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Memòria presentada per optar al t́ıtol de doctor per la Universitat de Girona



ii



iii



iv



Abstract

There exists a wide range of techniques to solve Constraint Satisfaction Problems (CSP).
Recently reformulation into other formalisms with specific solvers like propositional satisfi-
ability (SAT), mixed linear integer programming (MILP), etc., has shown to be effective.
In this thesis we focus on reformulate CSPs into SAT Modulo Theories (SMT). SMT is an
extension of SAT where the literals appearing in the formulas are not restricted to contain
only propositional variables, instead they can have predicates from other theories, e.g., linear
integer arithmetic.

We present two systems developed to reformulate CSPs into SMT. The first one, called
fzn2smt, reads instances written in FLATZINC, a low-level language resulting from the re-
formulation from MINIZINC. These FLATZINC instances are reformulated into SMT instances
which then are solved using an external SMT solver. Some CSPs also require to optimize
an objective function, known as constraint optimization problems (COP). Since most SMT
solvers do not support optimization, fzn2smt provides three algorithms for solving COPs: a
linear search, a binary search and an hybrid search, which is a combination of the binary and
the linear searches. We have used fzn2smt to find which SMT solver is the best one solving
a set of MINIZINC problems, that is Yices 2. With the same set of problems, we show that
fzn2smt using Yices 2 is competitive with several FLATZINC solvers. Finally we study the
relation between the Boolean structure of the SMT instances and the performance of fzn2smt
compared with the FLATZINC solvers.

The second system presented is called WSimply. It reads CSP, COP and weighted CSP
(WCSP) instances written in its own high-level declarative language. In WSimply language
the user can post soft constraints intensionally and, in addition, the user can also impose
meta-constraints over them. Although in the initial version of WSimply the input instances
were only reformulated into SMT, we extended it to allow the user to also reformulate them
into pseudo-Boolean (PB) and linear programming (LP) formats. By default WSimply uses
the Yices 1 SMT solver through API. This allows us to implement incremental algorithms
for solving COPs and WCSPs, either by using a binary search over the objective function
or by reformulating the problem into a weighted SMT instance. WSMT instances can be
solved using the Yices default algorithm (which is a non-exact algorithm) or using our SMT
version of the weighted MaxSAT algorithm WPM1. We show some experimental results of
the usefulness of the meta-constraints, for instance, guaranteeing the fairness on the soft
constraint violations. We also show some performance comparisons between the WSimply

solving methods using SMT and PB.

We also present an incremental optimization algorithm based on using Binary Decision
Diagrams (BDD) for WCSPs. The idea is to bound the WCSP objective function using SAT
clauses instead of using an arithmetic expression. These SAT clauses are generated from a
shared BDD, which allows the optimization algorithm to maintain a compact representation of
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all tested bounds. We show that the performance of this new method outperforms the previous
WSimply SMT methods. We also show that this new method is competitive with state-of-the-
art COP, WCSP and LP solvers. We also generalize the method to use Multivalued Decision
Diagrams (MDD) for representing linear integer arithmetic objective functions, and an special
type of objective functions where we can use a weighted MDD (WMDD). We present some
results on the performance of the new WMDD method on solving the nurse rostering problem.

We also show that SMT solvers are competitive with state-of-the-art solving methods
for the scheduling problem of Resource Constrained Project Scheduling Problem (RCPSP).
We also show the usefulness of WSimply when encoding problems with soft constraints and
meta constraints. In particular, this is done with the Business-to-business (B2B) meetings
scheduling problem, where apart from obtaining a very competitive results we also provide
an elegant and natural encoding.

Finally, we report and analyse some anomalous behaviours of SMT solvers found when
modelling finite domains and solving the Pedigree Reconstruction Problem (PRP).



Resum

Existeix una gran varietat de tècniques per a resoldre problemes de satisfacció de restriccions
(CSP). Recentment s’ha demostrat que una manera efectiva de fer-ho és reformulant a altres
formalismes amb resoledors espećıfics com satisfactibilitat de lògica proposicional (SAT), pro-
gramació entera lineal mixta (MILP), etc. En aquesta tesi ens centrem en la reformulació de
CSPs a SAT Mòdul Teories (SMT). SMT és una extensió de SAT on els literals que apareixen
a la fórmula no estan limitats a contenir només variables Booleanes, sinó que poden tenir-hi
predicats d’altres teories, e.g., aritmètica lineal entera.

Presentem dos sistemes desenvolupats per reformular CSPs a SMT. El primer, anomenat
fzn2smt, llegeix instàncies escrites en FLATZINC, que és un llenguatge de baix nivell resultant
de la reformulació des de MINIZINC. Aquestes instàncies FLATZINC es reformulen a instàncies
SMT que són resoltes posteriorment per un resoledor SMT extern. Alguns CSPs també
tenen una funció objectiu que s’ha d’optimitzar, es coneixen com problemes d’optimització
de restriccions (COP). Donat que molts resoledors SMT no suporten optimització, fzn2smt
disposa de tres algorismes per resoldre COPs: un de cerca lineal, un de cerca binària i un
de cerca h́ıbrida, que és la combinació de les dues anteriors. Hem utilitzat fzn2smt per a
trobar quin és el millor resoledor SMT al resoldre un conjunt de problemes de MINIZINC, que
ha resultat ser el Yices 2. Amb el mateix conjunt de problemes, mostrem que fzn2smt amb
Yices 2 és competitiu respecte a altres resoledors de FLATZINC. Finalment hem estudiat la
relació entre l’estructura Booleana de les instàncies SMT i l’eficiència de fzn2smt comparada
amb els resoledors de FLATZINC.

El segon sistema que presentem es diu WSimply. Aquest, llegeix instàncies CSP, COP
i CSP amb pesos (WCSP) escrites en el seu propi llenguatge declaratiu d’alt nivell. En
el llenguatge de WSimply l’usuari pot imposar restriccions toves intencionalment i, a més a
més, també pot imposar meta restriccions sobre aquestes. Encara que en la versió inicial de
WSimply les instàncies d’entrada només es refomulaven a SMT, l’hem estès perquè també per-
meti a l’usuari reformular-les als formats pseudo-Booleà (PB) i de programació lineal (LP).
Per defecte WSimply utilitza el resoledor SMT Yices 1 mitjançant API. Això ens permet im-
plementar algorismes incrementals per resoldre COPs i WCSPs, utilitzant, o bé una cerca
binària sobre la funció objectiu, o bé reformulant el problema a una instància SMT amb pe-
sos. Les instàncies SMT amb pesos es poden resoldre mitjançant l’algorisme per defecte de
Yices (que és un algorisme no exacte) o utilitzant la nostra versió per a SMT de l’algorisme
WPM1 procedent de MaxSAT. En els resultats exprimentals mostrem la utilitat de les meta
restriccions, per exemple, garantint una violació justa de les restriccions toves. També real-
itzem diverses comparacions d’eficiència entre els diversos mètodes de resolució de WSimply

utilizant SMT i PB.

A més a més, presentem un algorisme d’optimització incremental basat en utilitzar di-
agrames de decisió binaris (BDD) per a resoldre WCSPs. Es tracta d’acotar la funció ob-
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jectiu del WCSP utilitzant clàusules Booleanes enlloc d’una expressió aritmètica. Aquestes
clàusules Booleanes les generarem a partir d’un BDD compartit, que permet mantenir a
l’algorisme d’optimització una codificació compacta de tots els acotaments provats. Mostrem
que l’eficiència d’aquest nou mètode supera clarament la dels anteriors mètodes de WSimply

utilitzant SMT. També mostrem que el nou mètode és competitiu amb els resoledors COP,
WCSP i LP estat de l’art. Després generalitzem el mètode per utilitzar diagrames de de-
cisió multivaluats (MDD) per representar funcions objectiu d’aritmètica lineal entera, i un
cas especial de funcions objectiu on podem utilitzar MDDs amb pesos (WMDD). Presentem
resultats sobre l’eficiència del nou mètode WMDD per a resoldre el problema de programació
d’horaris d’infermeres.

Per altra banda, demostrem que els resoledors SMT són competitius amb els mètodes
de resolució estat de l’art del Problema del Projecte de Programació amb Recursos Limitats
(RCPSP). També mostrem la utilitat de WSimply per codificar problemes amb restriccions
toves i meta restriccions. En particular, ho fem amb el problema de programació de trobades
Business-to-business (B2B), on apart d’obtenir resultats molt competitius també donem una
codificació elegant i natural.

Finalment, analitzem algunes anomalies en el comportament dels resoledors SMT trobades
al modelar dominis finits i al resoldre el problema de reconstrucció d’arbres genealògics (PRP).



Resumen

Existe una gran variedad de técnicas para resolver problemas de satisfacción de restricciones
(CSP). Recientemente se ha demostrado que una manera efectiva de hacerlo es reformulando a
otros formalismos con solucionadores espećıficos como satisfacibilidad de lógica proposicional
(SAT), programación entera lineal mixta (MILP), etc. En esta tesis nos centramos en la
reformulación de CSPs a SAT Módulo Teoŕıas (SMT). SMT es una extensión de SAT donde
los literales que aparecen en la fórmula no están limitados a contener solo variables Booleanas,
sino que pueden tener predicados de otras teoŕıas, e.g., aritmética lineal entera.

Presentamos dos sistemas desarrollados para reformular CSPs a SMT. El primero, llamado
fzn2smt, lee instancias escritas en FLATZINC, que es un lenguaje de bajo nivel resultante de
la reformulación desde MINIZINC. Estas instancias FLATZINC se reformulan en instancias SMT
que son resueltas posteriormente por un solucionador SMT externo. Algunos CSPs también
tienen una función objetivo que optimizar, se conocen como problemas de optimización de re-
stricciones (COP). Dado que muchos solucionadores SMT no soportan optimización, fzn2smt
dispone de tres algoritmos parar resolver COPs: uno de búsqueda lineal, uno de búsqueda
binaria y uno de búsqueda h́ıbrida, que es la combinación de las dos anteriores. Hemos uti-
lizado fzn2smt para encontrar cual es el mejor solucionador SMT al resolver un conjunto de
problemas de MINIZINC, que ha resultado ser el Yices 2. Con el mismo conjunto de prob-
lemas, mostramos que fzn2smt con Yices 2 es competitivo respecto a otros solucionadores
de FLATZINC. Finalmente hemos estudiado la relación entre la estructura Booleana de las
instancias SMT y la eficiencia de fzn2smt comparada con los otros solucionadores FLATZINC.

El segundo sistema que presentamos se llama WSimply. Este, lee instancias CSP, COP y
CSP con pesos (WCSP) en su propio lenguaje declarativo de alto nivel. En el lenguaje de
WSimply el usuario puede imponer restricciones blandas intencionalmente y, además, también
puede imponer meta restricciones sobre estas. Aunque en la versión inicial de WSimply las
instancias de entrada sólo se reformulaban a SMT, lo hemos extendido para que también
permita al usuario reformularlas a los formatos pseudo-Booleano (PB) y de programación
lineal (LP). Por defecto WSimply utiliza el solucionador SMT Yices 1 a través de API. Esto nos
ha permitido implementar algoritmos incrementales para resolver COPs y WCSPs, utilizando,
o bién una búsqueda binaria sobre la función objetivo, o bién reformulando el problema en
una instancia SMT con pesos. Las instancias SMT con pesos se pueden resolver mediante el
algoritmo por defecto de Yices (que es un algoritmo no exacto) o utilizando nuestra versión
para SMT de el algoritmo WPM1 procedente de MaxSAT. En los resultados experimentales
mostramos la utilidad de las meta restricciones, por ejemplo, garantizando una violación justa
de las restricciones blandas. También realizamos varias comparaciones de eficiencia entre los
diversos métodos de resolución de WSimply utilizando SMT y PB.

Además presentamos un algoritmo de optimización incremental basado en utilizar dia-
gramas de decisión binarios (BDD) para solucionar WCSPs. Se trata de limitar la función
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objetivo del WCSP utilizando cláusulas Booleanas en lugar de una expresión aritmética.
Estas cláusulas Booleanas las generaremos a partir de un BDD compartido, que permite
mantener al algoritmo de optimización una codificación compacta de todos los ĺımites testea-
dos. Mostramos que la eficiencia de este nuevo método supera claramente a los métodos
previos de WSimply utilizando SMT. También mostramos que el nuevo método es competitivo
con los solucionadores COP, WCSP y LP estado del arte. Luego generalizamos el método
para utilizar diagramas de decisión multivaluados (MDD) para representar funciones objetivo
de aritmética lineal entera, y un caso especial de funciones objetivo dónde podemos utilizar
MDDs con pesos (WMDD). Presentamos resultados sobre la eficiencia del nuevo método
WMDD para resolver el problema de programación de horarios de enfermeras.

Por otra parte demostramos que los solucionadores SMT son competitivos con los métodos
de resolución estado del arte del Problema del Proyecto de Programación con Recursos Lim-
itados (RCPSP). También mostramos la utilidad de WSimply para codificar problemas de
restricciones blandas y meta restricciones. En particular, lo hacemos con el problema de
programación de encuentros Business-to-business (B2B), donde aparte de obtener resultados
muy competitivos también damos una codificación elegante y natural.

Finalmente, analizamos algunas anomaĺıas en el comportamiento de los solucionadores
SMT encontradas modelando dominios finitos y resolviendo el problema de reconstrucción de
árboles genealógicos (PRP).
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Chapter 1

Introduction

1.1 Motivation

In our everyday life we deal with problems that are easy to understand, but finding a solu-
tion for them can be really hard. This is because the number of combinations of values of
their variables grows exponentially with respect to the problem size. This kind of problems
are known as combinatorial problems, and a few examples, among others, are timetabling
problems, sport scheduling problems or solving puzzles like Sudoku.

In general, these problems can be represented as Constraint Satisfaction Problems (CSP),
where the problem is defined by a set of constraints. There exists a wide range of techniques
for dealing with CSPs, such as modelling the problem using a high-level CSP language, like
MINIZINC, for which there exist several constraint solvers, or modelling the problem as a
propositional satisfiability formula and solve this formula using a SAT solver, or even directly
implementing an ad-hoc program to solve the problem using a common programming language
like C, C++, Java, etc.

During the last two decades there have been big improvements and extensions in SAT
solvers, making them very competitive tools for solving CSPs. In this thesis we focus on one of
these extensions: a generalization of the formulas where instead of having only propositional
variables they also can have predicates from other theories, e.g., linear integer arithmetic.
This generalization is known as SAT Modulo Theories (SMT) and has become a completely
new field of research.

Some papers have shown that SMT technology can be competitive for solving certain
combinatorial problems (see, e.g., [NO06] for an application of an SMT solver on the Celar
optimization problem, being competitive with the best weighted CSP solver with its best
heuristic on that problem). In this thesis we want to go one step further showing that SMT
solvers can be competitive for generic CSP solving.

1.2 Objectives

• The first objective of this thesis is to develop a competitive tool using SMT technology
to solve CSPs (note that, at the begining of this thesis, none of the existing CSP
languages has a tool that translates into SMT). The first step to achieve this objective

1



2 CHAPTER 1. INTRODUCTION

is to decide between using an existing high-level CSP language or designing a new one.
Since we are interested in having a complete control on the language construction and
their reformulation we will define a new language. The next step will be to implement a
compiler that reads instances written in the new CSP language and reformulates them
into SMT instances to be solved using an SMT solver. Finally, we also want to solve
Constraint Optimization Problems (COP), because it is quite common to find CSPs
where we have to optimize an objective function. But since SMT solvers are only decision
procedures, we will need to implement at least a solving module for optimization, for
instance by iteratively calling the SMT solver with successively tighter bounds.

• The second objective of this thesis consists in extending the system to deal with weighted
CSPs (WCSP). Although WCSPs can be easily translated into COPs, in our case SMT
optimization problems, we think that we can take more profit of the problem structure
adapting Weighted MaxSAT algorithms. Therefore, first of all we need to extend the
language of our new system to represent intentional weighted constraints, second we
need to extend the system to allow to translate the WCSPs into COPs or Weighted
MaxSMT instances (WSMT), and finally we need to extend the solving module to deal
with WSMT, either by using one of the few SMT solvers which supports WSMT or
implementing WSMT algorithms based on weigthed MaxSAT algorithms.

• Another objective of the thesis is the addition of meta-constraints (i.e. constraints
over constraints) in the language, in order to allow the modelling of complex rules on
violations, that are often present in real-life overconstrained problems, such as fairness,
degree of violation, etc.

Note that the creation of new theories for SMT in the context of Constraint Programming,
as well as performing optimization of the objective function “inside” the SMT solver, is out
of the scope of this thesis.

1.3 Publications

The publications arising from this thesis are the following:

• Journals

– Carlos Ansótegui, Miquel Bofill, Miquel Palah́ı, Josep Suy, and Mateu Villaret,
Solving Weighted CSPs with Meta-Constraints by Reformulation into Satisfiability
Modulo Theories. Constraints journal, vol. 18, number 2, pages 236-268, 2013.

– Miquel Bofill, Miquel Palah́ı, Josep Suy, and Mateu Villaret, Solving constraint
satisfaction problems with SAT modulo theories. Constraints journal, vol. 17,
number 3, pages 273-303, 2012.

• Conferences

– Miquel Bofill, Joan Espasa, Marc Garcia, Miquel Palah́ı, Josep Suy and Mateu
Villaret, Scheduling B2B Meetings. Proceedings of the 20th International Con-
ference on Principles and Practice of Constraint Programming (CP 2014), Lyon,
France, pages 781–796, 2014
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– Miquel Bofill, Miquel Palah́ı, Josep Suy, and Mateu Villaret, Solving Intensional
Weighted CSPs by incremental optimization with BDDs. Proceedings of the 20th
International Conference on Principles and Practice of Constraint Programming
(CP 2014), Lyon, France, pages 207–223, 2014

– Miquel Bofill, Joan Espasa, Miquel Palah́ı and Mateu Villaret, An extension to
Simply for solving Weighted Constraint Satisfaction Problems with Pseudo-Boolean
Constraints. Proceedings of the XII Spanish Conference on Programming and
Computer Languages (PROLE), Almeŕıa, Spain, pages 141–155, 2012.

– Carlos Ansótegui, Miquel Bofill, Miquel Palah́ı, Josep Suy, and Mateu Villaret,
Satisfiability modulo theories: An efficient approach for the resource-constrained
project scheduling problem.
Ninth Symposium on Abstraction Reformulation and Approximation (SARA 2011),
Cardona, Spain, pages 2-9, AAAI, 2011.

– Miquel Bofill, Miquel Palah́ı and Mateu Villaret, A System for CSP Solving through
Satisfiability Modulo Theories. Proceedings of the IX Spanish Conference on Pro-
gramming and Computer Languages (PROLE), Donostia, Spain, pages 303–312,
2009.

• Other publications

– Alan M. Frisch and Miquel Palah́ı, Anomalies in SMT Solving: Dificulties in Mod-
elling Combinatorial Problems. Proceedings of the 13th International Workshop
on Constraint Modelling and Reformulation (ModRef), co-located with CP 2014,
Lyon, France, pages 97–110, 2014.

– Miquel Bofill, Miquel Palah́ı, Josep Suy, and Mateu Villaret, Boosting weighted
CSP resolution with BDDs. Proceedings of the CP Doctoral Program, co-located
with CP 2013, Uppsala, Sweden, pages 121–126, 2013

– Miquel Bofill, Miquel Palah́ı, Josep Suy, and Mateu Villaret, Boosting Weighted
CSP Resolution with Shared BDDs. Proceedings of the 12th International Work-
shop on Constraint Modelling and Reformulation (ModRef), co-located with CP
2013, Uppsala, Sweden, pages 57–73, 2013

– Carlos Ansótegui, Miquel Bofill, Miquel Palah́ı, Josep Suy, and Mateu Villaret, W-
MINIZINC: A Proposal for Modeling Weighted CSPs with MINIZINC. Proceedings of
the first MINIZINC workshop (MZN), co-located with CP 2011, Perugia, Italy, 2011

– Carlos Ansótegui, Miquel Bofill, Miquel Palah́ı, Josep Suy, and Mateu Villaret, A
Proposal for Solving Weighted CSPs with SMT. Proceedings of the 10th Interna-
tional Workshop on Constraint Modelling and Reformulation (ModRef), co-located
with CP 2011, Perugia, Italy, pages 5-19, 2011

– Miquel Bofill, Miquel Palah́ı, Josep Suy, and Mateu Villaret, Simply: a Compiler
from a CSP Modeling Language to the SMT-LIB Format. Proceedings of the 8th
International Workshop on Constraint Modelling and Reformulation (ModRef),
co-located with CP 2009, Lisboa, Portugal, pages 30–44, 2009.
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1.4 Outline of the Thesis

Chapters 2, 3 and 4 present the required background. In Chapter 2 we present the formal
definitions and the basic concepts required to follow this thesis. In Chapter 3 we present
different common ways to solve CSPs. Chapter 4 is devoted to SAT and SMT.

Chapters 5, 7 and 8 contain the main work of this thesis: the development of the system
to model (W)CSPs and solve them using SMT called (W)Simply, as well as the development
of the alternative fzn2smt tool. In Chapters 6, 9 and 10 we use SMT for solving specific
problems either by direct reformulation into SMT or using WSimply.

The final conclusions of this thesis are presented in Chapter 11.



Chapter 2

Definitions, Terminology and
Notation

In this chapter we introduce several relevant definitions and concepts which will be used
during this thesis (for further deailts see [BHvMW09, RBW06]).

First of all we formally define what are CSPs, i.e., the problems we want to solve, as well
as some of their variants.

Then we define propositional Satisfiability and Mixed Integer Linear Programming, two
relevant methods that have been successful in solving CSPs by reformulation. Details of CSP
reformulation into these methods are explained in Section 3.6.

Finally we define SAT modulo theories, which is the focus of this thesis.

2.1 Constraint Satisfaction Problems (CSP)

Definition 2.1.1 A constraint satisfaction problem (CSP) is defined as a triple 〈X ,D, C〉,
where X = {X1, . . . , Xn} is a set of variables, D = {D(X1), . . . , D(Xn)} is a set of domains
containing the values that each variable may take, and C = {C1, . . . , Cm} is a set of con-
straints. Each constraint Ci = 〈Si, Ri〉 is defined as a relation Ri over a subset of variables
Si = {Xi1 , . . . , Xik}, called the scope of constraint Ci. A relation Ri may be represented
intentionally, in terms of an expression that states the relationship that must hold amongst
the assignments to the variables it constrains, or it may be represented extensionally, as a
subset of the Cartesian product D(Xi1)× · · · ×D(Xik) (tuples) which represents the allowed
assignments ( good tuples) or the disallowed assignments ( no-good tuples).

Definition 2.1.2 A partial assignment v for a CSP 〈X ,D, C〉, being Y a subset of X , is a
mapping that assigns to every variable Xi ∈ Y an element v(Xi) ∈ D(Xi). The set Y is
the domain of v, denoted domain(v); when Y = X , v is simply an assignment. A (partial)
assignment v satisfies a constraint 〈{Xi1 , . . . , Xik}, Ri〉 ∈ C if and only if Ri holds under the
assignment v (when Ri is intentional) or 〈v(Xi1), . . . , v(Xik)〉 ∈ Ri (when Ri is extensional)

A solution to a CSP is an assignment such that every constraint is satisfied.

A (partial) assignment v is consistent iff satisfies all the constraints 〈Si, Ri〉 ∈ C such that
Si ⊆ domain(v). Otherwise we say that it is inconsistent or there is a conflict.

5
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Definition 2.1.3 A label (X, val) is a variable-value pair which represents the assignment
of value val to variable X.

Example 1 Consider 〈X ,D, C〉 where X = {X1, X2, X3}, D(X1) = D(X2) = D(X3) =
{1, 2, 3, 4} and C = {(X3 < X2), (X2 < X1)}. A possible solution of this CSP instance is
the assignment {(X1, 3), (X2, 2), (X3, 1)}.

2.1.1 Global constraints

One interesting property of the constraints, is that we can remove all the values of the variables
involved in one constraint that are not consistent with such constraint. For instance, given
the constraint x + 3 = y where D(x) = {1, 3, 4, 5} and D(y) = {4, 5, 8}, we can reduce the
domain of variables x and y to D(x) = {1, 5} and D(y) = {4, 8}.

In order to take advantage of this property, there exists a special type of constraints,
known as global constraints, which define a relation between a non-fixed number of variables
and, in general, are equivalent to a conjunction of simpler constraints.

For example, the alldifferent(x1, . . . , xn) constraint, specifies that the values assigned to
the variables must be pairwise distinct; which is equivalent to define a conjunction of 6=
constraints for each pair of variables.

2.1.2 Constraint Optimization

In some problems, in addition to finding a solution that satisfies all the constraints, appears
the necessity to find a good solution and, if possible, find the best solution (optimal solution).
In order to decide which solution is better, these problems have what is known as objective
function, i.e., an optimization criteria. This kind of problems are known as Constraint Opti-
mization Problem (COP). In some cases finding the optimal solution is very expensive, and
we will content ourselves with a suboptimal solution.

Definition 2.1.4 A Constraint Optimization Problem (COP) is a tuple 〈X ,D, C,O〉, where
X , D and C represent, as in the case of a CSP, the variables, domains and constraints,
respectively, and O is an objective function mapping every complete assignment to an integer
(or real) value. An optimal solution of a COP is an assignment that minimizes (or maximizes)
O and satisfies all the constraints.

2.1.3 Weighted CSP

In other cases, there are so many constraints in the problem that makes impossible to find a
solution that satisfies all the constraints. This kind of problems are known as over-constrained
problems. The most common approach to solve over-constrained problems is to relax the
problem allowing to violate (non satisfy) some of the constraints while trying to maximize
the number of satisfied constraints. This problem is known as MaxCSP and is defined as
follows:

Definition 2.1.5 The MaxCSP problem for a CSP is the problem of finding an assignment
that minimizes (maximizes) the number of violated (satisfied) constraints.
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Since not all the constraints have the same relevance in the problem there is another
formalism known as Weighted CSP (WCSP) which generalises MaxCSP, where each constraint
has an associated weight representing the violation cost of the constraint. We define WCSP
as follows:

Definition 2.1.6 A weighted CSP (WCSP) is a triple 〈X,D,C〉, where X and D are vari-
ables and domains, respectively, as in a CSP. A constraint Ci is now defined as a pair 〈Si, fi〉,
where Si = {Xi1 , . . . , Xik} is the constraint scope and fi : D(Xi1)× · · · ×D(Xik)→ N∪ {∞}
is a cost (weight) function that maps tuples to its associated weight (a natural number or
infinity). We call those constraints whose associated cost is infinity hard, otherwise soft.
The cost (weight) of a constraint Ci induced by an assignment v in which the variables of
Si = {Xi1 , . . . , Xik} takes values bi1 , . . . , bik is fi(bi1 , . . . , bik).

A solution to a WCSP is an assignment in which the sum of the costs of the constraints
is minimal.

Note that in the particular case when all penalties are equal to one, WCSP is identical to
MaxCSP.

In the literature a WCSP is also referred to as a constraint optimization problem, which
is a regular CSP whose constraints are weighted and the goal is to find a solution while min-
imizing the cost of the falsified constraints. Nevertheless, in this thesis we refer to COPs in
a operations research-like style according to Definition 2.1.4. This allows us to stress the dif-
ference between instances explicitly containing soft constraints and instances just containing
an optimization variable.

Example 2 Consider a WCSP 〈X ,D, C〉 where X = {X1, X2, X3}, D(X1) = D(X2) =
D(X3) = {1, 2, 3, 4} and C = {(X3 < X2, 2), (X2 < X1, 1), (X1 < X3, 3)}. The assign-
ment {(X1, 1), (X2, 3), (X3, 2)} is a possible solution to this WCSP. This assignment satisfies
the constraints C1 and C3, and does not satisfy the constraint C2. This assignment has cost
1, and it is the optimal solution.

It is very common to talk about extensional WCSPs, where restrictions and weights are
defined extensionally (with tuples). For instance, in [BMR+99, RL09] there is another def-
inition for (extensional) WCSP. But in this thesis we will be talking about WCSP defined
intensionally if it is not otherwise specified.

2.1.4 Meta-Constraints

In order to provide a higher level of abstraction in the modelling of over-constrained problems,
in [PRB00] several meta-constraints are proposed. By meta-constraint we refer to a constraint
on constraints, definition first introduced in [Ber93]. Meta-constraints allow us to go one step
further in the specification of the preferences on the soft constraint violations. For example, in
the well-known Nurse Rostering Problem (NRP) [BCBL04], in order to obtain “fair” solutions
with respect to the preferences of the nurses, it could be useful to impose certain homogeneity
on the amount of violation of the different sets of preference constraints of the different nurses.
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2.2 Propositional Satisfiability (SAT)

Although propositional satisfiability (SAT) is the first known NP-Complete problem, the
improvements in SAT technology during the last two decades have made it viable for CSP
solving.

Definition 2.2.1 Let P = {x1, . . . , xn} be a finite set of propositional symbols (Boolean
variables). Propositional symbols xi ∈ P may take values false or true. A literal li is a
propositional symbol xi or its negation ¬xi. The complementary of a literal l, denoted by ¬l,
is x if l = ¬x and is ¬x if l = x.

A clause (C) is a disjunction of literals l1∨ . . .∨ ln and a CNF formula φ is a conjunction
of clauses C1 ∧ · · · ∧ Cm. A clause is often presented as a set of literals, and a CNF formula
as a set of clauses.

Definition 2.2.2 The size of a clause C, denoted by |C|, is the total number of literal occur-
rences in the clause. A clause with one literal is called unit clause, a clause with two literals
is called binary clause and a clause with more than two literals is called n-ary clause. The
special case of a clause with zero literals is the empty clause and its truth valuation is always
false (in this thesis is denoted by �). The size of a CNF formula φ, denoted by |φ|, is the
sum of the sizes of all its clauses.

Definition 2.2.3 A (partial) truth assignment M is a set of literals such that {l,¬l} 6⊆ M
for any literal l and ¬l built from a set of propositional symbols of P . A literal l is true in M
if l ∈ M , it is false in M if ¬l ∈ M and it is undefined in M otherwise. M is total over P
if no literal build with the propositional symbols of P is undefined in M . A clause C is true
in M if at least one of its literals is in M (hence, the empty clause cannot be satisfied), it is
false in M if all its literals are false in M , and it is undefined in M otherwise.

Definition 2.2.4 A formula φ is satisfied by M (φ is true in M), denoted by M |= φ, if all
its clauses are true in M . In that case, M is called a model of φ. If φ has no models then it
is called unsatisfiable, otherwise is called satisfiable.

Definition 2.2.5 The Satisfiability Problem (SAT) for a CNF formula φ is the problem of
deciding if there exists a truth assignment M that satisfies all the clauses of φ.

Definition 2.2.6 If φ and φ′ are formulas, we write φ |= φ′ if φ′ is true in all models of φ.
Then we say that φ′ is entailed by φ, or is logical consequence of φ. If φ |= φ′ and φ′ |= φ,
we say that φ and φ′ are logically equivalent.

Example 3 Let us consider a CNF formula φ having three clauses c1, c2 and c3:

c1 : x1 ∨ ¬x2

c2 : x1 ∨ x3

c3 : ¬x1 ∨ x2 ∨ x3

Under the partial truth assignment {¬x1,¬x2}, clauses c1 and c3 are satisfied and clause c2 is
undefined (note that clause c2 becomes unit, since literal x1 can be deleted from it). Therefore,
the CNF formula φ is undefined under this assignment.

Suppose now that this assignment is completed by adding the literal ¬x3. Then, clause c2

becomes unsatisfied. Finally, if we consider the assignment {¬x1,¬x2, x3}, all the clauses are
satisfied.
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2.2.1 (Weighted) MaxSAT

As well as in the case of CSP, in some cases when a SAT formula is unsatisfiable we want to
obtain the “best possible” truth assignment. This can be done using one of the optimization
variants of the SAT problem: MaxSAT, Partial MaxSAT, Weighted MaxSAT and Partial
Weighted MaxSAT. Next we define them and explain the differences between them.

(Partial) MaxSAT

Definition 2.2.7 Given a CNF formula, the maximum satisfiability (MaxSAT) problem is
the problem of finding a solution that maximizes the number of satisfied clauses.

Definition 2.2.8 Given a CNF formula with a set of clauses that can be violated (soft
clauses) and a set of clauses that must be satisfied (hard clauses), the Partial MaxSAT prob-
lem is the problem of finding a solution that maximizes the number of satisfied soft clauses
while ensuring the satisfaction of all the hard clauses.

Note that the (partial) MaxSAT problem is equivalent to minimizing the number of falsi-
fied (soft) clauses of a CNF formula φ, which is the cost of φ.

In SAT, a CNF formula is considered to be a set of clauses, while in (partial) MaxSAT,
a CNF formula is considered to be a multiset of clauses, because repeated clauses cannot
be collapsed into a unique clause. For instance, in {x1,¬x1,¬x1, x1 ∨ x2,¬x2}, where a
clause is repeated, there is a minimum of two unsatisfied clauses. If we consider the set
{x1,¬x1, x1 ∨ x2,¬x2}, where repeated clauses are collapsed, then there is a minimum of one
unsatisfied clause.

Example 4 Let us consider a Partial MaxSAT instance φ having the following clauses:

c1 : [x1 ∨ x2]

c2 : [¬x1]

c3 : [¬x1 ∨ ¬x2]

c4 : (¬x2 ∨ x3)

c5 : (x1 ∨ ¬x2)

c6 : (¬x3)

c7 : (x1 ∨ ¬x2 ∨ ¬x3)

Hard clauses are represented between square brackets, and soft clauses are represented
between round brackets.

An optimal solution for φ is the assignment {¬x1, x2,¬x3}, which satisfies all the hard
clauses and maximizes the number of satisfied soft clauses. The number of falsified soft clauses
(cost) is 2, and the satisfied soft clauses are c6 and c7.

Weighted (Partial) MaxSAT

Definition 2.2.9 A Weighted CNF clause is a pair (C,w), where C is a clause and w is
its weight. The weight w can be a natural number or infinity and its meaning is the penalty
(cost) for falsifying the clause C. A clause is hard if its corresponding weight is infinity, and



10 CHAPTER 2. DEFINITIONS, TERMINOLOGY AND NOTATION

soft otherwise. When there are no hard clauses we speak of Weighted MaxSAT, and we speak
of Weighted Partial MaxSAT otherwise. A Weighted CNF formula is a multiset of weighted
clauses.

The Weighted MaxSAT problem consists in finding a truth assignment such that the sum
of the weights of the satisfied clauses is maximized or, equivalently, the total weight of the
falsified clauses is minimized.

Example 5 Let us consider a Weighted MaxSAT instance having the following clauses:

c1 : (x1 ∨ x2, 4)

c2 : (¬x1, 3)

c3 : (¬x1 ∨ ¬x2, 5)

c4 : (¬x2 ∨ x3, 3)

c5 : (x1 ∨ ¬x2, 2)

c6 : (¬x3, 1)

An optimal solution for this formula is the assignment {¬x1, x2, x3}. The sum of weights
of satisfied clauses is 15, and the sum of weights of falsified clauses is 3. This assignment
falsifies the clauses c5 and c6.

We remark that the MaxSAT problem can also be defined as Weighted MaxSAT restricted
to formulas whose clauses have weight 1, and as Partial MaxSAT in the case that all the clauses
are declared to be soft. The Partial MaxSAT problem is the Weighted Partial MaxSAT
problem when the weights of the soft clauses are equal.

The notion of equivalence with respect to instances has some subtlety that we want also
to remark. In SAT, two formulas are equivalent if they are satisfied by the same set of
assignments. In MaxSAT, two formulas are considered to be equivalent if both have the same
number of unsatisfied clauses for every assignment. In Weighted MaxSAT, two formulas are
considered to be equivalent if the sum of the weights of unsatisfied clauses coincides for every
assignment.

2.3 Mixed Integer Linear Programming (MILP)

An alternative method for CSP solving is based on Mixed Integer Linear Programming
(MILP), which is defined as:

min{cTx : A~x ≤ b, l ≤ ~x ≤ u, ~x ∈ Rn, xj ∈ Z ∀j ∈ I}

where A ∈ Qm∗n, c ∈ Qn, b ∈ Qm, l ∈ (Q ∪ {−∞})n, u ∈ (Q ∪ {∞})n and I ⊆ N = {1, . . . , n}.
Here cTx is the objective function, Ax ≤ b are linear constraints, l and u are the lower and
upper bounds on the problem variables x, and I is a subset of indices denoting the variables
required to be integer.
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2.3.1 Pseudo-Boolean Constraints

A particular case of integer linear constraints are pseudo-Boolean constraints (PBC) [BH02],
where the variables of the inequalities are restricted to be 0-1 (Boolean).

PBCs take the form:

a1x1 + a2x2 + · · · + anxn ⊕ r

where a1, . . . , an and r are integer constants, x1, . . . , xn are Boolean literals, and ⊕ is a
relational operator in {<,>,6,>,=}.

Pseudo-Boolean optimization (PBO) is a natural extension of the Boolean satisfiability
problem (SAT). A PBO instance is a set of PBC plus a linear objective function taking a
similar form:

min : b1x1 + b2x2 + ... + bnxn

where b1, ..., bn are integer coefficients and x1, ..., xn are Boolean literals. The objective is to
find a suitable assignment to the problem variables such that all the constraints are satisfied
and the value of the objective function is minimized.

2.4 Satisfiability Modulo Theories (SMT)

Satisfiability Modulo Theories (SMT) is an extension of SAT where the propositional symbols
of the formula can be elements of a background theory instead of Boolean variables, for
instance a linear integer inequality like 2x + y ≤ 3z. This hybrid framework is interesting
for CSP solving because, we can (almost) directly reformulate the constraints of the problem
into SMT.

Definition 2.4.1 A theory is a set of first-order formulas closed under logical consequence.
A theory T is said to be decidable if there is an effective method for determining whether
arbitrary formulas are included in T .

Definition 2.4.2 A formula ϕ is T -satisfiable or T -consistent if T ∪{ϕ} is satisfiable in the
first-order sense. Otherwise, it is called T -unsatisfiable or T -inconsistent.

Definition 2.4.3 A (partial) truth assignment M of a propositional formula can be seen
either as a set or as a conjunction of literals, and hence as a formula, (see Definition 2.2.3).
If M is a T -consistent partial truth assignment and ϕ is a formula such that M |= ϕ, i.e., M
is a (propositional) model of ϕ, then we say that M is a T -model of ϕ. From now, we use
ϕ |=T ϕ

′ as an abbreviation for T ∪ {ϕ} |= ϕ′.

Definition 2.4.4 The SMT problem for a theory T is the problem of determining, given a
formula ϕ, whether ϕ is T -satisfiable, or, equivalently, whether ϕ has a T -model.

Note that in contrast to SAT, an SMT formula ϕ does not have to be a CNF. Therefore,
it is quite usual to find SMT clauses in ϕ with other connectives than conjunctions and
disjunctions.
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2.4.1 (Weighted) MaxSMT

We can adapt the concept of (Weighted) MaxSAT to SMT. A MaxSMT instance is an SMT
instance where clauses may have an associated weight (cost) of falsification.

Definition 2.4.5 Given an SMT formula, the maximum SMT (MaxSMT) problem consists
in finding a solution that maximizes the number of satisfied SMT clauses.

A Partial MaxSMT problem is a MaxSMT problem where there is a set of clauses that
can be violated and a set of clauses that must be satisfied. The objective is then to minimize
the number of falsified clauses.

As in SAT, an SMT formula is considered to be a set of clauses while, in (Partial) MaxSMT,
a CNF formula is considered to be a multiset of clauses, because repeated clauses cannot be
collapsed into a unique clause. More formally:

Definition 2.4.6 A Weighted SMT clause is a pair (C,w), where C is an SMT clause and w
is a natural number or infinity (indicating the penalty for violating C). A Weighted (Partial)
MaxSMT formula is a multiset of Weighted SMT clauses

ϕ = {(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)}

where the first m clauses are soft and the last m′ clauses are hard.
If there are no hard clauses (clauses with infinite cost of falsification) we speak of Weighted

SMT, and if there are we talk about Weighted Partial MaxSMT.

Given an assignment M , the cost of a formula is the sum of the weights of the falsified
clauses by M . The optimal cost of a formula is the minimal cost of all its assignments. An
optimal assignment is an assignment with optimal cost.

Definition 2.4.7 The Weighted (Partial) MaxSMT problem for a Weighted (Partial) SMT
formula is the problem of finding an optimal assignment for that formula.



Chapter 3

CSP Solving Techniques

In this chapter we present the classical solving techniques used in CSP solvers. We first
present systematic search, consistency techniques, constraint propagation, global constraints
and constraint optimization. Then we briefly describe MaxCSP and Weighted CSP solving
approaches. Then we present three ways to solve CSPs by reformulation: propositional SAT,
SMT and MILP. Finally, we present Lazy Clause Generation (which is similar to SMT: a
hybrid method that uses SAT), local search and genetic algorithms.

This chapter is partially based on [Bar05, RBW06].

3.1 Systematic Search

The first classical CSP solving algorithm consists in doing a systematic search through the
possible assignments to the variables. This guarantees to find a solution, if one exists, and
otherwise to prove that the problem has no solution. Therefore, systematic search algorithms
are sound and complete. But that could take a very long time, which is a big disadvantage.
There are two main classes of systematic search algorithms:

1. Algorithms that search the space for complete assignments, i.e., assignments to all
variables, till they find an assignment that satisfies all the constraints (Generate and
Test).

2. Algorithms that extend a partial consistent assignment to a complete assignment that
satisfies all the constraints (Backtracking, Backjumping, etc.).

In general, CSPs are computationally intractable (NP-hard). However, the techniques
and algorithms developed in recent decades show that many instances can be solved in a
reasonable time, but there will always be instances with very high time resolution.

In this section we present basic representatives of both classes of systematic search al-
gorithms: generate and test, and backtracking. Although these algorithms are simple and
inefficient, they are very important because they make the foundation of other algorithms
that exploit more sophisticated techniques like propagation or local search.

13
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3.1.1 Generate and Test

The generate and test (GT) algorithm generates some complete assignment and then it tests
whether this assignment satisfies all the constraints. If the test fails, then it considers another
complete assignment. The algorithm stops as soon as a complete assignment satisfying all
the constraints is found (it is a solution) or all complete assignments have been generated
without finding the solution (the problem is unsolvable).

Since the GT algorithm systematically searches the space of complete assignments, i.e.,
it considers each possible combination of variable assignments, the number of combinations
considered by this method is equal to the size of the Cartesian product of all variable domains.

The pure generate-and-test approach is not efficient because it generates many trivially
wrong assignments of values to variables which are rejected in the testing phase. In addition,
the generator ignores the reason of the inconsistency and it generates other assignments with
the same inconsistency.

In Section 3.7 we briefly describe local search methods, a more clever approximation to
search based on complete assignments.

3.1.2 Backtracking

The backtracking (BT) algorithm incrementally attempts to extend a partial assignment,
that specifies consistent values for some of the variables, towards a complete and consistent
assignment. This extension is done by repeatedly choosing a value for a not yet assigned
variable, until a consistent value is found according to the current partial assignment. This
is the most common algorithm for systematic search [DF98].

In the BT method, variables are instantiated sequentially and as soon as all the variables
relevant to a constraint are instantiated, the validity of the constraint is checked. If a partial
assignment violates any of the constraints, a backtracking step is performed by reconsidering
the assignment to the most recently instantiated variable that still has available alternatives.
Clearly, whenever a partial assignment violates a constraint, backtracking is able to prune
a subspace from the Cartesian product of all variable domains. Consequently, backtracking
is strictly better than generate-and-test. However, its running time complexity for most
nontrivial problems is still exponential.

This basic form of backtracking is known as chronological backtracking because the algo-
rithm backtracks to the last decision (according to chronological order) when an inconsistency
is found.

The backtracking algorithm has many drawbacks, among which we can highlight:

1. Thrashing. Backtracking does not necessarily identify the real reason of the conflict
(inconsistency). Therefore, search in different parts of the search space keeps failing for
the same reason. In order to avoid trashing we can use backjumping [Gas79], which is
described below.

2. Redundant work. Even if the conflict reasons are identified during backjumping,
they are not remembered for immediate detection of the same conflict in subsequent
computations. This problem can be solved using backchecking and backmarking [HE80],
also described below.

3. Late conflict detection. The backtracking algorithm still detects the conflict too
late as it is not able to do it before the conflict really occurs, i.e., after assigning the
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values to all the variables of the conflicting constraint. This drawback can be avoided by
applying consistency techniques to anticipate the possible conflicts. These techniques
are explained in the next section.

Backjumping

The control of backjumping is exactly the same as in backtracking, except when the backtrack
takes place. Both algorithms pick one variable at a time and look for a value for this variable
making sure that the new assignment is compatible with values committed to so far. However,
if backjumping finds an inconsistency and all the values in the domain of such variable are
explored, it analyses the situation in order to identify the source of inconsistency using the
violated constraints as a guidance to find out the conflicting variable. Once the analysis is
made the backjumping algorithm backtracks to the most recent conflicting variable. Notice
than the backtracking algorithm always returns to the immediate past variable.

Backchecking and Backmarking

The backchecking and its descendent backmarking are useful algorithms for reducing the
number of compatibility checks. If backchecking finds that some label (Y, b) is incompatible
with any recent label (X, a) then it remembers this incompatibility. As long as (X, a) is still
committed to, (Y, b) will not be considered again.

Backmarking is an improvement over backchecking that avoids some redundant constraint
checking as well as some redundant discoveries of inconsistencies. It reduces the number of
compatibility checks by remembering for every label the incompatible recent labels. Further-
more, it avoids repeating compatibility checks which have already been performed and which
have succeeded.

3.2 Consistency Techniques

Consistency techniques [Kum92] were introduced to improve the efficiency of the search algo-
rithms. The number of possible combinations that should be explored by search algorithms
can be huge, while only very few assignments are consistent. Consistency techniques effec-
tively rule out many inconsistent assignments at a very early stage, and thus cut short the
search for consistent assignment. Typically this pruning is done by removing values from the
domain of the variables. Consistency techniques are sound, in the sense that when the domain
of a variable becomes empty, i.e., the consistency algorithm fails achieving consistency, we
can ensure that the CSP has no solution. However, it is not complete, since even achieving
consistency, the CSP will not necessarily have a solution.

Example 6 Consider the CSP instance 〈X ,D, C〉 with X = {A,B}, D(A) = {4, . . . , 9},
D(B) = {1, . . . , 6} and C = {B > A}. The consistency techniques can make the domains
smaller according to the constraints: D(A) = {4, . . . , 5}, D(B) = {5, . . . , 6}. Then, for each
possible value in D(A), it is possible to find a consistent value for B in D(B), and vice versa.
Note however that this reduction does not remove all inconsistent pairs of labels: for instance,
{(A, 5), (B, 5)} is still a feasible assignment according to the domains of the variables.

Usually, consistency techniques use polynomial-time algorithms over constraint graphs
allowing to prune the search space. A constraint graph is a binary CSP representation where
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nodes are variables, edges between nodes are the scope of the (binary) constraints and unary
constraints are cyclic edges. Every CSP can be converted into an equivalent binary CSP,
where all constraints are binary [Mon74].

3.2.1 Node Consistency

The simplest consistency technique is known as node consistency (NC).

Definition 3.2.1 A variable X is node consistent if, and only if, for every value x in the
current domain D(X), each unary constraint on X is satisfied. A CSP is node consistent if
and only if all variables are node consistent, i.e., for all variables, all values in their domain
satisfy the unary constraints on that variable.

3.2.2 Arc Consistency

Since binary constraints are represented in a constraint graph as arcs, their consistency is
known as arc consistency (AC).

Definition 3.2.2 An arc (X,Y ) of a constraint graph is arc consistent if, and only if, for
every value x in the current domain D(X) satisfying the constraints on X, there is some
value y in the domain D(Y ) such that the assignment {(X,x), (Y, y)} is permitted by the
binary constraint between X and Y . Note that the concept of arc-consistency is directional,
i.e., if an arc (X,Y ) is consistent, then it does not automatically mean that (Y,X) is also
consistent. A CSP is arc consistent if and only if every arc in its constraint graph is arc
consistent.

An arc (X,Y ) can be made consistent by simply deleting those values from the domain
D(X) for which there does not exist a corresponding value in the domain D(Y ) such that
the binary constraint between X and Y is satisfied. This procedure does not eliminate any
solution of the original CSP.

