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There is no branch of mathematics, however abstract, which may not
some day be applied to phenomena of the real world.

- Lobatchevsky, Nikolai

[The universe] cannot be read until we have learnt the language and
become familiar with the characters in which it is written. It is written in

mathematical language, and the letters are triangles, circles and other
geometrical figures, without which means it is humanly impossible to

comprehend a single word.
- Galilei, Galileo





Abstract

There is an extensive literature on the analysis of point process data
in both time and space, separately. However, methods for the analysis
of spatio-temporal point processes are less well established. Many spatial
processes of scientific interest also have a temporal component that may
need to be considered when modelling the underlying phenomenon. The
spatio-temporal behaviour analysis is fundamental in areas such as environ-
mental sciences, climate prediction and meteorology, epidemiology, image
analysis, agriculture, seismology and astronomy, and so spatio-temporal
point processes, rather than purely spatial point processes, must then be
considered as potential models. A natural starting point for the analy-
sis of spatio-temporal point process data is to investigate the nature of
any stochastic interactions among the points of the process. For these
processes, second-order properties play an important role for exploratory
and inferential analysis. Second-order methods provide indeed a natural
starting point for such analysis.

This thesis is mainly focused on developing properties and estimators
for second-order characteristics of spatio-temporal point processes, and
every chapter adds some valuable information over the previous ones.

In Chapter 1 we present a theoretical framework of spatial and spatio-
temporal point processes as a mathematical tool for dealing with the con-
cepts shown along the next chapters of this thesis. The final part of this
chapter consists of a first compilation of the most recent developments in
the literature of spatio-temporal point processes.

In Chapter 2 we consider kernel-based non-parametric estimation of
second-order product densities of spatial point patterns. We present a new
family of optimal and positive kernels showing less variance than that for
optimal kernels. This family generalises most of the classical and widely
used kernel functions, such as Box or Epanechnikov kernels. We propose
an alternative unbiased estimator for the product density function, and
compare the performance of the estimator for several members of the fam-
ily of optimal and positive kernels through MISE and relative efficiency.



We present a simulation study to analyse the behaviour of such kernel
functions, for three different spatial structures, for which we know the ex-
act analytical form of the product density, and under small sample sizes.
Some known datasets are revisited.

In Chapter 3 a new kernel estimator of the second-order product den-
sity function of a spatio-temporal point process with and without consid-
ering first- and second-order spatio-temporal separability is given. The
spatio-temporal second-order product density function is of interest as can
be used to discriminate amongst several spatio-temporal point structures.
Further, the expectation and variance of this estimator are obtained. In
addition, as we have developed close expressions for the variance under the
Poisson case, we use them to generate the corresponding confidence sur-
faces. A simulation study is presented. We have used functions of the R
library stpp in connection with Fortran subroutines. Finally, we apply the
resulting estimator to data on the spatio-temporal distribution of invasive
meningococcal disease in Germany.

In Chapter 4 we focus on second-order orientation methods which pro-
vide a natural tool for the analysis of anisotropic spatial point process
data. Here we extend to the spatio-temporal setting the spatial point pair
orientation distribution function. The new spatio-temporal orientation
distribution function is used to detect spatio-temporal anisotropic config-
urations. An edge-corrected estimator is defined and illustrated through a
simulation study. We apply the resulting estimator to data on the spatio-
temporal distribution of fire ignition events caused by humans in a square
area of 30 × 30 km2 during four years. Our results confirm that our ap-
proach is able to detect directional components at distinct spatio-temporal
scales.

Finally, we provide a general description of the currently ongoing re-
search projects which have emerged motivated by the close relationship
with the second-order properties of spatial and spatio-temporal point pro-
cesses. In particular, we have adapted our methodology to spatio-temporal
local clustering analysis, and to modelling orbital debris using a new and
innovative adaptation over the sphere of the classical theory.
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Principal Notation

b(x, r) : disc of radius r centered at x
d(x) : distance from point x to its nearest neighbour
E : expectation
E! : expectation with respect to Palm distribution
g(r) : pair correlation function
gij(r) : cross pair correlation function
G(t) : point density d.f.
J(r) : J-function
K(r) : Ripley’s K-function
Kij(r) : multivariate K-function
K(B) : second-order reduced moment measure
L(r) : L-function
Lij(r) : multivariate L-function
X : point process
N(A) : number of points of X in A
o : origin of space Rd

P : probability
P!
o : probability with respect to palm distribution
r : distance variable
R : real line
Rd : d-dimensional Euclidean space
α(k) : k-th factorial moment measure
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γW (r) : isotropic set covariance
ρ : intensity
|W | : area of W
|T | : length of T
ρ(2)(r) : second-order product density in stationary and and isotropic case
ρ(k)(r) : k-th product density∑ 6= : sum over point pairs or k-tuples of distinct point
1A[x] : indicator function
‖ · ‖ : Euclidean distance
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Chapter 1
Point processes methodology

In order to provide a unified and proper context to develop our methodol-
ogy, we consider in this chapter a set of definitions and important results
that provide subsequently a nice grammatical and mathematical basis. We
take Stoyan and Stoyan (1994), Møller and Waagepetersen (2004), Illian
et al. (2008) and Chiu et al. (2013) texts as a fundamental references,
treating deeply and rigorously all the concepts that we need in the rest of
the work.

We begin recalling the definition and basic concepts of point processes
in general metric spaces, we give a the theoretical description of first- and
secon-order characteristics such as the intensity function, the pair corre-
lation function, K-function, J-function and orientation distribution func-
tion. We also give the definition of certain types of models for spatial
point patterns such as Cox processes, geometric anisotropic processes and
some special cases of Markov processes following Ripley (1988), Diggle
et al. (2000), Illian et al. (2008) and Møller and Waagepetersen (2004).
We also give an extension of this theory to the case of multivariate point
processes (Lotwick and Silverman (1981)). We present statistical estima-
tions of these first- and second-order characteristics in the spatial context
using non-parametric methods.

Finally we show a sophisticated approach to the definition of spatio-
temporal first- and second-order characteristics taken from Diggle et al.
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(1995), Møller and Diaz-Avalos (2010), Møller and Ghorbani (2010), Diggle
and Gabriel (2010), Ghorbani (2013), Gabriel (2013), Diggle (2013) and
Cronie and Lieshout (2014) and well as the corresponding properties and
non-parametric estimators. This last part of the chapter is built as an
attempt to gather all the recent literature on this methodology to build
the path towards the context spatio-temporal point processes.

1.1 Point processes on metric spaces

Let S be a metric space with metric d (·, ·) and B be the Borel σ-algebra
(generated by open sets) in S. Let B0 ⊆ B be the system of all bounded
Borel sets. We define the space of locally finite subsets of S as

Nlf = {x ⊆ S : n (xB) < +∞, ∀B ∈ B0} ,

where xB = x∩B and n (y) denotes the cardinality of the set y. Elements
of Nlf are called locally finite point configurations. We equip Nlf with the
σ-algebra

Nlf = σ {{x ∈ Nlf : n (xB) = m} ,m ∈ N0, B ∈ B0} ,

where N0 = N ∪ {0}. A point process is defined as a random locally finite
point configuration.

Definition 1 Let (Ω,F ,P) be an abstract probability space. A point pro-
cess X is a measurable mapping

X : (Ω,F ,P) −→ (Nlf ,Nlf) .

Definition 2 The distribution of the simple point processs is a measure
PX defined on (Nlf,Nlf) defined by the relation

PX (F ) = P (X ∈ F ) = P ({ω ∈ Ω : X (ω) ∈ F}) , F ∈ Nlf .

We say that the point process is finite if n (X) < +∞ almost surely.
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Definition 3 For a point process X we will denote the number of points
in the set B by N (B) = n (XB) = n (X ∩B) and refer to the function N
as a count function.

Proposition 4 X is a point process if and only if N(B) is a random
variable for any B ∈ B0.

Definition 5 Let X be a point process. By void probabilities we under-
stand probabilities P (N (B) = 0) , B ∈ B0.

Theorem 6 A point process is uniquely determined by its void probabili-
ties.

Definition 7 A point process X is stationary if its distribution is trans-
lation invariant, i.e. X + u = {ξ + u : ξ ∈ X} has the same distribution
as X for any u ∈ S. A point process X is isotropic if its distribution is
invariant under rotations around the origin, i.e. OX = {Oξ : ξ ∈ X} has
the same distribution as X for any rotation O around the origin.

Definition 8 The intensity measure µ on S is given by

µ (B) = E [N(B)] , B ∈ B.

Definition 9 If the intensity measure µ can be written as

µ (B) =

∫
B

ρ (ξ) dξ, B ∈ B,

where ρ is a non-negative function, then ρ is called the intensity function.
If ρ is constant, then X is said to be homogeneous or first-order stationary
with intensity ρ; otherwise X is said to be inhomogeneous.

Heuristically, ρ (ξ) dξ is the probability for the occurrence of a point in an
infinitesimally small ball with centre ξ and volume dξ. For a homogeneous
point process, ρ is the mean number of points per unit volume and the
constant is called intensity or rate.
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Proposition 10 If X is a stationary point process with locally finite in-
tensity measure µ, then µ is proportional to the Lebesgue measure.

Since the intensity measure of a stationary point process is proportional to
the Lebesgue measure, the intensity function is constant and equal to this
proportionality constant. It means that every stationary point process is
homogeneous.

1.2 Moment measures

The first- and higher-order moments of the counts N (B) with B ∈ B, can
be expressed by the following measures.

Definition 11 For a point process X on S and each m ∈ N, define the
m-th order moment measure µ(m) on Sm by

µ(m) (D) = E

[ ∑
ξ1,...,ξm

1 [(ξ1, . . . , ξm) ∈ D]

]
, D ⊆ Sm,

and the m-th order order factorial moment measure α(m) on Sm by

α(m) (D) = E

[∑ 6=

ξ1,...,ξm

1 [(ξ1, . . . , ξm) ∈ D]

]
, D ⊆ Sm,

where the
∑6= over the summation sign means that the m points ξ1, . . . , ξm

are pairwise distinct and 1[·] denotes the indicator function.

In particular, µ = µ1 = α1 is called the intensity measure. The m-th order
moment measure µ(m) determines the m-th order moments of the count
variables N (B), B ⊆ S, since

µ(m) (B1 × · · · ×Bm) = E

[
m∏
i=1

N(Bi)

]
, Bi ∈ B.
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For anym ∈ N, there is a one-to-one correspondence between (µ(1), . . . , µ(m))
and (α(1), . . . , α(m)). It is often more convenient to work with the reduced
moment measures.

The above definition immediately extends to

E

[∑ 6=

ξ1,...,ξm

h (ξ1, . . . , ξm)

]
=

∫
Sm

h (ξ1, . . . , ξm) dα(m) (ξ1, . . . , ξm) , (1.1)

for non-negative functions h : Sm ×Nlf −→ [0,+∞).

1.2.1 The second-order reduced moment measure

Notation 12 Let Bd be the Borel σ-algebra (generated by open sets) in
Rd.

Definition 13 If the second-order factorial moment measure α(2) can be
written as

α(2) (C) =

∫
Rd

∫
Rd

1 [(ξ, η) ∈ C] ρ(2) (ξ, η) dξdη, C ⊆ Rd × Rd,

where ρ(2) is a non-negative function, then ρ(2) is called the second-order
product density function.

Definition 14 If both ρ and ρ(2) exist, the pair correlation function is
defined by

g(ξ, η) =
ρ(2)(ρ, η)

ρ(ξ)ρ(η)
, (1.2)

where we take a/0 = 0 for a ≥ 0.

Definition 15 Suppose that X has intensity function ρ and that the mea-
sure

K(B) =
1

|A|
E

[∑ 6=

ξ,η∈X

1 [ξ ∈ A, η − ξ ∈ B]

ρ (ξ) ρ (η)

]
, B ⊆ Rd (1.3)
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does not depend on the choice of A ⊆ Rd with 0 < |A| < +∞, where
we take a/0 = 0 for a ≥ 0. Then X is said to be second-order intensity
reweighted stationary and K is called the second-order reduced moment
measure.

Proposition 16 If the pair correlation function exists and is invariant
under translations, then we have second-order intensity reweighted station-
arity and

K(B) =

∫
B

g(ξ)dξ, B ⊆ Rd. (1.4)

1.2.2 Campbell measures and Palm distributions

Assume that µ is σ-finite, i.e. µ(Bi) < +∞ for a countable partition Bi of
S (this is e.g. satisfied if µ is locally finite).

Definition 17 The Campbell measure is defined by

C(D) = E

[∑
ξ∈X

1 [(ξ,X) ∈ D]

]
, D ∈ B ×Nlf .

Definition 18 For a point process X on S, define the reduced Campbell
measure C ! on S ×Nlf by

C ! (D) = E

[∑
ξ∈X

1 [(ξ,X\{ξ}) ∈ D]

]
, D ∈ B ×Nlf .

Hence the term reduced Campbell measure for C !. We have

E

[∑
ξ∈X

1 [(ξ,X\{ξ}) ∈ D]

]
=

∫
h (ξ, x) dC ! (ξ, x) ,

for non-negative functions h. Note that C ! determines (µ, α2), since clearly
µ (·) = C ! (· ×Nlf) and

α(2) (B1 ×B2) =

∫
1 [ξ ∈ B1]n (xB2) dC ! (ξ, x) .
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For each F ∈ Nlf , C ! (· × F ) ≤ µ (·), so C ! (· × F ) is absolutely continuous(
C ! (· × F )� µ

)
with respect to µ. Then by the Radon-Nikodym theorem,

there exists a µ-almost surely unique integrable function P !
ξ such that

C ! (B × F ) =

∫
B

P !
ξ (F ) dµ (ξ) , (1.5)

where P !
ξ (·) is a probability measure for each ξ ∈ S; for details, (see e.g.

Daley and Vere-Jones (2008)).

Definition 19 The probability measure P !
ξ (·) on Nlf is called a reduced

Palm distribution at point ξ.

From (1.5) we obtain the so called Campbell-Mecke Theorem.

Theorem 20 (The Campbell-Mecke theorem)

E

[∑
ξ∈X

h (ξ,X\{ξ})

]
=

∫∫
h (ξ, x) dP !

ξ (x) dµ (ξ) , (1.6)

for non-negative functions h.

Theorem 21 (Slivnyak-Mecke’s theorem) If X ∼ Poisson(S, ρ), then
for functions h : S ×Nlf → [0,∞),

E

[∑
ξ∈X

h (ξ,X\{ξ})

]
=

∫
S

E [h (ξ, x) ρ(ξ)] dξ. (1.7)

Assume that X is a stationary point process on Rd with intensity 0 < ρ <

+∞. For ξ ∈ Rd, x ∈ Nlf , y F ⊆ Nlf , let x+ξ = {η + ξ : η ∈ x} denote the
translation of the point configurationx by ξ, and F + ξ = {x+ ξ : x ∈ F}
the translation of F by ξ.

Theorem 22 In the stationary case

P !
0 (F ) = E

[∑
ξ∈XB

1 [X\{ξ} ∈ F + ξ]

ρ |B|

]
, F ⊆ Nlf , (1.8)
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for an arbitrary set B ⊆ S with 0 < |B| < +∞, and P !
ξ (F ) = P !

0 (F − ξ).
Moreover

E

[∑
ξ∈X

h (ξ,X\{ξ})

]
= ρ

∫∫
h (ξ, x+ ξ) dP !

0 (x) dξ, (1.9)

for non-negative functions h.

Consider the problem of estimating P !
0 (F ) for some F ∈ B. Since X is

stationary we may consider X−ξ, ξ ∈ X, for a bounded B. as representing
observations ofX conditional on 0 ∈ X. Thus a natural estimator of P !

0 (F )

is the empirical average

1

N (B)

∑
ξ∈XB

1 [X\{ξ} ∈ F + ξ] .

If B is large, we may expect that ρ ≈ N (B) / |B|, and so we obtain the
estimator

1

ρ |B|
∑
ξ∈XB

1 [X\{ξ} ∈ F + ξ] .

This is exactly the unbiased estimator of P !
0 (F ) obtained from (1.8).

1.2.3 Interpretation of K as Palm expectation

The second-order reduced moment measure K has an interpretation as a
Palm expectation, since

K (B) =

∫
Rd

∑
η∈XB

1 [η − ξ ∈ B]

ρ (η)
dP !

ξ (x) , (1.10)

for almost all ξ ∈ Rd. This follows from the Campbell-Mecke theorem
(1.6). In the stationary case, by (1.9),

K (B) =
E!

0 (N (B))

ρ
, B ⊆ Rd,

where E!
0 denotes expectation with respect to P !

0.
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1.3 Models

1.3.1 Poisson point process

Poisson point processes play a fundamental role. They serve as a tractable
model class for no interaction or complete spatial randomness in spatial
point patterns. They also serve as reference processes when summary
statistics are studied.

Definition 23 Let µ be a diffuse measure (i.e. µ ({ξ}) = 0,∀ξ ∈ S), n ∈
N and B ∈ B such that 0 < µ (B) < +∞. Consider X = (ξi)

n
i=1 indepen-

dent random vectors with identical distribution f. X is called binomial point
process of n points in B with density f. We write X ∼ Binomial (B, n, f) .

Definition 24 A point process X on S is a Poisson point process with
intensity function ρ if the following properties are satisfied (where µ is
given by Definition 23):

i. For any B ∈ B with µ (B) < +∞, N (B) ∼ Poisson (µ (B)) a
Poisson distribution with mean µ (B).

ii. For any n ∈ N and B ∈ B with 0 < µ (B) < +∞, conditional on
N(B) = n, XB ∼ Binomial (B, n, f) with f (ξ) = ρ (ξ) /µ (ξ) .

We write X ∼ Poisson(S, ρ).

Definition 25 If ρ is constant, the process Poisson(S, ρ) is called a ho-
mogeneous Poisson process on S with rate or intensity ρ; else it is said to
be an inhomogeneous Poisson process on S.

Proposition 26 A homogeneous Poisson point process is a stationary and
isotropic process.

Theorem 27 A Poisson point process exists and it is uniquely determined
by its intensity measure.
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Theorem 28 If Xi ∼ Poisson(S, ρi), for i ∈ N mutually independent and

ρ =
+∞∑
i=1

ρi,

is locally integrable, then with probably one,

X =
+∞⋃
i=1

Xi,

is a disjoint union, and X ∼ Poisson(S, ρ).

1.3.2 Cox process

A Cox process is a natural extension of a Poisson process, obtained by
considering the intensity function of the Poisson process as non-constant
and as a realisation of a random field (Adler (1981)). Such processes were
studied in a seminal paper by Cox (1955) under the name doubly stochastic
Poisson processes, but are today usually called Cox processes. We begin
by assuming that S ⊆ Rd.

Definition 29 Z is a random field if Z (ξ) is a random variable for all ξ ∈
S. If ρ (ξ) = E (Z (ξ)) exists and is locally integrable, then with probability
one, Z (ξ) is a locally integrable function. The intensity measure of the
Poisson process X|Z is

µ (B) =

∫
B

Z (ξ) dξ, B ∈ B. (1.11)

Definition 30 Suppose that Z = {Z (ξ) : ξ ∈ S} is a non-negative ran-
dom field so that with probability one, Z is a locally integrable function. If
the conditional distribution of X given Z is a Poisson process on S with
intensity function Z, then X is said to be a Cox process driven by Z .

Theorem 31 Consider a Cox process X, then X|Z is a Poisson process.
We obtain the following results:
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i. The void probabilities are given by

v (B) = E

exp

−∫
B

Z (ξ) dξ

 , B ∈ B.

ii. The intensity function is

ρ (ξ) = E [Z (ξ)] .

1.3.3 The Neyman-Scott process

We consider here Neyman-Scott processes, as proposed by Neyman and
Scott (1958) which are also particular Cox processes.

Definition 32 Let C be a stationary Poisson process on Rd with intensity
κ > 0. Conditional on C, let Xc, c ∈ C, be independent Poisson processes
on Rd where Xc has intensity function

ρc (ξ) = ακ (ξ − c) ,

where α > 0 is a parameter and κ is a kernel (i.e. for all c ∈ Rd, κ (ξ − c)
is a density function). Then

X =
⋃
c∈C

Xc,

is a special case of a Neyman-Scott process with cluster centres C and
clusters Xc, c ∈ C (in the general definition of a Neyman-Scott process,
n (Xc) given C is not restricted to be a Poisson variate, see e.g. Stoyan
et al. (1995). By Theorem 28, X is also a Cox process on Rd driven by

Z (ξ) =
∑
c∈C

ακ (ξ − c) . (1.12)

Clearly, Z in (1.12) is stationary and locally integrable, and it is also
isotropic if κ (ξ) = κ (‖ξ‖) is isotropic. The intensity is ρ = ακ, and the
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pair correlation function is given by

g(ξ) = 1 + h(ξ)/k,

where
h(ξ) =

∫
k(η)k(ξ + η)dη, (1.13)

is the density for the difference between two independent points, each
having density k.

1.3.4 The hard-core process

Definition 33 Let ωd and σd be the volume and the surface area of the
d-dimensional unit ball, respectively. Then

ωd =
πd/2

Γ (1 + d/2)
, σd =

2πd/2

Γ(d/2)
, (1.14)

where Γ is the Gamma function, (Whittaker and Watson (1996)).

Under the definition of the Neyman-Scott process, the hard-core repul-
sion process or Matérn process, Matérn (1986) is given by

κ (ξ) =
1 [‖ξ‖ ≤ r]

ωdrd
,

the uniform density on the ball b(0, r).
Another construction of a hard-core process is based on the sequential

approach.

Definition 34 Let r > 0 and B ∈ B0 be given. A simple sequential
inhibition (SSI) process in the set B is constructed in the following way:

i. choose ξ1 ∈ B uniformly at random,

ii. if k − 1 points are chosen, choose ξk uniformly in B \
k−1⋃
i=1

b(ξi, r),

iii. the construction ends in n steps, if B ⊆
n⋃
i=1

b(ξi, r).
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Since B\
k−1⋃
i=1

b(ξi, r) can have complicated geometrical shape, in practice

the process is simulated by the rejection method. A point ξi is generated
uniformly in the window B and if it lies closer than r from an existing
point, then it is rejected and a new point is generated.

1.3.5 Geometric anisotropic processes

Møller and Toftaker (2012) consider spatial point processes with a pair
correlation function g(u) which depends only on the lag vector u ∈ R2

between a pair of points. Their interest is in statistical models with a
special kind of structured anisotropy: g is geometric anisotropy if it is
elliptical but not spherical.

Definition 35 Let g elliptical, i.e.

g(u) = g0(
√
uΣ−1ut), u ∈ R2

where u is a row vector wiht transpose ut, the function g0 is such that g
is locally integrable. Σ is a 2× 2 symmetric positive definite matrix of the
form

Σ = ω2Uθ diag(1, ζ2)U t
θ,

where 0 ≤ θ < π, ω > 0, with 0 < ζ ≤ 1 is the ratio of the minor axis
and the major axis; we call it the anisotropy factor. Finally Uθ is the
orthonormal matrix

Uθ =

(
cos(θ) −sin(θ)

sin(θ) cos(θ)

)
.

The ellipse E = {u : uΣ−1ut = 1} as semi-major axis ω corresponding
to the angle θ, and semi-minor axis ωξ corresponding to the angle θ+π/2.
In the isotropic case of g, we have that ξ = 1, Σ = ω2I, E is a circle of
radius ω, and the value of θ plays no role.
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Geometric anisotropic Cox processes

Assume that Z = {Z(u) : u ∈ R2} is a non-negative second-order station-
ary random field with mean one and covariance function

c(u) = E[Z(0)Z(u)]− 1, u ∈ R2,

and that X conditional on Z is a Poisson process with an intensity function
of the multiplicative form

λ(u) = ρ(u)Z(u), u ∈ R2,

then X is a Cox process driven by (Cox (1955)).
Assuming X has intensity function ρ, and X is second-order intensity-

reweighted stationary, the pair correlation function is of the form

g(u) = 1 + c(u) = E[Z(0)Z(u)], u ∈ R2.

The residual function of the processes is given by

kν(r) =
rνKν(r)

π2ν+1Γ(ν + 1)
, r ≥ 0,

where ν > −1/2 and Kν is the modified Bessel function of the second kind.
The functions u → kn(‖u‖/ω)/κ with ν > 0, ω > 0, and κ > 0 provide
a flexible class of isotropic covariance functions known as Whittle-Matérn
covariance function.

Geometric anisotropic Log Gaussian Cox processes

Assuming logZ is a stationary Gaussian random field, then X is a log
Gaussian Cox process (LGCP). Note that X is stationary if and only if ρ
is constant. Denoting c the covariance function of logZ, the assumption
that E [logZ] = 1 means that E [logZ] = −c(0)/2.

Since
g(u) = exp(c(u)), u ∈ R2,
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is we assume that c is elliptical, i.e.

c(u) = c0(
√
uΣ−1ut), u ∈ R2,

when
c0(r) = kν(r)/κ, r ≥ 0,

where ν > 0 and κ > 0 are parameters, then the pair correlation take the
form

g(u) = exp
(
kν

(√
uΣ−1ut

)
/κ
)
, u ∈ R2.

We refer to this model for X as the Whittle-Matérn LGCP. Simulation of
Gaussian random fields and LGCPs is discussed in Møller andWaagepetersen
(2004) and the references therein.

Geometric anisotropic Shot noise Cox processes

Let X be a stationary Poisson process on R2 with intensity κ > 0, and f
be a quadratically integrable density function on R2. Define the residual
process by

R(u) =
1

κ

∑
v∈R2

f(u− v), u ∈ R2.

Clearly, R is stationary and E[R(u)] = 1, while X is stationary if and
only if ρ is constant. Assume that f = fΣ is elliptical, i.e.

fΣ(u) = f0

(√
uΣ−1ut

)
|Σ|−1/2, u ∈ R2.

If the covariance is defined as

c(u) = fΣ ∗ fΣ/κ = fI ∗ fI(uΣ−1)/[κ|Σ|−1/2], u ∈ R2.

where ∗ denotes convolution, then it is elliptical. Taking f0 = kν with
ν > −1/2, then the pair correlation is of the form

g(u) = 1 + k2ν+1

(√
uΣ−1ut

)
/[κ|Σ|−1/2], u ∈ R2. (1.15)
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1.4 Summary statistics

1.4.1 Second-order summary statistics

Definition 36 The K- and L-functions for a second-order reweighted sta-
tionary point process are defined by

K (r) = K (b (0, r)) , L (r) =

(
K (r)

ωd

)1/d

, r > 0. (1.16)

This definition, which extends the definition of Ripley’s K-function
(Ripley (1976, 1977)) for the stationary case to the case of second-order
intensity reweighted stationarity, is due to Baddeley et al. (2000). In the
stationary case, ρK (r) is the expected number of further points within
distance r from the origin given that X has a point at the origin.

