
Individual Verifiability in
Electronic Voting

Sandra Guasch Castelló

Universitat Politècnica de Catalunya

Supervisor: Paz Morillo Bosch

2

Contents

Acknowledgements 7

Preface 9

1 Introduction 11
1.1 Requirements of electronic voting . 12
1.2 Electronic voting basics . 13

1.2.1 Basic approach . 13
1.2.2 Pollsterless or code voting . 14
1.2.3 Two agencies model . 16
1.2.4 Homomorphic tally systems 17
1.2.5 Mixnet-based systems . 18

1.3 Cryptography introduction . 20
1.3.1 Symmetric key encryption schemes 20
1.3.2 Public key encryption schemes 21
1.3.3 Security notions for encryption schemes 23
1.3.4 Homomorphic public key cryptosystems 25
1.3.5 Signature schemes . 25
1.3.6 σ-protocols and proof schemes 26

1.4 Motivation, organization and contributions of this work 31
1.4.1 Motivation . 31
1.4.2 Organization and contributions 32

2 Individual verifiability 35
2.1 Introduction . 35
2.2 Challenge-or-cast . 37
2.3 Verifiable Optical Scanning . 42
2.4 Verification with codes . 48

2.4.1 Code voting . 49
2.4.2 Return Codes . 52

2.5 Hardware-based verification . 55
2.6 Decryption-based verification . 57

3 Electronic Voting Model 59
3.1 Introduction . 59
3.2 Protocol Syntax . 59
3.3 Security Definitions . 63

3

4 CONTENTS

3.3.1 Trust model . 63
3.3.2 Ballot privacy . 64
3.3.3 Strong Consistency . 66
3.3.4 Strong Correctness . 67
3.3.5 Cast-as-Intended verifiability 67
3.3.6 Coercion-resistant cast-as-intended 69

4 Return Codes with Single Voting: Neuchâtel’s Scheme 71
4.1 Introduction . 71
4.2 Improving the Norwegian solution . 72

4.2.1 Solution Overview . 74
4.3 Confirmation Phase . 75
4.4 Protocol description . 76

4.4.1 Workflow . 80
4.5 Security of the Protocol . 81

4.5.1 Ballot Privacy . 82
4.5.2 Strong Consistency . 84
4.5.3 Strong Correctness . 85
4.5.4 Cast-as-Intended Verifiability 85
4.5.5 Coercion-resistant cast-as-intended 86

4.6 Protocol implementation . 86
4.6.1 Performance . 87

4.7 Authentication, usability and correctness: implementation details . . 89
4.7.1 Authentication and private keys provision 89
4.7.2 Short Return Codes . 90
4.7.3 Vote correctness . 92
4.7.4 Ballot Box vs Bulletin Board 93

4.8 Protocol extensions . 94
4.8.1 Supporting multiple entry points 94
4.8.2 Distributed return code generation 94
4.8.3 Support for multiple voting 99
4.8.4 Assignation of verification cards 99

5 Challenge-and-cast 101
5.1 Introduction . 101
5.2 Overview . 101
5.3 Related work . 102
5.4 Proof simulation . 103

5.4.1 A simulatable NIZK proof using chameleon hashes 105
5.4.2 Simulatable NIZKPK scheme properties 106

5.5 Core Protocol using Mixnets . 107
5.5.1 Security of the Protocol . 112
5.5.2 Concrete instantiation . 117
5.5.3 Performance . 119

5.6 Protocol for homomorphic tally-based systems 119
5.6.1 Security Analysis . 120
5.6.2 Primitives . 120

CONTENTS 5

5.7 Multiple Trustees . 122
5.8 Voting Scheme . 123
5.9 Protocol extension for multiple voting 125

6 Making Cast-as-Intended Universal 127
6.1 Introduction . 127
6.2 Motivation . 127
6.3 UCIV System description . 128

6.3.1 Overview . 128
6.3.2 Syntactical definition . 130
6.3.3 Security definitions . 132

6.4 Protocol based on NIZK proofs . 136
6.4.1 Protocol description . 136
6.4.2 Security analysis . 138
6.4.3 Implementation . 139

6.5 UCIV with return codes . 140
6.5.1 Overview of the solution . 140
6.5.2 Protocol description . 140
6.5.3 Security Analysis . 142
6.5.4 Implementation . 146
6.5.5 Extension to multiple voting 147

6.6 Distributed generation of UCIV information 147
6.7 Setup . 149

7 Conclusions 151

6 CONTENTS

Acknowledgements

I would like to thank my family and friends, who have being very patient with me and
supportive while I was writing this thesis. I would also like to thank my colleagues
at work, who have provided a lot of useful comments, specially when opining about
the drawings! My English teacher, Ryan Jones deserves a special mention. He
bravely read all the document and reviewed my English without crying or falling
asleep (at least this is what he said) in a week. He is the best! A special thanks to
my supervisor Paz Morillo, who is the most dynamic person I know, who has been
always confident that I could do this, and who has helped me a lot, specially during
the last months. My boyfriend, Guillem, took care that I did not starve during the
last months while I was working full time and also writing this thesis. Thanks a lot!
Thanks also to my external reviewers, Rolf Haenni and Francesc Sebé, who provided
great comments to this text. Finally, I would like to thank Jordi Puiggaĺı and Alex
Escala, with whom I have make most of the research in this thesis. Working with
you is great, and I hope I will continue doing it in the future.

7

8 CONTENTS

Preface

This PhD Thesis is the fruit of the job of the author as a researcher at Scytl Secure
Electronic Voting, as well as the collaboration with Paz Morillo, from the Depart-
ment of Applied Mathematics at UPC and Alex Escala, PhD student.

In her job at Scytl, the author has participated in several electronic voting
projects for national-level binding elections in different countries. The participa-
tion of the author covered from the protocol design phase, to the implementation
phase by providing support to the development teams.

Since her participation on the Norwegian project (2009-2011), which pioneered
the use of verifiable electronic voting systems on binding elections, the author has
specialized in individual verifiability, which englobes the processes that can be done
by the voter, in order to check that the system works correctly. Part of the author’s
work at Scytl has been to continue with the experience of the design and development
of the electronic voting system used in Norway, and improve it. The result has been
implemented and already been used in 2014 and 2015 elections in Neuchâtel, and it
is planned to be used in the next years.

The analysis of existing protocols, as well as the design of new ones, fulfilling the
requirements of the different projects executed at Scytl, made the author realise that
there is not a gold solution for everyone, when it comes to individual verifiability.
This is due to the fact that the trust assumptions that can be made are different
in each project or setup, and that individual verifiability strongly defines how the
voter is going to interact with the system. For the latter, customers / electoral
commissions may have very specific requirements, for example given their traditional
voting process.

Therefore, this thesis also contains proposals which did not emerge from the
projects conducted at Scytl, but from the need of both the market and the academia
of new protocols with new properties, and which work under different trust assump-
tions. These proposals are intended to be a contribution to the state of the art
of individual verifiability, both in academic and industrial environments, as well as
being the basis for new systems that may be implemented in the future.

In summary, this thesis has to be seen as the fruit of industrial research, while
also contributing to the academic state of the art.

9

10 CONTENTS

Chapter 1

Introduction

Electronic voting systems have been around for a long time. The first optical
scanners were first used in 1962, and Direct Recording Electronic Voting Machines
(DREs) were introduced in 1975. Complex, time-consuming and error-prone count-
ing processes have been made faster, easier and more reliable with electronic mech-
anisms. New technologies also provide aids for disabled voters to independently
cast a vote, and for regular voters to fill-in complex ballots without errors. Logistic
costs derived, for example, from handling multiple-language ballots, long-term costs,
or the time needed for setting up an election can also be reduced using electronic
means.

With the rise of Internet, and later on the widespread use of intelligent portable
devices (such as smart phones) in our daily life, we have become used to performing
a large proportion of our transactions remotely and at any time. Although, in more
or less measure, the existence of attacks inherent to the remote nature of the Internet
is known by everybody (identity impersonation, interception or observation of our
communications, website impersonation or phishing, access to personal data, etc.),
and this fact does not inhibit for the provision of multiple online services, some
of them as sensitive as banking, paying taxes or buying flight tickets. One could
say that the advantages overcome the drawbacks. Therefore, the implementation
of Internet voting naturally emerges, together with other e-government solutions
which are aimed to bring the administration closer to the citizens, and collaborates
to improve the welfare of the society. Internet voting cannot only enable increased
participation due to its convenience, but also provides the opportunity of voting to
collectives which may otherwise not be able to vote: people who are abroad during
the election day, military located in conflict regions, embarked fishermen, or people
with decreased mobility due to disabilities.

Usually, voters who cannot go to a polling station on election day can use the
postal mail channel to cast their voters. A few weeks before the election, voters
register to vote by mail in order to receive a ballot at the indicated address. Voters
then send back the filled ballots to the corresponding poll sites or electoral centers in
order to be counted with the regular ballots. However, this solution does not always
work. The period before the election for defining the candidate lists and questions

11

12 Requirements of electronic voting

to be printed in the ballot is quite narrow, and does not provide much time for the
postal mail ballots to be sent to the remote voters, and to be further received on
time for inclusion in the tally. Delays in the postal voting channel are regular news
in almost every election, and by personal experience it can be said that, even if the
voter is in the same country, this is not a guarantee that the postal ballot will be
received at all. Besides the adjusted timings of the electoral processes, the quality of
the postal channel may vary depending on the location of the voters: i.e., military
in conflict regions may not regularly receive their postal mail. As an example of the
criticality of this issue, it motivated the laws related with the Military and Overseas
Voter Empowerment Act (MOVE) in the United States in 2009 [53], which forced
the States to provide electronic voting mechanisms to military and citizens abroad
in order to request and receive their ballot papers.

Finally, it is an opinion of the author of this thesis that a democracy cannot
consist of politicians asking the citizens about their opinion every four years, and
then getting carte blanche without having to account for their actions. A democ-
racy should rely on tighter relations and communication between voters and their
representatives, and Internet voting is a perfect tool for providing it.

1.1 Requirements of electronic voting

Although most people may compare electronic voting with other complex and sen-
sitive systems, such as electronic banking, there are some important differences,
pointed out in [9], which make more particular and complex the problem of secure
electronic voting. First of all, the interests for manipulating an election may be
greater than what we can imagine: people may be very well disposed to paying a lot
of money for achieving a specific outcome. Second, failure detection and recovery:
due to the nature of elections (for example, the secrecy of the vote), it may be possi-
ble that some failure in the system is not detected. Anyhow, in case of detection of
a systemic failure, we cannot return the money, and therefore the elections should
be repeated, which may result in a voter’s loss of confidence in the system. The
third main difference is the nature of requirements of electronic voting, which may
often seem contradictory and therefore be hard to be entirely fulfilled.

Usually, the requirements for remote electronic voting mimic those for traditional
elections:

- Vote authenticity: it has to be ensured that the votes are cast by eligible
voters, and that only one vote per voter is counted.

- Voter privacy: at the same time that voters have to be identified in order to
verify their eligibility, the link between a voter and her choices has to remain
secret.

- Tally accuracy: the result of the election must accurately reflect the contents
of the votes cast by the voters. Therefore it cannot be possible to modify or
erase valid votes, or add fake votes on behalf of voters who have abstained.

Chapter 1. Introduction 13

- Secrecy of intermediate results or election fairness: no intermediate results can
be provided before the end of the election, in order to prevent a bias on the
voters who have not voted yet.

- Verifiability: the electronic voting system has to provide methods for verifying
that it is working as expected. A voter has to be able to verify that her cast
vote represents her intention of vote and that it has been taken into account
in the tally process. An auditor has to be able to verify that all the votes cast
by eligible voters, and only those, are included in the tally.

- Traceability and accountability: all the operations of the system have to leave
traces which allow inspection of whether the operation was correct. In case of
any malfunction, it has to be possible to identify the responsible entity.

- No coercion or vote-selling: a voter cannot prove to a third party how she
voted.

As we have said before, we can see that some of these requirements seem contra-
dictory at a first glance: we want to be able to identify the voter who cast a vote,
but we do not want to be able to relate vote and voter. We want the voter to be
able to verify the content of her vote, without being able to prove this content to a
third party. The nature of these contradictory requirements, as well as the environ-
ment of execution of the voting system (uncontrolled voting devices, online servers,
digital and unobservable processes, ...), make electronic voting an interesting field
of application for cryptographic protocols.

In the next section, we provide a brief introduction of the main types of cryp-
tographic protocols used in remote electronic voting systems, and explain how they
fulfill some of the listed requirements.

1.2 Electronic voting basics

1.2.1 Basic approach

A basic approach for an electronic voting scheme is to combine encryption and digital
signature schemes: Encryption schemes are used for providing secrecy of information
transmitted among two parties, in front of external observers. Signature schemes
are used in order to ensure the integrity of the transmitted messages, as well as
providing assurance of the origin of such messages. This means that an external
entity cannot modify or forge a message without being detected by the intended
receiver. A more detailed explanation on encryption and signature schemes can be
found in Section 1.3.

In this basic approach, voters encrypt their messages prior to casting them, in
such a way that only the intended recipient - the electoral board, or the electoral
commission - is able to decrypt them and see their content. After encryption and
prior to casting, voters also digitally sign their votes, in order to prove later on to

14 Electronic voting basics

the election authorities that they have been cast by eligible voters. This approach is
similar to the traditional process in which a voter who casts her vote by postal mail
digitally signs the outer envelope of her vote. Digital signatures allow identification
of the voter who casts a vote, and therefore can also be used in order to discern
whether a voter tries to cast a vote twice. Also in a similar way as in postal voting,
outer envelopes are removed after verification of the signature, and prior to the
recovery of the cleartext vote by decryption. Therefore, a cleartext vote cannot be
connected to a voter’s identity.

Figure 1.1: Basic approach: encrypt & sign

The security measures based on vote encryption and digital signatures seem
enough to protect voters’ privacy. However, these measures are only efficient during
the voting process. During the election tally, decrypted votes could still be correlated
with the voters who submitted them, by checking the order in which votes are
decrypted: decrypted votes can be correlated to the voter identities by checking the
digital signature of the encrypted votes stored in the ballot box in the same order.

Therefore, encrypting and signing is not enough, and more advanced crypto-
graphic protocols have to be used. The most common types of electronic voting
protocols are Pollsterless or code voting, the two-agencies model, homomorphic
tally systems, and mixnet-based systems.

1.2.2 Pollsterless or code voting

The term pollster in electronic voting schemes was first noted by Malkhi et al. in the
year 2002 [78], and it refers to the software or hardware artifact that participates in
a voting protocol on behalf of the human voter. The pollster is necessary to perform
the cryptographic operations from the electronic voting protocols, which the human
voter is incapable of doing for herself.

In this kind of protocol [34], [118], [78], the methods to preserve voter privacy are
mainly implemented in the configuration phase. During this phase, a code sheet is
generated for each voter who participates in the election. These code sheets contain
a voting code and a verification or return code assigned to each voting option in

Chapter 1. Introduction 15

the election. The voting and return codes assigned to a voting option vary across
the code sheets, and have to be provided to the voter through a secure channel (for
example a sealed envelope), in order to keep them secret.

In order to vote, the voter enters in her voting device the serial number of the
code sheet and the voting code corresponding to the voting option she wants to vote
for. The remote voting server, upon reception of this voting code, computes the
corresponding return code, which is sent back to the voter. The voter finally checks
that the return code received indeed corresponds in her voting card to the voting
option she selected. The voter then knowns that the vote she cast was not modified,
and that it was successfully processed by the remote voting server (which is the only
one which can translate voting codes into return codes).

Figure 1.2: Code sheet

At the counting phase, voting codes are translated to voting options (by inverting
the function that was used to create them during configuration), and then counted
to obtain the election results.

From the point of view of privacy, these protocols allow the submission of anony-
mous votes, since these are not digitally signed by the voters, and the preservation
of vote secrecy: the codes do not provide information about which candidate has
been voted for, without having the code sheet.

A particular advantage of such systems is that they can be used to cast votes from
devices without cryptographic capabilities (and this is why they receive the name
pollsterless), since the assignation of voting codes to voting options (i.e., their pre-
encryption) is done during the election configuration. Another property provided
by such systems is that the voting device does not learn the voting options selected
by the voter.

However, this method is not perfect: there is still a chance of breaking the voter
privacy if the code sheets are disclosed. For example, an attacker could know the
vote intention of a voter using the submitted codes and the code sheet. Another
drawback of this kind of system is that traditionally the code sheet generation and
tally processess cannot be verified. However, recent proposals, explained in Section
2.4 are aimed to improve such systems regarding verifiability.

16 Electronic voting basics

1.2.3 Two agencies model

The two agencies model, first proposed in 1992, allows a voter to cast her vote
anonymously, but at the same time checks that such voter is eligible to vote in the
election. In order to do that, two server-side entities participate during the voting
phase:

- The Validator Service: authenticates the voter, verifies her eligibility and al-
lows her to vote in an anonymous way using an anonymous token.

- The Voting Service: receives encrypted votes with anonymous tokens from
voters, and accept them after verifying if their tokens have been issued by the
Validation Service.

Figure 1.3: Two agencies model

This kind of scheme [56], [89] usually uses blind signatures [33]. Blind signatures
allow an entity to digitally sign a message without viewing its content: the requester
of the signature sends a blind message to the signer, who digitally signs it and
returns it to the requester. The requester can then remove the blinding factor from
the message, and obtains a digitally signed message. A very common example of
blind signatures with the RSA digital signature scheme can be found in [105].

With this mechanism, the Validator Service can digitally sign the authorization
token without viewing its content. The voter, after removing the blinding factor,
sends the signed token to the Voting Service, which validates the token. A coalition
of Validation Service and Voting Service cannot trace a token back to the voter, since
the first one (who knows the identity of the voter), did not see the token in clear,

Chapter 1. Introduction 17

but a blind version of it. After the voting phase, votes are decrypted to perform
the tally. The voters’ privacy is preserved, since the votes to be decrypted are not
linked to voter identities.

Even in the case of using voter signatures, voter privacy still depends on the hon-
esty of both agencies. If they were to collaborate, they could share other information
such as IP addresses, which would allow them to correlate votes with voters. Also,
there is a risk of election manipulation if the Validation Service is compromised,
since it could create valid tokens for non-eligible voters that would be successfully
accepted by the Voting Service.

1.2.4 Homomorphic tally systems

These protocols use the homomorphic properties of some cryptosystems, by which
certain operation over the encrypted votes is equivalent to the encryption of the
result of an operation of the vote contents. In other words, if we have two votes v1
and v2, assuming that φ and θ are two mathematical operations, the homomorphic
property of an encryption scheme can be represented by the following equivalence:

E(a) φ E(b) ≡ E(a ⊕ b)

where E denotes the encryption operation.

Depending on the definition of the two operators φ and ⊕, the homomorphism
may be multiplicative (which means that the product of both encryptions results
in the encryption of the product of both plaintexts) or additive (meaning that the
product of both encryptions is equivalent to the encryption of the addition of both
plaintexts). The additive homomorphism is generally the most commonly used in
electronic voting protocols, since it generates the encrypted total sum of the votes,
which is the outcome of the tally. Exponential ElGamal (explained in Section 1.3)
and Paillier [90] are examples of encryption schemes which have additive homomor-
phic properties.

In homomorphic tally systems, such as [43], votes are encrypted in a specific
format, in order to be able to obtain the tally results from the result of their oper-
ation: each voting option in the election is assigned 1 or 0, depending on whether
it has been selected by the voter or not. Each value is then encrypted individualy,
and therefore a vote is composed by as many ciphertexts as voting options in the
election. Encrypted votes may be digitally signed prior to being cast in order to
ensure their integrity during transmission and storage, and for verifying that they
have been cast by eligible voters.

At the end of the election, votes stored in the ballot box are operated pair-wise,
that is, the first ciphertexts of all the votes are multiplied together, the second
ciphertexts are also multiplied together, and so on. The result is an aggregated
ciphertext for each voting option. Then, each ciphertext is individually decrypted.

18 Electronic voting basics

Thanks to the homomorphic properties of the encryption scheme, the result is the
number of times each voting option has been selected.

Figure 1.4: Homomorphic tally

Given that votes are not individually decrypted, the voter privacy is preserved,
even in the case of using digital signatures. However, due to that, it is necessary
to check that encrypted votes are well-formed. Otherwise, a voter could submit
a vote where a selected voting option has been assigned 2, instead of 1, resulting
in that this voting option is counted twice for the election result. Cryptographic
proofs, generated by the voting device at the time of encryption, are usually used
for verifying that individual votes are well-formed. Examples of such cryptographic
proofs are provided in Section 1.3. The computation of such cryptographic proofs,
plus the need for generating encryptions for all the possible voting options (not for
those actually selected), makes these schemes practical only for elections where the
number of posible choices is limited. Another limitation of this kind of scheme is
that a very specific representation of the voting options has to be used, and therefore
write-ins cannot be supported.

A very interesting property of these schemes is that threshold decryption tech-
niques can be easily applied. In threshold systems, the electoral board members
hold shares of the private key, from which a subset of them is needed to decrypt the
votes. The key does not need to be reconstructed for decryption, but each electoral
board member can make a partial decryption with his share of the key, and then
all the partially decrypted values can be combined together in order to obtain the
plaintext. Given that only an aggregated ciphertext for each voting option has to
be decrypted, and not each individual vote, the extra workload of making multiple
partial decryptions, instead of one single decryption, can be acceptable in such kind
of systems. This partial decryption process is described in [43].

1.2.5 Mixnet-based systems

These proposals are based on imitating the process done in traditional elections
where, at the end of the voting phase, the ballot boxes are shuffled in order to break

Chapter 1. Introduction 19

the storage correlation order of the votes (which could lead to the identity of the
voters who cast the votes). Once the correlation between voter and vote has been
broken, votes can be decrypted in order to obtain the election results.

In these protocols, voters cast encrypted and digitally signed votes which are
stored in the ballot box until the end of the voting phase. Then, the votes are
detached from their signatures and passed through a mix-net [32], which is composed
of several nodes which shuffle the votes sequentially using a secret permutation. The
purpose of the mix-net is to output votes which cannot be linked with those that
were stored in the ballot box, originally signed by the voters.

The encrypted votes to be passed through a mix-net are usually encrypted us-
ing a probabilistic encryption scheme, in which some random values are used for
generating the ciphertexts. The result is that each ciphertext is unique with a high
probability, and therefore, votes at the output of the mix-net can be easily con-
nected with the votes at the input by comparing their values, breaking the purpose
of the mix-net. Therefore, each mix-node applies, in addition to the permutation, a
transformation over its input ciphertexts, the result of which cannot be related to
the original values.

There are two kinds of mix-nets:

Decryption mix-nets: Votes are encrypted in several layers (as many as nodes
in the mix-net), using in each layer the key from the corresponding node. When
encrypted votes are provided to the mix-net, each node permutes the input encrypted
votes and uses its key to remove the outer encryption layer. This process is repeated
at each node until it reaches the last one, where the last encryption layer is removed
and the original vote contents are obtained.

Figure 1.5: Decryption mixnet

Re-encryption mix-nets: Votes are encrypted using an encryption scheme which
allows re-encryption or re-randomization of the ciphertexts multiple times, while
only one decryption step is needed to recover the plaintexts. Each node, in turn,

20 Cryptography introduction

permutes the input encrypted votes and re-encrypts / re-randomizes them in order
to make them look totally different than in the input. Finally, a decryption step is
done in the last node of the mix-net in order to recover the plaintexts.

Due to the fact that the mix-net modifies the output votes in such a way that
they cannot be related to those at the input, it may easily erase and insert votes
without detection. Therefore, verification methods have to be put in place in order
to ensure that the mix-net behaves properly. Verifiable mix-nets are mix-nets which
provide mathematical (cryptographic) proofs which demonstrate that they do not
modify the processed votes during the mixing process. These proofs are designed
in such a way that they do not rely on providing secret information, as the secret
permutation or private keys, for proving their correct behavior. Instead, they use
zero-knowledge proofs which can be verified using public information (an explanation
of zero-knowledge proofs can be found in Section 1.3). Some of the most known and
efficient verifiable mixnets are Randomized Partial Checking [73], Verificatum or
Douglas Wikström’s Commitment-Consistent Proof of a Shuffle [121], or the Bayer-
Groth’s Efficient zero-knowledge argument for correctness of a shuffle [13].

The main benefits of these protocols are that they can use more flexible encryp-
tion schemes than homomorphic tally protocols; they support write-ins; and they
provide a better support for complex electoral processes.

In this section, we have presented the four basic types of protocols, and explained
how they provide voter privacy, while ensuring that only eligible voters can cast
votes. There are many variants of these four main families, which provide additional
and very interesting properties, such as JCJ with coercion-resistance [75]. There
are even hybrid systems which combine several of these schemes, as in the case
of hybrid mix-nets [93], [94], which use a combination of homomorphic tally with
mixing schemes. However, in this work we are going to focus on systems which
provide voter verification methods or individual verifiability. Therefore, in Section
2 we provide a more detailed state of the art focused in these kind of systems.

1.3 Cryptography introduction

Here we provide an introduction to cryptography, in order to provide some basic
notions to the reader, which will be useful for understanding the rest of this docu-
ment.

1.3.1 Symmetric key encryption schemes

When Alice and Bob want to maintain a private conversation, they use an encryption
scheme in order to hide their messages from a third-party. Messages, or plaintexts,
are converted into ciphertexts by means of an encryption process. Without the
decryption key, the original plaintext cannot be recovered.

Chapter 1. Introduction 21

In a symmetric key encryption scheme, Alice and Bob share a secret key. Alice
uses the secret key to encrypt a message for Bob. When Bob receives the encrypted
message, he uses the secret key to decrypt it and recover the plaintext. When Bob
wants to send a message to Alice, they do the same process.

A symmetric key encryption scheme is defined by the following algorithms:

- The key generation algorithm KGens
e receives as input a security parameter 1λ

and outputs a secret key k from the key space Ksp.

- The encryption algorithm Encs takes as input a message m ∈ {0, 1}λ and a
key k ∈ Ksp, and produces a ciphertext c ∈ {0, 1}λ.

- The decryption algorithm Decs takes as input a ciphertext c ∈ {0, 1}λ and a
key k ∈ Ksp, and produces a decrypted message m ∈ {0, 1}λ.

A symmetric key encryption scheme is said to provide correct decryption if for
any key k ∈ Ksp, given a set of messages m1,m2, . . . ,mn ∈ {0, 1}λ and a set of
ciphertexts c1 = Encs(m1, k), c2 = Encs(m2, k), . . . , cn = Encs(mn, k), it is fulfilled
that Decs(ci, k) = mi, for i = 1, . . . , n.

Usually symmetric encryption schemes are combinations of a block cipher (i.e.
DES [82] -deprecated-, Triple-DES [86] -legacy-, AES [83], Camellia [12],...) and a
mode of operation (ECB, CBC, CTR [84], GCM [85], ...).

1.3.2 Public key encryption schemes

Symmetric key encryption schemes, or symmetric key schemes in general, have the
problem of key distribution: how did Alice and Bob agree on a secret key for ex-
changing secret messages? Obviously, they could not use an encrypted channel
because they needed a key!

Public key cryptography emerged to solve the drawback of key distribution in
symmetric cryptography. It was first suggested by Diffie and Helman in 1976 [49],
and first implemented in the RSA public key cryptosystem by Rivest, Shamir and
Adleman [103] in 1978.

In a public key encryption scheme, Alice and Bob have, each one, a pair of
keys: one public and known by everyone, and one private. When Alice wants to
communicate with Bob, she uses Bob’s public key for encrypting a message for
him, and Bob in turn uses his private key for decrypting it and reading the content.
When Bob wants to send a message to Alice, he uses Alice’s public key to encrypt it,
and Alice uses her private key for decrypting and recovering the original plaintext.
Using this kind of scheme, there is no need for Alice and Bob to exchange a secret
before establishing a private channel by means of encryption. In fact, a public key
encryption scheme is usually used just at the beginning of the communication, in
order to exchange the secret key to be used for encrypting the following messages.

22 Cryptography introduction

Public key encryption is commonly limited to the communication of secret keys, due
to the fact that symmetric cryptography has a better performance.

Formally, a public key encryption scheme is defined by the following algorithms:

- The key generation algorithm Gene receives as input a security parameter 1λ

and outputs a key pair composed by a public key pke and a private key ske,
defines a message space Msp, a ciphertext space Csp and a randomness space
Rsp (in case of a probabilistic encryption scheme).

- The encryption algorithm Enc takes as input a message m ∈ Msp and a
public key pke, and computes a ciphertext c ∈ Csp. In case the algorithm is
probabilistic, it uses random values r ∈ Rsp for computing such ciphertext.

- The decryption algorithm Dec receives as input a ciphertext c ∈ Csp and a
private key ske, and outputs a message m ∈Msp or ⊥ in case of error.

- Some encryption schemes also have a ciphertext verification algorithm EncVerify,
which receives as input a ciphertext c and a public key pke, and outputs 1 if
the ciphertext is correct, 0 otherwise.

A public key encryption scheme is said to be correct if for any key pair (pke, ske) =
Gene(1

λ), any sequence of messages (m1,m2, . . . ,mn) ∈ Msp and the sequence of
ciphertexts c1 = Enc(m1, pke), c2 = Enc(m2, pke), . . . , cn = Enc(mn, pke), it is
fulfilled that Dec(ci, ske) = mi and EncVerify(ci, pke) = 1 for i = 1, . . . , n.

RSA and ElGamal are examples of public key encryption schemes:

RSA: The RSA encryption scheme [103] was the first implementation of a public
key encryption scheme. It is defined as follows:

- The key generation algorithm Gene receives two primes p, q of similar bit-length
(λ/2) (which define a ring Z/nZ) and computes the public key pke = (n, e),
where n = pq and e is coprime with φ(n) (φ(n) denotes the Euler totient
function, and in this case it is computed as (p − 1)(q − 1)). The private key
ske takes the value of d, where ed = 1 mod φ(n).

- The Enc algorithm receives as input m ∈ Zn, such that gcd(m,n) = 1 and the
public key pke, and computes c = me mod n.

- The Dec algorithm receives c and the private key ske and outputs m = cd mod
n.

The strength of the RSA cryptosystem is given by the hardness of solving the
RSA problem, which is related to the problem of factoring large composite integers.
Usually, raw RSA encryption is not used, but a padding is added to the message
prior to being encrypted. Current standards recommend the use of RSA-OAEP
[104], [17] or RSA-KEM [71] versions.

Chapter 1. Introduction 23

ElGamal: The ElGamal encryption scheme was defined by Taher ElGamal in
1985 [51]. In this scheme, the public key encryption algorithms (Gene,Enc,Dec) are
defined as follows:

- The key generation algorithm Gene takes as input a subgroup G which has a
generator g of order q of elements in Z∗p, where p is a safe prime such that
p = 2q+ 1 and q is a prime number. It outputs an ElGamal public/secret key
pair (pke, ske), where pke ∈ G such that pke = gske mod p and ske ∈ Zq.

- The encryption algorithm Enc receives as input a message m ∈ G and a public
key pke, chooses a random r ∈ Zq and computes (c1, c2) = (gr, pkre ·m).

- The decryption algorithm Dec receives (c1, c2) and the private key ske and
outputs m = c2/c

ske
1 .

The security of the ElGamal encryption scheme relies on the hardness of solving the
Discrete Logarithm problem: Let G be a finite cyclic group of prime order q, and
let g ∈ G be a generator. Given h ∈ G, the discrete logarithm problem consists on
computing x ∈ Zq such that gx = h.

1.3.3 Security notions for encryption schemes

Security of cryptographic algorithms is analyzed on the basis of a set of possible goals
an attacker wants to achieve in respect to the algorithm, and a set of possible attack
models, which define the capabilities of the atacker. The security notions defined
for encryption schemes are ciphertext indistinguishability, by Goldwasser and Micali
[63], and non-malleability, due to Dolev, Dwork and Naor [50].

Let m be a plaintext and c the ciphertext resulting of its encryption. Indistin-
guishability (IND) formalizes a strong notion of privacy in which an attacker is
unable of learning any information about the plaintext m, given the ciphertext c.
Specifically, an attacker who is given two messages and the corresponding cipher-
texts cannot distinguish to which plaintext corresponds each one of the ciphertexts.
Non-malleability (NM) refers to the resistance of ciphertexts against tampering,
and formalizes the inability of an attacker to modify the ciphertext c, in such a way
that the underlying plaintext m′ keeps a determined relation with m.

The following attack models are considered, ordered by increasing strength:
chosen-plaintext attack (CPA), non-adaptive chosen-ciphertext attack (CCA1) and
chosen-ciphertext attack (CCA2).

CPA In the CPA model, the adversary can obtain ciphertexts from plaintexts
of his choice. In public key encryption schemes, this is achieved by the adversary
having access to the encryption public key.

Semantic security, defined by Goldwasser and Micali in [62], was found to be
equivalent to IND-CPA. Given an encryption public key, the adversary chooses two

24 Cryptography introduction

plaintexts and is then presented with a ciphertext corresponding to one of these
plaintexts, chosen at random. In a IND-CPA secure public key encryption scheme
the adversary cannot guess to which plaintext the ciphertext corresponds with more
than 50% probability of success.

A NM-CPA secure scheme is known to be also IND-CPA secure.

CCA1 In the CCA1 model [81], the adversary, besides having access to the public
key, also has access to a decryption oracle which he can query until just before the
challenge ciphertext (the one the adversary has to attack) is provided. Queries to
the decryption oracle cannot depend on the challenge ciphertext. This attack model
or scenario is also called the Lunchtime Attack, which refers to the scenario where
the adversary has access to an unattended worker’s computer (the decryption oracle)
only during lunchtime, and has to use the information he has learned for attacking
the worker’s communications at a later time.

CCA2 In the CCA2 model [102], the adversary has access (again besides of to
the public key) to a decryption oracle, which can be queried before and after the
adversary has received the challenge ciphertext. Therefore, the adversary can make
queries related to such challenge. The only restriction is that the adversary cannot
ask for the decryption of the challenge ciphertext itself. This is the strongest security
notion. In this scenario, IND and NM are equivalent.

Raw RSA is known not to be IND-CPA secure given that the encryption, without
using random values, is a deterministic computation. RSA-OAEP and RSA-KEM
use randomness in the encryption, and have been proven to be IND-CCA2 secure
in the random oracle model [57], [115].

The ElGamal encryption scheme is IND-CPA secure as long as the Decisional
Diffie-Hellman assumption holds for the underlying cyclic group G. The Decisional
Diffie-Hellman assumption states that, given a cyclic group G, a generator g of G, the
following two distributions (G, g, ga, gb, gab), (G, g, ga, gb, gc) are indistinguishable.

The Random Oracle Model (ROM) defines an algorithm that simulates a
random function D → C, to which all the algorithms may call as an oracle O
[16]. It is usually modeled as a table T , which at the beginning is empty. Every
time an algorithm makes a call O(d), the oracle checks if there is already an entry
(d, c) in (T). If so, it returns c. Otherwise, it picks c′ at random from C, adds the
entry (d, c′) to the table and returns c′. In the random oracle model, hash functions
are modeled as random functions (for example, as we will see later, this is used
to prove the soundness of zero-knowledge proofs when the Fiat-Shamir heuristic is
used for making them non-interactive). The random oracle can be programmed by
simulation algorithms, which add entries (d, c) to the table T . This is used, for
example, for the simulation of NIZK proofs.

Chapter 1. Introduction 25

1.3.4 Homomorphic public key cryptosystems

A public key cryptosystem is said to be homomorphic if Enc(a, pke) φ Enc(b, pke) ≡
Enc((a ⊕ b), pke), for some operations φ,⊕.

The ElGamal and raw RSA cryptosystems have multiplicative homomorphic
properties, which means that the relation above is fulfilled when φ and ⊕ are the
multiplication operation.

A variant of ElGamal, called exponential ElGamal, provides additive homo-
morhic properties, and therefore Enc(a, pke) · Enc(b, pke) ≡ Enc((a + b), pke). This
variant consists on representing a message m as gm for encryption. It is easy to see
that Enc(m1, pke) · Enc(m2, pke) = (gr1 , pkr1e ·gm1) · (gr2 , pkr2e ·gm2) = (gr1+r2 , pkr1+r2e ·
gm1+m2) ≡ Enc((m1 + m2), pke).

1.3.5 Signature schemes

Digital signature schemes are public key cryptosystems used for preserving the in-
tegrity of messages exchanged between two parties. Besides that, digital signatures
provide the properties of authentication and undeniability.

We ilustrate these properties with the following example: Alice uses her private
key in order to digitally sign a message, and sends the message, together with the
signature, to Bob. Bob can use Alice’s public key to verify the signature. Since
Alice’s private key is only known by her, Bob knows that Alice was the sender of
this message. Moreover, Bob knows that the message has not been modified during
transmission by a malicious third-party. Finally, Alice cannot later deny having sent
the message to Bob, since only Alice was capable of generating such signature. If
necessary, Bob can claim to a judge that he has received the message from Alice.
Since Alice’s public key is known by everyone, the judge can also verify the signature
and be sure that Bob’s claim is true.

A signature scheme is composed by the following algorithms:

- The key generation algorithm Gens receives as input a security parameter 1λ,
and outputs a signing key pair (pks, sks). It also defines a message spaceMsp

and a signature space Ssp.

- The signature algorithm Sign receives a message m ∈ Msp and the signing
private key sks, and outputs a signature ψ ∈ Ssp.

- The signature verification algorithm SignVerify receives a message m ∈ Msp

and a signature ψ ∈ Ssp. It outputs 1 if the verification succeeds, 0 otherwise.

A common digital signature algorithm is RSA with the hash variant, also known
as RSA-FDH (RSA Full Domain Hash signature scheme [16]):

26 Cryptography introduction

- Gens does the same operations that the Gene algorithm in RSA: it receives
two primes p, q of similar bit-length (λ/2) (which define a ring Z/nZ) and
computes the public key pks = (n, e), where n = pq and e is coprime with
φ(n) (φ(n) = (p− 1)(q − 1)). The private key sks takes the value of d, where
ed = 1 mod φ(n).

- Sign takes as input a message m, which is not restricted to a specific space,
and the private key sks, and outputs σ = H(m)d mod n, where H denotes a
hash function which maps strings to elements in Zn.

- SignVerify takes as input the public key pks, the message m and the signature
σ, and checks that H(m) = σe mod n. It outputs 1 if the verification is
successful, 0 otherwise.

This signature scheme been proven to be unforgeable against chosen message
attacks in the random oracle model [18]. However, using RSA-PSS [104] instead of
RSA-FDH is usually recommended.

1.3.6 σ-protocols and proof schemes

σ-protocols and proof schemes are widely used in cryptographic protocols in order to
prove properties of the generated information. One atractive characteristic of these
schemes is the zero-knowledge property, which informally means that the verifier
does not learn secret information when verifying the proof.

Let R be a polynomial time verifiable relation containing pairs (x,w). We will
call x the statement and w the witness. We define the language LR as the set of
statements x for which there exists a witness w such that (x,w) ∈ R. A zero-
knowledge (ZK) proof is a protocol between a prover P and a verifier V where
the prover, who knows a witness w for which (x,w) ∈ R will convince the verifier
that x ∈ LR, without leaking any other information than the fact that x belongs to
LR.

Many relations can be defined. For example, R can be a DL relation:

DL = {(x,w)|x = (p, q, g, h), ord(g) = ord(h) = q, h = gw}

where p, q are primes, g, h ∈ Z∗p and w ∈ Zq. In this case, R is the set of discrete
logarithm problems and their solutions. A prover of a ZK proof for a DL relation
proofs that, on input x, he knows w such that (x,w) ∈ RDL. An example of a ZK
proof for a DL relation is the Schnorr signature scheme [114].

In a proof of equality of discrete logarithms, EqDL, the prover shows that he
knows w such that x0 = gw0 , x1 = gw1 , . . . xt = gwt , on inputs {x0, x1, . . . , xt, g0, g1, . . . , gt}.
The EqDL relation is defined as:

EqDL = {(x0, x1, . . . , xt, w)|x0 = gw0 , x1 = gw1 , . . . xt = gwt }

Chapter 1. Introduction 27

The Chaum-Pedersen protocol [37] is usually used to prove knowledge of such
relation.

In OR-proofs, a prover shows that, given two inputs (x0, x1), he either knows
w0 such that (x0, w0) ∈ R0 or he knows w1 such that (x1, w1) ∈ R1, but without
revealing which one.

OR = {(x0, x1, w0, w1)|(x0, w0) ∈ R0 ∨ (x1, w1) ∈ R1}

Finally, in AND-proofs, a prover shows that, given two inputs (x0, x1), he knows
w0 and w1 such that (x0, w0) ∈ R0 and (x1, w1) ∈ R1.

AND = {(x0, x1, w0, w1)|(x0, w0) ∈ R0 ∧ (x1, w1) ∈ R1)}

In [42], the authors show how to construct such OR and AND proofs.

σ-protocols:

σ-protocols are three-move ZK proofs where, in order to prove that a statement x
belongs to LR, an interactive protocol is done between the prover P and the verifier
V . First, P sends a commitment message a to V . V then replies with a random
challenge e. Finally, P then sends an answer z to V . After the interaction, V decides
to accept or reject the proof based on all the data it has seen, i.e., x, a, e and z.

We say that such protocol is a σ-protocol if it satisfies the completeness, special
soundness, and special honest-verifier zero-knowledge properties defined below [46].

Completeness. A 3-move protocol of the above form is complete if when (x,w) ∈
R and P and V honestly follow the protocol then V always accepts.

Special soundness. A 3-move protocol of the above form has the special sound-
ness property if from any x and any pair of accepting conversations on input x,
(a, e, z), (a′, e′, z′) where e 6= e′, one can efficiently compute w such that (x,w) ∈ R.

Special honest-verifier zero-knowledge. A 3-move protocol of the above
form has the special honest-verifier zero-knowledge property if there exists a proba-
bilistic polynomial time (p.p.t.) simulator S, which on input x and a value e ∈ CH
(the challenge space) outputs an accepting conversation of the form (a, e, z) with the
same probability distribution as conversations between the honest P , V , on input
x.

Examples of σ-protocols:

Here we show some examples of σ-protocols, which will be used in following Chap-
ters.

28 Cryptography introduction

Schnorr protocol: Assume a cyclic group G. Given a value gx ∈ G, the Schnorr
protocol can be used to proof knowledge of the exponent x in the following way:

1. Prover computes a = gs, where s is a random element in Zq, and provides
them to the verifier.

2. Verifier provides a random challenge e.

3. Prover provides to the verifier z = s+ xe.

Finally the verifier checks that gz = a · (gx)e. This σ-protocol can be simulated
in the following way: the simulator samples a random z∗ ∈ G, a random e∗ ∈ Zq
and computes a∗ = gz

∗ · (gx)−e∗ . The resulting (a∗, e∗, z∗) values have the same
distribution than the original ones.

Proof of a ciphertext content: A σ-protocol can be used to prove that a specific
plaintext corresponds to a given ciphertext. In the case of ElGamal encryption,
where the ciphertext is of the form (c1, c2) = (gr, pkre ·m), the protocol is as follows:

1. Prover computes (a1, a2) = (gs, pkse), where s is a random element in Zq, and
provides them to the verifier.

2. Verifier provides a challenge e.

3. Prover provides to the verifier z = s+ re.

The verifier checks that gz = a1 ·ce1 and that pkze = a2 ·(c2/m)e. A simulated proof
can be computed in the following way: the simulator samples a random z∗ ∈ G, a
random e∗ ∈ Zq and computes a∗1 = gz

∗ ·c−e∗1 and a∗2 = pkz
∗

e ·(c2/m)−e
∗
. The resulting

(a∗, e∗, z∗) values have the same distribution than the original ones.

Non-interactive zero-knowledge proof of knowledge schemes:

The Fiat-Shamir [55] transformation allows the turning of interactive zero-knowledge
protocols, such as σ-proofs, into non-interactive, by using a hash function to compute
the random challenge e. The security of the resulting non-interactive zero-knowledge
proof of knowledge (NIZKPK) is based on the assumption made in the Random
Oracle Model (ROM) that a hash function behaves as a random oracle. Therefore
the challenge e has a resulting distribution similar to the original and the non-
interactive version of the ZKPK maintains its properties [16].

A NIZKPK scheme is composed by the algorithms (GenCRS,NIZKProve,NIZKVerify,
NIZKSimulate):

- The common reference string generation algorithm GenCRS generates the pa-
rameters of the NIZKPK scheme. It receives as input a security parameter
1λ and, in some cases, a mathematical group G, and it outputs a common
reference string crs.

