2013 + WMAP polarization + ACT/SPT + BAO. As
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Figure 4.14: All 1/bp(z) measurements from the B-mode shear and the same 7, in our
main analysis. Each small blue data point represents a measurement from a combination of
lens redshift, source redshift, and shear component. Note that the low redshift bins contain
more data points, as there are more source galaxies that can be used for the measurement.
The large blue points are the weighted mean of all measurements at the same redshift bin
from the DES SV data, while the red points are that from simulations that are well matched
to data.

shown in Figure 4.13|and listed in Table 4.1} our measurements and C15 agree at the 1o
level, with the lowest redshift bin slightly above 10.

In G15, galaxy bias is estimated by the ratio between the galaxy-CMB convergence
cross-correlation and an analytical prediction of the dark matter-CMB convergence cross-
correlation, both calculated through the 2PCF (and also in harmonic space through the
power spectrum). Since the lensing efficiency kernel of the CMB is very broad and the
CMB lensing maps are typically noisy, this method has less constraining power than C15.
However, by using an independent external data, the CMB lensing maps from the South
Pole Telescope and the Planck satellite, this measurement serves as a good cross check for
possible systematic effects in the DES data.

In calculating the theoretical dark matter-CMB convergence cross-correlation, G15 also
assumed a fixed cosmology and derived all predictions using CAMB. The o3-b degeneracy
is thus also present in their analysis. We note, however, that one could apply our method
to the CMB lensing data and avoid this dependency. In our framework, the CMB lensing
plane will serve as an additional source plane at redshift ~1100. We defer this option to
future work.

We find that G15 is systematically lower than our measurement at the 10 level for the

three highest redshift bin, and shows a much larger discrepancy for the lowest redshift bin.
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G15 also has more constraining power at high redshift compared to our results, as expected.
Possible reasons for the discrepancy at low redshift include systematic errors (in e.g. the
photo-z estimation) that are not included in either C15, G15 or this work. In addition, the
redshift bins are significantly covariant, making the overall discrepancy less significant.
Finally, the scales used in the three studies are slightly different. We refer the readers to

G15 for more discussion of this discrepancy.

4.6 Conclusions

In this chapter we explore a new method to measure galaxy bias from the combination of
the galaxy density and weak lensing fields. This method is based on [4]], where they use the
galaxy density field to construct a bias-weighted convergence map k, in the COSMOS field.
They measure different parameterizations of galaxy bias from the zero-lag correlations of
the galaxy shear and a reconstruction of the shear from the galaxy density field. In this
chapter we present a new way to measure tomographic bias from the zero-lag correlations
between the lensing maps and a reconstruction of the lensing maps from the galaxy density
field. We also study the robustness and the systematics of this method for the first time.

The implementation of this model is as follows. We construct a template of the con-
vergence field K, at the source redshift by integrating the density field of the foreground
galaxies in the line-of-sight weighted by the corresponding lensing kernel as specified in
equation (4.18). We do this for tomographic bins in the lens distribution. We then compare
to estimates of the matter convergence map K associated to the same galaxies in the source
redshift bin. We measure galaxy bias from the smoothed zero-lag cross-correlations be-
tween Kk and kg as in equations (#.20[4.21)). Instead of using the zero-lag cross-correlation
we could also use the 2-point cross-correlation function.

We use the MICE simulations to study the consistency of our method by comparing
our results with a fiducial galaxy bias measurement on linear scales. This is obtained from
the ratio between the projected 2PCFs (@(®)) of galaxies and dark matter as a function of
redshift (see equation (4.3)), and fitting a constant galaxy bias between 6 arcmin and 60
arcmin. We also study local bias from equations (4.614.8)), making use of the dark matter
field of the simulation. With these comparisons we study the systematics of the method
and the regimes where it is consistent with linear bias.

