
Secure Identity Management in

Structured Peer-to-Peer (P2P)

Networks

Author:

Juan Caubet Fernández

Advisors:

Dr. Óscar Esparza Martín and Dr. José L. Muñoz Tapia

Dissertation Submitted to the Department of Telematics Engineering in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy of the

Technical University of Catalonia (UPC)

Ph.D. Dissertation

August 2015

../figures/UnivShield.eps

Acknowledgements

First of all, I would like to express my gratitude to my supervisors, José

L. Muñoz and Óscar Esparza, whose expertise, understanding, and pa-

tience, added considerably to my graduate experience. I appreciate their

vast knowledge and skills in many areas, and their assistance in writing

reports. Above all and the most needed, they provided me unflinching en-

couragement and support in various ways. Their truly scientist intuition

has made them as a constant oasis of ideas and passions in science, which

exceptionally inspire and enhance my growth as a student, a researcher and

a scientist want to be.

I am also deeply indebted to Jorge Mata and Juanjo Alins. Without their

guidance, support and good nature, I would never have been able to develop

this thesis successfully. I benefited greatly from their ideas and insights.

Their involvement with their originality has triggered and nourished my

intellectual maturity that I will benefit from, for a long time to come.

I am also specially grateful to Miquel Soriano, and the whole Information

Security Group (ISG) in general, for giving me the opportunity to develop

this thesis in their group as well as for helping me in everything I have

needed during these years; great personal experience and totally enriching.

Some debts are hard to put into words. My research colleagues Carlos Gañán

and Sergi Reñé, they know why their names are here.

My last, but not least gratitude is for my parents, who gave me everything

and keep on giving; it is difficult to find words to express my gratitude and

thanks to both of you.

I realize that not all people who contributed either directly or indirectly to

my study are mentioned in this page. From the deepest of my heart, I would

like to thank all of you...

i

Preface

Structured Peer-to-Peer (P2P) networks were proposed to solve routing

problems of big distributed infrastructures. But the research community

has been questioning their security for years. Most prior work in security

services was focused on secure routing, reputation systems, anonymity, etc.

However, the proper management of identities is an important prerequisite

to provide most of these security services.

The existence of anonymous nodes and the lack of a centralized authority

capable of monitoring (and/or punishing) nodes make these systems more

vulnerable against selfish or malicious behaviors. Moreover, these improper

usages cannot be faced only with data confidentiality, nodes authentication,

non-repudiation, etc. In particular, structured P2P networks should follow

the following secure routing primitives: (1) secure maintenance of routing

tables, (2) secure routing of messages, and (3) secure identity assignment

to nodes. But the first two problems depend in some way on the third one.

If nodes’ identifiers can be chosen by users without any control, these net-

works can have security and operational problems. Therefore, like any other

network or service, structured P2P networks require a robust access control

to prevent potential attackers joining the network and a robust identity

assignment system to guarantee their proper operation.

The main objective of this thesis is to provide methods for managing iden-

tities in DHT-based structured P2P networks. This research intends to

develop new protocols to control the user access, to assign node identifiers

in a secure way and to manage revocation data, improving the accessibility

and avoiding bottleneck problems. These new protocols should be used to

provide security in structured P2P networks, and thus allowing the deploy-

ment of commercial applications and new services.

iii

Contents

1 General Introduction 1

1.1 About this Thesis . 1

1.2 Context . 2

1.3 Research Objectives . 4

1.4 Thesis Organization . 5

1.5 Related Publications . 6

2 Background 11

2.1 Peer-to-Peer (P2P) Networks . 11

2.1.1 Three Generations of P2P Networks 13

2.1.2 Identity Management in Existing P2P Overlays 15

2.1.2.1 CAN (Content-Addressable Network) 15

2.1.2.2 Chord . 17

2.1.2.3 Pastry . 18

2.1.2.4 Tapestry . 18

2.1.2.5 Kademlia . 19

2.1.2.6 BitTorrent . 22

2.1.2.7 JXTA . 23

2.1.3 Identity Problems in P2P Overlays 24

2.1.3.1 The Sybil Attack . 25

2.1.3.2 The Eclipse Attack . 25

2.1.3.3 The Man-In-The-Middle (MITM) Attack 25

2.1.3.4 Other Threats . 26

2.1.4 Distribution of Revocation Data 26

2.1.4.1 Revocation Approaches and Standards 27

v

CONTENTS

2.1.4.2 Distribution of Revocation Data in P2P Overlays 29

2.1.5 Related Work . 29

2.1.5.1 Centralized Proposals 30

2.1.5.2 Distributed Proposals 32

2.1.5.3 Social Network-Based Proposals 34

2.1.5.4 Distribution Systems of Revocation Data 36

2.2 Cryptography . 37

2.2.1 Elliptic Curve Cryptography (ECC) 37

2.2.2 Implicit Certificates . 39

2.2.3 Blind Signatures . 42

2.2.4 Commitment Schemes . 44

2.2.5 The AVISPA Tool . 45

3 Secure Identity Management 47

3.1 NodeID generation . 48

3.1.1 Using Random Numbers . 48

3.1.2 Using IP Addresses . 49

3.1.3 Using Public Keys . 51

3.1.4 Comparison . 53

3.2 Security Requirements for nodeIDs . 57

3.3 Scenarios . 59

4 An Implicit Certificate-based Identity Assignment Protocol for P2P

overlAys 61

4.1 Assumptions and Clarifications . 62

4.2 Protocol Specification . 64

4.2.1 Protocol Steps . 65

4.2.2 Public Key Generation . 68

4.2.3 NodeID Validation . 68

4.3 Security Analysis . 68

4.3.1 Cryptographic Analysis . 70

4.3.2 Discussion of NodeID Requirements 71

4.3.3 Formal Validation of the Protocol 72

4.4 Performance Analysis . 73

vi

CONTENTS

4.5 Conclusions . 74

5 A Two-level Identity Assignment Protocol for P2P overlAys 77

5.1 Assumptions and Clarifications . 78

5.2 Protocol Specification . 80

5.2.1 Protocol Steps . 83

5.2.2 Public Key Generation . 91

5.2.3 NodeID Validation . 92

5.3 Security Analysis . 92

5.3.1 Cryptographic Analysis . 93

5.3.2 Discussion of NodeID Requirements 94

5.3.3 Formal Validation of the Protocol 95

5.4 Performance Analysis . 96

5.5 Conclusions . 97

6 A Robust Identity Assignment Protocol for P2P overlAys 99

6.1 Assumptions and Clarifications . 100

6.2 Protocol Specification . 102

6.2.1 Protocol Steps . 103

6.2.2 NodeID Selection . 110

6.2.3 Node Operation . 111

6.3 Security Analysis . 112

6.3.1 Discussion of NodeID Requirements 113

6.3.2 Formal Validation of the Protocol 114

6.4 Performance Analysis . 115

6.5 Comparison with Similar Proposals . 117

6.6 Scenarios . 120

6.7 Conclusions . 122

7 CRL Distribution System for the Kad Network 123

7.1 System Requirements . 124

7.2 Proposal Overview . 125

7.3 CRL Segment Generation . 126

7.4 CRL Segment Sharing . 128

vii

CONTENTS

7.5 CRL Segment Issuance . 129

7.6 Performance Analysis . 131

7.7 Conclusions . 135

8 Conclusions and Further Work 139

8.1 Conclusions . 140

8.2 Further Work . 143

8.2.1 Implicit Certificates Application 144

8.2.2 Revocation Data Distribution . 145

References 147

A ASN.1 RIAPPA Certificate Syntax 163

B The AVISPA Tool Simulations 165

B.1 ICIAPPA . 165

B.1.1 Results . 169

B.2 TIAPPA . 171

B.2.1 Results . 178

B.3 RIAPPA . 181

B.3.1 Results . 187

viii

List of Figures

2.1 CAN bootstrapping phase. 16

2.2 Example of a Chord identifier circle modulo 23. 17

2.3 Generation of buckets in the node 111...110. 20

2.4 ECQV certificate issuance protocol. 40

4.1 ICIAPPA Commitment Scheme. 63

4.2 Basics of the Certificate and nodeID Generation Scheme. 66

5.1 Original blind signature scheme . 80

5.2 Certificate/nodeID generation scheme 81

5.3 Message exchange . 91

6.1 Overlay certificate format . 101

6.2 ASN.1 syntax of an overlay certificate 102

6.3 Blind signature process carried out by TTPα 109

6.4 Message exchange . 111

7.1 Example of a CRL segment search in the Kad network. 126

7.2 CRL segments generation. 128

7.3 CRL and CRL segments request rates. 134

7.4 CRL segments distributed. 135

7.5 Distribution of different revocation data sets in CRL segments. 136

B.1 ICIAPPA - AVISPA output of the executability test. 169

B.2 ICIAPPA - AVISPA output using CL-AtSe back-end. 169

B.3 ICIAPPA - AVISPA output using SATMC back-end. 170

ix

LIST OF FIGURES

B.4 ICIAPPA - AVISPA output using OFMC back-end. 170

B.5 TIAPPA - AVISPA output of the executability test. 178

B.6 TIAPPA - AVISPA output using OFMC back-end. 178

B.7 TIAPPA - AVISPA output using SATMC back-end. 179

B.8 TIAPPA - AVISPA output using CL-AtSe back-end. 180

B.9 RIAPPA - AVISPA output of the executability test. 187

B.10 RIAPPA - AVISPA output using OFMC back-end. 187

B.11 RIAPPA - AVISPA output using SATMC back-end. 188

B.12 RIAPPA - AVISPA output using CL-AtSe back-end. 189

x

List of Tables

2.1 Key and certificate size comparison between ECC and RSA. 39

2.2 Operations required for constructing an ECC-based implicit public key

and verifying an ECDSA signature. 42

2.3 Certificate size comparison between ECDSA and ECQV. 42

3.1 Evaluation of the most used six ways to construct nodeIDs in current

P2P overlays (I). 55

3.2 Evaluation of the most used six ways to construct nodeIDs in current

P2P overlays (II). 56

4.1 Notation for ICIAPPA. 65

4.2 ICIAPPA Message Exchange for the AVISPA Tool. 73

5.1 Notation for TIAPPA. 82

5.2 Message exchange represented using the Alice and Bob notation. 96

6.1 Notation for RIAPPA. 103

6.2 Message exchange represented using the Alice and Bob notation. 114

6.3 Size of the messages. 116

6.4 Summary of the cryptographic operations. 117

6.5 Computational cost of the cryptographic operations. 118

6.6 Requirements comparison between ICIAPPA, TIAPPA and RIAPPA. . 118

xi

LIST OF TABLES

xii

Chapter 1

General Introduction

Contents

1.1 About this Thesis . 1

1.2 Context . 2

1.3 Research Objectives . 4

1.4 Thesis Organization . 5

1.5 Related Publications . 6

1.1 About this Thesis

This thesis has been carried out at the Information Security Group (ISG)1 of the De-

partment of Telematics Engineering (ENTEL)2 at the Technical University of Catalonia

(UPC)3. We would like to thank the Spanish Research Council that has partially funded

the development of this thesis under the following projects:

• ARES: Advanced REsearch on information Security and privacy (CONSOLIDER

CSD2007-00004).

• SERVET: A SEcure and Robust transport architecture for infotainment services

in Vehicular nETworks (CICYT TEC2011-26452).

1ISG home: http://isg.upc.edu
2ENTEL home: http://www.entel.upc.edu
3UPC home: http://www.upc.edu

1

http://isg.upc.edu
http://www.entel.upc.edu
http://www.upc.edu

1. GENERAL INTRODUCTION

1.2 Context

Most of our daily activities are carried out over the Internet, from home-banking and on-

line teaching to watching on-line content, social networking and file sharing. Considering

file sharing as one of the Internet top activities, different generations of P2P networks

have been proposed, designed and implemented; resulting in a wide set of distributed

networks with different performances and goals. Over the last years, these networks

have been evolving from centralized approaches to fully decentralized and structured

systems (structured P2P networks).

Today, structured P2P networks, also known as P2P overlays, are considered the

best way to share/distribute large amounts of data, regardless of the involved devices

and underlying networks used below them. This is mainly due to they are mostly based

on Distributed Hash Tables (DHT). However, despite their benefits, P2P overlays are

hardly being used to provide commercial services. Although these networks have been

analyzed in depth to guarantee scalability and efficiency, there are some important

security problems that deter their use in open networks. Most P2P overlays neither

control the user access nor the behavior of the nodes within their virtual space. In

addition, the existence of anonymous nodes and the lack of a centralized authority

capable of monitoring (or punishing) nodes make these systems more vulnerable against

selfish or malicious behaviors.

Ideally, DHT-based structured P2P networks should follow the secure routing prim-

itives described by Wallach in [121], which are:

1. Secure maintenance of routing tables.

2. Secure routing of messages.

3. Secure identity assignment to nodes.

But the first two problems depend in some way on the third one. One of the main

vulnerabilities of most P2P overlays is the fact that the new users can choose their

own identifiers within the network (hereinafter referred to as nodeIDs). This allows

them to deliberately locate themselves at a certain place within the P2P virtual space

where they know they will be responsible for some specific data. In this way, attackers

2

1.2 Context

can lie and say these data do not exist whenever someone asks making that content

unavailable. Attackers could also lie and send fake data.

On the other hand, the uncontrolled number of nodeIDs per user is also a significant

issue. If an attacker is able to manage a considerable set of nodeIDs, she could separate

a part of the overlay from the rest, or even improve her own reputation by using good

feedback that comes from these fake identities. Therefore, P2P overlays require robust

processes of identity assignment to prevent potential attackers can damage the network.

In addition, without security, all nodes are potentially vulnerable to the misbehav-

ior of the attackers. Hence, it is also necessary to evict compromised, defective and

illegitimate nodes. One basic solution to achieve these requirements, widespread in

other networks, is to use a Public Key Infrastructure (PKI). PKIs were developed to

meet with the main security requirements in the Internet environment, adopting the

idea of the public key cryptography and employing the digital certificate concept to

bind an entity with a cryptographic public key. Many existing solutions manage these

certificates by means of a central Certification Authority (CA), although there are also

distributed solutions such as [28], which issues a valid certificate for each node of the

network. Therefore, an efficient certificate management is crucial for the robust and

reliable operation of any PKI. Using digital certificates implies the need to validate

them, since they have a limited lifetime and may even be revoked. To revoke a digital

certificate, in the traditional approach, the CA adds its serial number to a Certificate

Revocation List (CRL) [45]. Then, this CRL is issued and broadcasted to the network.

On the other hand, the network scale of the P2P overlays is expected to be very

large. Hence, the distribution of the CRLs is prone to long delays and the CAs are prone

to be overloaded. In practice, revocation of misbehaving nodes should take place as fast

as possible to prevent these users from jeopardizing the performance of the network.

Consequently, robust identity management systems1 are necessary to turn P2P over-

lays into a better platform for commercial applications and services that handle sensitive

information.

The work of this thesis follows two axes: (1) how to generate secure nodeIDs; and

(2) how the revocation data distribution can be improved, both in current P2P overlays.

1Systems that control the information that authenticates the identity of a user, the information

that describes the information and actions that users are authorized to access and/or perform, and the

descriptive information about users.

3

1. GENERAL INTRODUCTION

1.3 Research Objectives

This thesis aims to mitigate the security issues related to the identity management in

structured P2P networks. Therefore, the objectives of this thesis are as follows:

1. Analyze the operation of the current structured P2P networks when managing

identities to identify what security problems are related to the nodes’ identifiers

within the overlay. Specifically, this involves analyzing the nodeIDs generation

process, the bootstrapping phase and the user access control.

2. Propose a series of requirements to be accomplished by any generated nodeID to

provide more security to a DHT-based structured P2P network. These require-

ments should consider all possible security issues related to the nodes’ identifiers.

3. Propose the use of implicit certificates to provide more security and to exploit

the improvement in bandwidth, storage and performance that these certificates

present compared to explicit certificates. In our opinion, this type of certificates

may be a good solution to increase the security of P2P overlays and to facilitate

the use of these networks by resource-constrained devices.

4. Design protocols to assign nodes’ identifiers avoiding the identified problems, while

maintaining user anonymity and allowing users’ traceability. These protocols

should involve the issuance of digital certificates to make P2P overlays secure.

5. Analyze the operation of the most used mechanisms to distribute revocation data

in the Internet, with special focus on the proposed systems to work in P2P net-

works.

6. Design a new mechanism to distribute revocation data more efficiently in a struc-

tured P2P network. This mechanism should take into account that a P2P overlay

may have a large number of users and use nodeIDs with a limited lifetime.

To fulfill these objectives, we have followed four different work lines. The first

one analyzes the operation of some of the current P2P overlays and proposes a series

of requirements which should be fulfilled by any mechanism to assign nodeIDs. The

second work line introduces the use of implicit certificates in P2P overlays. In the third

line, we design a protocol which accomplishes all the proposed requirements together.

4

1.4 Thesis Organization

And finally, the last work line deals with the problem of distributing large amounts of

revocation data within a P2P overlay.

1.4 Thesis Organization

This thesis is organized in eight Chapters. Chapter 2 introduces the evolution of the P2P

networks over the years and explains in detail the operation of the most representative

DHT-based structured P2P networks. Specifically, it focuses on how these networks

implement the bootstrapping process, manage the identifiers of the nodes and control

the access of the users. Then, the main security issues related with the users’ identities in

P2P overlays are analyzed to understand their origin. In addition, there is a discussion

about how several research works try to avoid, prevent or limit the most common

problems related to the nodes’ identifiers in P2P overlays, and how some proposals try

to distribute revocation data in these networks more efficiently. Finally, this Chapter

also provides to non-expert readers enough background in cryptography to read this

thesis.

Chapter 3 carries out a discussion about the main problems related to the way of

generating nodeIDs, which are used in some current P2P overlays. Then, a series of

design requirements to be fulfilled by the nodeIDs of a P2P overlay are also proposed.

Finally, we discuss some possible services over P2P overlays that require a tight identity

management system and thus, that would benefit from our proposals.

Chapter 4 describes the proposal of an identity assignment protocol that allows the

creation of nodeIDs as a cooperative process between the user and the Trusted Third

Party (TTP) in such a way that none of the parts has complete control over which is

the final identifier assigned. The algorithm is based on implicit certificates.

Chapter 5 describes another robust identity assignment protocol based on the use

of implicit certificates. In this case two TTPs are used to also guarantee full user

anonymity at the same time that their activities can be traceable.

Chapter 6 presents a generic description of a new identity assignment protocol which

uses explicit certificates and two TTPs to provide security and guarantee full user

anonymity, traceability and nodeID stability at the same time.

Chapter 7 describes the operation of a new system to distribute revocation data in

the Kad network, which stores the revoked certificates in different CRL segments and

5

1. GENERAL INTRODUCTION

distributes them independently using that P2P overlay itself.

Finally, Chapter 8 concludes this thesis summarizing the main findings and making

suggestions for the future research.

1.5 Related Publications

Most of the research results presented in this dissertation have been published in journals

and conferences. In this section we provide a list of such publications, together with

their complete bibliographic information. Further, we include other complementary

articles that are not directly related with the research topic of this thesis, but which are

especially significant from the state-of-the-art perspective.

International Journal publications:

1. Juan Caubet, Oscar Esparza, José L. Muñoz, Juanjo Alins, and Jorge Mata-Díaz.

“RIAPPA: A Robust Identity Assignment Protocol for P2P overlAys”, Security

and Communication Networks, vol. 7, issue 12 (December 2014), pp. 2743-2760.

DOI: 10.1002/sec.956. (Impact Factor: 0.72)

• In this article we presented a first version of the RIAPPA protocol, a protocol

to control the access to a P2P overlay and assign identities in a secure way;

all this preserving the anonymity of users. This protocol involves two Trusted

Third Parties (TTPs), thanks to which it is possible to preserve the users’

anonymity within the network without losing traceability. This protocol also

provides revocability and protection against Sybil attacks, Eclipse attacks,

whitewashers, etc.

2. Juan Caubet, Carlos Gañan, Oscar Esparza, José L. Munoz, Jorge Mata-Díaz, and

Juanjo Alins. “Certificate Revocation List Distribution System for the Kademlia

Network”, The Computer Journal, vol. 57, issue 2 (May 2013), pp. 273-280.

DOI: 10.1093/comjnl/bxt037. (Impact Factor: 0.787)

• In this article we proposed a new distributed revocation system for the

Kademlia network in order to improve the accessibility, to increase the avail-

ability and to guarantee the freshness of the revocation data. To do so, this

6

1.5 Related Publications

system distributes the revocation data using the overlay itself and generating

CRL (Certificate Revocation List) segments independently.

International Conference publications:

1. Juan Caubet, Oscar Esparza, Juanjo Alins, Jorge Mata-Díaz, and Miguel Sori-

ano. “Securing Identity Assignment Using Implicit Certificates in P2P Overlays”,

in proceedings of the 7th IFIP WG 11.11 International Conference on Trust Man-

agement, IFIPTM 2013, pages 151–165, Malaga, Spain, June 2013.

DOI: 10.1007/978-3-642-38323-6_11.

• In this article we proposed a new nodeID assignment protocol based on the

issuance of implicit certificates, which present certain advantages over the use

of traditional certificates (explicit certificates). This approach is based on the

use of certificates and the joint generation of nodeIDs between a Certification

Authority (CA) and the user during the certificate generation process.

2. Juan Caubet, Carlos Gañán, Oscar Esparza, José L. Muñoz, Jorge Mata-Díaz,

and Juanjo Alins. “CRL Distribution System for KAD Network”, in proceedings

of The 2012 FTRA International Workshop on Human centric computing, P2P,

Grid and Cloud computing (HPGC-12), Jeju, South Korea, November 2014.

• In this article we proposed the first version of a new distributed revoca-

tion system for the Kademlia network. This mechanism aims to improve the

accessibility, increase the availability and guarantee the freshness of the revo-

cation data through the use of CRL (Certificate Revocation List) segments.

3. Carlos Gañán, Juan Caubet, Sergi Reñé, Jorge Mata-Díaz, Juanjo Alins, and

Óscar Esparza. “NeuroCast: Adaptive Multi-source P2P Video Streaming Ap-

plication for Wireless Networks”, in proceedings of the 9th IFIP TC 6 Inter-

national Conference on Wired/Wireless Internet Communications, WWIC 2011,

pages 272-284, Vilanova i la Geltrú, Spain, June 2011.

DOI: 10.1007/978-3-642-21560-5.

7

1. GENERAL INTRODUCTION

• In this article we presented the design and implementation of NeuroCast:

an unstructured P2P application for video streaming. NeuroCast imple-

ments a robust scheduling algorithm which minimizes the scheduling delay.

Moreover, given heterogeneous contents, delays and bandwidths. Thus, Neu-

roCast becomes suitable for wireless scenarios due to its capability to adapt

to changing network conditions.

Finally, we list the complementary articles mentioned at the beginning of this sec-

tion.

1. Juan Caubet, José L. Muñoz, and Oscar Esparza. “Utilizando Certificados Im-

plícitos para Asignar Identidades en Overlays P2P”, in proceedings of the XIII

Reunión Española sobre Criptología y Seguridad de la Información (RECSI 2014),

Alicante, Spain, September 2014.

2. Carlos Gañán, Juan Caubet, Oscar Esparza, José A. Montenegro, and Jorge Mata-

Díaz. “Estructuras de Datos Autenticadas para gestionar Datos de Revocación en

VANETs”, in proceedings of the XII Reunión Española sobre Criptología y Seguri-

dad de la Información (RECSI 2012), Donosti-San Sebastián, Spain, September

2012.

3. Juan Caubet, Carlos Gañán, Oscar Esparza, and José L. Muñoz. “Nuevo Sistema

de Emisión de CRLs para la Red KAD”, in proceedings of Jornadas de Ingeniería

Telemática (JITEL 2013), Granada, Spain, October 2013.

4. Juan Caubet, Carlos Gañán, Sergi Reñé, Juanjo Alins, and Jorge Mata-Díaz.

“NeuroCast: Aplicación adaptativa multi-fuente para streaming de vídeo en redes

P2P inalámbricas”, in proceedings of Jornadas de Ingeniería Telemática (JITEL

2011), Santander, Spain, September 2011.

5. Sergi Reñé, Carlos Gañán, Juan Caubet, Juanjo Alins, Jorge Mata-Díaz, and José

L. Muñoz. “Analysis of Video Streaming Performance in Vehicular Networks”, in

proceedings of The First International Conference on Advanced Communications

and Computation (INFOCOMP 2011), Barcelona, Spain, October 2011.

8

1.5 Related Publications

6. Juan Caubet, José L. Muñoz, Juanjo Alins, Jorge Mata-Díaz, and Oscar Es-

parza. “Deploying Internet Protocol Security in satellite networks using Transmis-

sion Con- trol Protocol Performance Enhancing Proxies”, International Journal of

Satellite Communications and Networking, vol. 31, issue 2 (2013), pp. 51-76.

DOI: 10.1002/sat.1017. (Impact Factor: 0.744)

7. Juan Caubet, José L. Muñoz, Juanjo Alins, Jorge Mata-Díaz, and Oscar Esparza.

“Implementación de IPsec en una arquitectura TCP splitting”, in proceedings of

the XI Reunión Española sobre Criptología y Seguridad de la Información (RECSI

2010), Tarragona, Spain, September 2010.

9

1. GENERAL INTRODUCTION

10

Chapter 2

Background

Contents

2.1 Peer-to-Peer (P2P) Networks 11

2.1.1 Three Generations of P2P Networks 13

2.1.2 Identity Management in Existing P2P Overlays 15

2.1.3 Identity Problems in P2P Overlays 24

2.1.4 Distribution of Revocation Data 26

2.1.5 Related Work . 29

2.2 Cryptography . 37

2.2.1 Elliptic Curve Cryptography (ECC) 37

2.2.2 Implicit Certificates . 39

2.2.3 Blind Signatures . 42

2.2.4 Commitment Schemes . 44

2.2.5 The AVISPA Tool . 45

2.1 Peer-to-Peer (P2P) Networks

Peer-to-peer (P2P)1 networks emerged as an incipient paradigm of communications to

share resources and services in a highly decentralized way. They have had to evolve

over time giving rise to three different generations.

1The term peer refers to a software process which interacts as an equal with other peers, and it can

act both as client and server simultaneously. In this work, we will use the term node as a synonym of

peer.

11

2. BACKGROUND

Among others, the availability of increasingly cheap bandwidth and the growing

number of computers sharing services and resources over the years are some factors

which have contributed to the success of these networks. P2P networks are being

massively used and will remain so in the coming years since their performance is being

improved over time and their application is increasingly widespread. According to the

annual Cisco Visual Networking Index (VNI) Forecast [42], the file sharing P2P traffic

represented the 23.65% of global IP traffic in 2012 and it will grow at a compound annual

growth rate (CAGR) of 7 percent from 2012 to 2017. This means that these systems

will continue to play an important role in the future Internet for sure; many types of

services may be built based on P2P protocols: file sharing applications (BitTorrent

[3]), Voice-over-IP (VoIP) services and instant messaging clients (Skype [13]), video

streaming applications (CoolStreaming [5]), music sharing portals (Jamendo [9]), file

synchronization tools (BitTorrent Sync [4]), payment methods and digital currencies

(Bitcoin [2]), Massively Multiplayer Online Games (MMOG) platforms (Badumna [75]),

etc. But above all, video streaming applications are the ones that are experiencing a

special growth.

IP video traffic, excluding the amount of video exchanged through P2P file sharing,

will be 73 percent of all IP traffic (both business and consumer) by 2017, up from 60

percent in 2012. And the sum of all forms of video (TV, Video on Demand (VoD),

Internet, and P2P) will continue falling in the range of 80 and 90 percent of global

consumer traffic by 2017 [43]. This is because it is expected that more content providers

and distributors will adopt P2P as a distribution mechanism. P2P is a low-cost content

delivery system but unfortunately until now most content providers and distributors

have opted for direct distribution.

P2P video streaming applications emerged as a cheap and efficient solution to pro-

vide video streaming over the Internet. PPStream [12] and PPLive [11] are two examples

of such applications that have had great success in China. SopCast [14], TVUnetworks

[17] and Zattoo [20] are also examples of video streaming applications that have been

developed so far. However, most of them are proprietary video streaming platforms,

which do not use the last generation of the P2P networks or distribute contents with-

out any type of access control or security. So the last generation of P2P networks is

hardly being used for commercial applications, such as pay-per-view video streaming

applications, because they have important security problems. Therefore, if we want to

12

2.1 Peer-to-Peer (P2P) Networks

use these networks to implement commercial applications (like paid VoD services), it

is necessary to solve a series of security problems. This is the main objective of this

thesis.

2.1.1 Three Generations of P2P Networks

The operation of the P2P networks has changed over the years, trying to adapt (and

survive) to several different problems (even legal), generating up to three different gen-

erations.

First generation of P2P networks are known as centralized P2P networks because

they depend on centralized servers to perform some functions, typically a centralized

directory to find resources. This makes them vulnerable from the security point of view.

This type of P2P networks suffer from a single point of failure, since the network may

stop working if the central server goes down (or court orders to shut it down). The

most widely known example of this kind of networks is the initial music sharing service

Napster [10], which had legal problems.

The second generation of P2P networks appeared to avoid the above vulnerability,

but they needed two phases to achieve the expected success. The first attempt was to

design pure decentralized P2P networks; which use a P2P scheme in all their processes,

and there is no central server at all. They are characterized by the arbitrariness of

the links between nodes, and by the use of flooding of messages to search resources.

Unfortunately, the use of broadcasting techniques limits their scalability, mainly be-

cause they generate congestion or infinite loops. Moreover, searching processes are not

deterministic, and they do not guarantee that an unpopular file will be found. The

typical example of such networks is Gnutella [8]. The second attempt to improve the

P2P networks was to introduce some degree of centralization leading to the hybrid P2P

networks, where some nodes (supernodes) manage certain extra functions. These net-

works do not suffer from a single point of failure, and searches perform better because

they are partially centralized. However, they are still partially vulnerable if some of

these supernodes are attacked (or closed), like happened some years ago with the file

sharing network eDonkey2000 [6].

Finally emerged the third generation of P2P networks, totally decentralized networks

(so there is not a point of failure) but with a certain structuring of resources. For this

reason they are called structured P2P networks; or also P2P overlays, as they create an

13

2. BACKGROUND

overlay ; that is, a logic high-level layer built over an existent network, which is used

to structure nodes and connections between them. The objective of this structure is to

speed up searches to obtain positive results in a limited number of hops independently

of the popularity of the searched resource. Structured P2P networks, or P2P overlays

from here on, can provide properties as scalability, fault-tolerance, self-organization, and

low-latency. Unlike pure P2P networks, P2P overlays do not allow random connections

between nodes. Instead, overlay nodes are connected via virtual links, which are known

as paths. These paths can be constructed by using different physical links in the lower

networks and the way that packets are routed on those underlying networks is not

controlled by the overlay. A P2P overlay routing protocol uses the logical identifiers of

the nodes (nodeIDs) to decide the routing, instead of using directly their IP addresses.

The most typical P2P overlay protocols (CAN [99], Chord [116], Pastry [106],

Tapestry [129], Kademlia [85] or BitTorrent [44, 80], among others) are implemented

using a DHT [98], which stores {key, value} pairs together with the nodeIDs creating a

virtual space. A value can be a certain resource (for instance, a file), or the way to reach

this resource within the overlay (a pointer), and keys are used to locate these resources

into the network (for instance, the hash of the file name). Moreover, DHTs are divided

in subtables, which correspond to a zone of the virtual space, and these subtables are

assigned to different overlay nodes. So each node is responsible for a zone, and hence

it is responsible for the {key, value} pairs contained in that zone (storing contents, or

pointers to them, and routing messages). Usually, a zone is assigned to the node whose

nodeID is numerically close to the keys stored in the corresponding subtable of the

DHT. So if a node wants to download certain content from the overlay, it will send a

query message towards the key in the hope that some node with information about that

content will receive the message by proximity between the key and its nodeID. If so,

the receiver will answer to this query by sending the corresponding file or the pointer

to this file if resources are stored in the owner nodes. Therefore, it is obvious that the

location of the nodes in the virtual space is directly related to their nodeIDs, and this

deserves special attention.

The most widespread P2P overlay is the Kad network [115], a non-commercial file

sharing service based on the Kademlia DHT routing protocol and implemented by the

popular eMule [7] and aMule [1] clients (among others), and BitTorrent, another non-

commercial file sharing service implemented by tens of open-source, freeware, adware

14

2.1 Peer-to-Peer (P2P) Networks

or shareware applications [67]. However, nowadays the success of such networks is far

from being completely achieved. These networks still have important security problems,

which makes them unsuitable for providing certain services, such as pay-per-view video

streaming applications.

Many P2P overlay protocols have been analyzed in depth to guarantee scalability

and efficiency. Less attention has been paid to the security threats, most P2P overlays

assume that nodes behave honestly and neither control the user access nor the nodes

behavior. However, this assumption may not be acceptable in open environments like

the Internet. The existence of anonymous nodes and the lack of a centralized authority

capable of monitoring (or punishing) make these systems more vulnerable against selfish

or malicious behaviors. Moreover, these improper usages cannot be faced in these

networks with classical security solutions (data confidentiality, nodes authentication,

non-reputation, etc.). P2P overlays should also follow the secure routing primitives

described by Wallach in [121], which are: (1) secure maintenance of routing tables, (2)

secure routing of messages, and (3) secure identity assignment to nodes. But the first two

primitives depend in some way on the third one, which is not usually meet in most P2P

overlays. Important problems related to the identity of the nodes, Identity Problem from

here on, arise with the uncontrolled assignment of nodeIDs in these networks [119, 125]:

Sybil attacks, Eclipse attacks, Man-In-The-Middle (MITM) attacks, the presence of

whitewashers, the non-uniform distribution of nodeIDs, etc.

2.1.2 Identity Management in Existing P2P Overlays

In this Section we summarize the working of some typical P2P overlays: CAN, Chord,

Pastry, Tapestry, Kademlia and BitTorrent. We analyze how these P2P overlays work,

emphasizing in the aspects related to the bootstrapping1, identity management and

access control.

2.1.2.1 CAN (Content-Addressable Network)

CAN [99] uses a virtual d-dimensional Cartesian coordinate space on a d-torus to store

{key, value} pairs. To do so, a key is deterministically mapped onto a point p in the

1In a P2P overlay, bootstrapping refers to the process by which one or more internal nodes (boot-

strapping nodes) provide initial configuration information to newly joining nodes so that they may

successfully join the network.

15

2. BACKGROUND

coordinate space using a uniform hash function. The corresponding {key, value} pair is

stored in the node that owns the zone within which the point p lies. Each node inside

the overlay is responsible for a zone and keeps information on its immediate neighbors.

Nodes in the CAN network do not have a nodeID. Instead, they are directly identified

by their assigned zone within the virtual space.

Figure 2.1 shows the bootstrapping phase in CAN1. Let us consider that a newcomer

node N wants to join the CAN network. To do so, it must contact with an internal

node (bootstrapping node) B which will guide it until the bootstrapping phase finishes.

Then, N randomly chooses a point p in the CAN virtual space, and sends a “join”

request towards that point p using the node B as relay. Since B is an internal node,

it can use the CAN routing mechanism to forward this “join” message until it reaches

the node that manages the zone in which p lays (manager node M). Then, M splits

its zone and assigns a half to N , transferring all the {key, value} pairs located in that

half to N . N also learns from M the IP addresses of its close neighbors, and with that

information N can now generate its own routing and neighbor tables.

Figure 2.1: CAN bootstrapping phase.

Finally, we must mention that the authors of CAN do not define any mechanism to

control who joins the network, so bootstrapping nodes allow any newcomer to join the

network.

1For simplicity, in this figure we draw the virtual space as a flat plane, but remember that the real

space is a d-torus.

16

../figures/CAN.eps

2.1 Peer-to-Peer (P2P) Networks

2.1.2.2 Chord

The virtual space of Chord [116] is circular. NodeIDs and resources (keys) are ordered

according to a circular identifier that uses a modulo 2m operation. Each {key, value}
pair is stored in the successor node of the key k (denoted as successor(k)), i.e., in the first

node whose nodeID is equal to or follows the corresponding key. Values can be directly

resources, like a file, and the keys of the resources are generated using a hash function

over their names. NodeIDs are also constructed using a hash function, specifically over

the users’ IP addresses. The goal is to balance the load of the overlay between all the

nodes. To ensure this, hash functions used must have the property that their outputs

are equidistant between them with high probability.

In Figure 2.2 we can see an example of an identifier circle modulo 23 in which

there are three nodes (nodeIDs 0, 1 and 3) and three resources (keys 1, 2 and 6). In this

particular example, node 1 stores the {key, value} pair corresponding to the key 1, node

3 stores the pair corresponding to the key 2, and node 0 stores the pair corresponding

to the key 6.

Figure 2.2: Example of a Chord identifier circle modulo 23.

A bootstrapping node B helps the newcomer N during the joining process, mainly to

initialize its state and add itself to the existing Chord identifier circle. N contacts with

the node that currently manages the zone that should be transferred to it (manager node

M). This is possible since B is an internal node and it can use the routing mechanisms

of the overlay to lookup M . Then, M transfers the corresponding {key, value} pairs

17

../figures/Chord.eps

2. BACKGROUND

to N and also shares its routing information to help N to construct its routing table.

Neighbors are also informed about the presence of N to properly re-establish the overall

routing of the overlay.

Regarding the access control during the bootstrapping phase, the authors mention

that this task could be delegated to an external server or even to an internal node, but

they do not explicitly define any mechanism.

2.1.2.3 Pastry

In CAN or Chord, the overlay is responsible for storing resources, i.e., a creator node (a

node that wants to introduce a resource) delivers resources to the overlay (in particular

to a manager node) which is responsible for its storage and management in a structured

way. Instead, Pastry [106] is only responsible for publishing the location of resources

(in a structured way), but this resources continue being stored in the creator node.

The virtual space of Pastry is also circular, i.e., an identifier circle modulo 2m with

m = 128 bits, and keys are computed as the digest of the name and the owner of the

resources concatenated. The location of a resource is stored in a node if its nodeID is

the numerically closest to the key. To lookup resources and route messages, each node

not only manages a routing table, but also a neighborhood set and a leaf set. All these

state tables are used to route messages in a small number of hops taking into account

the geographic location of the nodes, unlike CAN or Chord.

The bootstrapping phase of Pastry is quite similar to that of Chord, and nodeIDs can

be computed in two ways, using a hash function over the node’s public key or the node’s

IP address. In most cases, this last option is the one used. Like in Chord, the use of a

hash function assures that the computed nodeIDs will be uniformly distributed in the

identifier circle, and with high probability, diverse in geography, ownership, jurisdiction,

etc.

Regarding the user access control at bootstrapping phase, the authors do not also

describe any mechanism to do that.

2.1.2.4 Tapestry

Tapestry [129] uses routing and location schemes similar to the ones presented by Plax-

ton et al. in [98]. When a creator node wants to publish a certain resource (for instance,

a file) in the overlay, it sends a message towards the key of that resource, in the hope

18

2.1 Peer-to-Peer (P2P) Networks

of reaching the responsible node of that key. Specifically, this node is responsible for

storing the {key, value} pair of that resource, and it is chosen because its nodeID is

the numerically closest to the key. As Pastry does, Tapestry publishes the location of

resources instead of storing the resources themselves, and the routing scheme also takes

into account the location within the network to route messages. In Tapestry, multiple

replicas of each {key, value} pair are also created and stored in replica, or surrogate

nodes. So, if a replica node is found prior to reach the original responsible node, this

node will provide the location of the desired resource. This mechanism not only in-

creases flexibility and saves bandwidth, but also alleviates the problem of a single point

of failure.

Regarding bootstrapping phase, a newcomer N also contacts with a bootstrapping

node B, which will start routing the “join” message towards the nodeID of N . Then,

N informs the relevant nodes of its presence to update their neighbor maps. Once all

potential neighbors are located, the relevant {key, value} pairs are copied to N .

NodeIDs and keys may be distributed in the virtual space randomly using a hash

function, but authors do not state which information should be used. The same happens

with the user access control system; authors do not define any mechanism to carry on

this task.

2.1.2.5 Kademlia

Kademlia [85] is similar to the other P2P overlays in the sense that {key, value} pairs

are stored in nodes with nodeIDs “close” to the keys. However, this closeness relies on a

different notion of distance. Authors define the distance between two points in the key

space as their bitwise exclusive-or (XOR) interpreted as an integer. NodeIDs and keys

(generated using a hash function) have a length of B = 160 bits and values are pointers

to the files. The {key, value} pairs are replicated in several nodes.

