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Abstract
Large and growing collections of a wide variety of music are now
available on demand to music listeners, necessitating novel ways of
automatically structuring these collections using different dimen-
sions of music. Rhythm is one of the basic music dimensions and
its automatic analysis, which aims to extract musically meaning-
ful rhythm related information from music, is a core task in Music
Information Research (MIR).

Musical rhythm, similar to most musical dimensions, is culture-
specific and hence its analysis requires culture-aware approaches.
Indian art music is one of the major music traditions of the world
and has complexities in rhythm that have not been addressed by
the current state of the art in MIR, motivating us to choose it as
the primary music tradition for study. Our intent is to address un-
explored rhythm analysis problems in Indian art music to push the
boundaries of the current MIR approaches by making them culture-
aware and generalizable to other music traditions.

The thesis aims to build data-driven signal processing and ma-
chine learning approaches for automatic analysis, description and
discovery of rhythmic structures and patterns in audio music col-
lections of Indian art music. After identifying challenges and op-
portunities, we present several relevant research tasks that open up
the field of automatic rhythm analysis of Indian art music. Data-
driven approaches require well curated data corpora for research
and efforts towards creating such corpora and datasets are docu-
mented in detail. We then focus on the topics of meter analysis and
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percussion pattern discovery in Indian art music.

Meter analysis aims to align several hierarchical metrical events
with an audio recording. Meter analysis tasks such as meter infer-
ence, meter tracking and informed meter tracking are formulated
for Indian art music. Different Bayesian models that can explicitly
incorporate higher level metrical structure information are evalu-
ated for the tasks and novel extensions are proposed. The proposed
methods overcome the limitations of existing approaches and their
performance indicate the effectiveness of informed meter analysis.

Percussion in Indian art music uses onomatopoeic oral
mnemonic syllables for the transmission of repertoire and tech-
nique, providing a language for percussion. We use these percus-
sion syllables to define, represent and discover percussion patterns
in audio recordings of percussion solos. We approach the problem
of percussion pattern discovery using hidden Markov model based
automatic transcription followed by an approximate string search
using a data derived percussion pattern library. Preliminary ex-
periments on Beijing opera percussion patterns, and on both tabla
and mridangam solo recordings in Indian art music demonstrate
the utility of percussion syllables, identifying further challenges to
building practical discovery systems.

The technologies resulting from the research in the thesis are a
part of the complete set of tools being developed within the Comp-
Music project for a better understanding and organization of Indian
art music, aimed at providing an enriched experience with listening
and discovery of music. The data and tools should also be relevant
for data-driven musicological studies and other MIR tasks that can
benefit from automatic rhythm analysis.



Resum
Les col.leccions de música són cada vegada més grans i variades,
fet que fa necessari buscar noves fórmules per a organitzar automà-
ticament aquestes col.leccions. El ritme és una de les dimensions
bàsiques de la música, i el seu anàlisi automàtic és una de les prin-
cipals àrees d’investigació en la disciplina de l’recuperació de la
informació musical (MIR, acrònim de la traducció a l’anglès).

El ritme, com la majoria de les dimensions musicals, és es-
pecífic per a cada cultura i per tant, el seu anàlisi requereix de
mètodes que incloguin el context cultural. La complexitat rítmi-
ca de la música clàssica de l’Índia, una de les tradicions musi-
cals més grans al món, no ha estat encara treballada en el camp
d’investigació de MIR - motiu pel qual l’escollim com a principal
material d’estudi. La nostra intenció és abordar les problemàtiques
que presenta l’anàlisi rítmic de la música clàssica de l’Índia, encara
no tractades en MIR, amb la finalitat de contribuir en la disciplina
amb nous models sensibles al context cultural i generalitzables a
altres tradicions musicals.

L’objectiu de la tesi consisteix en desenvolupar tècniques de
processament de senyal i d’aprenentatge automàtic per a l’anàlisi,
descripció i descobriment automàtic d’estructures i patrons rít-
mics en col.leccions de música clàssica de l’Índia. Després
d’identificar els reptes i les oportunitats, així com les diverses tas-
ques d’investigació rellevants per a aquest objectiu, detallem el
procés d’elaboració del corpus de dades, fonamentals per als mè-
todes basats en dades. A continuació, ens centrem en les tasques
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d’anàlisis mètric i descobriment de patrons de percussió.

L’anàlisi mètric consisteix en alinear els diversos esdeveni-
ments mètrics -a diferents nivells- que es produeixen en una gra-
vació d’àudio. En aquesta tesi formulem les tasques de deducció,
seguiment i seguiment informat de la mètrica. D’acord amb la tra-
dició musical estudiada, s’avaluen diferents models bayesians que
poden incorporar explícitament estructures mètriques d’alt nivell i
es proposen noves extensions per al mètode. Els mètodes proposats
superen les limitacions dels mètodes ja existents i el seu rendiment
indica l’efectivitat dels mètodes informats d’anàlisis mètric.

La percussió en la música clàssica de l’Índia utilitza onoma-
topeies per a la transmissió del repertori i de la tècnica, fet que
construeix un llenguatge per a la percussió. Utilitzem aquestes síl-
labes percussives per a definir, representar i descobrir patrons en
enregistraments de solos de percussió. Enfoquem el problema del
descobriment de patrons percussius amb un model de transcripció
automàtica basat en models ocults de Markov, seguida d’una re-
cerca aproximada de strings utilitzant una llibreria de patrons de
percussions derivada de dades. Experiments preliminars amb pa-
trons de percussió d’òpera de Pequín, i amb gravacions de solos
de tabla i mridangam, demostren la utilitat de les síl.labes percus-
sives. Identificant, així, nous horitzons per al desenvolupament de
sistemes pràctics de descobriment.

Les tecnologies resultants d’aquesta recerca són part de les ei-
nes desenvolupades dins el projecte de CompMusic, que té com a
objectiu millorar l’experiència d’escoltar i descobrir música per a la
millor comprensió i organització de la música clàssica de l’Índia,
entre d’altres. Aquestes dades i eines poden ser rellevants per a
estudis musicològics basats en dades i, també, altres tasques MIR
poden beneficiar-se de l’anàlisi automàtic del ritme.

(Translated from English by Jordi Pons Puig)



Resumen
Las colecciones de música son cada vez mayores y más variadas,
haciendo necesarias nuevas fórmulas para su organización automá-
tica. El análisis automático del ritmo tiene como fin la extracción
de información rítmica de grabaciones musicales y es una de las
principales áreas de investigación en la disciplina de recuperación
de la información musical (MIR por sus siglas en inglés).

La dimensión rítmica de la música es específica a una cultura y
por tanto su análisis requiere métodos que incluyan el contexto cul-
tural. Las complejidades rítmicas de la música clásica de la India,
una de las mayores tradiciones musicales del mundo, no han sido
tratadas hasta la fecha enMIR, motivo por el cual la elegimos como
nuestro principal objeto de estudio. Nuestra intención es abordar
cuestiones de análisis rítmico aún no tratadas en MIR con el fin de
contribuir a la disciplina con nuevos métodos sensibles al contexto
cultural y generalizables a otras tradiciones musicales.

El objetivo de la tesis es el desarrollo de técnicas de procesami-
ento de señales y aprendizaje automático dirigidas por datos para el
análisis, descripción y descubrimiento automáticos de estructuras
y patrones rítmicos en colecciones de audio de música clásica de la
India. Tras identificar retos y posibilidades, así como varias tareas
de investigación relevantes para este objetivo, detallamos la elabo-
ración del corpus de estudio y conjuntos de datos, fundamentales
para métodos dirigidos por datos. A continuación, nos centramos
en las tareas de análisis métrico y descubrimiento de patrones de
percusión.
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El análisis métrico consiste en la alineación de eventos métricos
a diferentes niveles con una grabación de audio. En la tesis formu-
lamos las tareas de deducción de metro, seguimiento de metro y
seguimiento informado de metro de acuerdo a la tradición estudia-
da, se evalúan diferentes modelos bayesianos capaces de incorpo-
rar explícitamente información de estructuras métricas de niveles
superiores y se proponen nuevas extensiones. Los métodos pro-
puestos superan las limitaciones de las propuestas existentes y los
resultados indican la efectividad del análisis informado de metro.

La percusión en la música clásica de la India utiliza onoma-
topeyas para la transmisión del repertorio y la técnica. Utilizamos
estas sílabas para definir, representar y descubrir patrones en graba-
ciones de solos de percusión. A tal fin generamos una transcripción
automática basada en un modelo oculto de Márkov, seguida de una
búsqueda aproximada de subcadenas usando una biblioteca de pa-
trones de percusión derivada de datos. Experimentos preliminares
en patrones de percusión de ópera de Pekín, y en grabaciones de so-
los de tabla y mridangam, demuestran la utilidad de estas sílabas,
identificando nuevos retos para el desarrollo de sistemas prácticos
de descubrimiento.

Las tecnologías resultantes de esta investigación son parte de un
conjunto de herramientas desarrollado en el proyecto CompMusic
para el mejor entendimiento y organización de la música clásica de
la India, con el objetivo de proveer una experiencia mejorada de
escucha y descubrimiento de música. Estos datos y herramientas
pueden ser también relevantes para estudios musicológicos dirigi-
dos por datos y otras tareas de MIR que puedan beneficiarse de
análisis automáticos de ritmo.

(Translated from English by Rafael Caro Repetto)
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Chapter 1
Introduction

...the most necessary, most difficult and principal
thing in music, that is time...

W. A. Mozart fromMozart: The Man and the
Artist, as Revealed in his own Words by Friedrich

Kerst, trans. Henry Edward Krehbiel (1906)

We live in a multicultural world that is replete with rich sources of
data and information, which keep increasing each passing day. The
present day Information and Communication Technologies (ICT)
and tools help us to generate, organize, interact, interpret, con-
sume, assimilate these data and information, enhancing our expe-
rience with the data, information and knowledge of the world. The
technology needs in a multicultural world are evolving to cater to
the complex sociocultural contexts in which these technologies and
tools are being built and used.

