
Scalable Community
Detection for Social Networks

Arnau Prat Pérez

PhD Thesis in Computer Architecture
by the Universitat Politècnica de Catalunya

Advisor: Josep Llúıs Larriba Pey
Co-Advisor: David Doḿınguez Sal

Barcelona, Catalonia 2015

Acknowledgements

I would like to specially thank to all the people that has supported me in
achieving this enormous goal, specially my parents Toni and Elena for all
the love, education and guidance they have given to me since I was born,
with out them this achievement would have been impossible. To my brother
Adrià, for all the good moments we have enjoyed together, and for always
being a reference for me. To my girlfriend Raquel for bringing such amount
of happiness and joy to my live. To my grandmother Montserrat, but also
grandparents Josep and Joan, and grandmother Ramoneta, who are no longer
with us. Special thanks to my uncle Ventura and Manel and my aunts Ester
and Contxita, and my cousins Xell, Judit, Joan and Eva.

I would also like to thank all my friends, specially Joan, Xavi M., Xavi A.,
Fran, Bruno i Mireia, Vı́ctor, David and Jessica, Andreas, to all my online
friends with whom I have played an endless amount of hours, specially Javi,
Adrián, David, Álvaro, Dario, Jesus and Ferran. Also thanks to all the present
and prior members of DAMA-UPC and Sparsity, specially Mike, Xavi S., Cesc,
Dámaris, Norbert, V́ıctor M., Ariel, Mathew, Jordi, Carlos, Ricard and Jordi
Nin.

I would also like to thank my advisors Larri and David D. for their unvaluable
guidance during all the thesis, Josep Maria Brunat for its contributions on the
mathematical proofs, as well as Pedro, Andreas and Panayiotis for their warm
welcome during my stay in Cyprus and their key contributions and support to
my work about triangle counting. I would also thank all the people from the
LDBC team, specially Alex, Andrey, Duc, Moritz, Peter and Orri, for all the
things I can learn from them everyday.

iv

Finally, I would also thank Generalitat de Catalunya for their SGR-890 grant
as well as the Ministerio de Ciencia y Tecnologia for the various grants given
to DAMA-UPC during my thesis, which were key for its development. Also
to Oracle Labs for they financial support to many of the projects related to
my work, as well as the European Comission for their funds to the LDBC,
Tetracom and HiPEAC projects.

Contents

1 Introduction 1

1.1 Contributions . 7

2 Related Work 9

2.1 Metric based community detection 12

2.2 Algorithmic community detection 17

2.3 Parallel and distributed community detection 19

3 Weighted Community Clustering 21

3.1 Domain specific community detection 21

3.2 Problem Definition . 27

3.3 The Weighted Community Clustering 28

3.4 Formal analysis of WCC . 32

4 Scalable Community Detection 47

4.1 Heuristic . 52

5 Experiments 57

v

vi

5.1 WCCs quality . 58

5.2 SCD results quality . 63

5.3 Performance, scalability and memory consumption of SCD . . . 65

6 Ground-truth vs Synthetic Communities 71

6.1 Experimental Setup . 73

6.2 Results Discussion . 73

7 Triangle counting in future many-core micro-architectures 83

7.1 The Intel SCC . 84

7.2 Producer consumer implementation of triangle counting 84

7.3 Experiments . 86

8 Conclusions and Future Work 91

8.1 Future Work . 93

9 Appendix 95

9.1 Proof of Proposition 1 . 95

9.2 Proof of Proposition 2 . 96

9.3 Proof of Theorem 1 . 96

9.4 Proof of Theorem 2 . 97

9.5 Proof of Theorem 3 . 98

9.6 Proof of Theorem 4 . 100

9.7 Proof of Theorem 5 . 104

9.8 Proof of Theorem 6 . 104

vii

9.9 Proof of Theorem 7 . 105

9.10 Proof of Theorem 8 . 105

9.11 Distributions of Statistical Indicators 109

List of Figures

2.1 A classification of the vertices of a graph into communities . . . 10

2.2 A graph partitioned into two groups of size ten. 10

2.3 Three overlapping communities that overlap in a region. 11

3.1 A community formed by five vertices, and the statistics of each
vertex. 30

3.2 Examples of communities from real graphs, sorted by WCCs. . 31

3.3 Example of the sensitivity of WCC against triangles 33

3.4 Consequences of the internal structure on the WCC 34

3.5 Example of the behavior of WCC against bridges 35

3.6 Example of WCC against vertex cuts 36

3.7 Examples showing the linear community cohesion of WCC . . 38

3.8 Empirical evaluation of Property 2. 39

3.9 Transition point for WCC and different values of pin and pout 41

3.10 Detectability of the proposed algorithm for the stochastic block
model Graphs of different sizes with different configuration
parameters (pin and pout). The closer to white is, the better
the NMI between the detected partition and that expected by
the model. The closer to black, the more different. 43

ix

x

3.11 Accuracy of SCD to detect a single community (pout = 0) with
a uniform vs binomial degree distribution, for different expected
values of pin. 44

3.12 Accuracy of SCD to detect two communities with a uniform
degree distribution with density pin = 0.5, and a uniform vs
binomial out degree distribution, for different expected values
of pout. 45

4.1 Model used for estimating the WCCI 53

5.1 Statistics of communities from real world networks in 20 groups
sorted by WCCs. The x-axis represents the 5% percentile
groups showing that with the largest WCC on the left and that
with the smallest WCC on the right. The y-axis represents the
value achieved for each of the metrics shown in the plots. . . . 61

5.2 F1Score. 63

5.3 NMI. 64

5.4 WCC. 65

5.5 Execution times of the different algorithms single threaded. . . 66

5.6 SCD normalized execution time with different number of threads. 67

5.7 Execution time with eight threads vs number of edges. 68

6.1 Distribution of the statistical indicators for the Livejournal graph. 74

6.2 Spearman rank correlation coefficient of the distributions be-
tween the different communities and structural indicators. . . . 75

6.3 Clustering coefficient distribution of real graphs. 77

6.4 Conductance distribution of real graphs. 78

6.5 Distribution of the indicators for the LDBC-DG graph. 79

6.6 Distribution of the indicators for the LFR3 graph. 82

xi

7.1 (a) Scalability using the different P/C strategies. (b) Scalability
of the Task&DataParallel strategy for different assignments of
cores to tasks. 88

9.1 The best partition found for different configurations of pin, pout
and n. All possible configurations of Ps have been tested . . . 103

9.2 Distribution of the statistical indicators for the Amazon graph. 109

9.3 Distribution of the statistical indicators for the Dblp graph. . . 110

9.4 Distribution of the statistical indicators for the Youtube graph. 111

9.5 Distribution of the statistical indicators for the LFR1 graph. . 112

9.6 Distribution of the statistical indicators for the LFR2 graph. . 113

9.7 Distribution of the statistical indicators for the LFR4 graph. . 114

9.8 Distribution of the statistical indicators for the LFR5 graph. . 115

List of Tables

5.1 Real-world graphs with ground truth data. 58

5.2 SCD Memory consumption in MB. 69

xiii

Chapter 1
Introduction

Many real world systems and problems can be intuitively modeleded as graphs
(or networks). A graph representation simplifies their analysis, allowing to
better understand how the different entities involved in the system interact
with each other. The list of systems that can be modeled as a graph is endless:
social networks, where vertices represent persons and edges connect friends;
the Internet, where vertices represent web sites and edges correspond to the
url links connecting one page with another; router networks, where vertices
represent routers and edges their physical connections; or protein-protein
interaction networks, where vertices represent proteins and edges connect
those with similar metabolic functions, just to cite a few of them.

One characteristic commonly observed in real graphs is that they are struc-
turally organized into the so called communities or clusters [16,31,43]. Com-
munities are groups of entities more densely connected among them than with
other vertices not pertaining to the community, and emerge naturally as a
consequence of the dynamics that drive the formation of the network. For
instance, in a social network, a community might contain people with similar
interests or people who work for the same company, as they have a higher
probability to become friends than being connected with people not having
anything in common.

The identification of communities based on the underlying structure of the
network has become a hot research topic during the last decade because of the
amount of applications. On the one hand, community detection is a tool that
helps to better understand how complex networks are structured, which is

1

2

fundamental for the study of, for example, how epidemics spread and how to
control them [59]. Being able to identify those persons connecting communities
can be of high importance to control the spread of a disease. Also, persons
within a community have a larger probability to be infected if one of them
already is. Being able to effectively detect these persons and isolate them is
also crucial to apply preventive measures. Similarly, in information networks
communities help us to understand which members are more influential and
can potentially control the information that others in the same community can
access. The weak ties theory [18] states that the few links between members of
different communities are more important for the spread of information than
the internal links in a community. Entities connected by weak ties have a high
control over what information is transmitted, and the presence of such links
may indicate a weak structural point in a system such as a computer network.

On the other hand, detecting communities allows inferring hidden information
from the network’s structure. Missing edges between subjects belonging to the
same community indicate potentially similar entities willing to be connected in
the near future (link prediction). These have applications in recommendation
systems (e.g. in social networks or product co-purchasing networks) [62], for
targeting marketing campaigns, for finding proteins with similar metabolic
functions in a protein-protein interaction network [9] or to identify spam in
email and web networks [8, 34]. Finally, communities can be used to ease the
visualization of large networks in data exploration tools, by summarizing the
structure of the network and reducing the complexity of its representation [12].

The amount of literature about community detection is huge. Most of the
existing work aims at finding what are known as disjoint communities, that is,
communities which do not overlap (do not share vertices). More concretely, the
most widely accepted metric to detect disjoint communities is Modularity [37].
Modularity measures how relevant is the internal edge density of a set of
vertices compared to that observed in a random graph with the same degree
sequence (the null model). Due to its popularity, many algorithms based
on its maximization have been proposed following different strategies, like
greedy techniques [7], spectral theory [38], simulated annealing [19] or extremal
optimization [13].

However, it has been shown that modularity has several problems. First,
modularity has a resolution limit, meaning that it is not able to discern

3

communities smaller than a certain size, a size that depends on the total
size of the network. This means that the larger the graph, the less effective
modularity is [16]. Second, modularity has a paradoxical behavior, in the
sense that it is easier for it to detect communities which are worsely defined
than those that are better defined. Finally, maximizing modularity can lead
to sets of vertices without an appreciable community structure [6]. Therefore,
even though modularity works well under some circumstances, under other
circumstances it provides undesirable results.

Besides those methods based on modularity maximization, we find in the
literature many other approaches. Some of them are those based on performing
random walks. The rationale is that when performing a random walk, the
probability of moving to a member of the same community is larger than
moving to a different community. Walktrap [45] and Infomap [58] are examples
of algorithms that fall into this category.

Finally, another popular family of algorithms, with an increasing amount of
popularity due to their simplicity and scalability, are those based on label
propagation [54]. In label propagation, a unique label is initially assigned
to each vertex of the graph. By means of an iterative process, each vertex
acquires the label most seen in its neighbors, until the process converges where
no vertex changes its label. The problem with these approaches is that they
are affected by label epidemics, meaning that some labels plague the network
leading to very large and meaningless communities.

In general, existing community detection algorithms suffer from several prob-
lems: First, they are typically tailored after the informal definition of commu-
nities (sets of vertices more internally connected than externally), taking edges
as sets but ignoring the structures that form the community either internally or
externally. These algorithms and metrics aim at being generic, but ignore what
characterize the communities of a given domain. As a consequence, existing
algorithms fail to correctly capture the notion of a community under certain
circumstances (for instance, when the graph is large for the case of modularity),
and end up finding groups of vertices with a meaningless community structure.
Second, existing work is not designed with parallelism in mind to perform well
on current multi-core architectures, hindering their possibilities to scale to
larger graphs.

4

In this thesis, we propose a new methodology for community detection design
called domain specific community detection. This consists of defining a set
of structural and behavioral properties any community detection metric or
algorithm for a given domain should fulfill. On the one hand, structural
properties are those that define how the the structural characteristics those
communities found by an algorithm or those best ranked by a metric, should
look like. That is, what internal and external structures communities should
contain and form in order to be considered communities. On the other
hand, behavioral properties are those properties that specify how a metric or
algorithm should behave under different circumstances. For instance, how the
metric/algorithm deals with graphs of different sizes, or whether it limits or
not the growth of the communities.

In our particular case, we focus on community detection for the specific domain
of social networks. From an analysis of the problems and drawbacks of existing
metrics and algorithms when it comes to properly detect the communities in
a social network, we identify a set of three structural properties we think a
community detection metric for social networks should fulfill:

• Internal Structure Sensitive: The quality of a community should not
depend only on the amount of internal edges but how these are internally
structured, forming structures relevant for the application domain.

• Bridge Resistant: A good community should never contain a bridge,
as this is clearly a weak point in the community structure.

• Cut Vertex Resistant: Similarly, a community detection metric for
social networks should be resistant to containing vertex cuts.

Similarly, we identify three behavioral properties we think any community
detection metric for social networks should fulfill:

• Scale Independent: A community detection metric should be scale
independent, that is, it should be robust and accurate regardless of the
size of the graph.

• Linear Community Cohesion: The amount of connections between
a vertex in a community and the other vertices of the same community
should scale linearly with the size of the community.

5

• Adaptive: A community detection metric for social networks should
adapt to the heterogeneous nature of the graph, and be able to identify
relevant regions with an appreciable community structure compared to
their surroundings. Thus, it should consider both the internal and the
external connectivity of the community.

Based on the aforementioned properties, we design a new community metric
called Weighted Community Clustering(WCC) aimed at finding communities
in social network like graphs. WCC is based on taking the triangle as the basic
motif that indicates the presence of an appreciable structure within vertices in
the graph. Triangles emerge naturally in social networks due to the dynamics
of link formation, which are influenced by the Homophily principle [33], which
states that similar people have a higher probability to be connected. We
formally prove that maximizing WCC fulfills the properties desired for a
community detection metric for social networks. Moreover, as a side outcome
of our formal analysis, we theoretically find the detectability threshold (the
point at whichWCC is able to discern the communities of a graph), giving more
insight to the actual behavior of WCC, and we analytically show that WCC
does not suffer from the so called community detection paradox. Finally,
we experimentally show that communities with good WCC exhibit good
characteristics using a set of statistical indicators in an extensive experimental
analysis using real graphs.

We also propose Scalable Community Detection(SCD), a community detection
algorithm based on WCC maximization, designed to scale on SMP machines.
We show that SCD achieves the best quality among all the existing algorithms
in the state of the art, when it comes to find communities in real social
network like graphs with ground truth communities created from the network’s
metadata. Moreover, we also show that SCD achieves close to linear scalability
on SMP machines, becoming the one of the fastest community detection
algorithm developed so far, and being the fastest one when using all the cores
in a SMP machine. In practice, we are able to process the Friendster graph,
with almost 2 billion edges and more than 100 million vertices, in about 7
seven hours with an unprecedented quality using a commodity server with 8
cores.

In order to better understand the characteristics of ground truth communities,
and how these compare to the traditional community definition, we performed

6

a study of the distributions of the ground truth communities using several
structural indicators. We observe that ground truth communities are far from
the traditional community concept, not being isolated from the rest of the
graph and not showing a so prominent internal edge density. However, we also
observe that structures such as the triangle are considerably present in those
ground truth communities. These results suggest that more complex structures
such as the triangle, are important to discern the strong relations than the
weak ones. We finally compare the distributions observed in ground truth
communities to those output by synthetic graph generators, showing that some
of the most widely used synthetic graph generators for community detection
benchmarking generate communities significantly different from those observed
in reality.

Finally, we have studied the problem of triangle counting in a modern architec-
ture such as the Intel Single-chip Cloud Computer [32]. The interconnection
network is one of the bottlenecks that limits the scalability of many-core
processors. As such, computer architects are thinking of new architectures
with simpler cache hierarchies with incoherent caches that simplify the design
of such processors. As a downside, this leads to more complex programs and
more responsibility to the programmer when creating correct software. In our
study we have revealed that the Producer-Consumer programming model is a
suitable model for architectures with non-coherent caches and on-chip memory
buffers, able to dynamically adapt to the load of the application and to get
the most out of the available resources of the machine. We have also shown
that modern social network applications such as triangle counting, which are
memory bound and exhibit very non-local memory accesses, can greatly bene-
fit from such architectures when implemented using the Producer-Consumer
programming model.

The rest of this document is structured as follows. In Chapter 2, we introduce
the background and related work in community detection. In Chapter 3,
we describe the design of WCC and in Chapter 4, we introduce SCD. In
Chapter 5, we show the experimental results of our evaluation and in Chapter 6
we introduce a study of the real community distributions. In Chapter 7, we
show our study on the implementation of triangle counting on an experimental
many-core architecture and finally, in Chapter 8, we conclude the work and
give some guidelines for future research.

7

1.1 Contributions

In this thesis we make the following contributions:

• We have proposed a new domain specific community detection design
methodology.

• We have proposed a novel community detection metric (WCC) based
on triangle counting (CIKM 2012, TKDD).

• We have introduced a set of community detection metric properties we
think should be fulfilled by any community detection metric for social
networks (CIKM 2012, TKDD).

• We have experimentally evaluated WCC and compared different state of
the art algorithms based on it. We show that WCC is able to correctly
rank communities robustly, something not done by existing metrics like
Modularity or Conductance (CIKM 2012, TKDD).

• We have introduced the concepts of structural isolation and structural
intraconnectivity and overall, presented a novel methodology to design
community detection metrics based on the notion of structure (TKDD).

• We have performed an extensive Detectability analysis of WCC, giving
a better insight of how does WCC behaves, and also showing that it is
not affected by the so called community detection paradox (TKDD).

• We have proposed Scalable Community Detection (SCD) for SMP ma-
chines, which is an algorithm based on WCC. The algorithm has been
designed with parallelism in mind, to take advantage of the resources of
current architectures (WWW 2014, TKDD).

• We have evaluated the performance of SCD and compared it to the most
popular state of the art algorithms, showing that SCD is able to scale to
billion edge graphs, and outperforms current state of the art methods
both in terms of quality and execution time (WWW 2014, TKDD).

• We have analyzed the structure of ground truth communities found in
several real graphs and shown that they are not so well defined and

8

isolated as one would expect, but at the same time have a large number
of triangles with a small number of bridges (GRADES 2014).

• We have compared the community structure of synthetically generated
graphs that output a community structure, the LDBC Datagen and LFR
graph generators, to real graphs with ground truth communities. We
have shown that the LDBC Datagen graph generator is able to produce
graphs that better reproduce the characteristics of those communities
found in real graphs. (GRADES 2014).

• We have studied the viability of the Producer-Consumer model on future
many-core architectures without coherent caches, using the problem of
triangle counting (ARCS 2013).

Chapter 2
Related Work

Community detection is a broad topic that has attracted the interest of many
researchers over the last decade because of its applications in diverse domains
such as biology, epidemics, social network analysis, marketing, recommendation
systems etc., to just cite a few of them. Due to its complexity and the lack
of a strict formalism of what a community is, the topic is subject to many
interpretations and subtleties. As such, we start this section by clarifying some
concepts to better delimit the spectrum of the problem covered by this thesis.
Then, we make a review of the most widely used metrics and algorithms for
community detection, to give the reader a broad view of the dimension of the
topic. For a more comprehensive and detailed state of the art review, please
refer to the following surveys [16,31,43].

Communities are informally defined as subsets of vertices of a graph with more
internal connections than connections with vertices from other communities,
and this is the definition most existing metrics are based on. Most of the work
on community detection has traditionally focused on the disjoint community
detection problem. The problem consists in classifying the vertices of a graph
into disjoint cohesive sets, that is, each vertex can belong to just one community.
Figure 2.1 shows a graph with three disjoint communities. Disjoint community
detection is similar to the more traditional graph partitioning problem, but
differs from the later in the fact that the number of communities and their
size are driven by the structure of the network itself instead of being passed
as a parameter by the user. Figure 2.2 shows the same graph of Figure 2.1
partitioned into two groups of size ten that minimize the cut, as in typical
graph partition algorithms

9

10

Figure 2.1: A classification of the vertices of a graph into communities

Figure 2.2: A graph partitioned into two groups of size ten.

Application wise, graph partitioning is mostly motivated by the necessity
of distributing data and load across the computing nodes of a distributed
system [22], while community detection is used in data mining [63], visualiza-
tion [12, 57] and knowledge discovery [20]. However, community detection has
also been used to obtain smarter ways to layout data in memory [46].

Besides disjoint communities, other types of communities exist that have
recently attracted the interest of the research community. One of these types
are overlapping communities, which are observed in many types of real networks
and applications where it is natural to think of entities that can belong to more
than one community. Figure 2 shows an example with three communities that
overlap on a set of vertices. In general, detecting overlapping communities
is a more complex problem than detecting disjoint communities. First, it is

11

Figure 2.3: Three overlapping communities that overlap in a region.

not clear what characterizes the overlap between a set of communities, and
which is the point when a set of overlapping communities ought to be merged
into a single and larger one. Some work about trying to better understand
what characterize the overlaps has been done by [65]. Second, the number
of possible covers (classifications of vertices into subsets in such a way that
can overlap) in a graph is much larger than the number of possible partitions,
thus making the problem more computationally expensive. Nevertheless, the
simpler disjoint community detection problem is still far from being solved
and existing solutions still suffer from many issues in order to securely move
to the more complex overlapping counterpart. Finally, there also exist other
types of communities such as 2-mode communities, that is, communities that
form bipartite subgraphs of two types of different entities [68].

Typically, most of the work on community detection is restricted to undirected
graphs without weights on the edges. However, for some problems it is
reasonable to think of links not to be equally strong, which is typically
represented as a weight between zero and one representing the strength of
the link (unweighted graphs can be seen as graphs where all edges have
a weight of one). As such, some approaches have included this notion of
strength [15]. Similarly, some researchers have worked on what they call fuzzy
communities [35]. In this context, the notion of belonging to a community or
not is not binary but a real value (weight) or probability between zero and one.
Finally, some researchers have worked on detecting communities in directed
networks [15].