Kademlia treats nodes as leaves in a binary tree, in which the position of each node

is determined by the shortest unique prefix of its nodeID. For any given node, the binary

tree is divided into a series of successively lower subtrees that do not contain the node

itself. To organize this knowledge, nodes use K-buckets, which represent subtrees with a

group of a maximum of K contacts, and divide them into more subtrees in the case that

the buckets already contain K contacts. The K-buckets are organized by the distance

19

2. BACKGROUND

between the node and its contacts. Specifically, for bucket j, where 0 <= j < B, it is

guaranteed that

2j <= distance(node, contact) < 2j+1.

This means that the bucket zero has only one possible member, the key which

differs from the nodeID only in the low order bit. And on the other hand, if nodeIDs

are uniformly distributed, it is very likely that half of all nodes will lie in the range of

bucket B − 1 = 159.

An example of this distribution can be seen in Figure 2.3. This example shows the

three smallest subtrees (buckets) constructed by the node with nodeID 111...110 (red

point). These buckets have the prefixes 111...111, 111...10 and 111...0 respectively. The

Kademlia protocol establishes that every node should know at least one node in each of

these subtrees to locate any other node in a prefix basis. Otherwise, its location would

not be guaranteed.

Figure 2.3: Generation of buckets in the node 111...110.

In Kademlia, every message transmitted by a node includes its nodeID, permitting

the receiver to record the sender’s existence if necessary. In this way, this topology has

the property that every message exchanged conveys useful contact information. Using

20

../figures/Kademlia_Tree.eps

2.1 Peer-to-Peer (P2P) Networks

this information, a node can send parallel asynchronous query messages which toler-

ate node failures without imposing timeout delays on users. A nodeID-based routing

algorithm lets anyone locate servers near a destination key.

Regarding the bootstrapping phase, first of all, a newcomer N must calculate its own

nodeID in the 160-bit key space, generated by hashing its IP address as in Chord, and

insert the nodeID of the bootstrapping node B into the appropriate K-bucket. Then, N

must perform a node lookup for its own nodeID and refresh all K-buckets further away

than its closest neighbor. During this last process, N populates its own K-buckets and

inserts itself into other nodes’ K-buckets as necessary. Unfortunately, authors neither

include any mechanism for controlling the user access.

Next, we describe a particular case of Kademlia implementation, the Kad network,

since we propose a new distribution system of revocation data for this P2P overlay in

the Chapter 7.

The Kad Network. Kad is one of the widest deployed P2P overlays in the Internet

with an estimated number of concurrent online users of around 4 million. It is based on

the Kademlia DHT routing protocol and is implemented by eMule [7] and aMule [1] file

sharing applications, both open source. Each node in Kad has a 128 bits KADID which

defines its position in the virtual space, and the distance between any two points (nodes

or contents) is defined as their bitwise exclusive-or (XOR) interpreted as an integer.

Kad treats nodes as leaves in a binary tree, in which their position is determined by

the shortest unique prefix of the KADIDs. Nodes arrange their tree contacts in buckets

and store these lists as routing tables. Each node registers a maximum of K contacts

per level i, contacts that are at a distance of between 2128−i and 2127−i from the KADID

of the node regarding the XOR metric. Routing to a KADID is done in an iterative way,

messages are forwarded to the n closest contacts to the target KADID and each node

on the paths return the next hop. The closer the contact is to the node, the better it

knows this part of the DHT. This mechanism provides routing in O(log n).

As in many other P2P overlays, the purpose of the Kad DHT is to bind values

and keys, more specifically files and keywords. To share a file, raw data and keywords

must be hashed separately using the MD5 function and then published in a distributed

way several times (at least 10 times). Kad only publishes metadata and sources. These

references are stored in nodes which are close enough in the virtual space to keywordIDs

21

2. BACKGROUND

and sourceIDs, respectively. This distance is called the tolerance zone of a KADID, and

it is calculated using the 8 most significant bits of the identifier. Moreover, to improve

the availability, resources are periodically republished: sourceIDs every 5 hours and

keywordIDs every 24 hours. Analogously, a node, on which a sourceID or keywordID

was published, will delete this information after 5 and 24 hours respectively, if it is

active. Republishing is done exactly in the same way as publishing.

2.1.2.6 BitTorrent

BitTorrent [44] is a second generation P2P protocol for distributing files, where resource

lookup is performed on a web server and resource dissemination is managed by a tracker.

Trackers neither store resources nor participate in their exchange, they only coordinate

the set of peers that participate in the resource exchange (swarm) and keep track of the

active peers of the set. Web servers index metadata files (.torrent) which describe the

resource exchanged by a swarm. This includes information such as the address of its

tracker and the names, sizes and checksums of all chunks in which the resource is split.

In the traditional BitTorrent network, whenever a user wants to download a resource,

she contacts to a tracker to obtain the list of peers that make up the swarm. And then,

she contacts to some peers of the list to download all chunks that make up the resource

using the peer wire protocol, implemented over TCP. A peer communicates with the

tracker regularly while it is part of the swarm to inform about the volume of bytes she

has downloaded or uploaded, and the tracker responds with the list of active peers at

each time.

Additionally, few years ago, Loewenstern and Norberg proposed to introduce a de-

centralized tracking system [80] to avoid single points of failure and improve the perfor-

mance of the tracking process, where any peer can act as a tracker (trackerless torrent).

This new tracking system was implemented using a DHT based on Kademlia (Mainline

DHT, MDHT) to store and locate information about which peers hold what resources.

Other DHT, also based on Kademlia, was also proposed but it is only implemented

by one client software (Vuze [19], previously Azureus) and is not compatible with the

MDHT, as they have non-trivial differences. For these reasons we only take into account

the solution that uses the MDHT.

22

2.1 Peer-to-Peer (P2P) Networks

In the past, a BitTorrent client only included a peer, instance of the program to

which other clients connect and transfer data. But now, most clients also include a

MDHT node, another instance used to find peers in a decentralized way.

As Kademlia does, MDHT stores nodeIDs and keys (infohashes from here on) as

leaves in a binary tree. Whenever a user wants to download a resource in DHT BitTor-

rent, firstly she must decide which nodes to contact to get the peers list to download

from using her peer instance. For that, the node instance uses the XOR distance metric

between the infohash of the resource and the nodeIDs of the nodes in her own routing

table. Note that a node knows many nodes with nodeIDs “close” to its own, but it has

few contacts with nodeIDs that are “far”. Then, the original node contacts some nodes

with nodeIDs closest to the infohash1 and obtains information about peers currently

uploading that resource. Obviously, if some contacted node does not know about peers

for that resource it must respond with information of the nodes in its routing table that

are closest to that infohash. This process finishes when the original node cannot find

any closer nodes. Finally, the node stores in appropriate buckets the peers’ information

for a small number of the responding nodes with nodeIDs closest to the infohash of the

resource. The protocol which allows peers within the same swarm to share their peer

lists is the peer exchange (PEX) protocol, implemented over UDP.

Regarding the nodeID assignment and the user access control, unfortunately, at first,

little attention was paid to security. In the BitTorrent context, nodeIDs were generated

at random from the same 160-bit virtual space as infohashes and no access control

mechanism was proposed. Today some security extensions related with the nodeID

generation have been proposed, such as [92], which is discussed in Section 3.1.

The Bootstrapping phase is similar to that performed in Kademlia, with the differ-

ence that the nodeIDs are randomly selected. In addition, unlike Kademlia, the MDHT

only stores each infohash on one node, resulting in no easy way to unambiguously de-

termine which peers are responsible for a certain resource, complicating any replication

or migration strategy.

2.1.2.7 JXTA

Juxtapose [66] is a set of open protocols that enable the creation and deployment of P2P

networks. JXTA protocols enable users to discover and observe other nodes, to commu-

1An infohash is calculated as the hash of the “info” section of the original .torrent file.

23

2. BACKGROUND

nicate among them, or to offer and localize resources within the network. In order to

access those resources, JXTA completely relies in the usage of advertisements published

by the resource owner. JXTA-Overlay [123] extends such protocols in a framework

which increases the reliability of JXTA-based applications and supports group man-

agement and file sharing. This framework differs from above P2P protocols because it

introduces the concept of peer group, one of its main features. The overlay network is

divided into hierarchical groups of nodes, which offer a context for accessing services.

Users are organized into different overlapping groups, so only members of the same

group may interact between them. Peers must join the group that offers the services in

which they are interested.

Brokers are special nodes which control access to the network, taking care of user

authentication as well as helping client nodes interact between them by propagating

their related information. Brokers are very important since they exchange information

about all client nodes, maintaining a global index of available resources, which allows

all nodes to find network services. Brokers also act as beacons used by client nodes

which have recently gone on-line to join the network.

Unfortunately, the design focus on JXTA-Overlay was completely concerned with

system performance, with the only exception of the user authentication. Users are

authenticated using pairs username and password before they join the network, which

are issued without any control. As a result, JXTA is vulnerable to Sybil attack and

other security threats which may jeopardize the network.

2.1.3 Identity Problems in P2P Overlays

Uncontrolled assignment of nodes’ identities within a P2P overlay (nodeIDs) can give

rise to a series of problems (the presence of whitewashers, for instance) and vulnerabili-

ties (the Sybil attack, the Eclipse attack, the Man-In-The-Middle (MITM) attack, etc.).

But the identity problem is not only important due to security considerations, but also

due to performance ones, as the efficiency of P2P overlay routing protocols is based on

the uniform distribution of nodeIDs within the virtual space. The load balancing is very

important, and if the nodeID density is higher in some particular zones of the virtual

space than in others, the network performance could be globally degraded [72]. In this

Section we define some of the most important identity-related problems that arise in

P2P overlays.

24

2.1 Peer-to-Peer (P2P) Networks

2.1.3.1 The Sybil Attack

The management of multiple nodeIDs (Sybils) by the same (malicious) node simultane-

ously is known as Sybil1 attack [50]. Carrying out this attack, a malicious user increases

her presence within a P2P overlay by artificially simulating the existence of several dif-

ferent nodes. Thus, the attacker can manage a group of colluding virtual nodes, which

could damage the proper operation of the overlay. For instance, an attacker performing

the Sybil attack can improve its own reputation by using good feedback that comes

from fake nodes (Sybils). According to Douceur [50], it is impossible to discern whether

the same entity controls several nodeIDs or not, even asking other nodes; and the only

way to avoid this attack is to use a TTP that certifies nodeIDs.

2.1.3.2 The Eclipse Attack

The Eclipse attack [111] is a way of routing poisoning which aims to separate a part

of the P2P overlay from the rest. The attacker tries to intercept all the messages

directed to, or sent by, a group of nodes (or a specific node) by means of a set of

nodes with nodeIDs numerically close to the nodeID of the target group. To achieve

this purpose, this colluding group of nodes manipulates the entries of the routing table

of the nodes of the group to monitor, or filter, all the messages exchanged by them.

Therefore, all messages will be routed across the attacker nodes and the correct nodes

will be “eclipsed” by them. Note that the routing tables are constructed using routing

information exchanged between nodes, but if we are not able to assign stable identifiers

to nodes, it is difficult to tell the difference between honest from malicious routing

information. Some studies [105] conclude that controlling a 10% of nodeIDs it is possible

to control 65% of all routing paths of a P2P overlay.

2.1.3.3 The Man-In-The-Middle (MITM) Attack

As its name implies, in this attack, the attacker locates herself undetected between two

target nodes with the purpose of spying on their communications or even manipulating

them. Usually, in P2P overlays, the goal of these attackers is to spoof nodeIDs and/or

dispatch false information. A possible attack could be spreading polluted content on

1This name comes from the subject of the book Sybil, a case study of a woman with multiple

personality disorder.

25

2. BACKGROUND

behalf of a trusted entity. Therefore, if we take into account the routing properties

of these networks and allow that nodeIDs can be selected/manipulated by the users

without any control, there is no doubt that these networks will be extremely vulnerable

to the MITM attacks.

2.1.3.4 Other Threats

The efficiency of P2P overlay routing protocols is based on the uniform distribution of

nodeIDs within the virtual space. Therefore, the overlay performance can be globally

degraded if most nodeIDs belong to a particular area of that virtual space. Unfortu-

nately, if nodeIDs can be selected by the users, nobody is able to ensure that these

identifiers are uniformly distributed, which should be considered as a serious threat.

Other security threat related to the identity of the nodes is the presence of white-

washers1 within a P2P overlay. Reputation systems can be used to prevent malicious

behaviors and to promote honest collaboration among nodes. However, the effectiveness

of these systems just depends on the stability of the nodeIDs. If a node can leave the

network and rejoin it with a new nodeID, its accumulated reputation (good or bad) will

be removed, which makes reputation systems useless.

The uncontrolled assignment of nodeIDs can provide another problem if resources

are not stored by their owners. If a malicious user can choose a certain nodeID to

become directly responsible for a target {key, value} pair, she will be able to censor or

corrupt that resource.

2.1.4 Distribution of Revocation Data

One of the most common digital forms of identification is the use of digital certificates,

which essentially bind an entity with a public key. This binding is certified (signed) by

a CA. Thanks to the use of digital certificates we can provide support for public key

cryptography in P2P overlays, as well as a single authentication method, among other

services. The safe use of digital certificates relies on the possibility to revoke them in

certain situations, for example, if a private key is compromised.

A PKI takes care of issuing and making accessible digital certificates as well as of

revoking them. It also verifies the authenticity and validity of certificates, and if they

1Nodes that purposefully leave and rejoin the network with a new nodeID in an attempt to shed

any bad reputation they have accumulated under their previous nodeIDs [84].

26

2.1 Peer-to-Peer (P2P) Networks

are trustworthy. All these services are essential for the proper functioning of digital

certificates, which are based on a distributed model by using CAs.

In P2P overlays, deploying a PKI would allow nodes to communicate and share

information securely. Thus, users would be able to perform transactions, like electronic

payments, or even to sign digital contracts without risking their confidential data. But

validation process of certificates implies a considerable cost to both users and networks.

If a user wants to access a confidential resource, the provider needs not only to find a

certificate chain from the provider to the user, but also to check that all certificates in

the trust chain are valid. And for that, she needs to check if certificates are revoked.

So far, several revocation systems have been proposed in the literature. Next, we

briefly describe some approaches and standards related to the certificate revocation.

2.1.4.1 Revocation Approaches and Standards

The Internet X.509 Public Key Infrastructure (PKI) Certificate Management Proto-

col (CMP) [22] defines protocol messages for certificate creation and management. In

particular, CMP defines a revocation request format and a protocol for publishing the

status of the certificates.

The Certificate Revocation List (CRL) [45] is the most common mechanism to man-

age revocation data. A CA periodically issues a digitally signed list with all certificates

that have been revoked. Then users download this list to check if a certain certificate

is revoked or not. Moreover, these lists can also be stored in several servers to improve

its availability.

Other improvements are, Overissued CRL (O-CRL) [46], which tries to reduce the

peak request rate of CRLs in servers by the issuance of CRLs with overlapping validity

periods. Indirect CRL (I–CRL), which stores revocation data issued by several CAs in a

single CRL. Delta CRL (∆-CRL), which tries to reduce the consumption of bandwidth

by the issuance of small CRLs that only contain the certificates whose status has changed

since the last entire CRL was issued. CRL Distribution Point (CRL–DP), which is an

extension included in the standard X.509 version 3, where CRLs stored in these DPs

only contain the status information of a certain subgroup of certificates. In this case,

each certificate stores the address of its CRL-DP, and the criteria for creating these

subgroups can be geographic, scope of use, etc. Finally, another way to improve the

performance of the traditional list-based method of distributing revocation data is to

27

2. BACKGROUND

segment the CRLs. This strategy reduces the size of each CRL, and therefore it allows

repositories to serve CRL requests at a faster rate. Moreover, revoked certificates may

be stored in the CRL segments in a way that attempts to minimize the number of

segments that a verifier will need to download. Unfortunately, segmenting CRLs does

not reduce the peak request rate for them.

A standard alternative to CRLs, and proposed by the PKIX workgroup of the IETF,

is the Online Certificate Status Protocol (OCSP) [108]. OCSP enables users to deter-

mine the status of a specific certificate sending a certificate status request to an online

server able to verify the revocation status of certificates. Then, this server responds

with a signed message indicating whether the specified certificate is currently revoked.

Once the OCSP client has sent the request, it suspends the acceptance of the certificate

until the CA provides a response. An OCSP response can contain four times:

• thisUpdate: The most recent time at which the status being indicated is known

by the CA to have been correct.

• nextUpdate: The time at or before which newer information will be available about

the status of the certificate.

• producedAt: The time at which the CA signed this response.

• revocationTime: The time at which the certificate was revoked or placed on hold.

In [74], an OCSP improvement was suggested by Kocher, the Certificate Revocation

Tree (CRT). This proposal is based on the use of a hash tree to replicate signed revo-

cation data in many validation servers to handle the load of all CAs. The leaves of the

hash tree are the currently revoked certificates sorted by serial number from left to right,

and the root of the hash tree is signed by the CA to ensure authenticity and integrity

of the whole tree. In this way, a user can validate a certificate sending a request to the

closest validation server, since any of these servers can send a convincing proof that the

certificate in question is (or is not) on the CRT.

However, the CRT has a significant problem, it must be reconstructed and redis-

tributed every time a new certificate is revoked. For this reason, many authors have

proposed the use of data structures which allow dynamic updates, such as skip-lists [87]

or 2-3 trees [91].

28

2.1 Peer-to-Peer (P2P) Networks

2.1.4.2 Distribution of Revocation Data in P2P Overlays

Each of the above systems, or mechanisms, have different features in terms of network

traffic overhead, load on the servers which provide revocation information, freshness of

this information and suitability for offline usage. In addition, most of these systems

are typically client/server structures, where a CA plays the role of a central server, and

suffer from the common problems of a single-point of failure. Therefore, not all are

equally suitable to run on P2P overlays.

In the P2P overlay context, on the one hand, client/server structures are not suitable

due to their centralized nature, and on the other hand, if only one or few CAs are

capable of distributing the revocation data to all nodes, they can become overloaded

due to the large number of users who usually use these networks. Moreover, if we take

into account that each user can obtain several identifiers depending on the method used

to bind those nodeIDs to users, the problem is accentuated since the CRL size1 grows

with the number of network users and certificates per user. Thus, large networks where

users have a set of certificates bear high certificate revocation rates.

Therefore, in these networks, revocation data must be efficiently distributed and

frequently updated, otherwise, the checked data by the users will not be fresh. Unfor-

tunately, the updating policies of the standard mechanisms are not enough to ensure

the freshness of the revocation data in these environments, and to replicate the CRLs

in several servers it is not enough to improve its availability.

For these reasons, we find in the literature many different proposals to distribute

revocation data more efficiently in these networks, and some of them are described

in the Section 2.1.5.4. In Chapter 7 we describe our own proposal, a new distributed

revocation system which stores revocation data in several CRL segments and distributes

them using the Kad network itself.

2.1.5 Related Work

In this Section we discuss some research works that attempt to tackle some of the pre-

viously mentioned attacks/threats, which are classified in three categories: centralized

proposals, where the identity management is performed by one or several fixed entities;

1Note that in this thesis we talk about size of an entire CRL, or segment, to refer to the number

of certificates that are stored in that list.

29

2. BACKGROUND

distributed proposals, where a group of nodes are responsible for controlling and issuing

the nodes’ identities; and social network-based proposals, where the social relationships

are used to detect and limit network access by malicious users. Finally, we describe

some systems that try to improve the distribution of revocation data in P2P networks.

2.1.5.1 Centralized Proposals

Douceur, in [50], was the first to deal with the Sybil attack in P2P overlays, and he

comments the impossibility to know if two nodes are managed by two real users, or

if there is only one user managing them, even asking other nodes within the network.

In this way, the author concludes that a trusted entity that certifies nodeIDs is the

only solution to completely avoid the Sybil attack in these networks. However, he

also suggests the use of methods for adding extra computational cost to the process of

obtaining nodeIDs and certain system conditions to mitigate this attack. Following this

line many approaches have been proposed until now.

In [36], Castro et al. propose two centralized ways to generate node identifiers.

The first one is to delegate the identity assignment problem to a set of trusted CAs,

which signs certificates that bind a random nodeID to a public key and an IP address.

They assume that every node in the overlay has a static IP address. Therefore, when

a user changes her IP address, the old certificate and the corresponding nodeID are no

longer valid. Taking into account that in the current Internet scenario devices often

change their IP addresses, distributing revocation data in large P2P overlays can be

a problem. Moreover, authors allow multiple certificates per IP address, which is an

important drawback from the point of view of the Sybil attack. The second proposal

is to charge money for certificates or bind nodeIDs to real-world identities to mitigate

the Sybil attack. However, both solutions may not be liked by users. On the one hand,

charging money for certificates makes the system not suitable for free services, and on

the other hand, using real-world identities, users lose their anonymity in front of the

CA.

Srivatsa and Liu propose the use of certificates with a short life-time issued by a

bootstrap server which also generates random nodeIDs [114]. This technique limits

the number of nodeIDs that an attacker can obtain during a time period, depending

on the life-time of the certificates, and maintains complete anonymity of the users.

However, the life-time can affect the security of the system. If it is too short, the

30

2.1 Peer-to-Peer (P2P) Networks

server can become a bottleneck since the update process of certificates may introduce

a significant computational overhead. On the other hand, longer life-times can cause

greater exposure to compromise. Therefore, it is very important to set the system

parameters taking into account this trade-off between security and performance.

In [34], Butler et al. consider the use of the identity-based encryption (IBE) to

improve the security in P2P overlays, where users’ public keys are directly derived from

nodeIDs. In the centralized proposal, nodeIDs are randomly generated by a TTP, as

well as the private keys. Then, a bootstrapping node verifies nodeIDs and provides

users with a token of authenticity. Unfortunately, the node authentication is performed

via callback using the user’s IP address. This means that any node capable of receiving

a TCP connection at an IP address is deemed to be the legitimate owner of that IP

address; which is the main drawback of this scheme.

Baumgart and Mies propose to use a hash function over a public key to generate

nodeIDs in the Kad network [29]. Those public keys must be additionally signed by

a trustworthy CA. Thus, this signature prevents the Sybil attack in the bootstrapping

phase. In the absence of this authority, they propose to use a cryptographic puzzle to

limit Sybil and Eclipse attacks.

In [54], Friedman and Resnick propose a centralized system of anonymous certificates

using standard encryption techniques. Users receive a signed nodeID which is unrelated

to their real-world identity. In addition, the certificate provider guarantees that each

user will only obtain a single certificate (once-in-a-lifetime identifier). The trusted

entity signs nodeIDs which have previously been blinded, so it knows the users’ real-

world identities but not their nodeIDs within the overlay. This system allows using a

reliable reputation system but it does not allow that certificates can be revoked.

In [23, 24, 25, 53], Aiello et al. present Likir (Layered Identity-based Kademlia-

like InfRastructure), an architectural model of a new DHT system that offers both a

very high protection level to the most common attacks in P2P overlays and a simple

framework supporting identity-based services. Authors divide the architecture in three

main modules, one of them a “User Registration Service”. In this module, Aiello et

al. propose, on the one hand, to involve the human interaction with a centralized

server in the authentication phase using the OpenID protocol, and on the other hand,

to use a trusted entity to bind the user real-world identity to the user’s public key

and to a 160-bit random string (nodeID) by a LikirID. As this system requires human

31

2. BACKGROUND

interaction, the automatic nodeID generation is unfeasible for an attacker. In addition,

Likir guarantees the users’ anonymity since users do not need to reveal their real-world

identities. However, the use of the OpenID protocol has several problems [48]. As this

work is similar to ours, in Section 6.5 we compare the user registration module of Likir

with the features provided by our protocol RIAPPA.

2.1.5.2 Distributed Proposals

In [36], Castro et al. propose the use of a cryptographic puzzle to limit the number of

nodeIDs managed by a user in a P2P overlay. Users must choose a key pair so that the

hash of the public key has the first p bits to zero, which will be their nodeID. In this

way, the value of p defines the security level of the system since the expected number

of operations needed to compute a key pair is 2p. Then, authors also propose to bind

those nodeIDs to users’ IP addresses and define another computational challenge. Now,

users have to find a string x such that H(H(IPaddress, x), nodeID) has p′ bits equal to

zero, and present the string x to be accepted by the other nodes. Finally, Castro et al.

also comment that updating the p and p′ values periodically the security of the network

would be improved. In all cases, authors limit the number of computable nodeIDs by

users. However, the computational cost normally is not a problem for attackers since

they usually have enough computing power; not so the normal users, which may be using

mobile devices such as smartphones, tablets, or netbooks. Furthermore, IP addresses

are vulnerable to IP spoofing attacks and on many times dynamically assigned.

In the same line than Castro et al., a cryptographic puzzle mechanism has also

been proposed by Rowaihy et al. to limit Sybil attacks [105]. Authors present an

admission control system using a self-organized hierarchy of cooperative nodes and a

chain of cryptographic puzzles. They exploit a hierarchical structure to distribute load

and increase resilience to targeted attacks, and to refresh the challenges constantly to

avoid pre-computation. When a node wishes to join the network, it must contact a leaf

node. Then, this node sends a cryptographic puzzle based on a hash function. Once the

joining node has solved the puzzle, it is redirected to the leaf’s parent. This challenge

is recursively repeated until it reaches the root node. Finally, the root node issues a

special token and a nodeID to the node. This nodeID is just the hash function over the

node public key, previously selected by the user, and a random number generated by

the root node. As with the above solution, this mechanism also negatively affects to the

32

2.1 Peer-to-Peer (P2P) Networks

nodes that have limited resources, and it does not solve the problem because malicious

hosts with enough resources can manage a large number of nodeIDs. The effectiveness

of this solution depends on the cost and the degree of hardness of solving the puzzles.

Moreover, if an attacker is a member of the hierarchy, she can take advantage of her

position, since she will need a smaller number of puzzles to obtain a nodeID.

In [47], Da Costa et al. try to minimize computing problems that affect honest

nodes when they have to solve cryptographic puzzles to obtain their nodeIDs. Authors

propose the use of adaptive computational puzzles to limit the spread of Sybils but

without affecting the honest nodes. This proposal parameterizes the complexity of

puzzles according to the nodes behavior. Users of the nodes whose behavior is more

similar to the average behavior of the rest of the network are benefited with less complex

puzzles. Otherwise, users are forced to solve more complex puzzles to obtain nodeIDs.

However, detecting Sybil nodes in function of their behavior is usually very inefficient,

since at first glance they behave correctly. To do so, they need an efficient reputation

system to avoid malicious users have computational privileges, which implies to use

stable nodeIDs within the network.

Lu proposes, in [81], a conundrum verification scheme which allows access to the

P2P overlay through a more expensive process of identity acquisition. It works over a

structured network with hierarchy; super nodes manage regions which include a lot of

guard nodes and normal nodes. The solution is composed of two phases, the first where

nodes join the network paying a certain price (e.g., solving a cryptographic puzzle) and

the second where the super nodes use the guard nodes to obtain the nodeIDs of the

normal nodes and to verify the validity of those nodeIDs. This verification is performed

based on the statistics result. The main weakness of this solution is in the binding

of nodeIDs, since they are selected by the users using their IP addresses to allow the

verification.

In [34], Butler et al. also develop two decentralized identity assignment protocols. In

the first one, the bootstrapping node plays the role of the TTP and generates the random

nodeIDs, the users’ private keys and the tokens of authenticity. In the second one,

the authors propose a method that uses both ID-based and symmetric cryptography.

The bootstrapping node only generates the private keys and delegates the authority of

assigning nodeIDs to one of many trusted nodes, which share a symmetric key. These

nodes also generate the tokens of authenticity. But in the same way as in the centralized

33

2. BACKGROUND

proposal, in these two protocols, nodes are weakly authenticated via callback using their

IP addresses, which is insufficient to avoid the Sybil attack.

2.1.5.3 Social Network-Based Proposals

Wang et al. propose, in [122], a practical system for detecting Sybil identities using

server-side clickstream models. Their approach groups “similar” user clickstreams1 into

behavioral clusters. Authors base their work on two main features. On the one hand,

on the fact that Sybils and real users have very different goals in their usage of online

services. Real users likely take part of numerous features in the system and Sybils

focus on specific actions (i.e. acquiring friends and disseminating spam) while trying

to maximize utility per time spent. And on the other hand, on the hypothesis that

these differences will manifest as significantly different (and distinctive) patterns in

clickstreams. Finally, they test their prototype on Renren and LinkedIn server-side

data achieving positive results.

Leveraging the real-world trust relationships between users, many authors have de-

veloped social-graph-based algorithms to detect Sybil nodes on social graphs [35, 118,

127, 128]. These solutions are mostly built on the assumption that the social network

graph can be partitioned into two loosely linked regions, a non-Sybil region and a Sybil

region. Although this assumption may hold in certain settings, real-world social connec-

tions possibly tend to divide users into multiple inter-connected small regions instead of

a single uniformly connected large region. Given this fact, the applicability of existing

schemes would be greatly undermined for inability to distinguish Sybil users from valid

ones in the small non-Sybil regions.

In [128], Yu et al. present SybilGuard, a social networks based protocol which limits

Sybil attacks. NodeIDs are represented as nodes in a graph and an edge between two

nodeIDs indicates a human-established trust relationship. SybilGuard exploits the fact

that all the malicious nodes created by a given physical attacker are only sparsely

connected to the real social network. The edges connecting the honest and the Sybil

regions are called attack edges, and its number is independent of the number of Sybil

nodes. Each node constructs its own partition of the network using a procedure based on

random routes for each of its edges, a special kind of random walk. When a node wants

1Clickstreams are traces of click-through events generated by online users during each web browsing

“session”.

34

2.1 Peer-to-Peer (P2P) Networks

to verify that another node is honest, it checks for intersections in their routes. A node

accepts a suspect node only if at least half of its routes intersect with any of suspect’s

routes, meaning that most likely that node will belong to the same (honest) region as

it. SybilGuard allows accepting O(
√
n log n) Sybil nodes assuming up to O(

√
n/ log n)

attack edges, where n is the number of honest nodes.

In [127], Yu et al. propose an update to SybilGuard, called SybilLimit. This pro-

posal allows accepting O(log n) Sybil nodes assuming up to O(n/ log n) attack edges.

Unfortunately, in terms of functionality, these solutions are not suitable for P2P overlays

since there are several difficulties that complicate their real-world deployment. Firstly,

they require previous trustworthy relationships among nodes. Secondly, they require

symmetric key sharing before the creation of links between nodes. And finally, they

force all nodes to store a different symmetric key per friend since each social connection

has a unique symmetric key.

In [118], Tran et al. propose Gatekeeper, an optimal distributed Sybil-resilient

admission control protocol that significantly improves SybilLimit. For the case of O(1)

attack edges, it admits only O(1) Sybil nodeIDs in a random expander social networks.

In the face of O(n/ log n) attack edges, the protocol admits O(log n/ log n) Sybils per

attack edge.

In [124], Xue et al. extend the social graph by including user interactions of initiating

and accepting links. They propose to use the friend request data as a directed graph,

with an edge between the sender and the receiver and a weight (1/0) that indicates

whether the invitation is accepted. This new graph model utilizes two parameters to

improve the detection phase: on the one hand, the number of requests to become a

friend, which are rarely sent to Sybils and non-popular users, and, on the other hand,

the information of the accepting/rejecting friend request. Sybils and non-popular users

send friend requests to gain friends, however, Sybils’ requests are more likely to be

rejected. Authors present VoteTrust, a global voting-based system that nicely combine

link structure and users feedback (accept or reject friend requests) to detect Sybils.

In [110], Shi et al. present SybilShield, a protocol that utilizes a multi-community

social network structure in the real-world to defend against Sybil attacks. This scheme

leverages the sociological property that the number of cutting edges between a non-Sybil

community and a Sybil community, which represent human-established trust relation-

ships, is much smaller than that among non-Sybil communities. Moreover, authors

35

2. BACKGROUND

use agent nodes to greatly reduce the false positive rate of non-Sybils among multiple

communities, while effectively identifying Sybil nodes.

The previous systems do not avoid Sybil attacks, since they do not assign nodeIDs in

a controlled manner, but they can detect possible Sybil nodes with a certain probability.

A drawback of these schemes is that the use of social networks to detect Sybils com-

promises the users’ anonymity, since all nodeIDs must be related with a social network

account.

Lesueur et al. present, in [77], a sybilproof distributed identity management system

based on invitations. Thus, they rely on social relationships to prevent Sybil attacks.

Their scheme is based on a balanced tree that represents the social relationships between

users. However, they limit the number of invitations for each member and each of the

members he has invited comparing the members between themselves. In this case, Sybil

attacks are limited but having to restrict the number of potential newcomers by the use

of invitations.

2.1.5.4 Distribution Systems of Revocation Data

Ying and Jiang, in [126], propose a new certificate revocation system based on the use

of the Chord network [116] and bloom filters to distribute the revocation data. They

use bloom filters to avoid bottleneck problems in the network. Their method consists

in flooding all nodes with a bloom filter vector for each CRL segment. In this way,

they save storage and bandwidth capacity. However, the false positives that occur in

bloom filters complicate the certificate validation process. Furthermore, using flooding

mechanisms may be inefficient in P2P networks with hundreds of thousands of users.

In [63], authors propose to introduce a hierarchy based on Super Peers in the P2P

architecture to reduce the number of requests to the CA. Super peers act as authorities

to clients, and the CRL distribution is carried out through a pull mechanism. However,

this hierarchy does not prevent storage problems in peers nor the great bandwidth

consumption if the CRLs are very large.

Morogan and Mutfic describe, in [90], a general distributed system for revocation

data based on the use of a P2P network to distribute CRLs. Authors aim to achieve

a good off-line functionality and to improve the CRLs’ freshness using Delta CRLs.

However, their system is not completely distributed, which implies that in networks

36

2.2 Cryptography

with many revocations, updates have considerable size. In addition, the distribution

problems that arise when a CA issues a new CRL are not avoided by this system.

Authors of [28] propose a new distributed trust infrastructure based on the use of

the Chord network, which includes a new distributed revocation mechanism. They use

nodes themselves to store the revocation information rather than using CRLs. In this

system, each node is responsible for storing a set of certificates, and if a certificate is

revoked, then the node stores a tag that indicates the revocation status.

On the other hand, trust is another approach for managing access control in P2P

networks. In these networks, trust captures the liability, trustworthiness, and satisfac-

tion of a node relative to another one. The main goals of trust models are to increment

the percentage of successful exchanges and to ensure models’ scalability and simplicity.

For instance, the BBK model [31] describes a quantified trust, which divides trust into

two types: direct trust and reference trust. Unfortunately, it gives the same weight

to both types of information, therefore, malicious references can significantly alter the

trust between users. Authors in [40] present a distributed trust model for the JXTA

platform [66]. In this model, trust is computed based on users’ interests and keywords.

Nevertheless, a configuration table is needed for the whole group, which may be inef-

ficient in a dense P2P network. Authors in [60] describe different types of trust and

define the relation between trust values and roles in an access control model. However,

this model lacks to determine how the role based on access control model works well in

a trusty network.

2.2 Cryptography

2.2.1 Elliptic Curve Cryptography (ECC)

Victor S. Miller and Neal Koblitz introduced the Elliptic Curve Cryptography (ECC) in

the 80s but it was not until the late 90s when it began its use [73, 88]. ECC is based on

the use of elliptic curves over finite fields. The equation that defines the elliptic curve

over E(Fp) is the following:

E : y2 ≡ x3 + a · x+ b (mod p)

Where p is the order of a field Fp and a, b ∈ Fp are two elements of this finite field.

If the previous parameters follow certain relationships the previous equation describes

37

2. BACKGROUND

a set of points in Fp with coordinates (x, y). In addition, a sum operation over elliptic

curve is defined and also a special point O is defined as the identity element.

Then, a point G of the elliptic curve is defined as a base point and the sum operation

of the elliptic curve is used to generate a set of elements (points). The order of a

generator n is the number such that nG = O and G 6= O. Also, G + O = G, which is

said as that G generates a cyclic group over the elliptic curve.

As any public key system, elliptic curve cryptosystems are based on the intractability

of certain mathematical problem. More specifically, ECC is based on the Elliptic Curve

Discrete Logarithm Problem (ECDLP), which assumes that calculating the discrete

logarithm of a random elliptic curve point with respect to a base point in an elliptic curve

is infeasible. More accurately, this means that there is no probabilistic polynomial-time

algorithm (polynomial in the security parameter l = ⌊log2 p⌋) which with non-negligible

probability:

On input: Q ∈R 〈G〉, Q 6= O

Can output: d ∈ [1, p− 1] satisfying Q = dG .

Until now, no efficient algorithms are known to solve the ECDLP, and likely it is

harder than both the integer factorization problem and the Discrete Logarithm Problem

(DLP) modulo p [61].

Since the structure of the classical Discrete Logarithm Problem (DLP) and the

Elliptic Curve Discrete Logarithm Problem (ECDLP) are similar, many algorithms

based on DLP can be easily adapted to ECC. Among others, some remarkable examples

are the Elliptic Curve Diffie–Hellman (ECDH) key agreement scheme (based on the DH

scheme), the Elliptic Curve Digital Signature Algorithm (ECDSA) (based on DSA) and

the ECMQV key agreement scheme (based on the MQV key agreement scheme).

In 2005, the National Security Agency (NSA) of the United States publicly an-

nounced “Suite B Cryptography”, which exclusively uses ECC for digital signatures and

key exchange. These protocols were proposed to protect National Security Systems and

National Security Information (CNSSP-15) [93].

ECC-based protocols are increasingly being used because their performance is better

than classical cryptography. ECDLP based systems provide roughly 10 times greater

efficiency than either integer factorization systems or discrete logarithm systems, in

terms of computational overheads, key sizes and bandwidth consumption. Although

elliptic curve arithmetic is slightly more complex per bit than RSA arithmetic [104],

38

2.2 Cryptography

the added strength per bit makes up for any extra compute time. Table 2.1 shows a

comparison between the ECC and RSA key size (recommended by the National Institute

of Standards and Technology (NIST)) and the ECDSA [71] and RSA certificate1 size.

Table 2.1: Key and certificate size comparison between ECC and RSA.

Security Public key Ratio Certificate Ratio

level size (bits) ECC/RSA size (bits) ECDSA/RSA

(bits) ECC RSA public keys ECDSA RSA certificates

80 192 1024 1:5 577 2048 1:3

112 224 2048 1:9 673 4096 1:6

128 256 3072 1:12 769 6144 1:8

192 384 7680 1:20 1153 15360 1:13

256 521 15360 1:29 1546 30720 1:19

Nowadays ECC is also widely used because it provides new tools for building cryp-

tography such as bilinear pairings [82].

2.2.2 Implicit Certificates

A standard certificate like a X.509 certificate [45] can be viewed as a tuple < Qx, Ix, σx >;

where Qx is the public key of the user “x” being certified, σx is the CA’s signature of

the certificate and Ix is identity information and other metadata such as serial number,

validity period, issuer identity, user identity, etc.

On the other hand, implicit certificates [32, 86, 97] super impose the public key

and the signature into a single parameter Zx called “reconstruction public parameter”.

Thus, an implicit certificate can be viewed as the tuple < Zx, Ix >.

If the metadata (Ix) is not sent explicitly with the certificate, the size of the certifi-

cate is just the size of the reconstruction parameter Zx. Since the cryptographic portion

of an implicit certificate is the size of an elliptic curve point, an implicit certificate is

considerably smaller than a comparable explicit certificate. Smaller certificates are use-

ful in highly constrained environments, such as Radio-frequency Identification RFID

tags, where memory or bandwidth are scarce. In our case, we are not so interested in

the size of the implicit certificate but rather in the form of construction of the implicit

certificate. As we will show, this type of cryptographic construction will allow us to

1Data are only based on the size of signatures and public keys.

39

2. BACKGROUND

create efficient and secure ways of building identity assignment mechanisms for P2P

networks.

In particular, in this thesis we use the Elliptic Curve Qu-Vanstone (ECQV) implicit

certificate scheme [103] as the base to create a suitable type of implicit certificates for

assigning identities to P2P networks (we will use a modified version of ECQV to create

two new identity management systems for P2P networks in Chapters 4 and 6). ECQV is

a general purpose implicit certification scheme proposed by the Standards for Efficient

Cryptography Group (SECG). Figure 2.4 describes how a user x obtains an implicit

certificate Zx and derives her public and private keys.

