
Gathering Empirical Evidence and
Building a Business Case for

Software Reference Architectures in
Industry

— PhD Thesis —

SilverioMartínez-Fernández
Advised by Claudia Ayala and Xavier Franch

A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computing

Department of Computer Science

Barcelona, Spain
April 2016





A mi padre





Abstract

Background: Software reference architectures are becoming widely adopted
by organizations that need to support the design and maintenance of software
applications of a shared domain. For organizations that plan to adopt this
architecture-centric approach, it becomes fundamental to understand how
software reference architectures are engineered, and to know their return on
investment. Unfortunately, there is a lack of evidence-based support to help
organizations with these challenges.

Goal: The main goal of this PhD thesis is to support organizations making
informed decisions about software reference architecture acquisition, design,
and use based on empirical evidence.

Methods: To accomplish this goal, we have conducted an action research
approach in an industry-academia collaboration between everis (a multina-
tional IT consulting firm based in Spain) and our Research Group of Software
and Service Engineering (GESSI).

Results: The results from our industry-academia collaboration led to un-
cover novel evidence on the use of software reference architectures in practice.
The procedures and evidence obtained have been packaged to design guide-
lines that could be used in similar contexts as the one of everis.

Conclusions: This PhD thesis supports organizations to acquire and en-
gineer software reference architectures by providing evidence-based support.
Such evidence-based support consists of the results of the empirical studies
conducted in this PhD thesis, and the presented guidelines for gathering new
corporate evidence.

Keywords: software architecture; reference architecture; software refe-
rence architecture; empirical software engineering; experimental software
engineering; reference architecture acquisition benefits; business case; cost-
benefit analysis; industry-academia collaboration.

iii



PhD Thesis: Gathering Empirical Evidence and Building a Business
Case for Software Reference Architectures in Industry

Author: Silverio Martínez-Fernández
Department: Service and Information System Engineering (ESSI)

Group of Software and Service Engineering (GESSI)
Address: UPC-Campus Nord, Omega building, room S206

c/Jordi Girona 1-3, 08034 Barcelona (Spain)
E-mail: smartinez@essi.upc.com, martinez.silverio@gmail.com

mailto:smartinez@essi.upc.com
mailto:martinez.silverio@gmail.com


Co-Authorship Statement

Most of the contents in this PhD thesis are based on published papers authored
by the candidate. The content of the papers included in this PhD thesis has
been adapted with respect to the published version. In some cases, the papers
have been co-authored with other authors. We indicate below the co-authors
of such works.

All Chapters

Dr. Claudia Ayala and Dr. Xavier Franch, as supervisors, have contributed
to all research described in this PhD thesis. Their guidance, supervision, and
active role during these years have been fundamental.

Chapter 3

This chapter is partially based on the work performed during my research stay
at the LabES research group at the University of Sao Paulo (Brazil). It has also
been supervised by Dr. Elisa Y. Nakagawa, and jointly performed with Dr.
Lucas Bueno Ruas de Oliveira and Lina Garcés.

Chapters 4, 5, 9, 10, and 13

These chapters are based on the research performed inside the “Cátedra everis-
UPC” project. Helena M. Marques, Xavier Terradellas Fernández, and Miguel
Ángel González Amate have contributed stating the research goals, with their
participation at many meetings, and cooperation to gather evidence for the
empirical studies.

v



Chapters 6 and 11

In the beginning of this PhD thesis, Dr. David Ameller participated in the “Cá-
tedra everis-UPC” project, contributing to the initial versions of the guidelines.

Chapter 7

Dr. Elisa Nakagawa presented the survey performed to AUTOSAR practitio-
ners in the First International Workshop on Automotive Software Architecture
(WASA).

Chapter 8

This chapter is based on the work performed during my research visit at the
Experimental Software Engineering group of the Federal University of Rio de
Janeiro (UFRJ). It has also been supervised by Dr. Guilherme Horta Travassos,
and jointly performed with Dr. Paulo Sérgio Medeiros dos Santos.

QuPreSS Reference Model

An initial step of this PhD thesis was the creation of QuPreSS, a reference
model for predictive services selection. With the help of QuPreSS, we could
implement Mercury, a tool for evaluating predictive services customized to
the weather forecast domain. This helped me to learn and gain experience on
designing and using reference models. This work has also been supervised by
Dr. Jesús Bisbal.



Acknowledgments

I would like to express my sincere gratitude to all people who have shared
some time with me in the way to my PhD thesis. I am grateful for learning
from them as a professional and as a person.

First of all, I want to thank my advisors, Claudia Ayala and Xavier Franch,
for their guidance. A PhD thesis introduces you in a no existing road, but I
walked on their previous footsteps. They have always been there providing
inspiring knowledge and extremely useful assistance. There have been many
meetings, many papers, many funny e-mails, many conference trips... but
what made them different was their ability to lead this project by engaging me
on the research, and improving the quality of the work.

To the whole GESSI research group, I need to say that I have been lucky
to work here. The work atmosphere has been excellent, getting their friendly
cooperation whenever I needed it, especially from my mates at the office:
David Ameller, Óscar Cabrera, Montse Estanyol, Óscar Hernán, Lidia López,
Marc Oriol, Xavier Oriol, and Cristina Palomares.

One of the most enriching parts of the PhD has been to do empirical research
inside the “Cátedra everis-UPC” project. Thanks to all everis’ employees who
have participated in the studies, and to the people from the architecture group
(ARCHEX). Special thanks to Xavier Terradellas and Miguel Ángel González,
who helped to define the research problem in the very beginning; and to
Helena M. Marques, the champion at the everis side of the industry-academia
collaboration. She has always been willing to cooperate to gather evidence for
the empirical studies.

To colleagues and researchers abroad, I am mainly thankful to Elisa Yumi
Nakawaga from the University of Sao Paulo (USP) for giving me the oppor-
tunity to learn the working philosophy of her group. To all members from
USP for their kind hospitality and cooperation during my research stay there,
especially to my office mates Lucas Bueno and Lina Garcés. Also to Guilherme

vii



H. Travassos and Paulo Sérgio Medeiros from the Federal University of Rio
de Janeiro (UFRJ), for impressing upon me the importance of aggregation and
meta-analysis.

I would like to thank to the anonymous reviewers as well as to researchers
from many conferences, who provided great ideas and priceless feedback in
different stages of this work.

I devote this PhD thesis to my mom and my sister for their love, affection,
and support. They are always there to encourage me to follow my goals and
believing in me. Especially for instilling me in the values that have made me
the person I am today. Also, I devote the PhD thesis to the ones who joined
the family in the last years, David and Adán.

Last but not least, I would also like to thank my friends, and all my flatmates
in Can Bruixa and Casa da Vó, who have kept the home in Barcelona and
São Carlos always worm. They have given me a hand whenever I needed,
especially Elena, Jesús, Jovan, Laia, Pedro, and Rebecca. I particularly thank
Petar Jovanovic for all his support since we started our PhDs. He has not only
been a real friend, but also contributed to this work with abundantly feedback,
proof-readings, nights and weekends in the research hub of our living room,
y fleje cosas más.

Thanks to all!

This work has been possible thanks to the collaboration “Cátedra everis-UPC”, the
Spanish FPU grant FPU12/00690, and Becas Santander JPI 2014. Besides, some of
its parts were performed in the context of the Spanish MEC projects TIN2010-19130-
C02-00 and TIN2013-44641-P.



Curriculum Vitae

Silverio Juan Martínez Fernández

Silverio Juan Martínez Fernández was born on October 29th, 1987, in
Almería.

He graduated in Bachelor of Computer Science in June 2008 and in Com-
puter Science Engineering in September 2010, both by University of Almeria
(Spain). During his engineering studies, he spent the 2008-2009 academic year
at University of Ghent (Belgium), awarded with an Erasmus grant.

In 2010, he was awarded with a “la Caixa” grant to study a master for the
academic year 2010-2011. During this period, he studied the Master in Com-
puting (Information Systems’ specialization) at UPC-BarcelonaTech (Spain).

Before starting the PhD, he was a developer in two software projects. First,
“Chess League Game”, a chess online game that simulates team competitions
(his final project degree). Second, “Mercury”, a tool that measures weather
predictive services’ quality and automates the context-dependent selection of
the most accurate predictive service to satisfy a customer query (his master
thesis).

Since the end of 2011, he joined the Research Group of Software and Service
Engineering (GESSI) at UPC-BarcelonaTech to carry out his doctoral studies.
To this end, he got the first year and a half a FPI-UPC grant, and then a
FPU grant from the Spanish Goverment. His research areas in the PhD have
mainly been software reference architectures and empirical software engineer-
ing. During the three first years, he also earned industrial experience as a part
of the research conducted in the “Cátedra everis-UPC” project.

ix



During his doctoral studies, he was also the recipient of some competitive
grants for researching and teaching. On the one hand, he was awarded with
a Santander Grant for Young Lecturers and Researchers (Santander JPI 2014),
which enabled him to make a research stay at the University of Sao Paulo
(Brazil) in Sao Carlos, Brazil. On the other hand, he got an Erasmus+ grant for
teaching mobility, which enabled him to teach a part of a software architecture
course in 2015 at Fontys University of Applied Sciences (The Netherlands).

By the time of finishing his PhD, he has participated in several national re-
search projects, and has been the first author of 12 peer-reviewed publications,
including 1 JCR indexed Elsevier journal, 1 Springer journal, 3 full-papers at
the main track of CORE-A conferences, and 1 best paper award at a workshop.
Also, he has been teaching the Software Engineering Project course of the
Computer Science Degree at Barcelona School of Informatics in two academic
years (2013-2014, 2014-2015).



Contents

List of Figures xvii

List of Tables xix

I Introduction and State of the Art 1

1 Introduction 3
1.1 Software Reference Architectures . . . . . . . . . . . . . . . . . . 3

1.1.1 Importance of Software Reference Architectures . . . . . 4
1.2 Research Context . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 everis, a Multinational Consulting Firm . . . . . . . . . . 7
1.2.2 Software Reference Architectures in everis . . . . . . . . . 7

1.3 Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 The Problem at the “Cátedra everis-UPC” Project . . . . 9

1.4 Research Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.1 Tasks and Results . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.7 Structure of this Document . . . . . . . . . . . . . . . . . . . . . 24

2 Background 25
2.1 Architecture Disciplines Basic Concepts . . . . . . . . . . . . . . 25

2.1.1 Relationships Between Architecture Disciplines . . . . . 26
2.1.2 Where Software Reference Architecture Belongs To . . . 27

2.2 Software Reference Architecture Essentials . . . . . . . . . . . . 29
2.2.1 Definition of Software Reference Architecture . . . . . . 29
2.2.2 Types of Software Reference Architecture . . . . . . . . . 29

xi



xii Contents

2.2.3 Elements that Compose an SRA . . . . . . . . . . . . . . 30
2.3 The Boundaries of SRAs with Respect to Related Terms . . . . . 32

2.3.1 Reference Model and SRA . . . . . . . . . . . . . . . . . . 32
2.3.2 Concrete Software Architecture and SRA . . . . . . . . . 33
2.3.3 Product Line Architecture and SRA . . . . . . . . . . . . 34

2.4 The Industrial Context of SRAs in everis . . . . . . . . . . . . . . 36
2.4.1 Reference Model Projects . . . . . . . . . . . . . . . . . . 38
2.4.2 Software Reference Architecture Projects . . . . . . . . . 38
2.4.3 Concrete Architecture Projects . . . . . . . . . . . . . . . 39

3 State-of-the-Art 41
3.1 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Search Process . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.2 Inclusion and Exclusion Criteria . . . . . . . . . . . . . . 44
3.1.3 Data Extraction and Synthesis . . . . . . . . . . . . . . . 47

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.1 SRA Basic Concepts . . . . . . . . . . . . . . . . . . . . . 49
3.2.2 SRA Adoption . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.3 SRA Information Source Investigation . . . . . . . . . . . 50
3.2.4 SRA Requirements Elicitation . . . . . . . . . . . . . . . . 51
3.2.5 SRA Design . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.6 SRA Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.7 SRA Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.8 SRA Evolution . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Focusing on the Topics of this PhD Thesis . . . . . . . . . . . . . 54
3.3.1 Literature on Artifacts of SRAs . . . . . . . . . . . . . . . 54
3.3.2 Literature on Benefits and Drawbacks of SRAs . . . . . . 57
3.3.3 Business Case Analysis and Return-On-Investment . . . 59
3.3.4 Economic Models for SRAs . . . . . . . . . . . . . . . . . 60

II Empirical Evidence of Software Reference Architectures 65

4 Identifying Practical Criteria for SRA Engineering 67
4.1 Summary of the First Cycle of RQ 1 . . . . . . . . . . . . . . . . . 70

5 Gathering Evidence of SRA Engineering 71
5.1 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1.1 Research Setting . . . . . . . . . . . . . . . . . . . . . . . 72



Contents xiii

5.1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . 73
5.1.3 Research Design and Sampling . . . . . . . . . . . . . . . 76
5.1.4 Data Collection and Instruments . . . . . . . . . . . . . . 77
5.1.5 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.1.6 Limitations of the Study . . . . . . . . . . . . . . . . . . . 81

5.2 Analysis of Motives to Use SRAs . . . . . . . . . . . . . . . . . . 84
5.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Analysis of Artifacts of SRAs . . . . . . . . . . . . . . . . . . . . 85
5.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.2 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Analysis of Benefits and Drawbacks of SRAs . . . . . . . . . . . 98
5.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4.2 Discussions and Comparison with the Literature . . . . . 108

5.5 Analysis of Benefits of Reference Models . . . . . . . . . . . . . 113
5.5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.5.2 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.6 Summary of the Second Cycle of RQ 1 . . . . . . . . . . . . . . . 116

6 Guidelines for Gathering Evidence of SRAs 117
6.1 Similar Contexts of SRAs in Practice . . . . . . . . . . . . . . . . 118
6.2 Formative Stage: Evolution of the Guidelines . . . . . . . . . . . 120
6.3 Packaging the Guidelines . . . . . . . . . . . . . . . . . . . . . . 121

6.3.1 Relevant Criteria of SRAs for an Organization . . . . . . 122
6.3.2 Evidence to Improve SRA Engineering . . . . . . . . . . 122

6.4 Summative Stage: Validating the Guidelines . . . . . . . . . . . 124

7 The Benefits and Drawbacks of AUTOSAR 125
7.1 Background on Automotive Software and AUTOSAR . . . . . . 125

7.1.1 AUTOSAR Software Reference Architecture . . . . . . . 127
7.2 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.2.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . 129
7.2.2 Research Design and Sampling . . . . . . . . . . . . . . . 129
7.2.3 Data Collection and Instruments . . . . . . . . . . . . . . 130
7.2.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.3.1 Results on AUTOSAR Benefits . . . . . . . . . . . . . . . 134
7.3.2 Results on AUTOSAR Drawbacks . . . . . . . . . . . . . 137
7.3.3 Highlights of the Results . . . . . . . . . . . . . . . . . . . 138

7.4 Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



xiv Contents

7.4.1 Construct Validity . . . . . . . . . . . . . . . . . . . . . . 139
7.4.2 Internal Validity . . . . . . . . . . . . . . . . . . . . . . . . 140
7.4.3 External Validity . . . . . . . . . . . . . . . . . . . . . . . 141

7.5 Summary of the Third Cycle of RQ 1 . . . . . . . . . . . . . . . . 141

8 Aggregating Empirical Evidence of SRAs 143
8.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.1.1 Step 1: Selecting Primary Studies . . . . . . . . . . . . . . 145
8.1.2 Step 2: Evidence Representation . . . . . . . . . . . . . . 146
8.1.3 Step 3: Evidence Synthesis . . . . . . . . . . . . . . . . . 150

8.2 Representation of SRA Effects . . . . . . . . . . . . . . . . . . . . 151
8.3 Results of the Aggregation . . . . . . . . . . . . . . . . . . . . . . 154

8.3.1 Effects of SRAs that Increased their Belief . . . . . . . . . 156
8.3.2 Effects of SRAs that Slightly Increased their Belief . . . . 157
8.3.3 Effects of SRAs that did not Change their Belief . . . . . 157
8.3.4 Effects of SRAs that Decreased their Belief . . . . . . . . 158

8.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.4.1 Effects of SRAs Present in Different Contexts . . . . . . . 158
8.4.2 Contradictory SRA Effects from Different Studies . . . . 159
8.4.3 Contribution of this Aggregation to the Theory on SRAs 161

8.5 Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.6 Summary of the Fourth Cycle of RQ 1 . . . . . . . . . . . . . . . 163

III The Business Case for Software Reference Architectures 165

9 A Survey to Discover Existing Data in SRA Projects 167
9.1 Results: Costs and Benefits Metrics for SRAs . . . . . . . . . . . 168
9.2 Next Steps and Lessons Learned . . . . . . . . . . . . . . . . . . 169
9.3 Summary of the First Cycle of RQ 2 . . . . . . . . . . . . . . . . . 170

10 REARM: Calculating the ROI on SRA Adoption 171
10.1 A Method for Formulating an Economic Model . . . . . . . . . . 172
10.2 REARM: the Economic Model for SRAs . . . . . . . . . . . . . . 173

10.2.1 Step 1 for Formulating an Economic Model . . . . . . . . 173
10.2.2 Step 2 for Formulating an Economic Model . . . . . . . . 175
10.2.3 Step 3 for Formulating an Economic Model . . . . . . . . 175

10.3 Preliminary Validation . . . . . . . . . . . . . . . . . . . . . . . . 178
10.3.1 Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 180



Contents xv

10.3.2 Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
10.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
10.5 Summary of the Second Cycle of RQ 2 . . . . . . . . . . . . . . . 183

11 Guidelines for Building a Business Case for SRAs 185
11.1 Formative Stage: Evolution of the Guidelines . . . . . . . . . . . 186
11.2 Packaging the Guidelines . . . . . . . . . . . . . . . . . . . . . . 186

11.2.1 Existing Value-driven Data in Projects . . . . . . . . . . . 188
11.2.2 Calculating the ROI of Adopting an SRA . . . . . . . . . 188

11.3 Summative Stage: Validating the Guidelines . . . . . . . . . . . 189

12 Workshops to Evaluate the Business Case for SRAs 191
12.1 REARM Validation at an everis Client Organization . . . . . . . 192
12.2 REARM Validation at the ICSR 2013 . . . . . . . . . . . . . . . . 192
12.3 REARM Validation at another Research Group . . . . . . . . . . 194
12.4 Summary of the Third Cycle of RQ 2 . . . . . . . . . . . . . . . . 195

IV Conclusions and Future Work 197

13 Discussion: Evaluating our Collaboration 199
13.1 Models for Technology Transfer . . . . . . . . . . . . . . . . . . . 200
13.2 The Collaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
13.3 Collaboration Evaluation . . . . . . . . . . . . . . . . . . . . . . . 205

13.3.1 Research Activity . . . . . . . . . . . . . . . . . . . . . . . 206
13.3.2 Research Result . . . . . . . . . . . . . . . . . . . . . . . . 206

13.4 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
13.4.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
13.4.2 Mutual Benefits from Collaboration . . . . . . . . . . . . 210

13.5 Contributions of the Evaluation of the Collaboration . . . . . . . 210
13.5.1 Future Steps . . . . . . . . . . . . . . . . . . . . . . . . . . 211

14 Conclusions and Future Work 213
14.1 Conclusions and Answers to RQ 1 and RQ 2 . . . . . . . . . . . 213
14.2 Contributions to the SRA and ESE Theories . . . . . . . . . . . . 215

14.2.1 Contributions to the SRA Theory . . . . . . . . . . . . . . 215
14.2.2 Contributions to the ESE Theory . . . . . . . . . . . . . . 218
14.2.3 Overall Contributions . . . . . . . . . . . . . . . . . . . . 218

14.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218



xvi Contents

References 219

Appendix A Glossary 235

Appendix B Included Studies in the Systematic Review 239

Appendix C Materials for Gathering Evidence of SRAs 245
C.1 Relevant Aspects of SRAs . . . . . . . . . . . . . . . . . . . . . . 245
C.2 Template Survey for Gathering Evidence of SRAs . . . . . . . . 246

C.2.1 Questions about Personal Data, Project, and Experience . 246
C.2.2 Questions about the Relevant Aspects of SRAs . . . . . . 247

Appendix D Materials for Building the Business Case for SRAs 253
D.1 Questions to Check Existing Value-Driven Data in SRA Projects 253
D.2 Materials of REARM . . . . . . . . . . . . . . . . . . . . . . . . . 255

D.2.1 Ten Basic Parameters to Feed the Cost-Benefit Factors . . 256
D.2.2 Cost-Benefit Factors to Calculate the ROI . . . . . . . . . 257
D.2.3 Business Case Parameters . . . . . . . . . . . . . . . . . . 257
D.2.4 Calculating the ROI: Scenarios for Decision Making . . . 258
D.2.5 Unquantifiable Benefits, Uncertainties and Risks . . . . . 259



List of Figures

1.1 Reference model, SRA, and concrete architecture . . . . . . . . . . . 5
1.2 The five steps of an action research approach. . . . . . . . . . . . . . 13
1.3 Action-research cycles of RQ 1. . . . . . . . . . . . . . . . . . . . . . 16
1.4 Action-research cycles of RQ 2. . . . . . . . . . . . . . . . . . . . . . 19

2.1 Relationship between architecture disciplines. . . . . . . . . . . . . 28
2.2 Co-existence of diverse reference architectures . . . . . . . . . . . . 28
2.3 RAModel: Reference model for SRAs . . . . . . . . . . . . . . . . . 31
2.4 Reference models, architectural patterns, and software architectures 32
2.5 SRA and product line architecture . . . . . . . . . . . . . . . . . . . 35
2.6 everis reference model for modern information systems . . . . . . . 37
2.7 An SRA designed with the help of the everis reference model . . . . 38
2.8 Stakeholders and their roles in each type of project . . . . . . . . . . 40

3.1 Search process and study selection . . . . . . . . . . . . . . . . . . . 45
3.2 Number of studies divided by topic and the maturity of each study 48

5.1 Key stakeholders in everis’ SRA projects. . . . . . . . . . . . . . . . . 73
5.2 What stakeholders think about SRA reuse in other domains. . . . . 90
5.3 Popularity of SRAs’ cross-cutting software elements. . . . . . . . . 92
5.4 Benefits of the use of SRAs in organizations. . . . . . . . . . . . . . . 101
5.5 Comparison of SRA benefits between designers and users. . . . . . 102
5.6 Drawbacks of the use of SRAs in organizations. . . . . . . . . . . . . 105
5.7 Comparison of SRA drawbacks between designers and users. . . . 106
5.8 Identified to-do improvements in everis’ SRAs. . . . . . . . . . . . . 107
5.9 Benefits for everis from designing SRAs. . . . . . . . . . . . . . . . . 114

6.1 Previous version of the guidelines to gather empirical evidence . . 120

xvii



xviii List of Figures

6.2 Guidelines to gather empirical evidence of SRAs in industry. . . . . 121

7.1 AUTOSAR layered ECU component-based software architecture. . 128
7.2 Education area of respondents. . . . . . . . . . . . . . . . . . . . . . 133
7.3 Pie chart with the role of the company of respondents . . . . . . . . 133
7.4 Box plot of the years of experience of respondents. . . . . . . . . . . 134
7.5 Results of “Which are the benefits of using AUTOSAR?” . . . . . . 135
7.6 Results of “Which are the drawbacks and risks of using AUTOSAR?”137

8.1 Evidence model representing the results of the study S1. . . . . . . 148

10.1 Summary financial results. . . . . . . . . . . . . . . . . . . . . . . . . 181
10.2 ROI of developing and maintaining SRA-based applications . . . . 182

11.1 Previous version of the guidelines to build the business case . . . . 186
11.2 Guidelines to build the business case for SRAs in industry. . . . . . 187

13.1 An activity model for technology transfer . . . . . . . . . . . . . . . 201
13.2 A relational model for industry-academia research . . . . . . . . . . 202

14.1 Novel contributions of this PhD thesis to the theory . . . . . . . . . 216



List of Tables

1.1 Initial tasks of the PhD thesis . . . . . . . . . . . . . . . . . . . . . . 14
1.2 Tasks related to gathering empirical evidence of SRAs (RQ1). . . . . 17
1.3 Tasks related to the business case for SRAs (RQ2) . . . . . . . . . . . 18
1.4 Tasks related to discussions and conclusions. . . . . . . . . . . . . . 20

3.1 Selection by title and abstract by two reviewers. . . . . . . . . . . . 47

4.1 Summary of relevant aspects for SRA engineering . . . . . . . . . . 70

5.1 Research questions of the case study . . . . . . . . . . . . . . . . . . 74
5.2 Overview of the selected everis’ SRA projects. . . . . . . . . . . . . . 78
5.3 Quotes from respondents about SRA use benefits. . . . . . . . . . . 100
5.4 Quotes from respondents about SRA use drawbacks. . . . . . . . . 104
5.5 Quotes from respondents about improvements. . . . . . . . . . . . . 107
5.6 Summary of benefits of using SRAs. . . . . . . . . . . . . . . . . . . 110
5.7 Summary of drawbacks of SRAs. . . . . . . . . . . . . . . . . . . . . 111
5.8 Summary of improvements and trade-off analysis . . . . . . . . . . 113
5.9 Quotes from respondents about SRA design benefits. . . . . . . . . 115

7.1 Group 1 of questions (mandatory). . . . . . . . . . . . . . . . . . . . 131
7.2 Group 2 of questions (optional). . . . . . . . . . . . . . . . . . . . . . 132

8.1 Primary studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.2 SRAs effects as reported in selected studies. . . . . . . . . . . . . . . 153
8.3 Aggregated effects of SRAs (ordered by belief strengthening). . . . 155

10.1 Basic parameters in order to feed the factors of Table 10.2. . . . . . . 176
10.2 Cost-benefit factors to calculate the ROI . . . . . . . . . . . . . . . . 177

xix



xx List of Tables

10.3 Example of design of a business case . . . . . . . . . . . . . . . . . . 177
10.4 Values of the basic parameters in the study . . . . . . . . . . . . . . 179
10.5 Values of the cost-benefit factors in the study . . . . . . . . . . . . . 180

C.1 Summary of relevant aspects for SRA engineering . . . . . . . . . . 245

D.1 Basic parameters in order to feed the factors of REARM. . . . . . . 256
D.2 Cost-benefit factors to calculate the ROI . . . . . . . . . . . . . . . . 257
D.3 Example of design of a business case . . . . . . . . . . . . . . . . . . 259



Part I

Introduction and State of the Art

1





Chapter 1

Introduction

This document represents my PhD thesis at the PhD in Computing program
at Barcelona School of Informatics (Facultat d’Informàtica de Barcelona, FIB)
of BarcelonaTech (Universitat Politècnica de Catalunya, UPC). The research of
this PhD thesis had its origin in the “Cátedra everis-UPC” project, an industry-
academia collaboration among everis (a multinational IT consulting firm based
in Spain)1, and our Research Group of Software and Service Engineering
(GESSI).

In this chapter, we respectively introduce the topic of the PhD thesis (Sec-
tion 1.1), the research context (Section 1.2), the research problem (Section 1.3),
the research goal (Section 1.4), the research tasks and contributions (Section
1.5), the list of publications (Section 1.6), and the structure of the rest of the
document (Section 1.7).

1.1 Software Reference Architectures

Every software system has a software architecture [1]. “The software archi-
tecture of a system is the set of structures needed to reason about the system,
which comprise software elements, relations among them, and properties of
both” [1]. Nowadays, the size and complexity of software systems, together
with critical time-to-market needs, demand new Software Engineering (SE)
approaches to design their software architectures [2].

Many today’s organizations face the development and maintenance of
big and complex software families, rather than single software systems. A

1There is an introduction about everis in Section 1.2

3



4 Chapter 1. Introduction

software family is composed by many software systems or software appli-
cations. These software applications are developed at multiple locations, by
multiple vendors and across multiple organizations [3]. Despite the multi-
plicity of this scenario, all software applications from the same family share
similar architectural needs and belong to the same domain. In this context, or-
ganizations may build a central asset called Software Reference Architecture
(SRA).

An SRA “encompasses the knowledge about how to design concrete archi-
tectures of systems of a given application domain; therefore, it must address
the business rules, architectural styles, best practices of software development,
and the software elements that support development of systems for that do-
main. All of this must be supported by a unified, unambiguous, and widely
understood domain terminology” [2].

An SRA is used as a foundation for the design of concrete software archi-
tectures of a class of software applications in a cost-effective manner [4, 5].
Therefore, SRAs are very attractive when organizations become large and
distributed in order to develop new systems or new versions of systems [6].

The idea of using SRAs is not new for the SE community, nor the software
industry. Since 1976, the idea of application families was described by Parnas
[7], and more than a decade ago, Bass et al. defined SRAs in their seminal book
[1] as: “a reference model mapped onto software elements (that cooperatively
implement the functionality defined in the reference model) and the data flows
between them”. Thus, a reference model could be mapped to many SRAs.
Likewise, SRAs serve as a reference for the design of the concrete architecture
of the software applications of an information system. These three artifacts
go from a high level of abstraction to a low level of abstraction. Figure 1.1
shows these relationships among reference model, SRAs and concrete software
architecture of applications.

1.1.1 Importance of Software Reference Architectures

Several potential benefits of using SRAs have been claimed, by both industry
and academia.

On the one hand, a Gartner’s report summarizes the benefits of SRAs
as they “reduce the complexity of hardware and software architecture by
systematically reducing environmental diversity [...], enable greatly increased
speed and reduced operational expenses as well as quality improvements due
to lowered complexity, greater investment and greater reuse” [8]. Thus, “IT



1.1. Software Reference Architectures 5

Figure 1.1: Relationships among reference model, SRA, and concrete archi-
tecture.

organizations that lack architecture and configuration standards [...] have
higher costs and less agility that those with enforced standards” [8].

On the other hand, much has been written in the scientific literature about
the goals of SRAs [9], which aims:

• to ensure standardization and interoperability [4];

• to facilitate reuse, and thereby harvest potential savings through reduced
cycle times, cost, risk and increased quality [3];

• to help with the evolution of a set of systems that stem from the same
SRA [10];

• to manage design complexity and improve development productivity
[11];

• and to ensure that resulting applications’ software architecture are con-
sistent with respect to an SRA [12].

According to these expected benefits, SRAs have become a key asset of
organizations [3]. Hence, they have become widely studied and used in
software architecture research and practice [4][13]. Next, we enumerate a few



6 Chapter 1. Introduction

well-known SRAs classified by their application domain: platform-specific
SRAs, industry-specific SRAs, and industry-cross-cutting SRAs [10].

First, there are SRAs that target a technological domain (also called plat-
form-specific SRAs [10]). Examples are The Open Group standard for SOA
reference architecture that is a blueprint that provides guidelines to adopt a
service-oriented approach to information technology [14], and the IBM big data
reference architecture that provides integrated capabilities for the adoption
of information governance in the big data landscape [15]. There are also
SRAs from academia to solve well-known technological problems (e.g., web
browsers [16], and software testing tools [17]).

Second, there are other types of SRAs that focus on a specific business
domain (also called industry-specific SRAs). These SRAs can either target
many organizations (whose applications share the business domain), or target
a specific single organization (which aims to standardize or facilitate the de-
velopment and maintenance of its own applications). An example of an SRA
that targets many organizations is AUTOSAR [18], which focuses on the auto-
motive domain and is being used by many car manufacturers and suppliers in
order to standardize the software in modern vehicles. An example of SRAs for
a single organization is the SRA for NASA’s earth science data systems, which
facilitates and homogenizes the development of this type of applications [19].

Third, the aforementioned SRAs target a single domain (e.g., the automo-
tive or aerospace industry), what makes them hard to be applied to other
domains. In this context, the goal of some European industrial research pro-
grams [20] is to enable their use across disparate domains. Also, the AUTOSAR
consortium plans to adapt its SRA for other commercial sectors, such as such
as railway, agriculture and forestry machinery [18]. This last type of SRAs that
cover more than one industry are called industry-cross-cutting SRAs.

1.2 Research Context

As it was aforementioned, the research of this PhD thesis had its origin in the
“Cátedra everis-UPC” collaboration. The collaboration was composed of three
partners: the architecture group of everis, the Barcelona School of Informatics
(FIB) at UPC, and the GESSI research group at UPC. The collaboration, which
was funded by everis, started in May 2011 and had a duration of three years.
Its goal was promoting training in IT by conducting research, innovation,
knowledge transfer, and dissemination. The goal of the collaboration was to
provide a solution to the current challenges that everis faced in SRA projects.



1.2. Research Context 7

1.2.1 everis, a Multinational Consulting Firm

everis is a multinational consulting firm providing business and strategy so-
lutions, application development, maintenance, and outsourcing services. Es-
tablished in 1996, everis has averaged 20% annual growth in revenues and
became part of NTT Data in January, 2014. At the time of starting the industry-
academia collaboration of this PhD thesis, everis had offices in 12 countries.
One of everis areas of business is Information Technology (IT) services. In IT
services, everis designs and implements technological solutions (among them
SRAs) and manages applications, infrastructures and outsourcing processes2.

1.2.2 Software Reference Architectures in everis

Having seen the general context of SRAs in the industry and their importance,
in this subsection we analyze the context of SRA projects from our experience
with everis. As a consulting company, everis offers solutions for big businesses
(e.g., banks, insurance companies, public administration, utilities, and indus-
trial organizations) that provide a wide spectrum of services to their clients.
Given the complexity of the resulting software applications, which integrate
bespoke applications with commercial packages, these organizations need
high-quality software architectures, and this is the service that they hire to
everis. The solution provided by everis is based on the adoption of an SRA in
the client organization, from which concrete software architectures are derived
and used in a wide spectrum of applications.

We focus on the case in which everis designed an SRA with the purpose
of deriving concrete architectures for each application of a client organization.
This usually happens when everis is regularly contracted to create or maintain
information systems in client organizations. Each information system of a
client organization is built upon the SRA and includes many software applica-
tions. SRAs enable reuse of architectural knowledge and software components
(normally associated to particular technologies) for the design of concrete ar-
chitectures in client organizations. Therefore, SRAs provide a baseline that
facilitates standardization and interoperability as well as the attainment of
business goals during applications’ development and maintenance.

Besides, a special characteristic of everis is its previous experience in multi-
ple SRA projects. This experience allows everis to build and use a more abstract
industry reference model. This reference model includes best practices from

2everis’ site: http://www.everis.com/usa/en-US/about-everis/the-company/Paginas/
the-company.aspx

http://www.everis.com/usa/en-US/about-everis/the-company/Paginas/the-company.aspx
http://www.everis.com/usa/en-US/about-everis/the-company/Paginas/the-company.aspx


8 Chapter 1. Introduction

previous successful experiences, which serve as a reference for new SRAs that
inherit a certain level of quality. Details of the type of projects and stakeholders
at everis can be found in Section 2.4, and Figure 2.8.

The context of everis is very similar to other IT consulting firms. As a re-
cent Gartner report shows, IT consulting firms “leverages industry-specific or
industry reference models to accelerate client delivery and ensure quality and
consistency across client engagements” [21]. However, “clients must ensure
that generic industry or reference models [...] are sufficiently customized and
tailored to enable their unique business capabilities and environments” [21],
so that the reference model does not stifle competitive advantage of the SRA.

1.3 Research Problem

As we have seen in Section 1.1.1, the adoption of an SRA might lead to plenty
of theoretical benefits (e.g., standardization in a software family). However,
it also implies several challenges, such as the ability to get real evidence for
driving its design and use [22], and the need for an initial investment [5]. Cur-
rently, organizations have little support for dealing with these two challenges.
This problem originates from the specific features of SRAs with respect to soft-
ware architectures [23], such as the need of an initial investment, their generic
nature, the wide group of stakeholders that they involve, their high level of
abstraction, or their instantiation in the organization’s portfolio of software
systems. Therefore, as Angelov et al. point out, practitioners face difficulties
in working with SRAs [22]. This PhD thesis aims to cope with the following
two problems to help practitioners in their daily work with SRAs.

First, there is a shortage of experience reports about the context of SRAs in
industry and how they are currently being designed and used. For instance,
a recent literature review about evidence in software architecture, in which
only two papers were about SRAs, shows that there is limited knowledge
about SRAs [24]. As a result, academics’ perspective of SRA is not always
in line with the industry’s practice, and practitioners usually find the current
literature about SRA scarce and abstract [4], limiting the industrial uptake of
research results in the field. This situation triggers the following questions:

• How can an organization get corporate evidence to support SRA engi-
neering1?

1Throughout this document, we use the term “SRA engineering” to refer to common practices
in SRA projects, such as defining the goals of an SRA, SRA design, SRA evaluation, and SRA use.



1.3. Research Problem 9

• How different stakeholders perceive the potential benefits and draw-
backs of SRAs?

• Which are the artifacts that compose an SRA in the industrial practice
and what is their potential reuse across domains?

In this scenario, we argue that in order to enable practitioners to fully
exploit the benefits of SRA adoption and usage, the research community must
clarify the diverse contexts of SRA in practice, as well as the characteristics (e.g.,
benefits, drawbacks, and challenges) of such contexts. This situation could be
addressed by conducting empirical studies to accumulate real evidence and
understand the context of SRAs from essential types of stakeholders. Such
evidence might help practitioners to better understand SRA engineering and,
then, to identify the current challenges to improve these engineering practices
in their organization.

Second, there is a shortage of economic models to precisely evaluate the
benefit of SRAs in order to make informed decisions about their adoption
in an organization [5]. Organizations with a wide portfolio of applications,
which may consider adopting an existing or new SRA to create and maintain
such applications, lack an approach to know whether it is worth for them to
invest on the adoption of an SRA. This situation triggers specific questions
that have not been addressed yet:

• Is it worth to invest on the adoption of an SRA?

• How is it possible to calculate the Return-on-Investment (ROI) of the
adoption of an SRA in an organization?

• Which commonly available data do organizations have to quantitatively
calculate the costs and benefits of adopting an SRA in an organization?

• Which are the cost and benefit factors of acquiring an SRA in an organi-
zation?

This situation could be addressed by making a business case with the help
of an economic model that perform cost-benefit analysis about the adoption
of an SRA [25].

1.3.1 The Problem at the “Cátedra everis-UPC” Project

everis commissioned our research group two main tasks (respectively aligned
with the two research problems defined above):



10 Chapter 1. Introduction

1. Gathering Evidence of SRAs (technical): systematically gathering evi-
dence of SRAs projects that they conducted at their client organizations.
The objective is identifying strengths and weaknesses of SRA engineer-
ing in SRA projects in order to disseminate and improve them.

2. Building the Business Case for SRAs (strategic/organizational): building
the business case and calculating the ROI that their client organizations
get after adopting an SRA. It aims to provide quantitative evidence to its
clients about the potential economic benefits of applying an SRA.

Next, we describe the rationale of these two tasks, and their importance
for everis.

Gathering Evidence of SRAs

The architecture group of everis wanted to capture empirical evidence and the
architectural knowledge of years of work in a congruent vision, so that it can
help everis’ employees in the inception, design, and application of both current
and prospective SRAs. To gather such empirical evidence, it is necessary to
contact SRA stakeholders and everis’ employees [26].

In this context, it becomes necessary to support practitioners in their daily
work when working with SRAs.

Building the Business Case for SRAs

The architecture group of everis experienced the inability to calculate the ROI
derived from SRAs that they create (or plan to create) for client organizations.
Reifer defines a business case as the “materials prepared for decisions makers
to show that the idea being considered is a good one and that the numbers
that surround it make financial sense” [25]. That is, business cases enable
to justify investments in technology. Spending in the adoption of an SRA
without a previous and trustworthy analysis seems to be reckless and can lead
to a disaster.

In the SRA context, an economic model is needed to help making business
cases. An economic model should take into account costs, benefits, risks, and
schedule implications. An economic model to perform cost-benefit analysis
on the adoption of software reference architecture is a key asset for optimizing
architectural decision-making.

To sum up, software reference vendors (e.g., software companies and infor-
mation technology consulting firms such as everis) and acquisition organiza-



1.4. Research Goal 11

tions lack of support for dealing with these two problems: gathering empirical
evidence and building a business case for SRA engineering. Next, we show
the goal of this PhD thesis, which attempts to ameliorate these two problems
present in everis and other companies with a similar context.

1.4 Research Goal

Having seen the importance of SRAs in the industry and the research problems
described at Section 1.3, this section presents the objectives of the PhD thesis.
The main goal of this PhD thesis is to package the knowledge and evidence
gathered during our industry-academia collaboration in order:

To support organizations making informed decisions about SRAs
acquisition, design, and use based on empirical evidence.

In this context, this PhD thesis supports organizations to deal with the
following Research Questions (RQ):

RQ 1: How can an organization get corporate evidence that is useful for the
SRA engineering? The objective of the RQ 1 consists of gathering, increas-
ing and disseminating empirical evidence about relevant aspects of SRAs to
improve SRA engineering practices in an organization. Among the relevant
aspects of SRAs, we have focused on how different stakeholders perceive the
potential benefits and drawbacks of SRAs, and which are the artifacts that
compose an SRA in the industrial practice as well as their potential reuse
across domains.

RQ 2: Is it worth for an organization to invest on the adoption of an SRA?
The objective of the RQ 2 is to provide guidelines to support organizations
to quantitatively analyze if it is worth to adopt an SRA. Such an objective
consists of constructing an economic model for SRAs that enables to make
a business case for financial analysis. This analysis optimizes the decision-
making process when studying whether to make the strategic move to adopt
an SRA in an organization.



12 Chapter 1. Introduction

1.5 Research Methodology

In order to answer our RQs, we have performed an empirical research. Em-
pirical research is a way of gaining knowledge by means of direct and indirect
observation or experience3. One of the objectives of Empirical Software Engi-
neering (ESE) is to gather and utilize evidence to advance software engineering
methods, processes, techniques, and tools [27]. Since empirical studies help
to solve the industrial problems, this PhD thesis fosters the conduction of
empirical studies as a way to increase the empirical evidence about SRAs.

We followed an action research approach. Action research is “learning by
doing”: a group of people identify a problem, do something to resolve it, see
how successful their efforts are, and if not satisfied, try again [28]. The action
research cycle consists of five steps (see Figure 1.2):

Step 1: diagnosis of a problem,

Step 2: examination of options to solve the problem,

Step 3: selection of options and execution,

Step 4: analysis of the results, and,

Step 5: repetition for improvement.

Due to the practical nature of this PhD, which is highly bound to the
software industry, and to the data that we needed to gather and analyze from
everis and other organizations, ESE studies are ideal to solve the research
problem stated in Section 1.3. The empirical studies of our action research
process drove the establishment of the guidelines to gather empirical evidence
and to build a business case for SRAs. We distinguish among two stages in
our research: formative and summative.

First, the formative stage involves the evolution of the research work. The
central role of the formative stage is shaping the proposed empirical studies
and guidelines. It is called formative because it serves as the origin and
evolution of the ideas and concepts presented in this PhD thesis. The last step
of our formative stage is packaging guidelines with the aim of being applied
in prospective SRA projects and also in similar organizations.

Second, once the guidelines were adequately shaped and improved, the
summative stage aims to evaluate them. The central role of the summative

3https://en.wikipedia.org/wiki/Empirical_research

https://en.wikipedia.org/wiki/Empirical_research


1.5. ResearchMethodology 13

Figure 1.2: The five steps of an action research approach.

stage is integrating successful results from formative stages, and to validate
them with practitioners (which may come from everis or even other organiza-
tions). Such validation consists of using the guidelines to design and conduct
empirical studies. Organizations facing the design and use of SRAs, and ana-
lyzing whether to make the strategic move to SRA adoption based on evidence,
benefit from these guidelines.

The next subsection describes the tasks of the action research initiative of
this PhD thesis. All empirical studies designed and conducted are a cycle
inside our action research initiative, and belong to either the formative or
summative stages.

1.5.1 Tasks and Results

Having established the RQs, the tasks and results of this PhD thesis can be
grouped in four parts:

• Part I: Incubation of the PhD thesis.



14 Chapter 1. Introduction

• Part II: Gathering empirical evidence of SRAs (RQ1).

• Part III: Building the business case for SRAs (RQ2).

• Part IV: Discussions and conclusions.

Part I: Incubation of the PhD thesis

The starting point of this PhD thesis was its incubation, which ended up with
the PhD proposal [29, 30]. This incubation had four main tasks (see Table 1.1).

First, this PhD started by analyzing the problems identified in our action
research collaboration with everis (see Section 1.3.1). During this task, we
identified the research gaps about SRAs and propose the research goals of this
PhD thesis.

Second, we studied the basic background on SRAs (see Chapter 2). In this
stage, we stated the borders of SRA with regard to similar architectural con-
cepts, such as enterprise reference architecture and product line architecture.

Third, to have an unbiased view of the state-of-the-art and current research
on SRA engineering, we designed and conducted a Systematic Literature Re-

Table 1.1: Initial tasks of the PhD thesis

Stage Task Main Results of the Task Ref. Ch.
Formative
stage

Establishing the
research gap and
the research goals

Identification of the problem
at everis

[31] 1

Formative
stage

Studying the
background on
SRAs

Identification of concepts
related to SRA, and SRA
theory

[29] 2

Formative
stage

Performing a
state-of-the-art on
SRA engineering

A holistic overview of the
existing techniques and
approaches oriented to
support SRA engineering

[32] 3

Formative
stage

Definition and use
of a reference
model for
predictive service
selection

QuPreSS, a reference model
which measures predictive
service quality and guides the
selection of the most accurate
predictive service, and a tool
based on QuPreSS (which is
called Mercury)

[33,
34,
35,
36]

-



1.5. ResearchMethodology 15

view (SLR), which is presented in Chapter 3. This work was jointly done with
the LabES research group from the University of Sao Paulo (Brazil).

Fourth, we needed to conduct empirical studies to observe how practitio-
ners from everis design and use reference models and SRAs. However, we had
no experience on designing and using reference models nor SRAs. For this
reason, we decided to design QuPreSS, a reference model for predictive ser-
vices selection. Also, we used QuPreSS to create Mercury, a tool for evaluating
predictive services customized to the weather forecast domain. This work has
been jointly performed with a researcher from the Universitat Pompeu Fabra.

Part II: Gathering empirical evidence of SRAs (RQ1).

This part details our action research initiative with regard to the RQ 1 (defined
in Section 1.4). To answer RQ 1, we conducted five tasks (see Table 1.2). These
tasks are cycles of the action research conducted in order to answer RQ 1. Such
cycles are depicted in Figure 1.3, which explains the formative stage to create
the guidelines to gather relevant evidence from SRA projects (above), and how
such guidelines were validated in the summative stage (below).

In the first cycle of the RQ 1, we diagnosed the need of knowing about the
state of past and current SRA projects in everis in order to reuse architectural
knowledge and improve SRA engineering. As a consequence, we planned to
identify a set of criteria about SRAs that are relevant for practitioners. As a
result, we identified five aspects that indicate what evidence to gather in order
to support SRA engineering, which are presented in Chapter 4.

In the second cycle of RQ 1, we planned to gather evidence about the
aspects identified in the first cycle. We designed interview guides and on-line
questionnaires to gather mostly qualitative evidence about such aspects. Then,
we executed them in a case study with several SRA projects in everis. As a
consequence, we obtained results about why everis’ clients adopted SRAs, the
artifacts of SRAs, and the benefits and drawbacks of SRAs. These results are
reported in Chapter 5.

With the above two tasks/cycles, which belong to the formative stage, we
shaped the template surveys to gather empirical evidence. The guidelines to
gather empirical evidence of SRAs are presented in Chapter 6.

Then, at the third cycle of the RQ 1, we needed to validate these guidelines
and their template surveys. We decided to execute the same survey out of our
industry-academia collaboration with everis. Then, as part of the validation
and summative stage, we conducted a survey to gather empirical evidence
about the benefits and drawbacks of AUTOSAR, a mature and accepted SRA



16 Chapter 1. Introduction

Figure 1.3: Action-research cycles of RQ 1.



1.5. ResearchMethodology 17

Table 1.2: Tasks related to gathering empirical evidence of SRAs (RQ1).

RQ (Stage) Task Main Results of the Task Ref. Ch.
RQ1
(formative
stage)

Meetings to study
the relevant
criteria of SRAs
for an
organization

A list of aspects that may be
important for organizations to
support SRA engineering

[26,
31]

4

RQ1
(formative
stage)

Design and
execution of case
studies to gather
evidence to
improve SRA
engineering in an
organization

Template questionnaires to
gather evidence and
understand the impact of
using SRAs for designing the
concrete architectures of
software applications in an
organization

[37,
38]

5

RQ1
(formative
stage:
packaging)

Packaging the
guidelines for
many
organizations

Guidelines for gathering
empirical evidence of SRAs in
industry

[39,
26,
29,
30,
31]

6

RQ1
(summative
stage)

A survey on the
benefits and
drawbacks of a
mature and
accepted SRA
used worldwide

Evidence on the benefits and
drawbacks of AUTOSAR, an
SRA used by more than 180
organizations, and directions
to handle its major drawbacks

[40] 7

RQ1
(summative
stage)

A meta-analysis
of SRA benefits
and drawbacks

Aggregation of the available
empirical evidence of SRA
benefits and drawbacks

[41] 8

for automotive applications used worldwide by more than 180 organizations.
This work has been jointly done with the University of Sao Paulo (Brazil). The
results are depicted in Chapter 7.

Despite our work on the benefits and drawbacks of SRAs at everis and
AUTOSAR, such benefits and drawbacks have also been studied in other
contexts by other researchers. Therefore, to strengthen current evidence on
SRAs, it became necessary to aggregate the empirical evidence from everis with
the empirical evidence from other works. We perform a research synthesis with
the results from all these works. This task has been jointly performed with the
Federal University of Rio de Janeiro (Brazil), and is presented in Chapter 8.



18 Chapter 1. Introduction

Part III: The business case for SRAs (RQ2).

This part details our action research initiative with regard to RQ 2, which
is intended to quantify the benefits and costs of SRAs through a business
case. To answer RQ 2, we conducted four tasks (see Table 1.3). These tasks
are cycles of the action research conducted in order to answer RQ 2. Such
cycles are depicted in Figure 1.4, which explains the formative stage to create
the guidelines to build the business case for SRAs (above), and how such
guidelines were validated in the summative stage (below).

In the first cycle of the RQ 2, we diagnosed the problem of the lack of ap-
proaches to justify the investment on SRAs to everis’ clients in monetary terms.
As a consequence, we designed online questionnaires to ask stakeholders the
metrics available in SRA projects and conducted them in several SRA projects
from everis. As a result, we observed that effort metrics could be derived
from time tracking practices and that cost-benefit factors could be computed

Table 1.3: Tasks related to the business case for SRAs (RQ2)

RQ (Stage) Task Main Results of the Task Ref. Ch.
RQ2
(formative
stage)

A survey to check
existing
value-driven data
in SRA projects

Identification of quantitative
information that can
commonly be retrieved in SRA
projects in order to
quantitatively calculate the
costs and benefits of adopting
an SRA in an organization.

[31] 9

RQ2
(formative
stage)

Design of an
economic model
to calculate the
ROI of adopting
an SRA

REARM, an economic model
to perform cost-benefit
analysis on the adoption of
SRAs as a key asset for
optimizing architectural
decision-making

[42,
5]

10

RQ2
(formative
stage:
packaging)

Packaging the
guidelines for
many
organizations

Guidelines for building a
business case for SRAs in
industry

[39,
26,
29,
30,
31]

11

RQ2
(summative
stage)

Workshops to get
feedback to
evaluate REARM

Validation of REARM and
identification of future work

- 12



1.5. ResearchMethodology 19

Figure 1.4: Action-research cycles of RQ 2.

by using reuse-based metrics from the source code of the SRA projects. The
results from the online questionnaires to study the metrics available in SRA
projects are reported in Chapter 9.

In the beginning of the second cycle of RQ 2, we diagnosed the need of ha-
ving an economic model that would use the available data. Then, we identified
economic functions meaningful to everis to justify SRA investments. We also
identified cost-benefits factors from the literature that can be calculated from
the available metrics. Then, we computed these cost-benefit factors for a real
SRA project. At the end of this second cycle, we could build the business case
for that SRA project. In Chapter 10, we report an application of REARM, whose



20 Chapter 1. Introduction

acronym comes from REference ARchitecture Model, an economic model to
quantitatively analyze the adoption of SRAs in organizations.

The above two first tasks/cycles are in the formative stage, because their
feedback contributed to incrementally design the guidelines to build a business
case. For this reason, these two tasks were best characterized as formative
studies due to their central role in shaping the guidelines. The guidelines to
build the business case for SRAs are presented in Chapter 11.

Once the guidelines were packaged, it was necessary to validate the results
got and to analyze lessons learned. The third cycle of RQ 2 is best characterized
as summative, since it focus on validating the economic model and identifying
further areas of improvement (see Chapter 12).

Part IV: Discussions, conclusions, and future work.

In this part, we present the lessons learnt in our industry-academia collabo-
ration, and the conclusions of this PhD thesis. The two tasks of this part are
shown in Table 1.4.

Table 1.4: Tasks related to discussions and conclusions.

Stage Task Main Results of the Task Ref. Ch.
Summative
stage

Reporting on
practical
experiences of
our industry-
academia
collaboration

Evaluation of the success of
the industry-academia
collaboration of this PhD, and
reporting the experience with
conducting empirical studies
in the industry and lessons
learnt

[43] 13

Summative
stage

Wrapping up
with
conclusions
and future
work

Summarizing the
contributions of this PhD
thesis, and identifying gaps
for future work

- 14

First, we evaluated our collaboration with an existing model for technology
transfer, and performed a focus group discussion to identify challenges that
we faced. The results are presented in Chapter 13.

Second, we wrapped up this document by stating the main contributions
of this PhD thesis, and identifying the research gaps for future work. The
conclusions are presented in Chapter 14.



1.6. List of Publications 21

1.6 List of Publications

This section enumerates and summarizes the work that has been published.
For a better representation of the work done, in what follows, we show these
publications grouped by the type of publications: journals, conferences, doc-
toral symposiums, workshops, technical reports, other publications, and on-
going journals (which have either been submitted or will be submitted soon).

Among the 12 peer-reviewed publications, the most notable ones are: 1 JCR
indexed Elsevier journal, 1 Springer journal, 3 full-papers at the main track
of CORE-A conferences, and 1 best paper award (at the ESELAW workshop).