Chapter 1. Introduction 29

- NIZKProve is the proof generation algorithm. It receives as input a common
reference string crs, a statement x and a witness w, and outputs a proof π.

- NIZKVerify is the verification algorithm. It receives as input the common
reference string crs, the statement x and the proof π, and outputs 1 if the
verification is successful, 0 otherwise.

- NIZKSimulate is a proof simulation algorithm. It receives as input a (false)
statement x∗ and outputs a simulated proof π∗.

NIZKPKs have to satisfy the properties of completeness, soundness and zero-
knowledge [45], [113], very similar to those of the σ-protocols but adapted to their
non-interactive nature:

Completeness. A triplet (GenCRS,NIZKProve,NIZKVerify) is complete if given a
crs generated by GenCRS and (x,w) ∈ R then NIZKVerify(crs, x,NIZKProve(crs, x, w))
always returns 1.

(Computational) Soundness. A triplet (GenCRS,NIZKProve, NIZKVerify) is
sound if, given a crs generated by GenCRS, no p.p.t. adversary can output a state-
ment x and a proof π such that x 6∈ LR and NIZKVerify(crs, x, π) returns 1, with
non-negligible probability.

(Perfect) Zero-knowledge. A triplet (GenCRS,NIZKProve, NIZKVerify) pro-
vides zero-knowledge if, given a crs generated by GenCRS, then for any pair (x,w) ∈
R the proofs π output by NIZKProve(crs, x, w) are perfectly indistinguishable from
proofs πsim, output by NIZKSimulate(crs, x).

Note that the notion of zero-knowledge defined above implies that, if it is hard
to distinguish between statements x ∈ LR from statements x 6∈ LR, then it is
computationally hard to distinguish between pairs (x, πsim), such that x 6∈ LR and
πsim was created by the simulator NIZKSimulate, and pairs (x, π), such that x ∈ LR
and π was created by a prover NIZKProve with access to a witness w, for which
(x,w) ∈ R.

Examples of NIZKPK schemes:

SignedElGamal: A non-interactive proof of knowledge based on the Schnorr pro-
tocol is used in the Signed ElGamal encryption scheme for proving knowledge of the
encryption exponent. Specifically, being (c1, c2) the output of the Enc algorithm in
plain ElGamal, it proves in zero-knowledge the knowledge of logg c1 for g, c1 ∈ G.
This is commonly used in voting schemes for proving plaintext independence.

The Signed ElGamal scheme works as follows:

- The key generation algorithm Gene takes as input a subgroup G which has a
generator g of order q of elements in Z∗p, where p is a safe prime such that

30 Cryptography introduction

p = 2q+ 1 and q is a prime number. It outputs an ElGamal public/secret key
pair (pke, ske), where pke ∈ G such that pke = gske mod p and sk ∈ Zq.

- The encryption algorithm Enc receives as input a message m ∈ G and a public
key pke, chooses a random r ∈ Zq and computes (c1, c2) = (gr, pkre ·m). Then it
computes the proof of knowledge of the encryption randomness (c3, c4) where:
c3 = Hc(c1, c2, g

s), s is randomly chosen in Zq, c4 = s+ rc3 and Hc is the hash
funcion defined for the challenge in the non-interactive proof, which maps
strings to Zq.

- The proof can be verified by executing EncVerify(c, pke), which computes gs
′
=

gc4 ·c−c31 and checks that c3 = Hc(c1, c2, g
s′). In case the validation is successful,

this algorithm outputs 1, otherwise it outputs 0.

This variant of ElGamal has been shown to be NM-CPA secure in [25].

Equality of discrete logarithms: NIZK proofs are used in the protocols pro-
posed in the following chapters, in order to prove equality of discrete logarithms.
Specifically, a generalization of the Chaum-Pedersen proof system [37] is used, which
we denote as EqDL:

- ProveEq(crs, (a1, a2, a
x
1 , a

x
2), x) takes at random s from Zq, computes as1, a

s
2,

h = H((a1, a2, a
x
1 , a

x
2), as1, a

s
2) and z = s+ x · h, being H a hash function which

maps strings to elements in Zq. The output proof π is (h, z).

- VerifyEq(crs, (a1, a2, a
x
1 , a

x
2), π) computes as

′
1 = az1 · (ax1)−h and as

′
2 = az2 · (ax2)−h,

and checks that h = H((a1, a2, a
x
1 , a

x
2), as

′
1 , a

s′
2). If the validation is successful,

the algorithm outputs 1. Otherwise it outputs 0.

- SimEq(crs, (a1, a2, a
∗
1, a
∗
2)) takes at random z∗ and h∗ from Zq and forms the

proof π∗. In this kind of proof, a programmed random oracle has to be used for
simulation such that when the adversary asks for the valueH((a1, a2, a

∗
1, a
∗
2), a

s′
1 ,

as
′
2) the oracle returns the value h∗.

Other NIZKPK proofs are used for proving the correct decryption of the cipher-
texts. Although they are also based on the Chaum-Pedersen protocol, we use a
different notation than in EqDL for simplicity of the protocols description. There-
fore, we denote them as DecP and also add their description here:

- ProveDec(crs, (c,m), ske) receives a ciphertext c = (c1, c2), where c1 = gr and
c2 = pkre ·m, being pke = gske . It takes at random s from Zq, computes (gr)s,
gs, h = H(c,m, (gr)s, gs) and z = s + ske · h, being H a hash function which
maps strings to elements in Zq. The output proof π is (h, z).

- VerifyDec(crs, (c,m), π) computes (gr)s
′
= (c1)

z · (c2/m)−h and gs
′
= gz · pk−he ,

and checks that h = H(c,m, (gr)s
′
, gs

′
). If the validation is successful, the

algorithm outputs 1. Otherwise it outputs 0.

Chapter 1. Introduction 31

- SimDec(crs, (c,m∗), ske) takes at random z∗ and h∗ from Zq and forms the
proof π∗. In this kind of proof, a programmed random oracle has to be used
for simulation such that when the adversary asks for the value H(c,m∗,
(gr)s

′
, gs

′
) the oracle returns the value h∗.

Now that we have explained some basic notions of cryptography and of electronic
voting protocols, we are ready to focus on electronic voting protocols providing
individual verifiability in the following chapter.

1.4 Motivation, organization and contributions of

this work

1.4.1 Motivation

As we have seen in the previous sections, we can design electronic voting systems
with intuitively contradictory security properties, thanks to the use of cryptography
and cryptographic protocols. However, we, as humans, are not able to do most cryp-
tographic operations by ourselves, and therefore we have to delegate these operations
to some electronic device, such as our smartphones or computers.

Traditionally, most of the protocols abstracted the voter as the subject of the
action, even when cryptography was involved (encrypting, digitally signing...). But
in a real world implementation, we have to take into account that it is not the voter,
but her device, which performs most of the operations required by the protocol.
And the device cannot be considered a mere extension of the voter. The device is
usually exposed to external entities (for example, through the Internet), which may
be interested in changing its behavior to make it obey other instructions than those
of the voter.

Moreover, while in traditional voting the voter personally puts her vote in the
ballot box, the digital transaction of sending an electronic vote to a remote voting
server is not as tangible. The voter has no way to tell whether her vote has reached
the server or not, which affects her trust in the system. And as we know trust is
a key component in democracy. If voters do not trust in the electoral process, how
are they going to respect the result of the election, and the decisions of the elected
government?

In this thesis, we focus on studying the mechanisms that can be provided to the
voters, in order to examine and verify the processes executed in a remote electronic
voting system. This work has been done as part of the tasks of the author at the
electronic voting company Scytl, which implements software solutions for electronic
voting which are used around the world, and since 2009 has made not only traditional
security, but also verifiability, its main differentiating factor. Although this thesis
does not talk about system implementations, which are interesting by themselves,
it is indeed focused on protocols which have had, or may have, an application in the

32 Motivation, organization and contributions of this work

real world. Therefore, this thesis may surprise the reader by the fact that it does
not use state of the art cryptography such as pairings or lattices which, although
they provide very interesting properties, still cannot be efficiently implemented and
used in a real system. Otherwise, the protocols presented in this thesis use standard
and well-known cryptographic primitives, while providing new functionalities that
can be applied in current electronic voting systems.

Furthermore, during the last years, the way of analyzing electronic voting proto-
cols has radically changed. It has to be taken into account that research in electronic
voting, which begun in the 80’s, is much more recent than research in cryptogra-
phy, and at the beginning lacked the formality of its big brother. Protocols were
designed on a whiteboard, and the security of them relied on several pairs of eyes
not being able to find a hole. Now this has changed, and electronic voting protocols
are analyzed by means of security proofs, which allow the relation of their security
to the strength of well-known hard mathematical problems, just in the same way
that it is done in cryptography. Part of the contribution of this work is to provide
such kind of analysis for schemes which have been, or will be, put into practice.

1.4.2 Organization and contributions

The organization and contributions of this work are the following:

- In Chapter 2, the first contribution of the author is to present a survey on
electronic voting systems which provide voter verification functionalities. The
author has tried to cover a high variety of systems, giving preference to those
which have had a real world implementation. Among these systems we can
find the one used in the Municipal and Parliamentary Norwegian elections of
2011 and 2013, and the system used in the Australian State of New South
Wales for the General State Elections in 2015, in which the author has had
an active participation in the design of their electronic voting protocols. The
related publications are:

– Internet Voting System with Cast-as-Intended Verification. Jordi Puig-
gaĺı, Sandra Guasch. 3rd International Conference on e-Voting and Iden-
tity (VoteID 2011). Tallinn, Estonia, September 28-30 2011.

– Cast-as-Intended Verification in Norway. Jordi Puiggaĺı, Sandra Guasch.
5th International Conference on Electronic Voting 2012 (EVOTE 2012),
Co-organized by the Council of Europe, Gesellschaft für Informatik and
E-Voting.CC, July 11-14, 2012, Castle Hofen, Bregenz, Austria. Pub-
lished in Proceedings of the 5th Conference on Electronic Voting 2012
(EVOTE2012) P-167, LNI GI Series, Bonn.

– An overview of the iVote 2015 voting system. Ian Brightwell, Jordi Cucu-
rull, David Galindo and Sandra Guasch. 2015. Online at: https://www.
elections.nsw.gov.au/about_us/plans_and_reports/ivote_reports,
also available at the 5th International Conference on e-Voting and Iden-
tity (VoteID 2015) program website.

https://www.elections.nsw.gov.au/about_us/plans_and_reports/ivote_reports
https://www.elections.nsw.gov.au/about_us/plans_and_reports/ivote_reports

Chapter 1. Introduction 33

– Patent: Method for the Verification of the Correct Recording of Informa-
tion. Patent family PCT/ES10/000490, granted in Spain (ES2367940),
USA (US2012239932) and Philippines (PH 1-2012-501102). In process in
Europe (EP2509050).

- In Chapter 3, a syntax which can be used for modeling electronic voting sys-
tems providing voter verifiability is presented. This syntax is a novel con-
tribution of this work and is focused on systems characterized by the voter
confirming the casting of her vote, after verifying some evidences provided by
the protocol. Along with this syntax, definitions for the security properties
required for such schemes are provided. Some of them are based on the latest
definitions published this year in [23], which solve flaws from previous works.
They have been adapted by the author in order to cover the particularities
of the protocols presented in this work. Other definitions have been adapted
from other works, or are new contributions of this thesis.

- Chapter 4 describes the electronic voting protocol and system which has been
used in 2014 and 2015 elections in the Swiss Canton of Neuchâtel. Switzerland
published a new regulation for electronic voting systems in 2014, by which they
have to provide verifiability mechanisms in order to be used by large portions
of the electorate. Part of the author’s work at Scytl has been to continue with
the experience of the design and development of the electronic voting system
used in Norway, and improve it. The result has been implemented and has
already been used in 2014 and 2015 elections in Neuchâtel, and it is planned
to be used in the next years.

A consequence of the success in the design of the system has been the initiation
of a colaboration between Scytl and the Swiss postal mail company Swiss
Post, in order to provide an electronic voting platform which can be used by
many Swiss Cantons. The purpose of this collaboration is the evolution of the
platform in order to fulfill more demanding requirements regarding verifiability,
and also segregation of duties, which will in the end allow the platform to be
used by up to 100% of the electorate. A contribution of this thesis is the
description of the implemented protocol, as well as the formal analysis of the
security properties of the scheme, by means of security proofs. This formal
analysis will be used for the certification of the system in Switzerland next
year. Moreover, the chapter introduces further evolutions of the protocol,
designed by the author, which may be implemented throughout next year for
extending the system to a larger part of the electorate.

The contributions in this chapter, have been published at the 5th Interna-
tional Conference on e-Voting and Identity (VoteID 2015). Bern, Switzerland.
September 2–4, 2015, under the title 2015 Neuchâtel’s Cast-as-Intended Verifi-
cation Mechanism, and are part of the patent Method for the Verification of the
Correct Recording of Information. Patent family PCT/ES10/000490, granted

34 Motivation, organization and contributions of this work

in Spain (ES2367940), USA (US2012239932), Philippines (PH 1-2012-501102).
In process in Europe (EP2509050).

- Chapter 5 proposes a new electronic voting protocol, which improves previous
proposals from the state of the art, by generating, besides a proof of content
of the vote to be cast, simulated proofs which can be used by the voter to
defend against coercion. The contribution of this work is the definition of this
protocol, including an analysis of its security properties. The protocol uses a
special cryptographic proof, the security of which has been formally proven for
the first time by a colleague of the author, Alex Escala. Patent request and
conference publication are in progress.

- Finally, Chapter 6 makes a twist to individual verifiability by ensuring that
all the processes executed by the voting device and the remote server are
correct, without requiring a verification from the voter. We call it universal
cast-as-intended verifiability. This chapter presents two alternative approaches
for implementing this functionality. The first one is based on cryptographic
proofs, and has been designed in collaboration with Alex Escala, who has
done the security analysis of the scheme. The second approach is based on a
protocol component used in the Norway and Neuchâtel systems: the return
codes. The design of this second proposal, as well as the formal analysis of its
security properties, is a novel contribution of this thesis. Both approaches have
been patented under the reference EP14004456: Method for the verification of
the correct content of an encoded message.

Chapter 2

Individual verifiability

2.1 Introduction

Electronic voting schemes which provide individual verifiability provide means to the
voter to verify by herself certain aspects of the electoral process. In the literature,
these aspects are traditionally divided in two phases: cast-as-intended, and recorded-
as-cast verification.

Cast-as-intended verifiablity: This property provides voters with methods to
ensure that their cast votes correctly represent their voting intentions. That is, that
they contain their voting choices.

As explained before, in electronic voting schemes usually voters employ a voting
device to select their choices. This voting device is also in charge of encrypting
them after the voter has finished doing her selections. In poll-site electronic voting
schemes, the voting device may be a voting machine or DRE, or a common purpose
PC. In remote voting schemes, the voting device can be any device owned by the
voter, such as a PC, a mobile phone, or a tablet. Depending on the scheme, after the
vote casting, the voting device keeps locally the encrypted vote for further counting
(in some poll-site electronic voting schemes), or send the votes to a remote voting
server (in remote electronic voting schemes), where they will be stored until the end
of the election.

After or during the vote casting, the voter may have access to the ciphertext gen-
erated by the voting device and examine it. However, since randomized encryption
schemes are usually used to encrypt the voting choices, the voter cannot obtain any
information about the content of such ciphertext by simple inspection. Therefore, a
malicious voting device could change the voter’s selections to be encrypted, in order
to favour a specific candidate, without detection. Cast-as-intended verification con-
sists on checking whether the encrypted vote generated by the voting device contains
her selections or not, and therefore detect such modification in case of a malicious
voting device. Existing cast-as-intended verification schemes are focused on provid-
ing this property while still fulfilling other requirements of electoral processes, such
as vote secrecy and resistance against vote selling.

35

36 Introduction

Recorded-as-cast verifiablity: This property allows voters to check that their
vote has been correctly registered in the ballot box. The Bulletin Board [59] is a tool
commonly used in verifiable voting systems providing this property: at a high level,
a bulletin board is a place where relevant information for the election is published.
Only authorized entities can publish in append-only mode in the bulletin board, and
everybody can see the published contents. Once published, the information cannot
be modified or deleted. Votes cast by the voters are published in a bulletin board
upon reception at the local or remote voting server. Voters can then check that their
votes have been published, and therefore that they have been correctly recorded and
stored by the voting system.

The publication of the votes in the bulletin board is a sensitive issue. For ex-
ample, votes made public could be decrypted at some point in the future (due to
improvements on computation speed or to a breach in the encryption algorithm),
and since read access to the bulletin board is open, multiple copies of it can be
stored for an unlimited amount of time. Everlasting privacy, first introduced in [80],
is a novel concept in electronic voting which cares about the long-term privacy pro-
vided by the information published by the electronic voting systems. By now, most
schemes publish a digest function (such as a hash function) of the received vote,
instead of the vote itself. Voters then have to compute the same function over their
cast votes in order to look for them in the Bulletin Board. The verification properties
of this solution remain unchanged thanks to the collision-resistance property of hash
functions, which ensures that, in case a voter finds a match, it indeed corresponds
to her ciphertext. In such case, original ciphertexts are stored in the remote/local
server’s ballot box for further processing at the decryption phase. Mechanisms have
to be put in place in order to ensure that the contents of the ballot box match those
of the Bulletin Board.

Cast-as-intended and recorded-as-cast verification allow the voter to audit all the
processes that happen until the vote has been registered in the voting platform, up
to the counting phase. This emulates the traditional voting process in paper, where
the voter directly introduces her vote into the physical ballot box.

Universal verifiability: Once the voting phase ends, all the votes which were
stored at the digital ballot box have to be taken into account for computing the
election tally. Additional verification measures can be put in place so that it can
be checked that the system indeed takes into account all the votes in the tally,
and also that this tally is computed correctly. These verification processes fall into
the categorty of what is understood as Universal verifiability : any entity can verify
that the tally represents the content of the votes cast by the voters (Counted-as-
recorded verifiability), and that such votes were cast by voters entitled to vote
in that election (Eligibility verifiability). These verifications are not restricted to
the voter, but are open to the public in general.

Cast-as-intended verification cannot be understood without recorded-as-
cast verification: what is the purpose of being able to verify the content of a vote

Chapter 2. Individual verifiability 37

Figure 2.1: Verifiability types

if the voter does not have the assurance that such vote (and not another one) has
been correctly registered at the voting platform? In this work, we will talk about
systems which provide both properties, and generally refer to them as individually
verifiable.

There are several proposals for individual verifiability in the literature. While
recorded-as-cast verifiability is usually achieved by means of the publication of the
votes (or some related value) on the bulletin board, cast-as-intended mechanisms
differ considerably accross the different proposals. We classify individually verifiable
systems in five categories: Challenge-or-cast, Verifiable optical scanning, Verification
with codes, Hardware-based verification and Decryption-based verification.

2.2 Challenge-or-cast

This kind of mechanism was proposed by the first time by Josh Benaloh in the year
2006 [20]. They consist on allowing the voter to challenge the voting device after it
has encrypted her selections, in order to get some information which can be used to
inspect the generated ciphertext and check whether it contains her selections. The
nature of the challenge mechanism is such that, in case the voting device modified
the voter’s selections, it has a negligible probability of answering correctly to the
challenge, and therefore of cheating without being detected by the voter. A key idea
of this kind of system is that a vote which is audited cannot be cast, in order to
mitigate vote selling attacks: the voter could provide this same audit information to
a vote buyer, who may have access to the cast vote by accessing the bulletin board,
and check the contents of the ciphertext.

In Benaloh’s proposal, the voting device commits to the encrypted vote prior
to giving the voter the option of challenging the voting device. This commitment
is done by showing the hash of the vote in the voting device’s screen, although it
could also be printed out. Then the voter chooses whether she challenges the voting
device or not. In the negative case, the encrypted vote is cast. Later, the voter can

38 Challenge-or-cast

check that the hash shown by the voting device during the commitment phase is
one of the entries of the bulletin board. In the afirmative case, the voter is given
the randomness used to encrypt the vote. Using an alternative software and the
election encryption public parameters (published and available to the voter), the
voter should be able to reproduce an encryption of her selected voting options with
the randomness given by the voting device, and check that it matches the hash of
the ciphertext she was shown at the commitment phase.

In order to prevent vote selling attacks, after the audit phase the voting device
generates a new encryption of the same voting options with fresh randomness. Then,
the voting device commits to the new ciphertext and gives the chance to the voter
of auditing again, or casting the vote. Therefore, a vote that is cast is never audited
(and otherwise). The verification method is sound as far as the voting device does
not know whether it will be audited or not, prior to commiting to the generated
ciphertext. Specifically, a cheating voting device has a chance of 50% of being caught
by the voter. Multiple audit processess are recommended in order to increase this
probability.

Implementations/alternatives

This approach is followed in the Helios, Wombat, VoteBox and STAR Vote schemes.

Helios is an internet voting system which has been widely used in academic en-
vironments, both as a voting tool (mainly student organization elections, although
other organizations, such as IACR, have also used it) and as a research tool. The
system has evolved over time. In version 1.0 [10], it consisted on a mixing-based
scheme, implementing the verifiable mixnet from Sako and Kilian [110]. Then, it
was modified in version 2.0 to implement homomorphic tally with exponential El-
Gamal and distributed decryption, following a scheme similar to that described in
[43]. A detailed description of the homomorphic tally variant and the experience of
using it in university elections can be found in [79].

Helios has been widely studied by the academic community in the last years
and has a lot of variants, which are evolutions of the Helios system or academic
alternatives, some of which having their own implementations. For example: Helios
v3.0, Helios v4.0 [6], Helios based on mixnets (a newer version in [29]), Helios-C
(distributed Helios with credentials [40] and its implementation, Belenios [1]).

Helios provides cast-as-intended and recorded-as-cast verifiability in a similar
way as described in the proposal from Benaloh: after doing her selections and prior
to casting her vote, the voter is presented with the commitment of the ciphertext
generated by the voting device, in the form of a hash value. At that moment the
voter can decide to either cast the vote, or audit it. In case the voter chooses to
cast her vote, the vote is sent to the remote server, where it is posted in the bulletin
board. Otherwise, the randomness, the encryption parameters and the cleartext vote
are provided, so that the voter can check that the generated ciphertext is correct

Chapter 2. Individual verifiability 39

according to these parameters, and that the cleartext vote matches her selections. A
software application is offered by the same Helios website in order to make this audit
[5]. However, it is recommended to use a third-party software (for example [4]), and
preferably on a device different than the one used for voting, in order to ensure
independence of the verifier and the verified entities. Because the voting client does
not know, at the time of generating the ciphertext and showing the commitment to
the voter, which is the option she will choose, the chance of cheating without being
detected is of 1

2
. It is encouraged that voters perform this audit several times in

order to improve this probability.

As explained for the case of the Benaloh’s scheme, audited ciphertexts are not
cast to prevent the voter from being able to sell her vote, but the voting options are
encrypted again with new randomness after the audit.

The voter is able to check that the vote she cast was accepted by the remote
voting server by checking that the hash or fingerprint, which the voting device
used to commit to a generated ciphertext, matches one entry of the bulletin board.
Depending on the Helios variant, ciphertexts may be published alongside the voter’s
identifier, an alias, or no identifier at all. Also, hashes may be published instead of
the full ballots.

Wombat [8], [19] is a poll-site based dual voting system, in which votes are cast
both electronically and on paper. It has been designed and developed in Israel
with the cooperation of the Interdisciplinary Center in Herzliya and the Tel Aviv
University, and has been used in student and on party elections.

The system works as follows: after being identified by the poll-worker, voters
enter a private booth where they use a voting device equipped with a touch screen,
a CPU, and a printer to cast their vote. After the voter finishes selecting her options,
the vote is encrypted by the voting device using a probabilistic encryption scheme
(ElGamal [51]). In order to ensure a strong encryption in front of a malicious device,
the randomness for the encryption is obtained from two different vendor smartcards
connected to the voting device, each one digitally signing a commitment of their part
of the random. The encrypted vote is digitally signed by one of the smartcards, and
then a ballot divided in two regions is printed: one region contains the cleartext
options (this is the physical vote), and the other contains a barcode representing the
signed ciphertext (and the signed commitments to the random values) (this is the
electronic vote). The voter is then allowed to either cast or audit the vote.

In case the voter decides to cast the ballot, it is marked as to be cast by the
printer. Then, the voter folds the ballot in such a way that the cleartext options
are hidden, exits the private booth and provides the ballot to a poll-worker, who
scans the barcode to read the electronic vote. The electronic vote, containing the
signed ciphertext, is verified and uploaded to the electronic bulletin board. Then
the two regions of the ballot are stamped by the poll-workers and stripped apart.
The physical vote is put into a physical ballot box, which is used at a further stage

40 Challenge-or-cast

for making manual recounts to check the correctness of the electronic tally. The
electronic vote is kept by the voter as a receipt. The voter can, later on, check that
her vote is published in the electronic bulletin board, using this receipt. In case it
is not found, the voter can object using the stamped receipt.

If the voter decides to audit the ballot, additional audit information is printed,
namely the randomness used in the encryption, and the ballot is marked to be
audited. The voter can then go to an audit station where she verifies that the
printed randoms match the digitally signed commitments, and that the ciphertext
matches the encryption of the voting options printed in clear, using the printed
randomness. The voter can also use some alternative software (for example, at
some point there was an Android application available for performing this audit,
referentiated in Wombat’s website).

In the counting phase, the votes in the digital ballot box are shuffled and re-
encrypted using a verifiable mixnet [7], prior to being decrypted using a threshold
decryption scheme. The mixed and decrypted votes are published in the bulletin
board, together with the proofs of correct mixing and decryption, so that anyone
can verify the counting process.

VoteBox [111] is also a system designed to be used in poll-sites. In this system,
a set of DREs (Direct Recording Electronic machines), each one containing a local
ballot box, is located in a polling station, interconnected by a local physical network,
forming the Auditorium [112]. Single DREs are not trusted to store the cast votes
in their local ballot box. Instead, every DRE connected to the network broadcasts
every local event to the rest of DREs for storing it, and therefore the system is
robust in the sense that, as far as one DRE remains fair, a record of the events and
votes cast in that poll site is preserved. Moreover, all the events are recorded by the
DREs in the form of hash chained logs which ensure their integrity once they are
stored.

Once a voter finishes her selections in one of the DREs, the vote is encrypted
and broadcast through the network, so that all the DREs store the encrypted vote.
This plays the role of the commitment to the generated ciphertext by the voting
device (the DRE). After that, the voter can choose to either audit her vote or not.
In case of auditing it, the DRE broadcasts the randomness used to perform the
encryption to the rest of interconnected DREs. A network diode is located in the
local network, from which the network traffic can be read but no new traffic can be
inserted. The messages broadcast by the DREs can be read from the output of this
diode, to which an audit station is connected and available for the voters to check
the content of their audited votes using the broadcast randomness. As in the other
schemes, once a vote is audited it becomes spoiled, and the voter is required to cast
a new vote.

The recorded-as-cast property is ensured by the broadcasting of any cast vote to
all the DREs in the Auditorium network, as well as for the hash chain of log events

Chapter 2. Individual verifiability 41

recorded by each DRE. As far as one DRE remains honest, evidences are preserved
of the votes cast by the voters.

STAR Vote [14] is a new proposal for poll site voting, which has emerged from a
collaboration between several academics and the Travis County (Austin, US) Texas
elections office, which currently uses a DRE voting system and previously used an
optical scan voting system. The design of the system is similar to VoteBox in the
sense that all the DREs in a polling place are networked together. A controller
station manages the DREs.

The voting process is the following:

• Registration: A poll worker identifies the voter and her ballot model and
precinct. After identification, the poll worker marks the voter in a paper /
electronic pollbook and prints a sticker which can be scanned by the controller
station. The controller scans the ticket to determine the ballot model and
precinct of the voter. Then it prints a random 5-digit code, which is unique
for the whole election in that polling station, with which the voter can access
a DRE to proceed to make the selections on her ballot.

• Voting: the voter marks her choices in the ballot and, after confirmation, a
ballot is printed. The printed ballot has several parts: (1) a paper ballot
containing a human-readable summary of the voter’s selections and a random
serial number, and (2) a receipt for the voter that identifies the voting termi-
nal used, the time of the vote, and a short (16-20 character) hash code that
serves as a commitment to the vote without revealing its contents. The voter
reviews the printed record to verify her selections, and she is presented with
two options: cast the ballot, or challenge it.

In case the voter decides to cast the ballot, she introduces the paper ballot
summary in the ballot box, which scans the serial number and communicates
it to the controller. In this way, the controller keeps a record of which ballots
have been stored in the ballot box and which not. An electronic ballot is not
included in the tally unless the corresponding paper ballot has been entered
in the ballot box.

In case the voter decides to audit her ballot, she indicates as such to a poll
worker, who scans the serial number in order to notify the controller that
this ballot has been spoiled (and therefore will not be included in the tally).
Instead, it is decrypted and published after the end of the election. The original
printed ballot therefore corresponds to a commitment by the voting machine.
Anyway, the voter can take home her receipt.

• Counting: at the end of the election, the encrypted votes are posted on the
bulletin board. Then they are homomorphically aggregated and a threshold
decryption scheme, in which a subset of the election authorities is required to
participate, is used to decrypt the result. The decryption generates proofs of
correct computation which are also posted on the bulletin board. Aditionally,

42 Verifiable Optical Scanning

ballots which were selected for audit by the voters are individually decrypted.
The cleartexts, as well as proofs of correct decryption, are also posted on the
bulletin board.

At home, voters can check that the process has been executed correctly: the
receipt they took home contains a hash of their vote and they can check that
their votes are present on the public bulletin board. Additionally, voters can
check that the decryption of the spoiled ballots outputs the expected voting
options in plaintext.

Paper records are kept in the local election office so that they can be used in
case of a failure on the electronic records, or for performing manual recounts.

Risk limiting audits [117] are performed by randomly selecting paper ballot
summaries and decrypting the corresponding electronic ballot, in order to
check that they match and provide software-independent evidence of the elec-
tion result. The SOBA protocol [21] is used for its simplicity and due to the
fact that it mitigates the risk of breaking the voters’ privacy by decrypting
individual votes.

2.3 Verifiable Optical Scanning

In several countries, and mainly in the United States, the election modernization
process has been focused on the use of electronic means for counting the votes.
The purpose of electronic counting is to obtain faster and more accurate voting
results, while keeping the voting process as similar to traditional voting as possible,
and maintaining the existence of paper records which can be easily audited by the
voters and be used to make parallel recounts.

Usually, optical scanners are used to digitize the ballots marked by the voters
and proceed to the electronic count. Paper ballots therefore contain bullets which
the voters are required to fill in for their selections, and aligning marks which help
ensuring the correctness of the scanning process. However, optical scanners are not
invulnerable to attacks [123], misconfigurations, or poor detection of unclear voter
selections. Several protocols have been proposed for voting schemes with optical
scanning, in which the voter is provided with means to verify that the contents of
their scanned ballots match their selections. Since the voters can ensure that their
votes are cast-as-intended by simple inspection of the marks in their paper ballot,
this verification provides voters with the assurance that their votes are recorded (by
scanning them) as cast.

Prêt-à-voter was initially proposed by Peter Ryan in [106], and since then it
has become a case of study with improvements [38] and adaptations to work with
multiple configurations: [108] (ElGamal encryption with re-encryption mixnets),
[107](Paillier encryption with homomorphic tally), [48] (Prêt-à-voter providing ev-
erlasting privacy). The system uses special ballots, which are filled by hand by the
voters and passed through an optical scanner to detect the marks and compute the
election result electronically. These special ballots have the particularity that they

Chapter 2. Individual verifiability 43

can be used by the voters to check that their votes have been properly recorded and
tallied by the system.

These special ballots are divided in two detachable halves. The left half of the
ballot contains candidate names in a radomized order, and the right hand contains
corresponding boxes where the voter has to put her mark, as well as encrypted
information (also called the onion), that will enable the system to reconstruct the
candidate order, so that a mark can be related to an election choice. In the voting
phase, the voter removes the left half after making her selections and enters the
remaining right half into the optical scanner. The right half also serves as a take-
home receipt for the voter, after being stamped for authenticity. The voter’s privacy
is granted by the fact that the candidate ordering for that ballot is destroyed, and
the remaining part contains a checkmark in a random position, and that the link
between the voter and the scanned ballot is removed before decryption. Scanned
votes are published and voters can check that their match their receipts. If voters
detect that their votes do not appear on the public board, or have been modified,
they can use their receipts to challenge the election.

At the end of the election, ballots are mixed and the onions are decrypted in
order to recover the original candidate ordering of each ballot. Given the scanned
marks, this directly translates into voter selections. Finally, the voter selections are
counted and the election results are published. The correct mixing of the ballots
can be verified by several audit methods, depending on the type of verifiable mixnet
that is used. For example, the Randomised Partial Checking verifiable mixnet [73]
can be used, in which the mix-nodes are publicly challenged by the auditors to
reveal partial information about the permutation applied to the ballots. This audit
method ensures that the complete information path for a ballot is not disclosed,
and therefore the voter’s privacy is maintained. Still, statistically the chance that
a cheating mixnet is not detected is low (the probability a malicious mixnet is
undetected when modifying k votes is of 1− 2−k).

Additionally, voters have the chance to audit that the ballots have been properly
generated, and that a mark in a specific position will be counted for the chosen
candidate at the tally phase. In order to do that, voters can choose to audit a ballot
by removing the left-hand side of the ballot, scanning the right side and asking the
system to decrypt the candidate list, to see if it matches the ordering provided by
the left side. Of course, the voter cannot cast an audited ballot, since her privacy
would be broken straightforwardly. An alternative approach is to provide two ballot
sheets: the voter chooses which one is used to cast her vote, and which one is used
to audit. The voter takes home the receipts of both ballots and audits the published
information for both of them.

Scratch & Vote is a poll site voting system where voters can check that their
ballots are correctly scanned and counted, and that they accurately represent their
selections [11]. This system is similar to Prêt-à-voter, however it offers a different
audit process for the ballot construction which can be performed during the voting

44 Verifiable Optical Scanning

phase, instead of waiting until the end of the election. Paper ballots are divided in
two halves in a Prêt-à-voter fashion: one half contains the names of the candidates
in a randomized order. The second half contains the blank space to put the marks
for the selected candidates, as well as a barcode and a scratch surface. The barcode
contains the ciphertexts corresponding to the encryption of the candidates in the
same randomized order than in the first half of the ballot. The scratch surface hides
the randomness of the ciphertexts.

In the configuration, ballots are generated where, for each one, a random per-
mutation of candidates is chosen and the ciphertexts are accordingly encoded in the
barcode. An audit process takes half of the prepared ballots and audits that they
are well-formed, by revealing the encryption randomness and using it to check that
the ciphertexts represent the intended order of the candidates. The audited ballots
are discarded.

During the voting phase, the voter can ask for two ballots, and randomly decide
which is audited and which is used to cast her vote. For the one to be audited, the
voter scratches off the scratch surface and provides it to a poll worker or election
helper, who checks that the ballot is well-formed. That means that the ciphertexts
in the barcode correspond to the encryptions of the permuted candidates, according
to the revealed randomness. The rest is very similar to Prêt-à-voter: For the ballot
to be used to cast the vote, she marks in the second half of the ballot the space
next to the chosen candidate name in the first half, detaches the ballot halves and
provides the second half to the poll worker, who checks that the scratch surface is
intact (in order to prevent vote selling), and removes and discards it. The voter then
enters the remaining piece of the ballot into the scanner, which reads the marks and
the barcode, and takes it home as a receipt. Without containing the order of the
candidates, it cannot be used to prove to a third party how the voter voted. After
that, the voter can check that her vote has been correctly processed and stored by
the system by checking in a public website that her ballot has been published.

During the counting phase, the ciphertext in the barcode corresponding to each
marked position is extracted from each ballot and included in the tally. The sys-
tem uses an homomorphic tally process with the Paillier cryptosystem. Election
authorities perform a threshold decryption to obtain the election result.

Scantegrity is an end-to-end verification system designed to work with optical
scanners already owned by the electoral commissions, in order to take profit of
existing equipment [36].

The system works as follows: during configuration, random code letters are
generated and printed next to each voting choice in the ballot. These random code
letters are different per each ballot, which is identified with a serial number. During
the voting phase, the voter fills in the bullets corresponding to her selected options,
writes-down the code letters assigned to them and introduces the ballot in the ballot
box for being scanned later on. The voter takes home the written code letters and

Chapter 2. Individual verifiability 45

the ballot serial number.

At the end of the election, the images of the scanned ballots are used to retrieve
the code letters next to the areas detected as filled bullets (that is, the voter selec-
tions), and then such code letters are published next to the serial number of each
scanned ballot. The voters can check that the code letters next to their ballot’s
serial number correspond to their selections by checking them with the values they
wrote down during voting. Without the ballot, the code letters cannot be used to
prove the vote content to a third party. Therefore, voters can delegate their verifica-
tion without breaking their privacy. In case a voter detects that a code letter for a
non-selected option, linked to her ballot’s serial number, is published, she can object
and a dispute-resolution process is started to determine if there was a mistake on
the scanning process or if the voter wrote down an incorrect code letter.

A switchboard with a secret permutation is used during configuration in order
to assign random code letters to regions of each ballot (i.e., voting choices). A com-
mitment of the switchboard is published, and at the end of the election it is used
to verify that the result of the tally corresponds to the voting options represented
by the published code letters of the cast votes. The verification of the switchboard
is done in two phases: before the election, auditors randomly choose half of the
ballots, for which the connection of voting options - code letters with the switch-
board is publicly revealed, in order to check the correspondence with the printed
ballots. After that, these ballots are destroyed. The switchboard is composed by
two connected permutation circuits. At the end of the election, auditors challenge
the switchboard to reveal partial information of the permutation for each ballot (as
in [73]), and it can be checked that the revealed information corresponds to the
published commitments. This audit, together with the audit in the configuration
phase, ensures that with high probability the printed ballots have been correctly
generated.

Punchscan Scantegrity is very similar to an early proposal by Chaum, called
Punchscan [96]. In Punchscan, ballots are composed by two layers: the top layer
contains the questions and candidates, as well as a randomized correspondence with
code letters. The layer below contains the same code letters but with a different
randomization. Holes in the top layer allow one to see the code letters in the layer
below. When the voter wants to cast a vote, she makes a circle on the border of
the hole, through which the code corresponding to her selected candidate is shown
with a thick pen, in order to mark both sheets. Then, she decides which layer she
keeps and which layer she destroys. The layer kept by the voter is scanned, and then
taken home as a receipt: note that one layer contains candidates, code letters, and a
marked position, and the other layer contains a marked code. By keeping one layer,
the voter cannot prove to a third party how she voted. At the end of the election,
code letters corresponding to the voter receipt are decrypted and published, so that
the voter can check them and be sure that her vote was correctly recorded.

Similarly to Scantegrity, audits are performed for ensuring that the two-layered

46 Verifiable Optical Scanning

ballots are well-formed: configuration audits allow one to check test ballots and
ensure that the scanned and then decrypted codes represent the intended selections.
Post-election audits from commited configuration data allow one to statistically
check that the randomizations used for assigning code letters to voting options in
the two-layered ballots were correct and yielded to the intended voting options.
Thanks to the fact that the voter chooses which layer she keeps, a modified ballot
which passes the configuration audit has a 50% chance of being detected.

Scantegrity II [35] is an evolution of Scantegrity in which confirmation codes
assigned to voting options in the ballot are not visible a priori. This is intended to
ease the dispute resolution process. Instead, voters use special pens for marking the
bubbles on the ballot beside their selected candidates. Then the confirmation codes
for such candidates, printed with secret ink, are revealed and the voter marks them
down in a receipt to take their to home. The marked ballot is passed through the
scanner, which reads the marks but not the confirmation codes. Voters are allowed
to ask for audit ballots: poll workers provide them with two ballots, from which the
voter selects one to vote, and one to audit. All bubbles on the ballot to audit are
marked in order to reveal all the codes. The voter can take the audited ballot to
home.

At the end of the election, as in previous systems, scanned marks in the ballots are
transformed into confirmation codes using a switch table with a secret permutation,
the commitment of which was published during configuration. The confirmation
codes are published and the voter can check that they correspond to those in the
receipt (corresponding to her selections). Similarly to previous systems, auditors can
check that the election result is generated from the voters’ selections corresponding
to the published codes, and that the codes in the ballots correspond to the indicated
options, by using a combination of audit of test ballots at the configuration phase,
and a cut-and-choose scheme for partially revealing the permutation of codes to
voting options at the end of the election. The permutation is entirely revealed for
the case of audit ballots.

Confirmation codes are not published per ballot, but per contest, using the so
called contest partitioning technique [97], in order to mitigate the chance of privacy
attacks based on voting patterns (i.e., the Italian attack consists on giving a very
particular ordering of choices, or selecting unpopular candidates, in order to be able
to identify a vote, even after a mixing process has been executed).

The system was used in the Municipal Elections of the city of Takoma Park
in Maryland, United States, in 2009 [31] and then in 2011 in combination with
Remotegrity.

Remotegrity is a remote voting extension for Scantegrity designed for providing
similar protections to absentee voters as those of voters voting at the polling place.
It was used in Takoma Park’s municipal election in November 2011 [122]. In this
system, remote voters receive the information to vote by postal mail and use it to

Chapter 2. Individual verifiability 47

vote electronically. The intention of this system is to improve in voter privacy and
verifiability, provide resistance against vote selling, and eliminate the time of vote
return, compared to regular voting by postal mail. The voter interacts with the
system in a similar way than in pollsterless or code voting schemes, by introducing
the codes for the options she chooses in the voting device.

Before the election, voters receive by mail a ballot package containing two parts:
a paper ballot, which is a Scantegrity II ballot containing a serial number VoteSerial
and a set of random short confirmation codes, one per each candidate. In Scantegrity
II, the confirmation codes are printed with invisible ink and revealed when the voter
marks a particular candidate with a special pen. In order to avoid sending those
specific pens by mail to the voters, in Remotegrity confirmation codes are already
present in the ballot (which makes no possible dispute resolution in case a wrong
confirmation code is published after the voter casts the vote). The second part is
the Remotegrity authorization card, containing a serial number AuthSerial, a set of
authentication codes under a scratch-off surface, an acknowledgement code, and a
lock-in code also under a scratch-off surface.

During the voting phase, the voter enters VoteSerial and AuthSerial in the voting
device for authenticating to the platform, together with the confirmation codes from
the Scantegrity II ballot corresponding to her selections. She also scratches the
surface of one of the authentication codes and enters it into the voting device. The
remote voting server checks that the authentication code has not been used before,
and if so, it publishes the signed tuple (VoteSerial, AuthSerial, confirmation codes,
authentication code, acknowledgement code). The voter then checks the tuple values
and, if she agrees, enters the lock-in code.

At the end of the election, the talliers check the tuples for which a valid lock-in
and authentication serial codes have been provided, and only for those entries they
convert the confirmation codes into voting options and include them in the tally. As
in Scantegrity II, a switch table with a private permutation, which can be audited,
is used for converting from voting options to confirmation codes (for generating the
ballots) and otherwise (for obtaining the voting options to compute the tally).

Given that the values in the Scantegrity II ballot and in the Remotegrity autho-
rization card are only known by the voter, neither a malicious device nor the remote
voting server can cast votes on behalf of the voter (or modify them) without being
detected.

vVote is an adaptation of the Prêt-à-voter voting system which has been used in
the November 2014 State elections in the state of Victoria, Australia. The system
[44] is designed to be used in poll-site voting, where voters are assisted by an elec-
tronic ballot marker (EBM) in order to make their selections. In this system, ballots
similar to those in Prêt-à-voter are printed on demand after voters are authenticated.
Specifically, a ballot looks like the left-hand half of a Prêt-à-voter ballot, containing
the randomized list of candidates and a serial number. This serial number connects

48 Verification with codes

the ballot with the encrypted candidate-list permutation (the onion), which is stored
in a central online server.

A voter has the chance of auditing the printed-on-demand ballot instead of filling
it. In such case, the voter has to ask for a new ballot for casting her vote, since
audited ballots cannot be used to cast votes. As in Prêt-à-voter, the audit process
consists on requesting the system to decrypt the onion containing the candidate’s
permutation, so that it can be verified that the ballot is well formed. Printed ballots
contain their own QR code representation, which is scanned by the EBM in order to
present the ballot contents (with the candidate lists unpermuted) in the electronic
user interface, through which the voter navigates accross the ballot and makes her
selections.