Proposition 37 For a stationary and isotropic process

K(r) = σd

r∫
0

ud−1g(u)du, or g(r) =
1

σdrd
dK(r)

dr
. (1.17)

Theorem 38 For a stationary Poisson point process

K (r) = ωdr
d =

πd/2rd

Γ
(
1 + d

2

) and L (r) = r. (1.18)

So, in the particular case of d = 2,

K (r) = πr2 and g(r) = 1. (1.19)

TheK- and L-functions are in one-to-one correspondence, and in appli-
cations the L-function is often used instead of the K-function. One reason
is that L is the identity for a Poisson process. In general, at least for small
values of r, L(r) − r > 0 indicates aggregation or clustering at distances
less than r, and L(r)− r < 0 regularity at distances less than r. This may
be due to certain latent processes or attraction or repulsion between the

18



points. Moreover, for a homogeneous Poisson process, the transformation
K → L is variance stabilising when K is estimated by non-parametric
methods (Besag (1977)).

1.4.2 Summary statistics based on inter-point distances

Definition 39 Assume that X is stationary. The empty space function
F is the distribution function of the distance from the origin (or another
fixed point Rd) to the nearest point in X, i.e.

F (r) = P(X ∩ b(0, r) 6= ∅), r > 0. (1.20)

The nearest-neighbour function G is

G(r) =
1

ρ|A|
E

[ ∑
ξ∈X∩A

1[(X\{ξ}) ∩ b(ξ, r) 6= ∅]

]
, r > 0, (1.21)

for an arbitrary se A ⊂ Rd wiht 0 < |A| < +∞. For the nearest-neighbour
function G in (1.21) by Theorem 20 it follows that

G(r) = P!
0(N(b(0, r)) > 0), r > 0.

The J-function is defined by

J(r) =
1−G(r)

1− F (r)
, for F (r) < 1.

The J-function was suggested by Lieshout and Baddeley (1996).

Remark 40 By stationarity, (1.21) does not depend on the choice of A.

Lemma 41 For a stationary Poisson process on Rd with intensity ρ <∞,

F (r) = G(r) = 1− exp(−ρωdrd) and J(r) = 1 r > 0,

where the equality for G coming from the Slivnyak-Mecke theorem Theo-
rem 21.
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Remark 42 In general, at least for small values of r > 0, F (r) > G(r) (or
J(r) < 1) indicates clustering, and F (r) > G(r) (or J(r) > 1) indicates
regularity, but if J(r) = 1 does not imply that X is a stationary Poisson
process, (see Bedford and van den Berg (1997)).

Lemma 43 For Neyman-Scott point process the J-function can be ex-
pressed as

J(r) =

∫
k(ξ) exp

−α ∫
‖η‖≤r

k(ξ + η)dη

 dξ,

where k is given by (1.13), thus J(r) is non-increasing for r > 0 with range
(exp(−α), 1). So F (r) < G(r) for r > 0.

1.4.3 Summary directional statistics

In order to investigate for a possible anisotropy or directionality in the
planar case, an orientation methodology was considered by Stoyan and
Stoyan (1994), Brix and Møller (2001) and Illian et al. (2008).

Definition 44 Let β be the angle with respect to the horizontal direction,
i.e. the direction of the x-axis. This angle is considered and measured in
radians (0 ≤ β ≤ π). The values of β close to 0 and π are considered
similar. Consider the distribution function

Po(β ≤ ϕ) for 0 ≤ ϕ ≤ π.

with corresponding probability density function ϑ(ϕ), satisfying

Po(β ≤ ϕ) =

ϕ∫
0

ϑ(ψ)dψ.

Then

Po(ϕ1 ≤ β ≤ ϕ2) =

ϕ2∫
ϕ1

ϑ(ψ)dψ.
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The quantity Po(ϕ1 ≤ β ≤ ϕ2) is the proportion of the connecting lines
with angles of orientation between r1 and r2. In the isotropic case ϑ(ϕ) is
constant,

ϑ(ϕ) ≡ 1

π
.

Second-order orientation analysis

The second-order orientation analysis is based on the reduced second-order
moment measure K (Stoyan and Stoyan (1994)). These authors consider
the sample of the orientations of all lines which connect pairs of points of
an inter-point distance between r1 and r2 and determine the orientation
distribution.

Definition 45 The reduced second-order moment measure K in (1.4) can
be described by the function K(r, α),

K(r, α) = K(s(r, α)),

where s(r, α) is the sector of radius r, centred at the origen and given by
the angle α with respect to the x-axis.

For a fixed r, the ratio K(r, α)/K(r, π) is a distribution function, with a
corresponding density function similar the above Po(β ≤ r).

For r1 > 0, the description may be refined by introducing two distances
r1 and r2 (0 ≤ r1 < r2) and considering the sector ring s(r1, r2, α) given by

s(r1, r2, α) =
s(r2, α)

s(r1, α)

The corresponding density function is denoted by ϑ(r1,r2)(ϕ), which de-
scribes the distribution of the random orientations of the lines connecting
the typical point and other points at distances between r1 and r2.

Lemma 46 The point pair orientation distribution function can be ex-
pressed in terms of the reduced second-order moment measure by

O(r1,r2)(ϕ) =
K(s(r1, r2, α))

K(b(0, r2))−K(b(0, r1))
,
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where it assumed that the denominator is positive. Then the following
relation is satisfied

ϑ(r1,r2)(ϕ) =

ϕ∫
0

O(r1,r2)(ψ)dψ,

for details see Stoyan and Stoyan (1994), Illian et al. (2008)).

1.5 Extension to multivariate processes

Let Y be a point process on U ⊆ Rd. Given some space M , if a random
mark mξ ∈M is attached to each point ξ ∈ Y , then

X = {(ξ,mξ) : ξ ∈ Y }

is called a marked point process with points in U and mark space M .
One simple example is a multitype point process, where M = {1, . . . , n}
and the marks specify k different types of points. This is equivalent to a
k-dimensional multivariate point process, that is a tuple (X1, . . . , Xk) of
point processes X1, . . . , Xk corresponding to the k different types of points.

1.5.1 Marked Poisson processes

Consider a marked point process X = {(ξ,mξ) : ξ ∈ Y } with points in U
and mark space M.

Definition 47 Suppose that Y is Poisson(U, φ), where φ is a locally in-
tegrable intensity function, and conditional on Y , the marks {mξ : ξ ∈ Y }
are mutually independent. Then X is a marked Poisson process. If the
marks are identically distributed with a common distribution Q, then Q is
called the mark distribution.

Proposition 48 Let X be a marked Poisson process with M ∈ Bp and
where, conditional on Y , each mark mξ has a discrete or continuous density
ρξ which does not depend on Y \{ξ}. Let ρ (ξ,m) = φ (ξ) ρξ (m). Then
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i. X ∼ Poisson (U ×M,ρ) .

ii. if the density on M defined by κ (m) =
∫
ρ (ξ,m) dξ is locally inte-

grable, then {mξ : ξ ∈ Y } ∼ Poisson (M,κ).

1.5.2 Multivariate Poisson processes

By a multivariate Poisson process it is usually meant that each Xi is a
stationary Poisson process on Rd with intensity 0 < ρi < +∞ for i =

1, . . . , k, see e.g. Diggle (2003, 2013). We have the equivalence between
the following two properties:

1. P (mξ = i|Y = y) = pξ (i) depends only on ξ for realisations y of Y
and ξ ∈ y.

2. (X1, . . . , Xk) is a multivariate Poisson process with independent com-
ponents Xi ∼ Poisson (U, ρi) where ρi (ξ) = φ (ξ) pξ (i) , i = 1, . . . , k.

A common hypothesis for marked point processes {mξ : ξ ∈ Y } is that
of random labelling which means that conditional on Y , the marks mξ are
mutually independent and the distribution of mξ does not depend on Y .
For a multitype Poisson process, for example, random labelling means 1.
above with ρξ (i) = p (i) not depending on the location ξ.

1.5.3 Cross-moment measure

Consider a multivariate point process X = (Xi)
k
i=1 , we assume that each

Xi is a point process in Rd with intensity function ρi and count function
Ni.

Definition 49 Let i, j ∈ {1, . . . , k} be different, and set a/0 = 0, for
a ≥ 0.

i. We define the cross-moment measure for points of types i and j by

αij (C) = E

 ∑
ξ∈Xi,η∈Xj

1 [(ξ, η) ∈ C]

 , C ∈ Bd × Bd. (1.22)
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ii. If αij can be written as

αij (C) =

∫
Rd

∫
Rd

1 [(ξ, η) ∈ C] ρij(2) (ξ, η) dξdη, C ∈ Bd × Bd,

where ρij(2) is a non-negative function, then ρij(2) is called the cross
second-order product density.

The cross pair correlation function for points of types i and j is defined by

gij(ξ, η) =
ρij(2)(ξ, η)

ρi(ξ)ρj(η)
.

Definition 50 Suppose that the measure

Kij (B) =
1

|A|
∑

ξ∈Xi,η∈Xj

1 [ξ ∈ A, η − ξ ∈ B]

ρi (ξ) ρj (η)
, B ∈ Bd (1.23)

does not depend on the choice of A ∈ Bd with 0 < |A| < +∞. Then
(Xi, Xj) is said to be cross second-order intensity reweighted stationary.

Consider a multivariate point process X = (Xi)
k
i=1 , we assume that

each Xi is a point process in Rd with intensity function ρi and count
function Ni.

Definition 51 The cross K- and L-functions are defined by

Kij (r) = Kij (b (0, r)) , Lij (r) =

(
Kij (r)

ωd

)1/d

r > 0. (1.24)

Theorem 52 If Xi and Xj are independent, then (Xi, Xj) is cross second-
order
reweighted stationary,

Kij (B) = Kji (B) = |B| , and Lij (r) = r. (1.25)

Moreover,
Kij(r, α) = Kji(r, α).
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Theorem 53 Assume that (Xi, Xj) is stationary with intensities 0 < ρi <

+∞ and 0 < ρj < +∞. The nearest-neighbour function Gij is the distri-
bution function for the distance from a typical type i point to its nearest
type j point, i.e.

Gij(r) =
1

ρi|A|
E

[ ∑
ξ∈Xi∩A

1[Xj ∩ b(ξ, r) 6= ∅]

]
, r > 0, (1.26)

for an arbitrary set A ⊂ Rd with 0 < |A| < +∞. Moreover, define

J ij(r) =
1−Gij(r)

1− F j(r)
, for F i(r) < 1.

The cross statistics Gij and J ij are not symmetric in i and j.

1.6 Non-parametric estimation

The non-parametric methods that do not assume a specific parametric
model for the first-and second-order behaviour. The estimation approach
is typically based on simple counts and kernel methods. We study methods
for analyzing of spatial point pattern data are not linked to that a special
families of parametric model.

In this section we let X be a spatial point process on Rd with inten-
sity function ρ; if X is stationary, ρ is assumed to be a constant with
0 < ρ < +∞. Whenever needed we assume that the measure K exists.
We confine to the case where a single point pattern XW = x is observed
in a bounded window W ∈ Bd with |W | > 0, and discuss non-parametric
estimation of ρ, K, g, L and J functions in the isotropic case. Also, we
consider the anisotropic non-parametric estimate of the orientation dis-
tribution function. Higher-order summary statistics can be introduced as
well, but the corresponding non-parametric estimators may be less stable
if the number of points observed is not sufficiently large; see Peebles and
Groth (1975), Stoyan and Stoyan (1994), Møller et al. (1998) and Schladitz
and Baddeley (2000).
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1.6.1 Estimation of intensity functions

In the homogeneous case, a natural unbiased estimate of the intensity
function is

ρ̂ =
N (XW )

|W |
. (1.27)

This estimator is unbiased and, if N is ergodic, then it is consistent, i.e.
as W increases it converges to the true value ρ. This holds independent of
the specific distribution of N , whereas the variability of the estimator ρ̂ is
of course distribution-dependent (Illian et al. (2008)).

This is in fact the maximum likelihood estimate if X is a homogeneous
Poisson process. In the inhomogeneous case, a non-parametric kernel esti-
mate of the intensity function, following Diggle (1985), is

ρ̂ε (ξ) =
∑
η∈XW

κε (ξ − η)

cW,ε (η)
, ξ ∈ W. (1.28)

Here κε is a kernel with bandwidth ε > 0, i.e.

κε(ξ) =
1

εd
κ

(
ξ

ε

)
,

where κ is a given density function, and

cW,ε (η) =

∫
W

κε (ξ − η) dξ, (1.29)

is an edge-correction factor.
The estimate (1.28) is usually sensitive to the choice of ε. It is usual

when d = 2, to use a product kernel given by κ (ξ) = e (ξ1) e (ξ2) for
ξ = (ξ1, ξ2) ∈ Rd, where

e (u) =
3

4
(1− |u|)1 [|u| ≤ 1] , u ∈ R, (1.30)

is the Epanechnikov kernel (Epanechnikov (1969)).

Lemma 54
∫
W
ρ̂ε (ξ) dξ is an unbiased estimate of µ (W ) .
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A simple stationarity test is closely related to the intensity: determine
statistically the intensity function ρ(·) and verify that a plot of the obtained
estimate shows only local irregularities but not a general trend.

1.6.2 Estimation of K-, L- and g-functions

For non-parametric estimation of K, it is useful to establish the following
steps.

Notation 55 Let |Φ|α denote the α-dimensional Hausdorff measure of
Φ ∈ Bd.
See Stoyan and Stoyan (1994).

Definition 56 Let ξ, η ∈ W, we define the Ripley’s isotropic edge-correction
factor, (see Ripley (1976), Illian et al. (2008)) as

wd (ξ, η) =
|∂b (ξ, ‖ξ − η‖) ∩W |d−1

|∂b (ξ, ‖ξ − η‖)|d−1

. (1.31)

Here | · |0 and | · |1 are the zero- and one-dimensional Hausdorff measures
respectively in R and R2. The zero-dimensional Hausdorff measure in R is
the number of points of the set. The one-dimensional Hausdorff measure
of a simple curve in R2 is equal to the length of the curve.

Lemma 57 Suppose that X is second-order intensity reweighted station-
ary. Then ∑ 6=

ξ,η∈XW

1 [η − ξ ∈ B]

ρ (ξ) ρ (η)wd (ξ, η)
, (1.32)

is an unbiased estimator for K (B) .

Lemma 57 provides an unbiased estimate of K (B) provided ρ is
known. In practice ρ is not known, so ρ (ξ) ρ (η) in (1.32) must be re-
placed by the estimator ̂ρ (ξ) ρ (η). The combined estimate

K̂ (B) =
∑ 6=

ξ,η∈XW

1 [η − ξ ∈ B]

̂ρ (ξ) ρ (η)wd (ξ, η)
, (1.33)
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is then biased (see Illian et al. (2008)).
In fact unbiasedness is usually unobtainable for many estimators in

spatial statistics, but instead they are often ratio-unbiased, i.e. of the form
θ̂ = Y/Z where θ = E[Y ]/E[Z]. For example, in the homogeneous case,
if ̂ρ (ξ) ρ (η) = ρ̂2 is unbiased, then (1.33) is ratio-unbiased. Stoyan and
Stoyan (2000) discuss various possibilities for the homogeneous case: one
possibility is to transform the estimate in (1.27) to obtain (N (XW ))2 / |W |2

as an estimate of ρ2; an alternative is

ρ̂2 =
N (XW ) (N (XW )− 1)

|W |2
, (1.34)

which is unbiased for a Poisson process. For the inhomogeneous case,
Baddeley et al. (2000) propose to use ̂ρ (ξ) ρ (η) = ρ̄ε (ξ) ρ̄ε (η) where

ρ̄ε (ξ) =
∑

η∈XW \{ξ}

κε (ξ − η)

cW,ε (η)
, ξ ∈ W, (1.35)

is a slight modification of (1.28). Also, Baddeley et al. (2000) show that
for an inhomogeneous Poisson processes, ρ̄ε (ξ) is less biased than ρ̂ε (ξ)

when ξ ∈ XW is a data point.

Remark 58 Consider K̂(r) = K̂(b(0, r)):

1. From their definition, it is clear that 1/wd (ξ, η) ≥ 1. Also, the larger
weights tend to be associated with pairs of events separated by large
distances. Typically, Var{K̂(r)} tends to increase with r.

2. The dimensions of W clearly limit the range of values of r which can
be considered. In practice, the increasing variance of K̂(r) is a more
serious limitation. As a rough guide, for data on a rectangle W , it is
usually not worth trying to estimate K(r) at values of r bigger than
one-half the length of the shorter side of W .

The estimate of L(r) obtained from transforming that of K(r) is in general
biased.
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Lemma 59 An alternative edge-correction kernes estimator for the pair
correlation function (Fiksel (1988a), Stoyan and Stoyan (1994), Baddeley
et al. (2000)) is given by

ĝ(r) =
1

σdrd|W |
∑ 6=

ξ,η∈XW

κb(‖ξ − η‖ − r)
̂ρ (ξ) ρ (η)wd (ξ, η)

. (1.36)

Here κb(u) = κ(u/b)/b, u ∈ R and bandwidth b > 0, (see Illian et al.
(2008)).

1.6.3 Estimation of F -, G- and J-functions

Reduced-sample estimators of F and G given in (1.20) and (1.21) are
derived using minus sampling.

Definition 60 Let

d(ξ, B) = inf{‖ξ − η| η ∈ B},

be the shortest distance from a point ξ ∈ Rd to a set B ⊂ Rd. Let I ⊂ Rd

denote a finite regular grid of points (chosen independently of X), and let
#Ir denote the cardinality of the set Ir = I ∩W	r, where W	r = {ξ ∈ W :

b(ξ, r) ⊆ W} for r > 0.

Lemma 61 The following estimate is unbiased for F

F̂ (r) =
∑
ξ∈Ir

1[d(ξ,XW ) ≤ r]

#Ir
,

for #Ir > 0, and the next one is a ratio-unbiased estimate for G

Ĝ(r) =
∑

ξ∈XW∩W	

1[d(ξ,XW ) ≤ r]

ρ̂|W	|
,
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for |W	| > 0. Finding

Ĵ(r) =
1− Ĝ(r)

1− F̂ (r)
, for F̂ (r) < 1.

1.6.4 Estimation for directional statistics

For point patterns with a small number of points this procedure is not
possible. In the planar case, the estimator for the orientation distribution
function is given by

Ô(r1,r2)(ϕ) =
K̂(s(r1, r2, ϕ))

K̂(r2)− K̂(r1)
, 0 ≤ ϕ ≤ π.

The corresponding edge-corrected unbiased estimator of the point pair
oriantation function ϑ(r1,r2)(ϕ) is given by

ϑ̂(r1,r2)(ϕ) =
∑ 6=

ξ,η∈XW

1[r1 ≤ ‖ξ − η‖ ≤ r2]κ(ϕ− βξη)
w2 (ξ, η)

, 0 ≤ ϕ ≤ π,

where κ is the Epanechnikov kernel function and βξη the orientation angle
of the line through the points ξ and η (see Illian et al. (2008)).

1.6.5 Multivariate estimators

Lemma 62 If (Xi, Xj) is cross second-order reweighted stationary, then
for B ∈ Bd ∑ 6=

ξ∈Xi∩W
η∈Xj∩W

1 [η − ξ ∈ B]

ρi (ξ) ρj (η)wd (ξ, η)
, (1.37)

is an unbiased estimator of Kij (B) .

In (1.37) we can substitute ρi (ξ) ρj (η) with a non-parametric estimator
̂ρi (ξ) ρj (η).
By Theorem 52 if X = (X1, . . . , Xk) is a multivariate point process,

then the k(k + 1)/2 functions Kij(r) with 1 ≤ i ≤ j < k, completely
describe the second-order properties of the process. A necessary, but not

30



sufficient, condition for the process of points of type i to be independent
of the process of points of type j is that Kij(r) = ωdr

d for all r. Not
surprisingly, description and estimation of the second-order structure of a
multitype process requires consideration of only two of the types at a time.
Therefore it will be sufficient when discussing the problem of estimation to
consider a two-type process consisting of n1 points {κ1, . . . ,κn1} and n2

points {ς1, . . . , ςn2} . Suppose that we observe such a process over a plane
region W .

Lotwick and Silverman (1982), and Diggle (2003), give an combined
estimator for the bivariate K- function:

K̂ij(r) =
|W |
n1n2

n1∑
i=1

n2∑
j=1

1[‖κi − κj‖ ≤ r]

wd∗ (κi, ςj)
, (1.38)

where

wd∗ (κi, ςj) =
n1w

d (ςi,κj) + n2w
d (κi, ςj)

n1 + n2

.

If gij is isotropic, a kernel estimator for the cross pair correlation is
given by

ĝij(r) =
1

σdrd|W |
∑ 6=

ξ,η∈XW

κb(‖ξ − η‖ − r)
̂ρi (ξ) ρj (η)wd (ξ, η)

.

Similarly, for (Xi, Xj) the reduced-sample estimator of Gij(r) is

Ĝij(r) =
∑

ξ∈Xi∩W	r

1[d(ξ,Xj ∩W ) ≤ r]

ρ̂i|W	|
,

By substitution of F̂ j(r) and Ĝij(r) functions the estimator for Ĵ ij(r) is
obtained.

1.7 Envelopes procedure

We describe this procedure following Møller and Waagepetersen (2004).
Consider a simple hypothesis H0. Confidence intervals and other distribu-
tional characteristics associated with the non-parametric estimate R̂ can
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be obtained by a bootstrap using simulation under H0. For a given dis-
tance ξ ∈ B, let T0 (ξ) = T (X, ξ) denote any statistic obtained from the
point process X observed within the window W . Let Θ = {Ti (ξ)}ni=1 be
obtained from i.i.d. simulations X1, . . . , Xn under H0. From the empir-
ical distribution of Θ we can estimate any quantile for the distribution
of T0 (ξ) under H0, and we can do this with any desired precision if n is
large enough. Notice that although Ti and Tj are i.i.d., the random vectors
(T1 (ξ) , . . . , Tn (ξ)) considered for different values of ξ are dependent. So
some caution should be taken when we compare the results for different
values of ξ.

If the computation of Ti (ξ), i = 1, . . . , n, is time consuming, the fol-
lowing envelopes may be used where n is small. Let

Tmin (ξ) = min Θ, and Tmax (ξ) = max Θ, (1.39)

under H0,

P(T0(ξ) < Tmin (ξ)) = P(T0(ξ) > Tmax (ξ)) ≤ 1

n+ 1
, (1.40)

with equality if T0 (ξ) , T1 (ξ) , . . . , Tn (ξ) are almost surely different. The
bounds Tmin (ξ) and Tmax (ξ) are called the 100/(n + 1)%-lower and the
100n/(n+ 1)%-upper envelopes.

1.8 Spatio-temporal point processes

Spatio-temporal point processes are considered as a hybrid of spatial and
temporal components by extending the definition of spatial point process
to include time.

Spatio-temporal point processes have been studied thoroughly in the
context of earthquake data by Ogata (1998), who wrote a summary pa-
per of parametric, maximum likelihood techniques. Choi and Hall (2001)
added non-parametric estimators of the intensity function using a kernel
estimator approach, and discuss asymptotic theory for many parametric
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estimators. Rathbun and Cressie (1994) discuss spatio-temporal point pro-
cesses in the context of tree growth.

Because the spatial location can always be considered as one component
of a multi-dimensional mark (see Daley and Vere-Jones (2008)), the evolu-
tion of spatial features with time is often of special interest. Despite such
considerations, studies of spatio-temporal models have lagged well behind
those of simple temporal models, and even those of purely spatial models.
No doubt the reasons have been largely practical, notably the difficulty
of compiling good spatio-temporal datasets and the heavy computations
needed to analyse them.

One way to observe those processes developed by Daley and Vere-Jones
(2008) is to consider the spatial location itself viewed as a mark for a simple
point process in time, thereby providing one route to likelihood analyses
of spatio-temporal models. Further characteristics, such as magnitude,
spatial extent, or even duration, can be added as additional marks. Thus,
the study of spatio-temporal point processes leads almost inevitably to the
more general study of evolving spatial fields, although practical modelling
in this direction is still limited and very subject-specific.

Following our approach, Diggle et al. (1995) consider the problem of de-
tecting and describing spatio-temporal interactions in point process data.
They extend existing second-order methods for purely spatial point pro-
cess data to the spatial-temporal setting. This extension allows to estimate
spatio-temporal interaction as a function of spatial and temporal separa-
tion. Gabriel and Diggle (2009) extend to the spatio-temporal setting a
method proposed by Baddeley et al. (2000) for inhomogeneous spatial point
process data. Møller and Ghorbani (2012) consider second-order analysis
based on pair correlation functions and K-functions for general inhomoge-
neous spatio-temporal point processes assuming spatio-temporal separabil-
ity of the intensity function, but clarify different meanings of second-order
spatio-temporal separability. One is second-order spatio-temporal inde-
pendence, and another concerns a separable spatio-temporal covariance
density. Ghorbani (2013) suggests a weak stationarity of a spatio-temporal
point process test and Gabriel (2013) builds a rigorous simulation study to
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show the efficiency of the second-order estimators on differents scenarios
for various spatio-temporal edge-corrections.

Cronie and Lieshout (2014) extend and estimate the J-function for
inhomogeneous spatio-temporal point processes. Tamayo-Uria et al. (2014)
analyse the spatio-temporal distribution of rat sightings, which are directly
related to rat infestation. They formulate a more mechanistic model in
which the conditional intensity of the point process depends explicitly on
its past history. Diggle (2013) is the recent book on this methodology with
nice examples in epidemiology.

1.8.1 First- and second-order spatio-temporal measures

Definition 63 Let X be a random countable subset of R2 × R. Consider
W ⊂ R2 a bounded spatial region |W | > 0 and a bounded time interval
|T | > 0, and X ∩ (W × T ) = {(ui, si), i = 1, . . . , n} stands for data. Let
Nlfs and Nlft be the spaces of locally finite subsets of R2 and R equipped
with σ-algebras Nlfs and Nlft respectively. In the sequel, N(A) denotes the
number of the events of the process falling in a bounded region A ⊂ W ×T .

For a rigurous definition of a point process based on measure theory see
e.g. Daley and Vere-Jones (2008).