Journals

1. S. Martínez-Fernández, X. Franch, and J. Bisbal, “Mercury: Using the
QuPreSS Reference Model to Evaluate Predictive Services,” Journal of
Science of Computer Programming (SCP), To appear [JCR 2014, Q3, IF:
0.715]. [36]

2. S. Martínez-Fernández, C. P. Ayala, X. Franch, H. Martins Marques,
and D. Ameller, “Towards Guidelines for Building a Business Case and
Gathering Evidence of Software Reference Architectures in Industry,”
Journal of Software Engineering Research and Development (JSERD), vol. 2,
iss. 7, 2014. A SpringerOpen Journal. [31]

Conferences

1. S. Martínez-Fernández, P. S. Medeiros Dos Santos, C. Ayala, X. Franch,
and G. H. Travassos, “Aggregating Empirical Evidence about the Benefits
and Drawbacks of Software Reference Architectures,” in Proceedings of
the ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), 2015, pp. 154-163 [CORE2013: A]. [38]

2. S. Martínez-Fernández, C. Ayala, X. Franch, and H. Martins Marques,
“Artifacts of Software Reference Architectures: A Case Study,” in Pro-
ceedings of the 18th International Conference on Evaluation and Assessment in
Software Engineering (EASE), 2014, p. 42:1-42:10. [CORE2013: A]. [38]

3. S. Martínez-Fernández, C. Ayala, X. Franch, and H. Martins Marques,
“REARM: A Reuse-Based Economic Model for Software Reference Ar-
chitectures,” in 13th International Conference on Software Reuse (ICSR),
2013, pp. 97-112. [CORE2013: A]. [5]



22 Chapter 1. Introduction

4. S. Martínez-Fernández, C. Ayala, X. Franch, and H. Martins Marques,
“Benefits and Drawbacks of Reference Architectures,” in 7th European
Conference on Software Architecture (ECSA), 2013, pp. 307-310 (research in
progress short paper). [CORE2013: A]. [37]

5. S. Martínez-Fernández, J. Bisbal, and X. Franch, “QuPreSS: A Service-
Oriented Framework for Predictive Services Quality Assessment,” in
7th International Conference on Knowledge Management in Organizations:
Service and Cloud Computing (KMO), 2012, pp. 525-536. [34]

Doctoral Symposium

1. S. Martínez-Fernández, “Towards Supporting the Adoption of Software
Reference Architectures: An Empirically-Grounded Framework,” in
11th International Doctoral Symposium on Empirical Software Engineering
(IDoESE) hosted at the International Symposium on Empirical Software Engi-
neering and Measurement (ESEM), 2013. [CORE2013: A]. [30]

Workshops

1. S. Martínez-Fernández, C. P. Ayala, X. Franch, and E. Y. Nakagawa, “A
Survey on the Benefits and Drawbacks of AUTOSAR,” in Proceedings of
the 1st International Workshop on Automotive Software Architecture (WASA),
2015, pp. 19-26. [40]

2. S. Martínez-Fernández, C. Ayala, X. Franch, and H. Martins Marques,
“Practical Experiences in Designing and Conducting Empirical Studies in
Industry-Academia Collaboration,” in Proceedings of the 2nd International
Workshop on Conducting Empirical Studies in Industry (CESI), 2014, pp.
15-20. [43]

3. S. Martínez-Fernández, X. Franch, and J. Bisbal, “Verifying predictive
services’ quality with Mercury,” in 4th International Workshop on Academic
Software Development Tools and Techniques (WASDeTT), 2013. [35]

4. S. Martínez-Fernández, C. Ayala, X. Franch, H. Martins Marques, and
D. Ameller, “A framework for software reference architecture analysis
and review,” in Memorias del X Workshop Latinoamericano de Ingeniería
en Software Experimental (ESELAW) - ISBN 978-9974-8379-3-5, 2013, pp.
89-102. Best paper award!! [26]



1.6. List of Publications 23

Technical Reports

1. S. Martínez-Fernández, C. Ayala, and X. Franch, “A Reuse-Based Eco-
nomic Model for Software Reference Architectures,” Departament ESSI.
Universitat Politècnica de Catalunya (UPC). BarcelonaTech, ESSI-TR-12-
6, 2012. [42]

2. S. Martínez-Fernández, D. Ameller, C. Ayala, X. Franch, and X. Terradel-
las, “Conducting Empirical Studies on Reference Architectures in IT Con-
sulting Firms,” Departament ESSI. Universitat Politècnica de Catalunya
(UPC). BarcelonaTech, ESSI-TR-12-2, 2012. [39]

Other publications

1. S. Martínez-Fernández, “A Framework for Software Reference Archi-
tecture Analysis and Review,” PhD Proposal. Universitat Politècnica de
Catalunya, 2013. Advisors: Xavier Franch and Claudia Ayala. [29]

2. S. Martínez-Fernández, L. B. Ruas de Oliveira, C. P. Ayala, X. Franch, and
E. Y. Nakagawa, “Planning a Systematic Review on Business Case for
Reference Architectures,” Poster Session from Component-Based Software
Engineering and Software Architecture federated conference (CompArch), 2014.
[CORE2013: A]. [32]

3. S. Martínez-Fernández, J. Bisbal, and X. Franch, “Accuracy Assessment
of Forecasting Services (poster),” 1st European Business Intelligence Sum-
mer School (eBISS), 2011. [33]

Ongoing Journals

1. S. Martínez-Fernández, C. P. Ayala, X. Franch, and H. Martins Marques,
“Benefits and Drawbacks of Software Reference Architectures: A Case
Study,” ACM Transactions on Software Engineering and Methodology Journal
(TOSEM), (submitted, currently under review).

2. S. Martínez-Fernández, L. Bueno, L. Garcés, C. P. Ayala, X. Franch, and E.
Y. Nakagawa, “Reference Architecture Engineering: A Mapping Study,”
Journal to be decided, (to be submitted).

3. S. Martínez-Fernández, P. S. Medeiros Dos Santos, C. Ayala, X. Franch,
and G. H. Travassos, Extension of the conference paper “Aggregating



24 Chapter 1. Introduction

Empirical Evidence about the Benefits and Drawbacks of Software Refe-
rence Architectures,”[38] Journal to be decided, (to be submitted).

Besides the publication of research papers, I have used my personal page
of UPC as an open science tool: http://www.essi.upc.edu/~smartinez/.
Throughout the course of this PhD thesis and as it progressed, I have up-
loaded pre-prints and publications to disseminate the work. Therefore, author
versions of all these publications can be downloaded from there.

1.7 Structure of this Document

The main contributions of this PhD thesis are divided in four parts (see Section
1.5.1): introduction, RQ1, RQ2, and conclusions:

1. Part I shows this introduction, basic concepts related to SRA, and an SLR
with the current state-of-the-art in SRA engineering (see Table 1.1).

2. Part II presents the five tasks about gathering empirical evidence to
support the design and use of SRAs in an organization (see Table 1.2).

3. Part III discusses the four tasks related to build the business case for
SRAs (see Table 1.3).

4. Part IV presents discussions about our industry-academic collaboration,
and ends up with conclusions and future work (see Table 1.4).

Finally, this document includes bibliographic information, and several ap-
pendices: a glossary (see Appendix A), the included studies in the SLR (see
Appendix B), and materials to support the guidelines presented (see Appendix
C and Appendix D).

http://www.essi.upc.edu/~smartinez/


Chapter 2

Background

This chapter presents basic concepts related to SRA. The first section introduces
the different disciplines around the concept “architecture”. The second section
includes the rudiments of SRAs (i.e., definitions, types, and elements). The
third section defines the boundaries of concrete architectures and product line
architectures with regard to SRAs. Finally, the fourth section provides the
everis industrial view about the types of projects and stakeholders.

2.1 Architecture Disciplines Basic Concepts

The term “architecture” has been used extensively, but not always together
with software. Two architecture disciplines related to software architecture
are system architecture and enterprise architecture [1]. “A system’s architecture
is a representation of a system in which there is a mapping of functionality onto
hardware and software components, a mapping of the software architecture
onto the hardware architecture, and a concern for the human interaction with
these components” [1]. “Enterprise architecture is a description of the struc-
ture and behavior of an organization’s processes, information flow, personnel,
and organizational subunits, aligned with the organization’s core goals and
strategic direction” [1].

Next, we discuss the relationships and boundaries between these three
architecture disciplines, and where SRA belongs to.

25



26 Chapter 2. Background

2.1.1 Relationships Between Architecture Disciplines

Software architecture is different from other architecture disciplines (e.g., sys-
tem architecture and enterprise architecture). The main objects of study of a
software architecture are: the abstraction of a software system that consists of
three components: elements, form, and rationale [44]; and the set of significant
decisions about the organization of such software system [45].

However, system architecture and enterprise architecture “have broader
concerns than software and affect software architecture through the establish-
ment of constraints within a software system must live” [1]:

• a system architecture is concerned with a total system, including hard-
ware, software and humans [1].

• an enterprise architecture is concerned with how an enterprise’s software
systems support the business processes and goals of the enterprise [1].

To sum up, software is only one concern of system architecture and enter-
prise architecture.

In spite of being different architecture disciplines, software architecture
and system architecture share their support to software systems. Inside the
context of enterprise architecture, they are indistinguishably referred to as solu-
tion architectures. The Open Group Architecture Framework (TOGAF) defines
a solution architecture as “a description of a discrete and focused business
operation or activity and how IS/IT supports that operation. A Solution Archi-
tecture typically applies to a single project or project release, assisting in the
translation of requirements into a solution vision, high-level business and/or
IT system specifications, and a portfolio of implementation tasks”1. Poort et
al. [46] also use the term solution architecture to group various architecture
“genres” with the common denominator of finding a solution to a particular
set of stakeholders’ needs. Such common denominator is shared by software
architecture and system architecture, so we can consider that both of them are
solution architectures.

1Definitions TOGAF: http://pubs.opengroup.org/architecture/togaf9-doc/arch/
chap03.html

http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap03.html
http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap03.html


2.1. Architecture Disciplines Basic Concepts 27

2.1.2 Where Software Reference Architecture Belongs To

A reference architecture provides a prescriptive way (a template solution) for
an architecture for a particular domain [47, 48, 49]. Reference architectures can
be found in the aforementioned architecture disciplines, leading to:

• SRA, such as RACE [50], which addresses the engine software for docu-
ment processing systems.

• System reference architecture, such as a distributed system reference
architecture for adaptive QoS and resource management [51].

• Enterprise reference architecture, such as PERA [52], which is a complete
enterprise reference architecture as defined by the IFAC/IFIP Task Force
on Enterprise Integration.

Figure 2.1 shows the relationship between software architecture, system ar-
chitecture and enterprise architecture. There are three achitecture disciplines:
software architecture, system architecture and enterprise architecture. The so-
lution architecture includes two architecture disciplines (software architecture
and system architecture) as it is seen in the enterprise architecture context. SRA
is a sub field inside the software architecture discipline (reference architectures
are also studied in the system and enterprise disciplines).

Although all of them are different architecture disciplines, they are inter-
connected, e.g., “the software architect for a system should be on the team that
provides input into the decisions made about the system or the enterprise”
[1]. For example, an enterprise could adopt an enterprise architecture as an
strategic activity, but needs also to have a solution architecture (i.e., system ar-
chitecture and/or software architecture) that deepens in the structure of a each
system. This scenario is depicted in Figure 2.2. Another example is that the
software architecture of a system needs to be in compliance with the system
architecture (e.g., software systems’ technologies need to be compatible with
the hardware architecture).

This PhD thesis focuses on SRAs, which are inside the software architecture
field of research.



28 Chapter 2. Background

Figure 2.1: Relationship between architecture disciplines.

Figure 2.2: Co-existence of reference architectures from different architecture
disciplines: enterprise, system and software (adapted from [3]).



2.2. Software Reference Architecture Essentials 29

2.2 Software Reference Architecture Essentials

This section focuses on SRA and studies:

• the definition of SRA;

• the types of SRAs; and,

• the elements of SRAs.

2.2.1 Definition of Software Reference Architecture

As we have already stated in Chapter 1.1, Nakagawa et al. [2] define an SRA
as “an architecture that encompasses the knowledge about how to design con-
crete architectures of systems of a given application [or technological] domain;
therefore, it must address the business rules, architectural styles (sometimes
also defined as architectural patterns that address quality attributes in the
reference architecture), best practices of software development (for instance,
architectural decisions, domain constraints, legislation, and standards), and
the software elements that support development of systems for that domain.
All of this must be supported by a unified, unambiguous, and widely under-
stood domain terminology”.

SRAs are attractive when enterprises have many software systems that
have very similar structure and share a technological or business domain.
Then, a common SRA to such software systems can be designed. The SRA
defines a standard structure of systems.

2.2.2 Types of Software Reference Architecture

Angelov et al. [4] distinguish between five types of SRAs. They define a
multi-dimensional space to classify these types of SRAs, which is composed
of 3 main dimensions: context (C1), goal (G1), and design (C3). Next, all
dimensions and their possible values are summarized:

• Context dimension (C)

– C1: Where will the SRA be used? Values: single organization,
multiple organizations.

– C2: Who defines the SRA? Values: software groups, user groups,
and independent groups.



30 Chapter 2. Background

– C3: When is the SRA defined? Values: preliminary, classical.

• Goal dimension (G)

– G1: Why is the SRA defined? Values: standardization, facilitation.

• Design sub-dimensions (D)

– D1: What is described in the SRA? Values: components and con-
nectors, interfaces, protocols, algorithms, policies and guidelines.

– D2: How detailed is it described? Values: detailed, semi-detailed,
and aggregated.

– D3: How concrete is it described? Values: abstract, semi-concrete,
and concrete.

– D4: How is it represented? Values: informal, semi-formal, formal.

The values of an SRA are mutually exclusive for the G1, C1, and C3 sub-
dimension (i.e., an SRA can be attributed only one value from these sub-
dimensions). It leads to five congruent types of SRAs [4]:

• Type 1) Classical, standardization SRAs to be implemented in multiple
organizations;

• Type 2) Classical, standardization SRAs to be implemented in a single
organization;

• Type 3) Classical, facilitation SRAs for multiple organizations designed
by a software organization in cooperation with user organizations;

• Type 4) Classical, facilitation SRAs designed to be implemented in a
single organization;

• Type 5) Preliminary, facilitation SRAs designed to be implemented in
multiple organizations.

2.2.3 Elements that Compose an SRA

RAModel is a reference model for SRAs that shows possibly all elements,
organized by types and relationships, which could be contained in an SRA.
RAModel is depicted in Figure 2.3. As Figure 2.3 shows, these elements are
inside one of the following four groups:



2.2. Software Reference Architecture Essentials 31

Figure 2.3: RAModel: Reference model for SRAs [13].

• Domain: It contains elements related to self-contained, specific infor-
mation of the space of human action in the real world, such as domain
legislations, standards, and certification processes, which impact sys-
tems and related reference architectures of that domain;

• Application: It contains elements that provide a good understanding
about the reference architecture, its capabilities and limitations. It also
contains elements related to the business rules (or functionalities) that
could be present in software systems built from the reference architecture;

• Infrastructure: It refers to elements that could be used to build the soft-
ware systems based on the reference architecture. These elements are
responsible to enable these systems to automate, for instance, processes,
activities, and tasks of a given domain; and



32 Chapter 2. Background

• Crosscutting Elements: It aggregates a set of elements that are usually
spread across and/or tangled with elements of other three groups (do-
main, application, and infrastructure). For instance, the communication
(internal and external) in the software systems built from the SRA, the
domain terminology, and decisions.

2.3 The Boundaries of SRAs with Respect to Related Terms

This section focuses on the boundaries of SRAs with respect to: reference
models; concrete software architectures; and, product line architectures.

2.3.1 Reference Model and SRA

As defined by Bass et al. [1], reference models and SRAs are different concepts.
On the one hand, “a reference model is a division of functionality together

with data flow between the pieces. A reference model is a standard decom-
position of a known problem into parts that cooperatively solve the problem”
[1]. They arise in mature domains in which experience has lead to a standard
solution for the problem, e.g., the standards parts of a compiler or a database
management system and how such parts work together to accomplish their
collective purpose.

On the other hand, an SRA is “a reference model mapped onto software
elements (that cooperatively implement the functionality defined in the re-
ference model) and the data flows between them” [1]. Whereas a reference
model divides the functionality, an SRA is the mapping of that functionality
onto a system decomposition.

Figure 2.4 shows the relationship among reference models, SRAs, and (con-
crete) software architectures. The arrows indicate that subsequent concepts
contain more design elements. Summarizing, “an SRA is a set of domain concepts
mapped onto a standard set of software components and relationships” [53].

Figure 2.4: Reference models, architectural patterns, and architectures ([1]).



2.3. The Boundaries of SRAs with Respect to Related Terms 33

2.3.2 Concrete Software Architecture and SRA

There are many definitions of (concrete) software architecture. We show below
three of the most cited ones. The Software Engineering Institute keeps an up-
to-date list of software architecture’s definitions2.

“The software architecture of a system is the set of structures needed to
reason about the system, which comprise software elements, relations among
them, and properties of both” [1].

“The fundamental organization of a system, embodied in its components,
their relationships to each other and the environment, and the principles gov-
erning its design and evolution” [54].

“An architecture is the set of significant decisions about the organization
of a software system, the selection of the structural elements and their in-
terfaces by which the system is composed, together with their behavior as
specified in the collaborations among those elements, the composition of these
structural and behavioral elements into progressively larger subsystems, and
the architectural style that guides this organization—these elements and their
interfaces, their collaborations, and their composition” [45].

The main difference between an SRA and a (concrete) software architecture
is that the former one is for many software systems of a domain. The above
definitions highlight the architecture of a single system [1, 54, 45] whereas an
SRA “encompasses the knowledge about how to design concrete architectures
of systems” [2]. Angelov et al. point out the generic nature of SRAs as a
main feature distinguishing them from concrete software architectures [4].
Their generic nature implies their applicability in multiple, different contexts,
reflecting the requirements of the stakeholders in these contexts. The generic
nature of SRAs is achieved by designing them at higher levels of abstraction
(abstracting from the differences introduced by the contexts). Thus, we can
label an architecture as reference, only if it is defined to abstract from certain
contextual specifics allowing its usage in differing contexts. Also, Galster
et al. show that SRAs “capture the essence of the architecture of similar
systems in an application or technology domain” and “can be instantiated for
different contexts and at the same time support a high degree of variability in
instantiated architectures” [55].

2Published software architecture definitions: http://www.sei.cmu.edu/architecture/
start/glossary/published.cfm

http://www.sei.cmu.edu/architecture/start/glossary/published.cfm
http://www.sei.cmu.edu/architecture/start/glossary/published.cfm


34 Chapter 2. Background

2.3.3 Product Line Architecture and SRA

The terms software product line architecture and SRA are sometimes used
indistinctly. Inside the software product line engineering context, the term
SRA refers to “a core architecture that captures the high-level design for the
applications of the software product line” [56, p. 124] or “just one asset, albeit
an important one, in the software product line’s asset base” [57, p. 12].

However, out of the software product line context, SRA and product line
architecture are considered different types of artifacts [4, 58, 55, 2]. In Fig. 2.5
we show the main similarities and differences:

• Product line architectures are SRAs whereas not all SRAs are product
line architectures [4], i.e., product line architectures are one type of SRAs
[55]. Product line architectures are just one asset of software product
lines [57, p. 12].

• SRAs are more generic and abstract than product line architectures,
which are more complete architectures [4, 55]. Hence, “SRAs can be
designed with an intended scope of a single organization or multiple
organizations that share a certain property” [4] whereas product line
architectures are produced for a single organization [55].

• SRAs provide standardized solutions for a broader domain (i.e., “spec-
trum of systems in a technology or application domain” [55]) whereas
product line architectures provide standardized solutions for a smaller
subset of the software systems of a domain [2] (i.e., “group of systems
that are part of a product line” [55]). Therefore, product line architectures
give a coherent and more congruent view of the products in a project
(i.e., possible to track the status of) [58] whereas by means of SRAs it
is more difficult to obtain congruence [4], since they can only provide
guidelines for applications’ development.

• Product line architectures specifically address points of variability and
more formal specification in order to ensure clear and precise behavior
specifications at well-specified extension points [4]. In contrast, SRAs
have less focus on capturing variation points [4, 58, 2]. Although vari-
ability is not typically addressed by SRAs in a systematic manner, it is
also a key fact for SRAs [10], and it can be treated as a quality attribute,
rather than explicitly as ’features’ and ’decisions’ [10].



2.3. The Boundaries of SRAs with Respect to Related Terms 35

• SRAs include “the reuse of knowledge about software development in
a given domain, in particular with regard to architectural design” [2]
and dictate the patterns and principles to implement, i.e. “what the de-
sign should be” [58]. Conversely, product line architectures specifically
indicate deviations, i.e. “what the design is” [58].

• SRAs include architectural knowledge and the instantiation of this ar-
chitectural knowledge (i.e., reference model) into software elements [1].
In this sense, both SRAs and product line architectures are “a superset, a
tool box, with every possible architecture element described, which can
be used in the design of a product architecture” [58].

Figure 2.5: Similarities and differences between SRA, product line architec-
tures, and software product lines [5].



36 Chapter 2. Background

2.4 The Industrial Context of SRAs in everis

In the previous chapter at Section 1.2, we reported a summary of the industrial
context of SRAs in everis. In this section, we give further details and show the
types of projects related to SRAs and their stakeholders.

everis supports its client organizations to design and develop their own
SRAs, and to build applications on top of such SRAs. To support these tasks,
everis uses a corporate reference model that gathers and centralizes the ar-
chitectural knowledge and practices of the company. Such a corporate model
was built and is continuously shaped to the usual business values and services
that everis’ clients share. Thus, the everis reference model supports architectural
knowledge reuse in different client organizations.

Fig. 2.6 shows two different views of the everis reference model: execution
and development. The execution view considers possible functionalities to be
mapped to SRAs; whereas the development view describes software artifacts
that SRAs could provide to support the development of applications. Other
views, such as the physical view, are not a responsibility of SRA designers.

With the help of the everis reference model, everis’ software architects share
the vision of the typical elements that compose modern information systems
from their clients. Then, they can analyze architecturally-significant require-
ments to decide which functionalities should be mapped to the SRA of their
clients. As an example, Fig. 2.7 shows an SRA of a public administration
in Spain, available at http://canigo.ctti.gencat.cat/canigo/framework/.
We can see that some functionalities of the everis reference model have been
mapped to a Java-based SRA. For instance, we can find the “validations”
functionality at the “presentation (channel)” layer, “web services” in the “inte-
gration” layer, and four software elements (e.g., i18n and logging) for the “core
transversal services”. Besides, we can see software components in the SRA
that are not considered by the reference model, such as connectors to existing
services of the public administration. This shows that each SRA should be
personalized for each client because the reference model cannot cover specific
architecturally-significant requirements of the client organization.

In the everis context, we can find three types of projects with different
targets, which are defined in the next subsections (see Figure 2.8): reference
model projects; SRA projects; and concrete architecture projects.

Different stakeholders participate in each type of project. Stakeholders
need to be clearly defined for SRA engineering practices (e.g., assessment)
[23]. In the three types of projects defined above performed by everis, we con-
sider the following five stakeholders essential for studying SRA engineering

http://canigo.ctti.gencat.cat/canigo/framework/


2.4. The Industrial Context of SRAs in everis 37

Figure 2.6: An excerpt of the everis reference model for modern information
systems.

practices: project business manager, project technological manager, software
architect, developer, and application builder. These five stakeholders are de-
fined below, next to the type of project in which they participate. Each of these
stakeholders has a vested interest in different architectural aspects, which are
important to analyze and reason about the appropriateness and the quality of
the three types of projects [59]. However, there could be more people involved
in an SRA project, as Clements et al. indicate in [53]. As a consequence, al-
though this context may coincide in other IT consulting firms besides everis,
projects’ stakeholders may vary between different firms. Below, we describe
to which type of project essential stakeholders belong and their interests.



38 Chapter 2. Background

Figure 2.7: An excerpt of the execution view of an SRA designed with the
help of the everis reference model.

2.4.1 Reference Model Projects

A reference model project is composed of software architects from everis that
worked in previous successful SRA projects. They are specialized in archi-
tectural knowledge management. Their goal is to gather the best practices
from previous SRA projects’ experiences in order to design and/or improve
the corporate reference model.

2.4.2 Software Reference Architecture Projects

SRA projects involve people from everis and likely from the client organization.
Their members (project technological managers, software architects and archi-
tecture developers) are specialized in architectural design and have a medium
knowledge of the organization business domain.

Project technological managers from everis are responsible for meeting sche-
dule and interface with the project business managers from the client organi-
zation.

Software architects (also called as SRA managers) usually come from everis,
although it may happen that the client organization has software architects in



2.4. The Industrial Context of SRAs in everis 39

which organization’s managers rely on. In the latter case, software architects
from both sides cooperatively work to figure out a solution to accomplish the
desired quality attributes and architecturally-significant requirements.

Architecture developers come from everis and are responsible for coding,
maintaining, integrating, testing and documenting SRA software components.

2.4.3 Concrete Architecture Projects

Enterprise application projects can involve people from the client organiza-
tion and/or subcontracted IT consulting firms (which may even be different
than the reference model owner, i.e., everis) whose members are usually very
familiar with the specific organization domain. The participation of the client
organization in SRA and concrete architecture projects is one possible strategy
for ensuring the continuity of their information systems without having much
dependency on subcontracted IT consulting firms.

Project business managers (i.e., customer) come from client organizations.
They have the power to speak authoritatively for the project, and to manage
resources. Their aim is to provide their organization with useful applications
that meet the market expectations on time.

Application builders take the SRA reusable components and instantiate them
to build an application.



40 Chapter 2. Background

Figure 2.8: Stakeholders and their roles in each type of project (reference
model, SRA and concrete architecture projects).



Chapter 3

State-of-the-Art

This chapter summarizes the current state-of-the-art in SRAs. We conducted
an SLR to present a holistic overview of the existing techniques and approaches
oriented to support SRA engineering. Also, we give further details about the
topics of this PhD thesis: empirical evidence on SRAs, and SRA adoption.

Currently, it is possible to find research studies focused on supporting dif-
ferent activities of SRA engineering (e.g., SRA analysis [4], business case [5],
design, representation and evaluation [60], and conformance checking [61])
using a particular approach. These works can be considered important ini-
tiatives, since they have contributed to define architectural assets (e.g., archi-
tecturally significant requirements, domain rationale, architectural decisions
documentation, and architectural guidelines) influencing software architec-
tures in an application domain and their respective software systems.

We checked if there was any existing state-of-the-art, review (systematic or
not) or survey that present a holistic overview of the existing techniques and
approaches that support SRA engineering. We found four previous reviews
about SRAs [4, 62, 63, 64]. In [4], Angelov et al. conducted a survey of 24
existing SRAs. However, this survey did not focus on techniques for SRA
engineering. Moreover, there exist reviews about specific research themes
belonging to the SRA field, namely, representation of SRAs [62], SRAs in the
context of agile methodologies [63], and service-oriented SRAs [64]. These
reviews have focused on specific topics. However, the objective of identifying
all the studies proposing approaches or techniques for SRA engineering was
not covered.

In this perspective, the objective of this chapter is twofold. First, to systema-

41



42 Chapter 3. State-of-the-Art

tically select and review published literature, and present a holistic overview
of the existing techniques and approaches to engineer SRAs. Second, to pro-
vide a detailed analysis about the current achievements and challenges in the
specific SRA topics of this PhD thesis. To accomplish this goal, the following
question was defined:

What are the main topics covered in the scientific literature regarding SRA engi-
neering?

This question aims to analyze the topics that have been pursued by the
research community in SRA, and to identify gaps that could be covered by this
PhD thesis. Hence, we decided to conduct an SLR to answer this RQ.

This chapter is structured as follows. Section 3.1 presents the research
method used: an SLR. Section 3.2 answers our RQ. Section 3.3 provides details
about the topics of this PhD thesis.

3.1 Research Method

The review protocol of the SLR was developed following the guidelines pro-
posed by Kitchenham and Charters [65]. The following subsections give a
brief overview of the SLR process (search, inclusion/exclusion criteria, data
extraction, and synthesis, respectively).

3.1.1 Search Process

The following electronic databases were used:

• Scopus (http://scopus.com),

• Web of Science (http://isiknowledge.com),

• IEEE Xplore (http://ieeexplore.ieee.org/Xplore/home.jsp),

• ACM Digital Library (http://dl.acm.org),

• ScienceDirect (http://sciencedirect.com), and

• Springer (http://link.springer.com).

Scopus and Web of Science are general indexing systems. These two ge-
neral indexing systems are efficient, covering a huge amount of high-quality
studies from all research topics [66, 67]. The use of other general indexing sys-
tems such as Google Scholar would increase the number of studies to evaluate,

http://scopus.com
http://isiknowledge.com
http://ieeexplore.ieee.org/Xplore/home.jsp
http://dl.acm.org
http://sciencedirect.com
http://link.springer.com


3.1. ResearchMethod 43

but not add new included ones [67]. For SE journals and conferences, IEEE
Computer Science Digital library and ACM are good choices in addition to
general indexing systems. Important venues in the software architecture area,
such as the Working IEEE/IFIP Conference on Software Architecture (WICSA)
and the federated conference series from Component-Based Software Engi-
neering and Software Architecture (CompArch), are included in these digital
libraries. We also include Science Direct and Springer because they cover a
subset of journals and conferences important for our topic, such as Journal
of Systems and Software (JSS), Information and Software Technology journal
(IST), Empirical Software Engineering Journal (ESEJ), and European Confer-
ence on Software Architecture (ECSA).

During the selection of the search terms, the most suitable words, syno-
nyms, acronyms or alternative spelling within the research field were identi-
fied according to the five viewpoints (population, intervention, comparison,
outcomes, and context) recommended in [65]. In the context of our SLR,
Population denotes the application area; in our case, software systems from
a domain. Interventions refer to software technologies that address specific
issues; in this SLR, SRA engineering. Comparison is the software engineering
methodology, tool, technology, or procedure with which the intervention is
being compared; however, we do not compare SRAs with other approaches.
Outcomes are defined as factors of importance to practitioners; in the case of
SRAs, reduced development costs for instance. Finally, Context refers to the
context in which the tasks are performed; in our case, SRA engineering to
architect software systems.

We tested several search strings, and we decided not to put any restriction
on the population, comparison nor outcomes, since we want a broad overview
of the research area. For instance, if we only consider certain outcomes (e.g.,
increased reuse and productivity), the overview could be biased and the review
incomplete. Focusing on SRAs (intervention) for the software architecture
of software systems (context), the greatest number of relevant papers was
retrieved.

It is very important to include the context restriction to avoid getting SRAs
focusing on other architecture disciplines rather than software architecture,
such as reference architectures for hardware infrastructures, enterprises, or
software product lines. We considered the following similar terms of software
architecture as listed by Qureshi et al. [24]: software structure, software
design, system architecture, system structure, and system design. Specifically,
our final search string was:



44 Chapter 3. State-of-the-Art

(“reference architecture?”)
AND

(“software architecture?” OR “software structure?” OR “software design?” OR
“system architecture?” OR “system structure?” OR “system design?”)

Two strategies were selected to perform the search: automatic and manual
(see Figure 3.1). First, we queried our search string to perform the search
into the aforementioned databases. The search was conducted using filters on
the titles, abstracts, and keywords of the studies. We also adapted the search
string notation for each digital library, since each one uses a different syntax.
We did not use refinement of the resulting list considering only works related
to computer science, since this refinement was only available in certain data
sources, such as Web of Science. The number of studies that we got from
each database was: Scopus (332 studies), Web of Science (129), IEEE Xplore
(175), ACM Digital Library (102), ScienceDirect (29), Springer (59). In total,
826 studies.

Second, to ensure that we found a representative set of studies, we com-
pared the results obtained in the automatic search with a collection of primary
studies that had previously been identified as studies expected to appear in
the results [4, 61, 3, 10]. This comparison was quite satisfactory, since all of
these studies were obtained by the automatic search. However, since it might
miss useful citations, bibliographies of every selected citation were checked
iteratively during the data extraction phase for useful studies that could be
missed in the initial search (i.e., snowballing). Using snowballing, two new
studies were included.

3.1.2 Inclusion and Exclusion Criteria

Once we had the potentially relevant primary studies, we started the selection
process. A complete list of selected and excluded studies was maintained
identifying the reason of inclusion/exclusion. We managed the primary studies
with JabRef1 (during the process of screening the papers). Next, we present
the inclusion and exclusion criteria.

Inclusion criteria:

• IC1: The work is mainly focused on an approach to support SRA engi-
neering (e.g., analysis, design, representation, evaluation, and use).

1http://jabref.sourceforge.net/

http://jabref.sourceforge.net/


3.1. ResearchMethod 45

Automatic Search 1st Phase

Springer Link

Science DirectScopus

Manual Search
2nd Phase

References
(Snowballing)

Remove
Duplicated

Selection
by Title and

Abstract

Selection by
Reading
Full Text

52 studies

2 studies

826 studies

492 studies

IC1: 70 studies

72 studies

334 filtered
(40%)

422 filtered
(86%)

20 filtered
(28%)

Web of Science ACM DL

IEEE Xplore
332 175 29

102129 59

IC1: 70 studies

.

Figure 3.1: Search process (automatic and manual phases), and study selection
(duplicates removal, selection by title and abstract, selection by full text).



46 Chapter 3. State-of-the-Art

Exclusion criteria:

• EC1: The topic of the paper is not focused on SRAs for software systems,
but in other area (e.g., enterprise architecture, and software product
lines). Although the work may be about an approach to support SRA
engineering, it is not mainly used for software systems.

• EC2: The work only claims to present an approach to support SRA
engineering, but the work is not mainly focused on that. The term SRA
just appear incidentally and no real work is done in that direction.

• EC3: The work is not a research paper published in books, journals,
conferences or workshops (e.g., an editorial for a special issue, a table
of contents, short course description, tutorial, summary of a conference,
PhD thesis, and master’s thesis). Moreover, short papers of less than
three pages were excluded.

• EC4: The work is not written in English.

It is important to note that in the case that the same authors reported
similar work in different papers or venues, the older work was not excluded.
We aggregated these works considering only last improvements and results.

Studies were included/excluded according to the following steps: removal
of duplicates, selection/exclusion by title and abstract, and selection/exclusion
by reading full text. The study selection process is depicted in Figure 3.1.

To ensure the quality of the SLR, the selection process was carried out
by three researchers. This improves the reliability of our study [68]. Every
paper was reviewed exactly by two researchers. Agreement between them
was measured using the Cohen’s kappa coefficient [69]. Table 3.1 shows that
for the inclusion criteria IC1, both researchers agreed on including 68 studies,
and excluding 388 studies. However, they initially disagreed in the remaining
36 studies (i.e., 25 studies that Reviewer A included but Reviewer B excluded,
and 11 studies that Reviewer A excluded and Reviewer B included). Each
of the 36 studies was discussed and the disagreements were resolved during
two working sessions involving the three researchers. Finally, 2 studies were
also included out of the 36 disagreements. The value of the Cohen’s kappa
coefficient wasκ=74.67. Therefore, we can consider that there was “substancial
agreement”.



3.2. Results 47

Table 3.1: Selection by title and abstract by two reviewers.

Reviewer B
Inclusion (IC1) Exclusion

Reviewer A Inclusion (IC1) 68 25
Exclusion 11 388

3.1.3 Data Extraction and Synthesis

To analyze the selected studies, we defined a classification criteria, categorized
into several values. For instance, one classification criteria was the “topic” of
the study, which could have any value because it was an emergent criteria.
The data extraction was executed with a personalized Google Form, which
we designed based on the classification criteria, and was used to facilitate the
process and keep track of the data.

3.2 Results

In this section, we present a very brief version of the results of the SLR. The list
of included studies in this SLR is available on the Appendix B. In the remaining
of this chapter, the included studies are cited as [Si], where S indicates that it
is a primary study of the SLR (see Appendix B), and i indicates its number.

To structure and model the topics of the 52 included primary studies, we
performed the following analysis. During the data extraction, reviewers as-
signed a topic to each primary study. These topics were not predefined, and
were emerging as the data extraction progressed. Once the data extraction
finished, we gained a first impression of the topical content of the primary
studies. We created an initial classification with six topics: conception, re-
quirements, design, evaluation, usage, and evolution of SRAs. We mapped
these six topics to the phases of the life cycle of SRAs. For this, we used ProSA-
RA, a consolidated process that systematizes the design, representation and
evaluation of SRAs [60]. ProSA-RA consists of four main steps: information
source investigation, architectural analysis, architectural synthesis, and archi-
tectural evaluation. As the mapping, data analysis, and synthesis progressed,
we split our original “conception” topic to three topics: basic concepts, adop-
tion, and information source. Therefore, we ended up with eight topics in SRA
engineering (see Figure 3.2), which are ordered to the SRA life cycle:



48 Chapter 3. State-of-the-Art

no evidence
7 studies (13.46%)

demonstration or examples
11 studies (21.15%)

opinions or observations
15 studies (28.85%)

.

Evidence from...

academic studies
7 studies (13.46%)

industrial studies
23 studies (44.23%)

industrial practice
8 studies (15.38%)

Topics of

SRA engineering

Figure 3.2: Number of studies divided by topic and the maturity of each study
(from where does the evidence come).

1. understanding theoretical concepts of SRAs;

2. deciding on the adoption of SRAs;

3. looking for information to build SRAs, which matches to the information
source investigation of ProSA-RA;

4. eliciting requirements of SRAs, which corresponds to the architectural
analysis of ProSA-RA;

5. taking decisions about the design of SRAs, which corresponds to the
architectural synthesis of ProSA-RA;

6. evaluating the design of SRAs, which corresponds to the architectural
evaluation of ProSA-RA;

7. using SRAs to design concrete architectures of software systems;

8. and, evolving SRAs.

All these topics are not mandatory for SRA engineering (e.g., an SRA that
is not applied in industry can skip the adoption step). Besides, they may not
be sequential and be executed in parallel. Thus, this order should not been
seen as a restriction, but only as a classification.



3.2. Results 49

Once we determined these eight topics, we reconsidered the mappings of
the included studies to such topics. In this step, we designated at least one
topic to each study depending on its contributions. Note that a study could be
mapped to more than one topic, for instance, [S37] gives guidelines for four
topics: information source, requirements, design, and evaluation.

Next, we report the topics addressed by researchers regarding SRA engi-
neering.

3.2.1 SRA Basic Concepts

Studies in this topic aim to establish the basic concepts of SRAs. The main
contributions are definitions, characteristics of SRAs, and relation with other
architectural assets. Although we have introduced these basic concepts in
Chapter 2, next we provide a holistic overview of all the research conducted.

• Definitions: We have found eight definitions for SRA. The main ones
are: “An SRA is a generic architecture for a class of systems that is
used as a foundation for the design of concrete architectures from this
class” [S1]; “SRAs capture the essence of existing architectures, and the
vision of future needs and evolution to provide guidance to assist in
developing new system architectures” [S9]; and the definition of SRA
used in Chapter 2.2.1 [S34]. Analyzing all of them, we can say the most
complete definition of SRA is provided by [S34], because it considers
and analyzes previous definitions.

• Characteristics of SRAs: Many studies have gathered from practice:
characteristics of SRAs (e.g., minimal, complete, disjoint) [S9][S18], mo-
tivations and goals (e.g., to follow best practices) [S3][S9], benefits (e.g.,
reuse) and drawbacks or problems (e.g., learning curve) [S3][S27][S43],
experiences and context in the software industry (e.g., design and use
of SRAs at multiple locations, by multiple vendors and across multiple
organizations) [S15][S25][S29][S31][S48][S52]. Additionally, guidelines
to gather these characteristics for each organization have been proposed
[S25][S29]. We conclude that [S1] presents a framework that consider
most of these characteristics, which is fundamental for the understading
and systematic inception of SRAs.

• Relation with other architectural assets: We have found several works
pointing out the difference between several architectural assets and



50 Chapter 3. State-of-the-Art

SRAs: concrete architecture [S1][S29] (SRAs are used for designing con-
crete architectures), system architecture [S33] (SRAs are more abstract),
architectural patterns (SRAs are not domain-independent) [S1], reference
models (SRAs are mapped onto software elements) [S8][S29], standard
architectures (SRAs are more flexible) [S18], product line architectures
(SRAs focus on a broader domain by indicating what the design should
be, not what the design is) [S1][S26][S34], architecture frameworks (SRAs
target a domain for the creation of software architectures) [S33], domain
specific architectures (SRAs are only a element of domain specific ar-
chitectures) [S1], non-structured SRAs (SRAs address software elements
and their data flows) [S1].

3.2.2 SRA Adoption

Studies in this topic help to determine if it is worth for an organization to
invest on the adoption of an SRA. We have found two main contributions:

• Checklists of value-driven data: Studies [S25][S29] show the type of
data that an organization needs to make a cost-benefit analysis to decide
the adoption of an SRA (e.g., effort and reuse metrics).

• Economic models for SRAs: They help to make the business case of
an SRA and to calculate its return-on-investment for an organization
(e.g., how many instantiations are necessary before savings pay off the
up-front SRA investment) [S26][S29].

3.2.3 SRA Information Source Investigation

Studies related to this topic aim at selecting and investigating information
sources that could be used to build SRAs. Three main contributions were
identified:

• Sources of domain knowledge: There is evidence on the sources of do-
main knowledge. Study [S37] lists several information sources: people,
software systems, publications, reference models, related SRAs, and do-
main ontologies. Moreover, [S33] addresses five complementary ways
to search in these sources: static analysis, run-time analysis, reading
documentation, interviewing, and workshops.



3.2. Results 51

• Elements: Five studies provide information on elements that could be
contained in SRAs. In a high level of abstraction, [S9][S32] differ in cus-
tomer context, technical architecture, and business architecture in SRAs.
Moreover, study [S41] presents a reference model (called RAModel) that
defines the possible elements that an SRA may have. It is also possible
to find studies that aim at identifying elements of SRAs in specific ap-
plication domains [S8]. Finally, we found studies that focus on a subset
of these elements: the artifacts that are given as deliverables to the SRA
users [S28].

• Stakeholder identification: [S5] identifies the stakeholders of SRAs:
mainly stakeholders for the SRA design process, and stakeholders for
whole life-cycle of the SRA.

3.2.4 SRA Requirements Elicitation

This topic aims at performing domain engineering to elicit the common re-
quirements in a family of software systems:

• Identification of commonalities in a family of systems: There exist se-
veral approaches to identify and manage the commonalities in a family
of software systems: clone detection aims at identifying the repetitive
parts of several software systems (e.g., by means of CCFinder tool sup-
port) [S6]; the use of SLRs (e.g., the SyRRA process) [S40], and ontologies
[S35] can systematize the elicitation of SRAs requeriments; and, finally,
feature models can be used to represent the common parts of a set of
software systems [S23].

3.2.5 SRA Design

Contributions of this topic aim to design an SRA and related activities, such
as the representation of the SRA design. These contributions mainly focus in
architectural synthesis, although they may also cover partially other activities
(e.g., SRA evaluation) to support the SRA creation. We found five main
contributions:

• General processes for the design of SRAs: We can find an empirically-
grounded process to systematically design SRAs either from scratch or
based on existing architecture artifacts [S14], and a mature process that
systematizes the design of SRAs (called ProSA-RA) [S37].



52 Chapter 3. State-of-the-Art

• Processes for the design of SRAs in specific domains: Besides the
aforementioned processes, there are others that were tailor-made and
applied to design SRAs in specific domains. These processes have been
used for web servers [S19], electrical/electronical systems [S24], agent-
systems [S44], smart energy systems [S22], complex terminal systems
[S45][S46], and the space domain [S42]. Although these processes were
initially envisaged for a specific domain, they may be also useful for
other domains.

• Guidelines for SRA documentation: Different approaches to document
SRAs have been proposed. Study [S13] prescribes the specification of
two documents: one to describe the SRA principles for all stakeholders;
and another document to detail the SRA for architects and developers.
Study [S32] discusses on different types of documentation: compact
(few diagrams only) and extensive (many documents). An approach
for describing SRAs that uses the principles of open source software
to improve dissemination and evolution of SRAs is described in [S39].
Study [S12] discusses on SRA documentation specific for agent systems.

• Managing Architectural Knowledge: We can find different approaches:
the use of the unified method architecture to harvest knowledge and
assets from industry projects and create an SRA [S52], and guidelines to
gather knowledge [S33].

• Representation: An adequate architectural representation improves the
reuse of domain knowledge contained in an SRA. Several approaches to
document such knowledge were found: through a set of architectural
views [S37][S38]; considering an architectural viewpoint for variability
[S17]; using Architectural Description Languages (e.g., Rapide) to cap-
ture and represent elements of an SRA [S30]; and using the 4+1 model
specifically through its scenario, process, implementation, and logical
views [S12][S42][S44].

3.2.6 SRA Evaluation

In this topic, evaluation refers to the task of checking the architectural descrip-
tion of an SRA and detecting its defects together with diverse stakeholders.
We have found two main contributions:

• SRA evaluation approaches: We have found diverse approaches: the
adaptation and extension of traditional evaluation methods of software



3.2. Results 53

architectures, specifically ATAM [S4] and SAAM [S15] to the context
of SRAs; a checklist-based inspection approach with a list of questions
that guides reviewers in detecting defects in the documentation of SRAs
[S37]; and a process to evaluate rule-centric industry SRAs [S51].

• Analysis of SRA congruence: An SRA is congruent if it has the same
type (i.e., characteristics) of previous succesful SRAs [S1]. A congruent
SRA has more chances to be successful [S1]. Study [S2] presents five
types of congruent SRAs that were established considering the context,
goal, and architectural design characteristics.

3.2.7 SRA Usage

This topic aims at guiding the use of SRAs as well as to check how SRAs are
being used. The main contributions that were found are:

• Easing the use of SRAs and software development: Five works sup-
ported SRA usage. Among them, we can find: a toolset to derive software
architectures from feature models [S47], a knowledge base and a tool that
support architects to make decisions about the design of software archi-
tectures [S31], and experiences on how certain SRAs have been used
[S43][S49]. Moreover, software architectures also have been automati-
cally instantiated using MDD approaches, that in turn, use SRAs as a
PIM (Platform Independent Model) [S46].

• Conformance checking: Verifying if a concrete architecture is compliant
to an SRA and its restrictions is important to avoid architectural ero-
sion. We have found five studies about conformance checking: an auto-
matic SRA conformance checking approach for different systems within
a SOA landscape [S7][S48]; a rule-based approach based upon logic pro-
gramming concepts towards a formalism for architectural compliance
checking [S10][S21]; and an architecture-centric assessment approach
for model evaluation over SRA to quantitatively estimate architecture
quality [S50].

3.2.8 SRA Evolution

This reseach theme covers activities to maintain and evolve an SRA.



54 Chapter 3. State-of-the-Art

• Evolution approaches: We can find a guiding tool for the transforma-
tion/evolution of an SRA type [S1], and an evolutionary agile approach
to maintain an SRA [S32].

These are the eight topics found on the literature regarding SRA engineer-
ing. In the next subsection, we focus on the specific topics of this PhD thesis.

3.3 Focusing on the Topics of this PhD Thesis

This section describes details about the three topics related to this PhD thesis,
which are the three first topics of the classification from previous subsection.

First, we provide details about existing empirical evidence on elements of
SRAs (inside the “information source investigation” topic), and characteristics
of SRAs (inside the “basic concepts” topic). To this end, the next two former
subsections deep on the literature about artifacts and benefits/drawbacks of
SRAs.

Second, we provide details about economic models for SRAs (inside the “SRA
adoption” topic). To this end, the next two latter subsections present general
literature on business case analysis, and give further details on economic
models for SRA adoption.

3.3.1 Literature on Artifacts of SRAs

This subsection respectively provides a brief background on the artifacts that
constitute an SRA, and the design, the reuse and the usage of SRAs. In Chapter
5.3, this background is compared with results from a case study at everis.

SRA infrastructure: artifacts or constituent parts

The artifacts or constituent parts of SRAs have received little attention [4].
However, a few works in the SRA literature describe the artifacts that could be
used to build software systems based on an SRA (see “elements” contributions
in Section 3.2.3). These artifacts are also known as infrastructure [13]. Next,
we show how diverse authors state significantly different views about the
artifacts or deliverables of an SRA.

First, Angelov et al. distinguish components and connectors, interfaces, pro-
tocols, algorithms, and policies and guidelines [4]. They identified these artifacts
after analyzing 24 SRAs.



3.3. Focusing on the Topics of this PhD Thesis 55

Second, Galster et al. indicate that the basic structure of an SRA consists
of its common building blocks (i.e., common stakeholders, views, model kinds)
according to ISO/IEC 42010 [10]. Besides, they note the importance of the
documentation of these SRA building blocks. The authors are based on their
own experience.

Third, as we shown in Chapter 2.2.3, Nakagawa et al. [13] indicate that an
SRA infrastructure provides: software elements, used to develop software sys-
tems; general structure, normally represented by architectural styles; hardware
elements, which host software systems based on the SRA; and guidelines, which
indicate how to apply best practices. They studied the literature of SRAs,
concrete software architectures, and generic models of software systems (e.g.,
Zachman).

Fourth, Cloutier et al. point out that architectural knowledge is the key asset of
SRAs. They indicate as common elements of SRAs: business purpose, standards,
guidance for implementing, and roadmap [3]. The two latter ones are artifacts
of an SRA infrastructure. Their vision comes from the system architecture
discipline.

Fifth, Herold et al. identify the following artifacts in the SRA of a Ger-
man public administration: reusable components of software, operation platform,
methodology, tools, blue-line prints [70].

By analyzing the similarities of these views, an SRA may include the fol-
lowing artifacts:

• Software elements [13] (i.e., implementation of components and con-
nectors [4, 70]).

• Best practices and guidelines [13] (i.e., policies [4], guidance for imple-
menting [3], methodology, tools and blue-line prints [70]).

• General structure [13] (represented by documentation of common build-
ing blocks [10], architectural knowledge and roadmaps [3]).

• Hardware elements [13] (i.e., operating platform [70]).

• Others: interfaces, protocols, algorithms [4].

Reuse of artifacts in SRA design

One of the definitions of SRA found on our SLR was “an SRA is, in essence,
a predefined architectural pattern, or set of patterns, possibly partially or
completely instantiated, designed and proven for use in particular business



56 Chapter 3. State-of-the-Art

and technical contexts, together with supporting artifacts to enable their use.
Often, these artifacts are harvested from previous projects”[45]. Therefore,
SRAs artifacts are often harvested from previous projects . Hence, the design of
an SRA usually involves reusing the essential of existing software architectures
[10]. Reusable software assets are not limited to code [71], they may include
algorithms and models, design patterns, scripts, technical documentation, test
results, use metrics as well as other artifacts. Reuse in the design of an SRA is a
cost-effective approach to create common building blocks [72], and implies the
application of proven components and architectural styles that induce specific
quality attributes [71].

However, there is little evidence on what is reused in order to design SRAs.
As a consequence, several problems arise when reusing assets in the design of
SRAs:

• SRAs are usually not designed in a systematic manner with repeatable
steps [10].

• Sharing architectural assets is not an explicit part of software architects’
job description. Thus, they need to be motivated by assisting them
during architecting activities, instead of only offering repositories or
templates to store their expertise and experiences [73].

• It requires a high degree of communication between people, especially
when the knowledge is shared implicitly [74].

Reuse of SRA artifacts across business domains

SRAs are designed to be used in a given domain. SRAs may be designed
for three types of domains: platform-specific, industry-specific, and industry-
cross-cutting (see Chapter 1.1.1).

This clash of multiple disciplines, different sectors, numerous enterprises
and organizations with own goals and visions, complicate the possibility of
reusing SRAs across different domains. In spite of these difficulties, several
efforts have been conducted to facilitate reuse across disparate domains in
large European industrial research programs [20] and private partnerships
[75]. Still, there is no evidence when an SRA can be reused across domains.

Usage of SRA artifacts

Checking the conformance of software systems with respect to SRA is vital
to evaluate whether a software system satisfies the quality attributes enforced



3.3. Focusing on the Topics of this PhD Thesis 57

by the SRA or there is architectural erosion [76][70][77]. An SRA, then, is an
approach for quality control during software systems development. SRAs can
take up to three different roles in software development: an instructive role
for designing new application architectures, an informative role for sharing
architectural knowledge, and a regulative role for restricting the design space
of systems in development [76].

Although automatic rule-based conformance checking has been explored
for SRAs [76][70], there are not empirical studies that investigate how the
aforementioned roles are adopted for SRAs.

3.3.2 Literature on Benefits and Drawbacks of SRAs

We reviewed the benefits and drawbacks of SRAs as asserted in the literature
(see “characteristics of SRAs” contributions in Section 3.2.1). In Chapter 5.4,
we will compare these theoretical benefits and drawbacks of SRAs with the
results from a case study at everis.

On the one hand, benefits from the literature show the value of SRAs,
which are a justification for their use in industry. We identified the following
benefits:

• (B1) Standardization of concrete software architectures by using the SRA
as a template to design a software family whose applications fulfill such
standardized design [4, 59, 10, 6, 2, 22].

• (B2) Facilitation of the design of concrete software architectures by pro-
viding guidelines and inspiration to applications builders [4, 10, 22, 78,
59, 2].

• (B3) Systematic reuse of common functionalities and configurations
throughout applications generation [22, 3, 59, 10, 78].

• (B4) Risk reduction through the use of proven and partly prequalified
architectural elements included in the SRA [3, 59].

• (B5) Enhanced quality by facilitating the achievement of software quality
aspects already addressed by the SRA [78, 2].

• (B6) Interoperability among different applications and their software
components by establishing common mechanisms for information ex-
change [22, 3, 59, 10].



58 Chapter 3. State-of-the-Art

• (B7) Creation of a knowledge repository as the SRA inherently acts
as a repository of applied knowledge such as architectural and design
principles [3, 6].

• (B8) Improvement of the communication in the organization and mul-
tiple suppliers because stakeholders share the architectural mindset es-
tablished in the SRA [22, 3].

• (B9) Elaboration of the organization mission, vision and strategy, as
the design of the SRA might imply to reason about the organizational
goals to be fostered by the SRA [3].

• (B10) Following of best practices as an SRA provides good practices
for the organization, such as prior project artifacts, company standards,
design patterns, and commercial frameworks [22, 79].

• (B11) Use of the most novel design solutions. Preliminary SRAs are
usually designed to provide innovate design solutions with respect to
the existing state of the art [22].

On the other hand, although the benefits of SRAs have been widely con-
sidered, their drawbacks have been scarcely documented. Below we describe
the drawbacks reported in the literature:

• (D1) The need for an initial investment to create the reusable assets that
compose the SRA [5].

• (D2) Inefficient support for adaptation and instantiation from the SRA
to applications, as some SRAs usually lack of annotations with attributes
and rules [10].

• (D3) Too much abstraction. The SRA might end up providing an inade-
quate level of abstraction, leaving the specific choice for specific elements
fully open [22].

• (D4) Lack of common interpretation of SRA, coming from a lack of terms
conventions among different types of stakeholders [22, 3].

• (D5) Bad documentation of SRA, which greatly hampers its whole un-
derstanding and use by its stakeholders. [22, 58].