When the voter finishes, the EBM prints the equivalent of the right-hand half
of the Prêt-à-voter ballot, containing the voter marks according to the candidate’s
randomized order, and an additional serial number. It also casts the ballot to a
central server. Then the voter can check that both halves have the same serial
number and align correctly, and can even check the signature made on the ballot
contents by the system. In case the validations fail, the vote is cancelled (and the
central server notified accordingly to mark the ballot as deleted). The voter keeps
the list of printed marks as a receipt, and deletes the list of randomized candidates.
Later, the voter can use the receipt to check that her vote has been correctly recorded
in the platform.

Finally, the ballots are passed through a verifiable mixnet (RPC [73]) and de-
crypted. The election results and cryptographic proofs are published, so that they
can be publicly verified.

2.4 Verification with codes

Other individual verification mechanisms are based on the comparison of codes re-
turned by the voting server after vote casting, against a set of codes in a code sheet
received prior to the voting phase.

As we have explained in Section 1.2, return codes are one of the functionalities
of Pollsterless systems. The main idea of these systems is the following: the voter
receives, prior to the voting phase, a voting card containing return codes, each
one assigned to one of the voting options in the election. Each voter has in her
voting card a different set of return codes. The voting card contents are secret and
assumed to be only known by the voters. During the voting phase, the voter casts
an encrypted vote using her voting device to a remote voting server. The remote
voting server, in turn, uses a private key in order to compute, from the received vote,
the set of return codes corresponding to the encrypted voting options present in the
vote. The return codes are sent back to the voter, who checks that they match
those in her voting card assigned to her selected voting options. Given that the
voting device does not know the return codes in the voting card in advance, it has a

Chapter 2. Individual verifiability 49

small chance of showing the expected return codes to the voter in case it encrypted
different contents in the vote. Therefore, the voter detects any manipulation of her
selections.

2.4.1 Code voting

Systems providing return codes are traditionally Pollsterless systems, where voters
enter voting codes (also in the voting card) uniquely assigned to their preferred
candidates, in the voting device. As explained in Section 1.2, these kind of mech-
anisms also provide privacy in front of the voting devices, since they do not know
the correspondence between voting codes and candidates. Moreover, these systems
are suitable to be used for casting the votes from devices without cryptographic
capabilities, since encryption is not required (the voting codes are a pre-encryption
of the candidates). For example, SMS text messages could be used. However, they
pose severe usability issues due to the fact that voters have to enter randomized
codes, specially in complex ballots.

Some examples of these kinds of systems are the following:

SureVote proposed by David Chaum [34], it is the first known proposal for Poll-
sterless voting. In his proposal, voting cards are generated in a verifiable and dis-
tributed way among a set of trustees: each trustee generates a set of voting codes
and return codes corresponding to each voting card, and publishes commitments to
them. A random shift is used to create different sets of codes for each ballot. The
printer combines the set of voting and return codes from all trustees (with a modular
addition), and prints the voting cards. Auditors can randomly choose voting cards
to audit, for which the trustees open the commitments so that the correspondence
between voting and return codes can be checked.

During the voting phase, the voter enters the voting codes assigned to her pre-
ferred candidates into the voting device, which sends them to a remote voting server.
The remote voting server checks that such codes are valid (by comparing them to a
reference value, such as a hash value) and computes a keyed function to generate,
from them, the corresponding return codes, which are sent back to the voter. The
return codes serve to provide the voter with assurance of the correct reception of her
vote at the remote voting server, as well as for authenticating it. At the end of the
election, the trustees jointly encrypt the voting codes and remove the random shifts
(so that the values of the voting codes are unified), then pass the result through a
decryption mixnet, and translate the decrypted voting codes to candidates in order
to obtain the election results.

A drawback of this proposal is that the operations for translating codes to voting
options are not verifiable, and therefore, voters cannot check that their votes were
correctly taken into account for computing the election results.

Other mechanisms similar to Chaum’s proposal are presented in [118] and [78].

50 Verification with codes

Pretty Good Democracy is a code voting based system, which is focused on im-
proving previous proposals by additionally providing recorded-as-cast and counted-
as-recorded verifiability [109], as well as receipt-freeness, which means that the voter
does not obtain a receipt that can be shown to a third party, to prove how she
voted. The main idea is that, in case the correct return code has been provided to
the voter after casting her vote, the voter knows that her vote will be accurately
included in the tally. Receipt-freeness is achieved by the existence of only one return
code (the ack code), which is independent from the voting option selected by the
voter. The remote voting server can only recover a correct return code, to be sent
back to the voter, with the cooperation of a set of trustees. Therefore, assuming
that there is no collusion between the trustees, and that the voter’s codes are kept
secret, the fact that a voter gets the right ack code back indicates that the vote has
been successfully registered on the bulletin board.

During the setup phase, the election public key is generated using a multiparty
computation scheme, and the contents of the code sheets are computed on the fol-
lowing way: the codes are randomly generated, encrypted with randomness equal
to 1, and then passed through a re-encryption mixnet. The results of the mixnet
execution are published in the bulletin board and are publicly verified. Then sub-
sets of encrypted codes are organized for composing the code sheet contents, and
the encrypted codes are decrypted by a set of trustees. Then the set of codes cor-
responding to each ballot is permuted and the permutation is kept in an encrypted
form (similar to the onion in Prêt-à-voter). A random subset of code sheets is
audited to check that they are well-formed.

During the voting phase, the voter authenticates to the system and enters the
code sheet serial number. Then she enters the vote code corresponding to the
candidate she selected. The serial number and the vote code are sent to the voting
server, which checks that the serial number is correct, encrypts the vote code using
the election public key, and posts it on the bulletin board together with a zero-
knowledge proof of plaintext knowledge. This is done to prevent ballot copying - by
which a voter can cast a vote containing the ciphertext generated by another voter
-, and also to prevent the voting server from randomly picking an encrypted code
from those generated during the setup.. Then the trustees check the zero-knowledge
proof and perform a plaintext equivalence test (PET [72]) against the encrypted
codes mixed during the setup. When they find a match, they jointly decrypt the
corresponding ack code field, which is then returned by the voting server to the
voter.

In order to obtain the election results, the indexes and encrypted permutations
(onions) from the shuffled table, for which a match was found with the plaintext
equivalence tests, are passed through a mixnet and decrypted in order to obtain the
original candidate list position to which they correspond, as in the original Prêt-à-
voter scheme.

Chapter 2. Individual verifiability 51

Pretty Understandable Democracy provides a security model for the server-
side which is based on separation of duties, fulfilling the security requirements under
the assumption that two components do not collude [28]. Besides that, the system
is also focused on keeping the scheme as simple as possible. In order to do that,
the scheme uses multiparty computation in several steps of the protocol, and in
fact even the code sheets are computed in several parts, which are provided to the
voters by postal mail: the first part consists on the permuted list of candidates,
which is different for each code sheet. The second and third part consist on voting
codes which are concatenated to cast a vote for a specific candidate. As in Pretty
Good Democracy, only an additional code is included in the code sheet, which is
the answer expected from the voting server. Having different answer codes for the
different candidates is avoided in order to prevent the voter from having a receipt
of how she voted.

The scheme is as follows: during the setup, the trustees generate the election key
pair in a distributed way (for example, with the Pedersen scheme [92]). Exponential
ElGamal is used for having an additive homomorphism. A registration authority
(RA) generates the first part of the code sheets as permutations of the list of can-
didates. Two different voting authorities (VA1 and VA2) generate, in turn, random
codes for the second and third parts of the code sheets, one for each candidate in
the list plus 1 for confirmation. The three parts of the code sheets share a common
index, in order to be put together in the same envelope, for sending them to the
voter. As usual, methods are provided for checking that the pieces of the code sheets
are correctly generated: the three entities commit to the generated code sheet parts
by publishing their encryptions with the election key on the bulletin board. A ran-
dom subset of the generated code sheets is audited by making the trustees jointly
decrypt them, and by checking that the contents are consistent (the index in the
three parts matches). The audited code sheets are discarded.

During the voting phase, a voter sends the code, resulting from concatenating
the second and third parts of the code sheet, corresponding to her choice. This code
is received by the registration authority RA, who divides the code in two parts and
sends each one to the corresponding voting authority. The voting authorities check,
for each part of the code, that it exists in the list of codes they generated. Then each
voting authority obtains the corresponding encrypted candidate name, according to
the position of the received code in the list of commitments, re-encrypts and digitally
signs it, and sends it to the bulletin board, which publishes the information and sends
back a confirmation to the voting authorities. Finally each voting authority retrieves
the corresponding ack code, which is sent back to RA. The RA concatenates both
parts and sends it to the voter. The voter then checks that the received code matches
the ack code in her code sheet.

At the tallying phase, the trustees get the two lists of signed and re-encrypted
candidates from the ballot box (one for each voting authority) and compute the
homomorphic tally of each of the lists separatedly, in a distributed way. After
decryption, they check that the results in both lists match and if so, the election

52 Verification with codes

result is published in the bulletin board, together with zero knowledge proofs of
correct decryption.

The system provides secrecy and integrity (cast-as-intended, recorded-as-cast,
counted-as-recorded), under the assumption that the adversary does not corrupt
more than one entity in the system. The system has been implemented within a
student project as part of the lecture Electronic Voting in the winter term 2013/14 at
the Technische Universität Darmstadt, Germany. Several improvements and mod-
ifications made to the original scheme, as well as a report on the implementation
and the trial experiences, can be found in [88].

2.4.2 Return Codes

These systems combine the use of code sheets with a click & select interface: voters
are not required to enter voting codes at the voting device, but still they receive
codes from the server which they can use to verify that their votes were cast as
intended. These systems emerged from the requirements of a voting system to be
used in Norway.

The Norwegian protocol (2011) In 2009, Norway started a bidding process for
the implementation of a remote voting system to be used in a binding pilot in 10
municipalities in the Municipal Elections of 2011. Verifiability was among the re-
quirements of the project, and particularly the system had to provide a mechanism
for cast-as-intended verification. The Ministry of Local Government and Regional
Development (KRD - the Norwegian acronym), which acts as the electoral man-
agement body in Norway, started a competitive bidding process in which an open
dialogue was established between the vendors and the contractor, in order to refine
the scope and requirements of the solution prior to submitting the final proposal.

During this refinement process, some specific requirements arose for the individ-
ual verification process: the cast-as-intended verification did not have to rely on any
trusted sofware or hardware which could be available to the voters and it had to
be as intuitive as possible. Naturally, an alternative to consider was code voting.
However, it was not an option for KRD due to usability issues, although it was
accepted that voters could check codes returned by the platform.

Vote updating / multiple voting was also a requirement of the solution. Therefore
the codes could not be provided to the voter through the same voting device used
to cast the vote (the voting device could learn good codes, cast modified votes and
still show the good codes). An authentication platform (MinID [2]) commonly used
for online services, some of them from public agencies, was available to be used
by the voting system. The authentication platform used two-factor authentication
with one time passwords (OTP) sent to the users’ mobile phones, whose numbers
were registered on the platform. Therefore, the mobile phone could be used as a
secondary channel for sending the codes to the voter.

Chapter 2. Individual verifiability 53

At the end, the solutions of the two favourites (Scytl [100] and Cybernetica in
collaboration with Helger Lipmaa [66]) were very similar: the system combined a
click & select interface for casting the vote, with the generation of return codes at
the server-side, which were sent back to the voter through the secondary channel
SMS. The voters had received in advance a verification card containing return codes
assigned to their voting options, which they could use to check the codes received
after voting. In case wrong codes were received, the voters could vote again. Only
the last vote per voter was taken into account in the tally process. The counting
process was verifiable thanks to the use of a verifiable mixnet and the generation
of proofs of correct decryption. No bulletin board was set up: multiple voting was
required as an anti-coercion measure and the information of whether a voter had
updated her vote or not, or which votes had passed to the tally process, had to be
restricted to a set of auditors. Moreover, voters could not verify that their votes had
been correctly registered at the voting platform. This functionality was provided in
the improved system used in the 2013 Parliamentary elections.

The winning vendor was Scytl. Here we provide a brief description of their pro-
posed solution for cast-as-intended, which can be found in [100]. The security model
provided by KRD required that a single component could not subvert the election
by either breaking the voter’s privacy or changing the result of the election, so a
segregation of duties approach was followed in order to split the sensitive operations
into two or more components of the platform.

• During the configuration phase, the return codes to be printed in the voting
cards are generated by two isolated machines, which in turn use a secret key to
compute the return codes: the first machine computes partial values of return
codes by applying its secret key to the voting options, and the second machine
computes the final values of the return codes by applying its secret key to each
partial return code. Randomized identifiers are used in each of the machines,
in such a way that the second machine cannot link the final values of the return
codes to the corresponding voting options, and none of the machines can link
the generated contents to a specific verification card or voter.

The return codes and the randomized identifiers are transmitted in an en-
crypted form to the printing service, which is in charge of linking both sets
and printing the verification cards in a two-step process:

– A first printer prints the return codes on the verification cards and seals
them.

– A second printer prints, on the outside of the sealed verification card,
the verification card identifier. This identifier is used to assign a specific
verification card to a voter.

The two secret keys for computing the return codes are installed in two online
servers, the vote collector server (VCS) and the return code generator (RCG),
which participate in the voting phase.

54 Verification with codes

• During the voting phase, the voter enters the verification card identifier into
the voting device and proceeds to make her choices by clicking them. Once the
voter finalizes the process, the voting device generates two kinds of encryptions
of the voting options, using the ElGamal encryption scheme:

– The first encryption, called the probabilistic one, uses random values to
encrypt the voter’s selections.

– The second -deterministic- encryption, uses a fixed exponent for the en-
cryption of each voting option, which is computed as a combination of
the verification card identifier, the voting option value, and the secret key
owned by the VCS.

Zero-knowledge proofs are used to link both encryptions and prove that they
correspond to the same voting options.

The two ciphertexts and the zero-knowledge proofs are sent to the VCS, which
performs some validations and forwards them to the RCG. The RCG in turn
performs some validations and uses its secret key to compute return codes
from the deterministic encryption values. The return codes are sent to the
voter through the SMS channel, and the probabilistic encryption is stored at
the VCS for further counting.

• At the counting phase, the encrypted voting options in each vote are mul-
tiplied together, in order to get a single ciphertext per vote. The ciphertexts
are passed through a verifiable mixnet [99] (also designed by Scytl) prior to
being decrypted. After decryption, the obtained values are factorized in order
to recover the prime factors representing the individual voting options.

Kristian Gjøsteen proposed a modification of this protocol in order to increase
the efficiency of the system. The drawback of the solution is that the two online
servers VCS and RCG share the election private key. Therefore a collusion of both
servers could systematically decrypt all the votes as cast by the voters. The modi-
fied protocol was the one that finally was implemented and used in the Norwegian
elections in 2011. Details of the protocol and of the set up can be found in [60],
[101], [61].

While at a high level the configuration process is very similar to the previous one,
during the voting phase the voting device is only required to perform one encryption
(the probabilistic one) of the voting options selected by the voter. The encrypted
vote is sent to the first server, the VCS, which removes part of the encryption layer
with its part of the election private key. Prior to this, it applies a secret exponent,
different for each voter, to the received ciphertext. The result of this exponentiation
and partial decryption is forwarded to the RCG, which uses the second part of the
election private key to remove the remaining part of the encryption layer put by
the voting device. The result is the set of voting options exponentiated to a voter-
dependent exponent only known to the VCS. The RCG then uses a secret key to
compute, from these values, the return codes to be sent back to the voter.

Chapter 2. Individual verifiability 55

A more detailed explanation on how this mechanism for generating the return
codes works is provided in Section 4.2. Some of the implementation details and
usability improvements have also been applied to the system used in Neuchâtel, and
therefore they are explained in Chapter 4.

The Norwegian protocol (2013) The Norwegian system was used for the sec-
ond time in the 2013 Parliamentary elections. Besides operative and performance
improvements, an interesting feature that was introduced was recorded-as-cast ver-
ifiability: at the end of the voting process, voters received a voting receipt (which
consisted of a hash of their cast vote), digitally signed by the two servers VCS and
RCG. A bulletin board was put in place in a publicly accessible GitHub repository,
which stored the history of the bulletin board files, where the hash of the votes stored
by the VCS where periodically published. In the new version, the RCG also stored
the votes in a local ballot box, and therefore discrepancies between the contents of
both ballot boxes and the bulletin board could be resolved in case one of the two
components was malicious.

Figure 2.2: Norway 2013 scheme

2.5 Hardware-based verification

Some individual verification methods rely on the voter having access to trusted
hardware. While this approach may seem impractical, there are some specific cases
where this approach is very interesting: the first of such cases is Switzerland. As a
country with a long tradition in direct democracy, voters participate in many voting
processes during the year, and therefore they could take advantage of dedicated
hardware for voting. The second case is Estonia: this country has a widely deployed

56 Hardware-based verification

electronic administration system, and citizens are used to performing the majority
of their transactions with the goverment in an electronic way. Specifically, citizens
in Estonia have been able to vote electronically from their homes since 2005. Voters
already have trusted devices (smart cards) for performing some transactions with
the administration or with the banks.

E-Voting protocol using Smart Cards: in [77], Helger Lipmaa proposes a
remote voting scheme based on smart cards that perform some basic cryptographic
computations, which could be suitable for use in future evolutions of the Estonian
electronic voting system. The scheme uses smart cards with embedded keyboards
and LCD screens for interacting with the voter.

The described voting process is as follows: prior to connecting the smart card
to the voting device, the voter enters the number assigned to her candidate using
the smart card keyboard, which generates a random verification code and shows it
to the voter on the LCD display. The voter writes down the code and connects
the smart card in the voting device. The smart card then encrypts the candidate
number using the election public key, and the verification code together with the
voter identity, using the remote voting server’s public key. The two ciphertexts are
digitally signed and passed to the voting device, which sends them to the remote
voting server. The remote voting server checks the signature and stores both signed
ciphertexts. It also decrypts the verification code and the voter identity, checks that
the voter identity matches the owner of the signature key pair, and sends back the
decrypted verification code, digitally signed, to the voter device. The voter checks
that the received verification code corresponds to that shown by the smart card in
advance. If so, she knows that the vote prepared by the smart card, which contained
her selections, has been successfully received at the server. The comparison with the
received verification code could also be done directly by the smart card. Additional
controls have to be put in place in order to ensure that the votes received by the
server are properly stored and tallied.

Du-Vote [64] uses a hardware token which, in collaboration with the voter device
and the voting server, creates the encryption of the voter’s selections without none
of them knowing which is the cleartext value.

During the registration phase, voters are assigned hardware tokens with unique
embedded keys, which are registered by the voting server.

During the voting phase, the voting device prepares a code page by computing
two encryptions for each candidate and showing the codes derived from them in
two different columns. Additionally, a ballot identifier which is the commitment of
the voting device to the set of generated ciphertexts is presented in the code page.
The voter chooses one column at random and enters all the codes in that column
in the hardware token. Then it enters the code in the other column corresponding
to the selected candidate. The hardware token uses its embedded key to compute
a transformation of the codes entered by the voter (concatenated), and shows it

Chapter 2. Individual verifiability 57

to her, who in turn enters it into the voting device. The voting device sends the
entered value, together with the generated ciphertexts, to the voting server.

The server checks that the ciphertexts provided by the voting device yielded
the correct codes and posts the vote in the bulletin board, together with the ballot
identifier computed as the hash of the ciphertexts. The voter can check that the
ballot identifier presented in her voting device’s screen is present in the bulletin
board. The server then reverts the transformation done by the hardware token, in
order to recover the codes column selected by the voter, and the code corresponding
to her selection. For the whole column selected by the voter, the server asks the
voting device for the randomness used for computing the corresponding ciphertexts,
and checks that they were correctly computed. Then it re-encrypts the selection
code and posts it in the bulletin board. The re-encrypted selections are processed
by a mixnet or an homomorphic tally system, in order to recover the election results
at the end.

2.6 Decryption-based verification

Finally, there are remote electronic voting systems in which the individual verifica-
tion is based on decrypting the vote stored in the remote voting server, in order to
check that the content is the expected. Two systems based on this kind of verifica-
tion have been recently used in real binding elections.

The Estonian voting system has been used from 2005 for binding elections, and
has recently been extended with a functionality for cast-as-intended and recorded-
as-cast verification [67]. This functionality has been made available for the first time
at the 2013 Estonian local municipal elections, and subsequently being used in the
2014 European Parliament elections, and 2015 Estonian Parliamentary elections.

The verification system is based on a smartphone application, which the voters
can use to check the content of the votes stored in the remote voting server: after
the vote is cast, the voting device shows on the screen a QR code containing the
identifier of the vote and the randomness used for the encryption. The voter can
use an application on her smartphone to read these values. The smartphone then
requests the encrypted vote from the remote voting server, using the read identifier.
Finally, the smartphone brute-forces the encryption of the vote downloaded from
the server (using the randomness read from the voting device), and shows the voter
the underlying voting option. The voter can re-vote in case the shown voting option
is not the one she selected. This verification is time-limited in order to mitigate vote
selling threats.

iVote 2015 the iVote 2015 system has been recently used in the State General
Election of the Australian state of New South Wales (NSW) [68]. The iVote sys-
tem was originally introduced in 2011 for facilitating the voting process for vision-
impaired voters, those who could not visit a polling place due to a disability, and

58 Decryption-based verification

those who lived more than 20 km away from the polling place. In 2015 the sys-
tem was improved with a new voting protocol, which provided cast-as-intended and
recorded-as-cast verification properties. The system is based on challenging the
server to decrypt a voter’s vote upon request.

Although the architecture of the solution is rather complex, three main compo-
nents play a role in the cast-as-intended and recorded-as-cast verification: the voting
device, the Vote Encoder (VE) and the Verification Server (VS). While the software
being executed at the voting device and the VE was developed by Scytl (as well as
the ballot box processing and vote decryption software), the software executed by
the VS was developed by an independent entity contracted by the NSW Electoral
Commission.

Figure 2.3: iVote 2015 scheme

During the voting phase, the voting device encrypts the voter choices in two
ciphertexts, related by zero-knowledge proofs. One ciphertext is encrypted using the
election public key and stored at the VE. At the end of the election, this ciphertext
is decrypted by the electoral board members and used to obtain the election results.
The other ciphertext is encrypted with a random voting receipt which is locally
generated at the voting device, and shown to the voter after the two ciphertexts and
the proofs are sent to the VE. After verifying the NIZK proofs, the VE forwards this
second ciphertext to the VS, which processes and stores it. Any time after casting
her vote, the voter can call the VS using a dual-tone multi-frequency (DMTF) phone
and, after authenticating, enter her voting receipt. The VS uses the voting receipt to
decrypt her vote and provides the decrypted voting options to the voter, who checks
if they match those she selected. If not, the voter can re-register to obtain a new
voting credential and cast a new vote. Coercion or vote selling was not considered
a risk in that election.

The NIZK proofs generated by the voting device prove that both ciphertexts
(the one counted and the one audited) have the same content inside. Besides that,
at the end of the election the decrypted votes are compared with the values stored
in the Verification Service during the voting phase, in order to detect any mismatch.

Chapter 3

Electronic Voting Model

3.1 Introduction

In this chapter, we present a generic model for an electronic voting protocol, which
will be used to describe the protocols in Chapters 4 and 5. Both protocols are
intended to be used in electronic voting systems, either remote or not (poll-site),
and are focused on providing a method for cast-as-intended verification. Although
the approaches followed in both protocols for providing such verifiability are quite
different, both have in common the following characteristics: after the ballot is
created by the voting device, the voter receives a proof of its content, which she uses
to verify that it indeed corresponds to her selections. Once she has verified such
proof, the voter proceeds to confirm that she agrees with the created ballot. Only
confirmed ballots will be taken into account during the tally phase.

3.2 Protocol Syntax

In this section we define a general syntax for the voting protocols proposed in the
following chapters, which is intended to reflect the functionalities of systems in which
the voter confirms a ballot after she has verified its content.

We use as a basis the syntax defined in [116] and [41] for analyzing the properties
of the Helios voting protocol [10], in which a verification step for the tally process
and a registration step for providing voters with credentials to cast their votes (for
example for signing them, like in the Helos-C variant [41]) are added, with respect
to prior works [24] and [25]. [41] also adds a specific algorithm for the voter verifying
that her vote is on the Bulletin Board. However, none of them take into account
the cast-as-intended verification functionality provided in Helios, so we add it to our
definition in the form of proof generation and audit algorithms. We also add extra
algorithms in order to include a ballot confirmation phase.

The following are the participants of the voting protocol:

- Election Authorities : they are in charge of the configuration of the election
and of tallying the votes to produce the election result.

59

60 Protocol Syntax

- Registrars : they register the voters and provide them with information for
participating in the election.

- Voter : they participate in the election by choosing their preferred options.

- Voting Devices : they generate and cast ballots given the voting options se-
lected by the voters.

- Bulletin Board Manager : it receives, processes and publishes the votes cast by
the voters in the bulletin board BB.

- Auditors : they are responsible for verifying the integrity of the procedures run
in the counting phase.

The voting protocols to be modeled with this syntax provide proofs of the con-
tent of the generated ballots for cast-as-intended verification. Depending on the
specific scheme, these proofs of content may be generated by different entities. For
example, in the protocol presented in Chapter 4 the proof of content is generated by
the bulletin board manager (the server-side). However, in the protocol presented in
Chapter 5 the proof of content is generated by the voting device prior to submitting
the ballot. In fact, a model for protocols which offer cast-as-intended verifiability
should not discard any of the two variants, and even consider protocols in which
proofs are generated by both entities. Therefore, two different steps for proof gen-
eration and verification have been included in this syntactical definition.

Prior to the definition of the election algorithms, we assume that the list of voting
options V = {v1, . . . , vk} in the election, and the counting function ρ : (V ∪{⊥})∗ →
R, where ⊥ denotes an invalid vote and R is the set of results, have been previously
defined by the electoral authorities.

Voters may use credentials in order to be able to cast their ballots. However,
how the voters obtain and use such credentials is out of the scope of this definition.

The voting protocol consists on the following algorithms:

Setup(1λ) receives as input a security parameter 1λ, it generates and outputs
an election public/private key pair (pk, sk), a global audit key pair (pka, ska)
and global confirmation key pair (pkc, skc). The public outputs (pk, pka, pkc)
are input to the next algorithms although not specified.

Register(1λ, id, ska, skc) takes as input a security parameter 1λ, a voter identity
id, and the private keys ska, skc. It outputs the pairs of public/private voter
voting data (P id

v , Sid
v), audit data (P id

a , Sid
a), and confirmation data (P id

c , Sid
c).

CreateVote(id, {vj1 , . . . , vjt}, P id
v , Sid

v) takes as input the voter identity id, a
set of voting options {vj1 , . . . , vjt} and the voter’s public and private voting
data (P id

v , Sid
v). It outputs a ballot b and the encryption data r̃.

Chapter 3. Electronic Voting Model 61

AuditVote(b, r̃, {vj1 , . . . , vjt}, P id
v) takes as input the ballot b, the encryption

data r̃, the set of voting options {vj1 , . . . , vjt} and the voter public voting data
P id
v . It outputs 1 if the verificaton is positive, or 0 otherwise.

ProcessBallot(BB, id, b) receives as input a bulletin board BB, a voter identity
id and a ballot b. It outputs 1 in case all the operations succeed, 0 otherwise.

CreateBallotProof(b, ska, P
id
a) takes as input the ballot b, the global audit pri-

vate key ska and the public voter audit data P id
a , and outputs a proof of

content σ. In case of any error, it returns ⊥.

AuditBallotProof({vj1 , . . . , vjt}, σ, Sid
a) takes as input the set of voting options

{vj1 , . . . , vjt}, the proof of content σ and the voter private audit data Sid
a . It

outputs 1 if the verificaton of σ is positive, or 0 otherwise.

Confirm(id, b, Sid
v , S

id
c , P

id
c , ska) receives as input a voter identity id, a ballot

b, the voter’s private voting data Sid
v , the voter’s private confirmation data

Sid
c , the voter public confirmation key P id

c and the global audit private key
ska and . It outputs a ballot confirmation Cb and the auxiliary data σ′ in case
of success, or ⊥ in case of error.

ProcessConfirm(BB, id, Cb) receives as input a bulletin board BB, a voter iden-
tity id and a ballot confirmation Cb. It outputs 1 in case all the operations
succeed, 0 otherwise.

VerifyVote(BB, id, b) takes as input a bulletin board BB, a voter identity id

and a ballot b. It outputs 1 in case all the operations succeed, 0 otherwise.

Tally(BB, sk) takes as input the bulletin board BB and the election private key
sk. It outputs a result r ∈ R and a proof Π of the tally correctness, or ⊥.

VerifyTally(BB, r,Π) takes as input the bulletin board BB, the tally result r
and the proof Π of correct tally. The output is 1 if the verification succeeds,
0 otherwise.

The algorithms execution is organized in the following phases:

Configuration phase: in this phase, the election authorities set up the public
parameters of the election such as the list of voting options {vi}ki=1 ∈ V and the
result function ρ. They also run the Setup algorithm and publish the resulting
election public key pk, the global audit key pka, the global confirmation key pkc and
an empty voter list ID in the bulletin board. The election private key sk is kept in
secret by the electoral authorities, the global audit and confirmation private keys
(ska, skc) are provided to the registrars, and the private key ska is also provided to
the bulletin board manager.

Registration phase: in this phase the registrars register the voters to vote in
the election. For each voter with identity id, the registrars use the global audit
and confirmation private keys (ska, skc) to run the Register algorithm. The list ID is

62 Protocol Syntax

updated with id and the tuple (id, P id
v , P id

a , P id
c) is published in the bulletin board.

The public/private data pairs (P id
v , Sid

v), (P id
a , Sid

a), (P id
c , Sid

c) are provided to the
voter.

Voting phase: this phase consists of several steps:

1. The voter provides (id, P id
v , Sid

v) to the voting device, as well as a set of selected
voting options {vj1 , . . . , vjt} ∈ V . The voting device then runs the CreateVote
algorithm and produces a ballot b and the encryption data r̃.

2. The voter runs the AuditVote algorithm to check that the content of the created
ballot is the expected, using the generated values (b, r̃), as well as the voter
public voting data P id

v and the set voter selections {vj1 , . . . , vjt}.

3. The ballot b is sent to the bulletin board manager together with the voter
identity id.

4. Upon reception of (id, b), the bulletin board manager runs the ProcessBallot
algorithm. In case the result is 1, the process continues and the bulletin board
manager updates the bulletin board with the pair (id, b). Otherwise, the
process stops and the voting device receives an error message.

5. The bulletin board manager runs the CreateBallotProof algorithm, using the
voter public audit key P id

a corresponding to the voter identity id, which is
published in the bulletin board, and the global audit private key ska. In case
the execution is successful, it sends back to the voting device the proof of
content σ, which is shown to the voter. Otherwise, the process stops and the
voter receives an error message.

6. The voter executes AuditBallotProof using the voter private audit key Sid
a , her

selections {vj1 , . . . , vjt} and the received proof of content σ. In case the result
of AuditVote and of AuditBallotProof were 1 (which means both verifications
are satisfactory) the voter provides her secret confirmation key Sid

c to the
voting device, which interacts with the bulletin board manager to generate
the ballot confirmation Cb and the auxiliary data σ′ by running Confirm. The
ballot confirmation is sent to the bulletin board manager together with the
voter identity id, while the auxiliary data σ′ is kept by the voting device.

7. The bulletin board manager then runs ProcessConfirm using as input the re-
ceived ballot confirmation Cb. In case the operation is successful (the output is
1), it updates the corresponding entry in the bulletin board to add Cb and the
success of the operation is notified to the voter. Otherwise, an error message
is sent.

From this point, the voter can check that her vote has been successfully posted
on the bulletin board by running the VerifyVote algorithm.

Counting phase: in this phase, the election authorities use the election private
key sk to run the Tally algorithm on the contents of the bulletin board. The obtained

Chapter 3. Electronic Voting Model 63

result r and the proof Π are posted in the bulletin board. The auditors then run
the VerifyTally algorithm. In case the verification is satisfactory, the election result
is considered to be correct. Otherwise, an investigation is opened in order to detect
any manipulation that could lead to a corrupted result.

A voting protocol as defined above is correct if, when the four phases are run
and the participants are honest, the result r output by the Tally algorithm is equal
to the evaluation of the counting function ρ over the voting options corresponding
to the ballots cast by the voters.

3.3 Security Definitions

In this section we define the notions of ballot privacy, strong consistency, strong
correctness, cast-as-intended verifiability and coercion-resistant cast-as-intended for
an electronic voting scheme following the described model. We take as a basis the
definitions of ballot privacy, strong consistency and strong correctness from [23] and
then adapt them to the particularities of our model. In the same way, the definition
of cast-as-intended verifiability is based on the one provided in [52]. The definition
of coercion-resistant cast-as-intended is a new apportation.

3.3.1 Trust model

First of all, we introduce the trust assumptions we make on the scheme regarding
privacy and integrity:

A first necessary assumption is to suppose that the voter behaves properly when
voting for her preferred candidates. We assume the voter makes the selections
according to her intention and follows the protocol in the correct way. We also
assume the voter follows the audit processes indicated and objects in case of any
irregularity.

In order to simplify the analysis, we consider that the election authorities, and
the registrars as well, behave properly in the sense that they generate correct and
valid information, and that they do not divulge secret information to unintended
recipients. In the protocols presented in next chapters, measures that can be applied
to weaken this assumption are explained.

From the point of view of privacy, the voting device is trusted not to leak the
randomness used for the encryption of the voter’s choices. While this assumption
may seem too strong, it is in fact needed in any voting scheme where the voting
options are encrypted at the voting device (no pre-encrypted ballots are used) and
the vote is not cast in an anonymous way. However, from the point of view of
integrity, we consider that a malicious voting device may ignore the selections made
by the voter and put other content in the ballot to be cast.

64 Security Definitions

Audit devices, when used, are trusted both from the point of view of privacy
(they are assumed not to divulge private information) and from the point of view of
integrity (they are assumed to honestly transmit the verification result to the voter).

The bulletin board manager is trusted to accept and post on the bulletin board
all the correct votes and confirmations. No assumptions are done in the case of
privacy.

Finally, auditors are assumed to honestly transmit the result of their verification.
However, they are assumed to be curious and try to find out the content of voter’s
votes from the information they get.

3.3.2 Ballot privacy

Informally, ballot privacy captures the idea that a secure voting protocol does not
reveal any information about the votes cast by the voters, besides what is leaked
from the result of the tally. We base our definition on the one presented in [23].

The definition is given by means of two experiments which an adversary has to
be able to distinguish. In each experiment the adversary has indirect access to a
ballot box which receives the ballots created by honest voters, as well as ballots cast
by the adversary itself on behalf of corrupted voters. In the case of honest voters,
we let the adversary choose two possible votes which they will use to create their
ballots. Which vote is used to cast a voter’s ballot that goes to a specific ballot box
depends on the experiment that is taking place.

At the end of the experiments, the adversary is presented with the result of
tallying the ballot box. As noted in [23], revealing the true tally in each experiment
would easily allow the adversary to distinguish between both of them, in the case the
adversary chose votes for honest voters that lead to different tally results. Therefore,
the same tally result is presented to the adversary, regardless of the experiment.
When necessary, a simulation algorithm is used in order to provide proofs of tally
correctness.

The notion of ballot privacy is formalized via the following experiment Exppriv,β
A,V ,

parameterized by the set of voting options V and the random coin β that determines
the experiment that takes place, and therefore which bulletin board A is presented
with:

1. Setup phase: The challenger C sets up two empty bulletin boards BB0

and BB1 and runs the Setup(1λ) algorithm to obtain the election key pair
(pk, sk), the global audit key pair (pka, ska) and the global confirmation key
pair (pkc, skc). C sets up the empty list of voters ID, provides (ska, skc) to A
and publishes (pk, pka, pkc), as well as the lists of identities (ID, IDc) on both
bulletin boards (BB0,BB1). A is given access to BB0 when β = 0 and to BB1

when β = 1.

Chapter 3. Electronic Voting Model 65

2. Registration phase: The adversary may make the following query:

• ORegister(id): A provides an identity id 6∈ ID. C runs Register(1λ, id,
ska, skc), keeps the voter private voting and audit data (Sid

v , S
id
a) and

provides the private confirmation data Sid
c to A. Then it adds id to ID

and posts the tuple (id, P id
v , P id

a , P id
c) on the bulletin boards (BB0,BB1).

3. Voting phase: The adversary may make the following types of queries:

• OVoteLR(id, v0, v1): this query models the votes cast by honest voters.
A provides an identity id ∈ ID, id 6∈ IDc, and two possible votes v0, v1
∈ V . The challenger C does the following:

– It executes CreateVote(id, v0, P
id
v , Sid

v) and CreateVote(id, v1, P
id
v , Sid

v)
which produce the ballots b0 and b1, and the encryption data r̃0, r̃1

respectively.

– Then it executes ProcessBallot(BB0, id, b
0) and ProcessBallot(BB1, id,

b1). If both algorithms return 1, the bulletin boards BB0 and BB1

are updated with (id, b0) and (id, b1) respectively. Otherwise, C stops
and returns⊥. Note thatA can execute CreateBallotProof(b, ska, P

id
a)

to get the proof of content σ.

– C executes Confirm(id, b0, Sid
v , S

id
c , P

id
c , ska), Confirm(id, b1, Sid

v , S
id
c ,

P id
c , ska), and outputs the ballot confirmations C0

b and C1
b and the

auxiliary data σ′0 and σ′1. Then it executes ProcessConfirm(BB0, id, C
0
b)

and ProcessConfirm(BB1, id, C
1
b). In case both outputs are 1, the en-

try in each bulletin board (BB0,BB1) for the identity id is updated
with C0

b and C1
b respectively. Otherwise, C stops and returns ⊥.

• OgetVotingData(id): A provides an identity id ∈ ID and C provides
the voter private voting and audit data (Sid

v , S
id
a), and adds id to IDc.

• OCast(id, b, Cb): this query models the votes cast by corrupted voters.
A provides an identity id ∈ IDc, a ballot b and a ballot confirmation
Cb. C executes ProcessBallot(BB0, id, b), ProcessBallot(BB1, id, b), if both
algorithms return 1 it runs ProcessConfirm(BB0, id, Cb) and if the result is
1 it also runs ProcessConfirm(BB1, id, Cb). If the output is 1, both ballot
boxes (BB0,BB1) are updated with the entry (id, b, Cb). Otherwise, C
halts and none of the ballot boxes are updated.

4. Counting phase: The challenger runs Tally(BB0, sk) and obtains the result
r and the tally proof Π, which are provided to A in case β = 0. In case β = 1,
C runs SimProof(BB1, r) to obtain Π∗, and provides (r,Π∗) to A.

5. Output: The output of the experiment is the guess of the adversary for the
bit β.

We say that a voting protocol has ballot privacy if there exists an algorithm
SimProof such that for any probabilistic polynomial time (p.p.t.) adversary A, the
following advantage is negligible in the security parameter λ:

66 Security Definitions

AdvprivA = | Pr[Exppriv,0
A,V = 1] - Pr[Exppriv,1

A,V = 1] |

One of the main differences with the definition provided in [23] is the existence
of the encryption data, which is not shown to the adversary. However, we do give
the adversary the necessary keys to generate proofs of ballot content from the votes
cast by both corrupt and honest voters. Even in this case, the adversary can learn
nothing from the generated proofs. Another difference is that a confirmation has to
be additionally posted in the bulletin board so that a vote from a specific voter is
taken into account in the tally. For understandability of the scheme, the confirmation
is always added to the ballots in the bulletin board.

3.3.3 Strong Consistency

Strong consistency is a property that guarantees that the result of tallying a bul-
letin board corresponds to the result of applying the counting function ρ over the
underlying plaintexts of the votes cast by honest voters. An extraction algorithm
Extract, is defined, which on input of a ballot and a private key, outputs a cleartext
vote or ⊥ in case of an invalid vote. Strong consistency is required in order to ensure
that the tally algorithm is correct and that the output result directly reflects the
content of the ballots posted on the bulletin board. It is also required for preventing
leaky tally algorithms: As stated in [23], it prevents an adversary from encoding
instructions in her own ballots, such that the tallying algorithm may leak informa-
tion on the honest votes, or prevent them from being validated, since the extraction
algorithm works locally on each ballot. The extractor algorithm will later be used
in the definition of cast-as-intended verifiability.

The notion of strong consistency is then formalized via the following experiment
Expcons

A,V , parameterized by the set of voting options V :

1. Setup phase: The challenger runs the Setup(1λ) algorithm to obtain the
election key pair (pk, sk), the global audit key pair (pka, ska) and the global
confirmation key pair (pkc, skc). It gives (pk, pka, pkc) and (sk, ska, skc) to A.

2. BulletinBoard: The adversary submits a bulletin board BB.

3. Counting phase: The challenger runs Tally(BB, sk) and obtains the result r
and the tally proof Π.

4. Output: The output of the experiment is 1 if r 6= ρ(Extract(BB, sk)), where
Extract is applied individually to each confirmed ballot in BB. Otherwise, 0 is
output.

A voting protocol has strong consistency if the following premises are satisfied:

• For any (pk, sk), (pka, ska), (pkc, skc) produced by Setup, for any v ∈ V ,
for any voter identity id and for any correctly created pairs of voter data
(P id

v , Sid
v), (P id

a , Sid
a), (P id

c , Sid
c), it is satisfied that Extract(CreateVote(id, v, P id

v ,
Sid
v); sk) = v.

Chapter 3. Electronic Voting Model 67

• There is an algorithm ValidInd such that ProcessBallot(BB, id, b) = 1, Confirm(id,
b, Sid

v , S
id
c , P

id
c , ska) 6=⊥, ProcessConfirm(BB, id, Cb) = 1 implies that ValidInd(id,

b, Cb) = 1.

• Given any set of voting options V , the following advantage is negligible in the
parameter λ:

AdvconsA = Pr[Expcons
A,V = 1],

for a p.p.t. adversary A that returns a ballot box BB composed of ballots b,
such that ValidInd(id, b, Cb) = 1.

Note that strong consistency holds only for confirmed ballots.

3.3.4 Strong Correctness

The strong correctness property requires that the votes of honest voters are consid-
ered valid, even with respect to a ballot box created by the adversary. This property
is used to prevent a dishonest voter from preventing honest voters to vote.

According to the definition in [23], a voting protocol has strong correctness if
the following probability, given Setup(1λ) = (pk, sk), (pka, ska), (pkc, skc)

Pr [(id, v,BB)← A(pk); Register(1λ, id, ska, skc) = (P id
v , Sid

v , P
id
a , Sid

a , P
id
c , Sid

c);
CreateVote(id, v, P id

v , Sid
v) = b; Confirm(id, b, Sid

v , S
id
c , P

id
c , ska) = Cb :

ProcessBallot(BB, id, b) = 0 ∨ ProcessConfirm(BB, id, Cb) = 0)],

is negligible.

We have added several conditions to the original definition, specifically that the
voter has been correctly registered and that ProcessConfirm succeeds given a valid
ballot confirmation. In the original definition, the adversary is restricted to provide
an id such that there is no entry in BB. We also keep this restriction.

3.3.5 Cast-as-Intended verifiability

A voting system is defined to be cast-as-intended verifiable if a corrupt voting device
is unable to cast a vote on behalf of a voter with a voting option different than the
one chosen by the voter, without being detected. Traditionally this verification can
only be performed by the voter, and therefore this property should hold as far as
the voter is honest and follows the protocol rules.

In our definition, we consider an adversary who posts ballots in the bulletin
board on behalf of honest and corrupt voters. In case of honest voters, they follow
the protocol and perform some validations before approving the ballot to be cast.
Corrupt voters provide their approval without doing any prior verification.

68 Security Definitions

Our definition does not consider the tally phase. Instead, we focus on the veri-
fication of the individual votes which are posted on the bulletin board and use an
extraction algorithm for which the system is strongly consistent. A scheme with
strong consistency ensures that the contents of such individual votes are directly
reflected in the tally result.

The notion of cast-as-intended is formalized via the following experiment ExpCaI
A,V ,

parameterized by the set of voting options V and a p.p.t adversary A:

1. Setup phase: The challenger C runs the Setup(1λ) algorithm and provides
the election key pair (pk, sk) to A, publishes (pka, pkc) in BB and keeps the
private keys (ska, skc). Then it publishes the empty lists of voter identities ID,
IDh, IDc. Finally A is given read access to BB.

2. Registration phase: The adversary may make the following query:

• ORegister(id): A provides an identity such that id 6∈ ID. The chal-
lenger C runs Register(1λ, id, ska, skc), keeps (Sid

a , S
id
c) and provides Sid

v

to A. Then it adds id to IDh and publishes (id, P id
v , P id

a , P id
c).