Definition 64 For a given event (u, s), the events that are close to (u, s)

in both space and time, for each spatial distance r, and time lag t, are given
by the corresponding spatio-temporal cylindrical neighborhood of the event
(u, s), which can be expressed by the cartesian product as

b((u, s), r, t) = {(v, l) : ‖u− v‖ ≤ r, |s− l| ≤ t} , (u, s), (v, l) ∈ R2×R,

where ‖ · ‖ denotes the Euclidean distance in R2 and | · | denotes the usual
distance in R. Note that b((u, s), r, t) is a cylinder with center (u, s), radius
r and height 2t.
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Theorem 65 Assume that X has spatio-temporal intensity function ρ and
spatio-temporal pair correlation function g. Then by (1.1)∫

h(u, s)ρ(u, s)d(u, s) = E
∑

(u,s)∈X

h(u, s),

and∫∫
f((u, s), (v, l))g((u, s), (v, l))d(u, s)d(v, l) =

E
∑ 6=

(u,s),(v,l)∈X

f((u, s), (v, l))

ρ(u, s)ρ (v, l)
, (1.41)

for any non-negative Borel functions h and f defined on R2×R and (R2×
R) × (R2 × R) respectively. Here

∑ 6= means that (u, s) 6= (v, l), and we
take a/0 = 0 for a ≥ 0.

It follows from Equation (1.41) that with probability one, for any pair
of distinct points (u, s) and (v, t) from X, we have that u 6= v and s 6= l

(see Møller and Ghorbani (2012)). Then we can ignore the case where
the spatial and temporal component processes (say Xspace and Xtime) have
multiple points, and define them by

Xspace = {u : (u, s) ∈ X, s ∈ T} , Xtime = {s : (u, s) ∈ X,u ∈ W} .

We consider Xspace and Xtime rather than the marginal processes given by
all events respective all times in X, since the later processes could not have
well-defined first- and second-order properties (see Møller and Ghorbani
(2012)).

1.8.2 First-order spatio-temporal separability

We make the pragmatic working assumption that first-order effects are
separable (see Møller and Ghorbani (2012)), meaning that if (u, s) ∈ R2×
R, ρ (u, s) can be factorised as
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ρ (u, s) = ρ̄1 (u) ρ̄ (s) , (1.42)

where ρ̄1 and ρ̄2 are non-negative functions. Under this assumption,
any non-separable effects are interpreted as second-order, rather than first-
order. We have

µ (A×B) = E [N (A×B)]

=

∫
A

ρ̄1 (u) du

∫
B

ρ̄2 (s) ds.

Definition 66 Define the marginal spatial and temporal intensity func-
tions ρspace and ρtime respectively as

ρspace (u) = ρ̄1 (u)

∫
T

ρ̄2 (s) ds, ρtime (s) = ρ̄2 (s)

∫
W

ρ̄1 (u) du.

Remark 67 Note that ρ satisfies:

ρ (u, s) ∝ ρspace (u) ρtime (s) .

If X is stationary, ρ, ρspace and ρtime are all constant.

1.8.3 Palm distribution

Assume we have spatio-temporal point process X ⊆ R2×R with intensity
measure µ (see Møller and Ghorbani (2012)).

Definition 68 The Campbell measure is defined by the relation

C(B × F ) = E [1[X ∈ F ]]N(B), B ⊆ R2 × R, F ∈ Nlfs ×Nlft,

where B = W × T .

Note that µ(·) = C(· × (Nlfs × Nlft)). For each B ⊆ R2 × R and F ∈
Nlfs ×Nlft, µ(B) = 0 then C(B × F ) = 0 therefore C(· × F ) is absolutely
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continuous wiht respect to µ. Then under the Radon-Nikodym theorem,
there exists a µ-almost surely unique density (u, s)→ P(u,s)(F ) so that

C(B × F ) =

∫
B

P(u,s)(F )µ(d(u, s)), (1.43)

where P(u,s) is the Palm distribution. In the case of stationary point pro-
cesses the collection of Palm distributions is determined by Po in the origin
P(u,s)(·) = Po(· − (u, s)) for (u, s) ∈ R2 × R.

Definition 69 The reduced Campbell measure C ! on (R2×R)×(Nlfs×Nlft)

is defined by

C !(D) = E

 ∑
(u,s)∈X

1[((u, s), X \ {(u, s)}) ∈ D]

 .
Analogously we can define the distribution P !

(u,s) called reduced Palm
distribution and it can be interpreted as the conditional distribution of a
point process given that (u, s) is a point of the process. Further, it satisfies
the same relation in (1.43). For a Poisson point process, the reduced Palm
distribution is the same as the original distribution of the process.

Theorem 70 For a spatio-temporal point process X and any non-negative
Borel function h,

E

 ∑
(u,s)∈X

h((u, s), X \ {(u, s)})


=

∫
Nlfs×Nlft

∫
R2×R

h((u, s), (x, ζ))C !(d(u, s), d(x, ζ))

=

∫
R2×R

∫
Nlfs×Nlft

h((u, s), (x, ζ))P !
(u,s)(d(x, ζ))µ(d(u, s)),

where (x, ζ) ∈ Nlfs ×Nlft.
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Theorem 71 For a stationary spatio-temporal point process X with in-
tensity ρ and for any non-negative Borel function h

E

 ∑
(u,s)∈X

h((u, s), X \ {(u, s)})


= ρ

∫
R2×R

∫
Nlfs×Nlft

h((u, s), (u + x, s+ ζ))P !
o(d(x, ζ)) d(u, s),

where (u + x, s + ζ) = {(z, η) + (u, s) : z ∈ x and η ∈ ζ} denote the
translation of the point configuration (x, ζ) by (u, s).

For more details see Daley and Vere-Jones (2003), Møller andWaagepetersen
(2004) and Chiu et al. (2013).

1.8.4 Second-order characteristics

Following the definition of the K-function due to Møller and Ghorbani
(2012) according to the spatio-temporal context as above introduced, we
have the following definition and proposition

Definition 72 Let X be a second-order intensity-reweighted stationarity
SOIRS in the sense established by Baddeley et al. (2000), then

K (r, t) =

∫
1 [‖u‖ ≤ r, |s| ≤ t] g (u, s) d(u, s), r > 0, t > 0. (1.44)

In the stationary case of X, ρK (r, t) is the expected number of further
points within distance r and time lag t from the origin given that X has a
point at the origin (see Ripley (1976) and Ripley (1977)). There is another
weak definition in a more heuristic way provided by Gabriel and Diggle
(2009) and which takes only the present and future events, but its value
only differs by a factor of 1/2.

Definition 73 For a SOIRS, isotropic and stationary spatio-temporal point
process X, the spatio-temporal pair correlation function is proportional to

38



the derivative of K(r, t) with respect to r and t, then

g(r, t) =
1

4πr

∂2K(r, t)

∂r∂t
, r > 0, t > 0. (1.45)

Proposition 74 If X is a Poisson process,

K(r, t) = 2πr2t, and g(r, t) = 1.

When a spatio-temporal point process holds the above condition, named
as complete spatio-temporal randomness.

1.8.5 Second-order spatio-temporal separability

Definition 75 The hypothesis of spatio-temporal separability of the pair
correlation function states that g((u, s), (v, l)) = ḡ1(u,v)ḡ2(s, l) where ḡ1

and ḡ2 are non-negative functions.

Intuitively, the probability of observing a pair of points from X occur-
ring jointly in each of two infinitesimally small sets with centers (u, s), (v, l)

and volumes d(u, s), d(v, l) is

[ρ̄1(u)ρ̄1(v)ḡ1(u,v)dudv][ρ̄2(s)ρ̄2(l)ḡ2(s, l)dsdl]

which is a product of a function of the locations (u,v) and the areas
(du, dv) and a function depending on the times (s, l) and the lengths
(ds, dl).

Following Møller and Ghorbani (2012), we can write the spatial and
temporal components of the K-function as

Kspace(r) =

∫
||u||≤r

gspace(u) du and Ktime(t) =

t∫
−t

gtime(s) ds, r > 0, t > 0,
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such that,

gspace(u,v) = gspace(u− v) =

∫
T

∫
T

p1(s)p2(l)g(u− v, s− l)dsdl

and

gtime(s, l) = gtime(s− l) =

∫
W

∫
W

p1(u)p2(v)g(u− v, s− l)dudv,

with
p1(u) =

ρ̄1(u)∫
W
ρ̄1(u)du

, and p2(s) =
ρ̄2(s)∫

T
ρ̄2(l)dl

.

1.8.6 Spatio-temporal inhomogeneus J-function

Cronie and Lieshout (2014) recently submitted the first extension of in-
homogeneous J-function in the context of intensity-reweighted moment
stationary spatio-temporal point processes. They build their statistic in
terms of the supremum metric which is topologically equivalent to the
Euclidean space. We follow them in the sequel

Definition 76 Let X be a spatio-temporal point process for which the
second-order product density exists. If ρ̄ = inf(u,s) ρ(u, s) > 0 and for
n ≥ 1, ξn is translation invariant in the sense that

ξn((u1, s1) + (a, b), . . . , (un, sn) + (a, b)) = ξn((u1, s1), . . . , (un, sn)),

for almost all (u1, s1), . . . , (un, sn) ∈ R2 × R and all (a, b) ∈ R2 × R, we
say that X is intensity-reweighted moment stationary (IRMS).

Definition 77 The generating function G(·) on X is defined as

G(v(u, s)) = E

 ∏
(u,s)∈X

v(u, s)

 =

∫ ∏
(u,s)∈X

v(u, s)P !
o(d(x, ζ)) d(u, s),

for all functions v = 1−u such that u : R2×R→ [0, 1] is measurable with
bounded support on R2 × R.
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By convention, an empty product equals 1. The generating functional
uniquely determines the distribution of X.

The stationary J-function

Definition 78 Assume that X is stationary, so we define analogously as
in the spatial case

J(r, t) =
1−G(r, t)

1− F (r, t)
=

P!
0(X ∩ Sst 6= ∅)
P(X ∩ Sst 6= ∅)

for r ≥ 0, t ≥ 0 such that F (r, t) 6= 1, where

Sst = {(u, s) : ‖u‖ ≤ r, |s| ≤ t} , (u, s) ∈ R2 × R,

with P!
0 reversely induced probability measure F .

The inhomogeneous J-function

Definition 79 Let X be an IRMS spatio-temporal point process. For
r ≥ 0, t ≥ 0, let

Jn(r, t) =

∫
Sst

· · ·
∫
Sst

ξn+1((0, 0), (u1, s1), . . . , (un, sn))
n∏
i=1

d(ui, si)

and set

Jinhom(r, t) = 1 +
∞∑
n=1

(−ρ̄)n

n!
Jn(r, t)

for all spatial ranges r ≥ 0 and temporal ranges t ≥ 0 for which the series
is absolutely convergent.

1.8.7 Spatio-temporal models

Spatio-temporal models are a natural extension of spatial models consid-
ered in Section 1.3. To set the suitable context we focus on the definitions
given by Gabriel et al. (2012).

41



Homogeneous spatio-temporal Poisson process

The homogeneous Poisson process is the simplest possible stochastic mech-
anism for the generation of spatio-temporal point patterns. It is rarely
plausible as a model for data, but provides a benchmark of complete spatio-
temporal randomness (CSTR). Informally, in a realisation of a homogenous
Poisson process on any spatio-temporal region W × T , the events form an
independent random sample from the uniform distribution onW×T . More
formally, the homogeneous Poisson process is defined by the following pos-
tulates:

i. For some ρ > 0, the number N (W × T ) of events within the region
W × T follows a Poisson distribution with mean ρ |W | |T | where
|·| denotes (two-dimensional or one-dimensional) Lebesgue measure
according to the context.

ii. Given N (W × T ) = n, the n events in W × T form an independent
random sample from the uniform distribution on W × T.

The first-order and second-order intensities of a homogeneous Poisson pro-
cess reduce to constants, (u, s), (v, l) ∈ W × T, then ρ(u, s) = ρ and
ρ(2) ((u, s), (v, l)) = ρ2.

Spatio-temporal Cox process

The Cox process or inhomogeneous Poisson process is the simplest non-
stationary point process. It is obtained replacing the constant intensity of
a homogeneous Poisson process by a spatially and/or temporally varying
intensity function ρ(u, s), for (u, s) ∈ W × T . Inhomogeneous Poisson
processes are defined by the following postulates:

i. The number N (W × T ) of events within the region W × T follows
a Poisson distribution with mean∫

W×T

ρ(u, s)d(u, s).
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ii. Given N (W × T ) = n, the n events in W × T form an independent
random sample from the distribution on W × T with probability
density function

f(u, s) =
ρ(u, s)∫

W×T ρ(v, s)d(v, s)
.

Spatio-temporal Neyman-Scott process

We define a spatio-temporal Poisson cluster process as the following direct
generalisation of its spatial counterpart (Neyman and Scott (1958)).

i. Parents form a Poisson process with intensity ρp(u, s).

ii. The number of offspring per parent is a random variable Nc with
mean mc, realised independently for each parent.

iii. The locations and times of the offspring relative to their parents are
independently and identically distributed according to a trivariate
probability density function g : R2 × R+ → R.

iv. The final process is composed of the superposition of the offspringd
only.

Spatio-temporal stationary Poisson cluster processes

The spatial distribution of the offsprings is a zero-mean bivariate isotropic
normal distribution with standard deviation σ and the temporal distribu-
tion is exponential with rate α. The expected number of offsprings per
parent follows a Poisson distribution with mean mc. This process is an
interpretation of a spatio-temporal shot-noise Cox process (see Møller and
Diaz-Avalos (2010), Møller (2003), Gabriel (2013)) with residual process

R(u, s) =
1

ρ

∑
(v,l)∈X

ϕ(u− v, s− l),
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where X is a stationary Poisson process in R2 ×R with intensity ρ and ϕ
is the density function

ϕ(u, v) = φ
(2)

σ2 (‖u− v‖)Eα(|s− l|),

here, ‖ · ‖ denotes the usual distance in R2 and | · | is the absolute value in
R, with the abuse of the notations u and v for u = ‖u−v‖ and v = |s− l|.
For such a process, we have g(u, v) = 1 + 1

ρ
ϕ ∗ ϕ̃(u, v), where ∗ denotes

convolution and ϕ̃(u, v) = ϕ(−u,−v). Then,

g(u, v) = 1 +
α

8πσ2ρ
exp

(
− u2

4σ2
− αv

)
,

and

K(u, v) = 2πu2v +
1

2ρ
(exp(αv)− exp(−αv))

(
1− exp

(
−u

2

4σ

))
.

Spatio-temporal geometric anisotropic Poisson cluster processes

This is defined as spatio-temporal stationary Poisson cluster processes but
with

g(u, s) = g0(
√
uΣ−1ut, s),

where u ∈ R2 is a row vector whit traspose ut, the function g0 is such
that g is locally integrable (Møller and Toftaker (2012)). Σ is a 2 × 2

symmetric positive definite matrix of the form Σ = ω2Uθdiag(1, ζ2)U t
θ with

ζ the anisotropy factor and

Uθ =

(
cos(θ) −sin(θ)

sin(θ) cos(θ)

)
,

see Gabriel (2013).

Spatio-temporal Inhibition process

Spatio-temporal Inhibition processes were presented by Gabriel et al. (2012),
and either prevent (strict inhibition) or make unlikely the occurrence of

44



pairs of close events, resulting in patterns that are more regular in space
and/or in time than a Poisson process of the same intensity. In a spatial
simple sequential inhibition process (strict inhibition), let δs denote the
minimum permissible distance between events and ρs the spatial intensity
of the process. The proportion of the plane covered by non-overlapping
discs of radius δs/2 is

ρ∗ =
ρsπδ

2
s

4
,

which we call the packing density. The maximum achievable packing den-
sity is for a pattern of points in a regular triangular lattice at spacing δs,
for which ρ∗ = 1

2

√
3. Depending on exactly how the points are generated,

even this value of δs may not be feasible. Simple sequential inhibition pro-
cesses in space and time are defined by the following algorithm. Consider
a sequence of m events (ui, si) ∈ W × T . Then,

i. u1 and s1 are uniformly distributed in W and T respectively.

ii. At the k-th step of the algorithm, k = 2, . . . ,m, sk is uniformly
distributed on W ∩∆space with

∆space = {u : ‖u− uj‖ ≥ δs, j = 1, . . . , k − 1}

and sk is uniformly distributed on T ∩ ϑtime with

∆time = {s : |s− sj| ≥ δt, j = 1, . . . , k − 1} .

To obtain a larger class of inhibition processes, we can extend condition
ii. of the above algorithmic definition by introducing functions ps (u) and
pt (s) that together determine the probability that a potential point at
location u and time s will be accepted as a point of the process.
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1.9 Non-parametric estimation

1.9.1 Estimation of intensity functions

Suppose we are given estimates of ρ̂space and ρ̂time. These provide unbiased
estimates of the expected number of observed points, i.e.∫

W

ρ̂space (u) du =

∫
T

ρ̂time (s) ds = n.

Then the estimate of the spatio-temporal intensity function is given by

ρ̂ (u, s) =
ρ̂space (u) ρ̂time (s)

n
. (1.46)

This provides an unbiased estimate of the expected number of observed
points, i.e. ∫

W×T

ρ̂ (u,s) d(u, s) = n,

For non-parametric estimation of the spatial intensity function, we follow
Diggle (1985) and Berman and Diggle (1989) in using the kernel estimate
as in the equation (1.28)

ρ̂space (u) =
n∑
i=1

κε (u− ui)

cW,ε (ui)
, u ∈ W, (1.47)

where
κε (u) =

1

ε2
κ
(u
ε

)
,

is a kernel with bandwidth ε > 0, i.e, κ is a given density function.

Further,

cW,ε (ui) =

∫
W

κε (u− ui) du,

is an edge-correction factor ensuring that
∫
W
ρ̂space (u) du = n.

A similar kernel estimate may be used for non-parametric estimation
of ρtime (s) wihth d = 1, see Gabriel et al. (2012). Although these non-
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parametric estimation procedures of the spatial and temporal intensity
functions may only lead to approximately unbiased estimates, we will still
use equation (1.46). In the literature of spatio-temporal point process it is
common modelling the temporal intensity component using of parametric
methods. For example, Gabriel and Diggle (2009) estimate the temporal
intensity using a log-linear regression model. Exploratory spectral analysis
of incidence times in their application suggested a marked annual and 4-
monthly periodicity. Therefore, they fitted a harmonic regression model
with 1-year period

log ρtime(t) = δd(t) +
3∑

k=1

{αk cos(kωt) + βk sin(kωt)}+ γt,

where ω = 2π/365, γ denotes the trend and d(t) identifies the day of the
week for day t = 1, . . . , 1096. See also Diggle (2013) and Tamayo-Uria
et al. (2014).

1.9.2 Estimation of K-, g- and J-functions

Lemma 80 Alternatively, an approximately unbiased non-parametric es-
timate of the K-function is given by

K̂(r, t) =
1

|W | |T |
∑ 6=

(ui,si),(ui,sj)∈X

1 [‖ui − uj‖ ≤ r]1 [|si − sj| ≤ t]

ρ̂ (ui, si) ρ̂ (uj, sj)w2 (ui,uj)w1 (si, sj)

where
∑6= means that the sum is over all pairs (ui, si) 6= (uj, sj) of the

data points, w2 and w1 denote the Ripley’s spatial edge-correction factors
given by Definition 56.

Note that in the temporal case w1 (si, sj) = 1 if both ends of the interval
of length 2 |si − sj| centred at si lie within T and 1/2 otherwise (see Diggle
et al. (1995)). For an unbiased estimator of theK-function see e.g., Gabriel
(2013).

Non-parametric estimation of pair correlation functions are usually
based on kernel methods (see Stoyan and Stoyan (1994) and Illian et al.
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(2009)), where the specification of the bandwidth of the kernel is debat-
able, being this is the most problematic aspect of Baddeley et al. (2000).

Lemma 81 The spatio-temporal pair correlation function defined in (1.45)
can be estimated by

ĝ(r, t) =
1

4π |W | |T | r
∑ 6=

(ui,si),(ui,sj)∈X

κ1ε(‖ui − uj‖ − r)κ2δ(|si − sj| − t)
ρ̂ (ui, si) ρ̂ (uj, sj)w2 (ui,uj)w1 (si, sj)

,

(1.48)
where κ1ε and κ2δ are respectively one-dimensional kernel functions with
bandwidths ε and δ.

For details see Gabriel et al. (2012) and Gabriel (2013).

Lemma 82 For r ≥ 0, t ≥ 0, an estimator of 1−Ginhom(r, t) is given by

∑
(v,l)∈X∩(W	r

space×T	t
time)

∏(u,s)∈(X\{(v,l)})∩((v,l)+Sst)

(
1− ρ̄

ρ(u,s)

)
|X ∩ (W	r

space × T	ttime)|


where W	r

space = {u ∈ W : d(u, ∂W ) ≥ r} and T	ttime = {s ∈ T : d(s, ∂T ) ≥
t}.

Lemma 83 Given a finite point grid L ⊆ W × T , the estimator of 1 −
Finhom(r, t) is given by

1

|L ∩ (W	r
space × T	ttime)|

∑
(v,l)∈L∩(W	r

space×T	t
time)

 ∏
(u,s)∈X∩((v,l)+Sst)

(
1− ρ̄

ρ(u, s)

)
The ratio of the estimates given in Lemma 82 and Lemma 83 gives an
estimator of Jinhom(r, t).
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Chapter 2
Second-order smoothing of spatial
point patterns with small sample
sizes: A family of kernel

Francisco J. Rodríguez-Cortés and Jorge Mateu,1

Department of Mathematics, Universitat Jaume I, Castellón, Spain

Abstract

We consider kernel-based non-parametric estimation of second-order prod-
uct densities of spatial point patterns. We present a new family of optimal
and positive kernels showing less variance than optimal kernels. This fam-
ily generalises most of the classical and widely used kernel functions, such
as Box or Epanechnikov kernels. We propose an alternative unbiased es-
timator for the product density function, and compare the performance
of the estimator for several members of the family of optimal and posi-
tive kernels through MISE and relative efficiency. We present a simulation
study to analyse the behaviour of such kernel functions, for three differ-
ent spatial structures, for which we know the exact analytical form of the

1All authors contributed equally in this work.
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product density, and under small sample sizes. Some known datasets are
revisited.
Keywords: Mean integrated square error, Kernel smoothing, Relative effi-
ciency, Second-order product density function, Non-parametric estimation.

2.1 Introduction

The first studies using smoothing techniques have been proposed in a wide
range of applied sciences such as Actuary, Economy, Mathematical Fi-
nance, or Statistics, see e.g. Woolhouse (1870), De Forest (1873), Gram
(1883), Macaulay (1931), and Hoem (1983). The idea of using the smooth-
ing technique as a local regression method has its beginnings in the sixties,
with kernel methods introduced in the estimation of the density by Akaike
(1954), Parzen (1962), Rosenblatt (1971) and, in regression, by Nadaraya
(1964) and Watson (1964). The problem of choosing a suitable kernel in
the context of non-parametric estimation of curves has been deeply stud-
ied by Watson and Leadbetter (1963) through determining the kernel that
minimises the mean integrated square error (MISE). Epanechnikov (1969)
suggested a set of kernels which obtain the optimal convergence rate for the
MISE within a class of densities. This work was later extended by Sacks
and Ylvisaker (1981) to the multivariate case; these kernels are asymptot-
ically optimal among non-negative kernels for two-differentiable densities.
Müller and Gasser (1979), Gasser and Müller (1984) and Gasser et al.
(1985) introduced two classes of optimal kernels that minimise the vari-
ance and the MISE, respectively. Falk (1983) and Mammitzsch (1984)
studied in detail the problem of finding optimal kernels. Cline (1988) gave
a new concept of admissible kernel density estimator when no other kernel
estimator has uniformly smaller MISE using Fourier techniques. Messer
and Goldstein (1993) introduced a new class of variable kernels depending
on the smoothing parameter and having good MISE convergence proper-
ties, equivalent to smoothing splines. For more recent and detailed works
see e.g. Fan and Marron (1994), Hart (1997), Efromovich (1999), and
Berlinet and Thomas-Agnan (2004).
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Point processes, which are random collections of points falling in some
measurable space, have found use in describing an increasing number of
naturally arising phenomena in a wide variety of applications, including
epidemiology, ecology, forestry, mining, hydrology, astronomy, ecology, and
meteorology (Daley and Vere-Jones (2003); Schoenberg et al. (2006)).

In the mid 20th century, interest spanned to spatial point processes,
where each point represented the location of some object or event, such
as a tree or sighting of a species (Cressie (1993); Illian et al. (2008)). The
classical and reference model for spatial point processes is the Poisson pro-
cess, where the number of points in any two disjoint sets are independent
random variables; the name comes from the fact that for point processes
with this independence property, the number of points in any measurable
set follows a Poisson random variable (see Daley and Vere-Jones (2003)).

A spatial point pattern is a set of points {ui ∈ W : i = 1, . . . , n}
for some bounded spatial region W . Very often, W is a sampling win-
dow within a much larger region and it is reasonable to regard the point
pattern as a partial realisation of a stochastic planar point process, the
events consisting of all points of the process which lie within W . The
study of spatial point patterns has a long history in ecology and forestry
(Goodall (1952); Pielou (1977); Ripley (1981); Comas et al. (2009); Comas
and Mateu (2011)). Spatial point patterns have also found application
in fields as diverse as cosmology Neyman and Scott (1958), archeology
Hodder and Orton (1976), geography Cliff and Ord (1981), epidemiology
Diggle and Richardson (1993), seismology Ogata (1998) or environmental
sciences Juan et al. (2012). Recent textbooks related to the topic of anal-
ysis and modelling of point processes include Stoyan et al. (1987), Diggle
(1983, 2003), Møller and Waagepetersen (2004), Baddeley et al. (2006),
Illian et al. (2008) or Gelfand et al. (2010).

The connection between these two areas of research (kernel-based non-
parametric estimation and spatial point processes) begins when Diggle
(1983) analyses the use of a simple circular (spherical) kernel in the es-
timation of the intensity for one-dimensional point processes. Inference
by non-parametric methods was introduced in the context of spatial point
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processes by Diggle (1985), adapting the idea of Silverman (1978) to esti-
mate the intensity function under the argument that ρ̂(r) and f̂(x) differ
by a factor of n, because the intensity is a mean number of events per unit
of area and, unlike the probability density function, does not integrate to
one. Diggle (1985, 2003) discusses the choice of an optimal bandwidth for
a specific model. In the same way that the intensity function has been
analysed using non-parametric techniques, we can estimate second-order
characteristics in spatial point processes such as the second-order prod-
uct density function (see e.g. Akaike (1954); Brillinger (1975); Krickeberg
(1982); Fiksel (1988b); Ohser and Mücklich (2000); Stoyan and Stoyan
(2000)). In addition we can estimate the pair correlation function dividing
the product density by the respective intensities (see e.g. Doguwa (1990);
Ohser (1991); Stoyan and Stoyan (2000); Baddeley et al. (2000); Guan
(2007); Comas et al. (2009); Juan et al. (2012)).