To make a CSP arc consistent, i.e., to make every arc of the corresponding constraint
graph arc consistent, it is not sufficient to execute the consistency procedure described above
for each arc just once. One execution of the consistency procedure may reduce the domain
of some variable X; then each previously revised arc (Y,X) has to be revised again, because
some of the members of the domain D(Y ) may no longer be compatible with any remaining
members of the pruned domain D(X). The easiest way to establish arc consistency is to
apply the consistecy procedure to all arcs repeatedly till no domain of any variable changes.
There are several well-known algorithms to achieve arc consistency:

1. AC-1 [Mac77]. This algorithm is not very efficient since it repeats the consistency
algorithm on all arcs if there has been any domain change during the previous iteration.

2. AC-3 [Mac77]. This algorithm is a variation of AC-1 where the consistency test is
repeated only for those arcs that are possibly affected by a previous revision.

3. AC-4 [MH86]. This algorithm works with individual pairs of values, using support sets
for each value. A value is supported if there exists a compatible value in the domain of
every other variable. When a value x is removed from D(X), it is not always necessary
to examine all the binary constraints (X,Y ). More precisely, we can ignore those values
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in the domain D(Y ) whose support does not rely only on x. In other words, we can
ignore the cases where every value in the domain D(Y ) is compatible with some value
in the domain D(X) other than x. In order to always know the support sets for all
variables, the AC-4 algorithm must maintain a complex data structure.

Arc consistency does not guarantee the existence of a solution for arc consistent CSP
instances. Figure 3.1 depicts a CSP instance where all constraints are arc consistent but the
problem has no solution. Therefore, arc consistency is not enough to eliminate the need for
search methods such as backtracking.

Y

X

Z

X 6= Y X 6= Z

Y 6= Z
{1, 2} {1, 2}

{1, 2}

Figure 3.1: Arc consistent CSP without solution.

3.2.3 Other Consistency Techniques

There are stronger consistency techniques that are more powerful than arc consistency with
respect to pruning, but at the cost of having higher computational complexity. It is a crucial
issue to find the appropriate compromise between the amount of search space pruned and the
time spent in pruning. Among others, there is path consistency, which considers triples of
variables instead of tuples, and the k-consistency generalization, that considers k-tuples.

3.3 Constraint Propagation

In this section we show the result of joining some of the concepts explained in the two previous
sections: systematic search (backtracking and backjumping) and consistency techniques (arc
consistency).

The idea is to use a simple backtracking algorithm that incrementally instantiates vari-
ables, extending a partial assignment that specifies consistent values for some of the variables,
towards a complete assignment. In order to reduce the search space, some consistency tech-
niques are performed after assigning a value to a variable, which is known as propagation.
Depending on which consistency technique is performed, we get different constraint propaga-
tion algorithms. The most commonly used are explained in the following subsections.

Note that, in general, consistency techniques use polynomial-time algorithms, in contrast
to backtracking, which is non-polynomial. Therefore, they are performed as soon as possible,
only performing search when there is no possibility to propagate.
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3.3.1 Forward Checking

Forward checking is the easiest way to prevent future conflicts. Instead of performing arc con-
sistency between instantiated variables, forward checking performs arc consistency between
pairs of a not yet instantiated variable and an instantiated one. Therefore, it maintains the
invariant that for every uninstantiated variable there exists at least one value in its domain
which is compatible with the values of the already instantiated variables.

The forward checking algorithm is based on the following idea. When a value is assigned
to a variable, any value in the domain of a non instantiated variable which conflicts with this
assignment is (temporarily) removed from the domain. If the domain of a future variable be-
comes empty, the current partial assignment is inconsistent. Consequently, forward checking
prunes branches of the search tree that will lead to a failure earlier than with chronological
backtracking.

Figure 3.2 depicts an example of forward checking applied to the 4-Queens problem.1 In
the example we use Q on cells where the search has placed a queen and X for the forbidden
cells due to propagation.
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Figure 3.2: Example of Forward Checking in the 4-Queens problem. We use Q on cells where
the search has placed a queen and X for the forbidden cells due to propagation.

1The n-Queens problem consists in placing n chess queens on an n × n chessboard so that no two queens
threaten each other.
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3.3.2 Look Ahead

The idea of the look ahead algorithm is to go one step further than forward checking, extending
the consistency check to pairs of variables which both are not instantiated, i.e., in addition
to check the consistency of the arcs of the assigned variable, it also checks the consistency of
the arcs of the unassigned variables.

There are two versions of the look ahead algorithm, the first one is known as partial look
ahead, it uses directional arc consistency (arc consistency only into the arcs (Xi, Xj) where
i < j for a given total order on the variables X ) to choose the arcs to check. The second
one is known as full look ahead, it uses non-directional arc consistency to choose the arcs to
check. Both of them are likely to prune more branches of the search than forward checking,
but with a higher computational cost, being the full look ahead the one that prunes more but
also with more work than partial look ahead.

Figure 3.3 depicts an example of full look ahead applied to the 4-Queens problem. In the
example we use Q on cells where the search has placed a queen and X for the forbidden cells
due to propagation.
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XX XQ
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47

Figure 3.3: Example of Look Ahead in the 4-Queens problem. We use Q on cells where the
search has placed a queen and X for the forbidden cells due to propagation.

3.3.3 Propagators

In the previous subsections we explained the classic propagation algorithms. We can define
a more abstract notion of propagator [Bes06], so that it can be used by distinct algorithms.

Definition 3.3.1 A propagator f is a monotonically decreasing function from domains to
domains. That is, f (D) v D, and f (D1) v f (D2) whenever D1 v D2.
If D1 = {D1(X1), . . . , D1(Xn)} and D2 = {D2(X1), . . . , D2(Xn)}, the operator v means that
domain D1 is stronger than domain D2, i.e., ∀i ∈ {1 . . . n}, D1(Xi) ⊆ D2(Xi).

When a propagator f is associated to a constraint C = 〈S,R〉, it is noted fC and acts as
follows: if D = {D(X1), . . . , D(Xn)} then fC(D) = {D′(X1), . . . , D′(Xn)}, where D′(Xj) =
D(Xj) ∀Xj /∈ S and D′(Xj) ⊆ D(Xj) ∀Xj ∈ S.

Typically we are interested in “correct” propagators, i.e., propagators that preserve con-
sistent assignments. More formally, a propagator f is correct if for all consistent assignments
v of a CSP 〈X ,D, C〉, v is also a consistent assignment of 〈X , f (D), C〉.
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Example 7 For the CSP 〈{X,Y, Z}, {D(X) = {1, 2, 3, 4}, D(Y ) = {2, 3}, D(Z) = {2, 3, 4}},
{C1 = (X = Y ), C2 = (Y ≤ Z)}〉 we can provide the two following correct propagators:

fC1(D) = D′ where


D′(X) = D(X) ∩D(Y )

D′(Y ) = D(Y ) ∩D(X)

D′(Z) = D(Z)

fC2(D) = D′ where


D′(X) = D(X)

D′(Y ) = {d ∈ D(Y ) | d ≤ max(D(Z))}
D′(Z) = {d ∈ D(Z) | d ≥ min(D(Y ))}

Suppose that a search algorithm assigns the value 3 to X. This means that D(X) = {3}.
Then, the propagator fC1 can be activated and set D(Y ) = {3}. This, in turns, activates the
propagator fC2 reducing the domain of Z to D(Z) = {3, 4}. Propagators are activated until a
fix point is reached.

Consistency algorithms (arc consistency, path consistency, ...) can use propagators to
maintain consistency. Depending on their filtering power the propagator can guarantee arc
consistency or other types of consistency. It turns out that consistency algorithms can also
be considered as propagators.

3.4 Solving methods for Global Constraints

Although Global Constraints (GC) can be replaced by their decomposition, in general they
are not replaced, because GCs simplifies the modelling process (gaining expressiveness) and
it is possible to deduce more information taking into account all the constraints together.
Thanks to this information it is possible to design specific and more powerful consistency
algorithms, which sometimes can be borrowed from other disciplines like graph theory, flow
theory, matching theory, linear programming, and finite automaton.

In other words, we represent a set of constraints with a GC in order to allow the CSP
solver to exploit the structure of these constraints. For example, Régin [Rég94] proposed an
arc consistency algorithm for the alldifferent constraint. It uses a bipartite graph to represent
the relation between variables and their possible values: at one side of the graph we have nodes
representing the variables, at the other side of the graph we have nodes representing the values
that the variables can take, and one arc from variables to their possible values. Then it applies
an algorithm based on matching theory over this bipartite graph to filter the variable values.
This way, following the example in Figure 3.1, if the binary inequalities are replaced by the
global constraint alldifferent , the solver can deduce that this CSP has no solution.

There have been a lot of research about GCs, to such an extent that has been required
to make a catalogue to compile all the existing GCs. This catalogue can be found online at
http://sofdem.github.io/gccat/ and it has about 423 GC at present. Some of the most
well-known GCs are: alldifferent, cumulative, global cardinality, cycle, element, sum, etc.

3.5 Constraint Optimization

In many real-life applications, we are not interested in finding any solution but an optimal
one. This can be done solving the already defined Constraint Optimization Problem (COP),

http://sofdem.github.io/gccat/
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which is a CSP where we want to find an optimal solution given some objective function on
the variables.

In order to find the optimal solution, we potentially need to explore all the solutions of the
CSP and compare the value of the objective function for each of them. Therefore, techniques
for finding or generating all solutions are more relevant to COP than techniques for finding
a single solution. In general, as in the case of CSPs, COPs are computationally intractable
(NP-hard).

The most widely used technique for solving COPs is branch-and-bound (B&B). This
algorithm consist in exploring a tree where each node represents a label and the branching
from the root to a node represents a partial assignment. In the case of minimization, during
the search, the algorithm keeps the cost of the best solution found so far, which is an upper
bound u of the optimal solution. At each node, the algorithm computes a lower bound l of
the best solution in the subtree below. If l is higher than or equal to u, the algorithm prunes
the subtree below, because the current best solution cannot be improved by extending the
current assignment. In this algorithm, the objective function f maps every solution (complete
labeling of variables satisfying all the constraints) to a numerical value. The task is to find
a solution that is optimal regarding the objective function, i.e., it minimizes or maximizes
respectively the objective function.

There are other methods used to solve COPs, for instance, Russian Doll Search [VLS96,
MS01], which we don’t explain because they are out of scope of this thesis.

3.5.1 Weighted CSP

The classical way to solve WCSPs is reformulating them into COPs where the objective
function to minimize is the sum of the violated soft constraints. There are other proposals
based on semirings [BMR97] or based on arc consistency [Coo03, LS04].

3.6 Solving CSPs by Reformulation

A different way to solve CSPs is by reformulating them into other formalisms. In this section
we present the most common formalisms used in reformulation: SAT, MILP and SMT.

3.6.1 Reformulation into SAT

It consists on encoding CSPs into Boolean satisfiability problems (SAT). Recall from defini-
tion 2.1.1 that a CSP is defined as a triple 〈X ,D, C〉, where X = {X1, . . . , Xn} is a set of
variables, D = {D(X1), . . . , D(Xn)} is a set of domains containing the values the variables
may take, and C = {C1, . . . , Cm} is a set of constraints. First of all we have to choose how
we want to encode the variables and their domains, and then translate the constraints taking
into account this encoding in such a way that they retain their meaning.

Next we describe several well-known CSP to SAT encodings, where we assume that the
domain of all variables is {1 . . . n} for the sake of simplicity.

Variable Encodings

Due to the fact that the domain size of the CSP variables can be greater than 2 and Boolean
variables can only be false or true, in general, we will need several Boolean variables to
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represent a CSP variable. There are several SAT encodings for variables. Next we present
three of them, which are the most common used:

• Normal encoding. This is the most intuitive encoding because for each value i ∈
D(X), where X is a CSP variable, we introduce a Boolean variable xi which will be
true only iff X = i. Since a CSP variable only takes one value, we also need to encode
that exactly one of the Boolean variables {x1, . . . , xn} is true. This can be done using
the Exactly-One constraint (described below).

In the literature this encoding is also known as standard encoding [AM04] and sparse
encoding, name given at [Hoo99] to refer the encoding used in [dK89].

• Log encoding [IM94]. In this encoding we introduce as many variables as bits are
needed to represent the values in the domain of the CSP variable, i.e., to encode the
CSP variable X we introduce m variables: x1, . . . , xm, where m = dlog2|D(X)|e. The
polarity of these variables will determine which value is taking variable X. For instance,
for a variableX with domainD(X) = {1, 2, 3, 4} we need 2 bits, where ¬x1∧¬x2 encodes
X = 1, x1 ∧ ¬x2 encodes X = 2, ¬x1 ∧ x2 encodes X = 3 and x1 ∧ x2 encodes X = 3.

Note that in this encoding the combination of variables x1, . . . , xm is representing only
one value for variable X at the same time (depending on the polarity of each variable).
Therefore, we don’t need the Exactly-One constraint. But, on the other hand, when
the number of values in D(X) is not a power of 2, we will need extra clauses, called
prohibited-value clauses, to forbid the non possible values of the bits. This can be seen
in Example 8.

In the literature this encoding is also known as compact encoding [Hoo99]. Sometimes,
when only log variables are used, it is also known as full log encoding, while log encoding
is used when log variables are combined with standard variables (encoding proposed
in [FP01]). The combination between log and standard variables is done by the following
linking clauses:

xi ↔ (li1 ∧ . . . ∧ lidlog2|D(X)|e)

where xi are standard variables representing X = i, and lij are literals corresponding
to the j bits representing the assignment X = i. This way, we can use the standard
variables in the formula while we are avoiding to use the Exactly-One constraint.

Following the example of a variable X with domain D(X) = {1, 2, 3, 4} we link the log
and standard variables:

(x1 ↔ ¬b1 ∧ ¬b2)
(x2 ↔ ¬b1 ∧ b2)
(x3 ↔ b1 ∧ ¬b2)
(x4 ↔ b1 ∧ b2)

• Regular encoding [AM04, BHM01]. In this encoding, for each value i ∈ D(X), we
introduce a Boolean variable x≥i (called regular variable), which will be true iff X ≥ i.

In addition we add the following auxiliary clauses to ensure that if x≥i is true then x≥i−1

also has to be true:
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i<n∧
i=1

x≥i+1 → x≥i

Then when we have to encode X = i in the formula we use x≥i ∧¬x
≥
i+1, except the cases

of i = l and i = u, where l and u are the lower and upper bounds of X, that we will
use ¬x≥l+1 and x≥u respectively.

A similar idea of this encoding appears in several places in the literature [BB03, CB94,
TTKB09, GN04] also known as order encoding and ladder encoding. What is different
between them are the auxiliary clauses and how they use the encoded variables in the
formula.

As well as in the case of the log encoding, sometimes in the literature, the regular en-
coding is called full regular encoding when only regular variables are used, and regular
encoding when regular variables are combined with standard variables (encoding pro-
posed in [AM04]). The combination between standard and regular variables is done by
the following linking clauses:

i<n∧
i=1

xi ↔ (x≥i ∧ ¬x
≥
i+1)

In [AM04] is proposed another variant of this encoding called half regular encoding. It
also links regular and standard variables by the previous linking clauses, but it uses
the regular or standard variable encoding in the formula depending on the polarity of
the variable assignment (X = i or ¬X = i), in order to keep a formula as smaller as
possible.

Example 8 The direct full log encoding for the CSP 〈{X,Y }, {D(X) = {0, 1, 2}, {D(Y ) =
{1, 2, 3}, {X 6= Y }〉 goes as follows:

value domain (i) b1 b0 literals for
X = i

X = 0 0 0 ¬x1 ¬x0

X = 1 0 1 ¬x1 x0

X = 2 1 0 x1 ¬x0

value domain (i) b1 b0 literals for
Y = i

Y = 1 0 0 ¬y1 ¬y0

Y = 2 0 1 ¬y1 y0

Y = 3 1 0 y1 ¬y0

conflict values conflict clauses

X = 1, Y = 1 x1 ∨ ¬x0 ∨ y1 ∨ y0

X = 2, Y = 2 ¬x1 ∨ x0 ∨ y1 ∨ ¬y0

prohibited-value clauses

¬x1 ∨ ¬x0

¬y1 ∨ ¬y0

In the first row of tables we can observe the sets of literals associated with the possible
assignments of X (left) and Y (right). In the second row of tables there are the conflict
clauses (left) and the prohibited-value clauses (right).
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Exactly-One encoding

In the normal encoding we need an Exactly-One constraint which is commonly expressed as
the conjunction of the ALO (At-Least-One) constraint and the AMO (At-Most-One) con-
straint. The ALO constraint states that at least one of the variables is true while the AMO
constraint states that at most one of the variables is true.

There exist different encodings of the ALO and AMO constraints. But in general, the
most common encoding for the ALO constraint is using a n-ary clause:

x1 ∨ . . . ∨ xn

For the AMO there are the following common encodings:

• The pair-wise encoding. This encoding is formed by the following n ∗ (n − 1)/2
binary clauses:

n−1∧
i=1

n∧
j=i+1

¬xi ∨ ¬xj

In the literature it is also known as naive encoding.

• The Binary AMO, introduced in [FP01], associates with each xi a unique bit string
si ∈ {1, 0}dlog2ne corresponding to the binary representation of i. The binary AMO is:

n∧
i=1

dlog2ne∧
j=i

¬xi ∨ ψ(i, j)

where ψ(i, j) is a clause with j literals, j = dlog2ne, and each literal lj will be bj (¬bj)
if the jth bit of si is 1 (0). Note that we need dlog2ne new variables: b1, . . . , bdlog2ne.

This encoding introduces dlog2ne extra variables and uses n ∗ dlog2ne clauses.

• The Sequential counter AMO, introduced in [Sin05], is based on a sequential counter
circuit, that consists in sequentially counting the number of xi that are true. The
Sequential counter AMO is:

(¬x1 ∨ s1)

i<n∧
i=2

((¬xi ∨ si) ∧ (¬si−1 ∨ si) ∧ (¬xi ∨ ¬si−1))

(¬xn ∨ ¬sn−1)

where si, 1 ≤ i ≤ n− 1, are auxiliary variables.

This encoding requires 3n− 4 binary clauses and n− 1 auxiliary variables.
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Constraint Encodings

Next we describe the most common used SAT encodings for constraints:

• The Direct Encoding is probably the most common encoding from CSP into SAT.
In the direct encoding for each binary constraint with scope {X,Y } there is a binary
clause for every nogood. Such clauses are called conflict clauses.

Below we provide three examples of the direct encoding, in Example 9 variables are
represented using the standard encoding, in Example 8 the variables are represented
using the full log encoding, and in Example 10 the variables are represented using the
full regular encoding.

Example 9 The conflict clauses in the direct encoding when variables are encoded using
the standard encoding (from now on standard direct encoding), for the CSP defined by
〈{X,Y }, {D(X) = {1, 2, 3}, D(Y ) = {1, 2, 3}}, {X ≤ Y }〉 are the following:

(¬x2 ∨ ¬y1) (¬x3 ∨ ¬y1) (¬x3 ∨ ¬y2)

Example 10 The direct encoding for the CSP defined by 〈{X,Y }, {D(X) = {1, 2, 3},
D(Y ) = {1, 2, 3}}, {(X = 2 ∧ ¬Y = 2)}〉 in the full regular, regular and half regular
encodings is the following:

Full regular: (x≥2 ∧ ¬x
≥
3 ) ∧ ¬(y≥2 ∧ ¬y

≥
3 )

Regular: x2 ∧ ¬y2

Half regular: x2 ∧ ¬(y≥2 ∧ ¬y
≥
3 )

• The Support Encoding encodes into clauses the support for each possible value of
a variable across a constraint. The support for a value i of a CSP variable X across a
binary constraint with scope {X,Y } is the set of values of the variable Y which allow
X = i.

Example 11 The standard support clauses for the CSP of Example 9 are:

(¬x2 ∨ y2 ∨ y3) (¬x3 ∨ y3) (¬y1 ∨ x1) (¬y2 ∨ x1 ∨ x2)

The support clause for X = 1 is missing because it is subsumed by (y1 ∨ y2 ∨ y3), and
the support clause for Y = 3 is missing because it is subsumed by (x1 ∨ x2 ∨ x3).

3.6.2 Reformulation into MILP

In order to encode a CSP using MILP (defined in Section 2.3) we can directly translate
the arithmetic constraints (in case to be non-linear we have to linearise them). But several
types of constraints cannot directly be translated into arithmetic expressions, for instance
the ones containing logical operators (such as ∨, ∧, →, . . . ). To be able to express these
kind of constraints we need to reify the literals of the clauses, which means to reflect the
satisfaction of each literal into a pseudo-Boolean variable. Then, e.g., a∨ b can be translated
into reifa + reifb ≥ 1, where reifa and reifb are the pseudo-Boolean variables corresponding
to the Boolean variables a and b, respectively.
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Note that reification of other kind of constraints could a bit harder. For instance, in
Example 12 we show the reification of an inequality using the BigM method, as described
in [Wil99].

Example 12 Assume we want to reify a constraint
∑

j ajxj 6 b, being δ the corresponding
reification variable. The relation between the constraint and δ can be modelled as follows:

• δ = 1 →
∑

j ajxj 6 b is translated into
∑

j ajxj + Mδ 6 M + b, where M is an upper
bound for the expression

∑
j ajxj − b.

• δ = 0 →
∑

j ajxj 
 b, i.e., δ = 0 →
∑

j ajxj > b, which is translated into
∑

j ajxj −
mδ > b, where m is a lower bound for the expression

∑
j ajxj − b.

The CSP now encoded into MILP can now be solved using a MILP solver, which, in
general, uses the simplex algorithm to solve the linear program (LP) relaxation:

min{cTx : Ax ≤ b, l ≤ x ≤ u, x ∈ Rn}

Notice that it is the same problem but with the difference that the integer requirement on
the x variables indexed by I has been dropped. The main reason for this relaxation is that
thanks to this, the relaxed problem turns to be polynomial.

Finally, to ensure that the variables indexed by I are integer, MILP solvers integrate a
variant of the branch-and-bound and the cutting plane algorithms [Gom58] of the general
branch-and-cut scheme [PR91].

3.6.3 Reformulation into SMT

Recall that an SMT formula can be seen as a propositional formula extended with expressions
of one or more background theories. Therefore, in order to encode CSPs to SMT, first of all,
we have to choose which theories we want to use. Since CSPs are usually composed of Boolean
and arithmetic constraints, it is quite common to use the linear integer arithmetic (LIA). This
way, we can (almost) directly translate all the constraints, because we can define Boolean and
integer variables, use logical operators (like disjunction, conjunction, implies, etc.) and use
arithmetic expressions.

More details on how to encode CSPs to SMT can be found in Chapters 5 and 7 since this
is one of the contributions of this thesis.

3.7 Other CSP Solving Methods

In recent years there has been a proliferation of alternative methods to traditional search
trying, with varying success, to solve CSPs. These new approaches include exact methods,
methods that do not guarantee the best solution and even methods that do not guarantee
any solution. In this section we present the more relevant ones.

3.7.1 Lazy Clause Generation

Lazy Clause Generation (LCG) is a hybrid technique that combines a SAT solver with finite
domain propagators. The original architecture for the LCG [OSC07], which can be seen in
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Figure 3.4, is very similar to SMT, because the search is controlled by a SAT solver and
the FD propagators are treated as clause generators for the SAT solver. However, the new
architecture for LCG [FS09], which can be seen in Figure 3.5, is completely opposite to SMT,
because the search is controlled by a FD solver and uses the SAT solver as an oracle to
control the possible values of the variable domains. Since the new architecture for LCG is
the state-of-the-art, we describe it below (taken from [FS09]).

SAT Engine

Search

Trail

Clauses Propagators

Domains

FD Engine

Figure 3.4: Original architecture of LCG

FD Engine

Search

Domains

Propagators Clauses

Trail

SAT Engine

Figure 3.5: New architecture of LCG

In the new LCG architecture, the search is controlled by a finite domain solver. When
there is a change in the domain of a variable, propagators are woken and placed in a priority
queue. The SAT solver unit propagation engine acts as a global propagator. Whenever a
literal is set or clauses are posted to the SAT solver, then this propagator is scheduled for
execution at the highest priority.

When a propagator f is executed updating a variable domain (f (D) 6= D) or causing a
failure (D is empty) it posts an explanation clause to the SAT solver that explains the domain
reduction or the failure.

The SAT propagator when executed computes a unit fixpoint, i.e., performs unit propaga-
tion to reach a unit propagation fixpoint. Then each of the literals fixed by unit propagation
causes the corresponding domain changes to be made in the domain, which may wake up
other propagators. The cycle of propagation continues until a fixpoint is reached.
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The LCG solver associates each integer variable with a set of Boolean variables. Changes
in these Boolean variables will be reflected in the domains of the integer variables. There are
two possible ways of doing this

• Array Encoding. In this encoding there exist two arrays of Boolean variables:

– An array of inequality (regular) literals x≤i , i ∈ [l, u − 1], which are generated

eagerly with the restrictions
∧i<n−1
i=1 ¬x≤i ∨ x

≤
i+1.

– An array of equality literals xi, i ∈ [l, u], which are generated lazily. When an
equality literal xi is necessary (occurs in a propagator or in a model), the following
clauses are posted:

¬xi ∨ x≤i
¬xi ∨ ¬x≤i−1

x≤i−1 ∨ ¬x
≤
i ∨ xi

• List Encoding. In this encoding the inequality and the equality literals are generated
lazily when they are required for propagation or explanation.

When an inequality literal x≤i is introduced:

– The closest existing bounds for xi are determined:

l = max{j | x≤j exists, j < i}

u = min{j | x≤j exists, i < j}

– The following new domain clauses are posted:

¬x≤l ∨ x
≤
i

¬x≤i ∨ x
≤
u

When an equality literal xi is introduced, the introduction of the literals x≤i and x≤i−1

is required. Then the solver proceeds as in the case of array encoding.

By default the solver uses array encoding for variables with “small”(< 10000) initial
domains and list encoding for larger domains.

Example 13 Consider 〈X ,D, C〉 where X = {X,Y, Z}, D(X) = D(Y ) = D(Z) = {1, 2, 3}
and C = {C1 = (X = Y ), C2 = (Y < Z)}.
The propagators are:

fC1(D) = D′ where


D′(X) = D(X) ∩D(Y )

D′(Y ) = D(Y ) ∩D(X)

D′(Z) = D(Z)

fC2(D) = D′ where


D′(X) = D(X)

D′(Y ) = {d ∈ D(Y ) | d < max(D(Z))}
D′(Z) = {d ∈ D(Z) | d > min(D(Y ))}

The initial clauses for the array encoding would be:
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• Variables:
{x≤1 , x

≤
2 , y

≤
1 , y

≤
2 , z

≤
1 , z

≤
2 }

• Clauses:
{¬x≤1 ∨ x

≤
2 ,¬y

≤
1 ∨ y

≤
2 ,¬z

≤
1 ∨ z

≤
2 }

The process of the LCG solver starts when the search algorithm tests a label, for example
X with value 2. In this moment it has to generate the x2 equality variable and the clauses
¬x2∨x≤2 , ¬x2∨¬x≤1 , x≤1 ∨¬x

≤
2 ∨x2. Then it activates the fC1 propagator, which generates the

clause ¬x2 ∨ y2. As y2 is not present in the Boolean formula, it has to generate this equality
variable and the associated clauses. This process continues until a fixed point is reached. Then
the search algorithm tests a new label or does backjumping.

In [AS12] is proposed a variant for LCG solvers called Lazy Decomposition (LD). The idea
comes from that in some problems it is better to decompose (reformulate) the propagator
into SAT and in other problems it is better to use the propagator to generate nogoods for
the SAT solver. Therefore, it is only needed to modify the propagators to detect when a
variable is active (counting the number of times it generates a nogood), and replace it by its
decomposition (or a part of it).

LCG is a highly competitive approach in general, and its last implementation is one of
the most competitive of state-of-the-art CSP solvers.

3.7.2 Local search

This technique consists on moving from solution to solution in the space of candidate solutions
(the search space) by applying local changes, until a solution deemed optimal is found or a
time bound is elapsed. A local search algorithm starts from a solution and then iteratively
moves to a neighbour solution. This is only possible if a neighbourhood relation is defined on
the search space. As an example, the neighbourhood of a vertex cover is another vertex cover
only differing by one node. Despite the inherent incompleteness, these methods have shown
great ability to solve difficult problems.

One of the local search methods most used today is tabu search [Glo89, Glo90].
Central to tabu search is a tabu list, which keeps a list of moves that may not be per-

formed. Thus, when generating a list of candidates from a current solution, some neighbouring
solutions cannot be added to the list. The tabu list serves to ensure that the moves in the
list are not reversed thus preventing previous moves from being repeated. Criteria for moves
entering the tabu list can be defined in many ways, and similar criteria exist for moves to be
off the tabu list.

3.7.3 Genetic algorithms

Genetic algorithms [BFM97]. This approach is based on an analogy with the evolution the-
ory. In these algorithms, a state corresponds to a total assignment; one derives new states
by recombining two parent states using a mating function that produces a new state corre-
sponding to a cross-over of the parent states. The parent states are selected from a pool of
states called population. The new states are subjected to small random changes (mutations).
This approach does not guarantee that a solution is found although it exists.
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Chapter 4

SAT and Satisfiability Modulo
Theories (SMT)

In this chapter we introduce the SMT paradigm. To do so, we first explain in Section 4.1
how modern SAT solvers work, since SAT solvers are the base of SMT solvers, and then in
Section 4.2 we define SMT and describe how SMT solvers work. Since we are also interested
in Weighted MaxSMT, we explain the more relevant (Weighted) MaxSAT algorithms.

This chapter is partially based on [BHvMW09].

4.1 SAT

Since the SAT problem (defined in 2.2) is NP-complete, only algorithms with exponential
worst-case complexity are known for it. In spite of this, efficient and scalable algorithms
for SAT were developed over the last decade and have contributed to dramatic advances
in automatically solve problem instances involving hundreds of thousands of variables and
millions of clauses. The advances in these algorithms have had a good impact on MaxSAT
(defined in 2.2.1) algorithms.

In this section we explain the more relevant algorithms used for solving SAT and Weighted
MaxSAT problems.

4.1.1 Satisfiability Algorithms

There are two types of algorithms used for solving SAT: complete and incomplete. Com-
plete algorithms perform a search through the space of all possible truth assignments, in a
systematic manner, to that prove either a given formula is satisfiable (the algorithm finds a
satisfying truth assignment) or unsatisfiable (the algorithm completely explores the search
space without finding any satisfying truth assignment). By contrast, incomplete algorithms
(e.g. local search algorithms) usually do not completely explore the search space, and a given
truth assignment can be considered more than once.

Next we describe the Conflict-Driven Clause-Learning algorithm, which is the base al-
gorithm used in state-of-the-art complete SAT solvers. We do not discuss the local search
algorithms, since this topic is out of the scope of this thesis. Some basic concepts on local
search have been described in Section 3.7.

31
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Conflict-Driven Clause-Learning (CDCL)

The CDCL algorithm is based on the Davis-Putman-Loveland-Logemann algorithm (DPLL)
[DP60, DLL62]. The DPLL is a complete backtracking-based search algorithm that works
as follows. It chooses a literal, assigns a truth value to it and simplifies the formula by
removing from the formula all clauses that become true under that assignment and removing
the literals that become false from the remaining clauses. Then it recursively checks if the
simplified formula is satisfiable. If the recursive check returns satisfiable it means that the
original formula is satisfiable; otherwise, it assigns the opposite truth value to the chosen
literal, simplifies the formula and recursively checks the satisfiability of the new simplified
formula. If this second check returns satisfiable it means that the original formula is satisfiable
and unsatisfiable otherwise. This is known as the splitting rule, as it splits the problem into
two simpler sub-problems. Before apply the splitting rule DPLL algorithms usually apply
other simplification techniques like unit propagation and pure literal rule, both of them used
in Algorithm 1 and explained next.

The main difference in the CDCL algorithm is that the search is conflict-driven, that is,
the original DPLL algorithm is improved with learning and non-chronological backtracking to
facilitate the pruning of the search space. Algorithm 1 shows the pseudo-code of the CDCL
algorithm.

Algorithm 1 Conflict-Driven Clause-Learning algorithm

Input: φ : CNF formula
Output: Satisfiability of φ
dl← 0 {Decision level}
ν ← ∅ {Current assignment}
UnitPropagation(φ,ν)
PureLiteralRule(φ,ν)
if � ∈ φ then

return false
end if ;
while not AllVariablesAssigned(φ,ν) do

(x, v)← PickBranchingVariable(φ, ν)
dl← dl + 1
ν ← ν ∪ {(x, v)}
UnitPropagation(φ,ν)
PureLiteralRule(φ,ν)
if � ∈ φ then
β ← ConflictAnalysisAndLearning(φ,ν)
if β = 0 then

return false
else

NonChronologicalBacktrack(φ,ν,β)
dl← β

end if
end if

end while
return true
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Next we define the functions used in Algorithm 1:

• UnitPropagation is the iterated application of the Unit Clause (UC) rule (also referred
to as the one-literal rule) until an empty clause is derived or there are no unit clauses left.
If a clause is unit, then its single literal must be true under any satisfying assignment.
If {l} is a unit clause of a CNF formula φ, UC consists in deleting all the clauses in φ
with literal l, and removing all the occurrences of literal ¬l in the remaining clauses. If
the empty clause is found, then a conflict indication is returned.

• PureLiteralRule (also referred to as monotone literal rule). A literal is pure if its
complementary literal does not occur in the CNF formula. The satisfiability of a CNF
formula is unaffected by satisfying its pure literals. Therefore, all clauses containing a
pure literal can be removed.

• PickBranchingVariable selects a variable to assign, and its respective value. The
variable selection heuristic is decisive for finding as quick as possible a solution with the
DPLL-based procedures [Sil99]. A bad heuristic can lead to explore the whole search
space, whereas a good heuristic allows us to cut several regions, and even not to traverse
more than a single branch in the best case. The variable is selected and used to split
the CNF formula into two subproblems. There are a lot of heuristic methods for select
the variable to assign [DPBC93, Pre93, Fre95, JW90].

• ConflictAnalysisAndLearning consists in analyzing the most recent conflict, and
learning a new clause from the conflict. During the conflict analysis process, the infor-
mation about the current conflict can be stored using redundant clauses [BS94, BGS99].
These redundant clauses do not change the satisfiability of the original formula, but they
help to prune parts of the search space with similar conflicts. This technique is called
clause learning or conflict driven clause learning.

• NonChronologicalBacktrack backtracks to the decision level computed by Conflic-
tAnalysisAndLearning. The NonChronologicalBacktrack procedure detects the reason
of the conflict and often backtracks to a lower decision level than the previous.

• AllVariablesAssigned tests if all variables have been assigned, in which case the
algorithm terminates indicating a satisfiable result.

The performance of the DPLL-based procedures critically depends upon the care taken
in the implementation. DPLL-based solvers spend much of their time applying unit propaga-
tion [Zha97, LMS05], and this has motivated the definition of several proposals to reduce the
cost of applying unit propagation. The most efficient in the state-of-the-art is the unit propa-
gation algorithm based on the called 2-literal watching scheme, first used in Chaff [MMZ+01].

Finally, in order to avoid getting stuck in hard portions of the search space, most modern
SAT solvers periodically do restarts with the hope of exploring easier successful branches,
but remembering what has been learned. To avoid incompleteness, it suffices to perform
restarts at increasing periods of time (typically counting up to a certain number of conflicts).
But many other types of restart policies have been studied, such as arithmetic o geometric
series over the number of conflicts, or especial series such as the Luby series or Inner-Outer
Geometric series [Hua07, RS08].
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4.1.2 (Weighted) MaxSAT Algorithms

In recent years several methods have been described to solve (Weighted) MaxSAT (defined
in 2.2.1).

A first approach could consist in reifying the soft clauses into Boolean variables, i.e.,
reflect the satisfaction of each soft clause into Boolean variable. These Boolean variables can
be considered as pseudo-Boolean, i.e., {0, 1} integer variables, corresponding 0 to false and 1
to true. The objective function in the case of MaxSAT is the sum of these pseudo-Boolean
variables and in the case of Weighted MaxSAT the sum of products of the pseudo-Boolean
variable by the corresponding clause weight. In both cases we must minimize the objective
function.

Another possibility widely used in recent times (winning in several categories of the last
SAT competitions) is to achieve the optimal solution using unsatisfiability cores (UNSAT
cores). We look in some more detail to this kind of algorithms since the use of these methods
for SMT is one of the thesis contributions.

UNSAT Core Based Algorithms

Definition 4.1.1 An unsatisfiable core is an unsatisfiable subset of clauses of the original
CNF.

There are several algorithms for computing smaller unsatisfiable cores of propositional
formulas [ZM03, DHN06, ZLS06].

Currently there are a large number of UNSAT core based algorithms and numerous vari-
ants of each. Next we describe the more relevant ones related to this thesis:

• PM1 was proposed in [FM06] for the Partial MaxSAT problem. This algorithm consists
in iteratively calling a SAT solver on a working formula φ (see Algorithm 2).

First of all, the SAT solver will check if the formula is satisfiable or not, and in case to
be unsatisfiable, it will return an unsatisfiable core (φc). At this point the algorithm will
create as many new variables (BV ), called blocking variables, as soft clauses appearing
in the returned core. Then, the new working formula φ will consist of the previous φ
where a blocking variable is added to each clause of the returned core, plus a cardinality
constraint to ensure that exactly one of the new blocking variables should be true:
CNF (

∑
b∈BV ite(b; 1; 0) = 1). Finally, it will increase the counter of falsified clauses

(cost) by one. This procedure will be applied until the SAT solver finds a satisfiable
formula.

Example 14 Let us consider a Partial MaxSAT instance φ having the following clauses:
{(x), (y), (z), [¬x∨¬y], [x∨¬z], [y∨¬z]}. We show the application of the PM1 algorithm
on φ in Figure 4.1.

Hard clauses are represented between square brackets, and soft clauses are represented
between round brackets.

• WPM1 was proposed in [ABL09] for the Weighted MaxSAT. This is the weighted
version of the PM1 (see Algorithm 3).
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Algorithm 2 PM1 Algorithm

Input: φ : CNF formula
Output: Cost of φ
cost← 0
while true do

(st, φc)← SAT ALGORITHM (φ)
if st = SAT then

return cost
else
BV ← ∅
for all C ∈ φc do

if isSoft(C) then
b← New variable()
φ← φ \ {C} ∪ {(C ∨ b)}
BV ← BV ∪ {b}

end if
end for
if BV = ∅ then

return UNSAT
end if
φ← φ ∪ CNF (

∑
b∈BV ite(b; 1; 0) = 1)

cost← cost+ 1
end if

end while

1st. iter. 2nd. Iter. 3rd. iter.
Clauses Clauses Clauses

x x ∨ b1 x ∨ b1 ∨ b3
y y y ∨ b4
z z ∨ b2 z ∨ b2 ∨ b5

¬x ∨ ¬y ¬x ∨ ¬y ¬x ∨ ¬y
x ∨ ¬z x ∨ ¬z x ∨ ¬z
y ∨ ¬z y ∨ ¬z y ∨ ¬z

CNF (b1 + b2 = 1) CNF (b1 + b2 = 1)

CNF (b3 + b4 + b5 = 1)

cost = 0 cost = 1 cost = 2

Figure 4.1: Application of the PM1 algorithm on the Partial MaxSAT formula
{(x), (y), (z), [¬x ∨ ¬y], [x ∨ ¬z], [y ∨ ¬z]}. UNSAT cores of each stage are underlined.

In this algorithm, when the SAT solver returns an unsatisfiable core (φc), we calculate
the minimum weight of the soft clauses of φc (wmin in the algorithm). Then, we trans-
form the working formula φ in the following way: we duplicate the core, having on one
of the copies, the clauses with weight wi−wmin (the original weight minus the minimum
weight); and on the other copy, we add the blocking variables (BV) and the minimum
weight to the clauses. Note that when wi − wmin = 0 the clause (Ci, wi − wmin) is not
added. Finally we add the cardinality constraint on the blocking variables, and we add
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wmin to the cost.

Algorithm 3 WPM1 Algorithm

Input: φ = {(C1, w1), . . . , (Cn, wn)} : CNF formula
Output: Cost of φ
cost← 0
while true do

(st, φc)← SAT ALGORITHM ({Ci | (Ci, wi) ∈ φ})
if st = SAT then

return cost
else
BV ← ∅
wmin ← min{wi |Ci ∈ φc ∧ isSoft(Ci)}
for all Ci ∈ φc do

if isSoft(Ci) then
b← New variable()
φ← φ \ {(Ci, wi)} ∪ {(Ci, wi − wmin)} ∪ {(Ci ∨ b, wmin)}
{when wi − wmin = 0 the clause (Ci, wi − wmin) is not added}
BV ← BV ∪ {b}

end if
end for
if BV = ∅ then

return UNSAT
end if
φ← φ ∪ {(C,∞)|C ∈ CNF (

∑
b∈BV ite(b; 1; 0) = 1)}

cost← cost+ wmin
end if

end while

Example 15 Let us consider a Weighted MaxSAT instance φ having the following
clauses: {(x, 1), (y, 2), (z, 3), (¬x ∨ ¬y,∞), (x ∨ ¬z,∞), (y ∨ ¬z,∞)}. We show the ap-
plication of the WPM1 algorithm on φ in Figure 4.2.

• PM2 was also proposed in [ABL09]. It is an improvement of PM1 where only one
blocking variable is used for each soft clause.

4.2 SMT

Satisfiability Modulo Theories (SMT) (defined in 2.4) is an extension of SAT where the
propositional symbols of the formula can be elements of a background theory instead of
boolean variables, for instance a linear integer inequality like 3x+ 2y ≥ 3z.

In this section we first explain the two approaches used in SMT solvers. Then we introduce
the most common theories and logics used in SMT. Finally we briefly explain the existing
work in (Weighted) MaxSMT.
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1st. iter. 2nd. iter. 3rd. iter. 4th. iter.
Clauses W. Clauses W. Clauses W. Clauses W.

x 1
y 2 y 2

z 3 z 2
x ∨ b1 1 x ∨ b1 1
z ∨ b2 1 z ∨ b2 1 z ∨ b2 1

y ∨ b3 2 y ∨ b3 1

z ∨ b4 2 z ∨ b4 1
x ∨ b1 ∨ b5 1
y ∨ b3 ∨ b6 1
z ∨ b4 ∨ b7 1

¬x ∨ ¬y ∞ ¬x ∨ ¬y ∞ ¬x ∨ ¬y ∞ ¬x ∨ ¬y ∞
x ∨ ¬z ∞ x ∨ ¬z ∞ x ∨ ¬z ∞ x ∨ ¬z ∞
y ∨ ¬z ∞ y ∨ ¬z ∞ y ∨ ¬z ∞ y ∨ ¬z ∞

CNF (b1 + b2 = 1) ∞ CNF (b1 + b2 = 1) ∞ CNF (b1 + b2 = 1) ∞
∞ CNF (b3 + b4 = 1) ∞ CNF (b3 + b4 = 1) ∞

CNF (b5 + b6 + b7 = 1) ∞
cost = 0 cost = 1 cost = 3 cost = 4

Figure 4.2: Application of the WPM1 algorithm on the Weighted CNF
{(x, 1), (y, 2), (z, 3), (¬x ∨ ¬y,∞), (x ∨ ¬z,∞), (y ∨ ¬z,∞)}. UNSAT cores of each stage are
underlined.

4.2.1 Eager and Lazy SMT Approaches

There are two types of procedures for solving SMT, the so-called eager and the lazy ap-
proaches. In the eager approach, the input formula is fully translated into a propositional
CNF formula, in a single step and preserving satisfiability, which is then checked whether is
satisfiable or not by a SAT solver. Sophisticated ad-hoc translations have been developed for
several theories, but still, on many practical problems either the translation process or the
SAT solver run out of time or memory [dMR04].

Currently most successful SMT solvers are based on a lazy approach, the integration of
a SAT solver and a T -solver, that is, a decision procedure for the given theory T . In this
approach, while the SAT solver is in charge of the Boolean component of reasoning, the T -
solver deals with sets of atomic constraints (literals) in T . The basic idea is to let the T -solver
analyze the partial truth assignment that the SAT solver is building, and warn about conflicts
with theory T (T -inconsistency). This way, we are hopefully getting the best of both worlds:
in particular, the efficiency of the SAT solver for the Boolean reasoning and the efficiency
of special-purpose algorithms inside the T -solver for the theory reasoning. This approach is
usually orders of magnitude faster than the eager approach. It is called lazy because the
theory information is only used from time to time, when checking the consistency of the truth
assignment with theory T .

Algorithm 4 shows a simplified version of an enumeration-based T -satisfiability procedure
(from [BCF+06]) where T -consistency is only checked for total Boolean assignments. We refer
the reader to [Seb07] for a survey on the lazy SMT approach.

The algorithm enumerates the Boolean models of the propositional abstraction of the
SMT formula ϕ and checks for their satisfiability in the theory T .

• The function Atoms takes a quantifier-free SMT formula ϕ and returns the set of atoms
which occur in ϕ, where an atom is either a propositional variable or an expression of
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Algorithm 4 Bool+T Algorithm

Input: ϕ : SMT formula
Output: Satisfiability of ϕ
Ap ← T2B(Atoms(ϕ));
ϕp ← T2B(ϕ);
while Bool -satisfiable(ϕp) do
µp ← pick total assignment(Ap, ϕp);
µ← B2T (µp);
(ρ, π)← T -satisfiable(µ);
if ρ = sat then

return sat;
else
ϕp ← ϕp ∧ ¬T2B(π);

end if ;
end while
return unsat;

theory T .

• The function T2B maps propositional variables to themselves, and ground atoms into
fresh propositional variables, and is homomorphic with respect to Boolean operators
and set inclusion. ϕp is initialized to be the propositional abstraction of ϕ using T2B.

• The function B2T is the inverse of T2B.

• µp denotes a propositional assignment as a set (conjunction) of propositional literals.

• The function pick total assignment returns a total assignment to the propositional
variables in ϕp. In particular, it assigns a truth value to all variables in Ap.

• The function T -satisfiable checks if a set of conjuncts µ is T -satisfiable, i.e., if there
is a model for T ∪ µ, returning (sat,∅) in the positive case and (unsat,π) otherwise,
being π ⊆ µ a T -unsatisfiable set (the theory conflict set). Note that the negation of
the propositional abstraction of π is added to ϕp in case of unsat (learning).

We illustrate Algorithm 4 with Example 16.

Example 16 Consider the following SMT formula, expressed as a set of clauses, where T is
assumed to be the theory of linear integer arithmetic:

ϕ = {¬(x > 0) ∨ a ∨ b,
¬a ∨ ¬b,
¬(x+ 1 < 0) ∨ a,
¬b ∨ ¬(y = 1)}

Then {x > 0, a, b, x+ 1 < 0, y = 1} is its set of atoms and

Ap = {p(x>0), a, b, p(x+1<0), p(y=1)}
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is the Booleanization of this set, where p(x>0), p(x+1<0) and p(y=1) are three fresh propositional
variables corresponding to the arithmetic atoms x > 0, x+ 1 < 0 and y = 1, respectively. The
propositional abstraction of ϕ is then the following Boolean formula:

ϕp = {¬p(x>0) ∨ a ∨ b,
¬a ∨ ¬b,
¬p(x+1<0) ∨ a,
¬b ∨ ¬p(y=1)}

It is not hard to see that ϕp is satisfiable. Suppose that pick total assignment(Ap,ϕp) returns
us the following Boolean model for ϕp:

µp = {p(x>0), a,¬b, p(x+1<0),¬p(y=1)}

Now we need to check the T -satisfiability of B2T (µp). Since we are interested in checking
the consistency of the current Boolean assignment with theory T , here we only need to take
into account the literals corresponding to the theory, i.e., we have to check the T -satisfiability
of {x > 0, x + 1 < 0,¬(y = 1)}. This is obviously T -unsatisfiable, so we get a subset of
T -inconsistent literals from the T -solver, e.g., π = {x > 0, x+ 1 < 0}, and we extend ϕp with
the learned clause, namely ¬p(x>0) ∨ ¬p(x+1<0). Then the search starts again.

In practice, the enumeration of Boolean models is carried out by means of efficient imple-
mentations of the DPLL algorithm [ZM02], where the partial assignments µp are incrementally
built. These systems benefit of the spectacular progress in performance from SAT solvers in
the last decade, achieved thanks to better implementation techniques and conceptual enhance-
ments, which have been partially described in Section 4.1.1. Adaptations of SAT techniques
to the SMT framework have been described in [SS06].