Music is an integral part of our lives and is being produced and
consumed at an ever increasing rate. The consumption channels
and practices of music have changed significantly over the last two
decades. With music going digital, there are large collections of
music available on demand to users, necessitating novel ways of
automatically structuring these collections. The interaction with
music has grown beyond just listening into an enriching and engag-
ing experience with the music content. Such a scenario provides a
great opportunity to enhance our experience interacting withmusic.

1
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There are significant efforts to build automatic tools and technolo-
gies that enhance our experience with large (and ever increasing in
size) music collections. Music being a sociocultural phenomenon
needs these automatic tools to be aware and adaptable to such a
context and cater to specific music cultures, music producers (mu-
sicians and artists) and the widely diverse audiences.

Music Information Research (MIR) is a specialized area of re-
search within music technology that aims to develop tools and ap-
plications for representation, understanding, analysis and synthesis
of music. Though a new and interdisciplinary field of research, it
has a significant community working on various problems within
the purview of MIR. MIR focuses on understanding and model-
ing what music is and how it functions. Its basic aim is to de-
velop veridical and effective computational models of the whole
music understanding chain, from sound and structure perception to
the kinds of high-level concepts that humans associate with mu-
sic, such as melody, rhythm, harmony, structure, mood and other
possibly subjective attributes and characteristics. Automatic music
analysis in MIR aims to ‘make sense’ of music and extract useful,
musically relevant and semantically meaningful information from
music pieces and music collections.

Music is multi-dimensional and rhythm is one of the most basic
dimensions of music. Music manifests as musical events unfolding
in time, and the arrangement of these events constitutes the rhythm
of a music piece. These events can be grouped and organized in
several layers into rhythmic structures and patterns. Rhythm can
be studied frommany different perspectives (Bello, Rowe, Guedes,
& Toussaint, 2015), and this work takes an MIR viewpoint aiming
at automatic rhythm analysis: to estimate and characterize these
rhythmic structures and patterns from music to extract musically
meaningful rhythm related information from music.

The work presented in this dissertation is at the crossroads of
music technology and automatic analysis of music, focusing on
rhythm analysis, aiming at domain specific analysis approaches
within a multicultural context. We now delve into the context and
motivation for the thesis. The scope and objectives of the thesis
are then clearly identified. The concluding section of the chapter
describes the organization of the dissertation in detail.
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1.1 Context and relevance
In the last two decades, MIR has received significant attention from
the research community and has addressed several relevant research
problems advancing the field of sound andmusic computing. How-
ever, the current research in MIR has been largely limited to Eu-
rogenetic (popular) music1 cultures and do not generalize to other
music cultures of the world. The approaches have not been devel-
oped within a multicultural context and are incapable of extending
to the wide variety of music cultures we encounter.

There is still a wide gap between what can accurately be recog-
nised and extracted from music audio signals and the high level
semantically meaningful concepts that human listeners associate
with music. Current attempts at narrowing this semantic gap are
only producing small incremental progress. One of the main rea-
sons for this lack of major progress seems to be the bottom-up ap-
proach currently being used, in which features are extracted from
audio signals and higher-level features or labels are then computed
by analysing and aggregating these features. The limitation here
being the lack of infusion of higher level music knowledge directly
into automatic analysis. The CompMusic project (Serra, 2011) was
conceived in such a context to address these limitations.

CompMusic 2 (Computational Models for the Discovery of the
World’s Music) is focused on the advancement in the field of MIR
by approaching a number of current research challenges from a
culture specific perspective to build domain specific approaches.
CompMusic aims to develop information modelling techniques of
relevance to several non-Western music cultures and in the pro-
cess contributing to the overall field of MIR. Five different music
cultures are being studied in the project: Hindustani (North India),

1The term Eurogenetic music was introduced by Srinivasamurthy,
Holzapfel, and Serra (2014) to avoid the misleading dichotomy of Western and
non-Western music. The discussed theoretical constructs of western music are
motivated by music of the European common practice period. We use the word
“genetic” rather with its connotation as “pertaining to origins”, coined in 1831
by Carlyle from Gk. genetikos “genitive”, from genesis “origin”, and not in its
biological sense as first applied by Darwin in 1859 (http://www.etymonline
.com). The term was proposed by Prof. Robert Reigle (MIAM, Istanbul) in
personal communication.

2http://compmusic.upf.edu

http://www.etymonline.com
http://www.etymonline.com
http://compmusic.upf.edu


4 Introduction

Carnatic (South India), Turkish-makam (Turkey), Arab-Andalusian
(Maghreb), and Beijing opera (China).

CompMusic aims to challenge the current Western centered in-
formation paradigms, advance our information technology research,
and contribute to our rich multicultural society. The motivation be-
hind CompMusic is that the information technologies used for mu-
sic processing have typically targeted the western music traditions,
and current research is emphasizing this bias even more. How-
ever, to develop technologies that can deal with the richness of our
world’s music, there is a need to study and exploit the unique as-
pects of other musical cultures.

CompMusic further identifies that ‘making sense’ of music is
muchmore than decoding and parsing an incoming stream of sound
waves into higher-level musical objects such as onsets, notes, beats,
melodies and harmonies. Music is embedded in a rich web of cul-
tural, historical, commercial and social contexts that influence how
it is interpreted and categorized. Though all music traditions share
common characteristics, each one can be recognized by particular
features that need to be identified and preserved. Many qualities
attributed to a piece of music by listeners and musicians cannot
solely be explained by the content of the audio signal itself. It is
clear that high-quality automatic music description and understand-
ing can only be achieved by also taking into account additional in-
formation external to the music.

Looking at the problems emerging from various musical cul-
tures will not only help those specific cultures, but we will open
up our existing computational methodologies, making them much
more versatile. It will emphasize the limitations of the current
methodologies and present open issues. In turn, it will also help
preserve the diversity of our world’s culture. The research results
of CompMusic are integrated into Dunya (Porter, Sordo, & Serra,
2013), which is a web-based software application that lets users
interact with an audio music collection through the use of musi-
cal concepts that are derived from a specific music culture. The
users can also access all the research results and extracted features
through Dunya.

Within the field of MIR there are many research problems that
can benefit from a culture specific perspective. CompMusic fo-
cuses on the extraction of features from audio music recordings
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related to melody and rhythm, and on the semantic analysis of the
contextual information of those recordings. The goal is to char-
acterize culture specific musical facets of each repertoire and to
develop musically meaningful similarity measures with them. The
research in CompMusic is data-driven, thus it revolves around cor-
pora. One of the goals of CompMusic is to construct a research
corpus for each music tradition (Serra, 2014). The types of data
gathered are mainly audio recordings and editorial metadata, which
are then complemented with descriptive information such as edito-
rial metadata, scores and/or lyrics as available.

The work presented in this dissertation has been conducted in
the context of the CompMusic project but focusing on automatic
rhythm analysis research problems for Indian art music from a data-
driven perspective using signal processing and machine learning
approaches. The dissertation imbibes and inherits all the goals and
context of CompMusic project as applied to rhythm analysis. A
meaningful automatic rhythm analysis hence should consider cul-
tural aspects attached to it (Serra et al., 2013). Through a culture-
aware and domain specific approach to computational rhythmmod-
eling of Indian art music, we will also get better insights into the
current MIR tools which would improve their performance. We
will be able to develop better algorithms, newer methodologies
and techniques for the study of world’s music and reach out to a
much larger part of our multicultural world. The development of
these models would also allow cross cultural comparative studies
between different musical systems, enriching the present knowl-
edge of world’s music and provide interesting sociocultural, cogni-
tive, and musical perspectives. Such an approach is relevant since
it aims to push ahead the boundaries of automatic rhythm analy-
sis to address current challenges and be more inclusive to address
varied needs of different music cultures of the world.

1.2 Motivation
Rhythm is a fundamental dimension of music. Music has repeating
structures and patterns, with several musical events organized in
time. It is primarily an event-based phenomenon and detecting and
characterizing musical events and their transitions is an important
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task. The automatic analysis of these musical events can provide
us useful insights into music and help us to derive semantically
meaningful higher level concepts.

Musical events are often organized in several hierarchical lay-
ers leading to metrical structures. The metrical structures provide a
fundamental framework in time to organize events and hence play
a pivotal role in music. Most melodic and rhythmic phrases, lyrical
lines, and harmonic changes are organized around metrical struc-
tures and hence the estimation of different aspects of the meter is
an important MIR task. Estimating the note onsets, tempo, beats
and downbeats are useful and necessary for any further analysis of
music. Though each of these aspects can be extracted in an iso-
lated fashion, there is significant interplay between these entities
and hence a holistic approach to describing all these aspects of me-
ter is an approach that needs to be explored further.

There are additional structures often in music at a longer time
scale than the metrical structures. These are structural components
(e.g. verse, chorus, bridge, intro, outro, solo) and are well defined
in many music forms as different sections of a music piece. Seg-
menting a song at these section boundaries is also a useful task for
summarizing the audio or for structural analysis of music pieces.
Such a structural analysis can benefit from metrical analysis of a
music piece since most of these sections are aligned with metrical
boundaries in a song.

Music is also replete with rhythmic patterns at several differ-
ent levels. Music is expressed through a grouping of events into
rhythmic patterns and hence these patterns are fundamental to un-
derstanding rhythm. The rhythmic patterns can also be indicative
of the underlying musical structure. Understanding and analysis
of these patterns would help in a comprehensive computational de-
scription of the music piece and can be further used in several ap-
plications.

Analysis of rhythmic structures and patterns hence is an impor-
tant research task in MIR. Tools developed for rhythm analysis can
be useful in a multitude of applications such as intelligent music
archival, enhanced navigation of music collections, content based
music retrieval and for an enriched and informed listening of mu-
sic. The target audience for such tools span across serious music
listeners who wish for an enhanced experience with music, music
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students who wish to learn more about the music they are listening
to, musicians who can use these tools to better promote their mu-
sic, musicologists who can use these tools in their work, and music
collectors and record labels who can use these tools to organize,
archive and present their music better.