There are different systematic effects and numerical dependencies of the method that
need to be taken into account for a correct measurement of linear bias. First of all, the
method is sensitive to the redshift bin width used in the construction of k,, that have an

impact on the galaxy bias estimators due to the projection effects of the density fields. This
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causes differences in the values obtained for the different estimators, that can be larger
than 5% for Az > 0.2 and larger than 10% for Az > 0.3. This has to be taken into account
when measuring K, in wide redshift bins in order to obtain the correct linear bias. On the
other hand, projecting the source galaxies in a plane have an insignificant impact on the
results. Secondly, the angular smoothing scale of the field can be affected by nonlinearities
for small enough scales. We find that the measurements are consistent with linear bias for
angular scales of ® > 30 arcmin, where bias is constant. Sampling and discreteness noise
is also important and needs to be taken into account (see equations (4.20[4.21))). Finally,
we need to exclude from the analysis those pixels that are affected by the edges of the area
used.

A correction must be applied to our estimators if we only use the foreground galaxies in
a given redshift bin for the construction of k. This is because the amplitude of k is reduced
by the fact that we do not use all the information from the complete redshift range in front
of the source redshift. We predict theoretically this effect, and we find good agreement with
the measurements, indicating that we can use this prediction to correct the bias obtained.
The theoretical prediction describes the amplitude of the zero-lag correlations obtained
using a given redshift bin for the foreground dark matter field, that by definition has a bias
of 1. We can measure galaxy bias in that bin from the ratio between the zero-lag correlations
of k and K, (using the foregroud galaxies in that bin) and the theoretical prediction. This
provides a useful tool to do tomography and measure galaxy bias in single redshift bins.
We measure and show the redshift-dependent bias obtained using this method, and find
good agreement with the redshift-dependent bias from equation (4.3).

Other issues associated with observational data must be addressed if we apply this
method to large galaxy surveys such as the Dark Energy Survey (DES). First of all, we
measure ¥ instead of k from the ellipticities of the galaxies, but we obtain kK, from the
galaxy density field. Thus, we need to apply a conversion from kg to ¥, or from ¥ to K in
order to calculate the zero-lag correlations. This conversion is affected by the shape of the
mask and the noise of the maps. Secondly, for photometric surveys we need to account for
the photo-z estimation. The uncertainty on the redshift of the galaxies causes a smoothing
in K, that needs to be corrected from the photo-z errors and the galaxy redshift distribution.
Other effects in observations include the boundary effects of irregular masks, that affect the
useful area of the analysis, and shape noise, that causes some of the estimators to be very
noisy.

We applied this method to the DES Science Verification data in [44]]. Following from
this analysis, we carry out a series of simulation tests which incorporate step-by-step real-

istic effects in our data including shape noise, photo-z errors and masking. In each step, we
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investigate the errors introduced in our estimation of galaxy bias. We find that shape noise
and masking together affects our measurement in a non-negligible way, causing the galaxy
bias to be measured low, while the photo-z affects the measurements in a predictable way
if the characteristics of the photo-z uncertainties are well understood. As the measurement
itself is very noisy, simulation tests where we know the “truth” provide a good anchor for
building the analysis pipeline. In the main analysis of [44], we measure the galaxy bias
with a 18 <7 < 22.5 magnitude-limited galaxy sample in 4 tomographic redshift bins to
be 1.33+£0.18 (z =0.2—-0.4), 1.194+0.23 (z=0.4—-0.6), 0.99£0.36 (z = 0.6 —0.8),
and 1.66 £0.56 (z = 0.8 — 1.0). Measurements from higher redshifts are too noisy to be
constraining. The best-fit linear model gives: b(z) = 1.360-31 —0.08%0-707, The results are
consistent between different shear and photo-z catalogs. This method is expected to be sig-
nificantly better when applied to larger areas, such as in DES Year 1 [69] or the 5000 deg?
from the expected total area of the DES survey.

This chapter presents the method and its first application to observations, but further
studies can be done. We can explore galaxy bias for different galaxy samples, e.g. as a
function of colour and luminosity. We can also explore the scale dependence of local bias
by studying different angular scales and its nonlinearities, and the redshift dependence by
comparing the tomographic measurements with parametric redshift-dependent bias based
on [4]. In this chapter we have focused on zero-lag cross-correlations, but we could also
use 2-point cross-correlations as a way to estimate the bias and include the redshift cross-
correlations as a validation test.