Figure 2.4: ECQV certificate issuance protocol.

User to CA

The user creates a random number nx and with this number and the generator creates

and a random elliptic curve point Nx = nxG. Then, Nx together with her identity data

(IDx) is sent to the CA.

CA to User

The CA also creates a random number nc and with this number and the generator

creates a random point Nc = ncG. Then, the CA generates the reconstruction public

40

../figures/Implicit_Certificate.eps

2.2 Cryptography

parameter for user x as Zx = Nx + Nc. Next, the CA takes the identity information

sent by the user (IDx) and adds its metadata to obtain Ix. Then, the CA creates a

signature so that the user can derive its secret key. The signature contains in a suitable

way the metadata of the certificate, the reconstruction parameter, the random number

selected by the CA and the CA’s secret key: sx = h(Ix|Zx)nc + dCA.

Finally, the CA sends the tuple < sx, Ix, Zx > to the user.

Key Derivations

In the last part of the ECQV scheme, the user derives her public and private keys. In

addition, other users can also easily derive the public key of the user with the public

parameters.

The private key is derived (only by the user) as: dx = hxnx + sx

The public key is derived (by anybody) as: dxG = hxZx +QCA

Note that with the public information provided by the CA only the user x can derive

her secret key (not any other user or the CA).

On the other hand, any receiver of a certificate must validate two things: (i) the

authenticity of the binding identity/public-key and, (ii) the authentication of the user

(validate that the user is who claims to be).

With explicit certificates, (i) is validated using the certificate’s signature and (ii) is

validated by enforcing the user to demonstrate knowledge of her private key. For this

purpose, some cryptographic protocol is followed, for example, verifying some type of

digital signature performed by the user.

With implicit certificates, the validation of (i) and (ii) cannot be separated. These

two things can be validated with a cryptographic protocol, for example, by verifying a

digital signature performed by the user.

We end the discussion about implicit certificates showing some performance figures.

Regarding the computational cost of each system, with implicit certificates based on

ECC, the receiver needs to calculate the sender’s public key to verify the validity of the

certificate using one elliptic curve scalar multiplication operation and one point addition

operation, whereas with ECDSA certificates she needs three modular operations, two

elliptic curve scalar multiplication operations and one point addition operation to verify

the CA’s signature on the certificate. Therefore, three less modular operations and one

less scalar multiplication are necessary if we use implicit certificates. Table 2.2 shows a

41

2. BACKGROUND

comparison between the required operations to construct an ECC-based implicit public

key and verify an ECDSA signature.

Table 2.2: Operations required for constructing an ECC-based implicit public key and

verifying an ECDSA signature.

Modular Scalar One point

operation multiplication addition

Implicit

PK generation 0 1 1

ECDSA signature

verification 3 2 1

Table 2.3 shows a comparison between the ECDSA and ECQV certificate1 size,

where it is observed that implicit certificates are three times smaller than the explicit

certificates independently of the security level.

Table 2.3: Certificate size comparison between ECDSA and ECQV.

Security Certificate Ratio

level size (bits) ECDSA/ECQV

(bits) ECDSA ECQV certificates

80 577 193 1:3

112 673 225 1:3

128 769 257 1:3

192 1153 385 1:3

256 1546 522 1:3

Finally, the most relevant aspect of ECQV for this thesis is that in the key pair

generation, half of the material is generated by the user and half by the CA.

2.2.3 Blind Signatures

In 1982, Chaum introduced a new form of digital signature, the blind signature [39];

where a signer signs a message previously blinded by a requester. The signer does

not know the content of the signed message, she only signs the message and does not

decrypt it, and then the requester can derive a valid signature for that message from

the signer. Once the message and its signature are published, the signer can verify the

1Data is only based on the size of signatures and public keys.

42

2.2 Cryptography

genuineness of the signature and anyone is able to verify the blind signature using the

public key of the signer. However, no one can know about the correspondence of the

message-signature pair, even the signer.

Any blind signature scheme consists of four phases:

1. Blinding phase: A requester selects a blinding factor to mess her message such

that the signer will not know its content.

2. Signing phase: The signer signs the blinded message using her private key.

3. Unblinding phase: The requester uses the blinding factor to derive the digital

signature on the message.

4. Signature Verification phase: Anyone can use the public key of the signer to

verify the blind signature.

And they should satisfy the following properties:

1. Correctness: The correctness of a digital signature on a message should be

verified by anyone using the public key of the signer.

2. Unforgeability: Only the signer should be able to generate a valid signature for

a certain message.

3. Blindness: The signer of a blind signature scheme should not know the content

of a blinded message. In fact, there should be only one valid blinding factor per

message-signature pair.

4. Untraceability: The signer of a blind signature should not be able to link the

message-signature pair under any circumstances.

These algorithms prevent fraudulent actions by the signer and provide authentica-

tion and non-repudiation to the original sign request sent from a requester. For these

reasons, they are widely used in many important cryptographic schemes such as elec-

tronic voting and untraceable payment protocols.

The first blind signature protocol proposed by Chaum [39] is based on RSA cryp-

tosystem (factorization problem) but today many other protocols have already been

43

2. BACKGROUND

proposed to satisfy the four properties mentioned above. They can be based on the

factorization problem, DLP, ECDLP [69] or the quadratic residues, among others.

In Chapter 6 of this thesis we have adapted a blind signature protocol based on

ECDLP [112] to preserve the users’ anonymity in a new identity assignment protocol

for a P2P overlay.

2.2.4 Commitment Schemes

A commitment scheme allows one to commit to a chosen value while keeping it hidden

to others, with the ability to reveal the committed value later. Commitment schemes

are designed so that a party cannot change an already committed value. These schemes

normally consist of two phases (additionally can also be considered another first phase,

Setup):

1. Phase 1 (Commit): the Sender commits to a certain value p generating a com-

mitment value c and sending it to the Receiver.

2. Phase 2 (Reveal): the Sender proves to the Receiver that the value p has not been

changed sending to her the value p and the decommitment value d, which is used

to calculate p from c.

Regarding security, all commitment schemes must accomplish two properties:

1. Binding: the Reveal phase can successfully decommit to one value only (unique-

ness of the Commit phase).

2. Hiding: the Commit phase cannot reveal any information about the value (perfect

secrecy of the value).

Both Binding and Hiding can be accomplished in a perfect way (statistical or com-

putational) depending on the power needed to break them.

Commitment schemes are very important and useful primitives in cryptography;

they are implemented in diverse cryptographic protocols, such as zero-knowledge proofs,

multiparty computations, digital auctions and e-commerce [49, 58, 59].

In Chapter 4 of this thesis we have defined a new commitment scheme based on

ECC to improve the security of the bootstrapping process of P2P overlays.

44

2.2 Cryptography

2.2.5 The AVISPA Tool

The AVISPA (Automated Validation of Internet Security Protocols and Applications)

tool is a push-button tool for the automated validation of large-scale Internet security-

sensitive protocols and applications [16, 27]. This tool has been developed by a group of

institutions formed by the Artificial Intelligence Laboratory (AI-Lab) at DIST, Univer-

sità di Genova, Italy; the Information Security Group at ETHZ, Zürich, Switzerland;

the CASSIS group at INRIA, Nancy, France; and the Siemens AG, Munich, Germany.

The objective of this technology is to speed up the development of the next generation of

network protocols, improve their security, and therefore increase the public acceptance

of advanced, distributed Information Technology (IT) applications based on them.

The AVISPA tool can be used to demonstrate proof-of-concept on a large collection

of practically relevant, industrial protocols. It uses a modular and expressive specifica-

tion language for formalizing protocols, security goals, and threat models of industrial

complexity; the High-Level Protocol Specification Language (HLPSL).

AVISPA integrates different back-ends which implement a variety of automatic

analysis techniques for protocol falsification and abstraction-based verification meth-

ods; both for finite and infinite number of sessions. Specifically, it implements the

On-the-Fly Model Checker (OFMC), the Constraint Logic (CL-AtSe), the SAT-based

Model-Checking (SATMC) and the Tree Automata-based Protocol Analyser (TA4SP)

back-ends.

Many protocols have been verified using this tool obtaining relevant information

about their validity. For this reason, we have used this tool to verify the correctness

and the security properties of the protocols proposed in this thesis.

45

2. BACKGROUND

46

Chapter 3

Secure Identity Management

Contents

3.1 NodeID generation . 48

3.1.1 Using Random Numbers . 48

3.1.2 Using IP Addresses . 49

3.1.3 Using Public Keys . 51

3.1.4 Comparison . 53

3.2 Security Requirements for nodeIDs 57

3.3 Scenarios . 59

Identity management plays a crucial role in the security of P2P overlays, as we have

seen in Section 2.1.3. For this reason, it is very important to pay attention on how

nodes obtain their nodeIDs when they join a P2P overlay, and also how users check

the validity of nodeIDs and authenticate their owners. In this context, nodeIDs should

be generated taking into account certain requirements to ensure some control over the

process and to avoid attacks.

In this Chapter, we analyze the advantages and drawbacks of the most common

ways of generating nodeIDs that we can find in the literature, and we define a set of

requirements which should be accomplished to construct a robust nodeID. Finally, we

also describe some scenarios where P2P overlays can be used to improve services or

applications and where providing security is indispensable.

47

3. SECURE IDENTITY MANAGEMENT

3.1 NodeID generation

3.1.1 Using Random Numbers

The easiest way to generate a nodeID is by using a Random Number Generator (RNG).

In this case, the resulting identifiers are uniformly distributed in the virtual space and

guarantee the anonymity of their owners. However, if the generation is carried out in

the client application, it can be easily manipulated by the user allowing an attacker to

select her nodeID. An example of this kind of generation can be found in the eMule

and aMule clients, where the obtained 128-bit identifiers are used in the Kad network

allowing the attackers to tamper the proper operation of the network, to censor contents,

or to damage other entities in the Internet out of the P2P overlay, such as web servers

[79].

The problem is that this way of auto-generating nodeIDs allows users to generate

more than one valid nodeID. Also, it avoids that other nodes can verify whether a

nodeID has been properly generated or it belongs to whoever is using it, since nodeIDs

are not bound to their owners in any way. In this context, if a P2P overlay does not

implement an access control system, the network will be vulnerable to Sybil attacks

and whitewashers, since any user can manage a set of nodeIDs and change them in an

uncontrolled way. Thereby, BitTorrent and the Kad network are vulnerable to these

attacks.

A special case of random nodeIDs are the CAN identifiers [99]. As we have explained

in Section 2.1.2.1, a CAN newcomer chooses a random point p to select her assigned

zone and this point makes the functions of nodeID within the network. Therefore, a

malicious node can select a certain point within the virtual space to be placed in a

target zone, for instance, to censor a certain file. Remember that if a malicious node

can choose the zone that contains the key of a certain file, she will control this file being

able to deny the access to it or to share a tampered version, among other actions. In

addition, any user can select a different point p whenever they rejoin the CAN network,

since the identifier generation is not related to any scarce resource that users can prove

that they currently possess. In this context, a nodeID can never be verified and nothing

prevents that a malicious user can use a set of points (p, p′, p′′, etc.) at a time (Sybil

attack) to manage several zones within the overlay in order to corrupt the routing

system, to encircle a victim node to control its communications or to isolate it (Eclipse

48

3.1 NodeID generation

attack). At the same time, this way of proceeding with the nodeIDs allows users to

remain anonymous within the overlay.

Obviously, the nodeID self-generation problem could be avoided simply delegating

the generation to a TTP (Trusted Third Party), which would generate these random

numbers. This TTP could be a bootstrapping node, a Certificate Authority (CA), etc.,

but in most cases it does not apply any kind of access control. Therefore it is noteworthy

that the provided security level will depend on the role of that TTP. If this entity is

part of the overlay, it may place the new nodes (select the nodeIDs) seeking the benefit

of the network, or maybe its own benefit. In Table 3.1 we analyze the use of a TTP

only for generating random nodeIDs.

3.1.2 Using IP Addresses

One of the most common procedures to bind a nodeID to a scarce resource, which

theoretically only has one owner, is to use an IP address. A priori, this is a good

solution since all Internet users have an IP address and the nodeID generation can be

easily verified. Moreover, this kind of nodeIDs could be revoked if necessary.

Some networks use the IP address directly, others use the digest of the IP address,

and even it is also possible to generate a nodeID as any operation that takes the user’s

IP address as an argument. Chord [116], Pastry [106], Kademlia [85] and a security

extension of BitTorrent [92] are some examples of P2P overlays which use the hash

value of users’ IP addresses to generate nodeIDs. However, these identifiers can cause

some problems.

First of all, it is difficult to guarantee the nodeID stability based on an IP address.

There are several reasons for this, for example, in today’s Internet not all the assigned

IP addresses are permanent but most Internet Service Providers (ISPs) assign dynamic

IP addresses to their customers. On the other hand, a criminal organization running

a botnet can use many physical nodes with different IP addresses. In addition, in

the future IPv6 based Internet, a malicious node can use virtually thousands of IP

addresses. For these reasons, the use of IP addresses to generate nodeIDs makes difficult

to guarantee the nodeID stability. Without a proper access control system, P2P overlays

are also vulnerable to Sybil attacks since users can easily manage more than one nodeID.

The number of nodeIDs available to an attacker would be linearly bounded by the

number of IP addresses that she can force the network to route to them.

49

3. SECURE IDENTITY MANAGEMENT

Secondly, this way of generating identifiers does not prevent that a user can self-

generate, to a greater or lesser extent, her nodeID. If a user has access to a pool of IP

addresses, she can choose one of them interchangeably to generate her nodeID and locate

herself in a certain zone of the virtual space. In addition, IP addresses are vulnerable to

the IP-spoofing attack. Therefore, any user can supplant the identity of a node (identity

theft attack), by spoofing her IP address. Obviously, they can also simply change her

nodeID or camouflage herself spoofing an IP address.

Thirdly, if a nodeID generation simply uses an operation over the users’ external

IP addresses, a hash function for instance; all users behind a NAT are forced to use

the same nodeID within the overlay. For this reason, the use of a random number, or

another parameter, in the generation process of a nodeID, is absolutely necessary to

guarantee that users behind a NAT also have a unique nodeID.

And finally, the anonymity of users can be compromised by the use of static IP

addresses, since a malicious user can infer information about a node from her IP address.

Even in the case of using a hash function to generate nodeIDs, the level of anonymity

provided is poor or inexistent if the IP address is necessary to verify the nodeID.

In the security extension of BitTorrent DHT [92], we can find a special case of the

use of IP addresses to construct nodeIDs using a hash function. On the one hand, the

author proposes to use a random number in the range [0, 7] to allow users behind a

NAT to have unique nodeIDs. Thus, eight users behind the same external IP address

can obtain a different nodeID while attackers are limited to obtain eight nodeIDs per IP

address class. And on the other hand, IP addresses are restricted at each class level to

further restrict the number of nodeIDs that users can construct from large IP address

blocks. To do so, a mask is applied to each IP address before hashing it together with

the selected random number. This mask allows masking out more bits of the most

significant octets to decrease the number of available nodeIDs for smaller IP blocks.

This way, the total number of available nodeIDs grows slower than the number of IP

addresses that an attacker can manage.

The proposed expression to construct a valid nodeID from IPv4 addresses is:

crc32c((IPv4&0x030F3FFF)||(r << 29))

And for IPv6 addresses is (using the high 64 bits of IPv6 addresses):

50

3.1 NodeID generation

crc32c((IPv6&0x0103070F1F3F7FFF)||(r << 61))

Where CRC32C (Castagnoli) is the selected hash function, r is the random number

in the range [0, 7] and the || operator means bit-wise OR. Finally, the most significant

21 bits of the result are the valid nodeID, and the last byte must correspond to the

random number r. Unfortunately, this scheme potentially impacts the DHT routing

and potentially break the O(log n) lookup complexity [78].

Note that unlike other cases, using a TTP to generate nodeIDs based on IP addresses

does not solve the problems discussed above, since the TTP cannot know if the IP

address belongs to the user or has been spoofed, or even if the user is an attacker that

controls a set of IPs.

3.1.3 Using Public Keys

Another way to bind a nodeID to a scarce resource is to use the user’s cryptographic

Public Key (PK) used within the overlay. More specifically, to use the value of a hash

function over the PK, as Pastry [106] does. In the same way that using IP addresses,

the use of PKs allows users to verify the identifiers of other nodes, and in general, this

way of proceeding may also solve most of the previous problems of using IP addresses.

However, nodeIDs can have different problems depending on the way that PKs are

distributed and who has selected them.

Usually, PKs are distributed by means of Public Key Certificates (PKC)1 to protect

their integrity. However, the way in which these PKCs are generated is critical to our

purpose. In particular, there are three important aspects: (1) which information related

to nodes is contained in PKCs2, (2) who selects the cryptographic key pairs, and (3)

who issues (and manages) these PKCs.

On the one hand, PKCs may contain certain information related to the node, for

instance, its IP address or even the real name of the user who is behind this node (or

1A PKC, also known as identity certificate, is an electronic document which uses a digital signature

to bind a PK with an identity.
2PKCs usually contain many fields that are used for management purposes (serial number, validity

period, issuer, etc.). We will omit these management fields in our discussion because they do not

contain information related to the node.

51

3. SECURE IDENTITY MANAGEMENT

some kind of pseudonym). Obviously, the inclusion of this information in PKCs can

cause the loss of the anonymity of users.

Nevertheless, from our point of view, the most critical aspect is who generates the

PKs. If users select their cryptographic key pairs they can obtain a nodeID located in

a target zone of the virtual space. Otherwise, if PKs are selected by a TTP, nodeIDs

cannot be chosen by the users, but the TTP can generate the PKs to locate the nodes

in certain zones of the overlay. In this context, PKCs can be issued by a CA (Certificate

Authority), by the node itself (self-signed certificate) or by a group of nodes. If PKCs

are issued (and signed) by a CA, which is a trusted party for all entities of the network,

it assures us that:

• Users manage only one node (PKC), or a small set of them.

• All information contained in PKCs is real (IP addresses, names of users, etc.).

• All this information is cryptographically bound to the PKs of nodes thanks to the

signature of the CA.

• We can establish a secure connection with a node with the assurance that it is

the intended principal.

• PKCs can be revoked if required.

Despite the use of CAs can present many advantages regarding security related to

nodeIDs (stability, revocability, uniqueness and not self-generation), it also has some

drawbacks. Besides the loss of anonymity, this type of generation forces all users to

obtain a PKC issued by a CA. And this last fact can cause problems in terms of

performance, since the CA is a centralized entity and a single point of failure.

As an alternative, nodes can use self-signed certificates, i.e., certificates issued and

signed by their owners. This mechanism is totally decentralized, users do not have to

contact with a CA, but it has more security problems:

• Users can select specific PKs to construct certain nodeIDs.

• Anyone can create new identities by simply generating new cryptographic key

pairs and issuing the corresponding certificates.

52

3.1 NodeID generation

• A single user can manage more than one PKC at a time, which is equivalent to

manage several nodes.

• Nobody can guarantee that the information inside a PKC is real.

In this context, Marti and Garcia-Molina [83] also proposed to use self-signed cer-

tificates to guarantee the anonymity of users and avoid the problem of identity theft

through the IP-spoofing attacks. But in their case, nodeIDs are generated randomly.

Finally, PKCs can be issued by a group of nodes (usually with high availability and

good reputation) thanks to the use of the threshold cryptography [109]. This type of

cryptography provides a mechanism to distribute cryptographic primitives guaranteeing

that these are secure against a group of up to t− 1 members, a threshold. Usually, se-

crets are distributed among a group of n members so that at least t members are needed

to sign, encrypt, validate, etc. a message. This alternative is decentralized, scalable

and prevents users select their nodeIDs because PKs are generated cooperatively by

the group of members. In addition, the information contained in the PKCs is crypto-

graphically bound to the nodes’ PKs thanks to the signatures of the group members.

However, some drawbacks of using self-signed certificates are also related to this kind

of PKs generation:

• A single user can manage more than one PKC at a time, which is equivalent to

manage several nodes.

• Nobody can guarantee that the information inside a PKC is real.

Note that if we want to provide a higher level of security, those nodes that make up

the group should also carry out an access control process based on the identity of the

nodes, their reputation, etc.

3.1.4 Comparison

Tables 3.1 and 3.2 summarize the characteristics of the six ways to generate nodeIDs

that we have discussed in this Section. We describe the behavior of each of these ways to

generate nodeIDs in relation to the protection against self-placement of nodes within the

overlay (Eclipse protection), the provided stability of nodeIDs, the anonymity provided,

53

3. SECURE IDENTITY MANAGEMENT

the protection against Sybil attacks and the ability to verify the validity of nodeIDs.

To do so, we have defined three different levels of fulfillment: Null, Medium and High.

Note that the involved entities in the nodeIDs generation are not the same in these

six cases. Therefore, trust in such methods cannot be the same. In the methods

LRN and SPK (see Tables 3.1 and 3.2), the user is responsible for self-generating her

nodeIDs, which provides a poor level of trust. Users could select specific nodeIDs to

locate themselves in a certain zone of the overlays’ virtual space, which would allow

them to carry out attacks as the Eclipse attack.

Something similar happens when IP addresses are used to generate the nodeIDs

(method IPA), since users can manipulate them. A malicious user could select a certain

IP address to locate herself in a certain zone of the overlays’ virtual space, and then

spoof that IP to generate valid IP packets from it. In this way, the receiver would verify

the nodeID using the used IP address successfully. Unfortunately, today there are many

applications to carry out this illegitimate action. However, we want to remark that this

technique also has legitimate uses, as the performance testing of websites.

Other option is to delegate the nodeIDs generation to a TTP (methods TRN and

TPK), which avoid that users can select their nodeIDs. In both cases, we cannot know

if this TTP will have interest in choosing certain nodeIDs to users to obtain particular

profit. A Certification Authority (CA) is a special case of TTP, but in the method TPK

we will assume that CAs have a high degree of trust regarding access control.

Finally, in the method GPK, we consider the use of a group of nodes to generate the

users’ nodeIDs. Those nodes usually have good reputation within the overlay and the

implemented system can hinder a collusive behavior, but this is not enough to consider

this way of generating nodeIDs as a robust solution. On the one hand, the reputation

of the nodes should be provided by a robust reputation system, which is very difficult

if the problem with the nodeIDs is not solved yet. And on the other hand, there is a

tradeoff between practicality and security. Requiring the signature of a large group of

nodes could bring performance and availability problems. Otherwise the security would

be poor.

As a result we conclude that an ideal construction, for security concerns, would be

very close to the use of PKs issued by a CA. But in that case, the problem to solve is

the user anonymity.

54

3.1 NodeID generation

Table 3.1: Evaluation of the most used six ways to construct nodeIDs in current P2P

overlays (I).

Construction Eclipse

protection

Stability Anonymity Sybil

protection

Verifiability

Using local

random

numbers

(LRN)

Null

Users can

manipulate

the random

number

generator or

simply use

the number

they want.

Null

NodeIDs are

not linked to

users and

nothing

prevents

their change.

High

It is

impossible

to link a

user with a

nodeID.

Null

Anyone can

manage a

large

number of

nodeIDs.

Null

It is

impossible

to verify

whether

nodeIDs

were

properly

generated.

Using

random

numbers

generated

by a TTP

(TRN)

High

The TTP

sends the

number that

users must

use.

Null

NodeIDs are

not linked to

users and

nothing

prevents

they use new

nodeIDs.

High

It is

impossible

to link a

user with a

nodeID.

Null

Anyone can

manage a

large

number of

nodeIDs.

High

The TTP

certifies the

nodeID

validity and

no one can

fake it.

Anyone can

verify a

nodeID.

Using IP

addresses

(IPA)

Medium

Vulnerable

to

IP-spoofing

attacks.

Choosing a

specific

IP-based

nodeID is

difficult but

not

impossible.

Medium

Many nodes

use dynamic

IP addresses.

IPv6 can

provide a lot

of addresses

to a single

node.

Medium

In many

cases a user

could be

linked to a

static IP

address.

Medium

Users can

manage

several

nodeIDs

managing a

set of IP

addresses.

Malicious

users

running a

botnet have

many IP

addresses.

Medium

It is possible

to check a

nodeID with

the IP

address of

messages,

but NATs

can

complicate

matters.

55

3. SECURE IDENTITY MANAGEMENT

Table 3.2: Evaluation of the most used six ways to construct nodeIDs in current P2P

overlays (II).

Construction Eclipse

protection

Stability Anonymity Sybil

protection

Verifiability

Using self-

generated

PKs

(SPK)

Null

Users can

generate the

PKs to

construct a

certain

nodeID.

Null

PKs are not

linked to

users and

nothing

prevents

their change.

High

It is

impossible

to link a

user with a

self-managed

certificate.

Null

Anyone can

manage a

large

number of

self-managed

certificates.

Null

It is

impossible

to check

whether a

PK has been

selected

maliciously.

Using PKs

issued by a

CA (TPK)

High

The CA

sends the

crypto-

graphic key

pairs that

users must

use.

High

Users can

only change

their

certificates

in case of

revocation,

and

controlled by

the CA.

Null

Real-world

certificates

are linked to

a real

person.

High

Users can

only obtain

one PKC.

High

Anyone can

calculate the

nodeID of a

certain user

using the

PK

contained in

her PKC.

Using PKs

issued by a

group of

nodes

(GPK)

High

A group of

nodes takes

part in the

generation of

the crypto-

graphic key

pairs.

Null

These

certificates

are not

linked to

real users

and nothing

prevents

they use a

new PKC.

High

It is

impossible

to link a real

user with

one of these

certificates.

Null

Anyone can

manage a

large

number of

PKCs.

High

The group of

nodes

certifies the

PK validity

and no one

can fake it.

Anyone can

verify a PK.

56

3.2 Security Requirements for nodeIDs

3.2 Security Requirements for nodeIDs

Many authors have already addressed the problem of assigning robust identifiers to

nodes. Some of these proposals have focused their efforts on the context of anonymity

and reputation [51, 70, 107, 120]. Some others have tried to detect or limit the scope

of certain attacks taking advantage of the computational cost of generating nodeIDs

[24, 53, 81, 105]. And more recently, several systems have also begun to fight the effect

of Sybil attacks by understanding the social context in which they occur [118, 127, 128].

However, little attention has been paid to the way that nodeIDs should be constructed

in P2P overlays and the security requirements that they should meet.

Obviously, not all applications/services require the same security level, but there is

no doubt that any commercial proposal should always take into account a minimum of

security requirements to avoid the above stated problems. For this reason, P2P overlays

should implement proper identity management systems to generate and assign robust

identifiers to nodes, to verify whether nodeIDs were properly generated and assigned,

and to revoke them if necessary. Next, we define a set of requirements which should be

accomplished by any nodeID to be considered robust.

• Uniqueness: each user, ideally, should only manage one node (nodeID) within

the system, or a small set of nodeIDs at worst. This requirement is necessary

to prevent (or limit) the Sybil attack. Using a TTP is probably the best way to

limit this attack, and for that reason, in this thesis we consider this method as the

only way to properly control the user access to the p2p network. We will consider

that each user has a unique real-world identity, for instance, the one contained

in an ID card. Obviously, it is not impossible to have more than one of these

real-world identities, but their use can provide a sufficient level of control for most

commercial services.

• Stability: nodes should not have the possibility to change their nodeIDs each time

they join the network. This requirement is necessary among other purposes to

avoid that malicious users can rejoin the network if they have been expelled or to

implement efficient reputation systems within the overlay (without whitewashers).

In this sense, TTPs should store a link between users and nodeIDs to control users

only use one nodeID.

57

3. SECURE IDENTITY MANAGEMENT

• Joint Management: neither nodes themselves nor a TTP should be able to choose

the users’ nodeIDs unilaterally, that is, the location within the virtual space.

Ideally, users and TTPs should generate nodeIDs jointly, for example, selecting

half of the bits of the nodeID each. This requirement is necessary to avoid the

Eclipse attack (the creation of plots), among other vulnerabilities.

• Verifiability: all nodes should be able to check if a nodeID has been properly

generated and whether it belongs to whoever is using it. To make this possible,

it is very important to consider how nodeIDs are generated. This requirement is

necessary to minimize attacks within the network.

• Revocability: any user should be able to revoke her certificate in case of losing

it or seeing compromised the associated private key. If possible, this user whose

certificate has been revoked should be able to get a new certificate maintaining the

same nodeID. In addition, if a dishonest or malicious behavior is detected (and

demonstrated) within the overlay, the TTP may be able to revoke the certificate of

that node (and her nodeID), avoiding malicious users to access the overlay again.

• Traceability: if a user commits an illegal action within the overlay and she must

be judged for it, authorities should have the possibility to trace the user and

match the nodeID with the user’s real-world identity. This requirement needs a

link between nodeIDs and users’ real-world identities, which can be provided by

a TTP. Unfortunately, this requirement would jeopardize the anonymity of the

users, which is one of the main strengths of P2P networks. Therefore, a way of

making traceability and anonymity compatible in these networks should be found.

• Anonymity: no internal or external entity should have the possibility to relate the

real-world identity of a user with her nodeID. In an environment where a TTP is

being used, nodes should be anonymous even for the TTP.

• Uniformity: nodeIDs should be uniformly distributed in the virtual space. This

requirement is necessary to achieve the proper load-balancing among all nodes

of the overlay. Otherwise, P2P overlays do not achieve the proper operation.

To this respect, in our protocols we always use a cryptographic hash function to

obtain the final value of nodeIDs, which provides a high grade of uniformity when

distributing the values.

58

3.3 Scenarios

Obviously, most of the above requirements need of a centralized entity to ensure their

compliance and to limit the number of nodeIDs per user. For this reason, throughout

this thesis, we have decided to use TTPs to generate nodeIDs in the form of digital

certificates, both standard and implicit certificates.

3.3 Scenarios

So far we have discussed several problems related to the management of identities in

P2P overlays and we have defined some requirements to be fulfilled by those identifiers

in order to improve the security and the performance in these networks. But now let

us consider some examples of scenarios where it is relevant that some or all of these

requirements are fulfilled.

The first of such scenarios could be a multi-player payment game over a P2P overlay.

In this scenario, we might have to avoid situations such as that a user who has lost a

game tries to rejoin to the same game with another nodeID, or that a certain user tries

to locate herself numerically close to the user that has more score to for example try to

eclipse that user. Obviously, in this scenario it is also necessary to control the access to

the service to avoid Sybil attacks and to charge each player. At the same time, users

might be interested in preserving their anonymity because they might not want to make

public the type of games they play.

Another scenario where it can be necessary to have a controlled assignment of iden-

tities is a video streaming or Video on Demand (VoD) service that uses a P2P overlay

to distribute the content. VoD services are currently being widely used in the Internet

and the traffic that they generate is a big percentage of the total traffic of the current

Internet. In such a scenario, the service provider might control the content distribution

and the access to the service, but users might not want to reveal their real identity

to the service provider. Thus, on one hand users might want to be anonymous but

on the other hand, the service provider might want to have a robust management of

nodeIDs. A solution for this issue that we develop later in the thesis is to use an in-

dependent TTP to aid in the identity generation process. This TTP could be used by

many different service providers as a proxy to avoid that users can obtain more than one

nodeID and also to avoid the forgery or theft of these identifiers. This solution would

benefit both parties; service providers and users. Service providers can protect their

59

3. SECURE IDENTITY MANAGEMENT

networks from identity related attacks and guarantee a better quality of service, while

users can maintain their anonymity and benefit from a good service. Moreover, this

type of solution can also guarantee the nodeIDs stability and enable service providers

the implementation of a robust reputation system.

Finally, other scenarios that can use P2P overlays and in which a secure and robust

identity management is necessary can be ad hoc meetings, where confidential infor-

mation can be revealed, or instant personal matching services, where a teenager can

reveal her tastes and opinions among other relevant information. These do not need to

preserve the anonymity of users, users can utilize their real identities, but it is very im-

portant to avoid that an attacker can steal an identity to join the overlay impersonating

another user. Obviously, it is also very important to control the access to the service to

guarantee that only authorized users join the network.

60

Chapter 4

An Implicit Certificate-based

Identity Assignment Protocol for

P2P overlAys

Contents

4.1 Assumptions and Clarifications 62

4.2 Protocol Specification . 64

4.2.1 Protocol Steps . 65

4.2.2 Public Key Generation . 68

4.2.3 NodeID Validation . 68

4.3 Security Analysis . 68

4.3.1 Cryptographic Analysis . 70

4.3.2 Discussion of NodeID Requirements 71

4.3.3 Formal Validation of the Protocol 72

4.4 Performance Analysis . 73

4.5 Conclusions . 74

In this chapter, we propose an Implicit Certificate-based Identity Assignment Proto-

col for the P2P overlAys (ICIAPPA). Leveraging the issuance of implicit certificates and

authenticating all newcomers, ICIAPPA provides traceability of users’ actions, partial

anonymity1 and a secure and efficient way of assigning nodeIDs.

1We consider partial users anonymity when network users cannot bind the real-world identity of

another user to his nodeID but a TTP can do it.

61

4. AN IMPLICIT CERTIFICATE-BASED IDENTITY ASSIGNMENT
PROTOCOL FOR P2P OVERLAYS

Implicit certificates provide digital identification in the same way that explicit cer-

tificates do but presenting certain advantages. In particular, implicit certificates are

smaller because they do not include neither the issuer signature nor the user public key,

but a single value combining both. The main property of implicit certificates for our

purposes is that they enable us to generate robust nodeIDs. In ICIAPPA, each nodeID

is computed as a digest of the user’s public key. However, unlike other proposals of

the literature, each public key is generated under the supervision and participation of a

TTP using as foundation the ECQV implicit certificate scheme [103], explained in the

Section 2.2.2. In more detail, ECQV has been modified to ensure that neither of the

two parties involved in the scheme has the ability to choose the value of the resulting

public key. Consequently, a user cannot decide unilaterally what will be her nodeID

and the TTP cannot impersonate a user1. On the other hand, nodeIDs are easy to

verify and they meet several of the security requirements discussed in Section 3.2. In

particular, joint management, verifiability, revocability and uniformity.

4.1 Assumptions and Clarifications

The ICIAPPA protocol essentially uses ECQV but it starts with a commitment scheme.

Remember that in the basic version of ECQV, the user that is going to be certified is

who first creates and sends a random point NX to the TTP. After that, the TTP selects

another random point NC to finally build a public key reconstruction parameter ZX .

However, for a robust assignation of the nodeIDs, we must prevent that the TTP can

deliberately choose the reconstruction public parameter of any user (ZX), since the

nodeID is derived from this value. To fix this, in our protocol, the TTP must select

NC before receiving NX and this is accomplished using a commitment scheme. On one

hand, the commitment scheme allows the TTP to demonstrate that it selected its part

of the public key a priori and, on the other hand, the commitment scheme allows the

user to verify that the certificate received has been generated using a proper committed

value.

The commitment scheme that we propose for ICIAPPA uses elliptic curve cryp-

tography. Our scheme is inspired from the Exclusive-OR (XOR) encryption algorithm

1Note that we consider that a TTP is trusted for the action of issuing certificates following a certain

protocol, but we do not require trusting it for the rest of the actions performed in the overlay, such as

content distribution.

62

4.1 Assumptions and Clarifications

[41]. Figure 4.1 illustrates our commitment scheme. As shown in 4.1, we assume that

a sender S possesses a private key dS and a public key QS = dSG and wants to make

a commitment for a random value v. Then, the sender creates a nonce u and its asso-

ciated elliptic curve point U = uG. Then, c = v ⊗ H(dSU) is the commitment value

for v, where H() is a hash function. In the first phase (Commit), the sender commits

v by sending the tuple (c, U) to the receiver. In the second phase (Reveal), the sender

reveals u. The receiver checks that U = uG and calculates v using the expression

v = c⊗H(uQS).

Figure 4.1: ICIAPPA Commitment Scheme.

The strength of the previous commitment scheme resides in the fact that an attacker

cannot create a commitment value c for v without knowing the source’s private key.

Also, the source cannot modify v once it has sent the corresponding commitment value.

During the protocol specification, we will use encryption mainly to provide confi-

dentiality. However, sometimes it will also be used to bind different parts of a message.

Digital signatures are mainly used to ensure both message integrity and authentication.

Although we do not assume that the identity of the signing principal can be deduced

from this signature, since this deduction is not possible in all digital signature schemes.

For this reason, we always state the identity of the signing principal within the same

message to avoid classical security protocol vulnerabilities [21].

Regarding other protocol details, specially the control parameters, we use a times-

tamp to fulfill two purposes. Firstly, the timestamp is used as a proof of timeliness

63

../figures/Commitment_Scheme.eps

4. AN IMPLICIT CERTIFICATE-BASED IDENTITY ASSIGNMENT
PROTOCOL FOR P2P OVERLAYS

to guarantee the freshness of the user’s request and to avoid replay attacks. To do so

we will assume a certain synchronism between the clocks of all involved parties, precise

enough so the recipient of a message can consider it valid if the timestamp is within a

reasonable interval of this recipient’s local time. In this sense, a protocol like the Net-

work Time Protocol (NTP) [89] may be enough for this purpose. If any of the involved

entities consider that the timestamp of a message is not fresh enough, the identity as-

signment process is canceled automatically. For this, it sends an error message to the

rest of the involved parties to delete all the information related to that request. Sec-

ondly, we also use this timestamp as a request identifier, that is, this value will be used

by all the involved entities to unequivocally identify a request. This also means that

this timestamp should be unique in all the system, so nodes should generate them to

have enough resolution to assure this uniqueness. In this sense, timestamps of 64 bits,

as the ones used by the NTP protocol, may be a good option to use.

4.2 Protocol Specification

In this Section we describe ICIAPPA: what information is exchanged between the two

parties (Newcomer and TTP), how data is exchanged, what security mechanisms are

used and so on. Figure 4.2 shows the essential data (without several details) exchanged

in this protocol.

Regarding the notation used along the protocol description, we use {m}K to repre-

sent the ciphertext of a message m encrypted under a key K and {m}K−1 to represent a

signature on a message m using the private key K−1 just as Abadi and Needham adopt

in [21]. Table 4.1 shows a summary of the global notation.

Parameter Legend
p The order of the underlying finite field Fp.
G The generator of the elliptic curve defined over Fp (E(Fp)).
IDX The identity of X.
IDTTP The identity of the TTP.
PX The pseudonym of X within the overlay (nodeID).
CX The digital certificate of X in the real-world.
dX The private key of X in the real-world.
QX The public key of X in the real-world.
dXO The private key of X within the overlay.
QXO The public key of X within the overlay.
dTTP The private key of the TTP.

64

4.2 Protocol Specification

QTTP The public key of the TTP.
tX The timestamp (request identifier) generated by X.
IX The information that is included in the X’s certificate.
ZX The X’s reconstruction public parameter.
hX The digest of the new certificate (hX = IX ||ZX).
sX TTP signature of X’s certificate.
(IX , ZX) The X’s overlay certificate.
nC , uC , nX Private parameters of the X’s request (∈ [1, p− 1]).
NC , UC , NX Public parameters of the X’s request (∈ E(Fp)).
CC The commitment point sent by the TTP.
H1(m) A secure hash function on a message m.
H2(P) A secure hash function on a point P which also outputs a point.
i→ j : The sending of a message from the entity i to the entity j.
{m}Q The ciphertext of a message m encrypted using the public key Q.
{m}d The signature on a message m using the private key d.

Table 4.1: Notation for ICIAPPA.

4.2.1 Protocol Steps

Step 1:

When a user wants to join the P2P overlay, she must send a “HELLO MESSAGE” to

the corresponding TTP. This message contains the identity of the user and the TTP

(IDX and IDTTP), a timestamp (tX), and the user’s digital certificate in the real world

(CX). The HELLO MESSAGE is signed by the user using her real-world private key

and encrypted using the TTP’s public key.

HELLO MESSAGE, X → TTP : {CX , {IDX , IDTTP , tX}dX}QTTP

The request identifier (tX) must always be encrypted to avoid that other users can

use the same tX for malicious purposes. It is also noteworthy that the inclusion of the

identities in the signed message is needed to avoid that the receiver can forward this

message to another recipient posing as X [21]. In fact, to avoid this attack the identities

of the sender and the receiver are included in all the messages of the protocol.

Step 2:

The TTP generates two nonces: {nC , uC} ∈ [1, p− 1] and their corresponding points:

NC = nCG and UC = uCG.

65

4. AN IMPLICIT CERTIFICATE-BASED IDENTITY ASSIGNMENT
PROTOCOL FOR P2P OVERLAYS

Figure 4.2: Basics of the Certificate and nodeID Generation Scheme.