With large and ever growing music collections, the need of the
hour are innovative ways for meaningful organization and naviga-
tion through these large collections. Large music collections would
mean an automatic analysis is desired over a manual curation that
can be tedious, time consuming and highly resource intensive. In
addition to the metadata associated with music recordings, using
the underlying musical concepts to organize music collections is
the best approach in such a case for better search and discovery
within the collection. This necessitates defining similarity (or dis-
tance) measures between these recordings that can be used to group
and collate recordings. In addition to the context based similarity
(that uses mainly editorial metadata) that is predominantly used to-
day, there is a need to develop content based similarity (using mu-
sic content of the audio recordings). Further, navigating within a
recording would also mean that these similarity measures are addi-
tionally needed intra-piece i.e. for different parts of a single piece.

As specified earlier, a meaningful navigation and retrieval can
be better achieved using the sociocultural context of the music with
all its unique features and specificities - using culture specific sim-
ilarity measures. Rhythmic features are a component of the overall
similarity measures for such a task and rhythm similarity measures
can hugely benefit from automatic rhythm analysis of rhythmic
structures and patterns. The culture specificity applies at several
levels - it applies to identifying unique challenges for the current
day ICTs making them specific and meaningful, applies to research
approaches for automatic analysis of music, and to the methodolo-
gies of combining information from several data sources to define
meaningful similarity measures.

With a significantly sophisticated rhythmic framework, Indian
art music poses a big challenge to the current state of the art in
automatic rhythm analysis (Srinivasamurthy, Holzapfel, & Serra,
2014). There are several important automatic rhythm analysis tasks
in Indian art music that have not been studied. With such complexi-
ties, developing approaches for rhythm analysis in Indian art music
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can help to identify the limitations of current approaches to improve
their performance and make them better and more general. As em-
phasized earlier, there is a significant gap between the current capa-
bilities of the music technologies used in commercial services and
the needs of our culturally diverse world. This is evident in Indian
art music - where the existing technologies fall short of utilizing
even the basic musical characteristics and limit our music listening
experience. Being well established art music traditions with a sig-
nificant audience around the world, Indian art music traditions are
ideal candidates to develop culture-aware automatic rhythm analy-
sis methods.

It is important to comment that in the pursuit of culture specific
methodologies, it is illusionary to believe that specialist systems
can be developed for each of the musics of the world. Therefore,
a more rational approach is to develop culture-aware methods that
are also generalizable and adaptable to other contexts and musics.

The motivation for culture-aware automatic rhythm analysis in
Indian art music stems from all the above described reasons. In
addition to the above, to the best of our knowledge, this is the first
thesis to comprehensively address automatic rhythm analysis prob-
lems in Indian art music and hence would open up the way for fur-
ther research on the topic. Being an unexplored area of research
with many different open problems, it is important and necessary
to clearly identify the scope and objectives of this dissertation.

1.3 Scope and objectives
The work presented in the dissertation on automatic rhythm anal-
ysis stands at the intersection of audio music processing, machine
learning, music theory, musicology, and the application of enriched
music listening. Automatic rhythm analysis is itself a broad area of
research and hence it is quite necessary to define and delimit the
scope of the research presented in the dissertation, while identify-
ing the research questions and the objectives of the thesis clearly.
The broad objectives of the presented research are listed below:

• To identify challenges and opportunities in automatic rhythm anal-
ysis of Indian art music and formulate relevant automatic rhythm
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analysis problems. Convert musical definitions into engineering
formulations amenable to quantitative analysis using signal pro-
cessing and machine learning approaches.

• To build useful annotated music collections of Indian art music
(both audio and symbolic) with a focus on rhythm, for future re-
search in automatic rhythm analysis

• To create and construct culture-aware computational rhythmmod-
els for Hindustani and Carnatic music

• To develop novel signal processing and machine learning meth-
ods for rhythm analysis of Indian art music

• To devise and develop musically meaningful rhythm similarity
measures for a better structuring and discovery of Indian art mu-
sic music collections

• To explore extensions and generalizations the specific models
to other relevant music cultures being studied in the context of
CompMusic project, such as Beijing opera and Turkish makam
music.

To explain the scope of the thesis, a long and comprehensive title
that defines the scope of the work presented can be written as:

Culture-aware and data-driven signal processing and
machine learning approaches for automatic analysis,
description and discovery of rhythmic structures and
patterns in audio music collections of Indian art music

In alignment with the goals of CompMusic, the final goal of such
an analysis is to define culture specific and musically meaningful
rhythm similarity measures within a music repertoire. The main
focus of the thesis is on Indian art music. While there are three
othermusic traditions under study in CompMusic project, the thesis
only aims to explore extensions to some relevant rhythm analysis
problems in Beijing opera.

The thesis explores data-driven engineering approaches for anal-
ysis of audiomusic recordings. An audio recording is hence the pri-
mary source of information and is at the centre of analysis, with sev-
eral types of rhythm related information extracted from a recording.



10 Introduction

Rhythm 

analysis 

Audio 

Meter 

Patterns 

Structure 

Figure 1.1: Example of automatic rhythm analysis from audio recordings
estimating meter, rhythmic patterns and structure from audio recordings.
The approaches in the dissertation follow a similar flow, with an audio
recording being at the centre of analysis.

Figure 1.1 shows an example of such a paradigm, showing meter,
patterns and structure extracted from an audio recording of a mu-
sic piece. Other possible media of music dissemination such as
scores, lyrics and contextual information are considered secondary
sources in the scope of the thesis, though used in some tasks. The
approaches taken in the thesis are primarily audio signal process-
ing and Bayesian machine learning methods, exploring mostly su-
pervised learning methods to develop novel rhythm analysis algo-
rithms. Semantic analysis, which is the other core research area of
CompMusic is not the focus of this thesis.

The thesis aims to bring in as much musical knowledge to the
methods as possible, including and using all the known attributes
of music. The goal is to build domain specific and informed signal
processing and machine learning methods, so that the extracted in-
formation is musically relevant and useful. Bayesian models and
methods provide an effective framework to bring in higher level
music knowledge into models, in terms of model structure and pri-
ors. Bayesian models are hence a central theme for the analysis
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approaches in the thesis.
The emphasis of the thesis is on data and methods. The data-

driven approaches need good quality datasets, which have been
careful compiled and annotated within the context of the thesis.
The algorithms are built to work on real world representative music
collections - organized curated collections of music that are acces-
sible.

The thesis focuses only onmusic analysis and not onmusic gen-
eration, composition and synthesis. The generativemodels used for
analysis in the thesis can however be used for such a task if needed,
though it is not the focus of the thesis. In terms of our interaction
and experience with music, the thesis focuses mainly on enhanced
music listening. Though some of the tools and methods can be use-
ful to both teachers and students of music, it is not the focus of the
thesis.

The work presented is done on well studied art music cultures
of India and borrows from the significant musicological literature
already available. The thesis however aims to aid musicologists
further in their work with these rhythm analysis tools. The data and
the methods presented in the thesis can be used by musicologists
for large scale corpus level musicological analysis. There are illus-
trative examples of such analyses in the dissertation, but the thesis
does not aim to make any significant musicological conclusions.

The work in the thesis also borrows from consultation with sev-
eral musician collaborators over the course of CompMusic project.
The analysis methods developed in the thesis do not aim to re-
place expert musician opinions, but only work within the frame-
work provided by musicians, musicologists, listeners and learners
to enhance our experience with music. The problems formulated
and addressed in the thesis are on concepts that have well grounded
definitions and agreement among the musician and musicologist
community.

In addition to exploring novel approaches to automatic rhythm
analysis, the thesis aims to answer the following research questions
within the context of rhythm analysis:

1. It is hypothesized that automatic analysis of rhythmic structures
and patterns from audio signals needs specific methodologies
that make use of the knowledge about the underlying rhyth-
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mic structures. To what extent does incorporating higher level
knowledge affect the performance of automatic analysis algo-
rithms? What kinds of higher level information are useful and
lead to a better performance? How can such higher level in-
formation be included in the framework of Bayesian models to
develop novel rhythm analysis algorithms?

2. How do the existing rhythm analysis methods designed with dif-
ferent rhythmic structures extend to complex metrical structures
in Indian art music? What limitations can we identify of the ex-
isting state of the art?

3. It is hypothesized that instead of a component-wise disjoint ap-
proach to estimating different components of rhythm, it might
be useful to jointly estimate all the relevant components together
in a single framework. The methods can then utilize the in-
terplay between the components for better estimation. Does a
holistic approach work better or is it better to estimate individ-
ual components separately? Which components of rhythm are
better estimated jointly, and which components can be indepen-
dently estimated?

4. It still remains an open question if we need more specialist ap-
proaches, or more general approaches that are able to react to a
large variety of music. Generally, it appears desirable to have
generic approaches that can be adapted to a target music using
machine learning methods. What are some such methods, and
how can they be useful to adapt it to different music cultures?

5. Indian art music and several other music traditions of the world
have developed syllabic percussion systems for transmission of
their repertoire and technique, which provide a language for per-
cussion in those music cultures. What is the utility of these syl-
labic percussion systems in automatic percussion pattern analy-
sis?

6. Given the availability of useful annotated datasets, one of the
questions to ask is if the annotations and the data can be used
for a corpus level analysis leading to meaningful and valid mu-
sicological conclusions.
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Broadly, the thesis identifies the challenges and opportunities in
automatic rhythm analysis of Indian art music, formulates several
rhythm analysis tasks, addresses the issues with building datasets
for rhythm analysis, and then focuses on the tasks of meter and
percussion pattern analysis.

The scope of the thesis within CompMusic is to provide rhythm
analysis tools and methods to be a part of the comprehensive set of
content based analysis methods for the music cultures under study,
with the final goal of utilizing these analysis methods to define mu-
sically relevant similarity measures.