An important improvement consists on checking the T -satisfiability of partial assignments,
in order to anticipate possible conflicts. Theory deduction can be used to reduce the search
space by explicitly returning truth values for unassigned literals, as well as constructing and
learning implications. The deduction capability is a very important aspect of theory solvers,
since getting short explanations (conflict sets) from the theory solver is essential in order
to keep the learned lemmas as short as possible. Apart from saving memory space, shorter
lemmas will allow for more pruning in general.

In the approach presented so far, the T -solver provides information only after a T -
inconsistent partial assignment has been generated. In this sense, the T -solver is used only to
validate the search a posteriori, not to guide it a priori. In order to overcome this limitation,
the T -solver can also be used to detect literals l occurring in ϕ such that M |=T l, where M
is a partial assignment of ϕ. This is called theory propagation.

Finally, as it happens in SAT solving, most SMT solvers do restart periodically in order
to try to explore easier successful branches.

4.2.2 Theories and Logics

The Satisfiability Modulo Theories Library (SMT-LIB) [BST10a] has the goal of establishing
a common standard for the specification of benchmarks and of background theories, as well
as to establish a library of benchmarks for SMT. The Satisfiability Modulo Theories Compe-
tition (SMT-COMP) is an associated yearly competition for SMT solvers. Among the logics
considered in the SMT-LIB there are:
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• QF UF: the quantifier-free fragment of first order logic with equality and no restrictions
on the signature (hence the name UF for Uninterpreted Functions). The theory of
Equality and Uninterpreted Functions (EUF, or simply UF) is also known as the empty
theory, as far as we are concerned with first order logic with equality (i.e., with equality
built-in). If Γ is a set of equalities and ∆ is a set of disequalities, then the satisfiability
of Γ ∪∆ in QF UF can be determined as follows [NO80]:

– Let τ be the set of terms appearing in Γ ∪∆.

– Let∼ be the equivalence relation on τ induced by Γ i.e., its closure under reflexivity,
symmetry and transitivity.

– Let ∼∗ be the congruence closure of ∼, obtained by closing ∼ with respect to the
congruence axiom s = t→ f(s) = f(t), where s and s are vectors of symbols.

– Γ ∪∆ is satisfiable iff for each s 6= t ∈ ∆, s 6∼∗ t.

It is possible (and sometimes preferable) to eliminate all uninterpreted function symbols
by means of Ackermann’s reduction [Ack54]. In Ackermann’s reduction, each applica-
tion f(a) is replaced by a variable fa, and for each pair of applications f(a), f(b) the
formula a = b→ fa = fb is added, i.e., the single theory axiom x = y → f(x) = f(y) of
the theory becomes instantiated as necessary.

• Linear Arithmetic over the integers (QF LIA) or the reals (QF LRA). Closed quanti-
fier-free formulas with Boolean combinations of inequations between linear polynomials
over integer (real) variables, e.g., (3x+ 4y ≥ 7)→ (z = 3) where x, y and z are integer
variables. These inequalities can be placed in a normal form c0 +

∑n
i=1 ci ∗xi ≤ 0, where

each ci is a rational constant and the variables xi are integer (real) variables. The most
common approaches for solving linear arithmetic (real and integer variables) are based
on the Simplex method. A description of a QF LIA and a QF LRA solver can be found
in [DdM06a].

• Difference Logic over the integers (QF IDL) or the reals (QF RDL). Fragment of linear
arithmetic in which arithmetic atoms are restricted to have the form x−y ./ k, where x
and y are numeric (integer or real) variables, k is a numeric (integer or real) constant and
./ ∈ {=, <,>,≤,≥}. In the usual solving method, first of all, the atoms are rewritten
in terms of ≤. Then, the resulting atoms can be represented as a weighted directed
graph with variables as vertices and edges from x to y labeled with k for every atom

x− y ≤ k. A formula is unsatisfiable iff there exists a path x1
k1−→ x2 . . . xn

kn−→ x1 such
that k1 + k2 + · · ·+ kn < 0. A description of a QF RDL solver can be found in [NO05].

• Non-linear Arithmetic over the integers (QF NIA) or the reals (QF NRA). Quanti-
fier free integer or real arithmetic with no linearity restrictions, i.e., with clauses like
(3xy > 2 + z2) ∨ (3xy = 9) where x, y and z are variables. A possible technique
to check the satisfiability of these formulas is to transform the problem into a linear
approximation [BLO+12].

• Arrays (QF AX). Closed quantifier-free formulas over the theory of arrays with exten-
sionality. The signature of this theory consists of two interpreted function symbols:
read, used to retrieve the element stored at a certain index of the array, and write,
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used to modify an array by updating the element stored at a certain index. The axioms
of the theory of arrays are:

∀a : Array, ∀i, j : Index,∀x : V alue
i = j ⇒ read(write(a, i, x), j) = x
i 6= j ⇒ read(write(a, i, x), j) = read(a, j)

Finally, the extensionality axiom states that two arrays that coincide on all indices are
indeed equal:

∀a, b : Array
(∀i : Index read(a, i) = read(b, i)) ⇒ a = b

A possible approach to decide the satisfiability of ground literals in this theory is to
transfer the atoms to the Equality and Uninterpreted Functions theory. Other ap-
proaches are based on a careful analysis of the problem that allows to infer, for each
array, which are the relevant indices and which values are stored at these indices of the
array [SBDL01, BNO+08a].

• Bit vectors (QF BV). Closed quantifier-free formulas over the theory of fixed-size bit
vectors. Bit vectors are normally used for representing memory contents. Common
operations are: extraction of a sequence of bits, concatenation, arithmetic operations
(+, −, ∗, . . . ), bit-wise operations (and, or, not, . . . ), etc. State-of-the-art methods
for checking the satisfiability of a given bit vector formula are based on reduction to
SAT (bit-blasting). Each bit vector is encoded into a set of Boolean variables and the
operators are encoded into logical circuits [BKO+07].

• Other theories. In the literature we can find some other theories of interest not con-
sidered in the SMT-LIB, such as the Alldifferent theory [BM10] and the teory of
costs [CFG+10].

The expressivity of each of these logics has its corresponding computational price. Check-
ing consistency of a set of IDL constraints has polynomial time complexity whereas checking
consistency of a set of LIA constraints is NP-complete.

Combination of Theories

Many natural SMT problems contain atoms from multiple theories. When dealing with two
or more theories, a standard approach is to handle the integration of the different theories by
performing some sort of search on the equalities between their shared (or interface) variables.
First of all, formulas are purified by replacing terms with fresh variables, so that each literal
only contains symbols belonging to one theory. For example,

a(1) = x+ 2

is translated into

a(v1) = v2

v1 = 1

v2 = x+ 2



42 CHAPTER 4. SAT AND SMT

where the first literal belongs to UF, and the last two to LIA. Variables v1 and v2 are
then called interface variables, as they appear in literals belonging to different theories.
An interface equality is an equality between two interface variables. All theory combina-
tion schemata, e.g., Nelson-Oppen [NO79], Shostak [Sho84], or Delayed Theory Combination
(DTC) [BBC+06], rely to some point on checking equality between interface variables, in or-
der to ensure mutual consistency between theories. This may imply to assign a truth value to
all the interface equalities. Since the number of interface equalities is given by |V| ·(|V|−1)/2,
where |V| is the number of interface variables, the search space may be enlarged in a quadratic
factor in the number of interface variables.

In the case of combining UF with another theory T , an alternative approach is to elim-
inate the uninterpreted function symbols by means of Ackermann’s reduction [Ack54], and
then solving the resulting SMT problem only with theory T . However, this has the same
disadvantage as theory combination since the number of additional literals is quadratic in the
size of the input and, in fact, as shown in [BCF+06], there is no clear winner between DTC
and Ackermannization.

4.2.3 (Weighted) MaxSMT Algorithms

In contrast to (Weighted) MaxSAT, not too much work has been done in (Weighted) MaxSMT
(defined in 2.4.1) mostly because SMT is a newer field compared to SAT. A few years ago
only two SMT solvers, Z3 and Yices1, can deal with (Weighted) MaxSMT. While the first one
only supports MaxSAT by means of an implementation of the PM1 algorithm, the second one
supports Weighted MaxSMT by means of an implementation of a non exact and incomplete
algorithm. Currently, there is a bit more work done. For instance, using the theory of
costs [CFG+10] as a background theory of the SMT solver, combining a MaxSAT solver
and an SMT solver to deal with Weighted MaxSMT [CGSS13b]or an extension of Z3 for
optimization and Weighted MaxSMT called νZ [BPF15].



Chapter 5

A comparison of CP and SMT
solvers on standard CSP
benchmarks

There exists a lot of languages for modelling CSPs, but one of the most used, which
could be considered as an standard, is MINIZINC [Nic07]. MINIZINC is a high-level declarative
language for modelling CSPs, which is reformulated into a lower-level solver input language
called FLATZINC.

In this chapter we introduce fzn2smt, a tool for translating FLATZINC instances of CSPs to
the standard SMT-LIB language (version 1.2). We provide extensive performance comparisons
between state-of-the-art SMT solvers and most of the available FLATZINC solvers on standard
FLATZINC problems.

We want to remark that fzn2smt has been developed in parallel with WSimply, but the
idea behind both tools is a bit different. The fzn2smt tool has been developed with the
purpose of comparing the performance of SMT solvers with respect to other CP solvers. To
be fair the systems must read the same models, which is done using the FLATZINC language.
In addition, we want to show and demonstrate that SMT solvers are competitive with state-
of-the-art CP solvers. In contrast, the idea behind WSimply, which shares a similar purpose,
is to have a complete control of the reformulation from a high-level language into SMT, which
allows us to easily extend the language, for instance by introducing meta-constraints (as we
will see in next chapter), but it also allows us to easily integrate new SMT solving algorithms,
for instance to perform optimization with SMT, e.g. with weighted clauses.

This chapter is based on results from [BPSV12] and it is organised as follows. We will
first introduce the MINIZINC and FLATZINC languages, then we will present the architecture
of fzn2smt, the reformulation from FLATZINC into SMT, experimental results and analysis
of the performance of fzn2smt with state-of-the-art CP solvers and finally, we present some
conclusions.

5.1 MINIZINC and FLATZINC

MINIZINC [Nic07] aims to be a standard language for specifying CSPs (with or without op-
timization) over Booleans, integers and real numbers. It is a mostly declarative constraint
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modelling language, although it provides some facilities such as annotations for specifying,
e.g., search strategies, that can be taken into account by the underlying solver. One of the
most appealing features of MINIZINC is that it can be easily mapped onto different existing
solvers, by previously compiling its model and data files into FLATZINC instances. FLATZINC

is a low-level solver input language, for which there exist front-ends for several solvers, such as
Gecode [SLT10], ECLiPSe [AW07], SICStus Prolog [Sic10], JaCoP [Jac10] and SCIP [Sci10],
apart from a number of solvers developed by the G12 research team.

Example 17 MINIZINC instance of the well-known Job-shop problem, where we want to
schedule n jobs of different durations, using m identical machines, running only one job
per machine at the same time and minimizing the total length of the schedule. In this toy
instance we use 2 jobs and 2 machines. We will use this example later on to illustrate the
translation process of fzn2smt.

Data file:

size = 2; d = [| 2,5 | 3,4 |];

Model file:

int: size; % size of problem, number of jobs and machines

array [1..size,1..size] of int: d; % task durations

int: total = sum(i,j in 1..size) (d[i,j]); % total duration

array [1..size,1..size] of var 0..total: s; % start times

var 0..total: end; % total end time

predicate no_overlap(var int:s1, int:d1, var int:s2, int:d2) =

s1 + d1 <= s2 \/ s2 + d2 <= s1;

constraint

forall(i in 1..size) (

forall(j in 1..size-1) (s[i,j] + d[i,j] <= s[i,j+1]) /\

s[i,size] + d[i,size] <= end /\

forall(j,k in 1..size where j < k) (

no_overlap(s[j,i], d[j,i], s[k,i], d[k,i])

)

);

solve minimize end;

FLATZINC instances are simply a list of variable declarations and flat constraints (without
foralls, exists and list comprehensions), plus (possibly) a variable to optimize. The MINIZINC

to FLATZINC translation has two parts (see [Nic07] for details):

• Flattening, where several reductions (built-ins evaluation, list comprehensions unrolling,
fixed array accesses replacement, etc.) are applied until a fix-point is reached.

• Post-flattening, where several normalisation is done. For example, for Boolean ex-
pressions that are not top-level conjunctions, each sub-expression is replaced by a new
Boolean variable, and constraints equating these new variables with the sub-expressions
they replaced are added (and similarly for non-linear numeric expressions).
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Example 18 This is the FLATZINC instance resulting from translating the MINIZINC instance
of Example 17.

var bool: BOOL____1;

var bool: BOOL____2;

var bool: BOOL____3 = true;

var bool: BOOL____4;

var bool: BOOL____5;

var bool: BOOL____6 = true;

array [1..4] of int: d = [2, 5, 3, 4];

var 5..14: end;

array [1..4] of var 0..14: s;

constraint array_bool_or([BOOL____1, BOOL____2], BOOL____3);

constraint array_bool_or([BOOL____4, BOOL____5], BOOL____6);

constraint int_lin_le([-1, 1], [end, s[2]], -5);

constraint int_lin_le([-1, 1], [end, s[4]], -4);

constraint int_lin_le([1, -1], [s[1], s[2]], -2);

constraint int_lin_le([1, -1], [s[3], s[4]], -3);

constraint int_lin_le_reif([1, -1], [s[1], s[3]], -2, BOOL____1);

constraint int_lin_le_reif([-1, 1], [s[1], s[3]], -3, BOOL____2);

constraint int_lin_le_reif([1, -1], [s[2], s[4]], -5, BOOL____4);

constraint int_lin_le_reif([-1, 1], [s[2], s[4]], -4, BOOL____5);

solve minimize end;

Note that arithmetic expressions have been encoded as linear constraints with the int lin le

constraint.

The G12 MINIZINC distribution [G1210] is accompanied with a comprehensive set of bench-
marks. Moreover, in the MINIZINC challenge [SBF10], which is run every year since 2008 with
the aim of comparing different solving technologies on common benchmarks, all entrants are
encouraged to submit two models each with a suite of instances to be considered for inclusion
in the challenge.

5.2 Architecture of fzn2smt

Our tool is diagrammatically represented in Fig. 5.1, through the process of compiling and
solving FLATZINC instances. Shaded boxes (connected by dashed lines) denote inputs and
outputs, rounded corner boxes denote actions and diamond boxes denote decisions.

The input of the compiler is a FLATZINC instance which we assume to come from the
translation of a MINIZINC one. Hence we are dealing with “safe” FLATZINC instances, e.g., we
don’t care about out of bounds array accesses. We are also assuming that all global constraints
have been reformulated into FLATZINC constraints with the default encoding provided by the
MINIZINC distribution.

The input FLATZINC instance is translated into SMT (in the standard SMT-LIB language
v1.2) and fed into an SMT solver. As a by-product, fzn2smt generates the corresponding
SMT instance as an output file. Due to the large number of existing SMT solvers, each
one supporting different combinations of theories, the user can choose which solver to use
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(default being Yices 2). The background theory is determined by fzn2smt depending on the
constraints of the instance.

The FLATZINC language has three solving options: solve satisfy, solve minimize obj
and solve maximize obj, where obj is either the name of a variable v or a subscripted array
variable v[i], where i is an integer literal. Since optimization is supported neither in the
SMT-LIB language nor by most SMT solvers, we have naively implemented it by means of
iterative calls successively restricting the domain of the variable to be optimized (as explained
in detail in section 5.3.3). Notice from the diagram of Fig. 5.1 that when, after restricting the
domain, the SMT solver finds that the problem is not satisfiable anymore, the last previously
saved (and hence optimal) solution is recovered. Moreover, since there is no standard output
format supported by SMT solvers (using the SMT-LIB language v1.2),1 we need a specialized
recovery module for each solver in order to translate its output to the FLATZINC output format.
Currently, fzn2smt can recover the output from Yices 1.0.28 [DdM06b], Yices 2 Prototype,
Barcelogic 1.3 [BNO+08b], Z3.2 [dMB08] and MathSat 5 [BCF+08] SMT solvers.

compile solve sat?
save

solution
opti-
mize?

restrict
domain

SMT
output

recover
FLATZINC

output

FLATZINC

instance

SMT
instance

no

yes

yes

no

Figure 5.1: The compiling and solving process of fzn2smt using linear search.

5.3 Reformulation

Since we are translating FLATZINC instances into SMT, we have to keep in mind two important
considerations: on the one hand we have a much richer language than plain SAT, thanks to
the theories, and this will allow for more direct translations. On the other hand, in order to
take advantage of the SMT solving mechanisms, the more logical structure the SMT formula
has, the better. In particular, it will be better to introduce clauses instead of expressing
disjunctions arithmetically.

A FLATZINC file consists of

1. a list of constant and (finite domain) variable declarations,

2. a list of flat constraints, and

1There are even solvers that only return sat, unsat or unknown. A proposal of a standard format for
solutions has been proposed in the SMT-LIB Standard v2.0 [BST10b].
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3. a solve goal.

Here we describe the translation of these three basic ingredients.

5.3.1 Constant and Variable Declarations

FLATZINC has two categories of data: constants (also called parameters) and variables (typi-
cally with an associated finite domain). Data can be of any of three scalar types: Booleans,
integers and floats, or of any of two compound types: sets of integers and one-dimensional
(1..n)-indexed arrays (multi-dimensional arrays are flattened to arrays of one dimension in
the translation from MINIZINC to FLATZINC). Scalar type domains are usually specified by a
range or a list of possible values. Our translation of FLATZINC constants and variables goes
as follows:

• Scalar type constant names are always replaced by their corresponding value.

• Scalar type variable declarations are translated into their equivalent variable declaration
in SMT, plus some constraints on the possible values of the SMT variable in order to
fix the domain. For example, var 0..14: x is translated into the SMT declaration of
the integer variable x plus the constraints x ≥ 0, x ≤ 14, whereas var {1,3,7}: x

is translated into the SMT declaration of the integer variable x plus the constraint
x = 1 ∨ x = 3 ∨ x = 7.

Although SMT solvers are able to deal with arbitrarily large integers (as well as with
arbitrary precision real numbers), for unrestricted domain integer variables we assume
the G12 FLATZINC interpreter default domain range of -10000000..10000000, i.e., we
add the constraints x ≥ −10000000, x ≤ 10000000 for every unrestricted integer variable
x. This way, the results obtained by our system are consistent with the ones obtained
by other tools.

• The domain of a FLATZINC set of integers is specified either by a range or by a list of
integers. For this reason, we simply use an occurrence representation by introducing
a Boolean variable for every possible element, which indicates whether the element
belongs to the set or not. This allows for a simple translation into SMT of most of the
constraints involving sets (see the Constraints section below).

However, in order to be able to translate the set cardinality constraint, which implies
counting the number of elements in a set, a 0/1 partner variable is needed for each in-
troduced Boolean variable. For example, given the declaration var set of {2,5,6}:s,
we introduce three Boolean variables s2, s5 and s6, three corresponding integer variables
si2 , si5 and si6 , the constraints restricting the domain of the integer variables

0 ≤ si2 , si2 ≤ 1

0 ≤ si5 , si5 ≤ 1

0 ≤ si6 , si6 ≤ 1

and the constraints linking the Boolean variables with their integer counterpart

s2 → si2 = 1, ¬s2 → si2 = 0

s5 → si5 = 1, ¬s5 → si5 = 0

s6 → si6 = 1, ¬s6 → si6 = 0.
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Hence, the number of SMT variables increases linearly with the size of the domain of
the set. Note also that all introduced clauses are either unary or binary, and hence
facilitate Boolean unit propagation.

For the case of constant sets no variables are introduced at all. Instead, the element
values of the constant set are directly used in the operations involving it, in order to
obtain a simpler encoding.

• For the translation of arrays, we provide two options (which can be chosen by a command
line option):2

– Using uninterpreted functions: each array is translated into an uninterpreted func-
tion of the same name. For example, array[1..3] of var 1..5:a is translated
into a : int 7→ int. The domain of the elements of the array is constrained as in
the scalar case, that is, 1 ≤ a(1), a(1) ≤ 5, 1 ≤ a(2), a(2) ≤ 5, 1 ≤ a(3), a(3) ≤ 5.

– Decomposing the array into as many base type variables as array elements. For
example, the previous array a would be decomposed into three integer variables
a1, a2 and a3, with the domain constrained analogously to before.

In the case of constant arrays, equality is used (instead of two inequalities restricting
the domain) to state the value of each element. If, moreover, an access to a constant
array uses a constant index, we can simply replace that access with its corresponding
value. And, if this is the case for all the accesses to an array, then there is no need for
introducing an uninterpreted function or a set of base type variables to represent the
array.

Regarding the two possible encodings, the use of uninterpreted functions seems to be
more natural, and allows for more compact encodings of array constraints. For example,
to express that some element of the previous array a is equal to 1, we simply write

1 ≤ i, i ≤ 3

a(i) = 1

where i is an integer variable, whereas in the decomposition approach the same state-
ment should be expressed as

1 ≤ i, i ≤ 3

i = 1→ a1 = 1

i = 2→ a2 = 1

i = 3→ a3 = 1.

On the other hand, we have ruled out using the SMT theory of arrays. This theory
involves read and write operations and, hence, is intended to be used for modelling state
change of imperative programs with arrays. But, since it makes no sense thinking of
write operations on arrays in the setting of CP, it suffices to translate every expression
of the form read(a, i) into a(i), where a is an uninterpreted function. Moreover, deciding

2Due to our encoding of the operations on sets, arrays of sets are always decomposed into a number of sets.
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satisfiability of sets of atomic constraints involving uninterpreted functions is far cheaper
than using the arrays theory.

However, the uninterpreted functions approach still has the drawback of using more than
one theory, namely, uninterpreted functions (UF) and linear integer arithmetic (LIA),
and suffers from a non-negligible computational overhead due to theory combination. In
Section 5.4 a performance comparison of the two possible encodings for arrays is given.

5.3.2 Constraints

The second and main block of a FLATZINC file is the set of constraints that a solution must
satisfy. The arguments of these flat constraints can be literal values, constant or variable
names, or subscripted array constants or variables v[i] where i in an integer literal. A literal
value can be either a value of scalar type, an explicit set (e.g., {2,3,5}) or an explicit array
[y1, . . . , yk], where each array element yi is either a non-array literal, the name of a non-array
constant or variable, or a subscripted array constant or variable v[i], where i in an integer
literal (e.g., [x,a[1],3]).

We perform the following translation of constraint arguments prior to translating the
constraints. Constant names are replaced by their value. Scalar type variables are replaced
by their SMT counterpart. Finally, array accesses are translated depending on the chosen
array treatment (see the previous section): when using uninterpreted functions, an array
access v[i] is translated into v(i), where v is an uninterpreted function; when decomposing
the array into base type variables, v[i] is translated into vi (the corresponding variable for that
position of the array). We remark that, in all array accesses v[i], i can be assumed to be an
integer literal, i.e., i cannot be a variable, since all variable subscripted array expressions are
replaced by array element constraints during the translation from MINIZINC to FLATZINC.
Moreover, we don’t need to perform array bounds checks, because this is already done by the
MINIZINC to FLATZINC compiler.

In the following we describe the translation of the constraints, that we have categorized
into Boolean constraints, Integer constraints, Float constraints, Array constraints and Set
constraints.

• Boolean constraints are built with the common binary Boolean operators (and, or,
implies, . . . ) and the relational operators (<, ≤, =, . . . ) over Booleans. All of them
have their counterpart in the SMT-LIB language, and hence have a direct translation.

There is also the bool2int(a,n) constraint, which maps a Boolean variable into a 0/1
integer. We translate it into (a→ n = 1) ∧ (¬a→ n = 0).

• Integer constraints are built with the common relational constraints over integer expres-
sions (hence they are straightforwardly translated into SMT). They also include some
named constraints. Here we give the translation of some representative ones.

The constraint

int lin eq([c1, . . . , cn], [v1, . . . , vn], r)

where c1, . . . , cn are integer constants and v1, . . . , vn are integer variables or constants,
means, and is translated as ∑

i∈1..n

civi = r.
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The minimum constraint int min(a,b,c), meaning min(a, b) = c, is translated as

(a > b→ c = b) ∧ (a ≤ b→ c = a).

The absolute value constraint int abs(a,b), meaning |a| = b, is translated as

(a = b ∨ −a = b) ∧ b ≥ 0.

The constraint int times(a,b,c), that states a · b = c, can be translated into a set of
linear arithmetic constraints under certain circumstances: if either a or b are (uninstan-
tiated) finite domain variables, we linearize this constraint by conditionally instantiating
the variable with the smallest domain, e.g.,

∧
i∈Dom(a)

(i = a→ i · b = c).

In fact, we do it better (i.e., we do not necessarily expand the expression for all the values
of Dom(a)) by considering the domain bounds of b and c, and narrowing accordingly
the domain of a.

Since it is better to use the simplest logic at hand, we use linear integer arithmetic for the
translation if possible, and non-linear integer arithmetic otherwise. Hence, only in the
case that a and b are unrestricted domain variables we translate the previous constraint
as a·b = c and label the SMT instance to require QF NIA (non-linear integer arithmetic
logic).

• Float constraints are essentially the same as the integer ones, but involving float data.
Hence, the translation goes in the same way as for the integers, except that the inferred
logic is QF LRA (linear real arithmetic).

• Array constraints. The main constraint dealing with arrays is element, which restricts
an element of the array to be equal to some variable.

As an example, array var int element(i, a, e) states i ∈ 1..n∧ a[i] = e, where n is
the size of a. The translation varies depending on the representation chosen for arrays
(see the previous section):

– In the uninterpreted functions approach, the translation is

1 ≤ i ∧ i ≤ n ∧ a(i) = e,

where a is the uninterpreted function symbol representing the array a.

– In the decomposition approach, the translation is

1 ≤ i ∧ i ≤ n ∧

 ∧
j∈1..n

i = j → aj = e

 .

Constraints such as array bool and, array bool or or bool clause, dealing with ar-
rays of Booleans, are straightforwardly translated into SMT.
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• Set constraints. These are the usual constraints over sets. We give the translation of
some of them.

The constraint set card(s,k), stating |s| = k, is translated by using the 0/1 variables
introduced for each element (see the previous section) as

∑
j∈Dom(s) sij = k.

The constraint set in(e,s), stating e ∈ s, is translated depending on whether e is
instantiated or not. If e is instantiated then set in(e,s) is translated as se if e is in
the domain of s (recall that we are introducing a Boolean variable se for each element
e in the domain of s), and as false otherwise. If e is not instantiated, then we translate
the constraint as ∨

j∈Dom(s)

(e = j) ∧ sj .

For constraints involving more than one set, one of the difficulties in their transla-
tion is that the involved sets can have distinct domains. For example, the constraint
set eq(a,b), stating a = b, is translated as ∧

j∈Dom(a)∩Dom(b)

aj = bj


∧

 ∧
j∈Dom(a)\Dom(b)

¬aj

 ∧
 ∧
j∈Dom(b)\Dom(a)

¬bj

 .

And the constraint set diff(a,b,c), which states a \ b = c, is translated as ∧
j∈(Dom(a)\Dom(b))∩Dom(c)

aj = cj


∧

 ∧
j∈(Dom(a)\Dom(b))\Dom(c)

¬aj

 ∧
 ∧
j∈Dom(c)\Dom(a)

¬cj


∧

 ∧
j∈Dom(a)∩Dom(b)∩Dom(c)

¬cj


∧

 ∧
j∈(Dom(a)∩Dom(b))\Dom(c)

aj → bj

 .

Although the translation of the set constraints seem to be convoluted, note that we are
mainly introducing unit and binary clauses. We remark that when the sets are already
instantiated at compilation time, some simplifications are actually made. Note also that
the size of the SMT formula increases linearly on the size of the domains of the sets.

Finally, let us mention that almost all FLATZINC constraints have a reified counterpart.
For example, in addition to the constraint int le(a,b), stating a ≤ b, there is a constraint
int le reif(a,b,r), stating a ≤ b ↔ r, where a and b are integer variables and r is a
Boolean variable. In all these cases, given the translation of a constraint, the translation of
its reified version into SMT is direct.
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5.3.3 Solve Goal

A FLATZINC file must end with a solve goal, which can be of one of the following forms: solve
satisfy, for checking satisfiability and providing a solution if possible, or solve minimize

obj or solve maximize obj, for looking for a solution that minimizes or maximizes, respec-
tively, the value of obj (the objective function), where obj is either a variable v or a subscripted
array variable v[i], where i is an integer literal. Although search annotations can be used in
the solve goal, they are currently ignored in our tool.

Algorithm 5 Minimization

Input: SMT inst : SMTinstance;
var : int; // variable to minimize

inf, sup : int; // bounds of the variable to minimize

t : int; // threshold for the hybrid strategy

bs : {linear, binary, hybrid}; // bounding strategy

Output: 〈int, sat|unsat〉
〈sol, status〉 := SMT solve(bound(SMT inst, var, inf , sup));
if status = unsat then

return 〈∞, unsat〉;
else
sup := sol − 1;
while inf ≤ sup do

if (sup− inf ≤ t ∧ bs = hybrid) then
bs := linear;

end if
if bs = linear then
med := sup;

else
med := d(inf + sup)/2e;

end if
〈new sol, status〉 := SMT solve(bound(SMT inst, var, inf , med));
if status = unsat then

if bs = linear then
return 〈sol, sat〉;

else
inf := med+ 1;

end if
else
sol := new sol;
sup := sol − 1;

end if
end while
return 〈sol, sat〉;

end if

When the satisfy option is used, we just need to feed the selected SMT solver with the
SMT file resulting from the translation explained in the previous sections (see Example 19 to
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see a complete SMT-LIB instance generated by fzn2smt). Thereafter the recovery module will
translate the output of the SMT solver to the FLATZINC format (as explained in section 5.2).

We have implemented an ad hoc search procedure in order to minimize or maximize the
objective function. This procedure successively calls the SMT solver with different problem
instances, by restricting the domain of the variable to be optimized with the addition of con-
straints. We have implemented three possible bounding strategies: linear, dichotomic and
hybrid. The linear bounding strategy approaches the optimum from the satisfiable side, i.e.,
bounding the objective function to be less than the upper bound.3 While the dichotomic
strategy simply consists of binary search optimization. Finally, the hybrid strategy makes
a preliminary approach to the optimum by means of binary search and, when a (user de-
finable) threshold on the possible domain of the variable is reached, it turns into the linear
approach, again from the satisfiable side. Both the bounding strategy and the threshold for
the hybrid case can be specified by the user from the command line. Algorithm 5 describes
our optimization procedure, taking into account all bounding strategies, for the minimization
case.

The SMT solve function consists of a call to the SMT solver with an SMT instance.
The bound(SMT inst, var, inf, sup) function returns the SMT instance resulting from
adding the bounds var ≥ inf and var ≤ sup to the SMT instance SMT inst.

We are not keeping learnt clauses from one iteration of the SMT solver to the next since
we are using the SMT solver as a black box. We have also tested an implementation of these
optimization algorithms using the Yices API, which allows keeping the learnt clauses, without
obtaining significantly better results.

Example 19 Continuing Example 18, next we show the SMT-LIB instance produced by
fzn2smt. For the minimization process, we should add the appropriate bounds to the ob-
jective variable end.

(benchmark jobshopp.fzn.smt

:source { Generated by fzn2smt }

:logic QF_IDL

:extrapreds ((BOOL____4) (BOOL____2) (BOOL____1) (BOOL____5))

:extrafuns ((s_1_ Int) (s_2_ Int) (s_3_ Int) (s_4_ Int) (end Int))

:formula (and

(>= end 5)

(<= end 14)

(>= s_1_ 0)

(<= s_1_ 14)

(>= s_2_ 0)

(<= s_2_ 14)

(>= s_3_ 0)

(<= s_3_ 14)

(>= s_4_ 0)

(<= s_4_ 14)

(= (or BOOL____1 BOOL____2) true)

3This allows us to eventually jump several values when we find a new solution. On the contrary, approaching
from the unsatisfiable side is only possible by modifying the value of the variable to optimize in one unit at
each step.
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(= (or BOOL____4 BOOL____5) true)

(<= (+ (~ end) s_2_) (~ 5))

(<= (+ (~ end) s_4_) (~ 4))

(<= (+ s_1_ (~ s_2_)) (~ 2))

(<= (+ s_3_ (~ s_4_)) (~ 3))

(= (<= (+ s_1_ (~ s_3_)) (~ 2)) BOOL____1)

(= (<= (+ (~ s_1_) s_3_) (~ 3)) BOOL____2)

(= (<= (+ s_2_ (~ s_4_)) (~ 5)) BOOL____4)

(= (<= (+ (~ s_2_) s_4_) (~ 4)) BOOL____5)

)

)

5.4 Experimental results

In this section we compare the performance of fzn2smt and that of several existing FLATZINC

solvers on FLATZINC instances, and provide some possible explanations for the fzn2smt be-
haviour. We first compare several SMT solvers within fzn2smt and, afterwards, use the one
with the best results to compare against other existing FLATZINC solvers.

We perform the comparisons on the benchmarks of the three MINIZINC challenge compe-
titions (2008, 2009 and 2010),consisting of a total of 294 instances from 32 problems. These
benchmarks consist of a mixture of puzzles, planning, scheduling and graph problems. Half
of the problems are optimization problems, whilst the other half are satisfiability ones.

We present several tables that, for each solver and problem, report the accumulated time
for the solved instances and the number of solved instances (within parenthesis). The times
are the sum of the translation time, when needed (e.g., fzn2smt translates from FLATZINC

to the SMT-LIB format), plus the solving time. We indicate in boldface the cases with more
solved instances, breaking ties by total time. The experiments have been executed on an Intel
Core i5 CPU at 2.66 GHz, with 6GB of RAM, running 64-bit openSUSE 11.2 (kernel 2.6.31),
with a time limit of 15 minutes per instance (the same as in the competition).

5.4.1 Comparison of SMT solvers within fzn2smt

Here we compare the performance of several SMT solvers which are SMT-LIB 1.2 compliant,
working in cooperation with fzn2smt v2.0.1, on the MINIZINC challenge benchmarks. We
have selected the solvers that historically have had good performance in the QF LIA division
of the annual SMT competition. These are Barcelogic 1.3 [BNO+08b], MathSAT 5 (successor
of MathSAT 4 [BCF+08]), Yices 1.0.28 [DdM06b], Yices 2 Prototype (a prototype version of
Yices 2), and Z3.2 [dMB08]. Linux binaries of most of these solvers can be downloaded from
http://www.smtcomp.org.

In the executions of this subsection we have used the default options for fzn2smt: array
expansion (see Subsection 5.3.1 and binary search for optimization (see Subsection 5.3.3).

In Table 5.1 we can observe that Yices 1.0.28 and Yices 2 are able to solve, respectively,
213 and 212 (out of 294) instances. We consider performance of Yices 2 the best of those
considered because it had the best performance on 19 of the problems, far more than any of
the other solvers.
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Table 5.1: Accumulated time for the solved instances and the number of solved instances
(within parenthesis) of state-of-the-art SMT solvers in cooperation with fzn2smt on the
MINIZINC challenge benchmarks. Type ’s’ stands for satisfaction and ’o’ for optimization. #
stands for the number of instances.

Problem Type # Barcelogic 1.3 MathSAT 5 Yices 1.0.28 Yices 2 proto Z3.2

debruijn-binary s 11 0.60 (1) 0.56 (1) 0.47 (1) 0.50 (1) 0.57 (1)

nmseq s 10 0.00 (0) 568.35 (2) 778. 07 (5) 118.74 (2) 173.84 (5)

pentominoes s 7 0.00 (0) 291.60 (1) 50.47 (2) 168.47 (2) 314.48 (1)

quasigroup7 s 10 34.16 (2) 191.83 (5) 54.94 (5) 20.03 (5) 691.32 (4)

radiation o 9 342.34 (1) 2202.92 (9) 373.24 (9) 1047.03 (9) 2473.27 (9)

rcpsp o 10 0.00 (0) 315.46 (2) 920.08 (8) 993.74 (9) 1791.79 (8)

search-stress s 3 0.84 (2) 1.05 (2) 0.86 (2) 0.74 (2) 0.84 (2)

shortest-path o 10 109.35 (9) 484.73 (8) 658.58 (9) 1419.67 (7) 790.54 (8)

slow-convergence s 10 405.25 (7) 426.79 (7) 269.66 (7) 247.06 (7) 291.99 (7)

trucking o 10 254.11 (5) 31.70 (4) 9. 50 (5) 47.77 (5) 1084.97 (4)

black-hole s 10 511.13 (1) 29.24 (1) 3857.51 (9) 892.46 (8) 765.09 (1)

fillomino s 10 93.87 (10) 30.28 (10) 20.48 (10) 19.99 (10) 21.13 (10)

nonogram s 10 0.00 (0) 0.00 (0) 1656.54 (10) 1546.56 (7) 0.00 (0)

open-stacks o 10 1772.39 (5) 0.00 (0) 702.09 (6) 707.25 (7) 776.61 (6)

p1f o 10 875.54 (8) 86.90 (9) 167.84 (9) 126.01 (9) 184.22 (9)

prop-stress s 10 315.80 (7) 330.31 (7) 266.11 (7) 274.07 (7) 289.23 (7)

rect-packing s 10 559.50 (5) 679.62 (10) 104.82 (10) 106.66 (10) 122.28 (10)

roster-model o 10 98.41 (10) 51.03 (10) 53.89 (10) 50.38 (10) 56.04 (10)

search-stress2 s 10 23.19 (10) 14.63 (10) 9.43 (10) 7.90 (10) 10.55 (10)

still-life o 4 30.64 (3) 132.51 (4) 128.71 (4) 62.18 (4) 173.82 (4)

vrp o 10 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)

costas-array s 5 0.00 (0) 0.00 (0) 675.23 (1) 664.13 (2) 628.83 (1)

depot-placement o 15 2480.74 (5) 2496.69 (10) 613.53 (15) 295.78 (15) 2073.93 (15)

filter o 10 24.02 (6) 38.01 (6) 24.28 (6) 17.88 (6) 22.42 (6)

ghoulomb o 10 0.00 (0) 0.00 (0) 75.87 (1) 2545.02 (6) 508.19 (2)

gridColoring o 5 4.82 (2) 202.18 (3) 857.74 (3) 38.15 (3) 51.94 (3)

rcpsp-max o 10 85.04 (1) 238.34 (2) 533.87 (4) 475.14 (4) 383.73 (4)

solbat s 15 0.00 (0) 1721.73 (15) 341.04 (15) 141.48 (15) 1339.75 (15)

sugiyama2 o 5 79.38 (5) 21.31 (5) 10.26 (5) 8.64 (5) 9.56 (5)

wwtp-random s 5 61.08 (5) 29.72 (5) 17.71 (5) 15.21 (5) 16.56 (5)

wwtp-real s 5 107.57 (5) 39.77 (5) 17.97 (5) 14.47 (5) 17.09 (5)

bacp o 15 1753.26 (14) 232.22 (15) 75.16 (15) 64.17 (15) 97.51 (15)

Total 294 10023 (129) 10889 (168) 13325 (213) 12137 (212) 15162 (192)
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Array encodings

In Table 5.2 we compare the performance of using array decomposition versus uninterpreted
functions as array encodings. We only give the results for Yices 2 proto, which is the solver
with the best performance in the executions of Table 5.1 (where array decomposition was
used as default option).

Table 5.2: Accumulated time for the solved instances and the number of solved instances
(within parenthesis) of Yices 2 solver using array decomposition vs uninterpreted functions
(UF). Type ’s’ stands for satisfaction and ’o’ for optimization. # stands for the number of
instances.

Problem Type # Decomposition UF

debruijn-binary s 11 0.50 (1) 0.74 (1)

nmseq s 10 118.74 (2) 83.51 (2)

pentominoes s 7 168.47 (2) 197.22 (1)

quasigroup7 s 10 20.03 (5) 336.59 (5)

radiation o 9 1047.03 (9) 2360.85 (9)

rcpsp o 10 993.74 (9) 695.84 (8)

search-stress s 3 0.74 (2) 0.84 (2)

shortest-path o 10 1419.67 (7) 1068.03 (4)

slow-convergence s 10 247.06 (7) 522.42 (3)

trucking o 10 47.77 (5) 39.67 (5)

black-hole s 10 892.46 (8) 0.00 (0)

fillomino s 10 19.99 (10) 19.21 (10)

nonogram s 10 1546.56 (7) 0.00 (0)

open-stacks o 10 707.25 (7) 1729.37 (5)

p1f o 10 126.01 (9) 25.49 (8)

prop-stress s 10 274.07 (7) 262.95 (7)

rect-packing s 10 106.66 (10) 112.10 (10)

roster-model o 10 50.38 (10) 51.01 (10)

search-stress2 s 10 7.90 (10) 9.74 (10)

still-life o 4 62.18 (4) 97.39 (4)

vrp o 10 0.00 (0) 0.00 (0)

costasArray s 5 664.13 (2) 151.60 (1)

depot-placement o 15 295.78 (15) 2651.71 (10)

filter o 10 17.88 (6) 23.12 (6)

ghoulomb o 10 2545.02 (6) 707.74 (2)

gridColoring o 5 38.15 (3) 335.10 (3)

rcpsp-max o 10 475.14 (4) 498.89 (4)

solbat s 15 141.48 (15) 567.69 (15)

sugiyama2 o 5 8.64 (5) 9.04 (5)

wwtp-random s 5 15.21 (5) 34.67 (5)

wwtp-real s 5 14.47 (5) 28.82 (5)

bacp o 15 64.17 (15) 77.85 (15)

Total 294 12137 (212) 12699 (175)
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As shown in Table 5.2, the decomposition approach clearly outperforms the uninterpreted
functions approach on FLATZINC instances from the MINIZINC distribution. We have also
tested other SMT solvers than Yices, obtaining similar results. This apparently strange
behaviour is better understood when looking at how SMT solvers deal with uninterpreted
functions (see Section 4.2.2) and, in particular, how this behaves on the instances generated
by our tool.

It is worth noting that current SMT solvers have been designed mainly to deal with
verification problems, where there are few input parameters and almost all variable values
are undefined. In such problems, uninterpreted functions are typically used to abstract pieces
of code and, hence, their arguments are variables (or expressions using variables). Moreover,
the number of such abstractions is limited. This makes Ackermannization feasible in practice.
On the contrary, in the instances we are considering, we have the opposite situation: a lot of
parameters and a few decision variables. In particular, most arrays are parameters containing
data. For example, in a scheduling problem, a FLATZINC array containing durations of tasks,
such as

array[1..100] of int: d = [2,5,...,4];

could be expressed using an SMT uninterpreted function as follows:

d(1) = 2

d(2) = 5

. . .

d(100) = 4.

Similarly, for an undefined array containing, e.g., starting times, such as

array[1..100] of var 0..3600: s;

we could use an uninterpreted function, and state its domain as follows:

0 ≤ s(1), s(1) ≤ 3600

0 ≤ s(2), s(2) ≤ 3600

. . .

0 ≤ s(100), s(100) ≤ 3600.

In any case, lots of distinct uninterpreted function applications appear, and Ackermannization
results in a quadratic number of formulas like 1 = 2→ f1 = f2, which are trivially true since
the antecedent is false. Although difficult to determine because we are using each SMT solver
as a black box, we conjecture that this is not checked in the Ackermannization process since,
as said before, uninterpreted functions are expected to have variables in the arguments.

Finally, although the decomposition approach exhibits better performance than the unin-
terpreted functions approach, we have decided to maintain both options in our system. The
main reason is that the uninterpreted functions approach allows for more compact and natural
representations and, hopefully, can lead to better results in the future if Ackermannization is
adapted accordingly.
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Bounding Strategy

In this section, we test the performance of Yices 2 with the different bounding strategies
described in Subsection 5.3.3 for optimization problems. For the hybrid strategy we have used
the default threshold of 10 units for switching from the binary to the linear approximation
strategy. Experiments with larger threshold have not yielded better results.

Table 5.3: Accumulated time for the solved instances and the number of solved instances
(within parenthesis) of Yices 2 solver using different optimization search strategies. Type ’s’
stands for satisfaction and ’o’ for optimization. # stands for the number of instances.

Problem # Binary Hybrid Linear

radiation 9 1047.03 (9) 1304.59 (9) 2008.77 (9)
rcpsp 10 993.74 (9) 710.77 (8) 1180.11 (5)
shortest-path 10 1419.67 (7) 1381.92 (7) 1034.22 (8)
trucking 10 47.77 (5) 41.86 (5) 34.66 (5)
open-stacks 10 707.25 (7) 650.27 (7) 691.46 (7)
p1f 10 126.01 (9) 125.44 (9) 188.14 (9)
roster-model 10 50.38 (10) 50.29 (10) 50.16 (10)
still-life 4 62.18 (4) 118.54 (4) 119.39 (4)
vrp 10 0.00 (0) 0.00 (0) 0.00 (0)
depot-placement 15 295.78 (15) 248.19 (15) 263.61 (15)
filter 10 17.88 (6) 17.37 (6) 18.34 (6)
ghoulomb 10 2545.02 (6) 2825.16 (6) 1255. 42 (3)
gridColoring 5 38.15 (3) 17.43 (3) 17.81 (3)
rcpsp-max 10 475.14 (4) 460.08 (4) 1035.02 (4)
sugiyama2 5 8.64 (5) 8.37 (5) 9.25 (5)
bacp 15 64.17 (15) 58.03 (15) 64.98 (15)
Total 153 7898 (113) 8018 (113) 7971 (108)

Table 5.3 shows that the binary and hybrid strategies perform better than the linear one in
general. Both the binary and hybrid strategies are able to solve the same number of instances,
but the first one spends less time globally. Nevertheless, the hybrid strategy is faster than
the binary in most of the problems. And, interestingly, the linear strategy is better in three
problems.

We want to remark that the linear strategy approaches the optimum from the satisfiable
side. We also tried the linear strategy approaching from the unsatisfiable side but the results
where a bit worse globally. This is probably due to the fact that the latter can only make
approximation steps of size one whilst the former can make bigger steps when a solution is
found.

5.4.2 Comparison of fzn2smt with other FLATZINC Solvers

In this section we compare the performance of fzn2smt (using Yices 2) and the following avail-
able FLATZINC solvers: Gecode, G12 and G12 lazy fd (the solvers distributed with MINIZINC)
and FZNTini (a SAT based solver).