3.3. Focusing on the Topics of this PhD Thesis 59

• (D6) Poor quality of SRA, mainly in terms of correctness and coverage of
the needs of the organization that hamper its use. SRA quality depends
on whether it can be transformed into a meaningful organization-specific
architecture [22, 10].

• (D7) SRA too specific or limiting. The SRA specifies the choice from the
class of options for each element, what can limit innovation and novel
ideas [22, 80].

3.3.3 Business Case Analysis and Return-On-Investment

This subsection and the next one respectively analyze several techniques to
build a business case for SRAs and a set of specific factors and metrics (see the
“SRA adoption” topic in Section 3.2.2). We consider many of the below works
to create an economic model for SRAs. Details are in Chapter 10.

“A business case is a tool that helps you make business decisions by pre-
dicting how they will affect your organization. Initially, the decision will be a
go/no-go for pursuing a new business opportunity or approach” [81]. Reifer
has identified the following types of analysis techniques for business case [25]:

• Breakeven Analysis. Analysis performed to compute the value at which
the solution will recover expenditures when comparing alternative use
of resources.

• Cause-and-Effect Analysis. Analysis to explore solutions to problems.

• Cost/Benefit Analysis. Analysis performed to compute the net benefits
(can be plus or minus) resulting from an investment decision.

• Value Chain Analysis. Analysis to evaluate alternatives and assess the
impact of each option using a form of decision tree.

• Investment Opportunity Analysis. Analysis to assess the attractiveness
of a range of alternatives. Example of financial measures are return on
capital, after-tax rate of return.

• Pareto Analysis. Analysis based on the premise that most effects are
generated from relatively few causes (sometimes called the 80-20 rule).

• Payback Analysis. Analysis to calculate the amount of time required to
recover the costs of the initial investment.



60 Chapter 3. State-of-the-Art

• Sensitivity Analysis. Analysis conducted to determine to which of the
input parameters the solution is sensitive.

• Trend Analysis. Statistical procedure used for estimating the mathema-
tical relationship between the dependent variable and time.

The most common form of business case analysis is cost-benefit analysis. It
involves determining the relative financial costs and benefits across a system’s
life-cycle as [82]. A useful economic function for business cases is the ROI.
The ROI is a “measure of how much profit an investment earns computed
by dividing net income by the assets used to generate it” [25]. Although the
ROI is the most popular function in business cases, there are many others
[83]. For instance, Net Preset Value (NPV) estimation with discounted cash
flow is mostly used to address the time value of money, and the Internal Rate
of Return (IRR) compares the profitability of investments. Sarmad Ali et al.
summarize the economic functions used for software product lines [83]. The
ROI is calculated as:

ROI =
Bene f its−Costs

Costs

Three additional factors may be important in business case analysis: the
time value of money, unquantifiable benefits, and uncertainties and risk.

First, money has value that increases over time due to inflation, i.e., today’s
money is less worth tomorrow. To calculate such value increase, present value
is used to enable decision makers to view future investments in terms of what
money is worth today [25].

Second, there are benefits that may be difficult to quantify. These benefits
should also been taken into account when making a business case. To cope
with them, there are two possibilities: determining an estimated quantitative
value for them, or listing such qualitative benefits to consider them.

Third, to adjust cost and benefits to risk, they can be multiplied by percent-
ages that generally increase the costs and reduce the benefits (assuming the
worst case). For instance, the Total Economic Impact (TEI) model by Forrester
[84] proposes to multiple costs by values that range from 98% to 150% and
benefits by values between 50% and 110%.

3.3.4 Economic Models for SRAs

Current research on SRA evaluation consists of analysis methods [23, 59, 50]
that involve the analysis of risks, non-risks, benefits and trade-offs. Although



3.3. Focusing on the Topics of this PhD Thesis 61

they facilitate the analysis of those aspects based on the most important and
critical scenarios, they have little support to analyze the cost and benefits of
SRAs based on economics.

Introducing an SRA into an organization involves making a decision of
a greater degree than only considering the aforementioned aspects, since it
should not only include quality, but it should also include productivity issues.
Whereas architectural quality is usually estimated in relation to eliciting im-
plicit and explicit requirements of the different stakeholders affected by the
development of the system, productivity is actually measured in terms of ef-
fort, cost, and economic benefits. Nevertheless, both views are necessary to
achieve a comprehensive analysis.

Up to our knowledge, there is no specific economic model for estimating
whether it is worth or not to invest in an SRA for an organization. Due to the
lack of research in this specific area, we have aimed at adopting and adapting
existing results in related areas:

• economic models for software product lines,

• cost-benefit analysis methods for software architectures, and

• more generic metrics about cost savings.

Economic models for software product lines and software reuse

Although we consider that SRAs and product line architectures are different
(see Section 2.3.3), some perceived benefits of SRA (e.g., cost avoidance from
reusing software elements) and cost-benefit factors (e.g., common software
costs, unique development costs) are applicable to both, since both have reuse
as their core strategy. For this reason, we studied the applicability of some
economic models originally conceived for software product lines to SRAs.

Below, we summarize our results with respect to cost and benefit factors
from SIMPLE [85], one of the most widespread economic models for software
product lines. SIMPLE comprises a set of seven cost factors:

• Corg, upfront investments to establish a software product line infrastruc-
ture.

• Ccab, the cost to build reusable assets of the software product line.

• Cunique, the cost to develop unique parts of products in a software product
line.



62 Chapter 3. State-of-the-Art

• Creuse, the cost of reusing reusable assets in a product inside the software
product line.

• Ccabu, the cost to evolve the core asset in a software product line.

• Cprod, the cost to build a product in a stand-alone fashion.

• Cevo, the cost to evolve a product in a stand-alone fashion.

These cost factors and benefit functions can be used to construct equations
that can answer a number of questions such as whether the software product
line approach is the best option for development and what is the ROI for this
approach. Ganesan et al. extended SIMPLE by considering infrastructure
degeneration over time [86].

Other important economic models for software product lines are Poulin’s
model [87] and COPLIMO [88]. They base their reuse-based models in two
parameters: RCR and RCWR.

• RCR (Relative Cost of Reuse). Assuming that the cost to develop a
reusable asset equals one unit of effort, RCR is the portion of this effort
that it takes to reuse a reusable asset without modification (black-box
reuse).

• RCWR (Relative Cost of Writing for Reuse). Assuming that the cost to
develop a new asset for one-time use equals one unit of effort, RCWR is
the portion of this effort that it takes to write a similar “reusable” asset.

For those cases in which there are difficulties to obtain historical data of
building and evolving products in a stand-alone fashion (Cprod, Cevo), we
consider more adequate the use of RCR and RCWR.

Finally, we must note two models (Schmid [89], InCoME [90]) that inte-
grate cost and investment models in different layers, which make them more
comprehensive. To see more models, the reader is referred to [83], in which
Ali et al. surveyed twelve economic models for software product lines, and to
[91] [92] in which the authors surveyed economic models for software reuse.

Value of software architecture design decisions

There exist a few economics-based software architecture analysis methods
that drive the decision-making process during software architecture review
and design. In this direction, CBAM [93] is a useful method for prioritizing



3.3. Focusing on the Topics of this PhD Thesis 63

architectural decisions that bring higher value. In addition, Ozkaya et al.
proposed an economic valuation of architectural patterns [94].

These approaches help to find the optimal set of decisions that maximizes
the ROI [95]. They pursue to solve the same problem of the RQ 2 of this PhD
thesis, but their scope is broader and general for any kind of software archi-
tecture decision and do not reflect fundamental characteristics of adopting an
SRA (e.g., cost-benefit factors for architecture-centric reuse are not considered).

Generic software metrics

There exist several approaches that propose metrics for estimating cost savings
in software development and maintenance. Metrics as dependency structure
matrices (DSM) have been applied to assist architecture-level analysis, such as
value of modular designs, and they have proven to be particularly insightful
for validating the future value of architecting modular systems [96]. Mac-
Cormack et al. extracted coupling metrics from an architecture DSM view for
inferring the likelihood of change propagation and, hence, future maintenance
costs [97]. Baldwin et al. presented a generic expression for evaluating the
option to redesign a module also based on DSMs [98].

In addition, the concept of technical debt (either architecture-focused [99]
or code-based [100]) is a way to measure unexpected rework costs due to
expediting the delivery of stakeholder value in short.

Summary of economic models for SRAs

Although there is a lack of research in evaluating the economic viability of
SRA adoption, there is a strong base of research in related areas. The most
important related area is economic models that identify cost and benefit factors
for product line architecture adoption. Although there is a significant amount
of research is this direction, it falls short in:

• Validation in industry. “Very few [economic models for software product
lines] actually have been used as a basis for further development or
adopted in industry” [101]. Thus, “there is a clear need for many more
empirical studies to validate existing models” [83].

• Easy adoption of models in industry by identifying realistic metrics to
collect and report. “It is difficult for the practitioners to evaluate the
usability and usefulness of a proposed solution [economic model for



64 Chapter 3. State-of-the-Art

software product lines] for application in industry” [101]. No guidelines
exist to fully operationalize the models in practice [89].

Economics-driven software architecture analysis methods do not specifi-
cally aim at making an investment analysis of the adoption of an architecture-
centric program. SRA adoption is a sub area inside their generic decision-
making context.

At a lower level, more simple metrics like DSM, could also be adequate
for calculation the cost and benefit factors of SRA adoption and make more
complete models.



Part II

Empirical Evidence of Software
Reference Architectures

65





Chapter 4

Identifying Practical Criteria for
SRA Engineering

As we mentioned in the Chapter 1, this Part II details our action research
initiative with regard to the RQ 1 of the PhD thesis:

How can an organization get corporate evidence that is useful for
the SRA engineering?

To answer RQ 1, we conducted five tasks (see Table 1.2, and Figure 1.3).
Each of these five tasks is a chapter in this Part II.

In the current chapter, we start with the first cycle of RQ 1. In order to gather
empirical evidence of SRAs, it becomes necessary to previously identify the
aspects that are relevant for practitioners about SRAs. In this chapter we
identify an initial set of criteria, which might be further refined after gathering
evidence from SRAs. To do so, we analyzed the key criteria mentioned by
everis’ software architects during the meetings and discussions of our action
research initiative, and we also studied the literature. We prioritized the everis’
vision to make a more practitioner-oriented set of criteria.

To identify practical criteria for SRA engineering, it is useful to analyze
how stakeholders perform the SRA evaluation. Although a commonly ac-
cepted set of criteria to evaluate SRAs does not exist [23, 59, 50], it has been
claimed that SRAs have to be evaluated for the same aspects as concrete soft-
ware architectures [23]. For this reason, we started by analyzing the identified

67



68 Chapter 4. Identifying Practical Criteria for SRA Engineering

works on concrete software architecture and SRA evaluation in Chapter 3.2.6,
e.g., [53, 102, 27]. However, existing evaluation methods for concrete software
architectures are not directly applicable to SRAs or other architecture-centric
approaches such as product lines architectures because they do not cover their
generic nature [23]. The development of a family of software systems has some
characteristics that distinguish it from the development of single software sys-
tems [103]. Therefore, existing evidence for product line architectures can be
also used to evaluate SRAs, namely: generic characteristics such as “variabil-
ity, reusability, commonality, and compositionality” [103]; the propagation of
architectural decisions while reusing common assets [103]; and lower deve-
lopment costs with respect to developing systems individually [83, 104, 103].

Due to these reasons, three researchers from GESSI and two software
architects from everis elaborated further this analysis considering the spe-
cific characteristics of SRAs as described in [4, 23, 10, 50, 2], commonalities
with other architecture-centric approaches such as product line architectures
[105, 83, 104, 103], and experiences from everis. The resulting relevant aspects
for understanding and evaluating SRAs are detailed below and summarized
in Table 4.1.

Aspect 1 refers to the need of determining the context and classifying an
SRA. As we have seen in Chapter 2.2.2, there are five types of SRAs depending
on their characteristics. Among the most important characteristics are [4]:

• the organization(s) that will use the SRA (e.g., a single organization or
multiple organizations that share a domain),

• who defines the SRA (e.g., software companies as IT consulting firms,
software groups from the organization that use the SRA, and so on),

• the origin and motivation of the SRA (e.g., preliminary when the SRA
solves a new problem or classical when it is based on previous experi-
ences),

• the goal of the SRA and the domain of the SRA-based applications (e.g.,
standardization of concrete software architectures or facilitation of the de-
sign of concrete software architectures),

• and the SRA elements it may include (e.g., components and connectors,
policies and guidelines, and so on).

The classification of an SRA is vital to better understand its limits, to ensure
its congruency, and to facilitate its evaluation.



69

Aspect 2 consists of the quality attributes targeted by an SRA. The achieve-
ment of quality attributes is in fact the most compelling reason for the existence
of concrete software architectures [1]. However, concrete software architec-
tures and SRAs do not strictly determine all of an application’s qualities. One
example is usability: “whether the user sees red or blue backgrounds, a radio
button or a dialog box” [53] is not determined by a concrete software archi-
tecture or an SRA. A list of quality attributes that lie squarely in the realm of
concrete software architectures is defined by the architecture trade-off analy-
sis method [53]: performance, reliability, availability, security, modifiability,
portability, functionality, variability, subsetability and conceptual integrity.
For instance, variability shows how well an SRA could be expanded or modi-
fied to produce new concrete software architectures of applications. Besides,
an SRA could address more architectural qualities than a concrete architecture
(e.g., reusability, commonality, compositionality, and applicability) [23, 103].
Quality attributes analysis should be wider for SRAs in this sense.

Aspect 3 comprises architectural decisions. Many prominent researchers
[23, 27] highlight the importance of architectural decisions for the concrete
software architecture design process and the architectural evaluation. For
SRAs, architectural decisions are even more important than in a single software
system since, owing to systematic reuse, an inadequate design decision could
be propagated to several software systems [103].

Aspect 4 consists of the supportive technologies such as methods, tech-
niques and tools [2, 27] that aim to improve the SRA design process and
support the use of the SRA during the development of applications. More-
over, this aspect is very important for practitioners, since they are interested in
knowing the latest versions of technologies and tools used in the SRA projects,
and providing application builders with tools that improve their productivity.

Aspect 5 refers to business qualities of an SRA. Concrete architectures also
address business qualities [23] (e.g., cost, time-to-market) that are business
goals, i.e. the objectives of an organization that affect their competence [102].
These business qualities are even more important in the context of families of
applications, such as SRAs: “the main arguments for introducing software pro-
duct family engineering are to increase productivity, improve predictability,
decrease the time to market, and increase quality (dependability)” [104].

We recommend gathering evidence about these five aspects, which are
summarized in Table 4.1, in order to improve SRA engineering. Next, Chapter
5 explains how we are gathering evidence about these five practical review
criteria for SRA engineering. Currently, there are no guidelines to support the
gathering of these criteria. This motivated our work.



70 Chapter 4. Identifying Practical Criteria for SRA Engineering

Table 4.1: Summary of relevant aspects for SRA engineering as seen by everis
practitioners and the SRA literature.

Aspect Description of the SRA Aspect
1 Overview and classification of an SRA
2 Requirements and quality attributes analysis
3 Architectural knowledge and decisions
4 Supportive technologies
5 Business qualities and architecture competence

4.1 Summary of the First Cycle of RQ 1

With the goal of supporting organizations to analyze which aspects of SRA
projects are important to improve SRA engineering, we have analyzed the
vision of everis architects and previous literature. We have identified five
relevant aspects for SRA engineering:

1. Overview and classification of an SRA.

2. Requirements and quality attributes analysis.

3. Architectural knowledge and decisions.

4. Supportive technologies.

5. Business qualities and architecture competence.



Chapter 5

Gathering Evidence of SRA
Engineering

As we have seen in Chapter 3, many research studies has focused on sup-
porting different architecting activities of SRA engineering in the literature.
However, their support by empirical evidence is limited, since these SRA en-
gineering approaches are rarely based on industrial practice [22]. In order
to improve the SRA discipline and to envisage realistic and effective solu-
tions, more evidence-based research is needed to understand the current SRA
engineering in practice [6]. Therefore, under this scenario, we work further
to answer the RQ 1 of this PhD thesis: How can an organization get corporate
evidence that is useful for the SRA engineering?

With this goal in mind, we have designed and conducted an exploratory
case study that analyzes nine SRA projects from everis. This case study was
conducted in two stages. Firstly, the data related to SRA engineering in everis
and practical review criteria for SRAs was collected and analyzed (see Chapter
4). Secondly, based on the former results, a case study involving nine of SRA
projects run in everis’ client organizations was designed to gather evidence in
SRA projects. In this chapter, we report the results from the second stage.

Our research goal is to investigate the current industrial practice of SRAs
from different stakeholders’ perspectives. The results of this case study aims
to make SRAs industrial uptake easier by helping practitioners to understand,
evaluate and improve SRA engineering.

The chapter is structured as follows. Section 5.1 presents the objectives,
methodology, and details of this case study.

71



72 Chapter 5. Gathering Evidence of SRA Engineering

Among the five practical criteria for SRA engineering, we focus on the most
important SRA criteria for the RQs of this PhD thesis, which are:

• Aspect 1: Overview and classification of an SRA. We have focused on the
motives (see Section 5.2) and artifacts (see Section 5.3) of SRAs created by
everis for their clients organizations. This aspect helped everis to capture
the architectural knowledge of years of work in a congruent vision; so
that non experienced employees can analyze when a client needs an
SRA, and understand which elements compose an SRA.

• Aspect 5: Business qualities and architecture competence. We have
focused on the benefits and drawbacks from using SRAs in everis’ clients
organizations (see Section 5.4), and from designing many SRAs from a
reference model at everis (see Section 5.5). This aspect also helped everis
to qualitatively answer the RQ 2 of this PhD thesis (i.e., reasoning on
SRA adoption).

Finally, Section 5.6 wrappers up this chapter stating its contributions.

5.1 Research Methodology

Next subsections respectively present details of the methodology of the case
study: research setting, RQs, research design, data collection instruments, data
analysis, and limitations.

5.1.1 Research Setting

In this case study, we focus on three of the five key stakeholders1 related to
the design and use of SRAs in everis:

1. software architects that cooperatively work to figure out an SRA based
on the everis reference model to accomplish the desired quality attributes
and architecturally-significant requirements of the client organization;

2. architecture developers that are responsible for coding, maintaining,
integrating, testing and documenting the software components and other
artifacts of the SRA for the client organization; and

1To see a complete vision of the stakeholders at everis, the reader is referred to Section 2.4 of
Chapter 2.



5.1. ResearchMethodology 73

3. application builders that instantiate SRA reusable components to build
concrete software architectures for the client organization’s applications.

Fig. 5.1 shows these stakeholders. It shows how software architects and
architecture developers are SRA designers whereas application builders are
SRA users. In our context, these stakeholders are mainly professionals from
everis, but sometimes may also come from the client organization.

Figure 5.1: Key stakeholders in everis’ SRA projects.

5.1.2 Research Questions

Once we got a substantial understanding of the context of SRAs in everis, we
stated the RQs leading this case study (see Table 5.1)2. Below, we discuss the
motives for such RQs.

2These RQs are from the case study of this chapter. They are not the RQs of this PhD thesis
presented in Chapter 1. For this reason, we have labeled as RQ A, RQ B, RQ C, and RQ D; instead
of RQ 1, RQ 2, and so on.



74 Chapter 5. Gathering Evidence of SRA Engineering

Table 5.1: Research questions of the case study at the second action research
cycle of the RQ 1 of this PhD thesis.

Aspect # RQ RQ Description Section

1

A Which are the main motives to use an SRA to design
systems’ concrete architecture in an organization? 5.2

A.1 What are the motives to use an SRA in everis’ client
organizations?

B Which are the artifacts that compose an SRA and how
such artifacts are designed, reused, and used?

5.3B.1 Which artifacts constitute an SRA designed by everis
for a client organization?

B.2 What is reused by everis in order to create SRAs?
B.3 Could SRA’s artifacts of a specific client organization

be reused in other organizations with a different
business domain?

B.4 What is the perception of application builders about
the role that an SRA plays in the development of
applications?

5

C What are the benefits and drawbacks of adopting
SRAs in the industrial practice from the perspective of
different stakeholders involved in its usage? 5.4C.1 What are the main benefits of SRAs in the context of
everis’ client organizations?

C.1.1 What are the main similarities and differences among
stakeholders’ perception of such benefits?

C.2 What are the main drawbacks of SRAs in the context
of everis’ client organizations?

C.2.1 What are the main similarities and differences among
stakeholders’ perception of such drawbacks?

C.2.2 What are the potential improvements that
stakeholders would be willing to perform to
overcome the drawbacks of the SRA?

D What are the benefits and drawbacks of adopting
SRAs in the industrial practice from the perspective of
different stakeholders involved in its design?

5.5

D.1 What are the main benefits for everis from designing
many SRAs from their corporate reference model?

RQ A: Which are the main motives to use an SRA to design systems’
concrete architecture in an organization?

RQ A.1 focuses on the problems and needs of everis’ clients organizations
that led to adopt an SRA (What are the motives to use an SRA in everis’ client



5.1. ResearchMethodology 75

organizations?). These results can help organizations to analyze if they need an
SRA.

RQ B: Which are the artifacts that compose an SRA and how such artifacts
are designed, reused, and used?

Although SRA teams are suggested to use everis’ reference model that provide
them a unified view of what an SRA should provide, we wanted to investigate
which of those conceptual elements proposed by the reference model were
actually used in practice or even to identify elements that are not currently
part of this reference model. This would lead to pragmatic improvements on
the reference model. Therefore, we stated RQ B.1 (Which artifacts constitute an
SRA designed by everis for a client organization?).

Regarding reuse, two aspects resulted of interest. On the one hand, under-
standing and identifying the reuse practices of SRA teams for creating SRAs
would lead everis to potentiate reuse initiatives inside the organization. There-
fore, we stated RQ B.2 (What is reused by everis in order to create SRAs?). On the
other hand, SRAs are naturally used to foster and improve reuse throughout
the client organizations’ software applications. However, there was a lack of
understanding about the scope of reuse that the artifacts created for a specific
client organization could have. This might help to better realize reuse strate-
gies in everis; thus we stated RQ B.3 (Could SRA’s artifacts of a specific client
organization be reused in other organizations with a different business domain?).

Finally, in order to understand how the client organizations use the SRA’s
artifacts designed by everis, we stated RQ B.4 (What is the perception of application
builders about the role that an SRA plays in the development of applications?). We
especially focused on the role that an SRA plays in the development (informa-
tive, instructive or regulative). This will help us to understand the importance
of the SRA’s artifacts in practice.

RQ C: What are the benefits and drawbacks of adopting SRAs in the
industrial practice from the perspective of different stakeholders involved
in its usage?

RQ C.1 focuses on the main benefits of SRAs for everis’ client organizations. To
have an unbiased view from all stakeholders, RQ C.1.1 analyzes the perception
of different stakeholders (What are the main similarities and differences among
stakeholders’ perception of such benefits?).



76 Chapter 5. Gathering Evidence of SRA Engineering

RQ C.2 focuses on the main drawbacks of SRAs for everis’ client organi-
zations. RQ C.2.1 deeps on the perception from different stakeholders (What
are the main similarities and differences among stakeholders’ perception of such draw-
backs?). RQ C.2.2 seeks for potential improvements to overcome the drawbacks
of SRAs (What are the potential improvements that stakeholders would be willing to
perform to overcome the drawbacks of the SRA?).

The results from RQ C aim to provide practitioners with evidence about
the benefits and drawbacks of SRAs in order to improve the current practice
in SRA engineering.

RQ D: What are the benefits and drawbacks of adopting SRAs in the
industrial practice from the perspective of different stakeholders involved
in its design?

RQ D.1 addresses the benefits of having a corporate reference model at everis
(What are the main benefits for everis from designing many SRAs from their cor-
porate reference model?). The results from this RQ might show other software
companies when it is useful to have a corporate reference model.

5.1.3 Research Design and Sampling

In line with the exploratory nature of our RQs, we decided to use a case study
approach to gain a deep understanding of SRA engineering in the everis’ client
organizations context.

We devised a flexible case study protocol since the very beginning, as sug-
gested by [106], to register and update our procedures, instruments, decisions
and deviations. This protocol was devised and agreed among the researchers
from GESSI and two everis managers that participated in the study. These
two everis managers had extensive experience on SRAs as they had previously
participated in several everis’ SRA projects covering all potential roles. Such
experience was crucial to tackle this research.

The target population of the study was everis’ SRA projects. We decided
to approach several projects in different client organizations as it allowed us a
better interpretation and assessment of the design and usage context of each
SRA. It would otherwise had been very difficult to interpret certain decisions
or influential factors related to the contexts of the projects. Furthermore, we
targeted different stakeholders involved in the SRA projects as each of them
might have different concerns about certain architectural aspects, and this
might influence the perceived SRA engineering practices [59].



5.1. ResearchMethodology 77

The two everis managers selected nine SRA projects from different client
organizations on the basis of their suitability and feasibility to contact at least
with one person playing each of the targeted stakeholder roles. Then, everis
managers contacted potential participants for agreeing on their participation.
We finally ended up with 28 people that participated in the selected projects.

Table 5.2 summarizes the projects and stakeholders that participated in the
study. It can be observed that most of the studied projects are from the public
sector domain while banking, insurance and industry are also represented.

In all the studied organizations (except one), we had the opportunity to
approach stakeholders that covered all the related roles, namely: Software
Architect (SA), Architecture Developer (AD) and Application Builder (AB);
see Section 5.1 for details about these stakeholders. In two organizations
(F and H), we had access to more than one application builder, and in the
organization G, we could not contact any application builder as some time
passed since the end of the project and any of the Application Builders that
participated in the project was still at the company.

The main goals of the studied SRAs and the applications based on them are
also stated. We can observe that most of their stated goals range from improv-
ing productivity by reusing components, homogenizing applications, easing
the development of applications based on the SRA, ensuring the fulfillment
of certain functionalities and requirements, to enabling the adoption of new
technologies by the organization.

5.1.4 Data Collection and Instruments

Once the projects were selected, everis managers provided us the so-called SRA
project card containing a summarized description, documentation, and metrics
about the invested effort of each project. Whenever we needed clarification,
they contacted with the corresponding project technical manager or suitable
people to handle our questions. Thus, we held two informal meetings with
everis managers to confirm whether the SRA projects and the experience of the
participants were suitable for the study.

In order to gather and assess the different perceptions about SRA engi-
neering that the targeted roles had, we designed and piloted different data
collection instruments following the guidelines stated in [106][107] and the cor-
responding literature background. All the instruments were designed mainly
considering the literature discussed in Chapter 3.3, the practical experience of
the two everis managers that participated in the study, and the background of
our research team.



78 Chapter 5. Gathering Evidence of SRA Engineering
Ta

bl
e

5.
2:

O
ve

rv
ie

w
of

th
e

se
le

ct
ed

ev
er

is
’S

R
A

pr
oj

ec
ts

.

Id or
g.

Pa
rt

ic
ip

an
ts

M
ai

n
do

m
ai

n
SR

A
pr

oj
ec

tg
oa

l
A

pp
lic

at
io

ns
ba

se
d

on
th

e
SR

A
A

pp
ro

x.
eff

or
t(

in
ho

ur
s)

SA
A

D
A

B
A

1
1

1
In

du
st

ry
To

cr
ea

te
a

m
in

im
al

SR
A

to
de

ve
lo

p
ho

m
og

en
eo

us
ap

pl
ic

at
io

ns
.

W
eb

-b
as

ed
ap

pl
ic

at
io

ns
to

al
lo

w
ve

nd
or

s
up

da
ti

ng
in

fo
rm

at
io

n
ab

ou
tc

lie
nt

s
in

a
de

pa
rt

m
en

ts
to

re
.

≈
5,

00
0

B
1

1
1

Ba
nk

in
g

To
cr

ea
te

an
SR

A
to

co
ve

r
th

e
fu

nc
ti

on
al

it
y

an
d

re
qu

ir
em

en
ts

ne
ed

ed
fo

r
th

e
ap

pl
ic

at
io

ns
.

M
ul

ti
-p

la
tf

or
m

ap
pl

ic
at

io
ns

th
at

ar
e

fa
st

,
sa

ti
sf

y
pr

ac
ti

ce
s

of
th

e
m

ar
ke

ta
nd

su
pp

or
t

tr
an

sa
ct

io
n

pr
oc

es
si

ng
.

≈
97

,0
00

C
1

1
1

Ba
nk

in
g

To
pr

ov
id

e
an

SR
A

an
d

it
s

gu
id

el
in

es
to

ap
pl

ic
at

io
n

bu
ild

er
s

so
th

at
th

ey
ar

e
m

or
e

pr
od

uc
ti

ve
an

d
ca

n
de

ve
lo

p
ap

pl
ic

at
io

n
ea

si
er

.

M
ul

ti
-p

la
tf

or
m

ap
pl

ic
at

io
ns

of
a

ba
nk

w
it

h
im

pr
ov

ed
us

ab
ili

ty
.

≈
37

,0
00

D
1

1
1

In
su

ra
nc

e
To

cr
ea

te
an

SR
A

th
at

im
pr

ov
es

pr
od

uc
ti

vi
ty

an
d

su
pp

or
ts

ne
w

fu
nc

ti
on

al
it

ie
s

to
m

ig
ra

te
ap

pl
ic

at
io

ns
to

ne
w

te
ch

no
lo

gi
es

.

A
pp

lic
at

io
ns

th
at

sa
ti

sf
y

in
te

rn
al

re
qu

es
t

fo
r

pr
op

os
al

s.
≈

29
,0

00

E
1

1
1

Pu
bl

ic
se

ct
or

To
pr

ov
id

e
a

co
m

po
ne

nt
-b

as
ed

SR
A

an
d

it
s

gu
id

el
in

es
th

at
su

pp
or

ts
th

e
de

ve
lo

pm
en

to
fa

pp
lic

at
io

ns
.

Ja
va

w
eb

ap
pl

ic
at

io
ns

,w
it

h
fle

xi
bl

e
fr

on
t-

en
d,

in
te

gr
at

io
n

an
d

ba
tc

h
pr

oc
es

se
s.
≈

6,
50

0

F
1

1
2

Pu
bl

ic
se

ct
or

To
ev

ol
ve

th
e

ex
is

ti
ng

SR
A

w
it

h
ne

w
te

ch
no

lo
gi

es
an

d
fu

nc
ti

on
al

it
ie

s.
W

eb
-b

as
ed

ap
pl

ic
at

io
ns

fo
r

th
e

di
ff

er
en

t
de

pa
rt

m
en

ts
of

a
pu

bl
ic

ad
m

in
is

tr
at

io
n.

≈
20

,0
00

G
1

1
0

Pu
bl

ic
se

ct
or

To
ev

ol
ve

th
e

ex
is

ti
ng

SR
A

to
st

an
da

rd
iz

e
th

e
de

ve
lo

pm
en

to
f

ap
pl

ic
at

io
ns

.

A
pp

lic
at

io
ns

w
it

h
en

ha
nc

ed
re

us
ab

ili
ty

an
d

re
du

ce
d

de
ve

lo
pm

en
tc

os
ts

.
≈

4,
50

0

H
1

1
2

In
su

ra
nc

e
To

cr
ea

te
a

co
m

po
ne

nt
-b

as
ed

SR
A

w
it

h
la

te
st

te
ch

no
lo

gi
es

th
at

al
lo

w
s

re
us

e
in

th
e

de
ve

lo
pm

en
to

f
ap

pl
ic

at
io

ns
.

A
pp

lic
at

io
ns

in
te

gr
at

ed
w

it
h

se
rv

ic
es

of
an

in
su

ra
nc

e
co

m
pa

ny
.

≈
4,

00
0

I
1

1
1

Pu
bl

ic
se

ct
or

To
cr

ea
te

an
SR

A
w

it
h

la
te

st
te

ch
no

lo
gi

es
th

at
su

pp
or

tb
us

in
es

s
pr

oc
es

se
s.

A
pp

lic
at

io
ns

th
at

in
cl

ud
e

th
e

bu
si

ne
ss

pr
oc

es
se

s
of

a
ut

ili
ty

or
ga

ni
za

ti
on

.
≈

6,
50

0

N
ot

e:
So

ft
w

ar
e

A
rc

hi
te

ct
(S

A
);

A
rc

hi
te

ct
ur

e
D

ev
el

op
er

(A
D

);
A

pp
lic

at
io

n
Bu

ild
er

(A
B)

.



5.1. ResearchMethodology 79

For software architects, we designed semi-structured interviews based on
an interview guide. We choose semi-structured interviews mainly because
software architects pose a wider vision of the SRA goal and its design, so it
was important for us to have the possibility to approach them face-to-face
to fully inquiry about these details. Semi-structured interviews provided us
with the ability of eliciting details for each of the analyzed projects, whilst
inquiring their particularities with follow-up questions. Prior to the interview,
we requested to each software architect their personal information (to shorten
the meetings) and documentation of the SRA (to prepare the meetings). In-
terviews were conducted face-to-face in Spanish by two researchers. Each
interview took about one hour and was audio-taped. An external company
performed the manual transcription of the audio records into text documents.

To gather information about the SRAs vision from architecture developers
and application builders, we used online questionnaires. This was based on
the fact that it was almost impossible to contact them personally, as they used
to work on different locations based on the client organizations, sometimes
located in other cities or even countries. Furthermore, given the differences
in the SRAs related responsibilities associated to them, we decided to design
different online questionnaires for each role. For architecture developers, the
questions of the online questionnaire mainly focused on aspects related to
coding, maintaining and documenting all the artifacts created to operationa-
lize the SRA (designed by the software architects) in the client organizations.
For application builders, their questionnaire focused on the use of the SRA
(produced by the software architects and architecture developers) for building
concrete software architectures in the clients’ contexts. The resulting online
questionnaires mostly included closed questions. The lists of possible answers
for the closed questions was based on our aforementioned discussion meetings
with everis managers, and the literature studied in Chapter 3.3. To partially
mitigate the rigidness of closed questions in the online questionnaires, we
provided room by including also open questions to add any comment.

To enable architecture developers and application builders of the assessed
projects to fill in the questionnaire, we prepared an invitation e-mail that was
sent through the everis managers with cc to us. Their project leaders previously
agreed that they could spend some time in this activity. We gave them a period
of 2 weeks to complete their answers. After such invitation e-mail, we got all
responses on time. Data gathered by online questionnaires was automatically
prepared for its subsequent analysis using LimeSurvey’s functionalities3.

3https://www.limesurvey.org/en/

https://www.limesurvey.org/en/


80 Chapter 5. Gathering Evidence of SRA Engineering

5.1.5 Data Analysis

To perform data analysis, the research team held several discussion meet-
ings during and after data collection, and established specific protocols and
templates for data analysis.

It is important to mention that given the diversity of instruments used to
gather data, we had more detailed information from software architects than
from architecture developers and application builders. This is given by the
fact that information from software architects was gathered through face-to-
face interviews instead of online questionnaires as architecture developers and
application builders did.

For processing the data gathered from the interviews with software archi-
tects, we used an Excel-based template to organize each participant’s answer
to each question. For doing this, we used the interview transcripts and indi-
vidual notes taken by the researchers during the interviews. We processed and
analyzed the data as follows. First, we processed the answers to each question
in order find categories that suitably described the answers. The template
used to gather and process the information of the devised categories included
the following columns: the name of the category, a detailed description of the
category and the cases included there, the participant, and explicit sentences
from the interview that support the category. Second, the categories were
then further discussed and analyzed by the research team to better interpret
and describe the evidence. In order to be exhaustive with the analysis of the
gathered evidence, we first discussed our findings with respect to the contexts
of the projects to realize the contextual influence. Afterwards, we analyzed the
evidence with respect to the role of the participants on the SRA projects. This
led us to a better interpretation of contextual factors of our results and thus
improve our understanding for devising the categories. Consequently, some
initial categories were split, modified, discarded or added to ensure that all
answers and their contexts were well-represented. Processing the answers of
each question for envisaging its categories had its own peculiarities that will
be summarized in the contexts of the description of the results.

In the case of online questionnaires, closed questions were easy to pro-
cess as we took each option given in the questionnaire as a category. These
categories were automatically reported by Lime Survey. However, to process
the answers to the open questions, we assessed each answer in the context
of its corresponding question to analyze its effect on the existing categories
(i.e., those coming from the options given in the questionnaire). We faced
three typical situations: 1) the open answer supported an existing category



5.1. ResearchMethodology 81

by providing further detail about it; 2) the open answer contradicted some of
the categories; and 3) the open answer provided additional information not
included in any category. In the first case, we registered the further informa-
tion supporting the category but no modification of categories was done. In
the second case, we carefully assessed the affected categories and had to do
some modifications, such as splitting, modifying or adding another category
to ensure that all answers and their contexts were well-represented. In the
third case, we assessed the convenience of widening existing categories or
adding a new one. In all cases, the open questions related information helped
us to enrich our understanding of the situations.

To provide a global understanding of SRA engineering (as shown in sec-
tions 5.2, 5.3, 5.4, and 5.5), we assessed all categories gathered from each role’s
instrument, and then proceed to assess the results by role.

It is important to emphasize that, in line with the qualitative nature of our
approach, the generated categories were aimed to provide us a way to describe
our findings instead of providing a quantitative vision of the everis context.

5.1.6 Limitations of the Study

This subsection discusses possible threats to validity in terms of construct,
internal, and external validity. It also emphasizes the mitigation actions used.

Construct validity

It refers to issues that affect our ability to reflect the constructs under study
using adequate instruments. To strengthen this aspect we performed a plan-
ning of the study and established a protocol as suggested by [106]. We paid
special attention to the design of our data collection instruments (i.e., the
interview guide and the questionnaires) in such a way that they were fully
understood by the respondents. We made sure of polishing the instruments
with suitable vocabulary that the participants were familiar with. This was
particularly relevant in our case as the different stakeholders used different
terms for referring to the same thing. Thus, all instruments were revised by
everis managers, piloted, and enhanced to ensure their effectiveness. Further-
more, we included specific mitigation actions for evaluation apprehension by
ensuring the confidentiality and aggregation of the answers.

We are aware that the online questionnaires (used for architecture develo-
pers and application builders) limited our ability to further inquiry about their
perceptions compared to the software architects’ perceptions that were gathe-



82 Chapter 5. Gathering Evidence of SRA Engineering

red through face-to-face interviews. To mitigate this threat we carefully chose
the options provided by the questionnaires together with everis managers and
the input from the software architects interviewed. In addition, we added
open questions to the questionnaires to gather the participants’ opinions that
do not match with the options given. Hence, the respondents could freely
share their real perceptions, either on the interviews or in open questions for
the case of the online questionnaires.

Internal validity

It refers to factors that might affect our conclusions. For instance, when the
researcher is investigating whether one factor affects an investigated factor
there is a risk that the investigated factor is also affected by a third factor [106].
We are aware everis’ managers could have chosen the most successful projects
as sampling. To minimize this issue, we explained them the importance of
having a representative sampling of the SRA projects in order to obtain reliable
data. In addition, the fact that diverse roles from these projects were chosen as
unit of analysis allows us better interpretation and assessment of contextual
information.

It is important to emphasize that our results are based on the stakehol-
ders’ perceptions from the specific project that they participated in. Therefore,
even if an aspect of SRA engineering was not explicitly mentioned by these
individuals, there could be several factors affecting this, for instance that our
instruments did not explicitly requested some potentially influential informa-
tion, or cultural issues. In addition, regarding individuals that participated in
the study, there is always the possibility that they forget something or do not
explicitly state when they are asked about it. To reduce this risk: 1) in the case
of the interviews, we discussed some potential topics that might be omitted
by the respondents, and paid particular attention to ask for clarifications if
necessary; 2) in the case of the online questionnaires, we designed them in
such a way that the respondent must answer all the corresponding questions
while s/he could complete the questionnaire at any time, so it gives them the
possibility of consulting registries and documentation in case s/he needs to
remember something; 3) in all cases we also had the opportunity to contact the
participants after the interview/questionnaire to send them their responses.
Two software architects provided small clarifications after checking the trans-
cription of their interviews. We also made sure to design our data collection
instruments in such a way that tricky questions have related questions that
help to confirm the correctness of the answers. For instance, we had two ques-



5.1. ResearchMethodology 83

tions asking about the benefits of SRAs, and differentiate between the benefits
from an SRA and the corporate reference model.

Other mitigation strategies were recording and transcribing all interviews
to contribute to a better understanding and assessment of the data gathered.
Also, to reduce the potential researcher bias, several meetings were held among
the researchers and everis’ managers in order to discuss the course of the case
study and the preliminary results.

External validity

It is concerned with to what extent it is possible to generalize the findings,
and to what extent the findings are of interest to other people outside the
investigated case. We recognize that our results are tied to the everis’ client or-
ganizations context and therefore should be interpreted as such. The following
results sections provide representative categories obtained through analytical
generalization of the gathered evidence. We exhaustively analyzed the data
together with everis managers, applying why questions to fully understand
and explain results. To strengthen the correct understanding of this analyti-
cal generalization, in this chapter we aim to provide as much information as
possible of the context and participants’ sentences.

We recognize that our results cannot be generalized to other organizations
without further work. However, we remark that there exist organizations
with similar contexts to everis that could benefit from the results of this study
(see Chapter 6.1). Other IT consulting firms that could be considered to some
extent similar to everis are, for instance, Accenture [21] and Capgemini [70]
as they use an industry-specific reference model to provide support to their
clients to adopt SRAs, and they have similar professional roles to perform the
associated tasks (see Figure 5.1). Besides IT consulting firms, other companies
have reported a similar use of SRAs without using a corporate reference model,
such as Volvo [108], Océ [50], Credit Suisse [109], and the Dutch e-government
[55]. It is also important to note that all aforementioned SRAs are based on
practical experience in the industry.

As Seddon et al. suggest: “if the forces within an organization that drove
observed behavior are likely to exist in other organizations, it is likely that
those other organizations, too, will exhibit similar behavior” [110]. Thus, we
made available our instruments to foster other researchers and practitioners
to use them and compare results (see Appendix C). We expect that our results
strengthen the evidence regarding SRAs and encourage others to provide
similar evidences that help to mature SRAs research and practice.



84 Chapter 5. Gathering Evidence of SRA Engineering

Next sections present the results of this case study, divided in four aspects
of SRAs:

• motives to use SRAs (see Section 5.2),

• artifacts of SRAs (see Section 5.3),

• benefits and drawbacks from using SRAs (see Section 5.4), and

• benefits and drawbacks from designing many SRAs (see Section 5.5).

5.2 Analysis of Motives to Use SRAs (RQ A)

This subsection presents the results for the RQ A: “Which are the main motives to
use an SRA to design systems’ concrete architecture in an organization?” (see RQs
in Section 5.1.2).

5.2.1 Results

The below results answer why SRAs were adapted for creating concrete ar-
chitectures of everis client organizations’ applications. Next, we report the
motives that triggered the origin behind each SRA project. Table 5.2 shows the
characteristics and objectives of each SRA project.

The motives why everis’ client organizations adopted an SRA are shown
below. We report between squared brackets the identifier of the client organi-
zation that indicated each motive (see Table 5.2).

• (Mot-A) 5 out of 9 projects [B, C, D, F, H] reported the update of tech-
nologies to develop applications since they were obsolete or application
maintenance was costly.

• (Mot-B) 4 out of 9 projects [A, B, G, H] mentioned the need to homoge-
nize the development of similar applications and identify their common
elements to foster reuse.

• (Mot-C) 4 out of 9 projects [C, D, F, G] aimed to simplify application
development (e.g., use of widely-known technologies) and improve pro-
ductivity of application builders in order to hire profiles less specialized
and reduce development time.



5.3. Analysis of Artifacts of SRAs 85

• (Mot-D) 2 out of 9 projects [C, I] needed to improve business processes
of the organization because of organizational changes or applications
misalignment with business needs.

• (Mot-E) 2 out of 9 projects [C, E] were started because the client organi-
zation had difficulties in developing applications without the help of a
software vendor.

• (Mot-F) 2 out of 9 projects [A, B] mentioned the need to support and
enable application development in any platform (e.g., web, smartphone,
POS terminal, ATM).

• (Mot-G) 2 out of 9 projects [B, D] stated the need to migrate functionality
from legacy systems to new systems (also known as “downsizing”) to
reduce maintenance costs.

• (Mot-H) 1 out of 9 projects [A] reported the lack of products on the market
adapted to its needs and business processes.

5.3 Analysis of Artifacts of SRAs (RQ B)

This subsection presents the results and discussions for the RQ B: “Which are
the artifacts that compose an SRA and how such artifacts are designed, reused, and
used?” (see RQs in Section 5.1.2).

5.3.1 Results

The results are grouped in four subsections according to the RQ B.1, RQ B.2, RQ
B.3, and RQ B.4. Results are described in terms of the categories or codes gen-
erated from the data analysis. Given the qualitative nature of our study, these
categories are complemented with narrative descriptions and some represen-
tative quotes4. After representative quotes, it is indicated between squared
brackets the identifier of the organization of the respondent (from A to I) and
the role of stakeholder (nothing for software architects, AD for architecture de-
velopers, and AB for application builders). Figures are used when necessary
to show the frequency of answers belonging to each category.

4Besides, these categories are further explained in the annex available at http://www.essi.
upc.edu/~smartinez/files/ease14annex.pdf.

http://www.essi.upc.edu/~smartinez/files/ease14annex.pdf
http://www.essi.upc.edu/~smartinez/files/ease14annex.pdf


86 Chapter 5. Gathering Evidence of SRA Engineering

RQ B.1: Which artifacts constitute an SRA designed by everis for a client
organization?

Software architects were specifically inquired: “Which deliverables were produced
during the SRA project and what was the aim of these deliverables?” Based on all
their answers, we found that in general, the SRA created by everis may provide
three main types of artifacts:

• Common software elements (i.e., software components) aimed to be
reused for all the applications, e.g., “the SRA is the set of software ele-
ments that support the development of applications” [E].

• Guidelines for the homogeneous development of applications. These
guidelines facilitate the development of applications with the software
elements. As one interviewee said, the SRA provides “a methodology,
procedures and methods that have to be applied to be able to develop
with the provided software elements” [C], “guidelines have to be applied
to be able to develop with the provided software elements” [C].

• Documentation that describe the logical solution to create a set of appli-
cations. One participant noted: “the SRA includes the design of a logic
solution to create a set of applications, and the set of software compo-
nents that are developed to give support to such logic design” [C].

Regarding the produced deliverables, we respectively present below the
results in terms of the three main types of artifacts (i.e., software elements,
guidelines, and documentation).

Software elements Software elements are provided by means of code. This
code can be provided in two complementary forms: as source code (in the
9 projects), and as ready-to-use libraries (3 projects). One software architect
noted: “The SRA source code is given to the client in case that they need it in
the future, and the libraries of the SRA are normally uploaded to a repository,
so that application builders can get them and start to develop applications
with them” [F].

Guidelines From the answers of the interviewees, we identified up to three
different types of artifacts related with guidelines:



5.3. Analysis of Artifacts of SRAs 87

• User manuals and guidelines for development (in 7 projects). They
show the procedures to be followed to develop applications. There are
development guides for SRAs software elements. They show how to
use them as required by the applications needs, and how to set them
up. One participant summarized the issues in these words: “we make
development guides for the presentation module and the rest of SRA
components. Also, there are guides for the installation process of the
integrated development environment and its plugins, for development
methodologies, and for indicating when the SRA will give functionalities
for coordination between teams (i.e., roadmap) and when an application
can be released” [C].

• Tools prescription or plugins to facilitate software development (in 4
projects). Some development tools are usually prescribed (e.g., a spe-
cific integrated development environment as Eclipse, IBM RAD could
be used). In addition, bespoke plugins for the IDE that automatize the
development of some development tasks, and tools that support the de-
velopment of applications (e.g., for continuous integration) may also be
provided. Among the examples mentioned are: “a plugin that allows to
visually develop workflows” [D], “a plugin that facilitates the generation
of services and the invocations to services” [G].

• Templates and sample instantiations (in the 9 projects). The best way
to see how something works is through examples. The SRA is always
delivered with an application based on the SRA. The application could
be demanded by the client organization (i.e., real), a demo or a ready-to-
use template for new applications. One software architect noted these
exemplar deliverables: “an application that serves as a reference and
a demo application. The former is a template for any new application
based on the SRA. The latter is a sample implementation developed from
the aforementioned template” [G].

Documentation As the SRA grows, documentation is generated:

• Technical documentation and architectural knowledge (in 8 projects).
Technical documentation includes SRA functions agreed with the client
during the analysis, technical design of all the SRA components, the test
plan, etc. It is useful for future architecture developers, so that they
will know where everything is. However, its level of detail varies de-
pending on the client demands. Some client organizations want detailed



88 Chapter 5. Gathering Evidence of SRA Engineering

documentation whereas others prefer it in digestible proportions. One
software architect noted the advantages of the latter approach: “This
documentation does not have a lot of details; it would be impossible
and non-maintainable because there are changes day by day. Therefore,
we describe the main functionalities that the SRA offers and a technical
description about how problems have been solved and implemented
with UML diagrams of the main modules” [B]. Part of this documen-
tation is also architectural knowledge. As a software architect pointed
out: “when we have investigated how to communicate with an environ-
ment and considered it interesting, this knowledge was added to our
knowledge management tools (wiki, confluence)” [D].

• Management documentation (in 2 projects). Clients also ask for mana-
gement documentation such as presentations explaining the status of
the SRA project. As one software architect noted: “we made .ppt pre-
sentations explaining the status of the SRA project, excel files with the
tracked time, deviations from initial planning, and prediction about the
end date. These deliverables are for management” [D].

RQ B.2: What is it reused by everis to create SRAs?

We asked software architects: “For SRA design, was any existing component or
knowledge reused, either from everis or the client organization?” We obtained the
following categories:

• Architectural knowledge from everis was reused in order to design SRAs
(8 projects). As one participant noted: “we used everis’ reference model to
establish the gap with respect to our to-be model” [G]. It must be noted
that they also stated that their experience in the current project acted
as a source of new knowledge that feeds the architectural knowledge
available in everis. As a consequence, explicit feedback was applicable
to the everis’ reference model and architectural knowledge in 3 projects,
e.g., “there is another SRA that thrives in much of what we did on this
SRA project. Not only in technology, but in terms of the design approach,
evolutions that we have done, and so on” [A], “other SRAs are based on
best practices or lessons learned from the SRA of our project” [B].

• Architectural knowledge from the market (1 project). Just one of the
SRA projects was not based on the everis’ reference model: “the SRA was
based on an Oracle solution for SOA” [I].



5.3. Analysis of Artifacts of SRAs 89

• Architectural knowledge from own experience (9 projects). All inter-
viewed software architects had personal experience in at least one SRA
project before. Hence, they reused: “designs or solutions that we have
previously applied in other SRA projects” [C]; “knowledge and tech-
nologies applied in previous SRAs” [D]; “architectural knowledge and
experience from other project, concretely the use of an ESB” [E]. An-
other participant summarized: “at the end, components’ designs are
very similar (e.g., authentication and authorization). Although software
elements from client organizations cannot be reused, obviously you gain
architectural knowledge in previous projects and it is what you then
reuse.” [H].

• Architectural knowledge from colleagues (8 projects). It consists of trans-
fer of tacit knowledge, e.g., “the transfer of knowledge and experience
has been done by people, that is, the people who were in SRA projects
has moved to other SRA projects and his/her knowledge and way of
working has been expanded. Also, news and important things are dis-
cussed among us in meetings once a month. Finally, when anyone wants
more detail of SRAs, it is discussed in front of the coffee machine” [B].

• Software elements from everis (1 project). Since everis’ employees realized
that architectural knowledge is reused in most of new projects, they
are building a corporate platform-specific SRA that includes the most
popular cross-cutting software elements common in diverse business
domains. This corporate platform-specific SRA (called j-everis) is an
implementation of the everis’ reference model. In the newest SRA project
[A], they were reusing some of these software elements.

• Software elements from the client (6 projects). When client organizations
have some functionality already implemented, some software compo-
nents can be reused. In 6 projects, participants noted that they reused:
“existing functionalities of the financial terminal” [B], “legacy systems
in Cobol through Tuxedo” [D], “a service broker of a previous version
of the SRA” [E], “existing backends of the public administration” [F],
“an existing database system” [H], “services implemented in Siebel (e.g.,
search of city halls)” [I].

• Software elements from the market (2 projects). Both open source and
commercial components are sometimes reused, e.g., “an open source in-
ternationalization component” [G], “Oracle products: Portal, BPM Stu-
dio and Service Bus” [I].



90 Chapter 5. Gathering Evidence of SRA Engineering

• No reuse of software elements (1 project), e.g., “we reused ideas and
designs from other SRA projects, of course, but we did not get any
software elements and reuse it” [C].

RQ B.3: Could SRAs be reused in other organizations with different
business domain?

We asked to all the stakeholders: “Is the SRA specific to the business domain (e.g.,
banking, insurance, industry, utilities) of the project or generic? Could it be reused in
a different domain?”. We coded their vision of situations in which an SRA can
be used as a reuse artifact in three categories (see Figure 5.2):

• Platform-specific SRA. Among these SRAs, we found two situations.
On the one hand, platform-specific SRAs that can be fully applicable to
other business domains. These SRAs are not tied to the business logic,
i.e., SRA-based applications implement the business logic. Therefore, the
SRA can be transferred to a great extent to different business domains,
e.g., “I think the key of a good SRA is being completely modular, scalable,
and agnostic to the application that is developed above. It enables the
SRA to be adaptable to the specific needs of each project, allowing its
use and application in various business domains” [D-AB]. On the other
hand, mostly platform-specific SRA that also have some artifacts tied

Figure 5.2: What stakeholders think about SRA reuse in other domains.



5.3. Analysis of Artifacts of SRAs 91

to the organization business domain that cannot be reused. Hence, the
SRA could be partially reused and some modifications are needed. Some
representative quotes: “An SRA must have a common part between
domain/sectors and another part that should be adapted to each sector,
as they have different requirements” [F-AD]. “There would be some
modules that do not apply to other business domains but most parts of
the SRA can be reused” [F-AB1].

• SRA is designed for a specific business domain, in which only concepts
and design of a few generic functionalities can be reused, e.g., “there are
software elements that could be generic, but the SRA is mostly for the
banking domain” [B].

• N/A. In this category, we put the stakeholders that did not reply to the
question. As one of them said: “With my experience and knowledge
during the use of the SRA, I cannot give an answer” [A-AB].

Additionally, since most of the participants replied that the SRA of their
projects were platform-specific and diverse software elements could be reused
in several business domains, we asked to all stakeholders: “Does the SRA
offer reusable modules for cross-cutting services?” Several options were given in
the online questionnaires including an open-answer option. The answers are
shown in Figure 5.3. The most popular ones are (in more than 50% of projects):
persistence, security, logging, error management and configuration. These
elements provide cross-cutting functionalities with a technological scope that
are generic and applicable in many business domains.