The method studied in this chapter has several attractive features. First of all, there
1s no need to assume a dark matter distribution to measure bias, since this distribution
is measured from the weak lensing field. This method is then a direct way to measure
local bias by comparing the observed galaxy and dark matter distributions. Moreover, the
method depends very weakly on og (only in non-linear corrections to f and f>), while other
measurements of bias are typically strongly dependent on 63. On the other hand, it depends
on ,,. Hence, a combined analysis of different measurements of galaxy bias, including
this method, can be very useful to constrain better bias and cosmology. Second, the method
can be applied to a situation where galaxies only cover partially the full redshift range of the
lenses. Moreover, the potential of this method will rapidly increase with the data of present
and upcoming surveys, such as the Hyper Suprime-Cam (HSC), the Dark Energy Survey
(DES), the Kilo Degree Survey (KiDS), the Large Synoptics Survey Telescope (LSST), the
Wide-Field Infrared Survey Telescope (WFIRST) and the Euclid mission.
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Chapter 5

Summary and Conclusions

In this PhD thesis we focus our study on the relation between the distribution of galaxies
and the halo and matter distribution at large scales. In order to do this we study galaxy
and halo bias in the linear and local regimes. The bias factor is a parameter that describes
the relation between the clustering amplitude of galaxies (or haloes) and the clustering
amplitude of matter. The knowledge of this factor allows us to describe how galaxies
trace the underlying matter distribution and improves the precision of our cosmological
studies. Our study is focused on simulations, where we study linear galaxy bias, the relation
between halo and galaxy bias and a new method to measure local bias that can be applied

(and has been applied already) to observations.

Relation between halo and galaxy linear bias

A common assumption used to interpret galaxy clustering in surveys is the fact that galaxies
populate haloes according only to the halo mass, and also that halo bias depends only on
mass. These assumptions are then used to fit the Halo Occupation Distribution (HOD) from
the observations of galaxy clustering [57,233]], or to populate mock galaxy catalogues in
simulations [42]. However, this assumption is not always precise enough. The goal of our
study is to analyse the consequences of these assumptions on the galaxy bias predictions,
and also to investigate how the environmental dependence of halo bias can improve such
galaxy bias predictions.

In §2] we use the Millennium Simulation [206] to study halo bias as a function of mass
and galaxy bias from the SAMs available in the simulation. We present a method to test
the assumptions that halo bias and galaxy occupation only depends on halo mass. The
method consists on reconstructing galaxy bias from the measurements of halo bias and
HOD of galaxies as a function of halo mass. These bias reconstructions recover the correct

(measured) galaxy bias if halo bias and/or the HOD only depend on halo mass.
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We find that the bias reconstructions tend to overpredict galaxy bias as a function of
luminosity by a factor of = 5%. This implies that the assumptions that halo bias and HOD
only depend on mass do not allow us to predict galaxy bias better than 5%. It also means
that halo bias does not only depend on mass. In particular, we show that halo bias also
depends on the amount of substructure (subhaloes) inside the haloes. For a fixed halo
mass, halo bias depends strongly on the number of subhaloes, specially for low masses.
This result is independent of SAMs (is dark matter only) and can be seen as a consequence
of assembly bias, or the fact that haloes of a given mass present a different bias depending
on other halo properties. This dependence has an impact on galaxy clustering for any
sample of galaxies whose occupation depends on the amount of subhaloes, which is the
case for most of the galaxy formation models. We finally show that galaxy reconstructions
show important disagreements with the measured galaxy bias for halo masses below 3 —
5 x 10" 7~"M,. This indicates that assembly bias affects strongly the galaxy clustering
of small haloes. Then, this study suggests that the standard implementation of the HOD
model would fail if the model is used for galaxies that are dominated (or are significantly
affected) by these low masses.

