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Abstract 

Trees hold important secrets that may be essential in order to face the unprecedented 

current environmental challenges. However, the information that we are able to obtain from 

them is still poorly understood, mainly because of the complexity of forest systems, from 

individuals to ecosystems. As in other environmental disciplines, to understand the 

information from trees it is indispensable to have a spatiotemporal, multi-scale and 

multidisciplinary approach. Current technological and scientific advances offer new research 

avenues to study forest ecophysiology and climatic inference from wood material. The basis 

of this thesis is to use a combination of modern tools such as stable isotopes, Geographical 

Information Systems (GIS), Point Process statistics to retrieve climatic and ecophysiological 

information from forests at different spatial and temporal scales. We focus on two typical 

coexisting Mediterranean species: holm oak (Quercus ilex L.) and Aleppo pine (Pinus 

halepensis Mill.). The thesis can be divided into two blocks working on different spatial 

(regional vs stand level) and temporal (annual or multiannual vs seasonal) scales. At the 

regional scale, we used two networks of carbon isotope discrimination (∆13C) in tree-ring 

from Aleppo pine and holm oak in the northeastern part of the Iberian Peninsula to: 1) 

generate carbon isotope landscapes (isoscapes) of each species, which correlated well with 

precipitation patterns, leading to annual precipitation maps that were successfully validated 

with real data; 2) to evaluate the spatial and temporal variability of ∆13C, and its relationship 

with precipitation, radial growth (RG) and satellite vegetation index NDVI in Aleppo pine, 

showing that annual precipitation drives ∆13C, RG and NDVI, but the three variables hold 

complementary information. At the local scale, we focus on a mixed forest stand in which 

both species coexist. By combining water isotopes and point process statistics: 1) we could 

interpret tree-to-tree interactions in terms of water use, and found that under severe drought 

there is hydrological niche segregation between pines and oaks; 2) we explored the seasonal 

variations in water uptake in order to see whether competition patterns are dynamic, or niche 

partitioning is always present due to morphological differences like root depth. Results 

suggest that both cases are true. We conclude that increasing drought may decrease the room 

for complementarity between the two species in mixed forest stands, thus compromising the 

stability and sustainability of the system. 
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Resumen 

Los árboles poseen secretos importantes que pueden ser esenciales para afrontar los 

actuales retos medioambientales. Sin embargo, la información que podemos extraer de ellos 

es aún difícil de interpretar debido a la complejidad de los sistemas forestales, desde los 

individuos a los ecosistemas. Como en otras disciplinas medioambientales, para entender la 

información de los árboles es necesaria una aproximación espaciotemporal, multiescala y 

multidisciplinar. Los actuales avances tecnológicos y científicos ofrecen nueva vías al 

conocimiento en ecofisiología forestal y  la inferencia del clima a partir de la madera. La idea 

central de esta tesis es usar una combinación de herramientas modernas, tales como Sistemas 

de Información Geográfica (SIG), estadística de Procesos Puntuales, para extraer información 

de los bosques a diferentes escalas espaciotemporales. Nos centramos en dos especies 

mediterráneas: la encina (Quercus ilex L.) y el pino carrasco (Pinus halepensis Mill.). La tesis 

se divide en dos bloques centrados en distintas escalas: espacial (regional/ masa) y temporal 

(anual o multianual/ estacional). A escala regional, usamos dos redes de datos de 

discriminación isotópica del carbono (∆13C) en anillos de crecimiento de pino y encina, 

provenientes del noreste de la Península Ibérica, para: 1) generar paisajes de distribución 

isotópica (isoscapes) de carbono para cada especie, que se correlacionaron con los patrones de 

precipitación, derivando así mapas de precipitación anual que se validaron exitosamente con 

datos reales; 2) evaluar la variabilidad espaciotemporal de la ∆13C y sus relaciones con la 

precipitación, crecimiento radial (CR) e índice de vegetación (NDVI) para el pino, mostrando 

que la precipitación anual controla estas tres variables, aunque ofrecen información 

complementaria. A escala local, nos centramos en una masa mixta donde ambas especies 

coexisten. Combinando isótopos de agua y estadística de Procesos Puntuales: 1) interpretamos 

las interacciones árbol-árbol en el uso de agua, encontrando una segregación de nicho 

hidrológico entre pino y encina durante los periodos de sequía, 2) exploramos la variación 

estacional en los patrones de extracción de agua para determinar si las relaciones de 

competencia son dinámicas, o bien la segregación de nichos está siempre presente debido a 

diferencias morfológicas (p.ej. profundidad de raíces). Los resultados muestran que ambos 

casos son correctos. Concluimos que un aumento de la sequía reduciría las posibilidades de 

complementariedad entre las dos especies en masas mixtas, comprometiendo la estabilidad y 

sostenibilidad del sistema.  
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Resum 

Els arbres amaguen secrets importants que poden ser essencials per enfrontar-se als actuals 

canvis ambientals sense precedents. Amb tot, la informació que en podem extreure encara és 

difícil d’interpretar degut a la complexitat dels sistemes forestals, des dels individus als 

ecosistemes. Com en altres disciplines ambientals, per entendre la informació dels arbres és 

necessària una aproximació multi-escala i multidisciplinària. Els actuals avenços tecnològics i 

científics ofereixen noves eines per l’estudi de la ecofisiologia forestal i la inferència 

climàtica a partir de la fusta. El fonament d’aquesta tesi és fer servir una combinació d’eines 

innovadores com ara isòtops estables, Sistemes d’Informació Geogràfica (SIG), o estadística 

de processos puntuals a fi d’obtenir informació climàtica i ecofisiològica dels boscos a 

diferents escales temporals i espacials. L’objecte d’estudi són dues espècies típicament 

mediterrànies: alzina (Quercus ilex L.) i pi blanc (Pinus halepensis Mill.). La tesi es pot 

dividir en dos blocs que treballen a diferents escales espacials (regional / massa) i temporals 

(anual-multianual / estacional). A escala regional, hem fet servir dues xarxes de dades de 

discriminació isotòpica de carboni (∆13C) en anells d’arbres pi blanc i alzina al Nord-est de la 

Península Ibèrica, a fi de: 1) generar paisatges de distribució isotòpica (isoscapes) per cada 

espècie, que es correlacionen amb els patrons de precipitació, duent a l’obtenció de mapes de 

precipitació anual que van ser exitosament validats amb dades reals; 2) avaluar la variació 

espacial i temporal en ∆13C, i la seva relació amb la precipitació, creixement radial (CR) i els 

índexs de vegetació (NDVI) pel pi blanc, mostrant que la precipitació anual determina les tres 

variables, que tot i així ofereixen informació complementària. A escala local, ens centrem en 

una massa mixta on les dues espècies coexisteixen. Combinant isòtops d’aigua i estadística de 

processos puntuals: 1) hem pogut interpretar interaccions arbre-arbre en l’ús de l’aigua, 

trobant que durant la sequera es dona una segregació de nínxol hidrològic entre pins i alzines; 

2) hem explorat les variacions estacionals en els patrons d’obtenció d’aigua a fi de definir si 

els patrons de competència són dinàmics, o bé la separació de nínxols està present en tot 

moment degut a diferències morfològiques (p.ex. profunditat d’arrel). Els resultats apunten a 

que tots dos casos es donen simultàniament. Concloem que un augment de la sequera pot 

reduir les possibilitats de complementarietat entre les dues espècies en masses mixtes, 

comprometent la estabilitat i sostenibilitat del sistema. 
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“The greatest enemy of knowledge 

is not ignorance, it is the illusion 

of knowledge.”- Stephen Hawking 
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Overview 

 Due to their large size and long live-span, trees constitute living archives that may hold 

the answer for some of the 21-century environmental questions derived from rising human 

populations and climate instability. Humans exploit the earth natural resources so rapidly that 

we are witnessing global biodiversity losses and pollution events capable of altering the 

earth´s geochemical cycles and climate. In this context, multi-scale and multidisciplinary tree 

research can provide critical environmental information for the future of the biosphere 

(Buchmann 2002; Leavitt et al. 2010). 

 On the one hand, trees, which are globally and densely distributed, are one of the most 

widespread high-resolution archives for predicting climate change. On the other, tree or 

community ecophysiology, i.e. forest responses to environmental change, is key not only to 

predict the future health of forest ecosystems, but also to understand  the potential effects of 

vegetation on the earth system cycles (water, C, N, P) (Buchmann 2002). For instance, despite 

the natural ability of trees to sequester atmospheric CO2 (the main driver of global warming), 

new evidences suggest that the Amazonian and Northern hemisphere forests have stopped 

sequestering CO2 (Brienen et al. 2015), and this could lead to additional warming of the 

climate system (positive feedback). However, part of the large uncertainty of forest acting as 

either CO2 reservoirs or source in the future resides in our inability to integrate tree 

information across separate spatiotemporal scales and research disciplines (Chave 2013). The 

main issue is that environmental changes at the global scale lead to changes on individuals, 

but also impose selective pressures upon populations, leading to alterations in the genetic, 

phenotypic, or species diversity (Chave 2013). Such ecological and evolutionary processes 

not only complicate predictions of forest performance on a global change scenario but also the 

understanding of the information retrieved from plant material. Part of the current lack of 

understanding of the role and responses of trees to global change has to do with: 

1) the historically distant path between population biology and ecosystem sciences (Levin 

1992)  

2) the fact that we have not fully embraced the current technological revolution, which 

offers ever increasing possibilities for cross boundaries in research disciplines (Chave 2013). 
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Regarding the first, such a scientific divorce has perpetuated despite the fact that as early 

as 1805, Alexander von Humboldt, on his essay the geography of the plants, illustrated the 

significant of the spatiotemporal domain and its different scales for the understanding of 

plants. This included global altitudinal and latitudinal distributional vegetation patterns as 

well as ecosystems composition. Humboldt used incipient geographical information 

technology (GIS) (e.g. barometers to measure elevation and chronometers to measure 

longitudes) to understand the spatial interrelationships of the biotic and abiotic system (Smith 

2013). However, not until recently, and specially propelled by the fast development of 

computational power and global monitoring system, has theoretical ecology considered much 

of the space-time domain (Bascompte & Sole 1995; Wainwright & Mulligan 2013). The 

revolution of computer sciences, geographical information systems (GIS) and environmental 

sensing brings an enormous potential for modeling plant terrestrial ecosystems at different 

spatio-temporal scales, opening new research avenues that not even Humboldt would have 

dreamed of. In his influential paper, Levin (1992) explained why patterns and scales are 

fundamental to study the spatio-temporal dimension of environmental processes, including 

ecosystem functioning (Bascompte & Sole 1995; McIntire & Fajardo 2009). Scales 

particularly applies to forest ecology, since it encompasses biogeochemical patterns at several 

orders of magnitude in time and space that might be controlled by a single process. For 

instance, how a tree functions and the nature of the local interactions with neighboring trees 

may have further implications on the structure and dynamics of the biogeography of forest at 

the global level (Osborne 2004).  In essence, the problem is to bridge across very different 

spatial scales, from local to global (Chave 2013). 

In addition to the aforementioned computational and observational revolution in plant 

ecology, there has been in parallel a biogeochemical revolution (Chave 2013). In particular, 

the application of stable isotopes is one of the most useful tools to understand plant processes 

at a range of scales. Scales that range from leaf-level physiological traits, such as stomatal 

conductance and photosynthesis (Farquhar & Sharkey 1982), to global patterns in plant 

responses to changes in climate and CO2 (Diefendorfet al. 2010). In connection with the 

above, spatial models of stable isotopes (also known as isoscapes) have recently become a 

fascinating field of research on its own for many environmental studies at a wide range of 

scales, from local to global (See section 1.2.3). 
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In this context, the main aim of this thesis is to develop models of stable isotopes derived 

from spatial networks of trees at the regional and local scales in an effort to understand tree 

responses to their surrounding environment (biotic and abiotic). At the 1) regional scale, we 

developed techniques for the use of tree-ring datasets to build high-resolution climatic maps 

and to study tree-responses along climatic gradients; at the 2) stand scale, we used xylem 

water isotopes to understand the use of water between interacting neighboring trees.  

As a case study for the application of these techniques, the thesis will focus on two widely 

extended and coexisting Mediterranean tree species, Quercus ilex and Pinus halepensis, 

which are representative of two different functional types dealing with the water scarcity 

typical of this biome. Despite that this thesis mainly employs stable isotopes and makes 

simultaneous use of the spatiotemporal dimensions to extract climatic and ecophisiological 

information from both species, these approaches were complemented with a range of 

additional environmental and physiological information (e.g. spectral indices, growth 

measurements, water potentials) that was integrated into the analysis. 

Thesis structure 

The thesis can be divided into two main blocks, which roughly correspond to the 

aforementioned regional and stand scales: 

• Block 1. Climatic and ecophysiological information in carbon isotopes of tree-rings at 

the regional scale.  

The main aim of this block is to assess the usefulness of Quercus ilex and Pinus 

halepensis as tools for spatially-explicit climate inference (in particular precipitation). In 

addition, I will assess the responses to abiotic factors depending on the variations in space 

and time.  

 

o In Chapter 1, we used a spatial modeling method which included topographic 

variables, latitude and distance to water bodies to generate isoscapes (spatially-

explicit models of isotopes, see next section) of ∆13C derived from tree rings of 

Quercus ilex and Pinus halepensis. Such maps were then converted into annual 

precipitation models and evaluated from an ecophysiological perspective.  
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o In Chapter 2, we confirmed that the main climatic factor controlling carbon isotope 

variability in tree rings of Pinus halepensis sampled along a strong spatiotemporal 

climatic gradient is mean annual precipitation. However, we also took advantage of 

this study to integrate stable isotopes information with other observational data such 

as tree-ring growth and spectral indices derived from satellites. Such variables also 

covariate with precipitation.  

 

• Block 2. Local-scale spatial inter- and intra-specific tree to tree interactions in water 

uptake.    

The aim of this block is to evaluate plant water relations and rooting patterns of two 

coexisting species, as well as ecological processes such as competition, facilitation and 

niche segregation.  

 

o In Chapter 3, we developed a method to measure tree to tree inter- and intra-specific 

water-use interactions by employing water stable isotopes from xylem twigs in 

combination with point-process spatial statistics. As in previous chapters, we used 

Quercus ilex and Pinus halepensis. 

 

o In Chapter 4, we provided a closer insight on the dynamics of inter-specific 

hydrological niche segregation of Quercus ilex and Pinus halepensis along the 

seasonal cycle. We proved the existence of different inter-specific strategies in 

water-use in a Mediterranean environment. As in the previous chapter we used point 

process statistics, but complemented with other spatial approaches such as 

competition indices. 
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 Stable Isotopes as an ecological and paleo-reconstruction tool 

Stable isotopes - brief description 

Isotopes are chemical species of the same element with different number of neutrons and, 

thus, with different atomic mass. For instance, atoms of carbon with the masses of 12, 13 and 

14 (denoted as 12C, 13C and 14C) all have the same amount of protons (6) but different amount 

of neutrons (6, 7 and 8, respectively).  In this case, 14C is a radioactive (non-stable) isotope 

that decays over time to become a stable, non-radioactive isotope (14N). On the other hand, 

12C and 13C are non-radioactive (stable) isotopes, meaning they do not decay over time, at 

least over geologic time scales. Thus, the natural abundance of stable isotopes depends on 

variables other than time. This is important because the science of stable isotopes focuses on 

how natural processes affect the relative abundance of each isotope with respect to the other; 

i.e. the ratio of the heavy isotope with respect to the lighter one (for example, 13C/ 12C). 

Changes in such ratio are the result of biogeochemical processes involving kinetic, 

thermodynamic and nuclear effects, and thus quantifying fractionation (the effect of such 

processes) is a useful way to explore what is occurring within a system. For example, during 

photosynthesis the ratio of 13C/12C varies because the plant preferentially uses atmospheric 
12C over 13C (known as isotopic discrimination) (Farquhar et al. 1989). This discrimination 

occurs because the lighter 12C is energetically less expensive to the plant (it weights less and 

diffuses more easily into the plant compartments). Thus, the atmospheric C (carbon) pool is 

enriched in 13C (heavier isotopic composition) compare to the terrestrial vegetation C pool, 

which is depleted in 13C (lighter isotopic composition) because of photosynthesis is causing 

fractionation.  

Given that the isotopic composition of materials varies throughout different pools within 

the earth system cycles and also at exceedingly small levels, we always compared any 

measured values to an international accepted standard and expressed in parts per thousand 

deviations from that standard by: 

δ (‰) = (Rsample/Rstandard – 1) x 1000         (1) 
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where R is the ratio of heavy-to-light (typically rare-to-abundant) isotope, Rsample is that 

ratio in the sample, and Rstandard is that in the standard (Table I). The different atomic mass of 

isotopes is usually quantified by mass spectrometry, but there are other methods such as laser 

absorption instruments. 

 

Table I. Relative abundance of most common stable isotopes in plant ecology 

Element Isotope Abundance (%) Relative mass difference (%) International Standard Analytical error (‰) Observe range in plants (‰)

Hydrogen
1
H 99.985 100 Vienna Standard 4 to 7 -300 to +20

2
H 0.0155 Mean Ocean Water 

(VSMOW)

Carbon 
12

C 98.892 8.3 Viena Pee Dee Belemnite 0.1 -35 to +5 
13

C 1.108 (VPDB)

Nitrogen 
14

N 99.635 7.1 Atmostpheric Nitrogen 0.2 -10 to +10
15

N 0.365 (Air)

Oxygen 
16

O 99.759 12.5 VSMOW in water, 0.05 to 0.2 -15 to +35
17

O 0.037
    

(
18

O : 
16

O) generally VPDB in 
18

O 0.204 CO2 or carbonate

 

After: (Sulzman 2008)  

 

Carbon stable isotopes in plant material 

As mentioned above, carbon isotopes of terrestrial vegetation are depleted in 13C as 

compared to atmospheric CO2. In C3 plants, this is because of two fractionation processes: (a) 

diffusion of CO2 through stomata, which reduces δ13C by 4.4‰, and (b) the enzymatic 

process of carboxylation, which further reduces δ13C by 27‰ (note that for C4 and CAMs 

different photosynthetic processes operate leading to different 13C discrimination, for full 

review see Marshall et al. (2007)).  Farquhar, O’Leary, & Berry (1982) developed the well-

known model on the δ13C discrimination of C3 plants during photosynthesis:  

∆Α = a + (b –a) ci/ca          (2) 

where a is diffusive fractionation (-4.4‰), b is enzymatic fractionation by Rubisco (-

27‰), and ci/ca is the concentration of CO2 in the intercellular air space divided by 

concentration outside the leaf, i.e. atmospheric CO2 . Photosynthetic fractionation thus is 

affected by changes in atmospheric CO2 concentrations (ca), for instance by the recent 



General Introduction 

25 

 

increase from the burning of fossil fuels, but also by changes in the substomatic chamber or 

intercellular (ci) CO2 concentrations. The substomatic chamber has a CO2 input rate (gs) 

regulated by the stomata and an output rate (A) regulated by the CO2 assimilation by the 

Rubisco (the carboxylation enzyme). Changes in the input (gs) and output (A) of this model 

(i.e. in the intercellular CO2 balance of the leaf) are controlled by environmental variables 

such as light, temperature, water and nutrients availability, etc. Additionally, given that water-

use efficiency (WUE - ratio of net photosynthesis to transpiration, A/E) is also controlled by 

intercellular CO2 concentration, the δ13C of phosynthates (including plant sugars and tissues 

such as wood or leaves) provides a reliable index of water-use efficiency (Farquhar and 

Francis 1984). The formula of δ13C in plants can be expressed as:  

δ13Cplant = δ13Catmospheric - a - (b –a) ci/ca        (3) 

where δ13Catmospheric has a current value  of -8‰ becoming more negative each year (0.02 to 

0.03‰/year ). In addition, this value changes seasonally with relative 13C depletion during 

winter and enrichment during summer, particularly in the northern hemisphere. Also, it 

changes vertically in closed canopies due to near-soil CO2 accumulation from respiration. 

Therefore, we need to consider δ13Catmospheric variations when assessing δ13C variations of 

plant material in distantly separated samples (either in time or in space) (Gessler et al. 2014). 

To avoid the δ13C spatiotemporal changes from the CO2 source, many physiological 

studies use the carbon isotope discrimination to ensure that only plant processes are studied: 

∆13C = (δ13Catmostpheric – δ13Cplant )/ (1 – (δ13Cplant/1000))      (4) 

However, because the δ13Catmospheric variation is almost non-existing at the studied scales, 

we assume that changes in δ13Cplant are mainly controlled by changes in ci/ca, which are in turn 

controlled by both gs and A.   

• ∆13
C linked to stomatal conductance  

Lowered ci/ca ratios by stomatal closure (lower input) mean that Rubisco has less CO2 

available to fix. Because Rubisco preferentially uses the lighter carbon isotope (12CO2) for 

photosynthesis, the plant is then forced to use (or cannot discriminate against) the heavier 

isotope (13CO2), thus enriching the plant material with 13C. Strong stomatal regulation, which 

leads to partial or total stomatal closure, is typical of plant species in water-limited 

environments to prevent desiccation. Such regulation leads to large variations in the 
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discrimination of δ13C by Rubisco, which then gets imprinted in plant material. However, 

δ13C variability related to stomatal regulation may also happen not only in dry environments. 

For instance, mean annual precipitation (P) was found to control ∆13C in the leaf organic 

matter of C3 plants around the globe (Schulze et al 1998; Diefendorf et al., 2010; Kohn, 2010) 

, and in the tree rings of a wide range of species (Korol et al. 1999; McCarroll & Loader 

2004; Miller et al. 2001; Stewart et al. 1995; Warren et al. 2001), suggesting in many cases 

stronger control in the dry environments and less in wet environments (the ones approaching 

P/E ≈1) (Warren et al. 2001). The major role of water in driving the balance of leaf gas-

exchange in modern plants and the global trends in ecosystem-scale primary productivity can 

be understood through the study of ∆13C (Diefendorf et al., 2010). This is because ∆13C is 

strongly controlled by stomatal conductance, a key land surface attribute that controls both 

transpiration and photosynthesis. Moreover, stomatal conductance responds not only to water 

availability but to water demand too; thus other variables such as vapor pressure deficit, air 

relative humidity and potential evapotranspiration may cause variations in ∆13C (Ferrio & 

Voltas 2005). Similarly, stomatal conductance is affected by the resistance produced by the 

water-transporting-material within the plant, related e.g. to wood anatomical density (Klein 

2014); as a consequence, species with alternative water-use strategies may show different 

∆13C (Miller et al. 2001). 

• ∆13
C linked to C assimilation 

On the other hand, ∆13C and ci/ca can also be affected by assimilation (output in the 

substomatic chamber). For instance, in wet environments, maximal stomatal aperture yields 

an internal CO2 concentration closer to the atmospheric concentration, and Rubisco can thus 

discriminate against 13C, assimilating more carbon depleted in 13C. Still, under such non-

water-limited environments for photosynthesis, an improvement in other limiting conditions, 

like temperature (Miller et al. 2001; Schulze et al. 2014; Körner et al. 1991), light and 

nutrients availability (Schulze et al. 2014; Warren et al. 2001), oxygen partial pressure 

(Körner et al. 1991), etc, will lead to increases in the CO2 assimilation rate by Rubisco (A), 

therefore also decreasing ci/ca; this will also force the plant to use more 13C for photosynthesis 

thus decreasing the ∆13C of plant assimilates. It is important to note though that changes in 

∆13C by increased assimilation are more strongly noticed when (ci) is lower as a consequence 

of stomatal limitation, because changes in ci are larger in magnitude (Miller et al. 2001). This 

is also true for ci changes by stomatal regulation (see below).  
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• Other factors contributing to changes in δ13C of plant material 

Stomatal diffusion and assimilation rates often operate in coordination. For instance, lower 

water availability may lead to a decrease in both, the A and gs, thus dampening the response of 

∆13C to the environment as well as the realized range of variation in ci/ca (Cernusak et al. 

2013; Wong et al. 1979). In fact, such coordination is very likely one of the main factors for a 

constant ∆13C and ci/ca found in tree species living along a strong precipitation gradient from 

~1700 to ~300 mm in northern Australia (Cernusak et al. 2011; Schulze et al. 1998). 

However, the mechanism controlling such coordination are not clear yet (Cernusak et al. 

2013).  

Similarly, when studying spatial variations of the ∆13C  and ci/ca, it is important to note 

that other processes can modulate the response to the environment, like an adjustment of the 

ratio of leaf area to water-conducting tissue (Miller et al. 2001), or changes in altitudinal and 

latitudinal atmospheric to internal pressure (Körner et al. 1991). Such physiological 

adjustment or plasticity can be due to genotypic diversity. Therefore, environmental factors 

can modify ∆13C, but internal plant physiology, which varies between and within species, 

may also amplify or constrain the response (Cernusak et al. 2013). 

 Thus, carbon isotopes can be used to retrodict the environment that affected the plant 

during the time of tissue formation (leaves, tree rings, etc.) as well as to study differences in 

species- or genotype-specific physiological responses (Cernusak et al. 2013; Schulze et al. 

2014; Voltas et al. 2008). Despite that the water status of the plant is crucial during the 

formation of plant tissue (growing period) and affects changes in ∆13C, other factors during 

growing period may also affect ∆13C variability, such as high/low temperatures, leaf nitrogen 

or specific leaf area (Schulze et al. 2014). It is also important to note that ∆13C in plant 

material may also reflect conditions during the wet rather than the dry period when there is no 

growth (Stewart et al. 1995; Schulze et al. 2014). 

Furthermore, in the study of ∆13C plant material such as tree rings additional sources of 

variation unrelated to environmental factors may be derived from fractionation processes 

taking place during the mobilization of photosynthetic assimilates from the leaf to final 

produce a tree-ring (Gessler et al. 2014). For instance, the tree may use remobilized stored 

carbohydrates (primarily starch) for the construction of tree rings. As a consequence, the tree 

ring may have a signal from when the starch was produced, possibly many months or even 

years earlier (Gessler et al. 2014). 
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• ∆13
C and its link to plant performance 

In addition to the above, ∆13C variability also may reflects changes in plant performance. 

In fact, given that assimilation (A) saturates as intercellular CO2 concentrations (ci) increases 

at high gs, ∆13C provides a non-linear measure of plant performance in terms of carbon 

assimilation (Miller et al. 2001). As mentioned earlier, decreases in ∆13C reflect either a 

decrease in gs or increases in assimilation rates, and both may reflect an opposite effect on 

plant performance. Increased carbon may result from increased gs raising ci  and ∆13C with a 

fixed photosynthetic capacity, or increased photosynthetis with a fixed gs decreasing ci and 

∆13C (Miller et al. 2001). 

 

Water isotopes 

Water is an essential element for life and this includes plants. Two molecules of water are 

split into 4H+ and O2 during photosynthesis, acting as primary electron donors for 

Photosystem II, and water is also directly involved in CO2 fixation in the Calvin cycle, as well 

as in many subsequent metabolic conversions, see e.g. Taiz & Zeiger (2010). Furthermore, 

water is used by plants as a solvent, a transport medium, a coolant or as a structural 

component giving turgor to the cells. Typically, C3 plants spend as much as 500 g of water 

through transpiration for each gram of dry weight produced (Taiz and Zeiger 2010). Hence, it 

is not surprising that water controls almost every imaginable plant function as well as the 

global distribution of plant species. In addition, the physical scale of the soil water availability 

affecting plant community composition may range from the geographic to the highly local 

(Silvertown et al. 2015).  In regions where water scarcity predominates plants have developed 

different strategies to survive. This includes being more efficient in their water use or 

investing in parts of the plant (like a larger and deeper root system) to have a competitive 

advantage over other species (See chapter 3). 

However, inter- and intra-specific tree-water interactions are not well understood because 

of the difficulty of tracking water movement through the water cycle. This is particularly true 

in the soil-atmosphere interface, which is mainly controlled by plant water use (uptake,  

storage, transport) and evapotranspiration (lose) (Dawson 1996). In this context, water stable 

isotopes offer a great opportunity to study the ecological, physiological and environmental 

variables that control the water balance of different forest ecosystems. This was, until 

recently, a rather obscured scientific subject, as belowground plant-to-plant interactions are 
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complex and difficult to monitor with conventional methods of root measurements. However, 

during the 1990s, the study of isotopic ratios of deuterium/hydrogen (δD) and oxygen-18/ 

oxygen-16 (δ18Ο) in xylem water helped in determining the sources of water used by plants, 

and therefore plant rooting depths and patterns  (Ehleringer & Dawson 1992; Dawson 1996; 

Filella & Peñuelas 2003;   Walker & Richardson 1991).  This was possible mainly because of 

two facts: 1) the isotopic signal of the xylem water equals that of the source water in the soils, 

without significant fractionation processes in between (Dawson & Ehleringer 1991); 2) there 

is a natural variability in the isotopic composition of potential water sources, e.g. with 

different soil depths. For example, the soil water within the soil profile often displays a degree 

of evaporation, increasing as it gets closer to the top of the soil where higher temperatures, 

sun radiation, wind, etc., accelerate the evaporation process. This evaporation gradient also 

produces an isotopic gradient because the lighter isotopes evaporate to the atmosphere faster 

than the heavy ones, thus creating a fractionation process in the water isotopes  (Barnes & 

Allison 1984) (Figure 1).  The above allows, through the isotopic characterization of the soil, 

to monitor the depth at which the plants extract water. 

In order to understand plant water extraction using water stable isotopes, it is necessary to 

point out that changes in water phase (under non-equilibrium conditions) produce 

fractionation. So as said, evaporation leads to lighter water escaping as vapor gas (isotopic 

depletion), leaving the heavier isotopes behind in the pool of liquid water (isotopic 

enrichment). Contrary, condensation and precipitation lead to exactly the opposite effect; that 

is, isotopic depletion of the water vapor as the heavier isotopes fall out (rain out) first, with 

the consequent enrichment of the drops of liquid water (Bowen 2010). Soil and ground water, 

the main source of water for plants, comes mainly from precipitation, which can be of 

different origin; for instance, convective (recycled) precipitation or oceanic weather fronts. 

Both types of precipitation have a different isotopic imprint as their original pool is also 

different (terrestrial versus oceanic) (Figure 1). In addition, both precipitations may contribute 

differently to the recharge of the soil and ground water available to plant communities. In the 

Iberian Peninsula, where this thesis is based, recharge is mainly provided by Atlantic fronts 

(see Chapter 1 and Figure 1). As a consequence, the water found in the tree-xylem may tend 

to have the isotopic value of Atlantic fronts. However, recycle water  from convective storms 

may also contribute to ground-soil recharge during some parts of the year, mixing with the 

Atlantic water, thus making the tracking of the source water in the xylem harder to evaluate. 

Similarly, the plant may extract water at different depths, thus providing a mix of isotopic 
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signals (Figure 1). It is for this reason that the isotopic signature of xylem water needs to be 

evaluated along the growing season, and compared to the water at different depths within the 

soil profile and the aquifer (Dawson 1996). 