Cressie (1993), Stoyan and Stoyan (1994), Illian et al. (2008) claim
that the choice of the kernel is not important and one should pay more
attention to the choice of the bandwidth for the smoothing. But this
fact should not be understood as if the choice of the kernel is irrelevant
because the bandwidth depends on the kernel, and the accuracy of the es-
timate is not only a function of the bandwidth, but depends upon the pair
kernel-bandwidth (κ, ε). In the literature of point processes it is commonly
suggested the use of the Epanechnikov kernel arguing that it has shown
certain optimality properties. However, previous publications do not give
analytical arguments for this preference. Furthermore, the selection of the
optimal bandwidth for this kernel is attributed to simulations and practi-
cal experience as ε = c/

√
ρ, with c ∈ [0.1, 0.2]. The extended use of the

Epanechnikov kernel in the spatial statistics literature is due to the fact
that it is the optimum second-order kernel and asymptotically minimises
the Mean Integrated Squared Error (MISE) and the Mean Square Error
(MSE). The known theoretical arguments are all under asymptotic condi-
tions. However it is quite often the case that in practice the number of
points in the point pattern is not large enough (Diggle (1983, 2003); Co-
mas et al. (2009); Comas and Mateu (2011)). And in this paper we focus
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our interest over these cases. Our aim is to highlight the benefits of using
alternative kernel functions showing in which cases they report a better
performance than the widely used Epanechnikov kernel when estimating
second-order product densities. In particular these new kernel functions
will show a much better performance under cluster structures.

In Section 2.2 we present an alternative kernel family to the Epanech-
nikov kernel. In particular we use an optimal and positive kernel family
with the aim to reduce the importance of the choice of the correct band-
width. These kernels are composed by functions in Q[x], the space of
rational functions. This family of positive kernels is also related to the op-
timal kernels. We consider a set of polynomials with a greater degree than
those in Marron and Nolan (1988). In addition, this family of kernels has
the property of including, as a particular case, the Epanechnikov kernel.
In Section 2.3 we present a short review of the more relevant theoretical
concepts on spatial point processes. We use an approximately unbiased
estimator for the second-order product density function built as a combi-
nation between the Ripley’s edge-corrector and the consideration in the
denominator of pairwise distances between points of the process. In Sec-
tion 2.4 we present a simulation study for a variety of scenarios usually
encountered in the practice of point processes by comparing the behaviour
of the new family with respect to the usual Epanechnikov kernel and other
given optimum and positive kernels which also belong to the same family.
We comment on choosing adequate bandwidth parameters. We compare
the performance of several kernel functions through a measure of relative
efficiency, and show that we obtain larger degrees of smoothing when us-
ing optimal and positive kernel functions of some high orders under cluster
structures. An application to known datasets is also considered in Section
2.4. The paper ends with some conclusions.
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2.2 An optimal and positive kernel family

2.2.1 Theoretical setup

In non-parametric statistics it is known that under regularity conditions
for two optimality criteria (minimum variance, minimum MSE), including
the ν-th order differentiability of the curve to be estimated, and adding
the optimal smoothing parameter, the asymptotic optimal MISE of the
kernel estimator for a density function is proportional to the functional
T (κ)2/(2k+1), where

T (κ) =

(∫
κ2(x)dx

)k
|Mk(κ)| , (2.1)

here Mk(κ) =
∫
κ(x)xkdx and k is the order of the kernel κ, see Gasser

and Rosenblatt (1979). This means that the estimator of the function is
a particular case of the estimator of the derivative when the order is zero.
The kernel function κ in (2.1) has order k, i.e. it satisfies the moment
condition κ ∈ Kk with

Kk = {κ ∈ L2[−1, 1] : Mj(κ) = 0, for j = 1, . . . , k − 1 and Mk(κ) 6= 0} ,
(2.2)

where L2 is the space of square integrable functions. For the problem of
minimising the functional T (κ) over the set of functions Kk, it is needed
an additional condition. Indeed Gasser et al. (1985) imposed on κ the
condition of minimum sign changes

κ ∈ Nk−2 = {κ ∈ L2[−1, 1] : κ has exactly k − 2 sign changes} ,

where k − 2 is equal to the lower bound of the number of change signs re-
quired in order to satisfy (4.2), see Müller (1985). The variational problem
to consider thus becomes

min
κ∈Kk∩Nk−2

{(∫
κ2(x)dx

)k
|Mk(κ)|

}
. (2.3)
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The kernel functions that solve (2.3) are called optimal kernels. In non-
parametric estimation within the point process literature, the so-called
optimal kernels are commonly used by minimising the Asymptotic Mean
Integrated Squared Error (AMISE). One of the most famous kernels that
meets the property of being optimal is the Epanechnikov kernel. Through-
out this paper we denote by κ(k)

O (x) the optimal kernel functions of order k.
However, not all optimal kernels are useful for non-parametric estimation
in point processes. If we consider a kernel function as a weighting func-
tion for point counts, it should assign positive values and then we are only
interested in that subset of optimal kernels that are positive. The kernel
with k = 2 is the kernel derived by Epanechnikov (1969).
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Figure 2.1: Optimal and positive kernels under several orders.

The canonical rescaling κε(x) = ε−1κ(ε−1x) were the constant ε is
called the bandwidth or smoothing parameter, and controls the amount
of smoothing or local averaging, allows to separate the problems of kernel
and bandwidth selection. It provides a fresh approach to the problem of
optimal kernel selection, see Marron and Nolan (1988). They made it clear
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that the best choice of the kernel does not depend on the knowledge of the
bandwidth.

Our interest is on those kernels that are positive functions and that
the corresponding weight diminishes as it moves away from the central
point. We thus propose a new family of positive kernels and analyse their
properties. Without losing generality, we add the condition that the kernel
reaches its maximum at some x = x0, and diminishes as it moves away from
the center to the point where it has zero value at x = −1 and at x = 1,
which implies positivity.

In order to carry this out, we use the family

κ
(α,β)
P (x) = C(1− x)α(1 + x)β, (2.4)

in such a way that α+β = k, which we refer to as the degree of the positive
kernel, κ(α,β)

P (x) ≈ O(xk+1), and C is such that∫ 1

−1

κ
(α,β)
P (x)dx = 1. (2.5)

By making the change to the variable y = (x + 1)/2 in (2.5), we obtain
that

C =
1

2α+β+1Beta(α + 1, β + 1)
, (2.6)

were Beta(·, ·) is the beta function (see e.g. Luke (1969)). Using (??) and
(2.6) it is possible to determine that the maximun of κ(α,β)

P (x) is found at
x = (β − α)/(α+ β). In the case that α = β, the family is symmetric and
its maximun is found at x = 0. Therefore, for α = β = k/2, the kernel
family is given as

κ
(k)
P (x) =

Γ(k + 2)

2k+1Γ
(
k
2

+ 1
)2 (1− x2)

k
21[−1,1](x) (2.7)

were Γ(·) is the Gamma function (see e.g. Luke (1969)).

Naturally, the positive kernel family (2.7) satisfies the clasical require-
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ments of non-parametric statistics, and has the properties∫
κ

(k)
P (x)2dx =

Γ(k + 2)2Γ(k + 1)2

2Γ
(
k
2

+ 1
)4

Γ(2k + 2)

and ∫
κ

(k)
P (x)xkdx =

(1 + (−1)k)Γ(k + 1)Γ(k
2

+ 3
2
)

2k+1Γ(k
2

+ 1)Γ(k + 3
2
)

,

which are useful in the calculation of the MISE for the estimated density
function. Note that κ(k)

P (x) ∈ Q[x] the space of rational functions, fur-
thermore for k = 0, the uniform kernel is obtained, k = 2 results in the
Epachnenikov kernel, and in the case k = 4 the biweight kernel is obtained,
as shown in Figure 2.1. These kernels are commonly used for their good
performance in spatial smoothing, and they are both optimal and positive
kernel functions.

2.2.2 Comparison of optimal and positive kernels

Asymptotic theory analyses kernel behaviour when the size of the sample
n →∞, the bandwidth ε → 0, slowly enough for nε→∞ to be satisfied.
However, in many applications the size of the sample is not large. The
MSE and MISE depend on

∫
κ(x)2dx and

∫
x2κ(x)dx. We now compare

these quantities in both cases, for the optimal and positive kernels.

If k is even, we can write k = 2n for n ∈ N, and using the properties of
the Gamma function we can rewrite the asymptotic bias in Gasser et al.
(1985) as

B(κ
(2n)
O ) =

(−1)n+1Γ(2n+ 2)Γ2(2n+ 1)

Γ2(n+ 1)Γ(4n+ 2)
. (2.8)

On the other hand, we have

B(κ
(2n)
P ) =

Γ(2n+ 1)Γ(n+ 3
2
)

22nΓ(n+ 1)Γ(2n+ 3
2
)
. (2.9)
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Taking advantage of the properties of the Gamma function we have that

Γ(2n+ 2) =
22n+1

√
π

Γ(n+ 1)Γ

(
n+

3

2

)

and
Γ (4n+ 2) =

24n+1

√
π

Γ(2n+ 1)Γ

(
2n+

3

2

)
.

Replacing these into (2.8) and comparing with (2.9) we get that B(κ
(2n)
P ) =

|B(κ
(2n)
O )|. Let us now analyse the kernel variances. The variance of the

optimum kernel is given in Gasser et al. (1985), as

VarO = Var(κ(k)
O ) =

(k + 1)k2Γ2(k + 1)

(2k + 1)22kΓ4(k
2

+ 1)
,

and the variance for the positive kernel is

VarP = Var(κ(k)
P ) =

Γ2(k + 2)Γ2(k + 1)

2Γ4(k
2

+ 1)Γ(2k + 2)
.

The ratio VarO/VarP will be then

VarO
VarP

=
k2Γ(2k + 1)

22k−1(k + 1)Γ(k + 1)2
, (2.10)

and using again the properties of the Gamma function in (2.10) we obtain

VarO
VarP

=
2k√

π(k + 1)

Γ
(
k + 1

2

)
Γ(k)

. (2.11)

The first factor is greater than 1 if k ≥
√
π

2−
√
π
≈ 7.8, the second factor

is always greater than 1, given that the Γ(·) function is an increasing
monotone function. Then, from k ≥ 8 even, we have that VarO > VarP,
implying that for a kernel with an order larger than 8 can obtain a better
smoothing (smoothing with a lower variance) for the same bandwidth if
we rather use a positive kernel than an optimal one.
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2.3 A second-order product density estimator

for spatial point processes

A point process is a stochastic model governing the locations of events u
in some set X. Because our interest is in spatial point processes, following
Møller and Waagepetersen (2004), we formally consider a spatial point
process with no multiple points as a random countable variable X. The
events u of X are observed within a bounded spatial region W ⊂ R2, with
area |W | > 0. N(W ) denotes the number of events falling inside of W .
Assume that X has both intensity function ρ(·) and second-order product
density function ρ(2)(·), then for any non-negative Borel function f defined
on R2, and any non-negative Borel function h defined on R2 × R2,

E
∑
u∈X

f(u) =

∫
f(u)ρ(u)du

and
E
∑ 6=

u,v∈X

h(u,v) =

∫ ∫
h(u,v)ρ(2)(u,v) du dv,

where
∑ 6= means that the summation goes over all pairs (u,v) with u 6= v.

The intensity function ρ(·) has an easy interpretation as the expected
number of events per unit area. On the other hand, when describing
variability and correlations of any pattern, we have to consider pairs of
event, and the corresponding characteristics are called second-order mea-
sures such as the second-order product density function. A point process
is said to be second-order weak stationary if ρ(u) = ρ, a constant, and
ρ(2)(u,v) = ρ(2)(‖u − v‖), where ‖ · ‖ denotes the Euclidean norm. For
infinitesimal du and dv, ρ(2)(‖u−v‖)dudv can be interpreted as the prob-
ability that there is a point of the point process in each of two specified
infinitesimal sets with areas du and du respectively. Under stationarity
and isotropy, it is well known that ρ2dK(r) = 2πrρ(2)(r)dr, where K(r)

is the Ripley’s K-function, see Ripley (1989). The second-order product
density function is of interest as can be used to discriminate amongst sev-
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eral spatial point structures. For example, for a spatial Poisson process
ρ(2)(r) = ρ2. Values of the second-order product density function larger
than ρ2 indicate that the interpoint distances around r are relatively more
frequent compared to those in a spatial Poisson process, which is typical
of a spatial cluster process, and conversely, values of ρ(2)(r) smaller than
ρ2 indicate that the corresponding distances are rare and this is typical
of a spatial inhibition process. The second-order product density func-
tion can take all values between zero and infinity, for large r it tends to
ρ2. The most typical spatial pattern models that have a closed analytical
expression for the second-order product density function are the spatial
modified Thomas process and the Matérn hard-core process, see Stoyan
et al. (1987) and Illian et al. (2008). We focus on these processes to carry
out the simulation study presented in Section 4.

In the context of the spatial cluster processes, the modified Thomas
processes have the following closed form for the second-order product den-
sity function

ρ
(2)
T (r; ρp, µ, σ) = ρ2

pµ
2 +

ρpµ
2

4πσ2
exp(−r2/4σ2), r ≤ 0, (2.12)

where ρp is the intensity of the parents that follow a homogeneous Poisson
process, the number of offspring per parent is Poisson with mean µ, and
the distribution of the offspring around the parent is the symmetric normal
with parameter σ. The intensity of a modified Thomas process is given by
ρpµ.

In the inhibition process case, the Matérn hard-core process has the
following expression for the second-order product density function

ρ
(2)
M (r; ρsp, r0) =



0, r ≤ r0,

2Γr0 (r)(1−exp(−πr20ρsp))−2πr20(1−exp(−ρspΓr0 (r)))

πr20Γr0 (r)(Γr0 (r)−πr20)
, r0 < r ≤ 2r0,

1−exp(−πr20ρsp)
πr20

, r > 2r0,

(2.13)
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where r0 is the inhibition distance, ρsp is the intensity of a stationary
Poisson process and

Γr0(r) = 2πr2
0 − 2r2

0 arccos

(
r

2r0

)
+
r

2

√
4r2

0 − r2, r0 < r ≤ 2r0.

The intensity of the spatial Matérn hard-core process is (1−exp (−πr2
0ρsp))

/πr2
0. These two point process models have been widely used in the liter-

ature and have been applied in a wide variety of practical scenarios and
applications (Diggle (1983); Stoyan et al. (1987); Diggle (2003); Badde-
ley et al. (2006); Illian et al. (2008); Juan et al. (2012)). These processes
are directly estimated and simulated from within the R library spatstat
Baddeley and Turner (1995).

2.3.1 A non-parametric kernel estimator using the inter-

event distance method

The empirical intensity and second-order product density functions are fre-
quently estimated by non-parametric techniques such as kernel smoothing.
Our attention is focused on the estimation of second-order characteristics,
see Illian et al. (2008) for further details about aspects of estimating the
intensity function. We use a similar estimator than Guan (2007), but we
change the edge-correction to improve the estimation. Hence, for a sta-
tionary spatial point process, we have the following enhanced estimator for
ρ(2)(·)

ρ̂(2)
ε(r) =

1

2π|W |
∑ 6=

u,v∈X

κε(‖u− v‖ − r)
w(u,v)‖u− v‖

, r > ε > 0, (2.14)

where κε is the kernel function with bandwidth ε, and w(u,v) is the
isotropic edge-corrector proposed by Ripley (1989). One of the most im-
portant advantages of this estimator is given by the consideration in the de-
nominator of the pairwise distances between points of the process ‖u−v‖,
and not the distances of a fine spatial grid r as has been suggested by many
authors in the literature (Cressie (1993); Stoyan and Stoyan (1994); Diggle

61



(2003)). Consider for example a spatial cluster process with a high degree
of aggregation. This implies that offsprings are very close with respect
to the parents, therefore our estimator (2.14) prevents from an overesti-
mation for small distances, as can be found when using the spatial grid.
It is also noteworthy that the weights assigned by the edge-correction are
based on the distance between pairs of the process and do not depend on
the values of the spatial grid. An additional advantage of the estimator
in (2.14) is that it better detects local spatial interaction present in the
point pattern. Finally, this estimator is unbiased. Indeed, using Camp-
bell’s (Cressie (1993); Stoyan and Stoyan (1994)) and Fubini’s theorem we
have that

E
[
ρ̂(2)

ε(r)
]

=
1

2π|W |
E
∑ 6=

u,v∈X

κε(‖u− v‖ − r)
w(u,v)‖u− v‖

=
1

2π|W |

∫
R2

∫
R2

κε(||x− y|| − r)
w(x,y)‖x− y‖

ρ(2)(||x− y||)1W (x)1W (y)dxdy

=
1

2π|W |

∫
R2

∫
R2

κε(||z|| − r)
w(x,x + z)‖z‖

ρ(2)(||z||)1W (x)1W (x + z)dxdz

=
1

2π|W |

∫
R2

∫
R2

1W (x)1W (x + z)

w(x,x + z)
dx
κε(||z|| − r)
‖z‖

ρ(2)(||z||)dz

=
1

2π

2π∫
0

∞∫
0

κε(h− r)ρ(2)(h)dhdθ

=

∞∫
−r/ε

κ(s)ρ(2)(r + εs)ds.

If r is a continuity point of ρ(2)(r), then

lim
ε→0

E
[
ρ̂(2)

ε(r)
]

= ρ(2)(r).

Thus, when ε → 0, ρ̂(2)
ε(r) is an approximately unbiased estimator for

ρ(2)(r). Under a spatial Poisson process observed on any spatial window
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W , it is easy to see that E
[
ρ̂(2)

ε(r)
]

= ρ2. We shall exploit this property
through the MISE in the simulation study.

To obtain an estimator for the variance of the second-order product
density function Stoyan et al. (1993a) and Stoyan and Stoyan (2000) pro-
posed different methodologies using the set covariance function as edge-
correction. However, our estimator (2.14) does not have the same structure
as the quantity T in Ripley (1989), Stoyan et al. (1993a) and Daley and
Vere-Jones (2003)), because w(u,v) 6= w(v,u), i.e. the edge-correction
function is not symmetric implying that the term within the sum in (2.14)
is not symmetric. This currently prevents from obtaining a close expression
for the variance of (2.14).

2.4 Simulation study and data analysis

2.4.1 Performance of the estimator: a simulation study

We conduct a simulation study to show the behaviour of several kernel fam-
ilies in a variety of practical scenarios. In particular we want to highlight
the better performance of some optimal and positive kernels in relation to
the classical Epanechnikov kernel when the sample size of the point pat-
tern is not large enough. The role of the kernel function comes implicit
in the estimator (2.14) of the second-order product density. Considering
that this estimator is unbiased, and knowing the closed analytical forms of
the second-order product density function for the spatial modified Thomas
process and the Matérn hard-core process (see equations (2.12) and (2.13))
we compare kernel performances through the mean integrated square error
(MISE), which takes the form

MISE
(
ρ̂(2)

ε

)
= E

 rsup∫
rinf>ε

(
ρ̂(2)

ε(r)− ρ(2)(r)
)2

dr

 . (2.15)

Note that for MISE computations it is highly important to rigorously define
the lower limit of the integral as rinf > ε > 0. The fact is that this function
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counts in concentric rings with center u for each event u ∈ W under the
condition r−ε ≤ ‖u−v‖ ≤ r+ε for u,v ∈ W . If this lower limit condition
is not respected, we can end up with overestimation and computational
problems.

The main challenge with the MISE expression is that it depends on
a complicated form depending on the bandwidth ε. This makes difficult
to interpret the influence of the bandwidth on the performance of the
second-order product density estimator via kernel. In order to show a
more simplified interpretation and to purse a more fair comparison among
the several simulation scenarios, we use instead

REk =
1

NBNsim

NB∑
ε

Nsim∑
i=1

(
MISEkiε −MISEk

)2

(2.16)

where Nsim and NB are the number of pattern simulations and the number
of selected bandwidths respectively, and

MISEk =
1

NBNsim

NB∑
ε

Nsim∑
i=1

MISEkiε.

The relative efficiency of the estimator is given by (min {REk} /REk)×100.

The dependence of the estimator in (2.14) on the number of points,
the spatial interaction structure and the combination kernel-bandwidth is
clear. We thus examined the performance of the estimator for the second-
order product density function via Monte Carlo simulation experiments
over a range of scenarios. The second-order product density function was
estimated using several kernel functions, and the corresponding MISE was
calculated versus a sequence of bandwidths. We fixed the spatial window
as W = [0, 1]× [0, 1], and simulated each of the three spatial point pattern
structures (Poisson, modified Thomas cluster, and Matérn hard-core inhi-
bition) with an expected number of points of E[N(W )] = n = 30, 50, 100.
We generated Nsim = 1000 realisations of the corresponding spatial point
patterns for each particular scenario. We also considered a fine grid for
the bandwidth ε spanning the sequence around the optimal bandwidth.
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This optimal value was obtained using the dpik function in the kernsmooth
package (Wand and Ripley (2013)) for the Poisson and modified Thomas
cluster processes. Note that for the Matérn hard-core inhibition process it
was necessary to impose the condition ε < rinf < r0. The integral term in
(2.15) was evaluated as a sum over a fine partition of the range of spatial
distances, from rinf > ε > 0 to rsup = 0.25 with small increments of spatial
distances. We use of the library spatstat package (Baddeley and Turner
(1995)) and connected Fortran subroutines to R.
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Figure 2.2: Realisations of the spatial point patterns for n = 30.
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Figure 2.3: Estimated second-order product density versus its theoretical form
for n = 30.

The point patterns were simulated as follows. For n = 30, the Poisson
point patterns were generated with ρ = 30 and with an optimal band-
width of ε = 0.0751912. The modified Thomas cluster patterns were
generated with (ρp, µ, σ) = (6, 5, 0.027) with an optimal bandwidth of
ε = 0.04053382. The Matérn hard-core inhibition patterns were generated
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Figure 2.4: MISE for the spatial point patterns with n = 30.

with (ρsp, r0) = (30, 0.02) and the optimal bandwidth was ε = 0.07513672.
For n = 50, the Poisson point patterns were generated with ρ = 50, with
an optimal bandwidth of ε = 0.06053682. The modified Thomas cluster
patterns were generated with (ρp, µ, σ) = (10, 5, 0.02) and an optimal band-
width of ε = 0.03319133. Finally, the Matérn hard-core inhibition patterns
were generated with (ρsp, r0) = (50, 0.014) and an optimal bandwidth of
ε = 0.06116048. For n = 100, the Poisson point patterns were generated
with ρ = 100 and an optimal bandwidth of ε = 0.04524329. The modified
Thomas cluster patterns were generated with (ρp, µ, σ) = (11, 90.04) and
an optimal bandwidth of ε = 0.02652378. The Matérn hard-core inhibi-
tion patterns were generated with (ρsp, r0) = (100, 0.009) and an optimal
bandwidth of ε = 0.04521666.

Table 2.1 shows the relative efficiency of the overall MISE when estimat-
ing the second-order product density function under the three considered
spatial structures, the three considered sample sizes, and using several or-
ders (values of k) of the kernel functions. Note that the best performance
is obtained for large values of the efficiency, which has a maximum value
of 100. Note that our focus is on small sample sizes, thus we only use
patterns with 100 points at most. Figures 2.2, 2.5 and 2.8 show particu-
lar realisations of these several types of point patterns, combining spatial
structure and expected number of points.

Under the Poisson and Matérn hard-core inhibition cases (see Table
1) we note that the best performance is obtained with the Uniform or
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Table 2.1: Relative efficiency of MISE under spatial Poisson processes, modified
Thomas cluster processes and Matérn hard-core inhibition processes.

Pattern Size k = 0 k = 2 k = 4 k = 8 k = 10 k = 12

n = 30 100 85.38382 74.06507 60.65028 56.18364 52.53986

Poisson n = 50 100 87.06276 78.4698 68.03188 64.38115 61.30776

n = 100 100 85.98112 74.6321 60.07972 55.05159 50.92702

n = 30 84.59333 96.18569 99.13752 100 99.01781 99.01781

Cluster n = 50 83.72175 98.07847 100 97.94181 96.25412 94.50055

n = 100 97.78441 100 99.79232 98.35681 97.54602 96.73698

n = 30 100 68.25449 47.84268 29.13356 24.18434 20.59619

Inhibition n = 50 100 69.6394 48.63697 29.61517 24.66148 21.09242

n = 100 100 70.08343 49.36589 30.36991 25.36599 21.74205

Box kernel, and efficiency decreases with the order of the kernel. How-
ever, when the spatial interaction in form of a cluster plays a role, things
change. For the modified Thomas cluster processes shows that optimal
and positive kernels with order larger or equal than k = 8 provide a better
performance (larger efficiency) than the most simple kernel functions such
as Box or Epanechnikov. This result is new in the literature and motivates
the practical use of these new kernels.

Figures 2.3, 2.6 and 2.9 show the estimated second-order product den-
sity versus its theoretical form for the three sample sizes and spatial struc-
tures. It is clear that although they are not the most efficient, the opti-
mal and positive kernels with the largest orders provide a larger degree of
smoothing, in particular under Poisson structures.

Finally, Figures 2.4, 2.7 and 2.10 show the MISE values versus a range
of bandwidths for the considered spatial point patterns. These Figures
report similar results as the relative efficiencies in Table 1. Again, for
cluster structures the larger order kernels provide lower MISE values. Note
that in general MISE values decrease with the bandwidth. The vertical
line in these Figures corresponds to the optimal bandwidth. In this case
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Figure 2.5: Realisations of the spatial point patterns for n = 50.
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Figure 2.6: Estimated second-order product density versus its theoretical form
for n = 50.
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Figure 2.7: MISE for the spatial point patterns with n = 50.

it is also worth noting that there is not much difference, in terms of MISE
and in terms of the several kernel functions, if we use a lower or larger
bandwidth parameter than the optimal. In some sense we are safe against
under- or over-estimation of the bandwidth.
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Figure 2.8: Realisations of the spatial point patterns for n = 100.
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Figure 2.9: Estimated second-order product density versus its theoretical form
for n = 100.
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Figure 2.10: MISE for the spatial point patterns with n = 100.

2.4.2 Real-data analysis

We revisit the three examples of point patterns from Diggle (2003) as in
Figure 2.11. No obvious second-order pattern appears for the Japanese
pine saplings, but the redwood seedlings are clearly clustered, while the
biological cell centers exhibit a regular or repulsion structure. A consistent
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estimator of the second-order product density function can illuminate these
features of the second-order structure of the point pattern X.
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Figure 2.11: Locations of 65 Japanese black pine saplings (left), 62 redwood
seedlings (centre), and 42 biological cell centers (right) each observed on the unit
square.

Figure 2.12 presents estimates of the second-order product density func-
tion in order to illustrate the basic shape of the function. In all cases in Fig-
ure 2.12, ρ2 stands for the estimated second-order product density function
for a Poisson point process with the same number of points that the respec-
tive real dataset. The several second-order product density function esti-
mates are consistent with the respective pattern structures. Japanese Pines
can be considered a completely random point pattern since the estimate
oscillates around ρ̂2

japanese = 4160 with N(W ) = 65 and ε = 0.05328353.
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Figure 2.12: Estimated second-order product density for the three selected point
pattern datasets.