Let us remark that fzn2smt with Yices 2 obtained (ex aequo with Gecode) the golden
medal in the par division and the silver medal in the free division of the MINIZINC challenge
2010, and the silver medal in the same divisions of the MINIZINC challenge 2011. It is also
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Table 5.4: Accumulated time for the solved instances and the number of solved instances
(within parenthesis) of fzn2smt and some available FLATZINC solvers. Type ’s’ stands for
satisfaction and ’o’ for optimization. # stands for the number of instances.

n Problem Type # Gecode FZNTini G12 G12 lazy fd fzn2smt

1 debruijn-binary s 11 4.46 (6) 0.06 (1) 31.30 (6) 0.00 (0) 0.50 (1)

2 nmseq s 10 535.62 (8) 2.64 (1) 927.42 (7) 0.00 (0) 118.74 (2)

3 pentominoes s 7 601.82 (7) 89.68 (1) 848.17 (4) 466.57 (5) 168.47 (2)

4 quasigroup7 s 10 278.73 (6) 773.28 (4) 1.72 (5) 2.85 (5) 20.30 (5)

5 radiation o 9 1112.14 (9) 4260.37 (7) 1302.79 (9) 3.60 (9) 1047.03 (9)

6 rcpsp o 10 12.07 (5) 0.00 (0) 97.27 (5) 82.60 (8) 993.74 (9)

7 search-stress s 3 11.30 (2) 391.71 (3) 14.66 (2) 0.40 (3) 0.74 (2)

8 shortest-path o 10 442.49 (10) 0.00 (0) 4.27 (4) 127.77 (10) 1419.67 (7)

9 slow-convergence s 10 8.41 (10) 62.62 (4) 95.42 (10) 154.83 (10) 247.06 (7)

10 trucking o 10 1.01 (5) 593.23 (4) 4.12 (5) 159.84 (5) 47.77 (5)

11 black-hole s 10 69.68 (7) 0.00 (0) 2423.48 (6) 97.69 (7) 892.46 (8)

12 fillomino s 10 118.62 (10) 4.36 (10) 332.56 (10) 2.59 (10) 19.99 (10)

13 nonogram s 10 1353.63 (8) 48.13 (7) 336.93 (2) 1533.07 (9) 1546.56 (7)

14 open-stacks o 10 169.74 (8) 1325.98 (4) 299.55 (8) 0.00 (0) 707.25 (7)

15 p1f o 10 2.57 (8) 315.65 (9) 2.40 (8) 0.00 (0) 126.01 (9)

16 prop-stress s 10 600.80 (4) 223.52 (2) 883.08 (3) 221.95 (9) 274.07 (7)

17 rect-packing s 10 134.36 (6) 569.57 (3) 339.80 (6) 165.58 (6) 106.66 (10)

18 roster-model o 10 1.04 (10) 0.00 (0) 4.46 (10) 18.80 (7) 50.38 (10)

19 search-stress2 s 10 296.16 (9) 9.10 (10) 381.82 (8) 0.08 (10) 7.90 (10)

20 still-life o 4 1.01 (3) 35.50 (3) 2.56 (3) 18.55 (3) 62.18 (4)

21 vrp o 10 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)

22 costas-array s 5 943.75 (4) 405.28 (2) 423.09 (3) 145.54 (2) 664.13 (2)

23 depot-placement o 15 1205.75 (12) 1820.57 (8) 522.81 (8) 613.51 (12) 295.78 (15)

24 filter o 10 30.95 (1) 62.16 (7) 278.72 (1) 2.65 (7) 17.88 (6)

25 ghoulomb o 10 0.00 (0) 0.00 (0) 246.67 (1) 2512.92 (8) 2545.02 (6)

26 gridColoring o 5 0.48 (1) 152.71 (3) 0.51 (1) 0.10 (1) 38.15 (3)

27 rcpsp-max o 10 42.11 (2) 0.00 (0) 30.00 (1) 596.41 (4) 475.14 (4)

28 solbat s 15 746.31 (10) 1300.54 (14) 1540.71 (10) 311.92 (11) 141.48 (15)

29 sugiyama2 o 5 308.31 (5) 37.00 (5) 510.72 (5) 520.88 (5) 8.64 (5)

30 wwtp-random s 5 0.03 (1) 322.21 (3) 2.79 (2) 0.00 (0) 15.21 (5)

31 wwtp-real s 5 0.08 (3) 1239.45 (4) 0.31 (3) 71.83 (4) 14.47 (5)

32 bacp o 15 847.78 (10) 1170.15 (5) 976.35 (10) 28.54 (15) 64.17 (15)

Total 294 9881 (190) 15215 (124) 12866 (166) 7859 (185) 12137 (212)

fair to notice that the solver with the best performance in the MINIZINC challenges 2010 and
2011 (in all categories) was Chuffed, implemented by the MINIZINC team and not eligible for
prizes.4

Table 5.4 shows the results of this comparison without using solver specific global con-
straints, which means that global constraints are decomposed into conjunctions of simpler
constraints. However, search strategy annotations are enabled in all experiments and, while
fzn2smt ignores them, the other systems can profit from these annotations.

We can observe that fzn2smt is the solver which is able to solve the largest number of
instances, closely followed by G12 lazy fd and Gecode. Looking at the problems separately,
fzn2smt offers better performance in 12 cases, followed by G12 lazy fd in 10 cases and Gecode
in 9 cases.

We remark that G12 lazy fd does not support instances with unbounded integer variables:
the ones of debruijn-binary, nmseq, open-stacks, p1f, wwtp-random. We have tried to solve
these instances by bounding those variables with the MINIZINC standard default limits, i.e., by
setting var -10000000..10000000 : x; for every unrestricted integer variable x (similarly

4See http://www.g12.csse.unimelb.edu.au/minizinc/challenge2011/results2011.html for details.
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as we have done for fzn2smt), but G12 lazy fd runs out of memory. This is probably due
to its use of Boolean encodings for the domains of the integer variables, as these encodings
imply introducing a new Boolean variable for each element of the domain (see [OSC09]).

The plot of Figure 5.2 shows the elapsed times, in logarithmic scale, for the solved instances
of Table 5.4. The instances have been ordered by its execution time in each system. The
overall best system (in terms of number of solved instances) is fzn2smt. However fzn2smt

is the worst system (in terms of execution time) within the first 50 solved instances and,
moreover, Gecode is better along the 160 first instances, closely followed by G12 lazy fd. It
must be taken into account that the fzn2smt compiler is written in Java, and it generates an
SMT file for each decision problem that is fed into the chosen SMT solver. Hence this can
cause an overhead in the runtime that can be more sensible for the easier instances. Finally,
note also that fzn2smt scales very well from the 50 to the 150 first solved instances. This
exhibits the SMT solvers robustness.
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Figure 5.2: Number of solved instances and elapsed times (referred to Table 5.4).

5.4.3 FLATZINC Solvers with Global Constraints

Some FLATZINC solvers provide specific algorithms for certain global constraints (such as
alldifferent, cumulative, etc.). Thus, the user can choose not to decompose some global
constraints during the translation from MINIZINC to FLATZINC, in order to profit from specific
algorithms provided by the solvers.

Table 5.5 shows the performance of two FLATZINC solvers with support for global con-
straints compared to the performance of themselves, and that of fzn2smt, without using that
support, on problems where global constraints do occur. Note that fzn2smt does not provide
any specific support for global constraints. We have not included the results for G12 lazy fd
with global constraints, since it exhibited very similar performance.

Again we can see that fzn2smt overall offers a bit better performance than Gecode and
G12, even when they are using global constraints. This is even more significant if we take into
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Table 5.5: Accumulated time for the solved instances and the number of solved instances
(within parenthesis) of fzn2smt and some available FLATZINC solvers with global constraints.
+gc stands for using global constraints, and −gc stands for not using global constraints. Type
’s’ stands for satisfaction and ’o’ for optimization. # stands for the number of instances.

Gecode G12 fzn2smt

Problem Type # +gc −gc +gc −gc

debruijn-binary s 11 4.14 (7) 4.46 (6) 35.93 (7) 31.30 (6) 0.50 (1)

pentominoes s 7 65.82 (7) 601.82 (7) 847.11 (4) 848.17 (4) 168.47 (2)

quasigroup7 s 10 250.49 (6) 278.73 (6) 1.55 (5) 1.72 (5) 20.03 (5)

rcpsp o 10 10.56 (5) 12.07 (5) 0.51 (4) 97. 27 (5) 993.74 (9)

black-hole s 10 20.88 (7) 69.68 (7) 2405.38 (6) 2423.48 (6) 892.46 (8)

nonogram s 10 493.61 (8) 1353.63 (8) 351.35 (2) 336.93 (2) 1546.56 (7)

open-stacks o 10 168.56 (8) 169.74 (8) 283.52 (8) 299.55 (8) 707.25 (7)

p1f o 10 730.60 (10) 2.57 (8) 1.87 (8) 2.04 (8) 126.01 (9)

rect-packing s 10 132.44 (6) 134.36 (6) 7.71 (5) 339.80 (6) 106.66 (10)

roster-model o 10 0.88 (10) 1.04 (10) 4. 49 (10) 4.46 (10) 50.38 (10)

costasArray s 5 615.51 (4) 943.75 (4) 411.82 (3) 423.09 (3) 664.13 (2)

depot-placement o 15 1035.72 (12) 1205.75 (12) 519.64 (8) 522.81 (8) 295.78 (15)

filter o 10 31.15 (1) 30.95 (1) 280.57 (1) 278. 72 (1) 17.88 (6)

ghoulomb o 10 1044.25 (10) 0.00 (0) 598.54 (3) 246.67 (1) 2545.02 (6)

rcpsp-max o 10 5.04 (2) 42.11 (2) 116.40 (2) 30. 00 (1) 475.14 (4)

sugiyama2 o 5 310.94 (5) 308.31 (5) 510.84 (5) 510. 72 (5) 8.64 (5)

bacp o 15 848.88 (10) 847.78 (10) 979.85 (10) 976.35 (10) 64.17 (15)

Total 168 5769 (118) 6006 (105) 7357 (91) 7373 (89) 8682 (121)

account that most of these problems are optimization ones, and we have naively implemented
a search procedure to supply the lack of support for optimization of SMT solvers (see Sub-
section 5.3.3). However, Gecode is best in 9 problems, whereas fzn2smt is best only in 8. We
believe that unit propagation and conflict-driven lemma learning at Boolean level, partially
compensate for the lack of specialized algorithms for global constraints in SMT solvers.

5.4.4 Impact of the Boolean component of the instances in the performance
of fzn2smt

In this section we statistically compare the performance of fzn2smt with the best of the other
available FLATZINC solvers, which is Gecode. We compare the number of solved instances by
Gecode and fzn2smt, taking into account their Boolean component. In particular, we consider
the number of Boolean variables and the number of non-unary clauses of the SMT instances
resulting from the translation of each FLATZINC instance. We first look at this relation graphi-
cally (figures 5.3 and 5.4) and propose the following hypothesis: the more Boolean component
the problem has, the better the performance of fzn2smt is with respect to that of Gecode.
This hypothesis seems quite reasonable, because having a greater Boolean component, the
SMT solver can better profit from built-in techniques such as unit propagation, learning and
backjumping. We provide statistical tests to support this hypothesis.

First of all, we define the normalized difference of solved instances of each problem

dif =
#fzn2smt solved instances−#Gecode solved instances

#instances
.

This difference ranges from −1 to 1, where −1 means that Gecode has solved all the instances
and fzn2smt none, and 1 means the inverse.
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We define the Boolean variables ratio rv of each problem as the average of the number of
Boolean variables divided by the number of variables of each SMT instance.

Similarly, we define the disjunctions ratio rd of each problem as the average of the number
of non-unary clauses divided by the number of constraints of each SMT instance.

In figure 5.3 we plot the differences with respect to the Boolean variables ratio, and in
figure 5.4 with respect to the disjunctions ratio. These figures show that, the more Boolean
variables and disjunctions the problem has, the better performance fzn2smt has, compared
to Gecode. In particular, when the Boolean variables ratio rv is above 0.2, fzn2smt is able
to solve more instances than Gecode (i.e., the difference is positive). Only in two of those
problems Gecode is able to solve more instances than fzn2smt, namely in nmseq (problem
#2) and open-stacks (problem #14). In these problems, Boolean variables are mainly used
in bool2int() constraints, hence these variables provide little Boolean structure and the
SMT solver cannot profit from their contribution. When considering the disjunctions ratio,
fzn2smt outperforms Gecode only when rd is above 0.4. An exception to this fact is again
on nmseq, where most disjunctions come from bool2int().

Note that fzn2smt is able to solve more instances than Gecode in propagation stress
(problem #16), which has neither Boolean variables nor disjunctions. This is probably due
to the fact that the linear constraints of the problem can be solved by the Integer Difference
Logic (IDL), a subset of LIA which is very efficiently implemented by Yices [DdM06a].
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Figure 5.3: Normalized difference of solved instances between fzn2smt and Gecode with
respect to the ratio of Boolean variables. The numbers next to the points denote instance
numbers (see Table 5.4).

We use a paired t-test in order to show that our method (fzn2smt with Yices) solves
significantly more instances than Gecode. For each problem i ∈ 1..n, being n the number of
considered problems, we take Xi as the normalized number of instances solved by fzn2smt
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Figure 5.4: Normalized difference of solved instances between fzn2smt and Gecode with
respect to the ratio of disjunctions. The numbers next to the points denote instance numbers
(see Table 5.4).

and Yi as the normalized number of instances solved by Gecode, and define Di = Xi − Yi
with null hypothesis

H0 : µD = µx − µy = 0

i.e., H0 : µx = µy. Then we calculate the t-value as

t =
Dn

S∗D/
√
n

where Dn is the sample mean of the Di and S∗D is the sample standard deviation of the Di.
This statistic follows a Student’s-t distribution with n− 1 degrees of freedom.

Table 5.6 shows that in the general case with all 32 problems there is no significant
difference between the means of the two solvers (the probability of the null hypothesis is
p = 0.2354). Therefore we cannot say that fzn2smt is statistically better than Gecode. But,
already for problems with Boolean variables ratio rv ≥ 0.1 we observe a significant difference
(i.e., with p < 0.05 in all tests) in favor of fzn2smt. This confirms our hypothesis: the higher
the Boolean variables ratio is, the better the performance of fzn2smt is with respect to that
of Gecode. We also note that if we use the disjunctions ratio rd for comparing the means, the
results are similar: with rd >= 0.4 the difference of means is significant in favor of fzn2smt.

Finally, Table 5.7 shows that the difference of means of fzn2smt and G12 lazy fd is less
significant. We have not taken into account the problems not supported by G12 lazy fd due
to unbounded integer variables. These results suggest that the two approaches work similarly
well for the same kind of problems.
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Table 5.6: Paired t-test, with probability p of the null hypothesis, for the difference in mean
of the number of solved instances by fzn2smt and Gecode, for problems with different ratios
rv and rd.

rv #problems p

≥ 0.0 32 0.2354

≥ 0.1 21 0.0150

≥ 0.2 19 0.0043

≥ 0.3 19 0.0043

≥ 0.4 17 0.0057

≥ 0.5 14 0.0001

≥ 0.6 13 0.0003

rd #problems p

≥ 0.0 32 0.2354

≥ 0.1 24 0.0472

≥ 0.2 24 0.0472

≥ 0.3 23 0.0540

≥ 0.4 17 0.0060

≥ 0.5 16 0.0056

≥ 0.6 11 0.0006

Table 5.7: Paired t-test, with probability p of the null hypothesis, for the difference in mean
of the number of solved instances by fzn2smt and G12 lazy fd, for problems with different
ratios rv and rd.

rv #problems p

≥ 0.0 27 0.8929

≥ 0.1 16 0.0157

≥ 0.2 15 0.0152

≥ 0.3 15 0.0152

≥ 0.4 14 0.0147

≥ 0.5 13 0.0140

≥ 0.6 12 0.0028

rd #problems p

≥ 0.0 27 0.8929

≥ 0.1 20 0.1853

≥ 0.2 20 0.1853

≥ 0.3 19 0.1856

≥ 0.4 15 0.0279

≥ 0.5 14 0.0274

≥ 0.6 10 0.0633

5.5 Conclusions

In this chapter we have presented fzn2smt, a tool for translating FLATZINC instances to the
standard SMT-LIB v1.2 language, and solving them through a pluggable SMT solver used as a
black box. Our tool is able to solve not only decision problems, but optimization ones. In fact,
surprisingly good results have been obtained on many optimization problems although our tool
uses simple optimization algorithms: successive calls to the decision procedure, performing
either linear, binary or hybrid search. In Chapter 8 we present a more refined optimization
algorithm based on incrementality.

The fzn2smt system with Yices 2 has obtained remarkably good results in the MINIZINC

challenges 2010, 2011 and 2012. In contrast, it has obtained poor results in the MINIZINC

challenge 2013. Related to this let us mention that, although not eligible for prizes, the
true winner of all the MINIZINC challenges (in almost all categories) is Chuffed, a lazy clause
generation solver developed by the MINIZINC group. Recall from Section 3.7.1 that lazy clause
generation is a combination of a CP solver with a SAT solver and hence, it is apparent that
more cross-fertilization between the CP and the SAT and SMT communities is necessary in
order to tackle real-world problems properly.

We have performed exhaustive experimentation on nearly 300 MINIZINC instances using
four distinct FLATZINC solvers, and using fzn2smt with five distinct SMT solvers (using
various translation options), lasting more than 12 days of CPU. The good results obtained
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by fzn2smt on the MINIZINC benchmarks suggest that the SMT technology can be effectively
used for solving CSPs in a broad sense. We think that fzn2smt can help getting a picture
of the suitability of SMT solvers for solving CSPs, as well as to compare the performance of
state-of-the-art SMT solvers outside the SMT competition.

Table 5.4 evidences that in scheduling problems (rcpsp, depot-placement, rcpsp-max,
wwtp and bacp) the performance of fzn2smt with Yices 2 is much better than that of other
FLATZINC solvers. In fact, in Chapter 5 we propose a system to solve the RCPSP using SMT
with very good results. These kind of problems have a rich Boolean component (Boolean
variables and disjunctions). We have proposed the hypothesis that the more Boolean com-
ponent the problem has, the better the performance of fzn2smt is with respect to Gecode.5

This hypothesis seems quite reasonable, because the greater the Boolean component is, the
better the SMT solver is supposed to profit from built-in techniques such as unit propaga-
tion, learning and backjumping. We have also provided statistical tests that support this
hypothesis.

Finally, we think that better results could be obtained by directly translating from a
high-level language to SMT. In doing so, more clever translations could be possible avoiding
some of the flattening and probably less variables could be generated. For instance, MINIZINC

disjunctions of arithmetic constraints are translated into FLATZINC constraints by reifying
them with auxiliary Boolean variables. In our approach this step is not needed since it
is already done by the SMT solver. Moreover, the FLATZINC formula resulting from the
translation of many MINIZINC benchmarks has very simple Boolean structure (the formula
is often trivially satisfiable at the Boolean level), and hence it is likely that the SMT solver
cannot substantially profit from conflict-driven lemma learning on unsatisfiable instances. In
fact, there exist unsatisfiable instances that result in a few or no conflicts at all, and most of
the work is hence done by the theory solver. In Chapter 7 we propose a system to solve CSPs
by directly translating from a high-level declarative language into SMT.

5Gecode is the second best system considering the total number of solved instances.
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Chapter 6

An SMT approach to the
Resource-Constrained Project
Scheduling Problem

In this chapter we consider one of the problems where SMT solvers has shown good results
in the previous chapter: the Resource Constrained Project Scheduling Problem (RCPSP).1

However, instead of using a high-level declarative language for dealing with this problem, we
provide an ad hoc tool to ease the incorporation of preprocessing algorithms and to have more
precise control of the SMT encodings used.

The RCPSP consists in scheduling a set of non-preemptive activities with predefined du-
rations and demands on each of a set of renewable resources, subject to partial precedence
constraints. Normally the goal is to minimize the makespan. This is one of the most gen-
eral scheduling problems that has been extensively studied in the literature. Some surveys
published in the last years include [HRD98, BDM+99, KP01, HL05] and, more recently,
[HB10, KALM11]. The RCPSP is NP-hard in the strong sense [BMR88, BLK83]. However,
many small instances (with up to 50 activities) are usually tractable within a reasonable time.

Many approaches have been developed to solve the RCPSP: constraint programming
(CP) [LM08, Bap09], Boolean satisfiability (SAT) [Hor10], mixed integer linear program-
ming (MILP) [KALM11], branch and bound algorithms (BB) [DPPH00] and others [DV07].
An approach using lazy clause generation has shown very good results [SFSW09, SFSW10].

Next we show that state-of-the-art SMT solvers are a viable engine for solving the RCPSP.
We propose some variations of well-known MILP formulations of the RCPSP, which are
easily encoded using SMT with the theory of linear integer arithmetic. We have built a
tool, named rcp2smt, which solves RCPSP instances using the (Weighted Max)SMT solver
Yices 1 [DdM06a] through API. Since the RCPSP is an optimization problem and SMT does
not directly support it, our tool can deal with optimization using two natural approaches:
on the one hand we can simply iteratively encode the RCPSP instance into SMT instances
that bound the optimal makespan, and on the other hand we can encode the RCPSP into
a Weighted MaxSMT instance where the soft clauses encode the objective function. The
Weighted MaxSMT instance can be solved using the Yices default Weighted MaxSMT algo-
rithm or using the WPM1 algorithm based on unsatisfiable cores [ABL09, MSP09].

1 This problem is denoted as PS|temp|Cmax in [BDM+99] and m, 1|gpr |Cmax in [HL05].
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Figure 6.1: An example of RCPSP [LM08]

This chapter is based on results from [ABP+11a] and it is organized as follows. First
we briefly introduce the RCPSP. Then we describe rcp2smt with special emphasis in the
preprocessing and optimization phases. Next we describe our encodings for the RCPSP
using the SMT formalism, and provide performance comparisons between ours and others
approaches. Finally, we present some conclusions.

6.1 The Resource-Constrained Project Scheduling Problem
(RCPSP)

The RCPSP is defined by a tuple (V, p, E,R,B, b) where:

• V = {A0, A1, . . . , An, An+1} is a set of activities. Activity A0 represents by convention
the start of the schedule and activity An+1 represents the end of the schedule. The set
of non-dummy activities is defined by A = {A1, . . . , An}.

• p ∈ Nn+2 is a vector of durations. pi denotes the duration of activity i, with p0 =
pn+1 = 0 and pi > 0,∀Ai ∈ A.

• E is a set of pairs representing precedence relations, thus (Ai, Aj) ∈ E means that the
execution of activity Ai must precede that of activity Aj , i.e., activity Aj must start after
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activity Ai has finished. We assume that we are given a precedence activity-on-node
graph G(V,E) that contains no cycles; otherwise the precedence relation is inconsistent.
Since the precedence is a transitive binary relation, the existence of a path in G from
the node i to node j means that activity i must precede activity j. We assume that
E is such that A0 is a predecessor of all other activities and An+1 is a successor of all
other activities.

• R = {R1, . . . , Rm} is a set of m renewable resources.

• B ∈ Nm is a vector of resource availabilities. Bk denotes the availability amount of each
resource Rk

• b ∈ N(n+2)×m is a matrix of the demands of the activities for resources. bi,k represents
the amount of resource Rk used during the execution of Ai. Note that b0,k = 0 and
bn+1,k = 0, ∀k ∈ {1, . . . ,m}.

A schedule is a vector S = (S0, S1, . . . , Sn, Sn+1) where Si denotes the start time of
each activity Ai ∈ V . We assume that S0 = 0. A solution of the RCPSP problem is a
non-preemptive (an activity cannot be interrupted once it is started) schedule S of minimal
makespan Sn+1 subject to the precedence and resource constraints:

(6.1) minimize Sn+1

subject to:

Sj − Si ≥ pi ∀(Ai, Aj) ∈ E(6.2) ∑
Ai∈At

bi,k ≤ Bk ∀Rk ∈ R,∀t ∈ H(6.3)

A schedule S is feasible if it satisfies the generalized precedence constraints (6.2) and the
resource constraints (6.3) where At = {Ai ∈ A | Si ≤ t < Si + pi} represents the set of
non-dummy activities in process at time t, the set H = {0, . . . , T} is the scheduling horizon,
and T (the length of the scheduling horizon) is an upper bound for the makespan.

In the example of Figure 6.1, three resources and seven activities are considered. Each
node is labeled with the number of the activity it represents. The durations of the activities
are indicated in the on-going arcs, and the resources consumptions are indicated in the labels
next to the nodes. The upper part of the picture represents therefore the instance to be
solved, while the bottom part gives a feasible solution using Gantt charts. For each resource,
the horizontal axis represents the time and the vertical axis represents the consumption.

6.2 RCPSP to SMT

The input to rcp2smt is an RCPSP instance in rcp or sch format,2 which is preprocessed in
order to build more suitable instances for our solving method (e.g., obtaining better bounds,
extending the set of precedences, etc.). After the preprocessing phase, rcp2smt searches for
an optimal solution as described in the Optimization section.

2RCPSP formats from PSPLib [KS97].
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6.2.1 Preprocessing

The preprocessing phase computes the extended precedence set, a lower and an upper bound
for the makespan, time windows for each activity and a matrix of incompatibilities between
activities.

Extended precedence set Since a precedence is a transitive relation we can compute the
minimum precedence between each pair of activities in E. For this calculation we use the
Floyd-Warshall (FW) algorithm O(n3) on the graph defined by the precedence relation E
labeling each arc (Ai, Aj) with the duration pi. This extended precedence set is named E∗

and contains, for all pair of activities Ai and Aj such that Ai precedes Aj , a tuple of the form
(Ai, Aj , li,j) where li,j is the length of the longest path from Ai to Aj . Notice also that, if
(Ai, Ai, li,i) ∈ E∗ for some Ai and li,i > 0, then there is a cycle in the precedence relation and
therefore the problem is inconsistent and has no solution.

Lower Bound The lower bound LB is the minimum time we can ensure that the last
activity An+1 begins. There are different methods for computing the lower bounds, see
[KS99, MMRB98]. We have only implemented two of them:

• LB1: Critical path bound. This is the most obvious lower bound. To compute this, we
ignore the capacity restrictions. Then, the minimal project duration is the length of a
critical path in the project network. The critical path is the longest path of the graph
of precedences between the initial activity A0 and the final activityAn+1. For instance,
in Figure 6.1 the critical path is [A0, A2, A4, A6, A7, A8] and has length 10. Notice that
we can easily know the length of this path if we have already computed the precedence
set since we only need to obtain l0,n+1 from (A0, An+1, l0,n+1) ∈ E∗.

• LB2: Capacity bound. To compute this bound, we ignore the precedence restrictions.
This bound value is the maximum of the total requirement for each resource divided by
the capacity of the resource and rounded up to the next integer. The additional cost
to compute this lower bound is O(nm) (being n the number of activities and m the
number of resources). For instance, in the example of Figure 6.1 the capacity bound of
resource 3 is 11.

LB2 = max{d(
∑
Ai∈A

bi,k ∗ pi)/Bke | Bk∈B}

Finally, we set our computed lower bound to LB = max{LB1, LB2}.

Upper Bound The upper bound UB is the maximum time we can ensure that the last
activity An+1 begins. We have considered the trivial upper bound for the RCPSP problem:

UB =
∑
Ai∈A

pi

For instance, in the example of Figure 6.1 the upper bound is 22.
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Time windows We can reduce the domain of each variable Si (start of activity Ai) that
initially is {0 .. UB − pi} by computing its time window. The time window of activity Ai is
[ESi, LSi], being ESi the earliest start time and LSi the latest start time. To compute the
time window we use the lower and upper bound and the extended precedence set as follows:

For activities Ai, 0 ≤ i ≤ n,

ESi = l0,i (A0, Ai, l0,i) ∈ E∗
LSi = UB − li,n+1 (Ai, An+1, li,n+1) ∈ E∗

and for activity An+1,
ESn+1 = LB LSn+1 = UB

For instance, in the example of Figure 6.1, activity A4 has time window [4, 16].
Notice that, if E∗ has been successfully computed, then l0,i ≥ 0 for all (A0, Ai, l0,i) ∈ E∗

and li,n+1 ≥ pi for all (Ai, An+1, li,n+1) ∈ E∗.

Incompatibility We compute the matrix of Booleans I where each element I[i, j] (noted as
Ii,j) is true, if the activity Ai and the activity Aj cannot overlap in time. The incompatibility
can occur for two reasons:

• Precedence. There exists a precedence constraint between Ai and Aj , i.e., (Ai, Aj , li,j) ∈
E∗ or (Aj , Ai, lj,i) ∈ E∗.

• Resources. For some resource Rk, the sum of the demands of the two activities Ai and
Aj , is greater than the resource capacity Bk: ∃Rk ∈ R s.t. bi,k + bj,k > Bk.

For instance, in the example of Figure 6.1, activity A4 is incompatible with activities A0,
A2, A6, A7 and A8 due to the precedences, and with activities A1, A5 and A7 due to resources
demands.

This matrix of incompatibilities is symmetric, and the additional cost for its computation
is O(n2m).

Notice that we could compute incompatibilities due to resource demands between subsets
of activities in general (i.e., not restricted to two activities). We have explored this approx-
imation for subsets of size bigger than 2 but the gain of efficiency has been almost zero or
even negative, in all encodings and solving methods.

6.2.2 Optimization

There are two approaches we follow to solve RCPSP through SMT solvers. Both approaches
share the constraints derived from the preprocessing steps, and the ones from (6.2) and (6.3)
modelled as the Encodings section describes. The difference consists on how we treat the
objective function. On the one hand, we implement an ad hoc search procedure which calls the
SMT solver successively constraining the domain of the variable Sn+1, by adding a constraint
Sn+1 ≤ bound (where bound is a constant and LB ≤ bound ≤ UB ) and perform a dichotomic
search strategy. Notice that when we get a satisfiable answer, we can eventually refine our
upper bound by checking the value of Sn+1 in the satisfying assignment. Furthermore, since
we are using Yices through API, when we get a satisfiable answer we can keep the learned
clauses. We will refer to this method as dico.

On the other hand, some SMT solvers, like Yices, can solve Weighted MaxSMT instances.
Weighted MaxSMT allows us to represent optimization problems. We just need to transform
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the objective function into a set of soft constraints, and keep the rest of the constraints as hard.
In order to translate the objective function, we can simply enumerate all its possible values.
For example, taking into account the RCPSP in figure 6.1, where LB = 11 and UB = 22, we
add the following set of soft constraints: {(11 ≤ Sn+1, 1), (12 ≤ Sn+1, 1), . . . , (22 ≤ Sn+1, 1)}.
Each soft constraint is represented by the pair (C,w) where C is a constraint and w the
weight (or cost) of falsifying C. We can obtain a more compact encoding by considering the
binary representation of Sn+1. Following our example, we would add a new hard constraint,
1 · b1 + 2 · b2 + 4 · b3 + 8 · b4 +LB = Sn+1, where bi are Boolean variables, and the following set
of soft constraints: {(¬b1, 1), (¬b2, 2), (¬b3, 4), (¬b4, 8)}. The resulting instance can be solved
by any SMT solver supporting Weighted MaxSMT, like Yices. In our experiments, we refer
to the method which uses the non-binary encoding of the objective function as yices.

We have extended the Yices framework by incorporating Weighted Max-SAT algorithms.
In particular, we have implemented the algorithms WPM1 and WBO from [ABL09, MSP09]
(see Section 4.1.2 for a description of WPM1), which is based on the detection of unsatisfiable
cores. The performance of these algorithms heavily depends on the quality of the cores.
Therefore, we have extended them with a heuristic that prioritizes those cores which involve
constraints with higher weights. In our experiments, we refer to the method which uses the
binary encoding of the objective function and this algorithm as core.

6.3 Encodings

SAT modulo linear integer arithmetic allows us to directly express all the constraints of the
following encodings, since we can logically combine arithmetic predicates. It is worth noting
that in the resulting formulas both Boolean variables and integer variables can occur together.
The three encodings we propose are inspired by existing ones, and conveniently adapted to
SMT. Moreover, some refinements are introduced considering time windows, incompatibilities,
extended precedences. We also add redundant constraints for better propagation.

Since a schedule is a vector S = (S0, S1, . . . , Sn, Sn+1) where Si denotes the start time of
each activity Ai ∈ V , in all encodings we use a set {S0, S1, . . . , Sn, Sn+1} of integer variables.
By S′ we denote the set {S1, . . . , Sn}.

Also, in all encodings the objective function is (6.1), and we add the following constraints:

S0 = 0(6.4)

Si ≥ ESi ∀Ai∈{A1, . . . , An+1}(6.5)

Si ≤ LSi ∀Ai∈{A1, . . . , An+1}(6.6)

Sj − Si ≥ li,j ∀(Ai, Aj , li,j) ∈ E∗(6.7)

where (6.5) and (6.6) are simple encodings of the time windows for each activity, and (6.7)
encodes the extended precedences.

We also introduce additional constraints for the incompatibilities between activities due
to resource capacity constraints:

Si + pi ≤ Sj ∨ Sj + pj ≤ Si
∀Ii,j ∈ I s.t. Ii,j = true,

(Ai, Aj , li,j) /∈ E∗ and (Aj , Ai, lj,i) /∈ E∗
(6.8)

Notice that the incompatibilities between activities due to precedence constraints are
already encoded in (6.7).
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6.3.1 Time formulation

The more natural encoding for the RCPSP in SMT is the Time formulation, very similar to
the MILP encoding proposed by [PW96] and referred in [KALM11] as Basic discrete-time
formulation and in [SFSW09, SFSW10] as Time-resource decomposition. The idea is that,
for every time t and resource Rk, the sum of all resource requirements for the activities must
be less than or equal to the resource availabilities.

ite((Si ≤ t) ∧ ¬(Si ≤ t− pi);xi,t = 1;xi,t = 0)

∀Si ∈ S′, ∀t ∈ {ESi, . . . , LSi + pi − 1}
(6.9)

∑
Ai∈A

ite(t ∈ {ESi, . . . , LSi + pi − 1}; bi,r ∗ xi,t; 0) ≤ Br

∀Br ∈ B, ∀t ∈ H
(6.10)

where ite(c, e1, e2) is an if-then-else expression denoting e1 if c is true and e2 otherwise. Notice
that t ∈ {ESi, . . . , LSi + pi − 1} can be easily encoded into ESi ≤ t ∧ LSi ≤ LSi + pi − 1.

We remark that (6.9) imposes that xi,t = 1 if the activity Ai is active at time t and
xi,t = 0 otherwise. We restrict the possible times by using the time windows. Constraints
(6.10) encode the resource constraints (6.3) using the xi,t variables.

Constraints (6.9) can be replaced by the equivalent ones:

yi,t ↔ (Si ≤ t) ∧ ¬(Si ≤ t− pi)
∀Si ∈ S′, ∀t ∈ {ESi, . . . , LSi + pi − 1}

(6.11)

ite(yi,t;xi,t = 1;xi,t = 0)

∀Si ∈ S′, ∀t ∈ {ESi, . . . , LSi + pi − 1}
(6.12)

We have observed that for small problem instances this formulation gives better perfor-
mance results than the previous. However, for big instances (with more than 50 activities) the
addition of the new variables yi,t usually makes the problem intractable by state-of-the-art
SMT solvers.

In order to improve propagation we have considered the following constraints:

(Si = t)→ yi,t′

∀Si ∈ S′,∀t ∈ {ESi, . . . , LSi + pi − 1},
∀t′ ∈ {t, . . . , t+ pi − 1}

(6.13)

(Si = t)→ ¬yi,t′
∀Si ∈ S′, ∀t ∈ {ESi, . . . , LSi + pi − 1},

∀t′ ∈ {ESi, . . . , LSi + pi − 1} \ {t, . . . , t+ pi − 1}
(6.14)

In our experiments, these constraints have shown to provide execution speedup only for
small instances.

The following redundant constraints help improving the search time in all instances. This
is probably due to the special treatment of those kind of constraints in SMT solvers:

xi,t ≥ 0 ∀Si ∈ S′,∀t ∈ {ESi, . . . , LSi + pi − 1}(6.15)

xi,t ≤ 1 ∀Si ∈ S′,∀t ∈ {ESi, . . . , LSi + pi − 1}(6.16)
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6.3.2 Task formulation

In this formulation we use variables indexed by activities instead of by time. The key idea
is that checking only that there is no overload at the beginning (end) of each activity is
sufficient to ensure that there is no overload at every time (for the non-preemptive case).
In this formulation, the number of variables and constraints is independent of the length of
the scheduling horizon T . This formulation is similar to the Time-resource decomposition of
[SFSW09] and it is inspired by the encoding proposed in [OEK99] for temporal and resource
reasoning in planning.

z1
i,j = true ∀(Ai, Aj , li,j) ∈ E∗(6.17)

z1
j,i = false ∀(Ai, Aj , li,j) ∈ E∗(6.18)

z1
i,j = Si ≤ Sj
∀Ai, Aj ∈ A,

(Ai, Aj , li,j) /∈ E∗, (Aj , Ai, lj,i) /∈ E∗, i 6= j

(6.19)

z2
i,j = false ∀(Ai, Aj , li,j) ∈ E∗(6.20)

z2
j,i = true ∀(Ai, Aj , li,j) ∈ E∗(6.21)

z2
i,j = Sj < Si + pi

∀Ai, Aj ∈ A,
(Ai, Aj , li,j) /∈ E∗, (Aj , Ai, lj,i) /∈ E∗, i 6= j

(6.22)

zi,j = 0 ∀Ii,j ∈ I s.t. Ii,j = true(6.23)

ite(z1
i,j ∧ z2

i,j ; zi,j = 1; zi,j = 0)

∀Ii,j ∈ I s.t. Ii,j = false, i 6= j
(6.24)

∑
Ai∈A\{Aj}

bi,k ∗ zi,j ≤ Bk − bj,k ∀Aj ∈ A,∀Bk ∈ B(6.25)

The Boolean variables z1
i,j are true if activity Ai starts not after Aj and false otherwise.

The Boolean variables z2
i,j are true if activity Aj starts before Ai ends and false otherwise.

The integer variables zi,j are 1 if activities Ai and Aj overlap and 0 otherwise. The last
constraints (6.25) state that, for every activity Aj and resource Rk, the sum of the resource
demands bi,k for Rk from the activities Ai that overlap with Aj should not exceed the capacity
Bk of Rk less the demand bj,k for Rk from Aj .

Moreover, in order to improve propagation, we have the following redundant constraints
encoding anti-symmetry and transitivity of the precedence relation:

z1
i,j ∨ z1

j,i ∀Ai, Aj ∈ A, i 6= j(6.26)

(z1
i,j ∧ z1

j,k)→ z1
i,k ∀Ai, Aj , Ak ∈ A, i 6= j, j 6= k, i 6= k(6.27)

The following constraints have also shown to improve propagation in this encoding:

z1
i,j ∨ z2

i,j ∀Ai, Aj ∈ A, i 6= j(6.28)

z1
i,j → z2

j,i ∀Ai, Aj ∈ A, i 6= j(6.29)
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6.3.3 Flow formulation

This formulation is inspired by the formulations of [KALM11, AMR03] named Flow-based
continuous-time formulation.

yi,j = true ∀(Ai, Aj , li,j) ∈ E∗(6.30)

yj,i = false ∀(Ai, Aj , li,j) ∈ E∗(6.31)

yi,j = Sj ≥ Si + pi

∀Ai, Aj ∈ V,
(Ai, Aj , li,j) /∈ E∗, (Aj , Ai, lj,i) /∈ E∗, i 6= j

(6.32)

fi,j,k ≥ 0 ∀Ai, Aj ∈ V,Rk ∈ R, i 6= j(6.33)

In the following constraints beq,k denotes bq,k for all Aq ∈ A and denotes Bk for q = 0 and
q = n+ 1.

fi,j,k ≤ min(bei,k, b
e
j,k) ∀Ai, Aj ∈ V,Rk ∈ R, i 6= j(6.34)

yi,j ∨ fi,j,k = 0 ∀Ai, Aj ∈ V,Rk ∈ R, i 6= j(6.35) ∑
Aj∈A∪{An+1}

fi,j,k = bi,k

∀Ai ∈ A ∪ {A0},∀Rk ∈ R, i 6= j

(6.36)

∑
Ai∈A∪{A0}

fi,j,k = bj,k

∀Aj ∈ A ∪ {An+1},∀Rk ∈ R, i 6= j

(6.37)

The Boolean variables yi,j are true if activity Aj starts after Ai finishes and false otherwise.
The integer variables fi,j,k denote the quantity of resourceRk that is transferred fromAi (when
finished) to Aj (at the start of its processing). Constraints (6.33) and (6.34) fix their range
of values. Constraints (6.35) denote that if Aj does not start after the completion of Ai then
the flow from Ai to Aj should be 0 for all resource Rk. These constraints link the yi,j and
fi,j,k variables. Constraints (6.36) and (6.37) state that, for each activity and resource, the
sum of the flows transferred and the sum of the flows received by the activity must be equal
to its demand for the resource. Notice no flow enters A0 and no flow exits from An+1.

Similarly to the Task formulation, we have the following constraints for anti-symmetry
and transitivity of the precedences:

¬yi,j ∨ ¬yj,i ∀Ai, Aj ∈ A, i 6= j(6.38)

(yi,j ∧ yj,k)→ yi,k ∀Ai, Aj , Ak ∈ A, i 6= j, j 6= k, i 6= k(6.39)

The constraints for the incompatibilities (6.8) are reformulated as follows:

yi,j ∨ yj,i
∀Ii,j ∈ I s.t. Ii,j = true,

(Ai, Aj , li,j) /∈ E∗ and (Aj , Ai, lj,i) /∈ E∗
(6.40)
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Time Task Flow
set # core dico yices core dico yices core dico yices

KSD30 480 1.81(100) 1.24(99) 1.20(100) 1.19(95) 1.14(96) 0.37(95) 4.42(91) 9.78(92) 11.27(89)
Pack 55 3.46(63) 2.43(65) 6.75(65) 37.15(36) 27.71(40) 33.30(41) 143.02(3) 88.35(3) 86.26(5)
KSD15 d 479 7.96(100) 7.18(100) 6.01(100) 0.28(100) 0.18(100) 0.30(100) 0.10(99) 0.11(99) 0.26(99)
Pack d 55 67.45(14) 41.35(12) 177.91(12) 1.69(43) 1.25(41) 33.30(40) 35.74(12) 30.05(12) 7.44(12)

Table 6.1: % solved instances in parenthesis, mean time in seconds, cutoff 500 seconds.

set # MCS [KALM11] lazy fd SMT

KSD30 480 7.39(97) DDT–10.45(82) 0.49(100) yices(Time)–1.20(100)
Pack 55 115.88(25) DDT–63.39(76) 94.40(20) dico(Time)–2.43(65)
KSD15 d 479 0.07(100) FCT–12.06(94) 0.04(100) dico(Task)–0.18(100)
Pack d 55 72.34(38) OOE–75.58(18) 51.24(62) core(Task)–1.69(43)

Table 6.2: % solved instances in parenthesis, mean time in seconds, cutoff 500 seconds.

6.4 Experimental results

We have run our experiments on machines with the following specs; operating system: Rocks
Cluster 5.2 Linux 2.6.18, processor: AMD Opteron 242 Processor 1.5 GHz, memory: 450 MB,
cache: 1024 KB, and compiler: GCC 4.1.2.

The benchmarks we considered are those from the experimental investigation conducted
in [KALM11]. We focus on 4 families of RCPSP instances: KSD30 (KSD instances from the
PSPLib with 30 activities), Pack instances from [CN03], Pack d and KS15 d [KALM11]. We
are mainly interested on the two last benchmarks. As pointed out in [KALM11], KSD and
Pack instances, which can typically be found in the process industry, involve relatively short
time horizons. Therefore, the authors of [KALM11] generated the Pack d and KS15 d sets,
which involve longer time horizons.

At tables, the numbers in parenthesis indicate the percentage of optimal solutions found,
while the others indicate the average execution time of solved instances. The timeout was
set to 500 seconds as in [KALM11]. Notice that the processor used in [KALM11] was also of
1.5Ghz.

Table 6.1 presents the results of the comparison among the three formulation techniques
we presented in the Encodings section: Time, Task, and Flow. For each formulation, we
applied three different solving approaches based on the Yices 1.0.29 SMT solver, which are
described in the Optimization section: dico, yices and core. As we can see, for both sets
KSD30 and Pack, the Time encoding is the best one while, for those sets involving longer
time horizons, KSD15 d and Pack d, the Task encoding is superior to the rest. We conjecture
that Time behaves better when time horizons are smaller, like in the KSD30 and Pack sets,
because the number of variables grows significantly with the time horizon. Both Task and
Flow formulations are independent of time horizons, however the Flow formulation involves
more variables and constraints. Notice that the Task formulation has O(n2) variables, being
n the number of activities, while the Flow formulation has O(n2 ∗m) variables, where m is
the number of resources. The same complexities apply to the number of constraints.

Table 6.2 compares the best solving method reported by [KALM11] and our best solving
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method on each set of benchmarks. In [KALM11] the authors compare several MILP formula-
tions solved with the ILOG Cplex solver against the method of [Lab05] which is based on the
detection and resolution of Minimal Critical Sets (MCS) at each node of the search. Among
the MILP formulations, we highlight the best performing ones: Disaggregated Discrete-Time
(DDT), Flow-based Continuous-Time (FCT) and On/Off Event-based (OOE). Moreover, we
compare with the lazy fd solver from [SFSW09].

Overall, the SMT based approach is a very competitive tool. The approach by [KALM11]
is the best performing one for the Pack set, closely followed by the Time formulation with
the dico method, but it is worse on the other sets, especially on the sets with larger horizons,
where there is a difference of at least one order of magnitude. MCS is comparable to the
SMT approaches for the easiest sets, but it is also about one order of magnitude worse for
the Pack and Pack d sets. The lazy fd solver exhibits very good performance in all sets of
instances apart from the Pack set.3 Compared to lazy fd, although the SMT approach is
able to solve less instances from the Pack d set, it is able to solve more instances from the
Pack set, resulting in a larger number of solved instances globally. Moreover, it has very low
mean times in all sets.

6.5 Conclusions

In this chapter we have presented rcp2smt, an ad hoc tool to deal with the RCPSP using SMT
technology which is competitive with the state-of-the-art RCPSP solving methods. rcp2smt

can read instances in two input formats (rcp and sch). These instances can be solved using one
of the three proposed SMT encodings: Time, Task and Flow. The Time encoding is in general
the best encoding, except when the time horizons are longer being better the Task encoding.
This is reasonable since in the Time encoding the number of constraints and variables mainly
depends on the size of the time horizon, while in the Task and Flow formulations the number
of constraints and variables mainly depends on the number of activities.

Another important feature of rcp2smt is the preprocessing phase, which significantly
helps to solve the problem. For instance, since the Time encoding is very sensitive to the
time horizon, computing better bounds and reducing the time window of the activities greatly
reduces the number of constraints and variables.

We have implemented some optimization algorithms using SMT. In particular we want to
remark that, as far as we known, the WPM1 algorithm presented in [ABP+11a] was the first
implementation of a core-based algorithm for SMT. However, experiments don’t show which
type of algorithm is the best.

Finally, the experimental results have confirmed that this kind of problems, where we have
a combination of Boolean and integer constraints, are a good target for SMT.

3To improve the performance of lazy fd for this set an specialized propagator for the cumulative resource
constraint was developed [SFS13].
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Chapter 7

Simply and WSimply

In this chapter we describe WSimply, a system that reformulates from its own high-level
(W)CSP language into SMT. The development of a system with its own language has several
direct benefits. First of all, we have a complete control of the reformulation from the high-
level language into SMT, for instance, allowing us to decide when we want to use auxiliary
variables. In addition, we can easily extend the language with new features, for instance by
introducing weighted constraints and meta-constraints. Finally, it simplifies the integration
optimization with SMT.

This chapter is based on results from [BPSV09, ABP+13, BEPV12, BPSV14] and it is
organised as follows. First of all, in Section 7.1, we present an overview of the evolution of
the tool, from Simply to WSimply and its extensions. Next, in Section 7.2 we explain the
current architecture of the tool. In Section 7.3 we describe the language of the input files
of the system. In Section 7.4 and Section 7.5 we describe the reformulations from (W)CSP
into SMT and PB/LP respectively. In Section 7.6 we describe the solving module for dealing
with COP and WCSPs. In Section 7.7 we present experimental results and comparisons of
the different versions of the tool. Finally, conclusions are given in Section 7.8.

7.1 History

The origin of Simply lies in the development of a tool that uses SMT technology for solving
CSPs and, at the same time, simplifies the task of generating SMT benchmarks. At the
current state of development, the (W)CSPs are solved using the Yices 1 API with the LIA
logic, but it also has an option to generate SMT-Lib 1.2 files, so other SMT solvers can be
used externally. Its input language is a new high-level declarative language for CSPs, which
has the same name as the system. Next we describe the evolution of the system.

In first version of Simply [BPSV09], which was written in Haskell, CSP instances were
translated into SMT instances, which were then solved by calling an SMT solver. The lan-
guage of this version only supported basic logical and arithmetic constraints, a few global
constraints, two statements, the forall and the if-then-else, the first one for generating multi-
ple constraints and the second one to filter them, and finally an special if-then-else construct
which was evaluated at solving time (based on the special ite function of the standard SMT
language). In order to solve the SMT instance, this version checked the satisfiability of the in-
stance, and in the case of optimization problems it performed binary search algorithm calling

79
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the SMT solver with the same instance but changing the bounds of the objective function.

Since the results of the prototype were encouraging, we decided to develop the next version
of Simply using the C++ language and integrating it with the Yices 1 API, which was the
solver with best performance solving the CSPs tested with the previous version. In addition
this integration would allow us to take advantage of one of the strongest points of SMT
technology, which is learning. This is especially important in optimization problems, because
it allows Simply to keep the learned clauses during the successive calls to the solver. Having
this in mind, we decided to extend the tool to deal with Weighted CSPs by allowing to
associate a weight to the desired constraints, i.e., by defining soft constraints. Then the
WCSP instances can be solved by reformulating the WCSP into a COP, defining an objective
function to be minimized which is the aggregation of the soft constraint costs, but also by using
modified Weighted MaxSAT algorithms for Weighted MaxSMT, such as WPM1 (presented in
Section 4.1.2), which could be very interesting for solving WCSPs. Furthermore, the language
was extended with more global constraints, with the exists statement (similar to the forall but
generating a disjunction instead of a conjunction of constraints), allowing the user to define
its own constraints, and, finally, with meta-constraints, giving to the user more expressibility
and control over the soft constraints. Note that the name of the tool changed from Simply

to WSimply [ABP+13] when it was extended to deal with WCSPs.