RQ B.4: What is the perception of application builders of the role that an
SRA plays?

To see how application builders follow the guidelines from the SRA, we asked
them: “To what extent did you follow the development guidelines provided by the
SRA?” The feedback was categorized into three possible responses:

• 2 out of 10 application builders indicated that the SRA played a regu-
lative role as its use was mandatory, leaving them a limited degree of
freedom and its use was subsequently validated. The compliance with
the restrictions set by the SRA was verified “at all times” [C-AB].



92 Chapter 5. Gathering Evidence of SRA Engineering

Figure 5.3: Popularity of SRAs’ cross-cutting software elements.

• 7 out of 10 application builders mentioned that the SRA played an in-
structive role, providing them a medium degree of freedom. The guide-
lines established by the SRA were followed without verifying compliance
(e.g., although SRA libraries are used, its usage is not controlled or ve-
rified). As one participant noted: “there was not a constant verification
but we always tried to use the artifacts provided by the SRA” [H-AB2].

• 1 out of 10 application builders stated that the SRA played an informative
role as its use was optional, leaving them a high degree of freedom. There
was neither control about the compliance of SRA nor its use.

5.3.2 Discussions

This subsection discusses the most relevant observations from the previous
results. Each subsection corresponds to one sub RQ B (i.e., RQ B.1, RQ B.2,
RQ B.3, and RQ B.4). Some of the results that may be related to the context
of the organizations (e.g., type of SRA, hours invested) are explained when
necessary.



5.3. Analysis of Artifacts of SRAs 93

Discussions on RQ B.1: software elements, guidelines and documentation
are the main artifacts of SRAs

In Chapter 3.3.1 we discussed the types of artifacts of SRAs as reported in the
literature. The results from this study support the three first types of artifacts
(see Section 5.3.1). First, an SRA provides software elements (provided as
source code or libraries) to be reused for all the applications. Second, an SRA
provides guidelines (user manuals and guidelines for development, develop-
ment tools, templates of applications and sample instantiations) to homoge-
nize and facilitate the development of applications. Third, an SRA includes
documentation with the design of a solution (explicitly stated in technical do-
cumentation with architectural knowledge and management documentation)
to create a set of applications.

Next, we analyze the artifacts that were not highlighted by the participants
of this study or that surprisingly differs from our results.

• Hardware infrastructure is concern of other stakeholders in the con-
sulting firms context. The hardware infrastructure and its proper work-
ing is also necessary in SRA projects. However, it is not direct respon-
sibility of the participants of the study. Indeed, it is managed by other
stakeholders, even from other providers which were not everis. In any
event, SRA stakeholders stated that the SRA needs to be compliant with
the hardware infrastructure and this issue is dealt in different ways: a)
firstly design of software elements, e.g., “we started working in the con-
ceptual approach of the SRA, and later went down and thought about
the hardware infrastructure that supports it” [A]; b) firstly design of
hardware infrastructure, e.g., “when we analyzed their environment,
we found a pre-defined hardware infrastructure, which was a Unix with
WebSphere and Java” [D]; c) in parallel, e.g., “we designed SRA modules
and they fulfilled very strong non-functional requirements. At the same
time, we needed to be sure that some hardware infrastructure would
support it” [B].

• SRAs mostly perceived at a technological level. The elaboration of mis-
sion, vision and strategy of the organization was not mentioned by the
participants [3]. This element is the backbone of enterprise architectures
[111]. Contrary, SRAs are focused on the IT solution, instead of business
processes or organizational changes. However, when the organization
needs them, an SRA should provide the IT solution for these tasks, e.g.,
5 software architects stated that the SRA provides software elements



94 Chapter 5. Gathering Evidence of SRA Engineering

to support business process management (BPM), e.g., see BPM cross-
cutting module in Figure 5.3). In addition, SRAs do not aim to make
organizational changes. Software architects pointed out that the adop-
tion of the SRA did not imply any organizational change, and there were
changes only in the way to develop applications. However, an SRA can
support organizational changes as it did in one client organization: “The
SRA allowed going from a centralized software system in Barcelona to
split it into 6 regions. This allowed both organizational and technological
changes” [I]. It has led to the creation of two different “cultures”, clearly
explained by one software architect: “An enterprise architecture defines
the different areas of the organization at a much higher level than SRAs,
and also how it can be translated into systems, without dealing in depth
in the implementation of software components at the low or technology
level. It has led to two definitions of architecture: enterprise architecture,
and solution SRA that is like the enterprise architecture already landed
on a specific technical implementation” [H]. To sum up, SRAs result in
an extension or sub part of enterprise architectures at a lower level.

• An SRA could also include other artifacts. Some artifacts reported in
the literature, such as algorithms [4], were not mentioned in this study.
A reason could be that the study does not cover all the possible business
domains, and the presence of specific artifacts depends on the domain.
For example, it has been reported by other researches the presence of
computational models and algorithms in SRAs for the space domain
[71][112]. We can conclude that an SRA does not have to include all the
artifacts uncovered by this study (indeed, there are SRAs from our study
that do not include all of them). Also, SRAs can provide other artifacts
that were not uncovered. The unique artifacts that are mandatory are
software elements because without them, no SRA can exist (it would be
a reference model instead [1]). However, the more artifacts an SRA has,
the more control it has over the applications, and the more benefits from
reuse it triggers.

To sum up, the views of Nakagawa et al. [13] and Herold et al. [70] are
very close to the results of our case study. The former only differs in the
importance given to the hardware. The latter do not mention the technical
and management documentation, but it has a very similar view with regard
to the artifacts that serve as guidelines.



5.3. Analysis of Artifacts of SRAs 95

Discussions on RQ B.2: SRAs are created from existing assets

When an SRA project starts, software architects could bump into two possible
situations: “when we have the chance to create a completely new SRA”, but
it also could happen that some architecture exists and “the client organization
asks you: ‘do whatever you want, but improve it’ ” [A]. As we have seen in
the results, even in the former case, the nine SRAs of the study are defined
based on accumulated practical experience from previous software systems
developments (either from everis or the client organization). The most impor-
tant artifact being reused is everis’ reference model, in 8 out of 9 projects. This
reflects its usefulness and its reuse for different client organizations. Under
this scenario, everis has recently created a platform-specific SRA, called j-everis,
to benefit as much as possible from reuse in future SRA projects.

This coincides with the literature that states that the SRA design is based
on reusing existing assets when possible [10, 71, 72]. In industry, it seems
difficult to find futuristic/preliminary SRAs (those only based on theoretical
architectural patterns instead of experience), being common practice/classical
SRAs [4]. Among the assets reused it is surprising that no architect mentioned
reusing architectural knowledge from clients. It may be because they are
consulting projects that need external support. Also, in 66% of the projects
some software element from the client has been reused, which indicate the
popularity of incremental evolution in SRA projects.

Finally, when assets from the market have been reused, the decision of
going open source or commercial depended on the non-technical requirement
of availability of budget. For instance, in projects A, E and G, open source
were used to reduce costs and there was no possibility to acquire commercial
packages whereas in project H the organization previously acquired Oracle
products and wanted to take as much benefit from them as possible.

Discussions on RQ B.3: platform-specific SRAs are potentially reusable in
many business domains

SRAs can be designed to capture the essence of software systems that belong
to either a technological or a business domain. The respondents of our survey
support these two types of domains. It is important to note, though, that the
SRAs of our survey were designed for a single organization (an everis’ client
organization).

As a main result, we saw that platform-specific SRAs (those with the scope
of a technological domain) can be interesting for many organizations with



96 Chapter 5. Gathering Evidence of SRA Engineering

different business domains but similar technological problems. Therefore,
they are potentially reusable: “you cannot reinvent the wheel; if you create an
SRA is because you think it is good. If you then go to another SRA project and
do not use any of the previous, it would be a little suspicious” [C]. However,
since they are created for a single organization confidentiality and property
issues come up: “from previous SRAs we reuse gained knowledge, but the
code of the SRA is property of the client organization” [H]. On the other
hand, the reuse of SRAs with the scope of a business domain would require
the cooperation between competitor organizations, what seem difficult if there
are not special interests by all parts. An example of a industry-specific SRA for
many organizations is AUTOSAR, which standardizes software development
of automotive competing firms (see Chapter 7.1).

Although potentially reusable, platform-specific SRAs are difficult to de-
sign in the beginning: “designing reuse SRAs complicates the design phase
because you have to identify the pieces that are really reusable whereas the
business logic is responsibility of the application developer” [F]. Platform-
specific SRAs are possible because “there are not that many architectural styles,
e.g., Microsoft made a compendium of architectures [113]” [A].

We think that a confounding factor to this result is the effort invested in
an SRA. A high effort invested in an SRA project could lead to create many
specific artifacts to the business domain. The SRA of the project B, which has
been evolved since 2006, was the unique highlighted as not reusable in other
domains. The five SRAs categorized as platform-specific [A, D, E, G, I] and
that can be applicable to other business domains are among the ones in which
less effort has been invested. Another factor is that three of these SRA projects
were only in the design phase.

• Divergences among stakeholders. With regard to SRA reuse in other
domains, software architects and architecture developers of the same
projects share a similar vision whereas application builders differ from
them. It may be because architecture developers have a global vision
similar to software architects. However, application builders lack expe-
rience. Indeed, this role could be performed by people that have just
started to work in the company without experience (as the two applica-
tion builders that do not share the same vision).

The discrepancy about the most popular cross-cutting elements shows
the importance of such elements for the different types of stakeholders.
Architecture developers and application builders give importance to the
modules that help then through the development (e.g., logging, error



5.3. Analysis of Artifacts of SRAs 97

management, and configuration) whereas software architects highlight
the modules that help to fulfill significant requirements (e.g., BPM).

Although most of the organizations share popular cross-cutting elements
(e.g., persistence and security), the inclusion of others elements in a SRA
depend on the business domain and on the organization needs. For
instance, the organizations of the public sector domain present different
needs: project E needed batch tasks; project I did not need presentation;
and the projects E, F and G do not include business processes (i.e., BPM).

Discussions on RQ B.4: conformance analysis is unusual

Software architects give high importance to an adequate adoption of guide-
lines, e.g., “no matter how good the SRA is, if application builders do not
follow guidelines and procedures properly for the good SRA usage, they will
not get much profit” [C]. However, in most of the cases, although application
builders follow SRA guidelines, the compliance of the resulting software sys-
tems with the SRA is not verified. A reason for this situation is whether the
goal of the SRA may involve the need of conformance analysis or not. The
nine SRAs of this study aim to either standardize or facilitate the design and
implementation of a set of software systems (the two goals that an SRA could
have as stated in [4]). The former type of SRA requires to all applications of the
organization to be based on the SRA (plays a regulative role) whereas the latter
type just recommends and facilitates the development of applications based on
the SRA (instructive/regulative role). As one software architect noted: “there
are usually two types of approaches to SRA: the extremist, in which the SRA
indicates how to do everything and application builders focus on what the
SRA gives and cannot do anything else; and other less strict, in which the SRA
provides some tools, some modules and components, and then application
builders use and extend them as they wish” [B]. When conformance analysis
is done (e.g., through rules for analyzing code and dependencies in Sonar)
applications are not uploaded to the production environment if they do not
conform the SRA rules. For those SRAs that aim at facilitating the design,
conformance analysis is not a must. For instance, the SRA of the project F
is for a public administration with many IT departments, therefore they can-
not force developers to forget previous technologies, but only suggest them
to use the new SRA. Other reasons could be that companies demands short
time-to-market and conformance checking requires time and resources, or the
unavailability of tools.



98 Chapter 5. Gathering Evidence of SRA Engineering

5.4 Analysis of Benefits and Drawbacks of SRAs (RQ C)

This subsection presents the results and discussions for the RQ C: “What are the
benefits and drawbacks of adopting SRAs in the industrial practice from the perspective
of different stakeholders involved in its usage?” (see RQs in Section 5.1.2).

5.4.1 Results

The results are grouped in two subsections according to the RQ C.1 and RQ
C.2. The following elements are used to report the main findings:

1. non-mutually exclusive categories created from the analysis of all stake-
holders’ responses as indicated in Section 5.1.5;

2. representative quotes of these categories, indicating among square bra-
ckets their project.

3. bar and bubble charts that respectively show the frequency in which
stakeholders mentioned each category. They indicate the most popular
SRAs benefits and drawbacks, and the different perception among SRA
designers and users.

Moreover, we provide further details about categories, stakeholders’ re-
presentative quotes, and cluster analysis to understand different contextual
aspects (such as respondent experience and different application domains) in
an additional document5. Furthermore, the raw data is available on a csv file6.

RQ C.1: SRA benefits from using SRAs in everis’ client organizations

We report the resulting categories of SRA benefits, enclosing the perception of
all stakeholders. Table 5.3 shows representative quotes of these categories and
Fig. 5.4 presents the detail of how many respondents of each type considered
each of the benefits. The categories of the mentioned benefits were:

• (Ben-A) Reduced development costs. 23 out of 28 participants empha-
sized the perception that the SRA reduces the development effort and the
costs by enabling the reuse of common assets, facilitating functionality
and speeding up the development of applications. Regarding to this,

5Available at http://www.essi.upc.edu/~smartinez/files/tosem15-attachment.pdf
6Available at http://www.essi.upc.edu/~smartinez/files/tosem15-data.xlsx

http://www.essi.upc.edu/~smartinez/files/tosem15-attachment.pdf
http://www.essi.upc.edu/~smartinez/files/tosem15-data.xlsx


5.4. Analysis of Benefits and Drawbacks of SRAs 99

some respondents also commented on the appropriateness of investing
time in common software elements that would be reused, such as cross-
cutting elements (e.g., persistence and logging modules) that appear in
all applications and are time-consuming without SRAs.

• (Ben-B) Improved maintainability and reduced maintenance costs. 22
out of 28 respondents perceived an improved maintainability and un-
derstandability of applications derived from the SRA mainly because of
the modularity of the SRAs.

• (Ben-C) Easier application development and increased productivity of
application builders. 21 out of 28 participants stated that the SRA
artifacts help them to build applications in an easier way because artifacts
abstract them from most technical problems (e.g., communication, back-
ends, . . . ). This is because architecturally-significant requirements were
already addressed by the SRA artifacts, facilitating the development of
applications.

• (Ben-D) Incorporation of latest technologies. 15 out of 28 agreed that
SRAs were used as a way to foster the use of the latest technologies in the
applications of the organization. Among other things, using latest tech-
nologies instead of older ones facilitates the recruitment of professionals
with the required technological skills.

• (Ben-E) Alignment with business needs. 12 out of 28 mentioned that
the design of the SRA inherently considers important organizational
business processes, so that the applications that are based on it, are more
aligned with business needs, e.g., by supporting the particular workflow
in a process.

• (Ben-F) Homogenization of the development and maintenance of a
family of applications. 9 out of 28 respondents considered that the
standardization promoted by SRAs implies a higher control over what it
is being done (supporting distributed teams in different locations), and
helps creating a corporate style for all applications.

• (Ben-G) Increased reliability of SRA’s software elements that are com-
mon for a set of applications. This idea, shared by 9 out of 28 partici-
pants, states that the SRA elements have been tested and matured. As a
consequence, SRA common elements have fewer errors.



100 Chapter 5. Gathering Evidence of SRA Engineering

• (Ben-H) Others benefits. In this category we include the benefits not
mentioned by any stakeholder type more than once. Software architects
indicated: application of best practices; easy distribution of the SRA
through the web; support for application builders in case of problems.
Architecture developers indicated: improved decision-making; reduced
license costs; ability of incorporating more functionality to applications.
Application builders indicated: improved agility when requirements are
changed; improved decision-making; good documentation of SRAs.

As we can see in Table 5.3 and Fig. 5.4, about 80% of participants agreed
that client organizations mainly benefit by: reduced development costs (Ben-
A) and improved maintainability (Ben-B). By means of the interviews done to
software architects we got useful details to understand how reduced develop-

Table 5.3: Quotes from respondents about SRA use benefits.

Code Representative quotes from software architects #SA #AD #AB %Total
Ben-A “If the developers need to use common software,

they know that the SRA offers software elements
that facilitate functionality and speed up the
process” [F].

7 8 8 82%

Ben-B “The cost of maintaining an application based on
the SRA is lower because SRA-based applications
are more comprehensible and easier to evolve and
maintain” [A].

5 7 10 78%

Ben-C “The SRA abstracts you from the most technical
problems” [B]. “SRA improves productivity in the
development of applications” [C].

7 5 7 68%

Ben-D “Technological updates facilitate the recruitment
of professionals” [H].

3 5 7 53%

Ben-E “The business process of reviewing records was
dramatically improved” [I].

3 4 5 43%

Ben-F “The SRA offers procedures and a methodology
about how to make applications” [C].
“Homogeneity helps to have a distributed team in
different locations” [E].

6 2 1 33%

Ben-G “SRA software elements have been tested and
matured, what implies reliability” [F].

5 3 1 33%

Ben-H “We used good practices like removing ’dead
code’ and wrappers of the SRA” [F]. “The SRA
can be found on the Web, what saves distribution
costs” [H]. “If the application builder has
problems, there is a support team that helps
him/her to solve problems” [F].

2 3 2 25%



5.4. Analysis of Benefits and Drawbacks of SRAs 101

Figure 5.4: Benefits of the use of SRAs in organizations.

ment costs was achieved: because of the reuse of software elements, such as
cross-cutting modules and services that implement business logic (in 5 out of 9
projects); agile and automatized development (4); improved configuration of
software elements, e.g., setting up the modules to be reused by the application
is fast (3); and technological and architectural decisions were already taken,
i.e., it saves time during the architecture design of every new application and
improves reliability (2).

In a lower extent but still highly supported (68% and 53% respectively),
participants also mentioned easier development (Ben-C), and incorporation of
latest technologies (Ben-D) as relevant benefits.

Next, we report the different stakeholders’ perception about such benefits.

RQ C.1.1: Stakeholders’ perception of benefits from using SRAs in client
organizations. In order to show the different perception of stakeholders
about the benefits of using SRA in client organizations, we graphically report
such benefits as a bubble chart in Fig. 5.5. The X-axis contains the frequency
in which SRA designers mentioned the benefits whereas the Y-axis represents
the same frequency for application builders. We divided Fig. 5.5 into four
quadrants. The bubbles contained in the up-right side represent relevant
aspects for SRA designers and users. The bubbles included in the up-left and
down-right side are only important for SRA users and designers respectively.
Finally, the bubbles contained in the down-left side were not strongly worded



102 Chapter 5. Gathering Evidence of SRA Engineering

Figure 5.5: Comparison of SRA benefits between designers and users.

by neither designers nor users. The size of the bubble corresponds to the
overall percentage of stakeholders that mentioned it.

Both SRA designers and users agree on benefiting from reduced deve-
lopment costs (Ben-A) and facilitating the development and maintenance of
applications (Ben-C). These two benefits were mentioned by a similar percen-
tage of SRA designers and users.

However, there was lesser stakeholders’ agreement for other benefits.
On the one hand, application builders were more concerned than SRA

designers about improved maintainability and reduced maintenance costs
(Ben-B) because they are responsible for evolving the applications and bene-
fit from a better understandability of SRA-based applications. Application
builders were also more concerned by the use of the latest technologies (Ben-
D), since they daily use the chosen technology stack. Moreover, application
builders considered the fact that applications are more aligned with business
needs (Ben-E) as a more relevant benefit compared to the other two roles. It is
important to mention that this benefit has appeared in SRA projects that allow
modeling and executing business processes (C, H, I projects). The reason we
posit is that application builders focus on the domain of a client organization
and have a higher knowledge of its business processes.

On the other hand, SRA designers disagreed about the standardization
and reliability of SRAs as a benefit (see Table 5.3). These two last benefits



5.4. Analysis of Benefits and Drawbacks of SRAs 103

received more attention by far from software architects (6 of them mentioned
standardization and 5 reliability) than from architecture developers (2 of them
mentioned standardization and 3 reliability). The reason may be that, even if
both types of stakeholders are SRA designers, software architects have a more
global vision about the whole project and have more experience in other SRA
projects.

RQ C.2: SRA drawbacks and risks from using SRAs in everis’ client
organizations

The three types of stakeholders mentioned the following drawbacks (see Table
5.4 and Fig. 5.6 for the details):

• (Dra-A) Additional high or medium learning curve for using the SRA.
Application builders need to learn how to develop and maintain appli-
cations with the SRA. Even though SRAs may be based on standards and
de-facto technologies, there are extra features that need to be mastered.

• (Dra-B) Limited creativity by giving regulative guidelines to develop
applications. “Rare” applications will seldom be developed, since SRAs
standardize developments.

• (Dra-C) Applications’ dependency over the SRA. When applications
have requirements that the SRA does not offer yet, their development is
stopped until the SRA implements these requirements.

• (Dra-D) Complexity. Architecture developers and application builders
mentioned that the use of the SRA could be complex, especially when it
grows.

• (Dra-E) None. Some of the responders indicated that the adoption of an
SRA does not present any drawback for them.

• (Dra-F) Wrong decisions about the technologies to be used in all the
applications (e.g., adopting technologies that were not mature enough
to be productive).

• (Dra-G) Other drawbacks. In this category we include the drawbacks
that were not mentioned more than once by any type of stakeholder.
Software architects indicated: difficulty to measure the time-to-market
reduction due to the SRA; time-to-market ultimately depends on the



104 Chapter 5. Gathering Evidence of SRA Engineering

skills of the application builder; initial investment in the SRA. Architec-
ture developers indicated: SRA maintenance. Application developers
indicated: use of old technologies; conflicts between technologies.

The most mentioned drawback of using an SRA, mentioned by 63% parti-
cipants, was that application builders need time to attend to training courses
and learn how to use the SRA (Dra-A). Software architects mentioned in the
interviews that they usually provide training sessions. Some of the artifacts
used in these sessions are: user manuals or documentation about how to use
the SRA (in 6 out of 9 projects); practical workshops for application builders
(6); training sessions and follow-up meetings for the project managers of the

Table 5.4: Quotes from respondents about SRA use drawbacks.

Code Representative quote from software
architects

# SA # AD # AB % Total

Dra-A “The SRA is very specific. Although it is
based on standards and de-facto
technologies, there are extra features to be
learnt” [B].

5 4 9 63%

Dra-B “The SRA homogenizes and standardizes.
Therefore, it implies less room for
innovation. For instance, an application
very ’rare’ will never be developed” [A].

2 1 5 28%

Dra-C “When applications have requirements
that the SRA does not offer yet, there are
dependencies. Until the SRA will satisfy
them, applications development is
blocked” [C].

4 2 0 22%

Dra-D There is no representative quote because
this category come up from the online
questionnaires.

0 2 2 14%

Dra-E There is no representative quote because
this category come up from the online
questionnaires.

0 1 3 14%

Dra-F “The used ESB was not mature enough to
be productive” [G].

2 0 0 7%

Dra-G “The SRA allows having the structure of
the application and a few screens working
in one day, but it always depends on the
applications builders and business logic
that they put inside" [F].

2 2 2 21%



5.4. Analysis of Benefits and Drawbacks of SRAs 105

Figure 5.6: Drawbacks of the use of SRAs in organizations.

client organization (5); description document of the architecture (2); a wiki
with material (e.g., how-to guides, configuration files) to support application
builders (2); support office and service (2); and continuous training when there
were also SRA designers from the client organization (2).

In a lesser extent, the second and third most popular drawbacks were:
limiting application builders (Dra-B), mentioned by 28% participants; and
dependencies over the SRA (Dra-C), mentioned by 22% participants.

Besides analyzing the main risks and limitations from using SRAs, we
report the different vision of stakeholders below.

RQ C.2.1: Stakeholders’ perception of drawbacks of SRA use for client
organizations. The findings about drawbacks clearly reflect the daily work
of each role (see Fig. 5.7). Software architects are more worried about decisions
of technologies that they make (Dra-F) and offering as soon as possible SRA
common software elements to application builders, so that they do not block
others (Dra-C). On the other hand, application builders are more worried about
the learning curve (Dra-A), and the restriction of following SRA standards and
procedures that forces them how to do things (Dra-B).

Surprisingly, only 14% of participants indicated that the use of an SRA is
complex (Dra-D) whereas 63% mentioned a high learning curve. No software
architect mentioned the complexity of an SRA to be a drawback. The main
reason could be that they think that SRAs ease the development of applications,



106 Chapter 5. Gathering Evidence of SRA Engineering

Figure 5.7: Comparison of SRA drawbacks between designers and users.

and that application builders just need time to learn the extra features of an
SRA, which from their point of view may be time-consuming but not complex.

One architecture developer and three application builders indicated that
the use of an SRA does not have any drawback (Dra-E). It could be important
to mention that these three application builders stated that they had “no ex-
perience in SRAs” before that project, so they were not yet experienced then.
Although the architecture developer had “medium experience in SRAs”, his
SRA project was in an early phase by the time we made the interview.

In addition, stakeholders were also inquired about potential improvements
they would do to the SRA.

RQ C.2.2: Improvements that stakeholders would do. We asked to stake-
holders what they think that should be changed, included or updated in future
versions of the SRA. Stakeholders mentioned the following improvements to
be done (see Table 5.5 and Fig. 5.8 for the details):

• (Imp-A) Add functionality or modules to the SRA. For instance, one
interviewee suggested developing a visual plugin to make easier the
development of components and automatize more the job for application
builders.



5.4. Analysis of Benefits and Drawbacks of SRAs 107

Table 5.5: Quotes from respondents about improvements.

Code Representative quotes from software
architects

# SA # AD # AB % Total

Imp-A “Our aim is to foster a visual plugin that
makes easier the development and
automatize more the development of
components for the application builders”
[C].

6 4 8 64%

Imp-B “We are limited with JSF, migrating to
other framework, like Sencha, would
allow offering presentation not only for
web browser, but also mobile devices” [G].

5 2 1 29%

Imp-C “There is a module that is more complete
than what it is really asked for. Thus, it is
not aligned with business needs and
therefore it should be simplified” [E].

1 2 0 11%

Imp-D “The main point is to move to continuous
integration” [H].

2 0 0 7%

Imp-E “There are very old software elements that
we have inherited. It would be good to
update them because you do not know
them well since they are black boxes” [B].

1 0 0 4%

Figure 5.8: Identified to-do improvements in everis’ SRAs.



108 Chapter 5. Gathering Evidence of SRA Engineering

• (Imp-B) Technology change because current one is not enough mature or
appropriate, or it needs an upgrade to the latest version, e.g., more up-to-
date BPM engines, or migration from JSF to allow mobile technologies.

• (Imp-C) Simplify modules, e.g., when they cover many functionalities.

• (Imp-D) Add new practices or guidelines to the SRA, e.g., moving to a
continuous integration approach.

• (Imp-E) Migrate from legacy applications.

The most mentioned improvement, by 64% of participants, is that they
would add functionalities or components to the SRA (Imp-A). This means
that typically SRAs are not definitive, and they are always evolving. Indeed,
successful SRAs need to be evolved after their design as long as they are used.

29% of participants consider necessary to update some technology (Imp-B),
which is related to Ben-D. One possible reason could be that new stakehol-
ders that enter an SRA project would have taken other decisions. Obviously,
changing technologies requires extra effort that cannot always be spent.

5.4.2 Discussions and Comparison with the Literature

The aim of Subsection 5.4.1 was to show the results and to discuss the vision
of different types of stakeholders (which was not addressed in previous lite-
rature). In this subsection, we compare the main findings of our study with
respect to the literature (see Chapter 3.3.2), to analyze how our findings sup-
port the claims made by other researchers. Next, we respectively focus on: the
benefits of SRA usage, the drawbacks of SRA usage, the analysis of benefits
and drawbacks in certain application domains, and how to use these results.

Discussion of SRA benefits

Table 5.6 compares the theoretical benefits of SRAs (see Section 3.3.2) with the
results of this case study. The first column indicates the benefit. In total, there
are eleven benefits that were previously discussed in the literature. For them,
the second column shows the extent to which the results from our study con-
firm (X), partially support or help to understand (±), do not explicitly mention
(◦) or refuse (×) these benefits. If the benefit was mentioned while asking about
the benefits of designing SRAs (instead of using them), we indicate it with an
asterisk (*), see Section 5.5.2. The third column represents the percentage of
stakeholders that mentioned that benefit. Finally, some comments are made.



5.4. Analysis of Benefits and Drawbacks of SRAs 109

The results of the study show that everis’ practitioners give different im-
portance to specific benefits. For instance, they give more importance to reuse
and facilitation than to other benefits. The most perceived benefit of the SRAs
in the client organizations was systematic reuse (B3), that lead to the reduction
of the time and cost to develop and maintain applications and shorter time-to-
market. The second most perceived benefit was the facilitation by providing
artifacts for the design and development of applications (B2), which have been
specifically discussed in [38]. In our study, interoperability (B6) and best prac-
tices (B10) were not remarkably highlighted as a benefit of SRAs. This could
be because the stakeholders did not have it explicitly in mind as they were not
the main goals of their projects.

Discussion of SRA drawbacks

Table 5.7 shows the drawbacks from using SRAs following the same format of
Table 5.6. In this study, three new drawbacks of SRAs were found, which are
shown in the last three rows because they could not match with the theoretical
ones. These three drawbacks are: learning curve, dependency in the SRA, and
complexity. It is important that practitioners are aware of them so that they
focus on lowering the risk from them when designing or restructuring their
SRAs.

First, learning curve is the most common problem in SRA projects. Such
learning curve mainly consists of the training of application builders in new
technologies and specific design decisions, e.g., “the SRA is very specific.
Although SRA is based on standards and de-facto technologies, there are extra
features that need to be learnt” [B]; “SRA requires the knowledge in all the
layers, not only in the business layer” [E]; “although the organization had
experts in Oracle Forms, they did not have knowledge about developing Java
applications” [H]; “the learning curve is low as long as the underlying basic
technologies are already known” [F-AD]; “you can learn the SRA essentials in
two weeks, but to gain a deep understanding it requires more than one year”
[I-AB].

Second, software architects and architecture developers highlighted as an
important activity managing the dependencies that an SRA creates to the
development of applications.

Third, a factor that can really jeopardize the success of an SRA is its com-
plexity. If an SRA is complex, and its goal is to facilitate the daily work of
application builders, it would be a failure. SRA designers should be aware of
this risk in order to create easy-to-use SRAs.



110 Chapter 5. Gathering Evidence of SRA Engineering
Ta

bl
e

5.
6:

Su
m

m
ar

y
of

be
ne

fit
s

of
us

in
g

SR
A

s.

Be
ne

fit
s

D
ia

gn
os

ti
c

%
So

m
e

fu
rt

he
r

fin
di

ng
s

fr
om

th
is

st
ud

y
St

an
da

rd
iz

at
io

n
(B

1)
±

33
%

(B
en

-F
)M

or
e

th
an

th
e

ha
lf

of
so

ft
w

ar
e

ar
ch

it
ec

ts
,c

on
tr

ar
y

to
ot

he
r

st
ak

eh
ol

de
rs

,
in

di
ca

te
d

th
at

SR
A

s
ho

m
og

en
iz

es
th

e
de

ve
lo

pm
en

ta
nd

m
ai

nt
en

an
ce

of
ap

pl
ic

at
io

ns
.

Fa
ci

lit
at

io
n

(B
2)

X
68

%
(B

en
-C

)S
ta

ke
ho

ld
er

s
cl

ai
m

ed
th

at
SR

A
ar

ti
fa

ct
s

m
ak

e
ea

si
er

th
e

de
ve

lo
pm

en
to

f
ap

pl
ic

at
io

ns
.

R
eu

se
(B

3)
X

82
%

(B
en

-A
)(

Be
n-

B)
St

ak
eh

ol
de

rs
in

di
ca

te
d

co
st

sa
vi

ng
s

in
SR

A
-b

as
ed

ap
pl

ic
at

io
ns

de
ve

lo
pm

en
ta

nd
m

ai
nt

en
an

ce
be

ca
us

e
of

sy
st

em
at

ic
re

us
e

of
bo

th
ar

ch
it

ec
tu

ra
l

kn
ow

le
dg

e
an

d
co

m
m

on
el

em
en

ts
.

R
is

k
re

du
ct

io
n

(B
4)

±
33

%
(B

en
-G

)S
ta

ke
ho

ld
er

s
(m

ai
nl

y
so

ft
w

ar
e

ar
ch

it
ec

ts
)p

oi
nt

ed
ou

ti
nc

re
as

ed
re

lia
bi

lit
y

of
ap

pl
ic

at
io

ns
be

ca
us

e
SR

A
’s

so
ft

w
ar

e
el

em
en

ts
ha

ve
be

en
pr

ev
io

us
ly

de
ve

lo
pe

d,
te

st
ed

an
d

m
at

ur
ed

.
En

ha
nc

ed
qu

al
it

y
(B

5)
±

82
%

(B
en

-E
)T

he
y

hi
gh

lig
ht

ed
th

e
im

pr
ov

em
en

to
fa

rc
hi

te
ct

ur
al

ly
-s

ig
ni

fic
an

t
re

qu
ir

em
en

ts
.H

ow
ev

er
,i

ti
s

no
td

ue
to

th
e

us
e

of
an

SR
A

,b
ut

an
y

so
ft

w
ar

e
ar

ch
it

ec
tu

re
.Q

ua
lit

y
at

tr
ib

ut
es

cl
ea

rl
y

pr
om

ot
ed

by
SR

A
s

ar
e

re
us

ab
ili

ty
an

d
m

ai
nt

ai
na

bi
lit

y
du

e
to

re
us

e.
In

te
ro

pe
ra

bi
lit

y
(B

6)
◦

-
A

lt
ho

ug
h

so
m

e
SR

A
s

in
te

gr
at

ed
ne

w
ap

pl
ic

at
io

ns
w

it
h

se
rv

ic
es

,l
eg

ac
y

ap
pl

ic
at

io
ns

an
d

ot
he

r
ba

ck
-e

nd
s,

st
ak

eh
ol

de
rs

do
no

te
xp

lic
it

ly
m

en
ti

on
ed

it
as

a
be

ne
fit

.
K

no
w

le
dg

e
re

po
si

to
ry

(B
7)

X
*

67
%

SR
A

de
si

gn
er

s,
as

ve
nd

or
s

of
an

SR
A

,m
en

ti
on

ed
it

on
ly

w
he

n
as

ke
d

ab
ou

tt
he

re
fe

re
nc

e
m

od
el

.T
he

y
po

in
te

d
ou

tt
he

im
po

rt
an

ce
of

ha
rv

es
te

d
ex

pe
ri

en
ce

fr
om

pr
ev

io
us

su
cc

es
sf

ul
pr

oj
ec

ts
an

d
m

ak
in

g
it

ex
pl

ic
it

.
Im

pr
ov

ed
co

m
m

un
ic

at
io

n
(B

8)
±

*
11

%
SR

A
de

si
gn

er
s,

as
ve

nd
or

s
of

an
SR

A
,m

en
ti

on
ed

it
on

ly
w

he
n

as
ke

d
ab

ou
tt

he
re

fe
re

nc
e

m
od

el
.S

R
A

s
he

lp
to

sh
ar

e
an

ar
ch

it
ec

tu
ra

lm
in

ds
et

be
tw

ee
n

al
l

st
ak

eh
ol

de
rs

,e
ve

n
w

he
n

th
ey

ar
e

fr
om

m
ul

ti
pl

e
ve

nd
or

s
or

w
or

k
at

m
ul

ti
pl

e
lo

ca
ti

on
s.

El
ab

or
at

io
n

of
m

is
si

on
,

vi
si

on
an

d
st

ra
te

gy
(B

9)

×
7%

Th
ey

re
m

ar
ke

d
th

at
th

is
is

a
be

ne
fit

fr
om

en
te

rp
ri

se
ar

ch
it

ec
tu

re
s.

“E
nt

er
pr

is
e

ar
ch

it
ec

tu
re

s
ar

e
m

or
e

am
bi

ti
ou

s
th

an
SR

A
s,

th
ey

do
no

to
nl

y
co

ve
r

th
e

te
ch

no
lo

gi
ca

l
pa

rt
,b

ut
al

so
th

e
bu

si
ne

ss
le

ve
l”

[A
].

Ye
t,

th
ey

po
in

te
d

ou
ta

pp
lic

at
io

ns
m

or
e

al
ig

ne
d

w
it

h
bu

si
ne

ss
ne

ed
s

(B
en

-E
).

Be
st

pr
ac

ti
ce

s
(B

10
)

◦
-

St
ak

eh
ol

de
rs

di
d

no
th

ig
hl

ig
ht

th
e

us
e

of
be

st
pr

ac
ti

ce
s

as
a

be
ne

fit
(o

nl
y

on
e

so
ft

w
ar

e
ar

ch
it

ec
t,

se
e

Be
n-

H
).

H
ow

ev
er

,p
ro

je
ct

s’
do

cu
m

en
ta

ti
on

an
d

57
%

of
so

ft
w

ar
e

ar
ch

it
ec

ts
co

ns
id

er
ed

th
at

it
is

an
as

se
tg

iv
en

to
ap

pl
ic

at
io

n
bu

ild
er

s,
an

d
hi

gh
lig

ht
ed

th
ei

r
im

po
rt

an
ce

:“
if

pr
ov

id
ed

be
st

pr
ac

ti
ce

s
ar

e
no

tf
ol

lo
w

ed
,t

he
us

e
of

th
e

SR
A

is
no

tg
oi

ng
to

be
po

si
ti

ve
”

[C
].

N
ov

el
de

si
gn

so
lu

ti
on

s
(B

11
)

±
53

%
(B

en
-D

)S
R

A
s

ar
e

a
w

ay
to

us
e

th
e

la
te

st
te

ch
no

lo
gi

es
in

a
po

rt
fo

lio
of

ap
pl

ic
at

io
ns

.



5.4. Analysis of Benefits and Drawbacks of SRAs 111
Ta

bl
e

5.
7:

Su
m

m
ar

y
of

dr
aw

ba
ck

s
of

SR
A

s.

D
ra

w
ba

ck
s

D
ia

gn
os

ti
c

%
So

m
e

fu
rt

he
r

fin
di

ng
s

fr
om

th
is

st
ud

y
In

it
ia

l
in

ve
st

m
en

t
(D

1)

±
4%

(D
ra

-G
)S

ta
ke

ho
ld

er
s

m
en

ti
on

ed
th

e
ne

ce
ss

it
y

of
an

in
it

ia
li

nv
es

tm
en

to
ve

r
th

e
SR

A
,b

ut
th

ey
di

d
no

ts
tr

on
gl

y
w

or
d

it
.A

re
as

on
m

ay
be

th
at

w
e

di
d

no
t

in
cl

ud
e

as
st

ak
eh

ol
de

rs
th

e
up

pe
r

m
an

ag
em

en
to

fc
lie

nt
or

ga
ni

za
ti

on
s.

In
effi

ci
en

t
in

st
an

ti
at

io
n

(D
2)

±
11

%
(I

m
p-

C
)T

he
y

m
en

ti
on

ed
th

e
pr

ob
le

m
of

de
si

gn
in

g
co

m
m

on
so

ft
w

ar
e

el
em

en
ts

w
it

ho
ut

be
ar

in
g

in
m

in
d

bu
si

ne
ss

ne
ed

s,
w

ha
tc

an
le

ad
to

in
effi

ci
en

ti
ns

ta
nt

ia
ti

on
of

th
e

SR
A

.
To

o
A

bs
tr

ac
t

(D
3)

◦
-

N
on

e
of

th
e

pa
rt

ic
ip

an
ts

m
en

ti
on

ed
th

at
th

e
SR

A
of

th
ei

r
pr

oj
ec

tw
as

to
o

ab
st

ra
ct

or
th

e
op

po
si

te
.W

e
co

ns
id

er
th

at
si

nc
e

th
e

st
ud

ie
d

SR
A

s
w

er
e

us
ed

in
th

e
in

du
st

ry
an

d
ap

pl
ic

at
io

ns
ha

ve
be

en
im

pl
em

en
te

d
ba

se
d

on
th

em
,t

he
y

w
er

e
pr

ac
ti

ca
la

nd
pr

ov
id

ed
co

m
m

on
so

ft
w

ar
e

el
em

en
ts

an
d

gu
id

el
in

es
.

Te
rm

co
nf

us
io

n
(D

4)
±

43
%

5
ar

ch
it

ec
tu

re
de

ve
lo

pe
rs

an
d

7
ap

pl
ic

at
io

n
bu

ild
er

s
re

po
rt

ed
pr

ob
le

m
s

w
it

h
so

m
e

te
rm

co
nf

us
io

n
(e

.g
.,

th
ey

di
d

no
tg

iv
e

a
de

fin
it

io
n

co
m

pl
ia

nt
to

th
e

SR
A

co
nc

ep
t)

.
Ba

d
do

cu
m

en
ta

ti
on

(D
5)

×
4%

N
o

on
e

re
po

rt
ed

pr
ob

le
m

s
w

it
h

ba
d

do
cu

m
en

ta
ti

on
.I

nd
ee

d,
do

cu
m

en
ta

ti
on

w
as

de
sc

ri
be

d
as

a
ke

y
as

se
to

ft
he

SR
A

to
he

lp
ap

pl
ic

at
io

n
bu

ild
er

s,
an

d
an

ap
pl

ic
at

io
n

bu
ild

er
ex

pl
ic

it
ly

m
en

ti
on

ed
do

cu
m

en
ta

ti
on

as
a

be
ne

fit
.

Ba
d

qu
al

it
y

(D
6)

±
7%

(D
ra

-F
)S

of
tw

ar
e

ar
ch

it
ec

ts
w

er
e

co
nc

er
ne

d
ab

ou
tc

on
se

qu
en

ce
s

fr
om

a
w

ro
ng

de
ci

si
on

in
th

e
SR

A
.I

n
th

is
co

nt
ex

t,
it

m
ay

be
a

ve
ry

ri
sk

y
pr

ob
le

m
,

si
nc

e
th

e
qu

al
it

y
of

an
SR

A
is

pr
op

ag
at

ed
to

th
e

ap
pl

ic
at

io
ns

.
Li

m
it

in
g

(D
7)

±
28

%
(D

ra
-B

)L
im

it
in

g
th

e
cr

ea
ti

vi
ty

of
de

ve
lo

pe
rs

by
m

ak
in

g
le

ss
fle

xi
bl

e
th

e
de

ve
lo

pm
en

to
fa

pp
lic

at
io

ns
.

Le
ar

ni
ng

cu
rv

e
ne

w
63

%
(D

ra
-A

)A
dd

it
io

na
ll

ea
rn

in
g

cu
rv

e
fo

r
ap

pl
ic

at
io

n
bu

ild
er

s.
D

ep
en

de
nc

y
in

th
e

SR
A

ne
w

22
%

(D
ra

-C
)A

pp
lic

at
io

ns
de

pe
nd

on
th

e
co

m
m

on
el

em
en

ts
pr

ov
id

ed
by

th
e

SR
A

.

C
om

pl
ex

it
y

ne
w

14
%

(D
ra

-D
)E

ve
n

co
ns

id
er

in
g

th
at

SR
A

s
ai

m
to

be
ea

sy
-t

o-
us

e,
a

m
in

or
it

y
of

st
ak

eh
ol

de
rs

in
di

ca
te

d
th

at
it

w
as

co
m

pl
ex

.



112 Chapter 5. Gathering Evidence of SRA Engineering

SRA benefits and drawbacks by application domain

After the comparison of these results with the literature, we were wondering if
there are differences among the benefits and drawbacks of SRAs from different
application domains. In this case study, the SRA application domains were
banking, insurance, public sector and industry (see Table 5.2).

Regarding contextual aspects, we could see that in SRA projects from the
banking domain the effort invested was higher, both in terms of persons-month
and duration of the projects (i.e., years). With respect to certain benefits and
drawbacks, we could not detect any pattern or correlation that determines that
some benefits or drawbacks are exclusive of an application domain. However,
some effects caused by SRAs were perceived stronger in some application
domains than in others. In the banking domain, maintenance costs (Ben-B)
and the learning curve (Dra-A) of SRA projects were higher in comparison to
the other application domains. In the public sector domain, standardization
(Ben-F) was perceived more often as a benefit whereas easier development
(Ben-C), the use of latest technologies (Ben-D) and dependency over the SRA
(Dra-C) was perceived in a higher way in the rest of application domains. In
the other domains (i.e., industry and insurance domains), no correlations were
found among the application domain and certain benefits/drawbacks.

How to use these results

These results aim to help SRA practitioners as follows.
First, for organizations that need to decide whether to go or not to go for

an SRA program, understanding the benefits and drawbacks associated to
real SRAs can help them to realize important situations and make industrial
uptake of SRA research efforts easier.

Second, organizations that already have adopted an SRA, can use these
empirical results as a point of reference to assess their own benefits and
drawbacks. For instance, they may see that additional learning curve was
a commonly mentioned drawback in the everis SRA projects.

Third, organizations can find insights about how to improve their SRAs
from the responses from the participants. Table 5.8 shows the main improve-
ments that stakeholders mentioned, which type of role is interested the most
in each improvement, and to which benefits and drawbacks it affects.

To sum up, organizations of our case study experienced in a different
degree certain benefits. However, the achievement of certain benefits depends
on the goals that the organization wants to solve with the help of the SRA



5.5. Analysis of Benefits of ReferenceModels 113

Table 5.8: Summary of improvements and trade-off analysis of the benefits
that they promote and risks that need to be managed.

Improvement Asked by Promotes Need to
manage

Add functionality in
the common SRA
elements (Imp-A)

Applications
builders

Facilitation for
applications
development and
evolution (Ben-C)

Dependency
over the SRA
(Dra-C)

Change of SRA
technologies (Imp-B)

Software
architects

Update to the latest
technologies (Ben-D)

Wrong
decisions
(Dra-F)

Simplify SRA modules
(Imp-C)

Architecture
developers

Easier development
(Ben-C) and shared
mindset

Complexity
(Dra-D)

New SRA procedures
(Imp-D)

Software
architects

Standardization
(Ben-F)

Limit the
innovation
(Dra-B)

(see Table 5.2). For instance, one organization may aim, with a different
weight, at standardizing the developments of the applications, easing the
application’s development or interoperability. As a consequence, we think
that every organization should clearly state the benefits they aim to with the
SRA (a subset of the benefits of Table 5.6). Then, they can manage the SRA
project in order to achieve them. Moreover, it is important to note that these
goals may not be static, and can evolve with the time.

5.5 Analysis of Benefits of Reference Models (RQ D)

This subsection presents the results and discussions for the RQ D: “What are the
benefits and drawbacks of adopting SRAs in the industrial practice from the perspective
of different stakeholders involved in its design?” (see RQs in Section 5.1.2).

5.5.1 Results

Categories below come from the analysis of the answers from software ar-
chitects and architecture developers, as they are the ones that use the everis
reference model (see everis reference model in Chapter 2.4). They were speci-
fically inquired: “What are the main benefits for everis from designing many
SRAs from their corporate reference model?” Application builders were not



114 Chapter 5. Gathering Evidence of SRA Engineering

asked about such benefits because they do not use the reference model (and
sometimes they do not even know that it exists). Fig. 5.9 shows the distribution
of responses among those two types of respondents.

• (Ven-A) everis harvests experience for prospective SRA projects. The main
reason is that requirements are very similar between client organizations.
Some respondent estimated 90% of architectural knowledge reused.

• (Ven-B) Reusing architectural knowledge can speed up prospective SRA
projects and reduce time-to-market, by greatly reducing their planning
and development time.

• (Ven-C) They gain reputation for prospective client organizations and
gain organizational competence. It is a good point for everis to be able to
announce themselves as SRA providers of, for instance, a large bank.

• (Ven-D) Previous experiences reduce the risks in future projects because
a “to-be” reference model exists. This model can be used in all projects
that do not have very specific architecturally-significant requirements.

• (Ven-E) It provides a shared architectural mindset that makes projects
less dependent on particular architects.

• (Ven-F) It makes tacit knowledge explicit in the reference model. Some
tool support (e.g., wiki technologies) helps in managing such knowledge.

Figure 5.9: Benefits for everis from designing SRAs.



5.5. Analysis of Benefits of ReferenceModels 115

Table 5.9: Quotes from respondents about SRA design benefits.

Code Representative quote
Ven-A “The reference model receives continuous feedback from SRA projects” [G].
Ven-B “It is a differential factor because it greatly reduces the planning and

development times of the SRA, and hence the costs” [H].
Ven-C “It gives prestige to announce yourself as provider of successful SRAs” [D].
Ven-D “It reduces the risk of projects because a ’to-be’ model exists” [F].
Ven-E “The reference model allows architects to have the same way of thinking and

working in the software company” [B].
Ven-F “Architectural knowledge from the reference model is explicitly available in

a wiki” [G].

5.5.2 Discussions

As a vendor, everis designs SRAs for its client organizations using its corporate
reference model, see Figure 5.1. In this context, two theoretical SRA benefits
(B7, B8) were only mentioned when asking about the advantages of designing
many SRAs (i.e., reference model benefits). Therefore, in their point of view,
they are not benefits of SRA use (i.e., the context of everis’ client organizations),
but reference model use (i.e., the context of everis itself).

We see very surprising that they have not mentioned having a shared archi-
tectural mindset (B8) as a benefit of using an SRA, and only 11% highlighted
it as a reference model benefit. In our opinion, improving the communication
among multiple stakeholders that develop and maintain a wide portfolio of
applications is a key benefit of SRAs. Also, creating a knowledge repository
(B7) could be a benefit for the client organization that uses an SRA when such
SRA has matured enough and has been evolved. To sum up, we think that B7
and B8 could be benefits of SRAs in contexts in which the organization that
use the SRA is also the one that designs it (i.e., there is no vendor).

Besides knowledge repository and improved communication, reputation
was uncovered to be an important benefit for SRA vendors. Client organi-
zations rely more on vendors that have already tested their experiences in
other organizations. As a software architect mentioned: “it gives prestige to
announce yourself as the provider of successful SRAs” [D]. Also, vendors of
the SRA are more likely to also be the provider that develops the applications,
e.g., “once you define the SRA for a client organization, you have more op-
tions of developing applications on the top of that SRA, since you know it”
[H]. For this reason, the use of reference models is becoming popular among
SRA vendors [21].



116 Chapter 5. Gathering Evidence of SRA Engineering

5.6 Summary of the Second Cycle of RQ 1

With the goal of supporting organizations to understand, evaluate, and im-
prove SRA engineering, this chapter presented empirical evidence from everis
SRA projects to answer the following questions:

RQ A. Which are the main motives to use an SRA to design systems’ concrete
architecture in an organization?

RQ B. Which are the artifacts that compose an SRA and how such artifacts
are designed, reused, and used?

RQ C. What are the benefits and drawbacks of adopting SRAs in the industrial
practice from the perspective of different stakeholders involved in its
usage?

RQ D. What are the benefits and drawbacks of adopting SRAs in the industrial
practice from the perspective of different stakeholders involved in its
design?



Chapter 6

Guidelines for Gathering Evidence
of SRAs

In the two previous chapters, which represent the two first cycles of the action
research with everis regarding RQ 1, we have gathered experience, feedback,
and lessons learned. In this chapter, at the end of the formative stage, our goal
is to package such experience, feedback, and lessons learned into guidelines
for gathering empirical evidence of SRAs.

It is important to note that these guidelines are aimed to be useful not
just for everis, but also other organizations with a similar context. In order to
analyze whether other organizations deal with similar problems as everis, we
highlighted the similarities of SRAs designed by everis with other SRA contexts
that were reported in the literature and by practitioners. After this analysis,
we were able to only package into the guidelines the material that could be
used under other organizations context.

This chapter is organized as follows. Section 6.1 studies the similarities of
the context of SRAs in everis and SRAs in other firms in industry. Section 6.2
briefly discusses the formative cycles of the action research with respect to RQ
1. Section 6.3 packages the results and provide guidelines that help to answer
RQ 1. Finally, Section 6.4 briefly introduces how these guidelines for RQ 1
were validated.

117



118 Chapter 6. Guidelines for Gathering Evidence of SRAs

6.1 Similar Contexts of SRAs in Practice

The results from our action research in everis are particular to the context
described in Chapter 1.2.2 and Chapter 2.4. IT consulting firms, such as
Accenture [21] and Capgemini [70], also fit into the context at everis (i.e., they
use an industry-specific reference model, and they carry out the three types of
projects described in Chapter 2.4). However, to properly create the guidelines
for other SRA contexts, it is vital to first characterize SRA projects conducted
by other companies besides IT consulting firms.

As we mentioned in Chapter 1.1, architecture-centric approaches to de-
velop families of software applications are not new. Deelstra et al. give a
classification of these approaches with respect to the level of reuse [105]:

1. standardized infrastructure,

2. platform,

3. software product line, and,

4. configurable product family.

In this classification, SRAs can be positioned as standardized infrastruc-
tures or platforms, whereas software product lines and configurable product
families are based on product lines architectures. Several authors has stated
that SRAs are more generic than product lines architectures (see Chapter 2.3.3).
Next, we classify SRAs in the industry under the two former categories.

• On the one hand, standardized infrastructures have been used by public
administrations in Germany [70], in the Netherlands [55], and in Spain
[114]. These SRAs provide software assets as inspiration for the design of
applications, but little domain engineering effort is performed (i.e., little
domain-specific functionalities are included in the SRA). They are po-
pular in public administration because there is a need to cover multiple
organizations from different business domains (i.e., ministries or depart-
ments of the government) and little common functionality exist. Also,
the high distribution of development teams implies that these SRAs play
only an informative or instructive role rather than regulative.

• On the other hand, platforms additionally “require a certain amount of
domain engineering to create and maintain the assets that implement the
common functionality” [105]. There are several business domains that
have used this type of SRAs:



6.1. Similar Contexts of SRAs in Practice 119

– In the space domain, the NASA detected that “many Earth sci-
ence data system components and architectural patterns are recon-
structed for each mission” [71]. To reuse these assets in new systems,
they created the NASA Earth science data system SRA [19].

– In the banking domain, SRAs are usually used to integrate legacy
systems and new or migrated software systems that contain the
business logic. The common scenario is that these SRAs provide
common services that then may be reused in the different front-
ends or channels (e.g., desktop applications, web client applications,
mobile applications, and ATMs). An example is Credit Suisse [109].

– The most mature domain for SRAs may be the embedded systems
domain. For instance, Océ, a copier manufacturer, uses an SRA to
derive a concrete architecture for engines incorporated in a specific
series of Océ printers [50]. Besides, in the automotive industry,
car manufacturers such as Volvo [108] and BMW [115] started to
use SRAs to develop the software of electronic/engine control unit
based on basic software components that were unique to them.
As a further step, AUTOSAR has become popular later because it
standardizes basic software components for many car manufactur-
ers, suppliers and other related companies [116]. This enables the
reuse of software developed by original equipment manufacturers
in multiple car manufacturers. This has led to software ecosystems
that are characterized by a network of developers rather than a
single organization providing the final product [117].