12

In general, community detection methods can be can classified into two different
categories independently of the type of communities they find: those based on
finding graph partitions that maximize objective functions or metrics that tell
how good the partition into communities is, and those based on detecting the
communities as a result of running an algorithmic process. The problem with
algorithmic based community detection is that, in general, it is more difficult
to theoretically model the behavior of the algorithm and as a consequence, to
provide formal guarantees of the expected result. The work presented in this
thesis falls into the first category, and aims at detecting disjoint communities
in undirected graphs by maximizing the proposed metric called WCC.

2.1 Metric based community detection

Most of the existing work in community detection falls into this category.
Formally, given a graph G(V,E), the goal is to find a partition or classification
of vertices into subgroups P = {C1, . . . , Cn} such that for all pairs < i, j >,
Ci ∩ Cj = 0. Then, given an objective function f(P) which measures the
quality of a partition of a graph into communities, the goal is to find:

arg max
P

f(P),

that is, that partition into communities with the best quality. The amount of
variants of f found in the literature is vast, thus we cover the most relevant
approaches. Since most of the existing work in community detection defines
metrics at a community level instead of a partition level, to compute the
quality of a partition the average quality of all communities using the given
metric is typically reported. Therefore, unless contrarily stated, the default
way to combine in this thesis such community defined metrics will be using
the average. Finally, before introducing the different metrics, we start with
the definition of some terms:

• Let n = |V | be the number of vertices in a graph.

• Let m = |E| be the number of edges in a graph.

• Let Ci be the community of vertex i.

13

• Let ki be the degree of vertex i.

• Let kini be the degree of vertex i pointing to vertices in Ci.

• Let kouti be the degree of vertex i pointing to vertices outside Ci.

• Let Ks be the degree of community s.

• Let Kin
s be the internal degree of community s.

• Let Kout
s be the external degree of community s.

• Let Est be the edges between communities s and t.

• Let δ(Ci, Cj) be the Kronecker delta function (1 if and only if Ci = Cj ,
0 otherwise)

• Let A be the adjacency matrix of the graph.

2.1.1 Modularity

The most popular family of disjoint community detection algorithms is com-
posed by those based on maximizing the modularity metric [37]. Given a
partition, modularity measures how relevant is the internal edge density of the
subsets that composed the partition, compared to that observed in a random
graph with the same degree sequence (the null model). Modularity is defined
as follows:

Q =
1

2m

∑
ij

(Aij −
kikj
2m

)δ(Ci, Cj)

Due to its popularity, most of the existing community detection methods are
guided by modularity. One of the most widely used modularity maximiza-
tion algorithm is the Louvain method [7], which is based on constructing a
dendogram guided by modularity maximization. The algorithm starts with a
partition only containing communities with a single vertex and subsequently
merging them by generating a new graph made out of vertices representing
the communities from the previous step. Louvain does not only obtain good
results (i.e. is able to find partitions with a large modularity score), but it

14

is also very fast, being able to run on very large graphs. Modularity can be
also optimized by means of spectral based methods, more concretely, by using
the eigenvalues and eigenvectors of an special matrix called the modularity
matrix [38]. Using this matrix, one can find the bisection of the graph with the
best modularity. Then, by subsequently applying the procedure on each of the
bisections, one can find the partition with an optimal modularity. Other ap-
proaches to maximize modularity are those based on Simulated Annealing [19]
or Extremal Optimization [13], and in general many algorithmic methods use
modularity as their finishing criteria.

However, in [16], the authors show that modularity has a resolution limit.
Basically, this limit means that modularity cannot detect communities if these
are smaller than a certain threshold, which depends on the total size of the
network. Then,the larger the network, the larger the threshold and thus the
loss of resolution. If S and T are two communities inside a much larger network
of size M, then S and T will be detected if and only if:

Kin
s K

in
t > 2mEst. (2.1)

We see that condition 2.1 depends on the total number of edges of the network.
This means that as M increases, the larger the difference between internal
degrees of the S and T and the amount of edges connecting them needs to
be, reaching a point where even if S and T are two complete subgraphs with
a single edge connecting them, it is not a sufficient condition for them to be
detectable.

In order to overcome this limitation, several multi-resolution methods have been
proposed. These methods are based on tuning the importance or contribution of
the null model into the modularity formula, following different strategies [17,55].
However, these methods suffer from the fact that in order to detect the small
communities, the big ones are shattered into smaller subcommunities, even if
these are complete subgraphs (cliques). This means that these methods do
not completely solve the problem, as the community definition still depends
on the size of the network [64]. Altogether makes modularity a metric which is
not scale independent, that is, his behavior depends on the scale of the graph.
The scale independent property is discussed in more detail in Chapter 3.

15

Also, modularity is affected by the so called paradoxical behavior [52]. This
means that for modularity it is easier to identify communities when these are
not well defined than when these are very well defined. Finally, in [6] the
author shows that structures with a very low community like structure such as
trees, can have a very large modularity. These can make modularity a metric
that finds non structurally relevant communities for some applications. With
all these issues, even though modularity might work well in practice, it is not
a robust metric and under some circumstances it fails to identify capture the
communities.

2.1.2 Other community detection metrics

Besides modularity, we can find other metrics, which are classified depending
on whether they look at the internal connectivity of the community, the
external connectivity of the community or both.

Internal Connectivity: This category is formed by those metrics based on
looking at how the vertices of a community are connected internally. Here we
find metrics such as the average degree:

AverageDegree(S) =
1

|S|
·
∑
i∈S

ki,

the internal edge density, which is the ratio of the internal number of edges
divided by the total possible edges [53]:

EdgeDensity(S) =
Ks

|S| · (|S| − 1)
,

and the triangle participation ratio (TPR), which is the fraction of vertices in
the community that closes at least one triangle with two other vertices in the
community [65].

External Connectivity: This category is formed by metrics that only look
at the external connectivity of the community. Here, we find the cut ratio,

16

which is the the ratio between the actual number of edges pointing outside the
cluster and the total possible number of edges pointing outside the cluster [15]:

CutRatio(S) =
Kout
s

|S| · (|V | − |S|)
,

and the expansion, which is the ratio between the number of edges pointing
outside the cluster and the size of the cluster (the lower, the better) [53]:

Expansion(S) =
Kout
s

|S|
.

Internal/External connectivity: This type of metrics encompass those
functions that look both at the internal and the external connectivity of the
community. A very popular metric that falls into this category is Conduc-
tance [21]. Conductance measures how isolated from the rest of the graph is a
set of vertices, by counting the number of edges going outside a set over the
total edges of the set (the lower, the better). Given a community S, then the
conductance is measured as:

Conductance(S) =
Kout
s

Ks
.

Similarly, Flake ODF, which stands for Flake Out Degree Fraction, is the
average fraction of vertices in the community that have fewer edges pointing
inside than outside of the community (the lower, the better) [15]:

FlakeODF (S) =
|{x ∈ S : kinx) < koutx)}|

|S|
.

In general, looking at only the internal or the external connectivity of a
community is not a good idea, as only a partial view of the community is
taken into account. Finding communities is about finding structurally relevant
regions in a graph, and therefore, both internal and external connectivity
should be taken into account. Moreover, some of these metrics, like the
expansion, conductance or FlakeODF, suffers from a maximization problem.

17

In general, since these metrics have the form of a fraction where the numerator
measures the cut (number of edges going outside the community), all the graph
in a single community gives the maximum value. In a previous study [67],
the authors conclude that conductance and TPR are the two metrics that
better capture the notion of a real community. However, these metrics still
lack of formal guarantees when it comes to detect the communities in a social
network, as we will discuss in Chapter 3.

The WCC metric (proposed in this thesis), falls into the category of metrics
that take into account both for the internal and the external connectivity of
the vertices in a community, but it does it in such a way that overcomes the
observed limitations of existing proposals.

2.2 Algorithmic community detection

Algorithmic community detection consists of all those methods that detect
communities as a result of an algorithmic process. Some of the most repre-
sentative algorithms that fall into this category are those belonging to the
random walks family. The rationale of random walks is that since communities
are in general groups of vertices with a larger internal density than external,
when one performs a walk over a graph randomly, the probability of traversing
edges that connect vertices of the same community is larger than moving to
another community. One of the main exponents of this family of algorithms is
Walktrap [45]. Walktrap relies on the definition of a distance measure between
vertices based on performing random walks, in such a way that the larger the
number of random walks two vertices share, the closer the distance between
them. Then, vertices are clustered based on this distance measure. In the
original paper, the author construct a dendogram based on the distance mea-
sured, and the partition with the larger modularity is output. However, as the
original authors suggest, this method can use any other community detection
metric to construct the final partition, depending on the actual application.
For this reason, we have decided to put Walktrap into the algorithmic category.

Another very popular random walk-based algorithm is Infomap [58], which
is based on finding the most compressed codification to represent random
walks in memory. The codification, is based on a partition of the graph into
communities, in such a way that the more accurate this partition is, the smaller
the memory footprint of the codification of a set of random walks. Infomap

18

is currently one of the most popular algorithms in the literature, and it has
been shown that works very well using synthetically generated graphs of a few
hundreds of thousands of edges. However, no formal guarantees have been
given proving that it scales well to large graphs of millions of vertices, and as
we will see in Chapter 5, its performance and quality decays for large graphs.

The Label Propagation Algorithm (LPA) [54] stands as another algorithm
(and actually, family of algorithms nowadays) that has recently gained a lot of
popularity due to their simplicity and scalability. In label propagation, vertices
are initially assigned with a unique label. Then, by means of an iterative
process, each vertex changes its label to that most popular label out of those
own by its neighbors. The process continues until the process converges where
no vertex changes its label. One of the interesting characteristics of this method
that makes it different from other existing proposals, and therefore making it
worth to mention, is its performance. LPA suits very well the vertex centric
programming model of many scalable graph programming frameworks like
Pregel [30] or Giraph [3], and also graphic processing units (GPUs). However,
label propagation is not exempted to problems but suffers from well-known
issues such as “label epidemic”, where labels can “plague” the network leading
to very large and meaningless communities. This makes label propagation
unreliable as it does not guarantee a minimum quality of the communities
found.

2.2.1 Algorithms for overlapping communities

Although this is not the aim of this work, we think it is worth to mention some
of the most popular algorithms for detecting overlapping communities. One of
the most widely used and older methods to detect this type of communities is
the clique percolation method [11]. The clique percolation defines communities
as k-clique chains. A clique chain is defined as a group of k-cliques that overlap
on k-1 of their vertices. Since a clique can overlap with a clique chain on less
than k-1 vertices, overlaps between communities emerge naturally. Clique
percolation is the base method that form the community detection framework
used in biological networks CFinder [1].

Link clustering [2] is another popular overlapping community detection algo-
rithm, which instead of trying to cluster vertices, it tries to cluster edges. Given
two edges that share a vertex, the Jaccard coefficient of the adjacency lists

19

of the non shared vertices is computed. Given this measure, a dendogram of
edge relations is computed, placing those edges with a larger Jaccard measure
closer to the leaves. Then, the dendogram is cut at that level that maximize a
metric called partition density, and those edges under the same branch in the
dendogram are clustered together, forming a community. Since this methods
cluster edges, overlapping communities emerge naturally as a vertex can be
contained in multiple edges, which can belong to different communities.

In [41], the authors propose a novel community detection metric for overlapping
communities, based on a new operator they call the directed Laplacian. This
operator operates on a graph representation of the community solution space
(those possible communities that can exist), that is, a graph where each vertex
is a community and two vertices are connected if and only if their size differ
in just a single vertex (and the rest of vertices remain the same). Over this
graph they define an euclidean distance based metric, which is then optimized.

Finally, a recent work [66] has modeled communities as tiles in an adjacency
matrix. The novel observation is that these tiles, tend to be denser in the
parts that they overlap, in contrast with the common believe of overlapping
communities denser in the non overlapping part. Based on this observation, the
authors propose a graph generation model based on overlapping communities
called the Affiliation Graph Model (AGM). Based on this model, they propose
BigClam, an algorithm based on non-negative matrix factorization that looks
for the parameters of the model that explain an observed graph structure.
Since this method is build on top of well known parallel matrix computation
algorithms, they are able to scale up to graph of 100 millions of vertices without
a problem.

2.3 Parallel and distributed community detection

There is some work on parallel community detection for SMP machines, mostly
focused on parallel versions of known sequential community detection algo-
rithms. In [29], the authors propose a parallel version of the Louvain algorithm,
achieving an speedup of 16x on a machine with 32 threads. Similarly, in [56],
the authors propose an agglomerative modularity optimization algorithm for
the Cray XMT and Intel based ma- chines. The authors report that their
solution is able to analyze billion edge graphs (100 Million vertices, 3.3 Billion
edges) in 500 seconds. Finally, in [4] the authors propose RelaxMap, a parallel

20

version of Infomap based on relaxing con currency assumptions of the original
method, achieving a parallel efficiency of about 70%. The same authors pro-
posed in [5] a distributed version of Infomap. Finally, the label propagation
method described above fits very well the vertex centric computing model,
therefore it can be easily distributed using a graph programming distributed
framework.

Chapter 3
Weighted Community Clustering

In this chapter, we describe the Weighted Community Clustering (WCC)
[48,49], a novel community detection metric for social networks. We start by
discussing the limitations of existing metrics and algorithms when it comes
to discover the communities in social graphs, and argument that new metrics
need to be more domain specific to better exploit the particular characteristics
of each type of network. Out of the discussion, we derive a set of behavioral
and structural properties we think any socially oriented community detection
metric should fulfill. These properties define how the metric should behave, as
well as what type of structures the communities resulting from its maximization
should contain or avoid.

Next, we formalize the problem of community detection and reduce it to the
task of defining a function that measures the level of cohesion between a
vertex x and a set of vertices S. Based on this formalization, we define WCC
and back it up with an extensive formal analysis showing that it behaves
as expected when optimized, not suffering from the limitations observed in
existing approaches but fulfilling the desired properties.

3.1 Domain specific community detection

Traditionally, existing community detection metrics and algorithms have been
designed to be generic, built around the informal community definition that
defines communities as sets of vertices more densely connected internally than
externally. In other words, they assume that communities are an ubiquitous

21

22

concept whose characteristics do not depend on the domain of the network
analyzed. However, when we run existing community detection algorithms in
social networks, we observe limitations that affect the quality of the produced
results. For instance, modularity suffers from the well known resolution limit,
which makes communities undetectable as the size of the graph increases.
In the context of a social network, this is counter-intuitive, as the existence
of a community should be independent of the size of the graph, and just
depend on its local characteristics. In other words, a community metric for
social networks should be scale independent. Similarly, we see that existing
community detection metrics (e.g. modularity, conductance, etc.), take edges
as a set instead of looking for more complex yet domain specific structures. As
a consequence, they end up finding tree-like communities in social networks,
where people are loosely connected without a significantly relevant structure
among them. However, in a computer network, communities with a tree-like
structure make sense as this kind of network is structured in a more hierarchical
way. Therefore, a community detection metric ought to be sensitive to the
internal structure of the community instead of just counting edges, and the
particular notion of structure ought to be dependent on the actual domain of
the network.

From these observations, we see that the informal community definition is too
lax, leading to metrics with an undesired behavior. Thus, we think that we
need to extend the community definition and link it to the actual domain of
the applications where it is going to be used. With this objective in mind, we
define a set of generic community detection properties that any community
detection metric designed for social networks should fulfill. We classify them
into two main categories: structural and behavioral properties. On the one
hand, structural properties are those that refer to how structurally should or
should not the communities found by maximizing a given metric be. In this
category, we introduce, the internal structure, the bridges resistant and the cut
vertex resistant properties. On the other hand, behavioral properties are those
properties that specify how a metric should conceptually behave regardless of
the structure of the community. In this category we have scale independent,
linear community cohesion and adaptive properties. Properly defining these
properties is very useful for two main reasons:

23

1. They set up a framework to design a robust community detection metric
for social networks.

2. Provide the user with an insight into how the metric behaves, thus having
enough information to decide whether the metric is suited or not for its
application.

In the following sections we introduce these properties and argument why they
are required for a socially oriented community detection metric. For other
domains, these properties might be completely different.

3.1.1 Structural properties

3.1.1.1 Internal structure sensitive

One of the main characteristics of social networks and their communities is the
significant presence of transitive relationships (triangles) among three vertices
of the graph. The relevance of triangles in social networks has been confirmed
in previous studies [36,39,60,61] and models describing the growth of social
networks give triangle closing as a key factor of network evolution [27]. In
social networks, triangles emerge naturally as a consequence of the Homophily
principle [33], which states that similar people are more likely to be connected,
forming transitive relations among them, which also translates into networks
with a significantly larger clustering coefficient than that expected in a random
graph [36,39].

Therefore, how the edges in a community are structurally connecting their
vertices is important to determine whether these form a good community or
not. The particular notion of structure then, depends on the actual domain of
the network, which in the case of social networks one of such structures is the
triangle. Therefore, we define the property as follows:

”A community detection metric is sensitive to the internal structure,
if and only if it does not only take into account the number of inter-
nal/external edges, but also to how these connect vertices inside/outside
the community, forming relevant structures for the specific domain”

24

Typically, existing community metrics consider all the internal edges of a
community equally important without taking into account whether they form
structures or not. The reason is that many of the existing metrics are too
tightly adhered to the informal community definition, which attempts to be
generic and domain agnostic. This is the case of some of the most popular
metrics such as modularity or conductance.

3.1.1.2 Bridge resistant

The connections in real graphs are known not to be local, they can connect
distant vertices [28]. In a social network, people are typically connected to
people with similar characteristics (e.g. their work mates, people they know
from where they studied, family, people with similar interests, etc.), but also
and less frequently, with people who are dissimilar and that they have met due
to more sporadic interactions (i.e. random). A bridge is an edge that if it is
removed from the induced subgraph of the community, it creates two separate
connected components. A bridge is a very weak relation between two sets of
vertices that are unrelated, because it only affects one member of each subset
of vertices, and therefore, in a social network it clearly reveals two dissimilar
subsets connected by one of such random links. Therefore,

“A comunity detection metric is bridge resistant if and only if resulting
communities from its maximization never contain a bridge”

Most of the existing metrics like modularity or conductance are not bridge
resistant as they rank as good a community sets of vertices with a tree-like
structure, thus containing bridges. Actually, as a consequence of its resolution
limit, modularity is not bridge resistant, as pairs of two cliques in a chain of
cliques connected by a single edge (bridge) are identified as a community.

3.1.1.3 Cut vertex resistant

In a social network, it is common to find situations where a person belongs
to two or more different communities, such as that one formed by its football
friends and the other formed by its family. In this particular situation, there
is an overlap of two communities on that person. In the context of disjoint
communities, however, if the two communities are not related enough, then

25

they should be split and the person placed into one of them (the more important
one or relevant from the perspective of the person, as in the disjoint community
detection problem a vertex can only belong to a single community). Note
that it is not the aim of this work to consider the problem of overlapping
communities.

In such a situation, the person within the induced subgraph formed by the two
communities it belongs to, is what is known in graph theory a cut vertex. His
removal from the induced subgraph separates the two induced communities
into two (or more) connected components, in a similar way as bridges do. Cut
vertices are weak links in a community, because there are no edges between
the connected components the cut vertex is connecting. If the connected
components have a strong internal structure, then it is more natural to split
the induced subgraph into several communities. Therefore,

“A community detection metric is cut vertex resistant if and only if
resulting communities do contain a cut vertex”

3.1.2 Behavioral properties

3.1.2.1 Scale Independent

In a social network, the existence of a community (e.g. those persons interested
in a given topic) is independent whether the network is formed by one or
ten million people. Similarly, in a protein-protein interaction networks, the
proteins in a community of protein have a large probability to have similar
metabolic functions. Whether this is true or not, does not depend on whether
there are one or ten million different proteins in the world. Therefore, a
community detection metric or algorithm for social networks should work
well at any scale and should not degrade as the size of the analyzed network
increases. This means that the community definition should not depend on the
size of the network, but only on local information. Otherwise, clearly defined
communities would become undetectable as the size of the graph changes.
Therefore, we define the property as follows:

“A community detection metric is scale independent if and only if it does
not depend on the total size of the graph”

26

Most of the existing community detection work does not formally guarantee
to be scale independent. Actually, all those algorithms based on modularity
maximization, which form the bulk of the literature, suffer from the so called
resolution limit as explained in Chapter 2. This is because modularity com-
putation depends on the total number of edges in the graph, and different
alternatives aimed at solving this issue do not fix the problem entirely [64].

3.1.2.2 Linear community cohesion

In social networks, communities are formed by persons with a significant level
of cohesion among them. This means that, as long as the size of the community
increases, the number of connections between a person and its community has
to increase proportionally to maintain the level of cohesion of the community.
This simple restriction limits the community growth if there is not a significant
cohesion among its members. For this reason, we define the following property:

“A community detection metric has a linear community cohesion if and
only if the number of connections between a vertex and a community
grows linearly with the size of the community”

If it grew sublinearly, the larger the community, the easier it would be for a
person to join that community with respect to the size of that community. On
the other hand, if it grew faster than linear, the communities would have a
maximum possible size, since after a certain point, the number of necessary
links between a person and the rest of the community would be larger than
the possible number of links.

Existing metrics such as Conductance, Flake ODF, Cut ratio or Expansion,
do not fulfill this property. In these metrics, as long as the number of edges
between communities is reduced, the value of the metric improves, thus they
do not place any restriction on a minimum number of connections (just greater
than zero) between a vertex and a community. More concretely, in such metrics
a “hair” (a vertex connected to a community with a single edge) will always
be included in that community regardless of its size.