3. Voting phase: The adversary may make the following types of queries:

• OProofVote(id, b, r̃, vx): A provides an identity such that id ∈ ID and
id 6∈ IDc, the ballot b, the encryption data r̃ and the voting option vx.
The challenger adds id to IDh and runs the following algorithms while
the output is 1:

– AuditVote(b, r̃, vx, P
id
v)

– ProcessBallot(BB, id, b)

– AuditBallotProof(vx,CreateBallotProof(b, ska, P
id
a), Sid

a)

If the output of any of the algorithms is not 1, the process stops and C
returns ⊥. Otherwise, the challenger provides Sid

c and the result σ of
CreateBallotProof to A.

• OVoteCorrupt(b, id): A provides a ballot b and an identity id ∈ ID. C
answers with Sid

c and Sid
a and adds id to IDc.

• OCast(id, b, Sid
v , S

id
c): A provides an identity id ∈ ID, a ballot b, a voter

secret voting data Sid
v and a voter secret confirmation data Sid

c . C runs
ProcessBallot(BB, id, b) and ProcessConfirm(BB,
id,Confirm(id, b, Sid

v , S
id
c , P

id
c , ska)), and if both algorithms return 1 posts

(id, b, Cb) in the bulletin board.

4. Output: The output of the experiment is a bit δV which is defined as 1 in
any of the following cases:

Case A. The adversary provides the tuple (id, b, vx, r̃, σ) such that:

(i) id ∈ IDh

(ii)AuditVote(b, r̃, vx, P
id
v) = 1

Chapter 3. Electronic Voting Model 69

(iii) AuditBallotProof(vx, σ, S
id
a) = 1

(iv) Extract(b, sk) = vj, vj 6= vx
(v) VerifyVote(BB, id, b) = 1

Case B. The adversary can confirm an arbitrary ballot without having
to prove its contents: A submits a triplet (id, b, Cb) such that:

(i) id 6∈ IDh, id 6∈ IDc

(ii) ProcessBallot(BB, id, b) = 1

(iii) ProcessConfirm(BB, id, Cb) = 1

Otherwise, δV is defined to be 0.

We say that a voting protocol has cast-as-intended verifiability if, given an Extract
algorithm for which the protocol is strongly consistent with respect to ρ, the follow-
ing advantage is negligible in the security parameter λ for any probabilistic polyno-
mial time (p.p.t.) adversary A:

AdvCaIA = | Pr[ExpCaI
A,V = 1] |

3.3.6 Coercion-resistant cast-as-intended

Here we define a novel concept which has not been formally discussed in previous
works. We refer to it as coercion-resistant cast-as-intended verifiability, and we
define a voting system to have such property when the cast-as-intended verification
method does not provide the voter with a proof that can be shown to third parties,
to prove how she voted. The concept is similar to that of designated-verifier proofs
(which we will see in Chapter 5), where the verifier can verify a proof from the
prover, but it cannot convince a third party of the validity of such proof.

In order to prove this property, we use an experiment where the adversary is
presented with a ballot and the proofs of content for the cast-as-intended verifica-
tion, and has to decide to which voting option the ballot corresponds. An algo-
rithm FakeProof is used by the challenger to generate some simulated information.
We formalize the notion of coercion-resistant cast-as-intended via the experiment
ExpCR-CaI,β

A,V , parameterized by the set of voting options V and the random coin β
which determines which ballot the adversary is presented with:

1. Setup phase: The challenger C runs the Setup(1λ) algorithm to obtain the
election key pair (pk, sk), the global audit keypair (pka, ska) and the global
confirmation keypair (pkc, skc), and sets the empty list of identities ID. C keeps
(sk, ska) and provides (pk, pka, pkc, skc) to A.

2. Registration phase: The adversary may make the following query:

• ORegister(id): A provides an identity id 6∈ ID. C runs Register(1λ, id,
ska, skc), keeps the voter private voting and audit data (Sid

v , S
id
a) and

provides the private confirmation data Sid
c to A. Then it adds id to ID

and provides the tuple (id, P id
v , P id

a , P id
c) to A.

70 Security Definitions

3. Voting phase: The adversary may make the following query:

• OVoteLR(id, v0, v1): A provides an identity id ∈ ID, and two possible
votes v0, v1 ∈ V . The challenger C executes CreateVote(id, vβ, P

id
v , Sid

v),
which produces the ballot bβ and the encryption data r̃β. Then it ex-
ecutes FakeProof to obtain the simulated encryption data r̃′β. Finally,
C executes CreateBallotProof(bβ, ska, P

id
a) and outputs the content proof

σβ. C provides (bβ, r̃β, r̃′β, σβ) to A.

4. Output: The output of the experiment is the guess of the adversary for the
bit β.

We say that a voting protocol provides coercion-resistant cast-as-intended ver-
ifiability if it provides cast-as-intended verifiability and there exists an algorithm
FakeProof such that for any probabilistic polynomial time (p.p.t.) adversary A, the
following advantage is negligible in the security parameter λ:

AdvCR-CaIA = | Pr[ExpCR-CaI,0
A,V = 1] - Pr[ExpCR-CaI,1

A,V = 1] |

Chapter 4

Return Codes with Single Voting:
Neuchâtel’s Scheme

4.1 Introduction

Switzerland has a long history on direct participation of its citizens in decision
making processes. Besides traditional elections where voters choose their repre-
sentatives in the Federal Assembly, citizens can participate in several other voting
events. Citizens can propose popular voting initiatives on their own (after having
obtained enough popular support by collecting signatures), and then parties and
governments themselves (at the communal, cantonal or federal level) can organize
referendums in order to ask the citizens for their opinion on a new law or a modifica-
tion of the Constitution, among others. Ultimately, Swiss citizens have the chance
to participate in 3-4 voting processes a year in average.

Remote electronic voting was first introduced in Switzerland in three cantons:
Geneva, Zurich and Neuchâtel [58]. The first binding trials were held in 2004.
Nowadays 14 cantons offer the electronic voting channel to their electors, which
until recently has been restricted use by up to 10% of the eligible voters.

In 2011, the Federal Council of Switzerland started a task force to study the
security issues of electronic voting. As a result, the Federal Council published in
2013 a report with the requirements for extending the use of electronic voting sys-
tems to a larger part of the electorate. This framework [119], which became binding
in January 2014, provides requirements for functionality, security, verifiability, and
testing/certification which could allow the electronic voting systems to be extended
to 30%, 50% or up to 100% of the electorate. More specifically, while current elec-
tronic voting systems may be allowed to be used for up to 30% of the electorate
provided that they fulfill a certain set of functional and security requirements, sys-
tems to be used for up to 100% of the electorate are required to additionally provide
verifiability features. Although the modality of electronic voting (DRE, remote, ...)
is not specified in the report, it refers to electronic voting systems where the vote
is cast electronically. In this chapter, we will talk specifically of remote electronic
voting systems.

71

72 Improving the Norwegian solution

According to the report by the Federal Council, systems to be used for up to
50% of electors are required to provide methods for cast-as-intended verification, and
systems for up to 100% of the electorate are required to additionally provide methods
for recorded-as-cast and counted-as-recorded verification, while also enforcing the
separation of duties on operations impacting the privacy, integrity and verifiability
of the system.

In this chapter we present an electronic voting protocol for providing cast-as-
intended verification, which is an evolution of the protocol implemented for the
Norwegian elections in 2011 and 2013 [60, 61, 101] (called the Norwegian proto-
col/scheme from now on), which has been presented in Section 2.4.2 . The presented
protocol improves the Norwegian scheme by not needing to rely on the assumption
that two independent server-side entities do not collude to preserve voter privacy.

Although the early proposal for the Norwegian scheme, [100] (not the one finally
implemented) also did not require that assumption for privacy, this new protocol
provides a great performance improvement on the client-side number of operations
comparatively, therefore taking the best of both schemes.

Then we add the particularity of only allowing voters to cast one vote through
the electronic voting channel, and therefore we give provisions for ensuring that such
vote is considered to be cast only in the case that it represents the voter intention,
by means of a confirmation phase executed by the voter. This feature is one of the
requirements of the Federal Council for systems to be used by up to 50% of the
electorate in Switzerland, and therefore the protocol is suitable to be used in such
scenarios.

In fact, this protocol has been implemented by Scytl and used for the first time
in a binding election in the canton of Neuchâtel, in the federal referendum con-
ducted on March 8th 2015. From 111,080 eligible voters, 23,927 were registered at
the citizen electronic portal Guichet Unique [87] (from which the electronic voting
application could be accessed) and 5,132 chose to cast their vote electronically us-
ing this protocol, which represents 21,45% of the voters who had the chance to use
the electronic voting channel. Considering all voting channels, general participa-
tion in the referendum was 41,24%. The contribution of the author of this thesis
to the project consisted of the design of the protocol, the analysis of the security
of the scheme, and the provision of support to the development team during the
implementation.

4.2 Improving the Norwegian solution

As we have explained in 2.4.2, in proposals based on return codes [60, 100, 101],
after the voter has selected her choices, the voting device sends an encrypted vote to
the remote voting server, where return codes are computed from the encrypted vote
and sent back to the voter for verification. Voters have received, prior to the voting

Chapter 4. Return Codes with Single Voting: Neuchâtel’s Scheme 73

phase, a verification card where a return code (pre-computed during the election
configuration phase) associated to each voting option is shown. If the return codes
received by the voter match the options she selected, her vote was cast as intended.
Otherwise, the voting device is corrupted and the voter may cast a new vote with a
different device or using another channel.

The votes cast by the voters are traditionally encrypted using a probabilistic
encryption scheme. This kind of scheme guarantees the privacy of the voter even
in the case of multiple voting (thanks to the randomization, there is no way to tell
if a voter votes for the same options twice), and also are suitable to be used in
homomorphic tally or mixnet-based voting systems.

On the other hand, the return codes have to be computed with a deterministic
function, since the values computed by the server-side during the voting phase have
to match the values in the voter’s verification card (for the same voting options),
and such values have been computed in advance during the configuration of the
election.

A naive approach would to remove the randomness of the encrypted voting op-
tions received at the server-side during the voting phase. However, this would pose
a risk on the voter privacy. The first proposal for the Norwegian voting system [100]
addressed this issue by generating two sets of encryptions of the voting options: one
based on a probabilistic encryption scheme, and another one based on a determin-
istic encryption scheme. The first encryption was the one to be processed by the
mixnet and decrypted at the end of the election, while the second one was used by
the voting server to generate the return codes during the voting phase. The voting
device generated zero-knowledge proofs of knowledge in order to prove that both
sets of encryptions corresponded to the same voting options.

This solution posed serious performance issues at the voting device side, and
therefore a variation of it was proposed by Kristian Gjoosteen and used in the
Norwegian elections [60, 61, 101]. In that variation, which reduced approximately
2,5 times the number of operations at the client-side, the generation of the return
codes during the voting phase was split in two independent server-side entities: a
ballot box server and a code generation server. Each of these two servers had one half
of the election private key. Therefore, when a vote encrypted with a probabilistic
encryption scheme (and with the election public key) was cast, each one in turn
could perform a partial decryption with its part of the election private key, so that
at the code generation server the randomness of the encryption was finally removed.
Before the partial decryption, the ballot box server applied a deterministic function
over the encrypted vote, so that what was recovered by the code generation server
was not the vote in clear, but some deterministic value from which the return code
to be sent back to the voter could be computed.

The ballot box server and the code generation server were assumed not to collude.
Otherwise, they could systematically decrypt all the votes cast by the voters, since

74 Improving the Norwegian solution

together they could recompose the private key of the election. In order to ensure
their independence, both components were located in independent locations and
managed by different companies.

Two independent server-side entities is not a requirement easy to solve, due to the
high economic and organizational costs of setting up two different and independent
environments. Moreover, global connectivity and the restricted number of vendors
and providers for datacenters (for example) reduce the feasibility of such indepen-
dence: the ballot box and the code generator servers may be at two datacenters
which receive database support from the same company, for example.

Therefore, the solution we present in this chapter goes back to the one-server
approach of [100], and focuses on the improvement on the client-side operations.
Because client-side technology has undergone big changes in the last years, these
operations may have even more impact today than when the initial scheme was
presented in 2011, even if the voting devices are more powerful. For example, in
2011 the majority of web applications relied in the use of Java Applets for some
non-standard web functionalities or time-consuming operations. However with the
evolution of the World Wide Web and the advent of HTML5 [120] a whole set of
new functionalities and better performance has been made available for just browser
and JavaScript-based applications. Moreover, mobile devices usually lack support
for Java Applets and the compatibility issues with the newest browsers make them
unusable, therefore nowadays most of the web applications have moved to HTML +
JavaScript. In fact, Scytl implemented its first voting device entirely in JavaScript
in 2013 and now all their web-based applications are exclusively based in this tech-
nology at the client-side.

However, while Java Applets are compiled into bytecode that can be interpreted
by the JVM, JavaScript is directly interpreted by browsers without any previous
compilation, and therefore does not offer the same performance as Java Applets
(although it is getting closer). Naturally, vote encryption and casting needs to be
executed in an acceptable time-frame to prevent voter disenfranchisement.

In the proposal presented here, the number of operations to be performed at
the client-side is considerably reduced compared to the proposal in [100]. Specifi-
cally, the cost of encrypting the vote and generating zero-knowledge proofs does not
depend on the number of voting options selected by the voter anymore.

4.2.1 Solution Overview

The mechanisms for generating the return codes in [100, 60, 61, 101] and in our
proposal have the same principle: (at least during the voting phase) a sole entity
should not be able to generate return codes on its own. That would imply several
things: (1) if the server is the one who generates the return codes, this means that
it can decrypt the votes cast by the voters (since it has to entirely remove the
randomness used for the encryption), or that it can systematically compute return

Chapter 4. Return Codes with Single Voting: Neuchâtel’s Scheme 75

codes for all the voting options and then compare them with the ones it obtains
from the cast votes. In both cases, it breaks the voters’ privacy. (2) if the voting
device is the one who generates the return codes, it can generate return codes for the
options chosen by the voter and then cast a vote with any other content encrypted.
Therefore, it defeats the purpose of the return codes, which is the verification that
the vote is cast as intended.

As in prevous proposals, the generation of return codes in our protocol is divided
in two steps: partial return code and final return code generation. While in [60, 61,
101], partial return codes were computed by the ballot box server and final return
codes were computed by the code generation server, in our solution, as well as in
[100], partial return codes are computed by the voting device.

The following is an overview of the solution:

Configuration phase: besides the election public and private keys, a set of
return codes corresponding to the voting options is computed for each voter.
Creating a different set of return codes per each voter enforces their secrecy,
which is a key property for verifiability and privacy reasons, as we will see in
next sections. The set of return codes for each voter is printed in a verification
card, which is sealed and sent to the voter by postal mail (during the explana-
tion of the protocol we do not take into account the possibility of a distributed
generation of the verification cards for keeping the scheme simple. However,
we will talk about that in Section 4.8.2).

Voting phase: the voter uses a voting device to select her voting options. Once
she has finished, the voting device encrypts them using a probabilistic encryp-
tion scheme and the election public key. Besides that, the voting device also
computes the partial return codes corresponding to the same voting options,
and some zero-knowledge proofs to prove that in fact, the partial return codes
and the encrypted vote correspond to the same voting options. The encrypted
vote, the partial return codes and the proofs are sent to the voting server. The
voting server first verifies the proofs, stores the encrypted vote and then uses
the partial return codes to compute the final return codes, which are sent back
to the voter.

Counting phase: the encrypted votes stored at the server are retrieved, passed
through a mix-net and then decrypted to obtain the election results.

4.3 Confirmation Phase

In return code-based schemes, voters may re-vote, invalidating the previous vote, in
case the return codes received do not match the selected voting options. Typically,
this would happen if the voting device is malicious and encrypts voting options
independently of what the voter decided to select, so voters may re-vote using a
different voting device, or a different voting channel. However, some countries do
not allow voters to cast multiple votes (such as France or Switzerland [95, 119]).

76 Protocol description

The solution we propose for such cases is to let the sending of the vote to the
server and return code reception be a preliminary vote casting which has no validity
(that vote will not be taken into account in the tally). Then we add a confirmation
phase where the voter, after having inspected the received return codes, provides
a confirmation that is sent to the voting server if she agrees with the vote she had
preliminarly cast. The server stores this confirmation together with the cast vote as
proof that the vote has been confirmed by the voter. Only confirmed votes will be
taken into account at the tally. In case the voter does not confirm her vote, she can
cast the vote through a different channel.

Figure 4.1: Neuchâtel voting phase overview

Single voting is a requirement of the Swiss Federal Council [119]. Therefore, our
return code-based scheme, together with the confirmation phase, is suitable to be
used (and has been used) in Swiss elections.

4.4 Protocol description

We start by describing the protocol used for the first time in March 2015’s elections
in Neuchâtel, using as a basis the general syntax presented in Chapter 3.

As stated in Chapter 3, we assume that non-cryptographic election specifications
such as the set of voting options V = {v1, . . . , vk} and the counting function ρ :
(V ∪ {⊥})∗ → R are already defined. A mixnet-based system is used, and therefore
the set of possible results R is given by the multiset function ρ, which provides
the cleartext votes cast by the voters in a random order [23]. The use of voting
credentials to cast votes is not included in this description. However, it is later
explained in Section 4.7.1.

The voting protocol uses an encryption scheme (Gene,Enc,Dec,EncVerify), a sig-
nature scheme (Gens, Sign, SignVerify), and two NIZKPK schemes (ProveEq,VerifyEq,
SimEq) and (ProveDec,VerifyDec, SimDec), which have already been defined in Sec-
tion 1.3. Besides that, the protocol uses the following additional primitives/components:

Pseudo-random function family. A function family is a map F : T ×D → R,
where T is the set of keys, D is the domain and R is the range. A pseudoran-

Chapter 4. Return Codes with Single Voting: Neuchâtel’s Scheme 77

dom function family (PRF) is a family of efficiently computable functions, with the
following property: a random instance of the family is computationally indistin-
guishable from a random function, as long as the key remains secret. The function
fK(x) = y denotes the function f from the family F , parameterized by the key K.
Two keyed pseudo-random functions fk(), wk() are used in the protocol, the latter
with homomorphic properties.

Verifiable Mixnet. A verifiable mixnet is composed by two algorithms: the algo-
rithm Mix receives a set of ciphertexts as input, and outputs a set of ciphertexts and
a proof πmix of correct mixing. The algorithm MixVerify receives as input two sets
of ciphertexts and the proof of correct mixing πmix, and outputs 1 or 0 depending
on the result of the verification.

Additionally, an aggregation function φ which takes advantage of the homomor-
phic properties of wk() and a hash function H are also used in the protocol, which
is characterized by the following protocols/algorithms:

Setup(1λ) runs Gene from the encryption scheme to generate an encryption key
pair (pke, ske). The election public key is pk = pke and the election private
key is sk = ske. Alternatively, sk may consist of the shares of ske if there
are several trustees. The algorithm then generates a random key K for the
pseudo-random function f . The global audit key pair (pka, ska) is set to be
(⊥, K), and the global confirmation key pair (pkc, skc) is set to be the signing
key pair (pks, sks), which is produced by executing the algorithm Gens from
the signature scheme.

Register(1λ, id, ska, skc) runs Gene of the encryption scheme, and the resulting
key pair (pkid, skid) is set to be the voter voting public and private data
(P id

v , Sid
v) (although this is formally an encryption key pair, it will be used

differently in the next steps of the protocol). Then it chooses at random
a voter confirmation code CCid from the code space CS. For each voting
option vi ∈ V it computes the corresponding return code RCidi = fK(wskid(vi)),
and computes the finalization code FCid = fK(wskid(CC

id). The confirmation
reference value CRFid is computed by running Sign(FCid, sks) from the signature
scheme. Finally, the set of reference values {RFidi }ki=1 is generated by computing
RFidi = H(RCidi) for each generated return code. The voter public and private
audit data are set as P id

a = {RFidi }ki=1, S
id
a = ({vi − RCidi }ki=1, FC

id), and the
voter public and private confirmation data are set as P id

c = CRFid, Sid
c = CCid.

CreateVote(id, {vj1 , . . . , vjt}, P id
v , Sid

v) receives the voting options selected by
the voter as input, sets v = φ({vj1 , . . . , vjt}) and runs Enc from the encryption
scheme, using the election public key pk and v to get the ciphertext c. Then it
parses Sid

v as skid and computes the partial return codes from the input voting
options as {pRCidjl }

t
l=1 = (wskid(vj1), . . . ,wskid(vjt). Finally, it also computes

wskid(c).

78 Protocol description

The following NIZKPK proofs are computed, to prove that the voting options
in the ciphertext c and the voting options used for computing the partial return
codes are the same:

– A proof π1 = ProveEq(g, c, pkid,wskid(c), skid) which proves that wskid(c)
is computed with the private key skid corresponding to the public key
pkid.

– A proof π2 = ProveEq(g, pk,wskid(c)/φ(pRCidj1 , . . . , pRC
id
jt

), r · skid) which
proves that the value wskid(c) is equivalent to the encryption of the ag-
gregation φ of partial return codes {pRCidjl }

t
l=1 under the election public

key pk (note that r denotes the encryption randomness used to compute
c).

The result of the above computations is a ballot b consisting of

b =
(
c, {pRCidjl }

t
l=1,wskid(c), P

id
v , π1, π2

)
.

The encryption data r̃ is set to ⊥.

ProcessBallot(BB, id, b) checks that there is not already a ballot in BB for
the voter identity id, that id ∈ ID and that there is not another ballot in
BB with the same ciphertext value c. If any of these validations fails, it
stops and outputs 0. Otherwise, the algorithm continues by validating the
NIZKPK proofs π1, π2 from the ballot b running VerifyEq, and runs EncVerify
to verify that the ciphertext c is correctly formed. In case all the validations
are successful, 1 is returned. Otherwise, the algorithm returns 0.

CreateBallotProof(b, ska, P
id
a) parses b as (c, {pRCidjl }

t
l=1,wskid(c), pkid, π1, π2),

parses ska as K, and P id
a as {RFidi }ki=1. Then it computes the set of return

codes corresponding to the voting options encrypted in the ballot b as follows:

– Computes the final return code value RCidjl = fK(pRCidjl) for each of the
partial return codes {pRCidjl }

t
l=1 in b.

– Checks that for each return code RCidjl , where l = 1, . . . , t, H(RCidjl) ∈
{RFidi }ki=1. In a positive case, the proof of content σ takes the value of
the set of return codes {RCidjl }

t
l=1 = (RCidj1 , . . . , RC

id
jt

). Otherwise, σ =⊥.

AuditBallotProof({vj1 , . . . , vjt}, σ, Sid
a) parses σ as {RCidjl }

t
l=1 and Sid

a as ({vi −
RCidi }ki=1, FC

id). Then it checks that for each vx ∈ {vj1 , . . . , vjt} the correspond-

ing RCidx matches one of the values in {RCidjl }
t
l=1. If the verification is positive,

it outputs 1. Otherwise it outputs 0.

Confirm(id, b, Sid
v , S

id
c , P

id
c , ska) is an interactive protocol between two parties,

A and B:

– Party A parses Sid
v as skid and Sid

c as CCid, and computes CMid = wskid(CC
id).

Chapter 4. Return Codes with Single Voting: Neuchâtel’s Scheme 79

– Party B parses ska as K and P id
c as CRFid. Then it computes FCid =

fK(CMid) and runs SignVerify(pks, FCid, CRF
id) from the signature scheme

(where pks is parsed from the global public confirmation key pkc). In
case the signature verification is successful, it sets the ballot confirmation
Cb = (FCid, CRFid) and the auxiliary data σ′ =⊥. Otherwise, it returns
⊥.

ProcessConfirm(BB, id, Cb) checks that there is a ballot entry in BB for the
voter identity id, and that it has already not been confirmed. Then it runs
SignVerify(pks, FCid, CRF

id) from the signature scheme (where pks is parsed
from the global public confirmation key pkc). In case all verifications succeed,
1 is returned. Otherwise it returns 0.

Tally(BB, sk) runs ProcessBallot for all the ballots in the bulletin board which
have a confirmation Cb stored. Then for those which passed the verification
it parses Cb as (FCid, CRFid) and runs SignVerify(pks, FCid, CRF

id), discarding
those for which the validation result is 0. Ciphertexts c are extracted from the
remaining ballots, shuffled and then decryted running Dec(c, sk) for each one,
to obtain the cleartext v (in case sk was divided in shares, a secret reconstruc-
tion algorithm is used to recover the private key previous to decryption). Then
φ−1(v) outputs the factors vi composing v for which it is tested that vi ∈ V .
Otherwise, the whole factorized vote is discarded. The result r composed of
the values vi recovered from each vote is provided as the output.

In next developments of the eVoting project conducted in Neuchâtel, a verifiable
mixnet and a verifiable decryption will be used in order to also allow to verify the
counting process. Therefore, Tally and VerifyTally will be defined as follows:

Tally(BB, sk) runs ProcessBallot for all the ballots in the bulletin board which
have a confirmation Cb stored. Then for those which passed the verification
it parses Cb as (FCid, CRFid) and runs SignVerify(pks, FCid, CRF

id), discarding
those for which this validation failed. Ciphertexts c are extracted from the
remaining ballots and passed as input to the mixnet, which runs the Mix
algorithm. The resulting list of mixed ciphertexts {Cm} is decrypted: for
each ciphertext cz ∈ {Cm}, Dec(cz, sk) is run to obtain vz, which is tested to
belong to V . The ProveDec algorithm is run with the statement (c, vz) and the
witness sk as input. The outputs are the list of decrypted votes r = {vz} and
the proofs of correct mixing and decryption, Π = (πmix, {Cm}, πdec). Finally
φ−1(v) outputs the factors vi composing v for which it is tested that vi ∈ V .
Otherwise, the whole factorized vote is discarded. The result r composed of
the values vi recovered from each vote is provided as the output.

VerifyTally(BB, r,Π) performs the same validations as Tally: runs ProcessBallot
for all the ballots in the bulletin board which have a confirmation Cb stored.
Then for those which passed the verification it parses Cb as (FCid, CRFid) and
runs SignVerify(pks, FCid, CRF

id), discarding those for which this validation is
not successful. It extracts the ciphertexts c from the ballots which have
passed the previous validations and composes the list {C}. Then it parses

80 Protocol description

Π as (πmix, {Cm}, πdec) and verifies that the mixing was correct by running
MixVerify(C,Cm, πmix). Finally it checks that the decryption of each cipher-
text was correct by running VerifyDec from the NIZKPK scheme, using as
input the statement (cz, φ({vi})), for all the ciphertexts cz ∈ {Cm} and the
proof πl ∈ πdec, where φ({vi}) denotes the aggregation of all the voting op-
tions vi in the z-th entry of r (belonging to the same ballot). The output is
the result of these validations.

4.4.1 Workflow

The described algorithms are organized in the following phases:

Configuration phase: the election authorities run the Setup algorithm. They
publish the election public key pk, the global audit and confirmation public keys
(pka, pkc) and an empty list ID of voter identities, as well as the set of voting options
V . They provide the global audit private key ska to both the registrars and the
bulletin board manager. Finally, the global confirmation private key skc is provided
to the registrars.

Registration phase: Voters register to participate in the election. To register, a
voter first provides her identity id to the registrars, who run the Register algorithm.
The outputs (Sid

v , S
id
a , S

id
c) are provided to the voter in the verification card, while

the tuple (id, P id
v , P id

a , P id
c) is published in the bulletin board BB and id is added

to ID.

Voting phase: This phase consists of several steps:

1. The voter provides (id, Sid
v) to the voting device, as well as a set of selected

voting options {vj1 , . . . , vjt} ∈ V . The voting device may get P id
v from the

bulletin board, or receive it additionally from the voter. Then it runs the Vote
protocol and produces a ballot b. The ballot b and the voter identity id are
sent to the bulletin board manager.

2. Upon reception of (id, b), the bulletin board manager runs the ProcessBallot
algorithm to verify the incoming ballot. In case the result of the execution is
1, the bulletin board BB is updated with the ballot b and the voter identity id,
together with the status ballot received and the process continues. Otherwise
the process stops and the voting device is notified of the error.

3. The bulletin board manager executes CreateBallotProof with the newly arrived
ballot, parsing the voter’s public audit data P id

a from the bulletin board. In
case the operation is successful, it outputs the proof of content σ consisting
of the set of return codes {RCidjl }

t
l=1. The bulletin board manager updates the

status of the ballot in the BB to return codes generated, and forwards the
return codes to the voting device. In case the operation is not successful the
process stops and the voting device is notified accordingly.

Chapter 4. Return Codes with Single Voting: Neuchâtel’s Scheme 81

4. The voting device shows the voter the set of received return codes {RCidjl }
t
l=1

from the proof of vote content σ. She is then asked to confirm the ballot cast
by providing the confirmation value CCid from her confirmation private data
Sid
c to the voting device, which she will do only in case the AuditBallotProof

algorithm accepts.

5. The voting device then runs the first phase of the Confirm algorithm and sends
the resulting confirmation message CMid, together with the voter identity id,
to the bulletin board manager. The bulletin board manager then runs the
second phase of the Confirm algorithm.

6. If the operation in the bulletin board manager is successful, the resulting ballot
confirmation Cb is stored together with the ballot b for the given identity id,
in the bulletin board and the ballot status is updated to confirmed. The ballot
confirmation Cb is also sent back to the voting device. In case the operation
is not successful, the process stops and the voter is notified accordingly.

7. Finally, the voter checks whether the displayed ballot confirmation Cb matches
the value FCid in her private audit data Sid

a , which is printed in the verification
card. In case of a successful verification, the received finalization code serves
the voter as a confirmation of the correct submission and confirmation of her
vote. Otherwise, she can raise a complaint to the election administrators, who
will initiate an investigation. The voter may need to cast her vote using a
different channel (i.e. at a polling station).

Counting phase: The election authorities run the interactive protocol Tally on
BB using the election private key sk, obtaining and publishing in the bulletin board
the result r and the proof Π, or set r =⊥ in case of error. The auditors run the
VerifyTally protocol using as input the contents in the bulletin board. In case their
output is 1, the result r is announced to be fair. Otherwise, an investigation is
opened to detect the reason of failure.

4.5 Security of the Protocol

In this section we show that the protocol presented in Section 4.4 (considering the
complete version of Tally and VerifyTally) satisfies the properties of ballot privacy,
strong consistency, strong correctness, cast-as-intended verifiability and coercion-
resistant cast-as-intended verifiability according to the definitions in Section 3.3.

First of all, we include the definition of the Enc2Vote scheme, as defined in [25],
which we use for proving some of the properties of our scheme:

- Setup(1λ): Runs Gene(1
λ) to produce a key pair (pke, ske); the public output

is pk and the secret one, sk.

- Vote(v, y): Encrypts v with y = pke : c← Encr(v). Returns c.

82 Security of the Protocol

- ProcessBallot(BB, s): If the new submission s already appears on the board
BB, rejects it; otherwise accepts it and adds it to BB.

- Tally: Decrypts all ballots b on the board using ske to get the underlying votes
v and evaluates r ← ρ(v); Returns r. (Here b and v are used to represent all
of the ballots and underlying votes, respectively).

4.5.1 Ballot Privacy

Theorem 4.1. Let (Gene,Enc,Dec,EncVerify) be an NM-CPA secure encryption
scheme and (ProveDec,VerifyDec, SimDec), (ProveEq,VerifyEq, SimEq) be NIZKPK
schemes with the zero-knowledge property. Then the protocol presented in Section
4.4 satisfies the ballot privacy property.

The ballot privacy definition from Section 3.3.2 is based in the indistinguishabil-
ity of two experiments, which depend on a bit β:

- Exppriv,0
A,V is the experiment when β = 0 and the adversary is presented with the

bulletin board BB0.

- Exppriv,1
A,V is the experiment when β = 1 and the adversary is presented with the

bulletin board BB1.

We perform the following steps to prove that the protocol provides ballot privacy:
in a first step, we prove in Lemma 4.1 that the original experiment Exppriv,β

A,V is

indistinguishable from the point of view of A from an experiment Exppriv,β′

A,V , where
the tallier provides a simulated proof of the tally result (needed due to the ballot
privacy definition, as indicated in [23]). In a second step we prove in Lemma 4.2

that the experiments Exppriv,β′

A,V and Exppriv,β′′

A,V , where in Exppriv,β′′

A,V the NIZK proofs
inside the ballot b are simulated instead of honestly generated, are indistinguishable
by A. In a third step we prove that this scenario is indistinguishable from one where
the partial return codes are generated at random, through Lemma 4.3. Finally, in
Lemma 4.4 we make a reduction of the last experiment to the ballot privacy of the
Enc2Vote scheme.

Lets consider SimProof to be a simulator of the mixing and decryption proofs
which produces proofs with the same distribution as the honest ones. Then consider
the experiment Exppriv,β′

A,V in which the challenger, when executing Tally(BB0, sk),
provides the result r and the proof Π∗ which is the output of SimProof. The following
lemma is straightforward to prove:

Lemma 4.1. The experiments Exppriv,β
A,V and Exppriv,β′

A,V are computationally indistin-
guishable for β ∈ {0, 1}.

Then let’s consider SimVote(id, vj, P
id
v , Sid

v) to be a modification of CreateVote(id,
vj, P

id
v , Sid

v) from Section 4.4 where instead of running ProveEq for the generation of
the proof π2, the algorithm SimEq is run to obtain the simulated proof π′2 with the

Chapter 4. Return Codes with Single Voting: Neuchâtel’s Scheme 83

same distribution as the non-simulated one. Then define Exppriv,β′′

A,V as the experiment
in which the challenger runs SimVote instead of CreateVote. The following lemma is
also straightforward to prove:

Lemma 4.2. The experiments Exppriv,β′

A,V and Exppriv,β′′

A,V are computationally indistin-
guishable for β ∈ {0, 1}, given a (ProveEq,VerifyEq, SimEq) zero-knowledge NIZKPK
scheme.

In the following transformation, we define SimVote2(id, vj, P
id
v , Sid

v) to be a mod-
ification of SimVote where, instead of computing the partial return code value as
wskid(vj), it is selected at random from the same value space. We also define an ora-
cle which, when A makes a query to compute the hash value of the generated return
codes, it returns one of the values in the public voter audit data P id

a = {RFidi }ki=1.

Then we consider the experiment Exppriv,β′′′

A,V where, when the adversary submits
the query OVoteLR(id, v0, v1) the challenger executes SimVote2 instead of SimVote,
and when the adversary asks for the hash value of a return code, one of the values
from {RFidi }ki=1 is returned by the oracle. The following lemma is easy to prove:

Lemma 4.3. The experiments Exppriv,β′′

A,V and Exppriv,β′′′

A,V are computationally indistin-
guishable for β ∈ {0, 1}, given the pseudorandom function w() and a hash function
which acts as a random oracle.

Now we consider the Enc2Vote scheme defined in [25]. In their work, the authors
have proven the following theorem:

Theorem 4.2. Let (Gene,Enc,Dec) be an NM-CPA secure encryption scheme, then
Enc2Vote has ballot privacy.

Next, we proceed to reduce the ballot privacy property of our scheme to the
ballot privacy property of the Enc2Vote scheme.

Lemma 4.4. Let A’ be a p.p.t. adversary that interacts with a challenger C, such
that | Pr[Exppriv,0′′′

A,V = 1] - Pr[Exppriv,1′′′

A,V = 1] | is non-negligible. Then, there exists an
adversary A” that breaks the ballot privacy property of the Enc2Vote scheme.

Proof. In the reduction, we use A” as the challenger for A’, and A” interacts with
C in the same way as in the experiment defined in [25]. The reduction is as follows:

In the Setup phase, C sets up two empty bulletin boards BB0 and BB1, runs
the Gene algorithm and keeps the ske2v key for itself, while it publishes the pke2v key
on the bulletin board. In turn, A” generates a random key K for the pseudo-random
function fK(), runs Gens to generate a key pair (pks, sks) and publishes pk = pke2v

and the keys ska = K, pkc = pks, skc = sks on the bulletin board visible by A’.

In the Registration phase, when A’ makes the ORegister query, A” runs the
Register(1λ, id, ska, skc) algorithm from our protocol, keeps the voter’s private voting

84 Security of the Protocol

and audit data Sid
v = skid, S

id
a = ({vi − RCidi }ki=1, FC

id), provides the voter’s confir-
mation private data Sid

c = CCid to A’, and finally publishes (id, P id
v = pkid, P

id
a =

{RFidi }ki=1, P
id
c = CRFid) on the bulletin board visible by A’.

During the Voting phase, whenA’ submits theOVoteLR query, A” submits the
Vote query to C, who responds by publishing a ballot be2v to the bulletin board vis-
ible by A”. A” parses be2v as c, computes wskid(c), π1 = ProveEq(g, c, pkid,wskid(c),
skid), picks v′i at random from the w() output message space and computes π′2 =
SimEq(g, pk,wskid(c)/v

′
i). The resulting ballot b = (be2v, v

′
i,wskid(c), pkid, π1, π

′
2) is

published in the bulletin board visible by A’, together with the voter identity id.
Finally A” executes the Confirm algorithm from our protocol and posts the gener-
ated ballot confirmation Cb next to the corresponding ballot b, in the bulletin board
visible by A’.

When A’ submits the OgetVotingData(id) query, A” just returns the values
(Sid

v , S
id
a) to A’. When A’ submits the OCast(id, b, Cb) query, A” parses Cb as

(FCid, CRFid) and runs the SignVerify(pks, FCid, CRF
id) algorithm. If the result is 1,

then it parses b as
(
c, pRCidj ,wskid(c), P

id
v , π1, π2

)
and submits a Ballot(c) query to

C. Then A” puts id, b and Cb in the bulletin board visible by A’.

In the Counting phase, C posts the result of evaluating Tally(BB0, sk
e2v) on

the bulletin board visible to A”. A” in turn runs SimProof(BBβ, r), where BBβ is
the bulletin board shown by C to A”, and publishes (r,Π∗) on the bulletin board
visible by A’.

At the end of the experiment, A’ outputs a bit and A” outputs the same bit. As
we can see, the outputs of A”as a result of the interaction with A’ have the same
distribution as in the ballot privacy experiment in [25]. Therefore, the reduction is
sound.

4.5.2 Strong Consistency

We define the following algorithms for which the presented protocol provides strong
consistency, according to the definition in Section 3.3.3:

- Let the extraction algorithm Extract((b), sk) defined in Section 3.3.3 parse
b as

(
c, {pRCidjl }

t
l=1,wskid(c), P

id
v , π1, π2

)
, run EncVerify(c, pke) and in case it

returns 1, get m = Dec(c, ske) and compute φ−1(m) to get the values {mi}ti=1.
Then it tests whether each mi ∈ V or not. In a positive case, it returns
{vi}ti=1 = {mi}ti=1, otherwise it returns ⊥.

- Let the validation algorithm ValidInd(id, b, Cb) = 1 run EncVerify(c, pke), vali-
date the NIZK proofs π1, π2, parse Cb as (FCid, CRFid) and run SignVerify(pks,
FCid, CRFid). The output is 1 if all the validations succeed, 0 otherwise.

- Let ρ be the counting function that provides its inputs as outputs in a shuffled
order, removing any input set {vi}ti=1 for which some vi 6∈ V .

Chapter 4. Return Codes with Single Voting: Neuchâtel’s Scheme 85

Theorem 4.3. Let Tally produce a sound proof Π of correct mixing and decryption,
and VerifyTally output 1. Then the protocol defined in Section 4.4 has the property
of strong consistency with respect to the above definitions of Extract,ValidInd, ρ.

Given the definition we have provided of the ValidInd algorithm, all the ballots
which have been accepted in the ballot box will pass the validations done by the
Tally algorithm prior to decryption, described in Section 4.4. Therefore, we can see
that clearly Tally and the combination of the extraction algorithm and ρ remove the
same ballots, given that the mixing and decryption algorithms are correct (which is
ensured by the soundness of the proof Π and the fact that VerifyTally outputs 1).

4.5.3 Strong Correctness

Theorem 4.4. Let (Gene,Enc,Dec,EncVerify) be a randomized encryption scheme
and (Gens, Sign, SignVerify) be a signature scheme with the correctness property.
Then the protocol defined in Section 4.4 has the property of strong correctness.

In the protocol defined in Section 4.4, the only condition for which ProcessBallot
(BB, id, b) may output 0, given a ballot b produced by a honest registered voter that
was not already registered by the adversary, is that a previous entry with the same
ciphertext c is already present in the bulletin board. Given that (Gene,Enc,Dec,
EncVerify) is a probabilistic encryption scheme, this probability is negligible in the
security parameter λ. Given the correctness of the signature scheme, ProcessConfirm
will always succeed for honestly created ballot confirmations.

4.5.4 Cast-as-Intended Verifiability

Theorem 4.5. Let (ProveEq,VerifyEq, SimEq) be a sound NIZKPK scheme, fk() be
a (collision-resistant) pseudorandom function, (Gens, Sign, SignVerify) be an unforge-
able signature scheme, wk() be a random permutation on a large space according to
λ, and the code space CS be large according to the security parameter λ. Then the
protocol presented in Section 4.4 satisfies the cast-as-intended verifiability property.

According to the definition presented in 3.3.5, the adversary succeeds if it is able
to generate the expected return code for a voting option which is not in the ballot,
or if it is able to confirm a vote without collaboration.

First we examine Case A, where the adversary has to provide the return code
corresponding to a voting option which is not in the ballot. Lets consider a ballot b
for the voting option vj which is used by A to do the OProofVote query, and parse it
as b =

(
c, pRCidj ,wskid(c), P

id
v , π1, π2

)
. Recall that the challenger computes the return

code as RCidj = fskc(pRC
id
j). Then for fulfilling that at the output of the experiment

AuditBallotProof(vx, σ, S
id
a) = 1 it is necessary that fskc(pRC

id
j) = fskc(pRC

id
x) when

vj 6= vx. One possibility is that pRCidj = pRCidx . However, wk() is a permutation on
large space according to λ and therefore it is infeasible that wk(vx) = wk(vj) when
vx 6= vj. Another possibility is that fskc(pRC

id
j) = fskc(pRC

id
x) when pRCidj 6= pRCidx ,

which is also negligible since fk() is a collission-resistant function.

86 Protocol implementation

Another strategy for A is to provide, in the OProofVote query a ballot b where
Extract(b, sk) = vj, but the partial return code corresponds to vx. Therefore the
return code generated by the challenger when running CreateBallotProof would cor-
respond to the pair (vx − RCidx) and the validation when executing AuditBallotProof
would succeed. However, the challenger executes ProcessBallot prior to generating
the return code. Recall that in the ProcessBallot algorithm the NIZKPK proofs
(π1, π2) are verified. The probability that such proofs are verified successfully when
the voting option vj encrypted in c does not match the one used to compute the par-
tial return code is negligible given the soundness property of the NIZKPK scheme.

Secondly we take Case B, where the adversary can confirm and cast a vote
on behalf of a non-corrupt voter without a previous collaboration of the challenger
(which means, without having to succeed in the OProofVote query). Recall that the
algorithm ProcessConfirm verifies if a signature published during the configuration
phase matches the generated value by running SignVerify. Given the unforgeability
property of the signature scheme, the best strategy for A is to guess the voter
confirmation private data Sid

c such that when it makes a OgetConfirmation query
C answers with the ballot confirmation Cb. The probability of guessing this value
is of 1

CS , where CS is the message space size for the voter confirmation private data
Sid
c . According to the security parameter λ, this probability is negligible.

4.5.5 Coercion-resistant cast-as-intended

According to the definition in Section 3.3.6, a voting protocol provides the coercion-
resistant cast-as-intended verifiability property in case an adversary cannot distin-
guish between two ballots given the proofs of content, which in the case of this spe-
cific protocol consists of σ. Note that in the definition of the ballot privacy property
it was already considered the fact that A cannot distinguish between ballots posted
in different bulletin boards, even when it can execute CreateBallotProof(b, ska, P

id
a)

from the posted ballot, and get the proof of content σ. Therefore, this indistin-
guishability property has already been considered during the previous analysis on
ballot privacy.

4.6 Protocol implementation

In this section we provide an implementation for the described protocol. This imple-
mentation is the one used in the electronic voting system implemented for elections
in Neuchâtel in 2015.

Some of the primitives used for this concrete instantiation have already been
defined in Section 1.3 :

- For encryption, the Signed ElGamal encryption scheme is used. This scheme
generates randomized ciphertexts, and has been proven to be NM-CPA secure
in [25].