To sum up, we can conclude that the core idea of using an SRA for the
development and maintenance of a family of software products is common in
the above contexts. However, corporate reference models are only commonly
used in IT consulting firms. As a consequence, the study of reference models
during the application of the guidelines should be optional so that it can be
used in these other contexts.

It is also important to note that all these SRAs are based on practical experi-
ence in the industry. This, the guidelines target this type of SRAs, also known
as classical [4]. Conversely, the guidelines cannot be applicable in preliminary
SRAs, i.e., those that are “defined when the technology, software solutions,
or algorithms demanded for its application do not yet exist in practice by the
time of its design” [4].



120 Chapter 6. Guidelines for Gathering Evidence of SRAs

6.2 Formative Stage: Evolution of the Guidelines

The process of packaging the guidelines have been done incrementally from
the feedback of the formative stage. The guidelines have mainly evolved to
target more narrowed research questions and objectives. Different previous
versions of the guidelines can be seen in [39, 26, 29, 30, 31].

As an example of such evolution, Figure 6.1 shows the guidelines as pre-
sented at the “X Workshop Latinoamericano de Ingeniería en Software Ex-
perimental” [26]. We can compare this previous version of the guidelines to
the current one, summarized in Figure 6.2. The RQ 1 is currently much more
narrow, since it does not target the evaluation of SRAs. At the doctoral sym-
posium IDoESE, it was commented that the previous RQ was too ambitious
[30]. It can also be observed that the last version of the guidelines focuses on
SRAs, rather than reference architectures for any architecture discipline (e.g.,
enterprise and system, see different architecture disciplines in Chapter 2.1).

Figure 6.1: Previous version of the guidelines to gather empirical evidence of
SRAs in industry [26].



6.3. Packaging the Guidelines 121

6.3 Packaging the Guidelines

everis’ results were suitably packaged with the aim of being applied in other
SRA projects and also in similar organizations.

First of all, organizations that may want to use these guidelines need to fit
into the context depicted in Section 6.1. This means that they need to design an
SRA based on practical experience, and to use such SRA for the development
and maintenance of a family of applications in industry. This is because the
input for using the guidelines is evidence from real SRA projects.

The guidelines for RQ 1 support organizations to understand, evaluate,
and improve SRA engineering based on corporate evidence by providing:

• A practitioner-oriented set of criteria to understand and evaluate an SRA
(results of Chapter 4), i.e., a set of relevant aspects for SRAs is facilitated
to check which ones are important for the organization.

• Templates of interview guides and online questionnaires to gather rel-
evant evidence (results of Chapter 5). Then, an organization can use
the provided template surveys to gather empirical evidence for its own
important aspects.

Figure 6.2: Guidelines to gather empirical evidence of SRAs in industry.

Figure 6.2 summarizes the guidelines for gathering evidence of SRAs in
order to improve SRA engineering in an organization. The guidelines are



122 Chapter 6. Guidelines for Gathering Evidence of SRAs

composed of the context of SRAs in industry, and materials to conduct two
empirical studies. Several data collection techniques exist [118]. For these two
empirical studies, the guidelines recommend: a focus group to determine the
set of criteria about SRAs important for an organization (see Section 6.3.1),
and a case study or survey (designed with a template survey) to gather evi-
dence about the previously identified relevant aspects and to improve SRA
engineering (see Section 6.3.2).

6.3.1 A Focus Group to Study the Relevant Criteria of SRAs for an
Organization

Below, we explain the context, objective, method, support material, and the
output in this empirical study of the guidelines.

• Context: Typically, organizations drive the design and use of SRAs in
an unsystematic manner [108]. To drive SRA engineering based on
evidence, it becomes fundamental to identify the relevant aspects of
SRAs as seen by practitioners.

• Objective: The objective of this study is to identify the aspects that are
important for each organization in order to support SRA engineering.

• Method: A focus group with relevant stakeholders (e.g., manager, archi-
tect, developer) to find out which aspects of SRAs are important to them.
A focus group is considered a proven and tested technique to obtain the
perception of a group of selected people on a defined area of interest
[118]. An example of conducting this empirical study and its approach
for data collection is described in Chapter 4.

• Support material: A set of relevant aspects of SRAs (available at the
Appendix C).

• Output: The relevant aspects of SRAs that are interesting for the organi-
zation that carries out the focus group.

6.3.2 A Survey or Case Study to Gather Evidence to Improve SRA
Engineering

Next, we explain the details of this empirical study of the guidelines.



6.3. Packaging the Guidelines 123

• Context: To reuse architectural knowledge and improve SRA engineer-
ing in prospective SRA projects, organizations need to understand SRA’s
characteristics, as well as its potential benefits and limitations. Gathering
evidence from previous SRA projects is a feasible way to start gaining
such an understanding.

• Objective: The purpose of the empirical study is to understand the
impact of using SRAs for designing the concrete architectures of the ap-
plications of an organization. This is a descriptive case study or survey
that measures what occurred while using SRAs rather than why. The fol-
lowing questions are important for organizations in order to understand
relevant Aspects 1 to 5 of SRAs (defined in Table C.1):

1. Why is an SRA adapted for creating concrete architectures of the
organizations’ applications? What type of SRA is being designed
and used in the organization?

2. What is the state of practice in requirement engineering for SRA
projects in the organization?

3. What is the state of practice in architectural design for SRA projects
in the organization?

4. Which tools and technologies are currently being used in SRAs
projects by the organization?

5. How does the adoption of SRAs provide observable benefits to the
different actors involved in SRA projects in the organization?

• Method: Exploratory surveys or case studies with personalized ques-
tionnaires applied to relevant stakeholders (e.g., software architects, ap-
plication builders,. . . ) to gather their perceptions and needs. An exam-
ple of conducting this empirical study and its approach for data collection
is described in Chapter 5.

• Support material: Template surveys to gather empirical evidence. Such
templates and guidelines for interview guides and questionnaires are
available at the Appendix C.

• Output: A corporate knowledge base about these aspects.



124 Chapter 6. Guidelines for Gathering Evidence of SRAs

6.4 Summative Stage: Validating the Guidelines

Once the guidelines were adequately shaped and improved, the summative
stage took place. The primary role of this stage was to obtain feedback to check
the utility of the guidelines and to validate them with more practitioners. This
evaluation consists of the use of the guidelines in other organizations to design
and conduct empirical studies. As part of this validation and summative stage
of these guidelines, the next two chapters present:

• A survey to gather empirical evidence about the benefits and drawbacks
of AUTOSAR, an SRA for automotive applications (see Chapter 7). This
survey used the support materials of these guidelines.

• The aggregation of the empirical evidence from everis with the empirical
evidence from other works (see Chapter 8). Such aggregation proves that
empirical evidence gathered by the support materials of these guidelines
can be synthesized with other studies.

Organizations facing the design and use of SRAs based on evidence will
benefit from these guidelines.



Chapter 7

The Benefits and Drawbacks of
AUTOSAR

This chapter aims to validate the guidelines for gathering empirical evidence
of SRAs proposed in Chapter 6. To this end, we used the materials of the guide-
lines (i.e., the practitioner-oriented set of criteria to understand and evaluate
an SRA, and templates of interview guides and online questionnaires to gather
relevant evidence) out of our industry-academia collaboration with everis. As
part of the validation and summative stage of RQ 1, we decided to study
an SRA widely used and publicly available. As a consequence, we chose
AUTOSAR, a mature and accepted SRA for automotive applications used
worldwide by more than 180 organizations. We designed a web-based survey
by using the guidelines of this PhD thesis, and contacted to 51 practitioners
with experience in using AUTOSAR.

This chapter is structured as follows. Section 7.1 provides a background
on AUTOSAR. Section 7.2 shows the research methodology of this empirical
study. Section 7.3 presents the results of this survey. Section 7.4 discusses
limitations of the survey. Finally, Section 7.5 summarizes the contributions of
the third action-research cycle of RQ 1.

7.1 Background on Automotive Software and AUTOSAR

Software development for automotive applications has steadily increased over
the last decades. In the automotive domain, software is a key area for inno-
vation and development costs. Electronics and software lead over 90% of all

125



126 Chapter 7. The Benefits and Drawbacks of AUTOSAR

innovations and determine up to 40% of a vehicle’s development costs, of
which 50% to 70% are dedicated for the software of Electronic Control Units
(ECU) [18].

Due to the importance of software development for automotive innova-
tion and development costs, the standardization of a software architecture,
methodology, software platform, and application interfaces may support to
manage growing systems complexity and their integrations, as well as keep-
ing the costs feasible.

Under this scenario, AUTOSAR (AUTomotive Open System ARchitecture)
was founded in 2003, and first released in 2005. AUTOSAR is a worldwide
development partnership to “establish an open industry standard for the au-
tomotive software architecture between suppliers and manufacturers” [119].
The partnership include different types of stakeholders: Original Equipment
Manufacturers (OEM), suppliers, tool developers, and new market entrants.

AUTOSAR is an SRA that has become mature and accepted [120]. Due
to the success of AUTOSAR in industry, being used by many organizations,
we believe that investigating its benefits and drawbacks could help us to
validate the guidelines presented in Chapter 6. Our research goal is to gather
evidence of benefits and drawbacks of using AUTOSAR in the industrial practice
from different stakeholders involved in its usage. To get an in-depth understanding
of the benefits and drawbacks of AUTOSAR usage for automotive software
development, we designed and executed a web-based survey. We obtained 51
valid responses.

The results of this web-based survey could be of interest for researchers and
practitioners. On the one hand, for researchers who would like to get insights
about the real benefits/drawbacks of this type of SRAs in an industrial setting;
in order to better shape their approaches for exploiting such potential benefits
and mitigating potential drawbacks. On the other hand, results are relevant
not only for AUTOSAR practitioners to get directions for improvement of
current drawbacks and risks; but also for practitioners in general that can
better understand and polish their expectations from an SRA.

In particular, these results may be relevant for other business domains
besides automotive software. For instance, this is the idea of the initiative
“derive applications” of AUTOSAR, which aims to extend the scope to non-
automotive areas [75].



7.1. Background on Automotive Software and AUTOSAR 127

7.1.1 AUTOSAR Software Reference Architecture

A car includes a number of ECUs or micro-controllers (µC) modules, most of
them dedicated to drive sensors and actuators [117]. For instance, the software
than run on an ECU can first read data from the car sensors (e.g., engine speed
and the speed that is requested by the driver), and then process such data
to control actuators (e.g., changing the amount of fuel or the timing or its
ignition). This is only an example of application of the 80 to 100 ECUs that
today’s luxury-class cars include [121].

AUTOSAR provides a layered component-based software architecture to
structure the software for an ECU. AUTOSAR is an SRA with these charac-
teristics (see SRA characteristics in Chapter 2.2.2):

1. It aims to standardize the ECU software architectures, aiming at compo-
nents interoperability.

2. It targets multiple organizations (e.g., OEMs, suppliers, tool developers
and new market entrants) that share the automotive market domain.
AUTOSAR is a global standard with 186 partners by March 2015 (91 in
Europe, 67 in Asia, 27 in America and 1 in Africa) [116].

3. It is a classical SRA that was defined when technology, software, and algo-
rithms required for the software architecture of automotive applications
had already been tested in practice.

Figure 7.1 shows that AUTOSAR distinguishes between three main soft-
ware layers [116]:

1. Application layer: it consists of AUTOSAR software components that
are mapped on the ECU. AUTOSAR software components are atomic
software components of type application software components or sen-
sor/actuator software components. All interactions between AUTOSAR
software components are routed through the AUTOSAR runtime envi-
ronment. The AUTOSAR interface assures the connectivity of software
elements surrounding the AUTOSAR runtime environment.

2. Runtime environment (RTE): it provides a communication abstraction by
providing the same interface and services whether inter-ECU communi-
cation channels are used (e.g., CAN, LIN, FlexRay and MOST) or com-
munication stays intra-ECU.



128 Chapter 7. The Benefits and Drawbacks of AUTOSAR

Figure 7.1: AUTOSAR layered ECU component-based software architecture.

3. Basic software (BSW): basic software is the standardized software layer,
which provides services to the AUTOSAR software components and is
necessary to run the functional part of the software. It does not fulfill
any functional job itself and is situated below the AUTOSAR runtime
environment. For instance, it is responsible for handling the communi-
cation between different ECUs on the electronic buses and the diagnostic
services which are read when a car is taken to a repair shop.

At the bottom of Figure 7.1, we can see the ECU-hardware resources, and
how AUTOSAR offer mechanisms for software and hardware independence.

Related Work of AUTOSAR

Recent research studies have addressed several problems while migrating
to AUTOSAR by assisting automotive software designers in planning long
term development projects based on multiple AUTOSAR meta-model versions
[122], and by migrating a partner’s specific, legacy models to their AUTOSAR
equivalents [123].

Besides AUTOSAR, other automotive software architectures exist. For
instance, JasPar (Japan Automotive Software Platform and Architecture) is
an industry partnership with the objective to promote automotive software
technology and to cut development costs by encouraging Japanese companies
to collaboratively develop non-competitive technologies1. Another software
architecture for smaller systems is presented in [124]. Concerning standards,
several complementary and partly overlapping standards with AUTOSAR
(e.g., IP-XACT) are reviewed in [125].

1JasPar’s site: https://www.jaspar.jp/

https://www.jaspar.jp/


7.2. ResearchMethod 129

7.2 Research Method

The guidelines for gathering empirical evidence of SRAs propose to use ex-
ploratory surveys or case studies with personalized questionnaires applied to
relevant stakeholders (e.g., architects, developers) to gather their perceptions
and needs. To capture a snapshot of the current benefits and drawbacks of
using AUTOSAR, we performed a web-based survey [126].

We followed the six-step process for surveys defined in [127]. These six
steps are survey definition, design, implementation, execution, analysis and
packaging.

To ensure rigor and repeatability of our study, and to reduce researcher bias
while conducting the survey, we designed a survey protocol. Next subsections
briefly present details of such protocol: the research questions of the survey,
the target population and sampling, the questionnaire that was devised for
data collection, and techniques for data analysis of the survey.

7.2.1 Research Questions

Based on the aforementioned goal of the study in Section 7.1, we devised two
research questions:

1. RQ A: Which are the benefits of using AUTOSAR?

2. RQ B: Which are the drawbacks and risks of using AUTOSAR?

7.2.2 Research Design and Sampling

Our population was the global community of practitioners that use AUTOSAR.
To recruit participants, we advertised the survey at professional meetings, spe-
cifically the 6th AUTOSAR Open Conference celebrated in Munich in 2013. At
this conference we collected some responses in situ and also got some con-
tacts to whom we sent an invitation to participate by e-mail. Furthermore, we
advertised it in two LinkedIn groups (“Autosar” that has around 5,000 mem-
bers, and “AUTOSAR” that has more than 1,000 members). Finally, we spread
the survey over other social networks (e.g., Twitter) indexed by the hashtag
#AUTOSAR. We did not advertise it through academic communities, blogs,
conferences or workshops, because we targeted practitioners with experience
in AUTOSAR.



130 Chapter 7. The Benefits and Drawbacks of AUTOSAR

7.2.3 Data Collection and Instruments

To devise the instrument to collect the data, we based the questions about
benefits and drawbacks and their responses on the support materials available
at the Appendix C.

As instrument to collect the data, we decided that an online questionnaire
was the most convenient, because it allows the collection of data from a large,
remotely-located population, which could be used to contact AUTOSAR prac-
titioners.

The questionnaire of this survey was based on two groups of questions.
The first group of questions consisted of two questions about the benefits
and drawbacks of AUTOSAR (see Table 7.1). This group was mandatory to
fill. We prioritized its simplicity so that it could be filled out in less than
10 minutes. We believe that the simplicity of these questions was key to get
a sufficient number of responses. The second group of questions consisted
of personal data about the respondent, such as contact information, his/her
company, experience, and so on (see Table 7.2). This group of questions was
optional. We made it optional because some practitioners are reluctant to
provide personal data, and we did not want to discourage them.

It is important to note that we provided room to add any comment or
observation in both groups of questions to partially mitigate the rigidness of
the online questionnaire.

The survey was available online2. For the survey implementation, ex-
ecution and analysis, we used the same open source tool as in the online
questionnaires of Chapter 5: LimeSurvey. In order to get more responses, the
survey is still open. We encourage the interested reader with experience in
AUTOSAR to refer to the previous link.

7.2.4 Data Analysis

We analyzed the data gathered in each of the categories given as options of
the survey. In addition, we gathered several comments as a result of the open
questions added. To analyze such comments, we created new categories for
refining/polishing the ones given by the survey. These categories were then
further discussed and analyzed by the research team to better interpret and
describe evidence. Section 7.3 shows this analysis.

2http://www.essi.upc.edu/~e-survey/index.php?sid=13916&lang=en

http://www.essi.upc.edu/~e-survey/index.php?sid=13916&lang=en


7.3. Results 131

Table 7.1: Group 1 of questions (mandatory).

Id Question Options
1 Which are the

benefits of
using
AUTOSAR?*

List of benefits: standardization, facilitation,
increased productivity, reuse, reduced
development costs, reduced maintenance costs,
reduced time-to-market, risk reduction, enhanced
quality, interoperability, knowledge repository,
improved communication, elaboration of mission,
vision and strategy, best practices, novel design
solutions, reputation, none, other.

2 Which are the
drawbacks and
risks of using
AUTOSAR?*

List of drawbacks: initial investment, inefficient
instantiation, too abstract, term confusion, bad
documentation, bad quality, too specific or
limiting, learning curve, dependency in
AUTOSAR, complexity, none, other.

*Note: These questions were multiple choice, so that the respondent could choose
several options. Also, for each choice, the respondent could add a comment.

7.3 Results

We got a total of 51 valid responses3. Out of these 51 valid responses, 36
respondents (71%) filled both groups of questions whereas 15 respondents
(29%) preferred not to give personal data in the second group of questions.

For the respondents that filled the second group of questions, we had
data about their education area, the role of their company with respect to
AUTOSAR, and their years of experience with AUTOSAR.

Figure 7.2 shows the education area of the survey respondents: 13 res-
pondents had an automotive background, 11 respondents studied software
engineering or related courses, 9 respondents had academic training in elec-
tronics, and 3 respondents had other background. 15 respondents did not
reply to this question (i.e., n/a). We can see that respondents had higher
education, what contribute to a better understanding of AUTOSAR benefits

3 The valid responses, of which we removed name, e-mail and company of the participants
due to confidentiality issues, are available at http://www.essi.upc.edu/~smartinez/public/
responses-WASA15.xls

http://www.essi.upc.edu/~smartinez/public/responses-WASA15.xls
http://www.essi.upc.edu/~smartinez/public/responses-WASA15.xls


132 Chapter 7. The Benefits and Drawbacks of AUTOSAR

Table 7.2: Group 2 of questions (optional).

Id Question Options
3 First name and surname Free text.
4 E-mail A valid e-mail.
5 Your education area A list of education areas:

automotive, informatics,
telecommunications,
administration and management,
industrial, mathematics, physics,
economy, chemistry, statistics,
electronics, biology, other.

6 Name of your company Free text.
7 The role of your company

with respect to AUTOSAR
A list of roles: OEM, supplier, tool
developer, new entrant market,
other.

8 Briefly describe the project in
which you have used
AUTOSAR

Free text.

9 What was your role in the
project? What was your
responsibility?

Free text.

10 How many years of experience
do you have with AUTOSAR

A valid positive number.

11 Before sending the survey,
would you add a comment to
help understanding the
context of your answers?

Free text.

and drawbacks. Also, we can see that AUTOSAR partners look for recruiting
professionals with automotive, software and electronics academic training.

Figure 7.3 shows a pie chart with the role of the company of respondents
with respect to AUTOSAR: 12 respondents worked for an OEM, 10 practi-
tioners for a supplier, 8 respondents are tool developers, 4 participants are
consultants, and 2 practitioners belonged to a new market entrant. In this
survey, we got representatives for all the types of stakeholders in AUTOSAR.

Figure 7.4 shows a box plot with the years of experience of the 36 respon-
dents that replied to the second group of questions of the online questionnaire.



7.3. Results 133

Figure 7.2: Education area of respondents.

Figure 7.3: Role of the company of respondents with respect to AUTOSAR.



134 Chapter 7. The Benefits and Drawbacks of AUTOSAR

Figure 7.4: Box plot of the years of experience of respondents.

It has six boxes: the first box has all respondents together; the rest of boxes are
subsets by the role of the respondents’ company with respect to AUTOSAR.
In the first box, we can see that there are two respondents with more than
10.5 years of experience in AUTOSAR (extreme cases). The upper quartile is 5
years of experience. The median is 4 years of experience. The lower quartile
is 2.15 years of experience. Finally, the minimum is 0.9 years of experience.
We can see that respondents had experience in AUTOSAR by the moment of
participating in the survey. Finally, tool developers were the respondents with
more experience.

Next subsections respectively present the results of the survey about the
benefits and drawbacks of AUTOSAR, and the highlights of these results.

7.3.1 RQ A: Results on AUTOSAR Benefits

Figure 7.5 shows the responses about the benefits of AUTOSAR. The X-axis
contains the frequency in which respondents mentioned each benefit. The Y-
axis represent the options that were given in the online questionnaire as bene-



7.3. Results 135

Figure 7.5: Results of the question “Which are the benefits of using
AUTOSAR?”

fits. Next, we explain AUTOSAR benefits and provide some of the comments
provided by the respondents in the online questionnaire between quotation
marks. The benefits are shown in order from the most to the least mentioned
one, indicating among brackets the percentage of respondents.

The most mentioned benefit of AUTOSAR was standardization (88%). This
is not surprising. Indeed, in its website AUTOSAR is defined as “a de-facto
open industry standard for automotive E/E architecture which will serve as a
basic infrastructure for the management of functions within both future ap-
plications and standard software modules” [116]. This is a relevant benefit,



136 Chapter 7. The Benefits and Drawbacks of AUTOSAR

since if a car is compliant with AUTOSAR, the software developed by different
stakeholders (e.g., OEM) could be used in many cars, no matter its automotive
manufacturer. Some of the respondents commented that standardization is a
benefit “if it does not affect competition”. A respondent argued that AUTOSAR
stakeholders should “cooperate on standards, and compete on implementa-
tion”. Finally, s/he explicitly stated that standardization is a “trade-off with
novel design solutions”. This trade-off refers to the “too specific or limiting”
drawback.

The second most popular benefit was reuse (80%). As one practitioner
stated, “standardized interfaces allows us to reuse components in different
projects”. Besides the BSW layer (see Figure 7.1), reuse in application software
can reach up to 80% [128]. Another practitioner warned that in spite of such
reuse, “efforts are often needed, not 100% reuse”.

Interoperability (51%) was mentioned as a benefit by half of the respondents.
One respondent indicated that it is one of the “goals” of AUTOSAR. Intero-
perability in AUTOSAR refers to the RTE that acts as a communication center
for inter- and intra-ECU information exchange.

The fact that AUTOSAR stakeholders share the same architectural mindset,
fosters an improved communication (47%). As one respondent indicated, “people
talk the same language”.

As one respondent claimed, reuse could lead to “cost and time saving”.
The results of this survey indicated that reduced development costs (39%) is the
fifth most popular benefit of AUTOSAR. One practitioner noted that such cost
reduction happen “in BSW but also in application software”.

AUTOSAR has a lively community that maintains a knowledge repository
(33%). Such repository consists of “documents, releases (SVN), and discus-
sions (change management)”.

Other benefit related to reuse is the reduced time-to-market (33%). Automo-
tive software can reach the market faster because “component reuse lowers the
development time of new products”. One practitioner warned that the reuse
of a component “reduce time-to-market only if it is already in the standard,
otherwise not”.

Establishing a standard software architecture helps to reduce maintenance
costs (33%).

In a lower extent, respondents supported the following benefits: best prac-
tices (31%); enhanced quality (27%); increase productivity (27%); risk reduction
(24%); mission, vision, strategy (16%); reputation (14%); novel design solutions
(10%); facilitation (8%); other benefits (6%); and none (4%).



7.3. Results 137

Three benefits were written down in the “other” option: “electronic ex-
change”, “scalability because AUTOSAR was designed from the beginning to
handle growing complexity”, and “design flexibility”.

7.3.2 RQ B: Results on AUTOSAR Drawbacks

Figure 7.6 shows the responses about the drawbacks and risks of AUTOSAR
in the same way as Figure 7.5.

Below, we explain in descendent order these drawbacks and provide some
of the comments given by the respondents in the online questionnaire.

The most mentioned drawback of AUTOSAR in this survey was complexity
(65%). Respondents gave several comments about the consequences of com-
plexity, such as that it “is a trade-off with increased productivity”. They also
gave indications where this complexity gets bigger: “large projects with many
developers and highly interconnected functionality is where using AUTOSAR
becomes very tough”. In the direction of giving suggestions about how to

Figure 7.6: Results of the question “Which are the drawbacks and risks of
using AUTOSAR?”



138 Chapter 7. The Benefits and Drawbacks of AUTOSAR

handle complexity, two respondents agreed on the importance of tools to ease
automotive software development, e.g., “expertise is needed but a tool envi-
ronment helps. Tools are a must”; “AUTOSAR should be more tool oriented
so as to overcome this complexity”.

The second most mentioned drawback was initial investment (59%). Due to
the characteristics of AUTOSAR, we should not only consider the investment
on training personnel on AUTOSAR, but also the “membership fee” to become
a partner as organization.

The learning curve (51%) to master in AUTOSAR was mentioned by half of
the respondents. As one respondent stated: “many engineers have difficulty
learning the standard”.

Practitioners also face problems with term confusion (41%).
Some respondents found AUTOSAR too abstract (35%). As a solution to

overcome abstraction, a practitioner proposed a “tool environment” (as to
overcome with complexity).

All the developments based on the standard have dependency in AUTOSAR
(29%). Automotive software systems based on AUTOSAR are “statically de-
fined systems”. Therefore, new releases of AUTOSAR should consider “look-
ing for backward compatibility”.

In a lower extent, respondents indicated the drawbacks below: inefficient
instantiation (22%); bad documentation (20%), however a practitioner indicated
that there is “no bad documentation (about 20,000 pages of documentation),
and that such documents are available for the community”, hence they may
refer to a more digestive or lightweight documentation; too specific or limiting
(16%), e.g., “as a design philosophy AUTOSAR is a desirable standard. Howe-
ver AUTOSAR specifies too many things and leaves little latitude for custom
components in all layers beneath the application software. This is not a model
that all OEMs can work with effectively”; bad quality (10%); other drawbacks
(2%), and none (2%).

The drawback that was mentioned in the “other” option was “repetitive
investment” because “it is hard and costly to migrate to a new AUTOSAR
version”. This extra cost while migrating was also mentioned by another
practitioner: “we just started migrating towards AUTOSAR, and found that
even after 10 years, it makes delays and confusion and instead of increasing
the quality it reduces it. Also, the cost of the tools is high”.

7.3.3 Highlights of the Results

These results help to increase the empirical evidence about SRA as follows.



7.4. Validity 139

First, this survey uncovered AUTOSAR benefits, being the most popular
ones standardization (88%), reuse (80%) and interoperability (51%). With
respect to the drawbacks of AUTOSAR, the study revealed mainly complexity
(65%), initial investment (59%) and learning curve (51%).

Second, survey respondents gave directions to handle the major draw-
backs. Results about the drawbacks of AUTOSAR show that experience re-
ports about negative experiences are also needed.

• With respect to complexity, they remarked that AUTOSAR should be
more tool oriented to improve its usability. Several initiatives are already
working on making AUTOSAR less complex and improving the tool
environment, e.g., the AUTOSAR Tool Platform (Artop)4.

• Furthermore, the repetitive investment while migrating to a new release
of AUTOSAR was uncovered as a drawback of SRAs. This drawback
was not reported in previous studies of SRAs (see Chapter 3.3.2). It be-
comes necessary to balance between stability and updates of AUTOSAR,
since some practitioners find that there are too many releases. This
leads to a costly migration to new AUTOSAR versions. Recent research
have addressed this issue by assisting automotive software designers in
planning long term development projects based on multiple AUTOSAR
meta-model versions [122], and by migrating a partner’s specific, legacy
models to their AUTOSAR equivalents [123].

7.4 Validity

This section discusses possible threats to validity in terms of construct, internal
and external validity. It also emphasizes the mitigation actions used.

7.4.1 Construct Validity

To strengthen this aspect we made sure to perform a rigorous planning of the
study and establishing a rigorous protocol. We paid special attention to design
our data collection instrument (i.e., the online questionnaire) in such a way
that it was fully understood by the respondents. We made sure of polishing
the instruments with suitable vocabulary that the participants were familiar
with. Furthermore, we included specific mitigation actions for evaluation

4AUTOSAR Tool Platform User Group: http://www.artop.org/

http://www.artop.org/


140 Chapter 7. The Benefits and Drawbacks of AUTOSAR

apprehension by ensuring the confidentiality and aggregation of the answers,
so the respondents could freely share their real perceptions. In the online
questionnaire, we added open questions to let respondents to express the
response that better reflected their opinion.

7.4.2 Internal Validity

Regarding individuals that participated in the study, there is always the po-
ssibility that they forget something or do not explicitly state it when they are
asked about. To reduce this risk, we designed the online questionnaire in
such a way that the respondent must answer all the corresponding questions
while s/he could complete the questionnaire at any time, so it gives them the
possibility of consulting registries and documentation in case s/he needs to
remember something.

Another limitation regarding the participants is that they might not have
answered truthfully to the questions. To address this problem, we made
participation voluntary and ensured that personal data would be treated con-
fidentially. Furthermore, participants spent personal time on answering the
online questionnaire. We can therefore assume that those who volunteered
to spend time have no reason to be dishonest [117]. Still, there were couple
of responses that were removed because it was clear that they were invalid
(e.g., just indicating none benefits and none drawbacks, or introducing fake
personal data). One reason may be that they just entered to see the questions
of the survey.

Furthermore, when using surveys like this, there exists always the threat
that respondents tend to be strong supporters or strong opponents of the
analyzed technology; thus biasing the results. To reduce this threat, we tried
hard to foster many people to participate by attending to an AUTOSAR related
conference and explaining them the importance of having the opinion of all of
them. In addition, we added in the online questionnaire the group of questions
about personal data (see Table 7.2) in order to further contact them in cases
where we detect suspicious situations. Most of the respondents replied to
these questions.

Also, to reduce the potential researcher bias, several meetings were held
among the researchers to discuss the course of the data analysis and the pre-
liminary results.



7.5. Summary of the Third Cycle of RQ 1 141

7.4.3 External Validity

We had a limited number of participants. However, this is due to the fact that
our survey targeted a very specific population and required participants with
experience with AUTOSAR. The participation of this study (51 participants)
compared to other empirical studies in software architecture is similar [129].
In [129], the authors analyze the sampling of four studies with the following
participation: 56 participants, 11 software companies, 53 industrial software
architects, and 22 students.

We recognize that our results cannot be generalized to other SRAs without
further work. However, we remark that there exist organizations with similar
contexts to AUTOSAR that could benefit from the results of this survey [31].
Thus, we made available our instrument (see Section 7.2) to foster other re-
searchers and practitioners to use them and compare results. We expect that
our results strengthen the evidence regarding SRAs and encourage others to
provide similar evidences that help to mature SRA research and practice.

7.5 Summary of the Third Cycle of RQ 1

With the goal of validating the guidelines for gathering empirical evidence of
SRAs, this chapter presented a web-based survey based on such guidelines.
The web-based survey analyzes how AUTOSAR, a mature and accepted SRA
for automotive applications used worldwide by more than 180 organizations,
is perceived by industrial practitioners.

With a successful design and conduction of the web-based survey, we
validated the guidelines for gathering evidence of SRAs.





Chapter 8

Aggregating Empirical Evidence of
SRAs

After applying the guidelines of Chapter 6 to gather evidence of SRA engineer-
ing in many organizations, it becomes necessary to aggregate such evidence
from diverse empirical studies. For instance, regarding the benefits and draw-
backs of SRAs, we have different cases at everis (Chapter 5) and AUTOSAR
(Chapter 7). Besides, other researchers have also empirically studied SRAs be-
nefits and drawbacks in other contexts. Specifically, previous empirical studies
have reported the strengths and weaknesses of SRAs to ease their industrial
uptake [3, 22, 37, 40, 55]. However, the results of these single empirical studies
have not been analyzed together. Therefore, there is not a consolidated and
unified evidence about the benefits and drawbacks of SRA adoption.

The main goal of this chapter is to strengthen the evidence about the benefits
and drawbacks of SRAs. This can be done with the Structured Synthesis
Method (SSM) [130], which allows performing a research synthesis study of
existing evidence. The SSM consists of a method able to aggregate qualitative
and quantitative evidence through the use of diagrammatic models. Such
synthesis helps to gain more confidence on the effects of SRAs that have been
reported by more than one empirical study, and to determine the context of
those effects that only appear under specific contexts of SRAs. The aggregated
evidence of this chapter aims to help practitioners to understand and analyze
the benefits and drawbacks of adopting and using SRAs in their organizations,
and to support researchers to identify areas where further research is needed
to consolidate/understand the actual evidence.

143



144 Chapter 8. Aggregating Empirical Evidence of SRAs

This chapter is structured as follows. Section 8.1 presents the research
methodology: the SSM. Section 8.2 represents evidence that was reported in
previous single studies. Section 8.3 aggregates the empirical evidence modeled
in Section 8.2. Section 8.4 discusses the results of this study. Section 8.5
discusses the threats to validity of this study. Finally, Section 8.6 summarizes
the contributions of the fourth action-research cycle of RQ 1.

8.1 Methodology

Due to the existence of many empirical studies, we need to analyze the trends
on available empirical evidence about the benefits and drawbacks of SRAs
for acquisition organizations. We focused on the benefits and drawbacks for
organizations that introduce an SRA for designing and constructing a family
of software systems. Therefore, we focused on the SRA “usage” perspective,
rather than other perspectives, e.g., SRA “design”.

To this end, we aggregated the research results of previous works by using
the SSM [130]. As both qualitative and quantitative research synthesis method,
the SSM briefly depicts the important contextual aspects, and informs the trend
of the effects (e.g., positive or negative), as well as a certain estimation about
them. Therefore, SSM neither aggregates precise quantitative findings nor rich
qualitative descriptions.

We decided to use the SSM because it is able to conceptualize about the con-
text, and to integrate studies’ results. Therefore, it has an interesting blend of
integrative and interpretive synthesis [131]. In the SSM, interpretative synthe-
sis aspects are concerned with the organization and development of concepts
to describe contextual aspects of evidence whereas integrative features are
focused on pooling data about cause-effect or moderation relations. Moreover,
studies about SRA benefits and drawbacks report both qualitative and quan-
titative evidence. The SSM can aggregate these types of evidence, and it takes
into account the uncertainty estimated for each evidence. Besides, the SSM
offers tool support to model and synthesize evidence [132], including facili-
ties for graphical modeling, evidence search, and support for the synthesis.
Another important functionality is the evidence model comparison used to ag-
gregate evidence, which has mechanisms for ‘conflict resolution’ between the
models. The tool and all the results of the synthesis presented in this chapter
can be accessed at: http://evidencefactory.lens-ese.cos.ufrj.br/.

The SSM is composed of three main phases. First, papers are identified
and selected according to predefined criteria. Existing approaches for study

http://evidencefactory.lens-ese.cos.ufrj.br/


8.1. Methodology 145

selection (e.g., SLR search process) can be used for this purpose. Second, infor-
mation from each paper is extracted, and the pieces of data are organized and
put into the same perspective. Evidence are modeled with a diagrammatic
representation, which describes the context, cause-effect relationships, and their
moderators. Each model can have more than one cause-effect, so multiple out-
comes/effects can be analyzed together in the same aggregation. Third, with
all evidence under the same perspective, the last phase is dedicated to conso-
lidate and synthesize the results. This synthesis shows what the main trends
or conflicts among the analyzed evidence are. The primary interest of the SSM
is to combine cause-effect relationships from many SE empirical studies.

Next, we report how we applied the SSM method to synthesize the research
on SRA benefits and drawbacks.

8.1.1 Step 1: Selecting Primary Studies

To select the primary studies, we defined a systematic search strategy, and the
inclusion and exclusion criteria.

a) Search strategy: For the search strategy, we considered the same data
sources and search string as in the SLR about SRA engineering of Chapter
3.1. Also, we used the forward and backward snowballing strategy for the
included papers. Experts or reviewers suggestions were also accepted, which
is essential for studies that are not indexed or published yet (i.e., in press).

b) Inclusion and exclusion criteria: The SSM is flexible regarding the type
of data collected in studies and the amount of their outcomes. So, as inclusion
criteria, we defined any empirical study reporting findings based on evidence
about the benefits and drawbacks of adopting an SRA.

Concerning exclusion, we defined three exclusion criteria: (i) studies whose
findings were based on opinions rather than evidence; (ii) studies that were
not the primary source of the reported study or data (i.e., secondary studies);
and, (iii) studies that were not reported in English.

c) Study selection: The search string, performed in September 2014, re-
trieved 492 non-duplicated studies. From these studies, the empirical studies
reporting evidence were manually identified. From this list, we looked for
those focusing on reporting the benefits and drawbacks of SRAs.

Three papers that report empirically grounded results about SRA benefits
and drawbacks were found [3, 22, 37]. Searching through the references and
citations of these three papers, [55] was added to the included studies. Also,
[40] was included by convenience, as it was not published yet, but we were
aware of its existence because it was conducted by three of the authors.



146 Chapter 8. Aggregating Empirical Evidence of SRAs

Finally, we ended up with five included primary studies reporting evidence
on the benefits and drawbacks of using an SRA in an organization. The most
important details of each of the five papers can be found in Table 8.1.

8.1.2 Step 2: Evidence Representation

The SSM uses a diagrammatic representation to support the aggregation of
evidence. Following the understanding of most research synthesis methods
[131], the idea is that once all evidence are put under the same format their
combinability can be better analyzed, and the decision for combination more
objective. The representation used in SSM is called theoretical structure and, as
the name suggests, it is based in the notion of theories, from which the SSM
stems its capability of accommodating most diverse types of evidence.

The ten semantic constructs used in the representation are shown in Figure
8.1. There are three possible types of structural relationships in the represen-
tation: is a, part of and property of. All of them have counterparts in UML,
respectively: generalization, composition, and class attributes. The is a and
part of relationships use the same UML notation for generalization and com-
position. Properties are denoted by dashed connections. The relationships are
used to link two types of concepts – value and variable.

A value concept represents a particular variable value, usually an inde-
pendent variable. Value concepts are represented by rectangles, and they are
classified in archetypes (the root of each hierarchy), causes (indicated by the
use of a bold font and a ‘C1’ following the name denoting that it is the ‘cause
1’ (e.g., ‘Reference Architecture’), and contextual aspects (e.g., ‘Enterprise Soft-
ware’). The four archetypes – activity, actor, system, and technology – were
suggested by Sjøberg et al. [133] in an attempt to capture the typical scenario
in SE described by an actor applying a technology to perform activities in a
software system.

A variable concept focuses on value variations usually associated with a
dependent variable. Variable concepts are represented by ellipses or paralle-
lograms symbolizing effects (e.g., ‘communication’) and moderators (e.g., ‘ma-
turity’), respectively. In addition, effects are not connected to cause using lines
as they are assumed to exist when reading the diagram. Lines are also lack-
ing in the link between moderators and the (moderated) effects. In this case, a
textual hint (e.g., ‘M1’) is shown besides both the moderated effect and moder-
ator. Both relationships, cause-effect and moderation, are denominated influence
relationships.



8.1. Methodology 147
Ta

bl
e

8.
1:

Pr
im

ar
y

st
ud

ie
s

St
ud

y
Id

.
St

ud
y

Ty
pe

:
In

st
ru

m
en

ts
Pa

rt
ic

ip
an

ts
SR

A
A

pp
li

ca
ti

on
D

om
ai

n

SR
A

go
al

a
SR

A
us

ed
in

a
SR

A
ty

pe
a

B
el

ie
fb

&
ev

id
en

ce
ty

pe

Ye
ar

S1
[3

]
Ex

pe
rt

m
ee

ti
ng

:
pr

es
en

ta
ti

on
s,

di
sc

us
si

on
s

A
rc

hi
te

ct
s

fr
om

th
e

Sy
st

em
A

rc
hi

te
ct

ur
e

Fo
ru

m

D
ef

en
se

an
d

co
m

m
er

ci
al

eq
ui

pm
en

t

St
an

da
rd

.&
Fa

ci
lit

at
io

n
Si

ng
le

&
m

ul
ti

pl
e

O
rg

an
iz

at
io

ns

Pr
el

im
in

ar
y

&
cl

as
si

ca
l

0.
25

+
0.

10
=

0.
35

qu
al

it
at

iv
e

20
10

S2 [3
7]

C
as

e
st

ud
y:

in
te

rv
ie

w
s,

qu
es

ti
on

na
ir

es
,

do
cs

.

28
sw

.a
rc

hi
te

ct
s

an
d

de
ve

lo
pe

rs
fr

om
IT

co
ns

ul
ti

ng

Ba
nk

s,
in

su
re

rs
,

pu
bl

ic
ad

m
in

is
tr

at
io

n,
ut

ili
ti

es
,a

nd
in

du
st

ri
es

St
an

da
rd

.&
Fa

ci
lit

at
io

n
Si

ng
le

O
rg

an
iz

at
io

ns
C

la
ss

ic
al

0.
25

+
0.

19
=

0.
44

qu
al

it
at

iv
e

&
qu

an
ti

ta
ti

ve

20
13

S3 [2
2]

Su
rv

ey
:

qu
es

ti
on

na
ir

es
90

sw
.a

rc
hi

te
ct

s
an

d
de

ve
lo

pe
rs

fr
om

w
or

ld
w

id
e

n/
a

St
an

da
rd

.&
Fa

ci
lit

at
io

n
Si

ng
le

&
m

ul
ti

pl
e

O
rg

an
iz

at
io

ns

Pr
el

im
in

ar
y

&
cl

as
si

ca
l

0.
25

+
0.

15
=

0.
40

qu
al

it
at

iv
e

&
qu

an
ti

ta
ti

ve

20
13

S4 [5
5]

C
as

e
st

ud
y:

in
te

rv
ie

w
s,

do
cs

.,
m

ee
ti

ng
s

20
sw

.a
rc

hi
te

ct
s,

m
an

ag
er

s
an

d
ex

pe
rt

s
fr

om
lo

ca
le

-g
ov

er
m

en
t

V
ar

ia
bi

lit
y-

in
te

ns
iv

e
se

rv
ic

e-
or

ie
nt

ed
sy

st
em

s

Fa
ci

lit
at

io
n

M
ul

ti
pl

e
O

rg
an

iz
at

io
ns

C
la

ss
ic

al
0.

25
+

0.
15

=
0.

40
qu

al
it

at
iv

e
20

13

S5 [4
0]

Su
rv

ey
:

qu
es

ti
on

na
ir

es
51

pr
ac

ti
ti

on
er

s
fr

om
A

U
TO

SA
R

pa
rt

ne
rs

A
ut

om
ot

iv
e

sy
st

em
s

St
an

da
rd

.
M

ul
ti

pl
e

O
rg

an
iz

at
io

ns
C

la
ss

ic
al

0.
25

+
0.

17
=

0.
42

qu
al

it
at

iv
e

&
qu

an
ti

ta
ti

ve

20
15

a To
ch

ec
k

th
e

po
ss

ib
le

va
lu

es
fo

r
SR

A
go

al
,

us
ed

in
,

an
d

ty
pe

,
se

e
C

ha
pt

er
2.

2.
2.

b Th
e

be
lie

f
va

lu
e

is
ca

lc
ul

at
ed

as
sh

ow
n

at
th

e
en

d
of

th
is

se
ct

io
n.



148 Chapter 8. Aggregating Empirical Evidence of SRAs

Fi
gu

re
8.

1:
Ev

id
en

ce
m

od
el

re
pr

es
en

ti
ng

th
e

re
su

lt
s

of
th

e
st

ud
y

S1
.



8.1. Methodology 149

To indicate the effect size, a seven-point Likert scale is used. The scale
ranges from strongly negative to strongly positive and is indicated above the
ellipse (e.g., ‘ ’ indicates that ‘Flexibility for Suppliers’ is positively affected by
‘Reference Architecture’). The other type of variable concepts, namely modera-
tors, indicates that some positive or negative effect is moderated (i.e., reduced)
when it increases or decreases. For instance, a moderator is how a ‘knowledge
repository’ influences ‘communication’. A last aspect related to variable con-
cepts is the association of a belief value (ranging from 0% to 100%) to estimate
the confidence in the observed effects and moderations. The bar under each
element represents the belief value, e.g., ‘interoperability’ has 35% belief value.

a) Extracting data to model evidence: The data extraction and evidence
modeling activities are intertwined and, together, are very similar to the text
coding and analysis process [134]. The major orientation in creating the theore-
tical structures comes from the thematic synthesis and its increasing abstraction
level, where text is translated into codes, which are translated into concepts
and relations, and, from them, the theoretical structure representing an evidence
is modeled. The SSM also contains recommendations from meta-ethnography,
such as how the text should be coded, and papers translated into one to
another to identify concepts and relations. The inductive approach from qua-
litative comparative analysis, where concepts are identified inductively from the
collection of studies, complements these recommendations. To improve the
synthesis reliability, the participation of more than one researcher is recom-
mended as is in case studies and many other qualitative methods. A resume of
all these research synthesis methods can be obtained in [131]. Last, instructions
for identifying cause-effect relationships are also included, since they put qua-
litative and quantitative evidence in the same perspective. The instructions
are based on [135]: qualitative research “explains individual cases; using the
causes-of-effects approach” whereas quantitative research “estimates average
effects of independent variables; using the effects-of-causes approach”.

Although these heuristics for evidence modeling are used to make the
process more systematic and transparent, evidence modeling in SSM is still
a subjective process with some influence of the researcher abstraction skills,
and knowledge about the topic of interest. Nevertheless, all these orientations
were used to model the evidence related to the five studies identified. Two
researchers divided the five papers into two sets and then individually mod-
eled each evidence. After that, we reviewed the models created by each other,
including several meetings to discuss whether we had a common understand-
ing about the models. The other three researchers (in total a group of five)
performed a final revision of the models, and the resulting aggregated model.



150 Chapter 8. Aggregating Empirical Evidence of SRAs

It is interesting to notice that the identification of concepts and relationships
is an iterative process, and the modeling of evidence can be a trigger to review
the others. This is important to make concepts and evidence structures more
consistent, and particularly important for evidence synthesis, which is descri-
bed in the next subsection. A last step of data extraction is the evidence quality
assessment, which is used for estimating a belief value used in the synthesis
(also described in next subsection).

8.1.3 Step 3: Evidence Synthesis

To aggregate evidence, it is necessary to determine evidence combinability. For
that, all value concepts (archetypes, cause and contextual aspects) and structural
relationships (is a, part of and property of ) between the different models must
match. For instance, if an evidence model describe that ‘Enterprise Software’
is type of ‘System’ as part of the context, then the other evidence model should
have a the same relationship as part of its context description. If there is not
a direct correspondence with the use of the same concepts (in the example,
‘Enterprise Software’), the researcher can decide if their meaning are similar
enough for the aggregation purposes, and still aggregate the evidence. The
other option is to keep both concepts separated in the aggregated results –
that is, the effects associated with ‘Enterprise Software’ in an evidence model
are not aggregated with the effects associated with the system described in
the other model. A third option, when an aspect is only present in a model,
is to add or remove the concept from the aggregation. Then, the resulting
aggregated evidence value concepts and structural relationships are defined.

After determining which evidence can be combined, and grouping the ones
that can, uncertainty formalism is necessary to combine the results – otherwise,
a simple vote counting strategy would be used. In the SSM, the Mathematical
Theory of Evidence [136] (also known as Dempster-Shafer theory, DST) is the
mathematical formalism that enable to combine results. While value concepts
are used to determine aggregability, the aggregation itself is focused on the
variable concepts and their relationships (cause-effect and moderation). DST uses
two main inputs to combine two pieces of evidence. One is the hypotheses
believed to have a chance to be true – belief value greater than zero – and
the other is the belief values themselves. Hypotheses are defined as sets
of the powerset of the defined frame of discernment elements, which in the
case of SSM is formed by the values of the seven-point Likert scale: Θ =
{SN, NE, WN, IF, WP, PO, SP} – the elements values are abbreviations for the
Likert scale terms, e.g., SN is ‘strongly negative’, IF is ‘indifferent’, and WP is



8.2. Representation of SRA Effects 151

‘weakly positive’. It is interesting to notice that since hypotheses are sets from
the powerset, a hypothesis can be a singleton (e.g., {PO}) or a compound set
(e.g., {WN, PO} – meaning an imprecision about weakly positive and positive).

The other input is the belief value assigned to each hypothesis. Belief
values are estimated using the study type and a quality assessment. First,
based on GRADE evidence hierarchy [137], study type level split the 0-1 belief
value range into four subranges: unsystematic observations [0.00, 0.25]; obser-
vational studies [0.25, 0.50]; quasi-experiments [0.50, 0.75]; and randomized
controlled [0.75, 1]. Second, the quality assessment value is translated to the
0.25 subrange. The SSM method proposes to use two checklists to assess the
quality of each study, which are explained in [130]. Based on this, the belief
values listed in Table 8.1 are calculated, e.g., the study S1 was observational
(0.25), and in the quality assessment done by the checklists it got 0.10 out
of 0.25. The reader is referred to the tool to check the quality assessment
questionnaire for each study.

Once hypotheses and belief values are defined for each evidence, then the
Dempster’s Rule of Combination is applied, see equation 8.1. Equation 8.1 shows
that the aggregated belief value for each hypothesis C is equal to the sum of
the product of the hypotheses belief values whose intersection between all
hypotheses Ai and B j of both evidence is C.

m3(C) =

∑
i, j

Ai∩Bj=C

m1(Ai) ×m2(B j)

1 − K
,where K =

∑
i, j

Ai∩Bj=∅

m1(Ai) ×m2(B j) (8.1)

When the intersection between two hypotheses is an empty set, we say that
there is a conflict. Conflict is, then, redistributed to the aggregated hypotheses
– that is the function of 1 - K in the denominator. More details about how DST
is used in SSM can be obtained in [130].

8.2 Representation of SRA Effects

In this section, we show how we extracted the evidence from the included
studies, and created models to represent such evidence. Evidence modeling
has a significant interpretation, coding, reasoning and analysis of components.
We translated the evidence from text-based studies into evidence models that
are diagrams.



152 Chapter 8. Aggregating Empirical Evidence of SRAs

We describe the model associated with the study S1 in this chapter (see
Figure 8.1). It is the shortest model (fewer concepts and relationships), and
it includes all ten semantic constructs detailed in Section 8.1.2. In the study
S1, the driving forces for SRAs are elicited from the discussions of the System
Architect Forum (http://architectingforum.org). The authors also present
real-world SRAs from different domains to help justifying some of the driving
forces elicited. Since the results presented in the study S1 are an outcome of
an analysis of discussion between professionals with different background,
we decided to use general value concept for context description including
‘Enterprise Software’ and ‘Acquisition Organization’. In models of other stu-
dies where the context is specific, such as the study S5 describing an SRA for
the automotive domain, specific value concepts were used to model it (e.g.,
‘Automotive Software’, and ‘AUTOSAR partner’).

Apart from the context description, the effects were relatively straightfor-
ward to identify as they were listed in the text of the study. For instance,
‘Terminology Conventions’ concept in S1 was identified from the following
excerpt: ‘Reference Architecture can also serve as a framework and lexicon of terms
and naming conventions, as well as structural relationships within a company, in-
dustry or a domain’. In fact, this is usually expected since describing the study
results is one of the most important parts of any paper. For instance, we can
see in Figure 8.1 that an SRA is a technology. Moreover, the ‘C1’ notation
indicates that SRAs are the cause of all the effects (represented by ellipses) in the
model. However, moderators were not so unequivocal, since the authors do
not report them as moderators, but rather as particular conditions important to
augment some effects. As an example, we can see that SRAs have a positive –
strongly positive influence on the ‘Development Costs’ of a ‘Software Project’
(35% belief). The M1 notation indicates that such influence has a moderator
(represented by parallelograms), which is ‘Reuse’.

All evidence models created for each paper can be found on the tool at the
link previously informed. To make this document self-contained, Table 8.2
provides a summary of each evidence model with the list of all effects caused
by SRAs. For each study, we give the effect intensity in the Likert scale along
with the belief value. For instance, ‘Interoperability’ was reported by study S1
as positive – strongly positive effect of SRAs with a 35% of belief. Studies S3,
S4, and S5 also reported ‘Interoperability’.

Regarding the effect intensity, it is interesting to say that we had to interpret
it from the textual descriptions. Thus, if the textual description did not qualify
the effect with particular adjectives indicating the intensity, then we chose a
default value (e.g., PO), rather than a weak (e.g., WP) or strong value (e.g.,

http://architectingforum.org


8.2. Representation of SRA Effects 153

Table 8.2: SRAs effects as reported in selected studies.

Representation of evidence from single studies, shown as:
intensity (belief value)

Effect S1 S2 S3 S4 S5
Interoperability PO, SP

(0.35)
PO
(0.15)

WP
(0.40)

PO, SP
(0.22)

Development
costs

PO, SP
(0.35)

PO
(0.36)

PO
(0.04)

PO
(0.16)

Communication PO
(0.35)

PO
(0.09)

PO
(0.40)

PO, SP
(0.20)

Risk PO, SP
(0.35)

PO
(0.40)

PO
(0.10)

Best practices PO
(0.31)

PO
(0.40)

PO
(0.13)

Learning curve SN, NE
(0.36)

NE
(0.13)

NE, WN
(0.40)

NE
(0.22)

Development
time

PO, SP
(0.35)

PO
(0.14)

PO
(0.14)

Maintenance
cost

PO
(0.35)

PO
(0.14)

Productivity PO, SP
(0.30)

PO
(0.11)

Ease of
developing

PO
(0.30)

PO
(0.07)

WP, PO
(0.03)

Alignment WP, PO
(0.19)

WP
(0.07)

Restriction NE
(0.13)

NE
(0.06)

NE, WN
(0.07)

Standardization WP, PO
(0.14)

PO
(0.16)

WP
(0.40)

SP
(0.37)

Latest
technologies

WP
(0.30)

Investment NE
(0.25)

Reliability WP, PO
(0.14)

Dependability SN, NE
(0.09)

NE, WN
(0.12)

Reputation WP
(0.06)

Software
quality

NE
(0.06)

WN
(0.04)

Novel design
solution

PO
(0.05)

WP
(0.04)

Complexity WN
(0.06)

SN, NE
(0.27)

Terminology
conventions

WP, PO
(0.35)

NE
(0.17)

Flexibility of
suppliers

PO
(0.35)

WN, IF
(0.40)



154 Chapter 8. Aggregating Empirical Evidence of SRAs

SP). Similarly, if the paper gave an ambiguous description we defined a lower
range for the effect intensity (e.g., WP, PO). For instance, the ‘learning curve’
drawback in the study S2 is described as “additional high or medium learning
curve for using the SRA features”. The belief values were based on the study type
and the quality assessment as described in Section 8.1.3. Yet, in survey papers
(which also report quantitative evidence), we weighted the belief values with
the number of respondents that actually perceived the effect as result of SRA
usage. This weighting was performed using the DST discount operation. The
idea of the discount operation is to adjust the mass distribution (i.e., the belief
values assigned to the hypotheses) to reflect the source’s credibility – a full
discount (discount=1) represents a completely unreliable source. For instance,
for survey studies, we used the number of respondents as estimation for the
discount value calculated as: (1 - number of respondents for the question / total
participants). The DST discount operation is also used in studies considering
p-values.