The degree of evaporation of sampled water with respect to the source water can be 

assessed by using the global or local meteorological water line; that is, the relationship 

between the δ2H and the δ18O that exist for different parts of the world (Craig 1961) (Figure 

2):  

δ2H = 8×δ18O + 10           (5) 

This global variability is produced by changes in the concentration of different isotopes in 

the primary input source, precipitation, along seasonal, latitudinal and elevational temperature 

gradients (Dansgaard 1964). Another variable, the Deuterium excess, (D-excess = δ2H  − 

8×δ18O; figure 2), denotes the divergence from the meteoric water line, and is sensitive to the 

conditions of evaporation of water  from a surface, particularly near-surface temperature 

(Dansgaard 1964) but more importantly to relative humidity (RH) (Pfahl & Sodemann 2014); 

D-excess can help us in quantifying the degree of evaporation of water as well as the possible 

sources of precipitation (Figure 1).  It has become irreplaceable as a way to track the 

hydrological and atmospheric systems, with a wide range of applications such as 

paleoclimatology, ecology, forensic sciences, criminology, etc. (Bowen 2010). 
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Figure 1. Part of the water cycle tracked by using water stable isotopes. 

 

Figure 3. Generalized δH2 vs δO18 plot showing global meteoric water line and local 

evaporation line. Adapted from Gibson, Edwards, & Bursey (1993). 



General Introduction 

32 

 

Spatio-temporal monitoring and modeling of the 

environment 

Spatiotemporal modeling 

A spatiotemporal model is a mathematical explanation of a dynamic system in which space 

is explicitly introduced (Bascompte & Sole 1995). Modeling, especially through extrapolation 

in time and space (mainly as predictive tool) can help us in reducing the complexity of a 

system by focusing only on the most relevant components for that system (Wainwright & 

Mulligan 2013). Environmental modeling is a powerful tool to integrate environmental 

processes (theory of how things work) and patterns (observation of the system) at different 

spatio-temporal scales. However, certain systems are too complex to be broken into 

manageable parts. For instance, and related to this thesis, this is the case for the spatial 

distribution of precipitation in the Mediterranean region, in which a complex interaction 

among multiple, and often unpredictable, components makes it a real challenge to model it; 

the effect of the abrupt topography on precipitation and the convective origin of a substantial 

part of the accumulated precipitation are good examples of the difficulties faced by climate 

modelers in this region. Similarly, modeling vegetation is challenging because it is constantly 

changing in space and time. Part of that difficulty derives from the fact that abiotic factors 

such as climate control part of that change, which introduces stochasticity into the system. In 

addition, plant dispersal, for instance through wind, and subsequent colonization, are surely 

subjected to random mechanisms too. As a consequence, when modeling the spatial structure 

and dynamics of vegetation, the random dynamic of climate and other environmental, biotic 

and ecologicalvariables must be considered.  

At the fine scale, processes that occur within a forest system (known as forest dynamics), 

such as tree-to-tree interaction for resources, can be explored through the study of the forest 

spatial configuration (Comas & Mateu 2007).  The dimensions and the characteristics of a 

single tree determine its relationships with their neighbors.  Empirical studies have frequently 

exposed that spatial and size configuration of trees in a community carry the fingerprint of 

growth, competition and habitat heterogeneity (Ford 1975, Chen et al. 2004). In this context, 

modern forestry research requires a multidisciplinary approach, for which forest ecology, 

landscape ecology and related spatial statistical methods become increasingly important 

(Stoyan & Penttinen 2000). 
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As mentioned in the introduction, an emergent field of study, known as isoscapes (from 

isotope landscapes) and focus on building spatial models of continuous observations of stable 

isotopic ratios that evolve over time, is providing innovative methods to the understanding of 

the biochemical cycles as well as many environmental and ecological processes on earth 

(West et al. 2010). Isoscapes integrate information across a range of different scales in time 

and space in grid-based models built through geostatistical tools from GIS packages (Bowen 

2010). Questions being addressed include plant and animal ecology, geology, atmospheric 

sciences, anthropology, microbiology, climate change, paleoclimatology, forensic sciences 

and more (West et al. 2010). Isoscapes, thus, offers the opportunity to explore biochemical 

spatial patterns and flows within systems in a precise way. 

Geographic Information Systems and Remote Sensing 

Monitoring and modeling the environment has become much easier due to the 

development of two sister technologies, Remote Sensing and Geographic Information 

Systems (GIS). Whereas Remote Sensing allows airborne monitoring of the earth through 

satellites, planes, drones, etc., with sensors capable of capturing radiation at a wide range of 

wavelengths (see next section for monitoring vegetation), GIS helps in the post-processing 

and analysis of these data and any other georeferenced spatio-temporal data. As its name 

indicates, GIS is a computer-based system designed to manage and model geographic 

information (Coppock, J. T., and Rhind 1991). Through a system of layers of geographical 

information of any kind (for instance, topographic, environmental, ecological, sociological, 

economic, etc.) it is possible to store, integrate, edit, analyze or display such information in 

many forms. The first GIS software in the world was developed in 1960 by Dr. Roger 

Tomilson, a visionary geographer who was able to solve complex problems related to the land 

capability of the rural Canada. He mapped information about soils, land use, forestry, wildlife, 

recreation, saving the Canadian government large amounts of time and money (Coppock & 

Rhind 1991).  Since then, GIS, which is a byproduct of computer revolution, offers endless 

possibilities in spatiotemporal data analysis and modeling, just 'as far as the mind can go' 

(Mark Mulligan 2006, personal communication). 

GIS analysis includes geostatistical algorithms to deal with spatiotemporal datasets. 

Typically different methods for spatial interpolation of data, which generates spatial 

information in those areas in space where information is missing, are part of geostatistical 

packages in GIS. From a single network of points containing some type of information we can 
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generate spatially-continue layers of information; in other words, a spatial model displayed as 

a map containing some real and some modeled information. The principle behind 

geostatistical models is that of spatial autocorrelation; when a spatial process (e.g. 

precipitation) influences values of a variable (e.g. δ13C values in plants), then values from 

nearby locations are likely to be more similar than those from locations that are widely 

separated in space. There are many types of interpolation methods, including kriging, inverse 

distance weight, closest neighborhood, etc. In this thesis, I will concentrate in the multiple 

regression method, which allows incorporating a process-based, more mechanistic approach 

into spatial interpolation. For example, if we are able to model the response of a given 

variable to different topographical variables, we can create more realistic environmental 

maps, thus, better models, than by simple distance interpolation. 

Normalized vegetation index (NDVI) 

Vegetation indices are radiometric estimates of the amount of photosynthetically active 

radiation (PAR) absorbed by the pigments (including chlorophyll and carotenoids) of green 

leaves as an energy source for photosynthesis. A sensor (in the space or ground) can gather 

both the reflected solar radiation from the plant, in order to quantify a proportion of PAR that 

is used by plants during photosynthesis (e.g. we might be interested in the red band, between 

0.6 and 0.7 µm) and the low-energy radiation that harms plants by increasing their internal 

heat (e.g. the near-infrared band, between 0.74 and 1.1 µm). The difference between the two 

reflected radiations provides a very distinctive signature of vegetation when compared to 

other earth surface materials (Tucker & Sellers 1986) (Figure 3). One of the most typically 

used indices is the normalized difference radiation index (NDVI), which is calculated as:  

 

After linking remotely sensed vegetation greenness to atmospheric CO2 changes in 1986, 

theoretical work by Tucker & Sellers (1986) attractively showed that absorption was related 

to photosynthetic activity, stomatal resistance and evapotranspiration. In this pioneer work, 

the authors clarified the issue that the remote sensors provide some indication of chlorophyll 

density, which is in turn related to photosynthetic and transpiration rates, rather than just an 

indicator of the photosynthetic surface (leaf area index or biomass). In this regard, a series of 

articles during the early 1980s by Compton J. Tucker, as well as many subsequent studies (see 

references in chapter 2), demonstrated that NDVI generated from modern satellite sensors can 
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be used to map land cover and monitor global-scale vegetation changes in productivity, 

physiological activity, and other processes like desertification. 

However, the complexity of canopies in terms of light absorption and radiative transfer 

(scattering, diffusivity, absorption, etc.) also imprints a signal in vegetation indices, associated 

to the density and health of canopy, leaf orientation, angle of the satellite with respect to the 

sun, etc. This can make the information contained in the vegetation indexes hard to interpret 

and not purely physiological. Furthermore, other problems related to atmospheric, soil, leaf 

litter water content, color of the soil, shadow of the trees, sun-sensor geometry etc., can affect 

the reflected radiation by vegetation, thus distorting the final signal collected by the sensors 

(Tucker & Sellers 1986; Morton et al. 2014).  In spite of this, seasonal and interannual 

variations in NDVI have been linked to net primary production (NPP), leaf area index, leaf 

chlorophyll content etc., and usually correlate well with other environmental variables (See 

chapter 2 for references). Nowadays, a global coverage dataset (Global Inventory Modeling 

and Mapping Studies, GIMMS) is the most widely employed data source for medium-term 

vegetation change studies, particularly at the global or regional scale. The data included in 

GIMMS is derived from the Advanced Very High Resolution Radiometer (AVHRR), 

launched by the National Oceanic and Atmospheric Administration (NOAA) in 1979 

  

Figure 3. The sensors (mounted on satellite, drones, or fix to the ground) measure the 

difference between solar radiation that is less reflected (Red) and most reflected (Infrared) by 

vegetation.  

Point-process statistics and point-pattern analysis for ecological modeling  



General Introduction 

36 

 

A point-process model is one of the tools developed by the discipline of point-pattern 

analysis. Point-process models simulate spatial point patterns with known properties to be 

compared with observed patterns (Wiegand & Moloney 2014). As its name indicates the 

point-process model tries to identify the processes that might be behind a particular point 

spatial pattern within a spatial observation window. The distribution of points in space may 

depend on some form of stochastic mechanism (Diggle 2003), and point-process models try to 

characterize the spatial patterns as accurately as possible by using appropriate statistical 

techniques (Wiegand & Moloney 2014).  Ecologists have studied spatial patterns to look for 

underlying biological and ecological processes and to identify whether the spatial scale at 

which they are operating fits spatially-related scientific theories (Comas & Mateu 2007).  For 

instance, we may find that in densely areas of a forest, growth and survival rates might be 

lower than in less dense areas, and we may then hypothesize that this is a consequence of 

strong competition between neighboring trees;  in this context, point processes allows to 

statistically test for that. 

In point-process statistics we may evaluate ecological objects within an observation 

window considering different types of information. If only spatial coordinates are taken into 

account, this is commonly referred to as 'point-pattern data'. If we have only one type of 

object, we call it univariate point pattern, and if we have two or more types of objects (e.g., 

two or more different species of trees), we call it bivariate or multivariate point pattern 

respectively (Wiegand & Moloney 2014). In addition to the coordinate attributes of the 

ecological object or points in the plane, other attributes can be considered in this sort of 

spatial analysis. They are referred as 'marks', which can be qualitative (e.g. dead vs. living 

trees) or quantitative (e.g. height, basal area, trunk size, etc. of a tree). Such marks can be 

modeled together with the spatial coordinates to provide information about the processes 

behind the actual spatial configuration of the points, as well as to reveal the processes behind 

the observed values of the marks (See Chapter 3). 
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Forestry applications 

Two of the first publications employing ideas from point-process statistics in the field of 

forestry are the book by Konig (1835) and the article by Svedberg (1922). Since then, point-

process statistics has grown in forest sciences more than in any other scientific discipline 

(references in Stoyan & Penttinen, 2000). A forest stand is the result of previous land use, 

complex ecological processes and practical forestry, thus, the spatial pattern formed by tree 

distribution may be hard to model (Comas & Mateu 2007). This is particularly true for the 

fine-scale spatial distributions of trees, something that still remains poorly understood (Condit 

et al. 2000). The application of point-process statistics helps to study spatial tree patterns and 

to contrast statistical and ecological hypotheses with empirical data (Stoyan & Penttinen 

2000). 

One important aspect of point-process statistic in ecology is that we can understand how 

things work from the point of view of the ecological object (or individual) (Stoyan & 

Penttinen 2000), which in forestry is known as single-tree modeling of whole forest. This 

provides an excellent opportunity to create spatially-explicit models of plant-to-plant 

interaction. Such kind of models have often being neglected, despite they may hold important 

information regarding ecosystem functioning (Rascher et al. 2012). For instance, inter-tree 

competition is often thought of as one of the primary drivers of forest-stand dynamics (Ruiz-

Benito et al. 2013), and the density and identity of neighbors within a stand are considered 

important aspects for tree mortality (Olano et al. 2009; Ruiz-Benito et al. 2013),  tree 

regeneration (Comas 2009),  growth  (Comas et al. 2013), etc. 
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Objectives 

 

i. To model precipitation at the regional scale with carbon isotope discrimination from 

the tree-rings of Quercus ilex L. and Pinus halepenesis Mill.  

ii. To integrate into tree-ring isoscapes topographical variables, assessing the use of 

regression-interpolation methods currently in use for climate data modeling.  

iii. To determine whether the ∆13C in the tree-rings of Pinus halepensis is mainly 

controlled by stomatal processes both at the spatial and temporal level, contrasting 

isotopic data with tree-ring growth and satellite derived NDVI.  

iv. To assess the existence of hydraulic niche segregation between co-existing Pinus 

halepensis and Quercus ilex, combining water isotopes with measurements of tree 

growth and physiological variables. 

v. To evaluate tree-to-tree below ground interactions at the inter and intra-specific level 

in terms of water extraction patterns related to seasonal dynamics, by combining 

stable isotopes with a set of tools for spatial analysis.  

vi.   To understand the implications for future forest dynamics of the different water use 

extraction patterns and strategies to cope with drought in pines and oaks. 



Objectives (General Introduction) 

42 

 

 

 



 

43 

 

 

Methods  



 

44 

 



Methods (General Introduction) 

45 

 

Materials and Methods (overview) 

 

This thesis studies forest systems at to different spatial scales (local vs regional) as well as 

temporal scales (seasonal vs multiannual). We focus on two of the most representative tree 

species of the Western Mediterranean basin, the Aleppo pine (Pinus halepensis Mill.) and the 

holm oak (Quercus ilex L.) which coexist in a wide range of Mediterranean environments. As 

mentioned earlier, the objective is to integrate the technology of stable isotopes (water and C 

in the wood) with modern ways of spatial modeling in order to unveil important biological, 

ecological, physiological and environmental aspects concerning both species.  

At the regional scale: 

In chaper 1, a methodology to develop precipitation maps from carbon isotope 

discrimination (∆13C) of tree rings by (1) producing high-resolution 13C-isoscapes using 

multiple linear regression analysis, which incorporates geographical variables as predictors of 

isotopic records, combined with geostatistical interpolation of the errors (Ninyerola et al. 

2006), and (2) applying causal relationships between precipitation and ∆13C to convert 13C-

isoscapes into precipitation maps. Precipitation maps for the study area were derived from 

isotope networks of two Mediterranean tree species, Aleppo pine (Pinus halepensis Mill.) and 

holm oak (Quercus ilex L.), which are known to provide complementary information on 

seasonal precipitation. Isoscapes where generated using ArcGIS 10.0 (ESRI, Redlands, USA) 

and Miramon Miramon V6.1 package.  

Altogether, we used 44 sampling locations for Q. ilex and 38 for P. halepensis, 

respectively, with 15 locations being common to both species. The compiled δ13C records 

represented available number of pooled tree rings (24 ± 2.0 years for Q. ilex, 17 ± 2.8 years 

for P. halepensis) and covered different temporal ranges for the period 1975–2008. Monthly 

precipitation data for the sampling sites were obtained from the Digital Climatic Atlas of the 

Iberian Peninsula (http://www.opengis.uab.es/wms/iberia/mms/index.htm) (reference 

precipitation, representative of the period 1950–99) and used in model for error estimation 

and model validation. 
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In chapter 2 we evaluated not only the spatial but also the temporal variability of the 

isotopic discrimination ∆13C, and its relationship with precipitation, radial growth (RG) and 

satellite vegetation index NDVI. We used a network of seven localities of tree-rings from 

Pinus halepensis in the northeastern part of the Iberian Peninsula. We looked into the biennial 

tree-ring variability for a period of 25 years and compared that to climatic, radial growth and 

NDVI time series. The isotopic analysis to estimate the δ13C from the wood were analysed in 

mass spectrometer (Chapter 2) at the university of Davis (California), see chapter 2. We used 

simple Pearson correlation analysis to find relationships at the spatial and temporal level with 

all the mentioned variables MAP ∆13C, NDVI and RG. 

At the local scale: 

In chapter 3 and 4 we sought to developed a methodology to understand water extraction 

patterns in mixed forest of Q. ilex and P. halepensis. We explored the use of water through 

the isotopic analysis of water from twigs, trunks and ground along a year of drought (6 

sampling campaings), in which trees were likely to be at its limit of tolerance. The study was 

conducted in a mixed stand (area = 888 m2) with a total of 33 Q. ilex and 78 P. halepensis and 

them were sampled. To understand the interactions inter and intra-specific between 

individuals at the stand level, we have employed the analysis of the marked point patterns of 

oaks and pines, we used the mark correlation function to describe the spatial structure of 

marks (e.g. δ18O and δ2H; the isotopic values of water in the twigs) associated to each tree 

location. Mark-correlation spatial analysis can also unveil whether water extraction patterns 

were related to any point process or particular spatial configuration.  

Water isotope ratios of hydrogen and oxygen of the xylem and soil were determined using 

a Picarro Water Analizer L2130-i (Picarro Inc., Santa Clara, California), and expressed in 

delta (δ) notation (‰) relative to V-SMOW (i.e. isotopic composition of oxygen, δ18O, and 

hydrogen, δ2H). Tree position for spatial analysis was determined using a high resolution GPS 

technology (GeoExplorer 6000 Series Handheld, Trimble Navigation Limited, California, 

USA). We also used other spatial interpolation methods with GIS to estimate spatial tree 

densities to derived tree ecophysiological information.  
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Abstract 

[1] Stable isotopes in tree rings provide climatic information with annual resolution dating 

back for centuries or even millennia. However, deriving spatially explicit climate models 

from isotope networks remains challenging. Here we propose a methodology to model 

regional precipitation from carbon isotope discrimination (∆13C) in tree rings by (1) building 

regional spatial models of ∆13C (isoscapes), and (2) deriving precipitation maps from ∆13C-

isoscapes, taking advantage of the response of ∆13C to precipitation in seasonally-dry 

climates. As a case study, we modeled the spatial distribution of mean annual precipitation 

(MAP) in the northeastern Iberian Peninsula, a region with complex topography and climate 

(MAP=303-1086 mm). We compiled wood ∆13C data for two Mediterranean species that 

exhibit complementary responses to seasonal precipitation (Pinus halepensis Mill., N=38; 

Quercus ilex L.; N=44; pooling period: 1975-2008). By combining multiple regression and 

geostatistical interpolation, we generated one ∆13C-isoscape for each species. A spatial model 

of MAP was then built as the sum of two complementary maps of seasonal precipitation, each 

one derived from the corresponding ∆13C-isoscape (September–November from Q. ilex; 

December–August from P. halepensis). Our approach showed a predictive power for MAP 

(RMSE=84 mm) nearly identical to that obtained by interpolating data directly from a 

similarly dense network of meteorological stations (RMSE=80-83 mm, N=65), being only 

outperformed when using a much denser meteorological network (RMSE=56-57 mm, 

N=340). This method offers new avenues for modeling spatial variability of past precipitation, 

exploiting the large amount of information currently available from tree-ring networks. 

Introduction 

[2] There is a current need to develop precipitation models with high spatial resolution in 

order to understand past climate and delineate future scenarios of global change [Brayshaw et 

al., 2011; IPCC, 2007]. This, however, is particularly challenging in drought-prone areas 

where precipitation regimes are extremely complex and accurate predictions usually require 

geographically dense networks of instrumental observation [González-Hidalgo et al., 2011; 

New et al., 2001]. Since long-term coverage of instrumental meteorological records (i.e. 

longer than a few decades) is often unavailable, proxies for precipitation are required to 

complement or expand instrumentally derived information. 
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[3] In this context, carbon isotope ratios (13C/12C) in different plant tissues can be used as a 

proxy for precipitation, particularly in seasonally dry climates [Aguilera et al., 2009; 

Diefendorf et al., 2010; Ferrio and Voltas, 2005; Klein et al., 2005; Kohn, 2010; Leavitt et al., 

2007; McCarroll and Loader, 2004; Warren et al., 2001]. Specifically, stable isotopes in tree 

rings provide climatic information with annual or seasonal resolution dating back for 

centuries or even millennia, and thus a growing interest in the spatial and temporal 

dependence of climate processes have resulted in a burst of tree-ring isotope networks 

worldwide [Kagawa and Leavitt, 2010; Leavitt et al., 2007; 2010; Schubert and Jahren, 2011; 

Sidorova et al., 2010; Treydte et al., 2007]. However, although preliminary attempts to infer 

climatic trends using spatially explicit models of isotope distribution (isoscapes; [Bowen, 

2010; West et al., 2010]) have provided promising results [Aguilera et al., 2009; Leavitt et al., 

2007], the development of robust methodologies to interpolate existing data remains essential 

to derive accurate regional estimates from tree-ring networks [Büntgen et al., 2010; Frank et 

al., 2008; Leavitt et al., 2010; Treydte et al., 2007]. Given that climate variables can be 

spatially modeled using geographic variables in areas with complex topography [Agnew and 

Palutikof, 2000; Ninyerola et al., 2000; Perry and Hollis, 2005; Sánchez Palomares et al., 

1999], we argue that the same approach can be applied to tree-ring isotope networks in order 

to reconstruct spatial patterns of precipitation. 

 

[4] Therefore, the main goal of this paper is to propose a methodology to develop 

precipitation maps from carbon isotope discrimination (∆13C) of tree rings by (1) producing 

∆13C-isoscapes with high spatial resolution using multiple linear regression (MLR) analysis, 

which incorporates geographical variables as predictors of isotopic records, combined with 

geostatistical interpolation, and (2) applying causal relationships between precipitation and 

∆13C to convert ∆13C-isoscapes into precipitation maps. As a case study, we modeled the 

spatial distribution of mean annual precipitation (MAP) in the northeastern Iberian Peninsula, 

a region with strong spatial variability for this variable. Precipitation maps were derived from 

isotope networks of two mostly co-occurring Mediterranean tree species, P. halepensis and Q. 

ilex, which are known to provide complementary information on seasonal precipitation 

[Aguilera et al., 2012; Ferrio et al., 2003]. After comparing the performance of isoscape-

derived spatial models with those derived from meteorological records, the potential and 
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limitations for modeling spatial variability in precipitation from tree-ring isotope networks are 

discussed. 

Materials and Methods 

Study area and data compilation 

[5] The study focused on the northeast area of the Iberian Peninsula, in the western 

Mediterranean basin (Fig. 1). The area is characterized by a complex topography and the 

interaction of African subtropical, North Atlantic and Mediterranean climate systems 

[Gimeno et al., 2010; Rodó et al., 1997]. MAP in the area ranges from ca. 300 mm to over 

1000 mm. MAP at the sampling sites ranged from 391 to 965 mm. Precipitation generally 

show a bimodal seasonal distribution, with two maxima located in spring and autumn (see 

Fig. S1). 

 

[6] Data on carbon isotope composition (δ13C) in whole wood from Holm oak (Q. ilex L.) and 

Aleppo pine (P. halepensis Mill.) were compiled from previous studies [Aguilera et al., 2009; 

2012; Ferrio et al., 2003; Ferrio and Voltas, 2005]. Altogether, we used 44 sampling 

locations for Q. ilex and 38 for P. halepensis, respectively, with 15 locations being common 

to both species (Fig. 1b). Since our study focused on spatial variability, data compilation 

aimed at maximizing spatial resolution, being relatively flexible with temporal accuracy, as 

suggested in previous works when dealing with a limited number of continuous instrumental 

records [AEMET-IM, 2011; Ninyerola et al., 2000; 2007]. Hence, in most cases compiled 

δ13C data was determined from wood cores in which tree rings from several years were 

pooled together for analysis (24 ± 2.0 years for Q. ilex, 17 ± 2.8 years for P. halepensis), and 

covering different (yet widely overlapping) temporal ranges for the period 1975–2008. 

Precipitation data for the sampling sites were obtained from the Digital Climatic Atlas of the 

Iberian Peninsula, which provides a 200-m gridded reference precipitation, representative of 

monthly averages for the period 1950-1999 (data available at 

http://www.opengis.uab.es/wms/iberia/mms/index.htm); for details on the methodology used 

to generate the Atlas see [Ninyerola et al., 2007]).  

[7] Carbon isotope discrimination (∆13C) was calculated from the δ13C of samples and the 

δ13C of the atmospheric CO2 (δ
13Catm) [Farquhar and Richards, 1984]:  
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atm

1313 +−=    [1] 

 

[8] δ13Catm was inferred by interpolating a range of data from Antarctic ice-core records 

[Francey et al., 1999; Indermühle et al., 1999; Leuenberger et al., 1992], together with 

modern data from two Antarctic stations (Halley Bay and Palmer Station) of the CU-

INSTAAR/NOAA-CMDL network for atmospheric CO2 measurements, as first described in 

[Ferrio et al., 2005] (smoothed δ13Catm curve from 16100 BCE to present, available at 

http://web.udl.es/usuaris/x3845331/AIRCO2_LOESS.xls). Estimated δ13Catm for the time 

period represented in each sample ranged from -7.7 to -8.0‰. 

 

Generation of multiple linear regression models to describe ∆∆∆∆13C from geographic 

variables 

[9] Stepwise regression analysis was used to determine the best-fit model describing the 

spatial variability of ∆13C based on geographic data consisting of 28 predictor variables (see 

section 2.3 for details). A forward selection procedure was used by which variables were 

progressively added provided they made a significant contribution to the model based on F-

statistic values. Threshold F-statistics required for a variable to enter or stay in the model 

were set to 0.10 (F-to-enter) and 0.15 (F-to-remove), respectively. In this way, a multiple 

linear regression (MLR) model was built for each species predicting ∆13C from geographic 

variables.  

 

Candidate variables for MLR models 

[10] A set of 28 independent predictor variables with known climatic relevance in the area 

was selected. Altitude, latitude, terrain curvature and aspect were directly derived or 

calculated from a 90-m resolution Digital Elevation Model (http://opengis.uab.es/wms/world/) 

using ArcGIS 10.0 (ESRI, Redlands, USA). Distances to different water bodies (Atlantic 

Ocean, Cantabrian Sea and Mediterranean Sea) and also the minimum distance to all seas 

were computed as indicators of continentality. We calculated both Euclidian (linear) and cost 

distances (i.e. the “cost” of traveling from one point to another, considering geographic 

barriers), which in turn were transformed into logarithmic and quadratic distances. Cost 

distance was calculated by (1) reclassifying a Digital Elevation Model (DEM) into a simple 

raster (also known as cost surface) by giving a subjective weight to different intervals of 
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altitude (see below), and (2) calculating, for each cell, the least accumulative cost distance 

over a cost surface to the water bodies. In this way, we generated a raster with the lowest total 

distance from a target cell to the nearest sea. Although we created several cost distance rasters 

with different weights, we opted for the one that provided the best correlation with ∆13C in 

both species. DEM reclassification into a cost surface was done as follows: every 100 m until 

2000 m (starting at 0 m) a linear increment of 1 m. However, from 2000 to 3500 m, we 

provided a greater weight ([2000 - 2500 = 30 m] and [2500 - 3500 = 50 m]). This was done in 

order to take into account a likely strong rain-shadow effect of high mountain peaks over 

maritime air masses. All of the above were calculated with the Cost Distance Tool of ArcGIS 

10.0. 

Generation of ∆∆∆∆13
C-isoscapes from MLR and residual interpolation 

[11] The b coefficients of the regression equations and the raster matrices of the independent 

(geographic) variables were implemented in a raster calculator tool in order to produce a 90-m 

resolution raster layer of ∆13C for each species. The ∆13C-isoscapes derived from MLR 

models (hereafter, MLR-isoscapes) may yield biased estimates in areas underrepresented by 

sampling, as these have less weight in the regression model. To overcome this potential 

limitation, we applied an error interpolation method, which has been widely used in 

combination with MLR to model spatial patterns in climate from meteorological networks 

[Agnew and Palutikof, 2000; Ninyerola et al., 2000; 2007; Perry and Hollis, 2005]. Briefly, 

the residuals (observed-predicted) from the MLR-isoscapes were spatially interpolated using 

the inverse distance weighting method to generate a residual layer (see supplementary Fig. 

S2). By adding this layer to the corresponding MLR-isoscapes, we ended up with a residual-

interpolated ∆13C-isoscapes for each species (hereafter, RI-isoscapes). The addition of the 

residual layer was intended to correct for spatial trends, not originally accounted for by the 

MLR model, which potentially could have originated from the existence of spatial correlation 

in the distribution of errors. Finally, maps were imported to the Miramon V6.1 package 

(http://www.creaf.uab.es/miramon/index.htm) in order to add a mask of the areas not suitable 

for the studied species (topo-climatic suitability index<0.2; 

http://www.opengis.uab.cat/IdoneitatPI/). 

 

Validation of ∆∆∆∆13
C-isoscapes 
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[12] The predictive capability of the MLR- and RI-isoscapes was tested through a leave-one-

out cross-validation process. Briefly, we fixed the selected input variables according to the 

best stepwise regression model, and generated a series of models (as many as samples) using 

all samples except one used for validation. The cross-validated root mean square error 

(RMSE) was calculated as 

 

 ( ) ( )∑ −−= 1RMSE 2
modmeas NYY     [2] 

 

where Ymeas and Ymod are, respectively, the measured and modelled ∆13C values of the test 

samples not included in calibration during each iteration, and N is the number of samples. For 

each test sample, predictive error was determined before and after applying residual 

interpolation. 

 

Deriving a map of annual precipitation from ∆∆∆∆13
C-isoscapes 

[13] To take advantage of the differential seasonal responses of ∆13C to precipitation in P. 

halepensis and Q. ilex [Aguilera et al., 2012; Ferrio et al., 2003], layers of MAP were 

generated by combining ∆13C-isoscapes from both species. We built a family of 12 bi-specific 

models in which precipitation was predicted for subsets of consecutive months from ∆13C in 

one species and for the remaining months in the other. Adding the predictions from each 

species provided an estimate of MAP for each sampling point. Since P. halepensis offered the 

best mono-specific model to estimate annual precipitation from carbon isotope discrimination, 

this model served as starting point for a process aimed at identifying the optimal bi-specific 

annual precipitation model by predicting two complementary sets of consecutive months from 

each of the two species. In the first instance, we used the best monthly precipitation model 

(highest R2, October) of Q. ilex to provide a monthly estimate of precipitation to complement 

the estimate for the rest of the year obtained from P. halepensis. A leave-one-out cross-

validation process was applied to this particular month combination using those sampling 

sites (15) in which both species were present as validation data (Fig. 2). The cross-validation 

RMSE was calculated as described for ∆13C-isoscape models (Equation 2). Progressively, 

additional months predicted by Q. ilex instead of P. halepensis were added, either the 

previous or the following to the one initially included, retaining the month combination with 

lowest RMSE. We ended up with 12 annual models, the last one being an annual precipitation 
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model where only Q. ilex was used. Out of the 12 models built, we decided which 

combination of months using carbon isotope discrimination of both species provided the 

lowest RMSE value, and thus the best predictive annual precipitation model. To avoid 

confusions, RMSE values at the model selection step will be referred to hereafter as RMSEreg. 