Another extension of WSimply was to be able to generate files in the pseudo-Boolean
formats [BEPV12]: pseudo-Boolean optimization (pbo) and weighted PseudoBoolean (wbo),
which then can be solved using specialized PseudoBoolean solvers. Although this extension
was only implemented for a subset of the language (almost all as we will see in Section 7.5),
also two new meta constraints were introduced.

Finally, a new incremental optimization method was introduced in WSimply [BPSV14],
which uses Binary Decision Diagrams (BDD) to represent the objective function of the WC-
SPs, and then this BDD is represented by clauses using a state-of-the-art SAT encoding for
BDDs. At the same time, PB reformulation was extended to generate optimization LP files
in order to compare WSimply with state-of-the-art LP solvers such as CPLEX.

7.2 Architecture of the tool

In this section we describe the architecture of the current version of WSimply. Note we do
not explain the architecture of previous versions for the sake of simplicity.

We have three possible reformulations in WSimply for solving WCSP instances: using
SMT, PB or LP. The input of the system is the same for the three reformulations, a WCSP
instance with meta-constraints formed by a model file, which defines the problem, and an
optional data file, which contains specific data of the instance.

In Figure 7.1 we show the reformulation and solving steps when using SMT. First, WSimply
reformulates the input instance into the suitable format for the solving procedures. It has
four reformulations: (R1) from a WCSP instance with meta-constraints into a WCSP instance
(without meta-constraints), (R2) from a WCSP instance into a COP instance, (R3) from a
WCSP instance into a WSMT instance and (R4) from a COP instance into a WSMT instance.

Once the problem has been properly reformulated, WSimply can apply two different solving
procedures: WSMT Solving (S1) or Optimisation SMT Solving (S2).

The architecture of WSimply for the reformulations into PB and into LP is very similar to
the one shown in Figure 7.1. In the case of the PB reformulation, steps R1, R2, R3, S1 and
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WCSP inst.
+ meta.

WCSP inst.

COP inst.

WSMT inst.

Opt. SMT
Solving

WSMT
Solving

SMT Solver

R1

R2

R3

R4

S2

S1

Figure 7.1: Basic architecture and SMT solving process of WSimply.

S2 are the same, but, instead of generating SMT instances, generating a PB instance in one of
the two possible formats supported by PB solvers: weighted PB (for S1) and optimization PB
(for S2). Step R4 does not exist in the PB reformulation. In the case of the LP reformulation,
only steps R1, R2 and S2 exist, since LP solvers only support optimization instances.

In the following sections we describe the different reformulations and solving procedures.

7.3 Language description

The input of WSimply is a WCSP instance, written in the WSimply language (similar to
EaCL [MTW+99] and MINIZINC [Nic07]), which is formed by a model file and, optionally, a
data file. In this section we first describe the language for the model file and then for the
data file.

7.3.1 Model File

In Figure 7.2 we present the complete grammar of WSimply model files.

The model file always starts with the keyword Problem, followed by the character “:”
and a string naming the problem. After that several sections are used to model the problem:

• Data definition

• Domains definition

• Variables definition

• Predefinition of Functions and Constraints (optional)

• Constraints posting

• Meta-constraints posting (optional)

• Optimization (optional)

As an example in Figure 7.3 we show the classical n-Queens problem.
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Problem:queens

Data

int n=8;

Domains

Dom rows=[1..n];

Variables

IntVar q[n]::rows;

Constraints

AllDifferent([q[i]|i in [1..n]]);

Forall(i in [1..n-1]) {

Forall(j in [i+1..n]) {

q[i]-q[j]<>j-i;

q[j]-q[i]<>j-i;

};

};

Figure 7.3: WSimply model of the classical n-Queens problem.

Data definition

The data definition section is where the problem constants are declared, and optionally a
value is assigned to them. Otherwise it is supposed that the value will be taken from the data
file.

The data definition section starts with the token Data and we can define two types of
constants: integer and Boolean. In both cases a data definition could be a single value or an
indexed list of values. These values can be directly defined or can be arithmetic expressions
or formulas which will be evaluated in compilation time. Note that the order in the data
definition is relevant, since we only can use data values already defined in the definition of
new data.

Domains definition

The domains definition section is where the domains for the integer variable are defined.

The section starts with the token Domains and each domain is defined by a list of integer
values, which can be created by combinations of integers and ranges separated by commas.

Variables definition

The variables definition section is where variables, single or arrays, are defined.

The section starts with the token Variables and we can define two types of variables:
integer (IntVar) or Boolean (BoolVar).
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Integer variables must have a domain assigned to them. However, WSimply provides a
predefined domain, called int, that lefts the variable unbounded. It is responsibility of the
user to bound it later in the constraints section.

User Functions and Constraints definition

We can also predefine functions and constraints in order to have simpler models.
The functions and constraints definition section starts with the token Functions. We

can define functions, which will be used to evaluate a value from its parameters in compila-
tion time, and constrains, which will be used to generate constraints from its parameters in
compilation time.

For instance, in the queens example we can define the constraint to forbid the diagonal
attack as follows:

DefConstraint non_diagonal_attack(int t,int i,int j)

{

t[i]-t[j]<>j-i;

t[j]-t[i]<>j-i;

}

and then in the constraints posting section we can refer to this constraint using its name
and parameters.

Constraints posting

The constraints posting section is where the problem is modelled. Constraints posting starts
with the token Constraints followed by one or more sentences. A sentence is a constraint
(hard or soft) or a comprehension list that posts a conjunction of constraints (generated by
the list). Later in this section we explain how a constraint is set to be soft. A constraint is a
formula or a global constraint.

A formula can be:

• The True and False constants.

• A Boolean decision variable.

• A reference to a user defined constraint.

• A negation of another formula.

• A formula in parentheses.

• A binary Boolean operation on two formulas: And, Or, Xor, Iff and Implies.

• A binary relational operation on two arithmetic expressions: <, >, =<, >= and =.

• An statement evaluated at compilation time: forall, exists or if-then-else.

• An If Then Else, which is a special case of constraint because it is like the if-then-else
statement but evaluated at solving time.

A global constraint can be:
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• Sum(List,Value). This constraint enforces equality between Value and the sum of all
elements of List. When the List is empty, the Value is enforced to be zero.

• Count(List,Value,N). This constraint states equality between N and the number of
occurrences of Value in List. When the List is empty, N is enforced to be zero.

• AtMost(List,Value,N). This constraint states that the number of occurrences of Value
in List must be less or equal than N. When List is empty, N is enforced to be zero.

• AtLeast(List,Value,N). This constraint states that the number of occurrences of
Value in List must be greater or equal than N. When List is empty, N is enforced
to be zero.

• ExactlyOne(List). This constraint states that the number of satisfied constraints in
List must be exactly one.

• AllDifferent(List) requires all the elements of List to be different.

Note that the elements of List for the Sum global constraint must be arithmetic expres-
sions, while in the case of the Count, AtMost and AtLeast global constraints they only have
to be of the same type as Value (arithmetic expressions or formulas).

In the n-Queens model in Figure 7.3, we use the global constraint AllDifferent, two
statements (two nested Foralls) and two basic constraints. In Figure 7.4 we changed the
basic constraints by a reference to the non diagonal attack constraint.

...

Constraints

AllDifferent([q[i]|i in [1..n]]);

Forall(i in [1..n-1]) {

Forall(j in [i+1..n]) {

non_diagonal_attack(q,i,j);

};

};

Figure 7.4: WSimply model of the classical n-Queens problem using a user defined reference.

There are three types of statements in WSimply, that are evaluated during compilation
time:

• Forall : generates a conjunction of sentences

• Exists: generates a disjunction of sentences

• If-then-Else: needs a condition, and generates the sentences of the Then if the condition
is evaluated to true (at compilation time) otherwise generates the sentences of the Else.

It is important to notice the difference between the if-then-else statement and the con-
straint If Then Else, which, as we have said, is not evaluated at compilation time. Consider,
for instance, the following example:
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If (i < 4) Then {

m[i] <> m[i+1];

} Else {

m[i] <> m[i-1];

m[i] = m[i-2];

}

Condition i < 4 is evaluated at compilation time. Therefore, the variable i cannot be a
decision variable, i.e., it must be a constant or a “local” variable, e.g., an index of a Forall

statement.

There are two types of lists in WSimply:

• Extensional lists: by directly enumerating elements and ranges

• Intensional lists: using comprehension lists.

Finally, an arithmetic expression can be:

• A number.

• An integer decision variable.

• A reference to a user defined integer function.

• An arithmetic expression in parentheses.

• A binary arithmetic operation on two arithmetic expressions: +, -, *, Div and Mod.

• The absolute value of an arithmetic expression (Abs).

• The minimum/maximum of a list of arithmetic expressions (min/max).

• The length of a list (length).

• The sum of a list of arithmetic expressions (sum1).

We want to remark that the arithmetic expressions length, max and min are evaluated
at compilation time only, therefore the elements in 〈list〉 must be evaluated at compilation
time.

Note that the arithmetic expression sum1 is exactly equal to the operator +, but it is useful
when we the number of elements to sum is undefined.

Optimization

When the user wants to solve a COP only has to specify an objective variable to be minimized
or maximized, e.g., Minimize optimization variable;.
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Soft constraints posting

In the constraints posting we can combine posting of hard constraints with soft constraints.

A soft constraint is a constraint with an associated weight defined using an @ and the
expression for the weight. The weight expression is the cost of falsifying the constraint.
Optionally, it is allowed to define a label for the soft constraint in order to reference it in
other constraints or in meta-constraints. The labelling is done by adding an #, the label and
: before the soft constraint.

#label : (constraint) @ {weight};

WSimply only supports linear integer expressions int the weight expression. It can either
be evaluable at compile time, or contain decision variables. Weight expressions should always
evaluate to a non-negative integer, as they amount to a cost. When negative they will be
considered as zero. More details on how weights are treated can be found in Section 7.4.3.

An interesting detail worth remarking on is that by allowing the use of decision variables
in the cost expression we can encode the degree of violation of a constraint. For instance,
considering a soft constraint on the maximum number of shifts that a worker has to work per
week, the violation cost could be increased by one unit for each extra shift worked:

(worked shifts < 6) @ {base cost + worked shifts− 5};

Meta-constraints

Inside the model file, we can also define meta-constraints. The meta-constraints section starts
with the token MetaConstraints, followed by one or more meta-constraint posting. Next
we describe the meta-constraints available in WSimply grouped in three families: priority,
homogeneity and dependence.

1. Priority. The user may have some preferences on the soft constraints to violate. For
instance, if we have an activity to perform and worker 1 doesn’t want to perform it while
worker 2 should not perform it, then it is better to violate the first constraint than the
second. It would be useful to free the user of deciding the exact value of the weight of
each constraint.

To this end, we allow the use of undefined weights denoted as “ ”:

#label : (constraint) @ { };

The value of this undefined weight is computed at compile time according to the meta-
constraints that refer to the label. This simplifies the modelling of the problem, since
the user does not need to compute any concrete weight.

WSimply provides the following meta-constraints related to priority:

• samePriority(List), where List is a list of labels of weighted constraints. With
this meta-constraint we are stating that the constraints referred to in the List are
soft constraints with the same priority.
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• priority(List), where List is a list of labels of weighted constraints. With this
meta-constraint we are stating that the constraint corresponding to the i-th label
in List has higher priority than the constraint corresponding to the (i + 1)-th
label. In other words, it must be more costly to violate the i-th constraint than
the (i+ 1)-th.

• priority(label1,label2,n), with n > 1, defines how many times it is worse to
violate the constraint corresponding to label1 than to violate the constraint corre-
sponding to label2. That is, if weight1 and weight2 denote the weights associated
with label1 and label2, respectively, we are stating that weight1 ≥ weight2 ∗ n.

• multiLevel(ListOfLists), where ListOfLists is a list of lists of labels. This meta-
constraint states that the cost of falsifying each of the constraints referred to by the
labels in the i-th list is greater than the cost of falsifying the constraints referred to
by the labels in the rest of the lists (from the i+ 1-th list to the last) all together.
For example,

multiLevel([[A,B,C],[D,E,F],[G,H,I]]);

states that the cost of falsifying each of the constraints (denoted by) A, B and C is
greater than the cost of falsifying D, E, F, G, H, and I together and, at the same
time, the cost of falsifying each of the constraints D, E and F is greater than the
cost of falsifying G, H, and I together.

2. Homogeneity. The user may wish there to be some homogeneity in the amount of
violation of disjoint groups of constraints. For instance, for the sake of fairness, the
number of violated preferences of nurses should be as homogeneous as possible. WSimply
provides the following meta-constraints related to homogeneity:

• maxCost(ListOfLists,v) where ListOfLists is a list of lists of labels of soft con-
straints and v is a positive integer. This meta-constraint ensures that the maximum
cost of the violated constraints of each list in ListOfLists is v.

• minCost(ListOfLists,v) where ListOfLists is a list of lists of labels of soft con-
straints and v is a positive integer. This meta-constraint ensures that the minimum
cost of the violated constraints of each list in ListOfLists is v.

• atLeast(List,p), where List is a list of labels of soft constraints and p is a positive
integer in 1..100. This meta-constraint ensures that the percentage of constraints
denoted by the labels in List that are satisfied is at least p.

• homogeneousAbsoluteWeight(ListOfLists,v), where ListOfLists is a list of lists of
labels of soft constraints and v is a positive integer. This meta-constraint ensures
that, for each pair of lists in ListOfLists, the difference between the cost of the
violated constraints in the two lists is at most v. For example, given

homogeneousAbsoluteWeight([[A,B,C],[D,E,F,G]],10);

if the weights of constraints A, B and C are 5, 10 and 15 respectively, and constraints
A and B are violated and constraint C is satisfied, then the cost of the violated
constraints in [D,E,F,G] must be between 5 and 25.
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• homogeneousAbsoluteNumber(ListOfLists,v). Same as above, but where the max-
imum difference v is between the number of violated constraints.

• homogeneousPercentWeight(ListOfLists,p), where ListOfLists is a list of lists of
labels of soft constraints and p is a positive integer in 1..100. This meta-constraint
is analogous to homogeneousAbsoluteWeight, but where the maximum difference
p is between the percentage in the cost of the violated constraints (with respect to
the cost of all the constraints) in each list.

• homogeneousPercentNumber(ListOfLists,p). Same as above, but where the max-
imum difference p is between the percentage in the number of violated constraints.

We remark that the homogeneousAbsoluteWeight and homogeneousPercentWeight

meta-constraints are not allowed to refer to any constraint with undefined weight.
This is because, constraints with undefined weight are referenced by priority meta-
constraints, and their weight is determined at compile time accordingly to those pri-
ority meta-constraints, independently from other constraints. Hence, since the meta-
constraints homogeneousAbsoluteWeight and homogeneousPercentWeight also con-
strain the weight of the referenced constraints, if they were allowed to reference con-
straints with undefined weights, this could lead to incompleteness. We also remark
that these two meta-constraints can not refer to constraints whose weights contain de-
cision variables. Nevertheless, note that we can homogenise constraints using the meta-
constraints homogeneousAbsoluteNumber and homogeneousPercentNumber, without
worrying about the weights.

3. Dependence. Particular configurations of violations may entail the necessity to satisfy
other constraints, that is, if a soft constraint is violated then another soft constraint
must not, or a new constraint must be satisfied. For instance, working the first or the
last turn of the day is penalized but, if somebody works in the last turn of one day,
then he cannot work in the first turn the next day. This could be succinctly stated as
follows:

#A: not_last_turn_day_1 @ w1;

#B: not_first_turn_day_2 @ w2;

(Not A) Implies B;

stating that, if the soft constraint A is violated, then the soft constraint B becomes hard.

7.3.2 Data file

Inside the data file, we can only assign values to data. The data definition is inside the model
file, so in the data file we cannot determine the type or the number of dimensions of the data
elements.

In Figure 7.5 we present the grammar of WSimply data files.

7.4 WCSP reformulation into SMT

In this section we describe the reformulation steps from a WCSP instance into a SMT instance.
First of all we describe the meta-constraints reformulation into hard and soft constraints
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〈data file〉 ::= 〈data file def〉∗
〈data file def〉 ::= 〈id〉 = 〈arithm exp〉 ;

| 〈id〉 = 〈formula〉 ;
| 〈id〉 = 〈list〉 ;

Figure 7.5: WSimply data file grammar.

(reformulation step R1 of Figure 7.1). Then we describe the hard constraints reformulation
into SMT. Then we describe the soft-constraints reformulation into a COP (reformulation
step R2 of Figure 7.1) and into a WSMT instance (reformulation step R3 of Figure 7.1). And
finally we describe the COP reformulation into a WSMT instance (reformulation step R4 of
Figure 7.1).

7.4.1 Meta-constraint reformulation

We remove all meta-constraints by reformulating them into hard and soft WSimply constraints.
As we have shown in Section 7.3.1, meta-constraints use labels. Therefore, first of all, we

introduce a new reification variable for each labelled soft constraint of the form:

#label : (constraint) @ {expression};

and we replace the constraint by:

blabel ⇔ constraint;
blabel @ {expression};

where blabel is the fresh (Boolean) reification variable introduced for this constraint.
In the following we show how WSimply reformulates the priority, homogeneity and depen-

dence meta-constraints.

Reformulation of Priority Meta-Constraints

To deal with the priority meta-constraints, we create a system of linear inequations on the
(probably undefined) weights of the referenced soft constraints. The inequations are of the
form w = w′, w > w′ or w ≥ n · w′, where w is a variable, w′ is either a variable or a
non-negative integer constant, and n is a positive integer constant. For example, given

#A: (a>b)@{3}; #B:(a>c)@{_}; #C: (a>d)@{_}; #D:(c=2-x)@{_};

priority([A,B,C]);

priority(D,B,2);

the following set of inequations is generated:

wA = 3, wB > 0, wC > 0, wD > 0,
wA > wB, wB > wC ,
wD ≥ 2 · wB

This set of inequations is fed into an SMT solver1 which acts as an oracle at compile time,
so that a model, i.e., a value for the undefined weights satisfying the inequations, can be

1In fact, the set of inequations could be fed into any linear integer arithmetic solver.
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found. Following the previous example, the SMT solver would return a model such as, e.g.:

wA = 3, wB = 2, wC = 1, wD = 4

This allows the reformulation of the original problem into an equivalent WCSP without
undefined weights:

#A:(a>b)@{3}; #B:(a>c)@{2}; #C:(a>d)@{1}; #D:(c=2-x)@{4};

Hence, with the meta-language, and thanks to this simple use of a solver as an oracle
at compile time, we free the user of the tedious task of thinking about concrete weights for
encoding priorities.

Since satisfiability test based algorithms (see Section 7.6) usually behave better with low
weights, we ask not only for a solution of the inequations system, but for a solution minimising
the sum of undefined weights.

In the case of the multiLevel meta-constraint, given for example

#A:(a>b)@{_}; #B:(a>c)@{_}; #C:(a>d)@{_}; #D:(c=2-x)@{_};

multiLevel([[A,B][C,D]]);

the following set of inequations would be generated:

wA > 0, wB > 0, wC > 0, wD > 0,
wA > (wC + wD),
wB > (wC + wD),

and the SMT solver would return a model such as, e.g.:

wA = 3, wB = 3, wC = 1, wD = 1

We remark that the weight expressions of the constraints referenced by a priority meta-
constraint must either be undefined or evaluable at compile time, i.e., they cannot use any
decision variable, since our aim is to compute all undefined weights at compile time. Moreover,
if the set of inequations turns out to be unsatisfiable, the user will be warned about this fact
during compilation.

Reformulation of Homogeneity Meta-Constraints

We reformulate the homogeneity meta-constraints by reifying the referenced constraints and
constraining the number of satisfied constraints.

For example, the meta-constraint atLeast(List,p) is reformulated into:

Count(ListReif, True, n);

n >= val;

where ListReif is the list of Boolean variables resulting from reifying the constraints refer-
enced in List, and val is computed at compile time and is equal to dlength(List) ∗ p/100e.
Count(l,e,n) is a Simply global constraint that is satisfied if and only if there are exactly n
occurrences of the element e in the list l.

The meta-constraint maxCost(ListOfLists,val) is reformulated into:
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Sum([ If_Then_Else (List[1][j]) (0) (weight_label[1][j])

| j in [1..len[1]] ], vio_wei[1]);

vio_wei[1] =< val;

...

Sum([ If_Then_Else (List[n][j]) (0) (weight_label[n][j])

| j in [1..len[n]] ], vio_wei[n]);

vio_wei[n] =< val;

where n is the length of ListOfLists, len[i] is the length of the i-th list in ListOfLists,
weight label[i][j] is the weight associated with the j-th label of the i-th list, vio wei[i]

denotes the aggregated weight of the violated constraints in the i-th list and val is the
maximum allowed violation cost.

The reformulation of the minCost(List,min) meta-constraint is almost the same of the
previous one, but replacing the =< for >= in the constraints vio wei[i] >= val;.

The meta-constraint homogeneousPercentWeight(ListOfLists,p), is reformulated into:

Sum([ weight_label[1][j] | j in [1..len[1] ], total_wei[1]);

Sum([ If_Then_Else (ListOfLists[1][j]) (0) (weight_label[1][j])

| j in [1..len[1]] ], vio_wei[1]);

(vio_wei[1] * 100 Div total_wei[1]) >= min_homogen;

(vio_wei[1] * 100 Div total_wei[1]) =< max_homogen;

...

Sum([ weight_label[n][j] | j in [1..len[n] ], total_wei[n]);

Sum([ If_Then_Else (ListOfLists[n][j]) (0) (weight_label[n][j])

| j in [1..len[n]] ], vio_wei[n]);

(vio_wei[n] * 100) Div total_wei[n]) >= min_homogen;

(vio_wei[n] * 100) Div total_wei[n]) =< max_homogen;

(max_homogen - min_homogen) < p;

where len[i] is the length of the i-th list in ListOfLists, weight label[i][j] is the weight
associated with the j-th label of the i-th list, total wei[i] is the sum of weights of the labels
in the i-th list and n is the length of ListOfLists. Note that according to the Sum constraints,
vio wei[i] denotes the aggregated weight of the violated constraints in the i-th list. Finally,
min homogen and max homogen are fresh new variables.

Since we are restricted to linear integer arithmetic, the total wei[i] expressions must
be evaluable at compile time. This requires the weights of the constraints referenced by this
meta-constraint to be evaluable at compile time.

The reformulation of homogeneousAbsoluteWeight(ListOfLists,v) is analogous to the
previous one, but where, instead of computing the percentage on vio wei[i], we can directly
state:

...

vio_wei[1] >= min_homogen;

vio_wei[1] =< max_homogen;

...

vio_wei[n] >= min_homogen;
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vio_wei[n] =< max_homogen;

(max_homogen - min_homogen) =< v;

Technically, our reformulation could allow the homogeneousAbsoluteWeight meta-constraint
to reference constraints whose weight expression uses decision variables (and hence is not
evaluable at compile time) without falling out of linear integer arithmetic. However, this is
not the case for the meta-constraint homogeneousAbsolutePercent, for which we must be
able to compute the aggregated weight of the labels. Thus, for coherence reasons, we have
forbidden both constraints to reference constraints with decision variables in their weight, in
addition to constraints with undefined ( ) weight, as pointed out in Section 7.3.1.

The reformulations of the homogeneousAbsoluteNumber and homogeneousPercentNumber

meta-constraints are similar to the previous ones, but where we count the number of violated
constraints instead of summing their weights.

Reformulation of Dependence Meta-Constraints

The dependence meta-constraints are straightforwardly reformulated by applying the logical
operators between constraints directly supported by WSimply on the corresponding reification
variables.

7.4.2 Constraints reformulation

There are two steps in the constraints reformulation: how we reformulate the variables and
their domains, and how we reformulate the constraints which define the model.

The first step is how we reformulate the WSimply variables and their domains into SMT
variables. As we have seen in Section 7.3 WSimply only supports Boolean and integer variables,
which are directly reformulated into SMT variables since WSimply uses LIA as background
theory. In case of WSimply indexed variables (arrays or matrices) we only have to create as
many base type SMT variables as elements contained in the indexed variable. Finally, for the
integer variables with an assigned domain, we add bounding constraints as we have explained
at Section 5.3.1 of the fzn2smt tool.

The second step of the constraint reformulation is the hard constraints reformulation,
which can be divided in three groups: basic constraints, statements (basically generators and
filters), and global constraints. Since WSimply uses LIA as background theory in the SMT
formulas, the hard constraints reformulation is straightforward for the basic constraints, either
arithmetic constraints (<, >, =<, >=, <> and =) and the Boolean constraints (And, Or, Iff,
Implies, Not and If Then Else), and for the statements (Forall ' And, Exists ' Or and
If-Then-Else). Note that the reformulation of comprehension list, which is also a constraint
generator, is the same as the Forall statement. Finally, we only have to explain how to
reformulate the global constraints, which is explained below.

Global constraints reformulation

In general, SMT solvers do not implement specific theories for global constraints, and imple-
menting theories for global constraints is out of scope of this thesis (although it could be very
interesting for future work). Therefore, in WSimply, global constraints are reformulated into
conjunctions of basic constraints. Next we describe the reformulation of the global constraints
supported by WSimply:
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• The AllDifferent(List) is reformulated into:∧
¬(ei = ej)

where ei and ej are the i-th and j-th elements of List, and i 6= j.

• The Sum(List,val) is reformulated into:(∑
ei

)
= val

where ei is the i-th element of List, and val is an arithmetic expression. Note that val
can contain decisional variables.

• The Count(List,ele,val) is reformulated into:(∑
if then else(ei = ele)(1)(0)

)
= val

where ei is the i-th element of List, val is the number of appearances of ele in List, ele
is a formula or an arithmetic expression, and val is an arithmetic expression. Note that
either ele or val can contain decisional variables.

• The AtMost(List,ele,exp) default reformulation is exactly the same as the Count re-
formulation where instead the operator = in the outer condition we have the operator
<=.

WSimply also supports three other reformulations for the AtMost: the two first are
adaptations of the pair-wise and sequential encodings (presented in Section 3.6.1), and
the last one is based on a SAT encoding for pseudo-Boolean constraints using BDDs,
which is explained in Chapter 8. In this last reformulation exp must be evaluable at
compilation time.

• The AtLeast(List,ele,exp) default reformulation is exactly the same as the AtMost

and the Count reformulations where the operator of the outer condition is >=.

WSimply also supports the reformulation based on SAT encodings for pseudo-Boolean
constraints using BDDs for the AtLeast, in this case, we first reformulate the AtLeast

into an AtMost and then the same reformulation as above is applied.

• The ExactlyOne(List) is reformulated into a AtMost pair-wise encoding and a disjunc-
tion for the AtLeast, both presented in Section 3.6.1.

7.4.3 WCSP and COP reformulations

As we will see in Section 7.6, WSimply can solve WCSP instances using WSMT or using
optimization over SMT. Therefore, in this section we first describe how WCSP instances are
reformulated into WSMT instances (reformulation step R2 of Figure 7.6) and COP instances
(reformulation step R3 of Figure 7.6), and finally how COP instances can be reformulated
into WSMT instances (reformulation step R4 of Figure 7.6).



7.4. WCSP REFORMULATION INTO SMT 95
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Figure 7.6: Basic architecture and SMT solving process of WSimply.

WCSP to COP

In order to transform our WCSP instance into a COP instance, we first replace each soft
constraint Ci @wi by the following constraints where we introduce a fresh integer variable oi:

¬(wi > 0 ∧ ¬Ci) → oi = 0(7.1)

(wi > 0 ∧ ¬Ci) → oi = wi(7.2)

If the weight expression, wi, evaluates to a value less or equal than 0, then the cost of
falsifying Ci is 0, otherwise it is wi. Since we are defining a minimisation problem we could
actually replace Equation (7.1) with oi ≥ 0.2

Secondly, we introduce another fresh integer variable O, which represents the sum of the
oi variables, i.e., the optimisation variable of the COP to be minimised, and the following
constraint:

(7.3) O =

m∑
i=1

oi

Finally, we keep the original hard constraints with no modification.

WCSP to WSMT

To the best of our knowledge, existing WSMT solvers only accept WSMT clauses whose
weights are constants. Therefore, we need to convert the WCSP instance into a WSMT
instance where all the WSMT clauses have a constant weight.

We apply the same strategy as in R2, i.e., we first replace each soft constraint Ci @wi,
where wi is not a constant (involves variables), with the constraints 7.1 and 7.2 introducing
a fresh integer variable oi. Secondly, we add the following set of soft constraints over each
possible value of each oi variable:

(7.4)
⋃

vj∈V (oi)

oi 6= vj @ vj

2WSimply has a command line parameter to disable this simplification.
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where V (oi) is the set of all possible positive values of oi. These values are determined by
evaluating the expression for all the possible values of the variables, and keeping only the
positive results. Note that at this point we do have a WCSP instance where all the soft
constraints have a constant weight.

Finally, we replace each soft constraint Ci @wi, with the WSMT clause (C ′i, wi) where C ′i
is the translation of Ci into SMT as described in the previous section. We also replace each
hard constraint with its equivalent hard SMT clause.

COP to WSMT

Taking into account that the optimisation variable O of the COP instance is the integer
variable that represents the objective function, we only need to add the following set of
WSMT clauses:

⋃i=W
i=1 (O < i, 1), where W is the greatest value the objective variable can be

evaluated to. A more concise alternative could result from using the binary representation

of W , i.e., adding the set of WSMT clauses
⋃i<dlog2(W+1)e
i=0 (¬bi, 2i), and the hard clause

(
∑i<dlog2(W+1)e

i=0 2i · bi = O,∞).

We finally replace all the constraints of the COP instance with the equivalent hard SMT
clauses as described in the previous section.

7.5 WCSP reformulation into PB/LP

Since a PB problem can be seen as a particular case of a LP problem where variables are
pseudo-Boolean, the reformulation steps from a WCSP instance into a PB instance and into
a LP instance are the same. Next we describe the reformulation steps in the same order as
the previous section: first the meta-constraint elimination (equivalent to reformulation step
R1 of Figure 7.1), then how to reformulate the hard constraints into PB/LP, and, finally, we
describe the soft-constraints reformulation into a COP (equivalent to reformulation step R2
of Figure 7.1) for PB/LP and into a weighted PB instance (equivalent to reformulation step
R3 of Figure 7.1).

7.5.1 Meta-constraints reformulation

The meta-constraint reformulation step for PB and LP reformulations is very similar to the
equivalent step of the SMT reformulation: for each labelled soft constraint we introduce a new
reification variable, using the bigM method described in Section 3.6.2, and then we proceed
to reformulate the meta-constraints. The reformulation of priority and dependence meta-
constraints is exactly the same as the previous section. But the homogeneity meta-constraints
reformulation is a bit different and it only supports a subset of the meta-constraints.

Reformulation of Homogeneity Meta-Constraints

First of all we describe the maxCost and minCost meta-constraint reformulations, which is
the same for both PB and LP reformulations.

The meta-constraint maxCost(ListOfLists,val) is reformulated into n AtLeast global
constraints:

AtLeast([ (ListOfLists[1][j] * weight_label[1][j])
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Table 7.1: LP (PB) reformulation of the logical constraints.

Not a ia = 0

a Or b ia + ib ≥ 1

a And b ia + ib = 2

a Implies b ib − ia ≥ 0

a Iff b ia − ib = 0

a Xor b Not supported

If Then Else(c)(a)(b)* ia − ic ≥ 0 and ic + ib ≥ 1

*If Then Else(c)(a)(b) is equivalent to (c Implies a) and (c Or b).

| j in [1..len[1]] ], total_wei[1]-val);

...

AtLeast([ (ListOfLists[n][j] * weight_label[n][j])

| j in [1..len[n]] ], total_wei[n]-val);

where n is the length of ListOfLists, len[i] is the length of the i-th list in ListOfLists,
weight label[i][j] is the weight associated with the j-th label of the i-th list, total wei[i]

is the aggregated weight of the labels in the i-th list and val is the maximum allowed viola-
tion cost. Note that we use total wei[1]-val because ListOfLists[i ][j ] is equal to 1 when
constraint j is satisfied.

The reformulation of the minCost(List,min) meta-constraint is almost the same of the
previous one, but using the global constraint AtMost instead of AtLeast.

The homogeneousAbsoluteWeight and homogeneousAbsoluteNumber meta-constraint re-
formulation is only supported by the LP reformulation and it is the same as the SMT refor-
mulation.

Finally, meta-constraints homogeneousPercentWeight and homogeneousPercentNumber

are not currently supported by neither of the PB and LP reformulations.

7.5.2 Constraints reformulation

Since LP (PB) constraints are inequalities on linear combinations of integer (0-1) variables,
arithmetic constraints can be easily reformulated. We only have to transform them to the
LP (PB) format, which means to have all variables at the left side of the inequality and a
constant at the right side.

In contrast, logical constraints such as Or, Implies, . . . cannot be directly translated.
To be able to express these kind of constraints we use reification, which means to reflect
the constraint satisfaction into a 0-1 variable. Then, e.g., a Or b can be translated into
ia+ib ≥ 1, where ia and ib are the reification 0-1 variables corresponding to the satisfaction of
the formulas a and b, respectively. Table 7.1 shows the reformulation of the logical constraints
into LP (PB).

The reformulation of the statements is very simple, the Forall and If-Then-Else are
unfolded and treated as individual constraints, and the Exists are unfolded and then treated
as disjunction (Or).
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Global constraints reformulation

Next we describe the reformulation of the global constraints supported by WSimply for the
LP/PB reformulations:

• The AllDifferent(List), only available for the LP reformulation, is reformulated into:∧
(ei − ej 6= 0)

where ei and ej are the i-th and j-th elements of List, and i 6= j.

• The Sum(List,val) is reformulated into:(∑
ei

)
= val

where ei is the i-th element of List and val is an arithmetic expression. In case that
val contains decisional variables we have to move all the variables to the left side of the
equality.

• The Count(List,ele,val) is reformulated into:(∑
reifi

)
= val

where reifi is the reification variable (0/1) of the equality ei = ele, ei is i-th element of
List, val is the number of appearances of ele in List, ele is a formula or an arithmetic
expression, and val is an arithmetic expression. Note that either ele or val can contain
decisional variables. In case that val contains decisional variables we have to move all
the variables to the left side of the equality.

• The AtMost(List,ele,exp) is reformulated into:(∑
ei

)
≤ val

where ei is the i-th element of List, val is an arithmetic expression and the elements of
the lists are restricted to expressions of the form a ∗ x, where a is an integer constant
and x is an integer variable. Note that in this version of the AtMost for the PB and LP
reformulations, we ignore the second parameter ele.

• The AtLeast(List,ele,exp) reformulation is exactly the same as the AtMost reformu-
lation where the operator of the outer condition is ≥.

7.5.3 WCSP and COP reformulations

In this section we present the WCSP reformulation into optimization PB and LP problems,
and the WCSP reformulation into weighted PB.
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WCSP to optimization PB/LP

In order to reformulate a WCSP into a optimization PB/LP problem, first, we reformulate
the hard constraints as explained in the previous subsection and then we reformulate the soft
constraints.

Since soft constraints are not directly supported by optimization PB and LP, we use
reification to manage their violation costs. To do that, each soft constraint is reified and a
reverse reification variable is created using the equation: reif var + reif varrev = 1. Note
that in this reverse reification variable we are reflecting the falsification of the constraint.

Finally, the minimization function is generated using these reverse reification variables
multiplied by their respective violation cost.

WCSP to weighted PB

In order to reformulate a WCSP into a optimization PB/LP, first, we reformulate the hard
constraints as explained in the previous section and then we reformulate the soft constraints.
In this case, Since soft constraints are directly supported by weighted PB we replace each soft
constraint Ci @wi, with the PB clause (C ′i, wi) where C ′i is the translation of Ci into PB as
described in the previous subsection.

7.6 The WSimply solving module

In this section we describe the WSimply solving process depending on the type of reformulation
chosen: PB, LP and SMT.

The solving process for the PB and LP reformulations is very simple, because both types
of solvers can solve optimization instances, and in the case of PB they can also solve weighted
PB instances. Therefore, once the instance is properly reformulated into weighted PB, opti-
mization PB or optimization LP, that instance can be feed into a solver (PB or LP) and it
will solve the instance.

The solving process for the SMT reformulation is a bit more complicated. Next we describe
the two possible solving approaches that we can currently apply for the SMT reformulation
(described in Figure 7.1): WSMT solving which receives as input a WSMT instance (named S1
in the figure) and Optimization SMT solving which receives as input a COP instance (named
S2 in the figure). In both approaches, WSimply uses by default the Yices 1 SMT solver
through API. However, WSimply can also solve optimization SMT instances using external
SMT solvers by generating SMT instances in the SMT-Lib formats (v1.2 and v2).

In the first SMT solving approach, we already have the WCSP instance translated into a
WSMT instance and we only have to choose which WSMT solving method we want to use
from the two next. The first WSMT solving method, is a non-exact algorithm3 offered by
default in the Yices SMT solver [DdM06b]. While the second WSMT solving method, is the
adapted version of the WPM1 algorithm for SMT described in Section 6.2.2. Recall that
this method calls the SMT solver incrementally and is based on the detection of unsatisfiable
cores.

In the second SMT solving approach, we have adapted the dichotomic minimization al-
gorithm for SMT described in Section 6.2.2 to be used in WSimply. We first translate all the
constraints of the COP instance into SMT clauses and send them to the SMT solver. Then,

3Non-exact algorithms do not guarantee optimality.
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before every call we bound the domain of the optimisation variable O by adding the SMT
clause O ≤ k, where k is an integer constant. If the SMT solvers returns unsat, we replace
the clause O ≤ k by O > k. The strategy we use to determine the next k is a binary search.

7.7 Experimental results

In this section we present several experimental results of different versions of WSimply. First of
all, we present several experimental results of Simply, the first version of the tool: solving four
CSPs with different SMT solvers, a comparison between Simply and several similar tools on
solving 18 CSPs, and a comparison between WSimply and fzn2smt solving the same 18 CSPs.
Finally, we present experimental results of WSimply for solving WCSPs with meta-constraints
first by using optimization SMT and WSMT, and then by using PB solvers.

7.7.1 Simply first version

Next we present the experimental results of the first version of Simply for solving classical
CSPs using different SMT solvers presented at [BPSV09].

We have used four classical CSPs in this experiment: Schur’s Lemma (CSPLib [GW99]
problem 015), Balanced Academic Curriculum Problem (BACP) (CSPLib problem 030), Job-
shop scheduling and the Queens problem.

We have used the SMT solvers which participated in the QF LIA division of the Sat-
isfiability Modulo Theories Competition4 (SMT-COMP) 2008, namely, Z3.2, MathSAT-4.2,
CVC3-1.5, Barcelogic 1.3 and Yices 1.0.10, for solving the SMT version of the previous prob-
lems generated using Simply.5

In addition, we have also used some solvers of different nature on the same problems,
namely, G12 MiniZinc 0.9, ECLiPSe 6.0, SICStus Prolog 4.0.7, SPEC2SAT 1.1 and Comet 1.2,
in order to have a comparison. The same benchmarks have been used for G12 MiniZinc 0.9,
ECLiPSe 6.0 and SICStus Prolog 4.0.7 (after a translation from the MiniZinc modeling lan-
guage to the FlatZinc low-level solver input language, by using the MiniZinc-to-FlatZinc
translator mzn2fzn). SPEC2SAT transforms problem specifications written in NP-SPEC into
SAT instances in DIMACS format, and thus can work in cooperation with any SAT solver
supporting that format. In our tests, we have used SPEC2SAT together with zChaff 2007.3.12.
With respect to Comet, only its constraint programming module has been tested. In order to
have a fair comparison, we have preserved as much as possible the modeling used in SMT and
avoided the use of any search strategy when dealing with other solvers, as no search control
is possible within SMT solvers.

Table 7.2 shows the time in seconds spent by each solver in each problem, with a timeout
of 1800 seconds. The benchmarks were executed on a 3.00 GHz Intel Core 2 Duo machine
with 2 Gb of RAM running under GNU/Linux 2.6. The first column refers to the Simply

compilation time. The following 5 columns contain the solving time spent by the different
SMT solvers on the generated SMT instances. The rest of columns detail the times (including
compilation and solving) spent by solvers of other nature. We can observe the following:

4SMT-COMP: The SAT Modulo Theories Competition (http://www.smtcomp.org).
5Since our naive modeling of the Queens problem falls into the QF IDL fragment of QF LIA, we have

made this explicit in the generated instances. In this way, the SMT solvers with a specialized theory solver
for QF IDL can take profit of it.
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Table 7.2: Time in seconds spent on solving each problem instance. The first column refers
to Simply compilation time. Time out (t.o.) was set to 1800 seconds. Memory out is denoted
by m.o.
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Schurl 15 3 0.10 0.35 0.79 29.15 0.15 0.18 t.o. t.o. 0.37 0.73 0.40

Jobshop 54 0.31 0.12 0.27 104.97 7.79 2.69 34.13 1.54 33.30 80.41 1.79
Jobshop 55 0.32 0.20 0.35 211.48 11.57 3.63 122.16 2.16 t.o. 80.03 11.65
Jobshop 56 0.30 0.12 0.46 358.53 12.08 4.37 396.03 3.13 t.o. 88.11 100.01
Jobshop 57 0.30 0.34 0.89 475.55 16.05 6.62 1115.09 1.13 t.o. 85.66 892.54
Jobshop 58 0.34 0.10 0.25 134.71 20.75 11.48 0.09 1.22 236.64 95.11 0.82

For the Queens problem, G12 obtains the best results. The poor performance of SMT
solvers on this problem is probably due to the fact that the modeling results in a SMT
instance with only unit clauses, while SMT is well-suited for problems whose satisfiability
highly depends on the combination of the Boolean structure and the background theory.

For the BACP problem, similar results are obtained by SMT solvers, G12 and SICS-
tus Prolog. However, complicated instances around the phase transition are not solved by
any of them. The SMT instances generated by Simply for this problem include a relevant
Boolean structure mixed with arithmetic expressions, mainly due to the Count and Sum global
constraints. This is probably why some SMT solvers obtain extremely good results on this
problem. It is also important to notice that SPEC2SAT fails to solve all the instances, since
the generated SAT formula is too big for zChaff. Moreover, Comet is very unstable on this
problem.

For the Schur’s Lemma problem, good results are obtained by most of the solvers. Sur-
prisingly, G12 consumes all the time with no answer. With the chosen modeling, Simply

is able to generate an SMT instance with no arithmetic at all, since all expressions can be
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evaluated at compile time.
For the Job-shop problem, best results are obtained by some of the SMT solvers and by

ECLiPSe. This is again a problem with a relevant Boolean structure, and some arithmetic.
Globally, it seems that most of the SMT solvers are good in all the problems considered.

This is especially relevant if we take into account that those solvers come from the verification
arena and, therefore, have not been designed with those kind of constraint problems in mind.
Moreover, they seem to scale up very well with the size of the problems. Let us remark
that these problems are just the first ones at hand that we have considered, i.e., we have not
artificially chosen them. For this reason, SMT can be expected to provide a nice compromise
between expressivity and efficiency for solving CSPs in some contexts.

A deeper experimental comparison is done with the Yices 2 proto SMT solver with the
FLATZINC solvers: G12, ECLiPSe, Gecode and FZNTini. In this experiment we have taken
18 problems from MINIZINC library, which each problem has several instances having 208
instances in total, and each problem has been written in Simply trying to preserve the original
encoding.

Table 7.3 shows the time in seconds spent by each solver in each problem. The timeout
of each instance is set at 300 seconds. The benchmarks were executed on a 3.00 GHz Intel
Core 2 Duo machine with 2 Gb of RAM running under GNU/Linux 2.6. The first column
is the name of the problem. The second column indicates if the problem is a satisfaction or
optimization problem. The third column is the total number of instances of each problem.
And the last 5 columns are the aggregated solving time of each solver of the solved instances.
In this experiments all the solver times include the compilation and solving time. The number
of solved instances is indicated between parentheses. In bold we have marked the “best” result
of each problem, which means, the solver that has solved more instances in less time. The last
row indicates the total time spend by each solver and between parentheses the total number
of instances solve.

As we can see, Simply +Yices 2 solves 110 instances, nearly followed by G12. But Simply
spends more time in solving them, 3500 seconds versus 900 seconds, and seems that the
difference comes from the cars problem where Simply solves 19 instances and G12 only solves
1 instance with a difference of 2400 seconds. We can also see, that Simply has better results
in 3 of the 18 problems, while G12 has better results in 5 problems and Gecode has better
results in 9 of the 18 problems.

Finally, in Table 7.4, we present a comparison between the tools Simply and fzn2smt,
both using the same SMT solver: Yices 2 proto. The first column of the table is the problem
name. The second column is the problem type: satisfiability problem (s) or optimization
problem (o). The third column is the number of instances of the problem. And the two last
columns are the total solving time spend by each tool and between parentheses the number
of instances solved. The time out is 300 seconds, and the time of the non solved instances is
not included. In bold we mark the “best” result, which is the one with more instances solved
and in case of tie the result with smaller total time.

As the table shows, both tools, Simply and fzn2smt, solve more or less the same number
of instances, 110 and 111 respectively. Where we find more difference is at the solving time,
where fzn2smt spends 700 seconds less than Simply to solve the same number of instances
plus one. This is reasonable, since some preprocessing techniques are used in the translation
from MINIZINC to FLATZINC, whereas they are not used in the Simply reformulation into
SMT. But, in the other side, Simply has better results in more problems than fzn2smt,
solving more instances (or solving them faster when there is draw in the number of instances
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Table 7.3: For 18 problems from the MINIZINC library we report the total solving time and
the number of solved instances (in parentheses) using Simply +Yices 2 proto and several
FLATZINC solvers. Time of the non solved instances is not included. The timeout is set at 300
seconds. For each problem we mark in boldface the solver that has solved more instances in
less time. Optimization problems are denoted with ’o’ and satisfiability problems are denoted
by ’s’. Column # indicates the number of instances per problem.

Problem # G12 ECLiPSe Gecode FZNTini Simply

alpha s 1 0.01(1) 0.47(1) 0.07(1) 0.60(1) 0.21(1)
areas s 4 0.13(4) 2.04(4) 0.05(4) 0.38(4) 0.63(4)
bibd s 14 118.16(12) 4.18(7) 35.58(7) 353.78(13) 26.63(11)
cars s 79 0.02(1) 0.81(1) 295.64(3) 1.21(1) 2420.89(19)
curriculum s 3 0.27(2) 95.09(2) 261.82(1) 8.70(3) 1.26(3)
eq s 1 0.01(1) 0.49(1) 0.01(1) 20.14(1) 0.24(1)
golomb o 10 251.18(9) 85.84(8) 23.83(8) 23.87(6) 66.05(6)
langford s 25 52.19(20) 121.85(20) 34.54(20) 310.24(18) 12.13(20)
latin-squares s 7 5.98(6) 12.54(6) 15.35(6) 129.40(3) 1.45(4)
magicseq s 9 25.17(7) 21.56(7) 7.39(7) 0.30(3) 106.06(5)
nmseq s 10 281.73(6) -(0) 171.03(7) -(0) 213.73(2)
photo o 2 0.10(2) 1.07(2) 0.04(2) 0.08(2) 0.66(2)
quasigroup7 s 10 1.37(5) 293.67(3) 3.65(5) 380.28(3) 7.74(5)
queens s 7 88.88(7) 36.24(7) 0.52(3) 94.76(4) 110.17(5)
schur numbers s 3 1.30(3) 1.03(2) 0.30(3) 0.02(2) 0.53(3)
shortest path o 10 4.36(4) 292.15(6) 141.34(7) -(0) 88.65(6)
slow convergence s 10 68.74(10) 12.84(7) 11.03(10) 36.98(4) 479.71(10)
tents s 3 0.10(3) 1.52(3) 0.04(3) 0.30(3) 0.68(3)

Total 208 899.7(103) 983.39(87) 1002.23(98) 1361.04(71) 3537.42(110)

solved) in 12 of the 18 problems.