This confirms the findings in the literature. The clustering behaviour
in the redwdood seedling data is detected by a spike reporting values much
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larger than ρ̂2
redwood = 3782 at small r withN(W ) = 62 and ε = 0.04036764.

The regularity structure in the biological cells data is reflected in the low
values of the product density compared with ρ̂2

cells = 1722 with N(W ) =

42 and ε = 0.0568103. In general we note again the greater degree of
smoothing obtained with those kernels of higher order.

2.5 Conclusions

Estimation of characteristics of spatial point processes plays an important
central role in the practice of point pattern analysis. This paper deals with
kernel-based non-parametric estimation of second-order product densities.
Estimation of product densities has not been paid much attention as esti-
mation of first-order characteristics, despite they are crucial in detecting
types of spatial interaction present in the point pattern. Literature has
motivated the use of some simple kernels such as Box or Epanechnikov
based on asymptotic arguments and extrapolating results from first-order
characteristics to any order, and for any sample size. We have thus fo-
cused on those cases of small sample sizes, up to 100 events in the region
of interest.

We have presented a new family of kernel functions based on opti-
mal and positive kernel functions that generalises the widely used Box or
Epanechnikov kernels. In addition we have built a new kernel-based esti-
mator for the product density that is unbiased. We have shown that the
performance of the new kernel functions depend upon the spatial struc-
ture present in the pattern data. In particular we suggest using optimal
and positive kernel functions with order larger than eight when estimating
second-order product densities under the presence of cluster structures. In
these cases our proposed kernel functions provide both a better degree of
smoothing and a closer behaviour to the theoretical product density. This
is not a general property as under the presence of Poisson and regular
structures the best efficiency is shown by the most simple kernel (the Box
kernel). However, even in these cases, if we are more interested in smooth-
ing, our new family of kernels with order larger than eight provide greater
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degree of smoothing and thus the general pattern of the product density is
better outlined. There are open lines of research coming out of our results.
Under inhomogeneous point patterns, it would be of interest to analyse the
behaviour of this kernel family and see if the presence of a trend changes
the message found in this paper. An extension to the spatio-temporal case
is also worth trying.
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Chapter 3
On the expected value and variance
for an estimator of the
spatio-temporal product density
function
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Abstract

Second-order characteristics are used to analyse the spatio-temporal struc-
ture of the underlying point process, and thus these methods provide a
natural starting point for the analysis of spatio-temporal point process
data. We restrict our attention to the spatio-temporal product density

1All authors contributed equally in this work.
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function, and develop a non-parametric edge-corrected kernel estimate of
the product density under the second-order intensity-reweighted stationary
hypothesis. First- and second-order spatio-temporal separability are intro-
duced. The expectation and variance of the estimator are obtained, and
close expressions derived under the Poisson case. A detailed simulation
study is presented to compare our close expression for the variance with
estimated ones for Poisson cases. The simulation experiments show that
the theoretical form for the variance gives acceptable values, which can be
used in practice. Finally, we apply the resulting estimator to data on the
spatio-temporal distribution of invasive meningococcal disease in Germany.

Keywords and Phrases: Point processes, Spatio-temporal separability,
Second-order product density, Second-order intensity-reweighted stationar-
ity, Variance

3.1 Introduction

Spatial and spatio-temporal point patterns are increasingly available in a
wide range of scientific settings, such as environmental sciences, climate
prediction and meteorology, epidemiology, image analysis, agriculture and
astronomy. Today, much attention is paid to spatio-temporal point pro-
cesses, where each point represents the location and time of an event, and
thus we have data of the form (ui, si) ∈ W × T ⊂ R2 × R, i = 1, ..., n.
There has been a lot of recent work on spatio-temporal models, and a
variety of ad-hoc approaches have been suggested (Diggle (2006); Gabriel
and Diggle (2009); Gelfand et al. (2010); Diggle (2013)). We consider here
processes that are temporally continuous and either spatially continuous
or spatially discrete on a sufficiently large support to justify formulating
explicitly second-order spatio-temporal tools for the data.

For these processes second-order properties play an important role in
the practical analysis of point patterns, in terms of exploratory and mod-
elling strategies. Usually, the K-function and pair correlation function
(g(·)) are used for model checking (Møller and Ghorbani; 2013) and pa-
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rameter estimation (Møller and Ghorbani; 2012), while the product density
is used for explanatory analysis. The form of these functions helps to un-
derstand the type of interaction in the point pattern and to find suitable
point process models.

In this context, separate analyses of the spatial and the temporal com-
ponents are of limited value, because the scientific objectives of the anal-
ysis are to understand and to model the underlying spatio-temporally in-
teracting stochastic mechanisms. There are basically two ways for mod-
elling spatio-temporal point patterns (Diggle (2006); Daley and Vere-Jones
(2008)). The first is descriptive and aims at providing an empirical descrip-
tion of the data, especially from second-order characteristics. The second is
mechanistic and aims at constructing parametric point process models by
specifying parametric models for the conditional intensity function. Here,
we will consider the former and analyses will be based on extensions of the
product density to summarize a spatio-temporal point pattern.

The inhomogeneousK-function has been extended to the spatio-temporal
setting by Gabriel and Diggle (2009). Second-order characteristics are
thus analysed from the spatio-temporal inhomogeneousK-function (STIK-
function) or equivalently from the spatio-temporal pair correlation function
under the assumption of second-order intensity re-weighted stationarity
(Gabriel and Diggle (2009); Gabriel et al. (2010), Gabriel et al. (2012);
Gabriel (2013)). Spatio-temporal separability of the STIK-function has
been studied in Møller and Ghorbani (2012). These two functions rely
very much upon first-order characteristics which are unknown in practice,
and replacing the intensity by an estimate must be made carefully as it may
imply bias (Baddeley et al. (2000); Gabriel (2013)). However, the product
density does not show this problem, as will be shown in this paper.

Little attention has been paid so far to the first- and second-order
moments (expected and variance values) of the second-order properties of
spatio-temporal processes. And they are needed for performing statistical
inference based on these characteristics. In the spatial context we can only
refer to Ripley (1988) who developed variance expressions for a series of
estimators of the spatial K-function for the Poisson process.
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Then Stoyan et al. (1993b) approximated the variance of spatial prod-
uct densities, and Cressie and Collins (2001a,b) obtained close expressions
for the expected and variance values of the local spatial product densities.
Nothing has been developed in the spatio-temporal context. In this paper
we develop a non-parametric edge-corrected kernel estimate of the product
density under the second-order intensity-reweighted stationary hypothesis.
First- and second-order spatio-temporal separability are introduced. We
extend the original ideas of Stoyan et al. (1993b) to the spatio-temporal
case to develop exact and close expressions of the expectation and variance
of the proposed estimator. Note that since estimated second-order charac-
teristics deviate from their theoretical counterparts because of statistical
fluctuations, error bounds for these functions are important. For example,
they are needed to distinguish between statistical fluctuations in an esti-
mated product density function and peaks which are due to real properties
of the spatio-temporal point process under study.

Our estimator is accurate in estimating the spatio-temporal product
density both under separable and non-separable cases. It is unbiased and
we develop the close expression of its variance. The simulation experiments
show that the formulae derived for this estimator give acceptable values,
and thus can be used in practice.

The remainder of the paper is organised as follows. Section 3.2 provides
a theoretical background on the first- and second-order properties of spatio-
temporal point processes. In Section 3.3 we present the product density
estimator and its expectation and variance for the general case, and un-
der Poisson processes. Section 3.4 discusses the expectation and variance
of the product density estimator under the hypothesis of spatio-temporal
separability. We then present some simulation results in Section 3.5. Sec-
tion 6 presents the analysis of the spatio-temporal distribution of invasive
meningococcal disease in Germany. The paper ends with some final con-
clusions.
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3.2 Definitions and backgrounds

Møller and Ghorbani (2012) discussed the second-order analysis of struc-
tured inhomogeneous spatio-temporal point processes. The definitions and
notations introduced in that paper are used throughout the present paper.
Following them, we consider a spatio-temporal point process with no mul-
tiple points as a random countable subset X of R2 × R, where a point
(u, s) ∈ X corresponds to an event at u ∈ R2 occurring at time s ∈ R.
In practice, we observe n events {(ui, si)} of X within a bounded spatio-
temporal region W × T ⊂ R2 × R, with area |W | > 0, and with length
|T | > 0. For formal definition of a point process based on measure theory
see e.g. (Illian et al.; 2008; Chiu et al.; 2013).

For convenience, we introduce the following notations. Let N(A) be
the number of events falling in an arbitrary bounded region A ⊂ W × T ;
Θn = {(u1, s1), . . . , (un, sn) ∈ X} be a set of n-tuples of events in X;∫
B⊗k

=
∫
B

. . .
∫
B

for k times, where B = W × T .

Assume that X has spatio-temporal nth-order product density function
ρ(n), for n ∈ N. For any non-negative Borel function f defined on (R2 ×
R)⊗n,

E
∑ 6=

Θn

f((u1, s1), . . . , (un, sn)) =

∫
B⊗n

f((u1, s1), . . . , (un, sn))

× ρ(n)((u1, s1), . . . , (un, sn)) d((u1, s1), . . . , (un, sn)), (3.1)

where
∑6= means that we sum over the n pairwise distinct points

(u1, s1), . . . , (un, sn) (see e.g. Illian et al. (2008); Chiu et al. (2013)).

3.2.1 First- and second-order properties

Considering (3.1), in particular for n = 1 and n = 2 the n-order product
density function is respectively called the intensity function and the second-
order product density function.

A process for which ρ(u, s) = ρ for all (u, s) is called homogeneous or
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first-order stationary. Further, if ρ(2)((u, s), (v, l)) = ρ(2)(u− v, s− l), the
process is called second-order or weak stationary (Ghorbani; 2013).

3.2.2 Spatial and temporal components

It is assumed that the point process X is orderly, roughly meaning that
coincident points cannot occur. That is, any pair of points (u, s) and (v, l)

of X are distinct, so u 6= v and s 6= l. We can therefore ignore the case
where the spatial and temporal component processes Xspace and Xtime have
multiple points, and following Møller and Ghorbani (2012) we define them
by

Xspace = {u : (u, s) ∈ X, s ∈ T} , Xtime = {s : (u, s) ∈ X,u ∈ W} .

Note that, using this notation, it is clear that Xspace depends on T , and
Xtime depends on W .

First-order properties

Assume that X has intensity function ρ(u, s), then

ρspace(u) =

∫
T

ρ(u, s) ds, ρtime(s) =

∫
W

ρ(u, s) du.

Throughout the paper we assume first-order spatio-temporal separability,
i.e.

ρ(u, s) = ρ̄1(u)ρ̄2(s), (u, s) ∈ R2 × R, (3.2)

where ρ̄1 and ρ̄2 are non-negative functions. Considering the hypothesis of
first-order spatio-temporal separability,

ρ(u, s) =
ρspace(u)ρtime(s)∫
ρ(u, s) d(u, s)

.

For stationary point processX, ρ, ρspace and ρtime are all constant. For non-
parametric estimation of ρspace(u), ρtime(s) and ρ(u, s), (Ghorbani (2013)).
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Second-order properties

Throughout the paper we assume thatX is second-order intensity-reweighted
stationary (SOIRS), i.e.

ρ(2)((u, s), (v, l)) = ρ(2)(u− v, s− l), (u, s), (v, l) ∈ R2 × R (3.3)

(Baddeley et al.; 2000; Gabriel and Diggle; 2009; Gabriel; 2013). Further,
if the process is isotropic, then ρ(2)(u − v, s − l) = ρ

(2)
0 (‖u − v‖, |s − l|)

for some non-negative function ρ
(2)
0 (·), where ‖ · ‖ denotes the Euclidean

distance in R2 and | · | denotes the usual distance in R.
Using (3.1) (with n = 2) and (3.3) we obtain that Xspace is SOIRS with

second-order product density

ρ(2)
space(u,v) = ρ(2)

space(u− v) =

∫
T

∫
T

ρ(2)(u− v, s− l) ds dl. (3.4)

Analogously, Xtime is SOIRS with

ρ
(2)
time(s, l) = ρ

(2)
time(s− l) =

∫
W

∫
W

ρ(2)(u− v, s− l) du dv. (3.5)

It will always be clear from the context whether ρ(2)
space is considered to be

a function defined on R2×R2 or R2, and whether ρ(2)
time is considered to be

a function defined on R× R or R.

Spatio-temporal separability of the product density function

The spatio-temporal product density function is separable if

ρ(2)((u, s), (v, l)) = ρ̄
(2)
1 (u,v)ρ̄

(2)
2 (s, l)

for non-negative functions ρ̄(2)
1 and ρ̄

(2)
2 . Under the assumption (3.3) of

SOIRS, this hypothesis can be rewritten as

ρ(2)(u− v, s− l) = ρ̄
(2)
1 (u− v)ρ̄

(2)
2 (s− l), (u, s), (v, l) ∈ R2×R. (3.6)
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Considering (3.4), (3.5), and (3.6),

ρ(2)
space(u− v) = ρ̄

(2)
1 (u− v)

∫
T

∫
T

ρ̄
(2)
2 (s− l) ds dl, (3.7)

and
ρ

(2)
time(s− l) = ρ̄

(2)
2 (s− l)

∫
W

∫
W

ρ̄
(2)
1 (u− v) du dv. (3.8)

By substituting (3.7) and (3.8) in (3.6),

ρ(2)(u− v, s− l) =
ρ

(2)
space(u− v)ρ

(2)
time(s− l)∫ ∫

ρ(2)(u− v, s− l) d(u, s) d(v, l)
. (3.9)

As in the spatio-temporal first-order case, equation (3.9) suggests that

ρ(2)((u, s), (v, l)) ∝ ρ(2)
space(u,v)ρ

(2)
time(s, l).

Suppose we are given estimates ρ̂(2)
space(u− v) and ρ̂(2)

time(s− l). If these
are unbiased estimates of the expected number of distinct pairs of events,
i.e.
∫
W
ρ̂(2)

space(u− v) du dv =
∫
T
ρ̂(2)

time(s− l) ds dl = n(n− 1), then the
estimate of the spatio-temporal product density function given by

ρ̂(2)(u− v, s− l) =
ρ̂(2)

space(u− v)ρ̂(2)
time(s− l)

n(n− 1)
,

is also a ratio unbiased estimate of the expected number of observed points.
See more details in Section 3.3.

3.2.3 Relationship between the product density and

the K-function

For a SOIRS, isotropic, spatio-temporal point process X, Gabriel and Dig-
gle (2009) extended the inhomogeneous K-function from the spatial to the
spatio-temporal case. They defined the spatio-temporal inhomogeneous
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K-function as

K(r, t) =

∫
1 [‖u‖ ≤ r, |s| ≤ t] g0(u, s)d(u, s), r > 0, t > 0, (3.10)

where 1[·] denotes the indicator function, and g0(u, s) (with the abuse of
the notations u and s for u = ‖u − v‖ and s = |s − l|) is the spatio-
temporal pair correlation function. For a Poisson process, g0 = 1 and
K(r, t) = 2πr2t. For an unbiased estimator of the K-function, see Gabriel
(2013).

Considering the hypothesis of the first- and second-order spatio-temporal
separabilities, for isotropic point process X and for non-negative Borel
functions K̄1 and K̄2,

K(r, t) = K̄1(r)K̄2(t), r > 0, t > 0. (3.11)

Assume that X is isotropic, and Xspace and Xtime have pair correla-
tion functions gspace and gtime respectively. The corresponding spatial and
temporal K-functions are

Kspace(r) =

∫
||u||≤r

gspace(u) du, r > 0,

and

Ktime(t) =

t∫
−t

gtime(s) ds, t > 0.

Both in the stationary and isotropic case, and in the SOIRS and isotropic
case, the spatio-temporal pair correlation function is proportional to the
derivative of K(r, t) with respect to r and t. So, in the planar case using
(3.10),

g0(r, t) =
1

4πr

∂2K(r, t)

∂r∂t
.

Thus, for the SOIRS and isotropic point process X,

ρ(2)((u, s), (v, l)) =
ρ(u, s)ρ(v, l)

4πr

∂2K(r, t)

∂r∂t
, r > 0, t > 0.
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Further, under spatio-temporal separability (3.2) and (3.11), we have that

ρ(2)(r, t) =
1

cSO

(
ρspace(u)ρspace(v)

2πr

∂Kspace(r)

∂r

)(
ρtime(s)ρtime(l)

2

∂Ktime(t)

∂t

)
.

(3.12)
Here

cSO = csSO × ctSO,

with

csSO =

∫
W

ρ̄(2)(u) du

 and ctSO =

∫
T

ρ̄(2)(s) ds

 ,

and then
cSO =

(∫∫
ρ(2)(u, s) d(u, s)

)
,

which can be approximated by n(n− 1). Hence

ρ(2)
space(r) ∝

ρspace(u)ρspace(v)

2πr

∂Kspace(r)

∂r
, ρ

(2)
time(t) ∝

ρtime(s)ρtime(l)

2

∂Ktime(t)

∂t
.

For a stationary and isotropic point process X,

ρ(2)(r, t) =
ρ2

4πr

∂2K(r, t)

∂r∂t
. (3.13)

Moreover,

ρ(2)
space(r) ∝

ρ2
space

2πr

∂Kspace(r)

∂r
, ρ

(2)
time(t) ∝

ρ2
time

2

∂Ktime(t)

∂t
.

3.3 Estimation of the product density

We avoid estimating the product density by applying numerical differenti-
ation to an estimate of ρ2K(r, t). Alternatively, considering that ρ2K(r, t)

stands for the expected number of ordered pairs of distinct points per unit
area of the observation window with pairwise distance and time lag less
than r and t, by extending the idea in Stoyan (1987) and Stoyan et al.
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(1995), we directly estimate the product density using a non-parametric
edge-corrected kernel estimate.

A spatio-temporal kernel density estimate of ρ2∂K(r, t)/∂r∂t takes the
basic form of a smoothed three-dimensional histogram,

(|W ||T |)−1
∑ 6=

(u,s),(v,l)∈X

κεδ(‖u− v‖ − r, |s− l| − t).

We assume that the kernel function κεδ(·, ·) has the multiplicative form

κεδ(‖u− v‖ − r, |s− l| − t) = κ1ε (‖u− v‖ − r)κ2δ (|s− l| − t) ,

where κ2δ and κ1ε are respectively one-dimensional kernel functions with
bandwidths ε and δ.

b

b

b

b

b

b

b

b

b
b

b

b

b

b
r1

r2

r3

(a) Counting form in the spatial case.

x

y

t

r

2δ

2ǫ

(b) Counting form in the spatio-temporal case.

Figure 3.1: Counting method for assigning weights in the estimation.

Figure (3.1) illustrates how to count through cylindrical shells whose
shape and volume change depending on the values of r and t; setting the
spatial and temporal bandwidths, we define the weights for the global
estimate. Furthermore, r and t are defined by empirical step functions in
order to build a mesh that fits the nature of the data to obtain a enough
good response surface to the interpretation of the phenomenon.
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By extending the idea in Ohser (1983), an edge-corrected kernel esti-
mate of the product density function (3.13) is given by

ρ̂(2)
ε,δ(r, t) =

∑ 6=

(u,s),(v,l)∈X

κ1ε (‖u− v‖ − r)κ2δ (|s− l| − t)
4πrγW (r)γT (t)

, (3.14)

with r > ε > 0, t > δ > 0. Here γW (r) and γT (t) are the spatial and
temporal set covariance functions, respectively. For a convex region W , a
general approximation formula for γW (r) for small r is given by

γW (r) ≈ |W | − U(W )

π
r,

where U(W ) is the perimeter of W , and for a small t, γT (t) = |T | − t.
Under the hypothesis of spatio-temporal separability, and considering

(3.9),

ρ̂(2)
ε,δ(r, t) '

ρ̂(2)
space,ε(r)ρ̂

(2)
time,δ(t)

n(n− 1)
, (3.15)

with

ρ̂(2)
space,ε(r) =

∑ 6=

u,v∈Xspace

κ1ε(‖u− v‖ − r)
2πrγW (r)

, r > ε > 0,

and
ρ̂(2)

time,δ(t) =
∑ 6=

s,l∈Xtime

κ2δ(|s− l| − t)
2γT (t)

, t > δ > 0.

3.3.1 Expectation and variance of the product density

In this section the expectation and variance of the product density estima-
tor (3.14) is obtained by considering the general case. The corresponding
moments of the product density estimator under the hypothesis of separa-
bility are developed in Section 3.4.

Expectation

Using (3.1) with n = 2, the estimator (3.14) satisfies
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E
[
ρ̂(2)

ε,δ(r, t)
]

=

∞∫
−r/ε

∞∫
−t/δ

κ1(u)κ2(v)γW (r + εu)γT (t+ δv)

rγW (r)γT (t)
(3.16)

× ρ(2)(r + εu, t+ δv)(r + εu)du dv

The detailed proof is as follows. Applying formula (3.1), the Fubini’s
theorem and some elementary changes of variables in (3.14), we have that

E
∑ 6=

(u,s),(v,l)∈X

1W (u)1W (v)1T (s)1T (l)κ1ε (‖u− v‖ − r)κ2δ (|s− l| − t)
4πrγW (r)γT (t)

=

∫
W×T

∫
W×T

κ1ε(‖x− y‖ − r)κ2δ(|ξ − η| − t)
4πrγW (r)γT (t)

× ρ(2)(‖x− y‖, |ξ − η|) d(x, ξ) d(y, η)

=

∫
(W−h1)×(T−h2)

∫
W×T

κ1ε(‖h1‖ − r)κ2δ(|h2| − t)
4πrγW (r)γT (t)

× ρ(2)(‖h1‖, |h2|) d(h1, h2) d(y, η)

=

∫
R2×R

κ1ε(‖h1‖ − r)κ2δ(|h2| − t)γW (h1)γT (h2)

4πrγW (r)γT (t)
ρ(2)(‖h1‖, |h2|) d(h1, h2)

=

∞∫
0

∫
R

κ1ε(R− r)κ2δ(|h2| − t)γW (R)γT (h2)

2rγW (r)γT (t)
ρ(2)(R, |h2|)R dR dh2

=

∞∫
−r/ε

∞∫
0

κ1(u)κ2((h2 − t)/δ)γW (r + uε)γT (h2)

2δrγW (r)γT (t)

× ρ(2)(r + uε, h2)(r + uε) du dh2

+

∞∫
−r/ε

0∫
−∞

κ1(u)κ2((−h2 − t)/δ)γW (r + uε)γT (h2)

2δrγW (r)γT (t)

× ρ(2)(r + uε,−h2)(r + uε)du dh2
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=

∞∫
−r/ε

∞∫
−t/δ

κ1(u)κ2(v1)γW (r + uε)γT (δv1 + t)

2rγW (r)γT (t)

× ρ(2)(r + uε, δv1 + t)(r + uε)du dv1

+

∞∫
−r/ε

∞∫
−t/δ

κ1(u)κ2(v2)γW (r + uε)γT (δv2 + t)

2rγW (r)γT (t)

× ρ(2)(r + uε, δv2 + t)(r + uε)du dv2

=

∞∫
−r/ε

∞∫
−t/δ

κ1(u)κ2(v)γW (r + uε)γT (δv + t)

rγW (r)γT (t)

× ρ(2)(r + uε, δv + t)(r + uε)du dv,

which shows the result.

If (r, t) is a continuity point of ρ(2)(r, t), then

lim
(ε,δ)→(0,0)

E
[
ρ̂(2)

ε,δ(r, t)
]

= ρ(2)(r, t).

Hence, ρ̂(2)
ε,δ(r, t) is an approximately unbiased estimator for the spatio-

temporal product density.

Variance

The variance of the second-order product density estimator (3.14) can be
obtained by the direct application of the extended Campbell’s Theorem
(Illian et al.; 2008; Chiu et al.; 2013) for the spatio-temporal case. In
particular, we have

E
[(
ρ̂(2)

ε,δ(r, t)
)2
]

=
(c(r, t))2

16

[
4E1(B) + 2E2(B) + E3(B)

]
(3.17)

with
c(r, t) =

1

πrγW (r)γT (t)
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and

E1(B) =

∫
B⊗3

κ1ε(‖x− y‖ − r)κ1ε(‖x− z‖ − r)κ2δ(|ξ − η| − t)κ2δ(|ξ − ζ| − t)

× ρ(3)((‖x− y‖, |ξ − η|), (‖x− z‖, |ξ − ζ|))d(x, ξ)d(y, η)d(z, ζ),

E2(B) =

∫
B⊗2

κ2
1ε(‖x− y‖ − r)κ2

2δ(|ξ − η| − t)

× ρ(2)(‖x− y‖, |ξ − η|)d(x, ξ)d(y, η),

E3(B) =

∫
B⊗4

κ1ε(‖x− y‖ − r)κ1ε(‖z−w‖ − r)κ2δ(|ξ − η| − t)κ2δ(|ζ − γ| − t)

× ρ(4)((‖x− y‖, |ξ − η|), (‖x− z‖, |ξ − ζ|), (‖x−w‖, |ξ − η|))

× d(x, ξ)d(y, η)d(z, ζ)d(w, γ).

Finding an expansion for the variance in terms of (ε, δ) will require
knowledge of the form of the third and fourth-order product density func-
tion for a given point process model.

3.3.2 Expectation and variance of the product density

estimator under Poisson process

Expectation

For a Poisson process with intensity ρ, the nth-order product density ρ(n)

is equal to ρn, so utilizing (3.16) when (ε, δ)→ (0, 0),
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E
[
ρ̂(2)

ε,δ(r, t)
]

=

∞∫
−r/ε

∞∫
−t/δ

κ1(u)κ2(v)γW (r + uε)γT (t+ δv)

rγW (r)γT (t)
(3.18)

× ρ(2)(r + uε, t+ δv)(r + uε)du dv = ρ2,

if the lower bound for the value of κ1 and κ2 are respectively larger than
−r/ε and −t/δ.

Variance

Considering (3.17) and unbiasedness property of the product density esti-
mator, we have that

Var
[
ρ̂(2)

ε,δ(r, t)
]

=
(c(r, t))2

16

[
4ρ3S1 + 2ρ2S2

]
, (3.19)

where

S1 =

∫
B⊗3

κ1ε(‖x− y‖ − r)κ1ε(‖x− z‖ − r)κ2δ(|ξ − η| − t)

× κ2δ(|ξ − ζ| − t) d(x, ξ)d(y, η)d(z, ζ)

=

∫
B

{∫
B

κ1ε(‖x− y‖ − r)κ2δ(|ξ − η| − t) d(y, η)

}2

d(x, ξ) = Ss1S
t
1

and

S2 =

∫
B⊗2

κ2
1ε(‖x− y‖ − r)κ2

2δ(|ξ − η| − t)d(x, ξ)d(y, η) = Ss2S
t
2.