27

3.1.2.3 Adaptive

In a social network, different communities might have different degrees of
cohesion or structure, depending on the how tight is the relation between the
members of the community compared with other people not belonging to it.
This relation between internal and external connectivity is what determines
whether a set of vertices is a community or not. Finding communities is about
finding relevant regions in a graph, that is, sets of vertices whose structure
deviates significantly from what it is expected in a given part of the network.
This is what indicates that some relevant structure is there, and thus it is
worth to be analyzed in more detail. Thus, we define the property as follows:

“A community detection metric is adaptive if and only if it establishes a
relation between internal and external connectivity, and thus, adapts to
the context of the community in the graph”

Many existing community detection metrics (e.g. Edge Density, Cut Ratio
and Expansion) are defined in such a way that they just look at either the
internal or the external connectivity of a community, but not to both. In the
first case, metrics end up missing sets of vertices that although they do not
fulfill the internal criteria, they are so isolated from the rest of the graph that
should be detected as a community. On the second case, these metrics end up
missing groups of vertices that although they are not isolated enough to meet
the criteria, their internal community structure is so strong that they should
be considered a community as well.

3.2 Problem Definition

Given a graph G = (V,E), the problem of disjoint community detection
consists in classifying the |V | = n vertices of the graph into q1 non-empty
pairwise disjoint cohesive sets, Si for 1 ≤ i ≤ q. We call those q sets a partition
of V , i.e. P = {S1, . . . , Sq}, in such a way that S1 ∪ · · · ∪ Sq = V .

The criterion to measure the degree of cohesion of each set is formally obtained
by defining a metric, that is, a function fs, that assigns a real number to each

1We assume that q is a value determined by the nature of the graph rather than an
arbitrary value determined by the user.

28

subset Si of V such that 0 ≤ fs(Si) ≤ 1. A good/bad community is a set of
vertices S with a value of fs close to 1/0.

We define the cohesion fs(S) of a community S, as the average of fv(x, S)
for each vertex x ∈ S, which measures the level of cohesion of vertex x with
respect to the set S:

fs(S) =
1

|S|
∑
x∈S

fv(x, S). (3.1)

That is, the quality of a community, depends on how cohesive are the individual
vertices in the community with the community.

Similarly, we define the quality of a partition P by taking the weighted average
of the value of the function on the sets Si of the partition:

f(P) =
1

n

q∑
i=1

(|Si| · fs(Si)) . (3.2)

For a given graph and a given metric f in G, the goal is to obtain an optimal
partition, that is, a partition P such that f(P) takes a maximum value. We
call the communities in an optimal partition the optimal communities of the
graph. Therefore, following this formalization, the problem resides in properly
defining fv(x, S) in such a way we encompass the properties introduced in
Section 3.1.

3.3 The Weighted Community Clustering

The Weighted Community Clustering (WCC) is a community detection metric
aimed at detecting communities in social networks, and designed to fulfill the
properties discussed in Section 3.1. As such, WCC takes the triangle as the
basic indicator of the presence of structure in a graph, since triangles are an
structural indicator of the presence of a strong relation between three persons,
as explained in Section ??. Therefore, we consider two vertices of a graph to
be structurally connected if they share at least one triangle. In other words,
we take the presence of triangles to define the cohesion of x with respect to S,
WCCv(x, S), as our particular implementation of fv(x, S) (Equation 3.1).

29

Let t(x, S) be the number of triangles that vertex x closes with the vertices
in a set S and by vt(x, S) the number of vertices of S that form at least one
triangle with x. Then, :

WCCv(x, S) =



0 if t(x, V) = 0

t(x, S)

t(x, V)︸ ︷︷ ︸
isolation

· vt(x, V)

vt(x, V) + |S \ {x}| − vt(x, S)︸ ︷︷ ︸
intraconnectivity

if t(x, V) 6= 0.

(3.3)

Note that vt(x, V) + |S \ {x}| − vt(x, S) = 0 implies that S = {x} and
vt(x, V) = 0. Then, condition vt(x, V) + |S \ {x}| − vt(x, S) = 0 is included
in condition t(x, V) = 0.

Isolation: The left factor of WCCv(x, S) is the ratio of triangles that vertex
x closes with set S, as opposed to the number of triangles that x closes with
the whole graph. The left factor is maximized for a vertex x when S includes
all the vertices that form triangles with x. Note that since a pair of vertices
can build many triangles, the left term rewards the inclusion of the vertices
that build more triangles with x. This left factor represents what we call as
structural isolation, which measures how structurally isolated is a vertex from
the rest of the graph if put in community S.

Intraconnectivity: The right factor is the ratio between the number of
vertices in V that close at least one triangle with x, and the number of vertices
in V that close at least one triangle with x plus the number of those in S \ {x}
not closing any triangle with x and another vertex u ∈ S \{x}. The right term
is maximized for x when S contains only vertices that do form at least one
triangle with x and a third vertex u ∈ S. Similarly, the right factor represents
what we call as structural intraconnectivity, which measures how structurally
connected is a vertex x with the rest of vertices in S.

The two factors of WCCv(x, S) are finally combined with a multiplication
because we want to maximize both structural isolation and intraconnectivity.
If any of the two terms is zero, then the cohesion of the vertex with respect to

30

11 2

3

4

5

Vertex t(x, V) t(x, S) vt(x, V) vt(x, S) WCCv(x, S)

1 6 5 6 4 0.833
2 4 3 5 3 0.625
3 4 3 3 3 0.750
4 7 5 7 4 0.714
5 5 5 4 4 1.000

Figure 3.1: A community formed by five vertices, and the statistics of each
vertex.

the set is zero. If we combined them with a sum, then a vertex x closing a
single triangle with a set S, and being completely isolated from the rest of the
graph, could have a fairly large level of cohesion with the set, regardless of
the size of the set S, and therefore regardless of the structural itraconnection
of that vertex with the set. This would make the metric not to have a linear
community cohesion, and would be prone to bridges and cut vertexes. Also
note that neither the left nor the right factors depend on the size of the graph.
This is necessary for having a scale independent metric. Finally, analogously
to fs(S) in Equation 3.1, we denote the quality of a community as WCCs(S).

Figure 3.1 shows an example consisting of a community within a small graph.
The vertices of the community have been labeled with numbers from one to
five. Next to the graph, we show a table with the statistics of each vertex
in the community, including their WCCv(x, S). We see that vertex five has
a WCCv of one, since all the triangles it participates in are contained in S,
and it closes at least one triangle with each of the members of the community.
In other words, all those and only those vertices with whom vertex five is
structurally connected, are in S, meaning it is fully isolated from the rest of
the graph and intraconnected. On the other hand, vertex two is that with the
smallest WCCv out of all the vertices, as 25% of all of its triangles (one out
of four) are outside the community, thus reducing its isolation. Moreover, at
the same time, it does not close any triangle with vertex three, thus reducing
his intraconnectivity with S.

31

(a) 0.09048 (b) 0.14191 (c) 0.255457 (d) 0.251792

(e) 0.52118 (f) 0.65128 (g) 0.78072 (h) 0.92798

Figure 3.2: Examples of communities from real graphs, sorted by WCCs.

Finally, Figure 3.2 shows some examples of communities with different values of
WCCs, showing different levels of cohesion. These communities are extracted
at random from the set of communities found in the real graphs by algorithms
used in Chapter 5. The color of the vertices represents the percentage of
neighbors belonging to the community. The darker the vertex, the larger the
percentage of neighbors of the vertex that belong to the community, that
is, the larger the isolation of the vertex. On the other hand, the size of the
vertices represents the percentage of vertices of the community that are actual
neighbors of that vertex. The larger the size of the vertex, the more connected
the vertex is with the other vertices of the community, that is, the larger the
intraconnectivity. In other words, the color represents the isolation, while the
size represents the intraconnections. Thus, the better the community is, the
larger and darker are its vertices. We see then, that there is a correlation
between high WCCs values and sets with a more appreciable community
structure.

32

3.4 Formal analysis of WCC

In this section, we perform an extensive formal analysis of WCC, aiming at
giving the user a broader insight of its behavior, as well as proving that WCC
fulfills the properties introduced at the beginning of this chapter. We start
with an analysis of the basic behavior of WCC, followed by the structural
properties. Then, we turn our focus on proving that WCC fulfills the different
behavioral properties, starting with the lineal community cohesion, and then
performing a detectability analysis that allows us to show that WCC is scale
independent and adaptive. Altogether, we show that WCC is a robust and
reliable metric for social networks, from a theoretical perspective 2.

3.4.1 Basic behavior

We formally summarize the basic behavior of WCCv(x, S) as follows:

Proposition 1 Let G = (V,E) be a graph and ∅ 6= S ⊆ V . Then,

(i) 0 ≤WCCv(x, S) ≤ 1 for all x ∈ V .

(ii) WCCv(x, S) = 0 if and only if t(x, S) = 0.

(iii) WCCv(x, S) = 1 if and only if vt(x, V) = vt(x, S) = |S \ {x}| ≥ 2.

The value of WCCv(x, S) indicates the cohesion of vertex x with respect to S.
This value is a real number between 0 and 1 (Proposition 1 (i)). These two
extreme values are only observed in particular situations (Proposition 1 (ii-iii)).
On the one hand, for a given vertex x, in order to have some degree of cohesion
with a subset S, the vertex must at least form one triangle with two other
vertices in set S. If a vertex builds no triangle with the vertices in S, then
the cohesion of the vertex with respect to the set is zero. On the other hand,
value one is reached if and only if S includes exactly and only all the vertices
that close triangles with x. Furthermore, from the point of view of WCCv,

2All the proofs for the propositions and theorems of this section can be found in the
Appendix.

33

only those edges in E closing at least one triangle are relevant and influence
the cohesion of a vertex.

We infer three characteristics on WCCs(S) from Proposition 1 as follows.

Proposition 2 Let G = (V,E) be a graph and ∅ 6= S ⊆ V . Then,

(i) 0 ≤WCCs(S) ≤ 1.

(ii) WCCs(S) = 0 if and only if S has no triangles.

(iii) WCCs(S) = 1 if and only if S is a clique with vt(x, V) = vt(x, S) for
all x ∈ S.

The clique is the subgraph structure that best resembles the perfect community,
and thus, WCCs rates it with the largest value. On the other hand, if
the community has no triangles, its quality is the minimum possible. In
Figure 3.3(a-d), we show a community of five vertices with an increasing
number of internal triangles. The larger the density of triangles, the larger
the WCCs value for the community.

(a) 0 (b) 0.7 (c) 0.9 (d) 1

Figure 3.3: Example of the sensitivity of WCC against triangles

Finally, according to Equations 3.1 and 3.2, an optimal partition is such that,
for all vertices of the graph, function WCCv(x, S) is optimized.

3.4.2 Structural Properties of WCC

3.4.2.1 Internal structure sensitive

WCC is crafted to be sensitive to triangles, and as a consequence, to be
sensitive to the internal structure of the community. We verify this property

34

for WCC: the left factor in Equation 3.3 is the ratio between the number
of triangles that vertex x closes with the vertices in S and the number of
triangles that vertex x closes with the whole graph. Hence, this left factor is
affected by the number of triangles inside the community. On the other hand,
the right factor depends on the number of vertices that form triangles with
vertex x. Therefore, the distribution of triangles inside the community affects
the right factor.

Figure 3.4 shows two examples of communities with the same number of
vertices and edges, but distributed differently. While in Figure 3.4(a) we see
two cliques with only three edges connecting them, in Figure 3.4(b) we see
a more uniformly structured community closing more triangles. We see that
WCCs scores Figure 3.4(b) higher, since the community is more structurally
intraconnected, even though there are two cliques in Figure 3.4(a).

(a) 0.444 (b) 0.511

Figure 3.4: Consequences of the internal structure on the WCC

3.4.2.2 Bridge resistant

Optimal communities found by maximizing WCC never contain bridges. We
show this based on the following observation:

Theorem 1 Let S1 and S2 be two communities in a partition of graph G =
(V,E) such that:

(i) S1 and S2 are the set of vertices of two different connected components.

(ii) WCCs(S1) > 0.

Then, the following inequality holds:

WCC({S1, S2}) > WCC({S1 ∪ S2}).

35

When an edge does not close any triangle, it does not affect the computation of
WCC. A bridge does not close any triangle, hence, a bridge is never accounted
by WCC. Thus, sets of vertices connected by bridges are not merged into a
community because of Theorem 1. In Figure 3.5 (a-b), we show an example of
the application of Theorem 1. We see that having the two cliques separated is
better than considering a single community with a bridge, in terms of WCC.

(a) 0.444 (b) 1

Figure 3.5: Example of the behavior of WCC against bridges

3.4.2.3 Cut Vertex resistant

In Figure 3.6(a-c), we show two cliques (note that the clique is the highest
density graph structure) of size five sharing a vertex. Here, WCC is able to
separate the communities for this particular case because the left and right sets
of vertices have enough structural intraconnectivity and isolation to become
separate communities, assigning the cut vertex to one of them. We prove this
property for WCC for the case where communities have the highest possible
density, which is the clique:

Theorem 2 Let G = (V,E) be a graph of order n which consists of two
cliques Kr and Ks of orders r and s, respectively, that intersect in a vertex t.
Assume r ≥ s ≥ 4.

(i) If P1 = {Kr ∪Ks}, then

n ·WCC(P1) =
(r − 1)(r − 1)

r + s− 2
+

1

r + s− 2
+

(s− 1)(s− 1)

r + s− 2
; (3.4)

36

(a) 0.556 (b) 0.722 (c) 0.444

Figure 3.6: Example of WCC against vertex cuts

(ii) if P2 = {Kr, Ks \ {t}}, then

n ·WCC(P2) = (r − 1) +
(r − 1)(r − 2)

(r − 1)(r − 2) + (s− 1)(s− 2)
(3.5)

+
(s− 1)(s− 2)(s− 3)

(s− 1)(s− 2)
; (3.6)

(iii) if P3 = {Kr \ {t}, {t}, Ks \ {t}, then

n ·WCC(P3) =
(r − 1)(r − 2)(r − 3)

(r − 1)(r − 2)
+

(s− 1)(s− 2)(s− 3)

(s− 1)(s− 2)
; (3.7)

(iv) WCC(P3) ≤WCC(P2).

(v) max{WCC(P1),WCC(P2),WCC(P3)} = WCC(P2).

This theorem illustrates the fact that WCC avoids merging two very well
defined communities (such as two cliques) because of a single vertex. The
reason is that WCC is a metric that not only takes into account the vertices
that are connected and forms triangles, but also the vertices that do not. Thus,
if the triangles inside the community are not distributed evenly among all the
vertices then the quality of the community is penalized.

3.4.3 Behavioral Properties

3.4.3.1 Linear Community Cohesion

WCC is crafted to have a linear community cohesion by means of the following
theorem:

37

Theorem 3 Let G = (V,E) be a random graph of order r in which each edge
occurs independently with probability p and closes at least one triangle. Let
v 6∈ V be a vertex connected to and forming at least one triangle with d ≥ 2
vertices of V . Consider the two partitions P1 = {V ∪ {v}} and P2 = {V, {v}}.
Then,

(i) (r + 1)WCC(P1) = (r − 1)p+ 2dr−1.

(ii) (r + 1)WCC(P2) = (r − d)p+
d

r
· ((r − 1)p+ 1)(r − 1)(r − 2)p2

(r − 1)(r − 2)p2 + 2(d− 1)
.

(iii) For r large enough, WCC(P1) > WCC(P2) if and only if

d > rp
(√

p2 + 2p+ 9− (1 + p)
)
/4.

For example, in the particular case of the clique (where p = 1), it is necessary
to connect to roughly more than one third of the vertices to become a member
of the community.

Corollary 1 Let S be a clique of order r. Given a vertex v, there must exist at
least 0.37·r edges between v and S to hold WCC({S∪{v}}) > WCC({S, {v}}).

In Figure 3.7 we show an example of Theorem 3, where we represent four
groups of examples: a-b, c-d, e-g and g-h. The left graph of each group (a,c,e
and g), represents a partition with one single community, while the right graph
assumes a partition with two distinct communities formed by a single vertex
and a clique. We see that group a-b has a better WCC score for distinct
communities while group c-d for one community. Note that WCC gives a
better score for vertices connected to more than 0.37 vertices of a clique. The
same happens in examples e-f (four connections are less than 0.37 vertices),
and g-h (6 connections are more than 0.37 vertices). This example illustrates
the linear community cohesion of WCC, where the number of connections
required by a vertex to become part of a community, scales with its size.

We empirically validated the linearity property of WCC. We generated
instances of graphs formed by a vertex v and a community C, with a probability

38

(a) 0.810 (b) 0.831 (c) 0.857 (d) 0.786

(e) 0.897 (f) 0.907 (g) 0.923 (h) 0.885

Figure 3.7: Examples showing the linear community cohesion of WCC

pin for an edge to exist between two vertices of C, and a probability pout for an
edge to exist between v and a vertex of C. We generated two types of graphs:
one with a community of size 100, and another one with a community of size 200.
For each possible configuration of pin and pout (in steps of 0.01), we generated
100 instances of each type. Using the WCC based algorithm proposed in
Chapter 4, we tested for which configurations the resulting partition was
formed by a single community containing both the original community and
the vertex, and which did not. Figure 3.8(a) and (b) show the theoretical
threshold line of Theorem 3 for both sizes in dim white, and in grey scale the
results obtained by the algorithm. White means that the algorithm opted to
merge the communities into a single one for all the instances of that particular
configuration, while black means that a non merging configuration was always
returned. From the figure we can observe that the theoretical threshold is
empirically observed, becoming sharper as the size of the graph increases. The
black region at the bottom of Figure 3.8(b) becomes smaller as the graph grows
(as opposed to Figure 3.8(a)), and as predicted in Theorem 3, it disappears
for arbitrarily large graphs. For small graphs and small pin, the probability
for a vertex to exist without closing any triangle is large, and therefore the
community is shattered into smaller sub communities.

3.4.3.2 Detectability Analysis of WCC

Recent studies have revealed the difficulties of existing community detection
metrics, such as modularity, to detect communities if they are not well de-

39

0.0 0.2 0.4 0.6 0.8 1.0

pout

0.0

0.2

0.4

0.6

0.8

1.0

p
in

n=100

0.0 0.2 0.4 0.6 0.8 1.0

pout

0.0

0.2

0.4

0.6

0.8

1.0

p
in

n=200

(a) (b)

Figure 3.8: Empirical evaluation of Property 2.

fined [10]. Typically, these studies use simplified graph models, being the
Stochastic Block Model one of the most widely used. This model assumes
a graph with q communities, where there is an edge between two vertices
with probability pin if both belong to the same community, and probability
pout if they belong to different communities. The question is whether a given
community detection metric is able to detect the communities of the model
for a given set of configuration parameters (pin, pout, n, and q). In this section
we analyze the level of detectability of WCC using the stochastic block model.
This analysis will serve us to show that WCC is both context aware and scale
independent, at least for the configurations embraced by the model. For the
sake of simplicity, in our study we will stick to the case where we have a graph
with n vertices, consisting of q = 2 communities of size n

2 .

Given a stochastic block model graph G of size n and two communities of
size n

2 , we want to find the detectability threshold of WCC, that is, the point
in the relation between pin and pout where maximizing WCC obtains the
expected communities of the model. Actually, this can be also seen in terms of
intraconnectivity and isolation: the value of pin models the intraconnectivity of
the communities of the model (the larger pin, the better the intraconnectivity)
while pout models the isolation of the communities (the lower pout is, the better

40

the isolation). The detectability threshold of WCC is defined in Theorem 4,
whose proof can be found in Appendix 9.6.

Theorem 4 Let G be a an arbitrarily large graph with n vertices with two
communities A and B of size n

2 each. Let C(x) be the community where
vertex x is assigned. Two vertices x and y are connected with probability
pin if C(x) = C(y), and with probability pout if C(x) 6= C(y). Let P be any
possible partition of the graph, being P1 = {A,B} and P2 = {A∪B} particular
instances of that partition. Then:

(i)

WCC(P1) =
(n2 − 1)(n2 − 2) · p3in · ((n2 − 1) · pin + n

2 · pout)
((n2 − 1)(n2 − 2) · p3in + (n2 − 1)n · pin · p2out)(n2 · pout + n

2 − 1)

(ii)

WCC(P2) =
((n2 − 1) · pin + n

2 · pout)
n− 1

(iii) arg maxPWCC(P) ∈ {P1,P2} if and only if pin > pout;

(iv) WCC(P1) > WCC(P2) if and only if

pin >

√
(2− 2 · pout)(pout + 1) · pout

1− pout
(3.8)

Theorem 4 states that the partition with optimal WCC for these particular
graphs is either that containing the original communities ({A,B}) or that
taking the graph as a single community ({A ∪B}), and the transition point
between the former and the later is that expressed by Equation 3.8. In other
words, WCC is able to recover the original communities if and only if the
condition in Equation 3.8 (the detectability threshold) holds.

41

0.0 0.2 0.4 0.6 0.8 1.0

pout

0.0

0.2

0.4

0.6

0.8

1.0

p
in

Figure 3.9: Transition point for WCC and different values of pin and pout

3.4.3.3 WCC’s detectability discussion

The question is whether the detectability threshold of WCC is good or not.
Intuitively, according to the informal community definition, one would expect
a community detection metric to detect communities whenever pin > pout.
However, this definition is incomplete and, in practice, pin > pout is not a
sufficient condition to define a community. As an example, suppose a clique of
size n. Just removing an edge of the clique would imply a configuration with
two communities of size n

2 , with pin = 1 > pout = n2−4
n2 , if we strictly adhere

to the informal community definition. Therefore, a community metric with a
detectability threshold of pin > pout would potentially only detect communities
with a perfectly uniform edge distribution. Otherwise, these would break
up into smaller subcommunities with a uniform density. Clearly, this is not
practical in a real application, as real graphs are typically not uniform and
situations such as that described above appear frequently. Therefore, the

42

actual transition point between detectable and non-detectable configurations
for a given metric is a direct consequence of the community definition of that
metric, and whether this is good or bad is determined by the application in use.
In the case of WCC, we evaluate it using several graphs from social networks,
proving that it outperforms existing methods in the literature, in Chapter 5.