Finally, to generate a spatial model of MAP, the regression coefficients for each species 

relating reference precipitation to ∆13C were applied to the corresponding ∆13C-isoscapes 

using a raster calculator tool. 

Validation of spatial models of precipitation 

[14] We evaluated the strength of our model predictions by direct comparison with an 

independent dataset of long-term averages of MAP from 573 climatic stations, available for 

the period 1971–2000 (MAP=303-1086 mm) [AEMET-IM, 2011]. To this end, observed and 

predicted data were compared and the coefficient of determination (R2), slope and RMSE 

were calculated. To avoid confusions, RMSE values determined to validate MAP predictions 

will be referred to hereafter as RMSEmap. The coefficient of variation (CV, expressed in %) of 

model predictions was then calculated as the quotient between RMSE and the mean of the set 

of meteorological stations used for validation. Spatial patterns in model performance were 

assessed by interpolating relative errors (% of observed values) using the inverse distance 

weighting method. As a reference for our model statistics, we applied the same procedure 

used to generate ∆13C-isoscapes to model annual precipitation directly from the 

aforementioned network of climatic stations. We generated a family of models to assess the 

potential role of seasonal precipitation distribution and sampling density in defining model 

performance. Thus, we modeled annual precipitation either directly or as the sum of two 

seasonal models (as done in ∆13C-isoscapes), and compared models generated with a high 

sampling density (60% of randomly selected stations, following Ninyerola et al. [2007]; 

N = 340) with models with low sampling density, generated with a subset of 65 weather 

stations having the lowest Euclidian distance to the corresponding tree-ring sampling sites. 
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Results 

Isoscape modeling of ∆∆∆∆13
C 

[15] Species-specific multiple linear models predicting ∆13C from geographic variables 

showed a similar linear fit, with R2 = 0.56 (N = 44) for Q. ilex and R2 = 0.48 (N = 38) for P. 

halepensis. For Q. ilex, variables entering the model were (1) logarithmic cost distance to all 

seas, (2) latitude and (3) altitude, in that order of significance (Fig. 3a). For P. halepensis, 

selected variables were (1) latitude, (2) Euclidian distance to all seas and (3) altitude, in that 

order of significance (Fig. 3b). Further details of the fitted models are given in Table 1.  

[16] Modeled values for Q. ilex ranged from 16.9‰ to 21.2‰ (range of calibration samples: 

16.8-19.9‰), having the highest values in the coastal strip (MLR-isoscape, Fig.3c), which 

highlights the strong influence of continentality (distance to all seas) in the model (Table 1). 

A latitudinal trend was also observed, with lower values to the south, and the effect of altitude 

was particularly visible in the abrupt northern river valleys of the Pyrenees. Overall, a similar 

pattern was observed in the P. halepensis model (MLR-isoscape, Fig. 3d); however, since the 

weights of each variable in this model were similar (Table 1), the effect of continentality was 

not as strong as for Q. ilex, and the latitudinal gradient was clearer. Predicted values of ∆13C 

for P. halepensis ranged from 15.0‰ to 18.9‰ (range of calibration samples: 15.4-18.0‰). 

Validation statistics for ∆13C-isoscape models are provided in Table 2. 

 

Predicting MAP from ∆∆∆∆13
C-isoscapes using a bi-specific model  

[17] The lowest RMSEreg (78.3 mm) in predicting MAP from ∆13C was found using Q. ilex to 

infer precipitation from September to October, and P. halepensis for December to August 

(Fig. 2). However, the next best-fitting month combination provided almost identical quality 

(i.e. accuracy and precision; RMSEreg=78.6 mm) by predicting the whole autumn season 

(September–November) from Q. ilex and the rest of year from P. halepensis. From a 

climatological point of view, it seemed sensible to have the final combination of months 

grouped by seasons, so the latter model was finally adopted, as follows: 

 

640-C∆46.4P 13
novsept Quercus×=−

  R
2=0.41, N=44, P<0.001  [3] 

1402C∆106.7P 13
augdec −×=− Pinus

  R2=0.63, N=38, P<0.001  [4] 
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augdecnovsept PPMAP −− +=     [5] 

 

[18] Comparing predicted MAP with observed precipitation (Table 2), we found higher 

predictive ability using the RI-isoscapes (RMSEmap = 84 mm) than the MLR-isoscapes 

(RMSEmap =102 mm) (Table 2). Before applying a residual correction, models calibrated with 

instrumental data performed similarly to the MLR-isoscapes, regardless of sampling density 

(RMSEmap = 97–111 mm) (Table 2). After residual correction, models based on 

meteorological data showed similar results to RI-isoscapes when station density was 

comparable to that of the tree-ring network (N=65, RMSEmap=80-83 mm), but showed higher 

predictive ability when using a high-density sampling network (N=340, RMSEmap = 56-57 

mm) (Table 2). In all cases, modeling spatial patterns in MAP from annual climatic data or as 

the sum of two seasonal values (i.e. emulating ∆13C-derived models) gave almost identical 

results. The predicted distribution of MAP generally agreed with the observed precipitation 

patterns in the area (Fig 4a, as compared to Fig. 1b). Nevertheless, the spatial patterns of 

predictive errors revealed some areas with substantial overestimations (>20%) (Fig. 4b). 

Discussion 

 How good is a ∆∆∆∆13
C-isoscape model at predicting MAP?  

[19] Multiple linear models based on geographic variables explained about 50% of ∆13C in 

tree-rings, an outcome comparable to that reported when modeling ∆13C directly from 

climatic variables (e.g. [Aguilera et al., 2009; Ferrio et al., 2003; Sidorova et al., 2010; 

Treydte et al., 2007; Warren et al., 2001]). This supports our initial assumption that ∆13C can 

be spatially modeled in the same way as the climate variables that have a strong influence on 

it (e.g. precipitation). Furthermore, applying a transfer function to derive mean annual 

precipitation from bi-specific ∆13C, we were able to generate spatial maps of annual 

precipitation, which in turn were validated with independent data from meteorological 

stations. At this step, we tested two kinds of isoscapes: those derived exclusively from the 

multiple linear models represented in Fig.1 (MLR-isoscapes), and those in which an 

additional residual correction was applied (RI-isoscapes). Despite having a relatively sparse 

tree-ring network (0.5 × 10-3 sites km-2), the predictive ability obtained with the RI-isoscape 

(RMSE= 84 mm; CV=16.4%, see Table 2) is comparable to that of other studies modeling 
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precipitation from much denser meteorological networks e.g. for the whole Iberian Peninsula 

(3.5 × 10-3 stations km-2; RMSE = 137 mm; [Ninyerola et al., 2007]; CV>19.5%, calculated 

for an average MAP < 700 mm, according to Spanish Meteorological Agency [AEMET-IM, 

2011]), or for the different river basins included in the study region (5.8 × 10-3 stations km-2; 

RMSE = 67–147 mm [Sánchez Palomares et al., 1999]). Similarly, the performance of 

isoscape-derived models was nearly identical to that found for models based on a 

meteorological network with a spatial distribution resembling that of our sampling sites (low-

density meteorological network; 0.8 × 10-3 stations km-2; CV=15.9-16.5%, see Table 2). Only 

our reference models calibrated with a high-density network of weather stations (4.3 × 10-3 

stations km-2) performed better than the RI-isoscapes in predicting MAP, and this only after 

applying residual interpolation (33% lower RMSE, CV=11.1%). It should be noted here that 

the slight differences between the temporal range covered by ∆13C samples (1975-2008) and 

the meteorological data used for validation (1971-2000, [AEMET-IM, 2011]) might have 

artificially decreased the predictive accuracy of the isoscape models. Despite this, our results 

indicate that it is possible to obtain reasonable spatial predictions of precipitation from tree-

ring ∆13C networks, with comparable accuracy to that reached using meteorological networks, 

thus providing a unique opportunity to validate global climate models, well beyond the oldest 

instrumental records. 

Combined use of pines and oaks to reconstruct MAP 

[20] One of the advantages of this approach is that it relies on well known physiological 

responses of different species, taking advantage of their different behavior to build more 

precise regional spatial models. In our case, for instance, the two species showed a 

complementary response to seasonal precipitation, in agreement with previous works 

[Aguilera et al., 2012; Ferrio et al., 2003]. This was observed not only in the relationship 

between ∆13C and monthly precipitation (Fig. 2), but also in the different set of geographic 

variables defining precipitation (Fig. 3, Table 1). For instance, ∆13C in Q. ilex is mainly 

sensitive to autumn precipitation [Aguilera et al., 2012; Ferrio et al., 2003], while 

continentality appears to be a key geographic factor defining ∆13C spatial variability for this 

species. In this regard, autumn–winter precipitation in this region is caused either by the long-

distance transport of moisture within the tropical–subtropical North Atlantic corridor or by 

Mediterranean cyclogenesis and, thus, is mainly driven by maritime air masses [Millán et al., 

2005], in other words, continentality plays a major role in defining spatial distribution of 
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precipitation. In contrast, spring and summer precipitation is strongly affected by convective 

episodes [Gimeno et al., 2010] and, thus, continentality has less influence over the spatial 

distribution of precipitation during this period. Accordingly, P. halepensis, more sensitive to 

spring–summer precipitation, shows a more balanced contribution of geographic variables 

explaining ∆13C than Q. ilex, with latitude being the most influential. Modeling spatial 

distribution of monthly precipitation in the area, Ninyerola et al. [2000] also found that 

continentality played the most significant role in early autumn, while the greatest influence of 

latitude was during spring–summer. This trend is further confirmed in our reference 

precipitation models, showing a major role of continentality for autumn precipitation, while 

latitude takes first place for the rest of the year. Finally, in both species altitude showed a 

positive effect on ∆13C. However, this effect was relatively weak when compared to observed 

(positive) altitudinal trends in MAP in the area ([Ninyerola et al., 2000], Table 1). This could 

be due to other environmental variables, such as temperature or atmospheric pressure, 

exerting negative effects on ∆13C along altitudinal gradients [Kohn, 2010; Körner et al., 

1991]. As a result, although both ∆13C and MAP show an overall positive response to altitude, 

they do not share the same kind of linear response, and this may be one of the causes for the 

observed underestimation of MAP in mountain areas. In this regard, combining ∆13C with 

other tree-ring proxies (e.g. oxygen isotopes, wood density), more sensitive to temperature, 

may help to better define the role of different geographic variables in precipitation. 

Residual interpolation as the bottleneck for model performance 

[21] According to our results, it is at the interpolation step where sampling density plays a 

major role at improving the quality of spatial inferences. Whereas all MLR models showed a 

similar predictive ability, error interpolation caused a much bigger improvement in the high-

density meteorological network (43% reduction in RMSE) as compared to the low-density 

meteorological network (27% reduction in RMSE) or the isoscapes-based model (17% 

reduction in RMSE). Most likely, interpolating errors in sparse or uneven sampling networks 

could result in a single point value influencing a large area, thus leading to error propagation. 

For instance, we can point at two zones with large overestimation errors (40.5–41.5ºN, 0.5–

1.5ºW; 42.0–42.5ºN, 1.5–2.0ºW, see Fig. 3b), which correspond to marginal areas considering 

our sampling network. A third area (41.5–42.0ºN, 0.0–1.0ºE) corresponds to a semi-arid area 

of the mid Ebro Valley (MAP = 300–400 mm). This zone is strongly deforested and the 

nearest available sampling sites are located in slightly wetter areas. Consequently, MAP in 

this zone falls below the range covered by our sampling locations (391-965 mm), which may 
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have lead to an overestimation by the model. Nevertheless, although having a denser tree-ring 

sampling network would have improved model predictions ([Agnew and Palutikof, 2000], this 

work), our results indeed suggest that correcting for residuals in relatively low-density 

networks is still worthwhile. 

[22] Besides sampling density, the relatively small effect of interpolation on isoscapes-

derived models could also be attributed to the fact that we did not use meteorological data for 

correction, but ∆13C values instead. Paradoxically, residual interpolation of ∆13C caused a 

greater improvement in the prediction of MAP than on ∆13C itself: although residual 

interpolation increased notably the R2 derived from the leave-one-out cross validation for 

∆13C (18.5-22.6% higher, see Table 2), relative changes in RMSE for ∆13C predictions were 

smaller than those observed for MAP (6.6% and 4.4% reduction in RMSE, for ∆13CQuercus and 

∆13CPinus, respectively). It should be noted, however, that given the low density of the 

sampling network, the cross-validation procedure might have underestimated the increase in 

predictive power of the RI-isoscapes, due the strong effect of excluding the most isolated sites 

from the interpolation (see error maps in Fig. S2). Hence, these RMSE values are not directly 

comparable to those obtained through validation with an independent set of samples, as was 

the case for MAP. Nevertheless, we cannot rule out compensation effects resulting from the 

combination of ∆13C from both species. Indeed, considering the 15 sites where ∆13C values 

for both species were available (N=15), residual interpolation caused a higher decrease in 

RMSE (20.9%) for site-averaged ∆13C values than for each individual species (1.9% and 

17.9%, for ∆13CQuercus and ∆13CPinus, respectively). This further confirms our findings that 

combining data from species with different growing requirements it is possible to obtain a 

more robust prediction of MAP than with mono-specific models.  

 

Limitations and future prospects 

[23] Our approach opens an encouraging field of research, suggesting that continuous climate 

layers, either annually or multi-annually resolved, can be derived from tree-ring isotope 

networks, even in areas with complex topography. Physiological responses to climate are 

species-dependent, but this should not be seen as a constrain for this approach, since similarly 

strong relationships between ∆13C and different climate variables have been reported for 

many species around the world, and thus the method is potentially extensible to other regions 

of study [Büntgen et al., 2010; Frank et al., 2008; Leavitt et al., 2007; 2010; Sidorova et al., 
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2010; Treydte et al., 2007; Warren et al., 2001]. Even when comparing unrelated species (e.g. 

conifers and angiosperms) or contrasting functional types (evergreen and deciduous) some 

common patterns for δ13C in tree-rings have been found both at the regional scale (this work, 

but also [Reynolds-Henne et al., 2007; Treydte et al., 2007]) and at the global scale [Schubert 

and Jahren, 2011]. In any case, as in other dendroclimatic approaches, species-specific 

calibrations are needed to determine which climatic variables and during which period of the 

year can be reflected in wood ∆13C. However, unlike classical dendroclimatology, which 

usually deals with site-specific calibrations, ∆13C-isoscapes are likely to work better with 

multi-site calibrations. On the other hand, although examining spatial trends over wider areas 

might be challenging due to species- or site-specific responses, these can provide additional 

climatic information. For example, [Treydte et al., 2007] found time-dependent spatial trends 

in the relationship between δ13C and climatic variables across European tree-ring 

chronologies, which might be related to the differential response of the species used, but also 

to changing effects of climate forcing mechanisms in different areas. In this regard, 

combining the geographic information provided by isoscape models with climate-response 

functions of stable isotopes in tree rings, it might be possible to go one step forward in the 

application of tree-ring signals as palaeoenvironmental proxies, by providing feedback to 

global circulation models. 

[24] According to the results presented, exploring past precipitation patterns using tree-ring 

networks seems a feasible task, allowing upscaling of paleoclimate inferences for climate 

model data comparisons. One limitation of this approach is its dependence on sampling 

density, which might be limited for very long tree-ring chronologies. Nevertheless, even using 

a relatively low sampling density we can capture the forcing factors defining precipitation 

using a topo-geographic model. Thus, besides getting insight into spatial patterns of 

precipitation, changes over time in the role of geographic variables explaining tree-ring ∆13C 

for different species could be interpreted in terms of varying relevance of forcing factors 

affecting precipitation. Likewise, given that vegetation productivity in semi-arid regions 

depends mainly on seasonal rainfall patterns [Guttal and Jayaprakash, 2007], combining 

information from species with differential seasonal responses (e.g. pines and oaks) it is likely 

to provide a useful insight into past ecosystem dynamics. 

[25] In addition to tree-ring networks, the same methodology is potentially applicable to other 

spatially explicit paleoenvironmental records (e.g. lake sediments, speleotherms). But 

whatever the proxy, the large-scale forcing factors imprinting a spatial climate signal must be 
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shared throughout the sampling network, otherwise climatic patterns might be too complex to 

be explained by geographical variables alone. The methodology is thus particularly suitable at 

regional scales, where it can complement with high spatial resolution data the outcome of 

global circulation models. 
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Figures and Tables 

 

 

Fig. 1 Study area and sampling sites. (A) Location of the study area. (B) Mean annual 

precipitation (MAP) in the area (source: [Ninyerola et al., 2007]) and location of sampling 

sites. Circles, Quercus ilex; triangles, Pinus halepensis. 
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Fig. 2. Root mean square error (RMSE) of a leave-one-out cross-validation procedure aimed 

at selecting the best combination of months estimating mean annual precipitation from carbon 

isotope discrimination of Pinus halepensis and Quercus ilex. RMSE was determined using a 

subset of sampling sites (15) common to both species as validation data (see section 2.3 for 

details). 
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Fig. 3. Main steps in the generation of ∆13C-isoscapes. (A, B) Raster images of the 

geographical variables chosen in the step-wise multiple regression, in order of significance 

(1–3), for Quercus ilex and Pinus halepensis, respectively (lcDa, logarithmic cost distance to 

all seas; eDa; Euclidian distance to all seas; Lat, latitude; Alt, altitude). (C, D) ∆13C-isoscapes 

of Q. ilex and P. halepensis respectively, derived after implementing the b coefficients into a 

raster calculator. Areas not suitable for each species (topo-climatic suitability index<0.2; 

http://www.opengis.uab.cat/IdoneitatPI/index.html) are masked in black. Further details on 

the models are provided in Table 1. 
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Fig.4. Modeled mean annual precipitation (MAP) and associated error map. (A) MAP 

modeled from residual-interpolated ∆13C-isoscapes. (B) Spatial trends of relative errors in 

predicted MAP ((predicted-observed)/observed, in %). Areas not suitable for both species are 

masked in black (topo-climatic suitability index<0.2; 

http://www.opengis.uab.cat/IdoneitatPI/index.html). 
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Table 1. Calibration statistics of step-wise multiple regression models of spatial distribution 
of carbon isotope discrimination, and for spatial models of precipitation generated from 
instrumental recordsa. 
 

Calibration 
network 

Modeled 

variable 

  Regression coefficients, order of entry and increase in R
2
 Total 

R
2
 N Y0 Latitude Altitude lcDa eDm eDc eDa cDc 

Tree-ring 
sampling 
sites 

∆13CQuercus 44 5.1 4.16E-06 1.25E-03 -1.35     0.56 

   (2) 0.05 (3) 0.07 (1) 0.44      

∆13CPinus 38 -23.5 8.76E-06 1.63E-03    -1.15E-05  0.46 

     (1) 0.18 (3) 0.12       (2) 0.16     

Weather 
stations 
(Low-
density) 

Psept-nov 65 -2202 5.21E-04 5.78E-02       -7.81E-04   0.52 

   (2) 0.28 (3) 0.03    (1) 0.20   

Pdec-aug 65 -6606 1.44E-03 1.66E-01   9.20E-04   0.61 

   (1) 0.33 (3) 0.08   (2) 0.19    

MAP 65 -8704 1.91E-03 1.75E-01   1.33E-03   0.57 

      (1) 0.28 (2) 0.25     (3) 0.05       

Weather 
stations 
(High-
density) 

Psept-nov 340 -539 1.69E-04 6.68E-02       -7.27E-04 -4.89E-05 0.56 

   (2) 0.08 (3) 0.06    (1) 0.39 (4) 0.027  

Pdec-aug 340 -2199 5.97E-04 2.93E-01  -1.10E-03   -2.12E-04 0.53 

   (1) 0.07 (3) 0.23  (2) 0.12   (4) 0.11  

MAP 340 -2533 7.30E-04 3.77E-01  -1.69E-03   -3.13E-04 0.54 

      (2) 0.25 (3) 0.16   (1) 0.11     (4) 0.12   
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Table 2. Validation statistics of spatial models of carbon isotope discrimination (∆13C, in ‰) 
and mean annual precipitation (MAP, in mm)a. 
 

Calibration 
network 

Modeled 

variable 

 
 

Mean 
±SD 

MLR MLR + RI 

Ncal Nval RMSE CV R
2
 b RMSE CV R

2
 b 

 ∆13CQuercus 43 44
b
 

18.1 
±0.68 

0.53 2.9 0.41 0.85 0.49 2.7 0.51 0.81 

Tree-ring 
sampling sites 

∆13CPinus 37 38
b
 

16.8 
±0.72 

0.58 3.2 0.36 0.86 0.56 3.1 0.42 0.83 

 
Psept-nov  (∆

13
CQuercus) 

+ Pdec-aug  (∆
13
CPinus) 

44 
38 

573 
512 
±141 

101 19.7 0.48 0.47 84 16.4 0.65 0.62 

Weather 
stations 

(Low-density) 

Psept-nov + Pdec-aug 
65 508 

504 
±138 

111 22.0 0.40 0.53 83 16.5 0.64 0.74 

MAP 111 22.1 0.38 0.48 80 15.9 0.67 0.68 

Weather 
stations 

(High-density) 

Psept-nov + Pdec-aug 
340 233 

503 
±132 

97 19.3 0.44 0.48 56 11.1 0.82 0.84 

MAP 100 19.9 0.49 0.51 57 11.3 0.82 0.84 

 
 

a Psept-nov, precipitation during autumn months; Pdec-aug, precipitation during the rest of the year. ∆13CQuercus and ∆13CPinus, 
carbon isotope discrimination of Quercus ilex and Pinus halepensis, respectively. MLR and MLR+RI, regression models 
before and after residual interpolation, respectively. Ncal and Nval, number of samples used for calibration and validation, 
respectively. Mean ±SD, mean and standard deviation of the set of stations used for validation; RMSE and CV, root mean 
square deviation and coefficient of variation (in %) of model predictions, respectively; R2 and b, coefficient of determination 
and slope of the regression line between observed and predicted values, respectively. 
b For ∆13C, validation statistics are derived from a leave-one-out cross validation. 
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Supporting Material 

 
 
 

 
 
 
Fig S1. Climographs of a selection of weather stations, representative of the climatic 

variability in the region. MAP, mean annual precipitation; MAT, mean annual temperature; 

ALT, altitude above sea level. Source: State Meteorological Agency of Spain. 
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Fig S2. Interpolated residual maps (observed-predicted) for ∆13C. (A,B) Residual 

interpolation layer of the multiple linear regression models of ∆13C (MLR-isoscapes) 

displayed in Fig. 3. These layers were added to the MLR-isoscapes to generate the residual-

interpolated isoscapes (RI-isoscapes). (C,D) interpolation of residuals resulting from the 

leave-one-out cross-validation,.used to estimate the predictive capability for ∆13C of the RI-

isoscapes (see Section 2.5 for details). (A, C) Quercus ilex; (B, D) Pinus halepensis. 
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“The reason birds can fly and 

we can't is simply because they 

have perfect faith, for to have faith 

is to have wings.” J.M. Barrie, The 

Little White Bird 
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Key message. A common pattern in Aleppo pine ∆13C responses to both spatial and temporal 

variability in precipitation was observed, with a general agreement between NDVI, ∆13C and 

growth that confirms precipitation as key environmental driver. 

 

Abstract 

The aim of this study was to assess the spatio-temporal variability of carbon isotope 

discrimination (∆13C) records and its relationship with radial growth (RG) and Normalized 

Difference Vegetation Index (NDVI) data using a tree-ring network of Aleppo pine (Pinus 

halepensis Mill.) in the eastern part of the Iberian Peninsula. For this purpose, we collected a 

biennial time series of ∆13C (1949–1998), together with mean annual precipitation, tree-ring 

width, and remote sensing (NDVI) data for seven locations along a precipitation gradient. We 

evaluated how intra-site correlations between variables changed across locations, and how 

inter-site (or spatial) correlations changed across years. We found that correlations between 

∆13C and precipitation were higher in dry than in wet sites, in agreement with previous 

studies. Mean RG and NDVI were good indicators of site-specific ∆13C sensitivity to 

precipitation. The strongest spatial associations between ∆13C and precipitation were also 

found during the driest biennia. However, spatial correlations were strongly affected by carry-

over effects of extreme events. Overall, we found a good agreement between ∆13C, NDVI, 

and RG, although they showed different response patterns to precipitation. We suggest that 

the combination of these proxies may be useful for monitoring changes in water-use 

efficiency and productivity at the regional level. 

 

Keywords: carbon isotopes, tree rings, vegetation indices, water-use efficiency, 

dendroecology 
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Introduction 

Tree rings are extraordinary repositories of climate information. The rising number of tree-

ring networks available worldwide can offer new insights on the spatial variability of climate 

at regional scales (Treydte et al. 2007; Leavitt et al. 2008; del Castillo et al. 2013). Such kind 

of spatiotemporal information may be relevant to bridge the existing knowledge gap in 

climate dynamics between large-scale global circulation models and instrumental records of 

limited geographical coverage (Brayshaw et al. 2011). However, tree sensitivity to climate 

may vary in time and space for different reasons, including phenotypic plasticity and genetic 

variability (e.g. Voltas et al. 2008; de Luis et al. 2013), individual life history (Hereş et al. 

2012; Voltas et al. 2013), and community structure or local environmental conditions (e.g. 

Martín-Benito et al. 2011; Moreno-Gutiérrez 2012), among others. Hence, in order to 

maximise the information retrieved from tree-ring networks, there is a need to explore the 

environmental drivers underlying spatiotemporal vegetation responses (Treydte et al. 2007; 

Maseyk et al. 2011; de Luis et al. 2013; del Castillo et al. 2013). 

The dendrochronological archive of carbon isotope discrimination (∆13C) tracks the balance 

between assimilation rate and stomatal conductance (or intrinsic water-use efficiency; 

Farquhar and Richards 1984), thus aiding at characterizing tree physiological status (Korol et 

al. 1999; Ferrio et al. 2003). However, complementary physiological information is needed to 

disentangle the role of photosynthetic potential, canopy structure and stomatal limitations in 

determining ∆13C (Martín-Benito et al. 2011; Moreno-Gutiérrez et al. 2012). In this regard, 

vegetation indices constitute another type of regional-scale ecological record (Kaufmann 

2004; Beck et al. 2013), being now available over a sufficiently long time span as to 

complement tree-ring records with useful ecophysiological information. In particular, an 

index of vegetation greenness such as the Normalized Difference Vegetation Index (NDVI) 

provides estimates of canopy photosynthetic capacity at different spatial scales through its 

correlation to both leaf area index (Gamon et al. 1995; Myneni et al. 1997) and the fraction of 

photosynthetically active radiation absorbed by ecosystems (Gamon et al. 1995). 

Previous studies have reported strong positive correlations between summer NDVI and tree-

ring width (e.g. Kaufmann 2004; Wang et al. 2004; Beck et al. 2013). Most often summer 

NDVI appears as the only period of the year related to growth in temperate climates, pointing 

to the time in which climate exerts the greatest effect on tree-ring width (Kaufmann et al. 

2008; Leavitt et al. 2008). However, annual NDVI can be, in some cases, a better integrator of 
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ecosystem productivity, incorporating additional vegetation features such as early spring 

activity or changes in phenology (Alcaraz-Segura et al. 2008). Thus, the combination of 

NDVI and tree-ring width, together with climatic data, may offer a better understanding of the 

biophysical drivers underlying changes in ∆13C of tree rings. 

The main objective of this study was to understand the relationship between climate and tree 

sensitivity for stable carbon isotopes in Pinus halepensis Mill., a widespread, drought-

avoidant circum-Mediterranean species, and whether this relationship is subject to variability 

in time and space. We hypothesised that: 1) the sensitivity of tree-ring ∆13C to precipitation, 

as a major biophysical factor modulating ecosystem functioning in Mediterranean climates, 

would be highly variable in both time and space, hence revealing contrasting tree 

performances across precipitation gradients; and 2) since NDVI and radial growth are also 

influenced by precipitation dynamics in drought-prone environments, they must correlate with 

∆13C to a varying degree depending on the particular restrictions imposed by precipitation on 

tree functioning. To test these hypotheses, we evaluated the spatio-temporal variability of 

∆13C derived from tree rings of P. halepensis and its connection to precipitation, NDVI and 

tree-ring width records. 

 

Materials and Methods 

Study area 

The study area is located in the Northeastern Iberian Peninsula, Western Mediterranean basin 

(Fig. 1). The region is dominated by a Mediterranean climate, with warm and dry summers 

and mild winters, but also includes continental areas with cool and dry winters, and more 

humid zones with less seasonality (Table 1). Seven sites were chosen along an annual 

precipitation gradient ranging from 376 to 835 mm (mean = 562 mm, period 1949–1998; 

Table 1). Each site was selected to be representative of a distinct eco-geographic region 

according to the classification of P. halepensis provenances (or adaptive units) in Spain (Gil 

et al. 1996). The provenances represented in this study were: no. 1 (Alta Catalunya; temperate 

humid Mediterranean); no. 2 (Catalunya Litoral; warm sub-dry Mediterranean maritime); nos. 

3, 4, and 5 (Catalunya Interior, Bárdenas-Ribagorza, and Ibérico Aragonés; warm sub-dry 

sub-Mediterranean); and nos. 6 and 15 (Monegros-Depresión del Ebro and Bética Meridional; 

warm dry sub-Mediterranean). 
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Sampling strategy and development of tree-ring chronologies 

For each site, we sampled wood cores (5 mm in diameter) at 1.30 m from the south side of 7 

to 11 dominant individuals (Table 1). Samples were oven-dried at 60ºC for 48 h and their 

outermost part removed with a scalpel for tree-ring dating. Tree-ring width was measured 

with a binocular microscope coupled to a PC with the program TSAP v. 3.0 (Frank Rinn, 

Heidelberg). We assessed the quality of the chronologies with COFECHA through calculation 

of the Expressed Population Signal (EPS) statistic (Holmes 1983): 

)( RRN

RN
EPS

−+×

×
=

1
        [1] 

where N is the number of individuals and R is the mean inter-series correlation. All 

chronologies reached the threshold of EPS = 0.85, ranging from 0.853 in Girona to 0.955 in 

Lanaja (Table 1). 

After cross-dating, standardised ring-width chronologies were built for each site with ARSTAN 

(Cook and Holmes 1986). First, a double-detrending step was performed for each tree-ring 

series. The residuals of the first detrending (best-fit curve, linear or exponential) were fitted with 

a cubic smoothing spline of 50% frequency cut-off of 32 years. This resulted in a standardised 

tree-ring series for each individual, in the form of: 

iii FRGTRW =          [2] 

where TRWi, RGi, and Fi stand for indexed tree-ring width, measured ring width (or radial 

growth), and fitted ring width, respectively, at year i. Subsequently, each series was modelled as 

a stationary autoregressive process, resulting in a ‘residual’ index chronology. Finally, a 

composite autoregressive model across all tree-ring series was added to each ‘residual’ 

chronology, resulting in the ‘arstan’ chronology (Cook and Holmes 1986). All subsequent 

analyses were performed using ‘arstan’ chronologies. 