Then, the TTP calculates CC = NC ⊗H2(dTTPUC) and it sends CC and UC (the

commitment values) to X, all signed and encrypted together with the involved identities

and the timestamp.

ACCEPT MESSAGE, TTP → X : {{IDTTP , IDX , tX , CC , UC}dTTP
}QX

Step 3:

Using the “ACCEPT MESSAGE”, X verifies the signature and decrypts the message.

After that, X generates a random private number: nX ∈ [1, p − 1] and calculates a

public point NX = nXG. Then, X sends NX to the TTP, signed and encrypted together

with the identities and the timestamp.

REQUEST MESSAGE, X → TTP : {{IDX , IDTTP , tX , NX}dX}QTTP

66

../figures/Protocol_Implicit_New.eps

4.2 Protocol Specification

Note that the freshness of the timestamp tX must be checked in all the steps. If the

timestamp is outdated at any step, the protocol must be canceled.

Step 4:

Using the “REQUEST MESSAGE”, the TTP verifies the signature and decrypts the

message. After that, the TTP calculates the reconstruction public parameter as ZX =

NX +NC . Then, it calculates the hash value of that parameter concatenated with the

certificate information (IX): hX = H(IX ||ZX). Finally, the TTP signs the certificate

calculating sX = hXnC+dTTP mod p, and provides X with {sX , uC , IX , ZX}, all signed

and encrypted together with the identities and the timestamp.

RESPONSE MESSAGE, TTP → X : {{IDTTP , IDX , tX , sX , uC , IX , ZX}dTTP
}QX

Note that once ZX and hX have been calculated, if QXO = hXZX + QTTP = O,

the TTP must request the user a different private parameter (NX) sending a “REPLAY

MESSAGE”, and repeat the process until QXO 6= O.

REPLAY MESSAGE, TTP → X : {{IDTTP , IDX , tX , NX}dTTP
}QX

Step 5:

X receives her new certificate and the signature of the TTP in the “RESPONSE

MESSAGE”. Then, she computes U ′

C = uCG and compares it with UC , calculates

NC = ZX −NX and compares it with N ′

C = H(uCQTTP)⊗CC to verify that the TTP

has used the initial value nC (if this check fails, X cancels the joining process). Then, X

generates her private key dXO = hXnX + sX mod p, her public key QXO = dXOG and

calculates her pseudonym (nodeID) as: PX = H(QXO). Finally, X creates a “CON-

FIRMATION MESSAGE” which contains her nodeID, identities and the timestamp,

all signed (using the overlay private key) and encrypted (using the TTP’s public key).

CONFIRMATION MESSAGE, X → TTP : {{IDX , IDTTP , tX , PX}dXO
}QTTP

67

4. AN IMPLICIT CERTIFICATE-BASED IDENTITY ASSIGNMENT
PROTOCOL FOR P2P OVERLAYS

Step 6:

In the last step, the TTP receives the “CONFIRMATION MESSAGE” from the new-

comer, decrypts it, and verifies the signature and the nodeID of X using the overlay

public key (QXO).

4.2.2 Public Key Generation

Whenever a user receives a message, she needs to generate the sender’s public key to

authenticate her and verify the included signatures. To do so, she uses the sender’s

implicit certificate, which includes the certificate’s information (IX) together with the

reconstruction public parameter (ZX), and follows the next steps (X is considered the

sender):

1. Calculates the parameter hX = H(IX ||ZX).

2. Generates the sender’s public key as QXO = hXZX +QTTP .

3. Verifies the message signature using QXO.

Note that this is accomplished because:

QXO = dXOG = hXnXG+sXG = hXnXG+hXnCG+dTTPG = hXNX +hXNC +

QTTP = hX(NX +NC) +QTTP = hXZX +QTTP .

4.2.3 NodeID Validation

Whenever a user receives information from another user (contents or routing info) she

should validate her nodeID. To do so, the receiver only needs to compute the digest of

the sender’s public key (PX = H(QXO)) and compare the result with the used identifier.

Note that she must generate the X’s public key previously.

4.3 Security Analysis

ICTIAPPA provides a mechanism for issuing robust and traceable identities in a P2P

overlay while the anonymity of the users is partially preserved; only the TTP knows the

real-world identity of users and their nodeIDs. Next, we analyze the behavior of this

protocol against some of the most common attacks in a P2P overlay.

68

4.3 Security Analysis

Sybil attack. As we discussed in Section 2.1.3, to fully avoid the Sybil attack in a

P2P overlay it is necessary to guarantee that a user can only obtain a unique nodeID.

If that is not possible, to guarantee a limited number of nodeIDs per user at least

minimizes the potential damage of the attack. In ICIAPPA, users must authenticate

themselves to the TTP using a unique real-world identity (like the one provided by

identity cards or passports). Thus, our way of dealing Sybil attacks is based on the

hypothesis that these real-world identities are much harder to spoof than any other

type of identity. In this way, if it is difficult for a (normal) person to assume multiple

IDs in the real-world, it will then be equally difficult for that person to assume multiple

identities within the network [50]. Obviously, we consider that it would be adequate that

the credentials used by users to authenticate themselves should be issued by trusted and

recognized entities, for instance CAs which depend on a government. In a less strict and

commercial scenario, users could use their credit cards as a credentials while they make

a payment. In this case, if a user has more than one credit card she can obtain more

than one nodeID, but the number of credit cards per user is normally quite limited.

Eclipse attack. To avoid an eclipse attack it is imperative to avoid two different

actions which can be carried out by attackers. On the one hand, attackers should not

be able to place themselves close to a target node. In this way, attackers could not

select a certain victim to launch the attack. On the other hand, it is also necessary to

avoid (or limit) the Sybil attack to prevent a single attacker can encircle a victim. Only

in the case that both actions are avoided we can say that the Eclipse attack is avoided.

As we have seen above, ICIAPPA avoids both actions and therefore the Eclipse attack.

MITM attack. During the bootstrapping phase, it is theoretically impossible for

an attacker to extract information or to modify the proper working of ICIAPPA, since

all messages of the protocol are signed and encrypted using public key cryptography.

Hence, attackers only have a way to issue a valid overlay certificate, compromising the

cryptographic keys of the TTP. In the same sense, during the normal working of the

P2P overlay, an attacker cannot impersonate another user if she does not compromise

her private/public keys pair, since all nodes should sign all the messages they send.

Whitewashers. ICIAPPA tries to limit the number of nodeIDs that a user can

manage binding their real-world identities with their nodeIDs. However, it does not

guarantee the stability of those nodeIDs, since every time an overlay certificate is re-

voked the nodeID changes. Specifically, each implicit certificate has bound a different

69

4. AN IMPLICIT CERTIFICATE-BASED IDENTITY ASSIGNMENT
PROTOCOL FOR P2P OVERLAYS

cryptographic public key, which is used to genera the associated nodeID. Therefore, we

must to clarify that whitewashers can take advantage of this feature but the TTP can

monitor their changes of nodeIDs.

4.3.1 Cryptographic Analysis

Each of the cryptographic tools used in this protocol has a range of security levels, which

are measured in bits, and each extra bit of security doubles the amount of computation

needed by a brute-force attack to compromise the security of a system. We must take

into account that the security level of each selected tool must meet or exceed the desired

security level of the whole system.

The used RNGs must fulfill the ANSI X9.82 [26] or the NIST Special Publication

800-90A [94], since the secrecy of the cryptographic keys depends on the security level

of these generators. In [101], a suitable RNG is described.

In ICIAPPA, the hash functions are used to compute the user’s nodeID, certificate

digests and message digests. The security level associated with a hash function depends

on its application and whether collision resistance is necessary or not. In the first case,

the security level is at most half the output length (in bits) of the hash function. In

the second case, it is at most the output length of the function. In ICIAPPA, collision

resistance is needed in all situations. For this reason, a 256-bit hash function as SHA256

[95] could be a good option to implement the protocol, since it provides a 128-bit security

level.

Regarding the used elliptic curve domain parameters, their generation and validation

should follow the guidelines in [101]. These domain parameters consist of six values:

1. p, the size of the finite field Fp.

2. a, b ∈ Fp, the two parameters which specify the elliptic curve E(Fp) defined by

the equation: y2 ≡ x3 + ax+ b (mod p).

3. G, the base point generator.

4. n, the order of the base point generator.

5. And h, the cofactor, which is the number such that h · n is the number of points

on the elliptic curve.

70

4.3 Security Analysis

The figure ⌈log2 p⌉ is another parameter that indicates the security level which

is associated with an elliptic curve. In particular, an elliptic curve with ⌈log2 p⌉ =

2t supplies approximately t bits of security, which means that solving the logarithm

problem on this elliptic curve is believed to take approximately 2t operations. In [102]

there is a list of recommended elliptic curves for cryptography. From them, a 256-bit

Koblitz curve could be a good choice to combine with the SHA256 function, since both

provide a 128-bit security level.

Regarding the proposed commitment scheme, it accomplishes the two main security

properties that are required in this kind of protocols: Binding and Hiding. Our scheme

is perfectly binding because two different values of uC cannot output the same correct

value of vc. It is also computationally hiding because given the values of CC , UC and

G, an attacker cannot solve the ECDLP to obtain the random value uC , and then to

calculate vc (this is an intractable problem as commented in Section 2).

Once an implicit certificate is issued, its owner must demonstrate the knowledge of

the associated private key (dXO) by using a signature algorithm, such as ECDSA. Note

that the fact of generating her associated public key (QXO) is not a sufficient proof

that QXO is authentic. In this scheme, dXO is generated using the TTP’s signature

(sX), and this signature is calculated using the TTP’s private key (dTTP) together

with the private parameter selected by the TTP (nC). QXO is generated by the other

users of the network using the TTP’s public key (QTTP) and the reconstruction public

parameter (ZX) which is included in the user’s certificate. Thus, if a user validates a

signature using QXO, she can be sure that the correct TTP’s public key has been used

in generating that key. Otherwise, the signature validation will fail. The same occurs

if a wrong ZX is used.

In the case that a malicious user wants to find the private parameter selected by the

TTP (nC) to select the value of her new public key (QXO), she should also solve the

ECDLP, which is computationally unfeasible.

4.3.2 Discussion of NodeID Requirements

In this Section, we discuss how some of the design requirements exposed in Section

3.2 are satisfied by nodeIDs obtained with ICIAPPA. Thanks to the binding between

the users’ real-world identities and their nodeIDs, each user can only obtain a limited

71

4. AN IMPLICIT CERTIFICATE-BASED IDENTITY ASSIGNMENT
PROTOCOL FOR P2P OVERLAYS

number of nodeIDs. In particular, we can create a unique nodeID if, for instance, the

user’s national identity card is used.

NodeIDs are jointly generated between users and the TTP, avoiding that a user

can select her location within the overlay. Regarding the nodeID generation process,

it also guarantees that nodeIDs are randomly generated; therefore their distribution

within the virtual space of the network is uniform with a high probability.

ICIAPPA can also provide partial anonymity within the overlay, since nodes are

not able to match the users’ real-world identities with the nodeIDs. This is achieved

thanks to the use of encryption during the message exchange process, since all exchanged

messages are encrypted, so no information is leaked to external entities. However, users

are not anonymous to the TTP. Regarding the requirement of traceability , thanks to

the fact that the TTP knows the real-world identity of the users, it can easily relate

their identities with their nodeIDs.

On the other hand, all implicit certificates are verifiable by anybody. Any user

can verify any nodeID using the public key of its owner derived from the certificate’s

information and the public key of the TTP. For this reason, nobody can generate a valid

nodeID without the supervision and participation of the TTP.

Finally, implicit certificates are also revocable . Any certificate can be revoked if

a user is misbehaving or the involved private key has been compromised. In this last

case, the user needs to prove the real-world identity related to the overlay certificate.

Although this protocol does not provide stability of nodeIDs. Every time a user obtains

a new overlay certificate, it will be generated a different public/private key pair for the

overlay. Therefore her nodeID will also change.

4.3.3 Formal Validation of the Protocol

Moreover, we have performed an automated validation of the message exchange using

the AVISPA tool to validate the security of ICIAPPA. We ran the tool using three

different back-ends (OFMC, CL-AtSe and SATMC), and in all three cases the output

was “SAFE”.

Table 4.2 shows the five messages exchanged between a newcomer X and the TTP .

IDX and IDTTP are the identifiers of the user X and the TTP, and KX and KTTP are

their cryptographic keys respectively. Functions {m}K and {m}_inv(K) represent the

72

4.4 Performance Analysis

encryption and signing of the message m using the key pair K and inv(K) respectively.

Finally, “ .” indicates concatenation.

1 X → TTP : {CX{IDX .IDTTP .tX}_inv(KX)}_KTTP

2 X ← TTP : {{IDTTP .IDX .tX .CC .UC}_inv(KTTP)}_KX

3 X → TTP : {{IDX .IDTTP .tX .NX}_inv(KX)}_KTTP

4 X ← TTP : {{IDTTP .IDX .tX .sX .uC .IX .ZX}_inv(KTTP)}_KX

5 X → TTP : {{IDX .IDTTP .tX .PX}_inv(KX)}_KTTP

Table 4.2: ICIAPPA Message Exchange for the AVISPA Tool.

In Appendix B.1 we show the HLPSL code of the validation performed and outputs

obtained.

4.4 Performance Analysis

We have developed a secure identity assignment protocol to avoid most of the threats

related to identities in a P2P overlay. However, security measures consume bandwidth,

memory and processing time. In this context, we can state that implicit certificates

decrease the resource consumption of the security mechanisms implemented. Implicit

certificates use a reconstruction public parameter (ZX). This reduces the number of

bytes that a sender needs to send to a receiver, since the TTP’s signature no longer needs

to be sent (64 bytes if a 256-bit elliptic curve is used, 33 bytes in the compressed format),

and the processing overhead, since authenticating a message with an implicit certificate

requires one signature validation less than when using explicit certificates. A standard

certificate requires two signature validations: one for the signature on the certificate and

another for the signature of the received message. With implicit certificates there is only

one signature validation for each message. However, the receiver needs to calculate the

sender’s public key before performing these validations. Considering the use of the

ECDSA algorithm to verify a signature, three modular operations, two elliptic curve

scalar multiplication operations and one point addition operation are needed. Using

the ECQV scheme, only one elliptic curve scalar multiplication operation and one point

addition operation are needed. Therefore, the three modular operations needed to verify

an ECDSA signature are not necessary to check an implicit certificate.

73

4. AN IMPLICIT CERTIFICATE-BASED IDENTITY ASSIGNMENT
PROTOCOL FOR P2P OVERLAYS

Regarding the complexity (bandwidth overhead, delay, computational cost, and so

on) of the issuance process, we must mention that it only affects the first time that a

user joins the overlay (or each time that a user must update or revoke her certificate)

and that it depends on the used encryption and digital signature schemes. For this

reason, we have defined a generic version of the protocol, which can be implemented

using the most appropriate schemes for each situation.

Finally, we must mention that ICIAPPA ensures that all nodeIDs are uniformly

distributed in the virtual space, which provides a proper load-balancing among all nodes

of the overlay and thus a good performance. We achieve this requirement by using a

hash function to generate the nodeIDs.

4.5 Conclusions

Many proposals in the literature use cryptographic public keys with the aim of generat-

ing robust nodeIDs. But none of those proposals is concerned about the characteristics

of the cryptographic keys. Unfortunately, as we have seen in Chapter 3, the robust-

ness of this kind of nodeIDs lies in the way that public keys are generated and issued.

For this reason we have proposed ICIAPPA (An Implicit Certificate-based Identity As-

signment Protocol for the P2P overlAys), a new protocol for issuing implicit certificates

which provides an appropriate type of public keys to generate robust nodeIDs for a P2P

overlay. Moreover, implicit certificates have a shorter length than explicit certificates;

therefore they provide a more efficient alternative.

Specifically, on the one hand, public key certificates provide the basic security

services to P2P overlays: authentication, data confidentiality, data integrity, non-

repudiation and access control. On the other hand, the particular use of implicit

certificates guarantees the random generation of the public keys without trusting in

third parties. And finally, these keys are used to obtain very robust nodeIDs (unique,

random, uniformly distributed, verifiable and revocable).

Regardless of the type of the used certificates, ICIAPPA can also provide traceability

of malicious users. This feature depends on the access control carried out by the TTP,

which can be done using users’ real-world certificates. Although this measure only

allows partial anonymity of users. On the other hand, this protocol cannot provide

stability of nodeIDs, since every time a certificate is revoked or renewed its associated

74

4.5 Conclusions

public key changes; therefore the nodeID of the owner will also change. This feature is

provided in another of our proposals, more specifically in RIAPPA (Chapter 6).

Finally, regarding the performance implications, we can conclude that the cost of

ICIAPPA is reasonable according to our analysis. It is very important to take into

account that a user only executes this protocol the first time she joins the overlay,

or when her overlay certificate has been revoked or must be renewed. On the other

hand, the use of digital certificates always implies the distribution of revocation data,

which can be a challenging task in this kind of networks. For this reason, this issue is

specifically addressed in Chapter 7.

75

4. AN IMPLICIT CERTIFICATE-BASED IDENTITY ASSIGNMENT
PROTOCOL FOR P2P OVERLAYS

76

Chapter 5

A Two-level Identity Assignment

Protocol for P2P overlAys

Contents

5.1 Assumptions and Clarifications 78

5.2 Protocol Specification . 80

5.2.1 Protocol Steps . 83

5.2.2 Public Key Generation . 91

5.2.3 NodeID Validation . 92

5.3 Security Analysis . 92

5.3.1 Cryptographic Analysis . 93

5.3.2 Discussion of NodeID Requirements 94

5.3.3 Formal Validation of the Protocol 95

5.4 Performance Analysis . 96

5.5 Conclusions . 97

In this chapter, we propose a Two-level Implicit Certificate-based Identity Assign-

ment Protocol for the P2P overlAys (TIAPPA). Also leveraging the issuance of implicit

certificates, authenticating newcomers, using two TTPs and a blind signature scheme,

TIAPPA provides traceability, full anonymity1 and a secure and efficient way of assign-

ing nodeIDs. In this case, each nodeID is also computed as a digest of the user’s public

key. However, unlike ICIAPPA (Section 4), each public key is generated under the

1We consider full users anonymity when neither the TTPs nor the other users can bind the real-

world identity of a user to her nodeID by themselves.

77

5. A TWO-LEVEL IDENTITY ASSIGNMENT PROTOCOL FOR P2P
OVERLAYS

supervision and participation of two TTPs using a new modified version of the ECQV

implicit certificate scheme.

In the same way that in ICIAPPA, ECQV has also been modified to ensure that

neither the TTPs nor the newcomers has the ability to choose the value of the resulting

public key; it includes the commitment scheme explained in Section 4.1. In addition,

TIAPPA uses two collaborating TTPs: an internal TTP that assigns and manages the

nodeIDs, and an external TTP that authenticates and manages the real-world identities

of newcomers. Thanks to the use of these two collaborating TTPs and a blind signature

scheme, users remain anonymous to other users and to the internal TTP, and the

external TTP is not able to bind the real-world identity of a user to her nodeID. To

do so, the external TTP takes part in the certificates issuance process without knowing

the information they contain.

In addition, the TTPs share a Link Number (LN) for each newcomer who obtains an

overlay certificate. This LN binds the real-world identity of the users to their nodeIDs.

Thus, the anonymity is compatible with a robust protection against identity-based

attacks. In this sense, TIAPPA can work in a similar way to an anonymous blacklisting

system (also called anonymous revocation system) [62], because the TTPs have the

ability to revoke access from dishonest/abusive anonymous users without revealing their

real-world identities. But in the case that a malicious user commits a serious offense

or illegal action within the network, both TTPs can de-anonymize the identity of this

user. We are aware that providing anonymity and traceability at the same time may

seem conflicting, but notice that the cases in which we pretend to use this traceability

feature are those which require starting a legal investigation. In these cases, TIAPPA

can also work like a revocable anonymity system [76] if necessary, and fully de-anonymize

malicious users committing illegal actions. Even so these nodeIDs are easy to verify by

other users and meet almost all security requirements discussed in Section 3.2.

5.1 Assumptions and Clarifications

We assume that users trust in both TTPs, but this trustworthiness relationship is only

for specific aspects related to the identity management and anonymity. TTPs are only

responsible for cooperatively issuing the implicit certificates. In addition, we assume

that these TTPs will never collude to de-anonymize a user.

78

5.1 Assumptions and Clarifications

Regarding the cryptographic aspects of the protocol, in TIAPPA we also use en-

cryption (both symmetric and asymmetric) to provide confidentiality and sometimes to

bind different parts of a message, and digital signatures to ensure both message integrity

and authentication. In addition, we also include the identity of the involved parts in a

communication within all the exchanged messages to avoid the classical security proto-

col vulnerabilities. However, this only occurs when we use asymmetric cryptography,

since when we use symmetric encryption we assume that the involved parties are al-

ready authenticated because the symmetric key is only known by them. Obviously, we

assume that the TTPs share a symmetric cryptographic key.

To preserve the users’ anonymity within the P2P overlay we have adapted a blind

signature protocol based on ECDLP [112] to our implicit certificate issuance scheme.

Figure 5.1 shows the original scheme where the signer S must sign the message m

provided by the requester R. First of all, S selects a random number u ∈ [1, p− 1] and

provides R with its associated elliptic curve point U = uG. Next, R selects two random

numbers v, w ∈ [1, p − 1]; calculates T = vU + wG, e = H(T ||m) and e′ = e/v, where

H() is a hash function and || means concatenation; and sends e′ to S. Then, S generates

the blind signature s′ = e′dS + u using her private key and sends it to R. Finally, R

unblinds the S’s signature (s = s′v+w) and verifies the result (sG == eQS + T) using

the public key of S. Now the S’s signature on the message m is the pair (s, T).

But the use of a double signature on an implicit certificate modifies its usual format.

In this case, the implicit certificate that identifies a node and provides the information

needed to generate its public key is composed of three parameters (not two as the

ECQV implicit certificate version explained in Section 2.2.2 and used in ICIAPPA).

These three parameters are the information contained in the certificate (I) and two

public reconstruction parameters (Z and B).

Regarding other protocol details, we also use timestamps to fulfill two purposes;

timeliness proofs and request identifiers. In the first case, we guarantee the freshness

of the requests to minimize the impact of a replay attack. Although, as we explained

in ICIAPPA, this measure requires a certain synchronism between the clocks of all

involved parties. The second purpose is to provide a value used by all the involved

entities to unequivocally identify a certain request. More specifically, TIAPPA uses

two different timestamps for each of the certificate requests. One of them (tX) is used

in all exchanged messages during the entire process and the other one (tXO) is only

79

5. A TWO-LEVEL IDENTITY ASSIGNMENT PROTOCOL FOR P2P
OVERLAYS

Figure 5.1: Original blind signature scheme

used within the messages exchanged between the newcomer and the internal TTP via

the external TTP. Fortunately, the Network Time Protocol (NTP) [89] may be a good

solution for these purposes. It is also noteworthy that these two entities use a session

key pair to secure their communications via the external TTP, since the newcomer does

not have her cryptographic key pair to be used within the overlay until the implicit

certificate is issued. Finally, in the case that there is any kind of error during the

transactions (due to lack of freshness, invalid signatures, corruption of messages, etc.),

an error message is immediately sent to cancel the request process.

5.2 Protocol Specification

In this Section we describe TIAPPA: what information is exchanged between the three

parties (Newcomer and TTPs), how data is exchanged, what security mechanisms are

used and so on. Figure 5.2 shows the essential data (without several details) exchanged

in this protocol.

By way of summary, a newcomer (X) must always have a digital certificate for the

real-world (CX) which contains a public key (QX). This certificate can be issued by any

80

../figures/Blind_Signature.eps

5.2 Protocol Specification

Figure 5.2: Certificate/nodeID generation scheme

CA and must allow the user to be authenticated by the external TTP (TTPα). Then,

the internal TTP (TTPβ) generates an implicit certificate for the user using a public

parameter sent by her and the blind signature of TTPβ. And finally, TTPβ issues the

new certificate of X (CXO). At the end of the description, Figure 5.3 shows the message

exchange between the three parties.

Regarding the notation used along the protocol description, we use a similar notation

to that used in ICIAPPA but more extensive due to the complexity of this protocol.

Table 5.1 shows a global summary of this notation.

81

../figures/Protocol_Implicit_TIAPPA.eps

5. A TWO-LEVEL IDENTITY ASSIGNMENT PROTOCOL FOR P2P
OVERLAYS

Parameter Legend
p The order of the underlying finite field Fp.
G The generator of the elliptic curve defined over Fp (E(Fp)).
TTPα, TTPβ The external and internal TTPs respectively.
IDTTPα , IDTTPβ

The identity of TTPα and TTPβ respectively.
IDX The real-world identity of the newcomer.
PX The nodeID of the newcomer.
IX The information that is included in X’s certificate.
CTTPα , CTTPβ

The digital certificates of the TTPs.
CX The real-world certificate of the newcomer.
CXO The new overlay certificate of the newcomer (IX , ZX , BX).
dTTPα , dTTPβ

The ECC private key of the TTPs.
QTTPα , QTTPβ

The ECC public key of the TTPs.
Kαβ The symmetric key shared between the two TTPs.
QX The real-world public key of the newcomer.
dX The real-world private key of the newcomer.
QXS The session public key of the newcomer.
dXS The session private key of the newcomer.
QXO The new overlay public key of the newcomer.
dXO The new overlay private key of the newcomer.
s′X The blind signature of TTPα on the X’s certificate.
sX The double signature of the TTPs on the X’s certificate.
ZX , BX The X’s reconstruction public parameters.
hX The digest of part of the new certificate (IX ||ZX).
eX The value of the digest hX blinded.
nX , nα, nβ, uβ Private parameters of the X’s request (∈ [1, p− 1]).
NX , Nα, Nβ, Uβ Public parameters of the X’s request (∈ E(Fp)).
bX The blinding factor.
Cβ The commitment value.
H1(m) A secure hash function on a message m.
H2(P) A secure hash function on a point P which also outputs a point.
i→ j : The sending of a message from the entity i to the entity j.
{m}K The ciphertext of a message m encrypted using the symmetric

key K.
{m}Q The ciphertext of a message m encrypted using the public key

Q.
{m}d The signature on a message m using the private key d.
tX The timestamp also used as request identifier.
tXO The timestamp also used as newcomer identifier with TTPβ.
SID The identifier of a service.

Table 5.1: Notation for TIAPPA.

82

5.2 Protocol Specification

5.2.1 Protocol Steps

Step 1:

In the first step, the newcomer X contacts the external TTP (TTPα) to start the

message exchange. First of all, X generates a timestamp (tX), which will serve as a

request identifier along the protocol. Then she sends that timestamp together with

the identifier of the service she wants to access (SID) and her real-world certificate

(CX) to TTPα. Always including the sender’s and receiver’s identities, and signing and

encrypting the message. She signs the HELLO MESSAGE using her private key in

the real-world (dX) and encrypts it using the public key of TTPα (QTTPα).

HELLO MESSAGE, X → TTPα : {{IDX , IDTTPα , tX , SID, CX}dX}QTTPα

The X’s certificate allows TTPα to authenticate the sender and the message, and X

encrypts the entire message to provide confidentiality. Note that the request identifier

(tX) must always be encrypted to avoid other users can use the same tX for malicious

purposes. The service identifier (SID) and the X’s certificate are encrypted to preserve

the user’s privacy. It is also noteworthy that the inclusion of the identities in the signed

message is necessary to avoid that a malicious user can forward this message to another

recipient posing as X [21]. Therefore, from here on we will include the identities of the

sender and the receiver in all messages.

Step 2:

In the second step, after the decryption of the HELLO MESSAGE and the verification

of its signature, TTPα authorizes X to acquire an identity for the requested P2P overlay.

Therefore, it will answer to her with the certificate of the internal TTP responsible for

that service (TTPβ). Otherwise, X would be expelled from the identity acquisition

process. But before that, TTPα stores X’s identity (IDX), her real-world certificate

(CX), the service identifier (SID), the request identifier (tX) and the identity of TTPβ,

to manage X’s request. Regarding the answer to X, it sends a signed and encrypted

message which includes the certificate of TTPβ (CTTPβ
), tX and the involved identities.

Obviously, the ACCEPT MESSAGE is signed using its private key and encrypted

using the public key of X in the real-world.

83

5. A TWO-LEVEL IDENTITY ASSIGNMENT PROTOCOL FOR P2P
OVERLAYS

ACCEPT MESSAGE, TTPα → X : {{IDTTPα , IDX , tX , CTTPβ
}dTTPα

}QX

Note that the freshness of the timestamp tX must be checked in all steps, and if it

is out of time the identity request must be automatically canceled.

Step 3:

In this step, X contacts TTPβ via TTPα to obtain a valid implicit certificate for the

overlay. But before that, she generates a session key pair (dXS ,QXS) and another times-

tamp (tXO), which will also be used as a newcomer’s identifier, and stores the certificate

of TTPβ (CTTPβ
) and its identity (IDTTPβ

). Then, X sends the generated public key

(QXS) and tXO to TTPβ, all protected to prevent TTPα can access to that information.

To do so, she generates a signed and encrypted message (A1) using her new session key

pair and the public key of TTPβ, which contains QXS , tXO and the identity of the

internal TTP. Finally, X sends the A1 message within the REQUEST MESSAGE 1

to TTPα. This message also contains tX and the involved identities, and it is also signed

and encrypted using the public key of TTPα.

REQUEST MESSAGE 1, X → TTPα : {{IDX , IDTTPα , tX , A1}dX }QTTPα

where A1 = {{IDTTPβ
, QXS , tXO}dXS

}QTTPβ
.

Note that the message A1 can only be decrypted by TTPβ although X cannot

communicate directly with it since she still does not have an overlay certificate. Thus,

the anonymity of the user within the overlay network is preserved.

Step 4:

Once TTPα receives the REQUEST MESSAGE 1, it forwards the message A1 to

TTPβ. But before that, TTPα generates a private random number (nα ∈ [1, p − 1])

and its associated public point (Nα), which will be used to blind sign the new certificate.

Then, it sends the message A1 together with Nα, tX and the involved identities to TTPβ,

all encrypted using the symmetric key preshared with TTPβ (Kαβ).

84

5.2 Protocol Specification

REQUEST MESSAGE 2, TTPα → TTPβ : {IDTTPα , IDTTPβ
, tX , Nα, A1}Kαβ

Note that now may not be necessary to include the sender and the receiver identities

in the message, since the symmetric key is only shared by these two entities, but however

we include them to avoid a possible replay attack, as we have been able to check using

the AVISPA tool. The problem is that in this protocol we send two pairs of message

with the same number of parameters in opposite directions (REQUEST MESSAGE 2-

SIGN REQUEST MESSAGE for instance) and the TTPs are not able to distinguish

between the two messages of a pair. In this way an attacker can replay the first messages

(REQUEST MESSAGE 2 and/or SIGN RESPONSE MESSAGE) in order to

alter the identity acquisition process.

Step 5:

In this step, TTPβ receives the encrypted message A1 and starts the certificate gen-

eration process. Specifically, first of all, it generates two random private parameters

({nβ, uβ} ∈ [1, p − 1]), the two associated elliptic curve points (Nβ = nβG and

Uβ = uβG) and calculates the commitment value as Cβ = Nβ ⊗H2(dTTPβ
Uβ). Then,

TTPβ generates the signed and encrypted message A2 with Cβ, Uβ, the timestamp tXO

and the involved identities. It signs the message using her private key (dTTPβ
) and

encrypts it using the received newcomer’s public key QXS . Finally, TTPβ sends the

message A2 together with tX and the involved identities to TTPα using the symmetric

key Kαβ .

COMMIT MESSAGE 1, TTPβ → TTPα : {IDTTPβ
, IDTTPα , tX ,H(Nα), A2}Kαβ

where A2 = {{IDTTPβ
, tXO, Cβ , Uβ}dTTPβ

}QXS
.

Note that this is the first time that TTPα contacts TTPβ for this request, therefore

it also stores the two request identifiers/timestamps (tX and tXO), the session public key

of the newcomer (QXO), and the point generated by TTPα (Nα). It is also noteworthy

that H(Nα) is included in this message to avoid replay attacks in the future using this

message as others explained below (ISSUE MESSAGE 1 or LINK MESSAGE).

85

5. A TWO-LEVEL IDENTITY ASSIGNMENT PROTOCOL FOR P2P
OVERLAYS

Step 6:

Once TTPα receives the COMMIT MESSAGE 1, it forwards the message A2 to

the newcomer X. More specifically, it signs the message A2 together with tX and

the involved identities, encrypts the signed message using the public key of X in the

real-world and sends the result to X.

COMMIT MESSAGE 2, TTPα → X : {{IDTTPα , IDX , tX , A2}dTTPα
}QX

Step 7:

In this step, X receives from TTPα the TTPβ’s commit to value nβ, which is not yet

revealed, and generates a random private parameters (nX ∈ [1, p − 1]) and its related

public point (NX = nXG) to take part in the certificate generation process. Then, X

generates the message A3 in order to provide TTPβ with the public point of that commit

value (NX). This message contains the timestamp tXO, the identity of TTPβ and NX ,

and is signed by X using her session public key and encrypted using the public key of

TTPβ. Finally, the signed and encrypted message A3 is sent by X to TTPα together

with the timestamp tX and the involved identities, all signed and encrypted using the

public key of TTPα.

INV OLV EMENT MESSAGE 1, X → TTPα : {{IDX , IDTTPα , tX , A3}dX }QTTPα

where A3 = {{tXO, IDTTPβ
, NX}dXS

}QTTPβ
.

Step 8:

Once TTPα receives the INV OLV EMENT MESSAGE 1, it forwards the message

A3 to TTPβ. More specifically, it sends the message A3 together with tX and the

involved identities, all encrypted using the symmetric key preshared with TTPβ.

INV OLV EMENT MESSAGE 2, TTPα → TTPβ : {IDTTPα , IDTTPβ
, tX , A3}Kαβ

86

5.2 Protocol Specification

Step 9:

At this point, TTPβ has already received the two points generated by the newcomer

X and TTPα, NX and Nα respectively, and it is ready to generate the new implicit

certificate. It calculates the reconstruction public parameter (1), the hash value of this

parameter concatenated with the certificate information (2), and blinds the certificate

using a blind number (bX ∈ [1, p − 1]) so that TTPα can sign the certificate without

seeing the content (3).

1. ZX = NX +Nβ

2. hX = H1(IX ||ZX)

3. eX = hX/bX

Finally, TTPβ sends eX to TTPα together with tX , the digest of the point generated

by TTPα (H1(Nα)) and the involved identities, all encrypted using the symmetric key

preshared between the two TTPs.

SIGN REQUEST MESSAGE, TTPβ → TTPα :

{IDTTPβ
, IDTTPα , tX , eX ,H1(Nα)}Kαβ

Note that H1(Nα) is included in this message to avoid future replay attacks using this

message as others explained below (ISSUE MESSAGE 1 or LINK MESSAGE).

Step 10:

In this step, once TTPα has received the SIGN REQUEST MESSAGE, first of all

it decrypts that message and verifies the digest of Nα. If all is correct, then it signs

the blinded certificate (eX) using her private key (dTTPα) and the previously generated

private number nα. Finally, TTPα sends the signature (s′X) to TTPβ together with the

timestamp tX , the digest of the blinded certificate (H1(eX)) and the involved identities,

all signed and encrypted using the symmetric key Kαβ . Note that the signature is

calculated as s′X = eXdTTPα + nα (mod p).

SIGN RESPONSE MESSAGE, TTPα → TTPβ : {IDTTPα , IDTTPβ
, tX ,H1(eX), s′X}Kαβ

87

5. A TWO-LEVEL IDENTITY ASSIGNMENT PROTOCOL FOR P2P
OVERLAYS

Note that TTPα uses its common public key to blind sign the new certificate thanks

to the use of ECC in all processes. On the other hand, H1(eX) is included in this

message to avoid future replay attacks using this message as others explained below

(e.g. LINK ACK MESSAGE).

Step 11:

Once TTPβ has received the blind signature of TTPα, it must verify the signature,

remove the blindness on the blinded certificate and generate the double signature on it.

To do so, TTPβ takes two operations:

1. s′XG == eXQTTPα +Nα (verification).

2. sX = s′XbX + 2hXnβ + dTTPβ
(mod p) (unblindness and signing).

In addition, it also generates another point (BX = bXNα+hXNβ) that will be used

by users to generate the related public key of that certificate. So these new implicit

certificates consist of three parameters (IX , ZX and BX), instead of two as the used in

ICIAPPA. Once the new certificate is generated, TTPβ calculates the new public key

and the nodeID of X:

1. QXO = hXZX +BX + hXQTTPα +QTTPβ

2. PX = H1(QXO)

Then, TTPβ sends the double signature (sX), the random number used in the

commitment phase (uβ) and the new implicit certificate CXO (IX , ZX and BX), together

with the timestamp tXO and the involved identities to X via TTPα, all signed and

encrypted using the session public key of X (message A4). Finally, TTPβ encrypts the

message A4 together with tX and the involved identities using the symmetric key Kαβ ,

and sends it to TTPα.

ISSUE MESSAGE 1, TTPβ → TTPα : {IDTTPβ
, IDTTPα , tX , A4}Kαβ

where A4 = {{IDTTPβ
, PX , tXO, sX , uβ , IX , ZX , BX}dTTPβ

}QXS
.

Note that PX is already included in the new message A4.

88

5.2 Protocol Specification

Step 12:

Once TTPα receives the ISSUE MESSAGE 1, it forwards the message A4 to the

newcomer X. More specifically, it signs the message A4 together with tX and the

involved identities, encrypts the signed message using the public key of X in the real-

world and sends the result to X.

ISSUE MESSAGE 2, TTPα → X : {{IDTTPα , IDX , tX , A4}dTTPα}QX

Step 13:

In this step, X contacts TTPβ directly, for the first time, to confirm that she has received

her new implicit certificate and everything is correct. But before that, she must prove

that TTPβ used the committed value to generate the certificate and generate her new

private key (dXO) and nodeID (PX). To do so, X performs the following operations:

1. U ′

β = uβG

2. Compares Uβ with U ′

β.

3. Nβ = ZX −NX

4. N ′

β = Cβ ⊗H2(uβQTTPβ
)

5. Compares Nβ with N ′

β

6. hX = H1(IX ||ZX)

7. dXO = hXnX + sX (mod p)

8. QXO = hXZX +BX + hXQTTPα +QTTPβ

9. Compares QXO with dXOG.

10. PX = H1(QXO)

Finally, if the three previous comparisons have been successful, she sends hX together

with tX and the involved identities to TTPβ , all signed and encrypted using its public

key.

89

5. A TWO-LEVEL IDENTITY ASSIGNMENT PROTOCOL FOR P2P
OVERLAYS

ISSUE ACK MESSAGE, X → TTPβ : {{PX , IDTTPβ
, tX , hX}dXO

}QTTPβ

Note that the point 9 is accomplished because dXOG = hXnXG+sXG = hXnXG+

s′XbXG+2hXnβG+dTTPβ
G = hXnXG+eXbXdTTPαG+bXnαG+2hXnβG+dTTPβ

G =

hXNX + hXQTTPα + bXNα + 2hXNβ + QTTPβ
= hX(NX + Nβ) + bXNα + hXNβ +

hXQTTPα +QTTPβ
= hXZX +BX + hXQTTPα +QTTPβ

= QXO.

It is also noteworthy that now X already uses her new private key (dXO) to sign

the message.

Step 14:

Once TTPβ knows that X has received her new certificate correctly, it generates a

Link Number (LN) to her, and adds this LN to the user list together with her nodeID

(PX). Then, TTPβ sends LN together with tX and the involved identities to TTPα,

all encrypted using the symmetric key Kαβ

LINK MESSAGE, TTPβ → TTPα : {IDTTPβ
, IDTTPα , tX , LN}Kαβ

In the case that TTPβ does not receive the ISSUE ACK MESSAGE after a

certain time, it will revoke that certificate to avoid that the user X joins the network

without finishing the request process correctly.

Step 15:

In this step, TTPα adds IDX to the user list with the received LN and confirms to

TTPβ that it has received the LN correctly. More specifically, TTPα calculates the

digest of LN , encrypts this value together with tX and the involved identities using the

symmetric key Kαβ , and sends the encrypted message to TTPβ.

LINK ACK MESSAGE, TTPα → TTPβ : {IDTTPα , IDTTPβ
, tX ,H1(LN)}Kαβ

Note that LN is shared between the TTPs allowing that the real-world identity of

X is related to her nodeID.