Chapter 4. Return Codes with Single Voting: Neuchâtel’s Scheme 87

- The signature scheme is RSA with the hash variant (RSA-FDH). This signa-
ture scheme has been proven to be unforgeable against chosen message attacks
in the random oracle model [18].

- The NIZKPK schemes EqDL and DecP are used for proving equality of dis-
crete logarithms and for proving correctness of the decryption process. These
NIZKPK schemes satisfy the properties of completeness, knowledge soundness
and zero-knowledge [45], [113].

Additionally, the following building blocks are used:

Voting options. The voting options V = {v1, . . . , vk} are chosen as small bit-
length primes belonging to the group G defined for the ElGamal encryption scheme.
The aggregation function φ is then described as the product operation, and a vote is
encoded as the product of voting options chosen by the voter prior to the encryption.
The function φ−1 is the factorisation operation: after the votes are decrypted, the
individual voting options are recovered by factorizing the resulting value. Therefore,
it has to be ensured that the product of t of such primes, where t is the number of
selections a voter can make, is not larger than p.

Pseudo-random function family. We use two different pseudo-random func-
tions in the protocol: The function denoted by fk() is an HMAC function composed
by a SHA-256 hash function, parameterized by the symmetric key k. As detailed in
[15], HMAC is a PRF whose resistance against collision is the one of the underlying
hash scheme. Up to date, the collision of the SHA-256 hash function is considered
to be negligible. The function wk() is the exponentiation function wk(g) = gk. This
function defined for the group G and computed over the voting options, which are
small primes, is pseudo-random: according to what is discussed in [60], the hard-
ness of distinguishing values vki where vi are small primes ∈ G and the set size |V | is
small, from random values uniformly taken from G, is, under the DDH assumption,
equivalent to solve a discrete logarithm. It has to be pointed out that the function
wk(c), only takes into account the elements (c1, c2) for the exponentiation.

Mixnet. We use the verifiable mixnet proposed by Stephanie Bayer and Jens
Groth [13]. This mixnet has been proven by its authors to be sound, meaning that
MixVerify will only output 1 given a correct execution of Mix, and zero-knowledge in
the standard model, or in the random oracle model in case of using the Fiat-Shamir
heuristic for making the proofs non-interactive.

4.6.1 Performance

This instantiation is efficient. For a t-out-of-k voting scheme where voters can select
up to t values from k available in the election, considering that t prime numbers can
be encrypted into a single ciphertext, the cost of a ballot generation at the voting
device is the following: the encryption of the t prime numbers using the Signed
ElGamal encryption scheme costs 3 exponentiations. The generation of the partial

88 Protocol implementation

return codes for t options requires t exponentiations and the proofs and intermediate
values require 7 exponentiations.

In case that t prime numbers cannot be fit into one ciphertext, the cost of the
encryption, proofs and intermediate values has to be multiplied by the number of
ciphertexts required, although in case of using multiple public key encryption two
exponentiations can be avoided. We denote multiple public key encryption to a
solution for encrypting many plaintexts which consists on using a different public
key for computing each ciphertext, but the same randomness for all of them. The
security of the ElGamal encryption scheme is not affected by this variation (still
relies on the ability of solving discrete logarithms), and a considerable proportion of
the exponentiations can be avoided by having a common component c1 and Schnorr
signature (c3, c4) for all the individually encrypted plaintexts.

In the real implementation, an extra layer of protection has been added for the
partial return codes, which are encrypted using ElGamal with a key owned by the
bulletin board manager. This adds a total of t+1 exponentiations if multiple public
key encryption is used.

Finally, it has to be taken into account that some of these exponentiations can
be computed by the voting device while the voter navigates through the application,
prior to receiving the voter’s choices. In fact, from t+10 exponentiations (considering
a single ciphertext), 8 can be pre-computed. If we take into account the extra
encryption layer of partial return codes, t+ 9 exponentiations can be pre-computed
from a total of 2t+ 11.

This protocol is much more efficient than the early proposal for the Nowegian
elections [100], described in Section 2.4.2. In that proposal, 3 exponentiations were
required for individually encrypting each voting option using the Signed ElGamal
encryption scheme. Each partial return code required 2 exponentiations, and then a
NIZK proof relating each pair [encrypted voting option - partial return code] costs
2 more exponentiations. Moreover, partial return codes were also encrypted with
the ElGamal scheme. In total, this means that the voting device had to perform
up to (3 + 2 + 2 + 2) · t exponentiations for t voter selections. In case multiple
public key encryption was used, the number of exponentiations could be reduced to
(2 + 2 + 1 + 1) · t+ 3 exponentiations.

The system implemented in Norway [60, 61] needed less exponentiations, even
compared with the protocol we present in this chapter, due to the fact that the
computation of the partial return codes, and the NIZK proofs which linked them
to the encrypted voting options, are done at the server-side. Therefore, the voting
device is only required to compute the Signed ElGamal encryption of the voter’s
choices. However, each voting option is required to be individually encrypted, since
individual return codes have to be computed from them. This results in an oper-
ational cost at the voting device of 3t exponentiations. In case of using multiple
public key encryption the cost is of t+ 2 exponentiations.

Chapter 4. Return Codes with Single Voting: Neuchâtel’s Scheme 89

4.7 Authentication, usability and correctness: im-

plementation details

The protocol described in Section 4.4 may pose significant usability problems to the
voters. In order to cast a vote, the voter is asked to type in the voting device a
series of secret values from her verification card, such as the private key skid or the
confirmation value CCid. Moreover, for the cast-as-intended verification the voter
has to compare the return codes she receives at the voting device, RCid, with those
in her verification card corresponding to her selections. The same applies to the
finalization code FCid.

The problem is that, according to current cryptographic key length recommen-
dations [3], the aforementioned values have a length of 2048 or 256 bits, depending
on whether they are used in an asymmetric or a symmetric key cryptographic op-
eration (skid and CCid are of 2048 bits, while {RCid} and FCid are of 256 bits). To
be more concrete, in case a Base32 encoding is used to represent such values, this
implies 410 and 52 characters respectively. It is clearly not realistic to ask a voter
to perform such tasks.

Therefore, an additional layer for improving usability is required on top of the
protocol. This layer allows the reduction of the length of the values in the verification
card, and provides the voter’s code generation private key to the voting device in
a way that is transparent (unnoticed) for the voter. Moreover, we mix this layer
with authentication features, and also use it for checking the correctness of the votes
cast by the voters. This usability layer was used in the referendum conducted in
Neuchâtel, and it is similar to that in the Norwegian system used in 2011 and 2013.

4.7.1 Authentication and private keys provision

Although it has not been detailed in the protocol description for the sake of clarity,
some authentication mechanism is assumed to be put in place so that only authorized
voters are allowed to cast a vote.

In the system implemented in Neuchâtel there are two layers of authentication:
the first one is handled by the citizen portal Guichet Unique [87], from which the
voters access the voting application, and the second one is managed by the electronic
voting system. This second layer consists on a username/PIN-based authentication.
The PIN is randomly generated during the registration phase and printed onto
the voter’s verification card, while the username is provided by the first layer of
authentication, i.e the Guichet Unique [87]. However, the protocol can also work
with its own authentication system. In this case, voters receive their username and
PIN, preferably by two different channels (for example, the PIN could be provided
in the verification card and the username by mail or SMS). The username is then
also a random value generated during registration.

The authentication layer managed by the electronic voting system is used not

90 Authentication, usability and correctness: implementation details

only to qualify a user as an authorized voter in the election, but also to provide her
some cryptographic secrets, such as the voter’s key pair (pkid, skid), or even a voter’s
signing key pair (pksid, sk

s
id) if the voters do not have one, for digitally signing their

votes prior to casting them. Digital signatures are commonly used for protecting
the integrity of the ballots during transmission and storage, as well as for identifying
the origin of a ballot, in order to ensure that only one vote per voter is counted.

The voter’s key pairs are generated during registration and uploaded to the
voting server, using a key container (for example, a PKCS#12 [69]) sealed with a
password which is derived from a combination of the username and the PIN, for
example using a password-based key derivation function (PBKDF [70], bcrypt [98]).
During authentication, the password-protected secrets are provided by the voting
server to the voting device, where the voter enters the username and PIN in order
to open the key container and recover the secrets. Therefore, only the voter in
possession of her username and PIN is able to recover her secrets.

4.7.2 Short Return Codes

As we explained before, the return codes and the confirmation and finalization codes
are too long for being usable. Therefore, the tasks of entering them into the voting
device or comparing them may suppose a real challenge for the majority of the
voters. In order to solve that, shorter values which can be univocally mapped to the
long ones in the protocol are used.

In our protocol, the Register algorithm executed during voter registration is ex-
tended to generate such short values, which we denote by {sRCid}ki=1, sCC

id, sFCid,
that are printed in the verification card. One key factor of this approach is the
length of such values, which actually represents a trade-off between usability and
security: the longer they are, the harder it is to guess them by a corrupted voting
device, but the harder is to use them by the voter. Specifically, in the Neuchâtel
setup, short return codes are of 4 digits, and the confirmation and finalization codes
are of 7 digits.

Remember that the protocol described in sections 4.4, 4.6 generates long values
for the return and finalization codes, according to the security parameter λ. There-
fore, how are these codes related to the shorter values to be shown to the voter?
A trivial approach would be to obtain the short values by truncation. However,
this solution may not be compatible with some of the requirements of the scheme.
For example, we have seen in Section 4.5 that one of the requirements for cast-as-
intended verifiability is that the probability that two different voting options have
the same return code is negligible, which is satisfied according to the return code
generation explained in sections 4.4, 4.6: consider the output of the SHA-256 hash
function as uniformly random, and that we are generating return codes for 20 voting
options. According to the birthday paradox, the probability that two of them have
the same value is of 1, 72 ·10−75. However, in case of using truncation the probability
that two options have the same 4-digit short return code is about 0, 019. In case of

Chapter 4. Return Codes with Single Voting: Neuchâtel’s Scheme 91

generating return codes for 100 voting options the probabilities are of 4, 31 · 10−74

and 0, 39 respectively.

Since return codes and their short versions are generated during registration,
it is possible to put in place some control which ensures that all the short return
codes are unique. For example, in the case of using truncation, a suitable function
f for the Register and RCGen algorithms could be tested and found, for which the
generated return codes corresponding to a voting card, when truncated, are unique.

The alternative that was implemented in the Norwegian system and also in
Neuchâtel is based in another procedure: the short return, confirmation and final-
ization codes are generated at random and of the desired length, checking that unique
values are used in each verification card. Then the registrars compute a mapping
table in which each code sRCidi or sFCid is related to the corresponding long code
RCidi or FCid. During the voting phase, the code generator uses this table to obtain
the corresponding short codes, given the long codes generated by the protocol. The
mapping table is designed to be an injective function from codes {RCid}ki=1, FC

id to
short codes {sRCid}ki=1, sFC

id, and its design takes care of the secrecy of such short
codes after the registration phase.

Our implementation of the mapping table contains one entry for each (long)
return code RCidi of the form:

[H(RCidi),Encs(sRCidi ; RCidi)],

where H denotes a hash function, and Encs(m; k) denotes the encryption of the
message m with a symmetric encryption algorithm and a secret key k. The SHA-
256 hash function and the AES-128 symmetric encryption algorithm are used in the
system implemented in Neuchâtel.

An additional entry is computed in the same way with the (long) finalization
code FCid and the short finalization code sFCid.

Security: As we mentioned, using these short values has an impact on the security
of the scheme, specifically in the cast-as-intended verifiability property. In the case
of the short return codes, assuming that they are randomly chosen and that the
voting device has only one chance to show the values to the voter, the probability of
the voting device cheating in the content of the vote, but guessing the right values
to show to the voter is of 10−4t, being t the number of return codes that the voting
device has to guess (which in fact corresponds to the number of selections the voter
made). We assume that the voter will notice that the return codes do not match
the first time they are presented on the screen.

Regarding the confirmation code, one of the assumptions from the security anal-
ysis in Section 4.5 for the cast-as-intended verifiability property is that such code
was uniformly distributed in a large code space and therefore it was hard to guess.
Shortening the value to, for example, 7 digits, reduces this difficulty and makes this

92 Authentication, usability and correctness: implementation details

attack feasible by brute force, although an average of 107/2 calls to the server-side
would have to be made. In order to mitigate this attack, the number of calls the
voting client can do to confirm a vote is limited by the voting server (this can be
done by IP, by voter identifier, ... etc.).

The case of the short finalization code is similar to the one of the short return
codes. Assuming that it is randomly generated, and that the voter will notice any
discrepancy the first time she sees it, the chance of the voting client of successfully
guessing this value is of 10−7.

The injectivity of the map from long to short codes is granted given the non-
collision property of the hash function, as far as the map entries are of limited size:
for example, given a SHA-256 hash function, the map would need to have a size of
4, 8 · 1035 to have a probability of 10−6 of finding a map entry which corresponds to
two different long values. The limitation can be ensured by having a different map
per voter / verification card.

The secrecy of the short values to be returned to the voter is granted due to
the fact that they are stored in an encrypted form, being the key for decryption
the corresponding long value, which is known by the server only when a ballot or
confirmation message is received and the CreateBallotProof or Confirm algorithms are
executed. The map entries are uploaded to the voting server in randomized order
(ordering them alphabetically, for example), in order to remove any link between
the map entries and the voting options that could be inferred by the order of the
computation of the map entries during configuration.

4.7.3 Vote correctness

Additionally, we use the mapping table to ensure that a ballot that is accepted by
the voting server contains valid choices according to the election rules. For example,
in case a ballot contains some v′j 6∈ V , the (long) return code computed by the

code generator as fskc(v
′skid
j) will not find an entry on the mapping table described

above (and the same happens for the reference values {RFidi }ki=1 in the underlying
protocol).

Other information can also be checked: imagine the scenario where a voter can
select one party list, and then can give some weight to individual candidates. An
approach for implementing this validation consists of checking that the first (long)
return code corresponds to an entry in the table which has been labelled to contain
a party, and that the rest correspond to candidate-type mappings.

The alternative that has been used both in the Norwegian protocol and in the
solution implemented in Neuchâtel is to add such metadata (party or candidate
labels) to the return code generation mechanism itself, in such a way that the map-
ping table entries are not labelled. This alternative has been chosen for preventing
targeted attacks against table entries of a specific type.

Chapter 4. Return Codes with Single Voting: Neuchâtel’s Scheme 93

In the Norwegian protocol [60, 61, 101], type identifiers are added to the en-
crypted short return codes in the mapping table. Therefore a party voting option
and a candidate voting option may have respective entries in the mapping table
which look like the following:

H(RCidi),Encs((sRCidi ,“party”); RCidi),

H(RCidj),Encs((sRCidj ,“candidate”); RCidj).

The code generator retrieves these type identifiers when decrypting the short
return codes from the mapping table, and therefore can check that the structure of
the vote is correct according to the election rules.

In the protocol used in Neuchâtel, these type identifiers are included in the ballot
cast by the voter, and then used to compute the return codes at the server. The
ballot cast by the voter, then, has the following contents:

b = (c, pRCid1 - “party”, . . . , pRCidt - “candidate”),wskid(c), P
id
v , π1, π2)

In a first step the type identifiers are checked (in the example, that there is only
one type identifier for party list and that the rest are for candidates). In the second
step, these type identifiers are added to the computation of the return codes:

RCidj1 = fskc(v
skid
j1

, “party”)

RCidjt = fskc(v
skid
jt

, “candidate”)

where ’,’ denotes a concatenation.

The same is done in the registration phase when generating the mapping table.
Therefore, an invalid combination of a pair (partial return code , type identifier)
will result in an entry of the table with negligible probability, given the collission-
resistance properties of cryptographic hash functions.

4.7.4 Ballot Box vs Bulletin Board

There was no public bulletin board in the system deployed in Neuchâtel, although
its future use has not been ruled out. Instead, ballots and confirmation tags were
stored in a private ballot box managed by the voting server, and all the public
information of the protocol was provided to the system entities which needed it.
However, voters did have the chance to check that their ballots were indeed stored
in the ballot box: at the end of the voting process, together with the finalization
code FCid, voters received a voting receipt Rv which was computed by the voting
server as a hash of the ballot b. This voting receipt was digitally signed, with a
private key owned by the voting server.

94 Protocol extensions

In the counting phase, the electoral authorities published the hash of all the
confirmed ballots in the ballot box on a web-site (the Guichet Unique). That is, the
ones that the Tally algorithm selected to be processed by the mix-net. The voters
could check that their receipts were present in the published list, and therefore that
their ballots were present at the counting phase. The voting receipt signature could
be used to detect any false claim of a voter who complained for her receipt not being
published.

4.8 Protocol extensions

In this section we describe some functionalities with which the protocol can be
extended in order to provide some additional properties. Some of them are related
to practical issues, while others are more related to improving the trust model.

4.8.1 Supporting multiple entry points

The presented protocol is designed to have two phases: the ballot submission phase,
and the ballot confirmation phase. For usability purposes, the system could allow the
voter to initiate two different sessions in order to perform each phase. For example,
the voter could decide, after receiving the return codes, to check them and confirm
her vote at a latter time (maybe because she didn’t have time to check them at
that moment). Bad connectivity could also cause an accidental session break after
the voter has submitted her vote at the first step, and it would not be convenient
that this break prevents the voter from checking her return codes and confirming
her vote once the connectivity is back.

The protocol used in Neuchâtel supports vote sending and confirmation in differ-
ent sessions in the following way: if a voter who authenticates to the system already
has a ballot b stored in the bulletin board, the bulletin board manager executes
CreateBallotProof and provides the generated return codes, which are forwarded to
the voting device. From this point, the return code verification and confirmation
phases are developed as usual, as described in previous sections. The time frame in
which this may happen can be restricted in order to reduce vote selling attacks.

In a similar way, the finalization code may be sent back to the voter during a
specific period of time when she logs-in after having confirmed her vote. This allows
the voter to check whether the vote was correctly confirmed although the voting
device fails to show it after confirmation, accidentally due to connectivity issues, or
on purpose in order to diminish the voter’s trust.

4.8.2 Distributed return code generation

In the introduction of this chapter, we explained that according to the Swiss Fed-
eral Council report on electronic voting, systems to be used by up to 100% of the
electorate had to provide some sort of separation of duties on operations impacting
the verifiability of the system. Specifically, in further evolutions of this protocol, the

Chapter 4. Return Codes with Single Voting: Neuchâtel’s Scheme 95

generation of verification cards will be distributed into a set of trustees which pre-
serve the secrecy of their contents, together with the printing service. The purpose
is that the verification cards are only known by the printing service and the voter,
at the end of the registration phase. The return code generation during the voting
phase will be also distributed among the trustees, in such a way that without the
collaboration of all of them valid return codes cannot be provided to the voter (un-
derstanding by valid, that for those values the AuditBallotProof algorithm succeeds
with overwhelming probability).

Here we describe a proposal for a new protocol which uses a set of z code gener-
ators computing the codes in a distributed manner. We also include the short codes
in the description for taking into account the usability layer.

An overview of the system is the following: during the registration phase, each
code generator generates a part of the long return (and finalization) codes and voters’
private keys skid. These pieces of information are sent to the printing service, which
recomposes them and relates them to a random set of short return codes, previously
unrelated to voting options, in order to construct the mapping table that will be
used, during the voting phase, to translate the long return codes generated by the
protocol to the short return codes to be sent to the voters. All the information
is processed in an encrypted form, in such a way that the printing service only
decrypts the contents to be printed in the verification card, and the code generators
only recover the mapping table which does not reveal neither the long nor the short
return codes.

During the voting phase, upon reception of a ballot at the bulletin board man-
ager, it is forwarded to all the code generators, each of which compute their part of
the long return codes. The bulletin board manager is able to recompose the com-
plete long return codes in order to extract, from the mapping table, the short codes
to be delivered to the voter.

The following is a more detailed description of the modifications to the protocol:

Setup: during the setup phase the code generators jointly generate an encryption
key pair (pkCG, skCG) using a distributed key generation algorithm, where the m-th
code generator has a private share skCG(m). The printing service also generates a
key pair (pkprint, skprint) by running Gene, and publishes (pkprint).

Registration: during this phase, a series of steps are generated by the code gen-
erators and the printing service.

1. Each code generator m runs Gene from the encryption scheme to generate two
key pairs (pkcga, skcga), (pkcgb, skcgb), calculates β = skcga ·skcgb and computes
the m-th long return code for each voting option vi in V : RCidi (m) = (vi)

β. It
also computes the m-th long finalization code as FCid(m) = (CCid)β, where CCid

96 Protocol extensions

is taken at random from the chosen code space. Then it encrypts them by run-
ning E(RCidi (m)) = Enc(RCidi (m), pkCG) and E(FCid(m)) = Enc(FCid(m), pkCG),
E(CCid(m)) = Enc(CCid(m), pkprint).

2. The code generators publicly take all the possible values of short return codes
(according to the defined short code space for return codes, we denote its size
as N), and all the possible values of short finalization codes (also according
to the defined short code space for finalization codes, we denote its size as P)
and mix them using a re-encryption mixnet, where they are the mix-nodes,
using the printing service public key pkprint.

3. Each code generator m provides the set of encrypted long return codes
{E(RCidi (m))}ki=1, corresponding to the k voting options in the election, the en-
crypted finalization code E(FCid(m)), the encrypted confirmation codeE(CCid(m))
and the private key skcga(m) to the printing service.

4. The shuffled and reencrypted short return codes {E(sRCidx)}Nx=1 and short fi-
nalization codes {E(sFCidy)}Py=1 are also provided to the printing service.

5. The printing service receives the sets {E(RCidi (m))}ki=1, E(FCid(m)), E(CCid(m))
and skcga(m) from the z code generators and puts them together by comput-
ing: E(RCidi) =

∏z
m=1E(RCidi (m)) for each i such that vi ∈ V , E(FCid) =∏z

m=1E(FCid(m)), E(CCid) =
∏z

m=1E(CCid(m)) and skid =
∏z

m=1 skcga(m).

6. Then it selects at random a subset of k encrypted short codes from {E(sRCidx)}Nx=1,
and one encrypted short finalization code from {E(sFCidy)}Py=1.

7. For each selected encrypted short code, the printing service computes
Dec((E(sRCidx) · E(RCidi)), skprint) and Dec((E(sFCidy) · E(FCid)), skprint). The
result is the combination of pairs short-long code encrypted with the code
generators’ public key, which is sent back to the code generators.

8. The printing service then uses its private key to decrypt the selected short re-
turn codes, preserving the link with the voting option index i corresponding to
the assigned long code, the confirmation code and the short finalization code.
All the information to be printed in the verification card is ready, including
the voter’s private key skid.

9. Finally, the code generators distributedly decrypt the information received
from the printing service, and provide the combinations (sRCidx ·RCidi) for i such
that vi ∈ V , and (sFCidy · FCid) to the bulletin board manager as the mapping
table. A one-way homomorphic function may additionally be computed by
the printing service over the recovered values E(RCidi), for example (E(RCidi))α

where α is a known value. This way, the mapping entries can be indexed by
the corresponding (RCidi)α key.

Chapter 4. Return Codes with Single Voting: Neuchâtel’s Scheme 97

Figure 4.2: Distributed registration process

98 Protocol extensions

Voting: during the voting phase, when the bulletin board manager receives an
incoming pair (id, b), it runs ProcessBallot and if the result is 1 it submits (id, b) to
the code generators. Each code generator parses b as (c, {pRCidjl }

t
l=1,wskid(c), P

id
v , π1,

π2) and computes each m-th long return code as RCidjl (m) = (pRCidjl)skcgb . The m-th
return codes from the z code generators are sent back to the bulletin board manager,
who puts the values together by computing for each one

∏z
m=1 RC

id
jl

(m) and using
the resulting value to recover the short code sRCidjl , which can be sent back to the
voter.

Figure 4.3: Voting process with distributed code generators

Similar steps are done for performing the confirmation of a vote.

This modification of the protocol from Section 4.4 can be implemented with the
primitives described in Section 4.6. All the operations can generate proofs of correct
computation, for example by using a verifiable mixnet and generating NIZK proofs
of correct decryption. Thus, it can be ensured that the contents of the verification
cards and the mapping table are correct, and that the submission of a ballot for a
specific candidate will result in the generation of the expected return code.

One of the trust assumptions we do in the protocol described in Section 4.4 is
that the bulletin board manager is honest, in the sense that it performs the described
validations and does not continue with the process when they fail. Otherwise, a col-
lusion between a malicious voting device and a malicious bulletin board manager
could lead to the generation of return codes which do not correspond to the ballot
contents, defeating the purpose of the cast-as-intended verification mechanism. Re-
call that the bulletin board manager verifies the NIZK proofs of knowledge in the
ballot b during the execution of the ProcessBallot algorithm. In case of a collusion,
the voting device may send a ballot b containing partial return codes, which do not
correspond to the encrypted voting options, without being detected. This results
in the fact that the return codes the voter checks do not correspond to the voting
options that are taken into account for computing the election result.

In a distributed computation environment with multiple trustees, as described
in this section, we can remove this assumption by repeating the NIZKPK validation

Chapter 4. Return Codes with Single Voting: Neuchâtel’s Scheme 99

in each code generator, which only contributes to the generation of return codes if it
agrees with the result of the verification. This way, a collusion of the voting device,
the bulletin board manager and all the code generators is needed for defeating the
cast-as-intended verifiability property.

4.8.3 Support for multiple voting

Although the description of the protocol has been focused on a single-voting scheme
in which a confirmation phase is added after vote verification, the improvements on
the return code generation related to previous schemes such as [60, 100, 101] can
still be used in multiple voting scenarios. In such case, the restriction of one vote
per voter which is executed in the ProcessBallot algorithm is removed and the Tally
algorithm will select the last ballot cast by each voter. Moreover, the confirmation
phase is not needed since, in case the voters don’t agree with the received return
codes, they can choose to submit a new ballot through a different voting device.

Of course, it is important to take into account that returning the return codes
through the same voting device when multiple ballots are cast is a threat to the
cast-as-intended verifiability property, when the same verification card is used: the
voting device may learn the return codes corresponding to a vote according to the
voter’s selections and then cast a second one containing different content. The voter
would not detect this attack because the first set of return codes would be shown
on the screen.

A mitigation to this attack, which was used in the Norwegian project, was to
return the return codes through a second channel, in that case the SMS channel,
which was assumed to be independent to the voting device.

Another alternative is that voters have access to several verification cards, which
they can use to cast multiple votes. Since the sets of return codes are different in
each case, the voting device cannot use previously received return codes to cheat the
voter. In case of using this approach, some system has to be put in place for ensuring
that only one vote per voter is counted. For example, the voter may use signing
keys to digitally sign her ballot, which are independent of the verification cards.
Therefore all the ballots cast by the same voter can be identified to only take one
into account at the counting phase. The verification cards may also be pre-assigned
to the voter for the same purpose (identifying several ballots from the same voter).
Another alternative is to have a dynamic system which allows multiple registration
proccesses, in which when the voter requests to re-register, all her previous ballots
are revoked.

4.8.4 Assignation of verification cards

Finally, although in the description of the protocol we have always linked a verifi-
cation card to a voter for a more comprehensive explanation, it has to be clarified
that the verification cards may not be related to a voter when they are generated.

100 Protocol extensions

Instead, they are related to a serial number to which the public registration informa-
tion (id, P id

v , P id
a , P id

c) is linked. This serial number would be the id in the protocol.
This can be used for improving the logistics of the scheme: instead of printing and
sending the verification cards to the voters in advance, spare sets can be distributed
to different locations so that voters can request one of them when they want to vote.

As said before, the authentication mechanism can be in charge of ensuring that,
even if she has access to multiple verification cards, the voter is authorized to cast
only one vote. In case the authorization to vote is given by the secret information
provided in the verification card (the PIN, or the voter’s private key skid), some
mechanism has to be put in place in order to ensure that the voter is only provided
with one verification card (for example, a distributed electoral roll in which the voter
is marked).

Chapter 5

Challenge-and-cast

5.1 Introduction

As we have seen in Section 2.2, systems based on the challenge-or-cast mechanism
do not audit the same ballot that is cast. Instead, they play with the fact that the
voting device does not know whether the voter is going to audit the ballot to which
it has commited or not. In case such systems have allowed to verify the same ballot
to be cast, they would fail on fulfilling other security requirements for electronic
voting systems such as protection against voter coercion and vote selling, given that
their verification involves providing the randomness of the encrypted vote.

The proposal presented here is a modification of such cast-as-intended verification
systems in which the same ballot to be cast is audited. We think that this method
provides an improvement with respect to the soundness of the verification, as well
as representing a more straightforward process for average voters, who will better
understand the process. Still, measures are applied in order to ensure that this
verification does not provide the voter with a receipt that can be used to sell her
vote. We call this variant challenge-and-cast.

5.2 Overview

The solution is the following: the voting device encrypts the vote and shows the
resulting ballot to the voter, together with a zero-knowledge proof of knowledge
(ZKPK) of the encryption randomness instead of revealing the plain value, as in the
challenge-or-cast mechanisms. After the voter agrees on the proof, the ballot is cast
and published on the bulletin board, so that the voter can check that her ballot has
been correctly received at the voting platform. The voter agreement of the proof is
represented with an authentication of the ballot, and only authenticated ballots are
accepted in the system (posted on the bulletin board).

The cast-as-intended verification is still sound compared to prior systems, thanks
to the properties of the proofs of knowledge: the verification of the proof will succeed
only in case the voter’s device is honest (i.e., the device is encrypting the voting
options selected by the voter). In case of a dishonest device, the probability of the

101

102 Related work

proof being successfully verified (and thus, the voter being cheated without notice)
is negligible.

The scheme provides protection in front of vote selling/voter coercion scenarios
thanks to the fact that it generates a ZKPK instead of providing the value itself.
With the proof itself, the voter can be easily coerced or she can sell her vote: the
coercer or vote buyer can check that the proof verifies for specific content. However,
we take advantage of the fact that ZKPKs can be simulated to give a chance to
the voter to cheat the coercers/vote buyers: In our scheme, the voter is allowed to
generate fake proofs that will look like good proofs to anyone else.

5.3 Related work

Early works have intended to provide the voter with information of the vote content
without revealing this information to third parties: in [22] Benaloh and Tuinstra
describe the first receipt-free voting system. An election authority prepares and
proves the correctness of a set of ciphertexts to the voter, who is the only one who
knows their correspondence with the original voting options. The voter is able to
fake the proof information, so that a third party can be convinced of an arbitrary
correspondence between ciphertexts and voting options, however she knows which
ciphertext she has to cast to vote for a specific option.

While this idea is very similar to ours regarding the cast-as-intended verification,
the scheme presented by Benaloh and Tuinstra needs a high degree of communication
between the voter, the election authorities and a public bulletin board: for choosing
between 0 and 1, the voter receives up to N bits, the election authorities have
to produce and publish N pairs of ciphertexts, and then make the same amount of
decryptions, where N is presumably large (the probability of the election authorities
producing corrupted ciphertexts without being detected is 1

2N
).

In a similar proposal by Sako and Kilian [110], the election authorities provide
the voter with a large set of encryptions of 0 and 1, and then show the voter in
private their correspondence with cleartexts. Chameleon commitments are used to
commit to the ciphertexts generated, in such a way that the voter can later open
them to arbitrary values. Again, the voter knows the content of the ciphertexts from
which she picks the vote to be cast, and can provide fake information to a possible
coercer.

As we will see in the following sections, our proposal only needs one encryption
and one ZKPK to be generated and transmitted to the voter for schemes where the
voter has to choose between 2 values. In opposition to the two previous proposals,
the number of encryptions to be generated and provided to the voter is not propor-
tional to the number of available voting options, but proportional to the number of
options she can select for mixnet-based schemes.

Chapter 5. Challenge-and-cast 103

Other systems such as [39] use trapdoor commitments in order to provide receipt-
freeness in blind signature voting schemes, however they struggle in the way of pro-
viding the voter with the trapdoor key. Although we also use trapdoor commitments
in our scheme, we have naturally associated the trapdoor key to a voting credential
needed to cast a ballot, in order to improve the usability and understandability of
the scheme.

We would like to remark that we do not aim to solve the problem of receipt-
freeness with this proposal. Instead, our motivation is to provide a method for
cast-as-intended verification which does not involve providing a receipt to the voter
(or that at least allows her to fake it for a possible coercer). For this purpose, we
have defined in Section 3.3.6 the concept of coercion-resistant cast-as-intended. We
show in Section 5.5.1 that this scheme fulfills this property.

At the same time, we want this cast-as-intended verification system to be com-
patible with some of the features that can be provided with Helios or its variants,
for example the use of digital signatures for casting the votes (no blind signature
schemes), which may be required in some binding elections, and compatibility with
both mixnet-type and homomorphic-tally based voting systems.

5.4 Proof simulation

The scheme uses Designated Verifier Proofs [74], which allow a proof verifier to be
convinced of a statement, while she is able to simulate proofs for different statements
to other verifiers.

In their paper, Jakobsson, Sako and Impagliazzo construct designated verifier
proofs which can be both interactive and non-interactive. The motivation of their
proposal is to provide a mechanism by which a prover can choose who can be con-
vinced by a proof - the designated verifier - . In our scheme, the prover is the voting
device, who proves knowledge of the encryption randomness, and the designated
verifier is the voter. Other verifiers such as possible coercers or vote buyers cannot
be convinced by the proof.

The authors give a very intuitive description of how the proof works in the
following paragraph: Instead of proving σ, Alice proves the statement “Either σ is
true, or I am Bob”. Bob trusts σ is true upon seeing the proof generated by Alice.
However, if Bob provides the same proof to Cindy, Cindy will have no reason to
believe that σ is true, since Bob is himself capable of proving to be Bob.

Trapdoor commitments, known also as chameleon commitments [27], are used
for the proof generation. The trapdoor information is only available to the desig-
nated verifier of the proof, who can use it to generate simulated proofs for other
verifiers. Chameleon hashes [76] are used in non-interactive settings, such as in non-
interactive zero-knowledge proofs of knowledge (NIZKPKs), rather than chameleon
commitments. As the authors in [76] explain, the main difference is their intended

104 Proof simulation

use. While commitments are intended to be generated in a first step, and be opened
later, chameleon hashes are used for computing a one-way function of the value,
with no later opening.

Chameleon Commitments A chameleon commitment is a trapdoor commit-
ment. Without knowledge of the trapdoor, the commitment is binding and there-
fore can only be opened to the original commited value. However, possession of the
trapdoor allows to overcome this binding property and open the commitment to any
arbitrary value.

A chameleon commitment scheme is composed by four p.p.t. algorithms: Gench,
Commitch, Opench, Simch.

Gench takes as input a security parameter 1k, outputs an evaluation key ekch

and a trapdoor key tkch, and defines a message spaceMch, a randomness space
Rch and a commitment space Ych.

Commitch takes as input an evaluation key ekch, a message m ∈ Mch and a
random value rch ∈ Rch and outputs a commitment cch ∈ Ych.

Opench receives a commitment cch ∈ Ych and outputs a message m ∈Mch and
a random value rch ∈ Rch.

Simch takes as input the trapdoor tkch, two messages m,m′ ∈Mch and a ran-
dom rch ∈ Rch, and returns a value rch

′ ∈ Rch such that Commitch(ekch,m, rch) =
Commitch(ekch,m

′, rch
′).

Chameleon commitments have the following properties:

Collision resistance. Provides that, given only the evaluation key ekch, the
probability of finding (m, rch) 6= (m′, rch

′) such that Commitch(ekch,m, rch) =
Commitch(ekch,m

′, rch
′) is negligible in polynomial time.

Trapdoor collision. Provides that there is an efficient algorithm Simch which
finds two openings for the same commitment value, using the trapdoor key tkch.

Uniformity. For any message m ∈Mch, and any rch uniformly distributed in Rch,
the commitment cch is uniformly distributed in Ych. Therefore the probability of an
adversary of distinguishing between the commitment to m and m′, both in Mch is
negligible in polynomial time.

Chameleon Hashes A chameleon hash function is a trapdoor collision-resistant
hash function. Without knowledge of the trapdoor, the chameleon hash behaves as
an ordinary collision-resistant hash function. However, using the trapdoor, collisions
can be found efficiently.

The three p.p.t. algorithms Gench, Hch and H−1ch , which define a chameleon hash
scheme, can be directly identified with those defined for the chameleon commitments

Chapter 5. Challenge-and-cast 105

above (Gench keeps the same name, while Hch behaves as Commitch and H−1ch behaves
as Simch). The exception is the opening algorithm Opench, which does not have a
correspondence in chameleon hash schemes.

The three properties of collision resistance, trapdoor collision, uniformity defined
for the chameleon commitments can be also attributed to the chameleon hashes.

5.4.1 A simulatable NIZK proof using chameleon hashes

Although examples of simulatable NIZKPK proofs are given by the authors in [74],
here we provide a formal description of the algorithms that will be used in further
sections, in order to prove their properties and those of the scheme where they are
used.

Recall that in a σ-protocol, in order to prove that a statement x belongs to LR,
a prover P and a verifier V engage in an interactive protocol where first, P sends a
commitment message a to V ; then V replies with a random challenge e; finally, P
sends an answer z to V . Interactive zero-knowledge protocols such as σ proofs can
be turned into non-interactive using the Fiat-Shamir [55] transformation, where a
hash function is used to compute the random challenge e.

The transformation into a (trapdoor) simulatable NIZKPK works by substituting
the challenge e with the result of a chameleon hash: P chooses a random value rch
and evaluates the chameleon hash function Hch on the message m = H(x, a) using
the randomness rch, where H is a regular collision-resistant hash function. The
challenge of the σ-protocol is then defined as e = Hch(H(x, a); rch). In addition, P
also sends the randomness rch which it used in the computation of the chameleon
hash.

This non-interactive protocol allows the simulation of valid proofs by means of
the trapdoor key of the chameleon hash scheme: indeed, given a trapdoor tkch for the
chameleon hash, the simulator can compute the triplet (a∗, e∗, z∗) as the simulator
of the σ-protocol would do. Then, by using the trapdoor of the chameleon hash, the
simulator will be able to find a random value rch

∗ such that e∗ = Hch(H(x∗, a∗); rch
∗).

The uniformity property of the chameleon hash scheme guarantees that simulated
proofs have the same distribution as honest proofs.

Concretely, the trapdoor-simulatable NIZKPK scheme to be used in our proto-
col uses a σ-protocol, a chameleon hash scheme (Gench, Hch, H−1ch) and two hash
functions H1 : {0, 1}∗ →Mch and H2 : {0, 1}∗ → CH (the challenge space). Then,
the NIZK proof is given by the following algorithms:

GenCRS: receives as input a security parameter, it runs Gench and outputs
crs = ekch and tk = tkch.

NIZKProve: receives as input the common reference string crs, a statement x
and a witness w. Then it follows the next steps:

106 Proof simulation

1. Run the first phase of the prover P of the σ-protocol, which outputs a
commitment a.

2. Sample a random rch ∈ Rch and compute e = H2(Hch(H1(x, a), rch)).

3. Run the second phase of the prover P of the σ-protocol, obtaining an
answer z.

4. Define the proof π = (a, e, rch, z).

NIZKVerify: receives as input a proof π and a statement x. Then it returns 1
if e = H2(Hch(H1(x, a),
rch) and if the verification of the σ-protocol passes for the values (a, e, z), 0
otherwise.

NIZKSimulate: on input a statement x and a trapdoor tk, the simulator runs
the following steps:

1. Run the simulator S of the σ-protocol to obtain a triplet (a∗, e∗, z∗).

2. Use the trapdoor tkch to obtain a value rch
∗ s.t. e∗ = H2(Hch(H1(x, a

∗), rch
∗))

3. Output a simulated proof π∗ = (a∗, e∗, rch
∗, z∗)

5.4.2 Simulatable NIZKPK scheme properties

In this section we prove that the trapdoor-simulatable NIZKPK scheme presented
above is complete, sound and zero-knowledge.

Theorem 5.1. The NIZKPK scheme is complete if the underlying σ-protocol is
complete and the chameleon hash function fulfills the property of correctness.

The completeness of the protocol follows easily from inspection.

Before proving that the protocol is sound, we will prove the following useful
lemma:

Lemma 5.1. Let H be modeled as a random oracle. Let A be an adversary which
has access to such random oracle and can produce a proof π = (a, e, rch, z) for a
statement x of its choice. Then, there exists a p.p.t. simulator S which accesses
A and outputs two proofs π1 = (a, e1, rch1, z1) and π2 = (a, e2, rch2, z2) such that
e1 = Hch(ẽ1, rch1), e2 = Hch(ẽ2, rch2) and ẽ1 6= ẽ2.

Proof. The simulator S uses A as a black-box and also acts as its random oracle.
In particular, whenever A makes a query to the random oracle, S saves the state
of A and answers the random oracle query by returning a random value. Then, S
runs many copies of A (from the saved state) and returns different answers to the
random oracle.

For each of the copies of A, it then answers to subsequent oracle queries with
random values, whereas for the main execution of A it repeats the explained process
for every oracle query.

Chapter 5. Challenge-and-cast 107

The adversary A must use one of its random oracle queries for producing a proof
π = (a, e, rch, z), where e = Hch(ẽ, rch) and ẽ is the answer of the random oracle on
input (x, a). As explained in [65], by making a polynomial number of copies of A
for each oracle query, there will be at least one which will use the same oracle query
for producing the proof π′ = (a, e′, rch

′, z′) where e′ = Hch(ẽ
′, rch

′) and ẽ′ 6= ẽ.

Proposition 5.1. The scheme defined above is sound in the random oracle model
if the underlying σ-protocol has the special soundness property and the chameleon
hash is collision-resistant.

Proof. Assume that the hash H is modeled as a random oracle and assume that
there exists an adversary A which is able to produce proofs for statements of its
choice (x, π). Then we will show that there exists a p.p.t. adversary B and a p.p.t.
simulator S such that either B breaks the collision-resistance of the chameleon hash
or S extracts a witness w such that (x,w) ∈ R.

By using the Lemma 5.1, we can extract two proofs π1 = (a, e1, rch1, z1) and
π2 = (a, e2, rch2, z2) such that e1 = Hch(ẽ1, rch1), e2 = Hch(ẽ2, rch2) and ẽ1 6= ẽ2. Now
we distinguish between two cases: (i) e1 6= e2 and (ii) e1 = e2. In the first case, we can
use the special soundness property of the σ-protocol to extract a witness w for the
statement x belonging to LR. In the second case, we can use e1 and e2 as a collision
for the chameleon hash, as we have that ẽ1 6= ẽ2 and Hch(ẽ1, ch1) = Hch(ẽ2, ch2) for
some ch1, ch2.

Proposition 5.2. The scheme defined above is zero-knowledge (in the common
reference string model) if the σ-protocol is honest-verifier zero-knowledge.

Proof. We have already given the simulator, we just need to show that the probabil-
ity distributions of the proofs generated by the simulator and of the proofs generated
by a honest prover are computationally indistinguishable.

To see that, consider a honestly generated proof π1 = (a1, e1, rch1, z1) and a
simulated proof π2 = (a2, e2, rch2, z2). From the zero-knowledge property of the σ-
protocol, we have that the sub-tuples (a1, e1, z1) and (a2, e2, z2) are indistinguishable,
and by using the uniformity property of the chameleon hash we get that π1 and π2
are also indistinguishable.

5.5 Core Protocol using Mixnets

In this section we define the core protocol with a mixnet-based approach, using as
basis the syntax for an electronic protocol that we defined in Chapter 3. We add
the audit device participant with respect to the definition in Section 3.2. The audit
device is used by the voter to verify cryptographic evidences generated by the voting
device.

108 Core Protocol using Mixnets

As defined in 3.2, the list of voting options V = {v1, . . . , vk} in the election, and
the counting function ρ : (V ∪{⊥})∗ → R have been previously defined by the elec-
toral authorities. The voting protocol uses an encryption scheme with algorithms
(Gene,Enc,Dec,EncVerify), a signature scheme (Gens, Sign, SignVerify) and a mixnet
with algorithms Mix and MixVerify. It additionally uses two NIZKPK schemes, one
which is trapdoor-simulatable, denoted by the four algorithms (GenCRS,NIZKProve,
NIZKVerify,NIZKSimulate), and one for proving decryption correctness, which is de-
noted by the algorithms (ProveDec,VerifyDec, SimDec). It consists on the following
algorithms:

Setup(1λ) runs Gene from the encryption scheme to generate the key pair (pke,
ske). Then it sets the election public key to pk = pke and the election private
key to sk = (ske, pke). The global confirmation and audit key pairs (pka, ska),
(pkc, skc) are set to ⊥.