 

 

Carbon isotope discrimination in tree rings 

For stable isotope analysis, we pooled samples across individual trees and every 2 years (from 

1949–1950 to 1997–1998) at each site. This decision stemmed from the need to balance the 

recovery of high-frequency variability in the isotopic signal against analytical cost. For the 

sake of comparison, we checked the loss in annual variability of TRWi associated with a 
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hypothetical biennial analysis of tree-ring series, which ranged from 23.4% in Rasquera to 

40.0% in Lanaja (mean = 33.1%). This indicates that approximately two-thirds of the original 

TRWi signal had been retained if using this pooling procedure. 

After pooling, samples were milled (IKA-A10) to a fine powder. To minimize juvenile 

effects, we omitted the first 20 years of cambial age (Loader et al. 2010). We used intact 

wood tissue for carbon isotope analyses (i.e., without any chemical pre-treatment) since 

whole wood provides more consistent relationships with climatic variables for this species 

compared with particular wood fractions (e.g., holocellulose; Ferrio and Voltas 2005). The 
13C/12C ratios of wood samples were determined by mass spectrometry and the results 

expressed as isotopic composition (δ13C) relative to the international standard Vienna PeeDee 

Belemnite (VPDB).  

To take into account temporal changes in the isotope composition of atmospheric CO2 

(δ13Catm), carbon isotope discrimination (∆13C) was calculated (Farquhar and Richards 1984):  

)Cδ()CδCδ(C∆ plant
13

plant
13

atm
13 +−= 1

13            [3] 

δ13Catm was inferred by interpolating data from two Antarctic stations (Halley Bay and Palmer 

Station) of the CU-INSTAAR/NOAA-CMDL network for atmospheric CO2 measurements, as 

described in Ferrio et al. (2005). Estimated δ13Catm for the time period represented in each 

sample ranged from -6.9 to -7.9‰. 

Meteorological data 

Monthly values of temperature and precipitation for the study period (1949–1998) were 

obtained from the Instituto Nacional de Meteorología and the Confederación Hidrográfica del 

Ebro. Wherever the altitude of the sampling site exceeded that of the meteorological station, 

we applied a 0.6ºC decrease in temperature every 100 m and a 8% precipitation increment per 

100 m, except for July and August, when precipitation is mostly convective and not related to 

altitude (Gandullo 1994). A seasonality index (SI) was calculated following Walsh and 

Lawler (1981): 

∑
=

=

−=
12

1 12
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n

i
in

i

i

R
X

R
SI               [4] 

where Ri is the total annual precipitation for year i and Xin is the monthly precipitation for 

month n. According to this index, sites with SI = 0.60–0.79 are classified as ‘seasonal’, 

whereas those with SI = 0.80–0.99 are classified as ‘markedly seasonal with a long dry 

season’. 
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Remote sensing data 

Time series of NDVI were obtained from the Global Inventory Modeling and Mapping 

Studies (GIMMS) dataset covering the period 1982–1998 at a biweekly temporal resolution 

(University of Maryland, 2004; available at http://glcf.umd.edu/data/gimms/). The NDVI data 

has a 9 × 9 km spatial resolution, and we collected a single pixel representative of each forest 

stand of our study sites. To compensate for the limited spatial resolution, we selected the 

pixels in order to maximize the fractional area covered by forest stands, and checked the 

seasonal variation of the index to confirm that the temporal spectra was typical of conifer 

forests. Biweekly NDVI data were recalculated as annual and seasonal mean NDVI for 

further temporal analysis (January to March = winter; April to June = spring; July to 

September = summer; October to December = autumn). For the analysis of spatial signals in 

tree-ring width and ∆13C, we used the site mean NDVI for the period 1982–1998. 

 

Data analysis 

Annually (for RG and NDVI) or biennially resolved (for ∆13C) data were subjected to 

analysis of variance, with site and time included as factors in the model. Relationships 

between climate and physiological variables were assessed using simple Pearson correlations 

(r), either across the annual (or biennial, when involving ∆13C) chronology for each site or 

across long-term means of all sites (hereafter, intra-site and inter-site analyses, respectively). 

We then related the r values of the relationship between ∆13C and precipitation at the site 

level to the site means and coefficients of variation (CVs) of precipitation, ∆13C, and NDVI. 

This was done to identify possible factors underlying the varying strength of this relationship. 

By definition, mean values of tree-ring width indices (TRWi) fall around unity at all sites; 

thus, for inter-site analyses we used mean values of RG for the period 1949–1998 obtained as 

the average of the median growth of each tree to minimize the effect of extreme years. On the 

other hand, we used indexed values (TRWi) in all calculations involving temporal variability 

in radial growth (i.e., intra-site correlations and inter-annual coefficients of variation) to avoid 

artifacts due to age trends. 

Results 
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Variability and relationships between tree growth, ∆∆∆∆13
C and NDVI 

Radial growth (RG) varied significantly among sites from 0.8 ±0.19 mm (Riba-roja) to 2.1 

±0.35 mm (Girona), with a mean of 1.1 ±0.17 mm. Besides, there were significant differences 

in ∆13C among sites, ranging from 15.6 ±0.12 ‰ in Riba-roja to 17.3 ±0.11 ‰ in El Grado, 

with a mean value of 16.6 ±0.28 ‰. Intra-site correlations (N=25) between indexed tree-ring 

widths (TRWi) and ∆13C values were positive and significant for three (out of seven) sites 

(Purchena, Riba-roja and Rasquera), whereas a marginally significant (p = 0.07) positive 

correlation was found between RG and ∆13C at the spatial (i.e., inter-site) level (Table 2). 

Annual NDVI values varied significantly among sites from 0.34 ±0.082 (Purchena) to 0.63 

±0.045 (Girona), with a mean of 0.44 ±0.040. We found positive temporal (i.e., intra-site) 

associations between biennial ∆13C and NDVI (N=9), but they were significant only at three 

sites (Rasquera, El Grado and Girona) (Table 2). Similarly, we found a significant positive 

inter-site correlation between mean annual NDVI and long-term mean ∆13C (Table 2). Intra-

site correlations between annual NDVI and TRWi (N=17) were positive and significant at two 

sites (Purchena and Riba-roja), and a significant positive correlation was also observed across 

sites between mean annual NDVI and mean RG (Table 2). 

Generally TRWi showed stronger correlations with summer NDVI (correlation coefficients, r, 

ranging from 0.35 in Valderrobres to 0.84 in Riba-roja) than with annual or other seasonal 

NDVI, except for Girona and Lanaja, which exhibited negligible correlations with summer 

NDVI (r = 0.02 for Girona; r = 0.05 for Lanaja). Correlations between ∆13C and summer 

NDVI were stronger than with other NDVI values at three of the driest sites (r = 0.61, 0.62 

and 0.74 in Riba-roja, Lanaja and Rasquera, respectively), weaker at the wettest sites (r = 0.40 

and 0.70 for El Grado and Girona, respectively), and similar in Purchena and Valderrobres. 

 

Climate factors determining tree growth, ∆∆∆∆13
C, and NDVI 

Overall, RG was positively related to annual precipitation both at the temporal (intra-site, 

using TRWi, N=50) and spatial (inter-site, using mean RG, N=7) levels (Table 2). 

Nevertheless, temporal correlations were only significant at four sites. Precipitation 

seasonality was significantly correlated with TRWi only at the driest site (Purchena) (Table 

2). Temperature usually showed slightly weaker correlations with TRWi than precipitation, 

being negatively related to TRWi at four sites but positively correlated at the wettest site 

(Girona) (Table 2). RG did not show significant temperature dependence at the spatial level. 
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We found strong positive correlations between precipitation and ∆13C at five sites (biennial 

records, N=25), but this relationship was not significant at the wettest sites (El Grado and 

Girona) (Table 2). Precipitation also showed a strong positive inter-site correlation with ∆13C 

(r = 0.90; P < 0.01). In contrast, no significant correlations were found between temperature 

and ∆13C, and SI was significantly and negatively correlated with ∆13C only at the two 

extremes of the precipitation gradient (Purchena and Girona) (Table 2).  

We only found a significant intra-site correlation between annual NDVI and precipitation at 

Riba-roja (N=17, Table 2). In contrast, NDVI showed a strong positive inter-site correlation 

with precipitation. For temperature, we only found a significant negative correlation with 

annual NDVI at one site (Valderrobres), while SI showed a strong negative correlation with 

annual NDVI at both extremes of the precipitation gradient (Purchena and Girona) (Table 2). 

Annual precipitation showed higher correlations with summer NDVI than with other seasonal 

NDVI values at all sites, except in Lanaja and Girona. Nevertheless, correlations with summer 

NDVI were only significant at the two driest sites (r = 0.49 and r = 0.57 in Purchena and 

Riba-roja, respectively). However, annual NDVI showed tighter correlations with temperature 

and SI than seasonal NDVI values. 
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General trends in the response of ∆∆∆∆13
C to precipitation across sites 

The best precipitation model accounting for ∆13C variability involved a log fitting to the 

complete dataset (r2 = 0.59, N = 175, P < 0.001; Fig. 2). Still, a linear model fitted equally 

well ∆13C records if values above 800 mm were not considered (r2 = 0.60, N = 155, P < 

0.001; Fig. 2). A similar result was observed for the relationship between long-term site 

means of ∆13C and annual precipitation (period 1949–1998), which was best explained using 

a log model (r2 = 0.89, N = 7, P < 0.01, not shown).  

 

Site-dependent temporal responses of ∆∆∆∆13
C to precipitation 

A number of potential variables underlying the temporal sensitivity of ∆13C to precipitation 

were investigated by correlation analysis. We found a significant negative correlation between 

r values of ∆13C vs. precipitation (N = 25) and mean site precipitation (Fig. 3a). However, the 

relationship between r values of ∆13C vs. precipitation and CVs of precipitation (instead of 

mean site values) was not significant (Fig. 3b). Conversely, a significant positive association 

was found between r values of ∆13C vs. precipitation and CVs of ∆13C (Figs. 3c, d), whereas 

the relationship involving ∆13C mean records was not significant. There was a strong negative 

association between site r values and RG means, but no significant trend with CV of TRWi 

(Figs. 3e, f). We also observed a significant negative correlation with site means of annual 

NDVI, and a positive correlation with CV of annual NDVI (Figs. 3g, h). We did not find any 

significant correlation with mean or CV values of either temperature or SI (results not 

shown). 

Time-dependent spatial responses of ∆∆∆∆13
C to precipitation 

In order to explore whether the observed long-term spatial relationship between ∆13C and 

precipitation was consistent over time, this relationship was evaluated for 25 biennia 

independently for the period 1949–1998. Only a marginally significant (P < 0.10) negative 

trend was detected with both mean precipitation and mean ∆13C (results not shown). Two 

clear outliers, corresponding to the biennia 1985–1986 and 1987–1988, were detected, which 

presented rather low r values (Fig. 4, crosses). For both biennia, we found that precipitation in 

the precedent biennium 1983–1984 (the driest in the period 1949–1998) was better linked to 

∆13C than the precipitation of the actual years (Fig. 4, triangles). By excluding these outliers, 

both mean precipitation and mean ∆13C showed significant negative correlations with r values 
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of ∆13C vs. precipitation (r = -0.51 and r = -0.45, respectively). We did not find significant 

correlations with the remaining variables. 

Discussion  

Site-specific responses of ∆
13

C to precipitation 

By combining biennial data from seven sites we observed a saturation point of ∆13C around 

800 mm, above which ∆13C was hardly sensitive to annual precipitation. The log function 

describing the relationship between both variables is almost identical to that reported for P. 

halepensis by Ferrio et al. (2003) using a 25-year tree-ring pool (∆13C = 4.6 + 1.9 × ln(P); r2 = 

0.59; P < 0.001). In line with this overall trend, our results also indicate that the association 

between ∆13C and precipitation is stronger at sites where the mean annual precipitation is 

lower and weaker where it is higher (Fig. 3a). A lower sensitivity of ∆13C to precipitation as 

water availability increases has been reported for P. halepensis (Klein et al. 2005; Maseyk et 

al. 2011) and other conifers (e.g. Korol et al. 1999; Warren et al. 2001). When water becomes 

less limiting, site-specific factors such as soil properties (Korol et al. 1999; Treydte et al. 

2007) or stand attributes (e.g., canopy height or density) (Fernandez et al. 2007; Moreno-

Gutiérrez et al. 2012) tend to blur the relationship between ∆13C and precipitation. These 

factors may also affect the ∆13C signal in drier sites; however, under such conditions 

precipitation is still the most limiting factor for tree performance, at least for drought-avoidant 

species such as P. halepensis (Ferrio et al. 2003; Ferrio & Voltas 2005; Del Castillo et al. 

2013). Additionally, ∆13C can be also affected by the yearly pattern of rainfall distribution 

(see e.g. Korol et al. 1999). In this regard, the negative correlation between SI and ∆13C at the 

wettest site suggests that precipitation distribution may have a stronger effect than total 

annual precipitation under near-optimal conditions. 

Is the spatial response of ∆
13

C to precipitation consistent over time? 

The analysis of the spatial relationship between ∆13C and precipitation for 2-year periods 

pointed to tighter associations in dry than in wetter biennia (Fig. 4a). However, spatial 

responses showed erratic variations through time. Different physiological processes may 

obscure the spatial dependence of ∆13C on precipitation, with an expected stronger effect over 

short time periods than for long-term site-specific signals. For instance, year to year carry-

over effects may imprint a significant isotopic signature lasting for 2 or more years (see e.g., 
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Sarris et al. 2013). After particularly extreme years, ∆13C of subsequent years may correlate 

well with the environmental conditions of the event year. In this regard, we observed 

exceptional carry-over effects in the biennia 1985–1986 and 1987–1988 (Fig. 4), in which the 

spatial ∆13C variation was better explained by the precipitation occurring in the biennium 

1983–1984 (the driest of the entire record). Alternatively, water stress can lead to limited 

carbon loading in the phloem, as well as to readjustments of leaf area, reducing wood 

production and causing an uncoupling of leaf and tree-ring signals (Cernusak et al. 2013; 

Voltas et al. 2013). 

Cross-links between physiological responses and tree growth 

NDVI was highly correlated with precipitation across sites (Table 2, r = 0.94), in agreement 

with previous studies reconstructing spatial patterns of precipitation from annual NDVI in the 

Iberian Peninsula (Immerzeel et al. 2009). At the temporal level, summer NDVI correlated 

better with ∆13C at three drought-prone sites, whereas correlations with annual NDVI were 

stronger for the two wettest sites. Overall, these relationships were weaker than that obtained 

across sites, although these results are not conclusive due to the limited number of records and 

the loss of temporal variability due to tree-ring pooling (N=9 and N=7, for temporal and 

spatial correlations, respectively). 

Correlations between TRWi and either NDVI or ∆13C were generally stronger at drier sites. 

Tree productivity, in terms of radial growth, seed or foliage production, has already been 

linked to growing season-integrated NDVI in oak trees (Wang et al. 2004). This explains the 

observed link to annual NDVI in P. halepensis, which can grow all year around if conditions 

are favourable. In this regard, tree-ring growth can be strongly limited by water availability in 

Mediterranean environments, which explains the tight correlation with both ∆13C and summer 

NDVI at dry sites. The negative correlation between TRWi and temperature at four sites can 

be interpreted as a response to increasing evaporative demand (Ferrio and Voltas 2005; de 

Luis et al. 2013; Maseyk et al. 2011). On the contrary, a positive correlation with temperature 

at the wettest site (Girona) agrees with previous observations reporting on growth limitations 

associated with winter cold (de Luis et al. 2013). Hence, where ∆13C is responsive to 

variations in precipitation, ∆13C, TRWi, and summer NDVI share a strong common signal. In 

contrast, the link between ∆13C and annual NDVI, as a surrogate of productivity, tends to be 

stronger at the wettest environments.  
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Remote sensing and carbon isotopes as complementary proxies for water-use 

efficiency 

An interesting outcome of this study is that NDVI correlated well with both ∆13C and TRW at 

the spatial level, with a number of significant relationships also emerging at the temporal 

level. Given the strong spatial agreement between NDVI and ∆13C, the combination of tree-

ring ∆13C networks (isoscapes, see, e.g., Leavitt et al. 2008; del Castillo et al. 2013) and high-

resolution NDVI data may allow to spatially model historical stand attributes, including 

productivity or water-use efficiency (Leavitt et al. 2008; Beck et al. 2013). Furthermore, 

NDVI appears as a good proxy for site-specific sensitivity of ∆13C to precipitation, and could 

be used to pre-select potentially sensitive tree-ring sampling sites for paleoenvironmental 

research. Nevertheless, we still could observe site-specific deviations in NDVI not reflected in 

precipitation and ∆13C (Fig. 3, Fig. 5). Besides potential differences in stand attributes 

affecting NDVI, Aleppo pine is a thermophilous species with polycyclic growth (see e.g. de 

Luis et al. 2013) that, due to extended phenology, may produce comparatively denser 

canopies in warm (Riba-roja) than in cold (El Grado) sites, but having little effect on ∆13C 

(Figs. 3 and 5). Additionally, NDVI tends to increase at a faster rate than ∆13C (Fig. 5), more 

likely due to changes in leaf area rather than changes in leaf chlorophyll content, since the 

latter would have an opposite effect on ∆13C: leaves with higher photosynthetic activity would 

show higher water-use efficiency and, thus, lower ∆13C (Farquhar and Richards 1984; 

Cernusak et al. 2013). Still, both chlorophyll content and leaf area tend to decrease under 

drought conditions in P. halepensis (Baquedano and Castillo 2006) and, thus, NDVI might 

hold a signal from both variables, particularly in drought-prone environments (Pasquato 

2013). Hence, the poor agreement between ∆13C and NDVI at the temporal scale in the driest 

sites could be the result of a greater relevance of the chlorophyll content signal controlling 

NDVI in water-limited environments.  

Conclusions 

Our results confirm precipitation as a key driver of variations in tree growth, water-use 

efficiency, and vegetation greenness for Aleppo pine. We observed a broad common pattern 

in the response of ∆13C to both spatial and temporal variability in precipitation, showing a 

saturation response of ∆13C when water becomes less limiting. In this regard, inter-site 

differences in the sensitivity of ∆13C to precipitation are mainly linked to the frequency of 

water-limiting conditions in the time series. The general agreement between NDVI, ∆13C and 
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tree growth opens the possibility to integrate information from tree-ring networks and satellite 

data to monitor changes in water-use efficiency and productivity at regional scales. 
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Figures and Tables 

 

 

 

Fig. 1 Map of the study area and sampling sites, depicting mean annual precipitation 

according to the Digital Climatic Atlas of the Iberian Peninsula 

(http://www.opengis.uab.es/wms/iberia/mms/index.htm). Numbers correspond to provenance 

regions as indicated in Table 1. 
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Fig. 2 Scatterplot depicting linear (below 800 mm precipitation) and log relationships 

between annual precipitation and carbon isotope discrimination (∆13C) (biennial records; 

period 1949-1998) at seven sampling sites. Dotted vertical line indicates the approximate 

threshold for a linear response. 
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Fig. 3 Intra-site correlation coefficients (r) of the relationship between time-series of 

annual precipitation and carbon isotope discrimination (∆13C) (biennial records; period 

1949-1998, N=25) as a function of: a) long-term mean annual precipitation; b) inter-

annual coefficient of variation (CV) of precipitation; c) long-term mean ∆13C; d) inter-

biennial CV of ∆13C; e) mean annual NDVI (1982–1998); f) inter-annual CV of NDVI; 

g) long-term mean of radial growth (RG); and h) inter-annual CV of tree-ring width 

indices (TRWi). Dashed lines indicate the threshold value for significance (P < 0.05). 
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Fig. 4 Inter-site correlation coefficients (r) of the relationship between annual 

precipitation and carbon isotope discrimination (∆13C) (biennial records; period 1949-

1998, N=7) and: a) mean annual precipitation for each biennium; b) inter-site coefficient 

of variation (CV) of mean annual precipitation; c) biennial ∆13C; and d) inter-site CV of 

∆13C. Dashed lines indicate the threshold value for significance (P < 0.05). Crosses 

indicate outliers showing weak correlations with current precipitation (biennia 1985-

1986 and 1987-1988), but better correlated with precipitation during the driest biennium 

(1983-1984, correlations shown with open triangles). See text for details. 
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Fig. 5 Regression plots illustrating the log relationship between Normalized Difference 

Vegetation Index (NDVI) and carbon isotope discrimination (∆13C) across seven 

sampling sites at a biennial scale (period 1949–1998): a) annual NDVI; and b) summer 

NDVI. The arrow indicates the increasing precipitation gradient among study sites. 
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Table 1. Main eco-geographic and climatic characteristics of the seven sites included in 

this work, together with the chronology statistics. 

Site description Climate Soil 

Group 

Chronology 

Prov. Site Latitude Longitude Alt. (m) P (mm) T (ºC) SI N EPS Period 

1 Girona 42º01' 03º00'E 190 835 14.0 0.66 Haploxerept 8 0.85 1948-1999

2 Rasquera 41º01' 00º36'E 180 547 15.3 0.82 Xerorthent 8 0.93 1926-1999

3 Riba-roja 41º20' 00º30'E 80 395 15.1 0.73 Torriorthent 11 0.95 1936-1999

4 El Grado 42º09' 00º15'E 625 652 12.6 0.60 Haploxerept 8 0.94 1928-2000

5 Valderrobres 40º53' 00º12'E 630 648 13.9 0.77 Haploxeralf 10 0.94 1938-1999

6 Lanaja 41º50' 00º32'W 380 469 13.1 0.74 Xerorthent 11 0.96 1884-1999

15 Purchena 37º26' 02º20'W 900 376 16.6 0.81 Torriorthent 7 0.93 1919-1999

 
 

Prov., provenance region, following Gil et al. (1996); Alt., altitude; P, mean annual precipitation; T, mean 

annual temperature. SI, seasonality index, according to Walsh and Lawler (1981); N, number of trees; 

EPS, expressed population signal. Soil groups according to USDA Soil Taxonomy (Soil Survey Staff 

2010). 
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Table 2. Pearson correlation coefficients between physiological parameters (carbon 

isotope discrimination [∆13C], indexed tree-ring width [TRWi], and mean annual 

Normalized Difference Vegetation Index [NDVI]) involving annual or biennial (for 

correlations with ∆13C) records (period 1949–1998) at the site level (upper section). 

Pearson correlation coefficients between physiological parameters (∆13C, TRWi, and 

NDVI) and climatic records of annual precipitation (P), mean annual temperature (T), 

and precipitation seasonality index (SI) at the site level (lower section). N, number of 

common observations. The last column shows inter-site correlations of long-term means 

(1949–1998, N = 7) involving the same variables, except for tree-ring width, in which 

original values of radial growth (RG) were used instead of TRWi. *P < 0.05; *P < 0.01; 

***P < 0.001. 

Variables N Purchena Riba-roja Lanaja Rasquera Valderrobres El Grado Girona Inter-site 

TRWi vs ∆13C 25 0.61** 0.58** 0.36 0.42* 0.27 -0.04 0.03 0.67 

NDVI vs ∆13C 9 0.44 0.52 0.42 0.70* -0.03 0.81** 0.81** 0.75 * 

NDVI vs TRWi 17 0.58* 0.69** 0.21 0.27 0.19 0.42 -0.16 0.91** 

          

P vs TRWi 50 0.61*** 0.39** 0.36* 0.09 0.07 0.42** 0.23 0.91** 

T vs TRWi 501 -0.37* 0.03 -0.30* -0.33* -0.08 -0.36** 0.30* -0.34 

SI vs TRWi 50 -0.33* -0.16 -0.21 -0.14 0.22 0.02 -0.06 -0.62 

P vs ∆13C 25 0.68*** 0.64*** 0.61** 0.58** 0.67*** 0.34 0.07 0.90** 

T vs ∆13C 251 0.11 0.29 -0.24 0.18 0.28 -0.04 0.33 -0.67 

SI vs ∆13C 25 -0.55** -0.15 -0.16 0.05 0.04 -0.20 -0.44* -0.52 

P vs NDVI 17 0.35 0.51* -0.17 -0.02 0.16 0.05 -0.07 0.94** 

T vs NDVI 17 0.37 0.40 0.24 -0.12 -0.60* 0.10 0.33 -0.41 

SI vs NDVI 17 -0.61** -0.20 0.07 0.03 -0.11 0.13 -0.62** -0.56  

1For Purchena, due to missing temperature data, N = 41 years (for TRWi) and N = 21 biennia (for ∆13C). 
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“We kill all the caterpillars, then 
complain there are no butterflies.” 
John Marsden,The Dead of Night  
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Abstract 

Aim of study: Understanding inter- and intra-specific competition for water is crucial in 

drought-prone environments. However, little is known about the spatial 

interdependencies for water uptake among individuals in mixed stands. The aim of this 

work was to compare water uptake patterns during a drought episode in two common 

Mediterranean tree species, Quercus ilex L. and Pinus halepensis Mill., using the 

isotope composition of xylem water (δ18O, δ2H)1 as hydrological marker.  

Area of study: The study was performed in a mixed stand, sampling a total of 33 oaks 

and 78 pines (plot area= 888 m2). We tested the hypothesis that both species uptake 

water differentially along the soil profile, thus showing different levels of tree-to-tree 

interdependency, depending on whether neighbouring trees belong to one species or the 

other.  

Material and Methods: We used pair-correlation functions to study intra-specific point-

tree configurations and the bivariate pair correlation function to analyse the inter-

specific spatial configuration. Moreover, the isotopic composition of xylem water was 

analysed as a mark point pattern.  

Main results: Values for Q. ilex (δ18O= -5.3 ±0.2‰, δ2H=-54.3±0.7‰) were 

significantly lower than for P. halepensis (δ18O= -1.2±0.2‰, δ2H = -25.1±0.8‰), 

pointing to a greater contribution of deeper soil layers for water uptake by Q. ilex. 

Research highlights: Point-process analyses revealed spatial intra-specific dependencies 

among neighbouring pines, showing neither oak-oak nor oak-pine interactions. This 

supports niche segregation for water uptake between the two species. 

 

Keywords: Cross-pair correlation function, Deuterium, Mark correlation function, 

Oxygen-18, Point patterns, Xylem. 

                                                           
1 Abbreviations: δ18O, oxygen isotope composition; δ2H, hydrogen isotope composition; BA, basal area. 
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Introduction 

In Mediterranean climates, the temporal coupling of heat and drought stress, and the 

existence of nutrient-deficient soils have been major evolutionary forces shaping plant 

communities (Herrera, 1992; Mooney & Dunn, 1970). Examples of adaptive strategies 

include extensive root systems, evergreen foliage to compensate for nutrient scarcity 

and to permit year-round production, or water-saving mechanisms such as leaf 

sclerophylly or a very sensitive stomatal regulation (Rundel, 1988; Zavala et al., 2000). 

As a result, dominant tree species in Mediterranean ecosystems are either evergreen 

sclerophyllous or conifers adapted to the scarcity of water resources. Holm oak 

(Quercus ilex L.) and Aleppo pine (Pinus halepensis Mill.) are representative of each 

one of these functional types, being extensively found in the Mediterranean basin. 

Although P. halepensis and Q. ilex are well adapted to seasonally-dry areas, the 

particular strategies followed by each species differ considerably (Ferrio et al., 2003; 

Zavala et al., 2000; Baquedano & Castillo, 2006; Del Castillo et al., 2013). On the one 

hand, P. halepensis is a typical drought-avoiding species that relies on water saving 

mostly through stomatal closure (see e.g. Borghetti et al., 1998; Voltas et al., 2008), but 

it may also act as an opportunistic species when conditions are favourable (Nicault et 

al., 2001; Klein et al., 2005). On the other hand, Q. ilex is a slow growing species with a 

considerable stomatal regulation (at least when compared to other species of the same 

genus, see e.g. Damesin et al., 1998; Infante et al., 1999), but combined with drought-

tolerance mechanisms such as osmotic and elastic adjustments (Terradas & Savé 1992; 

Sala & Tenhunen 1994). The existence of tolerance mechanisms, together with a deeper 

root system, typical of evergreen schlerophyllous (Canadell et al., 1996), leads to a 

more effective water uptake of evergreen oaks as compared to pines (Valentini et al. 

1992; Klein et al. 2013). Despite their functional differences, both species often form 

mixed stands that are widely distributed in the Eastern Iberian Peninsula. In this context, 

understanding interactions among individuals in pine-oak mixed stands is crucial not 

only to interpret current species distribution, but also to foresee future vegetation 

scenarios (Zavala et al., 2007). 

A considerable number of studies have shown how inter- and intra-specific competition 

affects individual growth and stand dynamics under water-limited conditions (Gracia et 

al., 1996; Moreno-Gutiérrez et al., 2011; Zavala et al., 2007). However, although soil 
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water availability and water uptake patterns are likely to play a major role in shaping the 

composition of mixed-species stands, information on the use of water resources at inter- 

and intra-specific levels is still limited (Filella & Peñuelas, 2003a; Moreira et al., 2003; 

Brooks et al., 2006). In this regard, the analysis of the isotopic compositions of oxygen 

and hydrogen (δ18O and δ2H) in xylem sap presents a great potential to characterise 

water movement along the soil-plant-atmosphere continuum, particularly in arid and 

semi-arid environments (Dawson et al., 1993; Dawson & Simonin, 2011; Ferrio et al., 

2005). During the dry season, evaporation causes a decreasing trend in soil water δ18O 

and δ2H with soil depth (Filella & Peñuelas, 2003b; Moreno-Gutiérrez et al., 2012b). 

Thus, by comparing observed trends along the soil profile with data on xylem water, 

stable isotopes can reveal differential water uptake patterns in co-existing 

Mediterranean species (Armas et al., 2010; Máguas et al., 2011; Filella & Peñuelas, 

2003a; Filella & Peñuelas, 2003b; Moreno-Gutiérrez et al., 2012b). However, studies so 

far compared isotopic records averaged over a representative sample of trees per species 

(Máguas et al., 2011; Filella & Peñuelas, 2003b; Moreno-Gutiérrez et al., 2012b), or 

focussed on the interaction between selected individuals (Armas et al., 2010; Filella & 

Peñuelas, 2003a), but a stand-level based study of inter-individual interactions in water 

uptake is still lacking. 

Forest science has applied numerous statistical methods belonging to point processes 

(Stoyan & Penttinen, 2000; Diggle, 2003; Illian et al., 2008) to tackle ecological 

questions (for a review, see Comas & Mateu, 2007). This includes, for instance, the 

study of the spatial structure of pure and mixed forest stands (Moeur, 1993; Pélissier, 

1998; Mateu et al., 1998), the distribution and severity of infected trees (Shaw et al., 

2005), and the space-time modelling of forest dynamics (Renshaw et al., 2009; Comas, 

2009). Here we propose the use of marked point process tools to analyse the isotopic 

composition of xylem water as a mark associated to each tree position. The resulting 

marked point pattern represents the spatial structure of water uptake for each tree 

species. The analysis of such marked point configurations may be valuable to interpret 

spatial inter- and intra-specific dependencies (e.g. competition, facilitation) for water 

uptake dynamics underlying particular tree performances in water-limited 

environments. As a case-study to show the potential of this method, we analysed the 

spatial inter- and intra-specific interactions for water uptake under drought for a pine-

oak mixed Mediterranean forest based on individual tree δ18O and δ2H records of xylem 



Chapter III 

 

114 

 

water. Due to their deeper root system, oaks are likely to extract water from soil layers 

not accessible for the pines. We hypothesize that, under drought conditions, the two 

species might not directly compete for the same water pools in the soil, thus showing a 

functional niche segregation. Accordingly, we would expect different levels of tree-to-

tree interdependency, depending on whether neighbouring trees belong to one species or 

the other. 