This analysis allows us to show that WCC is both adaptive and scale indepen-
dent. First, we see that the balance between intraconnectivity and isolation is
independent of the size of the network (Equation 3.8), which makes the metric
scale independent. This is not the case, for instance, for modularity, whose
detectability threshold is cin − cout ≥ 2

√
cin + cout, where cin = n

2 · pin and
cout = n

2 · pout. In this case, the smaller the graph, the larger cin needs to be
compared to cout to be able to correctly identify the communities. This issue
is related to the known resolution problems of modularity, which is unable to
detect small and well defined communities once the size of the graph increases.

Second, we see that WCC does not impose either a minimum level of intra-
connectivity or isolation to a set of vertices to be detected as a community.
This is better observed in Figure 3.9, where we plot three well defined regions,
corresponding to the different configuration spaces where WCC is able to
detect the communities, where it is not able to detect them and where com-
munities do not exist (pin ≤ pout). We also show the detectability threshold
of WCC, which delimits the detectable and non-detectable regions. We see
that the threshold establishes a relation between pin (intraconnectivity) and
pout (isolation), in such a way that the more intraconnected the communities
are (the larger pin is), the less isolated (the larger pout) these can be and vice
versa. This means that WCC is a metric that is adaptive and locally identifies
relevant sets of vertices, thus adapting to the heterogeneous nature of real
graphs. Finally, we see that WCC does not detect the original communities
whenever they do not exist – i.e. when pin ≤ pout –, which is desirable in a
community detection metric, thus, not to detect false positives.

In Figure 3.10 we show a numerical validation of the detectability threshold
of WCC. We test different configurations of stochastic block model graphs
(pin and pout from 0 to 1 in steps of 0.01, for different values of n) with two
communities using the WCC maximization algorithm proposed in Chapter 4.
We generated 100 graphs for each tested configuration, executed the algorithm,
and compared the resulting partition with that expected from the model

43

0.0 0.2 0.4 0.6 0.8 1.0
pout

0.0

0.2

0.4

0.6

0.8

1.0

p
in

n=10

0.0 0.2 0.4 0.6 0.8 1.0
pout

0.0

0.2

0.4

0.6

0.8

1.0

p
in

n=50

0.0 0.2 0.4 0.6 0.8 1.0
pout

0.0

0.2

0.4

0.6

0.8

1.0

p
in

n=100

0.0 0.2 0.4 0.6 0.8 1.0
pout

0.0

0.2

0.4

0.6

0.8

1.0

p
in

n=500

Figure 3.10: Detectability of the proposed algorithm for the stochastic block
model Graphs of different sizes with different configuration parameters (pin
and pout). The closer to white is, the better the NMI between the detected
partition and that expected by the model. The closer to black, the more
different.

using the Normalized Mutual Information (NMI) [15]. Each point in the
graph corresponds to the average NMI of those 10 executions. The whiter the
color, the closer to one the average NMI is (the algorithm finds the expected
communities), and the darker the color, the closer to zero the NMI is (the
communities found by the algorithm are very different from those expected
from the model). We also draw the detectability threshold.

We see the detectability threshold line fits very well with the empirical results
obtained, with a very well defined transition point between the detectable and
non-detectable regions. The larger the size of the graph, the better this fitness,
because the larger the graph, and as a consequence, the larger the communities,
the more uniform the internal edge density of these is. Furthermore, we also
empirically confirm that when communities do not exist (pin ≤ pout), WCC
does not detect them. These empirical validation also suggests that the
algorithm proposed in Chapter 4 is able to produce results close to the optimal,
even though it does not formally guarantee to produce an optimal solution.

3.4.3.4 The community detection paradox and WCC

Another issue that affects modularity maximization based algorithms is the
so called community detection paradox [52]. Counter-intuitively, the paradox
states that the worse defined the communities are, the easier it is for the
algorithms to detect them, while the better defined they are, the harder it is.
In order to test whether WCC is affected by this issue or not, we first need

44

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

a
c
c
u
ra
c
y

n=100

binomial

uniform

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

a
c
c
u
ra
c
y

n=200

binomial

uniform

Figure 3.11: Accuracy of SCD to detect a single community (pout = 0) with
a uniform vs binomial degree distribution, for different expected values of pin.

to define what is a good and a bad community in terms of WCC, and then,
test whether in situations where we have bad communities, they are harder or
easier to detect. More concretely, for WCC, a well defined community shows
both a good isolation and intraconnectivity. Also, a bad community is not
well isolated nor intraconnected3.

We first analyze the case where a community is perfectly isolated, that is, it
does not have external edges connecting its vertices to other communities.
The detectability threshold shows that when the internal degree of the vertices
of the community is uniform, the larger the pin is, the larger the pout can be
and the community can still be detectable up to a certain point. In the case
that the degree of the vertices is not uniform, some vertices might be well
intraconnected, while others might not close enough triangles to be part of the
community. If this happens, the community structure is not so well defined
and thus, we expect WCC to fail at identifying the community.

Figure 3.11 shows the accuracy of SCD when the degrees of the vertices
follow a Binomial distribution compared to when the degrees of the vertices
are uniform, for different values of pin and communities of size n = 100 and

3Note that in the case of modularity and other state of the art algorithms these definitions
change, and a community is usually considered to be well defined when its vertices have
more internal edges than external edges.

45

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

a
c
c
u
ra
c
y

n=100

binomial

uniform

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

a
c
c
u
ra
c
y

n=200

binomial

uniform

Figure 3.12: Accuracy of SCD to detect two communities with a uniform
degree distribution with density pin = 0.5, and a uniform vs binomial out
degree distribution, for different expected values of pout.

n = 200 vertices. In this case the graph consists of a single community, thus
pout is zero. For each configuration, we have randomly generated 100 graphs,
executed the algorithm and averaged the results. An accuracy of one means
that the algorithm is able to fully recover the communities for all of the 100
generated instances, while an accuracy of zero means that it was not able to
recover the communities in some of them. We see that as long as the value
of pin increases, there is a transition point for both distributions where the
algorithm starts to correctly detect the community for all the instances of the
graph. This transition point is seen earlier for the uniform graph than for
the binomial. In the case of WCC, one would expect this transition point
not to exist for perfectly uniform graphs and always detect the communities,
as predicted in Theorem 3 where the number of edges required between a
vertex and a community tends to zero as pin approaches zero. However, this
is the case for arbitrarily large graphs, but not for small graphs where having
perfectly uniformly distributed edges is more difficult as these either exist
or not. Therefore, the smaller pin is, the larger the probability a vertex not
having enough edges with the community or even not closing any triangle with
it exists. This probability is larger for the case of the binomial distribution,
where degrees are less homogeneous.

46

We also tested the situation where we have two well intraconnected and uniform
communities, but the out degree distribution connecting both communities is
not uniform but follows a Binomial distribution. In this case, we expect that
for the Binomial distribution the communities will be harder to detect, as some
observed vertices will have a larger out degree than that expected, making
them less isolated from the rest of the graph, even sometimes being more
intraconnected with vertices of the other community. Figure 3.12 shows the
accuracy of the community detection algorithm based on WCC optimization,
when the two communities have a uniform distributed internal degree with pin
of 0.5, and the out degree follows a Binomial and a uniform degree distribution,
for different values of pout. In this case, we see that when the out degree follows
a Binomial distribution, the transition point between detectable configurations
and non-detectable configurations is seen earlier (for smaller values of pout).

In conclusion, we see that WCC is sensitive to how the edges are internally
and externally distributed. The more uniformly distributed these are, the
easiest is for WCC to detect the communities. If some vertices do not have
enough intraconnection or isolation, then WCC will not classify them in the
correct community, as expected.

Chapter 4
Scalable Community Detection

When looking at existing community detection algorithms, it is possible
to realize they are not designed to tackle the current trends in computer
architecture and data mining. Besides the problems arising from maximizing
metrics with known issues, existing algorithms not prepared to run on real
sized graphs. Many of the existing proposals are based on complex metrics or
procedures, that can run on small graphs of thousands of vertices, they are not
practical for datasets containing millions or even billions of vertices and edges.
Furthermore, existing methods are not designed to exploit the architectural
characteristics of modern hardware –i.e multi-cores–, and therefore they are
inefficient in terms of resources usage.

In order to overcome these issues, we present the Scalable Community
Detection (SCD) [48,50], a novel community detection algorithm based on
WCC and designed to scale on SMP machines. Thanks to WCC maximization,
SCD is able to find high quality communities and to exploit the parallel nature
of triangle counting to scale on shared memory machines. Altogether, SCD is
a high quality algorithm with formal guarantees able to run on billion edge
graphs in a few hours in commodity hardware. The algorithm is divided into
three phases: graph cleanup, initial partition and partition refinement, which
are now summarized.

Graph Cleanup: After loading the graph into memory, we perform a cleanup
process aimed at removing the unnecessary edges and computing a set of
statistics that will be helpful during the next phases. The process consists of:

47

48

1. computing the number of triangles closes by each edge in the graph
closes.

2. Then, removing those edges that do not close any triangle from the
graph, as these are irrelevant from the point of view of WCC and do
not have any effect during the computation of WCC.

By removing these edges, we reduce the memory consumption and improve
the performance of SCD. Furthermore, we can also simplify the heuristic
proposed in Section 4.1 (which we use to improve the performance of the
partition refinement step) since we can assume that each edge closes at least
one triangle. Finally, we take the opportunity to store the number of triangles
each edge closes, as those will be used in the subsequent steps.

Initial Partition: The goal of this phase is to create an initial partition
which we can later refine. This initial partition is computed by a fast heuristic
process described in Algorithm 1. We first sort the vertices of the graph by
their clustering coefficient decreasingly (which was computed during the graph
cleanup step). For those vertices with equal clustering coefficient, we use the
degree as a second sorting criterion (Line 2). Then, the vertices are iterated
and, for each vertex v not previously visited, we create a new community C
that contains v and all the neighbors of v that were not also visited previously
(Line 6 to 12). Finally, community C is added to partition P (Line 13) and
all the vertices of the community are marked as visited. The process finishes
when all the vertices in the graph have been visited.

This heuristic is built on top of the following intuition: the larger the clustering
coefficient of a vertex, the larger the number of triangles the vertex closes with
its neighbors, and the larger the probability that its neighbors form triangles
among them. Hence, considering Equation 3.3, the larger the clustering
coefficient of a vertex, the larger is the probability that the WCC of its
neighbors is large if we include them in the same community.

Partition Refinement: Algorithm 2 describes the partition refinement step.
It takes the initial partition computed in the “Initial partition” step and refines
it by following a hill climbing strategy, that is, in each iteration, a new partition
is computed from the previous one by performing a set of modifications

49

ALGORITHM 1: Phase 1, initial partition.

Data: Given a graph G(V,E)
Result: Computes a partition of G

1 Let P be a set of sets of vertices;
2 S ← sortByCC(V);
3 foreach v in S do
4 if not visited(v) then
5 markAsVisited(v);
6 C ← v;
7 foreach u in neighbors(v) do
8 if not visited(u) then
9 markAsVisited(u);

10 C.add(u);

11 end

12 end
13 S.add(C);

14 end

15 end
16 return P;

(movements of vertices between communities) aimed at improving the WCC
of the new partition. The algorithm repeats the process until the WCC of the
new partition does not percentually improve over the best WCC observed so
far more than a given threshold, and a set of lookahead iterations have been
performed. These lookahead iterations are used to make the algorithm more
robust against local maxima. In our tests, setting the threshold to 1% and
the lookahead to five iterations provided a good tradeoff between performance
and quality.

In each iteration, for each vertex v of the graph, we use the bestMovement

function to compute the movement of v that improves the WCC of the
partition the most (Line 8). There are four types of possible movements:

• NO ACTION: leave the vertex in the community where it currently is.

50

• INSERT: insert a singleton community1 into an existing community.
Remove the empty community resulting from this movement.

• REMOVE: remove the vertex from its current community and create
a new singleton community containing the vertex.

• TRANSFER: remove the vertex from its current community (source)
and insert it into another one (destination).

Note that bestMovement does not modify the current partition, and that the
best movement of each vertex is computed independently from the others.
This allows computing in parallel the best movements for all the vertices. Once
we compute the best movement of all the vertices of the graph, we apply all
of them simultaneously (applyMovements Line 10). Finally, we update the
WCC of the new partition (Line 11) and check whether it improved compared
to the last iteration.

Before describing function bestMovement in detail, we first introduce some
auxiliary functions that are used in it. The proofs of the theorems introduced
in this section can be found in the Appendix.

• WCCI(v, C, P) computes the improvement of the WCC of a partition P
when vertex v (which belongs to a singleton community of P) is inserted
into community C of P .

Theorem 5 Let P = {C1, C2, . . . , Ck, {v}} and P ′ = {C ′1, C2, . . . , Ck}
be partitions of a graph G = (V,E) where C ′1 = C1 ∪ {v}. Then,

WCC(P ′)−WCC(P) = WCCI(v, C1, P) =

=
1

|V | ·
∑

x∈C1

[
WCC(x,C′1)−WCC(x,C1)

]
+

1

|V | ·WCC(v, C′1).

• WCCR(v, C, P) computes the improvement of the WCC of a partition
P when vertex v is removed from community C of P and placed as a
singleton community.

1A singleton community is a community composed by a single vertex

51

ALGORITHM 2: Phase 2, refinement.

Data: Given a graph G(V,E) and a partition P
Result: A refined partition P’

1 bestP ← P;
2 bestWCC ← computeWCC(P);
3 triesRemaining ← lookAhead;
4 repeat
5 triesRemaining - -;
6 M ← ∅;
7 foreach v in V do
8 M.add(bestMovement(v,P));

9 end
10 P ← applyMovements(M,P);
11 newWCC ← computeWCC(P);
12 if (newWCC − bestWCC)/bestWCC ≥ t then
13 bestP ← P;
14 bestWCC ← newWCC;
15 triesRemaining ← lookAhead;

16 end

17 until triesRemaining > 0;
18 return bestP;

Theorem 6 Let partitions P = {C1, C2, . . . , Ck} and P ′ = {C ′1, C2, . . . , Ck, {v}}
of a graph G = (V,E) where C1 = C ′1 ∪ {v}. Then,

WCC(P ′)−WCC(P) = WCCR(v, C1, P) = −WCCI(v, C
′
1, P

′).

• WCCT (v, C1, C2, P) computes the improvement of the WCC of a parti-
tion when vertex v is transferred from community C1 and to C2.

Theorem 7 Let P = {C1, C2, . . . , Ck−1, Ck}, P ′ = {C ′1, C2, . . . , Ck−1, Ck, {v}}
and P ′′ = {C ′1, C2, . . . , Ck−1, C

′
k} be partitions of a graph G = (V,E)

where C1 = C ′1 ∪ {v} and C ′k = Ck ∪ {v}. Then,

WCC(P ′′)−WCC(P) = WCCT (v, C1, Ck, P)

=WCCR(v, C1, P) + WCCI(v, Ck, P).

=−WCCI(v, C
′
1, P

′) + WCCI(v, Ck, P).

52

From Theorem 5, we conclude that computing the improvement of WCC
resulting from inserting a vertex v (i.e. a singleton community) into a commu-
nity C, we only need to recompute the WCC of vertex v and those vertices
in C. Therefore, when computing WCCI() for a vertex and a community,
only a very local portion of the graph needs to be accessed, and the num-
ber of computations performed is small compared to computing the WCC
of the whole partition. Furthermore, Theorems 6 and 7 show that we can
express movements INSERT, REMOVE and TRANSFER, in terms of function
WCCI(), which in turn simplifies the implementation of the algorithm.

Algorithm 3 describes the bestMovement function. First, we compute the
improvement of removing vertex v from its current community (Line 3). Then,
we obtain the set of candidate communities, formed by those communities
containing the neighbors of v (Line 6). After that, we calculate which is
the candidate community where inserting or transferring vertex v (depending
whether the v forms a singleton community or not) improve the WCC most
(Lines 7 to 17). Finally, we select whether the best improvement is obtained
from removing the vertex from its current community (REMOVE) or insert-
ing/transferring it into a new community (INSERT/TRANSFER) (Lines 18
to 26). If neither of the two movements improves the WCC of the partition,
we keep the vertex in the current community (NO ACTION) (Line 1).

4.1 Heuristic

We have seen that we can express any movement by means of WCCI . Com-
puting WCCI(v, C, P) requires computing the triangles that v and those
vertices in C close with the other vertices in C and v. For a vertex, this
operation is bound by the number of neighbors that have (d), which has a
complexity of O(d2) (for each neighbor in C ∪ {v} we have to test against
all of its other neighbors in C ∪ {v}). Also, since real graphs typically have
power law distributions, this cost is large for the highest degree vertices in
the graph. Finally, considering that the number of times WCCI is called is
bounded by the number of edges m of the graph, it quickly becomes the most
time consuming part of the algorithm. In this section, we propose a model to

53

din

dout

r, δ

G, ω

b

v

C

Figure 4.1: Model used for estimating the WCCI .

estimate WCCI() with a constant time complexity function (given some easy
to compute statistics) that we call WCC ′I().

WCC ′I() stands the approximated increment of WCC when vertex v is inserted
into a community C. In Figure 4.1, we depict the simplified model on top
of which WCC ′I() is built. For a given vertex v, we only record the number
of edges that connect it to community C. For each community C, we keep
the following statistics: the size of the community r; the edge density of the
community δ; and the number of edges b that are in the boundary of the
community. We also use the clustering coefficient of the graph ω, which is
constant along all the community detection process and has been computed
during the graph cleanup step. The clustering coefficient of the graph is
equivalent as the observed probability that two given edges that share a vertex
close a triangle. These statistics homogenize the community members and
allow the computation of WCC ′I() as follows:

Theorem 8 Consider the situation depicted in Figure 4.1, with the following
assumptions:

• Every edge in the graph closes at least one triangle.

• The edge density inside community C is homogeneous and equal to δ .

54

• The clustering coefficient of the whole graph equals to ω.

Then,

WCC(P ′)−WCC(P) ≈WCC′I(v, C)

=
1

V
· (din ·Θ1 + (r − din) ·Θ2 + Θ3), (4.1)

where,

Θ1 = (r−1)δ+1+q

(r+q)·((r−1)(r−2)δ3+(din−1)δ+q(q−1)δω+q(q−1)ω+doutω)
· (din−1)δ;

Θ2 = − (r−1)(r−2)δ3

(r−1)(r−2)δ3+q(q−1)ω+q(r−1)δω
· (r−1)δ+q
(r+q)(r−1+q)

;

Θ3 = din(din−1)δ
din(din−1)δ+dout(dout−1)ω+doutdinω

· din+dout
r+dcout

;

and q = (b− din)/r.

Conceptually, Θ1, Θ2 and Θ3 are the WCCv improvements of those vertices
in C connected to v, those vertices in C not connected to v, and vertex v
respectively, when v is added to community C. The evaluation of Equation 4.1
is O(1) given all the statistics. Also, the update of all statistics is only
performed when all communities are updated, with a cost O(m) for the whole
graph. Note that we use aggregated statistics to estimate the number of
triangles, and thus we are not computing the triangles when we compute
WCC ′I().

4.1.1 Complexity of the Algorithm

Let n be the number of vertices and m the number of edges in the graph. We
assume that the average degree of the graph is d = m/n and that real graphs
have a quasi-linear relation between vertices and edges O(m) = O(n · log n).
Then, the complexity of each of the steps of the algorithm is the following:

Graph Cleanup: In the graph cleanup phase, for each edge in the graph, we
compute the triangles that each edge participates in. The triangles are found
by intersecting the adjacency lists of the two connected vertices. Since we
assume sorted adjacency lists, the complexity of computing the intersection is
O(d). Finally, we compute the local clustering coefficient of each vertex and
the number of triangles each vertex closes, which has a cost of O(m) once we
have the triangles each edge participates in. Since the average degree is m/n,
we have that the cost of the first phase is O(m · d+m) = O(m · log n+m).

55

Initial Partition: The cost of this step is the cost of sorting the vertices of
the graph based on the local clustering coefficients computed in the previous
phase, which is O(n · log(n)).

Partition Refinement: Let α be the number of iterations required to find
the best partition P’, which in our experiments is between 3 and 7. In
each iteration, for each vertex v of the graph, we compute, in the worst
case, d + 1 movements of type WCC ′(I) that have a cost O(1). Then, the
computation of the best movement for all vertices in the graph in an iteration
is O(n · (d+ 1)) = O(m). The application of the all the movements is linear
with respect to the number of vertices O(n). We also need to update, for
each iteration of the second phase, the statistics δ, cout, din and dout for each
vertex and community, which has a cost of O(m). Finally, the computation
of the WCC for the current partition is performed by computing for each
edge the triangles, which is O(m · log n) as already stated. Hence, the cost
of the refinement phase becomes O(α · (m+ n+m+m · log n)), which after
simplification, becomes O(m · log n) assuming α as constant.

Finally, The final cost of the algorithm is the sum of the three phases: O(m ·
log n+ n · log(n) +m · log n) = O(m · log n).

56

ALGORITHM 3: bestMovement.
Data: Given a graph G(V,E) a partition P and a vertex v
Result: Computes the best movement of v.