90

5.2 Protocol Specification

Step 16:

In the last step, TTPβ receives the LINK ACK MESSAGE, verifies the digest of

LN and ends the request process.

Figure 5.3: Message exchange

5.2.2 Public Key Generation

Every time a user wants to authenticate the sender of a certain message and/or verify

its signature, she needs to generate the sender’s public key. To do so, she uses the

sender’s implicit certificate, which includes the certificate’s information (IX) together

with the two reconstruction public parameters (ZX and BX), and follows the next steps

(X is considered the sender):

1. Calculates the parameter hX = H1(IX ||ZX).

2. Generates the sender’s public key as QXO = hXZX +BX + hXQTTPα +QTTPβ
.

91

../figures/Message_Exchange_ICIAPPA2.eps

5. A TWO-LEVEL IDENTITY ASSIGNMENT PROTOCOL FOR P2P
OVERLAYS

3. Verifies the message signature using QXO.

Note that this is accomplished because:

QXO = dXOG = hXnXG + sXG = hXnXG + s′XbXG + 2hXnβG + dTTPβ
G =

hXnXG+eXbXdTTPαG+ bXnαG+2hXnβG+dTTPβ
G = hXNX +hXQTTPα + bXNα+

2hXNβ + QTTPβ
= hX(NX + Nβ) + bXNα + hXNβ + hXQTTPα + QTTPβ

= hXZX +

BX + hXQTTPα +QTTPβ
.

5.2.3 NodeID Validation

Every time a user receives data from another user X (overlay contents or routing info)

she should validate the sender’s identity (nodeID). To do so, the receiver only needs to

compute the digest of the sender’s public key (PX = H(QXO)) and compare the result

with the used nodeID. Note that she must previously generate the X’s public key.

5.3 Security Analysis

TIAPPA provides a mechanism for issuing robust and traceable identities in a P2P

overlay while the full anonymity of the users is preserved. For this, two TTPs share

a Link Number (LN) which relates the real-world identity of users and their identities

within the overlay. Obviously, this is a security weakness that we must assume to ensure

both features at the same time (traceability and full anonymity). Next, we analyze the

behavior of this protocol against some of the most common attacks in a P2P overlay.

Sybil attack. Taking into account that the access control to request a new overlay

certificate is identical to that used in ICIAPPA, we can also affirm that the Sybil attack

is not a threat when RIAPPA is deployed in a P2P overlay.

Eclipse attack. To avoid an eclipse attack it is imperative to avoid (or limit)

the Sybil attack and not to allow attackers to place themselves close to a target node.

Therefore, we can affirm that TIAPPA avoids the Eclipse attack because it fulfills this

two requirements; nodeIDs are randomly generated and users can only obtain one (or

a few) overlay certificate.

MITM attack. In the same way that in ICIAPPA, during the bootstrapping

phase it is theoretically impossible for an attacker to disrupt the normal behavior of

the protocol, since all messages are signed and encrypted using public key cryptography

92

5.3 Security Analysis

or protected using the preshared symmetric cryptographic key between the TTPs. In

addition, during the normal working of the P2P overlay all nodes will sign all the

messages they will send. Therefore, an attacker should compromise the symmetric key

preshared by the TPPs or the private/public keys pair of the TTPs or some user in

order to impersonate someone. Obviously, the importance of the attack would be not

the same if the compromised keys belong to a user or a TTP.

Whitewashers. In the same way that ICIAPPA, TIAPPA tries to limit the number

of nodeIDs which can be managed by a user binding their real-world identities with their

nodeIDs, but the stability of those nodeIDs is not guaranteed. Every time an overlay

certificate is renewed the user’s nodeID changes. Therefore, whitewashers can take

advantage of this feature but the external TTP can monitor their changes of nodeIDs.

5.3.1 Cryptographic Analysis

As we have already explained in depth in ICIAPPA (Section 4.3.1), each of the used

cryptographic tools has a range of security levels (measured in bits), therefore we must

select them taking into account that their security level must meet or exceed the desired

security level of the whole system. In addition, the selected RNGs must fulfill the ANSI

X9.82 [26] or the NIST Special Publication 800-90A [94] to ensure proper implementa-

tion; the hash functions that computes the users’ nodeIDs and all the necessary digests

must be resistant to collisions; regarding the used elliptic curves, its domain parameters

(p, a, b, G, n and h) must be generated and validated following the guidelines pub-

lished in [101]; and the proposed commitment scheme must accomplish the two main

security properties that are required in this kind of protocols: Binding and Hiding.

On the other hand, using implicit certificates, the fact of generating a public key

(QXO) once you get a certificate is not a sufficient proof that the key is authentic.

For this reason the owner (X) needs to demonstrate the knowledge of the private key

(dXO) associated to that certificate using a signature algorithm, such as ECDSA. In

this scheme, dXO is generated using the TTPs’ signature (sX), and this signature is

calculated using the TTPs’ private keys (dTTPα and dTTPβ
) together with the private

parameter selected by the TTPα (nα) and the two private parameters selected by TTPβ

(nβ and bX). QXO is generated by the other users of the network using the TTPs’ public

keys (QTTPα and QTTPβ
) and the reconstruction public parameters (ZX and BX) which

are included in the user’s certificate. Thus, if a user validates a signature using QXO,

93

5. A TWO-LEVEL IDENTITY ASSIGNMENT PROTOCOL FOR P2P
OVERLAYS

she can be sure that the correct TTPs’ public keys have been used in generating that

key. Otherwise, the signature validation will fail. The same occurs if a wrong ZX or

BX are used.

Note that in the case that a malicious user wants to find the private parameters

selected by the TTPs (nα, nβ and bX) to select the value of her new public key (QXO),

she should also solve the ECDLP, which is computationally unfeasible.

5.3.2 Discussion of NodeID Requirements

In this Section, we discuss how most of the described requirements in Section 3.2 are

satisfied by the nodeIDs obtained using TIAPPA. Thanks to the binding between the

users’ real-world identities and their nodeIDs, each user can only obtain a limited num-

ber of nodeIDs. In particular, we can create a unique nodeID if, for instance, the

user’s national identity card is used. Regarding the nodeID generation process, thanks

to the use of the public keys generated during the issuance of explicit certificates, we

can consider that they are jointly generated between the users and the TTPs. In this

way, neither the newcomer can choose her location within the virtual space unilaterally

nor the internal TTP can place a node at a certain position seeking its own benefit.

Moreover, this procedure also guarantees that nodeIDs are randomly generated; there-

fore their distribution within the virtual space of the network is uniform with a high

probability, which improves the load-balancing within the virtual space.

Unlike ICIAPPA, TIAPPA can provide full anonymity of users. A single entity is

not able to match the real-world identity of users with their nodeIDs. This is achieved

thanks to the use of two TTPs, one of them using a blind signature over the certificate,

and encryption, all exchanged messages are encrypted to provide confidentiality (no

information is leaked to external entities). As we previously mentioned, this is valid

as long as the two TTPs do not collude. Obviously, if this happens, our system is

not able to provide a total degree of anonymity. In particular, this system would be

equivalent to a single-TTP system. We do not expect to be cheated by the TTPs (none

of them), because they are supposed to be trusted. However, in the case of having just

one dishonest TTP, this entity cannot alter the protocol to obtain self-benefit, since it

depends on the other TTP to issue the overlay certificate. For this reason, we have

recommended that at least one of these TTPs should be a reputed and known CA or

institution managed by a government or local administration.

94

5.3 Security Analysis

Regarding the requirement of traceability, it may seem that is in contradiction with

the anonymity requirement, but that is not true. In most P2P overlays, there are nodes

that misbehave, especially when anonymity is assured. Reputation systems are widely

used mechanisms to punish improper usages like distribution of fake contents or routing

tables poisoning. Moreover, if those bad behaviors are repeated nodes could be even

revoked and hence ejected from the overlay keeping their anonymity. However, there can

be some malicious behaviors (for instance, the distribution of child pornography) that

should be addressed in a different manner. For this reason TIAPPA is also prepared to

de-anonymize users that commit serious offenses within the overlay (thanks to the Link

Number shared between the TTPs), and so they can be prosecuted by the law.

On the other hand, all implicit certificates are verifiable by anybody. Any user

can verify any nodeID using the public key of its owner derived from the certificate’s

information (IX , ZX , BX) and the public keys of the TTPs. For this reason, nobody

can generate a valid nodeID without the supervision and participation of the TTPs. In

addition, implicit certificates are also revocable . Any certificate can be revoked if a user

is misbehaving within the overlay or the involved private key has been compromised.

In this last case, the user needs to prove that she knows the private key related to the

certificate to revoke it. On the other hand, there is the possibility that the TIAPPA

protocol does not finish properly but the certificate has been delivered to the newcomer,

in that case the issued certificate must also be revoked. Note that this situation happens

when a newcomer does not send the confirmation message (ISSUE ACK MESSAGE)

to the internal TTP reporting that she has received her new certificate.

Finally, taking into account that every time a user’s certificate is revoked, a new

public/private key pair must be issued, and then the related nodeID changes. Therefore,

in TIAPPA nodeIDs are not stable .

5.3.3 Formal Validation of the Protocol

In order to validate the proper security level of TIAPPA, we have also performed an

automated validation of the message exchange using the AVISPA tool [16]. We ran the

tool using OFMC, CL-AtSe and SATMC backends, and in all three cases the output

was the same: SAFE.

Table 5.2 shows the messages exchanged between a newcomer X and the two TTPs

represented in the Alice and Bob notation. IDX , IDTTPα and IDTTPβ
are the identifiers

95

5. A TWO-LEVEL IDENTITY ASSIGNMENT PROTOCOL FOR P2P
OVERLAYS

of the user X and the TTPs respectively, and KαX , KTTPα and KTTPβ
are their cryp-

tographic public keys. Kαβ is the symmetric key shared between the two TTPs. The

functions {m}K and {m}_inv(K) represent respectively the encryption and signing of

the message m using the key pair K and inv(K), and “ .” indicates concatenation.

1 X → TTPα : {{IDX .IDTTPα
.tX .SID.CX}_inv(KX)}_KTTPα

2 X ← TTPα : {{IDTTPα
.IDX .tX .CTTPβ

}_inv(KTTPα
)}_KX

3 X → TTPα : {{IDX .IDTTPα
.tX .A1}_inv(KX)}_KTTPα

4 TTPα → TTPβ : {IDTTPα
.IDTTPβ

.tX .Nα.A1}_Kαβ

5 TTPα ← TTPβ : {IDTTPβ
.IDTTPα

.tX .H(Nα).A2}_Kαβ

6 X ← TTPα : {IDTTPα
.IDX .tX .A2}_inv(KTTPα

)}_KX

7 X → TTPα : {IDX .IDTTPα
.tX .A3}_inv(KX)}_KTTPα

8 TTPα → TTPβ : {{IDTTPα
.IDTTPβ

.tX .A3}_Kαβ

9 TTPα ← TTPβ : {IDTTPβ
.IDTTPα

.tX .eX .H(Nα)}_Kαβ

10 TTPα → TTPβ : {{IDTTPα
.IDTTPβ

.tX .H(eX).s′X}_Kαβ

11 TTPα ← TTPβ : {IDTTPβ
.IDTTPα

.tX .A4}_Kαβ

12 X ← TTPα : {IDTTPα
.IDX .tX .A4}_inv(KTTPα

)}_KX

13 X → TTPβ : {IDX .IDTTPβ
.tX .hX}_inv(KXO)}_KTTPβ

14 TTPα ← TTPβ : {IDTTPβ
.IDTTPα

.tX .LN}_Kαβ

15 TTPα → TTPβ : {{IDTTPα
.IDTTPβ

.tX .H(LN)}_Kαβ

Table 5.2: Message exchange represented using the Alice and Bob notation.

In Appendix B.2 can be seen the HLPSL code of the performed simulation and the

obtained outputs.

5.4 Performance Analysis

Providing security always implies a cost in terms of bandwidth, memory and processing

time. Although, TIAPPA also takes advantage of the ECC and the use of implicit

certificates to achieve a better level of security and a lower impact on the overlays’

performance. In fact, the operation of this protocol has almost no direct impact on

the overlay performance. Once a user has obtained her overlay certificate, she does

not need to contact directly with the TTPs again unless her overlay certificate has

expired or must be revoked. In addition, if one of the two TTPs fails, the certificate

issuing service becomes unavailable but users with valid certificates can join and operate

normally within the overlay without contacting the TTPs. Obviously, the use of digital

96

5.5 Conclusions

certificates involves performing cryptographic operations and managing revocation data.

In this context, as we have already commented in Section 4.4, we can emphasize that

the implicit certificates decrease the resource consumption of the implemented security

mechanisms. However, in TIAPPA, due to the overlay certificates are signed by two

TTPs they include two reconstruction public parameters (ZX and BX), which increase

the number of bytes that a sender needs to send to a receiver compared to ICIAPPA.

The same goes for the processing overhead, but less so than in ICIAPPA.

Regarding to secure the communications between TTPs, this protocol has been

defined to use symmetric cryptography, since this type of cryptography has lower com-

putational cost than the public key cryptography, and both parties are automatically

authenticated by sharing a symmetric key. In the case of communications between the

newcomers and the TTPs we decided to use asymmetric encryption, even being more

computationally expensive, because these communications are only composed of a few

small messages and we think that adding an extra key exchange process is not worth.

The computational cost of TIAPPA for the TTPs and newcomers depends largely

on the implemented encryption and signature schemes. For this reason, we have defined

a generic version of the protocol, which can be implemented using the most appropriate

schemes for each situation. On the other hand, for the TTPs, this cost also depends

on the number of requests that they receive. Although in the case that this number

becomes very high, both TTPs could be replicated creating two distributed access levels.

Each group of TTPs should only share a synchronized database where they would store

the user or node information.

Finally, we must also highlight that the nodeIDs generated using TIAPPA are uni-

formly distributed in the virtual space, which provides a proper load-balancing among

all nodes of the overlay and thus a good performance. TIAPPA achieves this require-

ment by using a hash function over the randomly generated public keys to obtain the

nodeIDs.

5.5 Conclusions

Following the line of ICIAPPA, but trying to guarantee the full anonymity of the users,

we have proposed TIAPPA (A Two-level Identity Assignment Protocol for P2P over-

lAys). A protocol with the aim of turning these networks into a better platform for

97

5. A TWO-LEVEL IDENTITY ASSIGNMENT PROTOCOL FOR P2P
OVERLAYS

commercial applications. Unlike most proposals in the literature, this protocol uses two

TTPs to provide revocability, anonymity and traceability of the users at the same time;

requirements that seem to conflict. However, if you have to deploy a commercial service

over these networks you should not treat equally all misbehaviors. In addition, in the

same way that in ICIAPPA, the use of implicit certificates guarantees the random gen-

eration of the public keys without trusting in third parties. Therefore, these keys can be

used to obtain very robust nodeIDs (unique, random, uniformly distributed, verifiable

and revocable).

Regardless of the type of the used certificates, TIAPPA can also provide traceability

of malicious users guaranteeing the full anonymity of other users. This feature depends

on the access control carried out by the TTPs, which store a Link Number to bind

real-world identities to overlay users. A drawback is that this protocol cannot provide

stability of nodeIDs, since every time a certificate is revoked o renewed its associated

public key changes, the nodeID of the owner has to change too. This feature is provided

in another of our proposals, more specifically in RIAPPA (Chapter 6).

Finally, regarding the cost of using TIAPPA to issue a new implicit certificate in

terms of performance, we can affirm that it is reasonable according to our analysis.

TIAPPA is only used the first time a user wants to join the network, or when her cer-

tificate must be revoked or renewed. Moreover, the use of digital certificates always

implies the use of revocation data, which is a challenge in these networks. For this rea-

son, Chapter 7 addresses this issue proposing a new mechanism to distribute revocation

data in a P2P overlay.

98

Chapter 6

A Robust Identity Assignment

Protocol for P2P overlAys

Contents

6.1 Assumptions and Clarifications 100

6.2 Protocol Specification . 102

6.2.1 Protocol Steps . 103

6.2.2 NodeID Selection . 110

6.2.3 Node Operation . 111

6.3 Security Analysis . 112

6.3.1 Discussion of NodeID Requirements 113

6.3.2 Formal Validation of the Protocol 114

6.4 Performance Analysis . 115

6.5 Comparison with Similar Proposals 117

6.6 Scenarios . 120

6.7 Conclusions . 122

In this chapter, we propose a Robust Identity Assignment Protocol for the P2P

overlAys (RIAPPA) [37]. Also leveraging the use of two TTPs and authenticating new-

comers, RIAPPA provides a secure way of assigning nodeIDs, full anonymity, traceabil-

ity and stability. This last feature is provided in this protocol since unlike in ICIAPPA

(Section 4) and TIAPPA (Section 5), in this protocol the nodeIDs are not bound to

public keys.

99

6. A ROBUST IDENTITY ASSIGNMENT PROTOCOL FOR P2P
OVERLAYS

In the same way that TIAPPA, RIAPPA uses an internal TTP to assign and manage

the nodeIDs, an external TTP to authenticate and manage the real-world identities of

the newcomers and a LN to bind these two types of identities. However, this protocol

provides each newcomer with an explicit certificate which contains her nodeID, the

associated public key and the signature of the two TTPs, among other information.

To preserve the full anonymity of users within the overlay, RIAPPA also uses a blind

signature scheme with the aim that the external TTP can sign certificates without

knowing the information they contain (nodeID, public key, etc.).

Unlike most current systems, in which nodeIDs are selected solely by users or by

the TTP, in RIAPPA nodeIDs are generated jointly by the newcomer and the internal

TTP. Therefore, neither the newcomer can choose her location within the virtual space

unilaterally nor the internal TTP can place a node at a certain position seeking its

own benefit. In addition, RIAPPA also guarantees the stability of nodeIDs and their

uniform distribution. On the one hand, the nodeIDs’ stability allows using trust and

reputation systems efficiently to enforce fair cooperation and punish improper usages

of the network. On the other hand, if nodeIDs are uniformly distributed in the virtual

space it is possible to achieve a proper load-balancing within the space.

6.1 Assumptions and Clarifications

In the same way that in ICIAPPA, we assume that users only trust in both TTPs for

specific aspects related to the identity management and anonymity. In RIAPPA, TTPs

are responsible for cooperatively issuing explicit certificates, but users are who choose

their cryptographic key pairs. Moreover, we also assume that the TTPs will never

collude to de-anonymize users.

At the end of a successful transaction, a newcomer obtains its certificate for the

overlay, whose format can be seen in Figure 6.1.

The certificate contains a unique Serial Number ; the identifier of the overlay where

the certificate is valid (Service Identifier); the identity of the two issuers, the internal

TTP (TTPβ) and the external TTP (TTPα); the Validity Period1; the nodeID of the

1Two dates, the date on which the certificate validity period begins (notBefore) and the date on

which the certificate validity period ends (notAfter).

100

6.1 Assumptions and Clarifications

Figure 6.1: Overlay certificate format

user (PX); the algorithm identifier for the algorithm with which the key is used (Algo-

rithm); the public key of the user X (KβX); and the signatures of both TTPs (TTPα

Signature and TTPβ Signature) with each algorithm identifier for the algorithms and

parameters used to sign (TTPα Sign. Alg. and TTPβ Sign. Alg.). Note that the format

is similar to a X.509 standard certificate [45] but with two issuers and two signatures.

Figure 6.2 shows the ASN.1 (Abstract Syntax Notation One) notation for the overlay

certificate (Appendix A includes the complete definition). Note that in this notation

subject refers to the node identity (nodeID).

The signature of the external TTP is essential to ensure the validity of a certificate

although this may not seem so at first sight. The external TTP’s signature certifies

that the certificate belongs to a user who was previously authenticated by it and she

followed the identity assignment process correctly. In this way, we avoid the internal

TTP can issue valid certificates unilaterally.

Regarding the protocol description, in RIAPPA we also use encryption to provide

confidentiality and bind different parts of messages, and digital signatures to ensure

both message integrity and authentication. In addition, we also include the identity

101

../figures/certificate.eps

6. A ROBUST IDENTITY ASSIGNMENT PROTOCOL FOR P2P
OVERLAYS

C e r t i f i c a t e : := SEQUENCE {

tb s S i g n e dCe r t i f i c a t e TBSSignedCerti f i cate ,

ex te rna lS i gnatureAlgor i thm Alg o r i t hmIdent i f i e r ,

ex te rna lS i gna tur eVa lue BIT STRING }

TBSSignedCert i f i ca te : := SEQUENCE {

t b s C e r t i f i c a t e TBSCerti f icate ,

i n t e rna lS i gna tur eAlgo r i thm Alg o r i t hmIdent i f i e r ,

i n t e rna lS i gna tur eVa lue BIT STRING }

TBSCert i f i ca te : := SEQUENCE {

ser ia lNumber INTEGER,

s e r v i c e I d e n t i f i e r INTEGER,

i n t e r na l S i g na tu r e A l g o r i t hmIdent i f i e r ,

i n t e r n a l I s s u e r Name ,

e x t e r na l S i gna tu r e A l g o r i t hmIdent i f i e r ,

e x t e r n a l I s s u e r Name ,

v a l i d i t yPe r i o d Va l id i ty ,

s ub j e c t INTEGER,

subjectPubl i cKey In fo SubjectPubl i cKeyInfo }

Figure 6.2: ASN.1 syntax of an overlay certificate

of the involved parts in a communication within all the exchanged messages encrypted

and signed using asymmetric cryptography. On the other hand, in the same way as we

explained in depth in ICIAPPA, we also use a timestamp in this protocol both as a prof

of timeliness and as a request identifier.

Finally, in the case that there is any kind of error during the transactions (due to

lack of freshness, invalid signatures, corruption of messages, etc.), an error message is

immediately sent to cancel the request process.

6.2 Protocol Specification

In this Section we describe RIAPPA: what information is exchanged between the three

parties (Newcomer and TTPs), how data is exchanged, what security mechanisms are

used and so on. In a nutshell, a newcomer (X) must have a digital certificate for the

real-world (CαX) which contains a public key (KαX). This certificate can be issued by

102

6.2 Protocol Specification

any CA and must allow the user to be authenticated by the external TTP (TTPα).

Then, X and the internal TTP (TTPβ) jointly select the new nodeID of X. Finally,

TTPα and TTPβ sign and issue the overlay certificate of X (CβX). At the end of the

description, Figure 6.4 shows the message exchange between the three involved parties.

Regarding the notation used along the protocol description, we have tried to use a

similar notation to that used in TIAPPA although the protocols have some important

differences. Table 6.1 presents a global summary of the used notation.

Parameter Legend
TTPα, TTPβ The external and internal TTPs respectively.
IDTTPα , IDTTPβ

The identity of TTPα and TTPβ respectively.
IDX The real-world identity of the newcomer.
PX The nodeID of the newcomer.
1

2
PX The half of bits selected by the newcomer.

CTTPα , CTTPβ
The digital certificates of the TTPs.

KTTPα , KTTPβ
The public keys of the TTPs.

K−1

TTPα
, K−1

TTPβ
The private keys of the TTPs.

Kαβ The symmetric key shared between the TTPs.
CαX The real-world certificate of the newcomer.
CβX The overlay certificate of the newcomer.
KαX The real-world public key of the newcomer.
K−1

αX The real-world private key of the newcomer.
KβX The overlay public key of the newcomer.
K−1

βX The overlay private key of the newcomer.
i→ j : The sending of a message from the entity i to the entity j.
{m}K The ciphertext of a message m encrypted under the key K.
{m}K−1 The signature on a message m using the private key K−1.
tX The timestamp generated by the newcomer.
SID The identifier of a service.
blind_param The blinding parameters to initialize the blind signature process.
blinded_cert The blinded certificate before being signed.
blinded_cert_signed The blinded certificate only signed by the first signer TTP.

Table 6.1: Notation for RIAPPA.

6.2.1 Protocol Steps

Step 1:

Briefly, in this step, the newcomer X contacts the external TTP (TTPα) to start the

process of issuing an overlay certificate. She sends her real-world based certificate (CαX)

103

6. A ROBUST IDENTITY ASSIGNMENT PROTOCOL FOR P2P
OVERLAYS

to TTPα, together with the timestamp (tX) that will serve as a request identifier along

the protocol, and the identifier of the service she wants to access (SID).

HELLO MESSAGE, X → TTPα : {{IDX , IDTTPα , tX , SID, CαX}K−1
αX
}KTTPα

More specifically, X performs the following operations: generates the timestamp

(tX); signs tX and SID together with her real-world certificate (CαX), her identity

and the receiver’s identity using her private key in the real-world (K−1

αX); encrypts the

signed message using the public of TTPα (KTTPα); and finally she sends the encrypted

message.

In the same way that in TIAPPA, CαX allows TTPα to authenticate the sender

and the message, and X encrypts the message to improve the security. Note that the

request identifier (tX), the service identifier (SID) and the certificate must be encrypted

to provide security and privacy. In addition, the identities of the involved parts in the

communication are included in the message to avoid that a malicious user can forward

this message to another recipient posing as X [21]. Therefore, from here on we will

always include the identities of the sender and the receiver in all messages.

Step 2:

At this point, TTPα answers to X with the certificate of the internal TTP responsible

for the required service (TTPβ) if she is authorized to acquire an identity for that

network. Otherwise, X is expelled from the identity acquisition process. TTPα also

stores X’s identity (IDX), her real-world certificate (CαX), the service identifier (SID),

the request identifier (tX) and the identity of TTPβ to manage the X’s request.

ACCEPT MESSAGE, TTPα → X : {{IDTTPα , IDX , tX , CTTPβ
}K−1

TTPα
}KαX

Specifically, TTPα decrypts the HELLO MESSAGE; checks X’s certificate; veri-

fies the signature of X; and checks the freshness of the timestamp tX . Note that if the

timestamp is out of time the identity request must be automatically canceled, this in

all steps. Then, if the above is correct, TTPα selects the internal TTP with which X

must contact (from here on TTPβ) using the service identifier (SID); signs the certifi-

cate of TTPβ (CTTPβ
) together with tX and the involved identities; encrypts the signed

104

6.2 Protocol Specification

message using the public key of X in the real-world; and finally it sends the encrypted

message to X.

Step 3:

In this step, X contacts TTPβ via TTPα to obtain a valid nodeID for the P2P overlay.

But before that, she generates a cryptographic key pair (KβX ,K−1

βX) that is going to

be used in the overlay network and selects the half of bits of her future nodeID (1
2
PX).

Then, X sends 1

2
PX together with her public key (KβX) to TTPβ, all protected to

prevent TTPα can access to this information. Finally, X also stores the certificate of

TTPβ (CTTPβ
) and its identity (IDTTPβ

).

REQUEST MESSAGE 1, X → TTPα : {{IDX , IDTTPα , tX , A}K−1
αX
}KTTPα

where A = {KβX , {1
2
PX , IDTTPβ

}K−1
βX
}KTTPβ

.

In more detail, X decrypts the ACCEPT MESSAGE; verifies the signature of

TTPα; checks the timestamp freshness and the TTPβ ’s certificate (CTTPβ
). Then, if all

is correct, X selects the half of bits of her future nodeID (1
2
PX) and a cryptographic key

pair (KβX ,K−1

βX); signs 1

2
PX together with the identity of TTPβ using her new private

key within the overlay (K−1

βX); and encrypts that signed message together with her new

public key within the overlay (KβX) using the public key of TTPβ . For simplicity, from

here on we denote this encrypted message as A. Finally, X signs A together with tX

and the involved identities using her private key K−1

αX ; encrypts the previous signed

message using the public key of TTPα; and sends the encrypted message to TTPα.

Note that the message A can only be decrypted by TTPβ although X still cannot

communicate directly with it since she has not a valid nodeID. Thus, the anonymity of

the user within the overlay network is preserved. It is also noteworthy that the half of

bits of the new nodeID of X can be selected in many different ways (see Section 6.2.2).

Step 4:

In this step, TTPα generates the blinding parameters needed to initialize the blind

signature process with TTPβ (blind_param) and sends these parameters together with

the encrypted message A to TTPβ.

105

6. A ROBUST IDENTITY ASSIGNMENT PROTOCOL FOR P2P
OVERLAYS

REQUEST MESSAGE 2, TTPα → TTPβ :

{IDTTPα , IDTTPβ
, tX , blind_param,A}Kαβ

Specifically, TTPα decrypts the REQUEST MESSAGE 1; verifies the signature of

X; and checks the timestamp freshness. Then, if everything is correct, TTPα generates

the blinding parameters (blind_param) and encrypts A together with tX , blind_param

and the involved entities. It uses the symmetric key shared with TTPβ (Kαβ) to prevent

malicious users can forge certificates. Finally, TTPα sends the encrypted message to

TTPβ.

In the same way that in TIAPPA, we include the identity of the sender and the

receiver in the message to avoid a possible replay attack, as we have been able to check

using the AVISPA tool. The problem is that in this protocol we also send several

message with the same number of parameters in both directions of communication

(REQUEST MESSAGE 2, SIGN REQUEST MESSAGE, SIGN RESPONSE

MESSAGE, and so on) and in some cases the TTPs are not able to distinguish between

two different messages. In this way an attacker can replay one of these messages in

order to alter the identity acquisition process. It is also noteworthy that the blinding

parameters are only required if the used blind signature scheme includes an initialization

phase.

Step 5:

Briefly, in this step, TTPβ adds the other half of bits to the new nodeID of X (PX) and

generates the certificate using PX and the public key sent by X (KβX), among other

relevant information (see Figure 6.1). Then, TTPβ blinds the certificate using the blind

parameters (blind_param) so that TTPα can sign the certificate without seeing the

content. Finally, it sends the blinded certificate (blinded_cert) to TTPα to be signed.

SIGN REQUEST MESSAGE, TTPβ → TTPα :

{IDTTPβ
, IDTTPα , tX , blinded_cert,H(blind_param)}Kαβ

More specifically, TTPβ decrypts the REQUEST MESSAGE 2; checks the times-

tamp freshness; decrypts the message A; and verifies the signature of X. Then, if all

106

6.2 Protocol Specification

is correct, TTPβ adds the other half of bits to the nodeID of X (PX); generates the

X’s certificate, unsigned yet; and blinds it using blind_param. Note that the blinded

certificate (blinded_cert) is only the structure TBSCertificate blinded (see Figure 6.2).

Finally, TTPβ encrypts blinded_cert together with tX , the digest of the used blind-

ing parameters (H(blind_param)) and the involved identities using the symmetric key

Kαβ; and sends the encrypted message to TTPα.

In addition, TTPβ generates a Link Number (LN) to the user X and adds this LN

and PX to the user list. Since this is the first time that TTPα contacts TTPβ for this

request, it also stores the request identifier (tX), the nodeID of X (PX), her public key

within the overlay (KβX), and the blind parameters (blind_param).

Note that LN will be shared with TTPα and will allow that the real-identity of X

can be related to her nodeID. It is also noteworthy that H(blind_param) is included in

this message to avoid replay attacks in the future using this message as others explained

below (ISSUE MESSAGE 1 or LINK MESSAGE).

Step 6:

In this step, TTPα signs the blinded certificate (blinded_cert) using the appropriate

cryptographic algorithm and sends it (blinded_cert_signed) to TTPβ.

SIGN RESPONSE MESSAGE, TTPα → TTPβ :

{IDTTPα , IDTTPβ
, tX , blinded_cert_signed}Kαβ

In more detail, TTPα decrypts the SIGN REQUEST MESSAGE; and checks the

timestamp freshness. Then, if the above is correct, TTPα signs the blinded certificate;

encrypts the blinded certificate previously signed (blinded_cert_signed) together with

tX and the involved identities using the symmetric key shared with TTPβ; and sends

the encrypted message to it.

It is noteworthy that TTPα signs the blinded certificate using a special cryptographic

key (used only for blind signatures) and not using its normal public key, since the used

cryptographic algorithms are different.

107

6. A ROBUST IDENTITY ASSIGNMENT PROTOCOL FOR P2P
OVERLAYS

Step 7:

Briefly, in this step, TTPβ removes the blindness on the blinded certificate, signs the

certificate signed by TTPα and sends the final certificate (CβX) to X via TTPα.

ISSUE MESSAGE 1, TTPβ → TTPα : {IDTTPβ
, IDTTPα , tX , B}Kαβ

where B = {{IDTTPβ
, PX , CβX}K−1

TTPβ

}KβX
.

More specifically, TTPβ decrypts the SIGN RESPONSE MESSAGE; checks

the timestamp freshness; removes the blindness on the blinded certificate; verifies the

signature of TTPα; and signs the X’s certificate using its private key. Then, if everything

is correct, TTPβ constructs a signed message with the new certificate of X (CβX), PX

and its identity; and encrypts the message using the public key of X within the overlay

(KβX). For simplicity, from here on we denote this encrypted message as B. Finally,

TTPβ encrypts the message B together with tX and the involved identities using the

symmetric key Kαβ ; and sends it to TTPα.

Step 8:

Very briefly, in this step, TTPα forwards to X her new overlay certificate (CβX).

ISSUE MESSAGE 2, TTPα → X : {{IDTTPα , IDX , tX , B}−1

KTTPα
}KαX

In more detail, TTPα decrypts the ISSUE MESSAGE 1; and checks the times-

tamp freshness. Then, if all is correct, TTPα signs the message B together with tX and

the involved identities; encrypts the signed message using the public key of X in the

real-world; and sends the encrypted message to X.

Figure 6.3 shows the blind signature process performed by the two TTPs. We have

detailed the exchanged information between the involved parties in the previous four

steps (5, 6, 7 and 8).

Step 9:

Briefly, in this step, X contacts TTPβ, for the first time, to confirm that she has received

her certificate and everything is correct.

108

6.2 Protocol Specification

Figure 6.3: Blind signature process carried out by TTPα

ISSUE ACK MESSAGE, X → TTPβ : {{PX , IDTTPβ
, tX ,H(CβX)}K−1

βX
}KTTPβ

Specifically, X decrypts the ISSUE MESSAGE 2; verifies the signature of TTPα;

checks the timestamp freshness; decrypts the message B; verifies the signature of TTPβ;

checks her new nodeID (PX); and verifies her new certificate (CβX). Then, if everything

is correct, X calculates the hash value of her certificate (H(CβX)); signs H(CβX) to-

gether with tX and the involved identities; encrypts the signed message using the public

key of TTPβ; and sends the encrypted message to TTPβ.

Note that X also verifies whether half of bits of her new nodeID are the same bits

that she sent to TTPα in the Step 3. In the case of those bits are not the same, X

could cancel the request process sending an error message to the TTPs.

Step 10:

In this step, TTPβ reports to TTPα that X has received her certificate correctly and

sends to it LN bound to X.

LINK MESSAGE, TTPβ → TTPα : {IDTTPβ
, IDTTPα , tX , LN}Kαβ

109

../figures/blinded_cert.eps

6. A ROBUST IDENTITY ASSIGNMENT PROTOCOL FOR P2P
OVERLAYS

In more detail, TTPβ decrypts the ISSUE ACK MESSAGE, verifies the signature

of X, checks the timestamp freshness; and verifies the hash value H(CβX). Then, if all

is correct, TTPβ encrypts LN bound to X together with tX and the involved identities

using the symmetric cryptographic key Kαβ; and sends the encrypted message to TTPα.

In the case that TTPβ does not receive the ISSUE ACK MESSAGE after a

certain time, it will revoke that certificate to avoid that the user X joins the network

without finishing the process.

Step 11:

Briefly, in this step, TTPα adds IDX to the user list with the received LN and confirms

to TTPβ that it has received LN correctly.

LINK ACK MESSAGE, TTPα → TTPβ : {IDTTPα , IDTTPβ
, tX ,H(LN)}Kαβ

More specifically, TTPα decrypts the LINK MESSAGE; and checks the times-

tamp freshness. Then, if all is correct, TTPα calculates the hash value of LN ; encrypts

this value together with tX and the involved identities using the symmetric key Kαβ ;

and sends the encrypted message to TTPβ.

Step 12:

In this step, successfully ends the identity request process by X.

Specifically, TTPβ decrypts the LINK ACK MESSAGE; checks the timestamp

freshness and the received hash value; and gives for finished the request process by X.

The real-world identity of X is stored by TTPα, the new certificate has been received

by the newcomer and stored by TTPβ, and TTPα and TTPβ share LN to relate the

identity of X with her new nodeID (PX).

6.2.2 NodeID Selection

Using RIAPPA, nodeIDs are jointly selected by users and the internal TTP (TTPβ) to

prevent malicious users can chose their location within the overlay or the TTPβ can

place users in certain positions by self-interest.

There are lots of ways to jointly select a random number between two parts, but we

have decided to divide the selection of each bit between that TTP and the newcomer

110

6.2 Protocol Specification

Figure 6.4: Message exchange

taking into account that not all bits are equally significant. For instance, in the Kad

network, an attacker is within the tolerance zone of a target node if they have in common

the most 8 significant bits of their nodeIDs [33]. Therefore, we cannot allow an entity

(user or TTP) to select all those bits.

So, in our particular case, we use a scheme in which the user and the internal TTP

decide randomly the half of bits of the nodeID, alternating them. The user selects

the even bits (second, fourth, sixth bit, etc.), and the TTP selects the odd bits (first,

third, fifth bit, etc.). Thus, no entity totally controls the most significant bits, and the

nodeIDs generated are valid for any P2P overlay, independently of the number of bits

used to mark off the tolerance zone. Randomness is needed to guarantee the uniform

distribution of nodeIDs within the overlay, and this is also achieved with this way to

proceed.

6.2.3 Node Operation

Deploying any of our protocols in an existing P2P overlay would affect the way in

which nodes interact with each other. All nodes would need a valid overlay certificate

(not revoked and properly signed by one or two TTPs, depending upon the protocol

used) to operate within the network and securely communicate with other nodes. Before

establishing any secure communication with a node, a sender has to obtain the receiver’s

certificate and verify its correctness. This includes verifying if the certificate has been

111

../figures/Protocol.eps

6. A ROBUST IDENTITY ASSIGNMENT PROTOCOL FOR P2P
OVERLAYS

properly signed by both TTPs and if it is still valid (not expired and not revoked).

Then, if all is correct, this node will be able to use the normal cryptographic primitives

to provide authentication, integrity and confidentiality, among other security services.

On the other side of the communication, the receiver must also verify the sender’s

certificate.

6.3 Security Analysis

In the same way that TIAPPA, RIAPPA uses two TTPs to provide a mechanism for

issuing robust and traceable identities in a P2P overlay while the full anonymity of the

users is preserved. On the other hand, RIAPPA also provides stability of the nodeIDs

since they do not change every time a user must change her overlay certificate. Next,

we analyze the behavior of this protocol against some of the most common attacks in a

P2P overlay.

Sybil attack. Taking into account that the access control to request a new overlay

certificate is identical to that used in ICIAPPA and TIAPPA, we can also affirm that

the Sybil attack is not a threat when RIAPPA is deployed in a P2P overlay.

Eclipse attack. To avoid an eclipse attack it is imperative to avoid (or limit) the

Sybil attack and not to allow attackers to place themselves close to a target node. As

we have seen above, RIAPPA avoids these two actions and therefore the Eclipse attack.

Our protocol does not allow the self-generation of valid nodeIDs, they are jointly selected

by the newcomer and the internal TTP, and users can only obtain one (or a few) nodeID

per real-world certificate.

MITM attack. In the same way that in ICIAPPA and TIAPPA, both during

the bootstrapping phase and the normal working of the P2P overlay, it is theoretically

impossible for an attacker to impersonate some of the involved parties. Then, it is also

very hard for an attacker to disrupt the normal behavior of the protocol.

Whitewashers. RIAPPA binds the real-world identity of users with their nodeIDs.

So, assuming that users only have a real-world identity (or a small set of them), this

protocol guarantees the nodeIDs’ stability. This is possible because a user can renew

her overlay certificate without changing her nodeID. Thus, a misbehaving node cannot

purposefully leave the overlay and rejoin it again with a different nodeID in an attempt

to shed any bad reputation she has accumulated under her nodeID. Thanks to this,

112

6.3 Security Analysis

robust trust and reputation systems can be used to prevent malicious behaviors and to

promote honest collaboration among nodes.

6.3.1 Discussion of NodeID Requirements

In this Section, we discuss how all the design requirements exposed in Section 3.2 are

satisfied by the nodeIDs generated using RIAPPA. As we have explained previously, and

thanks to the use of real-world identities, each user only obtains a unique and stable

nodeID; which is jointly selected between the user and the internal TTP, avoiding

thus the user can select her location within the overlay. Moreover, the selection of

alternate bits in nodeIDs guarantees a pseudo-random location of nodes. As we explain

in Section 6.2.2, this allows us to obtain nodeIDs uniformly distributed within the

virtual space with high probability.