A major strategy of CompMusic is open and reproducible re-
search - to be open in sharing ideas, goals, results, data and code
as widely as possible. All the data, code and results presented in
the thesis will be available openly or be accessible to the research
community. Whenever possible, resources will be provided to re-
produce the results of the thesis. The data and code will be shared
with the community through open source platforms under open li-
censes. An open dissemination strategy is one of the primary ob-
jectives of the thesis.

1.4 Organization and thesis outline
The dissertation has seven chapters. Each chapter is written on a
major topic of the thesis and is aimed to be self contained with
a short introduction, content, and a summary. The writing style
followed in the thesis is a mixture of both active and passive voice.
Most of the dissertation derives content from published research
papers describing the work done by collaborative teams. Hence
the word ‘we’ refers to the author andwhen applicable, additionally
includes the co-authors and collaborators in research papers. When
presenting results and making observations, the word ‘we’ further
includes the reader who can equally make such an observation from
the results. However, the main original contributions by the author
of the thesis are emphasized appropriately, wherever needed.

After an introduction to the thesis in Chapter 1, Chapter 2 pro-
vides an overview of the music background and a review of the
state of the art as needed for the thesis. Chapter 3 is focused on
identifying and discussing several novel automatic rhythm analy-
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sis problems in Indian art music. Chapter 4 presents the research
corpora and all the rhythm related datasets compiled as a part of
CompMusic project that will be used for various rhythm analysis
tasks. Chapter 5 and Chapter 6 are themain chapters of the disserta-
tion discussing the topics of meter analysis and percussion pattern
discovery, respectively. Chapter 7 presents some of the applica-
tions and conclusions with pointers for future work. In addition,
the links to resources from the thesis (data, code, examples) are
listed in Appendix B. There are several new non-standard terms
in the dissertation including unfamiliar terms related to Indian art
music which are all listed with a short description in a glossary in
Appendix C. The glossary also lists the acronyms used for datasets
and analysis methods in the dissertation.

Chapter 2 provides an overview of the background material
necessary for the thesis. It introduces a concrete terminology for
rhythm concepts and a basic introduction to rhythm and percussion
in Indian art music and Beijing opera. It then provides an overview
of the state of the art for automatic rhythm analysis in MIR. The
chapter ends with a brief overview of the technical concepts useful
to understand the thesis work better. The content of the chapter is
compiled and presented from several external sources cited appro-
priately when necessary.

Chapter 3 identifies several challenges and opportunities to au-
tomatic rhythm analysis in Indian art music. The chapter aims to
present all identified relevant research problems, while only a sub-
set of them are addressed in the thesis. For these problems, the
chapter also presents an overview of the state of the art when avail-
able. It further elaborates and formulates the thesis problems that
are addressed in detail in the next chapters of the dissertation and
presents an evaluation of the state of the art for some of these tasks
on Indian art music. A large part of the content of the chapter is
derived from several discussions of with collaborators of Comp-
Music, musicians, musicologists and listeners on what they con-
sider are important rhythm analysis problems, with some content
and results from our published journal article (Srinivasamurthy,
Holzapfel, & Serra, 2014).

Chapter 4 describes the efforts of CompMusic in compiling
and annotating the research corpora and test datasets. The chapter
presents a systematic framework to elucidate a set of design prin-
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ciples to build data corpora for research in Indian art music (Serra,
2014). All the annotated rhythm related datasets are described in
detail emphasizing on the research problems in which they are use-
ful. Other state of the art datasets that are used in the thesis are also
described. Apart from being useful as test datasets to evaluate algo-
rithms and approaches, annotated datasets are also useful to infer
musically meaningful observations. Hence an illustrative corpus
level statistical analysis of relevant test datasets is also presented
to point out some interesting observations. The rhythm related
datasets described in the chapter have a major contribution from
the author, but still are collective efforts of the CompMusic team,
as indicated with each dataset. Some of the content of the chap-
ter is from our published papers (Srinivasamurthy, Koduri, Gulati,
Ishwar, & Serra, 2014; Srinivasamurthy & Serra, 2014; Tian, Srini-
vasamurthy, Sandler, & Serra, 2014; Srinivasamurthy, Caro, Sun-
dar, & Serra, 2014; Gupta, Srinivasamurthy, Kumar, Murthy, &
Serra, 2015; Srinivasamurthy, Holzapfel, Cemgil, & Serra, 2016)
while some of it is unpublished content.

Chapter 5 presents the primary contribution of the thesis and de-
scribes one of the main research problems addressed. The chapter
focuses on the problem of meter analysis and describes several ap-
proaches to the task in the context of both Carnatic and Hindustani
music of India. The chapter proposes novel Bayesian models and
novel inference algorithms for different levels of informed meter
analysis, with a comprehensive evaluation on annotated datasets.
The content of the chapter is derived from the current state of the
art in beat and downbeat tracking (Krebs, Böck, & Widmer, 2013;
Krebs, Holzapfel, Cemgil, & Widmer, 2015), along with some of
our recently published papers (Srinivasamurthy&Serra, 2014; Srini-
vasamurthy, Holzapfel, Cemgil, & Serra, 2015; Srinivasamurthy
et al., 2016; Holzapfel, Krebs, & Srinivasamurthy, 2014) and from
latest unpublished work.

Chapter 6 presents the other important contribution of the thesis
and describes the task of percussion pattern discovery in Indian art
music. The work presented in the chapter is preliminary and ex-
ploratory, but demonstrates the effective use of syllabic percussion
systems in representation, transcription and search of percussion
patterns in percussion solo recordings. As a preliminary test case,
experiments on percussion pattern classification in Beijing opera
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Figure 1.2: Dependencies between the chapters of the dissertation, also
indicating a suggested reading order for the chapters

are presented. The approaches are extended to Indian art music
and an evaluation is provided on drum solo datasets. A part of the
results presented in the chapter are derived from our published pa-
pers (Gupta et al., 2015; Srinivasamurthy, Caro, et al., 2014) while
many results are yet unpublished. Chapter 7 presents some of the
applications and conclusions. The chapter summarizes the results
from different chapters and presents pointers for future work.

Each chapter of the dissertation is self contained and can be read
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in isolation with sufficient background. However, the following
dependencies exist between chapters, which is a possible indicator
of the recommended order for reading and is further summarized
in Figure 1.2. Starting with Chapter 1, if the reader has sufficient
background on rhythm in Indian music and rhythm analysis prob-
lems in MIR, Chapter 2 would be a recap. For a researcher starting
out and exploring new problems and resources in Indian art music,
Chapter 3 and Chapter 4 might be more interesting. Chapter 5 and
Chapter 6 focus on separate research problems and can be read in-
dependently. Chapter 4 might be necessary to understand the eval-
uations presented in Chapter 5 and Chapter 6. Chapter 7 might be
useful to understand some of the applications in more detail. Ap-
pendix B and Appendix C can be used as quick guides for resources
and term definitions, respectively.

To the best of our knowledge, this dissertation is the first com-
prehensive attempt at rhythm analysis of Indian art music. By ad-
dressing the problems discussed in this dissertation within the con-
text of CompMusic project, we aim to develop useful tools and
algorithms for automatic rhythm analysis of Indian art music. In-
tegrated into Dunya, we hope that these tools will provide an en-
riched experience to a music listener, enhanced through a cultural
context. In the process, we also hope to obtain a better understand-
ing and provide deeper insights into the nature of rhythm in Indian
art music, and contribute to improving the state of the art in MIR.





Chapter 2
Background

...mere metrical measurement is not tāḷa. It is a har-
monious correlation of discipline and freedom.

Shankar (1999, p. 61), from The art and science of
carnatic music, Parampara Publications.

The chapter provides the necessarymusic and technical background
for understanding the work presented in the dissertation. The main
aims of this chapter are:

1. To establish a consistent terminology for several rhythm related
music concepts

2. To describe relevant rhythm related concepts in Indian art music
and Beijing opera

3. To present an overview of the state of the art for the automatic
rhythm analysis problems addressed in the dissertation

4. To briefly describe the technical concepts necessary to under-
stand the algorithms and methods presented in the dissertation

2.1 Rhythm: terminology
As observed already many decades ago, discussions about rhythm
tend to suffer from inconsistencies in their terminology (Sachs,
1953). Let us therefore try to locate definitions for some basic

19
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terms, in order to establish a consistent representation in the dis-
sertation. György Ligeti, a European composer who showed a high
interest in rhythmic structures in music of African cultures, defined
rhythm as “every temporal sequence of notes, sounds and musical
Gestalten”, while he referred to meter as “a more or less regular
structuring of temporal development” (Ligeti, 2007). According
to that definition, rhythm is contained in all kinds of music, while
pulsating rhythm which is subordinated to a meter is not found in
all music. Kolinski (1973) describes the regular structuring caused
by meter as organized pulsation, which functions as a framework
for rhythmic design.

Pulsations in meter are organized into hierarchical levels of dif-
fering time spans, usually demanding the presence of pulsation at
least on three levels; these levels are referred to as subdivision (also
called the tatum), beat (also called the tactus), andmeasure (or bar):
from short to long time-span (London, 2001, accessed June 2016).
The pulsation at the beat level was referred to as primary rhythmic
level by Cooper and Meyer (1960), and they define it as the lowest
level on which a complete rhythmic group is realized. The same
authors identify this level with a subjective notion as well, by re-
ferring to it as the level at which the beats are felt and counted. As
listeners tend to count the beats at varying levels (Parncutt, 1994;
Müller, Ellis, Klapuri, Richard, & Sagayama, 2011), and what can
be considered a complete rhythmic group can be argued as well,
we are confronted with a significant amount of ambiguity in deter-
mining this level for a piece of music. Finding a clear terminol-
ogy is further hampered by the fact that the pulsation at the beat
level is commonly also referred to as “beat” or “pulse” as observed
by London (2004). A shortcoming of most attempts to describe
rhythm andmeter is the assumption about pulsation to consist of re-
curring, precisely equivalent and equally-spaced isochronous stim-
uli (Lerdahl & Jackendoff, 1983). Such preconditions cause diffi-
culties when analyzing music of other cultures since in many cases,
mutual equidistance becomes an exception rather than the rule, tak-
ing the important role of additive meters in Indian, Greek and Turk-
ish music as one example.