In §3| we go further in this analysis in the Millennium Simulation and we study the
impact of halo mass and environmental density on the prediction of linear bias. First of
all, we study how halo bias depends on mass and environment (defined as the dark matter
fluctuation around a given radius of the halo), and we find that bias depends much more
strongly on environment than on mass. We see this because, when we fix the environment,
bias does not depend on mass, and the environmental density dependence of halo bias is
independent of mass. This result is an evidence that environmental density constrains bias
much better than mass. We also see that, while massive haloes only occupy dense regions,
small haloes can live in a wide range of environmental densities. This is the reason of why
massive haloes have a high bias. More massive haloes have a higher clustering because
they are statistically in denser regions, but not because mass is the fundamental cause of
clustering. On the other hand, the fact that small haloes live in different environments is
in contradiction with the standard HOD assumption that states that the clustering of haloes
only depends on mass.

In order to study the implications of these results on the clustering predictions, we
extend the reconstruction test to a more general method that tests if halo bias and HOD
depends only on mass or only on environmental density. On one side, we reconstruct
halo bias as a function of environmental density from the assumption that bias and HOD
only depend on mass. We see a strong disagreement between the reconstructed and the

measured bias, meaning that halo mass is not a good property to describe the halo bias of a
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fixed environment. On the other hand, we reconstruct halo bias as a function of mass from
the assumption that halo bias and HOD depend only on the environmental density. We find
a much better agreement between the reconstruction and the measurement of halo bias,
which suggests that environmental density is a good property to predict the bias of haloes
of different masses. These tests suppose another indication that the environmental density
is a more fundamental property to relate it to linear bias than mass. In fact, if a galaxy
sample is selected from a property that follows directly halo mass, both reconstructions
will be able to recover bias. However, if a galaxy is selected from a property that only
follows the environmental density, the reconstruction assuming that bias and HOD only
depend on mass will totally fail. We end this chapter by showing a couple of examples of
galaxy selections that are sensitive to other properties than mass. When central galaxies are
selected by colour, the standar HOD implementation assuming mass dependence produces
a wrong reconstruction. Instead, the reconstruction from the density dependence of bias
and HOD produces a much better agreement with the measured galaxy bias. This study
suggests that HOD modeling could be improved by including environment as a property to

describe galaxy large-scale clustering.

Measuring local galaxy bias by combining the weak lensing and density
fields

In §4{ we explore a new method to measure local galaxy bias from the combination of the
weak lensing field and the galaxy density field. We have been testing and analysing the
method in the MICE Grand Challenge Simulation [60,78,79]] and its galaxy catalogues
[42]], and we finally applied the method to the DES Science Verification data [44]).

The method is based on [4], where they use different parametrizations to measure
galaxy bias from the zero-lag correlations between the galaxy shear and a reconstructed
shear from the density distribution of the foreground galaxies. In our implementation we
construct a template of the convergence map, that we call k,, obtained from the density field
of the foreground galaxies, and we measure galaxy bias in tomographic redshift bins from
the zero-lag correlations between the convergence maps k and k, obtained from the galax-
ies in each redshift bin. The advantage of this method to measure bias is that it depends
weakly on og, while most of the methods to measure bias in observations depend strongly
on og. Hence, both og and bias can be well constrained from the combination of different
techniques to measure bias, including this one, since the systematics and dependencies of
this method are different than in other techniques. Another advantage with respect to [4] is

that our method does not need to parametrize galaxy bias in order to measure it.
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In this study we analyse the consistency of the method with other measurements of
linear bias. We also study the different systematic effects and numerical dependencies that
affect the measurement of bias. For this we use the MICE simulation, its galaxy catalogues
and their lensing field values, the full resolution weak lensing field of the simulation and
a dilution of the dark matter particles. We show that bias depends strongly on the redshift
bin width used in the construction of k, due to the projection effects of the density field.
This affects the bias estimator more than 5% for a redshift bin width Az = 0.2 and more
than 10% for Az = 0.03. However, we correct this by modeling theoretically the effect,
and we test that the theoretical calibration works in the simulation. This correction allows
to measure bias in tomographic redshift bins. We also see that approximating the source
galaxies in a plane produces insignificant differences in the bias estimation. We find that
our estimator of bias is consistent with linear bias for scales larger than 30 arcmin, and
below these scales nonlinearities appear. We also correct our measurements for shot-noise
and edge effects. We finally show the measurement of galaxy bias at different redshift
bins in the MICE simulation, showing a good agreement with other techniques to measure
galaxy bias.