In the same way that TIAPPA, RIAPPA can also provide full anonymity of the

users within the overlay, since neither users nor TTPs by themselves are able to match

the users’ real-world identities with the nodeIDs. This is achieved thanks to the use of

two TTPs, a blind signature over the users’ certificates, and the encryption of messages.

Obviously, we trust that the two TTPs will not collude, because in that case the system

would be equivalent to a single-TTP system.

On the other hand, RIAPPA provides revocability of certificates. An overlay cer-

tificate can be revoked by several reasons. On the one hand, certificates can be revoked

if an involved private key has been compromised. In this case, the internal TTP revokes

the certificate and issues a new one with the same nodeID and a new cryptographic key

pair. But before that, the user must contact the external TTP to be authenticated, and

thus the external TTP requests the internal TTP to renew the user certificate. This

is possible without losing the anonymity thanks to the Link Number (LN) that both

TTPs share. Note that the user cannot request the certificate renewal to the internal

TTP directly because she could be an attacker. The user needs to prove that she is the

owner of the certificate. On the other hand, there is the possibility that the RIAPPA

protocol does not finish properly but the certificate has been delivered to the user, or

that a user misbehaves within the network. In both cases, the overlay certificate is

revoked to prevent its use. Note that the first situation happens when a newcomer does

not send the confirmation message (ISSUE ACK MESSAGE) to the internal TTP

reporting that she has received her new certificate.

113

6. A ROBUST IDENTITY ASSIGNMENT PROTOCOL FOR P2P
OVERLAYS

In addition, all certificates are verifiable by any user. They are signed by the two

TTPs and contain the user’s nodeID, her public key, and other information related to

the owner.

Finally, regarding the requirement of traceability , thanks to the fact that one of

the TTPs (the external TTP) knows the real-world identity of the users, it can easily

relate their identities with their nodeIDs. Therefore, RIAPPA is also prepared to de-

anonymize users that commit serious offenses within the overlay (thanks again to the

Link Number shared between TTPs), and so they can be prosecuted by the law.

6.3.2 Formal Validation of the Protocol

We have also performed an automated validation of the message exchange using the

AVISPA tool [16] to validate the security of TIAPPA. We ran the tool using three

different back-ends (OFMC, CL-AtSe and SATMC), and in all three cases the output

was “SAFE”.

Table 6.2 shows the messages exchanged between a newcomer and the two TTPs

represented in the Alice and Bob notation. IDX , IDTTPα and IDTTPβ
are the identifiers

of the user X and the TTPs; KαX , KTTPα and KTTPβ
are their cryptographic public

keys respectively; and Kαβ is the symmetric key shared between the two TTPs. The

functions {m}K and {m}_inv(K) represent respectively the encryption and signing of

the message m using the key pair K and inv(K), and “ .” indicates concatenation.

1 X → TTPα : {{IDX.IDTTPα
.tX .SID.CαX}_inv(KαX)}_KTTPα

2 X ← TTPα : {{IDTTPα
.IDX .tX .CTTPβ

}_inv(KTTPα
)}_KαX

3 X → TTPα : {{IDX.IDTTPα
.tX .A}_inv(KαX)}_KTTPα

4 TTPα → TTPβ : {IDTTPα
.IDTTPβ

.tX .blind_param.A}_Kαβ

5 TTPα ← TTPβ : {IDTTPβ
.IDTTPα

.tX .blinded_cert.H(blind_param)}_Kαβ

6 TTPα → TTPβ : {IDTTPα
.IDTTPβ

.tX .blinded_cert_signed}_Kαβ

7 TTPα ← TTPβ : {IDTTPβ
.IDTTPα

.tX .B}_Kαβ

8 X ← TTPα : {{IDTTPα
.IDX .tX .B}_inv(KTTPα

)}_KαX

9 X → TTPβ : {{PX .IDTTPβ
.tX .H(CβX)}_inv(KβX)}_KTTPβ

10 TTPα ← TTPβ : {IDTTPβ
.IDTTPα

.tX .LN}_Kαβ

11 TTPα → TTPβ : {IDTTPα
.IDTTPβ

.tX .H(LN)}_Kαβ

Table 6.2: Message exchange represented using the Alice and Bob notation.

114

6.4 Performance Analysis

In Appendix B.3 we show the HLPSL code of the performed validation and the

obtained outputs.

6.4 Performance Analysis

Providing security always implies a cost in terms of delay in communications, band-

width overhead, computational overhead, etc., which will be quantified in this section.

Anyway, we should take into account that RIAPPA is only needed the first time that

a user joins the overlay (or when she wants to renew or revoke her certificate). In

other words, the operation of our protocol has almost no direct impact on the overlay

performance. Once a user has obtained her overlay certificate (with the corresponding

nodeID), she does not need to contact directly with the TTPs again unless her overlay

certificate has expired or must be revoked. In addition, if one of the two TTPs fails,

the certificate issuing service becomes unavailable but users with valid certificates can

join and operate normally within the overlay without contacting the TTPs. Obviously,

because of the use of digital certificates, all parts will need to manage revocation data.

To secure the communications between TTPs, we have decided to use symmetric

cryptography, since this type of cryptography has lower computational cost than the

public key cryptography, and both parties are automatically authenticated by sharing

the symmetric key. In the case of communications between users and the TTPs we

use asymmetric encryption, even being more computationally expensive, because their

communications are only composed of a few small messages and adding an extra key

exchange process is not worth. Table 6.3 shows an estimate of the size of each exchanged

message in the protocol.

To make this estimate, we have considered the following algorithms and parameters.

On the one hand, we have considered the use of the cryptographic public key protocol

RSA using 2048-bit key length, the digital signature scheme DSA using also 2048-

bit key length, the symmetric encryption protocol AES using 256-bit key length, the

blind signature scheme based on ECC proposed by Fan et al. in [52] and the 256-bit

hash algorithm MD6. On the other hand, we have taken into account the following

parameters size: user/entity identifiers (16 bytes), timestamps (8 bytes), the service

identifier (1 byte), RSA digital certificates (2500 bytes), DSA digital signatures (40

bytes), RSA public keys (256 bytes), DSA public keys (256 bytes), RSA encryption

115

6. A ROBUST IDENTITY ASSIGNMENT PROTOCOL FOR P2P
OVERLAYS

Table 6.3: Size of the messages.

Size (bytes)

HELLO MESSAGE 2656

ACCEPT MESSAGE 2655

REQUEST MESSAGE 1 814

REQUEST MESSAGE 2 731

SIGN REQUEST MESSAGE 474

SIGN RESPONSE MESSAGE 474

ISSUE MESSAGE 1 1255

ISSUE MESSAGE 2 1402

ISSUE ACK MESSAGE 411

LINK MESSAGE 12

LINK ACK MESSAGE 264

overhead (75 bytes), the blinding parameter (64 bytes), the blinded certificate (466

bytes), the blind signature (466 bytes), the overlay certificate (1100 bytes), hash values

(256 bytes), and the link number (4 bytes). Note that we have considered the use of a

blind signature scheme based on ECC because it has an inherent advantage in terms of

smaller key size and lower computational overhead and security over other public key

cryptosystems such as RSA and ElGamal.

As we previously stated, we have defined RIAPPA to be flexible in terms of cryp-

tographic algorithms, including the type of encryption, signature and blind signature

schemes. For this reason, we have evaluated the performance of the protocol in terms of

the number of required cryptographic operations. Table 6.4 shows those cryptographic

operations. As it can be seen in that Table, only 18 out of the 51 operations are per-

formed by the user while both TTPs have a similar computational load. Therefore,

if we take into account that a user only runs the protocol the first time she joins the

network, we can consider that the computational cost is manageable for all kinds of

today’s devices (smartphones, tablets, netbooks, laptops, etc.).

The computational cost of RIAPPA will depend on the encryption and signature

schemes which are implemented, and also on the number of requests that the system

receives. In the case that the number of users becomes very high, both TTPs could be

replicated creating two distributed access levels. Each group of TTPs should only share

116

6.5 Comparison with Similar Proposals

Table 6.4: Summary of the cryptographic operations.

User TTPα TTPβ Total

Asymmetric encryptions 4 2 1 7

Symmetric encryptions 0 3 3 6

Signatures 4 2 2 8

Asymmetric decryptions 3 2 2 7

Symmetric decryptions 0 3 3 6

Signature verifications 5 3 2 10

Blind signatures 0 1 0 1

Blind signature verifications 1 0 1 2

Hash function calculations 1 1 2 4

Total 18 17 16 51

the database where they store the user or node information.

Next, we have also calculated the computational cost of the cryptographic operations

in each of the steps considering the same algorithms as previously: RSA-2048, DSA-

2048, AES-256, the blind signature scheme proposed by Fan et al. [52] and MD6-256.

Table 6.5 shows the time in milliseconds needed to realize all involved cryptographic

operations in each step with the exception of the operations related with the blind

signature process, since we only have the time needed to complete the entire process

(signature and verification), 213.8227 ms. Note that this time should be divided between

the steps 5, 6 and 7, and in the step 9 is also needed to verify the blind signature. All

times in Table 6.5 have been obtained considering the use of a processor Intel Core

i5-4570S 2.9 GHz [30, 117].

6.5 Comparison with Similar Proposals

Despite it is difficult to compare the three protocols proposed in this thesis with other

similar proposals, since the requirements and the design goals are different, we can say

that in general TIAPPA and RIAPPA are more complex than ICIAPPA and the pro-

posals summarized in Section 2.1.5, both in terms of computational cost and bandwidth

consumption. However, RIAPPA is the most complete protocol in terms of security be-

cause it is the only one that is able to fulfill all those considered requirements. Table

6.6 shows a summary of all requirements fulfilled by the three proposed protocols.

117

6. A ROBUST IDENTITY ASSIGNMENT PROTOCOL FOR P2P
OVERLAYS

Table 6.5: Computational cost of the cryptographic operations.

Computational Cost (ms)

Step 1 0.4588

Step 2 2.8087

Step 3 108.1758

Step 4 2.3534

Step 5 2.3556

Step 6 0.0045

Step 7 0.8925

Step 8 0.4647

Step 9 5.6564

Step 10 2.4233

Step 11 0.1184

Step 12 0.1171

ICIAPPA TIAPPA RIAPPA

Uniqueness X X X

Stability ✗ ✗ X

Joint Management X X X

Verifiability X X X

Revocability X X X

Traceability X X X

Anonymity Partial Full Full

Uniformity X X X

Table 6.6: Requirements comparison between ICIAPPA, TIAPPA and RIAPPA.

In [105], the complex structure proposed by authors requires a potentially large

number of exchanges with varying servers to obtain a single nodeID, in addition to

solving cryptographic puzzles. This is just to limit the Sybil attack. The same occurs

in [36, 47, 81, 114] or [127].

In [34], Butler et al. propose three new identity assignment protocols where users

are weakly authenticated via callback using their IP addresses, which limits the Sybil

attack poorly. We use the real-world identity of the user to authenticate them, which is

118

6.5 Comparison with Similar Proposals

the best way to prevent this attack [50]. Moreover, in all three cases, authors propose

that trusted third parties generate nodeIDs randomly, which can be a major problem.

TTPs can place new nodes within the overlay according to their qualities seeking the

benefit of the network, of another node, or even its own benefit.

Finally, the Likir system [23, 24, 25, 53] by Aiello et al. is a complete security

proposal for P2P overlays and the one that has conceptually more similarities with

TIAPPA and RIAPPA. In particular, in its user registration module. To prevent/limit

the Sybil attack, Aiello et al. assume that users have an OpenID account in the same way

that we assume that users have a digital certificate bound to their real-world identity.

Obviously, our design requirement of having a real-world identity is more demanding

than the requirement of Likir, and it may cause problems to honest users that do not

have a digital certificate. But our three protocols are designed to prevent the Sybil

attack more aggressively. Using one of them, an attacker needs to steal, or forge, a

real-world identity (digital certificate) to launch a Sybil attack. In Likir, the attacker

only needs to generate a set of OpenID identities, which is in general less hard to do.

Moreover, the OpenID protocol is not exempt from security problems [48]. On the other

hand, in Likir, new users must also contact two central entities to obtain their overlay

certificates. Users are authenticated by an OpenID provider and then redirected to a

trusted entity (Certification Service) which is responsible for generating nodeIDs and

issuing certificates. One of those entities does not depend on their system but it is used

to add human interaction in the process of obtaining the overlay certificate, making

this process more expensive, and thus, limiting the Sybil attack. Moreover, in the same

way than our TTPs (in TIAPPA and RIAPPA) keep a link number to bind nodes

with users, Likir’s certification service also keeps a track of the association between

userIDs and LikirIDs, but not with real-world identities. As TIAPPA and RIAPPA,

Likir also guarantees the full users’ anonymity; however, it does not consider providing

traceability since users do not need to reveal their real-world identity at any time.

In fact, Likir only uses that track to avoid the unnecessary issuance of new LikirIDs.

Finally, another difference between Likir and our protocols is that the Eclipse attack

problem is addressed differently. Likir uses a random nodeID generation, while one of

our design goals is to implement a joint generation between a user and the internal

TTP. In this way, we prevent that the internal TTP, or the main TTP in ICIAPPA,

can place a node at a certain location in the overlay. Finally, the protocol exchange,

119

6. A ROBUST IDENTITY ASSIGNMENT PROTOCOL FOR P2P
OVERLAYS

messages and operation proposed by Aiello et al. are rather different from ICIAPPA,

TIAPPA and RIAPPA.

6.6 Scenarios

ICIAPPA, TIAPPA and RIAPPA could be deployed in a variety of scenarios in which

security is a must, including commercial applications. ICIAPPA could be deployed in

countless scenarios in the current Internet; however TIAPPA and RIAPPA are limited

to a small number of situations. Specially, we consider that the kind of scenario which

better fits with those protocols consists of one external TTP, and one or more internal

TTPs. As we previously mentioned, the external TTP is responsible for authenticating

users (by the use of real-world identities) and each of the internal TTPs manage a

different overlay. Those overlays may be different in many ways, for instance, the

overlays can provide different resources (cpu sharing, storage capacity, virtualization,

etc.), offer different services (music sharing, video on demand, audio or video conference,

etc.), or distribute different contents (sports, news, cartoons, adult content, etc.).

On the other hand, a scenario in which different external TTPs work with the same

overlay (managed by only one internal TTP) is also possible. But if we want to assure

that users do not obtain multiple nodeIDs, it should be mandatory that users only ask

one external TTP for an overlay certificate, which is uncontrollable. Therefore, different

external TTPs should be perfectly synchronized to avoid (or limit) that.

To better understand the usability of TIAPPA and RIAPPA, we will introduce two

examples of possible scenarios. Let us first consider an anonymous and distributed

video sharing service, in which users share their own private videos with the rest of the

users. This service could be similar to the one provided by YouTube, but using the

capabilities of a totally distributed overlay and assuring the anonymity of the users.

In the case of being a commercial service, it may be provided by a private company

(service provider) at flat rate. This company would act as an external TTP, and hence

it would be responsible for authenticating users when they hire the service, using real-

word identities. As users need a real-word certificate, they can ask the company to

issue a new one, or they can use any existing and valid certificate (issued by a known

CA, Government or institution in which the company trusts). On the other hand, the

internal TTP should be any other entity with no relationship with the previous one (to

120

6.6 Scenarios

avoid collusion attacks from the TTPs), for instance a commercial CA. In our opinion,

CAs may be good candidates for being internal TTPs since they have experience in

managing certificates. Also, they will probably have no interest in performing collusion

attacks since their business depends on trust and reputation. Obviously, CAs are not

for free, and the cost of issuing certificates must be included in the fare that users would

pay.

In practice, a newcomer that wants to access to the service starts one of the two pro-

tocols to contact the service provider (external TTP) to issue a valid overlay certificate

(with the cooperation of the internal TTP). Once the protocol has ended successfully,

the user has all the necessary to start sharing her private videos within the overlay in a

secure and anonymous way. These contents may be of any type: sports, politics, adult

content, etc. For this reason, we have included in the protocol a service identifier (SID),

which allows users to indicate which kind of contents they want to share. In addition, in

RIAPPA, the stability of nodeIDs guarantees that a robust trust and reputation system

can be used to encourage good users, and to isolate dishonest ones. Even, in the case

that a user performs an illegal action, it is possible to trace which user is responsible

for that action and start a legal investigation.

As a second example, we can consider an e-democracy service, in which citizens

can share opinions/contents about the proper working of the political processes in their

region. For instance, the different local governments can act as external TTPs, authenti-

cating their citizens1. Notice that in the most cases new identity cards and passports are

equipped with digital certificates, so the cost of this service would not be so high. On the

other hand, another independent institution will act as internal TTP, for instance one

dependent on the judicial system (assuming independence of legislative/executive/judi-

cial powers, to avoid collusion attacks).

These are only two examples of possible scenarios, but there may be more in which

users do not totally trust the service provider and do not want to reveal their real-world

identities.

1We will assume that citizens only depend on a local government to guarantee uniqueness of the

nodeIDs.

121

6. A ROBUST IDENTITY ASSIGNMENT PROTOCOL FOR P2P
OVERLAYS

6.7 Conclusions

Public key certificates provide the basic security services to P2P overlays: authentica-

tion, data confidentiality, data integrity, non-repudiation and access control. But as we

have seen in Chapter 3, using these services in these networks is not enough to avoid

many of its threats. Even the use of a trust and reputation system by itself is not

enough to guarantee a certain level of security. For this reason we have proposed RI-

APPA (A Robust Identity Assignment Protocol for P2P overlAys), a new protocol for

issuing stable identities (digital certificates) in a secure and anonymous way minimally

altering the current operation of the overlays. Specially, this protocol provides stability

of nodeIDs because its generation does not depend on any information contained in the

certificate; they are jointly selected by the internal TTP and the newcomers. In this

way, users are placed in the virtual space pseudo-randomly.

Other important point on today’s Internet, it is the capability to identify misbe-

haviors and punish the perpetrators. For this reason, RIAPPA has been designed to

provide traceability of malicious users. On the one hand, this feature depends on the

LNs shared by the two TTPs, which provide a link between users and nodeIDs; and

on the other hand, it depends on the access control carried out by the internal TTP,

which can be done using users’ real-world certificates. Therefore, this protocol is the

only one that achieve at the same time full anonymity, revocability, stability and trace-

ability. These requirements may seem to be in conflict, but when you have to deploy a

commercial service over these networks you cannot treat equally all misbehaviors.

Finally, we can conclude that the cost of RIAPPA in terms of performance is reason-

able according to our analysis, and considering that a user only executes the protocol

the first time she wants to join the service (or when her overlay certificate must be re-

newed or revoked). On the other hand, the use of digital certificates always implies the

distribution of revocation data, which can be a challenging task in this kind of networks.

For this reason, this issue is specifically addressed in Chapter 7.

122

Chapter 7

CRL Distribution System for the

Kad Network

Contents

7.1 System Requirements . 124

7.2 Proposal Overview . 125

7.3 CRL Segment Generation . 126

7.4 CRL Segment Sharing . 128

7.5 CRL Segment Issuance . 129

7.6 Performance Analysis . 131

7.7 Conclusions . 135

The use of digital certificates in a P2P overlay network involves having an efficient

revocation system. However, traditional revocation systems are not suitable for these

type of networks since, as we have stated in Chapter 2.1.4.2, two major issues arise in

these networks. On the one hand, the amount of revocation data can be quite large due

to the number of users and the use of pseudonyms, which would hinder their distribution.

On the other hand, there is a trade-off between the freshness of the revocation data and

the overhead caused by its distribution. Therefore, we consider that it is necessary to

define a new way to distribute revocation data taking into account the specific operation

of the P2P overlays.

In this Chapter, we present a new distributed revocation system [38] that tries to

optimize both the availability of the revocation data and its freshness. The system is

based on the use of CRL segments and it is designed to work in a particular P2P overlay,

123

7. CRL DISTRIBUTION SYSTEM FOR THE KAD NETWORK

the Kad network; although it could be easily deployed in other networks. CRL segments

are distributed using the overlay and several replicas of keywordIDs and sourceIDs are

stored in different nodes.

With our mechanism, the CA is just another node of the network responsible for

publishing and storing all new CRL segments in the P2P overlay. Unlike in traditional

methods, the normal nodes do not only download CRL segments from the CA, but they

provide such segments to other nodes. In this way, the number of potential servers of

revocation data increases exponentially, which certainly increases the availability of the

revocation data. Moreover, this novel way of distributing CRL segments allows us to

improve the CRL updating policy maintaining all the security properties of a traditional

revocation system; CRL segments are updated independently and provided when a CA

considers necessary. To this respect, a CA can generate a segment before a previous

one has been expired. This is called over-issuance and it can be used to improve the

freshness of the revocation data with a low bandwidth cost.

7.1 System Requirements

Analyzing the features of P2P overlays, we conclude that a revocation system for these

networks should take into account the following requirements:

1. Scalability: The total cost of validating the status of a certificate is critical

in P2P networks because such networks are designed to be very large networks,

involving from tens of CAs and millions of users conducting billions of transactions.

2. Load balancing: The cost of storing and distributing the revocation data must

be shared out among all nodes.

3. Tolerance to frequent changes: Since P2P networks are characterized by the

lack of node stability, the system must be tolerant with frequent joins and leaves.

4. Performance: The entire system must be efficient, without requiring excessive

computational complexity or network overhead by any participant.

5. Unforgeability: No entity must be capable of generating fake revocation data.

124

7.2 Proposal Overview

7.2 Proposal Overview

Our proposal uses CRL segments to avoid managing entire CRLs of large size, although

it does not simply divide a CRL into several segments, but it generates the CRL seg-

ments separately. In this way, each CRL segment can be updated when the issuer CA

considers necessary, allowing the existence of over-issued segments. Then, these CRL

segments are stored and shared in a distributed way, improving their availability and

preventing CAs from becoming bottlenecks.

Within the P2P overlay, CAs act like normal nodes, and all of them are considered

as potential servers of CRL segments. However, they are solely responsible for issuing

these segments and inserting them into the network. The introduction of the CRL

segments into the overlay is performed by using a pull mechanism, that is, initially the

only server to download a certain CRL segment from is the CA issuer of that segment.

Regarding the validity and the integrity of the revocation data, CAs are also responsible

for avoiding that a malicious node can generate fake CRL segments, or modify a valid

one. To achieve this degree of security, CAs sign all segments using its cryptographic

public key in the same way they do with standard CRLs.

CRL segments are shared by nodes from the first time these lists are stored in them.

Thus, each time a node downloads a CRL segment, this node becomes a new server of

that segment within the overlay. Whenever a CA updates a CRL segment the process

starts again.

Taking into account the Kad network features, once a node has a chunk1 of a segment

it begins to share this chunk with the rest of nodes, although it has not downloaded

the entire segment yet. In this way, the CA does not become a bottleneck when a new

CRL segment is issued, or the network is initialized, even if the number of requests in

a short period of time is very large. The overlay itself is in charge of distributing the

requests to the new servers (nodes).

Next, we briefly describe the system operation by means of a simple example (3-bit

key space) from the point of view of a node A (001), which is shown in Figure 7.1. Let

us suppose that A wants to verify whether the certificate c is valid or not. First of

all, the node A calculates in which CRL segment the certificate c should be stored if

1Chunks are the smallest pieces of information which are downloaded or managed by the P2P

programs.

125

7. CRL DISTRIBUTION SYSTEM FOR THE KAD NETWORK

it has been revoked. In this particular case, let’s consider that the certificate c should

be stored in the CRL segment i. Once A knows which CRL segment needs to verify, it

checks if the segment i is stored in its local memory or not. If the segment is not stored

in the local memory, A sends a CRL segment i request to the known nodes of each

bucket (nodes B (110), C (011) and D (000)). Then, this request reaches the node C,

among others, which in turn responds to A indicating that the node E (010) is closer

to the CRL segment i. Next, A sends another CRL segment request to the node C and

downloads the segment. Note that the Kad network operation is quite more complex

than the illustrated example. In this case, the number of nodes which would respond to

a CRL segment request and the number of iterations would be very large. Remember

that the size of the Kad key space is 2128 (see Section 2.1.2.5).

Finally, A has to check whether the serial number of c is stored within that segment

or not. If the serial number of the certificate c is stored within the segment means that

the certificate is not valid, otherwise c is not revoked.

Figure 7.1: Example of a CRL segment search in the Kad network.

7.3 CRL Segment Generation

Digital certificates are distributed into 2k CRL segments according to their serial num-

bers. To that end, CAs use a hash function (h(·)) which given a certificate serial number

returns the number of the segment where that certificate should be stored in the case

of being revoked. In this way, each time a CA revokes a certificate, it calculates the

126

../figures/Kademlia_CRL.eps

7.3 CRL Segment Generation

hash of the certificate serial number and stores it in the CRL segment indicated by

the output of that hash function. In the same way, nodes also calculate the hash of

a certificate serial number if they want to verify the certificate validity, and so, they

obtain the number of the segment that they must consult.

Regarding the implementation of the system, the number k is given by the length of

the hash function used to obtain the number of a certain CRL segment. This length is

independent of the length of the certificate serial numbers used by each CA1. Therefore,

each segment will always contain the same potential range of certificate serial numbers.

The simplest hash function that meets the above requirements is the modular hash

function; h(c) = c mod 2k, where c is a certificate serial number. In this way, the

maximum size of the segments will be limited and equal for all of them. Taking into

account that the number of issued certificates can be at most 2n, each segment will

store a maximum of 2n−k revoked certificates. And thanks to the simplicity of this

hash function, the computational overhead introduced in the CAs and the nodes is

minimum. In Section 7.6 we analyze the proper behavior of the modulo operation to

uniformly distribute the certificate serial numbers among the CRL segments.

To create/update different CRL segments, or to calculate a desired CRL segment

number, it is not necessary to know the total number of revoked certificates at that

time. However, CAs need to take into account the potential maximum number of

revoked certificates in the worst case to properly dimensioning the system, that is,

properly select k. If the number of revoked certificates is expected to be really large, k

must be large too and vice versa. In this way, the system performance will be improved.

Figure 7.2 illustrates the distribution of a group of revoked certificates among 128

CRL segments. For that, a CA calculates the modulo 128 of the serial number of each

revoked certificate, and obtains the number of the segment where it must store each

serial number. Using the same operation, all users obtain the number of the CRL

segment where they need to search a certain serial number. Note that, for simplicity,

the CRL of the example only contains the certificate serial numbers, since our system

does not need to use other information.

It is also noteworthy that in the network initialization phase there may be empty

CRL segments, but even in the unlikely case that a segment does not store any revoked

1The X.509 v3 certificate format only specifies that the length of the serial numbers of the certificates

must be no longer than 160 bits [45].

127

7. CRL DISTRIBUTION SYSTEM FOR THE KAD NETWORK

Figure 7.2: CRL segments generation.

certificate its publication is also necessary. Nodes must be able to check whether a

certificate is valid or not by means of a document signed by a CA. For security reasons,

the fact that a node does not find a certain segment is not enough to assure that a

certificate is valid. Therefore, empty signed CRL segments should also be published

and distributed among the network nodes.

7.4 CRL Segment Sharing

The CRL segments are shared by the Kad network like any other resource. As we have

mentioned above, each CRL segment has an identifier number which is used by the nodes

to find the segment that they need to check. On the one hand, the name of the CRL

segments within the overlay is of the form “CRL_CAi Segment_xxx Date_yyyyyy”,

where CAi identifies the CA that issued the segment, xxx represents the CRL segment

128

../figures/CRL_Segmentation.eps

7.5 CRL Segment Issuance

number and yyyyyy is the date that the segment was issued (following the format

mmddyy), e.g., CRL_CA1 Segment_010 Date_062513. And on the other hand, their

metadata and sources are published in the network and stored in several nodes with

three associated keywords: CRL_CAi, Segment_xxx and Date_yyyyyy. The first

keyword identifies the segments issued by the same CA, the second keyword is used

to differentiate each particular CRL segment and the last keyword shows the data

freshness.

As we have explained in Section 2.1.2.5, resources are located within the Kad net-

work through their keywordIDs and sourceIDs (hash(keyword) and hash(file) respec-

tively). Therefore, when a node wants to download a new CRL segment, it performs a

search for one or more related keywords, which give pointers to multiple sources. Then,

these sources return which nodes have the desired segment. Finally, the node starts to

download the desired CRL segment.

Once the node already has at least a chunk of the CRL segment stored in its memory,

it performs the publication of that segment. To that end, the node publishes two types

of references, metadata and sources, which are sent to nodes in its tolerance zone.

Keywords are distributed metadata that reference to sources. Sources are the location

information pointing directly to the node, which keeps a copy of the CRL segment. In

Kad, metadata and sources are replicated in tens of nodes within the overlay, so the

searches are performed faster and return more results.

Continuing with the example of Figure 7.2, let us consider that a node needs to

verify the validity of a certificate with serial number “FFF......D4C”. First of all, it

calculates the hash value of this serial number and obtains the value 10. Then, the

node searches for the CRL_CA1 Segment_010 and identifies a considerable amount

of nodes which have stored this segment. Note that it will find this segment in several

versions (different dates). Finally, the node downloads the most current CRL segment

from her preferred peers and publishes it to make it more available.

7.5 CRL Segment Issuance

As time goes by, CAs must update CRLs they have issued. The new revoked certificates

must be added to the lists and expired revoked certificates must be removed from them.

129

7. CRL DISTRIBUTION SYSTEM FOR THE KAD NETWORK

In the traditional way of issuing these lists, new CRLs are issued periodically (e.g.,

hourly, daily, or weekly). Every time a new CRL is issued, all nodes that want to verify

the validity of a given certificate must download the new CRL. However, updating CRLs

periodically without taking into account the certificate revocation rate and the network

activity may cause problems about the freshness of the revocation data. If the overlay

revocation rate is high, a node can be consulting a stale CRL, which contains outdated

information or lacks of relevant information.

For this reason, in this proposal, revocation data are not issued periodically. New

revocation data are issued when the CA considers that it has enough information to

update a segment or when the segment has not been updated for a considerable period

of time. Moreover, our revocation mechanism takes into account that when a standard

CRL is going to be updated, there are long pieces of the list which do not have new

information to update. Therefore, it is more efficient to issue each CRL segment sep-

arately and only when it is necessary. So, CRL segments are managed as entire CRLs

and issued independently by CAs, that is, a CA adds or removes a certificate from the

corresponding CRL segment whenever the certificate is revoked or expired, and when

necessary, the CA issues the updated CRL segment.

In this way, we define a threshold value of revoked certificates per segment daily

(Us) above which a CA must issue the CRL segment again. This value is compared

by the CAs for each CRL segment every time they have a new revoked certificate. If

the number of revoked certificates added to a segment during the last 24 hours (∆) is

greater than Us (∆ > Us), or if the segment was last updated 24 hours ago, then the

CA must issue that CRL segment updated. Otherwise, it is not necessary to issue that

CRL segment. Note that most CAs issue new CRLs every 24 hours or less [45], for this

reason we update the CRL segments after 24 hours in the worst case.

The defined threshold value depends on the number of CRL segments (f = 2k), the

certificate revocation rate per day (Rc) and a setting parameter (η):

Us = η
Rc

f
(7.1)

We define the parameter η to provide CAs some degree of control over the threshold

value. This parameter allows CAs to increase or decrease the threshold value depending

on whether they want to prioritize the freshness of the revocation data, or on the

contrary they want to reduce their consumption of resources. η is simply the weight

130

7.6 Performance Analysis

assigned by the CA to Us. It is also noteworthy that we only take into account the

number of new revoked certificates during the last 24 hours (∆) to compare with Us,

and not the number of revoked certificates which have expired. Both types of data

must be updated in the CRL segments: new revoked certificates have to be added to

the segment and expired revoked certificates have to be removed from the segment.

However, note that from the point of view of security, removing expired certificates is

not critical or urgent. It is the process of adding new revoked certificates who must

decide the segment updates.

From the point of view of nodes, whenever they download a certain CRL segment,

first of all they must verify the validity period of that segment. Note that the name

of the files indicate the issuance date of the segment, but nothing prevents they have

downloaded a fake CRL segment. To do so, and taking into account that all segments

are updated at different times, each segment is time-stamped using two fields of it,

This Update and Next Update. The first field indicates the time when the segment

was issued and the second one when that segment will be updated in the worst case,

since any segment can be updated when the CA considers necessary. However, nodes

do not have any mechanism to know if the CRL segment they are validating has been

over-issued or not. They can only compare the issuance date between different CRL

segments.

7.6 Performance Analysis

In our revocation data distribution system, we store data in different CRL segments

which are distributed by the CAs to some nodes of the network. And from that time,

these nodes can also distribute those segments to other nodes. In this way, we reduce

the number of CRL segment requests received by the CAs. The storage requirements

for each node are also reduced thanks to the segmentation of the revocation data.

To analyze the request rate of CRL segments in CAs we have used the model pro-

posed by David A. Cooper [46], which defines the probability density function with

which a node sends a CRL segment request to a CA. Taking into account that CAs

issue a new CRL segment at time t = 0, the probability of a node requesting a CRL

segment is defined, for the first time, at time t.

131

7. CRL DISTRIBUTION SYSTEM FOR THE KAD NETWORK

If a CRL segment is issued at time t = 0, the probability that a node will send

the CRL segment request within the interval [t, t+ dt] depends on the probability that

the node will need to perform a validation within this interval. A node will request a

certain CRL segment within the interval [t, t + dt], if and only if, it needs to validate

a certificate that requires the use of that segment and has not validated any certificate

which had required the use of this segment within the interval [0, t).

Assuming a large number of nodes for the Kad network, we can assume that cer-

tificate validations are mutually independent and that their time distribution follows

a Poisson Law. With these considerations, the probability that a node attempts n

certificate validations in t can be expressed as:

P [n certificate validations in t] =

[

(vt)n

n!

]

e−vt, n = 0, 1, 2, 3... (7.2)

Where e−vt is the probability that the node will not perform a validation within the

interval [0, t) and v is the certificates validation rate. In addition, we assume that all

certificate validations are equally likely to require access to any of the CRL segments.

If we have f CRL segments, there is a probability of 1

f that a certain segment will be

needed to perform a certificate validation. Thus, the probability that a certain segment

will not be needed for any of n certificate validations is:

P [no request a certain segment for validating n certificates] =

(

1− 1

f

)n

(7.3)

Combining equations (7.2) and (7.3), and again according [46], the probability that

a node will not request a certain segment within the interval [0, t) is:

P [no request a certain segment in [0, t)] =

∞
∑

n=0

(

1− 1

f

)n [(vt)n

n!

]

e−vt = e−vt/f (7.4)

The probability that a node needs to request a segment within the interval [t, t+dt]

is ve−vdt dt. However, due to the interval [t, t+dt] is infinitesimally small, we can assume

that the probability that a node needs to validate more than one certificate within the

interval [t, t + dt] (in the limit dt → 0) is 0 (e−vdt ≈ 1). Therefore, probability that a

node needs to request a segment within the interval [t, t+ dt] is:

P [request a segment in [t, t+ dt]] = ve−vdt dt ≈ v dt (7.5)

132

7.6 Performance Analysis

And as the probability that a validation will require the use of a certain segment

between all possible segments is 1

f (equally likely), the probability that this segment

will be needed in the interval [t, t+ dt] is:

P [request a certain segment in [t, t+ dt]] =
v dt

f
(7.6)

Using equations (7.4) and (7.6), and multiplying by the number of nodes within the

network (N), the total number of requests that we expected of a certain segment within

the interval [t, t+ dt] can be expressed as:

Ns(t) =
Nve−vt/f dt

f
(7.7)

And the total request rate of a CRL segment is:

Rs(t) =
fNs(t)

dt
= Nve−vt/f (7.8)

Taking into account that the request rate for an entire CRL to a CA at time t is

R(t) = Nve−vt, the CRL segment request rate drops off with the number of segments

in which the revocation data are stored, but not so with the peak request, since Rs(0) =

R(0) = Nv.

This difference can be seen by comparing Figure 7.3a with Figure 7.3b. Figure 7.3a

shows the request rate for an entire CRL and Figure 7.3b the request rate for the CRL

segments, both graphs over the course of 24 hours. We have assumed that the entire

CRL and the CRL segments were issued at time 0, and that no others were issued

during the course of that 24 hours. We have also assumed that the number of nodes

within the Kad network (N) is 1 million, the validation rate (v) is 50 certificates per

day, and the number of CRL segments is 27 = 128.

In our distribution system, a CRL segment is also retrieved by several nodes, there-

fore we also determine the request rate of a certain node for a given segment. In

addition, the CRL segments are updated independently. To do so, we assume that all

server nodes are selected with the same probability, since nodes usually download the

segments from the closest server node.

133

7. CRL DISTRIBUTION SYSTEM FOR THE KAD NETWORK

0 3 6 9 12 15 18 21 24
0

100

200

300

400

500

Time (hours)

R
eq

ue
st

s
pe

r
se

co
nd

(a) Traditional CRL.

0 3 6 9 12 15 18 21 24
0

100

200

300

400

500

Time (hours)

R
eq

ue
st

s
pe

r
se

co
nd

(b) CRL segments.

Figure 7.3: CRL and CRL segments request rates.

The probability that a given node will not perform the request of a certain segment

to a certain node within the interval [0, t) is:

P [no request a certain segment in [0, t)] = (N/P)e
−vt(N/P)

f (7.9)

Where N is the number of nodes within the network, P is the number of potential

server nodes of a certain CRL segment and N
P is the average number of nodes which

download that segment from the same server node. The probability that one of these

nodes will request that segment to a certain node within the interval [t, t+ dt] is:

P [request a certain segment in t] =
ve−vdt dt

f
=

v dt

f
(7.10)

Combining the equations (7.9) and (7.10), we can determine the total expected

number of requests for a certain segment to a certain node in the interval [t, t+ dt]:

N ′

s(t) =
(N/P)ve

−vt(N/P)
f dt

f
(7.11)

And the total request rate:

R′

s(t) =
fN ′

s(t)

dt
= (N/P)ve

−vt(N/P)
f s (7.12)

As can be seen in Figure 7.4, the peak request has decreased, since R′

s(0) = (N/P)v

and the CRL request rate continues decreasing with the number of segments in which

revocation data are divided. Thus, our system improves the distribution of revocation

data compared with the traditional CRL and fragmented CRL methods.

134

../figures/R(t).eps
../figures/Rf(t).eps

7.7 Conclusions

0 3 6 9 12 15 18 21 24
0

20

40

60

80

100

Time (hours)

R
eq

ue
st

s
pe

r
se

co
nd

Figure 7.4: CRL segments distributed.

Regarding performance in the client side, this system introduces a small computa-

tional cost for every certificate validation. However, the time required to calculate a

modular hash function with current devices may be considered negligible in most cases.

In addition, segmentation reduces the storage space that clients must dedicate to store

revocation data, since in most cases they only need to store certain CRL segments and

not the entire CRL.

Regarding CAs performance, the problem is the number of hash functions that they

must calculate, one for each revoked certificate. Anyway, all hash operations can be done

previously and stored in a database. Not so in the case of signatures since CAs must

sign all issued CRL segments, but the fact that segments are updated independently

minimizes this latter problem. We have decided to use a modular hash function because

it does not consume too many resources, but also because this kind of hash functions

distribute the serial numbers with a good uniformity. This can be observed in Figure

7.5, where four different CRLs of important CAs are divided in 128 segments. The first

two graphs represent the distribution of two CRLs issued by Verisign [18], and the next

two show two CRLs issued by Thawte [15]. Note that we have been able to obtain these

CRLs since they are completely public data.

7.7 Conclusions

Today, P2P overlays are not yet mature, in terms of security, to implement commer-

cial applications, such as pay-per-view video streaming applications. To address this

problem, the adoption of a PKI seems to fulfill the main security requirements, al-

135

../figures/R'f(t).eps

7. CRL DISTRIBUTION SYSTEM FOR THE KAD NETWORK

0 20 40 60 80 100 120
0

10

20

30

40

50

60

CRL Segments

N
um

be
r

of
 C

er
tif

ic
at

es

(a) CRL with 5.190 revoked certificates.

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

CRL Segments

N
um

be
r

of
 C

er
tif

ic
at

es

(b) CRL with 5.346 revoked certificates.

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

CRL Segments

N
um

be
r

of
 C

er
tif

ic
at

es

(c) CRL with 8.054 revoked certificates.