Register(1λ, id, ska, skc) runs GenCRS from the NIZKPK scheme and Gens from
the signature scheme, and sets the voter audit key pair (P id

a , Sid
a) =⊥, the voter

confirmation key pair P id
c = pks and Sid

c = (sks, tk), and the voter voting key
pair P id

v = crs, Sid
v =⊥.

CreateVote(id, {vj1 , . . . , vjt}, P id
v , Sid

v) runs Enc from the encryption scheme
with inputs pk and each voting option {vjl}tl=1 and obtains the set of cipher-
texts {cl}tl=1. Then it parses P id

v as crs and runs NIZKProve from the NIZKPK
scheme for each ciphertext cl, using as input crs, the statement (cl/vjl) and
the encryption randomness rl. The ballot b is set to be the set of ciphertexts
{cl}tl=1, and the encryption data r̃ is {πl}tl=1.

AuditVote(b, r̃, {vj1 , . . . , vjt , P id
v) parses b as {cl}tl=1, r̃ as {πl}tl=1 and P id

v as
crs. Then it runs NIZKVerify from the NIZKPK scheme for each πl with the
statement (cl/vjl) and the common reference string crs. It outputs 1 if all the
proof verifications return 1, 0 otherwise.

Confirm(id, b, Sid
v , S

id
c , P

id
c , ska) parses Sid

c as (sks, tk) and runs Sign with in-
puts the voter’s signing private key sks and the ballot b to be signed, together
with the voter identity id. The resulting ballot signature ψ is set to be the
ballot confirmation Cb. Then it parses b as {cl}tl=1 and runs NIZKSimulate from
the NIZKPK scheme for each statement (cl/vj′l), where the values {vj′l}

t
l=1 are

additionally provided or randomly selected from V . The simulated proofs {π∗l }
are set to be the auxiliary data σ′.

ProcessBallot(BB, id, b) performs some validations: it checks that there is not
already an entry in the bulletin board for the same id and that this id is
present in the list ID. Then it checks that there is not another ballot b′ in BB
for which b′ = b. Finally it parses b as {cl}tl=1 and for each ciphertext cl it runs
EncVerify. If any of these validations returns 0, the process stops and outputs
0. Otherwise it outputs 1.

Chapter 5. Challenge-and-cast 109

ProcessConfirm(BB, id, Cb) locates the ballot b in the bulletin board corre-
sponding to the received identifier id and runs SignVerify, using the corre-
sponding voter public key P id

c (which can be parsed as pks). If the validation
returns 1 it outputs 1. Otherwise, it outputs 0.

VerifyVote(BB, id, b) checks that there is an entry in the bulletin board corre-
sponding to the identity id. In the affirmative case, it compares the ballot b′

in such entry with b, checking that all the fields are equal. If the validation is
successful, it outputs 1. Otherwise it outputs 0.

Tally(BB, sk) in the first place runs the ProcessBallot and ProcessConfirm algo-
rithms, and discards the ballots for which any of the verifications fail. Finally
it extracts the ciphertexts c from the ballots which have passed the verifica-
tions and run Mix with them as input. The resulting list of mixed ciphertexts
{Cm} is decrypted: for each ciphertext cz ∈ Cm, Dec(cz, sk) is run to obtain
vz, which is tested to belong to V . Finally the ProveDec algorithm from the
NIZKPK scheme is run with inputs each statement (cz, vz) and the private key
sk as the witness. The outputs are the list of decrypted voting options r = {vz}
and the proofs of correct mixing and decryption, Π = (πmix, {Cm}, πdec).

VerifyTally(BB, r,Π) runs the ProcessBallot and ProcessConfirm algorithms over
the ballots in BB. It extracts the ciphertexts cl from the ballots which have
passed the previous validations and composes the list {C}. Then it parses
Π as (πmix, {Cm}, πdec) and verifies that the mixing was correct by running
MixVerify(C,Cm, πmix). Finally it checks that the decryption of each ciphertext
was correct by running VerifyDec from the NIZKPK scheme, using as input
the statement (cz, vz), for all the ciphertexts cz ∈ {Cm} and all the plaintexts
vz ∈ r, and the proof πl ∈ πdec. The output is the result of these validations.

The voting protocol algorithms are organised in the following phases:

Configuration phase: in this phase, the election authorities set up the public
parameters of the election such as the list of voting options {vi} ∈ V and the result
function ρ. They also run the Setup algorithm and publish the resulting election
public key pk and the empty credential list ID in the bulletin board. The private
key sk is kept in secret by the electoral authorities.

Registration phase: in this phase the registrars register the voters to vote in
the election. For each voter with identity id, the registrars run Register and update
the credential list ID in the bulletin board with id. They provide the voter voting
key P id

v and the voter confirmation key pair (P id
c , Sid

c) to the voter, and publish the
tuple (id, P id

v , P id
c) on the bulletin board.

Voting phase: in this phase the voter chooses the voting options {vj1 , . . . , vjt} ∈
V and interacts in the following way with the voting device, in order to cast a vote:

1. The voter provides her identity id and the chosen voting options {vj1 , . . . , vjt}
to the voting device, which gathers the corresponding public key P id

v from the

110 Core Protocol using Mixnets

bulletin board and runs the CreateVote algorithm. The outputs b and r̃ are
provided to the voter.

2. The voter uses an audit device to run AuditVote using b and r̃ provided by
the voting device, as well as her selections {vj1 , . . . , vjt}. The voter may enter
her voting public key P id

v herself, or her identity id so that the audit device
picks the corresponding public key P id

v from the bulletin board. A positive
result means that b is encrypting the voter’s selections {vj1 , . . . , vjt} and the
voter can continue the process. Otherwise, the voter is instructed to abort the
process and choose another voting device to cast her vote, since the one she is
using is corrupted and did not encrypt what she selected.

3. As a sign of approval of the generated ballot, the voter provides her confirma-
tion private key Sid

c to the voting device, which proceeds to run Confirm. The
resulting ballot confirmation Cb is sent, together with the ballot and the voter
identity, to the bulletin board manager. The simulated encryption data r̃′ is
provided to the voter.

4. Upon reception of (id, b, Cb), the bulletin board manager runs the ProcessBallot
and ProcessConfirm algorithms. In case both results are 1, the confirmed ballot
is posted on the bulletin board. Otherwise, the voting device receives an error
message. From that point, the voter can run VerifyVote to check that her vote
has been posted in the bulletin board.

The voter can provide the ballot b and the simulated encryption data r̃′ to
a coercer, who might want to check that a ballot for the requested voting options
{vj′1 , . . . , vj′t} is present in the bulletin board by running the AuditVote and VerifyVote
algorithms.

Counting phase: in this phase, the election authorities provide the election
private key sk and run the Tally algorithm on the contents of the bulletin board.
The obtained result r and the proof Π are posted in the bulletin board. The auditors
then run the VerifyTally algorithm. In case the verification is satisfactory, the election
result is considered to be correct. Otherwise, an investigation is opened in order to
detect any manipulation that could lead to a corrupted result.

Note that we have presented this scheme with a small modification of the voting
process compared to the description in Section 3.2, since the ballot is sent together
with the ballot confirmation to the bulletin board manager. This has been done
for convenience, since the original steps in Section 3.2 where CreateBallotProof and
AuditBallotProof were executed, between the submission of the ballot and its confir-
mation, are not executed in this protocol.

The result of this different ordering is that a ballot may not be accepted by the
bulletin board manager after the voter has confirmed. The voter may only accept
if the AuditVote algorithm returns 1, and this algorithm verifies that the ballot is
correct up to some extent. However, some validations which depend on the bulletin
board contents may be out of its scope (for example, if the audit device is off-line).

Chapter 5. Challenge-and-cast 111

Figure 5.1: Challenge-and-cast: Voting process overview

112 Core Protocol using Mixnets

We consider that even keeping the original ordering the same could happen with
the ballot confirmation, and in both cases the result is that the voter has given her
confirmation but her vote is not accepted. Still, the voter would detect this when
running the algorithm VerifyVote. A discussion on how the voter may re-vote in case
such problems occur can be found in Section 5.9.

The scheme can be seen as a modification of Helios with Credentials (Helios-C)
[40], the Helios variant in which there is a voter registration process where voters
receive a private key to digitally sign and cast their ballots. The main difference is
in the interactive protocol executed between the voter and the voting device during
the voting phase. For ilustrative purposes, we provide the description of the voting
phase Helios-C here:

Helios-C Voting phase:

1. The voter provides her chosen voting options {vj1 , . . . , vjt} to the voting device,
which runs the CreateVote algorithm with P id

v = 0. The generated ballot b is
provided to the voter and the encryption data is not shown.

2. The voter then can decide either to audit the ballot or to proceed to cast it. In
case she decides to audit the ballot, the voting device shows her the encryption
data r̃ (which is the randomness used for encryption).

3. The voter uses an audit device to run AuditVote, using b and r̃ provided by
the voting device, as well as her selections {vj1 , . . . , vjt}. A positive result
means that b encrypts the voter’s selection and that the voter can continue
the process. Otherwise, the voter aborts and starts the process again with
another voting device, since the one she was using did not encrypt what she
selected.

4. The voting device runs CreateVote again in order to generate a ballot contain-
ing a fresh encryption of the voter’s selection.

Again, the voter can choose either to audit the ballot or to cast it. In case
she decides to audit the ballot, the previous two steps are executed again.
Otherwise, the process continues.

5. The voter provides her confirmation private key Sid
c to the voting device, which

proceeds to run Confirm. The resulting ballot and confirmation are sent to the
bulletin board manager, where ProcessBallot and ProcessConfirm are executed.

6. From that point, the voter can run VerifyVote to check that her vote has been
posted in the bulletin board.

5.5.1 Security of the Protocol

In this section we show that the protocol presented in Section 5.5 satisfies the prop-
erties of ballot privacy, strong consistency, strong correctness, cast-as-intended ver-
ifiability and coercion-resistant cast-as-intended verifiability defined in Section 3.3.

Chapter 5. Challenge-and-cast 113

Ballot Privacy

Theorem 5.2. Let (Gene,Enc,Dec) be an NM-CPA secure encryption scheme and
(GenCRS,NIZKProve,NIZKVerify,NIZKSimulate) a NIZKPK with the zero-knowledge
property. Then the protocol presented in Section 5.5 satisfies the ballot privacy
property.

The ballot privacy definition provided in Section 3.3.2 is based in the indistin-
guishability of two experiments which depend on a bit β. We will refer to Exppriv,0

A,V

for the experiment when β = 0, and Exppriv,1
A,V when β = 1.

The next steps will be followed for proving that the ballot privacy property is
fulfilled by the protocol: first, we will prove that the original experiment Exppriv,β

A,V

is indistinguishable by A from an experiment Exppriv,β′

A,V where the tallier provides
a simulated proof of the tally result (needed due to the ballot privacy definition,
as indicated in [23]), through the Lemma 5.2. Then, we will provide a security

reduction of Exppriv,β′

A,V to the ballot privacy property of the Enc2Vote scheme with
the demonstration of Lemma 5.3.

Lets consider SimProof be a simulator of the mixing and decryption proofs,
which produces simulated proofs with the same distribution that the honest ones.
Then consider the experiment Exppriv,β′

A,V in which the challenger, when executing
Tally(BB0, sk), provides the result r and the proof Π∗ which is the output of SimProof.
The following lemma is straightforward to prove:

Lemma 5.2. The experiments Exppriv,β
A,V and Exppriv,β′

A,V are computationally indistin-
guishable for β ∈ {0, 1}.

Now we consider the Enc2Vote scheme defined in [25]. In their work, the authors
have proven the following theorem:

Theorem 5.3. Let (Gene,Enc,Dec) be an NM-CPA secure encryption scheme, then
Enc2Vote has ballot privacy.

Next, we proceed to reduce the ballot privacy property of our scheme to the
ballot privacy property of the Enc2Vote scheme.

Lemma 5.3. Let A’ be a p.p.t. adversary that interacts with a challenger C, such
that | Pr[Exppriv,0′

A,V = 1] - Pr[Exppriv,1′

A,V = 1] | is non-negligible. Then, there exists an
adversary A” that breaks the ballot privacy property of the Enc2Vote scheme.

Proof. In the reduction, we use A” as the challenger for A’, and A” interacts with
C in the same way as in the experiment defined in [25]. The reduction is as follows:

In the Setup phase, C sets up two empty bulletin boards BB0 and BB1, runs
the Gene algorithm and keeps the ske2ve key for itself, while it publishes the pke2ve

key on the bulletin board. In turn, A” publishes pke = pke2ve on the bulletin board
visible by A’.

114 Core Protocol using Mixnets

In the Registration phase, when A’ makes the ORegister query, A” runs the
Register(1λ, id,⊥,⊥) algorithm of our protocol and provides the voter confirmation
private key Sid

c = (sks, tk) to A’, while also keeping it internally. It also publishes
the tuple (id, P id

v , P id
a , P id

c) on the bulletin board visible by A’.

During the Voting phase, when A’ submits the OVoteLR query, A” submits
the Vote query to C, which responds by publishing a ballot be2v to the bulletin
board visible by A”. Then A” runs Sign with inputs the voter’s signing key sks and
the ballot be2v to be signed together with the voter identity id. Finally, A” posts
the resulting signature ψ to the bulletin board visible by A’, together with the voter
identity id and the ballot be2v. When A’ submits the OCast(b, Cb, id) query A”
submits a Ballot(b) query to C, and posts (id, b, Cb) in the bulletin board visible
by A’.

In the Counting phase, C posts the result of evaluating Tally(BB0, sk
e2v
e) on

the bulletin board visible to A”. A” in turn runs SimProof(BBβ, r), where BBβ is
the bulletin board shown by C to A”, and publishes (r,Π∗) on the bulletin board
visible by A’.

At the end of the experiment, A’ outputs a bit and A” outputs the same bit. As
we can see, the outputs of A”as a result of the interaction with A’ have the same
distribution as in the ballot privacy experiment in [25]. Therefore, the reduction is
sound.

Strong Consistency

We define the following algorithms for proving that our protocol provides the strong
consistency property, according to the definition in Section 3.3.3:

- Let the extraction algorithm Extract((b, sk), defined in Section 3.3.3 parse b
as the ciphertext c, run EncVerify(c, pke) and in case it returns 1, output m =
Dec(c, ske). Then it tests whether m ∈ V or not. In a positive case, it returns
v = m, otherwise it returns ⊥.

- Let the validation algorithm ValidInd(id, b, Cb) parse b as the ciphertext c and
Cb as the signature ψ, run EncVerify(c, pke), and run SignVerify to check that
ψ is a valid signature of b and id, using the voter public confirmation key P id

c .
The output of the algorithm is 1 if all the validations return 1, 0 otherwise.

- Let ρ be the counting function that provides its inputs as outputs in a shuffled
order, removing any input v for which v 6∈ V .

Theorem 5.4. Let Tally produce a sound proof Π of correct mixing and decryption,
and VerifyTally output 1. Then the protocol defined in Section 5.5 has the property
of strong consistency with respect to the above definitions of Extract,ValidInd, ρ.

Clearly Tally and the combination of the extraction algorithm and ρ remove the
same ballots, provided that the ciphertexts and the ballot confirmations are correct

Chapter 5. Challenge-and-cast 115

(what is enforced by the definition of the ValidInd algorithm). Mixing and decryption
do not remove/add/modify any ballot, since otherwise VerifyTally would fail, given
the soundness of the proofs generated by Tally.

Strong Correctness

Theorem 5.5. Let (Gene,Enc,Dec,EncVerify) be a randomized encryption scheme
and (Gens, Sign,VerifyTally) be a signature scheme with the property of correctness.
Then the protocol defined in Section 5.5 has the property of strong correctness.

In the protocol defined in Section 5.5, the only condition for which ProcessBallot
(BB, id, b) may output 0, given a ballot b produced by a honest registered voter that
was not registered by the adversary is that a previous ballot with the same ciphertext
c is already present in the bulletin board. Given that (Gene,Enc,Dec,EncVerify)
is a probabilistic encryption scheme, this probability is negligible in the security
parameter λ. The only condition for which ProcessConfirm outputs 0 is in case the
signature in the ballot confirmation does not correctly verify. By the definition of
correctness, a signature produced with the Sign algorithm is always accepted by
SignVerify for the corresponding public key.

Cast-as-Intended Verifiability

Theorem 5.6. Let (GenCRS,NIZKProve,NIZKVerify,NIZKSimulate) be a NIZKPK
scheme which is sound, (Gens, Sign, SignVerify) an unforgeable signature scheme and
(Gene,Enc,Dec,EncVerify) be a randomized encryption scheme. Then the protocol
presented in Section 5.5 satisfies the cast-as-intended verifiability property.

According to the definition presented in 3.3.5, the attacker may follow differ-
ent strategies to succeed. Recall that the definition included to cases in which the
adversary may try to win: In Case A the adversary presents as output a ballot,
encryption data and a voting option which are consistent (the corresponding veri-
fication algorithm outputs 1), the ballot has been successfully cast, but for which
the voting option does not correspond to the encrypted content in the ballot. In
Case B the adversary presents a valid ballot and confirmation (which means they
are accepted by the bulletin board manager) without having to provide any proof
of the content of the ballot that had to be accepted by the challenger.

There are two strategies for winning in Case A: The first strategy is that the
adversary provides at the output a tuple (id, b, r̃, vx) for which the OProofVote
query returned Sid

c and Extract(b, sk) 6= vx. Recall that in the OProofVote query the
AuditVote algorithm parses b as c, r̃ as π and P id

v as crs, and then runs NIZKVerify(crs,
(c/vx), π). Only if this verification is successful, the adversary will obtain Sid

c nec-
essary for computing Cb and making the OCast query, which is necessary in order
to make VerifyVote succeed. We can see that an adversary who follows this strategy
is an adversary against the soundness of the NIZKPK scheme.

The second strategy is that the adversary does theOProofVote query with inputs
(id, b, r̃, vx), where Extract(b, sk) = vx. Therefore, AuditVote is successful and the

116 Core Protocol using Mixnets

adversary has the voter confirmation private key Sid
c . However, after receiving it,

the adversary submits the query OCast(id, b∗, C∗b) such that Extract(b′, sk) 6= vx and
then presents the original tuple (id, b, r̃, vx) at the output. Recall that VerifyVote
checks that, for the entry (id′, b′, C ′b) in BB for which id′ = id, all the fields in b′ are
equal to all the fields in b. Given that AuditVote and ProcessBallot succeed, we know
that both are two valid ciphertexts. Given a probabilistic encryption algorithm,
the probability of finding two ciphertexts with the same value, which decrypt to
different plaintexts, is negligible according to the security parameter λ.

Finally, the strategy the attacker may follow for winning in Case B is to forge
the ballot confirmation Cb in order to provide a tuple (id, b, Cb) at the output which
is successfully processed by ProcessBallot(BB, id, b) and ProcessConfirm(BB, id, Cb),
without the collaboration of the challenger. Recall that ProcessConfirm performs
the validation of the ballot’s signature running SignVerify(pks, b, ψ). Since A does
not have the voter’s private signing key sks (because it did not do the OProofVote
or OVoteCorrupt queries), it has to forge the signature in order to succeed. There-
fore an adversary which succeeds with this strategy is an adversary against the
unforgeability of the signature scheme.

Coercion-resistant cast-as-intended

Theorem 5.7. Let (GenCRS,NIZKProve,NIZKVerify,NIZKSimulate) be a NIZKPK
scheme with the zero-knowledge property, and let the protocol satisfy the cast-as.intended
verifiability property. Then the protocol presented in Section 5.5 also satisfies the
coercion-resistant cast-as-intended property.

In the experiment defined in Section 3.3.6, an adversary A has to distinguish
between two experiments denoted ExpCR-CaI,β

A,V for β = {0, 1}. Specifically, the ad-
versary can make calls to an oracle OVoteLR to which it provides two different
voting options, v0 and v1. Depending on the value of the bit β, A obtains either
(b0, r̃0, r̃′0) or (b1, r̃1, r̃′1), where r̃′β denotes simulated encryption data computed
with the algorithm FakeProof.

We define this algorithm in the following way: FakeProof(c, tk, crs, vj) uses the
trapdoor tk to run NIZKSimulate, from the simulatable NIZKPK scheme, for the
statement (c1, c2/vj). Then the simulated encryption proof data σ′ is the simulated
proof π∗.

Given that A does not have the election private key sk, the only chance for
distinguishing between both experiments is by distinguishing between the proofs r̃β,
r̃′β, which is equivalent to defeating the zero-knowledge property of the NIZKPK
scheme.

Formally, lets consider SimVote(id, vi, P
id
c , Sid

c , P
id
v , Sid

v) be a modification of
CreateVote from Section 5.5 where, instead of NIZKProve(crs, (c/vi), r), the algo-
rithm NIZKSimulate(crs, (c/vi), tk) algorithm is executed to generate the encryp-
tion data r̃. Note that SimVote receives the voter’s confirmation private data Sid

c

Chapter 5. Challenge-and-cast 117

which can be parsed as (sks, tk). Then, consider the experiment ExpCR-CaI,β′

A,V where,
when the adversary submits the query OVoteLR(id, v0, v1) the challenger executes
SimVote(id, v0, P

id
c , Sid

c , P
id
v , Sid

v) and SimVote(id, v1, P
id
c , Sid

c , P
id
v , Sid

v) instead of
CreateVote(id, v0, P

id
v , Sid

v) and CreateVote(id, v1, P
id
v , Sid

v) respectively. Then it is

straightforward to see that the experiments ExpCR-CaI,β
A,V and ExpCR-CaI,β′

A,V are compu-
tationally indistinguishable for β ∈ {0, 1} if the NIZKPK scheme has the zero-
knowledge property.

5.5.2 Concrete instantiation

In the previous sections we have defined a challenge-and-cast electronic voting pro-
tocol, and shown that it fulfills the properties of ballot privacy, strong consistency,
strong correctness, cast-as-intended, and coercion-resistant cast-as-intended pro-
vided in Section 3.3. The proposed scheme can work both with mixnet-based and
homomorphic tally-based voting systems. In this Section, we provide the definition
of the protocol primitives for a mixnet-based system, based on ElGamal over a finite
field. In Section 5.6 we detail the implementation for an homomorphic tally-based
electronic voting system and how the properties of the scheme are fulfilled.

Primitives

Some of the primitives used for this concrete instantiation are also used by the
Neuchâtel protocol, and have been defined in Section 1.3:

- For encryption, the Signed ElGamal encryption scheme is used. This scheme
generates randomized ciphertexts, and has been proven to be NM-CPA secure
in [25].

- The signature scheme is RSA with the hash variant (RSA-FDH). This signa-
ture scheme has been proven to be unforgeable against chosen message attacks
in the random oracle model [18].

- The non trapdoor-simulatable NIZKPK scheme DecP is used for proving cor-
rectness of the decryption process. A NIZKPK satisfies the properties of com-
pleteness, knowledge soundness and zero-knowledge [45], [113].

Other specific primitives used in this instantiation are:

Chameleon hash The following instantiation of a chameleon hash (Gench,Hch,
H−1ch) based on the discrete logarithm problem [76] is used: Gench receives a group
G of prime order q of elements in Z∗p with generator g. An element x is sampled
uniformly from Zq and h = gx is computed. Then, the evaluation key ekch is defined
as ekch = (G, g, h) and the trapdoor key tkch is defined as tkch = (ekch, x). The
message space and the randomness space are Zq and the hash space is G. The
algorithm Hch is defined for (m, rch) ∈ Zq × Zq to output cch = gm · hrch . Finally,
H−1ch (m, rch,m

′) outputs rch
′ = (m−m′) · x−1 + r.

118 Core Protocol using Mixnets

Simulatable NIZKPK We use a simulatable NIZKPK based on a σ-protocol
which proves that a specific plaintext corresponds to a given ciphertext. The σ-
protocol computed over an ElGamal ciphertext of the form (c1, c2) = (gr, pkre ·m) is
as follows:

1. Prover computes (a1, a2) = (gs, pkse), where s is a random element ∈ Zq, and
provides them to the verifier.

2. Verifier provides a challenge e.

3. Prover provides to the verifier z = s+ re.

Finally the verifier checks that gz = a1 · ce1 and that hz = a2 · (c2/m)e. This
σ-protocol can be simulated in the following way: the simulator samples a random
z∗ ∈ G, a random e∗ ∈ Zq and computes a∗1 = gz

∗ · c−e∗1 and a∗2 = hz
∗ · (c2/m)−e

∗
.

The resulting (a∗, e∗, z∗) values have the same distribution as the original ones.

Note that the σ-protocol is computed on the ElGamal ciphertext, not on the
signed ElGamal one. With this protocol the voter is assured that the ElGamal
ciphertext contains the selected voting option. As the Schnorr proof of the signed
ElGamal encryption is publicly verifiable, this assures the voter that the signed
ElGamal ciphertext contains her selected voting option too.

The NIZKPK algorithms (GenCRS,NIZKProve,NIZKVerify,NIZKSimulate) are then
defined by using the discrete log-based chameleon hash scheme and the σ-protocol
defined above, as well as two hash functions H1, H2 mapping inputs to Zq, as follows:

GenCRS runs Gench and outputs crs = (G, g, h) and tk = (crs, x);

NIZKProve receives crs, the statement x = (c1, c2/m) and the witness r, and
computes: (1) the commitment (a1, a2) = (gs, pkse), (2) the non-interactive
challenge e = H2(g

(H1(x,a)) · hrch), where rch is picked at random from Zq, (3)
the answer z = s+ re, and (4) provides the proof π = (a, e, rch, z);

NIZKVerify checks that gz = a1 ·ce1, hz = a2 ·(c2/m)e, and that e = H2(g
(H1(x,a)) ·

hrch);

NIZKSimulate receives as input a statement x∗ = (c1, c2/m
∗) and the trapdoor

tk, and does the following: takes at random z∗ ∈ G and random pair (α, β) ∈
Zq, and sets e∗ = H2(g

α · hβ). Then it computes a∗1 = gz
∗ · c−e∗1 and a∗2 =

hz
∗ · (c2/m∗)−e

∗
, and finally it obtains rch

∗ = (α −H1(x
∗, a∗)) · x−1 + β. The

simulated proof is then π∗ = (a∗, e∗, rch
∗, z∗).

The properties of completeness, knowledge soundness and zero-knowledge of this
scheme have been proven in Section 5.4.2.

Mixnet. We use a verifiable mixnet such as those proposed by Stephanie Bayer
and Jens Groth [13], or Douglas Wikstrom in [121]. These mixnets have been
proven by their authors to be sound, meaning that MixVerify will only output 1
given a correct execution of Mix, and zero-knowledge in the random oracle model
when non-interactive proofs are used.

Chapter 5. Challenge-and-cast 119

5.5.3 Performance

This instantiation is simple and efficient. For a t-out-of-k voting scheme, where vot-
ers can select up to t voting options from the k available, the encryption of the voter
selections using the Signed ElGamal encryption scheme requires 3 exponentiations
(assuming t can be encrypted into one ElGamal ciphertext). The computation of
the NIZKPK requires 6 additional exponentiations (2 of them for the computation
of the chameleon hash), and 6 more for verification. Each proof simulation costs 6
exponentiations.

An important detail is that, for efficiency purposes, the prime group and the
generator of such group used in all these primitives must be the same. Obviously,
the public key of the encryption scheme should be different from the evaluation key
of the chameleon hash, as we will give the trapdoor key of the latter to the voter.

5.6 Protocol for homomorphic tally-based systems

Besides the different method of anonymization at the counting phase (recall that
mixnet-based voting systems shuffle the anonymous ciphertexts prior to decryption,
while homomorphic tally systems operate the ciphertexts together and decrypt the
result), the main difference between mixnet-based and homomorphic tally systems
is in the representation of the voting options for encryption: in mixnet-based voting
systems, the value vi to encrypt represents the voting option selected by the voter.
In homomorphic tally-based voting systems, such value denotes the voting option
for which a one is going to be encrypted, while a zero will be contained in the
ciphertexts corresponding to the rest of the options.

For an homomorphic tally-based system, the encryption scheme (Genh
e ,Ench,Dech,

EncVerifyh) is used instead of (Gene,Enc,Dec,EncVerify), and the NIZKPK scheme
(GenCRSh,NIZKProveh,NIZKVerifyh,NIZKSimulateh), is used instead of (GenCRS,
NIZKProve,NIZKVerify,NIZKSimulate). The following algorithms change with re-
spect to those described in Section 5.5:

CreateVote(id, {vj1 , . . . , vjt}, P id
v , Sid

v) takes the whole set of voting options
V = {v1, . . . , vn} from the bulletin board, sets mi = 0 for i such that vi 6∈
{vj1 , . . . , vjt} and mi = 1 for the rest, and runs Ench from the encryption
scheme with inputs pk and the list of messages {mi}ki=1, obtaining the cipher-
text c. Then it parses P id

v as crs and runs NIZKProveh from the NIZKPK
scheme, using as input crs, the statement (c, {mi}ki=1) and the encryption ran-
domness r. The ballot b is set to be the ciphertext c, and the encryption data
r̃ is π.

AuditVote(b, r̃, {vj1 , . . . , vjt , P id
v) takes the whole set of voting options V =

{v1, . . . , vn} from the bulletin board, setsmi = 0 for i such that vi 6∈ {vj1 , . . . , vjt}
and mi = 1 for the rest. Then it parses b as c, r̃ as π and P id

v as crs, and runs
NIZKVerifyh from the NIZKPK scheme for the statement (c, {mi}ki=1) and the
common reference string crs.

120 Protocol for homomorphic tally-based systems

Confirm(id, b, Sid
v , S

id
c , P

id
c , ska) parses Sid

c as (sks, tk) and runs Sign with in-
puts the voter’s signing private key sks and the ballot b to be signed, together
with the voter identity id. The resulting ballot signature ψ is set to be the
ballot confirmation Cb. Then it parses b as c and runs NIZKSimulateh from
the NIZKPK scheme the statement (c, {m∗i }ki=1), where the values {m∗i }ki=1 are
additionally provided or randomly selected. The simulated proof π∗ is set to
be the auxiliary data σ′.

ProcessBallot(BB, ba) runs EncVerifyh instead of EncVerify.

Tally(BB, sk) in the first place runs the ProcessBallot and ProcessConfirm algo-
rithms, and discards the ballots for which any of the verifications fail. Finally
it extracts the ciphertexts c from the ballots which have passed the verifi-
cations and operates component-wise all the ciphertexts. Then it runs the
Dech algorithm with the resulting ciphertext cH , obtaining vH , from which the
number of votes received for each voting option vi ∈ V is obtained. Finally
the ProveDec algorithm from the NIZKPK scheme is run with the statement
(cH , vH) and the private key sk as the witness. The outputs are the number
of votes received for each option, r, the decrypted value vH and the proof of
correct decryption, Π.

VerifyTally(BB, r,Π) in the first place runs the ProcessBallot and ProcessConfirm
algorithms over the votes in the bulletin board, and discards the ballots for
which any of the verifications fail. Finally it extracts the ciphertexts c from
the ballots which have passed the verifications and operates component-wise
all the ciphertexts, obtaining the aggregated ciphertext cH . Then it runs the
VerifyDec algorithm from the NIZKPK scheme with inputs the aggregated
ciphertext cH and the decrypted value vH . Finally it checks that the result r
corresponds to counting the number of times each candidate has been selected
using the value vH .

The change in the defined algorithms consists basically of changing the encryp-
tion and NIZKPK schemes, and operating the ciphertexts component-wise prior to
decryption, instead of running Mix, in the Tally algorithm.

5.6.1 Security Analysis

The security analysis remains the same as in Section 5.5.1, considering this change in
the algorithms, provided that the properties of the schemes (Genh

e ,Ench,Dech,EncVerifyh),
(GenCRSh,NIZKProveh,NIZKVerifyh,NIZKSimulateh), are the same as those of (Gene,
Enc,Dec,EncVerify), (GenCRS,NIZKProve,NIZKVerify,NIZKSimulate).

5.6.2 Primitives

Here we define the specific primitives which are used in the case of an homomorphic
tally-based system:

Chapter 5. Challenge-and-cast 121

Encryption scheme the encryption scheme (Genh
e ,Ench,Dech,EncVerifyh) works

as follows:

Genh
e calls the ElGamal key generation algorithm to obtain the key pair (pke, ske).

Ench receives a set of messages {mi}ki=1, computes for each one m′i = gmi

and Enc(m′i, pke) = c′i. It also generates the set of proofs πenc, which ensure
that the vote is well-formed: these proofs include a proof that each ciphertext
encrypts g0 or g1, and a proof that at most t ciphertexts encrypt a g1 value
(see [37], [43]). The set of ciphertexts c′i and the proof πenc are set to be the
output ciphertext c.

Dech receives as input a ciphertext c = {c′i}ki=1, and for each i = 1, . . . , k it
calls to the ElGamal decryption algorithm Dec with the ciphertext c′i and the
private key ske as input, to obtain the decrypted message m′i = gmi . Usually,
a table of pre-computed values containing pairs (mi, g

mi) is used to retrieve
the original messages mi.

EncVerifyh verifies the proofs πenc of the ciphertext c, according to the descrip-
tion in [37], [43], and returns 1 if the verifications are successful, 0 otherwise.

According to [25], this exponential ElGamal variant with proofs of well-formed
ciphertexts is NM-CPA secure.

Trapdoor-simulatable NIZKPK scheme the trapdoor-simulatable NIZKPK
scheme (GenCRSh,NIZKProveh,NIZKVerifyh,NIZKSimulateh) uses the algorithms
(GenCRS,NIZKProve,NIZKVerify,NIZKSimulate) defined in Section 5.5.2 as follows:

GenCRSh calls to the GenCRS algorithm to obtain the common reference string
crs and the trapdoor key tk.

NIZKProveh receives the input statement (c, {mi}ki=1) and witness r. It parses
c as {c′i}ki=1 and r as {r′i}ki=1. Then for each mi in the statement it computes
m′i = gmi , and runs NIZKProve with inputs crs, the statement (c′i/m

′
i), and the

randomness r′i. The set of all generated proofs {π′i}ki=1 is set to be the provided
output π.

NIZKVerifyh receives the input statement (c, {mi}ki=1) and the proof π. It parses
c as {c′i}ki=1 and π as {π′i}ki=1. For each mi in the statement, it computes
m′i = gmi and runs NIZKVerify(π′i, crs, (c′i/m

′
i)). The output is 1 if all the

executions of NIZKVerify output 1, 0 otherwise.

NIZKSimulateh receives the input statement (c, {m∗i }ki=1) and parses c as {c′i}ki=1.
Then it computes m′i = gm

∗
i for each m∗i in the statement and runs the

NIZKSimulate algorithm with input (c′i/m
′
i) and the comon reference string

crs. The resulting set of simulated proofs {πi∗}ki=1 is set to be the provided
output π∗.

122 Multiple Trustees

We can see that the homomorphic-variant scheme basically transforms messages
mi into gmi and executes multiple runs of the underlying NIZKPK scheme algo-
rithms. This variant has the same properties of completeness, knowledge soundness
and zero-knowledge of the underlying NIZKPK scheme.

5.7 Multiple Trustees

Multiparty computation techniques can be used in order to allow a subset of election
authorities and of registrars to be corrupt while maintaining the security properties
of the scheme.

Regarding the election authorities, in our privacy analysis we require them not
to divulge the election private key. For strong consistency, it is necessary that the
private key has been generated in a proper way. These two premises can be achieved
while supporting a subset of them to be corrupt. Particularly, we define that for l
election authorities, t+ 1 are honest, being 0 ≤ t ≤ l − 1.

At the beginning of the election, in the Setup algorithm, they generate the private
and public key of the election using the Pedersen distributed key generation protocol
[91]. A description of how this protocol can be used to distributedly generate an
ElGamal key pair can be found in [43], and a security analysis is found in [40]. At
a high level, each election authority generates a private key, provides shares of it
to the rest of the participants using a verifiable secret sharing scheme, and then
all together compute the resulting public key. The private key piece to be held by
each participant corresponds to the additions of the shares provided by the other
participants. The protocol provides proofs which allow the detection of cheaters that
may disrupt the key generation process. It also ensures that the election private key
is kept secret even in the presence of up to l − (t+ 1) corrupt electoral authorities.

Depending on the setup, during the execution of the Tally algorithm the election
private key may be reconstructed in order to decrypt the votes, or a threshold
decryption scheme may be used in which each electoral authority partially decrypts
each vote.

In the case of the registration authorities, they are required to generate the voter’s
public and private keys in a proper way for strong correctness, and they are assumed
not to divulge the voter private keys for cast-as-intended verifiability. Multiparty
computation techniques can be used, as in the case of electoral authorities, in order
to ensure that if at least t+ 1 registration authorities are honest, the generated keys
are correct, and are kept secret.

During registration, the registrars engage in an interactive protocol in order to
generate the shares of sks and tk in a verifiable way (techniques in [26] and [47] can
be used for RSA keys). The corresponding public keys are posted in the bulletin
board and each registrar provides its corresponding share of the private keys to the
voter. During the voting phase, the voter introduces the shares into the voting

Chapter 5. Challenge-and-cast 123

device where the private keys are reconstructed prior to being used. Given that the
public keys are already published on the bulletin board, any attempt of a registrar
to provide wrong shares to the voter will be detected. Moreover, commitments to
the individual shares can be also published so that the malicious registrar can be
detected.

5.8 Voting Scheme

In this section we describe how a voting scheme that uses our protocol would be.
The protocol can be used both in remote and in poll-site voting, as far as the vote
is cast electronically and the voter has access to a trusted device with which she
performs the cast-as-intended verification. In the description of our voting scheme,
we provide details on how certain processes may be managed for each case, as well
as other customizations that depend on the scenario or country where the electoral
process is held.

Before describing the voting scheme, it is important to recall the critical nature
of the voter’s trapdoor key in the protocol we have proposed. A voter who doesn’t
have access to the trapdoor key will not be able to simulate a proof. Thus, the
cast-as-intended verification mechanism will no longer protect the privacy of the
voter. On the other hand, the voter device has to learn the trapdoor key only after
it has already generated an honest proof for the voter. Otherwise, the device could
simulate a proof the voter expects to be honest, and the scheme would no longer be
cast-as-intended verifiable.

In order to present an easy and intuitive voting process for the voter, we have
related the private information she uses to authenticate her vote (for example, her
private signing key) with the trapdoor key which is used to generate false proofs.
We think that it is meaningful that the voter provides both secrets at the same time,
as a confirmation that she agrees to cast that vote (which she is expected to do only
after verifying the honest proof). Before the voter provides these secrets, the voting
device can neither cast a valid vote, nor cheat the voter by generating a fake proof.

On the other hand, in case the voter does not have access to the trapdoor key (and
therefore she cannot simulate proofs for a coercer), she doesn’t have access to the
signing key either, which is necessary for successfully casting the ballot. Therefore,
she cannot sell her vote.

The voting scheme we envisage is the following:

During the election preparation stage the electoral commission defines the
questions to be voted for in the election, and setup parameters such as the election
public and private keys. In case of a multi-authority scheme, the election private key
is generated in a distributed way by the electoral commission members, who keep
their shares in private, and the election public key is constructed and published,
along with proofs of the correct computation of such public key.

124 Voting Scheme

During the voter registration stage the electoral roll, containing the identities
of the voters who participate in the election, is defined. Depending on the scenario
or on the country, this electoral roll is automatically generated by the electoral
commission from already existing census data, or the voters actively register to
participate in the election.

Voters in the electoral roll are issued a public and private voter key pair con-
taining a signing key pair to confirm or authenticate their vote, and an evalua-
tion/trapdoor key pair for the NIZKPK scheme. In remote electronic voting sce-
narios voters may receive this key pair in advance through a private channel (for
example, in person when they go to register), or in a password-protected keystore
that is downloaded at the voting device through the internet, for which they have
received a password through a secondary private channel such as sealed envelopes
transmitted by postal mail. In case of multiple registration entities, voters may
receive a share of the private keys from each registrar.

In poll-site electronic voting scenarios, poll workers may issue the voter’s key
pair at the time the voter enters the poll-site and authenticates herself. In this case,
a smart-card or any other hardware token may be used to provide the private keys
to the voter.

During the voting stage , the voter proceeds to access her ballot and make her
selections. It may be the case that the voter needs to authenticate before accessing
her ballot, for example by means of a citizen portal or a Single-Sign-On (SSO)
system deployed at the country or institution level, for which the voter already has
a login and password information (since these systems are often used for activities
other than electronic voting, such as paying taxes). In that case, the voter’s private
key provided during registration - or the password to recover it - may be presented
as a vote confirmation key such as in the system implemented in Neuchâtel (see
previous Chapter), instead of as an authentication key, to make it clearer to the
voter that she is expected to provide it once she agrees with her vote.

Once the voter has finished making her choices, they are encrypted by the voting
device. The resulting ciphertext and the proof of content are shown to the voter,
who then can use an audit device to check that the ciphertext contents match her
selections. In case of a remote voting scenario, voters may use their smartphone
(if they were voting from their PC) or a software application different than the one
used to generate the vote. In case they do not trust any device to maintain their
privacy (since the audit device learns the voter’s choices), voters may opt to check
the encryption of test choices, rather than the real ones. Similarly to Helios, a voter
may be convinced that the voting device is honest by checking test votes, and then
cast the real vote without auditing it. In a poll-site voting scenario, voters may use
a dedicated hardware device available in the poll-site to check the content of the
generated vote.

Chapter 5. Challenge-and-cast 125

After a positive audit, the voter enters her private key (or the password to recover
it) into the voting device, which uses the private signing key part to digitally sign
the vote to be cast, and the NIZKPK trapdoor key part to generate one or several
fake proofs. The number of fake proofs that can be generated can be configured
up to the total of voting options and depend on the requirements and assumptions
of the electoral process. In the same way, the voter may be asked to enter several
voting options for which she wants to generate a fake proof. Otherwise, the voting
device can randomly choose them. The fake proofs have to be presented in the same
way as the honest one (for example, in a printed form), so that they cannot be
distinguished by a potential coercer.

In the case of poll-site voting, if a hardware token is used for providing the
private keys to the voter, such token could be in charge of performing the audit
of the proofs generated by the voting device, and only in the case it is successful
proceed to release or use the keys to confirm the ballot. The hardware token should
have an input/output interface for communicating with the voter, in order to receive
the voter selections and communicate the result of the verification.

Once the vote is cast and received by the bulletin board manager running in the
remote server, it is published in the bulletin board, so that voters can check that
their audited votes have been correctly received. As we have explained in Chapter 2,
a hash of the vote may be published in the bulletin board, instead of the vote itself,
for privacy reasons. In that case, such hash of the vote is additionally provided to
the voter in the vote audit/approval phase, together with the encrypted vote and
the proofs of content. The audit device will check, besides the proofs, that the hash
matches the provided ciphertext.

At the counting stage the electoral commission collects the votes from the
bulletin board (or from the private ballot box if only hashes were published) and
pass them through a mixnet before reconstructing the election private key to proceed
to the decryption and tally of the votes. The tally result is published in the bulletin
board together with the proofs of correct mixing and decryption. Auditors proceed
then to verify the contents of the bulletin board / ballot box, and to check the proofs
of mixing and decryption in order to confirm the result.

5.9 Protocol extension for multiple voting

We have focused our description in the single-voting case. This means that in case
something bad happens after the voter confirmation (the ballot is not cast, or a
different ballot is posted on the bulletin board on behalf of the voter), although
the voter can detect it, she cannot re-vote. This is due to the fact that the voting
device already knows her private keys, and specifically the tradoor key, and could
cheat the voter in further ballot generations with simulated proofs of content. Sev-
eral approaches can be followed in order to allow multiple voting to prevent such
situations.

126 Protocol extension for multiple voting

The first approach is multiple registration: in case the voter detects some
failure, she can re-register and ask for a new set of keys. The previous ballot cast
on behalf of the voter is revoked. A similar approach was used in the NSW iVote
system [68].

The second approach can be applied when voters are provided with hardware
tokens storing their private keys. For example, it can be used in poll-site voting
scenarios: the hardware token contains the voter’s private signing and trapdoor
keys. After verification of the proof of the ballot content (which can be done by
the hardware token itself, or by the voter, who then indicates to the token that
everything is OK), the token uses the private signing and trapdoor keys to confirm
the vote, digitally sign it and generate simulated proofs, without releasing such
private keys to the voting device. Given that the private keys are never known to
the voting device, the voter can cast multiple ballots while fulfilling the coercion-
resistant cast-as-intended verifiability property. In such case, the bulletin board
manager may accept multiple confirmed ballots from the same voter and the tally
may select the last one for participating in the count.