7.7.2 WSimply with meta-constraints

In order to show the usefulness of meta-constraints we conducted several experiments on
a set of instances of the Nurse Rostering Problem (NRP) and on a variant of the Balanced
Academic Curriculum Problem (BACP). Next we present the experimental results of WSimply
using Yices 1 API, presented at [ABP+13].

NRP

The NRP (also known as Nurse Scheduling Problem (NSP)) is a classical constraint program-
ming problem [WHFP95]. Each nurse has his/her preferences on which shifts wants to work.
Conventionally a nurse can work in three shifts: day shift, night shift and late night shift.
There is a required minimum of personnel for each shift (the shift cover). The problem is
described as finding a schedule that both respects the hard constraints and maximizes the
nurse satisfaction by fulfilling their wishes.

We have taken the instances from the NSPLib. The NSPLib is a repository of thousands of
NSP instances, grouped in different sets and generated using different complexity indicators:
size of the problem (number of nurses, days or shift types), shifts coverage (distributions over
the number of needed nurses) and nurse preferences (distributions of the preferences over the
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Table 7.4: For 18 problems from the MINIZINC library we report the total solving time and
the number of solved instances (in parentheses) using Simply and fzn2smt, both with the
Yices 2 proto. Time of the non solved instances is not included. The timeout is set at 300
seconds. For each problem we mark in boldface the solver that has solved more instances in
less time. Optimization problems are denoted with ’o’ and satisfiability problems are denoted
by ’s’. Column # indicates the number of instances per problem.

Problem # fzn2smt Simply

alpha s 1 0.66(1) 0.21(1)
areas s 4 4.75(4) 0.63(4)
bibd s 14 79.48(12) 26.63(11)
cars s 79 2271.17(21) 2420.89(19)
curriculum s 3 9.97(3) 1.26(3)
eq s 1 0.47(1) 0.24(1)
golomb o 10 41.88(6) 66.05(6)
langford s 25 50.52(20) 12.13(20)
latin-squares s 7 7.54(4) 1.45(4)
magicseq s 9 11.01(4) 106.06(5)
nmseq s 10 1.42(1) 213.73(2)
photo o 2 0.78(2) 0.66(2)
quasigroup7 s 10 31.51(5) 7.74(5)
queens s 7 54.61(5) 110.17(5)
schur numbers s 3 1.45(3) 0.53(3)
shortest path o 10 45.79(6) 88.65(6)
slow convergence s 10 222.37(10) 479.71(10)
tents s 3 2.50(3) 0.68(3)

Total 208 2837.88(111) 3537.42(110)

shifts and days). Details can be found in [VM07]. In order to reduce the number of instances
to work with, we have focused on a particular set: the N25 set, which contains 7920 instances.

The N25 set has the following settings:

• Number of nurses: 25

• Number of days: 7

• Number of shift types: 4 (including the free shift)

• Shift covers: minimum number of nurses required for each shift and day.

• Nurse preferences: a value between 1 and 4 (from most desirable to least desirable) for
each shift and day, for each nurse.

The NSPLib also has several complementary files with more precise information like minimum
and maximum number of days that a nurse should work, minimum and maximum number of
consecutive days, etc. We have considered the most basic case (case 1) which only constrains
that

• the number of working days of each nurse must be exactly 5.

In Figure 7.7 we propose a WSimply model for the NSP to be solved using SMT where
we have the shift covers and the number of working days as hard constraints, and the nurse
preferences as soft constraints.
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Problem:nrp

Data

int n_nurses;

int n_days;

int n_shift_types;

int covers[n_days, n_shift_types];

int prefs[n_nurses, n_days, n_shift_types];

int min_shifts;

int max_shifts;

Domains

Dom dshifts_types = [1..n_shift_types];

Dom dshifts = [min_shifts..max_shifts];

Dom dnurses = [0..n_nurses];

Variables

IntVar nurse_day_shift[n_nurses, n_days]::dshifts_types;

IntVar nurse_working_shifts[n_nurses]::dshifts;

IntVar day_shift_nurses[n_days, n_shift_types]::dnurses;

Constraints

%%% Every nurse must work only one shift per day.

%%% This constraint is implicit in this modelling.

%%% The minimum number of nurses per shift and day must be covered.

%%% Variables day_shift_nurses[d,st] will contain the number of nurses working

%%% for every shift and day.

Forall(d in [1..n_days], st in [1..n_shift_types]) {

Count([nurse_day_shift[n,d] | n in [1..n_nurses]], st, day_shift_nurses[d,st]);

};

[day_shift_nurses[d,st] >= covers[d,st] | d in [1..n_days], st in [1..n_shift_types]];

%%% Nurse preferences are desirable but non-mandatory.

%%% Each preference is posted as a soft constraint with

%%% its label (#prefs[n,d,st]) and a violation cost according to prefs[n,d,st].

Forall(n in [1..n_nurses], d in [1..n_days], st in [1..n_shift_types]) {

#prefs[n,d,st]: (Not (nurse_day_shift[n,d] = st)) @ {prefs[n,d,st]};

};

%%% The minimum and maximum number of working days of each nurse

%%% must be between bounds (i.e. the domain of nurse_working_shifts[n]).

Forall(n in [1..n_nurses]) {

Count([ nurse_day_shift[n,d] <> n_shift_types | d in [1..n_days] ],

True, nurse_working_shifts[n]);

};

Figure 7.7: WSimply (SMT) model for the NRP.

Since the addition of homogeneity meta-constraints in these particular instances signif-
icantly increases their solving time, we have ruled out the instances taking more than 60
seconds to be solved with WSimply without the meta-constraints. The final chosen set con-
sists of 5113 instances.

In order to evaluate the effects of the homogeneity meta-constraints on the quality of the
solutions and the solving times, we have conducted an empirical study of some instances from
the NSPLib. In the following we report the results of several experiments performed with
WSimply over the set of 5113 chosen instances of the NRP, using a cluster with nodes with
CPU speed 1GHz and 500 MB of RAM, and with a timeout of 600 seconds. We tested the
three solving approaches available in WSimply using SMT:

• dico: a binary search bounding an objective function

• yices: the default Yices 1 WSMT solving method

• core: our addapted version of the WPM1 for WSMT
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The times appearing in the tables are for the core approach, which was the one giving
best results for this problem.

Table 7.5 shows the results of the chosen 5113 instances from the N25 set without homo-
geneity meta-constraints.

Table 7.5: Results of 5113 instances from the N25 set, with soft constraints on nurse prefer-
ences (without meta-constaints). µ: mean of means of costs of violated constraints per nurse;
σ: standard deviation of means of costs of violated constraints per nurse; Time: mean solving
time (in seconds); Cost: mean optimal cost; Abs. diff.: mean of differences between maximal
and minimal costs; Rel. diff.: mean of differences between relative percentual maximal and
minimal costs.

µ σ Time Cost Abs. diff. Rel. diff.
Normal 9.67 1.83 6.46 241.63 7.71 9.42

We can observe that if we only focus on minimising the cost of the violated constraints,
we can penalise some nurses much more than others. For instance, we could assign the
least preferred shifts to one nurse while assigning the most preferred shifts to others. From
the results in Table 7.5, we observe that the mean of absolute differences is 7.71 while the
mean cost per nurse is around 9.67, which shows that the assignments are not really fair.
In order to enforce fairness, we can extend the model of Figure 7.7 by adding homogeneity
meta-constraints over the soft constraints on nurse preferences, as shown in Figure 7.8.

%%% Ask for homogeneity with factor F, over the lists of

%%% soft constraints on nurse preferences.

homogeneousAbsoluteWeight([ [ prefs[n,d,st] | d in [1..n_days],

st in [1..n_shift_types] ]

| n in [1..n_nurses] ], F);

Figure 7.8: WSimply constraints to add to the NRP model in order to ask for homogeneity
with factor F in the solutions.

Table 7.6 shows the results after adding to the model of Figure 7.7 the meta-constraint
homogeneousAbsoluteWeight of Figure 7.8, with factor F = 5, while Table 7.7 shows the
results for the same meta-constraint with factor F = 10. Note that this factor represents
the maximal allowed difference between the penalisation of the most penalized nurse and the
least penalised nurse. From Table 7.5 we know that the mean of these differences among the
chosen NRP instances is 7.71. The first row (Absolute 5) shows the results for the solved
instances (2478 out of 5113) within the timeout. The second row shows the results without
the meta-constraint, for the solved instances (i.e., it is like Table 7.5 but restricted to these
2478 instances).

As we can observe, we reduce the absolute difference average from 4.81 to 4.32, which
is a bit more than 10%. In particular, we reduce the absolute difference between the most
penalised nurse and the least penalised nurse in 892 instances out of 2478. In contrast, the
average penalisation per nurse increases from 8.80 to 8.92, but this is just 1.36%. The average
global cost also increases, but only from 220.03 to 222.89. Hence, it seems reasonable to argue
that it pays off to enforce homogeneity in this setting, at least for some instances. However,
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Table 7.6: Results when adding the homogeneousAbsoluteWeight meta-constraint with fac-
tor 5. Statistics for the 2478 solved instances with a timeout of 600 seconds. µ: mean of
means of costs of violated constraints per nurse; σ: standard deviation of means of costs of
violated constraints per nurse; Time: mean solving time (in seconds); Cost: mean optimal
cost; Cost (TO): mean of best lower bounds for those instances that exceeded the timeout;
Abs. diff.: mean of differences between maximal and minimal costs; #improved: number of
instances with improved absolute difference.

µ σ Time Cost Cost (TO) Abs. diff. #improved
Absolute 5 8.92 0.96 43.28 222.89 272.93 4.32 892

Normal 8.80 1.07 5.98 220.03 261.94 4.81 -

when homogeneity is enforced the solving time increases, since the instances become harder
(there are 2635 instances which could not be solved within the timeout).

The conclusion is that an homogeneity factor F = 5 may be too restrictive. Therefore, we
repeated the experiment but with a factor F = 10. The results are shown in Table 7.7.

Table 7.7: Results when adding the homogeneousAbsoluteWeight meta-constraint with fac-
tor 10. Statistics for the 4167 solved instances with a timeout of 600 seconds. µ: mean of
means of costs of violated constraints per nurse; σ: standard deviation of means of costs of
violated constraints per nurse; Time: mean solving time (in seconds); Cost: mean optimal
cost; Cost (TO): mean of best lower bounds for those instances that exceeded the timeout;
Abs. diff.: mean of differences between maximal and minimal costs; #improved: number of
instances with improved absolute difference.

µ σ Time Cost Cost (TO) Abs. diff. #improved
Absolute 10 9.32 1.46 13.86 233.01 285.83 6.29 377

Normal 9.31 1.47 6.16 232.83 280.40 6.35 -

In this case only 946 out of 5113 could not be solved within the timeout. Although fewer
instances are improved (377) the difference in the solving time really decreases and the mean
of the best lower bounds for the unsolved instances is closer to the optimal value of the original
instances. This suggests that it is possible to find a reasonable balance between the quality
of the solutions and the required solving time with respect to the original problem.

Depending on the preferences of the nurses, the absolute difference may not be a good
measure for enforcing homogeneity. Nurse preferences are weighted with a value between 1
and 4 (from most desirable to least desirable shifts). Imagine a nurse who tends to weight
with lower values than another. Then, even if this nurse has many unsatisfied preferences, her
total penalisation could be lower than that of one of the other nurses with fewer unsatisfied
preferences. Therefore, it seems more reasonable to compute the relative difference, as it
allows the relative degree of unsatisfied preferences to be compared.

Table 7.8 shows the results for the meta-constraint homogeneousPercentWeight with
factor 6, which means that the relative percent difference between the most penalised nurse
and the least penalised nurse must be less than or equal to 6. The first row (Percent 6) shows
the results for the solved instances (2109 out of 5113) within the timeout. The second row
shows the results without the meta-constraint for those solved instances.

The mean of the percent differences is reduced from 7.76 to 5.26, which is almost 32%. In
particular, we reduce the percent difference between the most penalised nurse and the least
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Table 7.8: Results when adding the homogeneousPercentWeight meta-constraint with fac-
tor 6. Statistics for the 2109 solved instances with a timeout of 600 seconds. µ: mean of
means of costs of violated constraints per nurse; σ: standard deviation of means of costs of
violated constraints per nurse; Time: mean solving time (in seconds); Cost: mean optimal
cost; Cost (TO): mean of best lower bounds for those instances that exceeded the time-
out; Rel. diff.: mean of differences between relative percentual maximal and minimal costs;
#improved: number of instances with improved relative difference.

µ σ Time Cost Cost (TO) Rel. diff. #improved
Percent 6 9.39 1.10 89.47 234.72 263.06 5.26 1875
Normal 9.14 1.30 5.27 228.56 250.81 7.72 -

penalized nurse in 1875 instances out of 2109. The average penalisation per nurse increases
from 9.14 to 9.39, just 2.74%, and the average global cost only increases from 228.56 to
234.72. However, the average solving time increases from 5.27 to 89.47 seconds for the solved
instances. In fact, the solving time increases, no doubt, by much more than this on average
if considering the timed-out instances.

As with the experiments for the absolute difference, we have conducted more experi-
ments, in this case increasing the factor from 6 to 11. The results are reported in Ta-
ble 7.9. In this case, only 492 out of 5113 could not be solved within the timeout. The
number of improved instances decreases but the solving time improves. Therefore, with the
homogeneousPercentWeight meta-constraint we can also find a reasonable balance between
the quality of the solutions and the required solving time with respect to the original problem.

Table 7.9: Results when adding the homogeneousPercentWeight meta-constraint with fac-
tor 11. Statistics for the 4621 solved instances with a timeout of 600 seconds. µ: mean of
means of costs of violated constraints per nurse; σ: standard deviation of means of costs of
violated constraints per nurse; Time: mean solving time (in seconds); Cost: mean optimal
cost; Cost (TO): mean of best lower bounds for those instances that exceeded the time-
out; Rel. diff.: mean of differences between relative percentual maximal and minimal costs;
#improved: number of instances with improved relative difference.

µ σ Time Cost Cost (TO) Rel. diff. #improved
Percent 11 9.62 1.67 33.28 240.38 269.14 8.42 1592

Normal 9.57 1.71 5.51 239.23 264.20 9.04 -

SBACP

The Balanced Academic Curriculum Problem (BACP) consists of assigning courses to aca-
demic periods while satisfying prerequisite constraints between courses and balancing the
workload (in terms of credits) and the number of courses in each period [CM01, HKW02]. In
particular, given

• a set of courses, each of them with an associated number of credits representing the
academic effort required to successfully follow it,

• a set of periods, with a minimum and maximum bound both on the number of courses
and number of credits assigned to each period,
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• and a set of prerequisites between courses stating that, if a course c has as prerequisite
a course d, then d must be taught in a period previous to the one of c,

the goal of the BACP is to assign a period to every course which satisfies the constraints
on the bounds of credits and courses per period, and the prerequisites between courses. In the
optimisation version of the problem, the objective is to improve the balance of the workload
(amount of credits) assigned to each period. This is achieved by minimising the maximum
workload of the periods.

There may be situations where the prerequisites make the instance unsatisfiable. We
propose to deal with unsatisfiable instances of the decision version of the BACP by relaxing
the prerequisite constraints, i.e., by turning them into soft constraints. We allow the solution
to violate a prerequisite constraint between two courses but then, in order to reduce the
pedagogical impact of the violation, we introduce a new hard constraint, the corequisite
constraint, enforcing both courses to be assigned to the same period. We call this new
problem Soft Balanced Academic Curriculum Problem (SBACP).

The goal of the SBACP is to assign a period to every course which minimises the total
amount of prerequisite constraint violations and satisfies the conditionally introduced coreq-
uisite constraints, and the constraints on the number of credits and courses per period.

In Figure 7.9 we propose a modelling of the SBACP using WSimply to be solved using
SMT. In order to obtain instances of the SBACP, we have over-constrained the BACP in-
stances from the MiniZinc [Nic07] repository, by reducing the number of periods to four, and
proportionally adapting the bounds on the workload and number of courses in each period.
With this reduction on the number of periods, we have been able to turn all these instances
into unsatisfiable.

In the following we present several experiments with WSimply, using the same three
methods: dico, core and yices, over the obtained SBACP instances, using a 2.6GHz Intel R©

CoreTM i5, with a timeout of 600 seconds.

The best solving approach for this problem in our system is yices, closely followed by
dico. The core solving approach is not competitive for this problem. The performance of the
WPM1 algorithm strongly depends on the quality of the unsatisfiable cores the SMT solver
is able to return at every iteration. This quality has to do, among other details, with the size
of the core, the smaller the better, and the overlapping of the cores, the lower the better. For
the SBACP instances, the SMT solver tends to return cores which involve almost all the soft
clauses, i.e., they are as big as possible and they completely overlap. This clearly degrades
the performance of the WPM1 algorithm.

Columns two to five of Table 7.10 show the results obtained by WSimply on our 28 in-
stances. The second column shows the required CPU time in seconds (with the yices solving
approach); the third column indicates the total amount of prerequisite violations, and the
fourth and fifth columns show the maximum and minimum number of prerequisite constraint
violations per course. This maximum and minimum exhibit the lack of homogeneity of each
instance. Column six shows the time obtained by CPLEX for solving the SBACP instances.

As we can observe, there are instances which have courses with three, four, and even five
prerequisite constraint violations, as well as courses with zero violations. It would be more
egalitarian to obtain solutions where the difference in the number of prerequisite constraint
violations between courses is smaller. Thanks to the homogeneousAbsoluteNumber meta-
constraint we can easily enforce this property of the solutions, as shown in Figure 7.10.
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Problem:sbacp

Data

int n_courses;

int n_periods;

int load_per_period_lb;

int load_per_period_ub;

int courses_per_period_lb;

int courses_per_period_ub;

int course_load[n_courses];

int n_prereqs;

int prereqs[n_prereqs,2];

Domains

Dom dperiods=[1..n_periods];

Dom dload=[load_per_period_lb..load_per_period_ub];

Dom dcourses=[courses_per_period_lb..courses_per_period_ub];

Variables

IntVar course_period[n_courses]::dperiods;

IntVar period_load[n_periods]::dload;

IntVar period_courses[n_periods]::dcourses;

Constraints

%%% Hard Constraints

%%%

%%% Every course must be assigned to exactly one period.

%%% This constraint is implicit in this modelling.

%%%

%%% The number of courses per period must be within bounds

%%% (i.e. the domain of period_courses[p]).

Forall(p in [1..n_periods]) {

Count([ course_period[c] | c in [1..n_courses] ], p, period_courses[p]);

};

%%% The workload in each period must be within bounds

%%% (i.e. the domain of period_load[p]).

Forall(p in [1..n_periods]) {

Sum([If_Then_Else(course_period[c] = p) (course_load[c]) (0)

| c in [1..n_courses]], period_load[p]);

};

%%% If a prerequisite is violated then the corequisite constraint is mandatory.

Forall(np in [1..n_prereqs]) {

Not(pre[np])

Implies (course_period[prereqs[np,1]] = course_period[prereqs[np,2]]);

};

%%% Soft Constraints

%%%

%%% Prerequisites are desirable but non-mandatory.

%%% Each prerequisite (np) is posted as a soft constraint with

%%% its label (pre[np]) and a violation cost of 1.

Forall(np in [1..n_prereqs]) {

#pre[np]: (course_period[prereqs[np,1]] > course_period[prereqs[np,2]]) @ 1;

};

Figure 7.9: WSimply model for the SBACP.

%%% We enforce homogeneity with factor F, over the lists of

%%% soft constraints on prerequisites for each course.

homogeneousAbsoluteNumber([ [ pre[np] | np in [1..n_prereqs], prereqs[np,1] = c ]

| c in [1..n_courses] ], F);

Figure 7.10: WSimply constraints to add to the model for the SBACP in order to ask for
homogeneity with factor F in the solutions.
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Table 7.10: Results of the experiments on the SBACP instances without and with homogene-
ity. Numbers in boldface denote instance improvements while maintaining the same cost.
The last row shows the median of CPU solving time and the sum of the costs found; in the
homogeneity cases we show the aggregated increment of the cost with respect to the original
instances.

Homogeneity factor 1 Homogeneity factor 2

N. Time Cost V. per c. CPLEX Time Cost V. per c. Time Cost V. per c.
Max Min Max Min Max Min

1 0.63 19 2 0 0.45 0.26 21 1 0 0.75 19 2 0
2 4.27 16 2 0 0.39 0.27 42 2 1 1.61 16 2 0
3 0.78 17 2 0 0.83 0.26 19 1 0 1.70 17 2 0
4 32.93 28 4 0 0.69 0.26 unsatisfiable 3.69 28 2 0
5 0.97 15 2 0 0.43 0.25 39 2 1 0.86 15 2 0
6 0.56 10 2 0 0.43 0.31 10 1 0 0.47 10 2 0
7 1.35 19 2 0 0.50 0.28 40 2 1 0.86 19 2 0
8 2.63 21 3 0 0.46 0.24 unsatisfiable 0.56 23 2 0
9 5.44 27 3 0 0.92 0.22 unsatisfiable 1.26 27 2 0

10 3.43 21 3 0 0.57 0.28 39 2 1 3.07 21 2 0
11 10.23 22 3 0 0.59 0.29 38 2 1 2.29 22 2 0
12 18.11 27 3 0 0.66 0.30 47 2 1 4.30 27 2 0
13 1.29 14 3 0 0.32 0.28 17 1 0 0.72 15 2 0
14 0.47 17 2 0 0.40 0.44 33 2 1 0.34 17 2 0
15 0.17 6 2 0 0.20 0.45 28 2 1 0.26 6 2 0
16 1.61 15 2 0 0.31 0.29 15 1 0 1.10 15 2 0
17 10.72 23 5 0 0.66 0.24 unsatisfiable 0.24 unsatisfiable
18 2.93 20 3 0 0.54 0.23 unsatisfiable 1.09 20 2 0
19 0.43 16 2 0 0.37 0.25 39 2 1 0.41 16 2 0
20 3.71 15 2 0 0.59 0.49 15 1 0 3.58 15 2 0
21 1.93 14 2 0 0.47 0.25 20 1 0 0.61 14 2 0
22 0.74 15 2 0 0.43 0.31 17 1 0 0.55 15 2 0
23 2.18 20 1 0 0.63 0.28 20 1 0 2.33 20 1 0
24 0.22 7 2 0 0.30 0.32 9 1 0 0.30 7 2 0
25 3.03 13 2 0 0.33 0.52 14 1 0 1.58 13 2 0
26 0.23 5 1 0 0.21 0.38 5 1 0 0.35 5 1 0
27 1.09 17 2 0 0.43 0.25 21 1 0 1.48 17 2 0
28 0.19 10 2 0 0.28 0.26 11 1 0 0.34 10 2 0

T. 1.48 451 0.44 0.28 209 0.86 3

Also in Table 7.10, we show the results obtained by WSimply of these instances with
homogeneity factor F = 1 (second block of columns) and F = 2 (third block of columns).
The homogeneity factor bounds the difference in the violation of prerequisite constraints
between courses (1 and 2 in our experiments). For homogeneity with factor 1, there are 5
unsolvable instances and 9 instances that achieve homogeneity by increasing the minimum
number of violations per course (from 0 to 1) with, in addition, a dramatic increase in the total
number of violations (+209). Experiments with homogeneity factor 2 give different results
in 9 instances, all of which, except one becoming unsatisfiable, and are effectively improved
by reducing the maximum number of violations per course, and slightly increasing the total
number of violations (+3). Interestingly, the solving time has been improved when adding
homogeneity.

By way of guidance a comparison between WSimply and CPLEX has been done only
over the basic SBACP instances since CPLEX does not have any meta-constraint. WSimply

exhibits a reasonably good performance in taking 1.48 seconds in median against the 0.44
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seconds of CPLEX.

Table 7.11: Results when adding the multiLevel meta-constraint to deal with the optimisa-
tion version of the SBACP, minimising the maximum workload per period and the maximum
number of courses per period. Numbers in boldface denote improvements. Timeout is 600s.
The last row shows the median of the solving time and the improvements on the aggregated
maximums of the workload and number of courses per period thanks to the multiLevel

meta-constraint.

Homogeneity factor 2 MLevel: prereq, workload MLevel: prereq, wl, courses
N. c./p. wl/p. c./p. wl/p. c./p. wl/p.

Time Min Max Min Max Time Min Max Min Max Time Min Max Min Max
1 0.75 11 14 51 87 23.60 12 14 65 66 32.68 12 13 65 66
2 1.61 12 13 68 77 11.06 11 15 70 71 9.33 12 13 70 71
3 1.70 12 14 62 72 23.59 11 15 67 68 17.00 11 14 66 68
4 3.69 11 17 52 112 16.09 11 15 74 77 5.29 12 13 72 77
5 0.86 11 15 41 81 6.20 9 16 59 63 8.67 9 15 58 63
6 0.47 11 15 49 86 2.35 12 13 59 60 2.93 12 13 59 60
7 0.86 6 17 32 104 9.73 11 14 65 66 59.32 10 14 65 66
8 0.56 9 16 43 86 1.92 10 16 58 66 2.66 12 13 61 66
9 1.26 8 16 39 109 15.28 12 13 74 77 5.00 12 13 74 77

10 3.07 8 15 33 79 26.00 11 16 58 66 12.19 12 14 57 66
11 2.29 10 15 46 88 12.26 11 14 68 68 45.67 12 13 68 68
12 4.30 6 16 37 100 97.92 10 17 69 70 195.52 10 17 69 70
13 0.72 6 18 44 98 10.16 10 15 71 72 16.06 11 13 71 72
14 0.34 9 18 40 106 1.18 10 16 65 69 1.79 10 16 65 69
15 0.26 5 16 46 92 13.05 11 16 72 72 46.65 11 13 72 72
16 1.10 9 17 50 79 61.86 11 14 61 63 108.07 12 13 61 63
17 0.24 unsatisfiable 0.59 unsatisfiable 0.67 unsatisfiable
18 1.09 10 15 62 92 15.25 12 13 74 75 19.96 12 13 74 75
19 0.41 8 19 51 99 8.65 11 14 67 68 15.94 11 13 67 68
20 3.58 10 16 54 112 53.86 10 14 70 75 38.80 10 14 70 75
21 0.61 9 18 42 94 2.27 11 14 65 65 2.51 12 13 65 65
22 0.55 10 16 57 105 2.18 11 14 75 77 1.76 12 13 75 77
23 2.33 20 25 25 128 103.47 11 15 67 68 173.60 11 13 67 68
24 0.30 12 14 57 81 0.71 12 13 63 78 2.65 12 13 64 78
25 1.58 9 16 44 87 31.86 12 14 70 70 26.15 12 13 70 70
26 0.35 5 18 24 102 9.28 11 14 51 78 8.01 10 14 61 78
27 1.48 10 15 57 96 8.19 11 15 81 81 23.60 11 14 81 81
28 0.34 9 15 42 101 2.30 11 15 69 70 4.28 11 14 68 70
T. 0.86 439 2553 10.61 -654 14.07 -27

The first block of columns of Table 7.11 shows the minimum and maximum number of
courses per period and the minimum and maximum workload per period, for each considered
instance, when asking for homogeneity with factor 2 on the number of prerequisite violations.6

As we can see, the obtained curricula are not balanced enough with respect to the number
of courses per period and the workload per period. Therefore, we propose considering the
optimisation version of SBACP by extending the initial modelling and using the multiLevel

meta-constraint in order to improve the balancing in the workload and the number of courses
per period (let us recall that the homogeneity meta-constraint on the number of violations
introduced so far is hard). In Figure 7.11 we show how we have implemented this extension
for the workload (for the number of courses it can be done analogously). We also must set the
weights of the prerequisite soft constraints to undefined to let the multiLevel meta-constraint
compute them.

6We have chosen homogeneity factor 2 to continue with the experiments since, with factor 1, the number
of violations increases in almost all instances.



7.7. EXPERIMENTAL RESULTS 113

int load_distance = load_per_period_ub - load_per_period_lb;

%%% load_bound is the upper bound of the load of all periods.

IntVar load_bound::dload;

Forall(p in [1..n_periods]) {

period_load[p] =< load_bound;

};

%%% We post as soft constraints each unit of distance between

%%% load_bound and load_per_period_lb.

Forall(d in [1..load_distance]) {

#bala[d]: (load_bound < (load_per_period_lb + d)) @ {_};

};

%%% We compose the new objective function with these two components,

%%% being more important the prerequisites than the minimization of the

%%% maximum load per period.

multiLevel([[pre[np] | np in [1..n_prereqs]],

[bala[d] | d in [1..load_distance]]]);

%%% Undefined weight of prerequisites soft constraints must be the same

samePriority([pre[np] | np in [1..n_prereqs]]);

%%% Undefined weight of load distance soft constraints must be the same

samePriority([bala[d] | d in [1..load_distance]]);

Figure 7.11: Extension to minimise the maximum workload (amount of credits) of periods.

The idea of this encoding is to minimise the maximum workload per period using soft
constraints. Column eleven (wl/p. Max) shows the improvement in the maximum workload
per period obtained when introducing its minimisation with the multiLevel meta-constraint.
Column fourteen (c./p. Max) shows the improvement in the the maximum number of courses
per period obtained when adding its minimisation as the next level in the multiLevel meta-
constraint.

7.7.3 WSimply (PB)

Next we present the experimental results of WSimply with PB solvers, presented at [BEPV12].
In this experiment we have used a PB model for the the NRP and SBACP presented in the
previous section.

The solvers used in the experiments, classified by families, are the following.

• Integer Programming based.

SCIP (scip-2.1.1.linux.x86) - A mixed integer programming solver.

• Pseudo-Boolean resolution based.

Sat4j (sat4j-pb-v20110329) - A Boolean satisfaction and optimization library for
Java. With PBC, it uses a cutting planes approach or pseudo-Boolean resolution [Sat12].

Clasp (clasp-2.0.6-st-x86-linux) - A conflict-driven answer set solver.

Bsolo (beta version 3.2 - 23/05/2010) - A solver with cardinality constraint learn-
ing.

• Translation to MaxSAT or SMT based.

PWBO (pwbo2.0) - Also known as the parallel wbo solver. Since the other considered
solvers are single-threaded, we have not used its parallel feature. When pbwo is run
with one thread it uses a unsat-based core algorithm [MML11].



114 CHAPTER 7. SIMPLY AND WSIMPLY

PB/CT (pbct0.1.2) - Translates the problem into SAT modulo the theory of costs
and uses the Open-SMT solver.

SBACP

In Figure 7.12, we propose a modelling of the SBACP using WSimply to be solved using PB.
Note that in this model we only have integer variables with pseudo-Boolean domain (pseudo).

Problem:sbacp

Data

int n_courses; int n_periods; int n_prerequisites;

int load_per_period_lb; int load_per_period_ub;

int courses_per_period_lb; int courses_per_period_ub;

int loads[n_courses]; int prerequisites[n_prerequisites, 2];

Domains

Dom pseudo = [0..1];

Variables

IntVar x[n_periods, n_courses]::pseudo;

IntVar x_aux[n_periods, n_courses]::pseudo;

Constraints

% each course is done only once

Forall(c in [1..n_courses]) { Sum([x[p,c] | p in [1..n_periods]], 1); };

Forall(p in [1..n_periods]) {

% for each period the number of courses is within bounds

AtLeast([x[p,c] | c in [1..n_courses]], courses_per_period_lb);

AtMost ([x[p,c] | c in [1..n_courses]], courses_per_period_ub);

% for each period the course load is within bounds

AtLeast([ loads[c] * x[p,c] | c in [1..n_courses]], load_per_period_lb);

AtMost ([ loads[c] * x[p,c] | c in [1..n_courses]], load_per_period_ub); };

% Prerequisites and Corequisites

% if course c is done previously to period p then x_aux[p,c] = 1

Forall(c in [1..n_courses]) {

Forall(p in [1..n_periods]) {

Sum([x[p2,c] | p2 in [1..p-1]], x_aux[p,c]); }; };

% a course being a (soft) prerequisite of another cannot be done after the other

Forall(i in [1..n_prerequisites]) {

Forall(p in [1..n_periods-1]) {

x_aux[p+1, prerequisites[i,1]] >= x[p, prerequisites[i,2]]; }; };

% prerequisite violation has cost 1

Forall(i in [1..n_prerequisites]) {

Forall(p in [1..n_periods]) {

(x_aux[p, prerequisites[i,1]] >= x[p, prerequisites[i,2]])@ {1}; };

};

Figure 7.12: WSimply (PB) model for the SBACP.

In Table 7.12, we give a small example to illustrate the meaning of the two matrices of
variables x and x aux used in the model. We consider an instance with three courses and
three periods. Matrix x shows in what period a course is made. Matrix x aux shows when a
course is already done, that is, it is filled with ones for the periods following the one in which
the course is done; this also can be seen as the accumulated version of matrix x. This duality
lets expressing prerequisites easily. Note that the first period row in matrix x aux always
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Table 7.12: SBACP prerequisites example for the PB encoding.

x c1 c2 c3
p1 1 0 0
p2 0 1 0
p3 0 0 1

x aux c1 c2 c3
p1 0 0 0
p2 1 0 0
p3 1 1 0

contains zeros.

Since in the WSimply PB version we cannot use the homogeneousAbsoluteNumber meta-
constraint, in Figure 7.13, we show how we can simulate it with the maxCost meta-constraint,
restricting the violations of prerequisites for each course to a number n. Note that, previously,
we must associate the label pre[i] to the prerequisite constraints.

...

% prerequisite violation has cost 1

Forall(i in [1..n_prerequisites]) {

#pre[i]: Forall(p in [1..n_periods]) {

(x_aux[p, prerequisites[i,1]] >= x[p, prerequisites[i,2]])@ {1}; }; };

MetaConstraints

maxCost([ [ pre[np] | np in [1..n_prerequisites], prerequisites[np,2] = c ]

| c in [1..n_courses] ], n);

Figure 7.13: maxCost meta-constraint for the SBACP problem.

In the Table 7.13, we show the performance results for the SBACP. We have tested
the pseudo-Boolean version of WSimply with the different back-ends described we have just
described, along with the SMT version of WSimply using Yices 1 API, which is able to
solve weighted SMT instances. The first group of rows reflect the execution times with-
out the maxCost meta-constraint, while the second and third groups show the execution
times with the meta-constraints maxCost([...],1) and maxCost([...],2), respectively.
Although not shown in the table, it is worth noting that in the case of using the constraint
maxCost([...],1), the problem becomes quite more constrained, resulting into 14 unsat-
isfiable instances out of the 28 instances. However, 9 of the 14 solutions of the remaining
instances are improved in terms of fairness, since we have reduced the difference between
the less violated course and the most violated course. Despite the fairness improvement,
the mean cost of the solutions is penalized with an increment of 2.56 points. In the case of
maxCost([...],2), the problem becomes only slightly more constrained, transforming only
one of the 28 instances in unsatisfiable. In this case, the number of improved instances, in
terms of fairness, is only 2, with an increment in the mean cost of 1 point in the first case
and of 2 points in the second case.

NRP

In Figure 7.14, we propose a modelling of the NRP using WSimply to be solved using PB.
Note that in this model we only have integer variables with pseudo-Boolean domain (pseudo).

In Table 7.14, we show the summarized results for all the 7290 instances of the N25 set
of the NSP. The solvers shown are the pseudo-Boolean version of WSimply with pwbo2.0 and
SCIP, along with the SMT version of WSimply with Yices 1 API, as the rest of solvers have
not been able to solve any instance within the time limit of 60 seconds. In these executions,
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Table 7.13: SBACP solving times with a timeout of 60s. *: for now, meta-constrains are only
available for the pbo format.

WSimply (PB) WSimply (SMT)
pwbo

Sat4j clasp bsolo PB/CT SCIP Yices
PBO WBO

w
it

h
o
u

t Total 31.49 48.19 44.48 23.12 70.86 53.80 33.25 125.96
Mean 1.50 2.41 1.59 0.83 2.53 2.15 1.19 4.50

Median 0.05 0.04 0.99 0.32 0.91 1.14 1.10 1.61
# t.o. 7 8 0 0 0 3 0 0

m
a
x
C

1 Total 5.37 * 14.37 0.64 0.85 8.00 6.60 8.29
Mean 0.19 * 0.51 0.02 0.03 0.29 0.24 0.30

Median 0.04 * 0.50 0.02 0.02 0.23 0.16 0.28
# t.o. 0 * 0 0 0 0 0 0

m
a
x
C

2 Total 88.84 * 35.05 9.21 19.27 56.72 28.34 47.34
Mean 6.35 * 1.25 0.33 0.69 2.03 1.01 1.69

Median 0.07 * 0.98 0.29 0.35 1.39 0.72 1.24
# t.o. 14 * 0 0 0 0 0 0

Problem:nsp

Data

int n_nurses; int n_days; int n_shift_types; int min_turns; int max_turns;

int covers[n_days, n_shift_types]; int prefs[n_nurses, n_days, n_shift_types];

Domains

Dom pseudo = [0..1];

Variables

IntVar x[n_nurses, n_days, n_shift_types]::pseudo;

Constraints

% each nurse can only work one shift per day

Forall(n in [1..n_nurses], d in [1..n_days]) {

Sum([x[n,d,s] | s in [1..n_shift_types]], 1); };

% minimum covers

Forall(d in [1..n_days], s in [1..n_shift_types-1]) {

AtLeast([x[n,d,s] | n in [1..n_nurses]], covers[d,s]); };

% the number of free days is within bounds

Forall(n in [1..n_nurses]) {

If (min_turns = max_turns) Then {

Sum([x[n,d,n_shift_types] | d in [1..n_days]], n_days - min_turns);

} Else {

AtLeast([x[n,d,n_shift_types] | d in [1..n_days]], n_days - max_turns);

AtMost ([x[n,d,n_shift_types] | d in [1..n_days]], n_days - min_turns); }; };

% penalize each failed preference

Forall(n in [1..n_nurses], d in [1..n_days], s in [1..n_shift_types]) {

(x[n,d,s] = 0) @ {prefs[n,d,s]}; };

Figure 7.14: WSimply (PB) model for the NSP.

SCIP excels, being able to solve all instances with a mean time which is an order of magnitude
lower than the one of the second fastest solver.
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Table 7.14: Results on the NRP with soft constraints on nurse preferences.

WSimply (PB) WSimply (SMT)
pwbo

SCIP Yices
PBO WBO

# solved 5095 5064 7290 4088
# t.o. 2195 2226 0 3202
Mean 1.63 1.77 0.10 4.49

Median 0.38 0.68 0.09 1.52

7.8 Conclusions

In this chapter we have introduced a new framework, called WSimply, for solving and modelling
CSPs and WCSPs with its own declarative high-level language. Though it was originally
thought to reformulate CSP instances into SMT instances, WSimply can also generate files in
the PB and LP formats.

WSimply language is the first high-level CSP language that is directly reformulated into
SMT, avoiding for instance the translation of Boolean constraints into arithmetic constraints
like it happens when translating from MINIZINC to FLATZINC. In addition, soft constraints
defined in WSimply are intensional, which reduces the work needed to model WCSPs. Fur-
thermore, it is the first language that allows the user to define meta-constraints over soft
constraints.

By default WSimply uses Yices 1 API as SMT solving engine, which allowed us to im-
plement optimization and WSMT algorithms where the solver may keep some of the learned
clauses through the successive calls to the SMT engine (i.e., incremental algorithms). How-
ever, WSimply can also generate SMT files in the “standard” SMT-Lib formats (v1.2 and v2),
and perform optimization with them, generate PB files in the PBO and WBO formats and
generate LP files.

In the experimental results section, we first see that WSimply is competitive with several
FLATZINC back-end solvers. It worth to remark the comparison of WSimply with fzn2smt,
where the latter solves only one instance more than the former. Nevertheless, WSimply has
room for improvement since it does not apply any preprocessing technique during the refor-
mulation from the high-level language into SMT.

Then, we show the usefulness of modelling WCSPs using intensional soft constraints and
meta-constraints on the two classical CSPs: NRP and BACP. In the first one, we use ho-
mogeneity meta-constraints, the homogeneousAbsoluteNumber when using SMT and the
maxCost when using PB, to ensure fairness on the violations of nurse shift preferences. While
in the second one, we use the multilevel meta-constraint to define a priorities between the
soft constraints of the problem.

In the PB experimental results, with respect to SBACP, we see that the performance of
WSimply (PB) is slightly better than WSimply (SMT) with dico. Whereas, with respect to
NRP, the performance of WSimply (PB) varies a lot depending on the PB solver used. The
best solving approach for the NRP clearly is WSimply (PB) with the SCIP solver (which solves
all the instances), followed by WSimply (PB) with the pwbo solver (which solves 69.89% of
the instances) and WSimply (SMT) with core (which solves 56.07% of the instances). The
other PB solvers cannot solve any instance.

Finally, we want to comment that we have also proposed a similar extension to deal with
WCSPs for MiniZinc in [ABP+11b].
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Chapter 8

BDD-based Incremental
Optimization

In this chapter, we propose a method for solving WCSPs by translating them into a
COP and performing iterative calls to an SMT solver, with successively tighter bounds of
the objective function. The novelty of the method herewith described lies in representing the
constraints bounding the objective function as a shared Binary Decision Diagram (SBDD),
which in turn is translated into SAT. This offers two benefits: first, BDDs built for previous
bounds can be used to build the BDDs for new (tighter) bounds, considerably reducing the
BDD construction time; second, as a by-product, many clauses asserted to the solver in
previous iterations can be reused. We also present a special case of objective function where
we can use a variant of Multivalued Decision Diagrams (MDD) instead of BDDs.

The reported experimentation on the WSimply system shows that the use of SBDDs has
better performance in general than other methods implemented in the system. Moreover,
with this new technique WSimply outperforms some WCSP and CSP state-of-the-art solvers
in most of the studied instances. As a particular case of study, we present results of applying
the MDD version of the new technique on the nurse rostering problem (NRP).

This chapter is based on results from [BPSV14] and it is organised as follows. In Section 8.1
we introduce Reduced Ordered Binary Decision Diagrams (ROBDD) and Reduced Ordered
Multivalued Decision Diagrams (ROMDD). In Section 8.2 we introduce the pseudo-Boolean
constraints reformulation into SAT using BDDs, and the extension of this reformulation
process using MDDs to deal with linear integer constraints. In Section 8.3 we present our
incremental method of solving WCSPs, first by using shared ROBDDs and then the special
case were we can use shared ROMDDs. In Section 8.4 we study the performance of the new
method by comparing it with other methods implemented in WSimply and other state-of-the-
art systems In the same section, we also report on some experiments showing how the use of
BDDs to represent the objective function, instead of using a linear equation, has a positive
impact in the learning of the SMT solver. Finally, conclusions are given in Section 8.5.

8.1 Binary Decision Diagrams (BDD)

Decision Diagrams are data structures usually used to represent Boolean functions. In this
section we will first describe what a Binary Decision Diagram is, which is the data structure

119
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most typically used for Boolean functions, and then we will describe what is a Multivalued
Decision Diagram.

A Binary Decision Diagram (BDD) consists of a rooted, directed, acyclic graph, where
each non-terminal (decision) node has two child nodes. When are used to represent Boolean
functions, each non-terminal node corresponds to a Boolean variable x and the edges to the
child nodes are representing a true and a false assignment to x, respectively. We talk about
the true child (resp. false child) to refer to the child node linked by the true (resp. false)
edge. Terminal nodes are called 0-terminal and 1-terminal, representing the truth value of
the formula for the assignment leading to them. A BDD is called ordered if different variables
appear in the same order on all paths from the root. A BDD is said to be reduced if the
following two rules have been applied to its graph until fixpoint:

• Merge any isomorphic subgraphs.

• Eliminate any node whose two children are isomorphic.

A Reduced Ordered Binary Decision Diagram (ROBDD) is canonical (unique) for a particular
function and variable order. Figure 8.1 shows an example of a ROBDD.

x1

x2

x3

01

1

1

10

0
0

Figure 8.1: ROBDD for the Boolean function x1 + x1x2 + x1x2x3.

An interesting property of ordered BDDs is that when multiple ordered BDDs contain
isomorphic subgraphs, they can be joined in a single shared BDD (SBDD) [iMIY90], providing
a more compact representation of the Boolean functions. Figure 8.2 shows a shared ROBDD
constructed from the union of four ROBDDs.

A Multivalued Decision Diagram (MDD) is a generalization of a BDD where each node
can have more than two outgoing edges, i.e., consists of a rooted, directed, acyclic graph,
where each non-terminal (decision) node has multiple child nodes. We will see in the next
section that BDDs are also used to represent pseudo-Boolean constraints, and hence we can
use a MDD to represent linear integer constraints.

As well as in the case of BDDs, we can also talk about reduced ordered MDDs (ROMDD),
which maintain the same properties of the ROBDDs.

8.2 BDD-based SAT encodings of PB constraints

There exist several BDD-based approaches for reformulating PB constraints into propositional
clauses [ES06]. In this section we focus on the recent work of [ANO+12], that proposes a
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simple and efficient algorithm to construct ROBDDs for monotonic Boolean functions, and a
corresponding generalized arc-consistent SAT encoding. Then we present a generalisation of
the method to represent linear integer constraints using ROMDDs.

8.2.1 SAT encodings of PB constraints using BDDs

Recall from Section 2.3.1 that pseudo-Boolean (PB) constraints have the form a1x1 + · · · +
anxn # K, where the ai and K are integer coefficients, the xi are pseudo-Boolean (0/1)
variables, and the relation operator # belongs to {<,>,≤,≥,=}. For our purposes we will
assume that # is ≤ and that the ai and K are positive. Under these assumptions, these
constraints are monotonic (decreasing) Boolean functions C : {0, 1}n → {0, 1}, i.e., any
solution for C remains a solution after flipping input values from 1 to 0.

It is quite common to use BDDs to represent PB-constraints. For example, the ROBDD
of Figure 8.1 also corresponds to the PB constraint 2x1 + 3x2 + 4x3 ≤ 7.

An interval of a PB constraint C is the set of values of K for which C has identical
solutions. More formally, given a constraint C of the form a1x1 + · · · + anxn ≤ K, the
interval of C is the set of all integers M such that the constraint a1x1 + · · · + anxn ≤ M ,
seen as a Boolean function, is equivalent to C (i.e., that the corresponding Boolean functions
have the same truth table). For instance, the interval of 2x1 + 3x2 + 4x3 ≤ 7 is [7, 8] since, as
no combination of coefficients adds to 8, we have that the constraint 2x1 + 3x2 + 4x3 ≤ 7 is
equivalent to 2x1 + 3x2 + 4x3 ≤ 8.

PB constraint intervals are the key point of the algorithm proposed in [ANO+12]. It
is a dynamic, bottom up BDD construction algorithm, which runs in polynomial time with
respect to the ROBDD size and the number of variables. It keeps the intervals of the PB
constraints built for the already visited nodes: for a given variable ordering, say x1, x2, . . . , xn,
a list of layers L = L1, . . . , Ln+1 is maintained, where each layer Li is a set of pairs of the
form ([β, γ],B), being B the ROBDD of the constraint aixi + · · ·+ anxn ≤ K, for every K
in the interval [β, γ].

These intervals are used to detect if some needed ROBDD has already been constructed.
That is, if for some node at level i, the ROBDD for the constraint aixi + · · ·+ anxn ≤ K is
needed for a given K, and K belongs to some interval already computed in layer Li, then the
same ROBDD can be used for this node. Otherwise, a new ROBDD is constructed and a new
pair (the ROBDD and its respective interval) is added to the layer. It is important to recall
here that ROBDDs are unique for a given function and variable ordering. The construction
of the new ROBDD for some node at level i is very simple. This node will have two children,
therefore we recursively call the ROBDD construction method two times, one for the true
child with PB constraint ai+1xi+1 + · · · + anxn ≤ K − ai, and one for the false child with
PB constraint ai+1xi+1 + · · · + anxn ≤ K. For each child, the recursive call will return a
pair ([βi+1, γi+1],Bi+1), which will be used to create the pair ([βi, γi],Bi) to be asserted to the
current layer, i.e., compute the interval and create the ROBDD of the current node from the
pairs of the child nodes. In order to have a reduced BDD we only have to check if the two
child nodes have isomorphic sub-graphs, which means both children are falling in the same
interval; in that case, we don’t have to create any node and instead we use Bi+1.

Once the ROBDD is constructed, we use the SAT encoding proposed in [ANO+12], which
is generalized arc-consistent, and works as follows. For each node with a selector variable
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x we create, a new auxiliary variable n, which represents the state1 of the node, and two
clauses:

f̄ → n̄ t̄ ∧ x→ n̄

being f the state variable of its false child and t the state variable of its true child. Finally,
we add a unit clause with the state variable of the 1-terminal node, another clause with
the negation of the variable of the 0-terminal node. To make the encoding generalized arc-
consistent, a unit clause forcing the state variable of the root node to be true must be added.