Materials and methods  

Study area 

The study area is a forest stand located in the Montsant mountain range (41o 19' 47.3'' 

N, 0º 50' 2.6'' E, 750 m a.s.l), in the northeast of the Iberian Peninsula. The climate in 

the region is Mediterranean temperate with continental tendency, with a mean annual 

precipitation of 517 mm and mean annual temperature of 12.3 °C. It is characterized by 

a dry and a relatively warm summer (mean summer precipitation of 89.5 mm, mean 

average temperature of 20.9 °C; averaged data of the two nearest meteorological 

stations with a long-term record (period 1970-2000), El Vilosell and Bisbal de Falset, 

each located at aprox. 11 km distance from the sampling site (AEMET-IM, 2011)). 

Year-to-year climate variability at this location is high with extreme drought events 

occurring every few years, a typical feature of the Mediterranean climate. The forest 

stand is a dense woodland community co-dominated by two typical Mediterranean 

trees, Holm oak and Aleppo pine. It is the result of natural regeneration of pine and oak 

in a former agricultural terrace which, according to the age of some individuals, was 

abandoned about 80 years ago. Understory vegetation is relatively scarce and current 

regeneration from both species is rare; thus, only adult pines and oaks with diameter at 

breast height (dbh) above 10 cm were included in the study. Stand density (dbh>10 cm) 

was 560 and 863 stems/ha for oak and pine respectively. We considered stem clumps of 

Q. ilex that seemingly derived from the same stool as single individuals. These sprout 

clumps were relatively common (about 1/3 of individuals), making stool density of Q. 

ilex considerably lower than stem density (370 stools/ha). 

The rectangular plot area (24 x 37 m) had a strong slope (15-22%) facing west (X-axis), 

together with a gentle slope (3-7%) facing south (Y-axis). According to USDA soil 

taxonomy (Soil Survey Staff, 2010), soil is a loamy-skeletal, carbonatic, termic, active 
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calcic pachic haploxeroll, with soil depths ranging from ca. 50 cm in the lower parts of 

the plot to ca. 20 cm in the upper part of the plot. 

Sample collection and tree mapping 

Field sampling took place on the 9th September 2011, at the end of an exceptionally dry, 

but moderately warm, summer (summer precipitation of 23 mm, mean summer 

temperature of 21.5 °C, data from Ulldemollins, a recently established automatic 

meteorological station, only 3.5 km away from the site),) (Fig. 1). We sampled sun-

exposed twigs from the 33 oaks and 78 pines with dbh>10 cm. After removing the bark 

and phloem, the xylem of the twigs was placed into cap vials, immediately frozen in dry 

ice and kept until water extraction using a cryogenic vacuum distillation line (Dawson 

et al., 1993). Six soil samples were also collected from the topsoil layer (2-10 cm, A 

horizon) and from 5 cm above the maximum soil depth (subsoil, up to 19-33 cm 

depending on the sample, B horizon), and similarly handled for water extraction. Water 

isotope ratios of hydrogen and oxygen of the xylem and soil water were determined 

using a Picarro Water Analizer L2130-i (Picarro Inc., Santa Clara, California). They 

were expressed in delta (δ) notation (‰) relative to V-SMOW (i.e. isotopic composition 

of oxygen, δ18O, and hydrogen, δ2H).  Raw values were calibrated against three internal 

laboratory references (calibrated against IAEA standards VSMOW2, SLAP2 and 

GISP). Overall uncertainty (determined as the standard error of repeated analyses 

(N=20) of a reference sample not included in the calibration) was 0.05‰ and 0.17‰, 

for δ18O and δ2H, respectively. The potential presence of organic contaminants was 

checked using the post-processing software Picarro ChemCorrect 1.2.0, giving in all 

cases negative results. 

Tree position for spatial analysis was determined using a high resolution GPS 

technology (GeoExplorer 6000 Series Handheld, Trimble Navigation Limited, 

California, USA) with spatial error inferior to 20 cm for latitude and longitude and to 40 

cm for altitude. Tree coordinates were re-checked in the field with the aid of a 

measuring tape. 

Analysis of covariance 

Isotope data (δ18O and δ2H) and one tree dendrometric characteristic (individual basal 

area, BA) were subjected to mixed model analysis of covariance (ANCOVA) 

considering a fixed effect for species (pine, oak) and the variation along the X and Y 
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axes of the two-dimensional space (covariates), allowing for heterogeneity of regression 

slopes at the species level. This was done to check for (possible) differential systematic 

variation in the response variables following X and Y directions, i.e. anisotropic effects. 

We also allowed for heterogeneity of residual variances at the species level, which was 

checked by means of log likelihood ratio tests. For the difference between two nested 

models (homocedastic and heterocedastic), minus two times the log likelihood ratio 

follows, under the null hypothesis, asymptotically a χ2 distribution with one degree of 

freedom (difference in the number of variance components; Verbeke and Molenberghs, 

2000). 

Spatial Statistics 

To analyse the spatial structure of Q. ilex and P. halepensis, we used spatial correlation 

functions derived from point process theory. A spatial point process is a stochastic 

mechanism that generates a countable set of events 
ix  in a bounded region A  (see, for 

instance, Diggle, 2003). Any sequence of events, which can be seen as points on a given 

region, can be explained by point process theory, and one of the most common 

applications is the study of point occurrences in the Euclidean plane (e.g. individual 

trees in a forest stand) (Stoyan & Penttinen, 2000).  

Spatial correlation functions 

To study the spatial structure of trees (point locations) we used the pair correlation 

function (Illian et al., 2008), an estimator of which can be obtained as 
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for a forest stand A  with area A , where ϕ  is the observed point pattern, λ̂  is an 

estimator of the point intensity, ( )⋅κ  is the Epanechnikov kernel function, ∑
≠

stands 

for the summation over all pairs such that 21 xx ≠  and ( )⋅e  is the Ripley’s factor (Ripley, 

1976) to correct for edge effects, for a given inter-distance r  between points (trees).  

Broadly speaking, this function indicates point inhibition (i.e. repulsion) when 1)( <rg , 

1)( =rg  denotes the Poisson case (i.e. a random point process) with no interaction 

between points, whilst 1)( >rg  implies point clustering, for any 0>r .  
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To analyse the bivariate point pattern of Q. ilex and P. halepensis we used the partial or 

cross-pair correlation functions, )(12 rg  (Illian et al., 2008). This correlation function is a 

bivariate derivation of the pair correlation function to study the spatial dependencies of 

point classes for bivariate point patterns. The interpretation of )(12 rg  is similar to that 

of )(rg . It indicates point-type inhibition when 1)(12 <rg , 1)(12 =rg  is the Poisson case 

(i.e. point types are independently distributed from each other), whilst 1)(12 >rg  implies 

point-type clustering. An estimator of this function can be defined as 
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where 
sϕ  and 

sλ̂  are the point pattern and the point intensity of the point class 2,1=s , 

respectively. Note that 2112 ϕϕϕ ∪= , i.e. the bivariate point pattern.  

To analyse the marked point patterns of oaks and pines, we used the mark correlation 

function )(rkm  (Stoyan & Stoyan, 1994). This function is a mark counterpart of the pair 

correlation function that accounts for the spatial correlation of marks (characteristics) 

associated to each tree. Specifically, this function describes the spatial structure of 

marks (e.g. tree basal area, stable isotope composition) associated to each tree location, 

and an estimator of this function can be written via 
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where 
mϕ  is a marked point pattern, 2µ is the expectation of  21mm  and 1m  is the mark 

value for tree 1  (say). This function denotes independence between marks when 

1)( =rkm , 1)( >rkm  indicates positive mark correlation, whilst 1)( <rkm  implies mark 

inhibition for all 0>r . Because the spatial correlation function is defined for positive 

marks, we scaled the original stable isotope composition values as to avoid negative 

values, noting that a change in mark scale does not affect the resulting estimators. In 

particular, we subtracted the minimum negative values of the resulting isotopic 

composition to each tree record. Therefore, the new resulting scale is defined for Real 

positive numbers starting from zero (minimum negative isotopic value of the original 

dataset). Finally, to study the correlation between species (qualitative mark) with regard 

to tree quantitative characteristic (basal area, stable isotopic compositions) we adopted a 

derivation of the mark correlation function initially proposed by Penttinen et al. (1992). 

Here the point pattern consists of two distinct tree species together with a mark 
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associated to each tree position. In fact, two marginal processes are present over the 

same underlying point configuration, one as a bivariate (qualitative) point process and 

another as a marked (quantitative) point process. Penttinen et al. (1992) defined an 

estimator of this cross-mark correlation function through 
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where 
1m

ϕ  is the marked point pattern for class 1 (say), and 12µ̂ is an estimator of 12µ ,  is 

the expectation of  21mm  (marks from classes 1 and 2). The interpretation of )(ˆ12 rkm  is 

similar to that of  )(rkm  and )(12 rg . It indicates spatial positive correlations for the 

spatial pattern when 1)(ˆ12 >rkm , 1)(ˆ12 =rkm  is the Poisson case, whilst 1)(ˆ12 <rkm  implies 

negative dependencies. For the Epanechnikov kernel function, we chose the bandwidth 

to be equal to λ/c , where typically 2.01.0 −=c , (here 2.0=c ) as suggested by 

Stoyan & Stoyan (1994).  

For each kind of spatial correlation function, we tested for spatial independence 

following a Monte Carlo approach based on the random simulation of (marked) point 

patterns from the null hypothesis (Poisson). We simulated 199 (marked) point patterns 

under the null hypothesis of spatial independence, and for each one, an estimator of one 

of the correlation functions defined above was obtained. These set of functions were 

then compared with the resulting estimator of this correlation function for the point 

pattern under analysis. Under this test, we rejected the null hypothesis (spatial 

independence) if the resulting estimator of this correlation function lay outside the fifth 

largest and/or smallest envelope values obtained from the set of simulated functions 

with an exact significant level of  05.0)1199/(52 =+×=α . Tests for each (marked) 

point pattern considered here are defined as follows. For the point patterns of oaks and 

pines analysed separately we tested against spatial point independence based on the 

random simulation of Poisson point configurations (see for instance, Stoyan & Stoyan, 

1994). Under the bivariate point pattern (i.e. the point patterns of both species together) 

we considered two approaches, random labelling and random superposition (see Illian 

et al., 2008). Testing for spatial independence of marked point patterns of oaks and 

pines, respectively, was based on the random marking approach (Illian et al., 2008). 

Finally, for the point pattern consisting of both tree species together with a mark 

associated to each tree position we assumed random labelling of tree species over the 
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fixed point positions, and then over this new bivariate point pattern, we considered a 

random marking approach to generate independent bivariate marked point 

configurations (see, Penttinen et al.,1992). 

For the statistical analysis of point patterns, we considered the computational 

implementation in the statistical package Spatstat for the R statistical environment (R 

Development Core Team, 2007). 

Results 

δδδδ18
O and δδδδ2

H in soil water and xylem sap 

The analysis of isotopic compositions of water extracted from soil samples showed a 

decreasing trend along the soil profile. In particular, the topsoil was significantly more 

enriched (δ18O = 0.2±1.2 ‰; δ2H = 34.6 ± 3.8 ‰) than the subsoil (δ18O = -3.0 ± 2.4 

‰; δ2H = -45.4 ± 8.5 ‰) (P=0.019 and P=0.035 for δ18O and δ2H, respectively; two-

tailed, paired t-test). In addition, the variability found among soil samples taken in the 

subsoil (ranging from 19 to 33 cm depending on digging point) was mostly explained 

by soil depth (δ18O= 20.3–2.2×depth(m), R2=0.85, P=0.02; δ2H= 3.1–0.52×depth(m), 

R
2=0.67, P=0.07). Conversely, we did not find any significant correlation between the 

isotopic composition of soil water and X or Y coordinates, neither for the topsoil nor for 

the subsoil. The range of values of xylem water for each species (δ18O=-7.4 to +3.0‰ 

and δ2H=-61.5 to -7.0‰ in pines; δ18O=-8.1 to -2.6‰ and δ2H=-67.8 to -41.6‰ in 

oaks) was comparable, although in some cases exceeded the range observed in soil 

samples, particularly for δ2H (δ18O=-5.7 to +1.7 ‰; δ2H=-55.7 to -28.5‰). 

 

ANCOVA of BA, δδδδ18
O and δδδδ2

H 

ANCOVAs revealed significant differences between pines and oaks (-1.2 ± 0.18‰ and -

5.3 ± 0.15‰, respectively, for δ18O; -25.1 ± 0.78‰ and -54.3 ± 0.66‰, respectively, for 

δ2H), in addition to a progressive increase of both isotopes along the X axis that was 

significantly higher for Q. ilex (0.054‰ m-1 and 0.155‰ m-1, for pines and oaks, 

respectively, for δ18O; 0.248 ‰ m-1 and 0.610 ‰ m-1, for pines and oaks, respectively, 

for δ2H) (test of unequal slopes; Table 1). These results suggest the existence of spatial 

anisotropic effects for the xylem water isotopic compositions of oxygen and hydrogen. 



Chapter III 

 

120 

 

Spatial distribution of pines and oaks 

Figure 2 shows the bivariate point pattern of Q. ilex and P. halepensis together with the 

resulting pair correlation functions (Eq. 1) and cross-pair correlation function (Eq. 2), 

and their respective fifth-largest and smallest envelope values based on 199 point 

configurations based on the null hypotheses, i.e. random labelling and Poisson point 

randomizations. Results suggest that both point configurations were at random, i.e. trees 

from the same species were independently located from each other, and that trees from 

distinct species were located at random from each other, thereby pointing to spatial 

independence between these two species in terms of individual tree location. 

Spatial analysis of BA, δδδδ18
O and δδδδ2

H 

The spatial locations of Q. ilex and P. halepensis, along with individual tree BA in the 

area of study, are shown in Figure 3a. Visual inspection of bivariate marked point 

patterns did not provide much information about the spatial dependence of these two 

species. The resulting estimators of the mark correlation function (Eq. 3) for tree BA 

(Figure 3c and d) suggested that only the spatial structure of P. halepensis showed 

dependence, whereas no correlation was observed for Q. ilex. In particular, tree BA had 

negative correlation effects for P. halepensis as this empirical function lies down the 

lower envelope. There was evidence that trees at distances of less than two meters had 

smaller tree sizes than they should have under the hypothesis of random marking. 

Moreover, the resulting cross-mark correlation function (Eq. 4) for tree BA for both tree 

species (Figure 3b) suggested no inter-specific BA spatial correlation. Thus, tree size for 

a given species did not depend on the presence of the other species. 

Visual inspection of the mark point pattern of Q. ilex and P. halepensis for the isotopic 

compositions of oxygen and hydrogen indicated increasingly higher values along the X-

axis, suggesting the presence of anisotropic effects; this result was especially noticeable 

for Q. ilex (figure not included). This is in full agreement with the results obtained in 

the ANCOVAs. Because we observed directional components in the X-axis, i.e. 

anisotropic mark effects, and these effects affected the resulting estimated correlation 

functions, which are defined for isotropic (marked) point patterns, we considered a 

correction for such effects. Since the related point patterns were isotropic and only the 

mark component showed anisotropic effects, the use of inhomogeneous (anisotropic) 

versions of the point correlation functions based on a (non)parametric estimate of the 

point intensity (see, for instances, Law et al., 2009) were not of applicability. In the case 
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of anisotropy in the marginal distribution of marks, these anisotropic effects should be 

incorporated in the mark correlation function by allowing this distribution to vary along 

this directional component. This could be done by assuming the mark expectation (say) 

to vary along this directional component. However, this approach is not trivial and few 

studies (if any) have corrected anisotropy for the mark component. Therefore, we 

adopted an easier procedure to correct mark anisotropic effects by considering the 

residuals of these variables (marks) after assuming a deterministic, species-dependent 

linear trend through this X-axis in accordance with the outcome of the ANOVAs. These 

residuals were also scaled to avoid negative values. The resulting marked point pattern 

of residuals is not affected by the linear trend and therefore ensures isotropy. 

 

Figure 4 shows the resulting mark point pattern for δ18O residuals and the resulting 

mark correlation function, highlighting that water uptake strategies for P. halepensis 

were dependent on the spatial tree configuration. Particularly, pine trees had similar 

water  uptake patterns at short inter-trees distances, and neighbouring trees at distances 

less than 4 meters tended to obtain more superficial (i.e. closer to topsoil values) water. 

Non-significant spatial dependencies were obtained for Q. ilex. In contrast, the cross-

mark correlation function for this isotope showed spatial independence between both 

tree species (see Figure 4b). Thus, species-specific water extraction strategies did not 

depend on the presence of the other species.  

As expected, comparable results to those of δ18O were obtained for the spatial structure 

of δ2H residuals (Fig. 5) since both isotopes were highly correlated. For P. halepensis, 

δ2H residuals had spatial dependencies at short inter-tree distances ( 4< meters), while 

for Q. ilex we assumed that the isotopic composition were spatially uncorrelated. 

Discussion  

Do Aleppo pine and Holm oak occupy different niches for water uptake? 

Marked point process statistics are valuable techniques to evaluate and describe forest 

systems (see, amongst others, Stoyan & Penttinen, 2000; Comas & Mateu, 2007). Here, 

we considered these spatial tools to disentangle competition effects for water at inter- 

and intra-specific levels in a water-limited environment. Our results highlight the 

existence of clear niche segregation between the Mediterranean trees P. halepensis and 
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Q. ilex. Firstly, and using classical analysis of covariance procedures, we found that the 

stable isotope composition of xylem water (both δ18O and δ2H) was on average 

significantly higher in Aleppo pine than in Holm oak. Decreasing trends in soil water 

δ18O and δ2H were also observed with soil depth, confirming the existence of an 

evaporative gradient in the soil. An increasing trend in xylem water δ18O and δ2H was 

also observed along the X dimension of the experimental plot, which agrees with 

decreasing soil depth following this direction, hence favoring higher water evaporation. 

However, this trend was steeper for Q. ilex, suggesting that this species had 

comparatively better access to deep soil layers than P. halepensis with increasing soil 

depth. Comparing the δ18O and δ2H of xylem water with the soil profile, we may first 

conclude that Holm oak takes up more water from deeper soil layers than Aleppo pine 

after a long drought period, as would be expected according to the deeper root system of 

evergreen schlerophyllous, as compared to pines (Canadell et al., 1996). Besides overall 

inter-specific differences, the study of tree-tree interactions using mark correlation 

functions confirmed the existence of two separate niches for water uptake. Firstly, we 

observed a significant spatial dependencies of neighbouring pines (inter-tree distances 

of less than 4 m.) to obtain water from upper soil layers (i.e. higher δ18O and δ2H of 

xylem water), and an uncorrelated spatial configuration for oaks (see Figures 4-5). In 

contrast, when looking at the inter-specific relationships (i.e. the effect of neighbours 

from the opposite species), we did not find any clear pattern for either competition or 

facilitation. Thus, there are interdependencies among neighbour pines, but not among 

neighbours of different species. This is in agreement with the niche segregation 

hypothesis, further supporting the idea that oaks are able to get water from deeper soil 

layers that may be less accessible for pines. In this regard, the depleted isotopic values 

observed in the xylem of oaks are typical of deep soil water, showing no signs of 

evaporative enrichment. The postulated access to non-evaporated deep soil layers, with 

high water availability, would also explain the lack of spatial interaction among oak 

individuals: under such conditions, competition for water resources is scarce. 

Similarly, the mark correlation function for BA of pines (Figure 3d) suggested the 

existence of competitive inhibition for growth at distances below 2 m. In direct contrast, 

tree BA was distributed at random for oaks and oaks-pines spatial structures, 

respectively. This points out that long-term growth in Aleppo pine is more strongly 

affected by competition than it is in the case of Holm oak, in agreement with its greater 
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plasticity in radial growth (Ferrio et al., 2003; Zavala et al., 2000). Nevertheless, what 

remains intriguing is the fact that Aleppo pine, a more sensitive species to competition, 

does not show a clear response in terms of growth in the presence of Holm oak. In our 

case, observed BA responses may reflect the shade-intolerant character of Aleppo pine, 

but also they could be a result of increasing competition for water resources, or (most 

likely) a combination of both factors (Zavala et al., 2000). 

In any case, it is likely that the competitive effect of Holm oak trees on individuals of 

Aleppo pine was much lower than if neighbor trees were from the same species. 

Particular reasons for this may be two-fold. On the one hand, and regarding competition 

for water resources, the observed evidences of distinct water uptake patterns for the two 

species may explain the lack of interaction, even when water resources are limiting (see 

e.g. Klein et al. 2013). On the other hand, the much faster height growth of pines may 

ensure them attaining a dominant position in terms of light interception, as compared to 

oaks (Zavala et al., 2000). Conversely, the shade-tolerant nature and conservative 

growth of the evergreen oak would cause a lack of negative response to this sort of 

dominance. Nevertheless, due to the existence of a relatively open canopy, it is more 

likely that growth patterns were dominated by water limitation, at least for the case of 

the most shade-intolerant species. 

Alternative sources of variation for stable isotopes in xylem water 

In this study we initially assumed that differences in xylem water would reflect distinct 

water uptake patterns originating from contrasting contributions of soil layers.  

However, whereas interspecific differences can be easily explained by the uptake of 

water from different depths, the observed increase in δ18O and δ2H in neighbouring 

trees, particularly in pines, is less straightforward. The presence of close neighbours can 

be interpreted as a local increase in stand density, and indeed more positive values in 

δ18O of xylem water of Aleppo pine have been reported when comparing a densely 

afforested stand (770 trees ha-1) with an open woodland (20 trees ha-1) (Moreno-

Gutiérrez et al., 2012a). The direct interpretation is that closer trees tend to use more 

water from upper soil layers, although there is no clear physiological reason for this 

behaviour. As pointed out by Moreno-Gutiérrez et al. (2012a), one possibility is that the 

presence of close neighbours increased shadowing, thus reducing soil evaporation and 

keeping more water available in upper soil layer, which is generally enriched as 

compared to deeper soil. Nevertheless, since the enrichment of upper soil water is 
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caused by evaporation, the water available in the upper soil of dense stands is likely to 

be less enriched than that of a more exposed soil surface, thus having an opposite effect. 

In addition, a similar effect would have been expected in response to shadowing caused 

by oaks, and this is not supported by our data. An alternative explanation may come 

from evaporation processes occurring in the branch (Dawson & Ehleringer, 1993): when 

transpiration rates are drastically reduced, e.g. during drought periods or in a cold 

winter, water in the branches has a longer turnover time and may show progressive 

evaporation, or partially mix with enriched phloem water. In this regard, it is likely that 

neighbour trees competing for a limited water source would show higher restrictions in 

transpiration than those trees having fewer neighbours, thus becoming more prone to 

branch evaporation. Branch evaporation, in turn, would increase the proportion of heavy 

isotopes in xylem water, due to the faster evaporation of the light isotopes, and thus 

could explain the higher δ18O and δ2H observed in trees with close neighbours. This 

would also explain the stronger neighbour effect in pine as compared to oak, since the 

former is a water-saving species, with a more sensitive stomatal response (Ferrio et al., 

2003; Zavala et al., 2000). However, again certain effect of the presence of oaks over 

pine isotope composition would have been expected, since the effective water uptake of 

oaks would also decrease water available for the pine, pushing the reduction of 

transpiration. Nevertheless, although we do not have direct measurements of tree 

transpiration in our site, previous studies on P. halepensis have shown that late-summer 

transpiration at the leaf level may still account for ca. 20% of maximum values (Klein et 

al. 2005; Baquedano & Castillo 2006; 2007), and a similar proportion has been 

observed in whole-tree transpiration (Raz Yaseef et al. 2010; Klein et al. 2013, 2014). 

Similarly, studies on Ponderosa pine have shown that even during summer drought the 

trees do not cease transpiration and can still use a significant proportion of water from 

upper soil layers (Fernández et al. 2008). Altogether, both current isotope evidence and 

previous works on P. halepensis suggest that the observed inter- and intra-specific 

differences could reflect the use of distinct water pools in the soil, although the 

underlying causes still require further clarification. 

Conclusions 

Although results from our case study are not totally conclusive, the application of point-

process statistical tools has allowed us to go beyond the comparison of inter and intra-

specific (non-spatial) differences in water uptake, thereby revealing complex spatial 
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dependencies in the use of water. In particular, our study indicates complementary water 

uptake patterns between Aleppo pine and Holm oak during the dry season, showing 

intra-specific competition among neighbour pines, but neither facilitation nor 

competition between individuals of different species. These results, however, might not 

be extrapolated to any pine-oak mixed stands, since root development might be affected 

by the history of the stand (e.g. whether oaks are seedlings or sprouts) and the different 

degree of dominance of each species. However, it should be noted that competition for 

water resources can be dynamic, mainly modulated by water availability (see e.g. Bellot 

et al., 2004; Hentschel et al., 2013). In this  regard, assessing the seasonal-course of 

tree-to-tree interactions might help to explain how pines and evergreen oaks often co-

exist in long-term equilibrium in areas with limited water resources (Zavala & Zea, 

2004). 
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Figures and Tables 

 

 

Fig. 1. Environmental context. Meteorological data of the four months before sampling, 

showing mean temperature and accumulated precipitation. The data correspond to the 

automatic meteorological station of Ulldemolins, located at 3.5 km from the samplig 

site. 
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Fig. 2. Bivariate point pattern. (a) Bivariate point pattern of Q. ilex (triangle) and P. 

halepensis (circle) in a forest stand in Central Catalonia (Spain) together with (b) the 

resulting cross-pair correlation function (Eq. 2), assuming random labelling, and 

empirical pair correlation functions (Eq. 1) for (c) Q. ilex and (d) P. halepensis and their 

fifth-largest and smallest envelope values (dashed lines) based on 199 random 

simulations according to these two null hypotheses (random labeling and Poisson point 

randomizations); inter-tree distance (r) is given in metres. 
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Fig. 3. Mark correlation function (basal area). (a) Bivariate marked point pattern for 

basal area, involving two tree species,  Q. ilex (black circles) and P. halepensis (red 

circles), together with (b) the estimated cross-mark correlation function (Eq. 4), and 

resulting mark correlation functions (Eq. 3) for (c) Q. ilex, (d) P. halepensis. The fifth-

largest and smallest envelope values (dashed lines) are based on 199 random labelling 

and marking (b), and 199 random marking (c and d) over fixed point positions. Circle 

plot radius is proportional to each mark and inter-tree distance r is given in metres. 
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Fig. 4. Mark correlation function (oxygen-18). (a) Bivariate marked point pattern for 

oxygen isotope composition (δ18O) residuals, involving two tree species,  Q. ilex (black 

circles) and P. halepensis (red circles), together with (b) the corresponding cross-mark 

correlation function (Eq. 4), and the resulting mark correlation function (Eq. 3) for (c) 

Q. ilex, (d) P. halepensis. The fifth-largest and smallest envelope values (dashed lines) 

are based on 199 random labelling and marking (b), and 199 random marking (c and d) 

over fixed point positions. Circle plot radius is proportional to each mark and inter-tree 

distance r is given in metres. 
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Fig. 5.  Mark correlation function (hydrogen-2). (a) Bivariate marked point pattern for 

hydrogen isotope composition (δ2H) residuals, involving two tree species,  Q. ilex 

(black circles) and P. halepensis (red circles), together with (b) the corresponding cross-

mark correlation function (Eq. 4), and the resulting mark correlation function (Eq. 3) for 

(c) Q. ilex, (d) P. halepensis. The fifth-largest and smallest envelope values (dashed 

lines) are based on 199 random labelling and marking (b), and 199 random marking (c 

and d) over fixed point positions. Circle plot radius is proportional to each mark and 

inter-tree distance r is given in metres. 
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Table 1. Mixed model analysis of variance (ANOVA) for the three variables studied. 

Covariates accounting for variation along the X and Y axes of the two-dimensional 

space (alone and interacting with the species factor, i.e. testing for separate slopes) are 

included in the models. In parentheses, standard errors of variance components. 

Source of variation (δ18O)         

Fixed effects Num DF Den DF Variance ratio Pr > F 

species 1 105 264.7 <.0001 
X Coordinate 1 105 21.71 <.0001 
Y Coordinate 1 105 1.44 0.2323 
X × species 1 105 10.05 0.0020 
Y × species 1 105 1.62 0.2055 

Random effects   Variance component  

Residual (Q. ilex)   0.68 (0.177)  

Residual (P. halepensis)     2.40 (0.391)   
     

Source of variation (δ2H)         

Fixed effects Num DF Den DF Variance ratio Pr > F 

species 1 105 115,5 <.0001 
X Coordinate 1 105 20.9 <.0001 
Y Coordinate 1 105 0.1 0.9284 
X × species 1 105 4.4 0.0384 
Y × species 1 105 2.3 0.1353 

Random effects   Variance component  

Residual (Q. ilex)   12.43 (3.209)  
Residual (P. halepensis)     45.85 (7.487)   
     

Source of variation           
(individual basal area)         

Fixed effects Num DF Den DF Variance ratio Pr > F 

species 1 105 18.54 <.0001 
X Coordinate 1 105 0.03 0.8524 
Y Coordinate 1 105 0.85 0.3578 
X × species 1 105 0.17 0.6776 
Y × species 1 105 0.09 0.7685 

Random effects   Variance component  

Residual (Q. ilex)   22600 (5835.4)  

Residual (P. halepensis)     45780 (7475.9)   
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“Survivors aren't 

always the strongest; 

sometimes they're the 

smartest, but more often 

simply the luckiest.” Carrie 
Ryan, The Dark and Hollow 
Places 
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Abstract 

Water is the most important limiting factor for plant growth in Mediterranean 

ecosystems. In this context, we aimed at detecting biotic interactions for water uptake 

among two typical Mediterranean tree species (Quercus ilex and Pinus halepensis) 

coexisting in a mixed forest on a sloping site with shallow soils. We used xylem water 

stable isotopes (δ18O and δ2H) for all trees found in the studied stand (ca. 900 m2) at six 

different dates covering an extreme summer drought that occurred in 2011. We applied 

point-process statistics and other methods that integrate stand density information to 

evaluate possible tree to tree interactions for water use. Our results suggest the existence 

of inter- and intra-specific competition for water. We also found that there is clear niche 

segregation between the two species in periods of maximum drought, in which Q. ilex 

used groundwater to maintain a higher physiological activity, typical of its anysohydric 

behavior. On the other hand, P. halepensis seemed to remain inactive during the 

summer drought illustrating a drought avoidance-isohydric performance. Future drier 

conditions may affect the coexistence of both species by decreasing opportunities for 

complementarity, leading to reduced stand density and, ultimately, threatening the 

persistence of this widespread forest structure.  