0 20 40 60 80 100 120
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

CRL Segments

N
um

be
r

of
 C

er
tif

ic
at

es

(d) CRL with 926.757 revoked certificates.

Figure 7.5: Distribution of different revocation data sets in CRL segments.

though in these networks it has some associated problems, such as the distribution of

the revocation data.

CRLs seems to be the most widely used mechanism to distribute revocation data,

but CAs can become a bottleneck since CRLs must be updated frequently to maintain

data freshness. Also, their size grows exponentially with the number of network users

and the use of several pseudonyms. For these reasons, we propose a new revocation data

distribution system for the Kad network, where CAs store revocation data in several

CRL segments, which are stored in a large number of nodes to improve accessibility and

availability. In addition, these segments can be issued independently, which improves

data freshness without inducing a great cost for the network.

Distributing and replicating CRL segments instead of entire CRLs decreases the

peak request rates towards server nodes and improves the availability of revocation

data. Nodes only need to download the CRL segment which contains the serial number

of the certificate that they need to validate. Moreover, server nodes can deal with

requests at a faster rate.

Regarding the possible implementation of this revocation data distribution system

in other P2P overlay, such as BitTorrent or P2PStream, it is necessary to take into

account a series of network features. First of all, all users’ data must be stored by

136

../figures/Verisign.eps
../figures/Verisign2.eps
../figures/Thawte.eps
../figures/Large_CRL.eps

7.7 Conclusions

owners, while pointers or references to them must be stored by the network. Chord

network is an example of network which does not fulfill this requirement, since nodes

store content of other owners. Finally, it is important that the P2P network replicates

pointers or references in a considerable amount of nodes. Then searches are faster and

requests are more distributed.

137

7. CRL DISTRIBUTION SYSTEM FOR THE KAD NETWORK

138

Chapter 8

Conclusions and Further Work

We started with the research work described in this thesis motivated by the need of

providing security to a video streaming platform that operates over a P2P network [57].

Today, in the Internet, P2P networks are widely used to provide services such as video

streaming, file sharing, video conferencing, gaming, etc. Many services are implemented

using structured P2P networks (P2P overlays). However, in general, security measures

must be implemented separately because P2P overlays do not provide security by de-

sign. In particular, open P2P overlays have important security problems related to the

identity of the nodes, which can affect the maintenance of routing tables, the routing

of messages and the operation of reputation systems, among others. These problems

make these networks unsuitable for providing commercial services.

We have shown in this thesis that the generation and assignment of nodeIDs are

important security problems that P2P overlays should address to provide secure services.

We have presented three different identity assignment protocols which leverage the

issuance of digital certificates by Trusted Third Parties (TTPs). First, we propose

the issuance of an implicit certificate for each user and the use of their public keys to

generate secure and verifiable nodeIDs. Second, also using the users’ public keys to

generate their nodeIDs, we propose the issuance of implicit certificates by two TTPs

to provide full user anonymity. Third, we propose the issuance of explicit certificates

by two TTPs and a jointly generation of the nodeIDs by a TTP and users to provide

identity stability. We have also presented in this thesis a new mechanism to distribute

revocation data in a P2P overlay which improves the freshness of certification status

data and its accessibility and availability.

139

8. CONCLUSIONS AND FURTHER WORK

The remainder of this chapter summarizes the main results from our research and

identifies some future research lines.

8.1 Conclusions

In this thesis, we have designed three different protocols to assign robust identities

to nodes in P2P overlays: ICIAPPA, TIAPPA and RIAPPA. The three protocols use

public key cryptography and digital certificates to provide basic security services such

as authentication, data confidentiality, data integrity or non-repudiation. In terms

of performance, it is noteworthy that the deployment of any of these three proposed

protocols will only affect during the joining process to the network (bootstrapping), that

is, when digital certificates are issued or renewed (because of expiry or key compromise).

ICIAPPA uses implicit certificates to generate and assign pseudorandom nodeIDs.

These implicit certificates are issued by a TTP, and contain the nodeID that users

will use in the overlay. The TTP controls the access to the network by authenticating

users with their real identity (e.g. a public key certificate issued by a public CA).

This measure prevents a user can obtain more than one implicit certificate (and hence

more than one nodeID). This means that Sybil attacks are avoided, and that robust

and effective reputation systems can be used. In this way, attackers cannot wash or

improve their reputation dishonestly. When using ICIAPPA, users cannot select their

nodeIDs. This mainly avoids that attackers can perform the well-known “Eclipse” attack

to isolate a node, and Man-In-The-Middle (MITM) attack to intercept communications

to and from the targeted nodes. ICIAPPA assures that nodeIDs are distributed roughly

uniformly in the virtual space, ensuring approximately balanced load among nodes,

which improves the network performance. Other features of the nodeIDs generated by

ICIAPPA are verifiability, revocability, traceability and partial-anonymity. This latest

one means that ICIAPPA can assure that users remain anonymous in the overlay, but

the TTP can match the real-world identity with the nodeID, so full-anonymity is not

achieved.

We have demonstrated that ICIAPPA is a good mechanism to assign secure nodeIDs

to users, and its features should be enough for the deployment of commercial services

using p2p overlays. Examples of these commercial services may be collaborative P2P

video streaming services, online multiplayer games, projects of citizen science, etc. The

140

8.1 Conclusions

use of P2P overlays would minimize the investment on infrastructure and would im-

prove the overall performance of the system. However, ICIAPPA does not provide

full-anonymity. If this feature is required by users, the protocols TIAPPA and RIAPPA

could be used.

The structure of TIAPPA is similar to the one of ICIAPPA, it also issues implicit

certificates and the main difference is that TIAPPA uses two TTPs. The reason to use

two TTPs is to provide full-anonymity, that is, a single entity (even the TTPs) can match

the real identity of the user and the corresponding identity within the overlay. Newly

issued implicit certificates are signed by the two TTPs. An external TTP controls the

access of users to the network using public digital certificates with real identities of users.

The external TTP avoids users can neither change their nodeIDs uncontrollably nor

obtain more than one nodeID. This avoids users being able to “wash” their reputation or

isolating a node of the rest of the network. The external TTP may charge for the service,

if necessary, while maintaining the anonymity of the users within the network as long

as their behavior is lawful. The internal TTP is responsible for generating the implicit

certificates which contain the identifiers used within the overlay. The internal TTP

avoids users can select their nodeIDs for malicious purposes. Both TTPs share a Link

Number (LN) to provide traceability and deanonymize users, if strictly necessary. As

a result, TIAPPA can avoid Sybil, Eclipse and MITM attacks, ensuring approximately

balanced load among nodes.

TIAPPA could be used to provide services that require full anonymity for users.

Examples of these may be online auctions, eGovernment services which maintain the

anonymity of citizens, e-Health, etc. For instance, one possible service of this kind could

be the secure distribution of real-time video content among different operating rooms

located in different hospitals around the world, providing full-anonymity to patients.

Implicit certificates, which are based on Elliptic Curve Cryptography (ECC), are

used in both ICIAPPA and TIAPPA. As we have shown in the Thesis, this type of cer-

tificates provides advantages in terms of performance compared to traditional explicit

public certificates. As we discussed in section 2.2.2, three less modular operations and

one less scalar multiplication are necessary to construct an ECC-based implicit public

key and to verify its ECDSA signature. This computational cost saving will occur every

time a node needs to validate a nodeID or encrypt a message using public key cryptog-

raphy, which is not negligible. Another slight advantage of implicit certificates against

141

8. CONCLUSIONS AND FURTHER WORK

explicit certificates is their size. Implicit certificates are three times smaller than explicit

certificates independently of the provided security level, despite this might be negligible

in P2P networks since we are only saving some hundreds of bits. However, our main

reason to use implicit certificates was that they allowed us to generate pseudorandom

public keys in an easy way. Unfortunately, these nodeIDs cannot be considered totally

stable as every time the implicit certificate is renewed the nodeID changes. If nodeIDs

depend on the cryptographic public keys (which is the case of ICIAPPA and TIAPPA),

every time a certificate is renewed the associated nodeID will directly change. This can

be an important issue for some trust and reputation systems. To provide a solution for

those services in which the total stability of nodeIDs is a must, we introduced our third

contribution on identity assignment called RIAPPA.

RIAPPA uses explicit certificates and two TTPs. NodeIDs are jointly generated by

the owner user and an internal TTP. These nodeIDs are assigned to nodes using explicit

certificates, which are signed by the two TTPs (internal and external). An ECC-based

blind signature is used to perform this double signature over certificates maintaining

the full-anonymity of users.

Omitting all these changes in the type of certificates used and how nodeIDs are

generated, at the end RIAPPA provides the same security features than TIAPPA: pro-

tection against Sybil, Eclipse, MITM and whitewashing attacks. Generated nodeIDs

are pseudorandom, fully-anonymous, verifiable, traceable and revocable. So, the en-

hancement of RIAPPA regarding TIAPPA is total stability. When using RIAPPA, if a

digital certificate is renewed, the associated nodeID does not have to be changed. This

can help trust and reputation systems to follow the behavior of a user independently if

she changes or not her credentials. RIAPPA is equally suitable for the same scenarios

than TIAPPA, but keeping in mind that RIAPPA provides more stability to nodeID, so

reputation systems can benefit from that. Unfortunately, the use of explicit certificates

would slightly increase the computational cost of the issuance service, which may not

matter much in most P2P environments, but this should be considered.

On the other hand, the use of digital certificates, both implicit and explicit, always

implies the use of a system to distribute revocation data. The distribution of these data

has been a challenge in all types of networks, and many mechanisms have been proposed

for that purpose. However, most of them do not provide an efficient distribution of

revocation data in P2P overlays. In these networks the amount of revocation data is

142

8.2 Further Work

very high due to the large number of users, and its freshness is usually sacrificed in

order to maintain a good performance of the network. For these reasons, we have also

proposed a new revocation data distribution mechanism for the Kad network, which can

also be implemented in other P2P overlays, such as BitTorrent or P2PStream. We have

tried to optimize both the availability of the revocation data and its freshness. In our

system, revocation data are distributed in certificate Revocation List (CRL) segments,

which are independently issued by a CA and then shared by other nodes of the network.

The CA is also able to over-issue those segments in order to improve the freshness of the

revocation data. Moreover, unlike the standard technique of CRL segmentation which

divides an entire CRL equally to obtain the segments, our proposal also generates the

CRL segments independently using the serial number of the revoked certificates and a

modular operation.

We have demonstrated that the use of our CRL segments decreases the request

rate at the CA and improves the availability of the revocation data. The segmenta-

tion of CRLs reduces the size of each distributed piece of revocation data improving

the performance of the network and reducing the storage requirements for nodes, and

the independent issuance of CRL segments and the use of the over-issuance technique

decrease the peak request rate at the CA and server nodes. The CA decides to issue a

new CRL segment taking into account the time from the last update and the amount

of new revocation data in the segment during this period of time. In Section 7.6, we

have analyzed the performance of this mechanism in depth, and we have concluded that

the peak request rate decreases exponentially with the number of potential nodes that

would distribute the CRL segments, and the size of the segments decreases exponen-

tially with the number of segments in which the revocation data is stored. Moreover, we

have also demonstrated that the use of a modular operation to distribute the revoked

certificates into the CRL segments provides a uniform distribution.

8.2 Further Work

In this section we explore possible improvements and open research directions based on

ideas and results provided in this dissertation.

143

8. CONCLUSIONS AND FURTHER WORK

8.2.1 Implicit Certificates Application

In this thesis we have used implicit certificates in two of the three proposed protocols

with intent to leverage its generation scheme to assign robust nodeIDs in P2P overlays.

But we have also seen that these certificates have several advantages against explicit

certificates, which could be exploited in other kind of networks.

Content-Centric Networks

Content-Centric Networking (CCN) [68] is a new network architecture that focuses

on contents access rather than end-point communications; it proposes an environment

based on named data instead of named hosts. CCNs only rely on the use of two types

of packets, Interest and Data packets, and a very simple way to operate. Users send out

an Interest packet containing the name of the content they want to access, intermediate

routers forward it to the nodes that may have that content, and the closest node answers

with a Data packet. Later, answers from other devices are discarded on their way.

This architecture enables scalable, collaborative and pervasive networking. However,

the nodes publishing and forwarding contents become quite uncertain. For this reason,

security problems were taken into account from the outset [113]. The CCN security

scheme relies on ensuring the authenticity, consistency and integrity of the contents.

Each data packet contains the publisher’s digital signature over the content and a way

to retrieve the associated public key (or certificate). However, once the users obtain

that public key (or certificate) from the network, the problem is to check its validity.

PKI is the most widely deployed architecture to manage certificates in the Internet,

but in distributed environments this architecture may be hard to implement. In addi-

tion, intermediate devices (e.g. CCN routers) also tend to check data packets, which can

produce significant performance degradation whether the validity process is hard. For

these reasons we think that the use of implicit certificates as they were defined by the

Standards for Efficient Cryptography Group [103], or leveraging its generation scheme

to propose alternative solutions, would be a good way to secure this kind of networks.

Vehicular Ad-Hoc Networks

The open-medium nature of Vehicular Ad Hoc Networks (VANETs) makes it necessary

to integrate in these networks security mechanisms such as authentication, message

144

8.2 Further Work

integrity, non-repudiation, confidentiality and privacy [100]. The solution envisioned

to achieve these functionalities was to use digital certificates provided by a centralized

Certification Authority (CA) [64, 96], but most of the existing proposals use explicit

certificates. Taking into account the advantages of implicit certificates in terms of

performance and storage against explicit certificates, we think that the use of implicit

certificates in these networks could also provide very interesting alternative mechanisms

to identify vehicles and provide security.

Internet of Things

The Internet of Things (IoT) concept refers to the use of standard Internet protocols

to provide human-to-thing (H2T) or thing-to-thing (T2T) communications. Nowadays,

many working groups have focused their research on the (re)design, application, and

use of standard Internet technology in the IoT. However, standard security solutions for

IP networks are not suitable for most scenarios drawn in this context. Authentication

and secure data transmission are also vital in IoT, but the constraints of smart objects

demand for more lightweight security mechanisms.

Considering the work carried out by Hummen et. al [65], the use of digital certificates

is also a valid solution in these networks. Nevertheless, the use of digital certificates

on resource-constrained devices (limited available CPU, ROM, RAM, and energy re-

sources) motivates new challenges such as the processing of long certificate chains, the

transmission of large certificates, how to download large revocation lists and so on. For

these reasons, we consider that the use of implicit certificates, and of course the use of

Elliptic Curve Cryptography (ECC), could be a way to reduce some performance issues.

8.2.2 Revocation Data Distribution

In Chapter 7 we have proposed a new mechanism to distribute revocation data in a

P2P overlay to improve its availability and freshness. This mechanism is based on P2P

overlay distribution but its way to issue the revocation data could be also used in other

networks to achieve similar objectives.

Vehicular Ad-Hoc Networks

In a Vehicular Ad Hoc Network (VANET) where digital certificates are used to identify

vehicles and provide certain security mechanisms, if a vehicle is no longer trusted (e.g.,

145

8. CONCLUSIONS AND FURTHER WORK

due to evidence of malfunction or malicious behavior), its certificates must be revoked.

Therefore, the status information of each vehicle has to be made available to other

vehicles as soon as possible by means of an efficient mechanism. In this kind of networks,

many mechanisms have been proposed in recent years to both distribute and issue

revocation data [55, 56]. The main issue is that none of these studies considers issuing

CRL segments independently, according to the number of revoked certificates in a period

of time or using a modular operation to distribute those certificates into the CRL

segments. For this reason, we think that a deeper study of these ideas can be an

interesting future research area.

146

References

[1] aMule Home Page. http://www.amule.org (accessed February 21, 2014). 14, 21

[2] Bitcoin Home Page. https://bitcoin.org (accessed February 24, 2014). 12

[3] BitTorrent Home Page. http://www.bittorrent.com (accessed February 24, 2014).

12

[4] BitTorrent Sync Home Page. http://www.bittorrent.com/sync (accessed February

24, 2014). 12

[5] CoolStreaming Home Page. http://www.coolstreaming.us (accessed February 24,

2014). 12

[6] Edonkey Home Page. http://www.edonkey.co.nr (accessed February 21, 2014).

13

[7] eMule Project Home Page. http://www.emule-project.net (accessed February 21,

2014). 14, 21

[8] Gnutella Home Page. http://rfc-gnutella.sourceforge.net (accessed February 21,

2014). 13

[9] Jamendo Home Page. http://www.jamendo.com (accessed February 24, 2014). 12

[10] Napster Home Page. http://www.napster.com (accessed February 21, 2014). 13

[11] PPLive Home Page. http://join.pplive.com (accessed February 24, 2014). 12

[12] PPStream Home Page. http://pps.tv (accessed February 24, 2014). 12

[13] Skype Home Page. http://www.skype.com (accessed February 24, 2014). 12

147

REFERENCES

[14] SopCast Home Page. http://www.sopcast.org (accessed February 24, 2014). 12

[15] Thawte Home Page. https://www.thawte.com (accessed February 5, 2015). 135

[16] The AVISPA Project. http://www.avispa-project.org (accessed June 20, 2014).

45, 95, 114

[17] TVUnetworks Home Page. http://www.tvunetworks.com (accessed February 24,

2014). 12

[18] Verisign Home Page. https://www.verisign.com (accessed February 24, 2015). 135

[19] Vuze Home Page. http://www.vuze.com (accessed February 26, 2014). 22

[20] Zattoo Home Page. http://zattoo.com (accessed February 24, 2014). 12

[21] Martín Abadi and Roger Needham. Prudent Engineering Practice for Cryp-

tographic Protocols. IEEE Transactions on Software Engineering, 22(1):6–15,

1996. 63, 64, 65, 83, 104

[22] C. Adams, S. Farrell, T. Kause, and T. Mononen. Internet X.509 Public

Key Infrastructure Certificate Management Protocol (CMP). RFC 4210 (Pro-

posed Standard), September 2005. 27

[23] Luca Maria Aiello, Marco Milanesio, Giancarlo Ruffo, and Rossano

Schifanella. Tempering Kademlia with a Robust Identity Based System.

In Proceedings of the 8th International Conference on Peer-to-Peer Computing,

P2P’08, pages 30–39. IEEE Computer Society, 2008. 31, 119

[24] Luca Maria Aiello, Marco Milanesio, Giancarlo Ruffo, and Rossano

Schifanella. An identity-based approach to secure P2P applications with Likir.

Peer-to-Peer Networking and Applications, 4:420–438, 2011. 31, 57, 119

[25] Luca Maria Aiello and Giancarlo Ruffo. LotusNet: Tunable privacy for

distributed online social network services. Computer Communications, 35(1):75–

88, january 2012. 31, 119

[26] American National Standards Institute (ANSI). Random Number Gen-

eration Part 1: Overview and Basic Principles, 2006. ANSI X9.82-1-2006. 70,

93

148

REFERENCES

[27] Alessandro Armando, David Basin, Yohan Boichut, Yannick Cheva-

lier, Jorge Cuellar, and Others. The AVISPA Tool for the Automated

Validation of Internet Security Protocols and Applications. In Computer Aided

Verification, 3576 of Lecture Notes in Computer Science, pages 281–285. Springer

Berlin Heidelberg, 2005. 45

[28] Agapios Avramidis, Panayiotis Kotzanikolaou, Christos Douligeris,

and Mike Burmester. Chord-PKI: A distributed trust infrastructure based on

P2P networks. Computer Networks, 56(1):378–398, 2012. 3, 37

[29] Ingmar Baumgart and Sebastian Mies. S/Kademlia: A practicable ap-

proach towards secure key-based routing. In Proceedings of the 13th International

Conference on Parallel and Distributed Systems, 2, pages 1–8. IEEE Computer

Society, december 2007. 31

[30] Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT Benchmarking of

Cryptographic Systems. Website. 117

[31] Thomas Beth, Malte Borcherding, and Birgit Klein. Valuation of Trust

in Open Networks. In Proceedings of the European Symposium on Research in

Computer Security, ESORICS’94, pages 3–18, November 1994. 37

[32] Daniel R.L. Brown, Robert Gallant, and Scott A. Vanstone. Provably

Secure Implicit Certificate Schemes. In Financial Cryptography, 2339 of Lecture

Notes in Computer Science, pages 156–165. Springer Berlin Heidelberg, 2002. 39

[33] René Brunner. A performance evaluation of the Kad-protocol. Master’s the-

sis, Fakultät für Mathematik und Informatik, Universität Mannheim, Germany.,

november 2006. 111

[34] Kevin R.B. Butler, Sunam Ryu, Patrick Traynor, and Patrick D.

McDaniel. Leveraging Identity-Based Cryptography for Node ID Assignment in

Structured P2P Systems. IEEE Transactions on Parallel and Distributed Systems,

20(12):1803–1815, december 2009. 31, 33, 118

[35] Qiang Cao, Michael Sirivianos, Xiaowei Yang, and Tiago Pregueiro.

Aiding the Detection of Fake Accounts in Large Scale Social Online Services.

149

REFERENCES

In Proceedings of the 21nd USENIX Security Symposium, USENIX’12. USENIX

Association, june 2012. 34

[36] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Row-

stron, and Dan S. Wallach. Secure Routing for Structured Peer-to-peer

Overlay Networks. SIGOPS Oper. Syst. Rev., 36(SI):299–314, december 2002.

30, 32, 118

[37] Juan Caubet, Oscar Esparza, José L. Muñoz, Juanjo Alins, and Jorge

Mata-Díaz. RIAPPA: A Robust Identity Assignment Protocol for P2P overlAys.

Security and Communication Networks, 7(12):2743–2760, 2014. 99

[38] Juan Caubet, Carlos Gañan, Oscar Esparza, José L. Munoz, Jorge

Mata-Díaz, and Juanjo Alins. Certificate Revocation List Distribution Sys-

tem for the Kademlia Network. The Computer Journal, 57(2):273–280, 2014.

123

[39] David Chaum. Blind Signatures for Untraceable Payments. In Proceedings of

the Advances in Cryptology, pages 152–156, 1983. 42, 43

[40] Rita Chen and William Yeager. Poblano: A Distributed Trust Model for

Peer-to-Peer Networks. JXTA Security Project White Paper, Sun Microsystem,

2002. 37

[41] Robert F. Churchhouse. Codes and ciphers: Julius Caesar, the Enigma, and

the internet. Cambridge University Press, 2002. 63

[42] Cisco Systems, Inc. Cisco Visual Networking Index: Forecast and Method-

ology, 2012-2017. http://www.cisco.com/c/en/us/solutions/collateral/service-

provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html (ac-

cessed February 24, 2014). 12

[43] Cisco Systems, Inc. The Zettabyte Era - Trends and Analysis, 2013.

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-

networking-index-vni/VNI_Hyperconnectivity_WP.html (accessed February 24,

2014). 12

150

REFERENCES

[44] Bram Cohen. The BitTorrent Protocol Specification, january 2008.

http://www.bittorrent.org/beps/bep_0003.html (accessed February 21, 2014).

14, 22

[45] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and

W. Polk. Internet X.509 Public Key Infrastructure Certificate and Certificate

Revocation List (CRL) Profile. RFC 5280 (Updates by RFC 6818), May 2008. 3,

27, 39, 101, 127, 130

[46] David A. Cooper. A Model of Certificate Revocation. In Proceedings of the 15th

Annual Computer Security Applications Conference, ACSAC’99, pages 256–264,

December 1999. 27, 131, 132

[47] Weverton Luis Da Costa Cordeiro, FláVio Roberto Santos, Gus-

tavo Huff Mauch, Marinho Pilla Barcelos, and Luciano Paschoal

Gaspary. Identity management based on adaptive puzzles to protect P2P sys-

tems from Sybil attacks. Comput. Netw., 56(11):2569–2589, july 2012. 33, 118

[48] The Identity Corner. The problem(s) with OpenID.

http://www.untrusted.ca/cache/openid.html (accessed July 2, 2014). 32,

119

[49] Ivan Damgård. Commitment Schemes and Zero-Knowledge Protocols. In Lec-

tures on Data Security, 1561 of Lecture Notes in Computer Science, pages 63–86.

Springer Berlin Heidelberg, 1999. 44

[50] John R. Douceur. The Sybil Attack. In Proceedings of the First International

Workshop on Peer-to-Peer Systems, IPTPS’02, pages 251–260, London, UK, 2002.

Springer-Verlag. 25, 30, 69, 119

[51] Bhavani Elangovan and Bharath. Trust model: Providing witness

anonymity in P2P network. In Proceedings of the third International Confer-

ence on Advanced Computing, ICoAC’11, pages 100–105, Chromepet, Chennai,

India, december 2011. 57

[52] Chun-I Fan, Wei-Zhe Sun, and Vincent Shi-Ming Huang. Provably se-

cure randomized blind signature scheme based on bilinear pairing. Computers &

Mathematics with Applications, 60(2):285–293, 2010. 115, 117

151

REFERENCES

[53] Romano Fantacci, Leonardo Maccari, Matteo Rosi, Luigi Chisci,

Luca Maria Aiello, and Marco Milanesio. Avoiding Eclipse Attacks on

Kad/Kademlia: An Identity Based Approach. In Proceedings of the IEEE In-

ternational Conference on Communications, ICC’09, pages 983–987. IEEE Press,

june 2009. 31, 57, 119

[54] Eric J. Friedman and Paul Resnick. The Social Cost of Cheap Pseudonyms.

Journal of Economics & Management Strategy, 10(2):173–199, 2001. 31

[55] Carlos Gañán, Jose L. Muñoz, Oscar Esparza, Jonathan Loo, Jorge

Mata-Díaz, and Juanjo Alins. BECSI: bandwidth efficient certificate sta-

tus information distribution mechanism for vanets. Mobile Information Systems,

9(4):347–370, 2013. 146

[56] Carlos Gañán, Jose L. Muñoz, Oscar Esparza, Jorge Mata-Díaz, Juan

Hernández-Serrano, and Juanjo Alins. COACH: collaborative certificate

status checking mechanism for vanets. J. Network and Computer Applications,

36(5):1337–1351, 2013. 146

[57] Carlos Gañán, Juan Caubet, Sergi Reñé, Jorge Mata-Díaz, Juanjo

Alins, and Óscar Esparza. NeuroCast: Adaptive Multi-source P2P Video

Streaming Application for Wireless Networks. In Wired/Wireless Internet Com-

munications, 6649 of Lecture Notes in Computer Science, pages 272–284.

Springer Berlin Heidelberg, 2011. 139

[58] Oded Goldreich. Secure Multi-Party Computation, 2002.

http://www.wisdom.weizmann.ac.il/ oded/pp.html. 44

[59] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowl-

edge Complexity of Interactive Proof Systems. SIAM J. Comput., 18(1):186–208,

February 1989. 44

[60] Abhilash Gummadi and Jong P. Yoon. Modeling Group Trust For Peer-to-

Peer Access Control. In Proceedings of International Workshop on Database and

Expert Systems Applications, pages 971–978. IEEE Computer Society, August

2004. 37

152

REFERENCES

[61] Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to

Elliptic Curve Cryptography. Springer Verlag New York, 2003. 38

[62] Ryan Henry and Ian Goldberg. Formalizing Anonymous Blacklisting Sys-

tems. In Proceedings of the IEEE Symposium on Security and Privacy, SP’11,

pages 81–95, Berkeley, CA, USA, May 2011. IEEE Computer Society. 78

[63] Jun Huang, Zhao Wang, Zhao Qiu, and Mingrui Chen. Theoretical Anal-

ysis of Issuing Mechanism in Distributive Digital Certificate Revocation List. In

Proceedings of the International Conference on Computer and Electrical Engineer-

ing, ICCEE’08, pages 199–203. IEEE Computer Society, December 2008. 36

[64] Jean-Pierre Hubaux, S. Capkun, and Luo Jun. The security and privacy

of smart vehicles. IEEE Security and Privacy, 2(3):49–55, May 2004. 145

[65] René Hummen, Jan H. Ziegeldorf, Hossein Shafagh, Shahid Raza, and

Klaus Wehrle. Towards viable certificate-based authentication for the internet

of things. In Proceedings of the 2nd ACM workshop on Hot topics on wireless

network security and privacy, pages 37–42. ACM, 2013. 145

[66] Sun Microsystems Inc. JXTA v2.0 Protocols Specification, 2007.

http://java.net/projects/jxta-spec (accessed January 9, 2015). 23, 37

[67] ipoque. Internet Study 2008/2009. http://www.ipoque.com/sites/default/files/

mediafiles/documents/internet-study-2008-2009.pdf (accessed February 21, 2014).

15

[68] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F.

Plass, Nicholas H. Briggs, and Rebecca L. Braynard. Networking

Named Content. In Proceedings of the 5th ACM International Conference on

Emerging Networking Experiments and Technologies, CoNEXT’09, pages 1–12,

December 2009. 144

[69] Fuh-Gwo Jeng, Tzer-Long Chen, and Tzer-Shyong Chen. An ECC-

Based Blind Signature Scheme. Journal Of Networks, 5(8):921–928, 2010. 44

153

REFERENCES

[70] Wen Ji, Shoubao Yang, Dong Wei, and Weina Lu. GARM: A Group -

Anonymity Reputation Model in Peer-to-Peer System. In Proceedings of the 6th

International Conference on Grid and Cooperative Computing, GCC’07, pages

481–488, Washington, DC, USA, 2007. IEEE Computer Society. 57

[71] Don Johnson and Alfred Menezes. The Elliptic Curve Digital Signature

Algorithm (ECDSA). Technical Report CORR 99-34, Dept. of C&O, University

of Waterloo, Canada, 1999. 39

[72] Fabius Klemm, Sarunas Girdzijauskas, Jean-Yves Le Boudec, and

Karl Aberer. On Routing in Distributed Hash Tables. In Proceedings of the

7th IEEE International Conference on Peer-to-Peer Computing, P2P’07, pages

113–122, Los Alamitos, CA, USA, 2007. IEEE Computer Society. 24

[73] Neal Koblitz. Elliptic Curve Cryptosystems. Mathematics of computation,

48(177):203–209, 1987. 37

[74] Paul C. Kocher. On Certificate Revocation and Validation. In Financial Cryp-

tography, 1465 of Lecture Notes in Computer Science, pages 172–177. Springer

Berlin Heidelberg, 1998. 28

[75] Santosh Kulkarni. Badumna Network Suite: A decentralized network engine

for Massively Multiplayer Online applications. In Proceedings of the 9th IEEE In-

ternational Conference on Peer-to-Peer Computing, P2P’09, pages 178–183, Seat-

tle, WA, USA, september 2009. 12

[76] Stefan Köpsell, Rolf Wendolsky, and Hannes Federrath. Revocable

Anonymity. In Emerging Trends in Information and Communication Security,

3995 of Lecture Notes in Computer Science, pages 206–220. Springer Berlin Hei-

delberg, 2006. 78

[77] François Lesueur, Ludovic Mé, and Valérie Viet Triem Tong. A Sybil-

proof Distributed Identity Management for P2P Networks. In Proceedings of the

IEEE Symposium on Computers and Communications, ISCC’08, pages 246–253.

IEEE Computer Society, july 2008. 36

154

REFERENCES

[78] libtorrent blog. DHT security. http://blog.libtorrent.org/2012/12/dht-

security (accessed April 3, 2014). 51

[79] Thomas Locher, David Mysicka, Stefan Schmid, and Roger Watten-

hofer. Poisoning the KAD Network. In Distributed Computing and Networking,

5935 of Lecture Notes in Computer Science, pages 195–206. Springer Berlin, Hei-

delberg, 2010. 48

[80] Andrew Loewenstern and Arvid Norberg. BitTorrent DHT Protocol

Specification, january 2008. http://bittorrent.org/beps/bep_0005.html (accessed

February 21, 2014). 14, 22

[81] Chuiwei Lu. Detection and Defense of Identity Attacks in P2P Network. In

Advances in Computation and Intelligence, 5821 of Lecture Notes in Computer

Science, pages 500–507. Springer-Verlag Berlin Heidelberg, 2009. 33, 57, 118

[82] Ben Lynn. On the Implementation of Pairing-based Cryptosystems. PhD thesis,

Stanford University, June 2007. 39

[83] Sergio Marti and Hector Garcia-Molina. Identity Crisis: Anonymity vs.

Reputation in P2P Systems. In Proceedings of the 3rd International Conference on

Peer-to-Peer Computing, P2P’03, pages 134–141. IEEE Computer Society, 2003.

53

[84] Sergio Marti and Hector Garcia-Molina. Taxonomy of Trust: Categoriz-

ing P2P Reputation Systems. Computer Networks, 50(4):472–84, 2006. 26

[85] Petar Maymounkov and David Mazières. Kademlia: A Peer-to-Peer Infor-

mation System Based on the XOR Metric. In Proceedings of the 1st International

Workshop on Peer-to Peer Systems, IPTPS’02, pages 53–65, march 2002. 14, 19,

49

[86] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot.

Handbook of Applied Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1st

edition, 1996. 39

155

REFERENCES

[87] Roberto Tamassia Michael T. Goodrich and Andrew Schwerin. Imple-

mentation of an authenticated dictionary with skip lists and commutative hashing.

In Proceedings of the II DARPA Information Survivability Conference & Exposi-

tion, 2 of DISCEX’01, pages 68–82. IEEE Computer Society, June 2001. 28

[88] Victor S. Miller. Use of Elliptic Curves in Cryptography. In Advances in

Cryptology: Proceedings of CRYPTO ’85, 218 of Lecture Notes in Computer

Science, pages 417–426. Springer Berlin Heidelberg, 1986. 37

[89] D. Mills, J. Martin, J. Burbank, and W. Kasch. Network Time Protocol

Version 4: Protocol and Algorithms Specification. RFC 5905 (Standards Track),

June 2010. 64, 80

[90] Matei Ciobanu Morogan and Sead Muftic. Certificate Revocation System

Based on Peer-to-Peer CRL Distribution. In Proceedings of the 9th International

Conference on Distributed Multimedia Systems, DMS’03, September 2003. 36

[91] Moni Naor and Kobbi Nissim. Certificate Revocation and Certificate Update.

IEEE Journal on Selected Areas in Communications, 18(4):561–570, April 2000.

28

[92] Arvid Norberg. BitTorrent DHT Security Extension.

http://bittorrent.org/beps/bep_0042.html (accessed March 31, 2014). 23,

49, 50

[93] The National Security Agency (NSA). Suite

B Cryptography/Cryptographic Interoperability, 2010.

http://www.nsa.gov/ia/programs/suiteb_cryptography (accessed March 14,

2014). 38

[94] National Institute of Standards and Technology (NIST). Recommen-

dation for Random Number Generation Using Deterministic Random Bit Gener-

ators, January 2012. NIST Special Publication 800-90A. 70, 93

[95] National Institute of Standards and Technology (NIST). Secure Hash

Standard (SHS), March 2012. FIPS PUB 180-4. 70

156

REFERENCES

[96] P. Papadimitratos, L. Buttyan, Jean-Pierre Hubaux, F. Kargl,

A. Kung, and Maxim Raya. Architecture for secure and private vehicular com-

munications. In Proceedings of the 7th International Conference on ITS Telecom-

munications, ITST’07, pages 1–6, June 2007. 145

[97] Leon A. Pintsov and Scott A. Vanstone. Postal Revenue Collection in

the Digital Age. In Financial Cryptography, 1962 of Lecture Notes in Computer

Science, pages 105–120. Springer Berlin Heidelberg, 2001. 39

[98] C. Greg Plaxton, Rajmohan Rajaraman, and Andréa W. Richa. Ac-

cessing Nearby Copies of Replicated Objects in a Distributed Environment. The-

ory of Computing Systems, 32(3):241–280, 1999. 14, 18

[99] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and

Scott Shenker. A Scalable Content-Addressable Network. In Proceedings of the

ACM Conference on Applications, Technologies, Architectures and Protocols for

Computer Communication (SIGCOMM), pages 161–172, San Diego, CA, USA,

2001. 14, 15, 48

[100] Maxim Raya and Jean-Pierre Hubaux. The security of vehicular ad hoc

networks. In Proceedings of the 3rd ACM workshop on Security of ad hoc and

sensor networks, SASN’05, pages 11–21, 2005. 145

[101] Certicom Research. Standards for Efficient Cryptography 1 (SEC 1): Elliptic

Curve Cryptography, May 2009. Version 2.0. 70, 93

[102] Certicom Research. Standards for Efficient Cryptography 2 (SEC 2): Recom-

mended Elliptic Curve Domain Parameters, January 2010. Version 2.0. 71

[103] Certicom Research. Standards for Efficient Cryptography 4 (SEC 4): Elliptic

Curve Qu-Vanstone Implicit Certificate Scheme (ECQV), April 2014. Version 1.2.

40, 62, 144

[104] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A Method for

Obtaining Digital Signatures and Public-key Cryptosystems. Commun. ACM,

21(2):120–126, February 1978. 38

157

REFERENCES

[105] Hosam Rowaihy, William Enck, Patrick McDaniel, and Thomas La

Porta. Limiting Sybil Attacks in Structured P2P Networks. In Proceedings of

the 26th IEEE International Conference on Computer Communications, pages

2596–2600, Anchorage, Alaska, USA, may 2007. 25, 32, 57, 118

[106] Antony Rowstron and Peter Druschel. Pastry: Scalable, Decentralized

Object Location, and Routing for Large-Scale Peer-to-Peer Systems. In Pro-

ceedings of the IFIP/ACM International Conference on Distributed Systems Plat-

forms, pages 329–350, 2001. 14, 18, 49, 51

[107] Ehsan Saboori and Maghsoud Abbaspour. Dual-Path Peer-to-Peer Anony-

mous Approach. In Proceedings of the 16th IEEE International Conference on

Parallel and Distributed Systems, ICPADS’10, pages 835–838, Washington, DC,

USA, 2010. IEEE Computer Society. 57

[108] S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, and

C. Adams. X.509 Internet Public Key Infrastructure Online Certificate Status

Protocol - OCSP. RFC 6960 (Standards Track), June 2013. 28

[109] N. Saxena, G. Tsudik, and J.H. Yi. Threshold cryptography in P2P and

MANETs: The case of access control. Computer Networks, 51(12):3632–3649,

2007. 53

[110] Lu Shi, Shucheng Yu, Wenjing Lou, and Thomas Hou. SybilShield: An

Agent-Aided Social Network-Based Sybil Defense among Multiple Communities.

In Proceedings of the 34th IEEE International Conference on Computer Commu-

nications, pages 1034–1042, april 2013. 35

[111] Atul Singh, Tsuen-Wan "Johnny" Ngan, Peter Druschel, and Dan S.

Wallach. Eclipse Attacks on Overlay Networks: Threats and Defenses. In Pro-

ceedings of the 25th IEEE International conference on Computer communications,

pages 1–12, Barcelona, Spain, april 2006. 25

[112] Nitu Singh and Sumanjit Das. Cryptanalysis of Blind Signature Schemes.

International Journal of Computer Applications, 71(19):39–43, June 2013. 44, 79

158

REFERENCES

[113] Diana K. Smetters and Van Jacobson. Securing Network Content. Technical

Report TR-2009-1, PARC, October 2009. 144

[114] Mudhakar Srivatsa and Ling Liu. Vulnerabilities and Security Threats in

Structured Overlay Networks: A Quantitative Analysis. In Proceedings of the

20th Annual Computer Security Applications Conference, pages 252–261, decem-

ber 2004. 30, 118

[115] Moritz Steiner, Taoufik En-Najjary, and Ernst W. Biersack. A Global

View of KAD. In Proceedings of the 7th ACM SIGCOMM Internet Measurement

Conference, IMC’07, pages 117–122, New York, NY, USA, 2007. ACM. 14

[116] Ion Stoica, Robert Morris, David R. Karger, M. Frans Kaashoek,

and Hari Balakrishman. Chord: A Scalable Peer-to-Peer Lookup Service for

Internet Applications. In Proceedings of the ACM Conference on Applications,

Technologies, Architectures and Protocols for Computer Communication (SIG-

COMM), pages 149–160, San Diego, CA, USA, 2001. 14, 17, 36, 49

[117] Jonathan Taverne, Armando Faz-Hernández, Diego F. Aranha, Fran-

cisco Rodríguez-Henríquez, Darrel Hankerson, and Julio López. Soft-

ware Implementation of Binary Elliptic Curves: Impact of the Carry-Less Mul-

tiplier on Scalar Multiplication. In Cryptographic Hardware and Embedded Sys-

tems – CHES 2011, 6917 of Lecture Notes in Computer Science, pages 108–123.