Here,

Ss1 =

∫
W

{∫
W

κ1ε(‖x− y‖ − r) dy

}2

dx,
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St1 =

∫
T

{∫
T

κ2δ(|ξ − η| − t) dη

}2

dξ,

Ss2 =

∫
W⊗2

κ2
1ε(‖x− y‖ − r)dxdy

and

St2 =

∫
T⊗2

κ2
2δ(|ξ − η| − t)dξdη.

For spatial case, using Epanechnikov kernel Stoyan et al. (1993b) have
shown that

Ss2 =
6

5ε

(
|W |πr − U(W )

(
ε2

7
+ r2

))
and

Ss1 = 4π2r2
(
|W | − A

)
+ 4(r + ε)2(π − 1)2A,

where A = U(W )(r + ε)− 4(r + ε)2.
For temporal case and using uniform kernel, by the same methods as

in Stoyan et al. (1993b), it is easy to show that

St2 =
|T |
δ

and

St1 = 4|T | − 8(t+ δ) +
128

3
t2(t+ δ).
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By combining the above formulas an approximation of the variance of
the product density estimator is obtained. In practice we substitute ρ by
its estimate ρ̂ = N(W×T )

|W ||T | .

3.4 Moments of the product density estimate:

under the hypothesis of spatio-temporal

separability

For non-negative Borel functions h1 and h2 defined on (R2)⊗n and R⊗n

respectively, we assume that

h((u1, s1), . . . , (un, sn)) = h1(u1, . . . ,un)h2(s1, . . . , sn),

and considering n-order spatio-temporal separability we can rewrite (3.1)
as

E
∑ 6=

Θn

h((u1, s1), . . . , (un, sn)) =

E
∑ 6=

u1,...,un∈Xspace

f1(u1, . . . ,un)E
∑ 6=

s1,...,sn∈Xtime

f2(s1, . . . , sn),

=

∫
W⊗n

h1(u1, . . . ,un)ρ̄
(n)
1 (u1, . . . ,un)

n∏
i=1

dui

×
∫
T⊗n

h2(s1, . . . , sn)ρ̄
(n)
2 (s1, . . . , sn)

n∏
i=1

dsi (3.20)

where f1(u1, . . . ,un) = h1(u1, . . . ,un)/(
∫
W⊗n ρ̄

(n)
1 (u1, . . . ,un)

∏n
i=1 dui)

and f2(s1, . . . , sn) = h2(s1, . . . , sn)/(
∫
T⊗n ρ̄

(n)
2 (s1, . . . , sn)

∏n
i=1 dsi).

3.4.1 Expectation

Combining (3.20) and (3.14) for n = 2 we have,
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E
[
ρ̂(2)

ε,δ(r, t)
]

=
(n− 2)!

n!

E
∑ 6=

ui,uj∈Xspace

κ1ε(‖ui − uj‖ − r)
2πγW (r)r

E
∑ 6=

si,sj∈Xtime

κ2δ(|si − sj| − t)
2γT (t)

=

∞∫
−r/ε

∞∫
−t/δ

κ1(u)κ2(v)γW (r + εu)γT (t+ δv)

rγW (r)γT (t)
ρ(2)(r + εu, t+ δv)(r + εu)du dv

Note that under separability we obtain the same expression (3.16) as
in the general case.

3.4.2 Second-order moment

Under the same assumptions as in the above case for n = 3, 4 in (3.20),
and using (3.14) the second-order moment of the product density estimate
the under separability hypothesis is given by

E
[(
ρ̂(2)

ε,δ(r, t)
)2
]

=
(c(r, t))2

16

[
2E1(B) + 4E2(B) + E3(B)

]
.

For this case we also obtain expression (3.17) as in the general case. Thus
all results and properties for the general case are also satisfied in the sep-
arable case.

3.5 Simulation study

The spatio-temporal second-order product density function is of interest as
can be used to discriminate amongst several spatio-temporal point struc-
tures. For example, for a Poisson process E[ρ̂(2)

ε,δ(r, t)] = ρ2 as we have
shown previously in (3.18). Values of the spatio-temporal surface of the
second-order product density function larger than the values of the plane
ρ2, indicate that the interevent distances around (r, t) are relatively more
frequent compared to those in a Poisson process, which is typical of a
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cluster process, and conversely, values of the spatio-temporal surface of
ρ̂(2)

ε,δ(r, t) smaller than the values of the plane ρ2 indicate that the cor-
responding distances are rare and this is typical of an inhibition process.
The second-order product density function can take all values between zero
and infinity.

We conducted a simulation experiment to analyse the behaviour of
our estimator of the second-order spatio-temporal product density func-
tion under random Poisson structures. In addition, as we have developed
close expressions for the variance under the Poisson case, we use them to
generate the corresponding confidence surfaces. We considered the volume
W×T = [0, 10]2×[0, 10] and simulated spatio-temporal point patterns with
a varying expected number of points E[N(W × T )] = n = 100, 200, 300.
We considered Nsim = 100 repetitions per pattern and scenario. The work
has been implemented in R, and has used the stpp package Gabriel et al.
(2012). We used a fine grid for each spatial and temporal distances u and
v spanning the sequence starting from u > ε > 0 to 2.50 and v > δ > 0 to
2.50 with small increments of distances. In the spatial case, Fiksel (1988a)
suggested the use of the Epanechnikov kernel with bandwidth parameter
ε = 0.1

√
5/ρ. In practice, we use the dpik function in kernsmooth package

to obtain the bandwidth (Wand and Ripley; 2013) based on the distances
between the spatial locations of the process. For the temporal case the
uniform kernel is used, where again we calculate the bandwidth δ using
the dpik function based on the time lag between the temporal instants
of the process. Note that the second-order product density function was
evaluated for any scenario and repetition over the same spatio-temporal
grid.

Table 1 shows some descriptive measures of the second-order spatio-
temporal product density kernel estimator for homogeneous Poisson pro-
cesses, under several simulated scenarios and different expected number of
points. The homogeneous Poisson processes are simulated using the rpp
function with constant intensity. The spatial and temporal bandwidths are
estimated for each one of the one hundred repetitions. Table 1 displays the
average optimal bandwidths for each sample size (named “Est” in Table 1).
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We also show the behaviour of the second-order product density under two
other fixed bandwidth values designed to overestimate and underestimate
the optimal values (namd “Fix” in Table 1). From all possible grid cells, in
Table 1 we have only shown the descriptive measures for some particular
values of (r, t), for comparison purposes.

Table 1 also shows the theoretical second-order product density under
a Poisson case (ρ(2) = ρ̂2), together with the estimated average surface
(ρ̂(2)), (Q5%(ρ̂(2))) and (Q95%(ρ̂(2))) are the 5% and 95% sample quantile
values. In terms of variances, we present the average approximate theoreti-
cal standard deviation surface (σ(ρ̂(2))) together with the average empirical
standard deviation surface values (σ̂(ρ̂(2))).

Table 1 shows the results for only three selected cells over the fine grid
of spatial and temporal distances to save space. The estimated product
density function over the whole grid is depicted in Figures 3.2, 3.3 and
3.4. We note that in general the difference between the estimated prod-
uct density and the theoretical one is smaller when using the estimated
bandwidth using dpik, compared with those cases where we use some other
fixed values for the bandwidth. In addition, the variances coming from
our theoretical developed expression are in the same order of the empirical
variance for the selected cells, and even lower for many other cells.

3.6 Invasive Meningococcal Disease (IMD):

Second-order analysis

Meyer et al. (2012) quantified the transmission dynamics of the two most
common meningococcal antigenic sequence types observed in Germany be-
tween 2002 and 2008. They modelled the conditional intensity function by
a superposition of additive and multiplicative components in space and
time. According to them, the Invasive Meningococcal Disease (IMD) is a
known life-threatening human disease involving meningitis (50% of cases),
septicemia (5% to 20%) and/or pneumonia (5% to 15%) caused by the in-
fection with the bacterium Neisseria meningitidis, also termed meningococ-
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Table 3.1: Descriptive measures of the estimation of the second-order spatio-
temporal product density under the Poisson case.
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Figure 3.2: Statistical properties of the scond-order spatio-temporal product
density kernel estimated under Poisson point patterns with expected number of
points n = 100, ρ̂2 = 0.0099, ε = 0.9936 and δ = 0.3841.

cus. Meningococci can be transmitted airborne (by coughing or sneezing)
or by other mucous secretions from infected humans, where they colonise
the nasopharynx, their only natural reservoir. The risk of contracting IMD
is much higher inside the household of an infected person. Nevertheless,
secondary cases have become rare due to effective antimicrobial chemopro
phylaxis of household members and anyone exposed to an infected patient
with oral secretions. The risk of secondary infections is highest during the
first few days. Meyer et al. (2012) claim that most meningococci are com-
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Figure 3.3: Statistical properties of the scond-order spatio-temporal product
density kernel estimated under Poisson point patterns with expected number of
points n = 200, ρ̂2 = 0.0398, ε = 0.7383 and δ = 0.2466.

mensal in humans, but only a few isolates are virulent and cause invasive
disease.

The area of Germany is 357603 km2 with a perimeter of 6146 km. The
IMD dataset consists of the spatio-temporal reports of 636 cases of IMD
caused by two specific meningococcal finetypes in which the times are
given by 2569 days over the 7-year period, so the temporal region is de-
fined as T = [0, 2569]. Figure 3.5 shows the estimated spatial intensity

96



 r =
 distance

1.0

1.5

2.0

2.5 t = tim
e

0.5

1.0

1.5

2.0

2.5

0.093

0.094

0.095

0.096

0.097

(a) Expected average surface.

r = distance

t =
 ti

m
e

 0.093 

 0
.0

93
 

 0.0935 

 0
.0

93
5 

 0.094 

 0.0945 

 0.0945 

 0
.0

95
 

 0.095 

 0.0955 

 0.
09

6 

1.0 1.5 2.0 2.5

0.
5

1.
0

1.
5

2.
0

2.
5

(b) Expected average contours.

 r =
 distance

1.0

1.5

2.0

2.5 t = tim
e

0.5

1.0

1.5

2.0

2.5

0.02

0.04

0.06

0.08

(c) Average standard deviation surface.

 r =
 distance

1.0

1.5

2.0

2.5 t = tim
e

0.5

1.0

1.5

2.0

2.5

0.0

0.1

0.2

(d) Envelope surface surfaces.

Figure 3.4: Statistical properties of the scond-order spatio-temporal product
density kernel estimated under Poisson point patterns with expected number of
points n = 300, ρ̂2 = 0.0897, ε = 0.06093 and δ = 0.01862.

(left panel) and estimated temporal intensity (right panel). In the purely
spatial case, this figure shows clearly the inhomogeneity condition of IMD,
with a notorious high intensity of points per km2 in the western border of
Germany, and some lower intensity (but noticeable concentrations) near
the north-eastern and southern borders. Figure 3.6 shows the surface of
the estimated second-order product density using ε = 13.9686 km and
δ = 28 days. This figure shows large values for small spatial and temporal
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Figure 3.5: Estimated spatial (left panel) and temporal (right panel) intensities
for the IMD dataset.

distances, which is a typical behaviour of a cluster spatio-temporal point
pattern. However, the spatial aggregation decreases with increasing spatial
distances, while the temporal aggregation is kept throughout most of the
temporal range, as clearly shown in the right panel of Figure 3.5. This
result is a consequence of many reports of IMD occurring close in space
and time, and thus for short temporal periods it is quite likely that at
least two reports of IMD occur close enough of each other. Additionally,
the spatial aggregation shows the same behaviour even during periods of
time sufficiently large. One way to emphasise this clustering behaviour is
to compare the theoretical value of the second-order product density func-
tion for a Poisson point pattern with equal expected number of points than
IMD (ρ̂2 = 4.840609 × 10−13), with the maximum value of the empirical
surface in Figure 3.6, which is around 1.2 × 1012. This result is clearly
expected after visual inspection of Figure 3.6, and goes in the line found
by Meyer et al. (2012)).

The left panel of Figure 3.7 shows the 95%-envelope surfaces obtained
from 39 simulations of a spatio-temporal Poisson point pattern, see Møller
and Ghorbani (2010) and Møller and Waagepetersen (2004)), together with
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Figure 3.7: 3.7(a) 95%-envelope surfaces obtained from 39 simulations of a
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the empirical second-order product density. This figure shows how the em-
pirical surface of the second-order product density function for the IMD
dataset is larger than the upper 95%-envelope for small spatial and tem-
poral distances.

The right panel of Figure 3.7 shows the confidence interval under a
Poisson pattern based on the estimated ρ̂(2) ± two standard deviations
calculated using the close form of the variance in Section 3.2. We also
superimpose the empirical product density for the IMD data. Again, the
empirical density goes out the upper confidence surface. These two figures
reveal that IMD has a contagious behaviour in their immediate spatio-
temporal neighborhoods. These are solid arguments to reject the hypoth-
esis of complete randomness in favour of a clustering structure.

3.7 Discussion

The spatio-temporal inhomogeneous second-order product density function
describes second-order characteristics of point processes. It is useful to
analyse the spatio-temporal structure of the underlying point process, and
thus provides a natural starting point for the analysis of spatio-temporal
point process data. It can be considered an exploratory tool, for testing
spatio-temporal clustering or spatio-temporal interaction.

We have proposed a non-parametric edge-corrected kernel estimate of
the product density under the second-order intensity-reweighted stationary
hypothesis. The expectation and variance of the estimator are obtained,
and close expressions are derived under the Poisson case. First- and second-
order spatio-temporal separability has also been considered and discussed.
It is known (see Gabriel (2013)) that the performance of the pair correlation
function and K-function can be severely altered by the intensity estimate.
This can be explained by over-parametrisation or over-fitting in the case
of a parametric estimation of the intensity function, or by the incapacity
of distinguish first- and second-order effects from a single realisation of
the point process in the case of a kernel-based estimation. This is in any
case a kind of handicap and weakness in using these characteristics. We
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postulate the use of the second-order product density as it provides the
same amount of information, but with the added value that there is no
need to estimate the intensity function.

We have provided sufficiently statistical grounds in favour of using this
second-order tool in the practical analysis of spatio-temporal point pat-
terns. However, we have based under developments on the hypothesis
of second-order intensity-reweighted stationarity. The statistical proper-
ties of the spatio-temporal product density under general non-stationarity
conditions or anisotropic structures remains an open problem.
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Chapter 4
Second-order analysis of anisotropic
spatio-temporal point process data

Carles Comasa, Francisco J. Rodríguez-Cortésb and
Jorge Mateub,1

a Department of Mathematics, Universitat de Lleida, Lleida, Spain
b Department of Mathematics, Universitat Jaume I, Castellón, Spain

Abstract

Second-order orientation methods provide a natural tool for the analysis of
spatial point process data. In this paper we extend to the spatio-temporal
setting the spatial point pair orientation distribution function. The new
spatio-temporal orientation distribution function is used to detect spatio-
temporal anisotropic configurations. An edge-corrected estimator is de-
fined and illustrated through a simulation study. We apply the resulting
estimator to data on the spatio-temporal distribution of fire ignition events
caused by humans in a square area of 30× 30 km2 during four years. Our
results confirm that our approach is able to detect directional components
at distinct spatio-temporal scales.

1All authors contributed equally in this work.
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4.1 Introduction

Spatial point process models are useful tools to model irregularly scat-
tered point patterns that are frequently encountered in biological, ecologi-
cal, and epidemiological studies. A spatial point pattern is a set of points
{ui ∈ W : i = 1, . . . , n} in some planar region W . Very often, W is a sam-
pling window within a much larger region and it is reasonable to regard the
point pattern as a partial realization of a stochastic planar point process,
the events consisting of all points of the process which lie withinW . Recent
textbooks related to the topic of analysis and modeling of point processes
include Stoyan et al. (1995), Diggle; 2013, Baddeley et al. (2006), Illian
et al. (2008), or Gelfand et al. (2010).

Today, much attention is paid to spatio-temporal point processes, where
each point represents the location and time of an event, and thus we have
data of the form (ui, si) ∈ W × T , i = 1, ..., n, with T ∈ R denoting the
temporal interval. There has been a lot of recent work on spatio-temporal
models, and a variety of ad-hoc approaches have been suggested (Gelfand
et al. (2010); Diggle (2013)). Processes that are both spatially and tem-
porally discrete are more naturally considered as binary-valued random
fields. Processes that are temporally discrete with only a small number of
distinct event-times can be considered initially as multivariate point pro-
cesses. Conversely, spatially discrete processes with only a small number of
distinct event-locations can be considered as multivariate temporal point
processes, but with a spatial interpretation to the component processes.
The other more common end, and the one considered here, is considering
processes that are temporally continuous and either spatially continuous
or spatially discrete on a sufficiently large support to justify formulating
explicitly second-order spatio-temporal tools for the data.
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A point process is stationary and isotropic if its statistical properties
do not change under translation and rotation, respectively. Informally,
stationarity implies that one can estimate properties of the process from
a single realization on W × T , by exploiting the fact that these properties
are the same in different, but geometrically similar, subregions of W × T ;
isotropy means that there are no directional effects.

The assumption of isotropy is often made in practice due to a simpler
interpretation, ease of analysis, and also to increase the power of statistical
analyses. However, isotropy is many times hard to find in real applications.
Many point processes are indeed anisotropic. There are many varied forms
of anisotropy. Orientation analysis is the quantification of the degree of
anisotropy in the case of anisotropic point patterns and the detection of
inner orientations in case of isotropy (Ohser and Stoyan (1981); Stoyan and
Beneš (1991); Mateu (2000); Redenbach et al. (2009)). Typical examples
of oriented point patterns are patterns in which the points lie randomly
in parallel strips of random or constant breadth (anisotropic case) or on
an isotropic system of random fibres (inner orientation). Anisotropy is
the converse of isotropy but it has many different aspects. For exam-
ple, the anisotropy (directionality) is a characteristic property of images.
Anisotropy may be the result of the process by which the imaged object
might have been formed. Thus, on numerous occasions anisotropy reflects
properties and determines the behavior of the textured objects. The im-
portance of anisotropy in visual perception and object characterization
inspired a range of studies for anisotropy analysis (Kovalev and Bondar
(1997)). Anisotropy can be present when the spatial point patterns con-
tain points placed roughly on line segments. See details in Møller and
Rasmussen (2012) who consider a particular class of point processes whose
realizations contain such linear structures.

Ohser and Stoyan (1981) presented a method for the second-order anal-
ysis of anisotropic point processes. They provided expressions for the
anisotropic spatial K-function, and used this function to define an ori-
entation distribution function. This represented a simple and intuitive
approach to obtain information on the anisotropic properties of the spa-
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tial distribution of a point pattern. Later, Rosenberg (2004) proposed
methods to assess isotropy (and to consequently detect anisotropy) for
spatial point processes. Rosenberg (2004) analyzed the second-order prop-
erties by anisotropic techniques to study the directional relationship among
the observed points, and proposed a geometric anisotropic pair-correlation
function. This approach, however, is limited to certain classes of models
exhibiting close forms for certain second-order statistics. Guan et al. (2004,
2006) proposed a formal nonparametric approach to test for isotropy based
on the asymptotic joint normality of the sample second-order intensity
function. Alternative methods based on two-dimensional spectral analysis
were proposed by Mugglestone and Renshaw (1998) to calculate objective
estimates of the orientation and frequency of geological lineations from
digitized images obtained from aerial photographs of glaciated terrain in
northern Canada. The complications inherent in spectral analysis (partic-
ularly for more than one dimension) appear to have discouraged applied
statisticians and ecologists from making use of these methods. Wavelet
analysis has succeeded in a variety of applications and held promise in the
area of spatial pattern analysis (e.g.Donoho (1993); Gao and Li (1993);
Grenfell et al. (2001)). However, wavelet analysis has only been involved in
several works for detection of spatial patterns (e.g. Harper and Macdonald
(2001); Perry et al. (2002)), but we can not find connections with spatio-
temporal data. In general there is not a large treatment of anisotropy for
spatial planar point patterns, and there is currently only one such approach
for three-dimensional point patterns (Redenbach et al. (2009)).

In this paper, we consider data in the form of a realization of a spatio-
temporal point process within a finite spatio-temporal region. Many spa-
tial processes of scientific interest also have a temporal component that
may need to be considered when modeling the underlying phenomenon
(e.g., distribution of cases for a disease or assessment of risk of air pollu-
tion). Spatio-temporal point processes, rather than purely spatial point
processes, must then be considered as potential models. There is an ex-
tensive literature on the analysis of point process data in time (e.g., Cox
and Isham (1980); Daley and Vere-Jones (2008)) and in space (e.g., Cressie
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(1993); Diggle (2013); Møller and Waagepetersen (2004)). Generic meth-
ods for the analysis of spatio-temporal point processes are less well estab-
lished; see for example Diggle (2006), Gabriel and Diggle (2009), Møller
and Ghorbani (2012), Section 6.6 of Cressie and Wikle (2011), and Gabriel
(2013).

Any current approach to the analysis of spatio-temporal point patterns
assumes that the process is isotropy at all times, sometimes considering
it is stationary (with a constant trend), and others non-stationary (and
then controlling for the inhomogeneity degree). We are interested in an-
alyzing anisotropic properties in form of orientations in spatio-temporal
point patterns. These patterns are more realistic when modeling forest
fires, as shown in this paper, or in general when modeling a wide variety
of environmental patterns.

Our aim is to extend, to the spatio-temporal setting, the orientation
analysis provided by Ohser and Stoyan (1981) in their early contribution
for spatial planar patterns. The new spatio-temporal orientation distribu-
tion function is used to detect spatio-temporal anisotropic configurations.
We define an edge-corrected estimator, and its practical behavior is illus-
trated through a simulation study, and an application to fire events. The
plan of the paper is the following. In Section 4.2 we present a brief method-
ological setup of spatio-temporal point patterns, with an emphasis on an
anisotropic spatio-temporal second-order characteristic. In Section 4.3 we
introduce an orientation analysis for such anisotropic spatio-temporal pat-
terns. A simulation study is presented in Section 4.4. Finally, a case study
is considered in Section 4.5 to illustrate the use of our new approach. The
paper ends with a summary section where we briefly provide some conclu-
sions.

4.2 Methodology

We are concerned with the analysis of data of the form (ui, si) ∈ W × T ,
i = 1, ..., n withW×T a subset of R2×R. Each ui denotes the location and
si the corresponding time of occurrence of an event of interest. We assume
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that the data form a complete record of all events which occur within a
pre-specified spatial region W and time-interval T . We call a dataset of
this kind a spatio-temporal point pattern, and the underlying stochastic
model for the data a spatio-temporal point process. Many spatial processes
of scientific interest are of this type.

A spatio-temporal point process is second-order intensity reweighted
stationary (SOIRS) and isotropic if its intensity function is bounded away
from zero and its pair-correlation function depends only on the spatio-
temporal difference vector. Second-order intensity reweighted stationar-
ity is defined for purely spatial point processes in Baddeley et al. (2000).
Gabriel and Diggle (2009) provide the straightforward extension to the
spatio-temporal case. Diggle et al. (1995) introduced in an heuristic form
first and second-order spatio-temporal properties, such as the spatio-tempo-
ral intensity function and the spatio-temporal K-function. Gabriel and
Diggle (2009), for a SOIRS spatio-temporal point process, provide an im-
proved definition of the inhomogeneous spatio-temporalK-function. Møller
and Ghorbani (2012) define the spatio-temporal inhomogeneousK-function
in a more natural form, this definition involves the spatio-temporal pair
correlation function g0 which, according to Gabriel and Diggle (2009), can
be informally interpreted as the standardized probability density that an
event occurs in each of two small volumes. Note further that for a spatio-
temporal Poisson process, g0 = 1 and K(r, t) = 2πr2t. In Møller and
Ghorbani (2012), Ghorbani (2013), and Gabriel (2013) alternative approx-
imately unbiased non-parametric estimators for both the spatio-temporal
inhomogeneous K-function and the intensity function are given.

Throughout this paper, we basically follow the notation and setup intro-
duced in Møller and Ghorbani (2012) for spatio-temporal point processes.
We consider a spatio-temporal point process with no multiple points as
a random countable subset X of R2 × R, where a point (u, s) ∈ X cor-
responds to an event at u ∈ R2 occurring at time s ∈ R. In fact, we
observe n events {(ui, si)} of X within a bounded spatio-temporal region
W × T ⊂ R2 × R, with area |W | > 0, and length |T | > 0. For a further
formal definition of a point process, see e.g. Illian et al. (2008). In our
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context, N(W ×T ) is the number of the events of the process falling inside
the bounded spatio-temporal window W × T .

In the case of anisotropic planar point processes, Ohser and Stoyan
(1981) defined a reduced second moment measure, and provided an esti-
mator for the orientation analysis when the intensity is known. We con-
sider here a similar approach but assuming SOIRS and anisotropic spatio-
temporal point processes. An intuitive way of thinking about the nature
of the spatio-temporal anisotropic K-function is that this function should
be proportional to the mean number of points in a cylindrical sector with
spatial distance r, angle ϕ and time lag t, centered at an arbitrary point
of the spatio-temporal point process X. Then

K(r, t, ϕ) =

∫ ∑ 6=

(u,s),(v,l)∈X

1 [||u|| ≤ r, |θ| ≤ ϕ, |s| ≤ t] g0(u, s)d(u, s),

(4.1)
wiht r > 0, 0 ≤ ϕ ≤ π, t > 0, here

∑6= means that the summation
goes over all pairs ((u, s), (v, l)) with (u, s) 6= (v, l), 1[·] denotes the in-
dicator function and g0(u, s) is the spatio-temporal pair-correlation func-
tion, where we set a/0 = 0 for a ≥ 0, and θ denotes the least angle
between the directed line from two points of the process and the x-axis.
The pair (r, ϕ) denotes the point with polar coordinates r and ϕ. Note
that this definition slightly differs from that of K(r, t) even in the SOIRS
stationary and isotropic case, see Ghorbani (2013). The reduced second
moment measure K studied in Møller and Toftaker (2012), is given by
K(r, t) = K(r, t, 2π) = 2K(r, t, π).