In this chapter we have studied the idealistic cases in simulations, but other effects need
to be taken into account in obsevations. First of all, we never observe k directly. Instead,
we need to measure galaxy shear and obtain k from it. An alternative is to reconstruct the
shear from Kk, and measure bias form the zero-lag correlations between the observed and
reconstructed shear. Moreover, in all these cases shear noise is the dominant noise that
needs to be correctly taken into account. Photometric errors in the redshift estimation also
affect significantly the estimation of bias. The uncertainty on the redshift of the galaxies
causes a smoothing in K, that needs to be corrected from the photo-z errors and the galaxy
redshift distribution. Finally, we need to take into account the boundary effects that can
come from irregular masks. In [44] we have applied this method to measure galaxy bias as
a function of redshift in the DES Science Verification data. To do this, we studied these ob-
servational effects in the MICE simulation in order to understand and calibrate each of the
effects from shape noise, photo-z errors and masking. The results are consistent between
different estimators of shape and redhsift. This method is expected to be significantly better
when applied to larger areas, such as in DES Year 1 or the 5000 deg® from the expected
total area of the DES survey, and its potential will rapidly increase with the data of other
present and upcoming surveys, such as the Hyper Suprime-Cam (HSC), the Kilo Degree
Survey (KiDS), the Large Synoptics Survey Telescope (LSST), the Wide-Field Infrared
Survey Telescope (WFIRST) and the Euclid mission.
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Future work

There are several possibilities to go further in these studies. On one side, we can go be-
yond the work from §2| and §3| on both the theoretical and observational sides. First of
all, we can explore more deeply the theory concerning environmental dependences of bias.
Modeling this dependence can be worth for understanding the importance of environment
for bias and clustering. Moreover, as environment is very easy to measure in observations,
this can be used to measure bias and cosmology directly from these measurements if we
use a good model. Secondly, another step for this project could be to think and develop
an alternative way to model and measure HOD that is not affected by assembly bias and
other dependencies of bias. This could be done, for example, by using a model of the envi-
ronmental density dependence of halo bias instead of (or including) halo mass, at least for
the modelling of large-scale clustering. Finally, studies of the environmental dependence
of galaxy clustering can be done in observations using weak lensing maps, where we can
select galaxies according to their matter environmental density inferred from weak lensing
maps.

On the other side, the work done in §4|can be continued with different implementations
that would improve our analysis. First of all, the same method can be applied to DES
Year 1 data and future surveys. The measurement is sensitive to the area used, in the
sense that larger areas reduce the errors of the measurements. Because of this we expect
to improve the measurements in future DES data. Secondly, we can use the combination
of spectroscopic and photometric galaxy surveys in order to improve the sensibility of
the method. Using a spectroscopic survey for the foreground galaxies would allow us to
measure the galaxy density field with a much better resolution, and this would reduce the
noise for k, significantly. Another focus could be the analysis of non-linear bias, and
the study of how this local bias measurement depends on scale. Complementary to this,
we could measure bias from the 2-point correlations between k, and k instead of from
the zero-lag correlations. This would reduce the noise in our measurements significantly
(we would not be measuring variances, that are noisier), specially for irregular masks, and
would allow us to study better the scale dependence of bias. Another interesting application
is to measure a parametric redshift dependent bias, as in [4]]. This allows us to measure the
redshift evolution of bias without using tomographic bins. A comparison of the local bias
measurements using tomography and parametric bias would give a test of how well these
two methods measure a consistent galaxy bias, and in what conditions is better to use
parametric bias or tomographic redshift bins. Finally, all these analyses can be performed

for different galaxy selections, in order to study galaxy bias as a function of luminosity or
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colour. This would relate galaxy properties with the mass distribution, which is useful to

understand galaxy formation and evolution.
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