The third approach consists of delegating the generation of simulated proofs to
the bulletin board manager: the trapdoor keys for all the voters are kept by the bul-
letin board manager, who generates and provides the voting devices with simulated
proofs only when receiving confirmed ballots (which means that voters already veri-
fied their contents and agreed with them). From the security analysis it follows that
the bulletin board having the trapdoor keys does not endanger the voter’s privacy.
However, a collusion of the bulletin board manager and the voting device defeats the
property of cast-as-intended verifiability: the bulletin board manager may provide
simulated proofs to the voting device, to show them to the voter as honest proofs
of ballot content. Also, in case the bulletin board manager refuses to generate the
simulated proofs for a confirmed ballot, the coercion-resistant cast-as-intended prop-
erty is not fulfilled. The assumption that the bulletin board manager is trusted, in
the sense that it performs the designated operations, was already stated in Section
3.3.1. A distributed setting, where multiple bulletin board managers hold shares of
the voters’ trapdoor keys generated with a threshold scheme can be used to enforce
this property, even if a subset of the bulletin board managers are malicious.

Chapter 6

Making Cast-as-Intended
Universal

6.1 Introduction

In the previous chapter we showed a protocol in which the voting device, after
generating an encrypted vote, provided a proof of knowledge so that the voter could
check that the ciphertext contained what she selected. In order to defend from
possible coercers who may request the proof after the voter has voted, we gave her
(or her voting device) the ability to simulate proofs using a trapdoor key, in such
a way that she could make the coercer believe that any content (real or not) was
inside the encrypted vote.

This scheme gave us an idea that implies a change of paradigm. The voting
device could prove that the content of a generated ciphertext is any of the voting
options in the election. Then, anybody could verify such proofs without posing any
risk on the privacy of the voter. The proofs would tell nothing about what the voter
has voted.

In order to do that, the voting device would have to use a trapdoor to simulate
the proof in the case of the voting options that are not in the ciphertext, but it would
not need such a trapdoor in the case of the voting option that is indeed encrypted.
By relating one trapdoor key to each voting option, and letting the voter control
which are the trapdoor keys the voting device has access to and which not, the voter
knows which is the content of the ciphertext in case all the proofs verify successfully.
Moreover, the proof verification is not restricted to the voter, but anyone can do it.
Universal cast-as-intended was born.

6.2 Motivation

In Chapter 2 we have seen several proposals for cast-as-intended verification which
have been proposed mainly during the last 10 years. All these proposals have some-
thing in common: they depend on the voter participation. In case voters do not

127

128 UCIV System description

follow the protocol accordingly or do not verify the proofs they are provided, a ma-
licious voting device can modify the vote that is cast on behalf of the voter without
detection.

On one hand, we might think of systems which make the cast-as-intended verifi-
cation mandatory in order to cast a vote. However, current cast-as-intended verifi-
cation systems present important drawbacks for the voter: verification mechanisms
are usually not very usable and in most cases voters have to engage in highly in-
teractive protocols and/or be able to perform complex computations. Therefore,
mandatory cast-as-intended verification would disenfranchise less skilled voters. On
the other hand, we could allow the cast-as-intended verification to be an optional
step which the voter can do before casting the vote. This does not solve the prob-
lem, since targeted attacks against non-skilled voters, who will probably not use the
verification system, can succeed undetectably.

The voting device may even subvert the verification protocol by not showing the
verification information to the voter at all. A voter who is not well informed about
the process may not detect this modification, or even may think that the procedure
has been updated without notification.

Another drawback of some current cast-as-intended verification mechanisms is
that the verification depends on providing the voter with a proof of how she voted,
which can be shown to a third party to sell her vote. Although some mitigations for
this issue exist, they do not completely solve the problem.

With this proposal, we aim to reduce the effort required from the voter to perform
the cast-as-intended verification. In fact, the voter does not have to do anything
regarding this verification because the generated proofs can be universally verified.
What the voter is expected to do, is to enter the codes related to the voting options
she selects, as in the case of a code-voting scheme. In the same way as in these kinds
of schemes, the main source of trust regarding cast-as-intended verification relies on
how these codes are provided to the voter, and how their integrity is preserved.
After voting the system does not provide a proof of how the voter voted, even if she
provides her codes to the coercer.

6.3 UCIV System description

6.3.1 Overview

At a high level, the system is based on providing each voter, during the registration
phase, with a set of secret values related to the voting options in the election.
During the voting phase, the voter uses a voting device to make her choices, and
then provides a subset of the secret values she received before. The subset she
provides depends on the voting option she has selected.

Chapter 6. Making Cast-as-Intended Universal 129

The voting device encrypts the voter’s choices and, using the secrets provided
to the voter, it generates a proof of the content of the ballot. This proof of content
is sent, together with the ballot, to the voting server, where it is verified prior to
being posted on the bulletin board. The proof does not disclose any information
regarding the voter selections, and therefore it can be universally verified. Auditors
may collaborate with the server in order to independently verify such proof.

Figure 6.1: UCIV: Voting process overview

Given that the secrets entered by the voter in the voting device depend on what
she selected, and that the voting device is only able to generate a valid proof for the
right combination of secrets and voting options, a successful verification proves that
the vote has been cast as intended.

In this Chapter, we propose two alternatives for a voting protocol providing
universal cast as intended. The first one is based on non-interactive zero-knowledge
proofs of knowledge: the voter enters the secrets not related to her selected options
into the voting device, which generates a NIZK proof for each voting option saying:
“Either this voting option is in the encrypted vote, or I know its corresponding
secret”. Naturally, since the voter did only provide the secrets for the voting options
she did not choose, the only way that a valid proof can be generated by the voting
device is by encrypting the voter’s selections.

The second alternative is based on using our “old friends”, the return codes, but
in a different way than what was previously described. In this case, the voter is
required to enter those return codes from her verification card corresponding to her
selected voting options into the voting device.

As in previously described return code based protocols, the voting device gen-
erates the (probabilistic) encryption of the voter’s choices, and the corresponding
partial return codes (which are generated by a deterministic computation), and
sends them, together with the return codes provided by the voter, to the server.

130 UCIV System description

Recall that in the Neuchâtel’s protocol described in Chapter 4, we used a digital
signature generated during voter registration as a reference value to know if a ballot
confirmation was valid: in case the server could use a received confirmation message
to compute a value, for which such signature was verified successfully, then the
confirmation message was correct. In this proposal, we use a similar approach for
checking at the server whether the combination of a return code (which corresponds
to a specific voting option in the verification card), and a partial return code (which
is directly related to the ballot’s encrypted options), is correct. In an affirmative
case, the ballot’s encrypted voting options correspond to the voter’s selections.

With this technique, we can apply the measures for multi-party computation
of the verification cards described in Section 4.8.2, in order to ensure their secrecy
and correctness. With the first approach, the generation of the secret values for the
proof generation can also be distributed among a set of registrars, for which a voter
may decide to register with a subset. Only one registrar, from those selected by the
voter, must remain honest in order to ensure that the audit data is kept secret and
has been correctly generated.

This chapter is organized as follows: first we provide the syntax and security
definitions for UCIV schemes, which can be found in [52]. Then we describe the
protocols for the two approaches, provide a security analysis and proposals for im-
plementation. Finally, we show examples of voting schemes using such protocols.

6.3.2 Syntactical definition

In this Section we include a syntactical definition from [52] which is particular for
schemes providing the UCIV property. We also present how the algorithms are
organized in the different phases of the voting protocol.

As in Chapter 3 we have as participants the Election Authorities, the Voters,
the Voting Device and the Registrars. In the original definition from [52], authors
include the functionality of a distributed set of registrars, from which the voter may
decide to register with a subset. However, for the sake of clarity, we will consider
they work as a sole registration entity and discuss alternative approaches in Section
6.6.

The syntax is focused on the universal cast-as-intended verification mechanism,
which involves specific procedures mainly in the registration and voting phases.
Therefore, verification of the counting process is left aside and no auditors of the
tally participate in this definition. The definition can be extended in the future in
order to include this process.

As usual, we consider that non-cryptographic election specifications such as the
set of voting options V , the set of voters and the counting function ρ : (V ∪{⊥})∗ →
R are fixed in advance by the Election Authorities. Also, the use of voter credentials

Chapter 6. Making Cast-as-Intended Universal 131

for authentication and vote casting is out of the scope of this description.

The voting scheme is characterized by the following algorithms:

Setup(1λ) is a protocol executed by the Election Authorities. On input a
security parameter 1λ, it generates and outputs an election public/private key
pair (pk, sk).

Register(id, V, pk) is run by the Registrars. It takes as input a voter identity
id, the set of voting options V and the election public key pk. It outputs the
secret UCIV information siduciv and the public UCIV information piduciv.

Vote(id, v, σv(s
id
uciv), p

id
uciv, pk) is a probabilistic protocol run by the voting de-

vice. It receives as input the voter identity id, a voting option v ∈ V , the
function σv evaluated on the secret UCIV information siduciv, the public UCIV
information piduciv, the election public key pk, and outputs a ballot b.

ProcessBallot(BB, b, id) is run by the bulletin board manager. It receives as
input a bulletin board BB, a ballot b and a voter identity id and outputs either
1 if the process is successful, 0 otherwise.

Tally(BB, sk) is run by the Election Authorities. It takes as input a bulletin
board BB and the election secret key sk (or its shares if it was split during
Setup) and outputs a result r ∈ R and a correct tabulation proof Π.

Finally, the protocol is executed in the following phases:

Configuration phase: in this phase, the set of voting options V , the set of voters
who can vote, and the counting function ρ are defined. Then the election authorities
run the Setup algorithm, publish the election public key pk in the bulletin board
BB, and keep the election private key sk.

Registration phase: in this phase, a voter with identity id proceeds to register
to vote in the election. The registrars run the Register algorithm and provide the
secret UCIV information siduciv to the voter through a secure channel, so that their
secrecy is preserved in front of other participants in the protocol. The public UCIV
information piduciv is published in the bulletin board BB.

Voting phase: in this phase the registered voter with identity id uses a voting
device in order to choose her preferred voting option v. The voter also evaluates
σv(s

id
uciv) and provides the result to the voting device. The voting device takes the

election public key pk and the public UCIV information piduciv from the bulletin board
and runs the Vote algorithm, which outputs a ballot b. The ballot b is then sent to
the bulletin board manager, together with the voter identity id. Upon reception of
the ballot, the bulletin board manager executes the ProcessBallot algorithm. In case
the output is 1, the ballot is published in the bulletin board, otherwise the ballot is
discarded and the voter is notified accordingly.

132 UCIV System description

Counting phase: the election authorities run the Tally algorithm using the
election private key sk and the information in the bulletin board, including the
posted ballots. The output of the Tally algorithm, containing the election result and
the proofs of correct tabulation, is published on the bulletin board.

A voting system as defined above is correct if, when the four phases are run
with all the participants behaving correctly, the result r output by the Tally algo-
rithm is equal to the evaluation of the counting function ρ on the voting options
corresponding to the ballots cast by the voters.

6.3.3 Security definitions

In this section we detail the security definitions, provided in [52], for an electronic
voting scheme as defined in Section 6.3.2, which include ballot privacy, strong con-
sistency and universal cast-as-intended verifiability. We additionally provide a defi-
nition for strong correctness.

Security assumptions

First of all, we informally detail which are the security assumptions made on the
scheme.

Regarding voting devices, authors make a distinction between privacy and in-
tegrity. In order to guarantee privacy, it is assumed that the voting device behaves
properly by correctly encrypting the voter’s choice and not leaking any information.
This is a common assumption in voting systems where the voting device is in charge
of encrypting the voter’s choices, such as Helios. On the other hand, the voting
device is not trusted for integrity: it is assumed to try to change the selections made
by the voters before the encryption. The verifiability of the scheme does not rely on
the honesty of the voting device.

It is assumed that there is only one election authority, which is trusted for pri-
vacy. As authors comment in the paper, secret sharing and multi-party computation
techniques can be used for overcoming this limitation. In such case, privacy would be
guaranteed as long as a subset of the election authorities are trusted. The electoral
authorities are not needed to be trusted for the UCIV property.

In the original definition in [52], authors consider a set of registrars which are
trusted to produce the UCIV information correctly and not to leak the private
information. We modify the definitions here in order to consider only one registrar
to keep the scheme definition simpler, and then detail in further sections how this
assumption may be reduced.

Ballot privacy

As in Section 3.3, authors adopt the formalization given in [23]. Ballot privacy is
then defined using two experiments between an adversary A and a challenger C.

Chapter 6. Making Cast-as-Intended Universal 133

The goal of the adversary is to disinguish between the two experiments. In both
experiments, the adversary can corrupt voters and submit ballots on their behalf.
In addition, for each honest voter the adversary can also specify two votes to be
used for casting her ballot. The votes which will be used to cast the honest voters’
ballots will depend on which experiment is taking place. The goal of the adversary is
to distinguish between both experiments, which is the same as distinguishing which
votes were used to cast the honest voters’ ballots. As revealing the “true” tally
would easily allow the adversary to distinguish between the experiments, the same
tally is always shown to the adversary, regardless of which vote was used to cast
honest voters’ ballots.

For compactness, the two experiments are presented as a single experiment de-
pending on a bit β. The experiments are parametrized by the set of voting options
V and an algorithm SimProof(BB, r) such that, given a bulletin board and a result,
it simulates a proof of correct tabulation.

1. Setup phase. The challenger sets up two empty bulletin boards L and R. It
runs the Setup(1λ) protocol to obtain the election public key pk and the election
private key sk. It then posts pk on both bulletin boards. The adversary is
given read access to either L if β = 0 or R if β = 1. In addition, C initializes
an empty list ID.

2. Registration phase. The adversary may make one type of query.

• Register(id) query. The adversary provides a voter identity such that
id 6∈ ID. The challenger runs Register on inputs (id, V, pk) to generate
the public UCIV information piduciv and the secret UCIV information siduciv.
C provides both piduciv and siduciv to A and piduciv is published on both bulletin
boards. The identity id is added to ID.

3. Voting phase. The adversary may make two types of queries.

• Vote(id, vL, vR) queries. The adversary provides a voter identity id

such that id ∈ ID and two votes vL, vR ∈ V . The challenger runs
Vote(id, vL, σvL(siduciv), p

id
uciv, pk) which outputs bL and Vote(id, vR, σvR(siduciv),

piduciv, pk) which outputs bR. C then obtains new versions of the boards
L and R by running ProcessBallot(L, bL, id) and ProcessBallot(R, bR, id)
and updating the boards accordingly.

• Ballot(b, id) queries. These are queries made on behalf of corrupt voters.
Here the adversary provides a ballot b and an identity id such that id ∈
ID. The challenger runs ProcessBallot(L, b, id) and if the process accepts
it also runs ProcessBallot(R, b, id) and updates the boards accordingly.

4. Tallying phase. The challenger evaluates Tally(L, sk) obtaining the result r
and the proof of correct tabulation Π. If β = 0, the challenger posts (r,Π) on
the bulletin board L. If β = 1, the challenger runs SimProof(R, r) obtaining a
simulated proof Π′ and posts (r,Π′) on the bulletin board R.

134 UCIV System description

5. Output. The adversary A outputs a bit αA,V .

A voting protocol as defined in Section 6.3.2 provides ballot privacy, if there
exists an algorithm SimProof such that for any probabilistic polynomial time (p.p.t.)
adversary A and any set of voting options V , the following advantage is negligible
in the security parameter λ.

AdvprivV (A) := |Pr[αA,V = 1|β = 1]− Pr[αA,V = 1|β = 0]|

Strong consistency

In order to define Universal Cast-as-Intended Verifiability, the notion of strong con-
sistency has to be defined first. Strong consistency states that the tally of a bulletin
board must correspond to the result of applying a counting function to the contents
of the ballots in the bulletin board. As shown in [23], this property is needed to
avoid having leaky tallying algorithms. In addition, it is used to define a content
extractor, which will be used in the universal cast-as-intended verifiability definition.
The definition given in [23] is used.

Strong consistency is given by the following game, parametrized by a set of voting
options V , a result function ρ and an algorithm Extract(b, sk) which takes a ballot
and an election private key and outputs a vote, or ⊥ in case of an invalid vote:

1. Setup phase. The challenger runs the Setup(1λ) protocol to obtain the elec-
tion public key pk and the election private key sk. It gives both pk and sk to
the adversary A.

2. Bulletin Board(BB). The adversary A submits a bulletin board BB.

3. Tally. The challenger runs Tally(BB, sk) to obtain a result r and a correct
tabulation proof Π.

4. Output. The output of the game is a bit γV which is defined as 1 if r 6=
ρ(Extract(BB, sk), where Extract is applied on the bulletin board by applying
it to each individual vote.

A voting protocol as defined in Section 6.3.2 has strong consistency with respect
to a counting function ρ and an extract algorithm Extract if the following conditions
are satisfied:

(i) For any (pk, sk) in the image of Setup, for any voter identity id, for any
correctly generated public and secret UCIV information piduciv, s

id
uciv and for any v ∈ V

it is satisfied that Extract(Vote(id, v, σv(s
id
uciv), p

id
uciv, pk), sk) = v.

(ii) for any probabilistic polynomial time (p.p.t.) adversary A and any set of
voting options V , the following advantage is negligible in the security parameter λ

AdvconstV (A) := Pr[γV = 1]

Chapter 6. Making Cast-as-Intended Universal 135

Strong Correctness

The strong correctness property requires that the votes of honest voters are consid-
ered valid, even with respect to a ballot box created by the adversary. This property
is used to prevent a dishonest voter from preventing honest voters to vote.

According to the definition in [23], a voting protocol has strong correctness if,
considering an adversary that receives as input pk generated by Setup, the following
probability

Pr [(id, v,BB) = A(pk); (piduciv, s
id
uciv) = Register(id, V, pk);

b = Vote(id, v, σv(s
id
uciv), p

id
uciv, pk) : ProcessBallot(BB, b, id) = 0)].

is negligible.

Universal cast-as-intended verifiability

Intuitively, a voting system satisfies the cast-as-intended property if a corrupt voting
device is not able to cast a ballot for a voting option different to the one chosen by
the voter. This should hold as long as the voter is honest. If the voter is malicious
no guarantees can be given besides the fact that the ballot must correspond to at
most one voting option (i.e., it could also correspond to an invalid voting option
which will not be counted). We define cast-as-intended on a per-ballot basis, not
considering the tallying phase inside the definition.

Universal cast-as-intended verifiability is defined as an experiment between an
adversary A and a challenger C. In this experiment, the adversary may corrupt
registrars, voters or voting devices. The goal of the adversary is to cast ballots on
behalf of a non-corrupt voter so that the ballot does not extract to the voting option
chosen by the voter. Here, the extract algorithm is required to be one with which
the voting scheme is strongly consistent. The experiment is parametrized by the set
of voting options V and an algorithm Extract(b, sk) such that, given a ballot and
the election private key, returns a vote or ⊥ denoting an invalid vote.

1. Setup phase. The challenger sets up an empty bulletin board BB and runs
the Setup(1λ) protocol to obtain the election public key pk and the election
private key sk, posts pk on the board and gives (pk, sk) to the adversary. The
adversary is given read access to BB. In addition, C initializes three empty
lists IDR, IDP , IDF such that ID = IDP ∪ IDF

2. Registration phase. The adversary may make one type of query.

• Register(id, rid) query. The adversary provides a voter identity and a
registrar identity such that id 6∈ IDR. The challenger runs Register(id, V,
pk) to generate the public UCIV information piduciv and the secret UCIV
information siduciv. C provides piduciv to A and publishes it on the bulletin
board. id is added to IDR.

3. Voting phase. The adversary may make two types of queries.

136 Protocol based on NIZK proofs

• CorruptVotingDevice(id, vid) queries. The adversary provides a voter
identity id 6∈ ID such that id ∈ IDR and a voting option vid corresponding
to such identity. Then, C provides σvid(s

id
uciv) to A. The challenger adds

id to IDP .

• CorruptVoter(id) queries. The adversary provides a voter identity id 6∈
ID such that id ∈ IDR. Then, C provides siduciv to A. The challenger adds
id to IDF .

4. Output. The adversary submits a pair (b∗, id∗). The output of the experiment
is a bit δV , which is defined as 1 if (i) id∗ ∈ IDP , (ii) ProcessBallot(BB,
b∗, id∗) = 1 and (iii) Extract(b∗, sk) 6= vid∗ , where vid∗ is the voting option
submitted by the adversary in the PartialCorruptVoter query for id∗. δV , is
defined as 0 in any other case.

A voting protocol as defined in Section 6.3.2 has universal cast-as-intended ver-
ifiability with respect to a counting function ρ if there exists an algorithm Extract
such that the following two conditions hold:

(i) for all sets of voting options V the voting protocol is strongly consistent with
respect to ρ,Extract.

(ii) for any probabilistic polynomial time (p.p.t.) adversary A and any set of
voting options V , the following advantage is negligible as a function of λ.

AdvucivV (A) := Pr[δV = 1]

It has to be remarked that the universal cast-as-intended verifiability property
does not rely on the secrecy of the private election key.

6.4 Protocol based on NIZK proofs

This is the first proposal for a protocol providing the universal cast-as-intended
verifiability property. The voting device generates NIZK proofs that the content
of the vote matches the voter’s selections. These proofs will prove either that a
voting option is in the set of encrypted options in the ballot, or that the voting
device knows the corresponding secret provided by the voter. The description of the
protocol can also be found in [52].

6.4.1 Protocol description

Primitives:

The voting protocol uses an homomorphic one-way function F . A one-way function
is a function which is easy to compute but very difficult to invert. More formally, a
function F : X → Y between two finite sets is said to be one-way if the following
two properties are satisfied, where k = log |X |:

(i) For each x ∈ X , the value F (x) can be computed in time polynomial in k.

Chapter 6. Making Cast-as-Intended Universal 137

(ii) For any algorithm A running in time polynomial in k, and for x ∈ X chosen
with the uniform distribution, the probability that A, on input F (x), outputs
x is negligible

In an homomorphic one-way function between two groups (X ,+) and (Y , ·), it is
fulfilled that F (x1 + x2) = F (x1) · F (x2).

Additionally, the voting protocol uses an encryption scheme with algorithms
(Gene,Enc,Dec,EncVerify), and a NIZKPK scheme (GenCRS,NIZKProve,NIZKVerify,
NIZKSimulate), which proves the following:

- Consider c the output of Enc, r the randomness used in the encryption, and
m the message to be encrypted. Then the relation Renc = {((c,m), r)|c =
Encr(m, pke)} consists on the sets of ciphertexts, messages and randomness
such that the ciphertext is the result of encrypting the message under a pub-
lic key with that specific randomness. A ZK proof for this relation proves
knowledge of the randomness used for such encryption.

- Consider then the one-way function f . Then the relation Rowf = {(y, x)|y =
f(x)} consists of the pairs (image, pre-image) of such function. A ZK proof
for such relation proves knowledge of the pre-image x, given the image y.

The following kind of relations are proven in our protocol:

ROR = {((c,m), y, r, x)|(c = Encr(m, pke)) ∨ (y = f(x))}

Specifically, a proof of the following type is generated for each possible message
that can be encrypted in c. That is, each voting option in the election. The voter
provides the pre-images corresponding to all the options, except to the one she
selected. Therefore, if all the proves verify successfully, the statement c = Encr(m)
will be true for the case when m matches the voter’s selection, and the statement
y = f(x) will be true for the other cases. The complete relation is:

Rvote = {(c, (v1, v2, . . . , vn), (y1, y2, . . . , yn), r, (x1, x2, . . . , xn))|
(c = Encr(v1, pke)) ∨ (y1 = f(x1))∧
(c = Encr(v2, pke)) ∨ (y2 = f(x2))∧

. . .
(c = Encr(vn, pke)) ∨ (yn = f(xn))}

Algorithms:

For defining the protocol, we consider that the counting function ρ is defined as the
multiset function [23], and that the set of k voting options V are from the message
space of the encryption scheme. Finally, an election where the voter can select 1
out of k options is considered. In [52], the authors explain how the protocol can be
adapted in elections where more than one option can be selected.

138 Protocol based on NIZK proofs

In this protocol, the secret UCIV information provided to a voter is a set of
pre-images (xid1 , . . . , x

id
k) of F , one for each voting option in V , and the public

UCIV information is (yid1 , . . . , y
id
k) = (F (xid1), . . . ,F (xidk)), which are the images of

each element in the secret UCIV information. Each pair (xidi , y
id
i) is related to the

corresponding voting option vi, and the relation between yidi and vi is public. The
function σvi has as input the set of all pre-images (xid1 , . . . , x

id
k) and outputs the

same values except for xidi .

The protocol consists of the following algorithms:

Setup(1λ) runs Gene to generate the encryption key pair (pke, ske) and GenCRS
to generate the common reference string crs, and sets pk = (pke, crs), sk = ske.

Register(id, V, pk) selects, for each voting option vi ∈ V , a random value xidi ∈
X and computes yidi = F (xidi). The secret UCIV information siduciv is set to be
{xidi − vi}ki=1, and the public UCIV information is the set of images of each
element of the secret UCIV information: piduciv = {yidi − vi}ki=1.

Vote(id, vj, σv(s
id
uciv), p

id
uciv, pk) parses σv(s

id
uciv) as the values (x1, . . . , xj−1,⊥

, xj+1, . . . , xk), parses pk as (pke, crs) and computes the encryption of the voter
selection as c← Encr(vj, pke). Then it runs NIZKProve(crs, (c, V, piduciv), (r, (x1,
. . . , xj−1,⊥, xj+1, . . . , xk))) and obtains the proof π. The ballot b is set to be
(c, π).

ProcessBallot(BB, b, id) parses the ballot b as (c, π) and checks whether a ballot
for that id, or another ballot (c′, π′) with c′ = c, already exists . If any
of such cases is found, the algorithm halts and returns 0. Otherwise, the
public UCIV information corresponding to that id, piduciv, is recovered from the
bulletin board, NIZKVerify(crs, (c, V, piduciv), π) is run, and the result is provided
as output.

Tally(BB, sk) executes ProcessBallot for all the pairs (b, id) in the bulletin
board. Then, each individual ballot b is decrypted ṽ = Dec(C, sk) and ρ is
applied to the resulting decryptions {ṽ}. The output of ρ is defined as the
result and the proof of correct tabulation is defined to be the empty string ε.

6.4.2 Security analysis

This instantiation has been proven in [52] to provide ballot privacy, strong consis-
tency and universal cast-as-intended verifiability under the following premises:

- (Gene,Enc,Dec,EncVerify) is a NM-CPA secure encryption scheme, and (GenCRS,
NIZKProve,NIZKVerify,NIZKSimulate) is a NIZKPK scheme which has the
property of zero-knowledge, which implies witness indistinguishability [54], and
the soundness property.

- ρ is the counting function which outputs its inputs randomly permuted, filter-
ing invalid votes (voting options vx such that vx 6∈ V).

Chapter 6. Making Cast-as-Intended Universal 139

- F is a homomorphic one-way function

- The number of voting options is polynomial in the security parameter. This
is necessary to provide a tight security reduction in the analysis of universal
cast-as-intended, when the attacker does not target a specific voter and voting
option during registration, but does it during the voting phase.

6.4.3 Implementation

The protocol can be instantiated using the Signed ElGamal encryption scheme over
finite fields. We use the exponentiation function F (x) = gx, where x ∈ Zq and
g is the generator of the same cyclic group G defined for ElGamal, as a one-way
homomorphic function. The NIZKPK scheme is constructed following the Fiat-
Shamir heuristic for non-interactive proofs and the techniques in [42] for construction
OR-proofs:

Consider c = (c1, c2, c3, c4) to be the output of Encr(m, pke), where c1 = gr, c2 =
hr · m and c3, c4 are the Schnorr signature over the ciphertext components c1, c2.
Then the algorithms (GenCRS,NIZKProve,NIZKVerify) are defined as follows:

GenCRS outputs crs = (G, g)

NIZKProve receives crs, the statement (c, (v1, v2, . . . , vk), (y1, y2, . . . , yk)) for
which c← Encr(vj, pke) and c = (c1, c2, c3, c4); and the witness (r, (x1, x2, . . . , xk))
for which xj =⊥. Then it computes:

1. ∀i = 1 . . . k, i 6= j, the simulation of the c = Encr(vi, pke) statement:

chooses e
(i)
1 , z

(i)
1 at random from Zq and computes a

(i)
1 = gz

(i)
1 · c−e

(i)
1

1 ,

b
(i)
1 = pk

z
(i)
1

e · (c2/vi)−e
(i)
1 .

2. For the index j, the simulation of the yj = f(xj) statement: chooses

e
(j)
2 , z

(j)
2 at random from Zq and computes a

(j)
2 = gz

(j)
2 · y−e

(j)
2

j .

3. ∀i = 1 . . . k, i 6= j, the first part of the proof for the yi = f(xi) statement:

chooses β(i) ∈ Zq at random and computes a
(i)
2 = gβ

(i)
.

4. For the index j, the first part of the proof for the c = Encr(vj, pke)

statement: chooses α(j) ∈ Zq at random and computes a
(j)
1 = gα

(j)
and

b
(j)
1 = pkα

(j)

e .

5. Then computes the hash value h = H((c1, c2, c3, c4), {a(i)1 , b
(i)
1 , a

(i)
2 }ki=1).

6. Finally, ∀i, i 6= j, computes e
(i)
2 = h − e(i)1 mod q, z

(i)
2 = β(i) + e

(i)
2 · xi,

and for i = j computes e
(j)
1 = h− e(j)2 mod q, z

(j)
1 = α(j) + e

(j)
1 · r.

The proof result is π = (h, {e(i)1 , z
(i)
1 , z

(i)
2 }ki=1)

NIZKVerify receives crs, the statement (c, (v1, v2, . . . , vk), (y1, y2, . . . , yk)) and
the proof π, and does the following for i = 1, . . . , k:

140 UCIV with return codes

1. Computes e
(i)
2 = h− e(i)1 mod q.

2. Computes A
(i)
1 = c

−e(i)1
1 · gz

(i)
1 , B

(i)
1 = pk

z
(i)
1

e · (c2/vi)−e
(i)
1 , A

(i)
2 = y−e

(i)
2 · gz

(i)
2 .

Finally, it checks that H((c1, c2, c3, c4), {A(i)
1 , B

(i)
1 , A

(i)
2 }ki=1) = h.

6.5 UCIV with return codes

In this section we propose another approach for achieving the universal cast-as-
intended verifiability property, inspired by the mechanisms of return codes and for
confirming a vote of the system used in Neuchâtel, described in Chapter 4. This
proposal has different privacy requirements, since an adversary knowing a voter’s
private UCIV information could break the voter privacy. On the other hand, the
computation costs at the voting device are reduced, since they are proportional to
the number of options the voter selects, and not to the total in the election, as in
the previous approach.

6.5.1 Overview of the solution

As we have explained in the overview, in this approach we make a twist on the
return code mechanism. Instead of receiving return codes, the voter has to enter
them into the voting device, as in code voting proposals: indeed, the voter, besides
her selections, has to enter the return codes in her verification card related to them.
A reference value has been generated during registration for each combination of
voting option - return code. This reference value can be used to universally verify
that the combination of the content of the ballot generated by the voting device,
with the return code provided by the voter, is a valid one (which happens only if the
pair matches). Given that the contents of the verification card are unknown to the
voting device, it cannot guess a return code such that its combination with a ballot,
containing a voting option different than the one selected by the voter, is considered
valid according to the published reference values.

The voter privacy is preserved by maintaining the [return code - voting option]
and [reference value - voting option] links in secret. In our description, we will assume
that the information generated during registration is correct, and that secret values
are indeed kept as secret values. We will discuss how to reduce these assumptions
in Section 6.6. Finally, we first describe the system for a single voting scenario, and
then explain how it could be extended to multiple voting in Section 6.5.5.

6.5.2 Protocol description

In this protocol, the secret UCIV information for a voter is a set of return codes
randomly chosen from the return code space RC linked to voting options, {vi −
RCidi }ki=1, as well as a voter private key skid. The public UCIV information is a set
of signatures, each one computed over the combination of the partial return code

Chapter 6. Making Cast-as-Intended Universal 141

and the return code corresponding to one voting option: {ψi}ki=1. The function σvj
outputs the return code RCidj corresponding to the voting option vj, and the voter
private key skid.

The system uses an encryption scheme (Gene,Enc,Dec,EncVerify), a digital signa-
ture scheme (Gens, Sign, SignVerify), and a NIZKPK scheme (ProveEq,VerifyEq, SimEq).
We define also a generic operation ⊕, and use a keyed pseudo-random function wk()
with homomorphic properties. Additionally, an aggregation function φ which takes
advantage of the homomorphic properties of wk() and a hash function H are also
used in the protocol.

The following implementation is proposed for the algorithms presented in Section
6.3.2 :

Setup(1λ) runs Gene to generate a key pair (pke, ske), which is set to be the
election public and private keys, pk and sk, respectively. Alternatively, sk
may consist of the shares of ske if there are several trustees.

Register(id, V, pk) runs Gens to create a signing key pair (pks, sks). For each
voting option vi ∈ V , it chooses a return code at random from RC. Then
it runs Gene to generate a voter keypair (pkid, skid), and computes a partial
return code for each voting option vi as pRCidi = wskid(vi). Sign(H(RCidi ⊕
pRCidi), sks) is run for each pair return code - partial return code corresponding
to each voting option, obtaining the signature ψi. The resulting set {H(RCidi ⊕
pRCidi), ψi}ki=1 is ordered alphabetically and, together with the signing public
key pks and the voter public key pkid, is set to be the public UCIV information
piduciv. The set of pairs {vi−RCidi }ki=1, together with the voter’s private key skid
is set to be the private UCIV information siduciv. The private key sks has to be
forgotten at this point.

Vote(id, v, σv(s
id
uciv), p

id
uciv, pk) is very similar to the CreateVote algorithm from

Neuchâtel’s system, described in Section 4.4: it parses v as the voter’s selec-
tions {vj1 , . . . , vjt}, sets vtot ← φ({vj1 , . . . , vjt}), and runs Enc from the encryp-
tion scheme, using the election public key pk and vtot to get the ciphertext c.
The algorithm then parses σv(s

id
uciv) as the set of return codes corresponding to

the entered voting options {RCidj1 , . . . , RC
id
jt }, and the voter private key skid. The

partial return codes are computed as {pRCidjl }
t
l=1 ← (wskid(vj1), . . . ,wskid(vjt)).

The value wskid(c) and the proofs π1, π2 are computed as in Neuchâtel’s pro-
tocol:

– π1 = ProveEq(g, c, pkid,wskid(c), skid) proves that wskid(c) is computed
with the private key skid corresponding to the public key pkid.

– π2 = ProveEq(g, pk,wskid(c)/φ(pRCidj1 , . . . , pRC
id
jt

), r · skid) proves that the
value wskid(c) is equivalent to the encryption of the aggregation φ of
partial return codes {pRCidjl }

t
l=1, under the election public key pk (note

that r denotes the encryption randomness used to compute c).

142 UCIV with return codes

The ballot b, composed by c, {pRCidjl }
t
l=1,wskid(c), π1, π2 and {RCidjl }

t
l=1 is re-

turned.

ProcessBallot(BB, b, id) checks if there already exists a ballot for the identity
id in the ballot box, or that there is not another vote in BB with the same
ciphertext value c. If so, it stops and outputs 0. Otherwise, it runs VerifyEq
to validate the NIZKPK proofs π1, π2 from the ballot b, using the voter’s
public key pkid, and runs EncVerify to check that the ciphertext c is correctly
formed. Finally, it computes ζl = RCidjl ⊕ pRCidjl for l = 1, . . . , t and checks that
all H(ζl) values match with a signature in piduciv, running SignVerify with the
signing public key pks. In case all the validations are successful, 1 is returned.
Otherwise, the algorithm returns 0.

Tally(BB, sk) executes ProcessBallot for all the pairs (b, id) in the bulletin
board. Then, each individual ballot b which passed the previous verification is
decrypted: ṽtot = Dec(c, sk). φ−1(ṽtot) outputs the individual voting options vi
composing ṽtot, for which it is tested that vi ∈ V . Otherwise, the whole set of
voting options is discarded. The result r, composed of the values vi recovered
from each vote is provided as the output, and the proof of correct tabulation
is defined to be the empty string ε.

6.5.3 Security Analysis

In this section we show that the protocol presented in the previous section satisfies
the properties of ballot privacy, strong consistency, strong correctness and univer-
sal cast-as-intended verifiability, according to the definitions in Section 6.3.3. The
analysis is similar to that provided for the Neuchâtel system in Section 4.5. We use
again the Enc2Vote scheme for making a security reduction in the case of privacy.

Ballot Privacy

Given that the universal cast-as-intended verification mechanism is not based in
a witness-indistinguishable NIZKPK, the level of privacy provided by the return
code variant is different: in fact, we have to restrict the access of the adversary to
the secrect UCIV information. We therefore use a slightly different definition of
ballot privacy than that provided in Section 6.3.3: the original experiment for ballot
privacy, in which A had to distinguish between two experiments parameterized by
β = (0, 1), allowed the adversary A to access all the registration information, for
both honest and corrupt voters. We modify this definition in order to allow A to
have access to such registration information only for corrupt voters, and restrict the
Vote oracle to be used only once per honest voter. The experiments are parametrized
by the set of voting options V and an algorithm SimProof(BB, r) such that, given
a bulletin board and a result, it simulates a proof of correct tabulation.

1. Setup phase. The challenger sets up two empty bulletin boards L and R. It
runs the Setup(1λ) protocol to obtain the election public key pk and the election
private key sk. It then posts pk on both bulletin boards. The adversary is

Chapter 6. Making Cast-as-Intended Universal 143

given read access to either L if β = 0 or R if β = 1. In addition, C initializes
the empty lists ID, IDc, IDh.

2. Registration phase. The adversary may make one type of query.

• Register(id) query. The adversary provides a voter identity such that
id 6∈ ID. The challenger runs Register on inputs (id, V, pk) to generate
the public UCIV information piduciv and the secret UCIV information siduciv.
C keeps siduciv and publishes piduciv on both bulletin boards. The identity
id is added to ID.

3. Voting phase. The adversary may make two types of queries.

• Vote(id, vL, vR) queries. The adversary provides a voter identity id such
that id ∈ ID, id 6∈ IDc, id 6∈ IDh and two votes vL, vR ∈ V . The
challenger runs Vote(id, vL, σvL(siduciv), p

id
uciv, pk), which outputs bL, and

Vote(id, vR, σvR(siduciv), p
id
uciv, pk), which outputs bR. C then obtains new

versions of the boards L and R by running ProcessBallot(L, bL, id) and
ProcessBallot(R, bR, id) and updating the boards accordingly. Finally it
adds id to IDh.

• OgetVotingData(id): A provides an identity id ∈ ID, id 6∈ IDh. C
provides siduciv to A and adds id to IDc.

• Ballot(b, id) queries. These are queries made on behalf of corrupt voters.
Here the adversary provides a ballot b and an identity id such that id ∈
ID. The challenger runs ProcessBallot(L, b, id) and if the process accepts
it also runs ProcessBallot(R, b, id) and updates the boards accordingly.

4. Tallying phase. The challenger evaluates Tally(L, sk), obtaining the result r
and the proof of correct tabulation Π. If β = 0, the challenger posts (r,Π) on
the bulletin board L. If β = 1, the challenger runs SimProof(R, r), obtaining
a simulated proof Π′, and posts (r,Π′) on the bulletin board R.

5. Output. The adversary A outputs a bit αA,V .

A voting protocol as defined in Section 6.3.2 provides ballot privacy, if there
exists an algorithm SimProof such that for any probabilistic polynomial time (p.p.t.)
adversary A and any set of voting options V , the following advantage is negligible
in the security parameter λ.

AdvprivV (A) := |Pr[αA,V = 1|β = 1]− Pr[αA,V = 1|β = 0]|

Theorem 6.1. Let (Gene,Enc,Dec,EncVerify) be an NM-CPA secure encryption
scheme and (ProveEq,VerifyEq, SimEq) be a NIZKPK scheme with the zero-knowledge
property. Then the protocol presented in Section 6.5.2 satisfies the ballot privacy
property.

144 UCIV with return codes

Now we prove that the return code based protocol presented in the previous
section provides ballot privacy according to this new definition, through the follow-
ing steps: in a first step we prove in Lemma 6.1 that the experiments Expβ and
Expβ′ , where in Expβ′ the NIZK proofs inside the ballot b are simulated, instead of
honestly generated, are indistinguishable by A. In a second step we prove that this
scenario is indistinguishable from one where the partial return codes are generated
at random, through Lemma 6.2. Finally, in Lemma 6.3 we make a reduction of the
last experiment to the ballot privacy of the Enc2Vote scheme.

Next, let’s consider SimVote(id, v, σv(s
id
uciv), p

id
uciv, pk) be a modification of the

algorithm Vote(id, v, σv(s
id
uciv), p

id
uciv, pk) where, instead of running ProveEq for the

generation of the proof π2, the algorithm SimEq is run to obtain the simulated proof
π′2 with the same distribution than the non-simulated one. Then define Expβ′ as
the experiment in which the challenger runs SimVote instead of Vote. The following
lemma is straightforward to prove:

Lemma 6.1. The experiments Expβ and Expβ′ are computationally indistinguishable
for β ∈ {0, 1}, given a (ProveEq,VerifyEq, SimEq) zero-knowledge NIZKPK scheme.

In the following transformation, we define SimVote2(id, p
id
uciv, pk) to be a mod-

ification of SimVote where, instead of computing the partial return code value as
wskid(v), it is selected at random from the same value space. Then we consider the
experiment Expβ′′ where, when the adversary submits the query Vote(id, vL, vR),
the challenger executes SimVote2 instead of SimVote. We also define an oracle O
which, when A makes a query to compute H(RCid ⊕ pRCid), it returns one of the
values in the public UCIV information piduciv. The following lemma can be easily
proven:

Lemma 6.2. The experiments Expβ′ and Expβ′′ are computationally indistinguish-
able for β ∈ {0, 1}, given the pseudorandom function w() and the oracle O.

Next, we proceed to reduce the ballot privacy property of our scheme to the
ballot privacy property of the Enc2Vote scheme.

Lemma 6.3. Let A’ be a p.p.t. adversary that interacts with a challenger C, such
that | Pr[Exp0′′ = 1] - Pr[Exp1′′ = 1] | is non-negligible. Then, there exists an
adversary A” that breaks the ballot privacy property of the Enc2Vote scheme.

Proof. In the reduction, we use A” as the challenger for A’, and A” interacts with
C in the same way as in the experiment defined in [25]. The reduction is as follows:

In the Setup phase, C sets up two empty bulletin boards BB0 and BB1, runs
the Gene algorithm and keeps the ske2v private key for itself, while it publishes the
public key pke2v key on both bulletin boards. In turn, A” publishes pk = pke2v on
the bulletin board visible by A’.

Chapter 6. Making Cast-as-Intended Universal 145

In the Registration phase, when A’ makes the Register(id), A” runs the
Register(id, V, pk) algorithm from our protocol, keeps the secret UCIV information
siduciv and publishes the public UCIV information piduciv on the bulletin board visible
by A′.

During the Voting phase, when A’ submits the Vote(id, vL, vR) query, A”
submits the Vote query to C, who responds by publishing a ballot be2v to the bulletin
board visible by A”. A” parses be2v as c, computes wskid(c), π1 = ProveEq(g, c, pkid,
wskid(c), skid), picks v′i at random from the w() output message space and computes
π′2 = SimEq(g, pk,wskid(c)/v

′
i). Then A” chooses at random one of the return codes

RCidx in siduciv. The resulting ballot b = (be2v, v
′
i,wskid(c), pkid, π1, π

′
2, RC

id
x) is published

in the bulletin board visible by A’, together with the voter identity id.

When A’ submits the OgetVotingData(id) query, A” just returns the private
UCIV information siduciv to A’. When A’ submits the Ballot(b, id) query, A” parses
b as (c, pRCidi ,wskid(c), pkid, π1, π2, RC

id
i) and submits a Ballot(c) query to C. Then

A” puts id, b in the bulletin board visible by A’.

In the Tallying phase, C posts the result of evaluating Tally(BB0, sk
e2v) on the

bulletin board visible to A”. A” in turn publishes the same result on the bulletin
board visible by A’. Both tabulation proofs (the real and the simulated) are set to
be the empty string ε.

At the end of the experiment, A’ outputs a bit and A” outputs the same bit.
The outputs of A”as a result of the interaction with A’ have the same distribution
as in the ballot privacy experiment in [25]. Therefore, the reduction is sound.

Strong Consistency

The following theorem is straightforward to prove:

Theorem 6.2. Let ρ be the counting function which outputs its inputs randomly
permuted and filtering invalid votes. Let Extract(b, sk) = Dec(c, ske). Then the
protocol defined in Section 6.5.2 has strong consistency with respect to Extract, ρ.