For a SOIRS anisotropic and stationary spatio-temporal point pro-
cess, an approximately non-parametric edge-corrected estimate of the K-
function (4.1) is given by

K̂(r, t, ϕ) =
1

|W ||T |

n∑
i=1

∑
i6=j

1[‖ui − uj‖ ≤ r, |θ(ui,uj)| ≤ ϕ, |si − sj| ≤ t]

ρ̂2w2(ui,uj)w1(si, sj)

(4.2)
where w1(ui,uj) is the isotropic spatial edge-correction factor as pro-

posed by Ripley (1976, 1988). We note that in the literature of spatial point
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processes (see, for example, Stoyan and Stoyan (1994); Illian et al. (2008))
isotropic edge-correction factors have been used even for the anisotropic
estimators in the spatial case. We follow this procedure, and make use of
an isotropic spatial edge-correction factor in (4.2). The default time inter-
val T is usually taken to be the smallest time interval containing all event
times, i.e. T = tmax − tmin = max{si} −min{si} whit i = 1, . . . , n. For a
pair of temporal observed events si, sj ∈ T where sj > si, w2(si, sj) is the
temporal edge-correction factor which is equal to one if both ends of the
interval of length 2|si − sj| and center si lie within T , and two otherwise
(Diggle et al. (1995)). An unbiased estimator for ρ2 is n(n− 1)/(|W ||T |)2 ,
see Ghorbani (2013).

4.3 Orientation analysis for anisotropic spatio-

temporal point processes

Based onK(r, t, ϕ), we can detect predominant directions in spatio-temporal
point patterns extending to the spatio-temporal domain the orientation
analysis suggested by Ohser and Stoyan (1981). These authors used the
directional distribution of line segments connecting point pairs of the point
pattern which are a distance between r1 and r2 apart. The corresponding
distribution function is called point pair orientation distribution (see also
Stoyan and Stoyan (1994)), and is equal to the probability that a ran-
domly chosen line segment forms an angle with the x-axis smaller than ϕ
(0 ≤ ϕ ≤ π). A spatio-temporal counterpart version can be obtained via

O((r1,t1),(r2,t2))(ϕ) =

ϕ∫
0

t2∫
t1

r2∫
r1

dK(r, t, ψ)

/ π∫
0

t2∫
t1

r2∫
r1

dK(r, t, ψ), (4.3)

with r2 > r1 ≥ 0, t2 > t1 ≥ 0. For a suitable positive value of t,
O((0,t),(r,t))(ϕ) describes a short-range spatial directionality in the point pat-
tern, O((r1,t),(r2,t))(ϕ) provides amiddle-range spatial orientation for r1 < r2,
while O((r,t),(∞,t))(ϕ) = lim

r2→∞
O((r,t),(r2,t))(ϕ) describes long-range spatial di-
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rectionality. Further combinations of spatial and temporal intervals are
not worth to be described given their lack of practical aplicability. In case
of isotropy, all these distributions coincide with the uniform distribution
on [0, π].

Moreover, as (4.3) is a cumulative measure for a given angle ϕ, it can
be useful to consider a cylindrical sector instead to better highlight the
possible directional components, i.e.

O∗φ,((r1,t1),(r2,t2))(ϕ) = O((r1,t1),(r2,t2))(ϕ+φ)−O((r1,t1),(r2,t2))(ϕ−φ), 0 ≤ ϕ ≤ π,

(4.4)
where ϕ > φ > 0 is a fixed prescribed angle interval, which provides the
direction in which anisotropic effects are tested. Using (4.2) we obtain an
estimator of (4.3) and (4.4), i.e. Ô((r1,t1),(r2,t2))(ϕ) and Ô∗φ,((r1,t1),(r2,t2))(ϕ),
respectively.

4.4 Simulation studies

We conducted a simulation study to illustrate the use of the spatio-temporal
orientation distribution under several point configurations. For this aim,
we considered several point configurations assuming distinct range of anisotropy
through space and time. Here, we used spatio-temporal realizations of sta-
tionary and anisotropic Poisson point processes in [0, 1]2 × [0, 1].

4.4.1 Generating spatio-temporal stationary and ani-

sotropic Poisson cluster point patterns

We considered a simple birth process to generate spatio-temporal station-
ary Poisson cluster point processes. Let us assume that immigrants arrive
randomly in time according to a Poisson process with rate ω and have uni-
formly distributed locations unew on U(0, 1)2. Now new arrived points are
accepted or rejected in terms of the following spatio-temporal interaction
mechanism. Consider di = ‖ui−unew‖ and zi = snew− si to be the spatial
and temporal distances between a newly arrived point at time snew and an
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already established one i = 1, . . . nsnew , respectively, with nsnew being the
total number of established points at time snew. Moreover, assume αi,new

to be the spatially projected angle (w.r.t. the x−axis) between a newly
arrived immigrant and an already established point i. Now immigrants are
accepted with probability

P =

nsnew∏
i=1

Πi (4.5)

where

Πi =

{
a if r1 < di < r2 and t1 < zi < t2 and β + cβ < αi,new < β − cβ
1 otherwise,

(4.6)
and r1 < r2 and t1 < t2 are the spatial and temporal scales of anisotropy,
respectively, β is the prescribed anisotropic directional effect (0 ≤ β ≤ π),
cβ is a tolerance angle, and 0 ≤ a ≤ 1 is a constant that defines the strength
of the anisotropic effects. The resulting process defined by (4.5) is a spatio-
temporal stationary and anisotropic Poisson cluster process with constant
spatio-temporal intensity ρ = ω. Here, to deal with spatial edge-effects we
place the spatio-temporal generation mechanism on the unit torus.

4.4.2 Monte Carlo approach to testing for spatio-

temporal anisotropic effects

To test for evidence of spatio-temporal anisotropy, we followed common
practice by comparing the estimator Ô∗φ,((r1,t1),(r2,t2))(ϕ) with estimates
obtained from simulations under a suitable null hypothesis. Here the
null hypothesis is that the underlying point process cluster is a stationary
and isotropic Poisson process cluster, and therefore the empirical spatio-
temporal pattern is compared with a stationary and isotropic spatio-temporal
Poisson process cluster with the same point intensity, based on a Monte
Carlo test. We simulated 199 spatio-temporal point patterns under this
null hypothesis and for each one an estimator of (4.4) is obtained. This
set of functions is then compared with the resulting estimator for the em-
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pirical data under analysis. Under this test, we reject the null hypothesis
(spatio-temporal point isotropy) if the resulting estimator of this function
lies outside the fifth-largest and/or fifth-smallest envelope values obtained
from the set of simulated functions Ô∗φ,((r1,t1),(r2,t2))(ϕ), with an exact sig-
nificance level of 2× 5/(199 + 1) = 0.05.

4.4.3 Simulated examples

We consider two distinct stationary and anisotropic Poisson cluster sce-
narios in the unit volume, namely a spatio-temporal short-range orien-
tation structure and a spatio-temporal middle-range orientation configu-
ration. We do so to illustrate the behavior of our new approach under
distinct spatio-temporal ranges of anisotropy. Under both scenarios we
take β = π/2 and cβ = π/9, as the value of the prescribed anisotropic
directional effects, and a spatio-temporal intensity ρ = 250, to provide an
enough number of points. Moreover, to generate spatio-temporal short-
range orientation effects, we assume r1 = 0, r2 = 0.2, t1 = 0 and t2 = 0.1.
Now points with distances in the range 0− 0.2 and temporal distances of
less than 0.1 units are expected to have a projected spatial angle of around
π/2. Also, to obtain spatio-temporal middle-range orientation structures
we take r1 = 0.2, r2 = 0.4, t1 = 0 and t2 = 0.1. Now points with dis-
tances in the range 0.2 − 0.4 and temporal distances of less than 0.1 are
also expected to have a projected spatial angle of around π/2. Regard-
ing the strength of anisotropy, we consider for the short-range scenario
a = 0 and a = 0.5 to show the effect of assuming strong and weak spatio-
temporal anisotropy, respectively. Notice that for a = 0 newly arrived
points interacting with other ones in the case of spatio-temporal short-
range anisotropy can only become established if their spatially projected
angle with respect to any other already established point is in the interval
β ± cβ, whilst for a = 0.5 half of new arrived points will do so. For the
middle-range anisotropic scenario, we only take a = 0.5 to avoid the quite
self-evident spatio-temporal anisotropic effects obtained for a = 0.

Figure 4.1 shows the resulting spatio-temporal point configuration for
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the short-range orientation scenario with a = 0, and it highlights that
points (n = 253) are located forming several point alignments with inter-
alignment distances of around 0.2, regardless of the time scale. Appar-
ently the short-time scale of anisotropy is not visually apparent in the
spatio-temporal configuration. The locations of the 253 points confirm the
“column” structure for inter-event spatial distances of around 0.2 (Figure
1b). Moreover, this figure also shows the time arrival and the cumulative
arrival of points (Figures 1c and d) and highlights that point establish-
ment through time is quite constant and equals the spatio-temporal point
intensity ρ = 250.
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Figure 4.1: (a) Spatio-temporal point configuration for the spatial short-range
orientation scenario (r1 = 0, r2 = 0.2, t1 = 0 and t2 = 0.1), and anisotropic
directional effects β = π/2 and cβ = π/9 with a = 0; (b) Spatial positions of
points; (c) Time arrival of points, and (d) Cumulative arrival of points.

Let us now analyze the spatio-temporal orientation structure by using
our orientation distribution function O∗φ,((r1,t1),(r2,t2))(ϕ) (4.4). Here this
function is computed assuming the prescribed angle interval φ = π/32

which results in 18 angle intervals. Moreover, given the potentially infi-
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nite number of spatio-temporal intervals to be tested, here we explored
four of them to detect and describe the scale of anisotropy. Figure 4.2a
shows the empirical Ô∗φ,((0,0),(0.2,0.1))(ϕ), which is the orientation distri-
bution function for the spatio-temporal intervals used to generate this
first scenario. This highlights that this empirical function lies outside
the upper envelope at ϕ = π/2, thereby suggesting a spatio-temporal
anisotropic structure for this angular direction. Moreover, if we explore
the same spatial scale, but we increase the time interval from 0.1 to
0.3, the resulting Ô∗φ,((0,0),(0.2,0.3))(ϕ) (Figure 4.2b) also suggests a spatio-
temporal anisotropic structure at π/2. This result is expected because
Ô∗φ,((0,0),(0.2,0.3))(ϕ) is a cumulative function which also incorporates the
direction effect detected for Ô∗φ,((0,0),(0.2,0.1))(ϕ).

Moreover, in order to explore a temporal interval distinct to that con-
sidered to generate the first scenario, we take t1 = 0.1 and t2 = 0.4. Now
the empirical estimator Ô∗φ,((0,0.1),(0.2,0.4))(ϕ) keeps on showing orientation
effects at π/2 (Figure 4.2c). This result suggests that the anisotropic struc-
ture of this first scenario is quite independent of the time scale. In fact,
newly arrived points can only become established either if they do not in-
teract with any already established points in terms of the spatio-temporal
scale of anisotropy, or they do interact with other points althought their
spatially projected angles with respect to these established points are in
the interval β ± cβ. Under this strong interaction mechanism, established
points affect points that are 0.1 units apart in time, and in turn these points
also affect the establishment of new immigrants. For a = 0, this gener-
ates a spatio-temporal structure where points tend to become established
forming point alignments in the anisotropic direction with inter-alignment
distances defined by the spatial scale of anisotropy. In our case, these
point alignments are in the π/2 direction with inter-alignment distances of
around 0.2 units. Note that this results in a configuration of points quite
independent of the temporal scale. This is the reason why our orientation
distribution function detects anisotropic effects for the defined spatial scale
regardless of the temporal scale.

Figure 4.3 shows the resulting spatio-temporal point configuration for
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Figure 4.2: Resulting estimator of the orientation function Ô∗φ,((r1,t1),(r2,t2))(ϕ)
(4.4), with φ = π/32, for the spatio-temporal point configuration in Figure 4.1a
(black dotted line) together with their fifth-largest and smallest envelope values
(dashed lines) based on 199 random simulations of a stationary and isotropic
Poisson process; the grey line is the probability value of this orientation function
under the hypothesis of isotropy (which equals the uniform distribution on [0, π],
i.e. one divided by the number of angle intervals, 1/18 ' 0.055).

the same spatio-temporal short-range orientation mechanism, but now with
a = 0.5. Visual inspection of the spatio-temporal point structure and re-
lated spatial positions of the 264 resulting points do not provide much in-
formation about the spatial structure of this point pattern (Figures 4.3a,b).
Moreover, point establishment through time is quite constant and similar
to the spatio-temporal point intensity ρ = 250 (Figures 4.3c,d). Inspec-
tion of the resulting orientation function Ô∗φ,((r1,t1),(r2,t2))(ϕ) for the same
spatio-temporal intervals considered in the previous scenario (see Figure
4.4) only highlights significant departures from isotropy at ϕ = π/2 for
the spatio-temporal scale considered to generate this anisotropic Poisson
scenario, i.e. r1 = 0, r2 = 0.2, t1 = 0 and t2 = 0.1 (see Figure 4.4a).
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Figure 4.3: As in Figure 4.1, but with a = 0.5.

The rest of spatio-temporal combinations do not reveal anisotropic effects
(Figures 4.4b,c,d). Under this scenario in which the anisotropic effects are
not self-evident (i.e. weak anisotropic effects), our orientation function do
detect anisotropic effects only for the spatio-temporal scale in which these
effects are generated.

Let us now analyze the scenario with middle-range orientation effects.
Figure 4.5 shows the resulting spatio-temporal point configuration for this
scenario with a = 0.5. Here we considered a = 0.5 to avoid self-evident
spatio-temporal anisotropic effects. Visual inspection of this spatio-temporal
configuration does not provide much information about this spatial struc-
ture (with n = 267) (Figures 4.5a,b). Once again, time arrival and the
cumulative arrival of points (Figures 4.5c,d) highlight that point establish-
ment through time is quite constant and equal to the spatio-temporal point
intensity ρ = 250. Figure 4.6 shows the empirical orientation function
Ô∗φ,((r1,t1),(r2,t2))(ϕ) for several spatio-temporal intervals (equal to those
considered for the short-range orientation scenarios) and only reveals sig-
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Figure 4.4: As in Figure 4.2, but for the spatio-temporal point configuration in
Figure 4.3a

nificant anisotropic effects for the spatio-temporal interval used to generate
anisotropy in the scenario under analysis, i.e. r1 = 0.2, r2 = 0.4, t1 = 0

and t2 = 0.1.

4.5 Case study: fire ignitions

We now illustrate the use of our orientation function for a real spatio-
temporal point configuration. The data set is located in the northwest
of the Iberian Peninsula (Spain) and provides the locations of 711 fire
ignition points caused by humans located in a square area of 30 × 30 km
for four years (1460 days), with 110 ignitions in 2007, 138 in 2008, 216

in 2009 and 247 in 2010 (see Figure 4.7). This data set was provided by
the Spanish Forest Service of the Ministry of Environment and Rural and
Marine Affairs. The period of study was restricted to four years due to
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Figure 4.5: (a) Spatio-temporal point configuration for the spatial middle-range
orientation scenario (r1 = 0.2, r2 = 0.4, t1 = 0 and t2 = 0.1), and anisotropic
directional effects β = π/2 and cβ = π/9 with a = 0.5; (b) Spatial positions of
points; (c) Time arrival of points, and (d) Cumulative arrival of points.

data availability, but this period was considered appropriate because it is
the usual time framework for fire prevention planning in Spain.

Figures 4.8a,b show the spatio-temporal configuration and the spatial
positions, respectively, for the 711 ignition points from 2007 to 2010, in
the study area. Once again visual inspection of this spatio-temporal point
configuration does not provide much information about the possible direc-
tional components of this point pattern. Time arrival and the cumulative
arrival of points are shown in Figures 4.8c,d. For the time arrival of points,
we also provide a parametric representation of this point sequence based on
a restricted cubic spline regression (HARRELL, 2001). We used a spline
regression because it is a smooth, flexible curve that makes no strict math-
ematical assumption on the shape of this intensity while providing a robust
estimator for this data set. In particular, we used 6 knots at the 5th, 23rd,
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Figure 4.6: As in Figure 4.2, but for the spatio-temporal point configuration in
Figure 4.5a

41st, 59th, 77th and 99th percentiles of these four years to provide a flexi-
ble parametric model (HARRELL, 2001). This parametric representation
suggests that point arrival (establishment) is quite constant through time,
as this function ranges from 0 to 1 point established per unit time for the
four years of study. The cumulative point arrival also shows that point
establishment is roughly constant through time. Both results confirm that
for our case study the time point intensity can be assumed constant and
equal to 711/(365× 4) ' 0.5 points per day in the whole area.

We assumed two basic spatio-temporal intervals to test for spatio-
temporal anisotropic effects. We considered our orientation function for
short and middle spatial ranges and several time intervals. Our inten-
tion is to test the main spatio-temporal interval combinations to detect
all possible directional effects. We took r1 = 0 and r2 = 6 km to test for
short spatial ranges, and r1 = 6 and r2 = 12 km to analyze middle spatial
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Figure 4.7: Location of the study area, together with the 711 ignition points in
Galicia (Spain) located inside the litoral meridional region (in grey).

ranges. Regarding the time scales, we assumed three time intervals t1 = 0

and then t2 = 146 (five months) or t2 = 292 (10 months) or t2 = 584 (' 18

months), which ensure an enough number of time interval combinations to
scan for all time scales of anisotropy.

Figure 4.9 shows the empirical orientation function Ô∗φ,((r1,t1),(r2,t2))(ϕ)

(4.4) for the six spatio-temporal intervals defined above, and highlights a
significant anisotropic effect at ϕ ' 180o for middle spatial ranges at any
time interval. As this anisotropic effect loses strength when the time range
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Figure 4.8: (a) Spatio-temporal point configuration of the 711 ignition points
from 2007 to 2010 in a square area located in the northwest of the Iberian Penin-
sula; (b) Spatial positions of points; (c) Time arrival of points (grey dots) com-
pared with fitted regression curve (black line), and (d) Cumulative arrival of
points.

interval increases from r2 = 146 to r2 = 584, this suggests that this direc-
tional effect happens for short time intervals (i.e. from t1 = 0 to t2 = 146),
though it is also apparent for large time scales because Ô∗φ,((6,0),(12,584))(ϕ)

(say) is a cumulative function which also incorporates the directional ef-
fect detected by Ô∗φ,((6,0),(12,146))(ϕ). Thus ignition points have a clear
main direction of about 180o for middle spatial ranges and short time dis-
tances. This spatio-temporal anisotropic estructure (West-East direction)
can be related to predominant wind directions and some geographic factors
such as mountain orientation and the presence of fire barriers (routes and
non-forest areas). Although it is expected that predominant winds would
generate orientation effects quite independently of the spatial scale, other
factor such as mountain orientation can limit such effect to some spatial
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Figure 4.9: As in Figure 4.2, but for the spatio-temporal point configuration of
ignition points in Figure 4.8a

ranges. More specific analysis should be considered incorporating some
geographic covariates to fully understand the spatio-temporal orientation
structure detected in this point pattern.

4.6 Discussion

We have proposed a new spatio-temporal orientation distribution function
based on the spatial point pair orientation distribution function, to detect
spatio-temporal anisotropic configurations. An edge-corrected estimator
of this function, based on Ripley’s correction, is presented and illustrated
with a simulation study and with a data set involving the locations of fire
ignition points caused by humans located in a square area of 30 × 30 km
for four years. Our analysis shows that this new estimator detects spatio-
temporal anisotropic structures even for weak directional effects, and it
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can reveal anisotropic configurations at distinct spatio-temporal scales. In
fact, our new approach is a flexible function that allows scanning for all
the potentially infinite number of spatio-temporal time scales of anisotropy.
Moreover, we considered a simple Monte Carlo approach to test for spatio-
temporal anisotropic effects. We have followed common practice by com-
paring the estimator Ô∗φ,((r1,t1),(r2,t2))(ϕ) with estimates obtained from sim-
ulations under a suitable null hypothesis. In this case, the null hypothesis
is that the underlying point process is a stationary and isotropic Poisson
process. Regarding the case study, our orientation function detects spatio-
temporal anisotropic configurations not evident from the spatio-temporal
point configuration. In particular, it suggests an anisotropic structure at
180o for middle spatial ranges and short time distances. This structure can
probably be related to predominant wind directions and some geographic
factors.
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Chapter 5
Ongoing research

In this chapter we provide a general description of the currently ongoing
research projects which have emerged motivated by the close relationship
with the second-order properties of spatial and spatio-temporal point pro-
cesses. We have adapted our methodology to spatio-temporal local clus-
tering analysis and to modelling orbital debris using a new and innovative
adaptation over the sphere of the classical theory.

The experience gained during the research process has allowed to gain
solid foundations in the study of first- and second-order properties of
spatio-temporal point processes. However it has also has generated many
new questions some of which are materialised on new projects, adapting
our methodology to real problems, considering new geometric contexts,
and working in an interdisciplinary context. From the beginning, the ob-
jective of this thesis has focused on the generalization of the purely spatial
concept into the spatio-temporal context, this seen as a hybrid of spatial
and temporal components. This has been possible through extending the
definition of point porcesses to include time and through the development
of computational tools in R.
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5.1 Local Indicators of Spatio-Temporal As-

sociation functions - LISTA functions

Francisco J. Rodríguez-Cortésa, Mohammad Ghorbanib and
Jorge Mateua1

a Department of Mathematics, Universitat Jaume I, Castellón, Spain
b Department of Mathematics Sciences, Aalborg University, Aalborg,

Denmark

5.1.1 Introduction

Modelling real problems through spatio-temporal point processes becomes
essential in many scientific and engineering fields such as environmental
sciences, climate prediction and meteorology, image analysis, geology and
agriculture, seismology, astronomy, epidemiology. Spatio-temporal cluster
analysis is a key aspect of the practical analysis of spatio-temporal point
patterns. One widely used possibility (see Chapter 3 of this thesis) is using
global second-order characteristics. Moreover, in this chapter we advocate
the use of local tools. The idea of considering individual contributions
of a global estimator as a measure of clustering emerged in the mid 90th
under the name of Local Indicators of Spatial Association (LISA), and it
has been used as an exploratory data analytic tools to examine individual
points in a point pattern in terms of how they relate to their neighbouring
points.

These tools are based on local second-order characteristics of spatial
point processes. LISA functions are built from local second-order charac-
teristics of spatial point processes through product densities. The term
LISA was coined by (Anselin (1995)), but it was later when (Cressie
and Collins (2001a,b)) developed theoretical properties, namely first- and
second-order moments, of these functions. Applications of LISA functions
range from detecting features in images with noise (Mateu et al. (2007))
to detection of disease clusters (Moraga and Montes (2011)). Our focus

1All authors contributed equally in this work.
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here is in extending the concept of LISA to the spatio-temporal context
defining the LISTA functions. We define these new functions, present
edge-corrected estimators, and develop their first theoretical moments. An
application to detect spatio-temporal clusters in public health problems is
also considered.

5.1.2 Set-up and definitions

Definitions and notations used throughout this paper are introduced by
Møller and Ghorbani (2012) and Rodríguez-Cortés et al. (2014). These
authors discuss the second-order analysis of structured inhomogeneous
spatio-temporal point processes and provide powerful tools for the ex-
ploratory analysis of the first- and second-order characteristics. We con-
sider a spatio-temporal point process with no multiple points as a random
countable subset X of R2×R, where a point (u, s) ∈ X corresponds to an
event at u ∈ R2 occurring at time s ∈ R. In practice, we observe n events
{(ui, si)} of X within a bounded spatio-temporal region W ×T ⊂ R2×R,
with area |W | > 0, and length |T | > 0. Let Nlfs and Nlft be the spaces of
locally finite subsets of R2 and R equipped with σ-algebras Nlfs and Nlft

respectively, see Møller and Waagepetersen (2004). In the sequel, N(A)

denotes the number of the events of the process falling in a bounded region
A ⊂ W ×T . For a rigurous definition of a point process based on measure
theory see e.g. Daley and Vere-Jones (2008). For a given event (u, s),
the events that are close to (u, s) in both space and time, for each spatial
distance r, and time lag t, are given by the corresponding spatio-temporal
cylindrical neighborhood of the event (u, s), which can be expressed by the
cartesian product as

b((u, s), r, t) = {(v, l) : ‖u− v‖ ≤ r, |s− l| ≤ t} , (u, s), (v, l) ∈ R2×R,

where ‖ · ‖ denotes the Euclidean distance in R2 and | · | denotes the usual
distance in R. Note that b((u, s), r, t) is a cylinder with center (u, s), radius
r and height 2t.
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5.1.3 First- and second-order properties

Assume that ρ(u, s) is the spatio-temporal intensity, and ρ(2)((u, s), (v, l))

the second-order product density function, (see Møller and Waagepetersen
(2004)). A process for which ρ(u, s) = ρ for all (u, s) ∈ X is called
homogeneous of first-order. Further, if ρ(2)((u, s), (v, l)) = ρ(2)(u− v, s −
l), the process is called second-order or weak stationary (Ghorbani (2013)).

We assume that the point process X is orderly, roughly meaning that
coincident points cannot occur. That is, any pair of points (u, s) and (v, l)

of X are distinct, so u 6= v and s 6= l. We can therefore ignore the case
where the spatial and temporal component processes Xspace and Xtime have
multiple points.

We assume first- and second-order spatio-temporal separability hypoth-
esis, i.e.,

ρ(u, s) = ρ̄1(u)ρ̄2(s), (u, s) ∈ R2 × R, (5.1)

and

ρ(2)((u, s), (v, l)) = ρ̄
(2)
1 (u,v)ρ̄

(2)
2 (s, l), (u, s), (v, l) ∈ R2 × R (5.2)

where ρ̄1, ρ̄2, ρ̄
(2)
1 , ρ̄

(2)
2 are non-negative functions. For more details see

Møller and Ghorbani (2012) and Rodríguez-Cortés et al. (2014).
Considering the hypothesis of first-order spatio-temporal separability

in (5.1), we have that

ρ(u, s) =
ρspace(u)ρtime(s)∫
ρ(u, s) d(u, s)

.

For a stationary point process X, ρ, ρspace and ρtime are all constant. For
non-parametric estimation of ρspace, ρtime and ρ(u, s), see Ghorbani (2013).

Throughout this paper we assume that X is second-order intensity-
reweighted stationary (SOIRS), i.e.

ρ(2)((u, s), (v, l)) = ρ(2)(u− v, s− l), (u, s), (v, l) ∈ R2 × R

(Baddeley et al.; 2000; Gabriel and Diggle; 2009). Further, if the process is
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isotropic, then ρ(2)(u−v, s−l) = ρ
(2)
0 (‖u−v‖, |s−l|) for some non-negative

function ρ(2)
0 (·).

Just as in the spatio-temporal first-order case, considering the hypoth-
esis of second-order spatio-temporal separability in (5.2), we have that

ρ(2)((u, s), (v, l)) =
ρ

(2)
space(u− v)ρ

(2)
time(s− l)∫ ∫

ρ(2)(u− v, s− l) d(u, s) d(v, l)
. (5.3)

For an unbiased estimator of (5.3) and its properties of the second-order
spatio-temporal product density function, see Rodríguez-Cortés et al. (2014).