1 m ← [NO ACTION];
2 sourceC ← GetCommunity(v,P);
3 wcc r ← WCCR(v,sourceC,P);
4 wcc t ← 0.0;
5 bestC ← ∅;
6 Candidates ← candidateCommunities(v,P);
7 for c in Candidates do
8 if size(sourceC) > 1 then
9 aux ← WCCT (v,sourceC,c,P) ;

10 else
11 aux ← WCCI(v,c,P) ;
12 end
13 if aux > wcc t then
14 wcc t ← aux;
15 bestC ← c;

16 end

17 end
18 if wcc r > wcc t and wcc r > 0.0 then
19 m ← [REMOVE];

20 else if wcc t > 0.0 then
21 if size(sourceC) > 1 then
22 m ← [TRANSFER , bestC];
23 else
24 m ← [INSERT , bestC];
25 end

26 end
27 return m;

Chapter 5
Experiments

In this Chapter, we conducted a set of experiments, aimed at empirically
proving (i) that WCC is able to correctly measure whether a community is
good or not, (ii) that communities found by maximizing WCC are better than
those found by other existing methods, and (iii) that SCD is able to scale and
process large graphs.

With these goals in mind, the following algorithms of the state of the art were
selected as baselines: Infomap [58], as a representative of the random-walk
based family of algorithms and for being one of the best algorithms for detecting
disjoint communities [23]; Louvain [7], as it is the fastest and one of the highest
quality modularity maximization algorithms; and Label Propagation Method
(LPM) [54], because it has become very popular due to its excellent scalability.
We suggest reading the reference paper for each algorithm to understand them
in detail. Our selection covers algorithms following diverse strategies to test
the validity of WCC but it does not intend to be an evaluation survey of all
community methods. Besides, other popular approaches in the literature, such
as [2,24,41,42] among others, aim at overlapping communities which are also
out of the scope of this thesis. The implementation of all the algorithms has
been taken from their author’s web site.

For the experimentation, we used six real networks covering different aspects
of real world data, mostly social networks1. All chosen networks have ground
truth communities associated with them. The first is a network representing

1Downloaded from SNAP (http://snap.stanford.edu). We cleaned the original graphs
by removing the self loops.

57

http://snap.stanford.edu

58

Table 5.1: Real-world graphs with ground truth data.

Vertices Edges Communities

Amazon 334,863 925,872 151,037
Dblp 317,080 1,049,866 13,477

Youtube 1,134,890 2,987,624 8,385
LiveJournal 3,997,962 34,681,189 287,512

Orkut 3,072,441 117,185,083 6,288,363
Friendster 65,608,366 1,806,067,135 957,154

which products from Amazon have been copurchased by clients. In this dataset,
ground truth communities match the different categories of products. The
second is a graph of the DBLP network representing coautorship relations
between authors, where ground truth communities correspond to authors
that have published in the same journals and conferences. The third graph
is a graph of Youtube, where ground truth communities correspond to the
groups of users in youtube. The fourth , fifth and sixth datasets are graphs of
the Livejournal, Orkut and Friendster social networks, where ground truth
communities correspond to the groups created by the users. The characteristics
of these graphs are summarized in Table 5. For more information about how
these graphs are created and their communities are generated please refer
to [67].

We used a machine with the following characteristics: 2xIntel Xeon E5-2609 @
2.40GHz, with 4 cores each making a total of 8 cores, 128 GB ram and Linux
2.6.32-5-amd64. The used disks are regular 1TB spinning disks at 7200 rpm.

5.1 WCCs quality

The goal of the experiment is to show the correlation between communities
with good WCCs and good statistical indicators including existing community
detection metrics, structural and other characteristics such as: the average edge
density, the triangle density, the triangle participation ratio , the expansion,
the average inverse edge cut, the Flake ODF, the conductance, the modularity,
the bridge ratio, the normalized diameter and the size of the communities.
For formal definitions of these indicators please refer to [48].

59

We created a pool of communities by running Infomap, Louvain and LPM
on the first four real world networks described above2. We sorted all the
communities in the pool by their WCCs value decreasingly although they
have not been found with such metric. Then, we divided the communities into
20 groups of five percentiles according to their WCCs and plotted for these
20 groups their corresponding statistical indicators in a boxplot, showing the
minimum, the first, the second and the third quartiles, and the maximum for
each of the groups. These results are shown in Figure 5.1. In all the charts,
the x axis represents the group identifier (e.g. the leftmost group is always the
95 percentile that contains the top 5% communities in terms of their WCCs)
while the y axis shows the corresponding statistical value. The communities
of size one and two, are omitted since their WCCs value is always zero. As
shown in Figure 5.1(a), the leftmost communities have high WCCs values,
and the rightmost communities have the lowest WCCs values. Since these
communities were not computed with WCCs, we analyze both good and bad
communities.

Broadly speaking, we observe two sections in each plot of Figure 5.1: from
groups 1 to 11, the trend for all statistical indicators show that communities
with higher WCCs have better properties; from groups 12 to 20 this trend
apparently changes in some statistical indicators. We focus first on groups
1-11 and we analyze groups 12-20 later.

Groups 1-11: In Figures 5.1(b) and (c) we see that the larger the WCCs of a
community, the larger the average edge density and the triangle density. The
transitive relations between the vertices (Property 1) indicate the presence of
communities with a defined homophilic structure. Note that these communities
have been found with metrics that do not search for triangles and yet, they
contain more such structures. Similarly, Figure 5.1(d) shows that the larger
the WCCs, the larger the TPR. However, we see that TPR has precision
limitations, since it scores as good communities (with scores close to one),
some communities that might not be that good according to other metrics such
as the average edge density (Figure 5.1(b)), the expansion (Figure 5.1(e)), the
average inverse edge cut (Figure 5.1(f)) and the conductance (Figure 5.1(g)).
Finally, in Figures 5.1(e), (f) and (g), we see that the larger the WCCs,
the smaller the expansion, the larger the average inverse edge cut, and the

2We used the first four as they where the only ones where all the algorithms succeeded to
execute.

60

1 3 5 7 9 11 13 15 17 19

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1 3 5 7 9 11 13 15 17 19

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a) WCCs (b) Average edge density

1 3 5 7 9 11 13 15 17 19

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1 3 5 7 9 11 13 15 17 19

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(c) Triangle density (d) TPR

1 3 5 7 9 11 13 15 17 19

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

1 3 5 7 9 11 13 15 17 19

0
.2

0
.4

0
.6

0
.8

1
.0

(e) Expansion (f) Average inverse edge cut

61

1 3 5 7 9 11 13 15 17 19

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1 3 5 7 9 11 13 15 17 19

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(g) Flake ODF (h) Conductance

1 3 5 7 9 11 13 15 17 190
e
+

0
0

2
e
−

0
7

4
e
−

0
7

1 3 5 7 9 11 13 15 17 19

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(i) Modularity (j) Bridge ratio

1 3 5 7 9 11 13 15 17 19

2
4

6
8

1
0

1 3 5 7 9 11 13 15 17 19

1
e
+

0
1

1
e
+

0
3

1
e
+

0
5

(k) Normalized diameter (l) Size

Figure 5.1: Statistics of communities from real world networks in 20 groups
sorted by WCCs. The x-axis represents the 5% percentile groups showing
that with the largest WCC on the left and that with the smallest WCC on
the right. The y-axis represents the value achieved for each of the metrics
shown in the plots.

62

smaller the conductance, which means that the number of external connections
decreases for the first, and that the communities are denser internally than
externally for the last two. However, while having a large internal density and
few external connections is a good starting point to identify a good community,
it does not imply an internal structure as we will show when discussing groups
12-20.

In Figure 5.1(h-i) we compare WCCs with the most used metrics in the state
of the art: conductance and modularity. We see that for these groups, there is
a correlation between communities with good WCCs values, modularity and
conductance (note that for conductance, the lower, the better).

Figure 5.1(j) shows that bridges penalize the WCCs score. A large bridge
ratio is a symptom of the presence of whiskers or treelike structures, which are
inherently sparse and hence do not have the type of internal structure that
one would expect from a community. A small diameter is another feature that
any good community should have. In Figure 5.1(k) we see that large WCCs
implies smaller diameters for the communities. This means that any vertex
in the community is close to any other vertex, which translates to denser
communities. Finally, in Figure 5.1(l), we show the sizes of the communities.

Groups 12-20: We see that there is a trend change in some statistical indicators
for those groups that have WCCs close to 0. This behavior can be explained
by Figures 5.1(c), (d) and (j). These figures reveal that the communities after
group 15 are treelike: communities hardly contain triangles and almost all the
edges in the community are bridges. Such structures cannot be accepted as
good communities. Although some communities in groups 15-20 are isolated,
we note that this is not a sufficient condition for them to be good communities.
For example, most communities in groups 13-20 are trees with three vertices
which have a good conductance. WCCs is able to score these communities
as bad communities while conductance does not. A similar behavior is seen
for modularity. In Figure 5.1(i), we see that the communities in groups 13-20,
which are tree-like, have a larger modularity than other sets with a more
community-like structure than those. As described in [6], tree like networks
can have high modularity and hence, algorithms maximizing it can lead to
misleading results.

63

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Amz Dblp You Live Orkut Friend

F
1
S
c
o
r
e

infomap

louvain

lpm

scd

Figure 5.2: F1Score.

To sum up, while state of the art metrics fail to correctly rank communities
under specific circumstances, WCCs shows to be robust, that is, it is able to
globally capture all the desirable characteristics a community should contain.

5.2 SCD results quality

We run the baseline algorithms and SCD on the graphs of Table 5 to compare
the quality of their results. To measure the quality, we used two metrics: the
Average F1Score and the Normalized Mutual Information(NMI). Given two
sets A and B, the F1Score (F1) between the two sets is computed as follows:

precision(A,B) =
|A ∩B|
|A|

, recall(A,B) =
|A ∩B|
|B|

.

H(a, b) =
2 · a · b
a+ b

F1(A,B) = H(precision(A,B), recall(A,B))

64

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

Amz Dblp You Live Orkut Friend

N
M
I

infomap

louvain

lpm

scd

Figure 5.3: NMI.

Then, the average F1Score of two sets of communities C1 and C2 (which in
our case are the partition and the ground truth communities respectively) is
given by:

F1(A,C) = arg max
i

F1(A,Ci), ci ∈ C = {C1, · · · , Cn}

F̄1(C1, C2) =
1

2|C|
∑
ci∈C

F1(ci, C
′) +

1

2|C ′|
∑
ci∈C′

F1(ci, C)

We also compare the quality of the results obtained using the Normalized
Mutual Information (NMI), which is widely used in the community detection
literature [15].

Figures 5.2, 5.3 and 5.4 show the Average F1Score, NMI and WCC of the
partition obtained by the different algorithms respectively, in the tested graphs.
Those missing bars are from executions that were not able to finish within
a week or consumed too much memory. We observe that there is a strong
correlation between WCC, and the F1Score and NMI obtained, that is, in

65

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

Amz Dblp You Live Orkut Friend

W
C
C

infomap

louvain

lpm

scd

Figure 5.4: WCC.

general, the larger the WCC, the better the F1Score and NMI obtained. In
general, SCD is the algorithm with the best quality using both metrics, except
for the Amazon graph using NMI. We also see that the larger the graph, the
larger the difference between SCD and the second, which is related to the fact
that SCD is scale independent while existing algorithms are not.

In order to quantify the correlation between F1Score, NMI and WCC, we
computed the Pearson Coefficient of variation that resulted 0.91 and 0.83
for F1Score and NMI respectively. This indicates a very strong agreement
between both metrics and WCC since it is close to 1, which is the maximum
value. Therefore, WCC proves to be a solid metric for evaluating the quality
of community detection algorithms.

5.3 Performance, scalability and memory consump-
tion of SCD

In Figure 5.5 we show the execution times of the different algorithms, for the
different graphs. We see that SCD is the fastest algorithm for the smaller

66

 1

 10

 100

 1000

 10000

 100000

 1x10
6

Amz Dblp You Live OrkutFriend

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
)

infomap

louvain

lpm

scd

Figure 5.5: Execution times of the different algorithms single threaded.

graphs, and the fastest after LPM and Louvain when these become larger.
However, the execution times are still competitive compared to the imple-
mentations of the state of the art algorithms used. Again, those missing bars
belong to those executions that were unable to finish in less than a week or
due to memory consumption.

We parallelized SCD in order to exploit the resources of current multi-core
and many-core processors. More concretely, we parallelized the two most time
consuming parts of the algorithm: the computation of the global and local
clustering coefficient of the vertices during the graph clean up phase and the
whole refinement phase. In the former, we parallelized the loop that computes,
for each edge, the number of triangles that the edge closes. In the later, we
parallelized both the loop in Line 7 of Algorithm 2, which calls the function
bestMovement for each of the vertices in the graph and the computation of
WCC for the partition at the end of the iteration (which can be parallelized
for each vertex). Since all the parallel code is in the form of loops, we used
OpenMP with dynamic scheduling, using a chunk size of 32. Figure 5.6 shows
the normalized execution times of SCD with different number of threads. In

67

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Amz Dblp You Live OrkutFriendN
o
r
m
a
l
i
z
e
d

E
x
e
c
u
t
i
o
n

T
i
m
e

1 2 4 8

Figure 5.6: SCD normalized execution time with different number of threads.

this experiment, we have excluded the time spent in I/O, which includes
reading the graph file and printing the results.

Broadly speaking, we see that with a simple OpenMP based parallelization,
SCD is able to achieve very good scalability, specially for the larger graphs
which are also those with a larger average degree. The larger the average degree
of the graph, the larger the cost of those parts that have been parallelized: the
larger the cost of computing WCC and the larger the number of movements
to test between vertices and communities). These two parts quickly become
dominant over the sequential ones. This means a better scalability due to a
direct application of Ahmdal’s Law.

We see that with a simple OpenMP based parallelization, SCD is able to
achieve very good scalability, specially for the larger graphs which are also
those with a larger average degree. The larger the average degree of the graph,
the larger the cost of those parts that have been parallelized: the larger the cost
of computing WCC and the larger the number of movements to test between
vertices and communities). These two parts quickly become dominant over
the sequential ones. This means a better scalability due to a direct application

68

 1

 10

 100

 1000

 10000

 100000

 0.1 1 10 100 1000 10000

Amz Dblp

You

Live

Orkut

Friend

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
)

Million Edges

Figure 5.7: Execution time with eight threads vs number of edges.

of Ahmdal’s Law. Finally, Figure 5.7 shows the execution time of SCD with
respect to the number of edges of the graph. Each point represents the time
spent by the eight thread version of SCD for the different graphs. We see that
SCD shows a quasi linear scalability in practice, and that is able to process
the Friendster graph, which contains almost two billions of edges, in about
seven hours.

In Table 5.3, we show the memory consumption in MB of SCD for each of
the graphs divided into three categories: Graph, Storage of Triangles and
Partitions.

In general, the amount of memory consumed by SCD is dominated by the
graph’s representation which mostly depends on the number of edges of the
graph. On the other hand, the other data structures (array of triangles and
partitions) built by SCD scale linearly with the number of vertices of the
graph, and not with the number of edges. We see that the amount of memory
consumed for the Friendster graph is roughly 18GB, showing that much larger

69

Table 5.2: SCD Memory consumption in MB.

Graph Triangles Partitions Total

Amazon 11.4 1.3 16.0 28.7
Dblp 12.2 1.3 14.9 28.4
Youtube 37.5 4.5 68.9 110.9
Livejournal 325.4 16.0 197.7 539.1
Orkut 974.3 12.3 124.4 1111.0
Friendster 15235.8 262.4 3317.6 18815.8

graphs could be processed with a commodity server with 128 GB of memory.
This supports the idea of proposing an algorithm for in memory machines, as
these can perfectly manage the structural information of massive graphs of
the order of billions of edges.

Chapter 6
Ground-truth vs Synthetic

Communities

Most of the existing work in community detection is evaluated using synthetic
graph generators, specially the LFR benchmark, which generates graphs with a
power law degree distribution, and outputs communities based on the informal
community definition (more internal edges than external) [25]. However,
evaluating communities using LFR or other simple graph generators, has a very
clear shortcoming. These benchmarks impose a community definition, which is
usually very simplistic and it is not clear whether it corresponds or not to those
structures found in real data. The result is that algorithms designed to work
well with these graphs sink when they try to recover the communities observed
in real datasets such as those with ground truth communities. Communities
created based on network’s metadata (aka ground truth communities, meta-
communities or user defined communities), are not necessarily characterized
by the same features or structures as those assumed in structural communities.
But on the other hand, it is clear that having synthetic data generators capable
of reproducing the characteristics of real datasets is of high importance, not only
for benchmarking community detection algorithms, but also for benchmarking
database systems [14] or to model complex systems more accurately, as they
provide a flexible way to obtain real data when this cannot be easily obtained
from real sources.

Therefore, there is a need to better understand which are the features that
characterize the meta-communities found in real data, and whether existing
community detection benchmarks are able to reproduce these characteristics or

71

72

not. For this reason, in [47] we analyze a set of real graphs with ground truth
communities (Amazon, Dblp, Youtube and Livejournal) (see Chapter 5 for their
particular characteristics), by means of their community distributions using
several structural indicators (clustering coefficient, conductance, bridge ratio,
tpr, size and diameter) (See Chapter 2 for their corresponding definitions),
with the goal of understanding how the meta-communities in those datasets
look like.

Then, we compare those communities observed in real graphs to those gen-
erated by two synthetic graph generators with a community structure: the
LFR benchmark and the LDBC Social Network Benchmark data generator
(LDBC-DG). LFR was designed as a benchmark for evaluating community
detection algorithms [26]. Compared to other graph generators, its principal
characteristic is that the building procedure is based on creating a graph
that connects communities. LFR starts by generating a set of communities of
different sizes following a power law distribution. Then, the edges between
the vertices in the graph are created in such a way, that they follow power
law distributions and for each vertex the mixing factor is fulfilled. The mixing
factor is a parameter indicating the percentages of neighbors of every vertex
that belong to a different community than that the vertex belongs to. A recent
study indicated that communities are too well defined, and do not capture the
noise found in real data [40]. We downloaded the generator from the author’s
web site.

The LDBC-DG is a fork of the S3G2 graph generator [44], which is customized
to build social network datasets, which is used in the LDBC benchmarking
initiative [14]. The LDBC aims at designing realistic and meaningful bench-
marks for linked database systems, namely RDF and graph databases. The
LDBC generator generates complex synthetic social-networks with many at-
tributes related to the users and its activities in the network. The resulting
schema is similar to the contents available in Facebook. For example, users
have attributes that indicate their personal description (name, born place,
school/university, etc); the friends of a user; posts and photographs created by
a user; groups created by users indicating interests... It starts by generating
a set of users with attributes following distributions found in the real world.
Then, they sort the users in successive Hadoop jobs by different correlated
attributes (i.e. user interests, user universities, etc...) and create friendships
between users using a sliding window procedure, where users close in the

73

window have a higher probability to be friends. Following this schema, we
create the communities using a similar procedure to the one described in the
ground truth, by setting as a community each connected component of users
(using the friends relation) that belong to a group. We downloaded the latest
available version of LDBC-DG from the Github repository of LDBC on 30th
March 2014.

6.1 Experimental Setup

Synthetic graph generators have several parameters that can be tuned to
produce graphs of different characteristics. For both LFR and LDBC-DG, we
generate a network with 150K users. In the case of LFR, we set the average and
maximum degree to 10 and 400 respectively, and the minimum and maximum
community size to 10 and 10000, respectively. One third of the vertices are
set as overlapping vertices, and belong to three different communities instead
of one. All these parameters have been set up as to mimic the characteristics
found in the ground truth data. Finally, we have set the mixing factor of
LFR from 0.1 to 0.5, therefore generating five networks named LFR1, LFR2,
LFR3, LFR4 and LFR5, which in this range is expected to generate networks
with communities [26]. For the LDBC-DG, we generate a single network using
the default LDBC-DG parameters, which are fit to real data. The rest of
the parameters for both generators are set to the default values, which are
reported to generate realistic social network distributions [14,26].

For each community, we compute all six structural indicators. Then, we
analyze each indicator individually. We take each community as a sample and
draw a histogram distribution. Then, we study the correlation between all
pairs of histograms, by computing the Spearman correlation rank for each pair
of graphs. The Spearman correlation rank test is a non parametric test that
quantifies if two variables are monotonically related.

6.2 Results Discussion

Figure 6.1 shows the distributions of the statistical indicators for the Live-
journal graph. We take the Livejournal graph as a representative of the
rest of the graphs, which are reported in the Appendix. For the rest of the

74

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(a) Clustering Coefficient (b) TPR

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0 20 40 60 80 100

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(c) Bridge Ratio (d) Diameter

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0 1 2 3 4

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(e) Conductance (f) log10(Size)

Figure 6.1: Distribution of the statistical indicators for the Livejournal graph.

real graphs, the distributions show similar characteristics as shown by the
Spearman correlation tests of Figure 6.2.