In order to obtain a consistent terminology, we consider meter
as being an organization of pulsation into different levels related
to the time-spans of the individual pulsations. Note that this may
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include an irregular pattern of unequal time-spans at some level,
e.g. due to the presence of an additive meter. We will consider
pulsations on three levels. On the (lower) subdivision level, we
will refer to subdivision pulsation or subdivision pulses, depending
on if we refer to the time series that constitutes the pulsation or to
the individual instances of the pulsation, respectively. On the beat
level, we will differentiate between the beat pulsation, and beats
as its instances (instead of the inconvenient term of “beat pulses”).
On the bar level, the term pulsation is not appropriate due to the
often larger time-span at this level. Therefore, we use the notions
of bar length to describe the time-span at this level and downbeat as
the beginning of a bar. The overall structure of a meter is defined
by the time-span relations between these three levels. Typically,
the time-span relation between bar and beat level is denoted as the
bar length (in beats), and the relation between beat and subdivision
level as the subdivision meter (in subdivision pulses).

It was observed by e.g. Clayton (2000) that meter in music
causes a transformation of time from linear development to a repet-
itive and cyclic structure. This happens because its levels of pulsa-
tion constitute what we want to refer as metrical cycles. Through-
out the text, we put emphasis on terms containing the notion of a
cycle (such as the measure cycle for the cycle repeating on every
downbeat), a notion suitable in the musical context of Indian art
music. In addition, in Indian art music, the beats or the subdivi-
sions of a bar can be grouped to form musically defined metrical
structures, broadly called sections of the bar. The metrical struc-
tures in Indian music are discussed next, with an introduction to the
Indian art music traditions of Hindustani and Carnatic music.

2.2 Music background
This section describes the primary music cultures that are the focus
of study in this dissertation. The focus is on rhythm and percussion
related concepts in these music cultures. This section is not a com-
prehensive treatment of the subject, and is just sufficient to follow
the rest of the chapters of the dissertation. Hence, additional refer-
ences that contain an in-depth discussion of the presented concepts
are provided when necessary.
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2.2.1 Indian art music
Hindustani (Hindustāni) and Carnatic (Karṇāṭaka) music are two
of the most predominant art music traditions in India. Hindustani
music is spread mainly over the northern parts of the Indian sub-
continent (northern and central parts of India, Pakistan, Nepal, and
Bangladesh), which is a huge geographic area with diverse cultures
that influence the music. Carnatic music is predominant mainly
in southern parts of the Indian subcontinent (South India and Sri
Lanka). Both these musics have a long history of performance and
continue to exist and evolve in the current sociocultural contexts.
Both of them have a large audience and significant musicological
literature that can used to formalize MIR problems for these mu-
sics. The presence of a large dedicated audience and a significant
musicological literature are a good motivation to study these mu-
sic cultures from a computational perspective and build tools and
methods for automatic melody and rhythm analysis in these music
cultures.

While the twomusics differ in performance practices, they share
similar melodic and rhythmic concepts. The melodic framework is
based on rāg in Hindustani music and rāga in Carnatic music. The
rhythmic framework is based on cyclic metrical structures called
the tāl in Hindustani music and tāḷa in Carnatic music.

There are several unfamiliar terms that are introduced in this
section and hence before presenting those terms, a note on disam-
biguating terminology is in order. The latin transliteration of the
Indian art music terms are according to the ISO 15919 (Transliter-
ation of Devanagari and related Indic scripts into Latin characters)
standard (ISO/TC, 2001). Both the words tāl and tāḷa are Sanskritic
in origin and have the same literal meaning of a “hand-clap”. The
difference apparent in transliteration is due to their usage in Hin-
dustani and Carnatic music. We use the language Hindi for all the
terms of Hindustani music, and the South Indian language Kannada
for all the terms of Carnatic music. Hence the latin transliteration
of terms change accordingly.

We will use the term Indian art music (or even Indian music)
to refer collectively to Carnatic and Hindustani music. For consis-
tency and convenience, when it is clear from the context, we will
use the word tāḷa to mean both tāl and tāḷa when we refer collec-
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tively to the two Indian musics, and use the respective terms while
referring to each music culture individually.

In Carnatic music, a concert, called a kachēri, is the natural
unit of Carnatic music and used as the main unit of music distri-
bution. A concert has one or more lead artists - mainly vocal, vīṇā
(commonly spelled veena), violin, or flute, melodic accompani-
ment (mainly violin), and one or more percussion accompaniments
- mainly mr̥daṅgaṁ (spelled commonly as mridangam). Carnatic
music is predominantly composition based and most commercial
releases are concerts, comprising of several pieces that are impro-
vised renderings of compositions. Vocal music is predominant in
Carnatic music and most of the compositions are composed to be
sung. Even in instrumental music, the lead artist aims to mimic vo-
cal singing, called the gāyaki (singing) style (Viswanathan&Allen,
2004). The rāga and tāḷa are the most important metadata associ-
ated with a composition and hence a recording of the composition.
Each composition is composed in one or more rāgas and tāḷas.

Due to the wider geographic extent of Hindustani music spread
over the Indian subcontinent, it is diverse with several different
music styles falling under its gamut. Several different styles of
Hindustani music exist, but in the dissertation we focus mainly on
khyāl, the most popular style of Hindustani music.

A typical khyāl performance has lead vocals or a lead instru-
ment (such as sitār, sarōd, flute, santūr), a melodic accompaniment
(a harmonium or a sāraṅgi), and a percussion accompaniment tabla.
In dhrupad style, pakhāvaj is the main percussion accompaniment.
The artists in Hindustani music belong to what are called gharānās,
or stylistic schools. Though all the gharānā use the same music
concepts and basic style, each of them have their own nuances that
are well distinguished and documented (Mehta, 2008).

Rhythm in Indian art music revolves around the central theme
of the tāḷa and hence it is the primary focus of this dissertation.
Though the idea and purpose of a tāḷa in both music cultures is the
same, there are significant fundamental differences in performance
practices and terminology. An in-depth description of rhythm con-
cepts in Indian art music is provided in the following section, high-
lighting these similarities and differences.
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2.2.2 Rhythm and percussion in Carnatic music
Sambamoorthy (1998) provides a detailed description of tāḷas in
Carnatic music. In Carnatic music, the tāḷa provides a broad struc-
ture for repetition of music phrases, motifs and improvisations. It
consists of fixed length time cycles called āvartana which can be re-
ferred to as the tāḷa cycle. In an āvartana of a tāḷa, phrase refrains,
melodic and rhythmic changes occur usually at the beginning of
the cycle. An āvartana is divided into basic equidistant time units
called akṣaras. The first akṣara pulse of each āvartana is called the
sama, which marks the beginning of the cycle (or the end of the
previous cycle, due to the cyclic nature of the tāḷa). The sama is
often accented, with notable melodic and percussive events. Each
tāḷa also has a distinct, possibly non-regular division of the cycle
period into sections called the aṅga. The aṅgas serve to indicate the
current position in the āvartana and aid the musician to keep track
of the movement through the tāḷa cycle. A movement through a
tāḷa cycle is explicitly shown by the musician using hand gestures,
based on the aṅgas of the tāḷa.

The common definition of an isochronous (equally spaced in
time) beat pulsation, as the time instances where a human listener is
likely to tap his/her foot to the music, is likely to cause problems in
Carnatic music. Due the explicit hand gestures, listeners familiar to
Carnatic music tend to tap to an non-isochronous sequence of beats
in certain tāḷas. Hence we use an adapted definition of a beat for the
purpose of a common ground, defined as a uniform pulsation. It is
to be noted however that an equidistant beat pulsation can later help
in obtaining the musically relevant possibly irregular beat sequence
that is a subset of the equidistant beat pulses. The akṣaras in an
āvartana are grouped into equal length units, which we will refer to
as the beats of the tāḷa. The perceptually relevant hand/foot tapping
time “beats” are a subset of this uniform beat pulsation.

The subdivision grouping structure of the akṣaras within a beat
is called the naḍe (also spelled naḍai) or gati. The most common
naḍe is caturaśra, in which a beat is divided into 4 akṣaras (in du-
ples, equivalently 2 akṣaras). Another important aspect of rhythm
in Carnatic music is the eḍupu, the “phase” or offset of the lead
melody, relative to the sama of the tāḷa. With a non-zero eḍupu, the
composition does not start on the sama, but before (atīta) or after
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Tāḷa # beats naḍe # Akṣara

Ādi 8 4 32
Rūpaka 3 4 12
Miśra chāpu 7 2 14
Khaṇḍa chāpu 5 2 10

Table 2.1: Structure of Carnatic tāḷas, showing the number of beats,
akṣaras per beat (an indicator of naḍe) and akṣaras in each cycle

aṅga
āvartana

sama
akṣara

(a) Ādi tāḷa, illustrated

(b) Khaṇḍa chāpu tāḷa (c) Rūpaka tāḷa (d)Miśra chāpu tāḷa

Figure 2.1: An āvartana of four popular Carnatic tāḷas, showing the
akṣaras (all time ticks), beats (numbered time ticks), aṅgas (long and bold
time ticks) and the sama (×). Ādi tāḷa is also illustrated using the termi-
nology used in the dissertation.

(anāgata) the beginning of the tāḷa cycle. This offset is predomi-
nantly for the convenience of the musician for a better exposition
of the tāḷa in certain compositions. However, eḍupu is also used for
ornamentation in many cases. Though there are significant differ-
ences in terms of scale and length, as an analogy, the concepts of
akṣara, the beat, and the āvartana of Carnatic music bear analogy
to the subdivision, beat and the bar metrical levels of Eurogenetic
music. Further, aṅga are the possibly unequal length sections of
the tāḷa, formed by grouping of beats.