5.1.4 Palm distribution

For a spatio-temporal point process X ⊂ R2 × R with intensity measure
µ (see Møller and Ghorbani (2012)), the Campbell measure is defined by
the relation

C(B × F ) = E1[X ∈ F ]N(B), B ⊂ R2 × R, F ∈ Nlfs ×Nlft,

where B = W × T and 1[·] denotes the indicator function (see Møller and
Waagepetersen (2004)). The reduced Campbell measure C ! on (R2×R)×
(Nlfs ×Nlft) is defined by

C !(D) = E
∑

(u,s)∈X

1[((u, s), X \ {(u, s)}) ∈ D].

Analogously we can define the distribution P !
(u,s) called reduced Palm dis-

tribution and it can be interpreted as the conditional distribution of a point
process given that (u, s) is a point of the process. For a spatio-temporal
point process X and any non-negative Borel function h,

E
∑

(u,s)∈X

h((u, s), X \ {(u, s)})

=

∫
R2×R

∫
Nlfs×Nlft

h((u, s), (x, ζ))P !
(u,s)(d(x, ζ))µ(d(u, s)),
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where (x, ζ) ∈ Nlfs × Nlft. In the following, E![·] implies expectation with
respect to the reduced Palm distribution. For a stationary spatio-temporal
point process X with intensity ρ and for any non-negative Borel function
h

E!
∑

(u,s)∈X

h((u, s), X \ {(u, s)})

= ρ

∫
R2×R

∫
Nlfs×Nlft

h((u, s), (u + x, s+ ζ))P !
o(d(x, ζ)) d(u, s),

(5.4)

where (u + x, s + ζ) = {(z, η) + (u, s) : z ∈ x and η ∈ ζ} denote the
translation of the point configuration (x, ζ) by (u, s). For more details see
Daley and Vere-Jones (2003); Møller and Waagepetersen (2004).

5.1.5 Global spatio-temporal estimator

For a SOIRS and isotropic spatio-temporal point process X, Gabriel and
Diggle (2009) extended the Ripley’s K-function to the spatio-temporal
inhomogeneous K-function. Møller and Ghorbani (2012) define the spatio-
temporal inhomogeneous K-function in a more rigorously form as

K(r, t) =

∫
1 [||u|| ≤ r, |s| ≤ t] g0(u, s)d(u, s), r > 0, t > 0,

where g0(u, s) (where we abuse the notations u and s for u = ‖u−v‖ and
s = |s − l|) is the spatio-temporal pair correlation function, where we set
a/0 = 0 for a ≥ 0. For a Poisson process, g0 = 1 and K(r, t) = 2πr2t. For
an unbiased estimator of the K-function (see e.g., Gabriel (2013)).

Both in the stationary and isotropic case and, the SOIRS and isotropic
case, the second-order spatio-temporal product density function is propor-
tional to the derivative of K(r, t) with respect to r and t, i.e. in the planar
case,
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ρ2(r, t) =
ρ(u, s)ρ(v, t)

4πr

∂2

∂r∂t
K(r, t).

For a stationary point process X, ρ(u, s) = ρ and

ρ(2)(r, t) =
ρ2

4πr

∂2

∂r∂t
K(r, t),

where ρ2K(r, t) is the expected number of ordered pairs of distinct points
per unit volume of the observation window with pairwise distance and time
lag less than r and t, (see Rodríguez-Cortés et al. (2014)).

Under the stationarity case and ignoring edge-effects, a global naive
non-parametric kernel estimator for ρ(2)(r, t) in (5.3) is given by

ρ̂(2)
ε,δ(r, t) =

1

4πr|B|

n∑
i=1

∑
j 6=i

κε,δ(‖ui − uj‖ − r, |si − sj| − t), (5.5)

with r > ε > 0, t > δ > 0 and B = W × T . We assume that the kernel
function κ has the multiplicative form κεδ(‖ui − uj‖ − r, |si − sj| − t) =

κ1ε (‖ui − uj‖ − r)κ2δ (|si − sj| − t), where κ2δ and κ1ε are respectively
kernel functions with bandwidths ε and δ. Both the K-function and the
product density function provide a global measure of the covariance struc-
ture by summing over the contributions from each event observed in the
process.

5.1.6 LISTA functions

Now we consider individual contributions to the estimated function that
are analogous to the local statistics described in Anselin (1995) and called
local indicators of spatial association (LISA). The LISA functions were
proposed by Cressie and Collins (2001a,b) in the context of spatial point
processes and are similar to the notion of individual functions found in
Stoyan and Stoyan (1994). We now adapt them to the spatio-temporal
setting. A product density LISTA function can be constructed in the same

130



manner as the global estimate (5.5). It is first necessary to introduce the
concept of the local version for the second-order features.

For a stationarity and isotropic spatio-temporal point process X, we
can define a local version of the K-function as

{ρK(r, t)}i = E[N(b((ui, si), r, t) \ {(ui, si)})|(ui, si) ∈ X], r > 0, t > 0,

the expectation is conditional on observing (ui, si) ∈ X and calculated
with respect to the reduced Palm measure. This can be interpreted as the
expected number of extra events from (ui, si) with pairwise distance and
time lag less than r and t respectively.

A spatio-temporal kernel density estimate takes the basic form of a
smoothed three-dimensional histogram,

̂ρ∂K(r, t)

∂r∂t

i

=
∑
j 6=i

κεδ(‖ui − uj‖ − r, |si − sj| − t), (5.6)

with r > ε > 0, t > δ > 0. For a homogeneous Poisson point process
(n− 1)/|B| provides an unbiased estimator for ρ under the reduced Palm
process X !

(ui,si)
, since this process has the same probability distribution as

the original process X. The unbiasedness is a consequence of

E![N(B)− 1] = E

∫
B

N !
(ui,si)

(d(u, s))

 =

∫
B

E[N(d(u, s))] = |B|ρ. (5.7)

The local indicator of spatio-temporal association (LISTA) is a local func-
tion which considers individual points. The notation E![·] implies expec-
tation with respect to the reduced Palm distribution (for more details see
e. g. Møller and Waagepetersen (2004), Chiu et al. (2013)). A product
density of the LISTA functions can be constructed in the same manner as
the global estimate (5.5). We denote the localised version of the second-
order product density by ρ(2)i. Combining the kernel estimator (5.6) with
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the estimate, ρ̂ = (n− 1)/|B| a kernel estimate of ρ(2)i is given by

ρ̂(2)i
ε,δ(r, t) =

n− 1

4π|B|r
∑
i6=j

κ1ε(‖ui − uj‖ − r)κ2δ(|si − sj| − t), (5.8)

with r > ε > 0, t > δ > 0. For fixed r and t it holds that

ρ̂(2)
ε,δ(r, t) =

1

n− 1

n∑
i=1

ρ̂(2)i
ε,δ(r, t),

which satisfies the operational definition of a LISA statistic mentioned by
Anselin (1995).

5.1.7 Statistical properties

Following Cressie and Collins (2001a,b), we have that for a homogeneous
Poisson process

E!
[
ρ̂(2)i

ε,δ(r, t)
]

=
1

4π|B|r
E!

[
(N(B)− 1)

∑
j 6=i

κε,δ(‖ui − uj‖ − r, |si − sj| − t)

]

=
1

4π|B|r
E!

[
E

{
(n− 1)

∑
j 6=i

κε,δ(‖ui − uj‖ − r, |si − sj| − t)|N(B) = n

}]

=
1

4π|B|r
E!

(N(B)− 1)ρ

∫
B

κε,δ(‖ui − x‖ − r, |si − ζ| − t) d(x, ζ)


=

1

4π|B|2r
E![(N(B)− 1)2]

∫
B

κε,δ(‖ui − x‖ − r, |si − ζ| − t) d(x, ζ)

=
(E![N(B)− 1])2 + E![N(B)− 1]

4π|B|2r

∫
B

κε,δ(‖ui − x‖ − r, |si − ζ| − t) d(x, ζ)

=
ρ2|B|2 + ρ|B|

4π|B|2r

∫
R2

κ1ε(‖z‖ − r)1W [z + ui]1[|‖z‖ − r| ≤ ε]dz

×
∫
R

κ2δ(|l| − t)1T [l + si]1[||l| − t| < δ]dl
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=
ρ2 + ρ

|B|

4πr

r+ε∫
r−ε

κ1ε(u− r)|∂b(ui, u) ∩W |1du

t+δ∫
t−δ

κ2δ(v − t)|∂b(si, v) ∩ T |0dv,

here | · |0 and | · |1 are the zero- and one-dimensional Hausdorff measures
respectively in R and R2. The zero-dimensional Hausdorff measure in R is
the number of points of the set. The one-dimensional Hausdorff measure
of a simple curve in R2 is equal to the length of the curve. Here we use
the fact that, for a homogeneous Poisson process, conditional on observing
N(B) = n points and a point at (ui, si), the events (u1, s1), . . . , (ui−1, si−1),

(ui+1, si+1), . . . , (un, sn) are independent and identically distributed uni-
formly on W × T . Note that with respect to the reduced Palm process
N !

(ui,si)
, the ramdom variable N(B)− 1 is Poisson with mean |B|ρ, so that

E![(N(B)− 1)2] = |B|2ρ2 + |B|ρ.

Spatio-temporal edge-effects

A gobal edge-corrected kernel estimator of the second-order product den-
sity function is given by

ρ̂(2)
ε,δ(r, t) =

1

4πr|B|

n∑
i=1

∑
j 6=i

κε,δ(‖ui − uj‖ − r, |si − sj| − t)
w2(ui,uj)w1(si, sj)

,

with r > ε > 0, t > δ > 0, where w2(ui,uj) is the Ripley’s isotropic
edge-correction factor (Ripley; 1976, 1977), w1(si, sj) is the temporal edge-
correction factor which is equal to one if both ends of the interval of length
2|si−sj| and center si lie within T , and two otherwise, Diggle et al. (1995).

Therefore, the corresponding edge-corrected second-order product den-
sity LISTA functions are

ρ̂(2)i
ε,δ(r, t) =

n− 1

4π|B|r
∑
i6=j

κ1ε(‖ui − uj‖ − r)κ2δ(|si − sj| − t)
w2(ui,uj)w1(si, sj)

, (5.9)

with r > ε > 0, t > δ > 0, for (ui, si) ∈ W × T and i = 1, . . . , n. They
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have expected value

E!
[
ρ̂(2)i

ε,δ(r, t)
]

=
ρ2 + ρ

|B|

4πr

r+ε∫
r−ε

2πu

|∂b(ui, u) ∩W |1
κ1ε(u− r)|∂b(ui, u) ∩W |1du

×
t+δ∫
t−δ

2

|∂b(si, v) ∩ T |0
κ2δ(v − t)|∂b(si, v) ∩ T |0dv

=
ρ2 + ρ

|B|

4πr

r+ε∫
r−ε

2πuκ1ε(u− r)du
t+δ∫
t−δ

2κ2δ(v − t)dv = ρ2 +
ρ

|B|
,

for a homogeneous Poisson process.
The variance of the spatio-temporal edge-corrected product density

LISTA can be

Var!
[
ρ̂(2)i

ε,δ(r, t)
]

= E!

[
E
{(

ρ̂(2)i
ε,δ(r, t)

)2

|N(B) = n

}]
−
(
E!
[
ρ̂(2)i

ε,δ(r, t)
])2

=
1

4πr|B|
E!

E
(n− 1)2

(∑
i6=j

τ((ui, si), (uj, sj), r, t)

)2

|N(B) = n




−
[
ρ2 +

ρ

|B|

]2

,

where

τ((ui, si), (uj, sj), r, t) =
4π‖ui − uj‖κε,δ(‖ui − uj‖ − r, |si − sj| − t)

|∂b(ui, u) ∩W |1|∂b(si, v) ∩ T |0
.

5.1.8 The first computing experiences

We start by analysing the behaviour of the LISTA function on the spatio-
temporal window [0, 10]2 × [0, 10] a spatio-temporal homogeneous Poisson
process shown in Figure 5.1 with expected number of points E[N(B)] =

n = 100, and under homogeneous Poison cluster process shown in Fig-
ure 5.2 with ρp = 10 a the intensity of the parents that follow a homoge-
neous Poisson process, with a number of offspring per parent being Poisson
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with mean mc = 10, and the spatial distribution of the offprints being a
zero-mean bivariate isotropic normal distribution with standard deviation
σ = 2, and a uniform temporal distribution with temporal cluster param-
eter δt = 2.
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Figure 5.1: A spatio-temporal Poisson point pattern with expected number of
the points n = 100.
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Figure 5.2: A spatio-temporal Poisson cluster point patterns with expected num-
ber of point n = 100.
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We used a fine grid for each spatial and temporal distances u and v

spanning the sequence starting from u > ε > 0 to 2.50 and v > δ > 0 to
2.50 with small increments of distances. In practice, we use the dpik func-
tion in kernsmooth package to obtain the bandwidth (Wand and Ripley;
2013) based on the distances between the spatial locations of the process.
For the temporal case the uniform kernel is used, where again we calculate
the bandwidth δ using the dpik function based on the time lag between the
temporal instants of the process.

 r =
 distance

1.5

2.0

2.5 t = tim
e

0.5

1.0

1.5

2.0

2.5

0.00

0.01

0.02

0.03

0.04

0.05

(a) LISTA for i = 14.
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(b) LISTA for i = 22.
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(c) LISTA for i = 55.
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(d) LISTA for i = 63.

Figure 5.3: LISTA functions kernel estimated for a homogeneous Poisson point
process with n = 100, ε = 1.011389 and δ = 0.3925461.
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(b) LISTA for i = 23.
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(c) LISTA for i = 30.
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Figure 5.4: LISTA functions kernel estimated for a homogeneous Poisson clus-
ter point process with n = 100, ε = 0.6566714 and δ = 0.2312543.

Figure 5.3 shows four randomly selected LISTA functions for the Pois-
son point pattern in Figure 5.1. In general the maximum value of the
LISTA function surfaces is less than ρ̂(2)i

ε,δ(r, t) = 0.0099 which is the esti-
mated theoretical value under Poisson point process. Figure 5.4 shows four
randomly selected LISTA functions for the Poisson cluster point pattern in
the Figure 5.2. It can be seen clearly that for small spatial and temporal
distances larger values of ρ̂(2)i

ε,δ(r, t) = 0.0099 are obtained, which is a
clear indication of the spatio-temporal cluster phenomenon.
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5.1.9 Coming goals

• Find a closed form for the approximation of the variance of LISTA
functions under the assumption of stationarity.

• Find an expression for the covariance between two LISTA functions
and treatable closed forms for these expressions.

• Develop methodology for spatio-temporal clustering analysis.

• Run an intensive simulation study to test the properties of this
methodology and use real data.
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5.2 Modelling orbital debris with point pro-

cesses on the sphere

Francisco J. Rodríguez-Cortésa, Radu Stoicab,c, Florent Delefliec

and Jorge Mateua2

a Department of Mathematics, University Jaume I, Castellón, Spain
b Laboratory Paul Painleve, University Lille 1, Lille, France

c Institute of Celestial Mechanics and Calculation of Ephemeris, Paris
Observatory, Paris, France

5.2.1 Introduction

Problems coming from the debris problem need to consider the sphere as
a metric space. In the unit sphere, we can define a probability measure
and extend the theory of point porcesses into the non-Euclidiam geome-
try context. Nowadays fields such as astronomy, engineering, agronomy,
climate prediction and meteorology are interested in this metodology.

The orbital debris often are produced by the collision of the old satel-
lites whose orbits coincide. Many theories generally accept that the Earth
is a spheric object and if we consider the effects of the Earth’s gravitational
field on the orbital debris, the hypothesis that these particles are randomly
distributed around the earth is feasible.

Daley and Vere-Jones (2008) proposed a general systematic study of the
point processes and random measures that are invariant under rotations
as well as shifts in d-dimensional Euclidean space Rd. In addition, they
comment that for processes on other types of manifolds, such as the surface
of a sphere or a cylinder the, theory is very similar, so much that some
parts are merely variants of the corresponding theory of stationary con-
tinuous processes. They consider that the basic results can be developed
with almost equal facility for point processes on a locally compact metric
group. Møller and Waagepetersen (2004) comment that in the case of the
d-dimensional unit sphere the more natural metric is given by the geodesic

2All authors contributed equally in this work.
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distance. Billiot and Goulard (2001) introduced an estimation method for
pairwise interaction potentials of a stationary Gibbs point process by con-
sidering the case of observations located on a sphere. This methodology
is used to study independent observations of root locations on internodes
around stem of maize roots.

We intend to build the foundations on a new geometric environment
for the inference and estimation of the stationary point process in which
the connection between the differential geometry and probability can pro-
vide to the astronomy and other sciences powerful tools to study spherical
phenomena as orbital debris. The development of efficient software to per-
form calculations and visualization involving this methodology is one of the
most challenging facts due to the high computational cost and accuracy
that entails.

5.2.2 Theoretical framework

The sphere

The unit sphere S2 with center in the origin is defined as the set of all
points x ∈ R3 such that

S2 =
{
x : ‖x‖2 =

∑
x2
i = 1

}
,

where ‖ · ‖ denotes the Euclidean distance in R3. In other words, the
unit sphere S2 is a two-dimensional closed surface embedded in three-
dimensional Euclidean space.

A parametric representation of the unit sphere is given by

x(φ, ϕ) = (cos(ϕ) cos(φ), sin(ϕ) cos(φ), sin(φ)), −π
2
≤ φ ≤ π

2
, 0 ≤ ϕ ≤ 2π.

This coordinate system is especially used in astronomy for determining the
latitude and longitude of the points on the globe (see Do Carmo (1976)).
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Great-circle distance

Let (φi, ϕi) and (φj, ϕj) be the geographical latitude and longitude of two
points on the unit sphere and

∆φij = |φi − φj|, ∆ϕij = |ϕi − ϕj|, −π
2
≤ φ ≤ π

2
, 0 ≤ ϕ ≤ 2π,

their respective absolute differences, then the central angle between them
∆ψ is precisely the great-circle distance dg among (φi, ϕi) and (φj, ϕj), that
is to say dg is the length of the shortest arc on the unit sphere between any
two points. Therefore a closed expression for calculation of this distance
given by the spherical law of cosines take the form

∆ψ = arctan

(√
∆η

∆ν

)
, (5.10)

where

∆η = (cos(φj) sin(∆ϕij))
2 + (cos(φi) sin(φj)− sin(φi) cos(φ2) cos(∆ϕij))

2

and

∆ν = sin(φi) sin(φj) + cos(φi) cos(φj) cos(∆ϕij),

then dg((φi, ϕi), (φj, ϕj)) = ∆ψ for more details (see Shumaker and Sinnott
(1984), Vincenty (1975)).

5.2.3 Point processes on the sphere: general setting

Under similar considerations that in the planar case, we can define in point
processes on the unit sphere. Let B(S2) be the Borel σ-algebra in S2 and
B0 ⊆ B(S2) be the system of all bounded Borel sets. We can define the
space of locally finite subsets of S2 as

Slf =
{
x ⊆ S2 : n (x) < +∞, ∀x ∈ B0

}
,
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where n (y) denotes the cardinality of the set y. Elements of Slf are called
locally finite point configurations in the unit sphere. We equip Slf with the
σ-algebra

Slf = σ {{x ∈ Slf : n (x) = m} ,m ∈ N0, x ∈ B0} ,

where N0 = N ∪ {0}. A point process on the unit sphere is also defined as
a random locally finite point configuration.

Let (Ω,F ,P) be an abstract probability space. A point process XS in
the unit sphere is a measurable mapping

XS : (Ω,F ,P) −→ (Slf ,Slf) .

The distribution of the simple point processs is a measure PXS defined
on (Slf ,Slf) defined by the relation

PXS (F ) = P (XS ∈ F ) = P ({ω ∈ Ω : XS (ω) ∈ F}) , F ∈ Slf .

A point process on the unit sphere is said finite if n (XS) < +∞ almost
surely and we will denote the random number of points falling in the set
B by N (B) = n (XS ∩B), referring to N as a counting function. A
point process on the unit sphere XS is stationary if its distribution is
translation invariant. A point process on the unit sphere XS is isotropic
if its distribution is invariant under rotations. These two concepts are
given in the same sense as the planer case, (see Møller and Waagepetersen
(2004)).

It is natural to think that the important properties and basic results
of point processes in the plane can be immediately extended into this new
context. However, our intention in this paper is only to show the how to
adapt classical theory of stationary point processes to the case where is
the unit sphere. The intensity measure µS on S2 is given by

µS (B) =

∫
B

ρS (x) dx, B ∈ B,
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where ρS is a non-negative function. If ρS is constant, then XS is said to
be homogeneous or first-order stationary with intensity ρS; otherwise XS

is said to be inhomogeneous. The second-order factorial moment measure
α

(2)
S on S2 is given by

α
(2)
S (C) =

∫∫
1 [(x,y) ∈ C] ρ

(2)
S (x,y) dxdy, C ∈ B × B,

where ρ(2)
S is a non-negative function and called second-order product den-

sity. Therefore, if ρS and ρ(2)
S coexist then the pair correlation function is

defined by

gS(x,y) =
ρ

(2)
S (x,y)

ρS(x)ρS(y)

where we consider a/0 = 0 for a ≥ 0.
Suppose that XS has intensity function ρS and that the measure

KS(B) =
1

|A|
E

[∑ 6=

x,y∈XS

1 [y ∈ A,x− y ∈ B]

ρS (x) ρS (y)

]
, B ⊆ S2, (5.11)

does not depend on the choice of A ∈ B with Lebesgue measure |A|.
Accordingly XS is said to be second-order intensity reweighted station-
ary (SOIRS) and KS is called the second-order reduced moment measure.
Hence every stationary point process on the unit sphere is SOIRS.

If the pair correlation function exists and is invariant under transla-
tions, then the second-order intensity reweighted stationarity KS is given
by

KS(B) =

∫
B

gS(x)dx, B ⊆ S2. (5.12)

5.2.4 Simulating an homogeneous Poisson point pro-

cess on the unit sphere

As it is well known, Poisson processes play a key role in the development
of the theory of point processes in any geometrical context. In the case of
the unit sphere, the pseudo-algorithm for its generation must be modified
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for avoid accumulation at the poles. This algorithm can be depicted as
follow:

1. Generation of the number n of geographical points on the unit sphere
S2, where n is a sample of a Poisson distributed random variable with
parameter 4πρS,

2. Generation of a sample of a binomial point process on the unit sphere
S2 with n geographical points:

• Longitude: Given n, generate independent random sample from
the uniform distribution on [0, 2π].

• Latitude: Given n, generate on independent random sample
from the uniform distribution on [−1, 1] and consider the trans-
formation arccos(·)− π/2.

for more detalles see Section 1.3.1
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Figure 5.5: Homogeneous Poisson point pattern on the unit sphere for n = 500.

Figure 5.5 shows a realisation of a homogeneous Poisson point pattern
on the unit sphere with ρ̂S = 39.78874.
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5.2.5 Second-order summary statistics

TheKS-function for a SOIRS point processes on the unit sphere are defined
by

KS(c) = KS(b(0, c)), 0 ≤ c ≤ π,

where b(0, c) is a ball with form of the spherical cap with center in ori-
gin and the spherical length radius is the great-circle distance on the
unit sphere define in (5.10). In the stationary case, ρSKS(c) is the ex-
pected number of further points within distance c from the origin given
that XS has a point at the origin, (Baddeley et al. (2000), Møller and
Waagepetersen (2004)).

If gS is isotropic, i.e. gS(x,y) = g(|x− y|g) where dg(x,y) = |x− y|g,
we can write the the KS-function as

KS(c) =

∫
1[|u|g ≤ c]gS(u)du, 0 ≤ c ≤ π,

were 1[·] denotes the indicator function and we abuse notation for denote
by gS(·) also the function which describes how the pair correlation only
depends on interpoint distances.

In the isotropic case the pair correlation function has relationship through
of the derivated with the KS-function as

gS(c) =
1

2π sin(c)

d

dc
KS(c), 0 ≤ c ≤ π. (5.13)

For a Poisson point process on the unit sphere holds that,

KS(c) = 2π(1− cos(c)) and gS(c) = 1. (5.14)

where c is the great-circle distance.

Estimates for the KS-function and the second-order product density
function on the unit sphere are given by

K̂S(c) =
∑ 6=

x,y∈XS

1 [|x− y|g ≤ c]

4πρ̂S(x)ρ̂S(y)
, x,y ∈ S2, 0 ≤ c ≤ π, (5.15)
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and

ρ̂
(2)
S ε(c) =

∑ 6=

x,y∈XS

κε(|x− y|g − c)
8π2 sin(c)

, x,y ∈ S2, 0 ≤ c ≤ π. (5.16)

Given that the unit sphere is a closed surface in the construction of
the estimators for KS and gS is obvious that it is not necessary to consider
edge-effect and therefore the proof of its unbiasedness of the estimators
just repeat steps as the spatial case.

5.2.6 The first computing experiences

We generate of a homogeneous Poisson point pattern with expected num-
ber of the point per unit of area E[N(S2)] = 500, by the algorithm we have
outlined in Section 5.2.4 on the unit sphere. We used a fine spherical grid
of the great-circle distances c spanning the sequence starting from c > 0 to
π/4 with small increments of the reat-circle distances on the unit sphere.
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Figure 5.6: Theoretical and estimated K-functions of a realisation of a homo-
geneous Poisson point pattern with n = 500 points in the unit sphere.

Figure 5.6 shows the estimator of the KS-function in (5.15) under a

146



homogeneous Poisson point pattern on the unit sphere and we note that
the theoretical expression (5.14) are certainly close to the empirical one.
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Figure 5.7: Simulation of the behavior of particles detached by satellites mo-
ments after a collision.
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Figure 5.8: Geographical locations of 3255 orbital debris particles orbiting the
Earth.

Figure 5.7 illustrates the spherical distribution of particles after col-
lision. They are clustered with a strong aggregation. Figure 5.8 shows
simulated data from the Observatory of Lille - France wiht Reference el-
lipsoid: WGS-84 under conditions of the day January 15 of 2013. This
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consists of geographical locations of 3255 orbital debris particles orbiting
the Earth. Astronomers expected that this cloud of orbital debris with the
passage of time ends up on random distributions on unit sphere.
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Figure 5.9: 95%-envelope obtained from 39 simulations of a homogeneous Pois-
son point pattern on the unit sphere for n = 3255.

Figure 5.9 shows the 95%-envelope obtained from 39 simulations of a
homogeneous Poisson point pattern on the unit sphere with n = 3255.
Here we can see how the blue curve which represents the simulated data
from particles around of the Earth, is larger than the upper 95%-envelope.
Thus we can consider the data shown in Figure 5.8 are distributed around
the sphere as a cluster pattern.
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5.2.7 Coming goals

• Further developing the methodology of point processes in the unit
sphere.

• Extension of computational tools for the statistical analysis in the
context of geometry on the sphere.

• Provide answers to other scientists with arguments based on the
stochastic geometry for give tools estimation and inference.
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