 

 

 

 

 

Keyword index: point patterns, stable isotopes, water uptake, Pinus halepensis, Quercus 

ilex, extreme drought, water-use strategies 
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Introduction 

The actual composition and dynamics of forest systems in the Mediterranean basin is 

likely to undergo important modifications due to the predicted increase in the frequency 

of drought and heatwaves for the next decades (IPCC 2013). In this region water is 

usually the most import limiting factor for plant functioning, and subtle changes in the 

water available to plants can have profound effects at the ecosystem level (e.g. Granda 

et al. 2014; Linares and Camarero 2012). The resilience of Mediterranean forests is 

related to differences in functional traits among trees, allowing co-occurring individuals 

to have differential water-use strategies both at the inter-specific (e.g. Filella & Peñuelas 

2003) and intra-specific levels (e.g. Voltas et al. 2015). 

A typical situation in coastal ranges along the western Mediterranean basin is the 

formation of pine-oak mixed forests (Gil et al. 1996). Pines, as water-saving, drought-

avoiding species share space and resources with more drought-tolerant, less 

conservative species such as evergreen oaks (Lookingbill & Zavala 2000; Zavala et al. 

2000; Zavala et al. 2011). Traditionally, pine-oak mixed forests were considered as 

transient states in ecological succession towards an oak-dominated climax vegetation 

(Rivas-Martínez 1987). However, increasing evidence points towards niche segregation 

as one of the mechanisms determining the long-term persistence of these communities 

(Comas et al. 2015; Zavala et al. 2000; Zavala and Zea 2004). Whether facilitation or 

competition mechanisms are enhanced under such resource-limited coexistence is still a 

matter of debate (Díaz-Sierra et al. 2010; Maestre et al. 2005; Zavala and Bravo de la 

Parra 2005). 

Competition for water is mainly driven by resource availability, which benefits species 

that are best adapted to drought (Craine & Dybzinski 2013). In this context, water 

scarcity leads to an increase in competition for water in mixed-species stands (Grossiord 

et al. 2014). Jucker et al. (2014) found in Iberian oak-pine mixed forests that species 

benefit less from mixing under dry conditions, suggesting that drought decreases 

opportunities for complementarity between pines and oaks. While oaks were more 

resistant to drought and less sensitive to environmental changes, experiencing little 

changes in aboveground growth, pines benefited under abundance of resources by 

growing faster, but suffered more in periods of resource scarcity. Alternatively, other 

studies suggest that pines use less water than oaks while having similar carbon gains 

throughout the year (i.e. higher water-use efficiency, WUE) (Klein et al. 2013a), which 

may give them competitive advantage. 
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A representative Mediterranean tree such as the evergreen Quercus ilex has shown a 

great sensitivity to xylem embolism in extreme summer droughts due to groundwater 

depletion (Barbeta et al. 2015), otherwise allowing it to remain physiologically active 

during summer (i.e. anysohydric behavior). Contrary to that, Pinus halepensis, which 

typically forms mixed forest with Quercus ilex, strongly reduces stomatal conductance 

under drought, which may lead to mortality after periods exceeding 90 days without 

access to water pools (i.e. isohydric behavior) (Klein et al. 2014a). The different 

strategies of these complementary species are related to contrasting physiological and 

anatomical traits such as stomatal sensitivity and root system distribution (Ferrio et al. 

2003; Klein 2014).   

Understanding inter- and intra-specific belowground interactions and competition is 

problematic because of the lack of appropriate technologies for accessing and 

monitoring root distribution in trees (Maeght et al. 2013; Rewald & Leuschner 2009). 

Rewald & Leuschner (2009) showed that the fine root systems of four species broadly 

overlap within the upper 20 cm of soil in a mixed-stand temperate forest, with lateral 

roots being up to 10 times larger than tree crowns, being such observation in accordance 

with several root inventories in forest. This suggests a high interaction and competition 

for soil resources between individuals. However, the vertical root distribution of 

Mediterranean woody species is often deep and able to find its way through fractured 

bedrocks, or even able to penetrate directly through the bedrock if growing over 

calcareous terrain, which allows trees to remain physiologically active during drought 

episodes (Canadell et al. 1996). This is particularly the case of species from the Quercus 

genus. Conversely, Mediterranean pines appear to have shallower root systems with 

higher densities on the top soils, exhausting water relatively fast in an opportunistic 

manner (Bellot et al. 2004; Klein et al. 2014b) (but see Voltas et al. 2015). But not only 

the different root distribution between oaks and pines may allow niche partitioning and 

stable coexistence between these species. Also the lower water potentials that oaks can 

reach in order to uptake soil water (Klein et al. 2013a; Klein 2014) may allow them to 

access tightly-bound water during dry periods (Brooks et al. 2009). 

In the Mediterranean region forest trees usually grow under relatively shallow soils and 

their root systems may not reach the phreatic water, but they may still thrive by using 

water stored in the weathered bedrock (Barbeta et al. 2015; Maeght et al. 2013). A 

recent study (Comas et al. 2015) has suggested niche segregation for Aleppo pine 

(Pinus halepensis Mill.) and holm oak (Quercus ilex L.) during a period of intense 
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drought through the analysis of the isotopic composition of xylem water. Based on point 

process statistics, the authors reported intra-specific competition for water among pine 

individuals, but neither among oak individuals nor between oaks and pines (Comas et 

al. 2015). In this work, we aim to test whether this niche segregation is dynamic, hence 

associated with the scarcity of resources (e.g. due to different ability to uptake water 

from the soil), or static, related to constitutive differences among the two species (e.g. 

due to contrasting root distribution). For this purpose, we have characterized the 

temporal evolution of spatial interactions for water uptake during one complete year 

(from spring 2011 to spring 2012) in a mixed pine-oak stand by integrating information 

from remote-sensing and other physiological indicators, which complement the seasonal 

patterns observed through xylem water stable isotopes. This experiment took place 

during an extraordinarily dry April to September period, the driest since 1975 in the 

study region (Barbeta et al. 2015).  

 

Material and Methods 

Site description 

The study area is a mixed forest of holm oak and Aleppo pine located in the Montsant 

range (41o 19' 47.3'' N, 0º 50' 2.6'' E, 750 m a.s.l), in the northeast of the Iberian 

Peninsula. The site is close to the optimal distribution range for both species (topo-

climatic suitability index > 0.8; Ninyerola et al. (2010)). The climate in the region is 

Mediterranean temperate with continental tendency, with a mean annual precipitation of 

517 mm and mean annual temperature of 12.3 °C. It is characterized by a dry and a 

relatively warm summer (mean summer precipitation of 89.5 mm, mean average 

temperature of 20.9 °C) and wet spring and autumn seasons. The forest stand originated 

from natural regeneration of pine and oak in a former agricultural terrace which, 

according to the age of the oldest individuals, was abandoned more than 100 years ago. 

Understory vegetation is relatively scarce and current regeneration from both species is 

rare. According to USDA soil taxonomy (Soil Survey Staff 2010), soil is a loamy-

skeletal, carbonatic, termic, active calcic pachic haploxeroll, with soil depths ranging 

from ca. 20 cm in the upper part of the plot to ca. 50 cm in its lower part. This 

topographic characteristic, together with a sloppy terrain (see next section), makes this 

site to be relatively xeric. 
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Sample collection and tree mapping 

Sampling took place in a rectangular plot area (24 x 37 m) with a strong slope (15-22%) 

facing west (X-axis), and a gentle slope (3-7%) facing south (Y-axis). Within this plot, 

stand density (dbh>10 cm) was 874 stems ha-1 for pine and 560 stems ha-1 for oak (in 

terms of basal area -BA-, 30.5 m2 ha-1 and 7.2 m2 ha-1, respectively). Oaks stems 

originating from the same stool were considered as a single individual; hence the 

individual density for the oak was of 370 stools ha-1. Tree position was determined 

using a high resolution GPS technology (GeoExplorer 6000 Series Handheld, Trimble 

Navigation Limited, California, USA). The distribution of  individuals was found to be 

totally at random for both species (Comas et al. 2015). 

We performed six extensive field sampling campaigns (i.e. including all individuals: 33 

oaks and 78 pines) during one seasonal cycle, from spring 2011 to spring 2012. 

Sampling dates were May 26th, July 20th, September 9th, October 19th, November 18th 

(2011) and March 27th (2012) (Fig. 1). For each sampling time, we collected xylem 

samples from sun-exposed twigs of the upper third of the crown. Soil samples were also 

collected from 6 points in the plot at two depths: topsoil (2-10 cm, A horizon) and 

subsoil (B horizon, 5 cm above the maximum soil depth, from 10-55 cm). Xylem was 

separated from the bark and, together with soil samples, immediately frozen with dry 

ice in air-tight tubes for subsequent water extraction by cryogenic distillation (Dawson 

et al. 1993). In order to discard evaporative enrichment in the branch as the cause of a 

potential uncoupling between soil and xylem water (Palacio et al. 2014; Evaristo et al. 

2015) we performed an additional sampling campaign in summer 2013. For this 

purpose, we selected 10 individuals to be representative of the range of isotopic 

variation and spatial distribution of the trees in the plot. In this case, samples were 

collected simultaneously from main trunk and twigs, and midday water potential was 

determined with a pressure chamber. 

 

Water isotope analysis 

Water isotope ratios of hydrogen and oxygen of the xylem and soil water were 

determined using a Picarro L2120i analyzer coupled to a high-precision A0211 

vaporizer (Picarro Inc., Santa Clara, California), and expressed in delta (δ) notation (‰) 

relative to V-SMOW (i.e. isotopic composition of oxygen, δ18O, and hydrogen, δ2H).  

The estimated precision, based on the repeated analysis of four reference water samples, 

was 0.10‰ and 0.40‰ for δ18O and δ2H, respectively. The potential presence of 
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organic contaminants was checked using the post-processing software Picarro Chem-

Correct 1.2.0, giving in almost all cases negative results. Nevertheless, for consistency 

we applied to all samples the post-processing correction described in Martín-Gómez et 

al. (2014). In agreement with the low level of contamination, we found a very strong 

correlation between corrected and uncorrected values (r2=0.995 for δ18O; r2=0.979 for 

δ2H, N=680), with 92% of the samples showing differences lower than 0.4‰ for δ18O 

and 4‰ for δ2H. As a reference for the range of local precipitation, we used historical 

data (2000-2009) from Tortosa, a nearby station (ca. 60 km) of the Spanish Network of 

Isotopes in Precipitation (REVIP; Capilla et al. 2011). 

 

Evaluation of evaporation processes in water 

In order to evaluate potential evaporation processes in xylem and soil water we looked 

at changes in δ2H with respect to δ18O by plotting them together and against the global 

and local meteorological water lines, which state an average relationship between the H 

and O isotopes ratios in natural terrestrial waters (Craig 1961). Evaporation processes 

lead to greater changes in O than H isotopes ratios and, thus, to a displacement from the 

global and local meteoric water line. Therefore, any displacement of the water isotopic 

values from the meteoric line may indicate evaporative processes and should be 

considered in the interpretation of water sources for plants. 

 

Analysis of covariance  

Xylem isotopic records were subjected to analysis of covariance (ANCOVA) 

considering the species effect (pine, oak) and the linear variation along the X and Y 

axes of the two-dimensional space (covariates), allowing for heterogeneity of regression 

slopes at the species level. This was done to check for (possible) differential systematic 

variation in the response variables (δ18O and δ2H) following X and Y directions, i.e. 

spatial anisotropic effects. We also allowed for heterogeneity of residual variances at 

the species level, which was checked by means of log likelihood ratio tests. For the 

difference between two nested models (homocedastic and heterocedastic), minus two 

times the log likelihood ratio is distributed asymptotically as χ2 with degrees of freedom 

equal to the difference in the number of parameters (Verbeke & Molenberghs 2000). 
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Spatial statistics 

To analyse the marked point (δ18O or δ2H) patterns of oaks and pines associated to each 

tree location we used the mark correlation function )(rkm (Stoyan and Stoyan 1994) for 

each sampling time. This function describes the spatial structure of tree marks and an 

estimator of this function can be written via 
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for a forest stand A  with area A , where mϕ  is a marked point pattern and 1m  is the 

mark value for tree 1 (say) and 1x  its spatial location, λ̂  is an estimator of the point 

intensity, ( )⋅κ  is the Epanechnikov kernel function, ∑
≠

stands for the summation over 

all pairs such that 21 xx ≠  and ( )⋅e  is the Ripley’s factor (Ripley, 1976) to correct for 

edge effects, for a given inter-distance r  between points (trees). This function denotes 

independence between marks when 1)( =rkm , 1)( >rkm  indicates positive mark 

correlation, whilst 1)( <rkm  implies mark inhibition for all 0>r . Following the 

outcome of the ANCOVA, we corrected for mark anisotropic effects by considering the 

residuals of the marks after assuming a deterministic, species-dependent linear trend 

through the X-axis. These residuals were subsequently scaled to avoid negative values. 

The resulting marked point pattern of residuals is not affected by the linear trend and 

therefore ensures isotropy. 

To study the correlation between species (qualitative mark) with regard to a particular 

tree quantitative characteristic (i.e. the xylem water isotopic compositions) we adopted a 

derivation of the mark correlation function initially proposed by Penttinen et al. (1992). 

Here the point pattern consists of two distinct tree species together with a mark 

associated to each tree position. Penttinen et al. (1992) defined an estimator of this 

cross-mark correlation function through: 
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where 
1m

ϕ  is the marked point pattern for class 1 (say), 1̂λ  its point intensity, 12µ̂ is an 

estimator of 12µ  (i.e. the expectation of 21mm , marks from classes 1 and 2) and )(ˆ12 rg  

stands for an estimator of the cross-pair correlation functions. The interpretation of 

)(ˆ12 rkm  is similar to that of  )(rkm . It indicates spatial positive correlations for the spatial 
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pattern when 1)(ˆ12 >rkm , 1)(ˆ12 =rkm  is the Poisson case, whilst 1)(ˆ12 <rkm  implies 

negative dependencies. For the Epanechnikov kernel function, we chose the bandwidth 

to be equal to λ/c , where typically 2.01.0 −=c , as suggested by Stoyan and Stoyan 

(1994) (here 2.0=c ).  

Each kind of spatial correlation function was tested for spatial independence following a 

Monte Carlo approach based on the random simulation of (marked) point patterns from 

the null hypothesis (Poisson). We simulated 199  (marked) point patterns under the null 

hypothesis of spatial independence, and for each one, an estimator of one of the 

correlation functions defined above was obtained. We rejected the null hypothesis 

(spatial independence) if the resulting (empirical) estimator of this correlation function 

lay outside the fifth largest and/or smallest envelope values obtained from the set of 

simulated functions with a significant level of 05.0)1199/(52 =+×=α . Testing for 

spatial independence of marked point patterns of oaks and pines, respectively, was 

based on the random marking approach (Illian et al. 2008). For the point pattern 

consisting of both tree species together with a mark associated to each tree position we 

assumed random labelling of tree species over the fixed point positions, and then over 

this new bivariate point pattern, we considered a random marking approach to generate 

independent bivariate marked point configurations (see Penttinen et al. 1992). 

For the statistical analysis of point patterns, we considered the computational 

implementation in the statistical package Spatstat for the R statistical environment (R 

Development Core Team, 2007).  

 

Examining density-related effects 

Mark-correlation analyses are powerful tools for the study of direct inter-individual 

interactions, but are based on the comparison of pairs of trees against plot averages. 

Hence, they do not take into account potential additive effects caused by several 

individuals (e.g. for the correlation function a single tree in a radius of 1 m from a given 

individual is equally considered as if they were 4 trees within the same radius). As 

complementary approach we also examined the effect of local variations in the stand 

density (as stem ha-1) and stand BA (m2 ha-1) of oaks and pines on the isotopic 

composition of each individual. For this purpose, we determined the number of 

individuals and accumulated BA in a 5 m-radius around each individual. Relationships 

between target variables and density estimates around each individual were tested using 
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pair-wise Pearson correlations. As an ad-hoc, conservative solution to correct for border 

effects in the correlations, each sample was weighted as a function of its distance to the 

border. Considering a minimum inter-tree distance of about 0.5 m, we applied a weight 

from 0 to 1 and proportional to the distance to the border of the plot for those trees 

located at less than 4.5 m from it. All trees located at 4.5 m or more from the border 

were assigned a weight of 1. We also tested other radius (4 and 6 m), as well as more 

restrictive corrections for border effects (e.g. removing the samples at 3, 4 or 5 m from 

the border), resulting in comparable results (not shown). 

 

Remote sensing data 

A pixel (250 m x 250 m) containing the spectral variation (biweekly) of the Normalized 

Difference Vegetation Index (NDVI) for the study period in two nearby pine-dominated 

and oak-dominated stands was obtained from the MODIS Land Subsetted Products at 

the MODIS web service (2014). Seasonal changes in soil water content for the same 

stands were derived from data acquired from the ESA´s Soil Moisture and Ocean 

Salinity (SMOS) mission, available at http://www.smos-bec.icm.csic.es; the data is a 

high resolution soil moisture delayed product, a data set of soil moisture maps of the 

Iberian Peninsula with 1 km spatial resolution, which contains two maps per day, 

corresponding to SMOS ascending (6 A.M.) and descending (6 P.M.) passes. Such 

maps are obtained using the downscaling algorithm, which combines the brightness 

temperature measurements from ESA-SMOS with Land Surface Temperature and 

NDVI data from Terra/Aqua MODIS. 
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Results 

Evolution of climatic and biophysical site conditions during the 2011-2012 season 

Precipitation was abundant during spring and early summer of 2011 (May and July 

respectively). However, high May-June temperatures lowered the soil water content 

(SWC) in summer as compared to spring (Figure 1). During the transition from spring 

to summer the NDVI of oaks and pines started to drift apart, with pines showing lower 

NDVI values (Figure 1). As drought progressed due to lack of precipitation and high 

mean temperatures in late summer and September 2011, NDVI values of oaks declined 

down to values similar to those of pines. Furthermore, the drought conditions 

exacerbated during October 2011 as precipitation was very scarce, leading to both a 

clear reduction in SWC and a strong decline in NDVI for both species. At this point, 

both species showed a similar minimum annual NDVI. Later, NDVI values recovered to 

an annual maximum with the arrival of autumn-winter precipitation (November 2011), 

which also led to annual maximum SWC values. From this time on, a long period of 

drought during winter to early spring took place which forced SWC as well as NDVI 

values down to summer records, showing only a partial recovery after the first rains in 

April 2012.  

 

Seasonal changes in the isotopic composition of soil and xylem water  

The isotopic composition of water from xylem and soil showed, in most sampling times, 

a clear deviation from the Global and Local Meteorological Water Line (Figure 2), 

which was symptomatic of evaporative enrichment of both water types. Furthermore, 

topsoil was more enriched than subsoil in four out of the six sampling times (Figure 2), 

suggesting an evaporative enrichment defining the isotopic gradient within the soil 

vertical profile. Particularly, we found a high correlation between soil depth and either 

δ18O or δ2H in May and September 2011, as well as in March 2012, but not in October 

and November 2011. Due to missing records, this association could not be properly 

assessed for July 2011. Groundwater values from a nearby fountain were -7.9 ‰ for 

δ18O and -49.1 ‰ for δ2H, similar to the values found during soil recharge periods and 

at the deepest soil layer.  
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We also observed distinct seasonal patterns in isotopic signatures at the species level. 

During the wet spring and early summer (May and July 2011), the isotopic values of 

xylem water overlapped in both species, falling mostly within the range of subsoil 

water, which was less enriched than the topsoil water (Figure  2a, 2b). However, as the 

dry season progressed, reaching the period of maximum drought (September-October 

2011), we found a clear distinction in isotopic signatures between species together with 

notable changes in soil values, despite the lack of relevant precipitation events (Figure 

2c, d). During this period, xylem water in pines fell outside the range of contemporary 

soil values and became isotopically enriched, lying along the evaporation line of soil 

and xylem values characteristic of the end of the wet season (July 20th) (Figure 2b). On 

the other hand, oaks shifted to the new range of subsoil water values in September 9th. 

In October 19th, however, the water in oaks fell outside the range of soil values, 

following a distinct evaporation line similar to that of September 9th. During drought 

recovery (November 18th), the isotopic signature of pines and oaks were still more 

enriched than the soil water, although they were in line with the soil records (Figure 2e). 

Conversely, most trees from both species showed more depleted values as compared 

with soil records after the next important rain event occurring in March 2012, but again 

the xylem isotopic values were placed along the soil evaporation line. 

We also found significant correlations between the individual isotopic values of xylem 

water across different sampling times, although stronger and more consistent for oaks 

than for pines. For oaks, the δ18O and δ2H values of xylem water in July 20th were 

significantly correlated with September 9th and October 19th values (r= 0.75 and r= 0.70 

for δ18O;  r= 0.76 and r= 0.70 for δ2H; P< 0.05). For pines we only found a weak 

correlation for δ2H between July 20th and September 9th (r= 0.27, P=0.017). As drought 

progressed, correlations involving September 9th and October 19th records were also 

stronger for oaks (r= 0.75, P<0.001, for both δ18O and δ2H) than for pines (r= 0.34, 

P=0.003 for δ18O; r= 0.47, P<0.001 for δ2H). Notably, the signal of such spatial 

configuration persisted during drought recovery (November 18th), as seen in the strong 

correlation between xylem values in October and November for both oaks (r= 0.71 and 

r= 0.82 for δ18O and δ2H, P<0.001) and pines (r= 0.40 and r= 0.41 for δ18O and δ2H, 

P<0.001). 
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Seasonal changes in inter and intra-specific spatial dependences  

The mark univariate and bivariate correlation functions overpassed their envelopes in 

many occasions at different sampling times and distances, but often showing 

inconsistent patterns (Figure 3 and 4). The most consistent trends in both isotopes were 

observed in September 9th for pines and November 18th for oaks. Both showed 

intraspecific competition at distances of 0 to 4 meters (Figure 3c, 4c and 3e, 4e), as 

indicated by the higher mark values of δ18O and δ2H in short distances (i.e. belonging to 

more surface water within the soil vertical profile). However, although weakly 

significant or even not significant (i.e. the mark correlation line was close to the upper 

envelope limit), we observed similar spatial trends at different times: In the case of 

pines, there was a positive significant interaction at distances that ranged from zero to 

five meters in all sampling times, except for July 20th (Figures 3 and 4), suggesting a 

consistent intra-specific competition pattern. In the case of oaks, the October 19th 

pattern (end of dry period), although not significant, resembled that of November 18th 

(Figures 3 and 4). Surprisingly, no consistent patterns in terms of spatial dependencies 

were found at the inter-specific level in most sampling times for the bivariate cross-

mark correlation function, indicating lack of relevant competition for water uptake 

between oaks and pines, at least at the tree-to-tree level. Only during drought recovery 

(November 18th), we observed a positive, nearly significant interaction at around four 

meter distance, resembling the intra-specific competition patterns observed in both 

species (Figure 3e and 4e). 

Contrasting with the results of point-process analysis, although we observed a positive 

trend of δ18O and δ2H in response to con-specific density for both pines and oaks, this 

trend was only significant for the oaks (Figure 5). Conversely, we observed a positive 

response of isotope values in pines in relation to the local density of oaks, although only 

significant in September 9th (Figure 5a), whereas the isotopic signature of xylem water 

of oaks was negatively correlated with the local density of pines (Figure 5b). This 

indicates a contrasting rooting pattern in response to inter-specific competition for the 

two species. 

 

Isotopic signals of twig and trunk and relationships with water potential  

In the additional sampling campaign of summer 2013 we found that the isotopic 

compositions of twig xylem water were more enriched than that of trunk in both 
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species, but they were more depleted than topsoil and subsoil records (Figure 6). In 

addition, the isotopic signatures of twig water fell along the line of soil water, but this 

was not the case of trunk water (Figure 6). In the case of oaks, there was no significant 

correlation at the individual level between twig and trunk isotopic water values (r = 0 

and r= -0.25 for δ18O and δ2H, respectively; n= 10), but the associations were 

significant for pines (r= 0.85 and r= 0.59 for δ18O and δ2H, respectively; n= 10).   

Midday water potentials were correlated to neither twig-water nor trunk-water isotopic 

values in oaks (r = -0.36 and r= 0.11 for δ18O and δ2H in twigs; r = 0.14 and r= -0.19 for 

δ18O and δ2H in trunk, n = 10); however, they were strongly correlated in pines (r= 0.80 

and r= 0.90 for δ18O and δ2H in twigs; r= 0.83 and r= 0.62 for δ18O and δ2H in trunk; n 

= 10). We also found that the measured water potentials in pines were significantly 

correlated to twig δ18O and δ2H from the driest sampling times of the seasonal study: 

September 9th (r= 0.88 and r= 0.93, respectively, n = 10) and October 19th (r= 0.78 and 

r= 0.87, respectively, n = 10). No significant correlations were found in the case of oaks 

(results not shown). 

 

Discussion 

Inter-specific morphophysiological differences allow coexistence during drought 

Pinus halepensis is a shallow rooted species able to exhaust rapidly (<15 days) the 

available water after precipitation events, particularly at 0–10 cm soil depth (Bellot et 

al. 2004; Klein et al. 2014b), and then switching to deeper soil layers where there is 

moisture availability (Klein et al. 2014b; Voltas et al. 2015). Contrary to that, Q. ilex 

develops less root biomass in the upper 10 cm of the soil than in the deeper soil 

horizons (Moreno et al. 2005), possibly because of its inability to tolerate high soil 

temperatures in summer in Mediterranean ecosystems (Barbeta et al. 2015), or as a 

consequence of the competition with early successional species, such as P. halepensis.  

We found several lines of evidence supporting a distinct rooting pattern as major 

functional trait allowing niche segregation of coexisting Q. ilex and P. halepensis. 

Differences between oaks and pines in the isotope compositions of xylem water can be 

attributed, at least partially, to a different root system distribution (Fernández et al. 

2008; Eggemeyer et al. 2008; Filella & Peñuelas 2003). Although both species appeared 

to use similar sources of water during the wet season, they shifted to a distinct water 

source during the drought period, returning back to a similar source in the next wet 
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season (cf. Figure 2). These seasonal dynamics agree with other studies concluding that 

Q. ilex uses a higher amount of groundwater during the summer drought than during 

other periods of the year (Barbeta et al. 2015). David et al. (2007) also pointed out that 

the deep root system of Q. ilex (up to 13 m) allows this species to access groundwater, 

therefore remaining physiologically active during the summer drought. On the other 

hand, while the isotopic signatures of xylem water in P. halepensis seemed to fall well 

within the evaporative line of the July sampling, at the beginning of the drought period, 

they were above the range of contemporary soil values during the intense, out of season 

September drought (cf. Figure 2). This suggests that pines may have extremely reduced 

its physiological activity due to rapid soil water consumption and depletion as a 

drought-avoidance mechanism. In line with our findings, Klein et al. (2013a) reported a 

higher water use along the year by the oaks than the pines in mixed stands of P. 

halepensis and Quercus calliprinos (an evergreen oak). Bellot et al. (2004) obtained 

similar results on the physiological performance of Quercus coccifera (a deep-rooted 

shrub), which was unaffected by the presence of P. halepensis, unlike other shallow-

rooted shrubs that suffered from increasing water competition as stand density and 

summer drought augmented. 

A further evidence of the physiologically active condition of Q. ilex during the 

prolonged drought of summer-winter 2011 is provided by the high NDVI values 

observed during most of the dry period in nearby mono-specific oak stands as compared 

to pine stands (cf. Figure 1), which indicates a better water status. In contrast, P. 

halepensis experienced a fast NDVI reduction coincident with the arrival of the drought 

period. Del Castillo et al. (2014) found that Aleppo pine NDVI drops are associated to 

drought periods, and attributed this to a decrease of either leaf area index or 

photosynthesis (Klein et al. 2014a). Drought dormancy and/or drought deciduousness to 

avoid water stress is a characteristic of shallow-rooted species employing a 

profligate/opportunistic strategy (Moreno-Gutiérrez et al. 2012). In-situ observations 

from nearby road-cuts also provided empirical evidence of distinct rooting patterns 

between the two species. On the one hand, Q. ilex presented a long tap root able to 

penetrate through small rock cracks and with far fewer lateral roots in the upper soil 

layer than P. halepensis. Conversely, P. halepensis showed large superficial lateral 

roots that extended several times the tree crown. 

 

 



Chapter IV 

 

155 

 

Inter and intra-specific interactions for water during drought 

The positive values of the mark-correlation function indicate that the closer two 

individuals are, the more positive their xylem water values will be. Our findings suggest 

that water uptake is shallower at closer inter-tree distances for P. halepensis. Moreno-

Gutiérrez et al. (2015) reported similar effects between P. halepensis and understory 

shrubs, with shrubs becoming more enriched in their xylem water values as they were 

located closer to pines. These authors suggested that strong belowground competition 

forced the shrubs to rely on more superficial soil water. In our study, intraspecific 

competition among pines may have led individuals at short distances to develop 

shallower roots as a mean to maximize their ability to capture short precipitation pulses, 

suggesting that pines were not able to switch successfully to deeper soil layers during 

drought to avoid competition for water. In this context, inter-specific competition with 

Q. ilex may play an important role, as this species has a greater ability to compete for 

belowground resources (Jucker et al. 2014). 

It would be tempting to hypothesize that oaks do not compete for water because they 

have access to an unlimited groundwater supply. However, silvicultural studies support 

the claim that holm oak intensively compete for water with neighbors, as stand thinning 

enhances secondary growth (Ducrey & Toth 1992), tree water status and physiological 

performance (Moreno & Cubera 2008). Indeed, although we did not find clear inter-

specific interactions on a tree-to-tree level (i.e. based on point-process statistics), we 

observed a consistent negative relationship between oak isotope values and pine 

density, particularly strong under severe drought and subsequent recovery (Figure 5). 

This suggests that a single pine may not be enough to impact on the root distribution of 

oaks, but a dense pine cluster may prevent the oaks from colonizing the upper soil 

layers. Hence, Q. ilex may have been forced to further develop its deep-root system as a 

consequence of competition between species. Similarly, Sardans et al. (2004) reported 

that seedlings of Q. ilex increase the allocation of biomass in roots if this species has P. 

halepensis as neighbor, but not in the presence of conspecific seedlings. Other studies 

suggest that the presence of shrubs with much shallower root systems than Q. ilex can 

compete for water with this species during dryer than usual periods (Rolo & Moreno 

2011). 
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Inter-specific responses during drought recovery 

Right before the end of the drought period (November), the water status of Q. ilex might 

have been hampered by a prolonged depletion of groundwater, as suggested by the 

decrease in Q. ilex NDVI values. This agrees with a similar study in a nearby area 

(Barbeta et al. 2015) demonstrating that Q. ilex exhausted groundwater reserves during 

the extremely dry summer-autumn of 2011, being unable to meet a very high 

evaporative demand, which led to tree mortality. This event may explain why the 

isotopic signatures of xylem water of Q. ilex in November 18th resembled that of the 

two previous field samplings during the summer drought, despite the considerable 

amount of accumulated rainfall in the previous 30 days (161 mm). In this regard, the 

amount of water infiltrating to lower soil layers could have been limited by a fast uptake 

by pines (Klein et al. 2014b).  