Carnatic music has a sophisticated tāḷa system that incorporates
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the concepts described above. There are seven basic tāḷas defined
with different aṅgas, each with five variants leading to the popular
35 tāḷa system (Sambamoorthy, 1998). Each of these 35 tāḷas can
be set in five different naḍe, leading to 175 different combinations.
However, most of these tāḷas are extremely rare in performances
with just over a ten tāḷas that can be regularly seen in concerts. A
majority of pieces are composed in four popular tāḷas - ādi, rūpaka,
miśra chāpu, and khaṇḍa chāpu. The structure of those four popular
tāḷas in Carnatic music are described in Table 2.1 and illustrated
in Figure 2.1, all in caturaśra naḍe (division of a beat into two or
four akṣaras). The different concepts related to the tāḷas of Carnatic
music are also illustrated1 in Figure 2.1a. The figure shows the
akṣaras with time-ticks, beats of the cycle with numbered longer
time-ticks, and the sama in the cycle using×. The aṅga boundaries
are highlighted using bold and long time-ticks e.g. ādi tāḷa has 8
beats in a cycle, with 4 akṣaras in each beat leading to 32 akṣaras in
a cycle, while rūpaka tāḷa has 12 akṣaras in a cycle, with 4 akṣaras
in each of its 3 beats.

The case of non-isochronous beat tāḷas, miśra chāpu and khaṇḍa
chāpu, need a special mention here. Figure 2.1d showsmiśra chāpu
to consist 14 akṣaras in a cycle. The 14 akṣaras have a definite
unequal grouping structure of 6+4+4 (or 6+8 in some cases) and
the boundaries of these groups are shown with visual gestures, and
hence form the beats of this tāḷa (Sambamoorthy, 1998). However,
in common practice, miśra chāpu can also be divided into seven
equal beats. In this dissertation, we consider miśra chāpu to con-
sist of seven uniform beats as numbered in Figure 2.1d, with beats
×, 4 and 6 being visually displayed. Similarly, khaṇḍa chāpu has
10 akṣaras in a cycle grouped into two groups as 4+6. In the scope
of this dissertation, khaṇḍa chāpu can be interpreted to consist of 5
equal length beats. In the dissertation, we focus on the most pop-
ular tāḷas for analysis, all of which are in caturaśra naḍe. But for
completeness, an example of tiśra naḍe, where each beat is divided
into 3 (or 6) akṣara is illustrated for ādi tāḷa in Figure 2.2. We can
clearly see that a tiśra naḍe ādi tāḷa has 8 beats of 3 akṣaras each,
leading to 24 akṣaras in a cycle.

1Some audio examples illustrating these tāḷas and structure of more tāḷas at
http://compmusic.upf.edu/examples-taala-carnatic

http://compmusic.upf.edu/examples-taala-carnatic
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Figure 2.2: The structure of tiśra naḍe ādi tāḷa, to contrast with the popu-
larly used caturaśra naḍe. Note the three akṣara beats, and only 24 akṣara
cycle, as compared to the 32 akṣara cycle in its caturaśra naḍe counterpart.

Most performances of Carnatic music are accompanied by the
percussion instrumentmridangam (mr̥daṅgaṁ), a double-sided bar-
rel drum. There could however be other percussion accompani-
ments such as ghaṭam (the clay pot), khañjira (the Indian tambourine),
thevil (a two sided drum) and mōrsiṅg (the Indian jaw harp), which
follow the mridangam closely. All these instruments (except the
khañjira) are pitched percussion instruments and are tuned to the
tonic of the lead voice. Since the progression through the tāḷa cy-
cles is explicitly shown through hand gestures, the mridangam is
provided with substantial freedom of rhythmic improvisation dur-
ing the performance. The tāḷa only provides a metrical construct,
within which several different rhythmic patterns can be played and
improvised.

The solo performedwith the percussion accompaniments, called
a tani-āvartana, demonstrates the wide variety of rhythms that can
be played in a particular tāḷa. The solo performance by the percus-
sion ensemble follows the main piece of the concert. The solo is
an elaborate rhythmic improvisation within the framework of the
tāḷa, but with much improvisation on the percussion patterns. The
tani strives to present a showcase of the tāḷa with a variety of per-
cussion and rhythmic patterns that can be played in the tala. The
percussion instruments duel and complement each other in a solo of
each instrument, with all instruments coming together to a caden-
tial end. The patterns played can last longer than one āvartana, but
stay within the framework of the tāḷa. A tani-āvartana is a showcase
of the skill and talent of the percussion artists. It is replete with a
variety of percussion patterns and hence is very useful for analysis
of percussion patterns. The tani is often performed with a subset
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ID Syllable Description

1 AC A semi ringing stroke on the right head
2 ACT AC with TH/TM
3 CH A ringing stroke on the right head
4 CHT CH with TH/TM
5 DM A strong ringing stroke on the right head
6 DH3 A closed stroke on the right head (variant-1)
7 DH3T DH3 with TH
8 DH3M DH3 with TM
9 DH4 A closed stroke on the right head (variant-2)
10 DH4T DH3 with TH/TM
11 DN A pitched resonant stroke on the right head
12 DNT DN with TH/TM
13 LF Long finger stroke on the right head
14 LFT LF with TH/TM
15 NM A sharp pitched stroke on the right head
16 NMT NM with TH/TM
17 TH A closed bass stroke on the left head
18 TA A closed sharp stroke on the right head
19 TAT TA with TH/TM
20 TM An open bass stroke on the left head
21 TG Pitch modulated bass stroke on the left head

Table 2.2: The syllables (solkaṭṭus) used in mridangam, grouped based
on timbre along with the symbol we use for the syllable group in this
dissertation. The last column also provides a short description. Most
strokes are combinations of left+right strokes on the mridangam.

of the percussion instruments. The mridangam is always present,
while the other instruments are optional.

Percussion in Carnaticmusic is organized and transmitted orally
with the use of onomatopoeic oralmnemonic syllables (called solka-
ṭṭu) representative of the different strokes of the mridangam. An
oral recitation of these syllables is itself an art form called kon-
nakōl, and is often a part of a tani-āvartana. The syllables used be-
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long to mridangam, but is widely used with other percussion instru-
ments used in Carnatic music. These syllables vary across schools,
but provide a good representation system to define, describe and
discover percussion patterns. We explore the use of these syllables
for MIR tasks further in the dissertation.

We consulted a senior professional Carnatic percussionist for
the complete set of strokes that can be played with the mridan-
gam. The stroke syllables of the mridangam represent the com-
bined timbre of the left and right drum heads, and hence over 45
different strokes can be played on the mridangam. However, many
of the timbrally similar strokes can be grouped together into syl-
lable groups, assuming that such a timbral grouping is sufficient
for discovery of timbrally similar percussion patterns. This timbre
based grouping further enables us to work with the variability in
syllables across different schools. The syllable groups, the sym-
bol we use for them in this dissertation, and a short description is
shown in Table 2.2. The different stroke names are not indicated in
the table since they vary. For simplicity and brevity, we will refer
to the syllable groups as just syllables in this work when there is
no ambiguity. Finally however, we carefully note that the sylla-
bles also have a loosely defined functional role, and such a timbre
based grouping used in the thesis is an approximation done only for
computational analysis approaches.

2.2.3 Rhythm and percussion in
Hindustani music

Clayton (2000) provides a comprehensive introduction to rhythm
in Hindustani music. The definition of tāl in Hindustani music is
similar to the tāḷa in Carnatic music. A tāl has fixed-length cy-
cles, each of which is called an āvart. An āvart is divided into
isochronous basic time units called mātrā. The mātrās of a tāl are
grouped into sections, sometimes with unequal time-spans, called
the vibhāgs. Vibhāgs are indicated through the hand gestures of
a thālī (clap) and a khālī (wave). The first mātrā of an āvart (the
downbeat) is referred to as sam, marking the end of the previous
cycle and the beginning of the next cycle. The first mātrā of the
cycle (sam) is highly significant structurally, with many important
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Tāl # vibhāg # mātrās mātrā grouping

Tīntāl 4 16 4,4,4,4
Ēktāl 6 12 2,2,2,2,2,2
Jhaptāl 4 10 2,3,2,3
Rūpak tāl 3 7 3,2,2

Table 2.3: Structure of Hindustani tāls. For each tāl,the number of vib-
hāgs and the number of mātrās in each āvart is shown. The last column of
the table shows the grouping of the mātrās in the āvart into vibhāgs, and
the length of each vibhāg, e.g. each avart of rūpak tāl has three vibhāgs
consisting of three, two, two mātrās respectively.

sam

mātrā

āvart
vibhāg

(a) Tīntāl, illustrated

/0 /0

(b) Rūpak tāl

(c) Ēktāl (d) Jhaptāl

Figure 2.3: An āvart of four popular Hindustani tāls, showing the mātrās
(all time ticks), vibhāgs (long and bold time ticks) and the sam (×). Tīntāl
is also illustrated using the terminology used in this article.

melodic and rhythmic events happening at the sam. The sam also
frequently marks the coming together of the rhythmic streams of
soloist and accompanist, and the resolution point for rhythmic ten-
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Figure 2.4: An alternative structure of Ēktāl in dr̥t lay

sion (Clayton, 2000, p. 81).
There are also tempo classes called lay in Hindustani music

which can vary between ati-vilaṁbit (very slow), vilaṁbit (slow),
madhya (medium), dr̥t (fast) to ati-dhr̥t (very fast). Depending on
the lay, the mātrā may be further subdivided into shorter time-span
pulsations, indicated through additional filler strokes of the tabla.
However, since these pulses are not well defined in music theory,
we consider mātrā to be lowest level pulse in the scope of this dis-
sertation.

As with Carnatic music, even in Hindustani music, there are
significant differences to the terminology describing meter in Eu-
rogenetic music. The definition of beat pulsation, as foot tapping
instances in time, is also a problem with Hindustani music. De-
pending on the lay, the mātrā can be defined to be the subdivisions
(for dr̥t lay) or as beats (for vilaṁbit and madhya lay). To maintain
consistency, using accepted conventions, we note that the concepts
of mātrā and the āvart of Hindustani music bear analogy to the beat
and the bar metrical levels of Eurogenetic music. This implies that
there is no well defined subdivision pulsation defined in Hindustani
music. The possibly unequal vibhāgs are the sections of the tāl.