Real Graphs: We start by analyzing the internal structure of Livejournal
communities, hence we focus our attention on the clustering coefficient, the
bridge ratio, the TPR and the diameter. Figure 6.1(a) shows a multimodal
distribution. The largest peak contains 44% of the ground truth communities,

75

AMZ 0.63 0.46 0.78 0.46 −0.26 −0.31 −0.31 −0.35 −0.30

DBLP −0.18 0.20 −0.22 −0.70 −0.69 −0.66 −0.65 −0.66

YOU 0.82 0.90 0.58 0.55 0.53 0.50 0.53

LIVE 0.83 0.22 0.19 0.18 0.09 0.15

LDBC 0.59 0.55 0.52 0.42 0.51

LFR1 0.82 0.76 0.77 0.78

LFR2 0.93 0.82 0.92

LFR3 0.84 0.87

LFR4 0.83

LFR5

AMZ 0.92 0.67 0.94 0.94 −0.11 −0.19 −0.36 −0.43 −0.54

DBLP 0.41 0.78 0.94 −0.32 −0.41 −0.56 −0.58 −0.65

YOU 0.84 0.52 0.42 0.38 0.23 0.06 −0.09

LIVE 0.83 0.10 0.04 −0.14 −0.25 −0.39

LDBC −0.24 −0.31 −0.44 −0.45 −0.54

LFR1 0.68 0.64 0.40 0.30

LFR2 0.74 0.57 0.42

LFR3 0.75 0.67

LFR4 0.75

LFR5

(a) Clustering Coefficient (b) TPR
AMZ 0.94 0.95 0.99 0.98 0.64 0.54 0.52 0.38 0.27

DBLP 0.87 0.95 0.93 0.64 0.57 0.50 0.29 0.18

YOU 0.93 0.90 0.65 0.60 0.59 0.47 0.37

LIVE 0.98 0.61 0.53 0.50 0.36 0.25

LDBC 0.59 0.48 0.45 0.30 0.21

LFR1 0.76 0.62 0.40 0.11

LFR2 0.73 0.53 0.25

LFR3 0.65 0.44

LFR4 0.59

LFR5

AMZ 0.82 0.58 0.80 0.75 0.51 0.48 0.48 0.51 0.51

DBLP 0.70 0.94 0.90 0.63 0.60 0.60 0.63 0.63

YOU 0.72 0.78 0.91 0.86 0.86 0.91 0.91

LIVE 0.93 0.65 0.62 0.62 0.65 0.65

LDBC 0.70 0.66 0.66 0.70 0.70

LFR1 0.96 0.96 1.00 1.00

LFR2 1.00 0.96 0.96

LFR3 0.96 0.96

LFR4 1.00

LFR5

(c) Bridges Ratio (d) Diameter
AMZ 0.72 0.32 0.31 −0.44 0.36 0.42 0.55 0.57 0.49

DBLP 0.58 0.58 −0.06 0.13 0.27 0.46 0.58 0.58

YOU 0.95 0.63 −0.03 0.11 0.19 0.28 0.33

LIVE 0.62 −0.14 −0.00 0.16 0.30 0.38

LDBC −0.28 −0.25 −0.27 −0.25 −0.17

LFR1 0.63 0.35 0.12 −0.08

LFR2 0.57 0.31 0.04

LFR3 0.71 0.39

LFR4 0.67

LFR5

AMZ 0.84 0.93 0.99 0.90 0.40 0.39 0.36 0.37 0.39

DBLP 0.79 0.85 0.74 0.51 0.50 0.47 0.46 0.52

YOU 0.94 0.95 0.24 0.23 0.19 0.23 0.25

LIVE 0.90 0.39 0.40 0.38 0.38 0.40

LDBC 0.17 0.21 0.16 0.15 0.21

LFR1 0.71 0.62 0.70 0.68

LFR2 0.75 0.66 0.72

LFR3 0.68 0.65

LFR4 0.62

LFR5

(e) Conductance (f) log10(Size)

Figure 6.2: Spearman rank correlation coefficient of the distributions between
the different communities and structural indicators.

76

with a clustering coefficient between 0 and 0.01. This indicates that many
communities have a small percentage of closed triangles. But, when we looked
into detail, we found that many of those communities without triangles were
very small and lots had only three vertices (59% of them). The second largest
peak are communities with a clustering coefficient between 0.99 and 1, which
are quasi-cliques or cliques and contain 11% of the communities. The rest of
the communities fall into intermediate ranges. A similar multimodal result is
seen for the TPR and the bridge ratio (Figures 6.1(b) and (c) respectively)
with the two peaks at the extremes and with a trend towards participating in
triangles and not having bridges in the central modal group. This multimodal
distribution suggests that communities are not an homogeneous entity that
can be described with a single model.

In Figure 6.1(d), we see that the bulk of the communities has a small diameter:
84% have a diameter smaller than five. This is because ground truth communi-
ties are well connected and small in many cases. We observe that conductance
tends to be high and thus communities are not very well isolated as depicted
in Figure 6.1(e). If we look at Figure 6.1(f), most of communities (about 74%)
have a size smaller than 10. In the last three subfigures we observe that the
largest fraction of the communities is small, have very small diameters, and
are not very well isolated. For the three indicators, we observe a power law
decay towards communities that depart from the typical community.

Figure 6.2 shows the correlograms of the Spearman rank correlation coefficient
between the distribution of the different structural indicators for each pair of
graphs. The upper half of the matrix shows the numerical score given a pair
of variables. On the other hand, the lower half shows a color gradient, where
two variables are correlated if they approach dark blue, while they are not
correlated (or inversely correlated if negative) if they approach red.

The first four entries correspond to the real graphs. Broadly speaking, we
observe that all four graphs show similar patterns for the six indicators. The
correlation is specially strong for the bridge ratio, where the rank is over 0.9
for most of pairs of real graphs. The diameter, size and TPR distributions
also show important correlations.

We observe that the less correlated distributions are for clustering coefficient
and conductance, although correlation is still present. The correlations shown
in Figure 6.2(a) indicate that there are differences between the clustering

77

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(a) Amazon (b) Dblp

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(c) Youtube (d) Livejournal

Figure 6.3: Clustering coefficient distribution of real graphs.

coefficient distributions for the real graphs, which can be visually compared in
Figure 6.3. First, Youtube and Livejournal have a similar distribution, slightly
biased to the left, and having similar peaks at their extremes. Second, Dblp is
the graph with a distribution more biased to highly clustered communities.
Furthermore, the peak extremes of the Dblp distribution are inverted compared
to the rest. This explains why Dblp is not correlated with Livejournal and
Youtube. Finally, Amazon lies between Dblp and Livejournal with a more
centered distribution.

We see in Figure 6.2(e) that graphs have two types of conductance distributions.
Figure 6.4 depicts that the conductance distribution of Amazon and Dblp is
more diverse (for conductance, the smaller the better). Specifically, 63% and
73% out of the total number of communities for the Amazon and Dblp graphs
respectively, have a conductance larger than 0.5. For Youtube and Livejournal,
the distribution is more skewed towards the right of the chart and 98% and
99% of the communities have a conductance larger than 0.5.

78

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(a) Amazon (b) Dblp

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(c) Youtube (d) Livejournal

Figure 6.4: Conductance distribution of real graphs.

LDBC-DG Graph: Figure 6.5 shows the distributions of the structural
indicators for the LDBC-DG graph and the fifth row of each correlogram in
Figure 6.2 shows the correlation of each LDBC-DG plot with the real datasets.
We observe that for most indicators the synthetic distributions are considerably
similar to those for the real graphs, specially for Youtube and Livejounal.

First of all, the LDBC-DG reproduces the multimodal distributions of the
clustering coefficient, the TPR and bridge ratio (Figures 6.5(a-c)). The
multimodal clustering coefficient distribution of LDBC-DG shows a central
part biased towards communities with a small clustering coefficient. This is
similar to what we see for Youtube and Livejournal graphs. We find that
the generator distributes evenly the triangles among the members of the
communities, as shown by TPR in Figure 6.5(b). More specifically, 63% of
communities have a TPR larger equal or larger than 0.5. Figure 6.5(d) shows
the diameter distribution of the LDBC-DG communities. Compared to those
found in real graphs, LDBC-DG communities have a slightly larger diameter,
with 71% out of the total number of communities with a diameter less than 6.

79

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(a) Clustering Coefficient (b) TPR

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0 20 40 60 80 100

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(c) Bridges Ratio (d) Diameter

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0 1 2 3 4

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(e) Conductance (f) log10(Size)

Figure 6.5: Distribution of the indicators for the LDBC-DG graph.

When we turn to analyze the conductance, as shown in Figure 6.5(e), we see
that as with the real graphs, the LDBC-DG communities tend to have a large
conductance, similarly to those found for Youtube and Livejournal. However,
we note that the distribution is significantly more skewed to the right Thus,
LDBC-DG communities are less well isolated than those in the real datasets.

In general, we see that the LDBC-DG reproduces many of the characteristics
found in real graphs, specially those found in Youtube and Livejournal. Since

80

LDBC-DG models an online social network data, it seems natural that the
communities generated resemble more the datasets from online social networks
than the product and coworker network.

LFR Graphs: For the LFR graph, only the diameter distribution shows a
strong correlation to those found in real graphs as shown in the last five rows of
Figure 6.2. For the rest of the indicators, the degree of correlation is moderate
or weak, though it varies depending on the mixing factor configuration. In
order to better understand the characteristics of the community structure of
the graphs output by the LFR generator, we show the distributions for the
mixing factor 0.3 configuration in Figure 6.6.

In contrast to LDBC-DG, LFR does not produce the multimodal distribution
for clustering coefficient (Figure 6.6(a)) observed in real graphs. LFR does
not produce communities with a large clustering coefficient. According to
Figure 6.6(b), the TPR distribution also lacks a peak for large participation
ratios, and in contrast to LDBC-DG it also lacks the peak for the low TPR
modality found in real graphs.

The bridge ratio (Figure 6.6(c)) distribution of LFR has moderate correlation
to the real data, but the peak on the left extreme is missing and the peak
on the right is smaller than the real ones. The diameter distribution is quite
similar to that found for the real data, but with some more large diameter
communities.

Conductance has a poor match with the real datasets. LFR produces a distri-
bution centered in a certain value of conductance, as shown in Figure 6.6(e).
This peak depends on the mixing factor (see Appendixes for more details), and
goes towards the left when the mixing factor is large. Then, configurations
of LFR with larger mixing factors produce more realistic conductance plots
because they have larger conductances. However, these larger mixing factors,
such as LFR5, are much worse in terms TPR, bridge ratio and size as seen in
Figure 6.2.

We have observed that the main weakness of LFR is the regularity of the
communities created. Since all the communities follow a single model, LFR is
not able to create the multimodal distributions present for some indicators.

81

Broadly speaking, two main results can be derived from the analysis. The
first, is that ground-truth communities are more diverse and complex than
the idealistic vision of traditional structural communities. The distributions
of the different structural indicators show that ground truth communities
can be either internally well defined (large clustering coefficient) or loosely
defined (small clustering coefficient), but that in general, they have many
edges pointing outside (high conductance) the cluster. However, we also see
that the triangle plays a significant role in defining the internal structure of
the communities, as these are observed frequently.

This suggests that understanding the more complex structures that define these
communities is key to better design effective algorithms for their detection.
Actually, not properly understanding these structures is one of the reasons
why traditional community detection algorithms and metrics based on just
edge counting fail at their detection.

The second result is that synthetic graph generators based on the traditional
view of structural communities (such as LFR) generate graphs with a commu-
nity structure very different from that observed in ground truth communities.
On the other hand, the LDBC-DG graph generator is able to reproduce many
of the features observed, thus producing a community structure more similar
to that observed in real graphs.

82

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(a) Clustering Coefficient (b) TPR

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0 20 40 60 80 100

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(c) Bridges Ratio (d) Diameter

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0 1 2 3 4

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(e) Conductance (f) log10(Size)

Figure 6.6: Distribution of the indicators for the LFR3 graph.

Chapter 7
Triangle counting in future

many-core micro-architectures

As manufacturing processes evolve and more cores are added to a chip, the
higher the pressure to the interconnection network and integrated memory
controllers, higher synchronization costs and fewer shared resources. For this
reason, computer architects are thinking of alternative architectures with
simplified and non-coherent cache hierarchies, which can scale better (to tens
or hundreds of cores), and at the same time save die area and power. As a
downside, this comes at the cost of more complex programming models as the
coherency of the caches have to be managed by the programmer.

One of such architectures is the Intel SCC (Single-chip Cloud Computer) [32].
The Intel SCC is a 48-core chip with shared memory, but non-coherent caches.
Since flushing caches to achieve data coherence between cores is prohibitively
costly, the Intel SCC incorporates a set of message passing buffers that can be
used as communication channels between any pair of cores or as on-chip local
memories for the most accessed data. In this piece of work [51], we explored
the suitability of the Producer-Consumer programming model for the Intel
SCC, by means of the triangle counting problem.

Counting triangles is a very important operation not only for the computation
of WCC, but also for social networks and other types of network analysis
in general. Furthermore, as many graph algorithms, triangle counting is a
memory bound operation that also exhibits a very non-local memory access
pattern. This makes triangle counting a good representative of a modern

83

84

application to test the suitability of the Producer-Consumer model on the
Intel SCC.

We implemented triangle counting for the Intel SCC, and showed that the
Producer-Consumer model is able to exploit both data and task parallelism,
maximizing the usage of resources and achieving high scalability and per-
formance (running up to 9 times faster than a baseline working on main
memory).

7.1 The Intel SCC

The Intel SCC processor is a 48-core vehicle created by Intel Labs as a platform
for many-core software research. This is a clustered architecture composed
of P54C cores, grouped in tiles containing two cores each. Each tile (pair of
two cores) has a router, forming a communication mesh within all the chip to
access the four DDR3 memory controllers.

The Intel SCC has an aggregated address space of 64 GB of memory. However,
each P54C core is able to address 4 GB. In our experiments, each core has a
private region of memory of total size divided by 48 assigned. What makes
the Intel SCC special is its non-coherent memory hierarchy. Each core has a
non coherent L1 and L2 caches, of 16KB and 256KB respectively, with a cache
line size of 32 bytes. Since the caches are non-coherent, it is the programmer
who is responsible for maintaining the coherency of the caches manually.
For this reason, the Intel SCC provides a fast core-to-core communication,
consisting on 384KB of on-chip memory (also called the Message Passing
Buffer(MPB)). Each tile is assigned 16KB of the buffer (8KB for each core),
which is addressable by any core. We will call each 8KB section assigned to
each core, an MPB section. Finally, in order to synchronize the access to
the MPB and the memory by all the cores, the system provides 48 globally
accessible test-and-set registers.

7.2 Producer consumer implementation of triangle
counting

In the Producer-Consumer(P/C) model, the program is divided into tasks
which adopt the role of a Producer, a Consumer or both. The Producers are

85

tasks that operate on the input data and produce the results, which are then
sent to the Consumers. The Consumers are the tasks that receive the data
from the Producers, operate on the data and then produce the results, which
can be either stored in main memory or forwarded to the next Consumer in
the P/C chain (and hence performing the Producer’s role too).

The Producers and the Consumers can be executed independently and concur-
rently as long as they have available data to consume and available resources
to store the results they produce. Hence, the task parallelism is exploited.
Furthermore, the input data of the tasks, can be split and distributed among
multiple instances of both Producers and Consumers, allowing the partitioning
of the data and the execution of multiple tasks in parallel. This way, we are
also exploiting the data parallelism.

Given a graph G(V,E) (where V is the set of vertices and E is the set of edges),
the Producers compute, for each edge e in E, the number of triangles the edge
e belongs to. Given an edge e connecting two vertices a and b, the number
of triangles of this edges corresponds to the size of the intersection between
the adjacency lists of vertices a and b. In order to exploit data parallelism,
different Producer instances are created, and each of them is assigned a subset
of the edges to process. Then, the Consumers read the results produced by the
Producers and accumulate, for each vertex, the number of triangles where the
edges pointing to the vertex participate in. Several instances of Consumers are
created, and each of them accumulates the result of a subset of the vertices of
the graph. All the Producers and the Consumers are executed concurrently,
as long as the data is produced and consumed.

We implemented three strategies to exploit data and task parallelism using
the P/C model.

DataParallelMsg: It follows the data parallel paradigm and uses main
memory to exchange the data between the tasks. In this strategy only one task
is executed at a time, which means that all the cores execute the Producer
step first, and when it is completed, all the cores execute the Consumer step.
Each core is responsible for 1/P of the computational work, and the results
are stored in main memory. Once all the cores have finished executing the
Producer step, the results are broadcast to the other cores, by storing their
results into their MPB sections. The other cores read the results and store

86

them again into their addressable main memory. Once all the cores have all
the data, the Consumer step starts.

DataParallelMsgBlk: This implementation, follows the data parallel
programming model like the previous implementation presented, but in this
case, the results of the Producer step are iteratively produced in blocks of
the size of the MPB section, instead of producing all the results and then
broadcast them. Once all the Producers have finished to produce their chunk
of data, the cores consume the data produced by the rest directly from the
MPBs of the others, and execute the Consumers step. The process iterates
until all the computations from the Producer step have been performed. The
goal of this approach is to benefit from keeping all the data produced in the
Producers’ step inside the chip, instead of copying it into the main memory
and hence achieving better performance.

Task&DataParallel: The goal of this implementation, is to fully benefit
from the presence of the MPB, by implementing a version based on the task and
data parallel paradigm. In this approach, we have k cores as Producers, and
P−k cores as Consumers and all cores execute their task at the same time. The
Producers produce the data and store them directly into their MPB section,
while the Consumers consume these data to perform their computations. A
Producer computes and produces data as long as there is space in its MPB
section. Once the buffer is filled, it waits until the data is consumed by all
the consumers and the buffer is freed. Once the Producer has performed all
the computations, it finishes. On the other hand, a Consumer waits for the
data to be in the buffer. Once the data is available, it consumes them and
tells the corresponding Producer that the data has been consumed. In order
to reduce the contention on the buffer between Producers and Consumers, a
double buffering scheme is used in every MPB section.

7.3 Experiments

We used the Intel Single Chip Cloud Computing (Intel SCC) experimental
processor, RockyLake version configured with 32GB of main memory. The
frequencies of the tiles, mesh and memory are 533, 800 and 800 Mhz respectively.
The operating system used for the Intel SCC cores is the Linux kernel provided
by the RCCE SCC Kit 1.3.0.

87

To test the performance of the different implementations proposed, for the
P/C model, we have implemented the local triangle count problem described
in as described above. The input graphs, are built with the LFR graph
generator [25], which creates graphs with social network characteristics. We
generate two graphs: one with 100K vertices and 1M edge (small), and another
one with 1M vertices and 10M edges (big). Each measure is obtained by
averaging five executions.

We show the results for the big graph. For a complete description of the results,
please refer to [51]. In Figure 7.1(a), we show the obtained speed-up using the
different strategies for different number of cores. For the Task&DataParallel
strategy we set the number of Producers and Consumers to 50% and 50% out
of the total respectively. As a baseline, we use the DataParallelMsg strategy
with one core. We see that the data parallel version does not scale well, with
a speed-up limited to 2.6x regardless of the number of cores used. This limit
is due to the time to communicate the producer’s results to the consumers,
which become dominant as long as the number of cores increases.

For the optimized version of the data parallel approach, the DataParallelMsgBlk
implementation, it scales a bit better but it is still limited to 10x for the larger
number of cores used. The main difference between this implementation and
the DataParallelMsg is that instead of the Producers writing the results into
their MPB sections and the Consumers copying them to main memory, the
Consumers make the computations by directly reading from the MPB’s of the
Producers. This does not change the communication pattern but does have an
impact on the communication latency as the the main memory accesses are
avoided. Consequently, we can observe that the speedup for this optimized
version follows a similar trend to the DataParallelMsg implementation but the
speedup achieved is higher as the communication fixed cost is smaller.

Finally, while both data parallel implementations showed a limit in their
speedup, the Task&DataParallel implementation shows a near linear speedup
even for large number of cores (about 24x of speedup for 32 cores). The
reason is that Producers and Consumers are executing at the same time in
a pipelining way, thus, we are able to hide the communication cost with the
Producer and Consumer computation. The reason for the speedup to be
slightly below the ideal has to do with another fact which is related to load

88

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

DataParallelMsg
DataParallelMsgBlk
Task&DataParallel 50-50
Ideal

Number of Cores

S
p

e
e
d

-u
p

(a)

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Task&DataParallel 50-50
Task&DataParallel Best
Task&DataParallel Worst
Ideal

Number of Cores

S
p

e
e
d

-u
p

(b)

Figure 7.1: (a) Scalability using the different P/C strategies. (b) Scalability
of the Task&DataParallel strategy for different assignments of cores to tasks.

balancing and contention on the double buffer space used to exchange the
results between Producers and Consumers.

We also tested different assignment of cores to tasks for the Task&DataParallel
strategy, in such a way that we executed the application on different con-
figurations ranging from 2 up to 30 Producers and 2 up to 30 Consumers,
with a maximum of 32 cores in total. Figure 7.1-(b) shows, for each fixed
number of cores, the speedup for the worst, the best, the 50-50 and the ideal
configurations. We observe that the 50-50 strategy performs well, close to the

89

Best and Ideal. It is also relevant to notice that the gap between the Best and
Worst is quite large. This experiment illustrates the fact that with a smart
dynamic scheduling for task assignment, we can potentially obtain a very good
performance using the P/C model.

In conclusion, we see that the Producer Consumer model is a potentially good
model for future many-core architectures with on-chip memories and non-
coherent caches. Moreover, we see that triangle counting is a good candidate
to benefit from such architectures due to its data bound computation and
non-local memory accesses.

Chapter 8
Conclusions and Future Work

In this thesis, we have explored one of the hottest research topics in the
past decade: the community detection problem. We have studied the ex-
isting approaches for community detection, and have detected the different
shortcomings affecting them when it comes to detect communities in social
networks. The problem is that existing methods try to be generic but ignore
the specific characteristics that characterize the communities of each domain.
As an outcome of this analysis, we have proposed a domain specific community
detection design methodology, which consists of defining

1. a set of structural properties describing how the communities detected
by a metric must be.

2. a set of behavioral properties describing how the metric must behave at
different circumstances (e.g. at different scales).

Both structural and behavioral properties must be tailored for a given appli-
cation domain.

In our case, we have focused on the particular case of social networks. As
such, we have proposed three structural properties:

1. Internal structure sensitive: a community metric for social networks
must be sensitive to the internal community structure.

2. Bridge resistant: communities do not contain bridges.

91

92

3. Cut Vertex resistant: communities do not contain cut vertices.

Similarly, we have proposed three behavioral properties,

1. Scale Independent: a community metric must not depend on the total
size of the graph and be robust at any scale.

2. Linear Community Cohesion: the amount of links between com-
munity members must grow linearly with respect to the size of the
community.