We refer the reader to [ANO+12] for additional details on the BDD construction algorithm
and the SAT encoding.

8.2.2 SAT encodings of linear integer constraints using MDDs

Based on the work of [ANO+12], next we present a SAT encoding for linear integer (LI)
constraints, by first constructing a ROMDD to represent the LI constraint and then translate
the ROMDD into SAT clauses.

The ROMDD construction method is almost the same as the previous one: for a given
variable ordering, say x1, x2, . . . , xn, we keep a list of layers L = L1, . . . , Ln+1, where each
layer Li is a set of pairs of the form ([β, γ],M), being M the ROMDD of the constraint
aixi + · · · + anxn ≤ K, for every K in the interval [β, γ]; then at some level i, for the LI
constraint aixi + · · ·+ anxn ≤ K, we first check if there exists a ROMDD at layer Li for the
current K, otherwise we have to create the new ROMDD, compute its interval and insert the
pair into Li. The two differences from the ROBDD construction method is that now, probably,
we will recursively call the construction method more than two times and, in addition, the LI
constraint to construct each child node will be ai+1xi+1 + · · ·+ anxn ≤ K − (ai × vj) where
vj is the j value in variable xi domain, v1 < v2 < · · · < vm and m is the number of values in
the domain of xi. Finally, in order to have a reduced MDD, we only have to check if all the
child nodes are the same.

Once we have constructed the ROMDD, the SAT encoding is very similar to the one we
have just described for BDDs, the difference is that for MDDs, in the worst case, we will have
as many clauses as child nodes instead of only two:

c̄1 → n̄ c̄2 ∧ (x = v2)→ n̄ . . . c̄m ∧ (x = vm)→ n̄

where ci is the state variable of the i-th child, vi is the i-th value of variable x, v1 < v2 <
· · · < vn, m is the number of children and n is the state variable of the current node of the
ROMDD. Note that the first equation is the same as in the BDDs, because every variable
has to take a value and if the state variable of the first child is false then the state variable
of the current node also has to be false.

When a node has two or more isomorphic child nodes we can compact the clauses of them
into one of the form:

c̄i ∧ (x ≥ vi ∧ x ≤ vj)→ n̄

where ci is the state variable of the i-th child, i < j, vi and vj are the i-th and j-th values
of variable x and n is the state variable of the current node of the ROMDD. Note that this
is because ci = cj .

1That is, if the PB constraint corresponding to (the interval of) the node is satisfied or not.
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Finally, we present a variant of the ROMDD construction method for the following special
case: given a variable ordering, say x1, x2, . . . , xn, we want to construct a ROMDD to represent
f1(x1) + f2(x2) + · · · + fn(xn) ≤ K, where xi are integer variables and fi is a function that
returns an integer value (weight) depending on the value of variable xi. For now and so on
we will call this method weighted ROMDD (WROMDD) or weighted MDD (WMDD) for the
sake of simplicity.

The ROMDD construction method is very similar to the previous one, but in this case
when we have to create a new ROMDD node for fi(xi) + · · · + fn(xn) ≤ K at some level i,
the recursive call for the child nodes will use fi+1(xi+1) + · · ·+ fn(xn) ≤ K − fi(vj), where
vj is the j value in xi domain.

Once we have constructed the ROMDD we can generate the same SAT clauses:

c̄1 → n̄ c̄2 ∧ (x = v2)→ n̄ . . . c̄m ∧ (x = vm)→ n̄

where ci is the state variable of the i-th child, vi is the i-th value of variable x, v1 < v2 <
· · · < vn, m is the number of children and n is the state variable of the current node of the
ROMDD.

What is different from the previous case is that, in general, when we have two or more
isomorphic child nodes we cannot use the ≤ and ≥ notation and we have to use the following
clause:

c̄i ∧ (x = vi ∨ · · · ∨ x = vj)→ n̄

where ci is the state variable of the i-th child, vi, . . . , vj are all the values of variable x that
has isomorphic sub-graphs and n is the state variable of the current node of the ROMDD.

8.3 Solving WCSPs by Incremental Optimization using Shared
ROBDDs

The WCSP solving method presented here consists in reformulating the WCSP into a COP,
and solving the resulting optimization problem by iteratively calling an SMT solver with the
problem instance, together with successively tighter bounds for the objective function.

The novelty of the method lies in the way the objective function is treated. Inspired by
the idea of intervals in the BDD construction algorithm of [ANO+12], our aim is to represent
the objective function resulting from the WCSP (see Subsection 7.4.3) as a pseudo-Boolean
constraint, then represent it as a BDD and take profit of BDD reuse in successive iterations of
the optimization process. That is, instead of creating a (reduced ordered) BDD from scratch
at every iteration, we build a shared BDD. Since the PB constraint encoded at each iteration
is almost the same, with only the bound constant K changing, this will hopefully lead to high
node reuse.

We claim that using shared BDDs has two important benefits. The first one, fairly evident,
is that node reuse considerably reduces the BDD construction time. The second one, which is
not so evident, is that, as a by-product, we will be reusing many literals and clauses resulting
from the SAT encoding of BDDs from previous iterations (in addition to clauses learned at
previous steps). In Section 8.4 we present some experiments to support these claims.
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We want to remark that this incremental optimization algorithm can be also used for
linear integer objective functions but using shared ROMDDs instead of shared ROBDDs. We
have some experimental results for the variant with WMDDs described in Section 8.4.4.

8.3.1 Incremental optimization algorithm

Algorithm 6 describes our WCSP solving method. The input of the algorithm is a WCSP
instance divided into a set ϕs of soft constraints and a set ϕh of hard constraints, and its
output is the optimal cost of ϕs ∪ ϕh if ϕh is satisfiable, and UNSAT otherwise.

Algorithm 6 Solving a WCSP by incremental optimization using a shared ROBDD

Input: ϕs = {(C1, w1), . . . , (Cm, wm)} , ϕh = {Cm+1, . . . , Cm+m′)}
Output: Optimal cost of ϕs ∪ ϕh or UNSAT
ϕ← ϕh ∪ reif soft(ϕs)
(st,M)← SMT algorithm(ϕ)
if st = UNSAT then

return UNSAT
else
ub← sum({wi | (Ci, wi) ∈ ϕs and Ci is falsified in M})

end if
lb← −1
L ← init layers(ϕs)
while ub > lb+ 1 do
K ← b(ub+ lb)/2c
([β, γ],B)← ROBDD(ϕs,K,L)
(root, ϕ)← BDD2SAT(B, ϕ)
ϕ← ϕ ∪ {root}
(st,M)← SMT algorithm(ϕ)
if st = UNSAT then
lb← γ
ϕ← (ϕ \ {root}) ∪ {root}

else
ub← min(β, sum({wi | (Ci, wi) ∈ ϕs and Ci is falsified in M}))

end if
end while
return ub

The first step is to reify the soft constraints (reif soft), and create a formula ϕ with the
reified soft constraints together with the hard constraints. By reifying a soft constraint Ci
we mean adding a hard constraint xi ↔ Ci, where xi is a new pseudo-Boolean variable. Note
that in fact we are reifying the negation of Ci, since the cost wi is associated to its violation
(see Subsection 7.4.3).

Then, the satisfiability of ϕ is checked by an SMT solver. SMT algorithm returns a
tuple with the satisfiability (st) of ϕ and, if satisfiable, an assignment (model) M of ϕ. Note
that if ϕ is unsatisfiable, this implies that ϕh is unsatisfiable, and hence we return UNSAT.
Otherwise, we use the solution found to compute an upper bound ub of the objective function
by aggregating the weights of the violated soft constraints, and set the lower bound lb to −1.
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Before starting a binary search procedure to determine the optimal cost, we initialize L
using init layers(ϕs), i.e., we initialize each layer i of L (for i in 1..m + 1) with the two
pairs of intervals and (trivial) ROBDDs {((−∞,−1],0), ([

∑m
j=iwj ,∞),1)}, meaning that the

PB constraint wixi + · · · + wmxm ≤ K is trivially false for K ∈ (−∞,−1] and trivially true
for K ∈ [

∑m
j=iwj ,∞), where xi,. . . ,xm denote the reification variables of the soft constraints

Ci,. . . ,Cm as described above (see Subsection 8.2 for the definition of layer and interval).
In the first step of the while statement, we determine a new tentative bound K for the

objective function. Then, we call the ROBDD construction algorithm of [ANO+12] (briefly
described in Subsection 8.2) with the set of soft clauses ϕs, the new bound K and the list
of layers L, being this last an input/output parameter. This way, L will contain the shared
ROBDD with all the computed ROBDDs, and may be used in the following iterations of
the search, significantly reducing the construction time and avoiding the addition of repeated
clauses. This procedure returns the ROBDD B representing the objective function for the
specific K in the current iteration.

In the next step we call the BDD2SAT procedure, which generates the propositional
clauses from B, as explained in Subsection 8.2, but only for the new nodes. The procedure
inserts these clauses into the formula ϕ, and the new formula is returned together with the
auxiliary variable root associated to the root node of B. This variable is inserted into ϕ as a
unit clause to effectively force the objective function to be less or equal than K.

At this point we call the SMT solver to check the satisfiability of the new ϕ. We remark
that, since we are using the SMT solver through its API, we only need to feed it with the
new clauses. If ϕ is satisfiable we can keep all the learned clauses. Otherwise, we need to
remove the unit clause for the root node. This way, we will (only) remove the learned clauses
related to this unit clause. In addition, we add a unit clause with the negation of the root
node variable, stating that the objective function value must be greater than K.

Finally, we update either the lower or upper bound according to the interval [β, γ] of
the ROBDD B and the computed assignment M for ϕ: if ϕ is unsatisfiable, then the
lower bound is set to γ; otherwise, the upper bound is set to min(β, sum({wi | (Ci, wi) ∈
ϕs and Ci is falsified in M})). From the invariant that the lower bound always corresponds to
an unsatisfiable case, while the upper bound corresponds to a satisfiable case, when ub = lb+1
this value corresponds to the optimum.

Note that, thanks to the intervals, in fact we are checking the satisfiability of the PB
constraints for several values at the same time and hence, sometimes, this can allow us to
obtain better lower/upper bound updates.

Example 20 Figure 8.2 and Figure 8.3 show, respectively, the evolution of the shared ROBDD
and the propositional clauses added to the SMT formula for the objective 2x1 +3x2 +4x3 ≤ K,
with successive values K = 7, K = 3, K = 5 and K = 4.

8.4 Experimental results

In this section we first compare the performance of the presented solving method with that of
other methods implemented in WSimply. Second, we compare the performance of WSimply,
using this new method, with that of several state-of-the-art CSP, WCSP and ILP solvers.
Third, we study the benefits, such as learning, obtained from using a shared BDD for the
objective instead of a linear equation, and the amount of BDD node reutilization between
successive iterations in the optimization process. Finally, we apply the new WMDD method
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Figure 8.2: Shared ROBDDs and intervals for objective 2x1 + 3x2 + 4x3 ≤ K, with successive
values K = 7 (top left), K = 3 (top right), K = 5 (bottom left) and K = 4 (bottom right),
illustrating the reuse of previous ROBDDs.

K = 7 : ϕ1 = ϕ ∪ {t→ n1,1, n2,1 ∧ x1 → n1,1, t→ n2,1, n3,1 ∧ x2 → n2,1, t→ n3,1,

f ∧ x3 → n3,1, t, f} ∪ {n1,1}
K = 3 : ϕ2 = ϕ1 ∪ {n3,1 → n1,2, n2,2 ∧ x1 → n1,2, n3,1 → n2,2, f ∧ x2 → n2,2} ∪ {n1,2}
K = 5 : ϕ3 = (ϕ2 \ {n1,2}) ∪ {n1,2} ∪ {n2,1 → n1,3, n3,1 ∧ x1 → n1,3} ∪ {n1,3}

(supposing that ϕ2 has been found to be unsatisfiable in iteration 2)

K = 4 : ϕ4 = ϕ3 ∪ {n2,1 → n1,4, n2,2 ∧ x1 → n1,4} ∪ {n1,4}

Figure 8.3: Formula update (clauses added and removed), for objective 2x1 + 3x2 + 4x3 ≤ K
with successive values K = 7, K = 3, K = 5 and K = 4, according to the shared ROBDDs
of Figure 8.2. ϕj denotes the SMT formula at hand when checking satisfiability in iteration
number j of Algorithm 6. Each atom ni,j is the state variable of the node with selector
variable xi, that is added in iteration j, and t and f are the variables of the 1-terminal and
0-terminal nodes, respectively.

on the Nurse Rostering Problem (NRP) and we compare it with the current WSimply solving
methods.
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Table 8.1: Average number of variables, and weights, of the soft constraints in each pack of
instances. Weights are denoted as (min −max) for ranges and as (val1, val2, . . . ) for packs
with a small number of distinct values in weights.

Problem #Variables Weights Problem #Variables Weights

sbacp 67 1 talent 80 (4,5,10,20,40)
sbacp h1 67 1
sbacp h2 67 1 auction 138 ∼(100-1000)
sbacp h2 ml2 312 (1,246)
sbacp h2 ml3 332 (1,21,5166) spot5 385 (1-5,1000,2000)

s.l. 30 1
celar 1482

(1,10,100,1000)
s.l. free 30 1 (1,100,10000,100000)
s.l. no border 30 1 (1,2,3,4)

For the comparison we use (variants of) six problems:2 five variants of the Soft BACP
(SBACP) [ABP+13] (a softened version of the well-known Balanced Academic Curriculum
Problem), three variants of the Still Life Problem and one variant of the Talent Scheduling
Problem from the MiniZinc distribution3 (all of them reformulated as a WCSP) and three
classical WCSPs: CELAR, SPOT5 and Combinatorial Auctions.

Since the size of the generated BDDs strongly depends on the number of variables and
the number of distinct coefficients in the objective function, we briefly describe these features
for the studied problems in Table 8.1.

The experiments were run on a cluster of Intel R© XeonTMCPU@3.1GHz machines, with
8GB of RAM, under 64-bit CentOS release 6.3 (kernel 2.6.32). WSimply was run on top of
the Yices 1.0.33 [DdM06b] SMT solver. It is worth noting that by calling Yices through its
API, we are able to keep learned clauses from previous calls that are still valid.

8.4.1 WSimply solving methods comparison

Table 8.2 shows the aggregated time (sum of the times to produce an optimal solution and
prove its optimality, for all instances) for the solved instances. We consider the yices,
core and dico solving methods described in Section 7.7, plus the new method sbdd≤ using
shared ROBDDs, where variables in the BDD are ordered from small (root) to big (leaves)
coefficients. We also studied the performance of sbdd≥, where variables are ordered from big
(root) to small (leaves) coefficients, but the performance of sbdd≤ was slightly better.

The new solving method with shared ROBDDs is clearly the best in the majority of
problems. The performance of the sbdd≤ method is better on instances with a small number
of distinct coefficients (especially when all coefficients are 1), namely, in the sbacp and still life
problems. In these cases, the BDDs are relatively small, having the bigger ones only thousands
of nodes. On the other side, the timeouts occurring in the celar and spot5 problems are
mostly in the instances with higher number of variables in the objective function (e.g., from
approximately 1200 to 5300 variables in celar), generating BDDs of hundreds of thousands
nodes (a similar situation occurs in the auction instances running out of time, where there
are not so many variables but a lot of distinct variable coefficients). In spite of this, sbdd≤
is still the best method on the celar and spot5 problems.

It is worth to notice that there are some unknowns in the yices method, due to the fact

2All instances available in http://ima.udg.edu/Recerca/lap/simply
3http://www.minizinc.org

http://ima.udg.edu/Recerca/lap/simply
http://www.minizinc.org


128 CHAPTER 8. BDD-BASED INCREMENTAL OPTIMIZATION

Table 8.2: Aggregated time in seconds for the solved instances in each set, with a cutoff of
600s per instance. The column # indicates the number of instances per set. The indication
(n1) refers to the number of instances for which the solver ran out of time, (n2) refers to the
number of instances for which the solver returned unknown, and (n3) refers to the number of
instances for which the solver ran out of memory.

Problem # dico yices core sbdd≤
sbacp 28 70.53 40.17 1342.16 (131) 9.83
sbacp h1 28 6.68 12.02 363.78 (121) 6.93
sbacp h2 28 26.04 26.65 748.81 (131) 9.97
sbacp h2 ml2 28 280.68 109.42 75.82 (191) 78.36
sbacp h2 ml3 28 804.74 516.51 547.55 (231) 92.37

s.l. 10 118.05 (11) 102.97 (12) 3.35 (41) 191.56
s.l. free 10 434.05 (21) 2.69 (32) 386.91 (31) 98.75
s.l. no border 10 187.94 (11) 166.91 (12) 81.24 (31) 105.30

talent 11 289.90 60.72 94.82 (81) 38.25

auction 170 9084,03 (931) 1083.44 (852) 0 (801 903) 12028.50 (781 113)

celar 16 582,64 (141) 750.32 (101 22) 94.82 (81 63) 1417.19 (61)

spot5 20 205,2 (181) 9.32 (51 132) 94.82 (141 33) 1990.59 (71)

that the Yices MaxSMT solver is non exact and incomplete. The core method has really bad
performance on the crafted instances considered in this experiment, probably due to the bad
quality of the unsatisfiable cores found during the solving process.

8.4.2 SBDD-based versus state-of-the-art CSP and WCSP solvers

For the sake of completeness we tested the performance of the MATHSAT5-MAX and LLWPM

MaxSMT solvers of [CGSS13b] on the weighted SMT instances generated by WSimply in the
previous experiment. However we do not report these results, since they are comparable to
those of the WSimply core method.

The second part of our experiments consists in reformulating the WCSPs into (MiniZinc)
COPs, and compare the performance of WSimply using the sbdd≤ method with that of IBM
ILOG CPLEX 12.6 and some state-of-the-art CSP and WCSP solvers, namely Toulbar2
0.9.5.0, G12-CPX 1.6.0 and Opturion 1.0.2, all of them capable of solving MiniZinc instances.
We used Numberjack [HOO10] as a platform for solving MiniZinc COPs through the Toulbar2
API. We also used the Toulbar2 binary to solve the original WCSP instances of auction, celar
and spot5, indicated in Table 8.3 as auction (wcsp), celar (wcsp) and spot5 (wcsp), respectively.
In order to test the performance of CPLEX on the considered problems, we used WSimply to
translate the instances to pseudo-Boolean constraints. For the experiments with Opturion we
used a slightly different computer (Intel R© CoreTMCPU@2.8GHz, with 12GB of RAM, under
64-bit Ubuntu 12.04.3, kernel 3.2.0) due to some library dependence problems.

Table 8.3 shows the results of this second experiment. We can observe that, in general,
sbdd≤ is the most robust method, considering the number of instances solved and their
aggregated solving time. The sbacp and still life problems seem to be reasonably well suited for
SMT solvers (in particular, the latter consists of disjunctions of arithmetic constraints). We
highlight the talent scheduling problem, where sbdd≤ clearly outperforms the other solvers,
being the only solver capable to solve all the instances. In fact, this is probably the best
suited problem for SMT solvers, as it consists of binary clauses of difference logic constraints.
Unfortunately, in most of the instances of this problem, Toulbar2 reported an error saying
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Table 8.3: Aggregated time in seconds for the solved instances in each set, with a cutoff of
600s per instance. The column # indicates the number of instances per set. The indication
(n1) refers to the number of instances for which the solver ran out of time, (n3) refers to the
number of instances for which the solver ran out of memory, and (n4) refers to the number
of instances for which the solver returned another type of error.

Problem # TB2 G12-CPX Opturion sbdd≤ CPLEX

sbacp 28 662.58 (241) 76.31 83.47 9.83 36.81

sbacp h1 28 707.78 4.00 13.25 6.93 21.78

sbacp h2 28 483.98 19.53 30.51 9.97 24.89

sbacp
28 3849.38 (61) 166.69 91.55 78.36 64.98

h2 ml2

sbacp
28 2408.66 (121) 336.25 99.77 92.37 72.95

h2 ml3

s.l. 10 166.08 (21) 232.1 (11) 43.81 (21) 191.56 234.71

s.l. free 10 69.85 (31) 267.13 (21) 394.28 (21) 98.75 29.91

s.l. no
10 122.05 (21) 354.41 (11) 102.29 (21) 105.3 68.37

border

talent 11 2.38 (94) 1.81 (81) 2.07 (81) 38.25 1269.13 (21)

auction
170

888.99 7288.73 (951) 7053.43 (1001) 12028.5 (781 113) 220.12
auction

5038.49 (31)
(wcsp)

celar
16

0 (161) 0 (164) 0 (161) 1417.19 (61) 0 (161)
celar

311.23 (41)
(wcsp)

spot5
20

114.66 (81 84) 0 (201) 0 (201) 1990.59 (71) 297.59 (71 104)
spot5

76.28 (161)
(wcsp)

that the model decomposition was too big. In the auction problem, CPLEX is by far the
best solver, solving all 170 instances in only 220.12 seconds. This is clearly one of the worst
kind of problems for SMT solvers, as it simply consists of a conjunction of arithmetic (0/1)
constraints, i.e., it has a trivial Boolean structure and all deductions need to be performed
by the theory solver. For celar, only sbdd≤ and Toulbar2 (in the WCSP version) were able
to solve some instances (10 and 12 out of 16, respectively). This problem also has a balanced
combination of arithmetic constraints and clauses. G12-CPX reported an error (not finding
the int plus constraint), and Toulbar2 (in the COP version), Opturion and CPLEX ran out
of time on all instances. Finally, for spot5, sbdd≤ was able to solve some instances (13 out
of 20), Toulbar2 only 4, CPLEX only 3, and Opturion and G12-CPX ran out of time on
all instances. This problem is also well suited for SMT solvers since it basically consists of
clauses with equality constraint literals.

We remark that we also tested the G12-Lazy, G12-FD and Gecode 4.2.1 solvers, but
since they presented slightly worst performance than G12-CPX we have not included them
in Table 8.3.

8.4.3 SBDD incrementality

In this section we study the benefits of using a shared BDD for the objective instead of a
linear equation, in particular, the effect that this has on the learning capability of the SMT
solver. Note that with this technique we are increasing the Boolean component of the formula
at hand and, hence, we should expect some improvement in learning. Finally, we quantify
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Table 8.4: Aggregated time in seconds for the solved instances of each problem, with a cutoff
of 600s per instance, and indication of the number of unsolved instances due to time out (TO)
and memory out (MO).

SBDD+L SBDD-L LIA+L LIA-L
Problem # Inst. Solving # TO/MO Solving # TO/MO Solving # TO Solving # TO
sbacp 140 58.03 0 221.30 1 853.56 0 924.83 2
s.l. 30 393.22 0 715.17 0 795.62 4 895.28 4
talent 11 35.36 0 55.57 0 363.43 0 472.09 0
auction 170 9631.19 73/12 5673.22 75/7 8540.76 92 9919.79 90
celar 16 1199.99 6 1299.99 8 10.94 15 8.29 15
spot5 20 1675.90 7 943.96 10 165.48 18 59.99 18

the amount of BDD node reutilization through iterations.

We compare the performance of four solving approaches: using either SBDDs or arithmetic
expressions to bound the objective function, with and without using the learning capabilities
of the solver. From now on we will denote by SBDD+L, SBDD-L, LIA+L and LIA-L these four
possibilities, where LIA stands for linear integer arithmetic expressions and +L/-L indicates
the use or not of learning. Note that WSimply uses Yices as a back-end solver, and it does
not provide statistics about learned clauses. Therefore, we used the Yices commands push
and pop to define backtrack points and to backtrack to that points, respectively, in order to
force the solver to forget learned clauses.

Table 8.4 summarizes the solving times for the four options. They do not include neither
BDD construction, clause generation nor assertion times. Since solving times are very sensitive
to the bounds on the objective function, first of all we solved all the instances with the
SBDD+L approach and stored the bounds at each iteration. Then these bounds were passed
to the other three methods to obtain their solving times under the similar conditions.

If we first compare SBDD-L and LIA-L we can appreciate that using BDDs considerably
reduces the number of timeouts in still life, auction, celar and spot5, and the solving time,
almost 5 times in sbacp and 10 times in talent scheduling.

Furthermore, comparing SBDD+L and SBDD-L, we can easily appreciate that learning
reduces even more the solving times. In sbacp the number of timeouts is reduced to 0 and the
sum of solving times is reduced almost 4 times; in talent scheduling and still life the solving
time is reduced almost to the half; and in celar and spot5 the number of timeouts is reduced
in 2 and 3 instances respectively. In auction, the SBDD+L method has the drawback of
increasing the number of memory outs.

If we compare SBDD-L and LIA-L with respect to SBDD+L and LIA+L, we can see that
the improvement in terms of number of timeouts and solving time is higher in the SBDD
approach than in the LIA approach.

Finally, to quantify the contribution of the shared BDD to the amount of BDD node
reutilization, we computed the percentage of reused nodes at each iteration of the optimization
process. Our experiments shown an average 50% of node reuse when the solving process was
about the 40.73% of the search, and a 80% of node reuse when it was about the 48.72% of
the search. This is especially relevant because the BDDs attained hundreds of thousands of
nodes.
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8.4.4 The Nurse Rostering Problem (NRP)

In this section we show how the new WMDD method, presented at the end of Section 8.2.2,
can be applied to the NRP, and we compare it with the current WSimply solving methods. To
do this we will use the N25 set of the NSPLib, which has 7290 instances with the following
settings: 25 nurses, 7 days, 4 shift types, a certain number of nurses required for every shift
of each day and a set of nurse preferences. A nurse preference is a value between 1 and 4
(from most desirable to less desirable) for each nurse, shift and day. Nurses are required to
work exactly 5 days.

In the model of this problem all constraints are considered as hard except for the nurse
preferences which are the soft constraints. The weight of each soft constraint is a value
between 1 and 4 representing the penalty of working that shift for each nurse. We want to
clarify that in these instances a nurse can assign a penalty of 4 to all the shifts of a specific
day. For instance, the following soft constraints (written in WSimply language) could be the
preferences of nurse 1 for day 3:

shift[1,3] = 1 @ 4;

shift[1,3] = 2 @ 4;

shift[1,3] = 3 @ 4;

shift[1,3] = 4 @ 4;

Since we have 25 nurses, 7 days and 4 shifts, this means that, in total, these instances
have 700 soft constraints and hence, that they have an objective function of 700 PB variables.
It is easy to see that these instances wouldn’t be very suitable for the SBDD method, the
current best WSimply solving method, because it could be hard to construct BDDs of 700
layers. Therefore, we propose to use a MDD in order to reduce the number of layers. This
can be done in some cases like the NRP taking into account that a nurse can work only one
shift per day, and hence, given a nurse n and a day d we can use the function of Algorithm 7
in the WMDD construction variant presented at the end of Section 8.2.2.

Algorithm 7 Mapping function example for the WMDD construction algorithm.

Input: s: nurse shift matrix, n : nurse, d: day
Output: Shift preference value of nurse n for day d

if s[n,d] = 1 then
return w1

else if s[n,d] = 2 then
return w2

else if s[n,d] = 3 then
return w3

else if s[n,d] = 4 then
return w4

end if

This way we will only have 175 layers, which is far more reasonable than 700. Although
each node will have up to four child nodes the idea is to enhance and take advantage of the
node reuse at each layer.

Table 8.5 shows the aggregated time for the solved instances and the number of instances
solved. We consider the previously used yices, core, dico and sbdd≤ solving methods, plus
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Table 8.5: Aggregated time and number of instances solved by the different WSimply methds.

Method Time # Inst.

wmdd 18828.92 5476

core 8958.54 5164

sbdd≤ - 0

dico - 0

yices - 0

the new method wmdd using shared ROMDDs. Note that in the WMDD method we cannot
define any order because we have multiple values at each layer.

What is interesting of these results is that only wmdd and core solving methods are capable
of solving instances, being the first one the solving method who solved more instances (5476)
with a 60 seconds cutoff. This is very relevant because the other two similar methods, dico
and sbdd≤, weren’t able to solve any instance.

Finally, we compare the size of the shared MDDs versus the size of the shared BDDs.
To do so we compute the median of the size of the shared MDD (BDD) at all the 7290
instances. The median of the SMDDs is 12308.5 and the median of the SBDDs is 94963.5,
which means the SMDD size is about 7.7 times smaller than the SBDD size. We remark that
this comparison is approximate because of the time-outs, but it is enough to illustrate the
usefulness of the shared MDDs in this problem.

8.5 Conclusions

In this chapter we have presented a new WCSP solving method, implemented in the WSimply

system, based on using shared ROBDDs to generate propositional clauses representing the
constraints bounding the objective function. We think that it opens a promising research
line, taking into account that the presented SBDD method clearly outperforms not only the
previously implemented solving methods in WSimply, but also some state-of-the art solvers, on
several problems. We have also shown how to boost the generation of ROBDDs for objective
function bounds using previously generated ROBDDs, more precisely constructing a shared
ROBDD. In fact, the use of a shared ROBDD to represent the objective function bounds has
another advantage aside of reducing the ROBDD construction time, that is the SAT clause
reuse from the previously generated nodes, which enhances the learning capabilities of the
SMT solver.

We have also presented a generalisation of the ROBDD construction method to represent
linear integer constraints, instead of pseudo-Boolean constraints, by means of creating a
ROMDD (this method is independently defined in [AS14]). Finally, we have presented a
special case where we can use weighted MDD to represent the objective function, and we
provide experimental results where the new WMDD method clearly outperforms the previous
WSimply methods.

In conclusion, once more, increasing the Boolean structure of the problem has shown to
be good for solving with SMT. In this case, we have reformulated the objective function into
SAT clauses, but we guess that reformulating some other kind of constraints into SAT may
help the SMT solver and will be interesting to find which ones.



Chapter 9

Scheduling of Business-to-business
(B2B) meetings

In this chapter we use WSimply to address the problem of scheduling Business-to-business
meetings, which consists of scheduling meetings between research groups, companies and in-
vestors in a scientific and technological forum. WSimply perfectly fits for working on this
problem. It offers several back-end reformulations and it provides interesting modelling fea-
tures like weighted constraints and meta-constraints.

Business-to-business (B2B) events typically provide bilateral meeting sessions between
participants with affine interests. These B2B events occur in several fields like sports, social
life, research, etc. In this chapter we describe the application developed to generate the
timetable of such meetings in the 4th Forum of the Scientific and Technological Park of the
University of Girona.1 The goal of this forum is to be a technological marketplace in Girona
by bringing the opportunity to companies, research groups, investors, etc., to find future
business partnerships.

The scheduling of the meetings is a tough task and requires expertise at distinct levels:
on the one side, the human matchmaker should choose the appropriate matches maximizing
somehow the potential results of the meetings according to the interests of the participants.
On the other hand side, the timetable generation must satisfy several constraints, e.g., avoid
meeting collisions, avoid unnecessary idle time between meetings for each participant or too
many meeting location changes, etc.

In previous editions of the forum, and in other events with B2B meetings held in the park
of the University of Girona, the human matchmaker made both tasks by hand. This process
showed to be highly unsatisfactory with respect to the human effort required and also with
respect to the final result obtained. Moreover, the growing participation makes the work
much harder.

As far as we know, there are no many works dealing with this problem. On the one hand,
in [GGSS13] we can find a system that is used by the company piranha womex AG for com-
puting matchmaking schedules in several fairs. This system differs from ours in some aspects.
For instance, it does not consider forbidden time slots but unpreferred ones, and it allows
meeting collisions under the assumption that the companies can send another participant.
Moreover, it is based on answer set programming, whereas we follow a different model-and-

1http://www.forumparcudg.com
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solve approach. On the other hand, the system B2Match [b2m] is a commercial system which
does not support location change minimization.

Our work focuses on the generation of the meetings’ timetable. That is, the human
matchmaker provide us with the meetings that she wants to be scheduled and we generate
the timetable. We provide both a CP model and a Pseudo-Boolean model for the problem,
and compare the efficiency of different solving techniques such as CP, lazy clause generation,
SMT, and ILP, on several real instances.

The obtained results for this year’s edition of the Forum of the Scientific and Technological
Park of the University of Girona have been very satisfactory. Moreover, using instances of
previous years we have observed that the number of idle time slots could be dramatically
improved.

This chapter is based on results from [BEG+14] and it is organised as follows. In Sec-
tion 9.1 we define the problem at hand. In Section 9.2 we present the different models
considered, and in Section 9.3 we check the efficiency of distinct solvers on these models,
using real instances. Conclusions are given in Section 9.4.

9.1 The B2B problem

In the Forum of the Scientific and Technological Park of the University of Girona, the par-
ticipants answer some questions about their interests and expertise, in the event registration
phase. This information is made public to the participants, who may ask for bilateral meetings
with other participants with a (normal or high) priority. They also indicate their time avail-
ability for the meetings (notice that in the forum there is also a conference with talks given
by the participants and therefore they should reserve some time slots for their own talks).
Moreover, the participants may ask for meetings in the morning or the afternoon session.
Then, according to this information (participants availability and priorities for the desired
meetings), the human matchmaker proposes a set of matches (meetings) to be scheduled.
Once this schedule is obtained, the matchmaker asks the participants for confirmation of the
meetings timetable. Then, the confirmed ones are fixed and the rejected ones are retracted.
With this partial timetable, and considering the late arrivals of participants interested in
having some meeting, the expert tries to add other meetings in the timetable by individu-
ally contacting with the participants. Finally, the distribution of tables is made. Below we
formally define the basic problem.

Definition 9.1.1 Let P be a set of participants, T a list of time slots and L a set of available
locations (tables). Let M be a set of unordered pairs of participants in P (meetings to be
scheduled). Additionally, for each participant p ∈ P , let f(p) ⊂ T be a set of forbidden time
slots.

A feasible B2B schedule S is a total mapping from M to T × L such that the following
constraints are satisfied:

• Each participant has at most one meeting scheduled in each time slot.

(9.1) ∀m1,m2 ∈M such that m1 6= m2 :

π1(S(m1)) = π1(S(m2)) =⇒ m1 ∩m2 = ∅
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• No meeting of a participant is scheduled in one of her forbidden time slots.

(9.2) ∀p ∈ P,m ∈M :

p ∈ m =⇒ π1(S(m)) /∈ f(p)

• At most one meeting is scheduled in a given time slot and location.

(9.3) ∀m1,m2 ∈M such that m1 6= m2 :

π1(S(m1)) = π1(S(m2)) =⇒ π2(S(m1)) 6= π2(S(m2))

The B2B scheduling problem (B2BSP) is the problem of finding a feasible B2B schedule.

The B2BSP is clearly in NP, and can be easily proved to be NP-complete by reduction
from the restricted timetable problem (RTT) in [EIS75].

Typically, we are interested in schedules that minimize the number of idle time periods.
By an idle time period we refer to a group of idle time slots between a meeting of a participant
and her next meeting. Before formally defining this optimization version of the B2BSP, we
need to introduce some auxiliary definitions.

Definition 9.1.2 Given a B2B schedule S for a set of meetings M , and a participant p ∈ P ,
we define LS(p) as the list of meetings in M involving p, ordered by its scheduled time according
to S:

LS(p) = [m1, . . . ,mk], with

∀i ∈ 1..k : p ∈ mi

∀m ∈M : p ∈ m⇒ ∃!i ∈ 1..k : mi = m

∀i ∈ 1..(k − 1) : π1(S(mi)) < π1(S(mi+1))

By LS(p)[i] we refer to the i-th element of LS(p), i.e., mi.

Definition 9.1.3 We define the B2B Scheduling Optimization Problem (B2BSOP) as the
problem of finding a feasible B2B schedule S, where the total number of idle time periods of
the participants is minimal, i.e., minimizes

(9.4)
∑
p∈P

#{LS(p)[i] | i ∈ 1..|LS(p)| − 1, π1(S(mi)) + 1 6= π1(S(mi+1))}

It is also quite common to ask for the minimization of location changes between consecutive
meetings of the same participants. Due to the requirements of the event organization (there is
a phase where the human matchmaker manually arranges new meetings by reusing time slots
and participants’ availabilities), we do this minimization with the time slots of the meetings
already fixed.

Definition 9.1.4 We define the B2B location scheduling optimization problem (B2BLOP)
as the problem of, given a B2B schedule S, re-assign to each meeting a location in a way such
that the total number of location changes for consecutive meetings of the same participant is
minimal, i.e., minimizes ∑

p∈P
#{LS(p)[i] |

i ∈ 1..|LS(p)| − 1, π1(S(mi)) + 1 = π1(S(mi+1)), π2(S(mi)) 6= π2(S(mi+1))}
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As an additional constraint, we consider the case where meetings may have a morn-
ing/afternoon requirement, i.e., that some meetings must necessarily be celebrated in the
morning or in the afternoon. Let’s then consider that the set of time slots T is divided into
two disjoint sets T1 and T2 and, moreover, that we have a mapping t from meetings m in M
to {1, 2, 3}, where 1 means that the meeting m must take place at some time slot in T1, 2
means that it must take place at some time slot in T2, and 3 means that it does not matter.
Then the schedule should also satisfy the following requirement:

(9.5) ∀m ∈M :

(t(m) = 1 =⇒ π1(S(m)) ∈ T1) ∧ (t(m) = 2 =⇒ π1(S(m)) ∈ T2)

Summing up, the scheduling process goes as follows:

1. The human matchmaker arranges the meetings taking into account the participants’
requirements and preferences (who they want to meet, with which priority, and a pos-
sible restriction to the morning or afternoon frame for the meeting) and their forbidden
hours (for example, the hours where the participant is giving a talk at the event).

2. We solve the B2BSOP with the chosen meetings.

3. The human matchmaker removes the revoked meetings (for instance, one participant
may not be interested in a meeting requested by another participant) from the solution
found in Step 2, and manually adds new last-arrival meetings.

4. We solve the B2BLOP with the meetings proposed in Step 3.

9.2 Models

In order to model the aforementioned problem we have used WSimply, because it supports
weighted constraints and several predefined meta-constraints which allow to express homo-
geneity in soft constraints violations, in order to enforce fairness of solutions. For the sake
of completeness, we also consider MINIZINC which is supported by several state-of-the-art
CP solvers. A proposal for incorporating similar ideas into MINIZINC has been presented
in [ABP+11b].

Moreover, since a priori it is not clear if a high-level or a low-level model will be better
in terms of performance, we have considered two different models: a CP model (with finite
domain variables like ti, denoting the time at which meeting i takes place) and a Pseudo-
Boolean model (with 0/1 variables like xi,j , stating that meeting i is celebrated at time j).

9.2.1 A WCSP model for the B2BSOP

Here we give the WSimply version of the CP model for the B2BSOP, expressed as a weighted
CSP.

Parameters

int nParticipants; % # of participants

int nMeetings; % # of meetings

int nTables; % # of locations
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int nTimeSlots; % # of time slots

int nMorningSlots; % # of morning time slots

int meetings[nMeetings,3]; % Meetings to schedule

int tnForbidden; % Total # of forbidden slots

int forbidden[tnForbidden]; % Forbidden slots

int indexForbidden[nParticipants+1]; % Start indices in forbidden

int nMeetingsParticipant[nParticipants]; % # of meetings of each part.

The number of afternoon time slots is nTimeSlots− nMorningSlots, and for this reason
it is not explicitly defined.

The meetings matrix has three columns, denoting the number of the first participant, the
number of the second participant and the type of session required (1: morning, 2: afternoon,
3: don’t care) for each meeting to be scheduled.

The indexForbidden array contains the indices where the forbidden time slots of each
participant do begin in the forbidden array. This array has an extra position in order
to ease the modelling of the constraints (see the Forall statements below), with value
indexForbidden[nParticipants+1] = tnForbidden+1.

Variables and domains

Dom dTimeSlots = [1..nTimeSlots];

Dom dUsedSlots = [0..1];

Dom dTables = [0..nTables];

IntVar schedule[nMeetings]::dTimeSlots;

IntVar tablesSlot[nTimeSlots]::dTables;

IntVar usedSlots[nParticipants,nTimeSlots]::dUsedSlots;

IntVar fromSlots[nParticipants,nTimeSlots]::dUsedSlots;

The array variable schedule shall contain the time slot assigned to each meeting.
The array variable tablesSlot will indicate the number of meetings to be celebrated at

each time slot (and hence the number of tables needed). Note that by setting the domain to
[0..nTables] we are already restricting the number of tables available.

Variable usedSlots is a two dimensional 0/1 array representing, for each participant i
and time slot j, if i has a meeting scheduled at time j.

Finally, variable fromSlots is a two dimensional 0/1 array such that, for each participant
i, fromSlots[i, j] = 1 for all j from the first time slot at which a meeting for i is scheduled
on.

These two last variables are used for optimization, as shown below.

Constraints

• Each participant has at most one meeting scheduled at each time slot, i.e., constraint (9.1).
We force two meetings sharing one member to be scheduled at a different time slot:

Forall (n in [1..nMeetings]) {

Forall (m in [n+1..nMeetings]) {

If (meetings[n,1] = meetings[m,1] Or

meetings[n,2] = meetings[m,1] Or

meetings[n,1] = meetings[m,2] Or

meetings[n,2] = meetings[m,2])
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Then { schedule[n] <> schedule[m]; };

};

};

• No meeting of a participant is scheduled in one of her forbidden time slots, i.e., con-
straint (9.2). We force, for each meeting, to be scheduled in a time slot distinct from
all forbidden time slots for both members of the meeting:

Forall(j in [1..nMeetings]) {

Forall(k in [ indexForbidden[meetings[j,1]]..

indexForbidden[meetings[j,1]+1]-1 ]) {

schedule[j] <> forbidden[k];

};

Forall(k in [ indexForbidden[meetings[j,2]]..

indexForbidden[meetings[j,2]+1]-1 ]) {

schedule[j] <> forbidden[k];

};

};

• At most one meeting is scheduled in a given time slot and location, i.e., constraint (9.3).
This constraint is ensured by matching the number of meetings scheduled in time slot
i with tablesSlot[i], whose value is bounded by the number of tables available:

Forall(i in [1..nTimeSlots]) {

Sum([ If_Then_Else(schedule[n] = i)(1)(0) | n in [1..nMeetings] ],

tablesSlot[i]);

};

Note that we are not assigning a particular table to each meeting, but just forcing that
there are enough tables available for the meetings taking place at the same time.

• Each meeting must be scheduled in a required (if any) set of time slots, i.e., con-
straint (9.5). Since we know the number of morning time slots, we can easily enforce
this constraint:

Forall (n in [1..nMeetings]) {

If (meetings[n,3] = 1) Then {schedule[n] =< nMorningSlots;}

Else {If (meetings[n,3] = 2) Then {schedule[n] > nMorningSlots;};

};

};

• Channeling constraints. In order to be able to minimize the number of idle time periods,
i.e., objective function (9.4), we introduce channeling constraints mapping the variable
schedule to the variable usedSlots. That is, if meeting k is scheduled at time slot j, we
need to state that time j is used by both members of meeting k, by setting accordingly
the corresponding value in usedSlots:

Forall(j in [1..nTimeSlots]) {

Forall(k in [1..nMeetings]) {
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(schedule[k] = j) Implies

(usedSlots[meetings[k,1],j] = 1 And

usedSlots[meetings[k,2],j] = 1);

};

};

In the reverse direction, for each participant e, her number of meetings as derived from
usedSlots must match her known total number of meetings nMeetingsParticipant[e]:

Forall(e in [1..nParticipants]) {

Sum([ usedSlots[e,f] | f in [1..nTimeSlots] ],

nMeetingsParticipant[e]);

};

Next, we impose the required constraints on the variable fromSlots:

Forall(e in [1..nParticipants]) {

Forall(f in [1..nTimeSlots]) {

usedSlots[e,f] = 1 Implies fromSlots[e,f] = 1;

};

Forall(f in [1..nTimeSlots-1]) {

fromSlots[e,f] = 1 Implies fromSlots[e,f+1] = 1;

};

};

It is worth noting that, for any participant e, having fromSlots[e, f ] = 1 for all f is
possible, even if e has no meeting at time slot 1. However, the soft constraints used for
optimization will prevent this from happening, as commented below.

Optimization Minimization of the objective function (9.4) is achieved by means of soft
constraints, where a group of contiguous idle time slots between two meetings of the same
participant is given a cost of 1.

Soft constraints are labeled with Holes[e, f ], where e denotes a participant and f denotes
a time slot, and state that if e does not have any meeting in time slot f , but it has some
meeting before, then she does not have any meeting in the following time slot:

Forall(e in [1..nParticipants], f in [1..nTimeSlots-1]) {

#Holes[e,f]:((usedSlots[e,f] = 0 And fromSlots[e,f] = 1) Implies

usedSlots[e,f+1] = 0)@{1};

};

We claim that, with these constraints, an optimal solution will be one having the least
number of groups of contiguous idle time slots between meetings of the same participant.
Note that, for each participant, we increase the cost by 1 for each meeting following some idle
period. Moreover, it is not difficult to see that the (possibly null) period of time preceding
the first meeting of a participant e will have no cost, since fromSlots[e, f ] can freely take
value 0 for all f prior to the time of the first meeting.

Finally, since we are not only interested in optimal solutions, but in fair ones, we can add
the following meta-constraint, stating that the difference between the number of idle periods
of any two distinct participants is, e.g., at most 2:
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homogeneousAbsoluteNumber([ [ Holes[e,f] | f in [1..nTimeSlots-1] ] |

e in [1..nParticipants] ], 2);

Note that this meta-constraint makes use of the labels introduced in the soft constraints.
It has as first argument a list of lists ll of soft constraint labels, and as second argument
a natural number n. It ensures that, for each pair of lists in ll, the difference between the
number of violated constraints in the two lists is at most n.

The WSimply model presented above has been translated to MINIZINC in order to test the
performance of a greater number of different solvers (see Section 9.3). The translation of
hard constraints is straightforward, due to the similarities between the two languages. Soft
constraints have been translated into a linear objective function, as they are not directly
supported in MINIZINC. The meta-constraint used in the WSimply model has been translated
into the MINIZINC constraints that would result from the translation process implemented in
the WSimply compiler.

9.2.2 A PB model for the B2BSOP

Here we give the WSimply version of the Pseudo-Boolean model for the B2BSOP. The param-
eters are the same as in the CP model but, in this case, we only use 0/1 variables.

Variables and domains

Dom pseudo = [0..1];

IntVar schedule[nMeetings,nTimeSlots]::pseudo;

IntVar usedSlots[nParticipants,nTimeSlots]::pseudo;

IntVar fromSlots[nParticipants,nTimeSlots]::pseudo;

IntVar holes[nParticipants,nTimeSlots-1]::pseudo;

IntVar nHoles[nParticipants,5]::pseudo;

IntVar max[5]::pseudo;

IntVar min[5]::pseudo;

Here, the array variable schedule shall contain a 1 at position i, j if and only if meeting
i is celebrated at time slot j.

Variables usedSlots and fromSlots are the same as in the CP case.

Variable holes will indicate, for each participant, when a time slot is the last of an idle
period of time.

Variable nHoles will hold the 5-bit binary representation of the number of idle time periods
of each participant, i.e., the number of groups of contiguous idle time slots between meetings
of each participant.

Variables max and min will hold the 5-bit binary representation of an upper bound and a
lower bound of the maximum and minimum values in nHoles, respectively. As we will see,
these variables will be used to enforce fairness of solutions, by restricting their difference to
be less than a certain value.

All variables but schedule are only necessary for optimization.

Constraints

• Each participant has at most one meeting scheduled at each time slot :
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Forall (f in [1..nTimeSlots]) {

Forall (n in [1..nParticipants]) {

AtMost([ schedule[m,f] |

m in [1..nMeetings],

(meetings[m,1] = n Or meetings[m,2] = n) ], 1, 1);

};

};

The atMost(l, e, n) global constraint (where l is a list, e is an expression of the same
type of the elements in l, and n is an integer arithmetic expression) forces the number
of elements in l that match e to be at most n.