There are over 70 different Hindustani tāls defined, while about
15 tāls are performed in practice. Figure 2.3 shows four popular
Hindustani tāls - tīntāl, ēktāl, jhaptāl, and rūpak tāl. The structure
of these tāls are also described in Table 2.3. The figure also shows
the sam (shown as ×) and the vibhāgs ( indicated with thālī/khālī
pattern using numerals). A khālī is shown with a 0, while the thālī
are shown with non-zero numerals. The thālī and khālī pattern of a
tāl decides the accents of the tāl. The sam has the strongest accent
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ID Bōls Symbol Description

1 D, DA, DAA DA A closed stroke on the dāyān (right
drum)

2 N, NA, TAA NA A ringing stroke on the dāyān
3 DI, DIN, DING DIN An open stroke on the dāyān
4 KA, KAT, KE,

KI, KII
KI A closed stroke on the bāyān (left

drum)
5 GA, GHE, GE,

GHI, GI
GE Amodulated stroke on the left drum

6 KDA, KRA,
KRI, KRU

KDA Two quick successive strokes
(played as a flam), one each on
dāyān and bāyān

7 TA, TI, RA TA A closed stroke on the dāyān
8 CHAP, TIT TIT A closed stroke on the dāyān
9 DHA DHA A resonant combined stroke with

NA and GE
10 DHE DHE A closed combined stroke played

with the full palm on the dāyān with
a closed GE

Table 2.4: (1/2) The bōls used in tabla are shown in the second column,
grouped by similarity of timbre. The symbol we use for the syllable group
in the dissertation is shown in the third column and a short description of
the timbre (Beronja, 2008) is shown in the fourth column. Combined
stroke has strokes on left and right drum played together simultaneously
(contd...).

(with certain exceptions, such as rūpak tāl) followed by the thālī
instants. The khālī instants have the least accent.

A jhaptāl āvart has 10 mātrās with four unequal vibhāgs (Fig-
ure 2.3d), while a tīntāl āvart has 16 mātrās with four equal vibhāgs
(Figure 2.3a). We can also note from Figure 2.3b that the sam is a
khāli in rūpak tāl, which has 7 mātrās with three unequal vibhāgs.

The special case of ēktāl needs additional mention here. Ēktāl
has six equal duration vibhāgs and 12 mātrās in a cycle as shown in
Figure 2.3c. However, in dr̥t lay, an alternative structure emerges,
which is represented as four equal duration vibhāgs of three mātrās
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ID Bōls Symbol Description

11 DHET DHET A combined stroke played with a
closed stroke on dāyān with GE

12 DHI DHI A closed combined stroke with GE
and a soft resonant stroke on dāyān

13 DHIN DHIN An open combined stroke with GE
and a soft resonant stroke on dāyān

14 RE RE A closed stroke on the dāyān played
with the palm

15 TE TE A closed stroke on the dāyān played
with the palm

16 TII TII A combined stroke with KI and a
soft closed resonant stroke on dāyān

17 TIN TIN A combined stroke with KI and a
soft open resonant stroke on dāyān

18 TRA TRA Two quick successive closed
strokes on dāyān (played as a flam)

Table 2.4: (2/2) The bōls used in tabla are shown in second column,
grouped by similarity of timbre. The symbol we use for the syllable group
in the dissertation is shown in the third column and a short description of
the timbre (Beronja, 2008) is shown in the fourth column. Combined
stroke has strokes on left and right drum played together simultaneously.

each as shown in Figure 2.4. For consistency, we use the structure
as shown in Figure 2.3c in this dissertation.

Hindustani music uses the tabla as the main percussion accom-
paniment. It consists of two drums: a left hand bass drum called
the bāyān or diggā and a right hand drum called the dāyān that can
produce a variety of pitched sounds. Similar to mridangam, the
tabla repertoire is transmitted using onomatopoeic oral mnemonic
syllables called the bōl.

Similar to lead melody in Hindustani music, tabla has different
stylistic schools called gharānās. The repertoires of major gharānās
of tabla differ in aspects such as the use of specific bōls, the dy-
namics of strokes, ornamentation and rhythmical phrases (Beronja,
2008, p. 60). But there are also many similarities due to the fact that
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the same forms and standard phrases reappear across these reper-
toires (Gottlieb, 1993, p. 52).

The bōls of the tabla varymarginallywithin and across gharānās,
and several bōls can represent the same stroke on the tabla. To ad-
dress this issue, we grouped the full set of 38 syllables into timbrally
similar groups resulting into a reduced set of 18 syllable groups as
shown in Table 2.4. Though each syllable on its own has a func-
tional role, this timbral grouping is presumed to be sufficient for
discovery of percussion patterns. For the remainder of the disser-
tation, we limit ourselves to the reduced set of syllable groups and
use them to represent patterns. For convenience, when it is clear
from the context, we call the syllable groups as just syllables and
denote them by the symbols in Table 2.4. A brief description of the
timbre is also provided for each syllable.

Tabla acts as the timekeeper during the performance indicating
the progression through the tāl cycles using pre-defined rhythmic
patterns (called the ṭhēkā) for each tāl. The lead musician impro-
vises over these cycles, with limited rhythmic improvisation during
the main piece. The ṭhēkās are specific canonical tabla bōl patterns
defined for each tāl as illustrated in Table 2.5. However, the mu-
sician playing tabla improvises these patterns playing many vari-
ations with filler strokes and short improvisatory patterns. Miron
(2011), Clayton (2000), A. E. Dutta (1995), Beronja (2008), and
Naimpalli (2005) provide a more detailed discussion of tāl in Hin-
dustani music including ṭhēkās for commonly used tāls2.

To showcase the nuances of a tāl as well as the skill of the
percussionist with the tabla, Hindustani music performances fea-
ture tabla solos. A tabla solo is intricate and elaborate, with a
variety of pre-composed forms used for developing further elab-
orations. There are specific principles that govern these elabora-
tions (Gottlieb, 1993, p. 42). Musical forms of tabla such as the
ṭhēkā, kāyadā, palaṭā, rēlā, pēśkār and gaṭ are a part of the solo per-
formance and have different functional and aesthetic roles in a solo
performance. A percussion solo shows a variety of improvisation
possible in the framework of the tāl, with the role of timekeeping
taken up by the lead musician during the solo.

2Some audio examples illustrating the tāls and structure of more tāls at
http://compmusic.upf.edu/examples-taal-hindustani

http://compmusic.upf.edu/examples-taal-hindustani
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× 2
× 2 3 4 5 6 7 8
DHA DHIN DHIN DHA DHA DHIN DHIN DHA

0 3
9 10 11 12 13 14 15 16

DHA TIN TIN NA NA DHIN DHIN DHA

(a) Tīntāl

× 0 2
× 2 3 4 5 6

DHIN DHIN DHA GE TIRAKITA TUN NA

0 3 4
7 8 9 10 11 12

KAT TA DHA GE TIRAKITA DHIN NA

(b) Ēktāl

× 2 0 3
× 2 3 4 5 6 7 8 9 10
DHI NA DHI DHI NA TI NA DHI DHI NA

(c) Jhaptāl

×/0 1 2
× 2 3 4 5 6 7
TIN TIN NA DHI NA DHI NA

(d) Rūpak tāl

Table 2.5: The ṭhēkās for four popular Hindustani tāls, showing the bōl
for each mātrā. The sam is shown with × and vibhāgs boundaries are
separated with a vertical line. Each mātrā of a cycle has equal duration.

InHindustanimusic, the tempo ismeasured inmātrās perminute
(MPM). The music has a wide range of tempo, divided into tempo
classes called lay as described before. The mainly performed ones
are the the slow (vilaṁbit), medium (madhya), and fast (dr̥t) classes.
The boundary between these tempo classes is not well defined with
possible overlaps. In this dissertation, after consultation with a pro-
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fessional Hindustani musician, we use the commonly agreed tempo
ranges for these classes: vilaṁbit lay for a median tempo between
10-60 MPM, madhya lay for 60-150 MPM, and dr̥t lay for >150
MPM. This large range of allowed tempi means that the duration of
a tāl cycle in Hindustani music ranges from less than 2 seconds to
over a minute. A mātrā in vilaṁbit lay hence can last about 6 sec-
onds, and to maintain a continuous rhythmic pulse, several filler
strokes are played on the tabla. Hence the surface rhythm apparent
from audio recordings can be quite different from the underlying
metrical structure.

2.2.4 Carnatic and Hindustani music:
A comparison

We compare and contrast some of the rhythm related concepts in
Carnatic and Hindustani music, so that it can be used for better
comparison of MIR approaches for these musics.

Both the music traditions are oral traditions, with a lot of al-
lowed scope for improvisation. Even a fixed composition is inter-
preted with significant freedom by the musicians, as long as they
adhere to the framework of the rāga and tāḷa. The concept of cycli-
cal metrical structures is shared by both music cultures, while the
components of the tāḷa are less similar. The first pulse of the cy-
cle is important in both cultures and has significant melodic and
rhythmic events. The sections of the tāḷa cycle need not be equal
in duration. The tāḷa does not change over single piece (with rare
exceptions), but since Hindustani music recordings are distributed
as full concerts, there is a possible change of piece in the middle of
a recording, with a change of tāl and/or lay.