3. Adaptive: a community metric must look both into the internal and
external community connectivity in order to adapt to the inhomogeneities
of the graph.

Based on the domain specific community detection methodology, we have
proposed a new community detection method called Weighted Community
Clustering (WCC). WCC takes the triangle as the basic motif indicating the
presence of structure between two vertices of the graph. The adoption of the
triangle has been done after the observation that transitive relations are very
common in social networks as analyzed in the existing literature.

We have mathematically proven that WCC is able to fulfill the behavioral and
structural properties defined and as a side outcome of our analysis, we have
also found the detectability threshold of WCC by means of the stochastic
block model. Finally, we have also shown experimentally that, where others
fail at correctly ranking the quality of a community, WCC is a robust and
reliable community detection metric.

Based on WCC, we have designed a novel community detection algorithm
called Scalable Community Detection(SCD). SCD has been crafted to scale to
large graphs on Shared Memory Machines (SMP). SCD has been proven to
be reliable and perform better than the most popular community detection
algorithms of the state of the art, specially on large graphs, using real datasets
with ground truth communities. SCD is able to find the communities on a
graph of 1.8 Billion edges in about 7 hours, and exploit all the resources of
current multi-core processors by showing an almost linear speed-up.

93

We have also analyzed the community structure of several real datasets with
ground truth communities and revealed that these significantly depart from
the typical informal community definition. We have observed that unlike
the common belief that communities are highly isolated sets of nodes with
a large internal edge density, ground truth communities exhibit a very large
conductance and a quite small degree of clustering. However, we also observe
that triangles are a very common structure inside these communities. Overall,
the observed structure suggests that we need more complex ways to discern
weak than strong links than just counting the number of edges, possibly
tailored after specific domains of the data.

Finally, we have also studied the problem of triangle counting in a modern
architecture such as the Intel Single-chip Cloud Computer. Our study has
revealed that the Producer-Consumer programming model is a suitable model
for architectures with non-coherent caches and on-chip memory buffers, and
have shown that applications such as triangle counting, which are memory
bound and exhibit very non-local memory accesses, can greatly benefit from
such architectures.

8.1 Future Work

Community detection is a recent research topic and as such, many questions
still remain to be answered. In this thesis we have designed a metric (WCC)
and a community detection algorithm (SCD) following a novel methodology
based on looking at the particular structures and characteristics that define
the communities on a given domain, which in our case are social networks.
Therefore, future work will include exploring the application of these ideas to
other domains by investigating which are the particular characteristics and
structures that characterize their communities.

WCC is a metric that works at a specific level of resolution. In other words, it
explicitly establishes a fixed relation between structural isolation and structural
intraconnectivity. This relation directly affects the detectability threshold
of the metric. Whether a given threshold is good or not might depend on
the needs of a particular application. Future work will include extending
WCC to incorporate mechanisms to allow tuning this threshold to better
meet the needs of the end user. We have already done some progress in this
sense, by adding an extra parameter to WCC that allows tuning the degree

94

of importance of structural isolation and structure intraconnectivity in the
community definition. In a similar way, understanding whether the important
structures that characterize a community change depending on the desired
resolution level is also important.

In this work, we have focused on simple undirected and unweighted graphs.
In some applications (e.g. Twitter like networks), edges are directed and/or
contain weights in the edges (e.g. road networks). Future work will also include
extending WCC to other types of graphs with directed and/or unweighted
edges.

Another line of research is that focused on designing metrics and algorithms for
other types of communities, such as overlapping communities (where nodes can
belong to more than one community) or egomunities (where communities are
built around a specific set of vertices, possibly overlapping as well). In these
cases, it is important to understand what characterizes the overlap between
communities and how this compares to the non-overlapping zone.

Finally, real data is not static but changes rapidly. Therefore, there is a need
for approaches that are able to detect time-evolving communities, how they
are born, live and die. Even though there has been a great progress and lot
of contributions during the last years, the problem of community detection is
still far from being solved.

Chapter 9
Appendix

9.1 Proof of Proposition 1

Proof. (i) This is a consequence of the inequalities t(x, S) ≤ t(x, V) and
vt(x, S) ≤ vt(x, V), vt(x, V) ≤ vt(x, V) + |S \ {x}| − vt(x, S)

(ii) If WCCv(x, S) = 0, then at least one of the following three identities
holds: t(x, V) = 0, vt(x, V) = 0, and t(x, S) = 0. Now, each one of these
conditions implies t(x, S) = 0. Reciprocally, by definition, if t(x, S) = 0, then
WCCv(x, S) = 0.

(iii) Assume WCCv(x, S) = 1. By (ii), t(x, S) 6= 0. Hence, there exists an
edge {y, z} such that y ∈ S \ {x} and z ∈ S \ {x} forming triangle with x.
Then |S \ {x}| ≥ 2. As the two fractions defining WCCv(x, S) are ≤ 1, the
condition WCCv(x, S) = 1 implies that both fractions are 1. Left fraction is 1
if and only if t(x, V) = t(x, S), which implies that vt(x, V) ≤ |S \ {x}|, which
turns into an equality (and therefore right fractions becomes 1) if and only if
vt(x, S) = |S \ {x}|.

Reciprocally, the condition vt(x, V) = |S\{x}| = vt(x, S) ≥ 2 implies t(x, S) =
t(x, V). As vt(x, V) = vt(x, S) = |S \ {x} ≥ 2, we have that both fractions in
the definition of WCCv(x, S) have denominator 6= 0 and both fractions are 1.
Therefore, WCCv(x, S) = 1.

95

96

9.2 Proof of Proposition 2

Proof. The proofs are a consequence of Proposition 1. (i) Since 0 ≤
WCCv(x, S) ≤ 1 for all x ∈ S, then 0 ≤WCCs(S) ≤ 1.

(ii) WCCs(S) = 0 implies that for all x ∈ S WCCv(x, S) = 0. Since the
condition for WCCv(x, S) = 0 is that t(x, S) = 0, then WCCs(S) = 0 implies
that S has no triangles.

(iii) WCCs(S) = 1 implies that WCCv(x, S) = 1 for all x ∈ S. This implies
that a vertex x ∈ S such that vt(x, V) 6= vt(x, S) and vt(x, S) = |S \{x}| does
not exist. Thus, all the vertices x ∈ S form triangles only and with exactly all
the vertices in S, which implies having an edge with all the vertices in S, and
hence forming a clique.

9.3 Proof of Theorem 1

Proof. Let S = S1 ∪ S2. For x ∈ Si, i ∈ {1, 2} we have t(x, Si) = t(x, S),
vt(x, V \ Si) = vt(x, V \ S) and |Si \ {x}| < |S \ {x}|. Then,

WCCv(x, S) =
t(x, S)

t(x, V)
· vt(x, V)

vt(x, V) + |S \ {x}| − vt(x, S)

<
t(x, Si)

t(x, V)
· vt(x, V)

vt(x, V) + |Si \ {x}| − vt(x, Si)
= WCCv(x, Si).

Therefore,

|S| ·WCC({S1, S2}) = |S1| ·WCCs(S1) + |S2| ·WCCs(S2)

=
∑
x∈S1

WCCv(x, S1) +
∑
x∈S2

WCCv(x, S2)

>
∑
x∈S

WCCv(x, S)

implies

WCC({S1, S2}) >
1

|S|
∑
x∈S

WCCv(x, S) = WCCs(S) = WCCs(S1 ∪ S2).

97

9.4 Proof of Theorem 2

Proof. (i) For the r − 1 vertices x ∈ Kr \ {t}, we have WCCv(x, V) =
vt(x, V)/(n− 1) = (r− 1)/(n− 1). For the vertex t, we have WCCv(v, V) = 1.
Finally, for the s−1 vertices x ∈ Ks\{t}, we haveWCCv(x, V) = (s−1)/(n−1).
As n− 1 = r + s− 2, we obtain the formula (3.4).

(ii) For the r− 1 vertices x ∈ Kr we have WCCv(x,Kr) = 1. For the vertex t,
we have

WCCv(x,Kr) =

(
r−1
2

)(
r−1
2

)
+
(
s−1
2

) · n− 1

r − 1 + s− 1

=
(r − 1)(r − 2)

(r − 1)(r − 2) + (s− 1)(s− 2)
.

For the s− 1 vertices x ∈ Ks \ {t}, we have

WCCv(x,Ks \ {t}) =

(
s−2
2

)(
s−1
2

) · s− 1

s− 1
=

(s− 2)(s− 3)

(s− 1)(s− 2)
.

This gives the formula (3.6).

(iii) For x ∈ Kr \ {t},

WCCv(x,Kr \ {t}) =

(
r−2
2

)(
r−1
2

) · r − 1

r − 1
=

(r − 2)(r − 3)

(r − 1)(r − 2)
;

for vertex t,

WCCv(x, {t}) =

(
0
2

)(
n−1
2

) · n− 1

0 + r − 1 + s− 1

=
(1− 1)(1− 2)

(r + s− 2)(r + s− 3)
= 0;

for x ∈ Ks \ {t},

WCCv(x,Ks \ {t}) =
(s− 2)(s− 3)

(s− 1)(s− 2)
;

This implies (3.7).

98

(iv) Define f1(r, s) = n ·WCC(P1), f2(r, s) = n ·WCC(P2), and f3(r, s) =
n ·WCC(P3). The expression of these functions are those in (3.4), (3.6) and
(3.7), respectively. The goal is to show that for all integers values r, s with
r ≥ s ≥ 4 the inequality f3(r, s) ≤ f2(r, s) holds. Clearly, the first summand
of f3(r, s) is smaller than the first summand of f2(r, s), and the last summands
are equal. As f2(r, s) has the second summand ≥ 0, we have f3(r, s) ≤ f2(r, s).

(v) We shall prove f2(r, s)− f1(r, s) ≥ 0 for n ≥ 7 and 4 ≤ r ≤ n− 3. We have
s = n− r + 1 and

f2(r, s)− f1(r, s) >n− 4− (r − 1)2 + (n− r)2

n− 1

=
−2r2 + (2 + 2n)r − 5n+ 3

n− 1
.

The sign of f2(r, s) − f1(r, s) is the sign of the polynomial function −2r2 +
2(n+ 1)r − 5n+ 3, which is a convex function on r with roots:

r1 =
1

2
(n+ 1−

√
n2 − 8n+ 7);

r2 =
1

2
(n+ 1 +

√
n2 − 8n+ 7).

Now, for n ≥ 7, we have r1 ≤ 4 and r2 ≥ n − 3. Therefore, for each
r ∈ {4, . . . , n− 3} we have f2(r, s)− f1(r, s) ≥ 0.

9.5 Proof of Theorem 3

Proof. Let N be the set of neighbors of v.

(i) For x ∈ V , we have WCCv(x, V) = vt(x, V)/r. Now,

vt(x, V) =


(r − 1)p if x ∈ V \N ;

(r − 1)p+ 1 if x ∈ N ;

d if x ∈ {v}.

99

Then

(r + 1)WCC(P1) =(r − d)
(r − 1)p

r
+ d

(r − 1)p+ 1

r
+
d

r

=(r − 1)p+ 2
d

r
.

(ii) For x ∈ V \N ,

WCCv(x, V) =
vt(x, V)

r − 1
=

(r − 1)p

r − 1
= p.

(iii) For x ∈ N , we have

t(x, V) =

(
r − 1

2

)
p3;

t(x, V ∪ {v}) =

(
r − 1

2

)
p3 + (d− 1)p;

vt(x, V ∪ {v}) = (r − 1)p+ 1;

|V \ {x}| − vt(x, V) = (r − 1)− (r − 1)p;

WCCv(x, V) =
((r − 1)p+ 1)(r − 1)(r − 2)p2

((r − 1)(r − 2)p2 + 2(d− 1)) · r
.

Moreover, WCCv(v, {v}) = 0. Then,

(r + 1)WCC(P2) = (r − d)p+
d

r
· ((r − 1)p+ 1)(r − 1)(r − 2)p2

(r − 1)(r − 2)p2 + 2(d− 1)
.

(iv) We have,

(r + 1) (WCC(P1)−WCC(P2)) = p(d− 1)

+ 2
d

r
− d

r

((r − 1)p+ 1)(r − 1)(r − 2)p2

(r − 1)(r − 2)p2 + 2(d− 1)
,

and the condition WCC(P1)−WCC(P2) > 0 is equivalent to the condition

ad2 + bd+ c > 0, (9.1)

100

where

a =2(2 + pr),

b =p2(p+ 1)r2 − p(3p2 + 3p+ 4)r + 2p3 + 2p2 − 4,

c =− p3r3 + 3p3r2 + 2p(1− p2)r.

For short, let we denote by O(rn) a polynomial expression of degree at most
n. Then, the greatest solution of (9.1) is,

d2 =
−p2(1 + p)r2 +O(r) +

√
p4(p2 + 2p+ 9)r4 +O(r3)

4(2 + pr)

and we get

lim
r→+∞

d2
r

=
−p2(1 + p) + p2

√
p2 + 2p+ 9

4p

= p

√
p2 + 2p+ 9− (1 + p)

4
.

Thus, for a large enough r, the condition

d > rp
(√

p2 + 2p+ 9− (1 + p)
)
/4,

is equivalent to WCC(P1) > WCC(P2).

Note that function p 7→ p
(√

p2 + 2p+ 9− (1 + p)
)
/4 is increasing in p. A

large value of p means more edges in G, and then a large value of d/r is needed
for WCC(P1) being greater than WCC(P2).

In the case of Corollary 1, p = 1, thus d >
√

3− 1/2 = 0.37.

9.6 Proof of Theorem 4

Proof. Let x be any vertex of the graph G(V,E), and S the community
of vertex x. Let’s assume that all the edges of the graph close at least one
triangle.

101

(i) For P1

t(x, S) =

(
n
2
− 1

2

)
p3in;

t(x, V) =

(
n
2
− 1

2

)
p3in +

(
n
2

2

)
pin · p2out +

(
n
2
− 1

1

)(
n
2

1

)
pin · p2out;

vt(x, V) = (
n

2
− 1)pin +

n

2
pout;

vt(x, V) + |S \ {x}| − vt(x, S) = (
n

2
− 1)pin +

n

2
pout

n

2
− 1− (

n

2
− 1)pin.

Then,

WCC(P1) =
(n2 − 1)(n2 − 2)p3in((n2 − 1)pin + n

2 pout)

((n2 − 1)(n2 − 2)p3in + (n2 − 1)n · pin · p2out)(n2 pout + n
2 − 1)

.

(ii) For P2
t(x, S) =

(
n
2
− 1

2

)
p3in +

(
n
2

2

)
pin · p2out +

(
n
2
− 1

1

)(
n
2

1

)
pin · p2out;

t(x, V) =

(
n
2
− 1

2

)
p3in +

(
n
2

2

)
pin · p2out +

(
n
2
− 1

1

)(
n
2

1

)
pin · p2out;

vt(x, V) = (
n

2
− 1)pin +

n

2
pout;

vt(x, V) + |S \ {x}| − vt(x, S) = n− 1.

Then,

WCC(P2) =
(n2 − 1)pin + n

2 pout

n− 1
.

(iii) We numerically proof this statement. First, we need to compute the WCC
of Ps, which consist of those partitions where s vertices of each of the two
communities have been correctly placed. More formally, let Ps = {A′, B′} be
any partition of the graph with two communities A′ and B′ of size n

2 , where
|A∩A′| = s and |B∩B′| = s. Let xa ∈ {A∩A′}, xb ∈ {B∩B′}, va ∈ {A′ \A}
and vb ∈ {B′ \ B}. That is, any partition with two communities of size n

2

102

where 2s vertices have been well placed.

t(xa, A
′) =

(
s− 1

2

)
p3in +

(
s− 1

1

)(
n
2
− s

1

)
pin · pout2

+

(
n
2
− s

2

)
pin · pout2;

t(xb, B
′) = t(xa, A

′);

t(xa, V) =

(
n
2
− 1

2

)
p3in +

(
n
2

2

)
pin · p2out

+

(
n
2
− 1

1

)(
n
2

1

)
pin · p2out;

t(xb, V) = t(xa, V);

vt(xa, V) = (
n

2
− 1)pin +

n

2
pout;

vt(xb, V) = vt(xa, V);

vt(xb, V) + |A′ \ {xa}| − vt(xa, A
′) = (

n

2
− 1)pin +

n

2
pout

+ (
n

2
− 1− (s− 1)pin − (

n

2
− s)pout);

vt(xb, V) + |B′ \ {xb}| − vt(xb, B
′) = vt(xb, V) + |A′ \ {xa}| − vt(xa, A

′).

t(va, A
′) =

(
n
2
− s− 1

2

)
p3in +

(
n
2
− s− 1

1

)(
s

1

)
pin · pout2

+

(
s

2

)
pin · pout2;

t(vb, B
′) = t(va, A

′);

t(va, V) =

(
n
2
− 1

2

)
p3in +

(
n
2

2

)
pin · p2out

+

(
n
2
− 1

1

)(
n
2

1

)
pin · p2out;

t(vb, V) = t(va, V);

vt(va, V) = (
n

2
− 1)pin +

n

2
pout;

vt(vb, V) = vt(va, V);

vt(vb, V) + |A′ \ {va}| − vt(va, A
′) = (

n

2
− 1)pin +

n

2
pout + (

n

2
− 1− (s− 1)pin − (

n

2
− s)pout);

vt(vb, V) + |B′ \ {vb}| − vt(vb, B
′) = vt(vb, V) + |A′ \ {va}| − vt(va, A

′).

103

0.0 0.2 0.4 0.6 0.8 1.0
pout

0.0

0.2

0.4

0.6

0.8

1.0

p
in

n=10
P1

P2

Ps

0.0 0.2 0.4 0.6 0.8 1.0
pout

0.0

0.2

0.4

0.6

0.8

1.0

p
in

n=50
P1

P2

Ps

0.0 0.2 0.4 0.6 0.8 1.0
pout

0.0

0.2

0.4

0.6

0.8

1.0

p
in

n=100
P1

P2

Ps

0.0 0.2 0.4 0.6 0.8 1.0
pout

0.0

0.2

0.4

0.6

0.8

1.0

p
in

n=500
P1

P2

Ps

Figure 9.1: The best partition found for different configurations of pin, pout
and n. All possible configurations of Ps have been tested

Then,

WCC(Ps) =
1

n
· 2 · s ·

(s− 1)(s− 2)p3in + (s− 1)(n
2
− s)pin · p2out + (n

2
− s)(n

2
− s− 1)p2out · pin

((n
2
− 1)(n

2
− 2)p3in + (n

2
− 1)n · pin · p2out)

·

(n
2
− 1)pin + n

2
pout

(n
2
− 1)pin + n

2
pout + (n

2
− 1− (s− 1)pin − (n

2
− s)pout)

+

1

n
· 2 · (n

2
− s)

((n
2
− s)− 1)((n

2
− s)− 2)p3in + ((n

2
− s)− 1)s · pin · p2out + s(s− 1)p2out · pin

((n
2
− 1)(n

2
− 2)p3in + (n

2
− 1)n · pin · p2out)

·

(n
2
− 1)pin + n

2
pout

(n
2
− 1)pin + n

2
pout + (n

2
− 1− (n

2
− s− 1)pin − s · pout)

.

Figure 9.1 shows, for each configuration of pin and pout, for different values of
n, which partition P ∈ {P1,P2,Ps} is that with a maximum WCC. In the
case of Ps, we tested for all possible values of s. We see that the statement is
true, regardless of the the value of n.

(iv) We are interested in the transition point between P1 and P2, that is, we
want to know for which values of pin and pout, WCC(P1) −WCC(P2) = 0.
Since we are interested in arbitrarily large graphs, we compute the difference
when n tends to infinitely large values :

L = lim
n→∞

WCC(P1)−WCC(P2) = −1

2

(p2in · pout + 2 · p3out − p2in + 2 · p2out)(pin + pout)

(pout + 1)(p2in + 2 · p2out)

104

If we solve L = 0 for pin, we obtain the following solutions:

−pout,−
√

(2− 2 · pout)(pout + 1)pout
1− pout

,

√
(2− 2 · pout)(pout + 1)pout

1− pout

, being the third solution the only positive and valid one.

9.7 Proof of Theorem 5

Proof.

WCC(P ′)−WCC(P) =

=1/|V |

(
|C1 ∪ {v}| ·WCC(C1 ∪ {v}) +

∑k

i=2
|Ci| ·WCC(Ci)

)
−

1/|V |

(
|C1| ·WCC(C1) +

∑k

i=2
|Ci| ·WCC(Ci) +WCC({v})

)
=1/|V |(|C ′1| ·WCC(C ′1))− 1/|V |(|C1| ·WCC(C1) + 0)

=1/|V |

(∑
x∈C′1

WCC(x,C ′1) +
∑

x∈C1

WCC(x,C1)

)
=1/|V |

(∑
x∈C1

WCC(x,C ′1) +WCC(v, C ′1)−∑
x∈C1

WCC(x,C1)
)

9.8 Proof of Theorem 6

Proof. As stated in the theorem assumptions, the partition P ′ is build by
removing v from C1. Alternatively, the partition P can be build by removing
vertex v to C ′1 in P ′. Then, the two following equalities hold:

WCC(P) +WCCR(v, C1) = WCC(P ′),

WCC(P) = WCC(P ′) +WCCI(v, C
′
1)

and thus: WCCR(v, C1) = −WCCI(v, C
′
1)

105

9.9 Proof of Theorem 7

Proof. Since WCC is a state function, all paths from P to P ′ have the
same differential. Then, we express the transfer operation as a combination of
remove and insert:

WCC(P) +WCCT (v, C1, Ck) = WCC(P ′)

WCC(P) +WCCR(v, C1) +WCCI(v, Ck) = WCC(P ′)

WCC(P ′)−WCC(P) = −WCCI(v, C
′
1) +WCCI(v, Ck)

9.10 Proof of Theorem 8

Proof. Consider the situation depicted in Figure 4.1. Let N(x) be the set
of neighbors of x. Given that, we define sets F = N(v) ∩ C which contains
those vertices in C that are actual neighbors of v, and G = (C \N(x)), which
contains those vertices in C that are not neighbors of v. Therefore, from
Theorem 5 we have:

WCCI(v, C) =

=1/|V |
∑

x∈C
(WCC(x,C ∪ {v})−WCC(x,C))+

1/|V |WCC(v, C ∪ {v})
=1/|V |

∑
x∈F

(WCC(x,C ∪ {v})−WCC(x,C))+

1/|V |
∑

x∈G
(WCC(x,C ∪ {v})−WCC(x,C))+

1/|V |WCC(v, C ∪ {v})

We know that |F | = din and |G| = r − din, then we can define WCC ′I(v, C)
with respect to three variables Θ1, Θ2 and Θ3, which represent the WCC
improvement of a vertex of F , a vertex of G and v respectively. Then,

WCC ′I(v, C) = 1/|V |(|F | ·Θ1 + |G| ·Θ2 + Θ3).