The observed intra- and inter-specific competition (see e.g. Figure 3e) suggests that 

both species are competing for similar water reservoirs, and that the recovery after 

drought (November 2011) is limited in those individuals most affected by competition 

and, hence, potentially weakened by the extreme drought event. At this moment, it is 

very likely that both species were using a mixture of both sources (soil water and 

groundwater) as the isotopic values were closer to soil and groundwater values than in 

October (Figure 2e). Such water uptake pattern, right after the first autumn rainfall 

events, has been documented for P. halepensis (Voltas et al. 2015), Q. ilex in a nearby 

location (Barbeta et al. 2015) and for other tree species like P. ponderosa (Eggemeyer et 

al. 2008). 

 

 

Density vs. inter-tree interactions: what should we look for? 

Interestingly, we observed contrasting patterns when comparing individual tree-to-tree 

interactions (i.e. through point-process statistics) with density effects on the isotopic 

values. Particularly, an intra-specific interaction for pines was observed through point-

process analysis, but no significant effects of pine density were found; conversely, both 

inter- and intra-specific responses in oaks were best shown when considering density 

effects. This points to the need for combining different conceptual approaches to obtain 

a complete view of spatial interactions for water uptake, and suggests that additive (i.e. 
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density) and tree-to-tree effects of competition may differ, and thus should be 

specifically addressed. On the other hand, and contrasting with other studies (e.g. 

Rodríguez-Robles et al. 2015), we did not find evidence of facilitation through 

hydraulic uplift from the deep-rooted oak benefiting the shallow root system of the 

pines. Despite showing contrasting patterns, both intra- and inter-specific interactions 

pointed towards a negative effect of stand density. So far, our study does not support the 

prediction of some models stating that facilitation is fostered by increasing resource 

scarcity (see e.g. Brooker et al. 2008, and references therein), but exemplifies a limiting 

environment in which none of the dominant species benefits from each other.  

 

Conclusions 

Stable isotopes in xylem water indicate that P. halepensis and Q. ilex have a different 

rooting distributional pattern and also different functional characteristics such as water 

uptake capacity or stomatal response, thus allowing coexistence; however, significant 

interactions for water uptake show that such coexistence may become difficult under 

future climate. Both species appear to use a similar water source during periods of high 

soil moisture, but they differ during soil water scarcity. Inter- and intra-specific 

interactions (particularly competition) are maximized during periods of moderate 

drought. Theoretically, niche partitioning in mixed forest may bring benefits for both 

species by favorably influencing inter-specific interactions and by increasing resource-

use efficiency (Loreau & Hector 2001). However, this equilibrium may be disrupted 

under long and intense periods of drought. In this study, the inability of pines to 

compete for belowground resources may threaten severely this species if drought 

increases in severity and duration, leading to longer dormancy periods and potentially 

causing carbon starvation and mortality. In fact, seven pines (8%) died in the stand 

during the two years following this drought event. Similarly, a high uptake of infiltrated 

water by P. halepensis would increase the sensitivity of Q. ilex to drought events, as 

groundwater levels could become more easily exhausted in the future. Altogether, our 

results indicate that drought decreases the room for complementarity between species in 

this mixed Mediterranean forest.  



Chapter IV 

 

158 

 

 

Acknowledgements 

 J.P.F acknowledges the support of the Ramón y Cajal programme (RYC-2008-02050). 

This study was supported by project CGL2011–26654 (Spanish Ministry of Economy 

and Competitiveness). The authors also thank P. Sopeña and M.J. Pau for technical 

assistance. 

 

 

References 

 Barbeta, A., Mejía-Chang, M., Ogaya, R., Voltas, J., Dawson, T. E., & Peñuelas, J. 
(2015). The combined effects of a long-term experimental drought and an extreme 
drought on the use of plant-water sources in a Mediterranean forest. Global 
Change Biology, 21, 1213–1225 

Bellot, J., Maestre, F. T., Chirino, E., Hernández, N., & de Urbina, J. O. (2004). 
Afforestation with Pinus halepensis reduces native shrub performance in a 
Mediterranean semiarid area. Acta Oecologica, 25, 7–15.  

Bowen, G. J. (2010). Isoscapes: Spatial Pattern in Isotopic Biogeochemistry. Annual 
Review of Earth and Planetary Sciences, 38, 161–187. 

Brooker, R. W., Maestre, F. T., Callaway, R. M., Lortie, C. L., Cavieres, L. A., 
Kunstler, G., … Michalet, R. (2008). Facilitation in plant communities: The past, the 
present, and the future. Journal of Ecology, 96, pp.18–34.  

Brooks, J. R., Barnard, H. R., Coulombe, R., & Mcdonnell, J. J. (2009). Ecohydrologic 
separation of water between trees and streams in a Mediterranean climate. Nature 
Geoscience, 3, 100–104.  

Comas, C.,del Castillo, J., Voltas, J., & Ferrio, J. P. (2015). Point processes statistics of 
stable isotopes : analysing water uptake patterns in a mixed stand of Aleppo pine and 
Holm oak, Forest Systems, 24, 1–13. 

Craig, H., (1961). Isotopic Variations in Meteoric Waters. Science (New York, N.Y.), 
133, pp.1702–1703. 

Craine, J.M. & Dybzinski, R., (2013). Mechanisms of plant competition for nutrients, 
water and light. Functional Ecology, 27, pp.833–840.  

David, T. S., Henriques, M. O., Kurz-Besson, C., Nunes, J., Valente, F., Vaz, M., … 
David, J. S. (2007). Water-use strategies in two co-occurring Mediterranean 
evergreen oaks: surviving the summer drought. Tree physiology, 27, pp.793–803. 

Dawson T.E., Ehleringer J.R., Hall AE, Farquhar G.D. (1993) Water sources of plants 
as determined from xylem-water isotopic composition: perspectives on plant 



Chapter IV 

 

159 

 

competition, distribution, and water relations. n 'Stable isotopes and plant carbon-
water relations'. (Eds J.R. Ehleringer, A.E. Hall, and G.D. Farquhar) (Academic 
Press,Inc.: San Diego) 

Del Castillo, J., Voltas, J., & Ferrio, J. P. (2015). Carbon isotope discrimination, radial 
growth, and NDVI share spatiotemporal responses to precipitation in Aleppo pine. 
Trees, 29, 223–233.  

Díaz-Sierra R., Zavala M.A. & Rietkerk M. (2010) Positive interactions, discontinuous 
transitions and species coexistence in plant communities. Theoretical Population 
Biology 77, 131–144. 

Ducrey, M., & Toth, J. (1992). Effect of cleaning and thinning on height growth and 
girth increment in holm oak coppices (Quercus ilex L.). Vegetatio, 99-100(1), 365–
376.  

Eggemeyer, K. D., Awada, T., Harvey, F. E., Wedin, D. A., Zhou, X., & Zanner, C. W. 
(2008). Seasonal changes in depth of water uptake for encroaching trees Juniperus 
virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid 
grassland. Tree Physiology, 29(2), 157–169. 

Evaristo, J., Jasechko, S., & McDonnell, J. J. (2015). Global separation of plant 
transpiration from groundwater and streamflow. Nature, 525, 91–94.  

Fernández, M. E., Gyenge, J., Licata, J., Schlichter, T., & Bond, B. J. (2008). 
Belowground interactions for water between trees and grasses in a temperate 
semiarid agroforestry system. Agroforestry Systems, 74, 185–197.  

Filella, I. & Peñuelas, J., (2003). Partitioning of water and nitrogen in co-occurring 
Mediterranean woody shrub species of different evolutionary history. Oecologia, 
137, pp.51–61.  

Gil L, Díaz-Fernández PM, Jiménez P, Roldán M, Alía R, Agúndez D, DeMiguel J, 
Martín S, DeTuero M (1996) 'Las Regiones de procedencia de Pinus halepensis 
Mill. en España.' (O.A. Parques Nacionales: Madrid). 

Granda E., Rosatto D., Camarero J.J., Voltas J., Valladares F. (2014) Growth and 
carbon isotopes of Mediterranean trees reveal contrasting responses to increased 
carbon dioxide and drought. Oecologia 174, 307-317.  

Grossiord, C., Granier, A., Gessler, A., Jucker, T., & Bonal, D. (2014). Does Drought 
Influence the Relationship Between Biodiversity and Ecosystem Functioning in 
Boreal Forests? Ecosystems, 17, 394–404. 

Illian, J., Penttinen, A., Stoyan, H., & Stoyan, D. (2007). Statistical Analysis and 
Modelling of Spatial Point Patterns. International Statistical Review (Vol. 76). 
Chichester, UK: John Wiley & Sons, Ltd. 

IPCC (2013) Climate change 2013. The physical science basis. Working group I 
contribution to the fifth assessment report of the inter- governmental panel on 
climate change technical summary. Cambridge University Press, Cambridge. 



Chapter IV 

 

160 

 

Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. a., Sala, O. E., & Schulze, E. 
D. (1996). A global analysis of root distributions for terrestrial biomes. Oecologia, 
108, 389–411. 

Jucker, T., Bouriaud, O., Avacaritei, D., Dănilă, I., Duduman, G., Valladares, F., & 
Coomes, D. A. (2014). Competition for light and water play contrasting roles in 
driving diversity-productivity relationships in Iberian forests. Journal of Ecology, 
102, 1202–1213. 

Klein, T. (2014). The variability of stomatal sensitivity to leaf water potential across 
tree species indicates a continuum between isohydric and anisohydric behaviours. 
Functional Ecology, 28, 1313–1320. 

Klein, T., Di Matteo, G., Rotenberg, E., Cohen, S., & Yakir, D. (2013b). Differential 
ecophysiological response of a major Mediterranean pine species across a climatic 
gradient. Tree Physiology, 33, 26–36. 

Klein, T., Hoch, G., Yakir, D., & Korner, C. (2014a). Drought stress, growth and 
nonstructural carbohydrate dynamics of pine trees in a semi-arid forest. Tree 
Physiology, 34, 981–992.  

Klein, T., Rotenberg, E., Cohen-Hilaleh, E., Raz-Yaseef, N., Tatarinov, F., Preisler, Y., 
… Yakir, D. (2014b). Quantifying transpirable soil water and its relations to tree 
water use dynamics in a water-limited pine forest. Ecohydrology, 7, pp.409–419.  

Klein, T., Shpringer, I., Fikler, B., Elbaz, G., Cohen, S., & Yakir, D. (2013a). 
Relationships between stomatal regulation, water-use, and water-use efficiency of 
two coexisting key Mediterranean tree species. Forest Ecology and Management, 
302, 34–42.  

Linares, J.C. & Camarero, J.J., (2012). From pattern to process: Linking intrinsic water-
use efficiency to drought-induced forest decline. Global Change Biology, 18, 
1000–1015. 

Lookingbill, T.R. & Zavala, M.A., (2000). Spatial pattern of Quercus ilex and Quercus 
pubescens recruitment in Pinus halepensis dominated woodlands. Journal of 
Vegetation Science, 11,.607–612. 

Loreau, M. & Hector, A., (2001). Partitioning selection and complementarity in 
biodiversity experiments. Nature, 412, 72–76. 

Maeght, J.-L., Rewald, B. & Pierret, A., 2013. How to study deep roots-and why it 
matters. Frontiers in plant science, 4, 1-14.  

Maestre FT, Valladares F, Reynolds JF (2005) Is the change of plant-plant interactions 
with abiotic stress predictable? A meta-analysis of field results in arid 
environments. Journal of Ecology 93, 748-757. 

Moreno, G. & Cubera, E., (2008). Impact of stand density on water status and leaf gas 
exchange in Quercus ilex. Forest Ecology and Management, 254,.74–84.  



Chapter IV 

 

161 

 

Moreno, G., Obrador, J. J., Cubera, E., & Dupraz, C. (2005). Fine Root Distribution in 
Dehesas of Central-Western Spain. Plant and Soil, 277(1-2), 153–162. 

Moreno-Gutiérrez, C., Battipaglia, G., Cherubini, P., Saurer, M., Nicolás, E., Contreras, 
S., & Querejeta, J. I. (2012). Stand structure modulates the long-term vulnerability 
of Pinus halepensis to climatic drought in a semiarid Mediterranean ecosystem. 
Plant, Cell & Environment, 35, 1026–1039.  

Moreno-Gutiérrez, C., Battipaglia, G., Cherubini, P., Delgado Huertas, A., & Querejeta, 
J. I. (2015). Pine afforestation decreases the long-term performance of understorey 
shrubs in a semi-arid Mediterranean ecosystem: a stable isotope approach. 
Functional Ecology, 29(1), 15–25. 

Moreno-Gutiérrez, C., Dawson, T. E., Nicolás, E., & Querejeta, J. I. (2012). Isotopes 
reveal contrasting water use strategies among coexisting plant species in a 
Mediterranean ecosystem. New Phytologist, 196(2), 489–496 

Ninyerola M, Serra-Díaz JM, Lloret F (2010) 'Topo-climatic Suitability Atlas of Woody 
Plants. Map server.' (Universitat Autònoma de Barcelona.URL: 
http://www.opengis.uab.cat/IdoneitatPI/index.html: 

Palacio S, Azorín J, Montserrat-Martí G, Ferrio JP (2014) The crystallization water of 
gypsum rocks is a relevant water source for plants. Nat Communication 5. 

Penttinen A, Stoyan D, Henttonen HM (1992) Marked point processes in forest 
statistics. Forest Science 38, 806-824. 

Rewald, B., & Leuschner, C. (2009). Belowground competition in a broad-leaved 
temperate mixed forest: pattern analysis and experiments in a four-species stand. 
European Journal of Forest Research 128, 387-398. 

Ripley, B,D. (1976). The second-order analysis of stationary point processes. Journal of 
Applied Probability. 13, 255-266. 

Rivas-Martínez S (1987) 'Mapa de Series de Vegetación de España. Memoria del Mapa 
de Series de Vegetación de España.' (ICONA: Madrid) 

Rodríguez-Robles, U., Arredondo, J. T., Huber-Sannwald, E., & Vargas, R. (2015). 
Geoecohydrological mechanisms couple soil and leaf water dynamics and facilitate 
species coexistence in shallow soils of a tropical semiarid mixed forest. New 
Phytologist, 207, 59–69.  

Rolo, V., & Moreno, G. (2011). Shrub species affect distinctively the functioning of 
scattered Quercus ilex trees in Mediterranean open woodlands. Forest Ecology and 
Management, 261, 1750–1759 

Sardans, J., Rodà, F. & Peñuelas, J., (2004). Phosphorus limitation and competitive 
capacities of Pinus halepensis and Quercus ilex subsp. rotundifolia on different 
soils. Plant Ecology formerly `Vegetatio’174, 307–319.  



Chapter IV 

 

162 

 

Scholander P, Hammel H, Bradstreet E, Hemmingsen E (1965) Sap pressure in vascular 
plants. Negative hydrostatic pressure can be measured in plants. Science 148, 339-
346. 

SMOS-BEC Team (2015) SMOS-BEC Ocean and Land Products Description. 
Available at http://www.smos-bec.icm.csic.es. 

Soil Survey Staff (2010) 'Keys to Soil Taxonomy, 11th ed.' (USDA-Natural Resources 
Conservation Service: Washington,D.C.) 

Stoyan D, Stoyan H (1994) 'Fractals, Random Shapes and Point Fields: Methods of 
Geometrical Statistics.' (Wiley: Chichester) 

Verbeke, G., & Molenberghs, G. (2000). Linear mixed models for longitudinal data. 
Springer series in statistics. 

Voltas, J., Lucabaugh, D., Chambel, M. R., & Ferrio, J. P. (2015). Intraspecific 
variation in the use of water sources by the circum-Mediterranean conifer Pinus 
halepensis. New Phytologist, 208, 1031–1041. 

Zavala, M. A. & Bravo de la Parra, R., (2005). A mechanistic model of tree competition 
and facilitation for Mediterranean forests: Scaling from leaf physiology to stand 
dynamics. Ecological Modelling, 188, 76–92.  

 Zavala, M. A., Espelta, J. M., & Retana, J. (2000). Constraints and trade-offs in 
Mediterranean plant communities: the case of holm oak - aleppo pine forests. The 
Botanical Review, 66, 119–149.  

Zavala, M. A., Espelta, J. M., Caspersen, J., & Retana, J. (2011). Interspecific 
differences in sapling performance with respect to light and aridity gradients in 
Mediterranean pine–oak forests: implications for species coexistence. Canadian 
Journal of Forest Research, 41, 1432–1444. 

Zavala, M. A., & Zea, E. (2004). Mechanisms maintaining biodiversity in 
Mediterranean pine-oak forests: insights from a spatial simulation model. Plant 
Ecology (formerly Vegetatio), 171, 197–207. 

 

 

 
  



Chapter IV 

 

163 

 

 
  
 

 

 

 

Figure 1. Physiological and environmental variables of the study site including daily 

temperature (T) and precipitation (P) obtained from the closest (4 km) weather station 

(Ulldemolins). Soil water content (SWC) from remotely sense moisture (SMOS-BEC 

Ocean Land Products of the pixel (1 km2) belonging to the study area . Vegetation index 

(NDVI) (from MODIS satellite sensor) of the pixel (0.25 km2) containing the study area 

and of pixels from other nearby locations in which either of the species were in a non-

mixed forest stand.  
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Figure 2. Isotopic signatures of water extracted from twig xylem of pines and oaks, and from the top and subsoil of the studied forest stand. 
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Figure 3. Seasonal (1 to 6 sampling moments) mark and cross-mark correlation functions for δ18O of the twig xylem water from P. 

halepensis and Q. ilex. Solid lines indicate actual values of the mark and cross correlation functions and dashed lines indicate the 

envelopes of random simulations of 100 iterations. 
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Figure 4. Seasonal (1 to 6 sampling times) mark and cross-mark correlation functions for δ2H of the twig xylem water from P. halepensis 

and Q. ilex. Solid lines indicate actual values of the mark and cross correlation functions and dashed lines indicate the envelopes of 

random simulations of 100 iterations.  



 

167 

 

 

P
e
a
rs
o
n
 C
o
rr
e
la
ti
o
n
 (
r)

0.0

0.2

0.4

0.6

 Pine BA vs pine δ 2H 
 Pine BA vs pine δ 18O 

 Oak BA vs pine δ 2H 
Oak BA vs pine δ 18O 

 Sampling Campaings

Jun-11 Jul-11 Sep-11 Oct-11 Nov-11 Apr-12

P
e
a
rs
o
n
 C
o
rr
e
la
ti
o
n
 (
r)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

 Pine BA vs oak δ 2H 
 Pine BA vs oak δ 18O 

 Oak BA vs oak δ 2H 
Oak BA vs oak δ 18O 

*/*

**/***

**/***

 -/*
-/*

*/**

**/* **/* **/*

a)

b)

         

Figure 5. Seasonal changes in pair-wise correlation coefficients between isotopic water 

values for each individual of either pines (a) or oaks (b) and the density in a 5 m radius.  

Dashed grey box line indicates the 0.05 significant level (n= 87 for pines, n = 33 for 

oaks). 
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Figure 6. Isotopic signatures of water from the top and subsoil, as well as from the twig 

xylem (a) and the trunk (b) of 10 representative trees of each species from the forest 

stand under study.  
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simple. But it's worth it in the 

end because once you get 

there, you can move 
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Complementary water uptake patterns for stand water balance 

Earlier studies have proposed that Quercus ilex and Pinus halepensis may display 

different physiological responses to seasonal changes in precipitation (Ferrio et al. 

2003; Aguilera et al., 2012), most likely as a result of different water utilization 

strategies; e.g, a differential stomatal sensitivity (Baquedano & Castillo 2007) and a 

contrasting root distribution (Rodríguez-Robles et al. 2015). Similarly, in Chapter 1 we 

have shown that the carbon isotope discrimination (∆13C, a proxy of intrinsic water use 

efficiency-WUEi- in dry climates) in the tree-rings of both species show distinct 

geographic patterns, thus providing complementary paleo-climate information on the 

annual precipitation of the Northeastern part of the Iberian Peninsula (see Chapter 1). 

We also found a lower range of variation and absolute values in the ∆13C of P. 

halepensis, as compared to Q. ilex. Although such differences in ∆13C in response to 

drought can be attributed to different metabolic pathways in wood formation (Gessler et 

al. 2014), such differences are likely related to variations in stomatal conductance -

references in Ferrio, (2005) - or concomitant changes in leaf area index or leaf 

chlorophyll content (Chapter 2), WUEi and total amount of transpired water (Klein et al. 

2013). Stomatal conductance responds to VPD and water availability (Mediavilla & 

Escudero 2004), and in turn relates to leaf water potential in the two species 

(Baquedano & Castillo 2007; Mediavilla & Escudero 2004), both probably being 

controlled by xylem anatomy (Miller et al. 2001); with lower average leaf water 

potential in ring-porous (deciduous oaks) and  diffuse-porous (evergreen oaks) than in 

coniferous (pines) (Klein 2014). This illustrates two contrasting hydraulic behaviors 

(isohydric and anisohydric) and may imply an ecological advantage for the pine over 

the oaks in terms of dealing with drought (Ferrio 2005) (Zavala et al. 2000; Klein et al. 

2013), as having a more sensitive stomatal conductance can be beneficial to avoid 

periods of drought and rapidly maximize photosynthesis during periods of water 

abundance (Baquedano & Castillo 2007). However, oaks generally show less sensitive 

stomatal regulation than pines, but can work at lower water potentials, being able to 

exploit particular portions of water within the soil: hence, Quercus ilex may have higher 

effective soil water availability than Pinus halepensis at low soil water potentials (Ψs). 

For instance, while Pinus halepensis is unable to extract soil water at Ψs < -2.0 MPa 
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(Klein et al. 2013), Quercus ilex may extract water even at Ψs < -2.5 MPa (Baquedano 

& Castillo 2007) or -3 MPa (David et al. 2007). In this way, Quercus ilex maintains 

high gas exchange during dry periods in which the pine stops its physiological activity 

(Baquedano & Castillo 2007), therefore having less limiting photosynthesis through 

stomatal closure as the pine (see discussion below on niche segregation). This may give 

oaks a major advantage in the forest interspecies competition, either directly (higher 

growth) or indirectly (seizure of water resources) (Klein 2014). Furthermore, the dual 

root system of Quercus ilex allows it to exploit water from 2 hydrological niches, the 

soil and ground/fractures, switching along the seasons as needed (Barbeta et al. 2015). 

Thus differences in ∆13C in response to drought can be also attributed to this: In fact, 

further research we conducted shows that oaks presented values of ∆13C associated with 

significantly lower values of xylem ∆18O than pines during summer i.e. with isotopic 

values of water at higher depths (data not shown).  

In line with this hypothesis, in Chapters 3 and 4, the isotopic composition of xylem 

water and other ecophysiological indicators revealed that both species show different 

water use and extraction patterns, which allows them to maximize the available water 

resources in different hydrological niches (in time and space) (Ehrlinger & Dawson 

1992), and to coexist in a relative equilibrium. The equilibrium is relative because small 

changes in water availability due to variations in climate, edaphic or forest composition 

may have implications in the long-term coexistence for Q. ilex and P. halepensis 

(Zavala & Zea 2004; Barbeta et al. 2013) . The results in chapter 4 agree with the stated 

above, despite that the continued transpiration of  Quercus ilex has to do partly with 

access to groundwater, unreachable to the pine, as suggested by the lowered midday 

water potential during moderate drought of the pine (Chapter 4). This is also confirmed 

by the results of chapter one, which provided information on how the WUEi in Q. ilex 

at the spatial level is linked to variations in seasonal precipitation responsible for 

groundwater recharge (Ferrio et al. 2003); and in chapter 3 and 4, which both showed 

that the xylem water comes from deeper soil layers in the case of Q. ilex than in the case 

of P. halepensis. 

In terms of water balance at the stand level, the above ecophysiological differences 

may translate into different amounts of transpiration, thus in different impacts on the 

water yield (Klein et al. 2013; Aranda et al. 2012). For instance, Klein et al. (2013) 
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revealed that in a typical stand density of 300 trees/ha and annual precipitation of 500 

mm, the water use of Pinus halepensis and Quercus calliprinus stands were 357 and 

459 mm, leaving 143 and 41mm as water yield, respectively. They also provided an 

estimate of the maximum carrying capacity for the different stands: 350 and 550 

trees/ha for oak and pine, respectively, at the 500 mm iso-precipitation region. 

However, other study suggest that P. halepensis transpire more than Q. ilex when water 

is available, but drastically reduces transpiration during summer drought in which Q. 

ilex can considerably increase transpiration (Baquedano & Castillo 2007). Thus the total 

annual water budget of each species may end up being similar (Baldocchi et al. 2010); 

further research is required in this area.  

The above studies also suggest that mixed pine-oak forest may have a close to zero 

or negative water yield some year, perhaps living upon groundwater reserves from other 

years. Furthermore, the ability to exploit different water sources can maximize water 

extraction, not only through competition, by forcing species to specialized towards a 

particular niche, but also through facilitative processes such as water uplift by the oaks 

that pines may use (Dawson 1996; Rodríguez-Robles et al. 2015; Maeght et al 2013).  

To understand better the impact of forest dynamics on local and regional water 

balances, we need to understand the physiological, ecological and environmental factors 

that influence water loss from trees and forested lands (Dawson 1996). Extreme drought 

and moderate but persistently drier conditions brought by climate change could make 

the species in our study region to deplete water reservoirs from groundwater and 

weathered bedrock (chapter 4), thus increasing mortality and high defoliation to the 

point the system rebounds towards groundwater recharge (Barbeta et al. 2015). Such 

scenario could have serious negative consequences for the sustainability of mixed oak 

and pine forest if drought intensifies, with serious risk of die-back and mortality 

(Aranda et al. 2012). However, the ecological implications of changes in the stand water 

balance need to be evaluated under the different and sometimes contradictory theories 

of coexistence that explain the stand dynamics and composition of forest ecosystem.  
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Long-term co-existence of pines and oaks: stability or 

transitional succesion?  

So will long-term coexistence of the species be hampered? 

 This is a difficult question because there are many ecological theories that explain 

the coexistence of species. At the large spatial scale, distribution of vegetation types has 

long been associated to climate (Braun-Blanquet 1928). More recently, for a wide range 

of environments, from drylands to wetlands, it has been suggested that water tolerance 

(from deficit to excess) is responsible for the segregated distribution of species along 

gradients (Silvertown et al. 2015). At the local scale, however, community distribution 

and configuration are the result of overlapping populations interacting with themselves 

and each other (competition and facilitation), and some deterministic (such as climatic), 

and random (such as seed dispersal or disturbance regime) processes (Silvertown et al. 

2015; Hubbell 2001; Zavala et al. 2000; Lookingbill & Zavala 2000).  

 

  Wilson (2011) reviews 12 theories of coexistence, dividing them into equilibrium 

and stabilizing mechanism, as already described in Chesson (2000). Equilibrium refers 

to fitness of the species, which can only approximate a similar fitness, but it is never 

equal, thus only delaying competitive exclusion. However, stabilizing refers to 

mechanisms that, as it names indicate, will allow indefinite coexistence of the species 

through an increase-when-rear mechanism (Chesson 2000). Another important theory is 

the neutral theory of Hubbell (2001), which offers the view that the spatial 

configuration of the forests respond to purely stochastic processes, in which regional 

and local scale are connected through dispersal processes, without intervention of local 

species interaction processes. Wilson (2011) suggested that some of the coexisting 

theories/mechanisms like: cyclic succession, equal chance (neutrality), initial patch 

composition, etc. are likely to be irrelevant, or perhaps not even exist. Although, it is 

beyond the scope of this thesis to do a truly comprehensive review of all of them here, 

we can look at some of the ecological mechanism reviewed by Willson (2011) and 

others that operate in the dynamics of pine-oak mixed forests:  
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Cyclic succession   

The mechanisms of ecological succession were first documented by Thoreau (1860) 

on The succession of forest trees, while studying a pine-oak mix forest. Since then, 

many different types of succession have been described: For instance, cyclic succession 

has been proposed as a possible mechanism behind the pine-oak forest dynamics. This 

is despite that recent evidences from large scale recruitment study (Carnicer et al. 2013) 

agree with mix traditional vegetation models (phytosociological models) (Rivas-

Martínez 1987), in that pine-dominated communities are transient states of a secondary 

succession evolving towards an oak-dominated climax community. The evidences 

suggest that Q. ilex acts as a key driver of large-scale shifts in recruitment in the Iberian 

Peninsula, negatively affecting most pine species with the advance of forest succession 

(Carnicer et al. 2013). This is in agreement with our results in chapter 4, in which the 

high water competition among the dense pine population (Moreno-Gutiérrez et al. 2014) 

may not support new competitors like the Q. ilex, able to switch its water extraction at 

different depths (Barbeta et al. 2015). The exclusion rates of P. halepensis by Q. ilex is 

a function of water and light availability at the local site (Carnicer et al. 2013; Zavala & 

Zea 2004). As a result, pines and oaks would conform to a regional compositional 

gradient associated with the precipitation regime, time since last disturbance and history 

of the forest. However, the proportion of P. halepensis increases toward the driest 

border while the oak becomes the dominant species in areas with higher precipitation 

(Carnicer et al. 2013; Zavala et al. 2000; Urbieta et al. 2011). For instance, 440 mm of 

annual rainfall are required for these Q. ilex forests to persist (Terradas & Savé 1992), 

whereas P. halepensis can tolerate drier conditions (289 mm) (Klein et al. 2012; Klein 

et al. 2014). This totally agree with differential responses of each species in terms of 

leaf-level physiology, i.e water use efficiency, as well as their distributional patterns 

that were reported in chapter 1. Furthermore, only major anthropogenic or natural 

disturbances like forest fires, land use change, e.g such as land abandonment as in the 

case of our sampling site (see Chapter 4), will reset things towards the primary 

successional stage in which seeders like P. halepensis will rapidly colonize (Lookingbill 

& Zavala 2000). 
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However, the above might be an overly simplistic view of successional dynamic 

(Mendez et al. 2008), as forests are dynamic systems reaching only relative 

equilibriums. For instance, the long-term persistence in a climax stage of mono-specific 

Q. ilex mature forest in the absence of disturbances has been questioned (Zavala et al. 

2000). This is because small changes (either allogenic or autogenic mechanisms) in 

light and water availability may lead Q. ilex population to oscillate with another species 

population, usually a gymnosperm (Ducrey, 1992; Zavala et al. 2000). Our results in 

chapter 4 suggest that during prolong drought, depletion of the alfa-niche of oaks 

(groundwater) may end up being a problem for Q. ilex, as it relies frequently on 

groundwater sources. For instance up to 70% of the transpired water during summer 

drought can come from groundwater sources (David et al. 2007), and high mortality 

rates were documented in a nearby location to our study site due to groundwater 

depletion (Barbeta et al. 2015). Furthermore, the presence of the pine, an opportunistic 

competitor which rapidly uses available water (chapter 4) (Moreno-Gutiérrez et al. 

2014), may further impact groundwater recharge, thus negatively affecting (Barbeta et 

al. 2013) and even outcompeting oak population.  

If such droughts are to become more frequent due to climate change, oak 

recruitment, which is normally favored by the understory shade of pines (Urbieta et al. 