• No meeting of a participant is scheduled in one of her forbidden time slots:

Forall (r in [1..nMeetings]) {

Forall (p in [indexForbidden[meetings[r,1]]..

indexForbidden[meetings[r,1]+1]-1]) {

schedule[r,forbidden[p]] = 0;

};

Forall (p in [indexForbidden[meetings[r,2]]..

indexForbidden[meetings[r,2]+1]-1]) {

schedule[r,forbidden[p]] = 0;

};

};

• At most one meeting is scheduled in a given time slot and location. We ensure this by
forcing that no more than nTables meetings are scheduled in the same time slot:

Forall(f in [1..nTimeSlots]) {

AtMost([schedule[n,f] | n in [1..nMeetings]],1,nTables);

};

• Each meeting must be scheduled in the required (if any) set of time slots. By means of
sums, we force that each meeting is scheduled exactly once in its required set of time
slots:

Forall (n in [1..nMeetings]) {

If (meetings[n,3] = 1) Then {

Sum([ schedule[n,f] | f in [1..nMorningSlots] ], 1);

[ schedule[n,f] = 0 | f in [nMorningSlots+1..nTimeSlots] ];

} Else {

If (meetings[n,3] = 2 ) Then {

[ schedule[n,f] = 0 | f in [1..nMorningSlots] ];

Sum([ schedule[n,f] | f in [nMorningSlots+1..nTimeSlots] ], 1);

} Else {

Sum([ schedule[n,f] | f in [1..nTimeSlots] ], 1);

}};

};

Note that list comprehensions can be used to post constraints.
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• Channeling constraints. The channeling constraints are analogous to before:

Forall(j in [1..nTimeSlots]) {

Forall(k in [1..nMeetings]) {

(schedule[k,j] = 1) Implies

(usedSlots[meetings[k,1],j] = 1) And

(usedSlots[meetings[k,2],j] = 1));

};

};

Forall(e in [1..nParticipants]) {

Sum([ usedSlots[e,f] | f in [1..nTimeSlots] ],

nMeetingsParticipant[e]);

};

Forall(e in [1..nParticipants]) {

Forall(f in [1..nTimeSlots]) {

usedSlots[e,f] = 1 Implies fromSlots[e,f] = 1;

};

Forall(f in [1..nTimeSlots-1]) {

fromSlots[e,f] = 1 Implies fromSlots[e,f+1] = 1;

};

};

Optimization The soft constraints are the same as in the CP model:

Forall(e in [1..nParticipants], f in [1..nTimeSlots-1]) {

((usedSlots[e,f] = 0 And fromSlots[e,f] = 1) Implies

usedSlots[e,f+1] = 0)@{1};

};

The homogeneity meta-constraint homogeneousAbsoluteNumber used in the CP model
cannot be used in the Pseudo-Boolean model since, in its current implementation, WSimply
will translate this meta-constraint into a set of non (Pseudo-)Boolean constraints. For this
reason, this meta-constraint needs to be simulated here. We proceed as follows.

On the one hand, we post the constraints for the array variable holes which contains, for
each participant, the last time slot of each idle period of time:

Forall(e in [1..nParticipants], f in [1..nTimeSlots-1]) {

(usedSlots[e,f] = 0 And fromSlots[e,f] = 1 And usedSlots[e,f+1] = 1)

Implies holes[e,f]=1;

holes[e,f]=1 Implies

(usedSlots[e,f] = 0 And fromSlots[e,f] = 1 And usedSlots[e,f+1] = 1);

};

On the other hand, we post the constraints defining the 5-bit binary representation of the
number of idle time periods of each participant (the sum1 function returns the sum of the
elements in the list it receives as argument):
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Forall(e in [1..nParticipants]){

sum1([ holes[e,f] | f in [nTimeSlots-1] ]) =

16*nHoles[e,1]+8*nHoles[e,2]+4*nHoles[e,3]+2*nHoles[e,4]+nHoles[e,5];

};

Finally, we constrain the difference between the number of idle time periods of any two
distinct participants to be at most 2. We do this by constraining the difference between an
upper bound and a lower bound of the maximal and minimal number, respectively, of idle
time periods of all participants, to be at most 2:

Forall(e in [1..nParticipants]){

16*max[1]+8*max[2]+4*max[3]+2*max[4]+max[5] >=

16*nHoles[e,1]+8*nHoles[e,2]+4*nHoles[e,3]+2*nHoles[e,4]+nHoles[e,5];

16*nHoles[e,1]+8*nHoles[e,2]+4*nHoles[e,3]+2*nHoles[e,4]+nHoles[e,5]

>= 16*min[1]+8*min[2]+4*min[3]+2*min[4]+min[5];

};

2 >= 16*max[1]+8*max[2]+4*max[3]+2*max[4]+max[5] -

16*min[1]+8*min[2]+4*min[3]+2*min[4]+min[5];

9.3 Experimental results

In this section we compare the performance of several state-of-the-art CSP, WCSP, ILP and
PB solvers with the proposed models. We also analyse which is the improvement of our
solution over some handmade solutions from past editions of the forum.

As said, apart from the two (CP and PB) WSimply models presented, we have also con-
sidered a MINIZINC model in order to test the performance of a greater number of different
solvers. The MINIZINC model considered is an accurate translation of the first WSimply (CP)
model. All models and data can be found in http://imae.udg.edu/recerca/lap/simply/.

For solving the WSimply instances we have used the SMT solver Yices 1.0.33 [DdM06b]
through its API, with two different solving methods: WPM1 (described in Chapter 7), and
SBDD (described in Chapter 8).

We have also considered the translation of the CP model written in WSimply into ILP,
and used IBM ILOG CPLEX 12.6 for solving the resulting instances.

For solving the MINIZINC instances we have used Gecode 4.2.1 [SLT10], a state-of-the-art
CP solver, and Opturion 1.0.2 [opt], winner of the 2013 MINIZINC Challenge2 in the free search
category, using lazy clause generation [OSC09].

For solving the PB WSimply instances we have used CPLEX 12.6, SCIP 3.0.1 [Ach09] and
clasp 3.1.0 [GKNS07]. The two former obtained the best results in the last PB competition3

in the category ”optimisation, small integers, linear constraints”, which fits our problem.
However, the latter has shown a much better performance on this problem.

All experiments have been run on a cluster of Intel R© XeonTMCPU@3.1GHz machines, with
8GB of RAM, under 64-bit CentOS release 6.3, kernel 2.6.32, except for the experiments with
Opturion, where we have used a slightly different computer (Intel R© CoreTMCPU@2.8GHz,

2http://www.minizinc.org/challenge2013/results2013.html
3http://www.cril.univ-artois.fr/PB12/

http://imae.udg.edu/recerca/lap/simply/
http://www.minizinc.org/challenge2013/results2013.html
http://www.cril.univ-artois.fr/PB12/
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with 12GB of RAM, under 64-bit Ubuntu 12.04.3, kernel 3.2.0) due to some library dependence
problems. We have run each instance with a cutoff of 2 hours.

We have considered four industrial instances provided by the human expert: instances
tic-2012a and tic-2013a, from past editions of a technology and health forum, and instances
forum-2013a and forum-2014a, from the previous year and this year’s editions of the scientific
and technological forum.

Taking as basis these four instances, we have crafted five more instances of distinct hard-
ness by increasing the number of meetings, reducing the number of locations and changing
the morning/afternoon preferences of some meetings. Table 9.1 summarizes the results of the
experiments.

Table 9.1: Solving time (in seconds) and optimum found (number of idle time periods) per
instance, model and solver. The instances are tagged with (#meetings, #participants, #lo-
cations, #time slots, #morning time slots). TO stands for time out and MO for memory out.
The cutoff is 2 hours. For aborted executions we report the (sub)optimum found if the solver
reported any. Best running times and upper bounds of the objective function are indicated
in boldface.

Instance
CP Model PB Model

WSimply MINIZINC WSimply

WPM1 SBDD CPLEX Gecode Opturion CPLEX SCIP clasp
tic-2012a

(125,42,21,8,0)
2.0 0 2.7 0 3375.6 0 1.4 0 8.1 0 7.3 0 126.1 0 0.1 0

tic-2012c
(125,42,16,8,0)

51.1 0 235.4 0 TO 4 TO - 2206.2 0 18.0 0 1692.7 0 977.9 0

tic-2013a
(180,47,21,10,0)

25.0 0 65.2 0 TO 9 2923.1 0 394.5 0 1345.3 0 TO 13 2.1 0

tic-2013b
(184,46,21,10,0)

5.6 0 24.1 0 TO 8 3.4 0 108.0 0 121.0 0 4975.4 0 2.1 0

tic-2013c
(180,47,19,10,0)

TO - TO 8 TO 18 TO - TO 8 TO 4 TO 31 TO -

forum-2013a
(154,70,14,21,13)

5542.3 0 3128.1 0 MO 83 TO - 1142.8 0 TO 20 TO - 52.4 0

forum-2013b
(195,76,14,21,13)

TO - TO 12 TO - TO - TO 50 MO - TO - TO 24

forum-2013c
(154,70,12,21,13)

TO - TO 20 MO 50 TO - TO 23 TO 30 TO - TO -

forum-2014a
(302,78,22,22,12)

TO - TO 7 TO - TO - TO 90 MO - TO - TO -

Looking at the results, it can be said that clasp is the best solver on the easier instances
(only beaten by CPLEX in two cases), and SBDD is the best on the harder instances, both of
them using conflict driven solvers. The latter is also the most robust method when considering
all instances, with a good compromise between solving time and quality of the solutions.
Due to the fact that SBDD is based on representing the objective function as a BDD, and
iteratively calling the decision procedure (an SMT solver) with successively tighter bounds,
we can obtain a feasible solution at each stage of the optimization process. The WPM1
method also exhibits good performance on many instances, but it cannot provide suboptimal
solutions as, roughly, it approaches to solutions from the unsatisfiable side.

An interesting aspect is that, in all real instances from past editions (tic-2012a, tic-2013a
and forum-2013a) we obtained an optimum of 0 idle time periods between meetings of the
same participant, whereas the expert handmade solutions included 20, 39 and 99 idle time
periods respectively, as shown in Table 9.2. Note also that only for some crafted instances,
and the bigger real instance from the last forum, we could not certify the optimality of the
solutions found within two hours.

In Section 9.2 we have not included the model used for the B2BLOP for the sake of
simplicity. However, one aspect of the model that deserves a comment is the use of meta-
constraints, to ensure fairness in the number of location changes of the participants. With
the meta-constraint
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homogeneousAbsoluteNumber([[Changes[e,f] | f in [1..nTimeSlots-1]]

| e in [1..nParticipants]], Hfactor);

the user can look for solutions where the difference on the number of location changes between
participants is at most HFactor, and with the meta-constraint

maxCost([[Changes[e,f] | f in [1..nTimeSlots]]

| e in [1..nParticipants]], MaxChanges);

the user can look also for solutions where the number of location changes per participant is
at most MaxChanges.

We have solved the B2BLOP with the schedules obtained from real instances of previous
editions (tic-2012a, tic-2013a and forum-2013a), in order to compare the obtained results to
the handmade ones, and with the schedule proposed for this year’s edition of the forum. This
last schedule, which we refer to as forum-2014a-t, has been obtained by the human expert
by retracting 6 cancelled meetings, and by adding 15 last arrival meetings, to the schedule
obtained for forum-2014a with the WPM1 method, in approximately 2.5 hours. The resulting
B2BLOP instances have been solved with the WPM1 method in approximately 3, 120, 420
and 480 seconds respectively.

In Table 9.2 we provide a comparison on the quality of the solutions with respect to the
number of idle time periods and location changes, when solved by hand and with WSimply.

Table 9.2: Number of idle time periods and location changes for the real instances when
solved by hand and with WSimply. The maximum difference (homogeneity) between those
numbers for distinct participants is given between parentheses.

Instance
# idle periods # location changes

Handmade WSimply Handmade WSimply

tic-2012a 20 (4) 0 (0) 112 (7) 103 (3)
tic-2013a 39 (4) 0 (0) 191 (9) 156 (4)
forum-2013a 99 (5) 0 (0) 27 (5) 105 (4)
forum-2014a-t 22 (2) 249 (6)

Note that the number of idle time periods is reduced to 0 when solving the problem with
WSimply in almost all cases. In spite of this, we are still able to reduce the number of location
changes with respect to the handmade solutions, except for the case of forum-2013a. But the
solution obtained with WSimply in this case is still significantly better than the handmade
one, which implied 99 idle time periods and was far less homogeneous. In any case, we are
prioritizing the minimization of idle time periods of participants and the fairness of solutions,
and leave location change minimization as a secondary desirable property.

9.4 Conclusion

In this chapter we have provided two distinct models for the B2BSOP and compared the
efficiency of several types of solvers when dealing with some industrial and crafted instances
of this problem, in a ’model-and-solve’ approach. We also provide several new nontrivial
industrial timetabling instances to the community.
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The solutions found have been highly satisfactory for the human matchmaker, as they
dramatically improve the handmade ones with respect to the number of idle time periods as
well as location changes for the participants and, obviously, with quite less effort. Another
aspect that the human matchmaker has really appreciated is the facility of adding meta-
constraints to the model, like the ones we have used for achieving some level of fairness in the
solutions. Fairness is crucial since participants may complain if they have the feeling of being
discriminated, either with respect to idle time periods or with respect to location changes.
The possibility of being able to fix partial solutions and adding new meetings to schedule has
also been appreciated, since this is a hard task to do typically the day before the event due
to last meeting request arrivals.

With respect to performance, we have noted that clasp is especially good on small in-
stances, while WSimply (with the SBDD approach) appears to be better on bigger ones.
However, it is not easy to draw conclusions, as we have not tuned the model for any solver in
particular.

Recently, in [PRR15] better encodings for MIP an CP using global constraints are ob-
tained. Also in [BGSV15] a MaxSAT model is shown to be the state-of-the-art solving ap-
proach.



Chapter 10

Anomalies Modelling Combinatorial
Problems using SMT

Much research on modelling combinatorial problems for a solver compares alternative
models of a problem in an attempt to understand the characteristics of good models. The
aim is to discover principles and heuristics that in the future would guide someone to develop
good models or to select the more effective model from a set of alternatives.

For many years this methodology has been moderately successful in studying modelling
for SAT solvers and for finite-domain constraint solvers, and now it is also applied for SMT.
But, as we show in this chapter, sometimes this task could be more difficult in SMT, because
SMT solvers, in some cases, have apparently shown an erratic behaviour.

In this chapter we present four of the more extreme anomalies that we have encountered in
our work. Of course we label these phenomena as anomalies because we have no explanation
for them and they run counter to our intuitions, even taking into account that SMT solvers
are very complicate tools (see e.g. [BSST09]) and a small change in the formula can result
in a large change in the behaviour of the solver. For example, it is well known that changing
the order of the clauses in an SMT formula can greatly increase or decrease the solution time.
The work reported here is solely concerned with SMT using the QF LIA logic and we refer
to this combination as SMT(qf lia). We investigate four SMT(qf lia) solvers and use all
with their default settings.

Problem instances and data associated with this research can be found at http://www.

cs.york.ac.uk/aig/constraints/SMT/.

This chapter is based on results from [FP14] and it is organised as follows. First of all,
we present two anomalies found representing finite domains. Then, we present two anomalies
found representing the Pedigree Reconstruction Problem. Finally, we present some conclu-
sions about the anomalies.

10.1 Anomalies in Representing Finite Domains

The first two anomalies arise in representing finite integer domains and considering two kinds
of propagation.

Throughout we consider the representation of a variable x with domain D = {d1, . . . , dn}
where d1 ≤ d2 ≤ · · · ≤ dn. We use D to denote {d′|d1 < d′ < dn and d

′ 6∈ D}.
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To simplify the presentation we use the following schemas:

• ALO(x)
def
=
∨
d∈D x = d.

• BOUND(x)
def
= (d1 ≤ x ≤ dn).

• NEG(x)
def
=
∧
d∈D ¬(x = d).

In all the experiments of Anomalies 1 and 2 we have used the following four SMT(qf lia)
solvers: Yices 1.0.35 [DdM06b], Yices 2.1.0, Z3-4.1 [dMB08] and MathSat 5.1.10 [CGSS13a].
The input formulas for the first three solvers are written using SMT-Lib 1.2 and using SMT-
Lib 2 for the fourth. The experiments were run on a cluster of Intel R© XeonTMCPU@3.1GHz
machines, with 8GB of RAM, under 64-bit CentOS release 6.3 (kernel 2.6.32).

10.1.1 Anomaly 1

Anomaly 1 arises in a test to measure how fast different finite domain representations are in
recognising unsatisfiability when all of the domain values are eliminated.

Here we consider the domain of variable x to be the contiguous set of values 1..n. The
domain values are all eliminated by asserting the following formula:

UNSAT ALL(x)
def
=

∧
d∈D
¬(x = d)

We conjoin this with each of three domain representations resulting in three test cases

1. ALO(x) ∧ UNSAT ALL(x)

2. BOUND(x) ∧ UNSAT ALL(x)

3. BOUND(x) ∧ALO(x) ∧ UNSAT ALL(x)

We measured the solve time of each of these formulas on each of the four SMT(qf lia)
solvers. Each of Figures 10.1–10.4 shows the run time as a function of domain size, n, of
one solver on the three domain encodings. The first three of these figures show that each of
Yices 1, Yices 2 and MatSat 5 perform similarly on the three encodings. Indeed, in each case
two of the curves overlay each other almost perfectly. MathSat 5 is remarkable in that the
solve time is almost independent of both domain size and encoding.

The anomaly occurs with Z3; as domain size increases the bounds-only encoding performs
far worse than the other two encodings, which behave almost identically. Notice that the scale
in Fig. 10.4 goes over 100 seconds, whereas the scales in the other plots go to only 10 seconds.
More remarkably, with the bounds-only representation Z3 performs search. For example, with
domain size 10000 it reports having made 5843 decisions and 5460 conflicts, while in the ALO
representations does not report any information about decisions or conflicts.

In contrast, the other solvers don’t report having made any decision as expected, but
they report different number of conflicts. On all problem instances Yices 1 reports 1 conflict,
Yices 2 does not report any statistic when the instance is unsatisfiable and MathSat 5 reports
1 conflict with the bounds-only representation and 0 conflicts in the ALO representations.
Finally, MathSat 5 is the only solver reporting calls to theory solvers, calling 5001 times
the linear arithmetic theory solver with the domain size 10000. A summary of the reported
conflicts and calls to the linear arithmetic theory solver by the SMT solvers can be found in
Table 10.1.
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Figure 10.3: Anomaly 1: MathSat 5
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Figure 10.4: Anomaly 1: Z3

10.1.2 Anomaly 2

Anomaly 2 arises in a test to measure how fast different domain representations are in recog-
nising that a variable has a particular value because all but one of it’s domain values are
eliminated.

Here we consider the domain of variable x to be {1, 3, 5, . . . , 2n− 1}, i.e., the first n odd
natural numbers. All but one of the domain values are eliminated by asserting the following
formula:

ONLY 1(x, v)
def
=

∧
d∈D\{v}

¬(x = d)

We have evaluated the performance of four solvers in determining the satisfiability of
ONLY 1(x, dn) when conjoined with each of four domain representations. Anomaly 2 arises
in the conjunction with one particular domain representation

BOUND(x) ∧NEG(s) ∧ONLY 1(x, dn)

This formula has been solved with each of the four SMT(qf lia) solvers. The resulting
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Table 10.1: Anomaly 1: Number of conflicts and number of calls to the linear arithmetic
theory solver (between parenthesis) for instance with domain size 10000 for each SMT solver.
n/a means that the solver has not reported any information.

Bounds ALO Bounds + ALO

Yices 1 1 1 1

Yices 2 n/a n/a n/a

Z3 5460 n/a n/a

MathSat 5 1 (5001) 0 (0) 0 (0)

solve times as a function of domain size, n, are shown in Figure 10.5. Here we see that Yices
2 and MathSat 5 scale very well with increasing n. In contrast, the solve time of Yices 1
increases rapidly with increasing n and if n is 13,000 or more the solver encounters a memory
overflow.

The main anomaly here is that the solve time of Z3 does not increase monotonically with n.
Furthermore, Z3 performs search in solving this simple problem and the metrics that quantify
this search also do not increase monotonically. As shown in Figure 10.6, their non-monotonic
behaviour tracks that of the runtime measurement. In contrast, the three other solvers report
a constant number of conflicts and decisions; on all instances Yices 1 and Yices 2 report 0
conflict and MathSat 5 reports 1 conflict. MathSat makes 2n+ 3 calls to the QF LIA theory
solver on instances with domain size n; the other solvers do not report this statistic.
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Figure 10.5: Anomaly 2

10.2 Anomalies in representing the Pedigree Reconstruction
Problem

The second two anomalies arise in representing the Pedigree Reconstruction Problem (PRP)[CBJS13],
which involves identifying relatives amongst a group G of individuals from genetic marker
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Figure 10.6: Z3 statistics in function of domain size (n). The number of decisions are not
shown because the decisions ×0.033 curve will look indistinguishable to the conflicts ×0.035
curve.

data.
In particular, the goal here is to find the maximum likelihood pedigree. A pedigree for G

assigns to each individual i in G a parent set, which takes one of three forms:

• j, k, where i, j and k are distinct members of G. This indicates that the parents of i
are j and k.

• j, where i and j are distinct members of G. This indicates that j is a parent of i and
the other parent of i is not in G.

• ∅, which indicates that neither parent of i is in G.

For each member i ∈ G, the genetic markers of the members of G determine a probability
distribution over all possible parent sets of i. In typical problem instances most potential
parent sets of i have probability zero.

The probability of a pedigree is the product of the probability that each i ∈ G has the
parent set assigned by the pedigree.

Every assignment of individuals to parent sets is not a valid pedigree. Sexual reproduction
imposes two constraints:

acyclicity: No individual can be an ancestor of itself, and

gender consistency: The two parents of an individual have opposite gender. The genetic
marker data does not identify the gender of the individuals, so gender consistency
requires that a gender could be assigned to each individual so that the parents of every
individual have opposite genders. As an example, an assignment in which a and b have
a child, b and c have a child, and a and c have a child is not gender consistent.

Summing up, the pedigree reconstruction problem is: Given G a finite set of individuals
and for each i ∈ G a probability distribution over all possible parent sets of i, find a maximum
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likelihood assignment A of a parent set to each i ∈ G such that A is acyclic and gender
consistent.

Following Cussens [CBJS13] we simplify our model by assuming that we are given not
the probability of each parent set but rather the log of that probability. This enables us to
use a linear objective function: the sum of the logarithm of the probability of each assigned
parentset. This value is to be maximised.

Table 10.2 shows the basic model written in SMT(qf lia) of the PRP. The model repre-
sents the individuals of G by the integers 1..n. For each individual i the instance specifies the
probability distribution over the possible parent sets of i by three parameters.

• ki is the number of possible parent sets of i that have non-zero probability

• ppsi[1..k − i] is an array whose elements are the ki parent sets i that have non-zero
probability.

• logLikelihoodi[1..ki]is an array such that element j is the log of the probability that i
has parentset ppsi[j].

For each individual i the model has a decision variable parentseti such that assigning it
p indicates the decision to assign individual i the parentset ppsi[p]. The decision variable
globalV alue is the objective value to be maximised. It is the sum of values of localV aluei
(1 ≤ i ≤ n)—see constraint (c3)— where localV aluei is constrained by (c5) to be equal to
logLiklihoodi[parentseti]. Constraints (c1) and (c4) bound the parentseti and globalV alue
variables, in effect giving each a finite domain. Constraint (c2) imposes an upper bound on
the localV aluei variables; the use of a lower bound is an issue discussed below.

Acyclicity is enforced by associating a generation number, the decision variable geni, with
each individual i. The generation number of an individual is constrained to be one greater
than the maximum generation number of its parents. This is stipulated in (c7) if i has two
parents and in (c8) if i has one parent. Constraint (c6) bounds each geni, giving it a finite
domain.

Finally, gender consistency is enforced by associating a gender, the boolean decision vari-
able femalei with each individual. The only constraint is that if an individual has two parents
then those parents must have opposite gender. This is stipulated in the last conjunct of (c7).

The basic model imposes used upper and lower bounds on the variables parentset and gen,
but only an upper bound on the variable localV alue. This is because during our experiments
we have detected surprising behaviour when we use a lower bound on that variable. Therefore,
to study this behaviour, we have defined two variants of constraint (c2):

• (c2+) when in addition to (c2) we also use the tighter lower bound:

localV aluei ≥ min
j∈1..ki

logLikelihoodi[j]

• (c20) when in addition to c2 we also use a weaker lower bound:

localV aluei > 0

In some of the experiments we extended the model to use three additional constraints to
represent the domain of the variables:
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Given
n: positive integer
ki: positive integer (1 ≤ i ≤ n)
ppsi[1..ki] : set maxsize 2 drawn from 1..n (1 ≤ i ≤ n)
logLikelihoodi[1..ki]: positive integer (1 ≤ i ≤ n)

Decision Variables
parentseti: int (1 ≤ i ≤ n)
geni: int (1 ≤ i ≤ n)
localV aluei: int (1 ≤ i ≤ n)
globalV alue: int
femalei:bool (1 ≤ i ≤ n)

Constraints
(c1) 1 ≤ parentseti ∧ parentseti ≤ ki (1 ≤ i ≤ n)
(c2) localV aluei ≤ maxj∈1..ki logLikelihoodi[j] (1 ≤ i ≤ n)
(c3) globalV alue =

∑n
i=1 localV aluei

(c4) globalV alue ≥ 0 ∧ globalV alue ≤
∑n

i=1 maxj∈1..ki logLikelihoodi[j]
(c5) not (parentseti = j) ∨ localV aluei = logLikelihoodi[j] (1 ≤ i ≤ n, 1 ≤ j ≤ ki)
(c6) 0 ≤ geni ∧ geni ≤ n (1 ≤ i ≤ n)
(c7) (not(parentseti = r) ∨ geni − genp ≥ 1) ∧

(not(parentseti = r) ∨ geni − genp′ ≥ 1) ∧
(not(parentseti = r) ∨ geni − genp = 1 ∨ geni − genp′ = 1) ∧
(not(parentseti = r) ∨ not(femalep = femalep′))

(1 ≤ i ≤ n, 1 ≤ j ≤ ki, ppsi[j] = {p, p′})
(c8) not (parentseti = r) ∨ geni − genp ≥ 1 (1 ≤ i ≤ n, 1 ≤ j ≤ ki, ppsi[j] = {p})

Objective
maximize globalV alue

Table 10.2: Basic SMT(qf lia) model of the pedigree reconstruction problem
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(c9) DomainALO(parentset):
∨
j∈1..ki

parentseti = j (1 ≤ i ≤ n)
(c10) DomainALO(gen):

∨
j∈0..n(geni = j) (1 ≤ i ≤ n)

(c11) DomainALO(lc):
∨
j∈1..ki

localV aluei = logLikelihoodi[j]
To simplify our study we replace the PRP optimisation problem with the corresponding

decision problem. In particular, from each PRP instance we generate the hardest satisfiable
instance and the hardest unsatisfiable instance. We precompute the global value, c∗, of the
optimal solution and create two benchmark problem instances: a satisfiable instance in which
the objective is replaced with the constraint globalV alue ≥ c∗ and an unsatisfiable instance
in which the objective is replaced with the constraint globalV alue > c∗.

Notice that in both the satisfiable and unsatisfiable instances the constraints (c10) and
(c11) are implied. To fully appreciate Anomaly 4 it is important to bear in mind that because
these are implied constraints they prune no solutions.

All of our experiments use the same suite of 100 PRP instances generated randomly by
pedsim [Cow09], configured to use genetically realistic random distributions. Such instances
are known to be harder to solve than those generated using random distributions. All of our
instances contain 46 individuals.

In all the experiments of Anomalies 3 and 4 we have used the same four SMT(qf lia)
solvers used in Anomalies 1 and 2. But the experiments were run on a slightly different
computer, Intel R© CoreTM i5 CPU@2.66GHz, with 3GB of RAM, under 32-bit openSUSE
11.2 (kernel 2.6.31).

10.2.1 Anomaly 3

Anomaly 3 arose through a surreptitious observation. Solve time can be reduced if we replace
constraint (c3) with

(c3′) globalV alue2 =

n∑
i=1

localV aluei ∧ globalV alue2 = globalV alue

where globalV alue is a new integer variable.
This anomaly only appears in MathSat 5 and Yices 1 solvers when we are also using (c2+)

instead of (c2), and in the case of Yices 1 when we are also using ALO for the variables
(constraints (c9), (c10) and (c11)). It appears only in the satisfiable instances and it does not
appear in the unsatisfiable ones. Table 10.3 and Table 10.4 show the mean time and median
time with and without the extra variable. In both cases the extra variable reduces the median
time about 20%.

Table 10.3: Anomaly 3: MathSat 5 solves
the 100 instances about 20% faster with
an extra variable in the basic model with
tighter lower bound.

Mean time (s) Median time (s)
non ex. 5.1283 2.085
extra 4.0067 1.56

Table 10.4: Anomaly 3: Yices 1 solves the
100 instances about 20% faster with an ex-
tra variable in the basic model with tighter
lower bound and ALO.

Mean time (s) Median time (s)
non ex. 1.2569 1.005
extra 1.0584 0.82

One would expect that adding this extra variable would have only a trivial affect on
solution time. However, the two scatter plots, Figure 10.7 and Figure 10.8, show that the
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effect of adding an extra variable can drastically increase or decrease the solving time of an
instance. More precisely, in Figure 10.7 when adding the extra variable there is a variability
on solving one instance from 52.9 times faster (decreasing the solving time from 35.92 to
0.68) to 32.4 times slower (increasing the solving time from 0.86 to 27.87). In Figure 10.8 this
variability is smaller, ranging from 4.6 times faster (decreasing the solving time from 5.1 to
1.11) to 2.0 times slower (increasing the solving time from 1.51 to 3.02).
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Figure 10.7: Anomaly 3: scatter-plot of
MathSat 5 with and without extra vari-
able in the basic model with tighter lower
bound. 57 blue crosses and 43 red crosses.
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Figure 10.8: Anomaly 3: scatter-plot of
Yices 1 with and without extra variable in
the basic model with tighter lower bound
and ALO. 53 blue crosses, 43 red crosses
and 12 black crosses.

10.2.2 Anomaly 4

The last anomaly arises in test to measure in the basic model which way to represent the
lower bound is the best for Z3 solver: without any lower bound (c2), with a tighter lower
bound (c2+) or with a lighter lower bound (c20). Again the first impression is that c2+ has
to be the best option, but in practise the best option is c2, that is not using any lower bound.
This is shown at Table 10.5 where we can see the mean and median times of solving the
100 instances for the three experiments. The first two columns are the solving times for the
satisfiable instances and the two last columns are the times for the unsatisfiable instances.
We can see that solving the basic model with c2 is about 5 to 6 times faster than with c2+ or
c20 in the satisfiable case. A similar phenomenon happens with the unsatisfiable instances,
where the basic model with c2 is about 3 to 4 times faster then the other two representations.

We want to note that this anomaly disappears if we add ALO to represent localV alue
variable domain (adding constraint c11).

Finally, we present four scatter plots comparing c2 with c2+ and c20 in Figure 10.9 and
Figure 10.10 respectively for the satisfiable case and in Figure 10.11 and Figure 10.12 respec-
tively for the unsatisfiable case. What is interesting of these plots is that in all the cases c2
is better in all the instances (specially for the unsatisfiable case). More precisely, c2 is better
than c2+ between 1.18 and 18.90 times in the satisfiable case and between 1.38 and 9.46 times
better in the unsatisfiable case, and c2 is better than c20 between 1.17 and 22.56 times in the
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Table 10.5: Anomaly 4: Z3 solves the satisfiable instances about 5 to 6 times faster in the
basic model without any lower bound compared to using any lower bound, and about 3 to 4
times faster for the unsatisfiable instances.

Satisfiable Unsatisfiable

Mean time (s) Median time (s) Mean time (s) Median time (s)

c2+ 29.94 31.73 37.28 35.60

c20 35.43 34.64 41.47 38.76

c2 7.06 5.59 12.61 9.68

satisfiable case and between 1.54 and 9.71 times better in the unsatisfiable case.

10.3 Conclusions

In this chapter we have presented four anomalies in the behaviour of some SMT(qf lia)
solvers, two of them representing finite domains and the other two representing the PRP.
The behaviours of the SMT(qf lia) solvers are anomalous in that they contradict our ex-
pectations, which have been formed from our experience with modelling problems for CP
solvers and modelling problems for SMT solvers. In Anomaly 1 we see that a simple, obvious
representation of finite domains is problematic for one SMT(qf lia) solver, though not for
three others.

Anomaly 2 arises in considering parameterised problem instances in which solving larger
instances requires a superset of the reasoning involved in solving smaller instances. Nonethe-
less, for one solver the solution time is not monotonic in the size of the problem instance.

In Anomaly 3 a trivial change to a model, that would have little to no effect on a CP
solver, can greatly reduce the solve time of one instance while greatly increasing that of
another instance. Though we would expect any change in performance to be a very small
negative one, we see an average improvement of 20% with two of the solvers.

Finally, Anomaly 4 is perhaps the most surprising to anyone trying to build better mod-
els. Here we see a case where tightening bounds on a variable hinders performance even in
unsatisfiable instances.

In seeking an explanation of these anomalies we have contacted with the SMT solver
developers and next we present our conclusions to the anomalies from their responses.

The first thing to take into account is that SMT solvers are very complicated tools which
involve several components: various forms of preprocessing, a CDCL SAT solver and specific
solvers for each background theory (QF LIA in our case). Since these components are used
depending on different heuristics and strategies, the behaviour could vary largely depending
on the configuration. Also, it is important to recall that we are using SMT solvers as a black
box with the default configurations for solving problems which are very far from these for
which SMT solvers are usually tested (and tuned) for.

Concerning anomalies 1 and 2, the developer pointed that is due to a performance bottle-
neck/bug in how bounds axioms are asserted to Z3. Although anomaly 2, which only appears
in the satisfiable instances, could also be because of an heuristic or strategy configuration of
the solver.

Concerning variations of anomalies 3 and 4, the developers stated that are well within
the variation range due to different choices of Boolean decision variables, in particular on
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Figure 10.9: Anomaly 4: scatter-plot of
Z3 with tighter lower bound (c2+) and
without lower bound (c2) in the basic
model for the satisfiable case.
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Figure 10.10: Anomaly 4: scatter-plot of
Z3 with lower bound greater than 0 (c20)
and without lower bound (c2) in the basic
model for the satisfiable case.
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Figure 10.11: Anomaly 4: scatter-plot of
Z3 with tighter lower bound (c2+) and
without lower bound (c2) in the basic
model for the unsatisfiable case.
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Figure 10.12: Anomaly 4: scatter-plot of
Z3 with lower bound greater than 0 (c20)
and without lower bound (c2) in the basic
model for the satisfiable case.
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satisfiable instances. But the case of anomaly 4, which appears in both type of instances
(satisfiable and unsatisfiable) and only using the Z3 solver, it could also be because removing
the bound we are reducing (or avoiding) the bug/bottleneck of anomaly 1.

Overall, it is clear that modelling combinatorial problems using SMT is more complicated
than using CP and more interaction with SMT developers could help to maximize the benefits
of SMT for combinatorial problems.



Chapter 11

Conclusions and future work

11.1 Conclusions

During this thesis we have succeeded to achieve the proposed objectives. We have developed
two systems, called fzn2smt and WSimply, that reformulate constraint models into SMT in-
stances in order to be solved using SMT solvers. The former reformulates CSP instances
written in the low-level language FLATZINC into SMT instances, while the latter directly re-
formulates CSP instances written in its own high-level language into SMT instances. Both of
them can deal with CSPs and COPs, but WSimply can also deal with WCSPs and, further-
more, allows the user to post meta-constraints over the soft constraints. We used both tools
to show that SMT is competitive with state-of-the-art CSP and WCSP solvers. In addition
we have solved specific problems either by direct reformulation into SMT or using WSimply.

fzn2smt

First of all, we used fzn2smt to see the performance of several SMT solvers. For the exper-
iments we considered 294 instances from 32 different problems written in FLATZINC. We se-
lected the solvers that have had good performance in the QF LIA division of the SMT-COMP,
since is the logic where (almost) all the problems fall. The solver with best performance was
Yices 2 nearly followed by Yices 1. Overall, the latter solved one more instance than the
former, however, the former got better results in 19 of the 32 problems. Next we figured out
which is the best way to encode arrays of variables and related constraints, either by using the
uninterpreted functions (UF) theory or decomposing them into single variables. The result
was that the decomposition approach clearly outperformed the UF approach. Then we tested
which of the three optimization approaches: binary, lineal or hybrid, was better solving the
subset of optimization problems, which were 16 of 32. In this experiment we had a draw in
the number of instances solved between the binary and the hybrid approaches. However, the
former was a bit faster than the latter. Therefore, we set fzn2smt default configuration to
use Yices 2 with variable decomposition and binary search.

Once we set up the configuration of fzn2smt, we used it to compare the performance of an
SMT solver (Yices 2) with several other FLATZINC solvers on two different comparisons. In the
first one we did not use solver specific global constraints in the FLATZINC models, i.e., global
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constraints were decomposed into basic constraints during the reformulation from MINIZINC

to FLATZINC. In the second one we used global constraints in the FLATZINC models. Note that
in this second comparison we only used the problems containing global constraints in their
model and only the FLATZINC solvers which support them, G12 and Gecode. fzn2smt does not
provide any specialized control for global constraints, hence in the second comparison we used
the fzn2smt results of the first comparison. In both cases fzn2smt got better performance
than the other solvers and was nearly followed by Gecode.

Finally, we made an statistical study of the relation between the Boolean structure of
the problems and the performance of fzn2smt compared to Gecode. For each problem we
computed the Boolean variable ratio and the disjunction ratio, and we compared the number
of instances solved by fzn2smt and Gecode with respect to these ratios. In almost all the
problems, when the Boolean variable ratio was above 0.2, fzn2smt was able to solve more
instances than Gecode, whereas in the disjunction ratio this happens when it was above
0.4. In conclusion, we can affirm that the performance of fzn2smt, and hence SMT solvers,
compared to FLATZINC solvers, is directly related to the Boolean structure of the problem.
This makes sense since in SMT solvers the search is controlled by the SAT solver.

WSimply

First of all, we developed a system, called Simply, for modelling CSPs and COPs with its
own high-level declarative language. In Simply, CSP instances were reformulated into SMT
instances and solved using SMT solvers. This way we had a complete control of the refor-
mulation from the high-level language into SMT. Since most SMT solvers did not support
optimization, we implemented a binary search algorithm for solving COPs. We compared
Simply, using Yices 2 as SMT solver, with several FLATZINC solvers on 208 instances from 18
problems, taken from the MINIZINC distribution and properly encoded in Simply language.
Simply was the solver that solved more instances in total. However, it only was the best
(solved more instances with less time) in 3 problems. In contrast, Gecode solved fewer in-
stances but it was the best in 8 problems. Finally, we conducted a comparison of both tools,
Simply with fzn2smt, on the same 18 problems. This comparison is interesting because it
might give us an idea of which reformulation into SMT is better. On the one hand, fzn2smt
solved one instance more than Simply in 700 seconds less. On the other hand, Simply was
the best on 12 problems, whereas fzn2smt was the best only on 6 problems. Therefore, in
general, both tools have similar performance. However, in some problems, SMT instances
generated from the reformulation from MINIZINC into FLATZINC are solved faster than SMT
instances directly generated from the Simply language. Therefore, although Simply reformu-
lation into SMT is more natural, in some cases, the MINIZINC to FLATZINC reformulation is
useful for SMT. It may be interesting to add to Simply some of the preprocessing techniques
used during the MINIZINC reformulation into FLATZINC.

Then we extended Simply to deal with WCSPs, calling it WSimply. On the one hand,
the language was extended to allow the user to post soft constraints. On the other hand,
we implemented a solving module to solve WCSPs either by reformulating them into SMT
(optimization using SMT or WSMT), or by reformulating them into PB (PBO and WBO)
or by reformulating them into LP. It worth to remark that WSimply uses by default the
Yices 1 SMT solver through API, which allowed us to implement an incremental version of
the binary search algorithm and to implement an SMT version of the weighted MaxSAT
algorithm WMP1.
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We also extended the language by adding meta-constraints over the soft constraints.
WSimply was the first system that allowed the user to model intensional WCSPs and use
meta-constraints. Such meta-constraints provide the language a greater expressivity, allowing
the user, for instance, to define fairness between groups of soft constraints. In the experi-
mental results we first showed the usefulness of meta-constraints when modelling a variant
of the BACP (called SBACP) and the NRP. Then we compared the performance of WSimply
using PB solvers (WSimply (PB)) with WSimply using SMT (WSimply (SMT)) on the same
two problems. WSimply (PB) showed slightly better results in the SBACP. In the NRP, the
performance, completely depended on the PB solver used, where WSimply +SCIP was clearly
the best solving approach.

We also added to WSimply (SMT) a new incremental optimization algorithm for solving
WCSPs. The new method consists in using SAT clauses to represent the bound to the
objective function instead of using an arithmetic expression. The idea of the new method was
to represent the bound to the objective function using a BDD that is then used to generate
the SAT clauses. The novelty of the method was to use a shared BDD to represent the all
bounds to the objective function used during the search.

In the experimental results we studied the impact of using shared BDDs. On the one
hand, we considerably reduced the BDD construction time thanks to the node reuse. We got
an average of 80% of node reuse when the search process was nearly at the halfway. On the
other hand, we were also reusing the previously generated SAT clauses, keeping more learning
from the previous iterations and hence reducing the solving times. One last advantage shown
in the experiments was that representing the bounds by SAT clauses instead of using an
arithmetic expression had a direct benefit to the SAT solver search. This may be because the
SAT solver directly knowns if the bound constraint is satisfied or not, instead of having to
ask it to the theory solver when it has a partial assignment.

In order to see the performance of the SBDD method we made two comparisons on
six WCSPs. The first comparison was with the other WSimply (SMT) methods, and the
second one with state-of-the-art WCSP, COP and LP solvers. Clearly the new SBDD method
outperformed the previous WSimply solving methods. In fact SBDD had the best results on
almost all the problems. In the comparison with state-of-the-art WCSP, COP and LP solvers,
the new SBDD method alternate with CPLEX on having the best results.

Finally, we defined an MDD method for linear integer constraints, which is a generalization
of the BDD method for PB constraints. In addition, we presented an special case of objective
functions where we can use what we call weighted MDDs. We find this type of objective
functions in the NRP. In the experimental results on using the WMDD method for the NRP
we showed that the new shared WMDD method clearly outperformed the WSimply core-based
method, which was the only WSimply method that was able to solve some instances of the
NRP. Although we could not solve any instance using the SBDD method, we compared the
size of the shared BDDs with the size of the shared WMDDs. In median, the size of the final
shared WMDD was 7.7 times smaller than the size of the final shared BDDs. Which means,
that having more branches at each node is enhancing the node reuse in the lower layers.

Modelling problems

We also showed that SMT can be competitive for specific problems. First of all we presented
the rcp2smt tool to solve the RCPSP. We showed that it was competitive with the state-of-
the-art solvers of this problem. rcp2smt is an ad hoc tool that reads RCPSP instances and
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solves them using Yices 1 SMT solver through API. We implemented several preprocessing
steps and adapted the three encodings for SMT. It worth to remark, that the preprocessing
steps significantly improved the performance of the tool solving the problem, specially for the
Time encoding since they allowed us to considerably reduce the number of constraints and
variables.

Another problem that we solved using SMT is the scheduling of B2B meetings. In this
case we used WSimply to model the problem, and we solved it by reformulating it into SMT,
PB and LP. We compared the performance of WSimply with some FLATZINC solvers. The
experimental results showed that clasp (which is a PB solver) was specially good on solving
the small instances, whereas WSimply with SBDDs was better on the bigger ones.

Finally, we presented four anomalies found in the behaviour of SMT solvers (using the
QF LIA logic) when modelling the finite domains using SMT and solving the PRP. To explain
them we contacted with the SMT solver developers. Although, at the end, three of four
anomalies may had been caused by a bug, it seems that the behaviour appearing in our
experiments could also be normal depending on the configuration of the solver. What is
clear, is that SMT solvers are very complicated tools and, although we can get very good
results using them as black boxes, it would be better to work closer to SMT solver developers
to achieve better results on specific problems.

11.2 Future Work

Next we present some of the possible steps to follow from this thesis.

We believe that there is much room for improvement in solving CSPs with SMT, although
we have had very good results using SMT solvers as black boxes. For instance, as pointed out
by de Moura in [dM11], the efficiency of a solver is strongly dependent on its predefined strate-
gies. Hence changing these heuristics could dramatically affect the SMT solver performance
in solving CSPs. In addition, we think that developing theory solvers for global constraints
is also a promising research line. In fact, there exist already some promising results in this
direction, for instance, for the alldifferent theory [BM10].

We think that there are still several things that we can do to improve our WSimply tool.
First of all, we think that the reformulation from WSimply language into SMT might be
improved. We can find some clue to do this by analysing the SMT formula resulting from the
reformulation of fzn2smt on the six problems where it has had better results than WSimply.

We also want to use meta-constraints in more problems and guarantee the support of
all meta-constraints in all the reformulations. In addition, we think that finding new meta-
constraints is also an interesting goal to increase the expressivity of the language.

Another possible improvement may be to reformulate the constraints using other theories
and logics for the SMT solvers, since at the moment WSimply only works with the QF LIA
logic. This change could simplify another extension of WSimply we have in mind, that is to
allow non lineal weights in the soft constraints, which could be done, for instance, by using
non linear arithmetic theories.

Concerning the new BDD-based methods, we want to use them to solve more WCSPs and
COPs. We are also interested in finding a variable ordering that maximizes the node reuse
through iterations, although it is known that the problem of finding the optimal variable
ordering in order to generate a minimal BDD is NP-hard. We also want to compare them
with the ones recently proposed in [AS14], or even it could be interesting to see if we can
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find better results by merging both methods. Another interesting thing is to find other places
where we can use BDD-based encodings, or even find other special cases of constraints, either
in objective functions or in normal constraints, where we can apply better techniques like
WMDD presented for the NRP. For instance, we are planning to use in the rcp2smt tool the
BDD version of the at-most-k implemented inside WSimply.

Finally, since we have obtained very good results using SMT solvers in scheduling prob-
lems, we also plan to deal with other variants of such type of problems.
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[ABP+11a] Carlos Ansótegui, Miquel Bofill, Miquel Palah́ı, Josep Suy, and Mateu Vil-
laret, Satisfiability Modulo Theories: An Efficient Approach for the Resource-
Constrained Project Scheduling Problem, Proceedings of the 9th Symposium on
Abstraction, Reformulation, and Approximation (SARA), 2011, pp. 2–9.
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[ES06] Niklas Eén and Niklas Sörensson, Translating Pseudo-Boolean Constraints into
SAT, Journal on Satisfiability, Boolean Modeling and Computation (JSAT) 2
(2006), no. 1-4, 1–26.



BIBLIOGRAPHY 171

[FM06] Zhaohui Fu and Sharad Malik, On Solving the Partial MAX-SAT Problem,
Proceedings of the 9th International Conference on Theory and Applications of
Satisfiability Testing (SAT), LNCS, vol. 4121, 2006, pp. 252–265.

[FP01] Alan M. Frisch and Timothy J. Peugniez, Solving Non-Boolean Satisfiability
Problems with Stochastic Local Search, Proceedings of the 17th International
Joint Conference on Artificial Intelligence (IJCAI), 2001, pp. 282–290.

[FP14] Alan M. Frisch and Miquel Palah́ı, Anomalies in smt solving, difficulties in mod-
elling combinatorial problems, Proceedings of the 13th International Workshop
on Constraint Modelling and Reformulation (ModRef), 2014, pp. 97–110.

[Fre95] Jon William Freeman, Improvements to propositional satisfiability search algo-
rithms, Ph.D. thesis, University of Pennsylvania, 1995, UMI Order No. GAX95-
32175.

[FS09] Thibaut Feydy and Peter J. Stuckey, Lazy Clause Generation Reengineered, 15th
International Conference on Principles and Practice of Constraint Programming
(CP), LNCS, vol. 5732, 2009, pp. 352–366.

[G1210] Minizinc + Flatzinc, http://www.g12.csse.unimelb.edu.au/minizinc/, 2010.

[Gas79] J. Gaschnig, Performance Measurement and Analysis of Certain Search Algo-
rithms, Ph.D. thesis, Carnegie-Mellon University, 1979.

[GGSS13] Martin Gebser, Thomas Glase, Orkunt Sabuncu, and Torsten Schaub, Match-
making with Answer Set Programming, Proceedings of the 12th International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR),
LNCS, vol. 8148, 2013, pp. 342–347.

[GKNS07] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub,
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