Strong Correctness

The following theorem is straightforward to prove:

Theorem 6.3. Let (Gene,Enc,Dec,EncVerify) be a randomized encryption scheme.
Then the protocol defined in Section 4.4 has the property of strong correctness.

In the protocol defined in Section 6.5.2, the only condition for which ProcessBallot
(BB, id, b) may output 0, given a ballot b produced by an honest registered voter that
was not already registered by the adversary, is that a previous entry with the same
ciphertext c is already present in the bulletin board. Given that (Gene,Enc,Dec,
EncVerify) is a probabilistic encryption scheme, this probability is negligible in the
security parameter λ.

146 UCIV with return codes

Universal cast-as-intended verifiability

Theorem 6.4. Let (ProveEq,VerifyEq, SimEq) be a sound NIZKPK scheme, (Gens,
Sign, SignVerify) be an unforgeable signature scheme and H be a collision-resistant
hash function. Then the protocol presented in Section 6.5.2 satisfies the universal
cast-as-intended verifiability property.

According to the definition presented in 6.3.3, the adversary succeeds if it is able
to generate a ballot for which ProcessBallot successfully verifies, when the ballot con-
tains a different voting option (the value produced by Extract(b, sk) is different) than
the one claimed. In order to do that, the adversary can follow different strategies:

Let’s consider a voting option vi which is used byA to do the CorruptVotingDevice
query, for which it gets from the challenger the private key skid and the return
code RCidi . Then let’s consider that A provides at the output of the experiment
b∗ =

(
c, pRCidj ,wskid(c), pkid, π1, π2, RC

id
i

)
, such that Extract(b∗, sk) outputs vj 6= vi.

Recall that ProcessBallot computes ζ = RCidi ⊕ pRCidj and checks that H(ζ) matches
an entry with a valid signature in piduciv. Clearly, given the collision resistance of the
hash function and the unforgeability of the signature scheme, this strategy suceeds
with negligible probability. An alternative approach for A is to guess the value RCidj
such that H(ζj) is a valid entry in piduciv, for which it has a probability of success of
1
q
, where q is the size of the space RC.

Then let’s consider that A provides at the output of the experiment the ballot
b∗ = (c, pRCidi ,wskid(c), pkid, π1, π2, RC

id
i), such that Extract(b∗, sk) outputs vj 6= vi.

Recall that ProcessBallot verifies the proofs π1, π2 from the ballot b before accepting.
The probability that such proofs are verified successfully, when the voting option vj
encrypted in c does not match the one used to compute the partial return code, is
negligible given the soundness property of the NIZKPK scheme.

6.5.4 Implementation

This protocol can be instantiated using the same primitives as in Neuchâtel’s system:

- The Signed Elgamal encryption scheme, which is NM-CPA secure.

- The RSA-FDH signature scheme.

- The NIZKPK schemes EqDL for proving equality of discrete logarithms.

- The exponentiation function wk(x) = xk, which is discussed to be pseudo-
random under some assumptions in [60].

- The product operation φ and the factorization operation φ−1, where the voting
options vi are small primes.

- The concatenation operation ⊕.

- The SHA-256 hash function H.

Chapter 6. Making Cast-as-Intended Universal 147

The number of operations to be done at the voting device is the same as in the
Neuchâtel scheme: for a t-out-of-k scenario where t voting options can be encrypted
together in the same ciphertext, the cost of the Signed ElGamal encryption is 3
exponentiations. t more exponentiations are required for computing the partial
return codes, while the NIZK proofs and intermediate values cost 7 exponentiations.

In case of a 1-out-of-k scenario, 11 exponentiations have to be computed by the
voting device. The cost of the previous approach in the same scenario was of 3k+ 4
exponentiations: 3k + 1 for the NIZK proof for the UCIV property, and 3 for the
Signed ElGamal encryption. Therefore, we can see that with this second approach
we are improving on the number of operations, since they are constant in the number
of options in the election. However, this second approach has drawbacks such as
the fact that the knowledge of the UCIV private information has to remain secret
in order to keep voter privacy, while it was not required for the NIZKPK variant.

Another important drawback of this second approach is that multiple voting
allows to break voter privacy, or at least it lets an adversary to detect when a voter
votes twice for the same voting option.

6.5.5 Extension to multiple voting

An alternative for extending this protocol for multiple voting, is that the partial
return codes, and the return code the voter sends in her ballot (that is, the deter-
ministic values), are encrypted with a public key corresponding to the bulletin board
manager. The output of the bulletin board manager would still have to be restricted.
Otherwise an adversary could detect when two ballots cast by the same voter match
the same signature on the public UCIV information, for example. However, then the
system could not be considered to be universally cast-as-intended verifiable, since
it would be restricted to entities holding the bulletin board manager private key.
An open topic of research is to investigate the use of signature schemes which are
commutable with encryption schemes, in order to be able to prove that an encrypted
content matches one encrypted signed value from a set, without revealing which one.
Techniques presented in [30] could be used for this purpose.

Another approach is to make the voter re-register, and provide her a new set
of public and private UCIV values each time she wants to re-vote. Several sets of
public and private UCIV values may be provided to the voter when registering, in
order to allow, in advance, to vote up to a pre-defined number of times.

6.6 Distributed generation of UCIV information

A key point of the universal cast-as-intended verifiable schemes presented in this
chapter is the generation of the public and private UCIV information. A leak of
private UCIV information in the NIZK proofs approach may result in the voting
device being able to deceive the cast-as-intended verification. Such leak in the
return codes approach additionally results on a lost of privacy for the voter. In both

148 Distributed generation of UCIV information

cases, not well formed UCIV public and private data results in a deception of the
cast-as-intended verification. Therefore, it is very important to provide mechanisms
for distributing the task of generating such UCIV information, in order to maintain
the properties of the scheme in front of a subset of malicious registrars.

In the return code approach, measures for distributed verification card genera-
tion, similar to those described for the Neuchâtel’s system in Section 4.8.2, can be
applied. A set of registrars generates in a distributed way the partial return codes
corresponding to the voting options in the election: each one (denoted by the index
m) computes a part of the voter’s secret key skid(m) and of the partial return code
associated to a voting option, vi−pRCidi (m). The set of possible return codes in each
verification card is shuffled with a random permutation, using a verifiable mixnet,
and the output return codes are assigned to voting options: {vi − RCidi }ki=1. This
operation can be done by the printing service, since at the end it is unavoidable
that it sees the correspondence between return code and voting option, to print the
contents of the verification card. The printing service therefore can be also in charge
of receiving the shares of the voter private key and of partial return codes from the
multiple registrars, putting them together, and computing the UCIV public values
as the signature of each relation RCidi ⊕ pRCidi assigned to the same voting option vi.

The operations of the printing service can be audited by randomly selecting some
verification cards to audit, and checking that an honestly formed ballot, with the
verification card parameters, is successfully verified according to the signatures in
the UCIV public values.

In order to avoid a single point of failure, multiple printing services can be used,
each one generating its own mapping (RCidi ⊕ pRCidi)j and signing this relation with
a different private key (owned by each printing service). The voter then receives
as many verification cards as printing services, and she is required to enter all the
return codes assigned to the voting option vi she has selected into the voting device.
The ProcessBallot algorithm will check that each of the multiple combinations of
partial return code and return code in the ballot matches one of the signatures
published by each printing service.

In the NIZK proofs approach, authors in [52] propose that the voter is able to
select the registrars with which she wants to register. Each registrar rid selected
by the voter provides to her a set of private UCIV information sid,riduciv and a set of
public UCIV information pid,riduciv . The voting device puts together the private UCIV
information, related to the voter’s selected voting option, from all the registrars
the voter has registered with, to compute the NIZKPK proofs (a more detailed
description is provided in [52]). One honest registrar, in the set of registrars selected
by the voter, is enough for ensuring that the private UCIV information is kept secret
and that the cast-as-intended verification mechanism is not deceived by the voting
device.

Chapter 6. Making Cast-as-Intended Universal 149

6.7 Setup

The setups of both schemes (the one based on NIZK proofs, and the one based on
return codes) are very similar. Voters receive a set of codes prior to the voting
phase, each one related to a voting option in the election. In the return code-based
scheme they additionally receive a private key. In a remote voting scenario, voters
may receive these values by postal mail in a sealed paper card. In a poll-site voting
scenario, the paper card may be printed on-demand after the voter is successfully
identified by the poll worker.

During the voting phase, the voter makes her selections on her voting device and
enters the codes in the card, corresponding to the selected voting options. In the
return code approach, the voter additionally enters her private key, also printed in
the card.

For usability purposes, the codes in the voting card may be shorter that what
is required by the security parameter for the UCIV secret values. These codes can
be used to recover the indicated UCIV secret values, which may be downloaded to
the voting device in a password-protected key container (for example, a PKCS#12
keystore [69]), or provided in a hardware token (this option is more suitable for
poll-site voting scenarios).

The ballot is generated by the voting device and sent to the bulletin board
manager, where it is verified prior to being published on the bulletin board. Auditors
can be connected to the bulletin board manager to additionally verify the incoming
ballots. They may provide their approval by signing the ballot and posting their
signatures also on the bulletin board.

During the counting phase, only votes which have been successfully verified are
taken into account for the tally. Although the description of a verifiable counting
phase has been left from the formal description of the algorithms and properties of
the scheme, proofs of correct mixing and decryption, which can be audited by the
auditors, can be generated by the tally algorithm as in the systems presented in
previous chapters.

150 Setup

Chapter 7

Conclusions

This work has focused on individual verifiability, which is a key component on
building trust and ensuring reliability in electronic voting systems. This thesis has
been done as part of the job of the author as a researcher at Scytl, and should be
seen as the result of ongoing research for improving the electronic voting systems to
be used across many countries in the world.

This work combines application and research, including descriptions of electronic
voting protocols which have already been used (or currently are) in national level
binding elections, providing an analysis of their security properties and proposing
improvements for future versions. Moreover, new protocols which emerge from the
needs at the industrial level and the application of new cryptographic techniques
are also presented in this thesis.

Although research is something that never ends, there is a moment when you
have to sit down and put together everything you have done. This undoubtedly
makes one realize the amount of pending problems and details to solve, and of the
new lines of research that may have been opened.

One obvious pending topic is the case of usability studies: proposals for individ-
ual verification cannot be only based on the security characteristics they provide,
but also on the feasibility of voters performing them, and the value they obtain.
Although some considerations have been taken into account when making the pro-
tocol proposals (for example, by assuming that a user may not be able to enter a
2048-bit value in the voting device, but she can do so with a 4-digit string), usability
studies with real voters have to be performed in order to learn more about the users
interaction with the system.

Another pending topic is to consolidate the proposals for distributed generation
of voter information, at the registration phase. Some solutions have been suggested
throughout this work. However, further research can be done in, for example, tech-
niques for distributed printing processes. The formal security analysis can also be
extended in a future work in order to cover the distributed generation scenarios.

151

152

The possible use of identity-based cryptography has been a constant during the
research composing this thesis. My supervisor and I always had the feeling that
some of the key management issues that impacted the voter in some way could be
reduced by using these kinds of cryptographic primitives. We will certainly continue
making research in this line.

Finally, the novel concept of universal cast-as-intended presented in this work
comes at a cost of the usability and practicality of the electronic voting protocols
providing this property. We foresee here a new line of research focused on the
improvement of such systems.

Bibliography

[1] Belenios verifiable online voting system. Available at http://belenios.

gforge.inria.fr/

[2] MinID. Available at http://eid.difi.no/en/minid

[3] Crytographic key length recommendation. Available at http://www.

keylength.com (2015)

[4] Helios ballot external verifier. Available at https://github.com/google/

pyrios (2015)

[5] Helios ballot verifier. Available at https://vote.heliosvoting.org/booth/
single-ballot-verify.html (2015)

[6] Helios voting system. Available at https://vote.heliosvoting.org/ (2015)

[7] Verificatum mix-net. Available at http://www.verificatum.org/ (2015)

[8] Wombat voting system. Available at http://www.wombat-voting.com/

(2015)

[9] Adida, B.: Advances in cryptographic voting systems. PhD Thesis. Available
at http://groups.csail.mit.edu/cis/theses/adida-phd.pdf (2006)

[10] Adida, B.: Helios: Web-based open-audit voting. In: Proceedings of the 17th
Conference on Security Symposium. pp. 335–348. SS’08, USENIX Association,
Berkeley, CA, USA (2008)

[11] Adida, B., Rivest, R.L.: Scratch & vote: self-contained paper-based crypto-
graphic voting. In: Juels, A., Winslett, M. (eds.) Proceedings of the 2006 ACM
Workshop on Privacy in the Electronic Society, WPES 2006, Alexandria, VA,
USA, October 30, 2006. pp. 29–40. ACM (2006)

[12] Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J.,
Tokita, T.: Camellia: A 128-bit block cipher suitable for multiple platforms
— design and analysis. In: Stinson, D., Tavares, S. (eds.) Selected Areas
in Cryptography, Lecture Notes in Computer Science, vol. 2012, pp. 39–56.
Springer Berlin Heidelberg (2001)

153

http://belenios.gforge.inria.fr/
http://belenios.gforge.inria.fr/
http://eid.difi.no/en/minid
http://www.keylength.com
http://www.keylength.com
https://github.com/google/pyrios
https://github.com/google/pyrios
https://vote.heliosvoting.org/booth/single-ballot-verify.html
https://vote.heliosvoting.org/booth/single-ballot-verify.html
https://vote.heliosvoting.org/
http://www.verificatum.org/
http://www.wombat-voting.com/
http://groups.csail.mit.edu/cis/theses/adida-phd.pdf

154 BIBLIOGRAPHY

[13] Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a
shuffle. In: Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology –
EUROCRYPT 2012, Lecture Notes in Computer Science, vol. 7237, pp. 263–
280. Springer Berlin Heidelberg (2012)

[14] Bell, S., Benaloh, J., Byrne, M.D., DeBeauvoir, D., Eakin, B., Fisher, G., Ko-
rtum, P., McBurnett, N., Montoya, J., Parker, M., et al.: Star-vote: A secure,
transparent, auditable, and reliable voting system. The USENIX Journal of
Election Technology Systems, 1 (1) pp. 18–37 (2013)

[15] Bellare, M.: New proofs for NMAC and HMAC: Security without collision-
resistance. In: Dwork, C. (ed.) Advances in Cryptology - CRYPTO 2006,
Lecture Notes in Computer Science, vol. 4117, pp. 602–619. Springer Berlin
Heidelberg (2006)

[16] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for
designing efficient protocols. In: Proceedings of the 1st ACM Conference on
Computer and Communications Security. pp. 62–73. CCS ’93, ACM, New
York, NY, USA (1993)

[17] Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: Santis, A.D.
(ed.) Advances in Cryptology - EUROCRYPT ’94, Workshop on the The-
ory and Application of Cryptographic Techniques, Perugia, Italy, May 9-12,
1994, Proceedings. Lecture Notes in Computer Science, vol. 950, pp. 92–111.
Springer (1994)

[18] Bellare, M., Rogaway, P.: The exact security of digital signatures-how to
sign with RSA and Rabin. In: Proceedings of the 15th Annual International
Conference on Theory and Application of Cryptographic Techniques. pp. 399–
416. EUROCRYPT’96, Springer-Verlag, Berlin, Heidelberg (1996)

[19] Ben-Nun, J., Fahri, N., Llewellyn, M., Riva, B., Rosen, A., Ta-Shma, A.,
Wikström, D.: A new implementation of a dual (paper and cryptographic)
voting system. In: 5th International Conference on Electronic Voting, EVOTE
2012, Lochau / Bregenz, Austria, July 11-14, 2012. pp. 315–329 (2012)

[20] Benaloh, J.: Simple verifiable elections. In: Proceedings of the
USENIX/Accurate Electronic Voting Technology Workshop 2006. pp. 5–5.
EVT’06, USENIX Association, Berkeley, CA, USA (2006)

[21] Benaloh, J., Jones, D., Lazarus, E.L., Lindeman, M., Stark, P.B.: Soba:
Secrecy-preserving observable ballot-level audit. In: Proceedings of the 2011
Conference on Electronic Voting Technology/Workshop on Trustworthy Elec-
tions. pp. 13–13. EVT/WOTE’11, USENIX Association, Berkeley, CA, USA
(2011)

[22] Benaloh, J., Tuinstra, D.: Receipt-free secret-ballot elections (extended ab-
stract). In: Proceedings of the Twenty-sixth Annual ACM Symposium on
Theory of Computing. pp. 544–553. STOC ’94, ACM, New York, NY, USA
(1994)

BIBLIOGRAPHY 155

[23] Bernhard, D., Cortier, V., Galindo, D., Pereira, O., Warinschi, B.: SoK: A
comprehensive analysis of game-based ballot privacy definitions. In: IEEE
Symposium on Security and Privacy 2015. IEEE Computer Society (5 2015)

[24] Bernhard, D., Cortier, V., Pereira, O., Smyth, B., Warinschi, B.: Adapting
Helios for provable ballot privacy. In: Atluri, V., Dı́az, C. (eds.) Computer
Security - ESORICS 2011 - 16th European Symposium on Research in Com-
puter Security, Leuven, Belgium, September 12-14, 2011. Proceedings. Lecture
Notes in Computer Science, vol. 6879, pp. 335–354. Springer (2011)

[25] Bernhard, D., Pereira, O., Warinschi, B.: On necessary and sufficient condi-
tions for private ballot submission. IACR Cryptology ePrint Archive, Report
2012/236 (2012)

[26] Boneh, D., Franklin, M.: Efficient generation of shared RSA keys. In: Kaliski,
Burton S., J. (ed.) Advances in Cryptology — CRYPTO ’97, Lecture Notes in
Computer Science, vol. 1294, pp. 425–439. Springer Berlin Heidelberg (1997)

[27] Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowl-
edge. Journal of Computer and System Sciences 37(2), 156 – 189 (1988)

[28] Budurushi, J., Neumann, S., Olembo, M.M., Volkamer, M.: Pretty under-
standable democracy - A secure and understandable internet voting scheme.
In: 2013 International Conference on Availability, Reliability and Security,
ARES 2013, Regensburg, Germany, September 2-6, 2013. pp. 198–207. IEEE
Computer Society (2013)

[29] Bulens, P., Giry, D., Pereira, O.: Running mixnet-based elections with Helios.
In: Shacham, H., Teague, V. (eds.) 2011 Electronic Voting Technology Work-
shop / Workshop on Trustworthy Elections, EVT/WOTE ’11, San Francisco,
CA, USA, August 8-9, 2011. USENIX Association (2011)

[30] Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set mem-
bership and range proofs. In: Pieprzyk, J. (ed.) Advances in Cryptology -
ASIACRYPT 2008, 14th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Melbourne, Australia, Decem-
ber 7-11, 2008. Proceedings. Lecture Notes in Computer Science, vol. 5350,
pp. 234–252. Springer (2008)

[31] Carback, R., Chaum, D., Clark, J., Conway, J., Essex, A., Herrnson, P.S.,
Mayberry, T., Popoveniuc, S., Rivest, R.L., Shen, E., Sherman, A.T., Vora,
P.L.: Scantegrity II municipal election at Takoma Park: The first E2E binding
governmental election with ballot privacy. In: 19th USENIX Security Sympo-
sium, Washington, DC, USA, August 11-13, 2010, Proceedings. pp. 291–306.
USENIX Association (2010)

[32] Chaum, D.: Untraceable electronic mail, return addresses, and digital
pseudonyms. In: Communications of the ACM. vol. 24, pp. 84–90. ACM,
New York, NY, USA (Feb 1981)

156 BIBLIOGRAPHY

[33] Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D.,
Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology: Proceedings of
CRYPTO ’82, Santa Barbara, California, USA, August 23-25, 1982. pp. 199–
203. Plenum Press, New York (1982)

[34] Chaum, D.: Surevote: Technical report. Available at http://www.iavoss.

org/mirror/wote01/pdfs/surevote.pdf (2001)

[35] Chaum, D., Carback, R.T., Clark, J., Essex, A., Popoveniuc, S., Rivest, R.L.,
Ryan, P.Y., Shen, E., Sherman, A.T., Vora, P.L.: Scantegrity II: End-to-end
verifiability by voters of optical scan elections through confirmation codes. In-
formation Forensics and Security, IEEE Transactions on 4(4), 611–627 (2009)

[36] Chaum, D., Essex, A., Carback, R., Clark, J., Popoveniuc, S., Sherman, A.,
Vora, P.: Scantegrity: End-to-end voter-verifiable optical-scan voting. Security
& Privacy, IEEE 6(3), 40–46 (2008)

[37] Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 16-20, 1992, Pro-
ceedings. Lecture Notes in Computer Science, vol. 740, pp. 89–105. Springer
(1992)

[38] Chaum, D., Ryan, P.Y.A., Schneider, S.A.: A practical voter-verifiable elec-
tion scheme. In: di Vimercati, S.D.C., Syverson, P.F., Gollmann, D. (eds.)
Computer Security - ESORICS 2005, 10th European Symposium on Research
in Computer Security, Milan, Italy, September 12-14, 2005, Proceedings. Lec-
ture Notes in Computer Science, vol. 3679, pp. 118–139. Springer (2005)

[39] Chen, X., Wu, Q., Zhang, F., Tian, H., Wei, B., Lee, B., Lee, H., Kim, K.: New
receipt-free voting scheme using double-trapdoor commitment. Information
Sciences 181(8), 1493–1502 (2011)

[40] Cortier, V., Galindo, D., Glondu, S., Izabachène, M.: A generic construction
for voting correctness at minimum cost - application to Helios. IACR Cryp-
tology ePrint Archive, Report 2013/177 (2013)

[41] Cortier, V., Galindo, D., Glondu, S., Izabachène, M.: Election verifiability for
Helios under weaker trust assumptions. In: Kutylowski, M., Vaidya, J. (eds.)
Computer Security - ESORICS 2014 - 19th European Symposium on Research
in Computer Security, Wroclaw, Poland, September 7-11, 2014. Proceedings,
Part II. Lecture Notes in Computer Science, vol. 8713, pp. 327–344. Springer
(2014)

[42] Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and
simplified design of witness hiding protocols. In: Desmedt, Y. (ed.) CRYPTO.
Lecture Notes in Computer Science, vol. 839, pp. 174–187. Springer (1994)

http://www.iavoss.org/mirror/wote01/pdfs/surevote.pdf
http://www.iavoss.org/mirror/wote01/pdfs/surevote.pdf

BIBLIOGRAPHY 157

[43] Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient
multi-authority election scheme. In: Fumy, W. (ed.) EUROCRYPT. Lecture
Notes in Computer Science, vol. 1233, pp. 103–118. Springer (1997)

[44] Culnane, C., Ryan, P.Y.A., Schneider, S.A., Teague, V.: vVote: A verifiable
voting system. In: ACM Transactions on Information and System Security
(TISSEC). vol. 18, p. 3 (2015)

[45] Damg̊ard, I.: Commitment schemes and zero-knowledge protocols. In:
Damg̊ard, I. (ed.) Lectures on Data Security, Lecture Notes in Computer Sci-
ence, vol. 1561, pp. 63–86. Springer Berlin Heidelberg (1999)

[46] Damg̊ard, I.: On σ-protocols. Available at http://www.cs.au.dk/~ivan/

Sigma.pdf (2010)

[47] Damg̊ard, I., Mikkelsen, G.L.: Efficient, robust and constant-round dis-
tributed RSA key generation. In: Micciancio, D. (ed.) Theory of Cryptog-
raphy, 7th Theory of Cryptography Conference, TCC 2010, Zurich, Switzer-
land, February 9-11, 2010. Proceedings. Lecture Notes in Computer Science,
vol. 5978, pp. 183–200. Springer (2010)

[48] Demirel, D., Henning, M., van de Graaf, J., Ryan, P.Y.A., Buchmann, J.A.:
Prêt à voter providing everlasting privacy. In: Heather, J., Schneider, S.A.,
Teague, V. (eds.) E-Voting and Identity - 4th International Conference, Vote-
ID 2013, Guildford, UK, July 17-19, 2013. Proceedings. Lecture Notes in Com-
puter Science, vol. 7985, pp. 156–175. Springer (2013)

[49] Diffie, W., Hellman, M.E.: New directions in cryptography. In: IEEE Trans-
actions on Information Theory. vol. 22, pp. 644–654. IEEE (1976)

[50] Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: Proceedings
of the Twenty-third Annual ACM Symposium on Theory of Computing. pp.
542–552. STOC ’91, ACM, New York, NY, USA (1991)

[51] ElGamal, T.: A public key cryptosystem and a signature scheme based on
discrete logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO. Lecture
Notes in Computer Science, vol. 196, pp. 10–18. Springer (1984)

[52] Escala, A., Guasch, S., Herranz, J., Morillo, P.: Universal cast-as-intended
verifiability. To be published.

[53] Federal Voting Assistance Program: The Uniformed and Overseas Citizens
Absentee Voting Act. Available at http://www.fvap.gov/info/laws/uocava

[54] Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols.
In: Proceedings of the Twenty-second Annual ACM Symposium on Theory of
Computing. pp. 416–426. STOC ’90, ACM, New York, NY, USA (1990)

[55] Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identifi-
cation and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO. Lecture
Notes in Computer Science, vol. 263, pp. 186–194. Springer (1986)

http://www.cs.au.dk/~ivan/Sigma.pdf
http://www.cs.au.dk/~ivan/Sigma.pdf
http://www.fvap.gov/info/laws/uocava

158 BIBLIOGRAPHY

[56] Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for
large scale elections. In: Seberry, J., Zheng, Y. (eds.) Advances in Cryptology
- AUSCRYPT ’92, Workshop on the Theory and Application of Cryptographic
Techniques, Gold Coast, Queensland, Australia, December 13-16, 1992, Pro-
ceedings. Lecture Notes in Computer Science, vol. 718, pp. 244–251. Springer
(1992)

[57] Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure
under the RSA assumption. In: Journal of Cryptology. vol. 17, pp. 81–104
(2004)

[58] Gerlach, J., Gasser, U.: Three case studies from Switzerland: E-voting. Berk-
man Center Research Publication No. 2009-03.1 (2009)

[59] Gharadaghy, R., Volkamer, M.: Verifiability in electronic voting - explana-
tions for non security experts. In: 4th International Conference on Electronic
Voting: Verifying the Vote, EVOTE 2010, Lochau / Bregenz, Austria, July
21 - 24, 2010. pp. 151–162 (2010)

[60] Gjøsteen, K.: Analysis of an internet voting protocol. IACR Cryptology ePrint
Archive, Report 2010/380 (2010)

[61] Gjøsteen, K.: The Norwegian internet voting protocol. IACR Cryptology
ePrint Archive, Report 2013/473 (2013)

[62] Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental
poker keeping secret all partial information. In: Proceedings of the fourteenth
annual ACM symposium on Theory of computing. pp. 365–377. ACM (1982)

[63] Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of computer and
system sciences 28(2), 270–299 (1984)

[64] Grewal, G.S., Ryan, M.D., Chen, L., Clarkson, M.R.: Du-vote: Remote elec-
tronic voting with untrusted computers. In: Fournet, C., Hicks, M.W., Viganò,
L. (eds.) IEEE 28th Computer Security Foundations Symposium, CSF 2015,
Verona, Italy, 13-17 July, 2015. pp. 155–169. IEEE (2015)

[65] Groth, J.: Extracting witnesses from proofs of knowledge in the random oracle
model. BRICS Report Series. RS-01-52 (2001)

[66] Heiberg, S., Lipmaa, H., van Laenen, F.: On e-vote integrity in the case of ma-
licious voter computers. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.)
Computer Security - ESORICS 2010, 15th European Symposium on Research
in Computer Security, Athens, Greece, September 20-22, 2010. Proceedings.
Lecture Notes in Computer Science, vol. 6345, pp. 373–388. Springer (2010)

[67] Heiberg, S., Willemson, J.: Verifiable internet voting in Estonia. In: Krimmer,
R., Volkamer, M. (eds.) 6th International Conference on Electronic Voting:
Verifying the Vote, EVOTE 2014, Lochau / Bregenz, Austria, October 29-31,
2014. pp. 1–8. IEEE (2014)

BIBLIOGRAPHY 159

[68] Ian Brightwell, Jordi Cucurull, D.G., Guasch, S.: An overview of the iV-
ote 2015 voting system. Available at https://www.elections.nsw.gov.au/

about_us/plans_and_reports/ivote_reports (2015)

[69] IETF: PKCS#12: Personal information exchange syntax v1.1. Available at
https://tools.ietf.org/html/rfc7292

[70] IETF: PKCS#5: Password-based cryptography specification version 2.0.
Available at https://tools.ietf.org/html/rfc2898

[71] International Organization for Standardization: ISO/IEC 18033-2. Informa-
tion technology – Security techniques – Encryption algorithms – Part 2: Asym-
metric Ciphers (2006)

[72] Jakobsson, M., Juels, A.: Mix and match: Secure function evaluation via
ciphertexts. In: Okamoto, T. (ed.) Advances in Cryptology - ASIACRYPT
2000, 6th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Kyoto, Japan, December 3-7, 2000, Proceedings.
Lecture Notes in Computer Science, vol. 1976, pp. 162–177. Springer (2000)

[73] Jakobsson, M., Juels, A., Rivest, R.L.: Making mix nets robust for electronic
voting by randomized partial checking. In: Proceedings of the 11th USENIX
Security Symposium. pp. 339–353. USENIX Association, Berkeley, CA, USA
(2002)

[74] Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U.M. (ed.) Advances in Cryptology - EUROCRYPT
’96, International Conference on the Theory and Application of Cryptographic
Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding. Lecture Notes in
Computer Science, vol. 1070, pp. 143–154. Springer (1996)

[75] Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections.
In: Atluri, V., di Vimercati, S.D.C., Dingledine, R. (eds.) Proceedings of
the 2005 ACM Workshop on Privacy in the Electronic Society, WPES 2005,
Alexandria, VA, USA, November 7, 2005. pp. 61–70. ACM (2005)

[76] Krawczyk, H., Rabin, T.: Chameleon hashing and signatures. IACR Cryptol-
ogy ePrint Archive, Report 1998/010 (1998)

[77] Lipmaa, H.: A simple cast-as-intended e-voting protocol by using secure smart
cards. Cryptology ePrint Archive, Report 2014/348 (2014)

[78] Malkhi, D., Margo, O., Pavlov, E.: E-voting without ‘cryptography’. In:
Blaze, M. (ed.) Financial Cryptography, Lecture Notes in Computer Science,
vol. 2357, pp. 1–15. Springer Berlin Heidelberg (2003)

[79] de Marneffe, O., Pereira, O., Quisquater, J.: Electing a university president
using open-audit voting: Analysis of real-world use of Helios. In: Jefferson,
D., Hall, J.L., Moran, T. (eds.) 2009 Electronic Voting Technology Workshop
/ Workshop on Trustworthy Elections, EVT/WOTE ’09, Montreal, Canada,
August 10-11, 2009. USENIX Association (2009)

https://www.elections.nsw.gov.au/about_us/plans_and_reports/ivote_reports
https://www.elections.nsw.gov.au/about_us/plans_and_reports/ivote_reports
https://tools.ietf.org/html/rfc7292
https://tools.ietf.org/html/rfc2898

160 BIBLIOGRAPHY

[80] Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlast-
ing privacy. In: Dwork, C. (ed.) Advances in Cryptology - CRYPTO 2006,
26th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 20-24, 2006, Proceedings. Lecture Notes in Computer Science,
vol. 4117, pp. 373–392. Springer (2006)

[81] Naor, M., Yung, M.: Public-key cryptosystems provably secure against cho-
sen ciphertext attacks. In: Proceedings of the twenty-second annual ACM
symposium on Theory of computing. pp. 427–437. ACM (1990)

[82] National Institute of Standards and Technology: FIPS-46-3. Data Encryption
Standard (DES) (archived) (1999)

[83] National Institute of Standards and Technology: FIPS-197. Advanced Encryp-
tion Standard (AES) (2001)

[84] National Institute of Standards and Technology: SP800-38a. Recommendation
for block cipher modes of operation – Modes and techniques (2001)

[85] National Institute of Standards and Technology: SP800-38D. Recommenda-
tion for block cipher modes of operation: Galois/Counter Mode (GCM) and
GMAC (2007)

[86] National Institute of Standards and Technology: SP800-67-Rev1. Recommen-
dation for the Triple Data Encryption Algorithm (TDEA) Block Cipher (2012)

[87] Neuchâtel: Guichet Unique citizen portal. Available at https://www.

guichetunique.ch/

[88] Neumann, S., Feier, C., Sahin, P., Fach, S.: Pretty understandable democracy
2.0. IACR Cryptology ePrint Archive, Report 2014/625 (2014)

[89] Olembo, M.M., Schmidt, P., Volkamer, M.: Introducing verifiability in the
POLYAS remote electronic voting system. In: Sixth International Conference
on Availability, Reliability and Security, ARES 2011, Vienna, Austria, August
22-26, 2011. pp. 127–134. IEEE Computer Society (2011)

[90] Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) Advances in Cryptology — EUROCRYPT ’99,
Lecture Notes in Computer Science, vol. 1592, pp. 223–238. Springer Berlin
Heidelberg (1999)

[91] Pedersen, T.: A threshold cryptosystem without a trusted party. In: Davies,
D. (ed.) Advances in Cryptology — EUROCRYPT ’91, Lecture Notes in Com-
puter Science, vol. 547, pp. 522–526. Springer Berlin Heidelberg (1991)

[92] Pedersen, T.: Non-interactive and information-theoretic secure verifiable se-
cret sharing. In: Feigenbaum, J. (ed.) Advances in Cryptology — CRYPTO
’91, Lecture Notes in Computer Science, vol. 576, pp. 129–140. Springer Berlin
Heidelberg (1992)

https://www.guichetunique.ch/
https://www.guichetunique.ch/

BIBLIOGRAPHY 161

[93] Peng, K.: A hybrid e-voting scheme. In: Bao, F., Li, H., Wang, G. (eds.)
Information Security Practice and Experience, 5th International Conference,
ISPEC 2009, Xi’an, China, April 13-15, 2009, Proceedings. Lecture Notes in
Computer Science, vol. 5451, pp. 195–206. Springer (2009)

[94] Peng, K., Bao, F.: Efficient multiplicative homomorphic e-voting. In:
Burmester, M., Tsudik, G., Magliveras, S.S., Ilic, I. (eds.) Information Secu-
rity - 13th International Conference, ISC 2010, Boca Raton, FL, USA, October
25-28, 2010, Revised Selected Papers. Lecture Notes in Computer Science, vol.
6531, pp. 381–393. Springer (2010)

[95] Pinault, T., Courtade, P.: E-voting at expatriates’ MPs elections in France.
In: 5th International Conference on Electronic Voting, EVOTE 2012, Lochau
/ Bregenz, Austria, July 11-14, 2012. pp. 189–195 (2012)

[96] Popoveniuc, S., Hosp, B.: An introduction to PunchScan. In: Chaum, D.,
Jakobsson, M., Rivest, R., Ryan, P., Benaloh, J., Kutylowski, M., Adida, B.
(eds.) Towards Trustworthy Elections, Lecture Notes in Computer Science,
vol. 6000, pp. 242–259. Springer Berlin Heidelberg (2010)

[97] Popoveniuc, S., Stanton, J.: Undervote and pattern voting: Vulnerability and
a mitigation technique. In: In Preproceedings of the 2007 IAVoSS Workshop
on Trustworthy Elections (WOTE 2007). Citeseer (2007)

[98] Provos, N., Mazières, D.: A future-adaptive password scheme. In: Proceedings
of the USENIX Annual Technical Conference. pp. 32–32. ATEC ’99, USENIX
Association, Berkeley, CA, USA (1999)

[99] Puiggaĺı, J., Guasch, S.: Universally verifiable efficient re-encryption mixnet.
In: 4th International Conference on Electronic Voting: Verifying the Vote,
EVOTE 2010, Lochau / Bregenz, Austria, July 21 - 24, 2010. pp. 241–254
(2010)

[100] Puiggaĺı, J., Guasch, S.: Internet voting system with cast as intended verifica-
tion. In: Kiayias, A., Lipmaa, H. (eds.) VOTE-ID. Lecture Notes in Computer
Science, vol. 7187, pp. 36–52. Springer (2011)

[101] Puiggaĺı, J., Guasch, S.: Cast-as-intended verification in Norway. In: 5th In-
ternational Conference on Electronic Voting, EVOTE 2012, Lochau / Bregenz,
Austria, July 11-14, 2012. pp. 49–63 (2012)

[102] Rackoff, C., Simon, D.: Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. In: Feigenbaum, J. (ed.) Advances in Cryptology
— CRYPTO ’91, Lecture Notes in Computer Science, vol. 576, pp. 433–444.
Springer Berlin Heidelberg (1992)

[103] Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signa-
tures and public-key cryptosystems. In: Communications of the ACM. vol. 21,
pp. 120–126. ACM (1978)

162 BIBLIOGRAPHY

[104] RSA Laboratories: PKCS#1: RSA cryptography standard version 2.1 (2002)

[105] RSA Laboratories: What is a blind signature scheme? Available at
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/

what-is-a-blind-signature-scheme.htm (2002)

[106] Ryan, P.Y.A.: A variant of the Chaum voter-verifiable scheme. In: Meadows,
C. (ed.) Proceedings of the POPL 2005 Workshop on Issues in the Theory of
Security, WITS 2005, Long Beach, California, USA, January 10-11, 2005. pp.
81–88. ACM (2005)

[107] Ryan, P.Y.A.: Prêt à voter with Paillier encryption. In: Mathematical and
Computer Modelling. vol. 48, pp. 1646–1662. Elsevier Science Publishers B.
V. (2008)

[108] Ryan, P.Y.A., Schneider, S.A.: Prêt à voter with re-encryption mixes. In:
Gollmann, D., Meier, J., Sabelfeld, A. (eds.) Computer Security - ESORICS
2006, 11th European Symposium on Research in Computer Security, Ham-
burg, Germany, September 18-20, 2006, Proceedings. Lecture Notes in Com-
puter Science, vol. 4189, pp. 313–326. Springer (2006)

[109] Ryan, P.Y.A., Teague, V.: Pretty good democracy. In: Christianson, B., Mal-
colm, J.A., Matyas, V., Roe, M. (eds.) Security Protocols XVII, 17th Interna-
tional Workshop, Cambridge, UK, April 1-3, 2009. Revised Selected Papers.
Lecture Notes in Computer Science, vol. 7028, pp. 111–130. Springer (2009)

[110] Sako, K., Kilian, J.: Receipt-free mix-type voting scheme - a practical solution
to the implementation of a voting booth. In: Guillou, L.C., Quisquater, J.J.
(eds.) EUROCRYPT. Lecture Notes in Computer Science, vol. 921, pp. 393–
403. Springer (1995)

[111] Sandler, D., Derr, K., Wallach, D.S.: Votebox: A tamper-evident, verifiable
electronic voting system. In: Proceedings of the 17th USENIX Security Sym-
posium, July 28-August 1, 2008, San Jose, CA, USA. pp. 349–364 (2008)

[112] Sandler, D., Wallach, D.S.: Casting votes in the auditorium. In: Martinez, R.,
Wagner, D. (eds.) 2007 USENIX/ACCURATE Electronic Voting Technology
Workshop, EVT’07, Boston, MA, USA, August 6, 2007. USENIX Association
(2007)

[113] Santis, A.D., Persiano, G.: Zero-knowledge proofs of knowledge without in-
teraction (extended abstract). In: 33rd Annual Symposium on Foundations
of Computer Science, FOCS, Pittsburgh, Pennsylvania, USA, 24-27 October
1992. pp. 427–436. IEEE Computer Society (1992)

[114] Schnorr, C.: Efficient identification and signatures for smart cards. In: Bras-
sard, G. (ed.) Advances in Cryptology - CRYPTO ’89, 9th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 20-24,
1989, Proceedings. Lecture Notes in Computer Science, vol. 435, pp. 239–252.
Springer (1989)

http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/what-is-a-blind-signature-scheme.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/what-is-a-blind-signature-scheme.htm

BIBLIOGRAPHY 163

[115] Shoup, V.: A proposal for an ISO standard for public key encryption. IACR
Cryptology ePrint Archive, Report 2001/112 (2001)

[116] Smyth, B., Frink, S., Clarkson, M.R.: Computational election verifiabil-
ity: Definitions and an analysis of Helios and JCJ. IACR Cryptology ePrint
Archive, Report 2015/233 (2015)

[117] Stark, P., Lindeman, M.: A gentle introduction to risk-limiting audits. In:
IEEE Security and Privacy. vol. 10, pp. 42–49. IEEE (Sep 2012)

[118] Storer, T.W.: Practical pollsterless remote electronic voting. PhD Thesis. Uni-
versity of St Andrews (2007)

[119] Swiss Federal Chancellery: Explications relatives à l’ordonnance de la Chan-
cellerie Fédérale sur le vote électronique (OVotE). Available at http://www.

bk.admin.ch/themen/pore/evoting/07979 (2013)

[120] W3C: HTML5 specification. Available at http://www.w3.org/TR/html5/

[121] Wikström, D.: A commitment-consistent proof of a shuffle. IACR Cryptology
ePrint Archive, Report 2011/168 (2011)

[122] Zagórski, F., Carback, R., Chaum, D., Clark, J., Essex, A., Vora, P.L.: Re-
motegrity: Design and use of an end-to-end verifiable remote voting system.
In: Jr., M.J.J., Locasto, M.E., Mohassel, P., Safavi-Naini, R. (eds.) Applied
Cryptography and Network Security - 11th International Conference, ACNS
2013, Banff, AB, Canada, June 25-28, 2013. Proceedings. Lecture Notes in
Computer Science, vol. 7954, pp. 441–457. Springer (2013)

[123] Zetter, K.: Diebold hack hints at wider flaws. Wired Magazine. Available
at http://archive.wired.com/politics/security/news/2005/12/69893

(2005)

http://www.bk.admin.ch/themen/pore/evoting/07979
http://www.bk.admin.ch/themen/pore/evoting/07979
http://www.w3.org/TR/html5/
http://archive.wired.com/politics/security/news/2005/12/69893

	Acknowledgements
	Preface
	Introduction
	Requirements of electronic voting
	Electronic voting basics
	Basic approach
	Pollsterless or code voting
	Two agencies model
	Homomorphic tally systems
	Mixnet-based systems

	Cryptography introduction
	Symmetric key encryption schemes
	Public key encryption schemes
	Security notions for encryption schemes
	Homomorphic public key cryptosystems
	Signature schemes
	-protocols and proof schemes

	Motivation, organization and contributions of this work
	Motivation
	Organization and contributions

	Individual verifiability
	Introduction
	Challenge-or-cast
	Verifiable Optical Scanning
	Verification with codes
	Code voting
	Return Codes

	Hardware-based verification
	Decryption-based verification

	Electronic Voting Model
	Introduction
	Protocol Syntax
	Security Definitions
	Trust model
	Ballot privacy
	Strong Consistency
	Strong Correctness
	Cast-as-Intended verifiability
	Coercion-resistant cast-as-intended

	Return Codes with Single Voting: Neuchâtel's Scheme
	Introduction
	Improving the Norwegian solution
	Solution Overview

	Confirmation Phase
	Protocol description
	Workflow

	Security of the Protocol
	Ballot Privacy
	Strong Consistency
	Strong Correctness
	Cast-as-Intended Verifiability
	Coercion-resistant cast-as-intended

	Protocol implementation
	Performance

	Authentication, usability and correctness: implementation details
	Authentication and private keys provision
	Short Return Codes
	Vote correctness
	Ballot Box vs Bulletin Board

	Protocol extensions
	Supporting multiple entry points
	Distributed return code generation
	Support for multiple voting
	Assignation of verification cards

	Challenge-and-cast
	Introduction
	Overview
	Related work
	Proof simulation
	A simulatable NIZK proof using chameleon hashes
	Simulatable NIZKPK scheme properties

	Core Protocol using Mixnets
	Security of the Protocol
	Concrete instantiation
	Performance

	Protocol for homomorphic tally-based systems
	Security Analysis
	Primitives

	Multiple Trustees
	Voting Scheme
	Protocol extension for multiple voting

	Making Cast-as-Intended Universal
	Introduction
	Motivation
	UCIV System description
	Overview
	Syntactical definition
	Security definitions

	Protocol based on NIZK proofs
	Protocol description
	Security analysis
	Implementation

	UCIV with return codes
	Overview of the solution
	Protocol description
	Security Analysis
	Implementation
	Extension to multiple voting

	Distributed generation of UCIV information
	Setup

	Conclusions