2011; Carnicer et al. 2013), can result particularly difficult due to high competition for 

water resources with the pines (Zavala et al. 2000). Stand composition may then be 

reverted towards a pine-dominated equilibrium with autosuccessional dynamics, typical 

of arid, disturbed regions, to which the highly drought tolerant P. halepensis is better 

adapted (Zavala et al. 2000; Zavala & Zea 2004; Urbieta et al. 2011). Although the 

dendrochronology of our forest stand agrees with the traditional successional-climax 

model, where Q. ilex is displacing the decaying pine population suffering from strong 

intra-specific and inter-specific competition for the water resources, slow changes in 

climate or forest dynamics and composition could reverse this situation (for instance, 

chapter 4 showed dead pine trees, n=7, after extreme drought, were significantly 

(p=0.05) smaller than average, and had more neighbors of pines (p=0.05) or 

pines+quercus (p=0.10) than average, as well as significantly different extraction water 

pattern than the rest). Therefore, the dominance of either species in a transition zone, 

with suitable habitats for both species (like is the case in our study area), may fluctuate 

with long-term climatic variability affecting ecological interactions, such as competition 
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for water and light as a function of canopy closure (figure 1). For instance, the 

aforementioned large-scale study at the Iberian Peninsula level on recruitment, 

described a scenario of global change dominated by the widespread expansion of Q. 

ilex, with increased suppression of P. halepensis recruitment (and growth) by Q. ilex 

only at sites no warmer than (MAT > 15 °C), with low stand basal areas and low rainfall 

(< 600 mm) (Carnicer et al. 2013). Therefore, the above advocates that cyclic 

succession, and even classical stable climax vegetation might not be as important as 

other stabilizing mechanisms such as environmental fluctuations (Wilson 2011), with 

important mechanism such as niche segregation and the storage effect being at play here 

(see further disscusion below).  

 

 

Figure 1. Idealized model of transition and dynamics observed in mixed holm oak-

Aleppo pine forests. The X axis illustrates water balance measured as a drought index. 

The Y axis represents average time since last disturbance (that is, decreasing levels of 

light reaching the ground). Circular arrows indicate the possibility of autosuccession 

(from Zavala et al 2000). 
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Neutral theory 

The neutral theory (Hubbell 2001), developed from the dispersal-assembly theory, 

states that the presence or absent of species at intermediate scales is dictated by random 

dispersal and stochastic local extinction and speciation (Hubbell 2001). Our results 

suggest that our species were randomly distributed (Chapter 3), possibly due to the 

random dispersal and colonization by pines (Lookingbill & Zavala 2000); however, 

mortality (chapter 4, high competition) and recruitment of the oaks (shade-tolerant 

species) under the understory of the pines (Lookingbill & Zavala 2000) followed 

deterministic processes defining their spatial distribution. This is very likely to shape 

the future spatial configuration of the forest, and the entire landscape, by responding to 

species-specific requirements. Such deterministic processes thus question the neutral 

theory as a coexistence mechanism.  The neutral theory is an equalizing mechanism that 

argues that coexisting species have an equal chance of survival due to equal fitness. 

However, and despite that measuring fitness is a complex task (Chesson 2000), our 

results suggest that differences in plant fitness, for instance in physiological and decay 

rates (dead pines), are responsible for the spatial configuration of the forest through an 

screening process of natural selection (see below). Furthermore, our results may 

disagree with the neutral theory in that niche partitioning (a stabilizing mechanism) is 

unnecessary to plant coexistence (Hubbell 2001), as we found strong evidences of it 

(Chapter 3 and 4). However, it is also possible having both mechanisms operating at 

different scales: for instance niche-based mechanisms operating at the local scale 

(Lookingbill & Zavala 2000) may explain the segregation of species along a 

successional gradient, while species-specific habitat requirements could explain 

segregation along altitudinal and rainfall gradient (Galindo-Jaimes 2012; Hubbell 

2001), with a balance between neutrality and niche structuring mechanisms (Purves and 

Pacala 2005).  

Niche segregation 

For Wilson (2011), niche segregation, together with other stabilizing mechanism 

such as allogenic disturbance, environmental fluctuation (relative non-linearity and/or 

the storage effect) and pest pressure are the most important in plant coexistance. Our 

results suggest that the fate of both species in terms of presence, absence, abundance 
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and spatial distribution may respond to species different functional roles and niche 

partitioning, the classical Niche-Assambley theory. In our case, either oak and pines 

could be observed as an equilibrium of forces, exploiting separate hydrological niches 

within the soil-ground profile or along the seasons through stomatal regulation (see 

below) (Filella & Peñuelas 2003), despite that they also compete for water resources 

during some parts of the year, as seen in chapter 4. CLEMENTS et al. (1929: 316–317) 

wrote: “When the immediate supply of a single necessary factor falls below the 

combined demands of the plants, competition begins”. Our results also suggest a typical 

phenomenon of the increase-when-rare process, which refers to when a species is rare, 

the resource that it particularly exploits will be present in greater abundance (Wilson 

2011). This agrees with the rare Q. ilex becoming established in the dominant pine 

population of our study site by exploiting groundwater, and perhaps by not encountering 

strong competition from pines due to pines lower functioning during drought (chapter 

4). Our results also agree with 43 studies on hydrological niches reviewed by 

Silvertown et al. (2015), which also found hydrological niche segregation (HNS) in 

coexisting species. These studies suggest that soil moisture gradients (chapters 3 and 4) 

from highly local to large geographic scales appear to control plant community 

composition, as in chapter 1 and 2. However, the precise mechanisms and consequences 

of HNS are still not totally clear (Silvertown et al. 2015). 

 

As aforementioned, Chesson (2000) described an interesting ecological theory of 

equilibrium and balancing mechanisms as drivers of coexistence. It is interesting the 

refinement of this model by MacDougall et al. (2009) (Figure 2), which illustrates  how 

successful invader establishment depends on either a fitness advantage and niche 

differences from resident species, but only fitness advantage permits invaders to become 

dominant. In this regard, different plant functional traits are key to understanding niche 

segregation and species response to changing environment at the inter-specific but also 

at the intra-specific level (Laforest-Lapointe et al. 2014).  
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Figure 2. The influence of niche and fitness differences on the outcome of 

biological invasions following the theory, from MacDougall et al. (2009) 

 

If we consider our study site, with Q. ilex as an invader, according to Darwing, the 

phylogenetic distance with P. halepensis (Ferrio 2005) offers the invader an advantage 

by minimizing overlap in resource use with the resident species, a niche difference 

(Darwin 1859). However, it is the difference in fitness that will determine dominance 

(Figure 2). However, advantages of Q. ilex over the P. halepensis are usually offset by 

compensating disadvantages, also known as trade-off (Chesson 2000), thus allowing 

coexistence. Table 1 attempts to summarize the potential effect of these trade-offs and 

the predicted response of each species in mixed stands. In our case, oaks, with their 

ability to exploit a deeper water hydrological niche, became established within the 

forest floor, avoiding part of the fierce competition for water with pines once their roots 

were deep enough; however, according to the model of Figure 2, it is their better fitness 

that can allow oaks to exclude pines.  
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Table I. Trade-off mechanisms and predicted specific response in mixed Aleppo pine- 

Holm oak forest, based on the literature and the results from this Thesis. 

 

 

 

In addition to the above, the differential growth response between pines and oaks to 

drought reflect the larger plasticity of the former in our sampling site (Table 2). It is 

important to note that leaf-level mechanisms such as stomatal regulation to ameliorate 
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drought have been included as a form of hydrological niche segregation in dry 

ecosystems (Silvertown et al. 2015). This agree with results in Chapter 4, where 

seasonal variation in stomatal sensitivity to drought show that niche segregation in 

water uptake was not only due to different root disposition, but to leaf functional 

changes over time. Given the relation between leaf water potentials and stomatal 

conductance (Klein 2014), this aspect is probably linked to the ability to extract water 

from the soil with different water potential (Baquedano & Castillo 2007), thus being 

able to access a portion of water from the soil unreachable to competitors. Therefore, 

through the study of leaf gas-exchange using ∆13C, we might be able to understand not 

only ecosystem-scale primary productivity as we have done until now (Diefendorf et al., 

2010), but also the temporal constraint of each species linked to their ecological niches. 

In this sense, the ∆13C isoscapes from chapter one can be useful to test whether long-

term coexistence between species is more or less likely in a given scenario. 

 

 

In conclusion, although the MacDougall et al. (2009) model may represent coexistence 

processes in a more realistic way, all the above trade-offs mechanisms can vary spatially 

and temporally further complicating the picture (Hubbell 2001; Chave 2013; Barbeta et 

al. 2013). Thus, although it is clear that changes in the dominance of Q. ilex–P. 

halepensis respond to water and light availability at the local scale (Zavala 2000; Zavala 

& Bravo de la Parra 2005) and water competition (chapter 3, 4), larger scale studies are 

required for a proper understanding of forest coexistance. In this context, Wilson (2011) 

advises of 2 important issues which are central to understanding coexistence: 1) the 

appropriate spatial scale in community ecology to study coexistence might be 

impossible to define; 2) since low variability can also be due to low perturbation, how 

low does the variability to be called stability?  
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Table 2. Correlations of TRWindex, and precipitation  time series. 

 

TRW index = Yearly chronologies built for each species using 74 pines and  33 oaks. 

SPEI = Standardized Precipitation Evapotranspiration Index (SPEI), space-time scale = 0.5 degrees grid/monthly, SPEI3 =  3 
months of drought,  SPEI6 = 6 months of drought , the monthly series were integrated  into yearly series using the 12 months 
mean in order to correlate them  to TWR index series. “The SPEI is based on precipitation and temperature data, and  has the 
advantage of combining a multi-scalar character with the capacity to include the effects of temperature variability on drought 
assessment. The procedure to calculate the index is detailed, and  involves a climatic water balance, the accumulation of 
deficit/surplus at different time scales, and adjustment to a Log-logistic probability distribution" (Vicente-Serrano et al  2010). 

P = Precipitation (Lleida, 1959-2012) data from the Spanish Meteorological Agency (AEMET). 

 

Spatial configuration and self-organization 

Nevertheless, and as mentioned in the introduction, it seems that inter-tree competition, 

the density and identity of neighbors within a stand must be considered central aspects 

of tree mortality (Olano et al. 2009; Ruiz-Benito et al. 2013) (Chapter 4),  tree 

regeneration (Comas 2009),  growth  (Comas et al. 2013; Moreno-Gutiérrez et al. 2014) 

(Chapter 4), all connected to coexistence of the species and their spatial configuration 

and dynamics (Fowler 1986).  These forests are highly dynamic systems that need to be 

evaluated at different spatiotemporal scales. The WUEi and plant physiology at large 

spatial scales as modelled in Chapters 1 and 2 are necessary to understand constrains 

determining species spatial distribution and the likeliness of forming semi-stable mixed 

forest (Moreno-Gutiérrez et al. 2014). However, biotic interactions should be 

considered to understand the complexity of forest ecosystems. It seems that both, 

random and deterministic factors operating in time, drive succession from a random 

distribution at primary stages (for instance, because of the arrival through random 

dispersal of first colonizers after disturbance) to a community complexity and 

organization (Brulisauer et al., 1996). Here, structures build upon previous structures, 

unless deleted by disturbance. Thus, the dynamic succession shows a self-organization 

of the system through a chaotic transient behavior, which can be mathematically 

characterized by a finite set of parameter, known as the fractal dimension. Changes in 

SPEI3 SPEI6 P (Lleida)

Q. ilex TRWindex
 
(1969-2013) 0.15 0.13 0.01

P. halepensis TRWindex
 
(1969-2013) 0.52*    0.45* 0.39*
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the fractal dimension reveal changes in vegetation structure through successional phases 

(Alados et al. 2003). According to Alados et al 2003, self-organization is in part driven 

by negative feedbacks from biosynthetic end-products at the individual level, density 

limitations at the population level, and predation and competition at the community 

level (Alados et al. 2003). Such processes are operating at different orders of 

magnitude; at larger scale we could imagine competition taking place not only at the 

individual level but among different vegetation patches within a landscape mosaics, 

which are important ecological units to understand ecosystem structures and functioning 

across spatial scales (Mendez et al. 2008). Point process could be useful to evaluate this. 

Furthermore, vegetation may incorporate fractality through climate, which time series 

usually include fractal dimension (a power law relationship), thus defining succession 

and spatial patterns. A good way to test fractality in successional stages could be 

through stable isotopes. 

In this context, successional changes in community composition through a gradual 

species replacement mirrors changes in the ∆13C and ∆18O due to ontogeny, increasing 

isotopic values from early- to late- successional species (Resco et al. 2011). In this 

sense, low ∆13C in early succession could indicate the need for higher growth to 

enhance establishment, whereas high ∆13C later in succession could indicate that these 

species with higher competition levels applied a more conservative resource (i.e. water) 

use strategy (Resco et al. 2011). Thus, further exploring ∆13C from tree-rings with 

different spatial analysis such as the fractal method could provide interesting results to 

study species coexistence and spatial distribution. In addition, analysis using ∆13C  as 

marks in point process could clarify this topic as well as feedback mechanism related to 

forest canopy closure and root overlapping during succession, which increases 

competition for resources (Resco et al. 2011). 

The ∆13C considers gas exchange aspects (WUEi) to properly assess the potential 

competitive ability of a plant in Mediterranean environments (Filella & Peñuelas 2003). 

However, variations in plant ∆13C are caused by both changes in light/nutrient and 

water availability (Cernusak et al. 2009). Improved light and increased nutrient 

availability, can increase assimilation rates relative to stomatal conductance and thus, 

decrease ∆13C (Ehleringer et al. 1986; Cernusak et al. 2009). In fact, changes ∆13C 

within a stand were linked to changes in light and not to water availability (Sleen et al. 
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2013). In this context, dendrochronological and ∆13C data was recently employed to 

show how P. halepensis highly compete for water, light and nutrients with understory 

species. For example, the closer shrubs of R. lyciodies were to P, halepensis, the higher 

were the values of ∆13C in the tree-rings, suggesting stomatal closure limiting 

photosynthesis and growth (Moreno-Gutiérrez et al. 2014). Surprisingly, despite that we 

found potential evidences for competition using point processes on O18 and H2 in xylem 

water  (chapter 3 and 4), using ∆13C from tree rings as marks in point process shows no 

interaction between species, but at the intra specific level for Q. ilex at short distances 

(below 2m) (Data not shown).  

Reconstructing spatial-temporal patterns in climate and WUE  

The results in chapters 1 and 2 show different approaches for spatial and temporal 

integration across scales of stable isotopes information derived from tree-rings archives:  

In chapter 1, we reconstructed past spatial patterns of climate and WUE by combining 

isotope data with GIS technology. In addition, the second chapter illustrated the 

possibility of developing a high resolution WUE spatial-model at the regional scale by 

integrating the ∆13C from tree-rings (a proxy for WUE) with vegetation index (NDVI) 

derived from satellite remote sensing. Such integrating models of isotopes and non-

isotope tracers data provide fundamental tools not only to understanding plant water 

relations and the metabolism dynamics of entire landscapes and continents (Dawson 

1996), but also understanding synoptic climates (Werner et al. 2012).  

However, despite the promising results, chapter 2 also showed that the spatial 

patterns of ∆13C can vary over time; On the one hand, this is due to large spatial scale 

climate variations; for instance, changes in the influence of different atmospheric 

circulation patterns that control Pinus halepensis growth, such as North Atlantic 

oscillation or Mediterranean Oscillation (Pasho et al. 2011), which would also affect 

∆13C, as both  (∆13C and Growth) showed a strong relationship (chapter 2). However, 

∆13C does necessarily covariate always with growth in dry environment, as drought 

conditions can lead to a lower ∆13C (higher WUE) without altering growth rates in 

Pinus halepensis (see e.g. Linares et al. 2011). In addition, changes in the climatic 

forcing over time pose a very strong limitation to the methodology used in chapter 1, in 

which extrapolating present WUE-climate estimations to the past may not be totally 
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feasible. Furthermore, if we use tree-rings corresponding to an old period of time, 

validation of this climate models with actual climate data will remain as an important 

shortcoming (mainly because we lack high density networks of historical climate data). 

 Besides large-scale changes in the climate forcing, several factors at the site level 

can affect spatial patterns of ∆13C over time: ontogeny, site competition or other 

biological interactions (see the above discussion), responses to other abiotic factors such 

as temperature (affecting water demand) (Ferrio & Voltas 2005; Warren et al. 2001; 

Ferrio et al. 2003), changes in soil characteristics and groundwater level affecting water 

availability (Barbour et al. 2002), different phenotypic plasticity or adaptive processes 

(Voltas et al. 2008 and et al. 2015); Klein et al. 2012; De Luis et al. 2013), 

continentality, which affects the effective vegetative period (Shestakova et al. 2014) etc. 

(see Chapter 2 and references therein). Thus, the environmental and ecophysiological 

differences between sites generate a mismatch between plant responses (as measured in 

the ∆13C) that explain why the temporal and spatial variations in ∆13C are different 

(Shestakova et al. 2014). In addition, carry over (memory) effects, as seen in chapter 2, 

e.g. a severe drought affecting the growth or physiological response of trees in 

subsequent years, also makes the temporal variation in ∆13C different to the spatial 

variation. Still, the true effects of what is known as drought legacy (a period of slow 

growth lasting 3 to 4 years after the drought event) are unknown; this is despite that 

recent studies at the global scale point to hydraulic failure as a likely cause, with trees 

and in particular the Pinaceae genera from dry environments experiencing worse 

recoveries (Anderegg et al. 2015). The results from chapter 2 suggest that changes in 

leaf area index or chlorophyll content (part of the photosynthetic machinery, probably to 

adjust WUE to drier conditions may end up affecting growth on the long term (See also 

figure 3). However, whether such conditions are related to damage at the tree 

architectural level (e.g. canopy and leafs, roots, xylem etc) instead of pure physiological 

responses needs further research; not only at the interspecific but also at the 

intraspecific, i.e. genotypic and phenotypic level (Voltas et al 2008: 2015). This is of 

paramount importance since the consequences of the drought legacy in terms of carbon 

storage by forest might be large enough to be included in current global climate models 

employed for future predictions (Anderegg et al. 2015). Integrating vegetation indexes 

with tree-ring information will also allow us to see whether such a mismatch is related 

to a decoupling between secondary growth and leaf physiology with aboveground 
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biomass or chlorophyll concentrations, providing clues about the actual processes 

controlling the drought legacy (see Figure 3 for slower recovery rates of vegetation 

indexes relative to radial growth). 

On the other hand, as our results in chapter 1 and 2 suggest, and in agreement with 

global surveys annual precipitation largely controls ∆13C in plant vegetation matter 

(including tree-rings) (Diefendorf et al. 2010; Kohn 2010; Korol et al. 1999; Warren et 

al. 2001; McCarroll & Loader 2004; Stewart et al. 1995; Miller et al. 2001). In addition, 

∆13C is more sensitive to precipitation in drier environments (the ones approaching P/E 

<1) (Warren et al. 2001; Chapter 2; Introduction). This is due to differential leaf-

stomatal responses related to contrasting water strategies at the intra-specific and inter-

specific level (Ferrio & Voltas 2005; Klein et al. 2013; Ferrio et al. 2003; Shestakova et 

al. 2014; Lázaro-Nogal et al. 2013). As mentioned in the introduction, despite that 

decreases in ∆13C reflect either a decrease in stomatal conductance (gs) or increase in 

assimilation rates (both reflecting an opposite effect on plant performance and lower 

and higher water availability), our results in chapter 1 and 2 suggest that, in our climatic 

gradient, ∆13C consistently increases with precipitation.  

Finally, in chapter 2 we also showed that WUE at the landscape level could be 

inferred through the relationship between ∆13C and NDVI across sites. Such 

relationship was better described by a log model, suggesting that the coordination of 

vegetation greenness and water-use efficiency follows a trend comparable to the 

response of ∆13C to precipitation (Fig. 5, chapter 2). Although we found a poor 

agreement between ∆13C and NDVI at the temporal scale in the driest sites and 

suggested it could be the result of a greater relevance of the chlorophyll content signal 

controlling NDVI in water-limited environments (Chapter 2), other problem related to 

contaminated signal from other additional species contained within the pixels may have 

obscured the relationships. In fact, using the trees from the sampling site of chapters 3 

and 4 we built chronologies and found a very strong agreement between TRW and 

annual NDVI derived from MODIS, which has a higher spatial resolution than the 

AVHRR used in chapter 2 (8 km vs 250 m) (Figure 3). In addition, although for a 

different time period being compared, we did not find a strong correlation using annual 

NDVI from AVHRR (Period 1982-2006, rpearson = 0.29, n = 26). This suggests that ⊗13C 

may also show stronger correlations with NDVI in time using higher spatial resolution. 
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In this context, the future holds improved technology which will possibly allow long-

term monitoring of individual trees based on high-resolution satellite data. This will 

eliminate much of the noise related to coarse-resolutions NDVI and would provide 

accurate physiological tree-responses to supplement tree-ring records for the study of 

spatial trends in WUE in recent past.  

 

Figure 3. MODIS products (vegetation indexes) vs TRWindex from the Pinus 

halepensis for the study site of chapter 3 and 4 (n = 74). MODIS products incudes: 

NDVI (250 m2 per pixel) period (2003-2013) and FPAR divided by LAI (2000-2013, 

time resolution every 15 days (1000 m2 per pixel), recalculated into annual values (year 

2005 was a clear TRWindex outlier, value = -5, so opted for not including it in the 

calculated Pearson correlation). By visual inspection, the forest area adjacent to the 

studied forest stand were composed mainly by pines, with probably a higher proportion 

of pines than in the actual sampling plot, which had 78 pines vs 33 oaks.  

 

Modelling future changes in WUE at the large spatial scale will be necessary to 

understand the water and carbon cycles and therefore the climate of the earth, which is 

largely controlled by these two cycles. However, local ecological processes such as tree 

to tree interactions are still key to understand WUE spatio-temporal variability. In 

particular Mediterranean species, through stomatal conductance adjustment, may 

increase WUE in response to the rising temperatures and CO2 concentrations of recent 
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decades, but only in sites with competition for water is low. For instance, Pinus 

halepensis can compete for water resources with understory shrubs, leading to severely 

suppressed shrubs, which are then unable to show such adaptive response (Moreno-

Gutiérrez et al. 2014). Less drought-stressed shrubs, as opposed to those under high 

competition, maintain a constant internal CO2 concentration by closing stomata, thus 

increasing WUE without increases in assimilation (A) rates (Moreno-Gutiérrez et al. 

2014; Battipaglia et al. 2014), On the contrary, suppressed shrubs already operate at low 

stomatal conductance, thus the margin to increases WUE for this plants might be 

limited (Moreno-Gutiérrez et al. 2014). In this context, our current work investigating 

the ∆13C in the tree-rings of our forest stand, as mention earlier, is ideal to unveil this 

issue. Furthermore, the coordination between WUE and growth found in chapter 2 

needs to be further explored in the context of climate change; for instance, the effects on 

growth of increased WUE due to higher atmospheric CO2 levels is much under debate, 

with recent studies suggesting no fertilization effect in Iberian conifers (Andreu-Hayles 

2011) and the major global forests biomes (Peñuelas et al. 2011). Thus, future work 

may imply investigating whether WUE-growth coordination driven by precipitation is 

also altered as a consequence of global change (e.g. changes in atmospheric CO2 

concentrations).  

 

 Paleoclimate modeling using multi-specific data 

Previous work (Ferrio et al. 2003; Aguilera et al. 2012), also suggest that different 

periods of precipitation are responsible for the ∆13C in the tree rings of Pinus halepensis 

and Quercus ilex: The active cambium of Pinus halepensis allows it to grow all year 

around if conditions are favorable i.e. when temperatures and water availability are 

high, although it may slow down or halt during summer drought and cold winters (De 

Luis et al. 2013). On the other hand, Quercus ilex responds to accumulated precipitation 

in previous seasons, periods for the recharging of the groundwater in which this species 

relies.  Such mechanisms are further confirmed in chapter 4; here summer drought halts 

Pinus halepensis activity, as seen in NDVI and the probably low circulation of water 

within the tree (low transpiration) (Chapter 4). In addition, the better water status of the 
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Quercus ilex during summer drought was due to having access to groundwater, 

recharged in the autumn/winter time (Barbeta et al. 2015). This agrees with the theory 

that ∆13C of tree-rings registered the environmental conditions (including water 

availability) present during wood formation. So variations in ∆13C of each species will 

provide differential tree response information to environmental changes. Ferrio et al 

(2007) developed a conceptual model which matches the responses we found 

throughout this thesis (Figure 4). The main difference with this model and the one we 

used in chapter 1 is that the former was based on not overlapping datasets, whereas the 

latter was based on a set of sites with co-occurring species. This is positive in that it 

allows calibration of multiple linear models to define best-fit combination of months, 

but negative in that it does not cover the whole species distribution, only the 

overlapping area. Still, the validation across sites of such models with climate data, 

suggests that also the projected areas through linear fit were well modeled. What is even 

more interesting, is that this multi-specific climate modeling can be extrapolated to 

other areas with coexisting species showing differential response; in this case we have 

used a isohydric and anisohydric species, but a similar approach could be applied e.g. to 

a deciduous vs evergreen tandem. In this context, a recent work (Shestakova et al. 2014) 

showed differential sensitivities resulting in a contrasting imprint on stable isotopes 

(including carbon and oxygen) of the tree-rings. In the future, combining several 

isotopes we might be able to build isoscapes which can then be converted into seasonal-

monthly high resolution climate models. In this way, vegetation will be transformed 

into the best paleoclimatic archive for spatial reconstruction. Each plant is a weather 

climate station with the most sophisticated sensors, and as stated by Fritts (1972): we 

only need to learn how to extract such information thus separating complex ecological 

and climatological interactions which obscured the tree-ring information.  
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Fig. 4 A) Determination coefficients (R2) between ∆13C in wood and monthly 

precipitation for Holm oak (Quercus ilex L.) and Aleppo pine (Pinus halepensis Mill.). 

B) Proposed conceptual model for the interpretation of ∆13C values in co-occuring oaks 

and pines, according to their differential response to seasonal precipitation. ∆13CP, 

∆13CQ, ∆13C in wood of pines and oaks, respectively; Pspr, Psum, Paut, Pwin; total seasonal 

precipitation in spring, summer, autumn and winter, respectively; ↑, increasing variable; 

≈, steady variable; ↓, decreasing variable. Source: Ferrio et al. (2007). 

Concluding remarks 

The spatial analysis of stable isotopes in trees at different orders of magnitude 

undertaken in this thesis has contributed to the understanding of a major challenge in 

ecology, which is to separate abiotic from biotic factors controlling ecosystems 

functioning, and to integrate them across different scales (Loreau et al. 2001). The 

ultimate aim of this thesis was to gain a further insight into forest ecophysiology, 

biogeochemistry (carbon and water cycles) and the potential of tree-ring networks to 

infer spatial climate variability. The stable isotopes of carbon and water have allowed us 

to study contrasting root systems (shallow versus deep) and water extraction patterns in 

two Mediterranean tree species. The results revealed that the less studied belowground 

processes are of primary importance in understanding forest ecosystem dynamics. In 

this sense, “looking deeper” into the ground (Maeght et al. 2013) with new exploratory 

tools to study root systems (e.g., Rodriguez-Robles et al 2015) will go beyond the grain 

of knowledge provided by this thesis. The future holds a further multidisciplinary 

integration of  science and technology, and it is difficult to forecast which direction 

forest research will take given the fast technological advances. Surely stable isotopes 

applications will tend to provide higher temporal resolution in the time series of ∆13C in 
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tree-rings, analysing every time smaller portions of the wood. Similarly, spatial and 

temporal analysis will be improved not only because of greater computational power 

but more importantly by the compilation of large data banks to build complex spatial-

temporal networks of information.  

The methodologies developed here have also allowed us to model tree responses to 

changes in water availability, such as stomatal conductance, a major and complex plant 

physiological process that mediates between carbon fixation and water loss (Aranda et 

al. 2012). In Mediterranean environments, modeling ∆13C allows us to understand inter 

and intra-specific stomatal responses to spatiotemporal variations in environmental 

conditions (mainly water, which is limiting in these environments). This is vital to 

understand the future health and water use of the forest ecosystems and to provide 

information on the ability of the forest to sequester atmospheric CO2; thus ∆13C 

isoscapes and spatio-temporal analysis of ∆13C combined with other information such as 

growth or NDVI can be decisive information to better estimate the CO2 balance in 

current global climate models.  

Finally, ecological processes like tree to tree interaction and consequent impact on 

stand water dynamics and successional processes were studied through the analysis of 

stables isotopes in xylem water with point process statistics. Obtaining other 

physiological information to be used as marks in point process, like ∆13C in tree-rings or 

basal area increments, as our research group is currently doing, will tell us whether the 

observed tree behavior in water uptake patterns affects long-term physiological 

performance. To conclude, this thesis constitute a small piece in the complex puzzle of  

forest ecosystems. Ecosystems belong to complex system theory, and as such, it shares 

common characteristic with other complex systems (brain, social, traffic, etc). Fluxes, 

stability, spatial patterns, feedbacks, chaos and order have been described in this thesis 

and all conform these systems. Often understanding the whole might not be necessary to 

get a particular information from ecosystems, e.g. climate change impacts on forest, 

maximizing productivity through forest management, or understanding human impact 

on the water cycle. It is just a matter of asking the right question without getting lost in 

the infinite number of possibilities of complex systems which may never provide the so 

pursuit “ultimate answer” to everything.  
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Conclusions  

i.  The combination of multi-specific ∆13C in tree-rings can provide complementary 

seasonal information to infer mean annual precipitation (MAP) at the regional level, 

and the accuracy of MAP models derived from ∆13C can be comparable to that 

obtained from direct interpolation of meteorological data. 

ii. Geographical information system and in particular the step-wise, multi-regressive 

modeling provides an opportunity for high resolution spatially-explicit models of 

∆13C, which can complement climate data and provide information on changes in 

plant water status and iWUE at the landscape level.  

iii.  The ∆13C spatio-temporal variability of Pinus halepensis is mainly governed by 

changes in precipitation, suggesting a major role of stomatal processes. However, 

parallel changes in NDVI also indicate a possible change in photosynthesis, either 

through variations in leaf area index or  leaf chlorophyll content, thus finally 

affecting tree-ring growth. On the other hand, temporal variations in ∆13C are 

strongly affected by carry-over effects, particularly evident after severe drought 

episodes. 

iv. As hypothesized, Pinus halepensis and Quercus ilex use water with different 

isotopic compositions during severe drought, with stable isotope results indicating 

that the oaks could extract water at deeper soil levels than the pines, thus supporting 

niche segregation in root distribution and water uptake. 

v. Although inter-specific interactions do not show up in point process methods, 

density-based competition indices showed some degree of interaction between pines 

and oaks, pointing to an additive effect of individual interactions.  Inter- and intra-

specific interactions (particularly competition) among trees are maximized during 

periods of moderate drought. 

vi. Despite the different inter-specific water use strategies, our results suggest that 

increase drought may decrease the room for complementarity between the two 

species in mixed forest stands thus compromising the stability and sustainability of 

the system. 
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