The evidence modeling process produces interesting results from the ag-
gregation perspective: the individual results provide a basic understanding to
combine results. In addition, since results are already translated into diagrams
in a more condensed form, they can be practical for other uses.

8.3 Results of the Aggregation

Once we individually processed the evidence of the selected studies in the
previous section, in this section we show how we aggregated the results.

Table 8.3 shows the results after performing the aggregation of evidence
on the benefits and drawbacks of SRAs. The first column shows the reported
effect (i.e., benefit or drawback) caused by the introduction of an SRA in the
organization. The second column indicates the number of papers that have
reported this effect. The third column shows the aggregated intensity about
how the SRA causes such effect (e.g., positive or negative). The fourth column
represents the aggregated belief on such effect. This is one of the most inter-
esting results of the aggregation. The individual study with the highest belief
for an effect was S4, with 40% belief for the ‘Interoperability’ effect (see Table
8.2). However, after aggregating the results from single empirical studies,
some effects caused by SRAs were reinforced. Table 8.3 shows in bold those
effects that have higher belief of 40% after the aggregation. The fifth column
shows whether there was a conflict while aggregating that effect. This is im-
portant to analyze and to characterize different contexts from which evidence



8.3. Results of the Aggregation 155

was gathered. Lastly, the sixth column shows the difference between the max-
imum value of the belief in individual papers and the gained confidence after
the aggregation. Therefore, a positive difference indicates the effects that have
been reinforced after the aggregation whereas a negative difference shows that
evidence is somewhat contradictory. The effects are ordered by the difference
on the belief after the aggregation.

Aggregation was performed using the Dempster’s Rule of combination
(see Equation 8.1). For instance, Maintenance Cost effect was computed in
the following manner: maggregated({PO}) = ms1({PO}) ×ms2({PO}) + ms1({PO}) ×
ms2(Θ) + ms1(Θ) ×ms2({PO}) = 0.049 + 0.301 + 0.091 = 0.441. This is the value

Table 8.3: Aggregated effects of SRAs (ordered by belief strengthening).

Effect caused by an SRA Aggregation Results
#Papers Intensity Belief Conflict Differencea

Interoperability 4 PO, SP 74% - 34%
Development costs 4 PO, SP 67% - 31%
Communication 4 PO 65% - 25%
Risk 3 PO, SP 65% - 25%
Best practices 3 PO 64% - 24%
Learning curve 4 NE, WN 60% - 20%
Development time 3 PO, SP 52% - 17%
Maintenance cost 2 PO 44% - 9%
Productivity 2 PO 38% - 8%
Ease of developing 3 PO 35% - 5%
Alignment 2 WP, PO 24% - 5%
Restriction 3 NE 18% - 5%
Standardization 4 WP, PO 43% - 3%
Latest technologies 1 WP 30% - 0%
Investment 1 NE 25% - 0%
Reliability 1 WP, PO 14% - 0%
Dependability 2 NE, WN 12% - 0%
Reputation 1 WP 6% - 0%
Software quality 2 NE 6% - 0%
Novel design solution 2 PO 5% - 0%
Complexity 2 SN, NE 26% 0.017 -1%
Terminology conventions 2 WP, PO 31% 0.060 -4%
Flexibility of suppliers 2 WN, IF 31% 0.140 -9%

aThe “Difference” column measures the difference among the max value of belief in
previous single papers, and the gained confidence after the aggregation.



156 Chapter 8. Aggregating Empirical Evidence of SRAs

found in Table 8.3. It should be noticed that for cases where more than one
intensity is involved, the belief function is used (see [130] for details).

Next, we respectively report the effects that: a) increased, b) slightly in-
creased, c) did not change, and d) decreased their belief after the aggregation.

8.3.1 Effects of SRAs that Increased their Belief

Seven effects caused by SRAs increased their belief values after the aggregation.
These effects have greater confidence value than any effect before aggregation
(i.e., greater confidence level than 40%, see Table 8.2), and have been reported
by at least three out of the five studies. Next, we enumerate these seven effects
and their moderators.

SRAs positively - strongly positively improve the interoperability of the soft-
ware systems (74% belief). Studies reported that SRAs: aim at “interoperability
to improve compliance for a given context” [S1]; “act as communication center for
information exchange” [S5]; and integrate software into (and become part of) an
SRA [S4]. As we can see in the last example, existing software in the organization
proportionally moderates interoperability.

SRAs positively - strongly positively impact the development costs of soft-
ware projects (67% belief). Reuse of common assets proportionally moderates
development costs from not having to start from scratch [S1]-[S2].

SRAs positively improve the communication inside their acquisition organi-
zations (65% belief). SRA stakeholders share the same architectural mindset,
fostering an improved communication, i.e., “people talk the same language” [S5].
Organizational thinking proportionally moderates such communication: “when
a service-based SRA is implemented, different departments within an organization
need to a) share information with other departments, but also b) get things from other
department” [S4]. Also, the role of an SRA as a knowledge repository proportion-
ally moderates knowledge transfer and communication. To sum up, an SRA
aids the understanding of architectural and design principles [S1].

SRAs positively - strongly positively influence the risk of software projects
(65% belief). The maturity of an SRA proportionally moderates its risk. Ma-
turity relates to the degree of formality and optimization of processes, from
ad-hoc practices, to formally defined steps, to managed result metrics, to ac-
tive optimization of the processes, e.g., “a mature architecture follows principles
for ‘good’ design, such as high cohesion, high modularity and low coupling” [S4].
Risk reduction is achieved through the use of proven and partly prequalified
architectural elements. The general maturity and experience level associated



8.3. Results of the Aggregation 157

with an SRA also bears the promise of a higher quality end-product [S1]. If no
mature architecture exists, designing/introducing an SRA is likely to fail [S4].

SRAs positively improve the use of best practices inside their acquisition
organizations (64% belief). The studies do not report the type of best practices.
This is proportionally moderated by the maturity of an SRA.

SRAs negatively - weakly negatively influence the learning curve of deve-
lopers (60% belief). Developers that use an SRA need to learn its features [S2].
As a consequence, “many engineers have difficulty learning” some SRAs [S5]. Or-
ganizational thinking indirectly proportionally moderates the learning curve:
“changing organizational thinking in employees is often achieved through training
that takes place when introducing SRAs” [S4].

SRAs positively - strongly positively impact the development time of software
projects (52% belief). This benefit is also proportionally moderated by reuse,
which can lead to shorter development cycles. However, it is not the same
effect as development costs, because it refers to lower time-to-market of the
constructed software [S1]-[S2].

8.3.2 Effects of SRAs that Slightly Increased their Belief

Six effects have slightly increased their belief.
Three of these effects have been reported by only two studies: reduced

maintenance costs of software projects, improved productivity of developers,
and alignment of applications to an organization’s business needs. Since the
studies agree on them, these effects have increased their value, but more
research is needed to corroborate them.

However, the other three effects were reported by at least three studies.
In the case of ease of developing and standardization, we can see in Table 8.2
that these effects are stronger for some types of SRAs (see Section 8.4). In
the case of regulative SRAs that restrict the development on software systems,
the percentage is low because the three studies reporting it gave a really low
confidence value, thus, it seems that it is not seen as a very important drawback
for practitioners.

8.3.3 Effects of SRAs that did not Change their Belief

Seven effects did not change their belief. Three of them, dependency of the
software systems over the SRA, propagation of bad software quality and wrong
decisions of the SRA, and novel design solutions are reported by two studies,
with different degrees of effect intensity, which did not contribute to increase



158 Chapter 8. Aggregating Empirical Evidence of SRAs

the evidence level during the aggregation. In fact, the two latter effects have a
negligible conflict level of 0.002. We can conclude that the confidence level on
these three effects is very low, so they rarely appear in practice, and it seems
that they are not considered as fundamental benefits or drawbacks.

The use of latest technologies, up-front and migration SRA investment, relia-
bility of SRA artifacts used in the software systems, and reputation of acquisition
organizations have been reported by only one study. It does not mean that
these effects caused by SRAs are not important, but more investigation effort
by the research community is needed to understand them. Still, some of the
effects, as reputation, may depend on the SRA type, e.g., an SRA for a market
domain so that other companies may be interested in outsourcing [S5].

8.3.4 Effects of SRAs that Decreased their Belief

Three effects have lower confidence level after the aggregation due to contra-
dictory evidence in the single studies. These effects are: a) the complexity of
the software construction process due to using an SRA; b) how an SRA affects
the establishment of terminology conventions; and c) how an SRA influences
the flexibility of suppliers or outsourcing companies that develop software sys-
tems based on the SRA. We further discuss the reasons why these effects have
decreased their belief in Section 8.4.

8.4 Discussions

In this section, we respectively discuss the effects that were present in different
SRA contexts, contradictory results, and the utility of the aggregation with
respect to SRAs theory.

8.4.1 Effects of SRAs Present in Different Contexts

The context varies among different studies (see Table 8.1). Still, we have seen
common SRA effects reported in different contexts and application domains.
This is the case of improved interoperability, reduced development costs, better
communication, and higher learning curve, which have been reported in four out
of five studies without contradictions. These SRA effects, described in Section
8.3, are the strongest results of the aggregation.



8.4. Discussions 159

8.4.2 Contradictory SRA Effects from Different Studies

In all studies, the context was the use of SRAs for the design and construction
of software systems. However, these SRAs were of different type, for instance,
they had different goals (e.g., standardization and facilitation), targeted seve-
ral domains (e.g., automotive software and e-government), involved different
stakeholders (e.g., vendors and client organizations), and coexisted with dif-
ferent software and constraints (e.g., reference models). Due to their different
contexts, there are some effects that are caused by some types of SRAs, but
are not present in other types of SRAs. Still, even with those differences, we
understood that it was possible to generalize the concept of SRA for software
systems, independently from their types, in order to analyze its most promi-
nent effects, and then, examine the conflicting results from the perspective of
their contextual differences.

Next, we discuss those effects that have contradictory evidence and form
hypothesis to contextualize them.

Are SRAs complex or do they ease the development of software systems?
The study S5 reported that AUTOSAR influences negatively - strongly nega-
tively the complexity of the software construction process with 27% belief. Ho-
wever, the study S2 showed that nine SRAs for information systems weakly
negatively influence this complexity with 6% belief. Therefore, we can see
different SRAs that differently affect to the complexity of software develop-
ment. For these two studies, related effects to complexity had different effect
intensity and confidence level. For instance, AUTOSAR have worse results
(i.e., lower intensity and confidence level) for the effects ease of developing and
productivity that the other SRAs.

The reasons that we posit for this conflict is that AUTOSAR has the goal
of standardization of concrete architectures (aiming at system/component in-
teroperability), whereas the SRAs of the study S2 focus more on facilitation
of the design of concrete architectures (aiming at providing guidelines and
inspiration for the design of systems). Also, the study of AUTOSAR men-
tioned two moderators of this effect: a) the size of the concrete architecture
project, e.g., large projects with many developers and highly interconnected
functionality is where using AUTOSAR becomes very tough; b) the existence
of a tool environment, e.g., tools that help developers while using an SRA.
The first moderator, the size of the project, can be present in both contexts (i.e.,
standardization and facilitation SRAs). However, we can see that facilitation
SRAs tend to include more guidelines and a tool environment to facilitate



160 Chapter 8. Aggregating Empirical Evidence of SRAs

the development of applications, e.g., user manuals, tool prescriptions and
plugins, and sample instantiations [38].

Hypothesis: Complexity depends on the type/goal of the SRA (i.e., stan-
dardization and facilitation) and on the guidelines that it delivers to facilitate
the development. SRAs that aim to standardize tend to be more complex that
those that aim to facilitate software systems construction. Providing a tool
environment seems to reduce the complexity for both types of SRAs.

Is it always positive to establish terminology conventions? The study S1
claimed that “an SRA can serve as a framework and lexicon of terms and naming
conventions” whereas the study S5 stated that “AUTOSAR practitioners face
problems with term confusion”.

One reason we posit for this conflict is that although an SRA could aim to
establish term conventions, they do not always reach this benefit. For the case
of AUTOSAR [S5], documentation is large (about 20,000 pages), what could
discourage users to completely read these lexicons of terms.

Hypothesis: Although an SRA can define a common lexicon of vocabulary,
the success of establishing term conventions depends on the design and do-
cumentation size. If documentation is not ‘digestible’, it may lead to terms
confusion when stakeholders are not familiar with those terms.

Do SRAs allow flexibility of suppliers? In the context of organizations that
outsource suppliers to develop their software systems, flexibility of suppliers
refers to the capability of an organization to change these suppliers. With the
effect “flexibility of suppliers” there was also a conflict during the aggregation.
In the study S1, the authors state: “An acquisition program backed up by a strong
SRA that ensures interoperability and ‘form, fit, and function’ compatibility promotes
flexibility in the choice of suppliers, as well as a lower risk through multi-sourcing”.
However, vendor lock-in moderator of study [S4] shows that “customers are
restricted in changing their system without the involvement of the vendor, despite
the use of open standards. Customers try to reduce vendor lock-in, but this is not
always possible, given the small market of software vendors in certain domains and
the required expertise”. Therefore, SRA adoption does not guarantee flexibility
of suppliers, which also depends on other approaches such as the use of open
source software.

Hypothesis: Despite the use of open standards, mature architectures, and the
construction of knowledge repository, outsourcing the construction of SRA-



8.5. Validity 161

based software may imply vendor lock-in for organizations, jeopardizing the
flexibility of suppliers.

8.4.3 Contribution of this Aggregation to the Theory on SRAs

Previous studies reported the effects (i.e., benefits and drawbacks) caused
by the use of SRAs, as well as the percentage in which they appeared in
practice [22, 37, 40]. Other works have focused on analyzing the practices and
constraints of SRAs, and qualitatively reported how they moderate or imply
the aforementioned effects [3, 55]. By aggregating the results, this is the first
study considering the percentages given in previous quantitative studies, and
explaining how specific characteristics of SRAs moderate their own effects.

This work contributes to the body of knowledge of SRAs bringing stronger
evidence of their benefits and drawbacks. For most of the effects, the results
followed the trends of previous research. However, for three effects these
results were contradictory. This observation helped to see that some effects are
not general to all types of SRAs, but rather to specific types and contexts. We
believe that the aggregated results points to more generalized perceptions and
stronger indications of its applicability. Thus, it is expected that practitioners
benefit from these indications to support the decision making in practice.
Moreover, the stated hypotheses or even the aggregated results themselves
can be target of further studies in the future.

8.5 Validity

The risks of aggregating diverse evidence (i.e., qualitative and/or quantitative)
from different studies have been mitigated by using the SSM method. The
SSM method aims to support the SE community to construct and consolidate
empirically-grounded knowledge [130]. This section discusses possible threats
to validity and emphasizes the mitigation actions used.

To mitigate the threat of missing important primary studies, we systema-
tically searched empirical studies about the benefits and drawbacks of SRAs.
We obtained a set of five studies reporting evidence on real SRAs, which is a
high number in SE considering that they report the same effects (i.e., benefits
and drawbacks of SRAs). During this process, we discarded studies that only
reported opinions, rather than empirically-grounded evidence. Even though
we found five studies, more studies are needed to reach definitive results.

We are aware that each selected study poses its own validity threats; there-
fore, we carefully assessed them together with the studies’ context to properly



162 Chapter 8. Aggregating Empirical Evidence of SRAs

interpret their results. Furthermore, while representing empirical evidence
from individual studies, researchers can reflect their own opinion and, there-
fore, bias the representation. To mitigate these subjective issues, the definition
and analysis of each individual evidence model from each selected study was
first done by a researcher and validated by another one. The studies S2 and S5,
conducted by the author of this PhD thesis, were modeled by other researcher
to avoid bias and not to include “extra” knowledge that was not reported in
the papers. Then, the aggregated models were assessed and discussed by the
whole team of researchers. During this process, we experienced some seman-
tic issues, meaning that different studies referred to the same concept using
different terms. This would lead to a wrong aggregation. To avoid this, we
created a glossary of terms that were represented in the evidence models and
kept track of the matching terms.

To improve the interpretation of the aggregated evidence, we used some
suggested strategies in [130]. For instance, given that the SSM method does
not consider the different size of sampling of different studies, whenever pos-
sible, we refined the confidence level of each effect applying the discount of
participants who did not mention it, as suggested by the SSM [130]. In addi-
tion, we recorded the diverse context of each individual study, so we could
better reflect and understand the aggregated evidence. It is important to note
that our aggregated results are based on what the authors reported in their
papers. Hence, there is always the risk that important information might not
be reported. Anyway, in case of doubts we considered the option of contacting
the authors to clarify any issues, but this was not the case in this study.

Finally, one of the goals of aggregation in SE is to consolidate empirically-
grounded knowledge, to increase whenever possible the generalization of the
results and the understanding of the contexts that might cause any effect.
Given the mixed nature (i.e., qualitative/quantitative) of the assessed studies,
the aggregated resulting effects could not be statistically but analytically as-
sessed [138]. For this reason, it was highly relevant to properly define the
individual contexts of the studies, so we could better understand and in-
terpret the diverse effects of SRAs. We paid special attention to identify the
mechanism that produced the studied effects (i.e., moderators). This helped us
to explain how the SRA characteristics influence the acquisition organizations.
All these strategies have increased the confidence of our results.

Our results show that some effects got higher degrees of belief while others
did not. It is important to be aware of the correct interpretation of these results.
On the one hand, the effects that got higher belief are potentially those that
have been further studied and agreed among the studies. On the other hand,



8.6. Summary of the Fourth Cycle of RQ 1 163

those effects that got lower belief values (or even negative) are those that were
just partially approached by the existing evidence (or got contradictory results
among the studies). Therefore, these effects are relevant topics that need to
be further studied. We highly encourage the SE community to investigate
the effects that do not have a high confidence value yet, in order to increase
knowledge and consolidation of the benefits and drawbacks of SRA.

8.6 Summary of the Fourth Cycle of RQ 1

Aggregating evidence of empirical studies helps to increase the confidence
with respect to single studies by formulating new theories. Besides, such
synthesis reduces the effort of researchers and practitioners that are interested
in a particular phenomenon. In order to progress as a discipline, we believe
that more aggregation studies are needed in SE. These studies help to join
forces while conducting empirical studies, which becomes more important in
SE due to the low number of empirical studies.

In this chapter, we have applied the Structured Synthesis Method (SSM)
to aggregate existing evidence about the benefits and drawbacks of SRAs
from five empirical studies: the case study from the Chapter 5, the survey
from Chapter 7, and other three empirical studies from other researchers.
The aggregated results point to more generalized perceptions and stronger
indications in order to answer the RQ 1 of this PhD thesis.





Part III

The Business Case for Software
Reference Architectures

165





Chapter 9

A Survey to Discover Existing Data
in SRA Projects

As we mentioned in the Chapter 1, this Part III details our action research
initiative with regard to the RQ 2 of the PhD thesis:

Is it worth for an organization to invest on the adoption of an SRA?

To answer RQ 2, we conducted four tasks (see Table 1.3, and Figure 1.4).
Each of these four tasks is a chapter in this Part III.

In the current chapter, we start with the first cycle of RQ 2. We diagnosed
the problem of the lack of approaches to justify the investment on SRAs to
everis’ clients in monetary terms. As a consequence, we designed a survey to
ask stakeholders the metrics available in SRA projects. In this survey, a sample
of 5 everis’ SRA projects and 5 concrete architecture projects were selected on
the basis of their suitability and feasibility to contact at least with one person
that participated in the projects1.

As we have seen in Chapter 5.4, the main perceived economic benefits on
the use of SRAs are the cost avoidance in the development and maintenance of
systems due to the reuse of software elements, and the adoption of best prac-
tices of software development that increase the productivity of developers. To

1To see a complete vision of the types of projects at everis, the reader is referred to Section 2.4
of Chapter 2.

167



168 Chapter 9. A Survey to Discover Existing Data in SRA Projects

quantify these cost avoidances, we used online questionnaires to ask project
technical managers and application builders about existing information from
past projects. When the client organization has no experience in SRAs, these
data need to be estimated, which could be potentially error-prone. The ques-
tions of this survey were divided in three types of questions: about the data
available for the SRA, about data available for the applications based on the
SRA, and about adding comments and proposing new metrics to calculate
the ROI of the SRA. The questions for software architects to check existing
value-driven data in SRA projects are available on Appendix D.1.

9.1 Results: Costs and Benefits Metrics for SRAs

In this section we describe the information that was available in everis to calcu-
late the costs and benefits of adopting an SRA. We divide existing information
in two categories: effort and software metrics. First, the invested effort from
the tracked activities allows the calculation of the project costs. Second, soft-
ware metrics help to analyze the benefits that can be found in the source code.

Effort metrics to calculate projects’ costs. In SRA projects, 4 out of 5
client organizations tracked development efforts, while maintenance effort was
tracked in all 5. In concrete architecture projects, 4 out of 5 client organizations
tracked development and maintenance effort.

The development effort is the total amount of hours invested in the deve-
lopment of the SRA and the concrete architectures of applications. It could be
extracted from the spent time for each development activity of the projects.
The maintenance effort is the total amount of hours invested in the mainte-
nance of the SRA and the concrete architectures of applications. Maintenance
activities include changes, incidences, support and queries. These metrics can
be collected with issue tracking tools, such as JIRA2 or Redmine3. For instance,
in everis, JIRA [139] was used to collect the invested effort from training, deve-
lopment and maintenance activities. Keeping track of activities is common in
practice for project management and auditing.

Software metrics to calculate benefits in reuse and maintainability. Sour-
ce code in SRA and concrete architecture projects was obviously available in
all projects. However, due to confidentiality issues with client organizations,
it is not always allowed to access source code.

2JIRA, http://www.atlassian.com/es/software/jira/overview
3Redmine, http://www.redmine.org/

http://www.atlassian.com/es/software/jira/overview
http://www.redmine.org/


9.2. Next Steps and Lessons Learned 169

The analysis of the code from SRA and concrete architecture projects allow
quantifying the size of these projects in terms of Lines Of Code (LOC) or
function points (e.g., number of methods). Having calculated the project
costs as indicated above, we can calculate the average cost of a LOC or a
function point. Since the cost of applications development and maintenance
is lower because of reuse, we can calculate the benefits of SRA by estimating
the benefits of reusing SRA modules. These metrics can be collected with
software for code quality. For instance, in everis, Sonar4 [140] was used to
gather software metrics to analyze the benefits that can be found in the source
code. Sonar offers tool support for obtaining general software metrics such as
LOC, dependencies between modules, technical debt, and percentages of tests
and rules compliance.

Poulin defines a model for measuring the benefits of software reuse [87].
Maintenance savings due to modularity could be calculated with DSMs [97].
Chapter 10 explains how such metrics can be used in a cost-benefit analysis.

9.2 Next Steps and Lessons Learned

Improvements in the quality attributes of an SRA (e.g., reuse, maintainability,
security) are extremely difficult to evaluate in an analytic and quantitative
fashion contrary to the efficacy of the business (e.g., sales) [96]. This is because
software development is a naturally low-validity environment and reliable
expert intuition can only be acquired in a high-validity environment [141].
In order to evaluate SRAs based on an economics-driven approach, software
development needs to move to a high-validity environment. The good news
is that it could be done with the help of good practices like time tracking, con-
tinuous feedback, test-driven development, and continuous integration. In
order to get the metrics defined above, tools such as JIRA [139] and Redmine
[142] allow managing the tasks and their invested time, general software me-
trics (like LOC) and percentages of tests and rules compliance can be calculated
by Sonar [140] and Jenkins [143]. We think that adopting good and repeata-
ble practices to collect data is the basis for moving software development to
a high-validity environment and consequently being able of performing an
accurate cost-benefit analysis.

Due to the aforementioned lack of research in the SRA area, we have
aimed at adopting and adapting existing results in related areas, from classical
software reuse to product line engineering (see Chapter 3.3.4).

4Sonar, http://www.sonarsource.org/

http://www.sonarsource.org/


170 Chapter 9. A Survey to Discover Existing Data in SRA Projects

9.3 Summary of the First Cycle of RQ 2

With the goal of supporting organizations to analyze which value-driven data
exist in SRA projects, we have analyzed several projects at everis. We have
identified the following common data in SRA projects:

1. Effort metrics to calculate projects’ costs.

2. Software metrics to calculate benefits in reuse and maintainability.



Chapter 10

REARM: Calculating the ROI on
SRA Adoption

This chapter presents a pragmatic economic model to perform cost-benefit
analysis on the adoption of SRAs as a key asset for optimizing architectural
decision-making. Therefore, we work further to answer the RQ 2 of this PhD
thesis: Is it worth for an organization to invest on the adoption of an SRA?

The purpose of our research is to create a method for extracting costs and
benefits of SRAs based on data identified in the previous Chapter 9. With
this goal in mind, we envisaged REARM, our economic model for SRAs (the
acronym REARM stands for software REference ARchitecture Model). As
part of the collaboration with everis, we had the chance to provide an initial
validation of the economic model. Hence, we designed and conducted an
retrospective study to analyze one SRA projects from everis with the help of
REARM. It comprises a retrospective evaluation of an SRA created by everis
for the IT department of a public administration center in Spain.

This chapter is structured as follows. Section 10.1 presents a method to
formulate an economic model for SRAs. Section 10.2 follows this method to
create REARM. Then, in Section 10.3, REARM is used in an everis SRA project
for the IT department of a public administration. Section 10.4 discusses limita-
tions of applying REARM. Finally, Section 10.5 summarizes the contributions
of the second action-research cycle of RQ 2.

171



172 Chapter 10. REARM: Calculating the ROI on SRA Adoption

10.1 A Method for Formulating an Economic Model

An SRA cost-benefit analysis should be based on giving an economic value to
its activities. We designed our economic model through the three following
steps:

1. Identifying the costs and benefits stemming from the use of an SRA.
Although cost modeling is already a mature field within SE, benefits have
traditionally been far more elusive to quantify [96]. For this reason, it is
necessary to identify the SRA quality attributes that bring more benefit to
the development and maintenance of applications, and the costs of cons-
tructing these applications [93]. These attributes may vary depending
on the architecturally-significant requirements coming from the applica-
tions based on the SRA. It is crucial to involve relevant stakeholders to
ensure the trustworthiness of the collected information [144].

The outputs of this step are the costs factors of adopting an SRA and the
list of quality attributes in which the SRA brings more benefit.

2. Adopting metrics to quantify the costs and benefits identified in the
first step in order to convert them into a monetary value. The metrics
to quantify costs and benefits may vary depending on the data available
in the organization involved.

The output of this step is providing guidelines to collect simple metrics
making possible to calculate the cost and benefits factors in practice.

3. Making the business case for the adoption of the SRA. Adding the costs
and benefits calculated in the second step to the formula for calculating
the ROI (see Equation 10.1, and Chapter 3.3.3), where the benefits are the
improvements of applications quality attributes, and the costs are the
expenses in constructing the systems and the SRA.

The output of this step is a business case that captures the reasoning for
adopting an SRA. The SRA business case analysis involves determining
the relative financial costs, benefits, and ROI across its life-cycle.

ROI =
Bene f its − Costs

Costs
(10.1)



10.2. REARM: the EconomicModel for SRAs 173

10.2 REARM: the Economic Model for SRAs

The action-research collaboration with everis provided us the opportunity of
implementing the general-purpose method from previous section in a parti-
cular case.

10.2.1 Step 1 of the Method for Formulating an Economic Model

After conducting the case study of Chapter 5.4, we could see that the main
perceived economic benefits on the use of SRAs were: (1) an increased value
from the improvement of quality attributes, since their reused architectural
knowledge is incrementally improved with previous successful experiences
from its application domain; (2) cost savings in the development and main-
tenance of systems due to the reuse of software elements and the adoption
of best practices of software development that increase the productivity of
developers. Therefore, SRAs bring most of the benefit because of the improve-
ment of reusability and maintainability quality attributes. One of the reasons
why SRAs were adopted in these organizations is that the most important
architecturally-significant requirement was reusability. Thus, we decided to
focus our cost-benefit analysis over reusability and maintainability.

We found that some of the potential metrics to be used were not as prag-
matic as the organization needed. In other words, the organization should
have been invested extra time which was not an option. Furthermore, we
faced the problem that some of the required data to apply the proposed me-
trics was not previously registered by the organization. Thus, we stressed
the emphasis on formulating a practical model that incrementally deals with
diverse cost-benefit aspects.

We identified six cost-benefit factors for SRA adoption. We started the
formulation of factors by adopting Poulin’s method for measuring code reuse
[87, 145]. We adapted Poulin’s model by offering parameters to operationa-
lize it, and we could feed it with available data in everis (see Step 2 below).
We adopted its benefit factors (DCA, SCA) published in [145]. Conversely,
we consider more appropriate for SRAs to adopt the cost factors defined for
software product lines (CSWdev_costs, CSWservice_costs) in [145], instead of the
additional development costs [87].

To complete the model we add the unique development costs of applica-
tions. Also, with the help of the propagation cost metric [97], we also consider
necessary changes to reusable elements (which are not considered by Poulin’s



174 Chapter 10. REARM: Calculating the ROI on SRA Adoption

method) and, therefore, evolution. These two new factors include parameters
to operationalize them.

The former three factors are for development and the latter ones for main-
tenance. When possible, these factors are explained below by comparing them
to the factors from SIMPLE (see Chapter 3.3.4):

• DCA (Development Cost Avoidance). It is the benefit from reusing SRA’s
software modules in applications compared to building the applications
independently.

• UDC (Unique Development Costs). It is the cost to develop the unique
parts of an application that are not already implemented in the modules
of the SRA. UDC is equivalent to Creuse+Cunique.

• CSWD (Common Software Development costs). It is the cost of the initial
investment, i.e., developing an SRA. CSWD is equivalent to Corg+Ccab.

• SCA (Service Cost Avoidance). It is the benefit of modifying reused code
once.

• CSWS (Common Software Service costs). It is the cost of fixing bugs in
the (reusable) SRA modules. CSWS calculates the cost of changes due to
bugs in Ccabu.

• CSWE (Common Software Evolution costs). It is the cost of changing or
adding functionalities to the SRA modules. CSWE calculates the cost of
evolutions in Ccabu. Therefore, CSWS+CSWE are equivalent to Ccabu.

Putting everything together, given a number n of applications built in top
of the SRA, and a number m of SRA modules changed as it evolves, the benefits
and costs of adopting an SRA are respectively defined by Equation 10.2 and
Equation 10.3:

Bene f its =

n∑
i=1

(DCAi + SCAi) (10.2)

Costs = CSWD + CSWS +

n∑
i=1

UDCi +

m∑
j=1

CSWE j (10.3)



10.2. REARM: the EconomicModel for SRAs 175

10.2.2 Step 2 of the Method for Formulating an Economic Model

We divided the second step in two activities: checking the data available in
practice and guiding the information extraction from this data.

Data commonly available in practice that should be collected. The data
typically available to calculate the aforementioned costs and benefits are effort
and software metrics (see Chapter 9). It allows converting cost-benefit factors
into a monetary value.

On the one hand, the invested effort from the tracked activities allows
the calculation of costs. We distinguished between three types of activities:
training, development and maintenance. JIRA and Redmine are tools that
support keeping track of activities and their invested time (see Chapter 9.1).
Keeping track of activities is common in practice for project management and
auditing. Activity tracking is also known as tickets [96].

On the other hand, software metrics help to analyze the benefits that can
be found in the source code. For example, since the cost of applications’ deve-
lopment is lower because of the reuse of an SRA, we could estimate the cost
avoidance of reusing its LOC. Sonar offers tool support for obtaining general
software metrics such as LOC, dependencies between modules, technical debt
[100], and percentages of tests and rules compliance (see Chapter 9.1).

We experienced difficulties collecting historical data (as other researchers
did in [86]), especially for the “before” state of adopting an SRA. We noted
that Cprod and Cevo were seldom available since the “before” state did not exist.
For this reason, we proposed to use RCR and RCWR.

Using commonly available data in practice to quantify the costs and
benefits. In Table 10.1, we present ten basic parameters that are required
for calculating the six cost-benefit factors of the Step 1. Table 10.2 shows the
formulas to calculate these six cost-benefit factors as well as parameters that
are needed for these calculations.

10.2.3 Step 3 of the Method for Formulating an Economic Model

As final step, we can use calculated factors in order to calculate the ROI:

ROI =
[
∑n

i=1(DCAi + SCAi)] − [CSWD + CSWS +
∑n

i=1 UDCi +
∑m

j=1 CSWE j]

CSWD + CSWS +
∑n

i=1 UDCi +
∑m

j=1 CSWE j

(10.4)



176 Chapter 10. REARM: Calculating the ROI on SRA Adoption

Table 10.1: Basic parameters in order to feed the factors of Table 10.2.

Description of the parameters (adapted for the SRA context)
RCR Relative Cost of Reuse: effort that it takes to reuse a component without

modification versus writing it new one-at-a-time [87]
RCWR Relative Cost of Writing for Reuse: effort that it takes to write a reusable

component versus writing it for one-time use only [87]
ER Error Rate: the historical error rate in new software developed by

your organization, in errors per thousand lines of code [87]
EC Error Cost: your organization’s historical cost to fix errors after

releasing new software to the customer, in euros per error [87]
NMSI New Module Source Instruction: the LOC that the changed or new

module has, which can be the average of previous ones
PC Propagation Cost: the percentage of code affected in the SRA when

performing evolutions (i.e., changing modules) [97]
CPKL Cost per KLOC: the historical cost to develop a KLOC of new software

in your organization [87]
USI Unique Source Instructions: the amount of unique software (i.e., not

reused) that was written or modified for an application
RSI Reused Source Instructions: it is the total LOC of the SRA’s modules

that are reused in an application. It supports variability. In other
words, reuse of SRA might not be complete but partial, since different
applications can reused different SRA’s modules. Therefore RSI
depend on each application [87].

TSI Total Source Instructions: it is the total LOC of the SRA that can be
reused [87].

We suggest using these cost-benefit factors to make a business case for calcu-
lating the ROI of building an SRA vs. building the applications independently.
Table 10.3 shows an example of business case and how to calculate the cost
and benefits for three years since the SRA adoption. The parameters n1, n2,
n3 indicate the number of applications developed per year respectively, and m
the number of evolved modules.

As Boehm points out [82], two additional factors may be important in
business case analysis: unquantifiable benefits, and uncertainties and risk.

First, the economic model that we propose promotes benefits in reusability
and maintainability. However, other quality attributes, such as security, could
be as relevant as those for this analysis, even when they may be difficult
to quantify. These other benefits should also been taken into account when



10.2. REARM: the EconomicModel for SRAs 177

Table 10.2: Cost-benefit factors to calculate the ROI of adopting an SRA in an
organization.

Description of the cost-benefit factors (adapted for the SRA context)
DCA Development Cost Avoidance: the benefits from reusing SRA’s modules [87]

DCA = RSI * (1-RCR) * CPKL
CSWD Common Software Development Costs: the costs to develop the SRA [145]

CSWD = RCWR * TSI * CPKL
UDC Unique Development Costs: the costs to develop the unique part of an

application
UDC = USI*CPKL

SCA Service Cost Avoidance: benefits from maintaining only once SRA’s modules
[87]
SCA = RSI * ER * EC

CSWS Common Software Maintenance Costs: cost of fixing bugs in reusable modules
[145]
CSWS = TSI * ER * EC

CSWE Common Software Evolution Costs: the costs of changing or adding a new
functionality and maintaining it to the SRA
CSWE = evolution development + evolution maintenance + propagation =
(NMSI*RCWR*CPKL)+(NMSI*ER*EC)+(TSI*CPKL*PC)

Table 10.3: Example of design of a business case with the cost-benefit factors
of the model.

Year 1 Year 2 Year 3
Total
benefit

n1*(DCA+SCA) n2*(DCA+SCA) n3*(DCA+SCA)

Total cost CSWD+
n1*UDC+CSWS*1/5

n2*UDC+
CSWS*2/5+m*CSWE

n3*UDC+
CSWS*2/5+m*CSWE



178 Chapter 10. REARM: Calculating the ROI on SRA Adoption

adopting and SRA. Unquantifiable benefits are also considered as “flexibility”
in TEI [84], the economic model of Forrester.

Second, to adjust cost and benefits to risk, they can be multiplied by per-
centages that generally increase the costs and reduce the benefits (assuming
the worst case). For instance, TEI proposes to multiple costs by values that
range from 98% to 150% and benefits by values between 50% and 110%.

10.3 Preliminary Validation

To assess the feasibility of the economic model, we conducted a retrospective
analysis of a particular case. We calculated the costs and benefits (and hence
the ROI) of an SRA adoption driven by everis. In this analysis, a sample
of 1 everis’ client organization SRA project in an IT department of a public
organization and 1 concrete architecture project was selected. These projects
were selected because the public administration that adopted the SRA was
interested in the study results. Besides, by the time we conducted the study,
everis’ started the aforementioned concrete architecture project, being highly
feasible to collect quantitative data. Although we were aware of other concrete
architecture projects with participants that do not belong to everis, it was not
possible to contact with them.

By the time we performed the validation, the public organization had
already:

1. adopted an SRA,

2. created an application using the SRA –which we consider “exemplar”
application–, and

3. fixed errors discovered in the SRA software elements that were reused
by the application.

The validation consisted of 4 parts. First, a post-mortem analysis in which
our challenge was to extract the parameters of Table 10.1 from already collected
data. The values that we got are shown in Table 10.4.

Recommended values for RCR range from 0,03 and 0,25, and for RCWR
from 1 to 2,2 [87]. Therefore, with the values that we got in the study, we
can see that both RCR and RCWR are low for SRAs. A low RCR could show
the trend of moving the complexity to the architecture in order to simplify the
development of applications. We can also see this trend comparing the code
of the SRA software elements with the code of applications. SRA code present



10.3. Preliminary Validation 179

higher values for complexity metrics such as coupling and cohesion. A reason
why RCWR is low could be that SRA architectural knowledge speeds up the
development.

Second, with the data of Table 10.4, we had real data to calculate the
following 4 (out of 6) cost-benefit factors of REARM (see Table 10.5):

• CSWD, the SRA initial investment, which lasted 6 months.

• DCA, the benefit of reusing SRA code in the exemplar application deve-
lopment.

• SCA, the cost from fixing the errors of the reused code in the exemplar
application.

• UDC, the cost of developing the application.

The above costs were accurately computed because everis kept track of
activities with their invested time. Third, it was necessary to estimate the rest
of factors:

• CSWS, the cost of fixing all bugs in SRA code. Since we knew the SCA
for the exemplar application and the percentage of reuse, we calculated
the error rate and error cost, which we used to estimate CSWS.

Table 10.4: Values of the basic parameters in the study

Parameter Value
RCR 0,064
RCWR 1,243
ER 2,879 err./kLOC
EC 7,02 hours/err.
NMSI 1.526 LOC/module
PC 9,7 %
CPKL 75,22 hours/kLOC
USI 2.885 LOC
RSI 8.364 LOC
TSI 41.189 LOC*

*Note: In TSI, 9.231 LOC were refactored from previous project. So, 31.958 were new.



180 Chapter 10. REARM: Calculating the ROI on SRA Adoption

Table 10.5: Values of the cost-benefit factors in the study∗.

DCA CSWD UDC SCA CSWS CSWE
589 hours 2.988 hours 217 hours 169 hours ≈832

hours
≈474
hours

*Note: The symbol ’≈’ indicates estimated values. The other values are real data.

• CSWE, the cost of: (1) changing or developing a module with new
functionality, (2) fixing its bugs, (3) making changes in the rest of the
SRA to integrate it.

Fourth, we made the business case analysis with two different scenarios.

10.3.1 Scenario 1: Is it Worth to Invest on the Adoption of an SRA?

We constructed a business case for 3 years starting when the organization de-
cided to adopt the SRA, in order to calculate the ROI. For the first 8 months of
those 3 years, we had real data about the SRA development and the exemplar
SRA-based application. To estimate the costs and benefits for the rest of these
3 years, we conducted some additional interviews to the involved stakehol-
ders. Stakeholders were carefully selected according to their knowledge and
experience to increase the degree of confidence on the data gathered. After
these interviews, we made the following assumptions:

• Future applications will have similar characteristics and complexity as
the exemplar one.

• The public organization will develop 8 applications per year. Since the
SRA creation lasted 6 months, the first year they will develop just 4
applications.

• The totality of CSWS is computed proportionally starting the seventh
month.

• A module is evolved (with new functionality) or added to the SRA every
year since the second year.

Under these assumptions, the costs and benefits in hours for the future can
be calculated as shown in Table 10.3. They can be converted into a monetary



10.3. Preliminary Validation 181

value by multiplying them by an hourly rate. Assuming a rate of e30 per
hour for an application developer (which affects to DCA, SCA, UDC) and a
rate of e40 per hour for a developer and maintainer of the architecture (which
affects to CSWD, CSWM, CSWE), Figure 10.1 summarizes financial results for
first three years of the SRA. This organization will realize a ROI within 2 years
through gains in systematic reuse.

Figure 10.1: Summary financial results.

10.3.2 Scenario 2: How Many Instantiations are Necessary before
Savings Pay Off for the Up-front Investment?

In this scenario we calculated how many applications need to be build based on
the SRA to have a positive ROI. Figure 10.2 shows the ROI due to developing
and maintaining applications based on an SRA rather than in a stand-alone
fashion.

As Figure 10.2 shows, after building 7 applications, savings pay off for the
up-front investment in the SRA. It must be noted that the exemplar application
is small and only 20% of the SRA is being reused (RSI/TSI). On the other hand,
the application has a high reuse percentage of 74% (RSI/USI+RSI). The higher
these percentages are (likely in medium to large applications), the greater the
benefit from the SRA is.



182 Chapter 10. REARM: Calculating the ROI on SRA Adoption

Figure 10.2: ROI of developing and maintaining SRA-based applications vs.
stand-alone fashion.

Moreover, applications are introduced into the market earlier from the
seventh month on. This is due to the effort avoidance of 589 hours (DCA) of
reusing the SRA.

To sum up, this study illustrates the potential way in which an organization
can evaluate the value of SRA adoption. We calculated a three-year ROI of
42% with a payback period of 16,5 months and 7 applications.

10.4 Discussion

Once we applied the economic model and calculated the ROI, a last question
remains: How accurate are these calculations and the obtained quantitative data?

If REARM is applied with existing data (as we have done in Section 10.3),
the calculation of the ROI reaches a high degree of correctness, since the data
that feeds the model is trustworthy. The metrics coming from code analysis
(e.g., size in LOC) do not reflect any error. Also, we saw that time tracking
is reliable. During data collection we found invested time in activities in
two different sources: JIRA, which is optionally used by the project team and
keeps the invested time of the project’s activities; and a mandatory corporate
financial tool, which is used by the financial department. This data differ in



10.5. Summary of the Second Cycle of RQ 2 183

8,75%, being lower internally time tracking of the project. The reason could be
that JIRA does not include other activities out of the scope of the project like
traveling. To adjust the calculations to this risk, we have always considered
the worst case (i.e., greater costs).

Contrary, when the economic model is used to predict the ROI of a com-
pletely new SRA adoption in an organization, there is not real data since it
does not exist yet. In this case, the accuracy totally depends on expert intuition
and historical data. Historical data can be scarce in small and medium orga-
nizations; especially considering that reuse of architectures is still a research
area in progress. In addition, historical data must be continuously updated,
since some values of effort-related parameters (such as RCR) are expected to
decrease each time a developer instantiates the SRA.

As a final remark, the construction of an economic model from the data
available in software companies is yet-another-instance of research question
which needs to balance soundness with applicability.

10.5 Summary of the Second Cycle of RQ 2

With the goal of supporting organizations to analyze whether it is worth to
adopt an SRA, this chapter presents REARM. REARM is an economic model to
translate measured or estimated data (i.e., metrics) into monetary terms (i.e.,
cost-benefit analysis). REARM provides the following artifacts to build the
business case on SRAs:

• 10 basic parameters from which we can calculate the cost-benefit factors
(see Table 10.1).

• 6 cost-benefit factors to calculate the ROI of adopting an SRA in an
organization (see Table 10.2).

• The formula to compute the ROI of SRA adoption (see Equation 10.4).

Besides, we have conducted a preliminary validation to calculate the ROI
of adopting an SRA in a real organization. This organization will realize a
return on their investment within two years through gains in systematic reuse
and applications maintainability.





Chapter 11

Guidelines for Building a Business
Case for SRAs

In the two previous chapters, which represent the two first cycles of the action
research with everis regarding RQ 2, we have gathered experience, feedback
and lessons learned. In this chapter, at the end of the formative stage, our goal
is to package such experience, feedback and lessons learned into guidelines
for building the business case for SRAs.

It is important to note that these guidelines are aimed to be useful not
just for everis, but also other organizations with a similar context. In order
to analyze whether other organizations deal with similar problems as everis,
we highlighted the similarities of SRAs designed by everis with other SRA
contexts that were reported in the literature and by practitioners. This analysis
was presented in Chapter 6.1, before the construction of the guidelines for RQ
1. Bearing in mind the common aspects of many SRA contexts, we were able
to only package into the guidelines the material that could be used under the
context of organizations described in Chapter 6.1.

This chapter is organized as follows. Section 11.1 briefly discusses the
formative cycles of the action research with respect to RQ 2. Section 11.2
packages the results and provide guidelines that help to answer RQ 2. Finally,
Section 11.3 briefly introduces how these guidelines for RQ 2 were validated.

185



186 Chapter 11. Guidelines for Building a Business Case for SRAs

11.1 Formative Stage: Evolution of the Guidelines

The process of packaging the guidelines have been done incrementally from
the feedback of the formative stage. The guidelines have mainly evolved
to provide the results in a way that is more understandable for the upper
management of organizations. Besides, threats to validity and reliability of
cost-benefit factors have incrementally been taken into account. Different
previous versions of the guidelines can be seen in [39, 26, 29, 30, 31].

As an example of such evolution, Figure 11.1 shows the guidelines as
presented at the “X Workshop Latinoamericano de Ingeniería en Software
Experimental” [26]. We can compare this previous version of the guidelines
to the current one, summarized in Figure 11.2. The main improvement has
been that we realized that the economic model should consider, besides cost-
benefit factors, variables of the business case. Examples of this variables are
the number and size of the applications that will be developed, and how often
changes to the SRA would be needed.

11.2 Packaging the Guidelines

everis’ results were suitably packaged with the aim of being applied in other
SRA projects and also in similar organizations.

First of all, organizations that may want to use these guidelines need to

Figure 11.1: Previous version of the guidelines to build the business case for
SRAs in industry [26].



11.2. Packaging the Guidelines 187

fit into the context depicted in Chapter 6.1. This means that they need to
design an SRA based on practical experience, and to use such SRA for the
development and maintenance of a family of applications in industry. This is
because the input for using the guidelines is evidence from real SRA projects.

The guidelines for RQ 2 support organizations to build the business case
for SRA adoption based on corporate evidence by providing:

• A checklist to analyze existing value-driven data in SRA projects (results
of Chapter 9), i.e., a checklist of value-driven data that an organiza-
tion might have is facilitated to check if the REARM economic model
provided can be executed.

• An economic model that uses such value-driven data to calculate the ROI
of adopting an SRA (results of Chapter 10). Then, software architects
can feed the economic model to build the business case on SRAs.

Figure 11.2 summarizes the guidelines for building a business case for
SRAs in industry in order to analyze whether it is worth to invest on an
SRA. The guidelines are composed of the context of SRAs in industry, and
materials to conduct two empirical studies. For these two empirical studies,
the guidelines recommend: a survey to check existing value-driven data of
SRAs in organizations (using the checklist of the guidelines, see Section 11.2.1),

Figure 11.2: Guidelines to build the business case for SRAs in industry.



188 Chapter 11. Guidelines for Building a Business Case for SRAs

and a case study to calculate the ROI of adopting an SRA (using REARM, see
Section 11.2.2).

11.2.1 A Survey to Check Existing Value-driven Data in SRA and
Concrete Architecture Projects

Below, we explain the context, objective, method, support material, and the
output in this empirical study of the guidelines.

• Context: Typically, organizations do not have resources to compare the
real cost of creating applications with and without an SRA. Besides,
historical data may be scarce. Thus, alternatives should be considered.

• Objective: The objective of this survey is to identify the quantitative
information that can commonly be retrieved in SRA projects in order to
quantitatively calculate the costs and benefits of adopting an SRA in an
organization. This is an initial step to create repeatable techniques for
performing a cost-benefit analysis.

• Method: Exploratory surveys with personalized questionnaires applied
to relevant stakeholders (e.g., manager, architect, developer) to find out
the quantitative data that has been collected in SRA projects and concrete
architecture projects. An example of conducting this empirical study and
its approach for data collection is described in Chapter 9.

• Support material: Appendix D provides the template surveys to check
existing value-driven data in SRA and concrete architecture projects. An
example of use can be seen in Chapter 9.

• Output: Identification of existing value-driven data in SRA and concrete
architecture projects. If the organization has such data, REARM can be
applied without estimations.

11.2.2 A Case Study to Apply REARM to Calculate the ROI of
Adopting an SRA

Below, we explain the context, objective, method, support material, and the
output in this empirical study of the guidelines.

• Context: Before deciding to launch an SRA, organizations need to ana-
lyze whether to undertake or not the investment. Offering organizations



11.3. Summative Stage: Validating the Guidelines 189

an economic model that is based on former SRA projects data can help
them to make more informed decisions.

• Objective: The objective is to analyze whether it is worth investing
on an SRA with the help of an economic model, in order to improve
the communication among architects and management, and to improve
their decisions.

• Method: A case study that applies an economic model to calculate the
ROI of adopting an SRA. Depending on the maturity of the organization,
two approaches can be applied. If the organization does not have expe-
rience with an SRA, the economic model should be fed with estimated
data. Nevertheless, when the organization already has experience with
SRAs (i.e., the case of IT consulting firms), real data can be gathered by
means of an exploratory quantitative post-mortem analysis. Then, the
economic model quantifies the potential advantages and limitations of
using an SRA. Some related works explain how to calculate the ROI of
a product [84], software reuse [91][87], and software product lines [83].
We suggest the use of REARM, following the example of conducting this
empirical study and its approach for data collection as it is described in
Chapter 10.

• Support material: Appendix D provides the five steps of the REARM
economic model. An example of use can be seen in Chapter 10.

• Output: A business case to evaluate whether it is worth or not to invest
on an SRA.

11.3 Summative Stage: Validating the Guidelines

Once the guidelines were adequately shaped and improved, the summative
stage took place. The primary role of this stage was to obtain feedback to check
the utility of the guidelines and to validate them with more practitioners. This
evaluation was performed by presenting the results of applying our guidelines
to different experts. As part of this validation and summative stage of these
guidelines, the next chapter presents the feedback that we got from three
different meetings with experts (see Chapter 12).

Organizations analyzing whether to make the strategic move to SRA adop-
tion and planning the adoption of SRAs based on evidence will benefit from
these guidelines.





Chapter 12

Workshops to Evaluate the Business
Case for SRAs

Once that we conducted the survey to check existing value-driven data in SRA
projects, and a case study to apply REARM to calculate the ROI of adopting
an SRA at everis’ client organizations in Chapters 9 and 10, it was necessary to
evaluate these results and to analyze lessons learned. This task is summative,
since its primary role is to evaluate the guidelines for building the business
case for SRAs, and identify further areas of improvement. To evaluate such
guidelines and their materials (e.g., REARM), we presented the results to
several stakeholders:

• The upper management of the everis’ client organization in which we
conducted the study of Chapter 10.

• The audience of the International Conference on Software Reuse 2013
(ICSR 2013).

• The Experimental Software Engineering group (ESE) of the Federal Uni-
versity of Rio de Janeiro (UFRJ).

Next, we respectively present the feedback that we got, and our conclusions
from such feedback.

191



192 Chapter 12. Workshops to Evaluate the Business Case for SRAs

12.1 REARM Validation at an everis Client Organization

After applying REARM for an SRA project of an everis’ client organization
(see Chapter 10), we sent the results to the upper management of the organi-
zation. They gave us a positive feedback and the following suggestions for
improvement:

• They considered more useful to give the outputs of applying REARM
in terms of effort (i.e., hours) rather than in monetary terms (i.e., e)
for two reasons. First, because REARM is a reused-based economic
model, and it considers costs from developing and maintaining software.
Therefore, REARM does not consider other costs such as training courses
to application builders. As a consequence, the initial costs of adopting the
SRA was a subset of the real costs of adopting the SRA in the organization.
Second, they considered more appropriate to show the benefits from
reusing the SRA elements in percentages. The reason is that avoiding
development and maintenance costs in applications through reuse is
expressed and understood better by percentages.

• They suggested that REARM should be useful to compare the scenario
in which an SRA is used versus the scenario in which an SRA is not
used. In this direction, we tailored REARM for such scenario, instead of
comparing the costs and benefits from using different versions or releases
of the same SRA.

• They also indicated that applications usually reuse an SRA in different
percentages. Therefore, some applications benefit more than others by
reusing more modules from the SRA than other applications. For this
reason, they recommended to apply REARM for three kind of applica-
tions: low level of reuse (up to 33% of the SRA), medium level of reuse
(from 33% to 66% of the SRA); and high level of reuse (from 66% up to
100% of the SRA).

These three reasons helped us to improve initial versions of REARM.

12.2 REARM Validation at the ICSR 2013

We presented the results of the Chapter 10 in a full paper at the International
Conference on Software Reuse 2013 [5]. RQ 2 was considered by a reviewer
as “a very important topic in the field. It is also of extreme importance within



12.2. REARM Validation at the ICSR 2013 193

industry; i.e., my company demands justification in our investments into
SRAs, which are difficult to quantify”. About REARM, its major novelty
was highlighted as “it considers costs and benefits beyond those typical in a
straight code reuse situation or a software product line situation. These costs
and benefits include the need to continually mature the SRA to reflect new
knowledge”.

Besides the positive reviews, we got many questions and feedback in the
conference, which are summarized below:

• It was remarked that REARM can only be applied to SRAs that have
been mapped to software elements already implemented. The reason is
that it uses metrics from code reuse (e.g., LOC).