We define q = (b− din)/r as the number of edges connecting each vertex in C
with the rest of the graph excluding v. Then,

106

(i) If x ∈ F , we have

t(x,C) =(r − 1)(r − 2)δ3;

t(x,C ∪ {v}) =(r − 1)(r − 2)δ3 + (din − 1)δ;

t(x, V) =(r − 1)(r − 2)δ3 + (din − 1)δ + q(r − 1)δω+

q(q − 1)ω + doutω;

vt(x, V) =(r − 1)δ + 1 + q;

vt(x, V) + |C ∪ {v} \ {x}| − vt(x, {C ∪ {v}}) = r + q;

vt(x, V) + |C \ {x}| − vt(x,C) = r − 1 + q + 1 = r + q;

In t(x,C), we account for those triangles that x closes with two other vertices
in C. Similarly, in t(x,C ∪ {v}) we account for those triangles that x closes
with two other vertices in C, and those triangles that x closes with v and
another vertex in C. t(x, V) accounts for all triangles that vertex x closes with
the graph, which are: t(x,C ∪ {v}) plus those triangles that vertex x closes
with another vertex of C and a vertex of V \C, plus those triangles that vertex
x closes with two other vertices in V \ C, plus those triangles vertex x closes
with v and another vertex of V \ C. Since we assume that every edge in the
graph closes at least one triangle, vt(x, V) accounts for the number of vertices
in C that are actual neighbors of x plus 1 (for vertex v) and q vertices that
are connected to x. Finally, we have that the union of vertices in C and those
vertices in V with whom x closes at least one triangle is r + q. Therefore,

Θ1 = WCC(x,C ∪ {v})−WCC(x,C)

= t(x,C∪{v})
t(x,V) · vt(x,V)

|C∪{v}\{x}|+vt(x,V \{C∪{v}}) −
t(x,C)
t(x,V) ·

vt(x,V)
|C\{x}|+vt(x,V \C)

= vt(x,V)
(r+q)·t(x,V) · (t(x,C ∪ {v})− t(x,C))

= (r−1)δ+1+q
(r+q)·((r−1)(r−2)δ3+(din−1)δ+q(r−1)δω+q(q−1)ω+doutω) ·

(din−1)δ.

107

(ii) If x ∈ B, we have

t(x,C) =(r − 1)(r − 2)δ3;

t(x,C ∪ {v}) =(r − 1)(r − 2)δ3;

t(x, V) =(r − 1)(r − 2)δ3 + q(q − 1)ω + q(r − 1)δω;

vt(x, V) =(r − 1)δ + q;

vt(x, V) + |C ∪ {v} \ {x}| − vt(x, {C ∪ {v}}) = r + q;

vt(x, V) + |C \ {x}| − vt(x,C) = r − 1 + q;

t(x,C) accounts for those triangles that x closes with two other vertices in C.
Since, x is not connected to v, we have that t(x,C) = t(x,C ∪ {v}). t(x, V)
accounts for the number of triangles that x closes with the rest of vertices in
V . These are t(x,C) plus those triangles that vertex x closes with another
vertex of C and a vertex of V \ C, plus those triangles that vertex x closes
with two other vertices in V \ C. vt(x, V) accounts for the number of vertices
in V with whom x closes at least one triangle, which are the neighbors of x in
C and those t vertices with whom x is connected. Finally, we have that the
union of vertices in C ∪ {v} and vertices in V with whom x closes at least one
triangle is r + q, and the union of vertices in C and vertices in V with whom
x closes at least one triangle is r + q − 1. Therefore,

Θ2 = WCC(x,C ∪ {v})−WCC(x,C)

= t(x,C∪{v})
t(x,V) · vt(x,V)

|C∪{v}\{x}|+vt(x,V \{C∪{v}}) −
t(x,C)
t(x,V) ·

vt(x,V)
|C\{x}|+vt(x,V \C) =

= − (r−1)(r−2)δ3
(r−1)(r−2)δ3+q(q−1)ω+q(r−1)δω ·

(r−1)δ+q
(r+q)(r−1+q) .

(iii) If x = v we have

t(x,C ∪ {v}) = din(din − 1)δ;

t(x, V) = din(din − 1)δ + dout(dout − 1)ω + doutdinω;

vt(x, V) = din + dout;

vt(x, V) + |C \ {x}| − vt(x,C) = r + dout;

108

In this case, t(x,C ∪ {v}) accounts for those triangles that x closes with C,
with whom it is connected to din vertices. t(x, V) are those vertices vertex x
closes with V , which are those x closes with C plus those x closes with other
two vertices in V \ C. vt(x, V) accounts for the number of vertices in V with
whom x closes at least one triangle, which are din plus dout since we assume
that every edge closes at least one triangle. Finally, the union between the
vertices in C and those vertices in V with whom x closes at least one triangle
is r + dout. Therefore,

Θ3 = WCC(v, C ∪ {v})
= t(x,C∪{v})

t(x,V) · vt(x,V)
|C|+vt(x,V \C) =

= din(din−1)δ
din(din−1)δ+dout(dout−1)ω+doutdinω ·

din+dout
r+dcout

.

109

9.11 Distributions of Statistical Indicators

9.11.1 Amazon

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(a) Clustering Coefficient (b) TPR

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0 20 40 60 80 100

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(c) Bridge Ratio (d) Diameter

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0 1 2 3 4

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(e) Conductance (f) log10(Size)

Figure 9.2: Distribution of the statistical indicators for the Amazon graph.

110

9.11.2 Dblp

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(a) Clustering Coefficient (b) TPR

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0 20 40 60 80 100

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(c) Bridge Ratio (d) Diameter

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0 1 2 3 4

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(e) Conductance (f) log10(Size)

Figure 9.3: Distribution of the statistical indicators for the Dblp graph.

111

9.11.3 Youtube

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(a) Clustering Coefficient (b) TPR

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0 20 40 60 80 100

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(c) Bridge Ratio (d) Diameter

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0 1 2 3 4

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(e) Conductance (f) log10(Size)

Figure 9.4: Distribution of the statistical indicators for the Youtube graph.

112

9.11.4 LFR 0.1

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(a) Clustering Coefficient (b) TPR

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0 20 40 60 80 100

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(c) Bridge Ratio (d) Diameter

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0 1 2 3 4

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(e) Conductance (f) log10(Size)

Figure 9.5: Distribution of the statistical indicators for the LFR1 graph.

113

9.11.5 LFR 0.2

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(a) Clustering Coefficient (b) TPR

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0 20 40 60 80 100

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(c) Bridge Ratio (d) Diameter

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0 1 2 3 4

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(e) Conductance (f) log10(Size)

Figure 9.6: Distribution of the statistical indicators for the LFR2 graph.

114

9.11.6 LFR 0.4

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(a) Clustering Coefficient (b) TPR

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0 20 40 60 80 100

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(c) Bridge Ratio (d) Diameter

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0 1 2 3 4

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(e) Conductance (f) log10(Size)

Figure 9.7: Distribution of the statistical indicators for the LFR4 graph.

115

9.11.7 LFR 0.5

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(a) Clustering Coefficient (b) TPR

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0 20 40 60 80 100

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(c) Bridge Ratio (d) Diameter

0.0 0.2 0.4 0.6 0.8 1.0

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

0 1 2 3 4

d
e
n
s
it
y

0.001

0.005

0.01

0.05

0.1

0.5

1.0

(e) Conductance (f) log10(Size)

Figure 9.8: Distribution of the statistical indicators for the LFR5 graph.

Bibliography

[1] Balázs Adamcsek, Gergely Palla, Illés J Farkas, Imre Derényi, and Tamás
Vicsek. Cfinder: locating cliques and overlapping modules in biological
networks. Bioinformatics, 22(8):1021–1023, 2006. 18

[2] Yong-Yeol Ahn, James P Bagrow, and Sune Lehmann. Link communities
reveal multiscale complexity in networks. Nature, 466(7307):761–764,
2010. 18, 57

[3] Ching Avery. Giraph: Large-scale graph processing infrastructure on
hadoop. Proceedings of the Hadoop Summit. Santa Clara, 2011. 18

[4] Seung-Hee Bae, Dan Halperin, Jevin West, Martin Rosvall, and Brandon
Howe. Scalable flow-based community detection for large-scale network
analysis. In Data Mining Workshops (ICDMW), 2013 IEEE 13th Inter-
national Conference on, pages 303–310. IEEE, 2013. 19

[5] Seung-Hee Bae and Bill Howe. Gossipmap: a distributed community
detection algorithm for billion-edge directed graphs. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, page 27. ACM, 2015. 20

[6] James P Bagrow. Communities and bottlenecks: Trees and treelike
networks have high modularity. Physical Review E, 85(6):066118, 2012.
3, 15, 62

[7] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. Fast unfolding of communities in large networks. Journal of
Statistical Mechanics: Theory and Experiment, 2008(10):P10008, 2008. 2,
13, 57

117

118

[8] Carlos Castillo, Debora Donato, Aristides Gionis, Vanessa Murdock, and
Fabrizio Silvestri. Know your neighbors: Web spam detection using the
web topology. In Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information retrieval, pages
423–430. ACM, 2007. 2

[9] Jingchun Chen and Bo Yuan. Detecting functional modules in the yeast
protein–protein interaction network. Bioinformatics, 22(18):2283–2290,
2006. 2

[10] Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zde-
borová. Inference and phase transitions in the detection of modules in
sparse networks. Physical Review Letters, 107(6):065701, 2011. 39

[11] Imre Derényi, Gergely Palla, and Tamás Vicsek. Clique percolation in
random networks. Physical review letters, 94(16):160202, 2005. 18

[12] Emilio Di Giacomo, Walter Didimo, Luca Grilli, and Giuseppe Liotta.
Graph visualization techniques for web clustering engines. Visualization
and Computer Graphics, IEEE Transactions on, 13(2):294–304, 2007. 2,
10

[13] Jordi Duch and Alex Arenas. Community detection in complex networks
using extremal optimization. Physical review E, 72(2):027104, 2005. 2, 14

[14] Renzo et al. The linked data benchmark council: a graph and rdf industry
benchmarking effort. In To appear in SIGMOD Record. ACM. 71, 72, 73

[15] Santo Fortunato. Community detection in graphs. Physics Reports,
486(3):75–174, 2010. 11, 16, 43, 64

[16] Santo Fortunato and Marc Barthélemy. Resolution limit in community
detection. Proceedings of the National Academy of Sciences, 104(1):36–41,
2007. 1, 3, 9, 14

[17] Clara Granell, Sergio Gomez, and Alex Arenas. Hierarchical multires-
olution method to overcome the resolution limit in complex networks.
International Journal of Bifurcation and Chaos, 22(07):1250171, 2012. 14

[18] Mark Granovetter. The strength of weak ties: A network theory revisited.
Sociological theory, 1(1):201–233, 1983. 2

119

[19] Roger Guimera, Marta Sales-Pardo, and Lúıs A Nunes Amaral. Modular-
ity from fluctuations in random graphs and complex networks. Physical
Review E, 70(2):025101, 2004. 2, 14

[20] John Hopcroft, Omar Khan, Brian Kulis, and Bart Selman. Natural
communities in large linked networks. In Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data min-
ing, pages 541–546. ACM, 2003. 10

[21] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good,
bad and spectral. Journal of the ACM (JACM), 51(3):497–515, 2004. 16

[22] George Karypis and Vipin Kumar. Metis-unstructured graph partitioning
and sparse matrix ordering system, version 2.0. 1995. 10

[23] A. Lancichinetti. Community detection algorithms: a comparative analy-
sis. Phy. Rev. E, 80(5):056117, 2009. 57

[24] A. Lancichinetti, F. Radicchi, J.J. Ramasco, and S. Fortunato. Finding
statistically significant communities in networks. PloS one, 6(4):e18961,
2011. 57

[25] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Benchmark
graphs for testing community detection algorithms. Physical review E,
78(4):046110, 2008. 71, 87

[26] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Benchmark
graphs for testing community detection algorithms. Phy. Rev. E, 78(4 Pt
2):6, 2008. 72, 73

[27] J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins. Microscopic
evolution of social networks. In SIGKDD, pages 462–470. ACM, 2008. 23

[28] D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social
networks. ASIST, 58(7):1019–1031, 2007. 24

[29] Hao Lu, Mahantesh Halappanavar, and Ananth Kalyanaraman. Parallel
heuristics for scalable community detection. Parallel Computing, 2015. 19

[30] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for

120

large-scale graph processing. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, pages 135–146. ACM,
2010. 18

[31] Fragkiskos D Malliaros and Michalis Vazirgiannis. Clustering and commu-
nity detection in directed networks: A survey. Physics Reports, 533(4):95–
142, 2013. 1, 9

[32] T.G. Mattson, M. Riepen, T. Lehnig, P. Brett, W. Haas, P. Kennedy,
J. Howard, S. Vangal, N. Borkar, G. Ruhl, and S Dighe. he 48-core SCC
processor: the Programmer’s view. In SC, pages 1–11. IEEE Computer
Society, 2010. 6, 83

[33] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a
feather: Homophily in social networks. Annual review of sociology, pages
415–444, 2001. 5, 23

[34] Farnaz Moradi, Tomas Olovsson, and Philippas Tsigas. An evaluation of
community detection algorithms on large-scale email traffic. In Experi-
mental Algorithms, pages 283–294. Springer, 2012. 2

[35] Tamás Nepusz, Andrea Petróczi, László Négyessy, and Fülöp Bazsó. Fuzzy
communities and the concept of bridgeness in complex networks. Physical
Review E, 77(1):016107, 2008. 11

[36] Mark EJ Newman. The structure of scientific collaboration networks.
Proceedings of the National Academy of Sciences, 98(2):404–409, 2001. 23

[37] Mark EJ Newman. Modularity and community structure in networks.
Proceedings of the National Academy of Sciences, 103(23):8577–8582, 2006.
2, 13

[38] Mark EJ Newman. Spectral methods for community detection and graph
partitioning. Physical Review E, 88(4):042822, 2013. 2, 14

[39] Mark EJ Newman and Juyong Park. Why social networks are different
from other types of networks. Physical Review E, 68(3):036122, 2003. 23

[40] Günce Keziban Orman and Vincent Labatut. A comparison of community
detection algorithms on artificial networks. In Discovery Science, pages
242–256. Springer, 2009. 72

121

[41] A. Padrol-Sureda, G. Perarnau-Llobet, J. Pfeifle, and V. Muntés-Mulero.
Overlapping community search for social networks. In ICDE, pages
992–995, 2010. 19, 57

[42] G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlapping
community structure of complex networks in nature and society. Nature,
435(7043):814–818, 2005. 57

[43] Symeon Papadopoulos, Yiannis Kompatsiaris, Athena Vakali, and Ploutar-
chos Spyridonos. Community detection in social media. Data Mining and
Knowledge Discovery, 24(3):515–554, 2012. 1, 9

[44] Minh-Duc Pham, Peter Boncz, and Orri Erling. S3g2: A scalable structure-
correlated social graph generator. In TPCTC, pages 156–172. Springer,
2012. 72

[45] Pascal Pons and Matthieu Latapy. Computing communities in large
networks using random walks. J. Graph Algorithms Appl., 10(2):191–218,
2006. 3, 17

[46] A. Prat-Pérez, D. Dominguez-Sal, and J.L. Larriba-Pey. Social Based
Layouts for the Increase of Locality in Graph Operations. In DASFAA,
pages 558–569, 2011. 10

[47] Arnau Prat-Pérez and David Dominguez-Sal. How community-like is the
structure of synthetically generated graphs? In Proceedings of Workshop
on GRAph Data management Experiences and Systems, pages 1–9. ACM,
2014. 72

[48] Arnau Prat-Pérez, David Dominguez-Sal, Josep M Brunat, and Josep-
Lluis Larriba-Pey. Put three and three together: triangle driven commu-
nity detection. In To be published in TKDD. ACM. 21, 47, 58

[49] Arnau Prat-Pérez, David Dominguez-Sal, Josep M Brunat, and Josep-
Lluis Larriba-Pey. Shaping communities out of triangles. In Proceedings
of the 21st ACM international conference on Information and knowledge
management, pages 1677–1681. ACM, 2012. 21

[50] Arnau Prat-Pérez, David Dominguez-Sal, and Josep-LLuis Larriba-Pey.
High quality, scalable and parallel community detection for large real

122

graphs. In Proceedings of the 23rd international conference on World
wide web, pages 225–236. ACM, 2014. 47

[51] Arnau Prat-Pérez, David Dominguez-Sal, Josep-Lluis Larriba-Pey, and
Pedro Trancoso. Producer-consumer: the programming model for future
many-core processors. In Architecture of Computing Systems–ARCS 2013,
pages 110–121. Springer, 2013. 83, 87

[52] Filippo Radicchi. A paradox in community detection. EPL (Europhysics
Letters), 106(3):38001, 2014. 15, 43

[53] Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto,
and Domenico Parisi. Defining and identifying communities in networks.
Proceedings of the National Academy of Sciences of the United States of
America, 101(9):2658–2663, 2004. 15, 16

[54] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear
time algorithm to detect community structures in large-scale networks.
Physical Review E, 76(3):036106, 2007. 3, 18, 57

[55] Jörg Reichardt and Stefan Bornholdt. Statistical mechanics of community
detection. Physical Review E, 74(1):016110, 2006. 14

[56] Jason Riedy, David Bader, Henning Meyerhenke, et al. Scalable multi-
threaded community detection in social networks. In Parallel and Dis-
tributed Processing Symposium Workshops & PhD Forum (IPDPSW),
2012 IEEE 26th International, pages 1619–1628. IEEE, 2012. 19

[57] José F Rodrigues Jr, Hanghang Tong, Agma JM Traina, Christos Falout-
sos, and Jure Leskovec. Gmine: a system for scalable, interactive graph
visualization and mining. In Proceedings of the 32nd international con-
ference on Very large data bases, pages 1195–1198. VLDB Endowment,
2006. 10

[58] Martin Rosvall and Carl T Bergstrom. Maps of random walks on com-
plex networks reveal community structure. Proceedings of the National
Academy of Sciences, 105(4):1118–1123, 2008. 3, 17, 57

[59] Marcel Salathé and James H Jones. Dynamics and control of diseases in
networks with community structure. PLoS Comput Biol, 6(4):e1000736,
2010. 2

123

[60] V. Satuluri, S. Parthasarathy, and Y. Ruan. Local graph sparsification
for scalable clustering. In SIGMOD, pages 721–732. ACM, 2011. 23

[61] X. Shi, L.A. Adamic, and M.J. Strauss. Networks of strong ties. Physica
A: Statistical Mechanics and its Applications, 378(1):33–47, 2007. 23

[62] Mauro Sozio and Aristides Gionis. The community-search problem and
how to plan a successful cocktail party. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data min-
ing, pages 939–948. ACM, 2010. 2

[63] Lei Tang and Huan Liu. Community detection and mining in social media.
Synthesis Lectures on Data Mining and Knowledge Discovery, 2(1):1–137,
2010. 10

[64] Ju Xiang and Ke Hu. Limitation of multi-resolution methods in com-
munity detection. Physica A: Statistical Mechanics and its Applications,
391(20):4995–5003, 2012. 14, 26

[65] J. Yang and J. Leskovec. Defining and evaluating network communities
based on ground-truth. In ICDM, pages 745–754, 2012. 11, 15

[66] Jaewon Yang and Jure Leskovec. Overlapping community detection at
scale: a nonnegative matrix factorization approach. In Proceedings of
the sixth ACM international conference on Web search and data mining,
pages 587–596. ACM, 2013. 19

[67] Jaewon Yang and Jure Leskovec. Defining and evaluating network com-
munities based on ground-truth. Knowledge and Information Systems,
42(1):181–213, 2015. 17, 58

[68] Jaewon Yang, Julian McAuley, and Jure Leskovec. Detecting cohesive and
2-mode communities indirected and undirected networks. In Proceedings
of the 7th ACM international conference on Web search and data mining,
pages 323–332. ACM, 2014. 11

	Introduction
	Contributions

	Related Work
	Metric based community detection
	Algorithmic community detection
	Parallel and distributed community detection

	Weighted Community Clustering
	Domain specific community detection
	Problem Definition
	The Weighted Community Clustering
	Formal analysis of WCC

	Scalable Community Detection
	Heuristic

	Experiments
	WCCs quality
	SCD results quality
	Performance, scalability and memory consumption of SCD

	Ground-truth vs Synthetic Communities
	Experimental Setup
	Results Discussion

	Triangle counting in future many-core micro-architectures
	The Intel SCC
	Producer consumer implementation of triangle counting
	Experiments

	Conclusions and Future Work
	Future Work

	Appendix
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Theorem 8
	Distributions of Statistical Indicators