Springer Berlin Heidelberg, 2011. 117

[118] Nguyen Tran, Jinyang Li, Lakshminarayanan Subramanian, and Sher-

man S.M. Chow. Optimal Sybil-resilient node admission control. In Proceedings

of the 30th IEEE International Conference on Computer Communications, IN-

FOCOM’11, pages 3218–3226, Shanghai, China, april 2011. IEEE Press. 34, 35,

57

[119] Zied Trifa and Maher Khemakhem. Taxonomy of Structured P2P Overlay

Networks Security Attacks. World Academy of Science, Engineering and Technol-

ogy, 6(4):468 – 475, 2012. 15

[120] Andreea Visan, Florin Pop, and Valentin Cristea. Decentralized Trust

Management in Peer-to-Peer Systems. In Proceedings of the 10th International

159

REFERENCES

Symposium on Parallel and Distributed Computing, ISPDC’11, pages 232–239,

Washington, DC, USA, 2011. IEEE Computer Society. 57

[121] Dan S. Wallach. A Survey of Peer-to-Peer Security Issues. In Proceedings

of the Mext-NSF-JSPS international conference on Software security: theories

and systems, ISSS’02, pages 42–57, Tokyo, Japan, 2002. Springer-Verlag Berlin,

Heidelberg. 2, 15

[122] Gang Wang, Tristan Konolige, Christo Wilson†, Xiao Wang, Haitao

Zheng, and Ben Y. Zhao. You are How You Click: Clickstream Analysis

for Sybil Detection. In Proceedings of the 22nd USENIX Security Symposium,

USENIX’13, pages 241–256. USENIX Association, august 2013. 34

[123] Fatos Xhafa, Raul Fernandez, Thanasis Daradoumis, Leonard

Barolli, and Santi Caballé. Improvement of jxta protocols for supporting

reliable distributed applications in p2p systems. In Network-Based Information

Systems, 4658 of LNCS, pages 345–354. Springer-Verlag Berlin, Heidelberg, 2007.

24

[124] Jilong Xue, Zhi Yang, Xiaoyong Yang, Xiao Wang, Lijiang Chen, and

Yafei Dai. VoteTrust: Leveraging Friend Invitation Graph to Defend against

Social Network Sybils. In Proceedings of the 34th IEEE International Conference

on Computer Communications, pages 2400–2408, april 2013. 35

[125] Yu Yang and Lan Yang. A Survey of Peer-to-Peer Attacks and Counter At-

tacks. In Proceedings of the International Conference on Security and Manage-

ment, SAM’12, pages 176–182, Las Vegas, NV, USA, july 2012. 15

[126] Gao Ying and Zhan Jiang. Research on CRL distribution in P2P systems.

In Proceedings of the 2nd IEEE International Conference on Computer Science

and Information Technology, ICCSIT’09, pages 574–577. IEEE Computer Society,

August 2009. 36

[127] Haifeng Yu, Phillip B. Gibbons, Michael Kaminsky, and Feng Xiao.

SybilLimit: A Near-Optimal Social Network Defense against Sybil Attacks.

IEEE/ACM Transactions on Networking, 18(3):885–898, 2010. 34, 35, 57, 118

160

REFERENCES

[128] Haifeng Yu, Michael Kaminsky, Phillip B. Gibbons, and Abraham

Flaxman. SybilGuard: Defending Against Sybil Attacks via Social Networks.

IEEE/ACM Transactions on Networking, 16(3):576–589, 2008. 34, 57

[129] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C.Rhea, An-

thony D. Joseph, and John D. Kubiatowicz. Tapestry: A Resilient Global-

Scale Overlay for Service Deployment. IEEE Journal on Selected Areas in Com-

munications, 22(1):41–53, 2004. 14, 18

161

REFERENCES

162

Appendix A

ASN.1 RIAPPA Certificate Syntax

Ce r t i f i c a t e : := SEQUENCE {

tb s S i g n e dCe r t i f i c a t e TBSSignedCert i f icate ,

ex te rna lS i gnatureAlgor i thm Alg o r i t hmIden t i f i e r ,

ex te rna lS i gna tur eVa lue BIT STRING }

TBSSignedCert i f i ca te : := SEQUENCE {

t b s C e r t i f i c a t e TBSCerti f icate ,

i n t e rna lS i gna tur eAlgo r i thm Alg o r i t hmIden t i f i e r ,

i n t e rna lS i gna tur eVa lue BIT STRING }

TBSCert i f i ca te : := SEQUENCE {

ser ia lNumber Cer t i f i c a t eSe r i a lNumber ,

s e r v i c e I d e n t i f i e r S e r v i c e I d e n t i f i e r ,

i n t e r na l S i g na tu r e A l g o r i t hmIden t i f i e r ,

i n t e r n a l I s s u e r Name,

e x t e r na l S i gna tur e A l g o r i t hmIden t i f i e r ,

e x t e r n a l I s s u e r Name,

v a l i d i t yPe r i o d Va l id i ty ,

s ub j e c t NodeID ,

subjectPubl i cKeyInfo SubjectPubl i cKeyInfo }

Cer t i f i c a t eSe r i a lNumber : := INTEGER

S e r v i c e I d e n t i f i e r : := INTEGER

Alg o r i t hmIden t i f i e r : := SEQUENCE {

a lgor i thm OBJECT IDENTIFIER,

163

A. ASN.1 RIAPPA CERTIFICATE SYNTAX

parameters ANY DEFINED BY algor i thm OPTIONAL }

Name : := CHOICE {

rdnSequence RDNSequence }

RDNSequence : := SEQUENCE OF RelativeDist inguishedName

RelativeDist inguishedName : := SET SIZE (1 . .MAX) OF

AttributeTypeAndValue

AttributeTypeAndValue : := SEQUENCE {

type AttributeType ,

va lue Attr ibuteVa lue }

AttributeType : := OBJECT IDENTIFIER

Attr ibuteVa lue : := ANY − − DEFINED BY AttributeType

Di r e c to rySt r ing : := CHOICE {

t e l e t e x S t r i n g Te l e t exSt r ing (SIZE (1 . .MAX)) ,

p r i n t ab l eS t r i n g Pr i n t ab l eS t r i n g (SIZE (1 . .MAX)) ,

un i v e r s a l S t r i n g Un ive r sa lS t r ing (SIZE (1 . .MAX)) ,

u t f 8 S t r i n g UTF8String (SIZE (1 . .MAX)) ,

bmpString BMPString (SIZE (1 . .MAX)) }

Va l id i ty : := SEQUENCE {

notBefore UTCTime ,

notAfter UTCTime }

NodeID : := INTEGER

SubjectPubl i cKeyInfo : := SEQUENCE {

a lgor i thm Alg o r i t hmIden t i f i e r ,

subjectPubl i cKey BIT STRING }

164

Appendix B

The AVISPA Tool Simulations

B.1 ICIAPPA

%% HLPSL:

% An Imp l i c i t C e r t i f i c a t e−based Id en t i t y Assignment Protoco l

% f o r the P2P over lAys

%%%%%%%%%%%%%%%% Created by Juan Caubet %%%%%%%%%%%%%%%%%%%%

ro l e user (

U, CA : agent ,

Ku, Kca : public_key ,

Hash : hash_func ,

SND_CAU, RCV_CAU : channel (dy))

played_by U

def=

l o c a l

State : nat ,

Tx , Ux , Nx, Info_u , N : text ,

C, Z , H, S , Px : message

const

cert_u : t ex t

i n i t State := 0

t r a n s i t i o n

165

B. THE AVISPA TOOL SIMULATIONS

1 . State = 0 /\ RCV_CAU(s t a r t) =|>

State ’ := 2 /\ Tx ’ := new ()

/\ SND_CAU({ cert_u . {U.CA.Tx’ } _inv (Ku) }_Kca)

/\ w i tne s s (U,CA, ca_user_timestamp ,Tx ’)

2 . State = 2 /\ RCV_CAU({{CA.U.Tx .C ’ . Ux’ } _inv (Kca) }_Ku) =|>

State ’ := 4 /\ Nx ’ := new ()

/\ SND_CAU({{U.CA.Tx .Nx’ } _inv (Ku) }_Kca)

3 . State = 4 /\ RCV_CAU({{CA.U.Tx . S ’ . N’ . Info_u ’ . Z ’ } _inv (Kca) }_Ku)

/\ C = Hash (N’ . Ux) /\ Z ’ = Hash (Nx .N’)

/\ H’ = Hash (Info_u ’ . Z ’) /\ S ’ = Hash (H’ . Kca) =|>

State ’ := 6 /\ Px ’ := Hash (S ’ . Kca)

/\ SND_CAU({{U.CA.Tx .Px ’ } _inv (Ku) }_Kca)

/\ r eque s t (U,CA, user_ca_timestamp ,Tx)

end r o l e

%−−

r o l e ca (

CA, U : agent ,

Kca , Ku : public_key ,

Hash : hash_func ,

SND_UCA, RCV_UCA : channel (dy))

played_by CA

def=

l o c a l

State : nat ,

Cert_u , Tx , N, Ux, Nx, Info_u : text ,

C, Z , H, S , Px : message

i n i t State := 1

t r a n s i t i o n

1 . State = 1 /\ RCV_UCA({Cert_u ’ . {U.CA.Tx’ } _inv (Ku) }_Kca) =|>

State ’ := 3 /\ N’ := new () /\ Ux ’ := new () /\ C’ := Hash (N’ . Ux ’)

166

B.1 ICIAPPA

/\ SND_UCA({{CA.U.Tx ’ . C ’ . Ux’ } _inv (Kca) }_Ku)

/\ wi tne s s (CA,U, user_ca_timestamp ,Tx ’)

2 . State = 3 /\ RCV_UCA({{U.CA.Tx .Nx’ } _inv (Ku) }_Kca) =|>

State ’ := 5 /\ Info_u ’ := new() /\ Z ’ := Hash (Nx ’ .N)

/\ H’ := Hash (Info_u ’ . Z ’) /\ S ’ := Hash (H’ . Kca)

/\ SND_UCA({{CA.U.Tx . S ’ .N. Info_u ’ . Z ’ } _inv (Kca) }_Ku)

/\ s e c r e t (S ’ , s , {CA,U})

3 . State = 5 /\ RCV_UCA({{U.CA.Tx . Px ’ } _inv (Ku) }_Kca)

/\ Px ’ = Hash (S . Kca) =|>

State ’ := 7 /\ r eque s t (CA,U, ca_user_timestamp ,Tx)

end r o l e

%−−

r o l e s e s s i o n (

U, CA : agent ,

Ku, Kca : public_key ,

Hash : hash_func)

de f=

l o c a l

SCAU, RCAU, SUCA, RUCA : channel (dy)

composit ion

user (U,CA,Ku, Kca , Hash ,SCAU,RCAU)

/\ ca (CA,U, Kca ,Ku, Hash ,SUCA,RUCA)

end r o l e

%−−

r o l e environment ()

de f=

const

167

B. THE AVISPA TOOL SIMULATIONS

s , user_ca_timestamp , ca_user_timestamp : protoco l_id ,

u , ca , i : agent ,

kca , ku , k i : public_key ,

fhash : hash_func

intruder_knowledge = {u , ca , i , ku , kca , ki , inv (k i) , fhash}

composit ion

s e s s i o n (u , ca , ku , kca , fhash)

/\ s e s s i o n (u , ca , ku , kca , fhash)

/\ s e s s i o n (i , ca , ki , kca , fhash)

end r o l e

%−−

goa l

%U authen t i c a t e s CA on user_ca_timestamp

authenticat ion_on user_ca_timestamp

%CA authen t i c a t e s U on ca_user_timestamp

authenticat ion_on ca_user_timestamp

secrecy_of s

end goa l

environment ()

168

B.1 ICIAPPA

B.1.1 Results

Figure B.1: ICIAPPA - AVISPA output of the executability test.

Figure B.2: ICIAPPA - AVISPA output using CL-AtSe back-end.

169

../figures/ICIAPPA_check.eps
../figures/ICIAPPA_cl-atse.eps

B. THE AVISPA TOOL SIMULATIONS

Figure B.3: ICIAPPA - AVISPA output using SATMC back-end.

Figure B.4: ICIAPPA - AVISPA output using OFMC back-end.

170

../figures/ICIAPPA_satmc.eps
../figures/ICIAPPA_ofmc.eps

B.2 TIAPPA

B.2 TIAPPA

% HLPSL:

% A TWO−LEVEL IDENTITY ASSIGNMENT PROTOCOL FOR P2P OVERLAYS %

%%%%%%%%%%%%%%% Created by Juan Caubet %%%%%%%%%%%%%%%%%

ro l e user (

U, A, B : agent ,

Ku1 , Ka : public_key ,

Hash : hash_func ,

SND_AU, RCV_AU, SND_BU, RCV_BU : channel (dy))

played_by U

def=

l o c a l

State : nat ,

Rid , Sid , Tu , Nx , Ub1 , Ix , Bx : text ,

Cu2 , Cb , Ub, Px , Sx , Zx , Hx : message ,

Kb, Ku2 : public_key

const

cu1 : t ex t

i n i t State := 0

t r a n s i t i o n

1 . State = 0 /\ RCV_AU(s t a r t) =|>

State ’ := 2 /\ Rid ’ := new () /\ Sid ’ := new ()

/\ SND_AU({U.A. Rid ’ . Sid ’ . cu1 .

{Hash (U.A. Rid ’ . Sid ’ . cu1) }_inv (Ku1) }_Ka)

/\ wi tne s s (U,A, alpha_user_rid , Rid ’)

/\ s e c r e t (Rid ’ , r eque s t id , {U,A,B})

/\ s e c r e t (Sid ’ , s e r v i c e i d , {U,A})

2 . State = 2 /\ RCV_AU({A.U. Rid .Kb ’ .

{Hash (A.U. Rid .Kb’) }_inv (Ka) }_Ku1) =|>

State ’ := 4 /\ Ku2 ’ := new () /\ Tu ’ := new ()

/\ SND_AU({U.A. Rid . {B.Ku2 ’ . Tu ’ .

{Hash (B.Ku2 ’ . Tu ’) }_inv (Ku2 ’) }_Kb’ . { Hash (U.A. Rid . {B.Ku2 ’ . Tu ’ .

{Hash (B.Ku2 ’ . Tu ’) }_inv (Ku2 ’) }_Kb’) }_inv (Ku1) }_Ka)

171

B. THE AVISPA TOOL SIMULATIONS

/\ wi tne s s (U,B, beta_user_ku2 ,Ku2 ’)

/\ s e c r e t (Ku2 ’ , userkey2 , {U,B})

/\ s e c r e t (Tu’ , timestamp , {U,B})

3 . State = 4 /\ RCV_AU({A.U. Rid . {B.Tu .Cb ’ . Ub ’ .

{Hash (B.Tu .Cb ’ . Ub’) }_inv (Kb) }_Ku2. { Hash (A.U. Rid .

{B.Tu .Cb ’ . Ub ’ . { Hash (B.Tu .Cb ’ . Ub ’) }_inv (Kb) }_Ku2) }_inv (Ka) }_Ku1) =|>

State ’ := 6 /\ Nx ’ := new ()

/\ SND_AU({U.A. Rid . {Tu .B.Nx ’ .

{Hash (Tu .B.Nx ’) }_inv (Ku2) }_Kb. { Hash (U.A. Rid . {Tu .B.Nx ’ .

{Hash (Tu .B.Nx ’) }_inv (Ku2) }_Kb) }_inv (Ku1) }_Ka)

4 . State = 6 /\ RCV_AU({A.U. Rid . {B.Px ’ . Tu . Sx ’ . Ub1 ’ . Ix ’ . Zx ’ . Bx ’ .

{Hash (B.Px ’ . Tu . Sx ’ . Ub1 ’ . Ix ’ . Zx ’ . Bx ’) }_inv (Kb) }_Ku2.

{Hash (A.U. Rid . {B.Px ’ . Tu . Sx ’ . Ub1 ’ . Ix ’ . Zx ’ . Bx ’ .

{Hash (B.Px ’ . Tu . Sx ’ . Ub1 ’ . Ix ’ . Zx ’ . Bx ’) }_inv (Kb) }_Ku2) }_inv (Ka) }_Ku1)

/\ Px ’ = Hash (Zx ’ . Ix ’ . Bx ’) /\ Ub = Hash (Ub1 ’) =|>

State ’ := 8 /\ Hx ’ := Hash (Ix ’ . Zx ’)

/\ SND_BU({Px ’ .B. Rid .Hx ’ .

{Hash (Px ’ .B. Rid .Hx ’) }_inv (Ku2) }_Kb)

end r o l e

%−−

r o l e alpha (

A, B, U : agent ,

Ka , Kb, Ku1 : public_key ,

Kab : symmetric_key ,

Hash : hash_func ,

SND_UA, RCV_UA, SND_BA, RCV_BA : channel (dy))

played_by A

def=

l o c a l

State : nat ,

Rid , Sid , Cu1 , Na , Ln : text ,

Ha , Ex , Sx : message ,

Z : { agent . public_key . t ex t . { message}_inv (public_key) }_public_key ,

T: { tex t . agent . t ex t . { message}_inv (public_key) }_public_key ,

172

B.2 TIAPPA

R: { agent . t ex t . message . message .

{message}_inv (public_key) }_public_key ,

S : { agent . message . t ex t . message . t ex t . t ex t . message . t ex t .

{message}_inv (public_key) }_public_key ,

Ra : (agent . t ex t) s e t

i n i t State := 1

t r a n s i t i o n

1 . State = 1 /\ RCV_UA({U.A. Rid ’ . Sid ’ . Cu1 ’ .

{Hash (U.A. Rid ’ . Sid ’ . Cu1 ’) }_inv (Ku1) }_Ka)

/\ not (in (U. Rid ’ ,Ra)) =|>

State ’ := 3 /\ Ra ’ := cons (U. Rid ’ ,Ra)

/\SND_UA({A.U. Rid ’ . Kb. { Hash (A.U. Rid ’ . Kb) }_inv (Ka) }_Ku1)

2 . State = 3 /\ RCV_UA({U.A. Rid . Z ’ .

{Hash (U.A. Rid . Z ’) }_inv (Ku1) }_Ka) =|>

State ’ := 5 /\ Na ’ := new()

/\ SND_BA({A.B. Rid .Na ’ . Z ’ }_Kab)

/\ w i tne s s (A,B, beta_alpha_rid , Rid)

/\ s e c r e t (Na ’ , nonce , {A,B})

3 . State = 5 /\ RCV_BA({B.A. Rid .Ha ’ . R’ }_Kab) /\ Ha ’ = Hash (Na) =|>

State ’ := 9 /\ SND_UA({A.U. Rid .R’ .

{Hash (A.U. Rid .R’) }_inv (Ka) }_Ku1)

4 . State = 9 /\ RCV_UA({U.A. Rid .T ’ .

{Hash (U.A. Rid .T’) }_inv (Ku1) }_Ka) =|>

State ’ := 13 /\ SND_BA({A.B. Rid .T’ }_Kab)

5 . State = 13 /\ RCV_BA({B.A. Rid .Ex ’ . Ha}_Kab) /\ Ha = Hash (Na) =|>

State ’ := 17 /\ Sx ’ := Hash (Ex ’ . Na)

/\ SND_BA({A.B. Rid . Hash (Ex ’) . Sx ’ }_Kab)

6 . State = 17 /\ RCV_BA({B.A. Rid . S ’ }_Kab) =|>

State ’ := 21 /\ SND_UA({A.U. Rid . S ’ . { Hash (A.U. Rid . S ’) }_inv (Ka) }_Ku1)

7 . State = 21 /\ RCV_BA({B.A. Rid . Ln ’ }_Kab) =|>

State ’ := 25 /\ SND_BA({A.B. Rid . Hash (Ln ’) }_Kab)

/\ r eque s t (A,U, alpha_user_rid , Rid)

173

B. THE AVISPA TOOL SIMULATIONS

end r o l e

%−−

r o l e beta (

B, A, U : agent ,

Ka , Kb : public_key ,

Kab : symmetric_key ,

Hash : hash_func ,

SND_AB, RCV_AB, SND_UB, RCV_UB : channel (dy))

played_by B

def=

l o c a l

State : nat ,

Rid , Na , Tu, Ub1 , Nb, Nx , Ix , Bx , Ln : text ,

Cb, Ha , Ub, Zx , Ex , Hx, Sx , Px : message ,

Ku2 : public_key ,

Rb : (message . t ex t) s e t

i n i t State := 7

t r a n s i t i o n

1 . State = 7 /\ RCV_AB({A.B. Rid ’ . Na ’ . {B.Ku2 ’ . Tu ’ .

{Hash (B.Ku2 ’ . Tu ’) }_inv (Ku2 ’) }_Kb}_Kab)

/\ not (in (Tu ’ . Rid ’ ,Rb)) =|>

State ’ := 11 /\ Ha ’ := Hash (Na ’)

/\ Nb’ := new ()

/\ Ub1 ’ := new()

/\ Ub’ := Hash (Ub1)

/\ Cb ’ := Hash (Nb ’ . Ub ’)

/\ Rb’ := cons (Tu ’ . Rid ’ ,Rb)

/\ SND_AB({B.A. Rid ’ . Ha ’ . {B.Tu ’ . Cb ’ . Ub ’ .

{Hash (B.Tu ’ . Cb ’ . Ub ’) }_inv (Kb) }_Ku2’ }_Kab)

/\ s e c r e t (Ha ’ , ha , {A,B})

/\ s e c r e t (Cb’ , cb , {U,B})

/\ s e c r e t (Ub’ , ub , {U,B})

174

B.2 TIAPPA

2 . State = 11 /\ RCV_AB({A.B. Rid . {Tu .B.Nx ’ .

{Hash (Tu .B.Nx ’) }_inv (Ku2) }_Kb}_Kab) =|>

State ’ := 15 /\ Zx ’ := Hash (Nx ’ . Nb) /\ Ix ’ := new ()

/\ Hx’ := Hash (Ix ’ . Zx ’) /\ Bx ’ := new()

/\ Ex ’ := Hash (Hx ’ . Bx ’) /\ SND_AB({B.A. Rid .Ex ’ . Ha}_Kab)

3 . State = 15 /\ RCV_AB({A.B. Rid . Hash (Ex) . Sx ’ }_Kab)

/\ Sx ’ = Hash (Ex .Na) =|>

State ’ := 19 /\ Px ’ := Hash (Zx . Ix .Bx)

/\ SND_AB({B.A. Rid . {B.Px ’ . Tu . Sx ’ . Ub1 . Ix . Zx .Bx .

{Hash (B.Px ’ . Tu . Sx ’ . Ub1 . Ix . Zx .Bx) }_inv (Kb) }_Ku2}_Kab)

4 . State = 19 /\ SND_UB({Px .B. Rid .Hx .

{Hash (Px .B. Rid .Hx) }_inv (Ku2) }_Kb) =|>

State ’ := 23 /\ Ln ’ := new ()

/\ SND_AB({B.A. Rid . Ln ’ }_Kab)

/\ s e c r e t (Ln ’ , linknumber , {A,B})

4 . State = 23 /\ RCV_AB({A.B. Rid . Hash (Ln) }_Kab) =|>

State ’ := 27 /\ r eque s t (B,A, beta_alpha_rid , Rid)

/\ r eque s t (B,U, beta_user_ku2 ,Ku2)

end r o l e

%−−

r o l e s e s s i o n (

U, A, B : agent ,

Kab : symmetric_key ,

Ku1 , Ka, Kb : public_key ,

Hash : hash_func)

de f=

l o c a l

SAU, RAU, SBU, RBU,

SUA, RUA, SBA, RBA,

SAB, RAB, SUB, RUB : channel (dy)

composit ion

user (U,A,B,Ku1 ,Ka , Hash ,SAU,RAU,SBU,RBU)

175

B. THE AVISPA TOOL SIMULATIONS

/\ alpha (A,B,U,Ka ,Kb,Ku1 ,Kab , Hash ,SUA,RUA,SBA,RBA)

/\ beta (B,A,U,Ka ,Kb,Kab , Hash ,SAB,RAB,SUB,RUB)

end r o l e

%−−

r o l e environment ()

de f=

const

r eque s t id , s e r v i c e i d , linknumber , nonce ,

timestamp , cu2 , cb , ub , ha , userkey2 ,

b l inds i gna tur e , alpha_user_rid ,

beta_alpha_rid , beta_user_ku2 : protoco l_id ,

u , a , b , i : agent ,

kab , kai , k ib : symmetric_key ,

ku1 , ka , kb , k i : public_key ,

fhash : hash_func

intruder_knowledge = {u , a , b , i , ka , kb , ku1 , ki , kib , kai , fhash , inv (k i) }

composit ion

s e s s i o n (u , a , b , kab , ku1 , ka , kb , fhash)

/\ s e s s i o n (u , a , b , kab , ku1 , ka , kb , fhash)

/\ s e s s i o n (i , a , b , kab , ku1 , ka , kb , fhash)

end r o l e

%−−

goa l

authenticat ion_on alpha_user_rid

authenticat ion_on beta_alpha_rid

authenticat ion_on beta_user_ku2

secrecy_of s e r v i c e i d , userkey2 , timestamp , linknumber , r eque s t id ,

nonce , b l inds i gna tur e , ha , cu2 , cb , ub

176

B.2 TIAPPA

end goa l

environment ()

177

B. THE AVISPA TOOL SIMULATIONS

B.2.1 Results

Figure B.5: TIAPPA - AVISPA output of the executability test.

Figure B.6: TIAPPA - AVISPA output using OFMC back-end.

178

../figures/TIAPPA_check.eps
../figures/TIAPPA_ofmc.eps

B.2 TIAPPA

Figure B.7: TIAPPA - AVISPA output using SATMC back-end.

179

../figures/TIAPPA_satmc.eps

B. THE AVISPA TOOL SIMULATIONS

Figure B.8: TIAPPA - AVISPA output using CL-AtSe back-end.

180

../figures/TIAPPA_cl-atse.eps

B.3 RIAPPA

B.3 RIAPPA

%% HLPSL:

% A Robust I d en t i t y Assignment Protoco l f o r P2P over lAys

%%%%%%%%%%%%%%%% Created by Juan Caubet %%%%%%%%%%%%%%%%%%%%

ro l e user (

U, A, B : agent ,

Ku1 , Ka : public_key ,

Hash : hash_func ,

SND_AU, RCV_AU, SND_BU, RCV_BU : channel (dy))

played_by U

def=

l o c a l

State : nat ,

Rid , Sid , Pu : text ,

Cu2 , S : message ,

Ku2 , Kb : public_key

const

cu1 : t ex t

i n i t State := 0

t r a n s i t i o n

1 . State = 0 /\ RCV_AU(s t a r t) =|>

State ’ := 2 /\ Rid ’ := new () /\ Sid ’ := new ()

/\ SND_AU({U.A. Rid ’ . Sid ’ . cu1 .

{Hash (U.A. Rid ’ . Sid ’ . cu1) }_inv (Ku1) }_Ka)

/\ wi tne s s (U,A, alpha_user_rid , Rid ’)

/\ s e c r e t (Rid ’ , r eque s t id , {U,A,B})

/\ s e c r e t (Sid ’ , s e r v i c e i d , {U,A})

2 . State = 2 /\ RCV_AU({A.U. Rid .Kb ’ .

{Hash (A.U. Rid .Kb’) }_inv (Ka) }_Ku1) =|>

State ’ := 4 /\ Ku2 ’ := new () /\ Pu ’ := new ()

/\ SND_AU({U.A. Rid . {Pu ’ . B.Ku2 ’

. { Hash (Pu ’ . B.Ku2 ’) }_inv (Ku2 ’) }_Kb’ .

181

B. THE AVISPA TOOL SIMULATIONS

{Hash (U.A. Rid . {Pu ’ . B.Ku2 ’

. { Hash (Pu ’ .B.Ku2 ’) }_inv (Ku2 ’) }_Kb’) }_inv (Ku1) }_Ka)

/\ wi tne s s (U,B, beta_user_ku2 ,Ku2 ’)

/\ s e c r e t (Ku2 ’ , userkey2 , {U,B})

/\ s e c r e t (Pu ’ , nodeid , {U,B})

3 . State = 4 /\ RCV_AU({A.U. Rid . {B.Pu . Cu2 ’ . S ’

. { Hash (B.Pu . Cu2 ’ . S ’) }_inv (Kb) }_Ku2.

{Hash (A.U. Rid . {B.Pu . Cu2 ’ . S ’

. { Hash (B.Pu . Cu2 ’ . S ’) }_inv (Kb) }_Ku2) }_inv (Ka) }_Ku1)

/\ Cu2 ’ = B.A.Pu .Ku2 . S ’

. { Hash (B.A.Pu .Ku2 . S ’) }_inv (Kb) =|>

State ’ := 6 /\ SND_BU({Pu .B. Rid . Hash (Cu2 ’) .

{Hash (Pu .B. Rid . Hash (Cu2 ’)) }_inv (Ku2) }_Kb)

end r o l e

%−−

r o l e alpha (

A, B, U : agent ,

Ka , Kb, Ku1 : public_key ,

Kab : symmetric_key ,

Hash : hash_func ,

SND_UA, RCV_UA, SND_BA, RCV_BA : channel (dy))

played_by A

def=

l o c a l

State : nat ,

Rid , Sid , Bp, Ln , Cu1 : text ,

Cu2b , S : message ,

Ra : (agent . t ex t) set ,

T : {{ agent . t ex t . t ex t }_inv (public_key) }_public_key ,

Z : { public_key . { tex t . agent }_inv (public_key) }_public_key

i n i t State := 1

t r a n s i t i o n

182

B.3 RIAPPA

1 . State = 1 /\ RCV_UA({U.A. Rid ’ . Sid ’ . Cu1 ’ .

{Hash (U.A. Rid ’ . Sid ’ . Cu1 ’) }_inv (Ku1) }_Ka)

/\ not (in (U. Rid ’ ,Ra)) =|>

State ’ := 3 /\ Ra ’ := cons (U. Rid ’ ,Ra)

/\ SND_UA({A.U. Rid ’ . Kb.

{Hash (A.U. Rid ’ . Kb) }_inv (Ka) }_Ku1)

2 . State = 3 /\ RCV_UA({U.A. Rid . Z ’ .

{Hash (U.A. Rid . Z ’) }_inv (Ku1) }_Ka) =|>

State ’ := 7 /\ Bp’ := new()

/\ SND_BA({A.B. Rid .Bp ’ . Z ’ }_Kab)

/\ w i tne s s (A,B, beta_alpha_rid , Rid)

/\ s e c r e t (Bp’ , bl indparameters , {A,B})

3 . State = 7 /\ RCV_BA({B.A. Rid . Cu2b ’ }_Kab) =|>

State ’ := 11 /\ S ’ := {Hash (Cu2b ’) }_inv (Ka)

/\ SND_BA({A.B. Rid . S ’ }_Kab)

/\ s e c r e t (S ’ , b l i nds i gna tur e , {A,B,U})

4 . State = 11 /\ RCV_BA({B.A. Rid . Hash (Bp) .T’ }_Kab) =|>

State ’ := 15 /\ SND_UA({A.U. Rid .T ’ .

{Hash (A.U. Rid .T’) }_inv (Ka) }_Ku1)

5 . State = 15 /\ RCV_BA({B.A. Rid . Ln ’ }_Kab) =|>

State ’ := 19 /\ SND_BA({A.B. Rid . Hash (Ln ’) }_Kab)

/\ r eque s t (A,U, alpha_user_rid , Rid)

end r o l e

%−−

r o l e beta (

B, A, U : agent ,

Ka, Kb : public_key ,

Kab : symmetric_key ,

Hash : hash_func ,

SND_AB, RCV_AB, SND_UB, RCV_UB : channel (dy))

played_by B

def=

183

B. THE AVISPA TOOL SIMULATIONS

l o c a l

State : nat ,

Rid , Pu , Bp, Ln : text ,

Cu2 , Cu2b , S : message ,

Ku2 : public_key ,

Rb : (message . t ex t) s e t

i n i t State := 5

t r a n s i t i o n

1 . State = 5 /\ RCV_AB({A.B. Rid ’ . Bp ’ . { Pu ’ .B.Ku2 ’ .

{Hash (Pu ’ .B.Ku2 ’) }_inv (Ku2 ’) }_Kb}_Kab)

/\ not (in (Pu ’ . Rid ’ ,Rb)) =|>

State ’ := 9 /\ Cu2b ’ := B.A.Pu ’ . Ku2 ’ . Hash (Bp ’)

/\ Rb’ := cons (Pu ’ . Rid ’ ,Rb)

/\ SND_AB({B.A. Rid ’ . Cu2b ’ }_Kab)

/\ s e c r e t (Cu2b ’ , cu2b , {A,B})

2 . State = 9 /\ RCV_AB({A.B. Rid . S ’ }_Kab)

/\ S ’ = {Hash (Cu2b) }_inv (Ka) =|>

State ’ := 13 /\ Cu2 ’ := B.A.Pu .Ku2 . S ’ . { Hash (B.A.Pu .Ku2 . S ’) }_inv (Kb)

/\ SND_AB({B.A. Rid . Hash (Bp) . {B.Pu . Cu2 ’ . S ’ .

{Hash (B.Pu . Cu2 ’ . S ’) }_inv (Kb) }_Ku2}_Kab)

/\ s e c r e t (Cu2 ’ , cu2 , {U,B})

3 . State = 13 /\ RCV_UB({Pu .B. Rid . Hash (Cu2) .

{Hash (Pu .B. Rid . Hash (Cu2)) }_inv (Ku2) }_Kb) =|>

State ’ := 17 /\ Ln ’ := new() /\ SND_AB({B.A. Rid . Ln ’ }_Kab)

/\ s e c r e t (Ln ’ , linknumber , {A,B})

4 . State = 17 /\ RCV_AB({A.B. Rid . Hash (Ln) }_Kab) =|>

State ’ := 21 /\ r eque s t (B,A, beta_alpha_rid , Rid)

/\ r eque s t (B,U, beta_user_ku2 ,Ku2)

end r o l e

%−−

r o l e s e s s i o n (

U, A, B : agent ,

184

B.3 RIAPPA

Kab : symmetric_key ,

Ku1 , Ka, Kb : public_key ,

Hash : hash_func)

de f=

l o c a l

SAU, RAU, SBU, RBU,

SUA, RUA, SBA, RBA,

SAB, RAB, SUB, RUB : channel (dy)

composit ion

user (U,A,B,Ku1 ,Ka , Hash ,SAU,RAU,SBU,RBU)

/\ alpha (A,B,U,Ka,Kb,Ku1 ,Kab , Hash ,SUA,RUA,SBA,RBA)

/\ beta (B,A,U,Ka ,Kb,Kab , Hash ,SAB,RAB,SUB,RUB)

end r o l e

%−−

r o l e environment ()

de f=

const

r eque s t id , s e r v i c e i d , linknumber ,

bl indparameters , nodeid , cu2 , cu2b ,

userkey2 , b l inds i gna tur e , alpha_user_rid ,

beta_alpha_rid , beta_user_ku2 : protoco l_id ,

u , a , b , i : agent ,

kab , kai , k ib : symmetric_key ,

ku1 , ka , kb , k i : public_key ,

fhash : hash_func

intruder_knowledge = {u , a , b , i , ka , kb , ku1 , ki , kib , kai , fhash , inv (k i) }

composit ion

s e s s i o n (u , a , b , kab , ku1 , ka , kb , fhash)

/\ s e s s i o n (u , a , b , kab , ku1 , ka , kb , fhash)

/\ s e s s i o n (i , a , b , kab , ku1 , ka , kb , fhash)

185

B. THE AVISPA TOOL SIMULATIONS

end r o l e

%−−

goa l

authenticat ion_on alpha_user_rid

authenticat ion_on beta_alpha_rid

authenticat ion_on beta_user_ku2

secrecy_of s e r v i c e i d , userkey2 , nodeid , linknumber ,

r eque s t id , bl indparameters , b l i nds i gna tur e , cu2b , cu2

end goa l

environment ()

186

B.3 RIAPPA

B.3.1 Results

Figure B.9: RIAPPA - AVISPA output of the executability test.

Figure B.10: RIAPPA - AVISPA output using OFMC back-end.

187

../figures/RIAPPA_check.eps
../figures/RIAPPA_ofmc.eps

B. THE AVISPA TOOL SIMULATIONS

Figure B.11: RIAPPA - AVISPA output using SATMC back-end.

188

../figures/RIAPPA_satmc.eps

B.3 RIAPPA

Figure B.12: RIAPPA - AVISPA output using CL-AtSe back-end.

189

../figures/RIAPPA_cl-atse.eps

	1 General Introduction
	1.1 About this Thesis
	1.2 Context
	1.3 Research Objectives
	1.4 Thesis Organization
	1.5 Related Publications

	2 Background
	2.1 Peer-to-Peer (P2P) Networks
	2.1.1 Three Generations of P2P Networks
	2.1.2 Identity Management in Existing P2P Overlays
	2.1.2.1 CAN (Content-Addressable Network)
	2.1.2.2 Chord
	2.1.2.3 Pastry
	2.1.2.4 Tapestry
	2.1.2.5 Kademlia
	2.1.2.6 BitTorrent
	2.1.2.7 JXTA

	2.1.3 Identity Problems in P2P Overlays
	2.1.3.1 The Sybil Attack
	2.1.3.2 The Eclipse Attack
	2.1.3.3 The Man-In-The-Middle (MITM) Attack
	2.1.3.4 Other Threats

	2.1.4 Distribution of Revocation Data
	2.1.4.1 Revocation Approaches and Standards
	2.1.4.2 Distribution of Revocation Data in P2P Overlays

	2.1.5 Related Work
	2.1.5.1 Centralized Proposals
	2.1.5.2 Distributed Proposals
	2.1.5.3 Social Network-Based Proposals
	2.1.5.4 Distribution Systems of Revocation Data

	2.2 Cryptography
	2.2.1 Elliptic Curve Cryptography (ECC)
	2.2.2 Implicit Certificates
	2.2.3 Blind Signatures
	2.2.4 Commitment Schemes
	2.2.5 The AVISPA Tool

	3 Secure Identity Management
	3.1 NodeID generation
	3.1.1 Using Random Numbers
	3.1.2 Using IP Addresses
	3.1.3 Using Public Keys
	3.1.4 Comparison

	3.2 Security Requirements for nodeIDs
	3.3 Scenarios

	4 An Implicit Certificate-based Identity Assignment Protocol for P2P overlAys
	4.1 Assumptions and Clarifications
	4.2 Protocol Specification
	4.2.1 Protocol Steps
	4.2.2 Public Key Generation
	4.2.3 NodeID Validation

	4.3 Security Analysis
	4.3.1 Cryptographic Analysis
	4.3.2 Discussion of NodeID Requirements
	4.3.3 Formal Validation of the Protocol

	4.4 Performance Analysis
	4.5 Conclusions

	5 A Two-level Identity Assignment Protocol for P2P overlAys
	5.1 Assumptions and Clarifications
	5.2 Protocol Specification
	5.2.1 Protocol Steps
	5.2.2 Public Key Generation
	5.2.3 NodeID Validation

	5.3 Security Analysis
	5.3.1 Cryptographic Analysis
	5.3.2 Discussion of NodeID Requirements
	5.3.3 Formal Validation of the Protocol

	5.4 Performance Analysis
	5.5 Conclusions

	6 A Robust Identity Assignment Protocol for P2P overlAys
	6.1 Assumptions and Clarifications
	6.2 Protocol Specification
	6.2.1 Protocol Steps
	6.2.2 NodeID Selection
	6.2.3 Node Operation

	6.3 Security Analysis
	6.3.1 Discussion of NodeID Requirements
	6.3.2 Formal Validation of the Protocol

	6.4 Performance Analysis
	6.5 Comparison with Similar Proposals
	6.6 Scenarios
	6.7 Conclusions

	7 CRL Distribution System for the Kad Network
	7.1 System Requirements
	7.2 Proposal Overview
	7.3 CRL Segment Generation
	7.4 CRL Segment Sharing
	7.5 CRL Segment Issuance
	7.6 Performance Analysis
	7.7 Conclusions

	8 Conclusions and Further Work
	8.1 Conclusions
	8.2 Further Work
	8.2.1 Implicit Certificates Application
	8.2.2 Revocation Data Distribution

	References
	A ASN.1 RIAPPA Certificate Syntax
	B The AVISPA Tool Simulations
	B.1 ICIAPPA
	B.1.1 Results

	B.2 TIAPPA
	B.2.1 Results

	B.3 RIAPPA
	B.3.1 Results