• About the type of metrics, it was remarked than other activities besides
development and maintenance avoidance from reuse can be added to
REARM. Some examples of these activities are training programs, or-
ganizational changes, and SRA engineering and architecting activities
(such as requirements engineering and testing).

• About the concrete architecture project in which REARM was used, it
was highlighted that it reused the SRA in a lower extent (i.e., 20%).
For this reason, two ideas were proposed as future work. First, applying
REARM in many concrete architecture projects (e.g., 15-20) with different
sizes and levels of reuse. Second, since this may not be possible in many
organizations due to lack of information, it could be possible to apply
sensitivity analysis to study how the uncertainty in the output of REARM
can be apportioned to different levels of reuse from applications.

• About the results presented, the audience commented that the ROI was
very low (with 7 applications). Normally, the ROI from complete soft-
ware reuse is positive in three applications. Obviously, the ROI varies
because SRAs are not reused 100% in every application. Still, REARM
should be used in projects from private organizations to see if the reason
for such low ROI is because it was used in a public administration whose
SRA did not have a regulative role and could not reach high levels of
reuse due to heterogeneity.

• REARM includes some parameters from Poulin economic model. In
our study, we could adapt those parameters (e.g., RCR and RCWR)
because everis had historical data. They highlighted the importance of



194 Chapter 12. Workshops to Evaluate the Business Case for SRAs

adjusting these parameters accurately, and the contribution of the paper
by providing RCR and RCWR parameters unique for SRAs.

We think that many of the aforementioned points should be addressed in
future work.

12.3 REARM Validation at another Research Group

Besides the ICSR 2013, we also presented the results of the Chapter 10 at a
meeting with all the researchers from the Experimental Software Engineering
Group of Federal University of Rio de Janeiro. We got interesting feedback in
the meeting, which is summarized below:

• They highlighted that REARM should consider differently “effort” and
“costs”. Although related, they are not the same term. Then, REARM
should give the results in effort terms, which can be translated to costs
terms.

• Other point is that it is difficult to demonstrate the quality of an SRA
in quantitative terms. They remarked that is also very important to
show it in qualitative terms, by making hypothesis and testing them in
interviews. In this direction, the additional factors at the end of the Step
3 of REARM (see Chapter 10.1), and the qualitative studies from RQ 1
about the benefits and drawbacks of SRAs are very useful.

• The remarked that the “error” concept of REARM could be broader.
Therefore, there could be different types of errors and more defect metrics
besides the error rate (ER) and error cost (EC).

• A very important issue is that all the cost-benefit factors should represent
an effect caused by SRAs. In other words, those costs and benefits should
be a consequence of using SRAs. For each cost-benefit factor, it should
always be explained why the factors measure what they are intended to
measure, and how they are related to SRAs (see Chapter 10.1).

• There is always the risk that REARM is used wrong. For instance, if
you reuse an SRA module, the parameter Reuse Source Instructions (RSI)
would be considered, changing the output of REARM. However, we
have to ensure that such SRA module is indeed being reused (e.g., it may
not be enough if a stakeholder claims it).



12.4. Summary of the Third Cycle of RQ 2 195

• In Chapter 10, we considered two scenarios. They recommended that
scenarios should be useful for practitioners. Therefore, other scenarios
may be added. These scenarios should be evaluated by software archi-
tects, in terms of congruency (e.g., does it make sense?) and usefulness
(e.g., what can I gain for this?).

• A last issue is the importance of trying to generalize, so that we can
give an answer to readers that may wonder what they can win with
SRAs. In this sense, more effort is necessary not only in everis, but other
organizations to get a representative sample.

12.4 Summary of the Third Cycle of RQ 2

With the goal of validating the guidelines for building the business case for
SRAs, this chapter describes how such guidelines were presented two three
different audiences. Such audiences gave feedback and further areas of im-
provement of the support materials of the guidelines (e.g., REARM), which
have been summarized in this chapter.





Part IV

Conclusions and Future Work

197





Chapter 13

Discussion: Evaluating our
Collaboration

More and more, SE researchers are motivated to solve real problems that
bring value to industry. An example is the industry-academia collaboration
described in this PhD thesis.

The goal of this chapter is twofold:

1. to evaluate the success of the collaboration, and

2. to report the experience with conducting empirical studies in everis and
lessons learnt.

First, we evaluated our collaboration with an existing model for technology
transfer [146]. Second, we organized a focus group discussion to identify
challenges we have faced. Both tasks were done in January 2014, before the
end of the collaboration. Therefore, evaluating the collaboration was positive,
since we could identified the steps to be taken to achieve a high degree of
technology transfer and innovation dissemination. In summary, we think that
this type of evaluations are a needed step in the conduction of any industry-
academia collaboration in order to improve its success.

We intentionally involved one person from each view (i.e., industry and
academia) to reduce the bias of the report and to be as objective as possible.
Still, we are aware of the self-report threat.

The chapter is structured similarly to other experience reports on industry-
academia [147]. Section 13.1 describes a background of models for technology
transfer. Section 13.2 reports the activities that were performed since the

199



200 Chapter 13. Discussion: Evaluating our Collaboration

beginning of the collaboration to this evaluation, and Section 13.3 evaluates
maturity of the collaboration with respect to these research activities and the
research results. Section 13.4 presents the lessons learnt that we identified in
a jointly focus group among everis and GESSI. Finally, Section 13.5 concludes
the chapter and present several improvements to be performed.

13.1 Models for Technology Transfer

ESE serves as support for transferring innovation [148]. The conduction of em-
pirical studies is thus increasingly gaining attention to fulfil industry-relevant
issues, as several recent experience reports show [149, 150]. Another example
is the collaboration of this PhD thesis, which relies on empirical studies to
provide a solution to the current challenges that everis faces in SRA projects.

In order to improve the body of knowledge on conducting empirical stu-
dies in industry, models for technology transfer have arisen, such as [146, 151].
These models provide guidelines to conduct industry-academia research and
evaluate it. On the one hand, Gorschek et al. [151] present seven sequential
steps that they consider relevant and interdependent for overall transfer suc-
cess (see Figure 13.1). On the other hand, Sandberg et al. define ten factors
for successful projects [146]. Figure 13.2 shows the success factors in which
the project depended on and the effects they had on the collaboration. In next
two sections, we explain further and use these two models ([151] and [146]), in
order to report and evaluate our collaboration. Both models are descriptive,
i.e., they derive from experiences on performing industry-relevant research.

13.2 The Collaboration

In this section, we focus on the industry-academia collaboration between everis
and GESSI. Although we did not follow the full Gorschek et al.’s process [151],
we applied the first steps.

In order to show how the collaboration has been conducted and to analyze
Gorschek’s steps (see Figure 13.1) that need to be taken in the future, we report
step by step our research since the beginning of the collaboration (May 2011)
until the moment of performing this evaluation (January 2014).

Step 1: Identify potential improvement areas based on industry needs.
When the collaboration was signed, the goal in the research area between
everis and GESSI was: “to boost applied technological research related to SE



13.2. The Collaboration 201

Figure 13.1: An activity model for technology transfer in industry-academia
collaboration, from Gorschek et al. [151].

in areas that will be identified as priorities within the sector”. This goal was
too broad and the so-called priorities needed to be identified.

To identify potential improvement areas, several joint meetings among
everis and GESSI members were held between May and December 2011. Dur-
ing these eight months, the following activities were conducted. First, the
collaboration team was created with two practitioners from everis and four
researchers from GESSI. Second, the way of working was defined. Regular
meetings were celebrated every two weeks, minutes of meetings were writ-
ten down, and a collaborative environment was set up to make collaborative
work and exchange ideas, thoughts, and material. Third, presentations lead
by everis’ employees were given to explain the current state of real projects
and their challenges; similarly, presentations lead by GESSI were given to
show our current research in SE. After these presentations, we discussed po-
tential improvement areas in everis’ projects and how the research conducted
at GESSI could be of help. After several iterations, we decided to focus on SRA
projects at everis. It is important to note that this improvement area (i.e., SRA



202 Chapter 13. Discussion: Evaluating our Collaboration

Figure 13.2: A relational model for industry-academia research, from Sand-
berg et al. [146].

projects) evolved over time, and other objectives that were previously con-
sidered were discarded as everis demanded (remarkably process monitoring
and model-driven development to generate Create, Read, Update and Delete
(CRUD) interfaces). Finally, everis-relevant needs were divided in two factors:
organizational and technical [152], leading to the RQs of Chapter 1.4.

Step 2: Formulate a research agenda. The champions (one from everis and
another one from GESSI) of the collaboration were defined since the beginning.
They have been responsible of formulating the research agenda.



13.2. The Collaboration 203

The author of the PhD thesis started to work full-time in the collaboration
since October 2011. Also, since November 2011 everis provided him an access
card and a working space next to the managers at everis.

Once the RQs were stated, the first problem for the researchers was to learn
the context of SRA projects at everis and the vocabulary that practitioners used.
It was a tough task. By April 2012, an internal report was created with this
information and later published in [26]. When this point was reached, the two
managers from everis were moved to other projects, given a company’s policy
about people rotation. A new manager became the contact person at the everis
side. She has kept internal meetings with the champion at everis when nec-
essary. Since then, she has had a long-term commitment to the collaboration.
At the GESSI side, also two researchers moved to other projects and one new
researcher started to work in the collaboration. Since then (April 2012), the
team was composed of one everis’ manager that is GESSI’s contact person at
everis (plus the champion at everis, who is part of the upper management) and
three researchers from GESSI (one of them is the champion at GESSI).

During this time, we designed the two main studies of the collaboration: on
the one hand, qualitative empirical studies to gather evidence about relevant
aspects that could help in the design and evaluation of SRAs; on the other
hand, case studies to calculate the ROI of SRA adoption.

The contact person at everis helped in contacting multiple practitioners,
and monitoring when new SRA projects were conducted to include them in
the research.

Step 3: Formulate a candidate solution. From the beginning to the half of
the second year of the collaboration (May-October 2012), we formulated the
candidate solutions for our two problems.

On the one hand, we jointly identified relevant aspects for the design
and use of SRAs. The GESSI team also studied the state-of-the-art about
SRA engineering and proposed the proper type of empirical studies to be
conducted. In joint meetings, we discussed about the design of the interview
guides and the questions of the online questionnaires.

On the other hand, we defined REARM. The GESSI team played an im-
portant role in the creation of REARM by studying existing economic models
of software reuse and software architecture metrics whereas everis provided
evidence about available data in their company that makes REARM pragmatic
and realistic.



204 Chapter 13. Discussion: Evaluating our Collaboration

Step 4: Conduct lab validation. Because of the characteristics of the RQs,
little validation “inside laboratory” has been performed. First, the qualita-
tive empirical studies were validated to be aligned with existing literature.
Second, we needed to perform sensitivity analysis in order to test the robust-
ness of REARM output and to search for errors by encountering unexpected
relationships between its inputs and outputs.

Step 5: Perform static validation. In this step, we validated the two solutions
devised for the RQs. For the validation of the semi-structured interviews and
online questionnaires, two pilot iterations were performed and provided the
following feedback:

• Inadequate vocabulary was used to refer to SRA projects’ artifacts.

• Researchers did not understand the context of SRA projects properly,
additional questions about the SRA project context were included.

• Questions that dealt with several variables disconcerted the interviewee
and made the analysis more difficult. It was better to split them to cover
only one variable.

• If a survey targets several stakeholders, their questionnaires should be
designed having into account their knowledge and interest about archi-
tectural concerns.

• The questions should be designed to be easy to follow to avoid that
participants reply in questions different than the one intended.

• In online questionnaires, it is recommendable to allow the interviewee
to write any comments or clarifications in some field and also include
an “n/a” option when necessary. Besides, a previous button is useful to
make changes in prior questions.

• Contacting stakeholders from client organizations was harder than con-
tacting interviewees from everis. This is mainly because everis requested
the study, so they had a clear interest on it.

For the validation of REARM, we gathered data of one SRA project in an
everis’ client organization. We performed an internal report for the upper ma-
nagement and the champion in everis and the client organization that adopted



13.3. Collaboration Evaluation 205

the SRA. They validated the results, and provided the feedback presented in
Chapter 12.1.

A negative point at this step is that, although we have contacted practitio-
ners that participated in our studies to get feedback, we have not addressed
widespread presentation of the candidate solution in everis or to the upper
management.

Step 6: Perform dynamic validation (piloting). In this step, the collaboration
team conducted real pilot studies with the candidate solutions.

With respect to the qualitative studies, we conducted a case study in nine
SRA projects. The aim was to gather relevant data about: SRAs artifacts
(Chapter 5.3), benefits and drawbacks of SRAs (Chapter 5.4), architecturally-
significant requirements, and architectural decisions in SRA projects.

With regard to the economic model, we performed a business case for
the adoption of an SRA in a public administration in Spain. The results are
presented in Chapter 10.

Step 7: Release the solution. The last step is to release the solution to show
practitioners how it works and that it is better to use it rather than working
as usual. After realizing the solution, practitioners should use it even without
the intervention of other people. This step has not been achieved yet. Never-
theless, it is vital to realize industry benefit. Section 13.5.1 describes the next
actions to fulfil this step.

13.3 Collaboration Evaluation

In this section we evaluate our industry-academia collaboration following the
collaboration model of Sandberg et al. [146]. We evaluate the collaboration
maturity and its management with respect to the factors stated by Sandberg
et al. [146] (the former five factors relate to research activities whereas the
second five, to research results, see Figure 13.2). To do so, the phase since the
beginning of the collaboration to the moment of the evaluation (January 2014)
is considered. For each factor we use a Likert scale to assess maturity, with 1
representing low maturity, and 5 representing high maturity.



206 Chapter 13. Discussion: Evaluating our Collaboration

13.3.1 Research Activity

Management engagement: 5. The problem formulation was defined in the begin-
ning of the collaboration after several meetings in which both representative
of everis and GESSI were present. The two champions of the collaboration
jointly manage the research, and have meetings when necessary (although not
as frequent as the rest of members of the collaboration team).

Network access: 3. We have been able to contact best-in-class employees in
everis. However, since everis is a consulting company, sometimes they did not
have the competence to provide specific data because of confidentiality issues.
Another challenge is to involve them in the data collection process when they
are short of time (e.g., busy with other projects).

Collaborator match: 4. Upper management at everis is utterly interested in
the results of the research, and practitioners have been willing to participate
with researchers during the empirical studies.

Communication ability: 3. A very positive point is that GESSI has the option
to communicate when necessary to everis’ managers and other practitioners
involved in SRA projects. On the other hand, once we have contacted other
practitioners from everis, we have not followed their progress in SRA projects.

Continuity: 3. The topics defined in the beginning of collaboration are
still being studied. Also, new client organizations are adopting SRAs, so the
context is still a current challenge. One representative from GESSI spent one
day per week in everis from November 2011 to July 2013. From August 2013,
he has only attended to meetings because of limited space in everis. This is not
a big problem due to the geographic proximity of the two institutions and the
flexibility of both sides for meeting organization.

13.3.2 Research Result

Need orientation: 4. The collaboration fully addresses a perceived real-life
industry problem at everis.

Industry goal alignment: 3. Collaboration goals are aligned to current everis
unit goals, while results are still in an early stage.

Deployment impact: 1. Results have not been deployed by everis’ practitio-
ners out of the collaboration yet. With the exception of pilots conducted by
the joint team, results have not had an impact on practice.

Industry benefit: 2. Results are starting to be valuable to everis after the
conduction of the first pilots. Yet, practitioners cannot see the results in daily
work.



13.4. Lessons Learned 207

Innovativeness: 2. Internal reports and scientific publications are written by
researchers and available by the entire collaboration team. Although they are
not used widespread in everis yet, they have generated new ideas, knowledge,
and publications for the research agenda of the collaboration.

13.4 Lessons Learned

In the previous sections we reported the process that have been followed
during the collaboration and evaluated the research activities and results under
existing models for industry-academia collaboration. In this section, we report
the challenges that we have faced and dealt with in the “Cátedra everis-UPC”.
Also, we show the most important benefits that have been realized because of
mutual collaboration.

Our approach to collect such data was a focus group, which it is considered
a proven and tested technique to obtain the perception of a group of selected
people on a defined area of interest [152]. The focus group encouraged struc-
tured discussions involving participants from the collaboration team. The
discussion was largely free-flowing, and everyone has an opportunity to par-
ticipate. Focus group discussion enables to identify how both industrial and
academic partners feel and think about the issues of the collaboration [152]. We
reported separately the issues brought by industrial and academic partners.

13.4.1 Challenges

Throughout the collaboration, we have encountered diverse challenges that
required special attention. Next, we divide them inside four areas: general,
industry, academia and research as defined by Wohlin in [150]. The goal is not
to discuss reported challenges in the literature (e.g., [149, 150]), but to discuss
the challenges we experienced during the collaboration.

General Challenges. This group relates to challenges to the general relation-
ship between industry and academia.

The general challenges highlighted by the everis side are described as fol-
lows. First, the identification of goal of the collaboration was successfully defined
jointly in face-to-face meetings. We focused on solving an industry-relevant
problem that could be solved with the expertise of GESSI. Second, follow-up
meetings have been held regularly. The flexibility of both teams was vital for
proper coordination.



208 Chapter 13. Discussion: Evaluating our Collaboration

Academic partners highlight the following success factors. First, fluent and
direct communication when necessary among the partners is vital for progress-
ing in the research. The communication between upper management of everis
and the lead researcher at GESSI required special attention to evolve the goals
to up-to-date industry needs. Second, the definition of a work methodology
(e.g., use of a collaborative environment with a platform to share the results,
meetings calendar, internal deliverables roadmap) enabled team work among
people that were unknown before the collaboration.

Both partners highlighted the problem of the changes of people in the collabo-
ration team due to policies on people rotation or any other event.

Industry Challenges. Challenges in this group concern specific issues to be
addressed at the industry side of the collaboration.

Industrial partners uncovered as a weak point not being leaders of an SRA
project being studied. It is vital to be close to the SRA project to give the
most accurate information. In cases in which the everis’ managers of the
collaboration team were not involved in an SRA project or did not know the
specifics of such project, it involved extra-effort of another practitioner who
was highly involved in the SRA project to work in the collaboration. As a
consequence, it is important that the practitioners who temporally join the
collaboration have the adequate role and are able to find the balance to dedicate time
in the research collaboration besides their SRA projects.

Researchers needed to face difficulties while contacting practitioners out of
the collaboration since their availability is limited. Also, some candidate SRA
projects could not be studied as deeper as desired since it was not always pos-
sible to convince management of the everis’ client organizations that were involved
in an SRA project. In our consulting context, it was a two-step job (first asking
to everis champion and then to the client organization). The reasons why we
did not study specific SRA projects were mainly confidentiality issues and
bureaucratic issues (e.g., it was needed to ask for credential cards to access the
client organization, insurance and so on for the researcher to observe or work
in an SRA project).

Academia Challenges. In a similar way as for industry, there are some spe-
cific challenges related to academia.

At the everis side, they found a key issue the experience of the researcher in
SRA projects (e.g., knowing the technologies being applied). A wrong per-
ception of the context and low experience can jeopardize the results of the



13.4. Lessons Learned 209

collaboration. We paid special attention to this issue in the beginning of the
collaboration, in which researchers received tutorials and even developed a
demo application based on an SRA to master this technological approach. An-
other solution, although we did not apply it, could have been to offer training
to the researchers as it is done to new practitioners when they are recruited.

Researchers stated the following academia challenges. First, it is important
to write internal reports presenting results, which are not intended to end up as a
scientific publication. This way, deliverables are more relevant to the industry
needs (e.g., executive summaries for managers, annual reports, and specific
reports for everis’ clients). Second, additional empirical studies should be
conducted only to understand the real context in the industry. Third, the results
should be adequately presented to upper management so that they continue to
provide resources needed for taking the next steps.

Research Challenges. The actual conduction of the research comes with
some challenges too.

Industrial partners stated the following challenges. First, the importance
of identify realistic sources of data. In case of quantitative research and economic
analysis usually happened that there was not as much historical and project
data as needed. The search of data that did not exist, led to dangerous risks
such as blocking points. Second, for the economic analysis adequate scenarios
should be designed. Understanding the alternatives of SRA adoption enables
better design of scenarios for decision-making. Third, the obtained results need
to be validated to analyze that they correspond to the reality. This can be done
by iteratively explaining experts the outcome of the research and studying
their opinions until they agree that the results are realistic.

For the academia members, the research challenges are the following. First,
a big risk is the period required to start providing value to the industry. The first
results of the collaboration were delivered in the second year, and this situation
is not common for industry, which may see that the research is not progressing.
Second, in the collection of data our main challenge was how to face with the
incomplete information that SRA projects may have. This is a serious threat to
validate REARM, not just in post-mortem analysis, which could be something
expected, but also with ongoing projects in which we experienced obstacles.
Third, due to the diverse nature of SRA projects, it is difficult to create repeatable
techniques and results, since not all SRA projects have the same data. Fourth,
it is important to present results to practitioners. If this presentation is missed,
two big risks potentially arise: the incorrect validation of the results and the



210 Chapter 13. Discussion: Evaluating our Collaboration

no adoption of the techniques devised during the research.
In our opinion, this type of challenge (i.e., research challenges) is the most

difficult to overcome. Research challenges highly depend on the context of
the research (SRA projects in our case), and sometimes even require ad-hoc
solutions.

13.4.2 Mutual Benefits from Collaboration

With respect to the benefits that each partner organization has received from
collaboration, we highlight the following ones.

On the one hand, researchers helped practitioners to shape the results of
SRA projects into publications and explicit architectural knowledge, since this
task was difficult for them from their practical experience. This promotes inno-
vation dissemination and technology transfer inside everis. Also, researchers
provided feedback from existing research and other tools and techniques from
the scientific community, such as experience in the conduction of empirical
studies.

On the other hand, the GESSI members appreciate the willingness of everis’
practitioners to collaborate in the research, which is much harder to achieve
without formal industry-academia collaboration. Besides, the involvement of
everis in the research enabled the possibility to make research to solve real
problems in industry.

13.5 Contributions of the Evaluation of the Collaboration

“Collaboration between industry and academia supports improvement and
innovation in industry and helps to ensure industrial relevance in academic
research” [149].

This chapter describes an industry-academia collaboration: the “Cáte-
dra everis-UPC”. First, we reported the steps of the collaboration following
Gorschek et al. steps [151], and we evaluated our collaboration with an existing
model for technology transfer [146]. Second, we held a focus group discussion
to identify challenges and problems that we have faced in the collaboration as
well as benefits.

On the one hand, after reporting and evaluating the collaboration, we can
conclude that it has reached a high maturity. After two years and nine months
of collaboration, first results could be seen in form of proposed solutions,
internal reports, executive summaries, scientific publications, and pilots run



13.5. Contributions of the Evaluation of the Collaboration 211

in real projects. However, in order to improve the low levels of maturity
in deployment impact and industry benefit, new actions need to be under-
taken (see Section 13.5.1). On the other hand, challenges and lessons learned
from our collaboration have been discussed. We believe that they are a good
contribution to the body of knowledge on conducting empirical studies in
industry. Among the most important challenges are: identification of goal of
the collaboration, fluent and direct communication, contacting and involving
best-in-class employees, industrial experience of researchers, creating internal
reports presenting results that are not intended to end up as a scientific publi-
cation, understanding the real context in industry, adequately presentation of
results to upper management, identifying realistic sources of data, validation
of results, facing incomplete information, devising repeatable techniques and
results, and last but not least presenting results to practitioners.

13.5.1 Future Steps

Despite the aforementioned progresses, deployment impact, industry benefit,
and innovativeness are still ongoing goals. The low level of maturity of these
research results is the current main problem of the collaboration. We posit
two reasons for this problem: the collaboration is still in an early phase, and
the results are not yet articulated to provide lightweight support utilities (i.e.,
guidelines and artifacts) to support practitioners.

On the one hand, not realizing deployment impact, industry benefit, and
innovativeness at early phases of industry-academia collaboration is a com-
mon situation, as reported in [151, 147]. For this reason, we consider highly
recommendable the evaluation of industry-academia collaboration in order to
incrementally improve its success throughout all phases. On the other hand,
we need to pay special attention to the packaging of the results in order to
release a lightweight solution that can be used by practitioners without the
intervention of the other people.

The evaluation of our collaboration has enabled to identify the next steps
to be taken to achieve a high degree of technology transfer and innovation
dissemination:

1. Providing tool support to practitioners so that they can easily apply the
envisaged economic model (i.e., REARM), as well as demo applications
and case studies that use REARM as example.

2. Reporting the evidence of the qualitative studies about benefits and
drawbacks of SRAs, SRAs artifacts, architecturally-significant require-



212 Chapter 13. Discussion: Evaluating our Collaboration

ments in SRA projects, and architectural decisions. This promotes inno-
vation dissemination and technology transfer of SRA engineering inside
the company. Scientific publications are not a good approach for dissem-
ination in industry. Instead, lightweight materials (e.g., presentations,
executive summaries) are being created.

3. Creating practitioners-oriented prescriptive support utilities (i.e., guide-
lines and artifacts). Besides, widespread celebration of workshops and
training courses from the collaboration team to everis’ practitioners in-
volved in SRA projects should be performed.



Chapter 14

Conclusions and Future Work

This document has described my PhD thesis. In this chapter we present the
conclusions of the research conducted by:

• Answering the initial RQs.

• Stating the contributions with respect to the SRA and ESE research fields.

• Discussing the possible future work from the current state of the research.

14.1 Conclusions and Answers to RQ 1 and RQ 2

As we stated in Chapter 1.4, the research goal of this PhD thesis is to support
software architects making informed decisions about SRAs acquisition, design,
and use based on empirical evidence. To operationalize this goal, we stated
two RQs. In this section, we provide answers to these two RQs:

RQ 1: How can an organization get corporate evidence that is
useful for the SRA engineering?

This PhD thesis offers guidelines for organizations in order to understand,
evaluate, and improve their SRA engineering. Software architects can apply
such guidelines, available at Chapter 6, to gather architectural knowledge.
The guidelines consist of:

213



214 Chapter 14. Conclusions and FutureWork

• The context of SRAs in industry. Software architects who may want to
use these guidelines need to study whether their organizations fit into
this context.

• A set of practical important aspects of SRAs, to check which ones are
important for the organization.

• Template of interview guides and online questionnaires to gather data
about such aspects. By using this template in the design of a survey or
online questionnaire, organizations can get a corporate knowledge base
about practical aspects of their SRA engineering.

RQ 2: Is it worth for an organization to invest on the adoption of an
SRA?

This PhD thesis offers guidelines to build the business case for SRAs in
an organization. Software architects can apply such guidelines, available at
Chapter 11, which consist of:

• The context of SRAs in industry. As in the previous RQ 1, software
architects who may want to use these guidelines need to study whether
their organizations fit into this context.

• A set of commonly available value-driven data in SRA projects, to check
the metrics that could be gathered from realistic sources of data.

• A reuse-based economic model for SRAs that facilitates building the
business case, called REARM. REARM indicates how to calculate the
ROI of an SRA adoption from the available data and metrics.

It is important to note that, although it is not strictly necessary, these
guidelines are complementary and support each other (e.g., results from a
preceding study can be used to corroborate or further develop other results).
For instance, in our industry-academia collaboration, the qualitative results
about the benefits and drawbacks of SRAs (RQ 1) supported the unquantifiable
benefits, and uncertainties and risk of the business case (RQ 2).



14.2. Contributions to the SRA and ESE Theories 215

14.2 Contributions to the SRA and ESE Theories

ESE had already been used in the software architecture area before this PhD
thesis. However, as a consequence of designing and applying the aforemen-
tioned guidelines, this PhD thesis has contributed to the SRA theory and the
ESE theory. Falessi et al. indicate: “empirical research can provide the results
on which to build and/or assess the theoretical foundations underpinning
various software architecture-related technologies” [27]. Therefore, we em-
phasize below how the empirical studies of this PhD thesis have contributed
to SRA theory. Besides, they add: “experiences and lessons learned from
empirically assessing software architecture research represent a valuable -but
often underestimated- means of improving the application of the empirical
paradigm to software architecture research and practice” [27]. Thus, we also
present our lessons learned from designing and conducting our empirical stu-
dies to advance the ESE theory. These contributions are summarized in Figure
14.1, and respectively presented in the following two subsections.

14.2.1 Contributions to the SRA Theory

The research tasks of this PhD thesis increased the empirical evidence available
on SRAs and led to the following novel contributions to the SRA theory:

• Identification of the existing topics covered in the scientific literature
regarding SRA engineering. The SLR presented in Chapter 3 revealed
the eight big topics that have been addressed by SRA engineering re-
search: understanding theoretical concepts of SRAs; deciding on the
adoption of SRAs; looking for information to build SRAs; eliciting re-
quirements of SRAs; taking decisions about the design of SRAs; evalu-
ating the design of SRAs; using SRAs to design concrete architectures of
software systems; and, evolving SRAs.

• Identification of practical review criteria for SRAs. The main result of
the initial meetings of our industry-academia collaboration, presented
in Chapter 4, was the identification of five relevant aspects for SRA
engineering: overview and type of an SRA; requirements and quality
attributes analysis; architectural knowledge and decisions; supportive
technologies; and, business qualities and architecture competence.

• Study of the artifacts of SRAs in everis’ client organizations. The
artifacts that compose an SRA in the everis context, presented in Chapter



216 Chapter 14. Conclusions and FutureWork

Figure 14.1: Novel contributions of this PhD thesis to the SRA theory and the
ESE theory.



14.2. Contributions to the SRA and ESE Theories 217

5.3, are: common software elements (i.e., software components) aimed
to be reused for all the applications; guidelines for the homogeneous
development of application; and, documentation that describe the logical
solution to create a set of applications.

• Study of the benefits and drawbacks of SRAs in everis’ client organiza-
tions. The main benefits of SRAs in everis, presented in Chapter 5.4, are
reduced development and maintenance costs, and easier development.
The main drawback in the everis context is the extra learning curve to
master in SRA-based developments.

• Study of the benefits and drawbacks of SRAs for AUTOSAR practitio-
ners. The survey done to AUTOSAR practitioners, presented in Chapter
7, indicated that the most popular benefits of AUTOSAR are standardiza-
tion, reuse and interoperability whereas its most important drawbacks
are complexity, initial investment and the learning curve.

• Consolidating a theory of the benefits and drawbacks of SRAs in in-
dustry. After analyzing the benefits and drawbacks of SRAs in the con-
texts of everis and AUTOSAR, we synthesized such empirical evidence
with other three empirical studies of other researchers. This synthe-
sis, presented in Chapter 8, showed that five SRA benefits considerably
increased their belief value after aggregation: interoperability of soft-
ware systems, reduced development costs, improved communication
among stakeholders, reduced risk, and reduced time-to-market. Also,
one drawback of SRAs increased its belief value: the required learning
curve for developers. These aggregated results consolidated knowledge
and confidence on the studied SRA effects (i.e., benefits and drawbacks).

• Study of the common available value-driven data in SRA projects
in everis. The survey to identify the common data in SRA projects,
presented in Chapter 9, revealed the following available data: effort
metrics to calculate SRA projects’ costs, and software metrics to calculate
benefits in reuse and maintainability.

• Calculation of the ROI of adopting an SRA in an everis client orga-
nization. We performed a cost-benefit analysis of an SRA adoption in
a public administration using REARM, presented in Chapter 10, and
it showed that the SRA payed off after creating 7 small applications.
With medium to large applications, this number could be reduced to 2
applications.



218 Chapter 14. Conclusions and FutureWork

14.2.2 Contributions to the ESE Theory

In this subsection, we report the challenges that we have faced and dealt
with in the “Cátedra everis-UPC”. Our approach to collect such data was a
focus group, which was presented in Chapter 13. Among the most important
challenges and lessons learned are: identification of the goal of the collabora-
tion, fluent and direct communication, contacting and involving best-in-class
employees, industrial experience of researchers, creating internal reports pre-
senting results that are not intended to end up as a scientific publication, un-
derstanding the real context in industry, adequately presentation of results to
upper management, identifying realistic sources of data, validation of results,
facing incomplete information, devising repeatable techniques and results,
and presenting results to practitioners.

14.2.3 Overall Contributions

As a final conclusion, the most valuable outcome of this PhD thesis as a
whole is the formulation of guidelines to conduct empirical studies for both
supporting gathering evidence and building a business case for SRAs, and
how their application in our industry-academia collaboration has contributed
to the SRA and ESE theories.

14.3 Future Work

We divide the future work in three parts, corresponding to the three first parts
of this document:

First, regarding the state-of-the-art, we plan to make a mapping study
about SRAs published in the literature by using the search string of our SLR.

Second, with respect to RQ 1, we plan to gather empirical evidence of more
relevant aspects using the guidelines (e.g., requirements) and consolidating
such evidence.

Third, regarding RQ 2, future versions of REARM could include more
aspects, which we elicited in the feedback sessions of Chapter 12.



References

[1] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice (2nd
Edition). Addison-Wesley Professional, 2003.

[2] E. Y. Nakagawa, P. O. Antonino, and M. Becker, “Reference architecture
and product line architecture: A subtle but critical difference,” in 5th
European Conference on Software Architecture, ser. LNCS, vol. 6903, 2011,
pp. 207–211.

[3] R. Cloutier, G. Muller, D. Verma, R. Nilchiani, E. Hole, and M. Bone,
“The concept of reference architectures,” Systems Engineering, vol. 13,
no. 1, pp. 14–27, 2010.

[4] S. Angelov, P. Grefen, and D. Greefhorst, “A framework for analysis
and design of software reference architectures,” Information and Software
Technology, vol. 54, no. 4, pp. 417–431, 2012.

[5] S. Martínez-Fernández, C. Ayala, X. Franch, and H. Martins, “REARM:
A Reuse-Based Economic Model for Software Reference Architectures,”
in 13th International Conference on Software Reuse (ICSR), ser. LNCS, vol.
7925, 2013, pp. 97–112.

[6] G. Muller and P. van de Laar, “Researching reference architectures,”
in Views on Evolvability of Embedded Systems, ser. Embedded Systems.
Springer Netherlands, 2011, pp. 107–119.

[7] D. L. Parnas, “On the design and development of program families,”
IEEE Transactions on Software Engineering, vol. SE-2, no. 1, pp. 1–9, 1976.

[8] D. Scott, “Gartner hype cycle for real-time infrastructure,”
2012. [Online]. Available: https://www.gartner.com/doc/2098715/
hype-cycle-realtime-infrastructure-

219

https://www.gartner.com/doc/2098715/hype-cycle-realtime-infrastructure-
https://www.gartner.com/doc/2098715/hype-cycle-realtime-infrastructure-


220 References

[9] M. Galster, “Software Reference Architectures: Related Architectural
Concepts and Challenges,” in 1st International Workshop on Exploring
Component-based Techniques for Constructing Reference Architectures (Co-
bRA), 2015, pp. 5–8.

[10] M. Galster and P. Avgeriou, “Empirically-grounded reference architec-
tures: a proposal,” in ACM SIGSOFT conference on Quality of Software
Architectures (QoSA), 2011, pp. 153–158.

[11] R. Haesevoets, D. Weyns, and T. Holvoet, “Architecture-centric sup-
port for adaptive service collaborations,” ACM Transactions on Software
Engineering and Methodology, vol. 23, no. 1, pp. 1–40, 2014.

[12] R. Behjati, S. Nejati, and L. C. Briand, “Architecture-Level Configura-
tion of Large-Scale Embedded Software Systems,” ACM Transactions on
Software Engineering and Methodology, vol. 23, no. 3, pp. 1–43, 2014.

[13] E. Y. Nakagawa, F. Oquendo, and M. Becker, “RAModel: A Reference
Model for Reference Architectures,” in Joint Working IEEE/IFIP Conference
on Software Architecture (WICSA) and European Conference on Software
Architecture (ECSA), 2012, pp. 297–301.

[14] The Open Group, “SOA Reference Architecture,” 2011. [On-
line]. Available: https://www2.opengroup.org/ogsys/jsp/publications/
PublicationDetails.jsp?publicationid=12490

[15] C. Ballard, C. Compert, T. Jesionowski, I. Milman, B. Plants, B. Rosen,
and H. Smith, “IBM Redbooks | Information Governance Principles
and Practices for a Big Data Landscape,” 2014. [Online]. Available:
http://www.redbooks.ibm.com/abstracts/sg248165.html?Open

[16] A. Grosskurth and M. Godfrey, “A reference architecture for Web
browsers,” in 21st IEEE International Conference on Software Maintenance
(ICSM), 2005, pp. 661–664.

[17] L. Bueno, R. Oliveira, and E. Y. Nakagawa, “A Service-Oriented Refe-
rence Architecture for Software Testing Tools,” in European Conference on
Software Architecture (ECSA), 2011, pp. 405–421.

[18] AUTOSAR, “AUTOSAR – The Worldwide Automotive Standard for E/E
Systems,” ATZextra worldwide, vol. 18, no. 9, pp. 5–12, Oct. 2013.

https://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?publicationid=12490
https://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?publicationid=12490
http://www.redbooks.ibm.com/abstracts/sg248165.html?Open


References 221

[19] NASA, “ESDS Reference Architecture for the Decadal Survey Era,”
2012. [Online]. Available: https://earthdata.nasa.gov/sites/default/files/
field/document/ESDSReferenceArchitecturev1.1.pdf

[20] S. Mazzini, J. Favaro, and T. Vardanega, “Cross-Domain Reuse : Lessons
Learned in a Multi-project Trajectory,” in International Conference on Soft-
ware Reuse (ICSR), 2013, pp. 113–126.

[21] S. Brand, “Accenture Has Business-Outcome-Driven EA Capa-
bilities, but Doesn’t Automatically Begin With This Approach,”
2014. [Online]. Available: https://www.gartner.com/doc/2651816/
accenture-businessoutcomedriven-ea-capabilities-doesnt

[22] S. Angelov, J. Trienekens, and R. Kusters, “Software Reference Archi-
tectures - Exploring Their Usage and Design in Practice,” in European
Conference on Software Architecture (ECSA), ser. LNCS, vol. 7957, 2013, pp.
17–24.

[23] S. Angelov, J. Trienekens, and P. Grefen, “Towards a method for the eval-
uation of reference architectures: Experiences from a case,” in European
Conference on Software Architecture (ECSA), ser. LNCS, vol. 5292, 2008, pp.
225–240.

[24] N. Qureshi, M. Usman, and N. Ikram, “Evidence in software architec-
ture, a systematic literature review,” in 17th International Conference on
Evaluation and Assessment in Software Engineering (EASE), 2013, pp. 97–
106.

[25] D. J. Reifer, Making the Software Business Case: Improvement by the Numbers.
Addison-Wesley Professional, 2001.

[26] S. Martínez-Fernández, C. Ayala, X. Franch, and D. Ameller, “A Frame-
work for Software Reference Architecture Analysis and Review,” in
Memorias del X Workshop Latinoamericano de Ingeniería en Software Ex-
perimental (ESELAW) - ISBN 978-9974-8379-3-5, 2013, pp. 89–102.

[27] D. Falessi, M. A. Babar, G. Cantone, and P. Kruchten, “Applying empiri-
cal software engineering to software architecture: challenges and lessons
learned,” Empirical Software Engineering, vol. 15, no. 3, pp. 250–276, 2010.

[28] M. Brydon-Miller, D. Greenwood, and P. Maguire, “Why Action Re-
search?” Action Research, vol. 1, no. 1, pp. 9–28, 2003.

https://earthdata.nasa.gov/sites/default/files/field/document/ESDS Reference Architecture v1.1.pdf
https://earthdata.nasa.gov/sites/default/files/field/document/ESDS Reference Architecture v1.1.pdf
https://www.gartner.com/doc/2651816/accenture-businessoutcomedriven-ea-capabilities-doesnt
https://www.gartner.com/doc/2651816/accenture-businessoutcomedriven-ea-capabilities-doesnt


222 References

[29] S. Martínez-Fernández, “A Framework for Software Reference Architec-
ture Analysis and Review. PhD Proposal,” UPC BarcelonaTech, 2013.

[30] S. Martínez-Fernández, “Towards Supporting the Adoption of Software
Reference Architectures: An Empirically-Grounded Framework,” in
11th International Doctoral Symposium on Empirical Software Engineering
(IDoESE), 2013. [Online]. Available: http://umbc.edu/eseiw2013/idoese/
pdf/eseiw2013_IDoESE_180.pdf

[31] S. Martínez-Fernández, C. P. Ayala, X. Franch, H. Martins Marques,
and D. Ameller, “Towards Guidelines for Building a Business Case and
Gathering Evidence of Software Reference Architectures in Industry,”
Journal of Software Engineering Research and Development (JSERD), vol. 2,
no. 7, Aug. 2014.

[32] S. Martínez-Fernández, L. B. Ruas de Oliveira, C. P. Ayala, X. Franch, and
E. Y. Nakagawa, “Planning a Systematic Review on Business Case for Re-
ference Architectures,” Poster Session from Component-Based Software
Engineering and Software Architecture federated conference (Com-
pArch), 2014. [Online]. Available: http://www.essi.upc.edu/~smartinez/
wp-content/papercite-data/pdf/martinez-fernandez2014planning.pdf

[33] S. Martínez-Fernández, J. Bisbal, and X. Franch, “Accuracy
Assessment of Forecasting Services (poster),” 1st European Business
Intelligence Summer School (eBISS), 2011. [Online]. Available:
http://cs.ulb.ac.be/conferences/ebiss2011/files/martinez.pdf

[34] S. Martínez-Fernández, J. Bisbal, and X. Franch, “QuPreSS: A Service-
Oriented Framework for Predictive Services Quality Assessment,” in
7th International Conference on Knowledge Management in Organizations:
Service and Cloud Computing (KMO), ser. Advances in Intelligent Systems
and Computing, vol. 172, 2013, pp. 525–536.

[35] S. Martínez-Fernández, X. Franch, and J. Bisbal, “Verifying Predictive
Services’ Quality with Mercury,” in 4th International Workshop on Aca-
demic Software Development Tools and Techniques (WASDeTT), 2013.

[36] S. Martínez-Fernández, X. Franch, and J. Bisbal, “Mercury: Using the
QuPreSS Reference Model to Evaluate Predictive Services,” Science of
Computer Programming, 2016.

http://umbc.edu/eseiw2013/idoese/pdf/eseiw2013_IDoESE_180.pdf
http://umbc.edu/eseiw2013/idoese/pdf/eseiw2013_IDoESE_180.pdf
http://www.essi.upc.edu/~smartinez/wp-content/papercite-data/pdf/martinez-fernandez2014planning.pdf
http://www.essi.upc.edu/~smartinez/wp-content/papercite-data/pdf/martinez-fernandez2014planning.pdf
http://cs.ulb.ac.be/conferences/ebiss2011/files/martinez.pdf


References 223

[37] S. Martínez-Fernández, C. Ayala, X. Franch, and H. Marques, “Benefits
and Drawbacks of Reference Architectures,” in 7th European Conference
on Software Architecture (ECSA), ser. LNCS, vol. 7957, 2013, pp. 307–310.

[38] S. Martínez-Fernández, C. Ayala, X. Franch, and H. M. Marques, “Arti-
facts of Software Reference Architectures: A Case Study,” in 18th Inter-
national Conference on Evaluation and Assessment in Software Engineering
(EASE), 2014, pp. 42:1–42:10.

[39] S. Martínez-Fernández, D. Ameller, C. Ayala Martínez, X. Franch, and
X. Terradellas Fernandez, “Conducting empirical studies on reference
architectures in IT consulting firms,” ESSI-TR-12-2, Tech. Rep., 2012.

[40] S. Martínez-Fernández, C. P. Ayala, X. Franch, and E. Y. Nakagawa, “A
Survey on the Benefits and Drawbacks of AUTOSAR,” in 1st International
Workshop on Automotive Software Architecture (WASA), 2015, pp. 19–26.

[41] S. Martínez-Fernández, P. S. Medeiros Dos Santos, C. Ayala, X. Franch,
and G. H. Travassos, “Aggregating Empirical Evidence about the Bene-
fits and Drawbacks of Software Reference Architectures,” in ACM/IEEE
International Symposium on Empirical Software Engineering and Measure-
ment (ESEM), 2015, pp. 154–163.

[42] S. Martínez-Fernández, C. Ayala Martínez, and X. Franch, “A reuse-
based economic model for software reference architectures,” ESSI-TR-
12-6, Tech. Rep., 2012.

[43] S. Martínez-Fernández and H. M. Marques, “Practical Experiences in
Designing and Conducting Empirical Studies in Industry-Academia Co-
llaboration,” in 2nd International Workshop on Conducting Empirical Studies
in Industry (CESI), 2014, pp. 15–20.

[44] D. E. Perry and A. L. Wolf, “Foundations for the study of software
architecture,” ACM SIGSOFT Software Engineering Notes, vol. 17, no. 4,
pp. 40–52, 1992.

[45] P. Kruchten, The rational unified process: an introduction. Addison-Wesley
Professional, 2004.

[46] E. R. Poort and H. Van Vliet, “RCDA: Architecting as a risk-and cost
management discipline,” Journal of Systems and Software, vol. 85, no. 9,
pp. 1995–2013, 2012.



224 References

[47] I. Averdunk, “Tivoli reference architectures,” 2012. [Online].
Available: https://www.ibm.com/developerworks/mydeveloperworks/
blogs/tivoli-ra/entry/welcome_to_the_tivoli_reference_architecture_
blog12?lang=es

[48] A. Wilson, D. M. Lindholm, and C. LASP, “Towards a Domain Spe-
cific Software Architecture for Scientific Data Distribution,” in AGU Fall
Meeting Abstracts, vol. 1, 2011, p. 1609.

[49] Microsoft, “Microsoft Industry Reference Architecture for Banking
(MIRA-B),” 2012. [Online]. Available: http://www.microsoft.com/en-us/
news/download/presskits/msfinancial/docs/MIRAB.pdf

[50] B. Graaf, H. Van Dijk, and A. van Deursen, “Evaluating an Embedded
Software Reference Architecture – Industrial Experience Report,” in 9th
European Conference on Software Maintenance and Reengineering (CSMR),
2005, pp. 354–363.

[51] L. R. Welch, M. W. Masters, L. A. Madden, D. T. Marlow, P. M. Irey IV, P. V.
Werme, and B. A. Shirazi, “A distributed system reference architecture
for adaptive QoS and resource management,” in 10th Symposium on
Parallel and Distributed Processing, ser. LNCS, vol. 1586, 1999, pp. 1316–
1326.

[52] T. J. Williams, “The purdue enterprise reference architecture,” Computers
in industry, vol. 24, no. 2, pp. 141–158, 1994.

[53] P. Clements, R. Kazman, and M. Klein, Evaluating software architectures.
Addison-Wesley Reading, 2001.

[54] I. C. Society, “IEEE STANDARD 1471-2000 - IEEE Recommended Prac-
tice for Architectural Description for Software-Intensive Systems,” 2000.

[55] M. Galster, P. Avgeriou, and D. Tofan, “Constraints for the design of
variability-intensive service-oriented reference architectures–An indus-
trial case study,” Information and Software Technology, vol. 55, no. 2, pp.
428–441, 2013.

[56] K. Pohl, G. Böckle, and F. J. van der Linden, Software product line engi-
neering: foundations, principles, and techniques. Springer, 2005.

[57] P. Clements and L. Northrop, Software product lines. Addison-Wesley
Boston, 2002.

https://www.ibm.com/developerworks/mydeveloperworks/blogs/tivoli-ra/entry/welcome_to_the_tivoli_reference_architecture_blog12?lang=es
https://www.ibm.com/developerworks/mydeveloperworks/blogs/tivoli-ra/entry/welcome_to_the_tivoli_reference_architecture_blog12?lang=es
https://www.ibm.com/developerworks/mydeveloperworks/blogs/tivoli-ra/entry/welcome_to_the_tivoli_reference_architecture_blog12?lang=es
http://www.microsoft.com/en-us/news/download/presskits/msfinancial/docs/MIRAB.pdf
http://www.microsoft.com/en-us/news/download/presskits/msfinancial/docs/MIRAB.pdf


References 225

[58] U. Eklund, N. Jonsson, J. Bosch, and A. Eriksson, “A reference archi-
tecture template for software-intensive embedded systems,” in WIC-
SA/ECSA Companion Volume, 2012, pp. 104–111.

[59] B. P. Gallagher, “Using the Architecture Tradeoff Analysis Method to
Evaluate a Reference Architecture: A Case Study,” CMU/SEI-2000-TN-
007, Tech. Rep., 2000.

[60] E. Y. Nakagawa, M. Guessi, J. C. Maldonado, D. Feitosa, and F. Oquendo,
“Consolidating a Process for the Design, Representation, and Evaluation
of Reference Architectures,” in IEEE/IFIP Conference on Software Architec-
ture (WICSA), 2014, pp. 143–152.

[61] R. Weinreich and G. Buchgeher, “Automatic Reference Architecture Con-
formance Checking for SOA-Based Software Systems,” in IEEE/IFIP Con-
ference on Software Architecture (WICSA), 2014, pp. 95–104.

[62] M. Guessi, L. de Oliveira, and E. Nakagawa, “Representation of Refe-
rence Architectures: A Systematic Review,” in International Conference on
Software Engineering & Knowledge Engineering (SEKE), 2011, pp. 782–785.

[63] V. Zani, D. Feitosa, and E. Nakagawa, “Current State of Reference Ar-
chitectures in the Context of Agile Methodologies.” in International Con-
ference on Software Engineering & Knowledge Engineering (SEKE), 2011, pp.
590–595.

[64] L. Bueno Ruas de Oliveira, K. Felizardo, and E. Y. Nakawaga, “Reference
models and reference architectures based on service-oriented architec-
ture: a systematic review,” in European Conference on Software Architecture
(ECSA), 2010, pp. 360–367.

[65] B. Kitchenham and S. Charters, “Guidelines for performing
systematic literature reviews in software engineering,” Keele
University and University of Durham EBSE-2007-01, Tech. Rep.,
2007. [Online]. Available: https://www.cs.auckland.ac.nz/~norsaremah/
2007GuidelinesforperformingSLRinSEv2.3.pdf

[66] O. Dieste and A. G. Padua, “Developing Search Strategies for Detecting
Relevant Experiments for Systematic Reviews,” in International Sympo-
sium on Empirical Software Engineering and Measurement (ESEM), 2007,
pp. 215–224.

https://www.cs.auckland.ac.nz/~norsaremah/2007 Guidelines for performing SLR in SE v2.3.pdf
https://www.cs.auckland.ac.nz/~norsaremah/2007 Guidelines for performing SLR in SE v2.3.pdf


226 References

[67] T. Dyba, T. Dingsoyr, and G. K. Hanssen, “Applying Systematic Reviews
to Diverse Study Types: An Experience Report,” in International Sym-
posium on Empirical Software Engineering and Measurement (ESEM), 2007,
pp. 225–234.

[68] C. Wohlin, P. Runeson, P. A. da Mota Silveira Neto, E. Engström, I. do
Carmo Machado, and E. S. de Almeida, “On the reliability of mapping
studies in software engineering,” Journal of Systems and Software, vol. 86,
no. 10, pp. 2594–2610, 2013.

[69] J. Cohen, “Weighted kappa: Nominal scale agreement provision for
scaled disagreement or partial credit,” Pychol Bull, vol. 70, no. 4, pp.
213–220, 1968.

[70] S. Herold and M. Mair, “Checking Conformance with Reference Archi-
tectures: A Case Study,” in 17th IEEE International Enterprise Distributed
Object Computing Conference (EDOC), 2013, pp. 71–80.

[71] C. Mattmann and R. Downs, “Reuse of software assets for the NASA
Earth science decadal survey missions,” in IEEE International Geoscience
and Remote Sensing Symposium (IGARSS), 2010, pp. 1687–1690.

[72] H. J. Beyer, D. Hein, C. Schitter, J. Knodel, D. Muthig, and M. Naab,
“Introducing architecture-centric reuse into a small development orga-
nization,” in International Conference on Software Reuse (ICSR), ser. LNCS,
vol. 5030, 2008, pp. 1–13.

[73] R. Farenhorst and H. van Vliet, “Understanding How to Support Ar-
chitects in Sharing Knowledge,” in Workshop on Sharing and Reusing
Architectural Knowledge (SHARK), 2009, pp. 17–24.

[74] M. Irlbeck and D. Bytschkow, “Towards a bottom-up development of
reference architectures for smart energy systems,” in 2nd International
Workshop on Software Engineering Challenges for the Smart Grid (SE4SG),
2013, pp. 9–16.

[75] AUTOSAR, “Development Partnership AUTOSAR to extend
scope of applications to non-automotive areas,” 2011. [On-
line]. Available: http://www.autosar.org/fileadmin/files/media_
release/Development_Partnership_AUTOSAR_to_extend_scope_of_
applications_to_non-automotive_areas_EN.pdf

http://www.autosar.org/fileadmin/files/media_release/Development_Partnership_AUTOSAR_to_extend_scope_of_applications_to_non-automotive_areas_EN.pdf
http://www.autosar.org/fileadmin/files/media_release/Development_Partnership_AUTOSAR_to_extend_scope_of_applications_to_non-automotive_areas_EN.pdf
http://www.autosar.org/fileadmin/files/media_release/Development_Partnership_AUTOSAR_to_extend_scope_of_applications_to_non-automotive_areas_EN.pdf


References 227

[76] G. Buchgeher and R. Weinreich, “Towards continuous reference archi-
tecture conformance analysis,” in 7th European Conference on Software
Architecture (ECSA), 2013, pp. 332–335.

[77] L. Passos, R. Terra, M. T. Valente, R. Diniz, and N. Mendonça, “Static
Architecture-Conformance Checking: An Illustrative Overview,” IEEE
Software, vol. 27, no. 5, pp. 82–89, 2010.

[78] L. Dobrica and E. Ovaska, “Analysis of a cross-domain reference archi-
tecture using change scenarios,” in 5th European Conference on Software
Architecture (ECSA) Companion Volume, 2011, pp. 10:1—-10:9.

[79] P. Reed, “Reference Architecture: The best of best practices,”
Sep. 2002. [Online]. Available: http://www.ibm.com/developerworks/
rational/library/2774.html

[80] M. Henning, “The Rise and Fall of CORBA,” ACM Queue, vol. 4, no. 5,
pp. 28–34, 2006.

[81] L. M. Northrop and P. C. Clements, “A framework for software
product line practice, version 5.0.” [Online]. Available: http:
//www.sei.cmu.edu/productlines/frame_report/index.html

[82] B. W. Boehm, “Value-based software engineering: Seven key ele-
ments and ethical considerations,” in Value-Based Software Engineering.
Springer, 2006, pp. 109–132.

[83] M. S. Ali, M. A. Babar, and K. Schmid, “A comparative survey of eco-
nomic models for software product lines,” in 35th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), 2009, pp. 275–
278.

[84] Forrester, “Total Economic Impact (TEI),” 2013. [Online]. Available:
https://www.forrester.com/marketing/product/consulting/tei.html

[85] P. Clements, J. D. McGregor, and S. G. Cohen, “The Structured Intuitive
Model for Product Line Economics (SIMPLE),” CMU/SEI-2005-TR-003,
Tech. Rep., 2005.

[86] D. Ganesan, D. Muthig, and K. Yoshimura, “Predicting return-on-
investment for product line generations,” in 10th International Software
Product Line Conference (SPLC), 2006, pp. 13–24.

http://www.ibm.com/developerworks/rational/library/2774.html
http://www.ibm.com/developerworks/rational/library/2774.html
http://www.sei.cmu.edu/productlines/frame_report/index.html
http://www.sei.cmu.edu/productlines/frame_report/index.html
https://www.forrester.com/marketing/product/consulting/tei.html


228 References

[87] J. S. Poulin, Measuring software reuse: principles, practices, and economic
models. Addison–Wesley, 1997.

[88] B. Boehm, A. W. Brown, R. Madachy, and Y. Yang, “A software pro-
duct line life cycle cost estimation model,” in International Symposium on
Empirical Software Engineering (ISESE), 2004, pp. 156–164.

[89] K. Schmid, “An initial model of product line economics,” in 4th Inter-
national Workshop Software Product-Family Engineering (PFE), ser. LNCS,
2002, pp. 38–50.

[90] J. P. Nóbrega, E. Almeida, and S. R. L. Meira, “Income: Integrated
cost model for product line engineering,” in 34th Euromicro Conference
Software Engineering and Advanced Applications (SEAA), 2008, pp. 27–34.

[91] W. Frakes and C. Terry, “Software reuse: metrics and models,” ACM
Computing Surveys (CSUR), vol. 28, no. 2, pp. 415–435, 1996.

[92] A. Mili, S. F. Chmiel, R. Gottumukkala, and L. Zhang, “An integrated
cost model for software reuse,” in International Conference on Software
Engineering (ICSE), 2000, pp. 157–166.

[93] R. Kazman, J. Asundi, and M. Klien, “Making architecture design de-
cisions: An economic approach,” CMU/SEI-2002-TR-035, ESC-TR-2002-
035, Tech. Rep., 2002.

[94] I. Ozkaya, R. Kazman, and M. Klein, “Quality-attribute based economic
valuation of architectural patterns,” in 1st International Workshop on the
Economics of Software and Computation (ESC), 2007, pp. 5–5.

[95] D. Falessi, P. Kruchten, and G. Cantone, “Issues in applying empirical
software engineering to software architecture,” in 1st European Conference
on Software Architecture (ECSA), ser. LNCS, 2007, vol. 4758, pp. 257–262.

[96] J. Carriere, R. Kazman, and I. Ozkaya, “A cost-benefit framework for
making architectural decisions in a business context,” in 32nd Interna-
tional Conference on Software Engineering (ICSE), vol. 2, 2010, pp. 149–157.

[97] A. MacCormack, C. Baldwin, and J. Rusnak, “Exploring the duality
between product and organizational architectures: A test of the “mir-
roring” hypothesis,” Research Policy, vol. 41, no. 8, pp. 1309–1324, 2012.



References 229

[98] C. Y. Baldwin and K. B. Clark, Design rules: The power of modularity. The
MIT Press, 2000, vol. 1.

[99] R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas, “In search
of a metric for managing architectural technical debt,” in Joint Work-
ing IEEE/IFIP Conference on Software Architecture (WICSA) and European
Conference on Software Architecture (ECSA), 2012, pp. 91–100.

[100] J. Letouzey, “The SQALE method for evaluating Technical Debt,” in
3rd International Workshop on Managing Technical Debt (MTD), 2012, pp.
31–36.

[101] M. Khurum, T. Gorschek, and K. Petersson, “Systematic review of solu-
tions proposed for product line economics,” in 12th International Confer-
ence Software Product Lines (SPLC), vol. 2, 2008, pp. 277–284.

[102] L. Bass, P. Clements, R. Kazman, and M. Klein, “Evaluating the software
architecture competence of organizations,” in 7th Working IEEE/IFIP Con-
ference on Software Architecture (WICSA), 2008, pp. 249–252.

[103] S. Montagud, S. Abrahão, and E. Insfran, “A systematic review of quality
attributes and measures for software product lines,” Software Quality
Journal, vol. 20, no. 3-4, pp. 425–486, 2011.

[104] F. van der Linden, J. Bosch, E. Kamsties, K. Känsälä, L. Krzanik, and
H. Obbink, “Software product family evaluation,” in Software Product-
Family Engineering, ser. LNCS. Springer Berlin Heidelberg, 2004, vol.
3014, pp. 352–369.

[105] S. Deelstra, M. Sinnema, and J. Bosch, “Product derivation in software
product families: a case study,” Journal of Systems and Software, vol. 74,
no. 2, pp. 173–194, 2005.

[106] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineering,
vol. 14, no. 2, pp. 131–164, 2009.

[107] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research in
Software Engineering: Guidelines and Examples. Wiley, 2012.

[108] U. Eklund, Ö. Askerdal, J. Granholm, A. Alminger, and J. Axelsson,
“Experience of introducing reference architectures in the development



230 References

of automotive electronic systems,” ACM SIGSOFT Software Engineering
Notes, vol. 30, no. 4, pp. 1–6, 2005.

[109] S. Murer and C. Hagen, “Fifteen Years of Service-Oriented Architecture
at Credit Suisse,” IEEE Software, vol. 31, no. 6, pp. 9–15, 2014.

[110] P. B. Seddon and R. Scheepers, “Towards the improved treatment of
generalization of knowledge claims in IS research: drawing general con-
clusions from samples,” European Journal of Information Systems, vol. 21,
no. 1, pp. 6–21, 2011.

[111] R. Winter and R. Fischer, “Essential Layers, Artifacts, and Dependencies
of Enterprise Architecture,” in 10th IEEE International Enterprise Dis-
tributed Object Computing Conference Workshops (EDOCW), 2006, p. 30.

[112] M. Panunzio and T. Vardanega, “On Software Reference Architectures
and Their Application to the Space Domain,” in International Conference
on Software Reuse (ICSR), 2013, pp. 144–159.

[113] Microsoft Patterns & Practices Team, Microsoft Application Architecture
Guide. Microsoft, 2009. [Online]. Available: http://www.microsoft.
com/en-us/download/details.aspx?id=16236

[114] J. García-Alonso, J. B. Olmeda, and J. M. Murillo, “Java para Aplicaciones
Corporativas de la Administración,” in Jornadas de Ingeniería del Software
y Bases de Datos (JISBD), E. Teniente and S. Abrahão, Eds., 2010, pp.
263–266.

[115] G. Reichart and M. Haneberg, “Key Drivers for a Future System Archi-
tecture in Vehicles,” in Convergence International Congress & Exposition
On Transportation Electronics, 2004.

[116] AUTOSAR, “AUTomotive Open System ARchitecture: AUTOSAR’s
site.” [Online]. Available: http://www.autosar.org/

[117] U. Eklund and J. Bosch, “Architecture for Embedded Open Software
Ecosystems,” Journal of Systems and Software, vol. 92, pp. 128–142, 2014.

[118] T. Lethbridge, S. Sim, and J. Singer, “Studying Software Engineers: Data
Collection Techniques for Software Field Studies,” Empirical Software
Engineering, vol. 10, no. 3, pp. 311–341, 2005. [Online]. Available:
http://link.springer.com/article/10.1007/s10664-005-1290-x

http://www.microsoft.com/en-us/download/details.aspx?id=16236
http://www.microsoft.com/en-us/download/details.aspx?id=16236
http://www.autosar.org/
http://link.springer.com/article/10.1007/s10664-005-1290-x


References 231

[119] S. Fürst, “AUTOSAR – A Worldwide Standard is on the Road,”
in 14th International VDI Congress Electronic Systems for Vehicles,
2009. [Online]. Available: http://www.win.tue.nl/~mvdbrand/courses/
sse/0910/AUTOSAR.pdf

[120] Springer, ““AUTOSAR has Become Mature and Accepted”,” ATZextra
worldwide, vol. 18, no. 9, pp. 13–15, 2013.

[121] G. Weiß, “Future vehicle software architectures - fraunhofer
esk.” [Online]. Available: http://www.esk.fraunhofer.de/en/projects/
adaptives_bordnetz.html

[122] D. Durisic, M. Staron, M. Tichy, and J. Hansson, “Evolution of Long-Term
Industrial Meta-Models – An Automotive Case Study of AUTOSAR,”
in 40th EUROMICRO Conference on Software Engineering and Advanced
Applications, 2014, pp. 141–148.

[123] G. M. K. Selim, S. Wang, J. R. Cordy, and J. Dingel, “Model transfor-
mations for migrating legacy deployment models in the automotive
industry,” Software & Systems Modeling, vol. 14, no. 1, pp. 365–381, 2013.

[124] G. Krdzalic and A. Driss, “Software Architecture Without Autosar,” Auto
Tech Review, vol. 3, no. 4, pp. 28–31, 2014.

[125] W. Mueller, “Engineering Standards beyond AUTOSAR,” in 6th
AUTOSAR Open Conference, Munich, 2013. [Online]. Available: http:
//www.autosar.org/fileadmin/files/events/2013-11-13-6th-autosar-open/
AUTOSAR_Engineering_Standards_Uni_Paderborn_Mueller.pdf

[126] C. Wohlin, M. Höst, and K. Henningsson, “Empirical research methods
in software engineering,” in Empirical Methods and Studies in Software
Engineering (ESERNET), ser. LNCS, vol. 2765, 2003, pp. 7–23.

[127] M. Ciolkowski, O. Laitenberger, S. Vegas, and S. Biffl, “Practical ex-
periences in the design and conduct of surveys in empirical software
engineering,” in Empirical Methods and Studies in Software Engineering
(ESERNET), ser. LNCS, vol. 2765. Springer, 2003, pp. 104–128.

[128] J.-F. Salessy, “Overview on AUTOSAR Development,” in
6th AUTOSAR Open Conference, Munich, 2013. [On-
line]. Available: http://www.autosar.org/fileadmin/files/events/
2013-11-13-6th-autosar-open/AUTOSAR_Keynote_PSA_Salessy.pdf

http://www.win.tue.nl/~mvdbrand/courses/sse/0910/AUTOSAR.pdf
http://www.win.tue.nl/~mvdbrand/courses/sse/0910/AUTOSAR.pdf
http://www.esk.fraunhofer.de/en/projects/adaptives_bordnetz.html
http://www.esk.fraunhofer.de/en/projects/adaptives_bordnetz.html
http://www.autosar.org/fileadmin/files/events/2013-11-13-6th-autosar-open/AUTOSAR_Engineering_Standards_Uni_Paderborn_Mueller.pdf
http://www.autosar.org/fileadmin/files/events/2013-11-13-6th-autosar-open/AUTOSAR_Engineering_Standards_Uni_Paderborn_Mueller.pdf
http://www.autosar.org/fileadmin/files/events/2013-11-13-6th-autosar-open/AUTOSAR_Engineering_Standards_Uni_Paderborn_Mueller.pdf
http://www.autosar.org/fileadmin/files/events/2013-11-13-6th-autosar-open/AUTOSAR_Keynote_PSA_Salessy.pdf
http://www.autosar.org/fileadmin/files/events/2013-11-13-6th-autosar-open/AUTOSAR_Keynote_PSA_Salessy.pdf


232 References

[129] D. Ameller, M. Galster, P. Avgeriou, and X. Franch, “A survey on quality
attributes in service-based systems,” Software Quality Journal, pp. 1–29,
2015.

[130] P. S. Medeiros Dos Santos and G. H. Travassos, “On the representation
and aggregation of evidence in software engineering: A theory and
belief-based perspective,” Electronic Notes in Theoretical Computer Science,
vol. 292, pp. 95–118, 2013.

[131] D. S. Cruzes and T. Dybå, “Synthesizing evidence in software engineer-
ing research,” in ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), no. 1, 2010.

[132] P. S. Medeiros Dos Santos, I. Nascimento, and G. H. Travassos, “A Com-
putational Infrastructure for Research Synthesis in Software Engineer-
ing,” in Workshop en Ingeniería del Software Experimental (ESELAW), 2015,
pp. 309–322.

[133] D. I. K. Sjøberg, T. Dybå, B. C. D. Anda, and J. E. Hannay, “Building
theories in software engineering,” in Guide to advanced empirical software
engineering. Springer, 2008, pp. 312–336.

[134] C. F. Auerbach and L. B. Silverstein, Qualitative data: An introduction to
coding and analysis. Qualitative studies in psychology. New York University
Press, 2003.

[135] J. Mahoney, “A Tale of Two Cultures: Contrasting Quantitative and
Qualitative Research,” Political Analysis, vol. 14, no. 3, pp. 227–249, 2006.

[136] G. Shafer, A Mathematical Theory of Evidence. Princeton University
Press, 1976. [Online]. Available: http://press.princeton.edu/titles/2439.
html#reviews

[137] D. Atkins, D. Best, P. A. Briss, M. Eccles, Y. Falck-Ytter, S. Flottorp, G. H.
Guyatt, R. T. Harbour, M. C. Haugh, D. Henry, S. Hill, R. Jaeschke,
G. Leng, A. Liberati, N. Magrini, J. Mason, P. Middleton, J. Mrukowicz,
D. O’Connell, A. D. Oxman, B. Phillips, H. J. Schünemann, T. T.-T. Edejer,
H. Varonen, G. E. Vist, J. W. Williams, and S. Zaza, “Grading quality of
evidence and strength of recommendations.” BMJ (Clinical research ed.),
vol. 328, no. 7454, p. 1490, 2004.

http://press.princeton.edu/titles/2439.html#reviews
http://press.princeton.edu/titles/2439.html#reviews


References 233

[138] R. J. Wieringa, Design Science Methodology for Information Systems and
Software Engineering. Springer, 2014.

[139] Atlassian, “JIRA: Issue and Project Tracking Software.” [Online].
Available: https://www.atlassian.com/es/software/jira

[140] SonarSource, “Continuous Inspection of Code Quality.” [Online].
Available: http://www.sonarsource.com/

[141] H. Erdogmus and J. Favaro, “The value proposition for agility–a
dual perspective,” 2012. [Online]. Available: http://www.infoq.com/
presentations/Agility-Value

[142] Redmine, “A flexible project management web application.” [Online].
Available: http://www.redmine.org/

[143] Jenkins, “An extendable open source continuous integration server.”
[Online]. Available: http://jenkins-ci.org/

[144] R. Van Solingen, “Measuring the ROI of software process improvement,”
IEEE Software, vol. 21, no. 3, pp. 32–38, 2004.

[145] J. Poulin, “The economics of product line development,” International
Journal of Applied Software Technology, vol. 3, pp. 15–28, 1997.

[146] A. Sandberg, L. Pareto, and T. Arts, “Agile collaborative research: Action
principles for industry-academia collaboration,” IEEE Software, vol. 28,
no. 4, pp. 74–83, 2011.

[147] P. Runeson, “It takes two to tango–an experience report on industry–
academia collaboration,” in IEEE 5th International Conference on Software
Testing, Verification and Validation (ICST), 2012, pp. 872–877.

[148] M. Baldassarre, D. Caivano, and G. Visaggio, “Empirical studies for in-
novation dissemination: Ten years of experience,” in ACM International
Conference on Evaluation and Assessment in Software Engineering (EASE),
2013, pp. 144–152.

[149] C. Wohlin, A. Aurum, L. Angelis, L. Phillips, Y. Dittrich, T. Gorschek,
H. Grahn, K. Henningsson, S. Kagstrom, G. Low et al., “The success fac-
tors powering industry-academia collaboration,” IEEE software, vol. 29,
no. 2, pp. 67–73, 2012.

https://www.atlassian.com/es/software/jira
http://www.sonarsource.com/
http://www.infoq.com/presentations/Agility-Value
http://www.infoq.com/presentations/Agility-Value
http://www.redmine.org/
http://jenkins-ci.org/


234 References

[150] C. Wohlin, “Empirical software engineering research with industry: Top
10 challenges,” in 1st International Workshop on Conducting Empirical Stu-
dies in Industry (CESI), 2013, pp. 43–46.

[151] T. Gorschek, C. Wohlin, P. Carre, and S. Larsson, “A Model for Tech-
nology Transfer in Practice,” IEEE Software, vol. 23, no. 6, pp. 88–95,
2006.

[152] M. A. Babar, L. Bass, and I. Gorton, “Factors influencing industrial prac-
tices of software architecture evaluation: an empirical investigation,” in
3rd International Conference on Quality of Software Architectures (QoSA),
ser. LNCS, 2007, vol. 4880, pp. 90–107.

[153] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wess-
lén, Experimentation in Software Engineering. Springer, 2012.

[154] W. C. Booth, G. G. Colomb, and J. M. Williams, The craft of research.
University of Chicago Press, 2003.



Appendix A

Glossary

Empirical Software Engineering (ESE) Empirical research is a research using
empirical evidence, i.e., gaining knowledge by means of direct and indirect
observation or experience. Empirical software engineering focuses on how
empirical studies and experiments in particular fit into the software engineer-
ing context [153].

Enterprise architecture Enterprise architecture is a discipline for proactively
and holistically leading enterprise responses to disruptive forces by identify-
ing and analyzing the execution of change toward desired business vision and
outcomes. Enterprise architecture delivers value by presenting business and
IT leaders with signature-ready recommendations for adjusting policies and
projects to achieve target business outcomes that capitalize on relevant busi-
ness disruptions. EA is used to steer decision making toward the evolution of
the future state architecture1.

Information Technology (IT) Information technology is the application of
computers and telecommunications equipment to store, retrieve, transmit and
manipulate data, often in the context of a business or other enterprise2.

REARM (REference ARchitecture Model) REARM is a reuse-based eco-
nomic model for SRAs. It can be used to perform cost-benefit analysis on the
adoption of SRAs as a key asset for optimizing architectural decision-making.

1http://www.gartner.com/it-glossary/enterprise-architecture-ea/
2https://en.wikipedia.org/wiki/Information_technology

235

http://www.gartner.com/it-glossary/enterprise-architecture-ea/
https://en.wikipedia.org/wiki/Information_technology


236 Appendix A. Glossary

Reference architecture A Reference Architecture provides a prescriptive
way (a template solution) for an architecture for a particular domain [47].

Research Question (RQ) Specifying the research question is the methodo-
logical point of departure of scholarly research in both the natural and social
sciences. The research will answer the question posed. At an undergraduate
level, the answer to the research question is the thesis statement. The answer to
a research question will help address a “research problem” which is a problem
“readers think is worth solving” [154].

Return-on-Investment (ROI) Measure of how much profit an investment
earns computed by dividing net income by the assets used to generate it [25].

Systematic Literature Review (SLR) A Systematic Literature Review (SLR)
is a formalized and repeatable process to document relevant knowledge on a
specific subject area for interpreting all available research [65].

Software architecture The software architecture of a system is the set of struc-
tures needed to reason about the system, which comprise software elements,
relations among them, and properties of both [1].

Software Engineering (SE) Software Engineering means application of a
systematic, disciplined, quantifiable approach to development, operation and
maintenance of software [153].

Software Reference Architecture (SRA) An architecture that encompasses
the knowledge about how to design concrete architectures of systems of a given
application [or technological] domain; therefore, it must address the business
rules, architectural styles (sometimes also defined as architectural patterns that
address quality attributes in the reference architecture), best practices of soft-
ware development (for instance, architectural decisions, domain constraints,
legislation, and standards), and the software elements that support develop-
ment of systems for that domain. All of this must be supported by a unified,
unambiguous, and widely understood domain terminology [2].

SRA acquistion/adoption SRA acquisiton or adoption is the strategic deci-
sion of an organization (taken by managers and software architects) to base



237

the software development and maintenance of a family of software systems in
a corporate SRA.

System architecture A system’s architecture is a representation of a system in
which there is a mapping of functionality onto hardware and software compo-
nents, a mapping of the software architecture onto the hardware architecture,
and a concern for the human interaction with these components [1].





Appendix B

Included Studies in the Systematic
Review

Next, the list of included studies in the SLR of Chapter 3 is presented. The
included studies are labeled as [Si], where S indicates that it is a primary study
of the SLR, and i indicates its number.

List of Included Studies in the SLR of Chapter 3:

S1 Angelov, S., Grefen, P., Greefhorst, D.: A framework for analysis and design
of software reference architectures. Information and Software Technology
54(4), 417-431 (2011)

S2 Angelov, S., Grefen, P., Greefhorst, D.: A classification of software reference
architectures: Analyzing their success and effectiveness. WICSA/ECSA
2009, pp. 141-150. IEEE (2009)

S3 Angelov, S., Trienekens, J., Kusters, R.: Software reference architectures -
Exploring their usage and design in practice. ECSA 2013. LNCS, vol. 7957,
pp. 17-24. Springer (2013)

S4 Angelov, S., Trienekens, J., Grefen, P.: Towards a method for the evaluation
of reference architectures: Experiences from a case. ECSA 2008. LNCS,
vol. 5292, pp. 225-240. Springer (2008)

S5 Angelov, S., Hilliard, R.: Towards an Improved Stakeholder Management
for Software Reference Architectures. ECSA 2014. LNCS, vol. 8627, pp.
90-97. Springer (2014)

239



240 Appendix B. Included Studies in the Systematic Review

S6 Astekin, M., Sozer, H.: Utilizing Clone Detection for Domain Analysis of
Simulation Systems. WICSA/ECSA 2012, pp. 287-291. IEEE (2012)

S7 Buchgeher, G., Weinreich, R.: Towards continuous reference architecture
conformance analysis. ECSA 2013. LNCS, vol. 7957, pp. 332-335. Springer
(2013)

S8 Bueno, L.B.R., Romero Felizardo, K., Feitosa, D., Nakagawa, E.Y.: Refe-
rence models and reference architectures based on service-oriented archi-
tecture: A systematic review. ECSA 2010. LNCS, vol. 6285, pp. 360-367.
Springer (2010)

S9 Cloutier, R., Muller, G., Verma, D., Nilchiani, R., Hole, E., Bone, M.: The
concept of reference architectures. Systems Engineering Journal 13(1), 14-27
(2010)

S10 Deiters, C., Dohrmann, P., Herold, S., Rausch, A: Rule-Based Architectural
Compliance Checks for Enterprise Architecture Management. EDOC 2009,
pp. 183-192. IEEE (2009)

S11 Dillon, T.S., Wu, C., Chang, E.: Reference Architectural Styles for Service-
Oriented Computing. IFIP NPC 2007. LNCS, vol. 4672, pp. 543-555.
Springer (2007)

S12 Nguyen, D.N., Usbeck, K., Mongan, W.M., Cannon, C.T., Lass, R.N., Sal-
vage, J., Regli, W.C., Mayk, I., Urness, T.: A Methodology for Developing
an Agent Systems Reference Architecture. AOSE 2010. LNCS, vol. 6788,
pp. 177-188. Springer (2011)

S13 Eklund, U., Jonsson, N., Eriksson, A., Bosch, J.: A reference architecture
template for software-intensive embedded systems. WICSA/ECSA Com-
panion Volume 2012, pp. 104-111. ACM (2012)

S14 Galster, M., Avgeriou, P.: Empirically-grounded reference architectures: A
proposal. QoSA@CompArch 2011, pp. 153-158. ACM (2011)

S15 Graaf, B., Van Dijk, H., Van Deursen, A.: Evaluating an embedded software
reference architecture. Industrial experience report. CSMR 2005, pp. 354-
363. IEEE (2005)

S16 Guessi, M., Oliveira, L.B.R., Nakagawa, E.Y.: Representation of reference
architectures: A Systematic Review. SEKE 2011, pp. 782-785. (2011)



241

S17 Guessi, M., Oquendo, F., Nakagawa, E.Y.: Variability viewpoint to describe
reference architectures. VARSA@WICSA 2014, pp. 14:1-14:6. ACM (2014)

S18 Haft, M., Humm, B., Siedersleben, J.: The Architect’s Dilemma - Will
Reference Architectures Help? QoSA-SOQUA 2005. LNCS, vol. 3712, pp.
106-122. Springer (2005)

S19 Hassan, A.E., Holt, R.C.: A reference architecture for Web servers. Working
Conference on Reverse Engineering, pp. 150-159. IEEE (2000)

S20 Heitmann, B., Kinsella, S., Hayes, C., Decker, S.: Implementing Semantic
Web applications: Reference architecture and challenges. Workshop on
Semantic Web Enabled Software Engineering (2009)

S21 Herold, S., Mair, M., Rausch, A., Schindler, I.: Checking conformance with
reference architectures: A case study. EDOC 2013, pp. 71-80. IEEE (2013)

S22 Irlbeck, M., Bytschkow, D., Hackenberg, G., Koutsoumpas, V.: Towards
a bottom-up development of reference architectures for smart energy sys-
tems. SE4SG@ICSE 2013, pp. 9-16. IEEE (2013)

S23 Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A feature-
oriented reuse method with domain-specific reference architectures. An-
nals of Software Engineering 5:143 (1998)

S24 Lind, K., Heldal, R.: Automotive system development using reference
architectures. SEW 2012, pp. 42-51. IEEE (2012)

S25 Martínez-Fernández, S., Ayala, C., Franch, X. and Marques, H.M., Ameller,
D.: A framework for software reference architecture analysis and review.
ESELAW@CIbSE 2013, pp. 89-102 (2013)

S26 Martínez-Fernández, S., Ayala, C.P., Franch, X., Marques, H.M.: REARM:
A reuse-based economic model for software reference architectures. ICSR
2013. LNCS, vol. 7925, pp. 97-112. Springer (2013)

S27 Martínez-Fernández, S., Ayala, C.P., Franch, X., Marques, H.M.: Benefits
and drawbacks of reference architectures. ECSA 2013. LNCS, vol. 7957,
pp. 307-310. Springer (2013)

S28 Martínez-Fernández, S., Ayala, C.P., Franch, X., Marques, H.M.: Artifacts
of Software Reference Architecture: A Case Study. EASE 2014, pp. 42:1-
42:10. ACM (2014)



242 Appendix B. Included Studies in the Systematic Review

S29 Martínez-Fernández, S., Ayala, C.P., Franch, X., Marques, H.M.: Towards
Guidelines for Building a Business Case and Gathering Evidence of Soft-
ware Reference Architectures in Industry. Journal of Software Engineering
Research and Development 2(7) (2014)

S30 Meldal, S., Luckham, D.C.: NSA’s MISSI Reference Architecture – Moving
from Prose to Precise Specifications. RTSE 1997. LNCS, vol. 1526, pp,
293-329. Springer (1998)

S31 Miksovic, C., Zimmermann, O.: Architecturally Significant Requirements,
Reference Architecture, and Metamodel for Knowledge Management in
Information Technology Services. WICSA 2011, pp. 270-279. IEEE (2011)

S32 Muller, G.: Right sizing reference architectures; How to provide specific
guidance with limited information. INCOSE 2008 (2008)

S33 Muller, G., van de Laar, P.: Researching Reference Architectures. In: van
der Laar, P., Punter, T. (eds.) Views on Evolvability of Embedded Systems, pp.
107-119. Springer (2011)

S34 Nakagawa, E.Y., Antonino, P.O., Becker, M.: Reference architecture and
product line architecture: A subtle but critical difference. ECSA 2011.
LNCS, vol. 6903, pp. 207-211. Springer (2011)

S35 Nakagawa, E.Y., Barbosa, E.F., Maldonado, J.C.: Exploring ontologies to
support the establishment of reference architectures: An example on soft-
ware testing. WICSA/ECSA 2009, pp. 249-252. IEEE (2009)

S36 Nakagawa, E.Y., Becker, M., Maldonado, J.C.: A knowledge-based frame-
work for reference architectures. SAC 2011, pp. 1197-1202. ACM (2011)

S37 Nakagawa, E.Y., Guessi, M., Maldonado, J.C., Feitosa, D., Oquendo, F.:
Consolidating a Process for the Design, Representation, and Evaluation of
Reference Architectures. WICSA 2014, pp. 143-152. IEEE (2014)

S38 Nakagawa, E.Y., Maldonado, J.C.: Reference architecture knowledge rep-
resentation: An experience. SHARK@ICSE 2008, pp. 51-54. ACM (2008)

S39 Nakagawa, E.Y., Maldonado, J.C.: Towards the Open Source Reference
Architectures. SBCARS 2011, pp. 61-70. IEEE (2011)

S40 Nakagawa, E.Y., Oliveira, L.B.R.: Using systematic review to elicit require-
ments of reference architectures. WER@CIbSE (2011)



243

S41 Nakagawa, E.Y., Oquendo, F., Becker, M.: RAModel: A Reference Model
for Reference Architectures. WICSA/ECSA 2012, pp. 297-301. IEEE (2012)

S42 Panunzio, M., Vardanega, T.: On software reference architectures and their
application to the space domain. ICSR 2013. LNCS, vol. 7925, pp. 144-159.
Springer (2013)

S43 Ramirez-Cadena, M.J.: Low Cost Educational Technology Based on Open
System Reference Architecture for Engineering Courses. BASYS 2002, pp.
525-532. Kluwer (2002)

S44 Regli, W.C., Mayk, I, Cannon, C.T., Kopena, J.B., Lass, R.N., Mongan, W.M.,
Nguyen, D.N., Salvage, J.K., Sultanik, E.A, Usbeck, K.: Development and
Specification of a Reference Architecture for Agent-Based Systems. IEEE
Transactions on Systems, Man, and Cybernetics Systems 44(2), 146-161 (2014)

S45 Rittenbach, T., Satake, H., Redding, E., Perry, K., Thawani, M., Dietrich,
C., Thandee, R.: GRA model driven design process. MILCOM 2010, pp.
1151-1156. IEEE (2010)

S46 Rittenbach, T., Kovarik Jr., V.J., Krause-Aiguier, R., Stewart, C.: Complex
terminal systems design: Minimizing time to deployment. MILCOM 2010,
pp. 656-661. IEEE (2010)

S47 Tekinerdogan, B., Özturk, K., Dogru, A.: Modeling and Reasoning about
Design Alternatives of Software as a Service Architectures. WICSA 2011,
pp. 312-319. IEEE (2011)

S48 Weinreich, R., Buchgeher, G.: Automatic reference architecture confor-
mance checking for SOA-Based software systems. WICSA 2014, pp. 95-
104. IEEE (2014)

S49 Wu, R.R., Zhang, Y.Y.: A CAPP framework and its methodology. The
International Journal of Advanced Manufacturing Technology 14(4), 255-260
(1998)

S50 Zhou, N., Zhang, L.J.: Analytic Architecture Assessment in SOA Solution
Design and its Engineering Application. ICWS 2009, pp. 807-814. IEEE
(2009)

S51 Zhu, L. and Staples, M. and Jeffery, R.: Scaling up software architecture
evaluation processes. ICSP 2008. LNCS, vol. 5007, pp. 112-122. Springer
(2008)



244 Appendix B. Included Studies in the Systematic Review

S52 Zimmermann, O., Kopp, P., Pappe, S.: Architectural Knowledge in an
SOA Infrastructure Reference Architecture. In: Ali Babar, M., Dingsøyr, T.,
Lago, P., van Vliet, H. (eds.) Software Architecture Knowledge Management.
Springer (2009)



Appendix C

Materials for Gathering Evidence of
SRAs

In this appendix, we present the set of relevant aspects for SRAs engineer-
ing, and a template survey to gather evidence of such aspects from different
stakeholders.

C.1 Relevant Aspects of SRAs

Table C.1: Summary of relevant aspects for SRA engineering.

Aspect Description of the SRA Aspect
1 Overview and classification of an SRA
2 Requirements and quality attributes analysis
3 Architectural knowledge and decisions
4 Supportive technologies
5 Business qualities and architecture competence

245



246 Appendix C. Materials for Gathering Evidence of SRAs

C.2 Template Survey for Gathering Evidence of SRAs

The template survey is divided in two parts: questions about personal data,
project, and experience; and, questions about the relevant aspects of SRAs.

For each question, we indicate for which stakeholders they are interesting:
software architects (SA), architecture developers (AD), application builders
(AB), or project business leaders (PBL).

C.2.1 Questions about Personal Data, Project, and Experience

• Personal data

– Name and surname (SA, AD, AB, PBL)

– E-mail (SA, AD, AB, PBL)

– Phone (SA, AD, AB, PBL)

– Level of education (SA, AD, AB, PBL)

– Education area (SA, AD, AB, PBL)

– Certificates (SA, AD, AB)

• About the SRA and concrete architecture projects

– Describe briefly the SRA project (SA, AD)

– Describe briefly the concrete architecture project based on the SRA
(AB)

– Name of the SRA of the project (SA, AD, AB, PBL)

– Role(s) in the project (SA, AD, AB)

– Number and role of participants (SA)

– With how many participants did you interact during the develop-
ment of the software? (AD, AB)

– SRA project initial development phase duration (if it applies) (SA,
AD, PBL)

– SRA project maintenance duration (if it applies) (SA, AD, PBL)

– How many participants of the project had experience in SRAs? (SA)

– Did you have previous experience in SRAs before the project? (SA,
AD)



C.2. Template Survey for Gathering Evidence of SRAs 247

– Did you have previous experience in developing SRA-based appli-
cations before this project? (AB)

– Total effort of the SRA project (people/month) (SA)

• Experience in the organization

– Job position in the organization (when you participated in this
project) (SA, AD, AB)

– Years in this job position (when you participated in this project) (SA,
AD, AB)

– Years in the organization (when you participated in this project)
(SA, AD, AB)

– Experience in project management (when you participated in this
project) (SA)

C.2.2 Questions about the Relevant Aspects of SRAs

• Aspect 1: Overview and classification of an SRA

– What do you understand by SRA? (SA)

– Could you give a short description of the functionalities of the SRA
project? (SA)

– Which was the problematic that motivated the SRA project? (SA)

– What was the objective of the SRA project? (SA)

– How was the relationship among the stakeholders during the de-
sign and implementation of the SRA? (SA)

– How was the contact among the stakeholders after the first release
of the SRA? (SA)

– Does the SRA take into account the organization’s business pro-
cesses? (SA)

– What artifacts or deliverables have been produced in the SRA
project? How did they help? (SA)

– Is the SRA general or specific for a domain? Could it be used for
other domains? (SA, AD, AB)

– During the design of the SRA, have you reused some existing ar-
chitectural knowledge or software element? (SA)



248 Appendix C. Materials for Gathering Evidence of SRAs

– Does your SRA offer reusable modules for transversal services?
(SA, AD, AB)

– Are SRA-based applications aligned with business needs? (PBL)

– Is the quality of the SRA deliverables good? (PBL)

– Has the integration been performed easily? (PBL)

• Aspect 2: Requirements and quality attributes analysis

– Which were the main functional requirements of the SRA? (SA)

– Which were the main non-functional requirements (i.e., quality at-
tributes) of the SRA? Could you give an example important for this
SRA project? (SA)

– Which were the main constraints of the SRA? Could you give an
example important for this SRA project? (SA)

– How were requirements elicited in this SRA project? (SA)

– How were requirements documented in this SRA project? (SA)

– How were requirements validated in this SRA project? (SA)

– Who defined the requirements? (PBL)

– Can you give an example of requirement? (PBL)

– Did you follow some pattern for defining the requirements? (PBL)

– Were requirements expressed in sufficient detail to discern their
satisfaction? (PBL)

– Were the requirements met successfully? (PBL)

• Aspect 3: Architectural knowledge and decisions

– How did you design the SRA? (SA)

– How much freedom did you have while taking architectural deci-
sions? (SA)

– Did you have to use some technology (constraint)? (SA)

– What was chosen before in this project: SRA design or technological
framework? (SA)

– Could you give us an example of an architectural decision and its
relation to quality attributes of this SRA project? (SA)



C.2. Template Survey for Gathering Evidence of SRAs 249

– Were architectural decisions documented? Were these architectural
decisions predefined? (SA)

– Do you have a global vision of the SRA? (AD, AB)

• Aspect 4: Supportive technologies

– About the software development methodology
∗ Describe the used methodology and processes for this SRA

project. Explain their stages. (SA, AD, AB)
∗ Which practices or methods were followed in this SRA project

in relation to testing? (SA, AD, AB)
∗ Besides the possible documentation of requirements and archi-

tectural decisions, which documentation was done in this SRA
project? (SA)
∗ Which documentation was done in this SRA project? (AD, AB)
∗ Why have you used the software development methodology,

the testing methods, and the documentation aforementioned?
(AD, AB)
∗ Which input documentation did you receive to start coding?

(AD, AB)
∗ What liberty grade (restrictions about technologies, libraries,

way of coding...) have you had while coding? (AD, AB)
∗ Have you used best practices? (AD, AB)

– About technologies and tools
∗ Which integrated development environments (IDEs) were used

in this SRA project? (SA, AD, AB)
∗ What tools were used for project management? (SA)
∗ How was continuous integration performed? Have you used

some tool for that? (SA, AD, AB)
∗ Does your SRA include a monitoring tool for applications? (SA,

AD, AB)
∗ Have you used any tool to generate code automatically? (SA,

AD, AB)
∗ Do you think that any development or coding task can be done

automatically (totally or partially)? (SA, AD, AB)
∗ Which programming languages did you use in this project?

(AD, AB)



250 Appendix C. Materials for Gathering Evidence of SRAs

∗ Which technologies were used for presentation in this project?
(AD, AB)
∗ Which technologies were used for the development of services

in this project? (AD, AB)
∗ Which technologies were used for the development of business

processes in this project? (AD, AB)
∗ Which technologies were used for interoperability and integra-

tion in this project? (AD, AB)
∗ Which technologies were used for the management of data in

this project? (AD, AB)
∗ Which database management systems were used in this project?

(AD, AB)
∗ Which application servers were used in this project? (AD, AB)
∗ Why have you used the aforementioned tools and technologies?

(AD, AB)
∗ Have you used any other important tool in this project? (SA,

AD, AB)
∗ Do you consider that the usage of some technologies and tools

have caused any limitation? (AD, AB)

• Aspect 5: Business qualities and architecture competence

– Architecture competence of the organization that use the SRA

∗ To develop new SRA-based applications, is recommended any
development methodology? (SA)
∗ To develop new SRA-based applications, is recommended any

method in relation to testing? (SA)
∗ To develop new SRA-based applications, are recommended

good documentation practices? (SA)
∗ What are the benefits of using the SRA? (SA, AD, AB)
∗ What are the drawbacks of using the SRA? (SA, AD, AB)
∗ How was conducted the training for the organization in order

to use the SRA? (SA, AD, AB)
∗ Did the use of the SRA cause any organizational change in the

organization? (SA)
∗ How does the use of the SRA reduce the time-to-market of

SRA-based applications in the organization? (SA)



C.2. Template Survey for Gathering Evidence of SRAs 251

∗ What types of non-functional requirements are reinforced be-
cause of using the SRA in applications? (SA, AD, AB)
∗ Which other benefits or problems developers might experience

while using the SRA? (SA)
∗ To sum up, what conclusions do you draw from the facilities

provided by the SRA for the organization? (SA, AD, AB)
∗ Does the SRA make easier the collaboration between IT and

business teams? (PBL)
∗ Has the development time been reduced because of using a

reference model (comparing to other SRA projects)? (PBL)
∗ Has the SRA improved the quality of the applications? (PBL)
∗ Has SRA-based applications’ price been reduced because of

using a reference model (comparing to other SRA projects)?
(PBL)
∗ How many incidences have you experienced with the applica-

tions? (PBL)
∗ Which is the most relevant benefit from using an SRA? (PBL)
∗ Would you like to change something in future versions of the

SRA? (PBL)
∗ Indicate your overall satisfaction with the SRA and the func-

tioning of this project (PBL)
∗ Indicate if you have met all expectations regarding the use of

the SRA (e.g., time-to-market, cost ...) (PBL)
∗ Do you consider successful the use of the SRA? Would you use

it again in the future? (PBL)

– Architecture competence of the SRA vendor (if any)

∗ Do you think that a common repository for all SRA for reusing
services would be useful for the vendor organization? (AD)
∗ Is the SRA based on a reference model or any other existing ar-

chitectural knowledge and software components in the vendor
organization? (SA, AD)
∗ What do you think should be replaced, included or updated in

prospective versions of the SRA? (SA, AD, AB)
∗ To sum up, what conclusions do you draw from the facilities

provided by the SRA for the vendor organization? (SA, AD)





Appendix D

Materials for Building the Business
Case for SRAs

In this appendix, we present the questions for software architects to check
existing value-driven data in SRA projects, and the materials of the REARM
economic model.

D.1 Questions to Check Existing Value-Driven Data in SRA
Projects

• Questions about data available for the SRA:

– Is it possible to access to a code quality management tool (e.g.,
Sonar) used in the SRA project? If not, is it possible to install Sonar
to take metrics from the source code of the SRA?

– Would it be possible to estimate the degree of reuse in each of the
modules of the SRA with respect to the reference model? (optional)

– Did the SRA stakeholders track the time spent on each task in the
development of the SRA? If so, with which granularity?

– Is there data about personnel and time invested in maintaining the
SRA? If so, with which granularity?

– Would it be possible to give an estimate of the additional training
time that an application builder needs to use the SRA?

253



254 Appendix D. Materials for Building the Business Case for SRAs

– Would it be possible to specify a standard hourly rate of performing
tasks on the SRA?

• Questions about data available for the applications based on the SRA:

– How many applications are (or will be) based on the SRA? Make a
list of the applications with a contact person.

– Do you have an overview of the development of applications based
on the SRA? If so, go on. If not, we will contact the person who you
indicated in the previous answer.

– For which of the above applications is it possible to know which
SRA modules have been reused and the degree of reuse?

– Is additional effort needed to reuse SRA modules?

– Can you estimate how long it would take to develop SRA modules
instead of reusing them?

– Is it possible to access to a code quality management tool (e.g.,
Sonar) used for the SRA-based applications? If not, is it possible
to install Sonar to take metrics from the source code of the applica-
tions?

– Please, indicate the generic characteristics (e.g., reuse percentage of
SRA modules, size of applications) of three ideal types of SRA-based
applications with low, medium and high complexity.

– Did the SRA stakeholders track the time spent on each task in the
development of the SRA-based applications? If so, with which
granularity?

– Is there data about personnel and time invested in maintaining the
SRA-based applications? If so, with which granularity?

– Would it be possible to specify a standard hourly rate of performing
tasks on the SRA-based applications?

– Have you done any comparison between the costs and the benefits
between SRA-based applications and ad-hoc applications?

– Currently, are there indicators or metrics to evaluate the improve-
ment of the quality attributes in the applications because of the SRA
usage?



D.2. Materials of REARM 255

• Questions for adding comments and propose metrics to calculate the
ROI of the SRA:

– In addition to the information discussed above, do you think that
there is other available information to evaluate how the SRA affects
the applications development?

– Do you think that other metric, not mentioned above, could be
useful to calculate the ROI of building applications based on the
SRA?

– Our economic model to calculate the ROI of an SRA is based on
the reuse and maintenance of code. Do you think there are other
quality attributes or important factors for evaluating an SRA?

– Before sending the survey, would you like to add any comments
that may help to understand the context of your answers?

D.2 Materials of REARM

REARM consists of five steps:

1. Extracting ten basic parameters to feed the cost-benefit factors.

2. Calculating cost-benefit factors to calculate the ROI of adopting an SRA
in an organization.

3. Extracting business case parameters.

4. Calculating the ROI: useful scenarios for the organization and its decision
making.

5. Consideration of unquantifiable benefits, and uncertainties and risk.

Next, we summarize the support materials to execute such steps.



256 Appendix D. Materials for Building the Business Case for SRAs

D.2.1 Ten Basic Parameters to Feed the Cost-Benefit Factors

Table D.1: Basic parameters in order to feed the factors of REARM.

Description of the parameters (adapted for the SRA context)
RCR Relative Cost of Reuse: effort that it takes to reuse a component without

modification versus writing it new one-at-a-time [87]
RCWR Relative Cost of Writing for Reuse: effort that it takes to write a reusable

component versus writing it for one-time use only [87]
ER Error Rate: the historical error rate in new software developed by

your organization, in errors per thousand lines of code [87]
EC Error Cost: your organization’s historical cost to fix errors after

releasing new software to the customer, in euros per error [87]
NMSI New Module Source Instruction: the LOC that the changed or new

module has, which can be the average of previous ones
PC Propagation Cost: the percentage of code affected in the SRA when

performing evolutions (i.e., changing modules) [97]
CPKL Cost per KLOC: the historical cost to develop a KLOC of new software

in your organization [87]
USI Unique Source Instructions: the amount of unique software (i.e., not

reused) that was written or modified for an application
RSI Reused Source Instructions: it is the total LOC of the SRA’s modules

that are reused in an application. It supports variability. In other
words, reuse of SRA might not be complete but partial, since different
applications can reused different SRA’s modules. Therefore RSI
depend on each application [87].

TSI Total Source Instructions: it is the total LOC of the SRA that can be
reused [87].



D.2. Materials of REARM 257

D.2.2 Cost-Benefit Factors to Calculate the ROI of Adopting an
SRA in an Organization

Table D.2: Cost-benefit factors to calculate the ROI of adopting an SRA in an
organization.

Description of the cost-benefit factors (adapted for the SRA context)
DCA Development Cost Avoidance: the benefits from reusing SRA’s modules

[87]
DCA = RSI * (1-RCR) * CPKL

CSWD Common Software Development Costs: the costs to develop the SRA
[145]
CSWD = RCWR * TSI * CPKL

UDC Unique Development Costs: the costs to develop the unique part of an
application
UDC = USI*CPKL

SCA Service Cost Avoidance: benefits from maintaining only once SRA’s
modules [87]
SCA = RSI * ER * EC

CSWS Common Software Maintenance Costs: cost of fixing bugs in reusable
modules [145]
CSWS = TSI * ER * EC

CSWE Common Software Evolution Costs: the costs of changing or adding a
new functionality and maintaining it to the SRA
CSWE = evolution development + evolution maintenance +
propagation =
(NMSI*RCWR*CPKL)+(NMSI*ER*EC)+(TSI*CPKL*PC)

D.2.3 Business Case Parameters

• Business Case Parameters:

– Years of the SRA program.

– Number and size of SRA-based applications.

– Number of evolved SRA modules.

– Hourly rate for software architects and for application builders.



258 Appendix D. Materials for Building the Business Case for SRAs

D.2.4 Calculating the ROI: Useful Scenarios for the Organization
and its Decision Making

We suggest using these two scenarios to make a business case for calculating
the ROI of building an SRA vs. building the applications independently:

• ROI calculation: Is it worth to invest on the adoption of an SRA?

• Payback analysis: How many instantiations are necessary before savings
pay off for the up-front investment?

For both of them, we need to calculate the ROI:

ROI =
Bene f its − Costs

Costs
(D.1)

Putting everything together, given a number n of applications built in top
of the SRA, and a number m of SRA modules changed as it evolves, the benefits
and costs of adopting an SRA are defined as:

Bene f its =

n∑
i=1

(DCAi + SCAi) (D.2)

Costs = CSWD + CSWS +

n∑
i=1

UDCi +

m∑
j=1

CSWE j (D.3)

Putting everything together to calculate the ROI:

ROI =
[
∑n

i=1(DCAi + SCAi)] − [CSWD + CSWS +
∑n

i=1 UDCi +
∑m

j=1 CSWE j]

CSWD + CSWS +
∑n

i=1 UDCi +
∑m

j=1 CSWE j

(D.4)

Table D.3 shows an example of business case and how to calculate the cost
and benefits for three years since the SRA adoption. The parameters n1, n2,
n3 indicate the number of applications developed per year respectively, and m
the number of evolved modules.



D.2. Materials of REARM 259

Table D.3: Example of design of a business case with the cost-benefit factors
of the model.

Year 1 Year 2 Year 3
Total
benefit

n1*(DCA+SCA) n2*(DCA+SCA) n3*(DCA+SCA)

Total cost CSWD+
n1*UDC+CSWS*1/5

n2*UDC+
CSWS*2/5+m*CSWE

n3*UDC+
CSWS*2/5+m*CSWE

D.2.5 Adding Unquantifiable Benefits, Uncertainties and Risks

As Boehm points out [82], two additional factors may be important in business
case analysis: unquantifiable benefits, and uncertainties and risk.

First, the economic model that we propose promotes benefits in reusability
and maintainability. However, other quality attributes, such as security, could
be as relevant as those for this analysis, even when they may be difficult
to quantify. These other benefits should also been taken into account when
adopting and SRA. Unquantifiable benefits are also considered as “flexibility”
in TEI [84], the economic model of Forrester.

Second, to adjust cost and benefits to risk, they can be multiplied by per-
centages that generally increase the costs and reduce the benefits (assuming
the worst case). For instance, TEI proposes to multiple costs by values that
range from 98% to 150% and benefits by values between 50% and 110%.


	List of Figures
	List of Tables
	Introduction and State of the Art
	Introduction
	Software Reference Architectures
	Importance of Software Reference Architectures

	Research Context
	everis, a Multinational Consulting Firm
	Software Reference Architectures in everis

	Research Problem
	The Problem at the ``Cátedra everis-UPC'' Project

	Research Goal
	Research Methodology
	Tasks and Results

	List of Publications
	Structure of this Document

	Background
	Architecture Disciplines Basic Concepts
	Relationships Between Architecture Disciplines
	Where Software Reference Architecture Belongs To

	Software Reference Architecture Essentials
	Definition of Software Reference Architecture
	Types of Software Reference Architecture
	Elements that Compose an SRA

	The Boundaries of SRAs with Respect to Related Terms
	Reference Model and SRA
	Concrete Software Architecture and SRA
	Product Line Architecture and SRA

	The Industrial Context of SRAs in everis
	Reference Model Projects
	Software Reference Architecture Projects
	Concrete Architecture Projects


	State-of-the-Art
	Research Method
	Search Process
	Inclusion and Exclusion Criteria
	Data Extraction and Synthesis

	Results
	SRA Basic Concepts
	SRA Adoption
	SRA Information Source Investigation
	SRA Requirements Elicitation
	SRA Design
	SRA Evaluation
	SRA Usage
	SRA Evolution

	Focusing on the Topics of this PhD Thesis
	Literature on Artifacts of SRAs
	Literature on Benefits and Drawbacks of SRAs
	Business Case Analysis and Return-On-Investment
	Economic Models for SRAs



	Empirical Evidence of Software Reference Architectures
	Identifying Practical Criteria for SRA Engineering
	Summary of the First Cycle of RQ 1

	Gathering Evidence of SRA Engineering
	Research Methodology
	Research Setting
	Research Questions
	Research Design and Sampling
	Data Collection and Instruments
	Data Analysis
	Limitations of the Study

	Analysis of Motives to Use SRAs
	Results

	Analysis of Artifacts of SRAs
	Results
	Discussions

	Analysis of Benefits and Drawbacks of SRAs
	Results
	Discussions and Comparison with the Literature

	Analysis of Benefits of Reference Models
	Results
	Discussions

	Summary of the Second Cycle of RQ 1

	Guidelines for Gathering Evidence of SRAs
	Similar Contexts of SRAs in Practice
	Formative Stage: Evolution of the Guidelines
	Packaging the Guidelines
	Relevant Criteria of SRAs for an Organization
	Evidence to Improve SRA Engineering

	Summative Stage: Validating the Guidelines

	The Benefits and Drawbacks of AUTOSAR
	Background on Automotive Software and AUTOSAR
	AUTOSAR Software Reference Architecture

	Research Method
	Research Questions
	Research Design and Sampling
	Data Collection and Instruments
	Data Analysis

	Results
	Results on AUTOSAR Benefits
	Results on AUTOSAR Drawbacks
	Highlights of the Results

	Validity
	Construct Validity
	Internal Validity
	External Validity

	Summary of the Third Cycle of RQ 1

	Aggregating Empirical Evidence of SRAs
	Methodology
	Step 1: Selecting Primary Studies
	Step 2: Evidence Representation
	Step 3: Evidence Synthesis

	Representation of SRA Effects
	Results of the Aggregation
	Effects of SRAs that Increased their Belief
	Effects of SRAs that Slightly Increased their Belief
	Effects of SRAs that did not Change their Belief
	Effects of SRAs that Decreased their Belief

	Discussions
	Effects of SRAs Present in Different Contexts
	Contradictory SRA Effects from Different Studies
	Contribution of this Aggregation to the Theory on SRAs

	Validity
	Summary of the Fourth Cycle of RQ 1


	The Business Case for Software Reference Architectures
	A Survey to Discover Existing Data in SRA Projects
	Results: Costs and Benefits Metrics for SRAs
	Next Steps and Lessons Learned
	Summary of the First Cycle of RQ 2

	REARM: Calculating the ROI on SRA Adoption
	A Method for Formulating an Economic Model
	REARM: the Economic Model for SRAs
	Step 1 for Formulating an Economic Model
	Step 2 for Formulating an Economic Model
	Step 3 for Formulating an Economic Model

	Preliminary Validation
	Scenario 1
	Scenario 2

	Discussion
	Summary of the Second Cycle of RQ 2

	Guidelines for Building a Business Case for SRAs
	Formative Stage: Evolution of the Guidelines
	Packaging the Guidelines
	Existing Value-driven Data in Projects
	Calculating the ROI of Adopting an SRA

	Summative Stage: Validating the Guidelines

	Workshops to Evaluate the Business Case for SRAs
	REARM Validation at an everis Client Organization
	REARM Validation at the ICSR 2013
	REARM Validation at another Research Group
	Summary of the Third Cycle of RQ 2


	Conclusions and Future Work
	Discussion: Evaluating our Collaboration
	Models for Technology Transfer
	The Collaboration
	Collaboration Evaluation
	Research Activity
	Research Result

	Lessons Learned
	Challenges
	Mutual Benefits from Collaboration

	Contributions of the Evaluation of the Collaboration
	Future Steps


	Conclusions and Future Work
	Conclusions and Answers to RQ 1 and RQ 2
	Contributions to the SRA and ESE Theories
	Contributions to the SRA Theory
	Contributions to the ESE Theory
	Overall Contributions

	Future Work

	References
	Glossary
	Included Studies in the Systematic Review
	Materials for Gathering Evidence of SRAs
	Relevant Aspects of SRAs
	Template Survey for Gathering Evidence of SRAs
	Questions about Personal Data, Project, and Experience
	Questions about the Relevant Aspects of SRAs


	Materials for Building the Business Case for SRAs
	Questions to Check Existing Value-Driven Data in SRA Projects
	Materials of REARM
	Ten Basic Parameters to Feed the Cost-Benefit Factors
	Cost-Benefit Factors to Calculate the ROI
	Business Case Parameters
	Calculating the ROI: Scenarios for Decision Making
	Unquantifiable Benefits, Uncertainties and Risks