Neither of the music cultures use a metronome during perfor-
mance, which means that the responsibility of maintaining a reg-
ular pulse rests with the musicians. This leads to a flexible time-
varying nature of tempo, with most often the tempo increasing (and
the piece getting “faster”) with time. The range of tempo in Hin-
dustani music is large (from 10 MPM to over 350 MPM), while
Carnatic music is performed in a smaller range of tempo. This has
the implication that while tāl cycles can be quite long in Hindustani
music, while Carnatic music tāḷa cycles are shorter (often shorter
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than 15 second).
In Hindustani and Carnatic music, the percussion accompani-

ments tabla and mridangam are tuned to the tonic of the lead musi-
cian. Both these instruments are capable of producing a rich variety
of timbres. The playing style depends on the composition or the
lead melody being rendered, and both are improvised during per-
formance. Both have specific ṭhēkās for the exposition of the tāḷa,
though ṭhēkās are a little more flexibly defined in Carnatic Mu-
sic. Both tabla and mridangam have their own set of onomatopoeic
mnemonic oral syllables that provide a language for percussion,
which even have evolved into art forms of reciting these syllables
in a performance. Representing percussion patterns with these syl-
lables is musically well-defined and an accurate representation of
those patterns.

The surface rhythm in both the music cultures provide cues to
the underlying tāḷa structures. In Hindustani music, tabla is a very
important cue to the underlying tāl progression. All tāls have a
definite accent and tabla stroke pattern defined by the ṭhēkā which
is mostly followed except in improvisatory passages. The surface
rhythm consists of these accents and specific strokes, but is also
replete with other strokes, fillers and expressive additions. Filler
strokes are employed in slow pieces with long cycles. In Car-
natic music, as discussed earlier, the progression through the tāḷa is
shown through visual gestures and hence there is no need for defini-
tive cues in the surface rhythm. However, the percussion phrases
played on the mridangam, the melodic phrases and the lyrics of
the composition provide cues to the underlying tāḷa. Unlike tabla
strokes, mridangam strokes are less indicative of the current posi-
tion in the cycle of a tāḷa.

Unmetered forms of music exist in both the music cultures. The
most important unmetered form in Hindustani music is the ālāp
and in Carnatic music is the ālāpana, both of which are melodic
improvisational forms based on a rāga. An understanding of the
rhythmic behavior of unmetered forms is far from trivial for musi-
cologists and even practicing musicians (Clayton, 1996). Widdess
(1994) presented an interesting discussion of the notion of pulsa-
tion in ālāps and a disagreement about it among performers. For
this reason, we believe that rhythmic analysis of unmetered forms
should be reserved for a study more from a musicological perspec-
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tive and hence we do not consider it in this dissertation.

2.2.5 Percussion in Beijing opera
The main focus of this dissertation is Indian art music, however,
within the context of CompMusic, there are other music cultures
that share similar music concepts and hence are suitable candidates
for test and extend our approaches to those musics. Beijing opera is
one such music culture that shares the concept of a syllabic percus-
sion system, similar to Indian art music. However, the syllabic per-
cussion system in Beijing opera is simpler and more well defined
than Indian art music, and hence is a test case to validate our ap-
proaches to percussion pattern transcription and discovery. A basic
introduction to percussion in Beijing opera is provided, since some
of our approaches to percussion pattern analysis are first tested on
Beijing opera and then extended to Indian art music.

Beijing opera (Jingju, 京剧), also called Peking opera, is one
of the most representative genres of Chinese traditional perform-
ing arts, integrating theatrical acting with singing and instrumental
accompaniment. It is an active art form and exists in the current
social and cultural contexts, with a large audience and significant
musicological literature. One of the main characteristics of Beijing
opera aesthetics is the remarkable rhythmicity that governs the act-
ing overall. From the stylized recitatives to the performers’ move-
ments on stage and the sequence of scenes, every element presented
is integrated into an overall rhythmic flow. The main element that
keeps this rhythmicity is the percussion ensemble, and the main
means to fulfil this task is a set of predefined and labeled percus-
sion patterns.

The percussion ensemble in jingju establishes andmaintains the
rhythm in a performance and guides the progression of sections in
an aria. Firstly, the percussion provides a base to indicate the rhyth-
mic modes, called the banshi, and accompanies the singing voice.
Secondly, the percussion ensemble plays different kinds of prede-
fined, fixed, labeled patterns that create a context for different parts
of the aria. They signal important structural points in the play. A
performance starts and ends with percussion patterns, they gener-
ally introduce and conclude arias, and mark transition points within
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Syllables Instruments Symbol

bā (巴,八), bĕn (本), dā (答),
dà (大), dōng (冬, 咚), duō
(哆), lóng (龙), yī (衣)

bangu DA

lái (来), tái (台), lìng (另) xiaoluo TAI
qī (七), pū (扑) naobo QI
qiē (切) naobo+xiaoluo QIE
cāng (仓), kuāng (匡), kōng
(空)

daluo + <naobo> +
<xiaoluo>

CANG

Table 2.6: Syllables used in Beijing opera percussion and their grouping
used in this dissertation. Column 2 shows the instrument combination
used to produce the syllable, with the instrument shown between<> be-
ing optional. Column 3 shows the symbol used for the syllable group in
this dissertation.

them. They accompany the actors’ movements on stage and set the
mood of the play, the scene, the aria or a section of the aria.

The percussion patterns in jingju music can be defined as se-
quences of strokes played by different combinations of the percus-
sion instruments, and the resulting variety of timbres are transmit-
ted using oral syllables as mnemonics. The percussion ensemble is
formed mainly by five instruments played by four musicians. The
ban (a wooden clapper) and the danpigu (a wooden drum struck
by two wooden sticks) are played by one single performer, and are
therefore known by a conjoint name, bangu (clapper-drum). The
other three instruments are idiophones: the xiaoluo (small gong),
the daluo (big gong) and the naobo (cymbals) (Lee & Shen, 1999;
Wichmann, 1991).

Bangu has a high pitched drum-like sound while the rest of
three instruments are metallophones with distinct timbres3. Each
of the different sounds that these instruments can produce individ-
ually, either through different playing techniques or through differ-
ent dynamics, as well as the sounds that are produced by a combi-
nation of different instruments have an associated syllable that rep-
resent them (Mu(穆文义), 2007). In jingju, several syllables can

3A few annotated audio examples of these instruments can be found at
http://compmusic.upf.edu/examples-percussion-bo

http://compmusic.upf.edu/examples-percussion-bo
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xiaoluo

daluo

naobo

Syllables

bangu
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dā
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TAI
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cāng
仓
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都
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切

TAI
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台
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cāng
仓
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大
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(a) daoban tou【导板头】
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Figure 2.5: (1/2) Scores for percussion patterns in jingju, showing the in-
struments and a syllabic representation of the pattern using the unmapped
syllables, and the mapped syllable groups shown in Table 2.6 (contd...)

be mapped to a single timbre. This many-syllable to one-timbre
mapping is useful to reduce the syllable space for computational
analysis of percussion patterns.

We first mapped each syllable to one or several of the instru-
ment categories considered for analysis, as explained by Tian et
al. (2014), without considering differences in playing technique
or dynamics. Based on inputs from expert musicologists, we then
grouped the syllables with similar timbres into five syllable groups
- DA, TAI, QI, QIE, and CANG, as shown in Table 2.6. Every in-
dividual stroke of the bangu, both drum and clappers, have been
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(e) shanchui【闪锤】

Figure 2.5: (2/2) Scores for percussion patterns in jingju, showing the in-
struments and a syllabic representation of the pattern using the unmapped
syllables, and the mapped syllable groups shown in Table 2.6

grouped as DA. In the rest of the syllable groups, the bangu can
be played simultaneously or not. The single strokes of the xiaoluo
and the naobo are called TAI and QI respectively, and the com-
bined stroke of these two instruments together is the syllable QIE.
Finally, any stroke of the daluo or any combination that includes
daluo has been notated as CANG. This mapping to a reduced set
of syllable groups is only for the purpose of computational analy-
sis. For the remainder of the dissertation, we limit ourselves to the
reduced set of syllable groups and use them to represent the pat-
terns. For convenience, when it is clear from the context, we call
the syllable groups as just syllables, and denote them by the com-
mon symbol in column 3 of Table 2.6. Hence, in the current task,
there are five syllable groups.

Each percussion pattern is a sequence of syllables in their pre-
established order, along with their specific rhythmic structure and
dynamic features. A particular feature of the oral syllabic system
for Beijing opera percussion that makes it especially interesting is
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that the syllables that form a pattern refer to the ensemble as a
whole, and not to particular instruments. Each particular pattern
thus has a single unique syllabic representation shared by all the
performers.

In practice, there is a library of limited set of named patterns
(called luogu jing,锣鼓经) that are played in a performance, with
each of these having a specific role in the arias. Although a defi-
nite agreed number for the total number of these patterns is lacking,
some estimations, e.g. by Mu(穆文义) (2007), suggest the exis-
tence of around ninety of them. Figure 2.5 shows the scores for
five predominantly used percussion patterns in jingju - daoban tou,
man changchui, duotou, xiaoluo duotou, and shanchui4. The figure
also shows how a possible transcription in staff notation, adapted
from the scores provided by Mu(穆文义) (2007), can be simpli-
fied in a single line by the oral syllabic system. Hence, the use of
these oral syllabic sequences simplify and unify the representation
of these patterns played by an ensemble.

Since one of the main functions of the patterns is to accompany
themovements of actors on stage, the overall length and the relative
duration of each stroke can vary notably, which makes it difficult
to set a stable pulse or a definite meter. The time signature and
the measure bars used in Figure 2.5, as suggested by Mu(穆文义)
(2007), are only indicative and fail to convey the rhythmic flexi-
bility of the pattern. Furthermore, many patterns (such as shanchui
shown in Figure 2.5e) accompany scenic movements of undefined
duration. In these cases, certain syllable subsequences in the pat-
tern are repeated indefinitely, e.g. the subsequence cāng-tái-qiē-tái
in shanchui can be repeated indefinitely until the scene completes.

From this brief introduction, it can be seen that there are similar-
ities between the percussion systems in jingju and Indian art music.
Being simpler, jingju can be used a test case for approaches to per-
cussion pattern transcription and discovery in syllabic percussion
systems, a topic that is explored further in the dissertation. We fo-
cus only on the aural dimension of Beijing opera. For convenience,
we use the term Beijing opera to refer to the music in Beijing opera,
ignoring the theatrical aspect in it.

4These pattern scores are also listed at http://compmusic.upf.edu/bo
-perc-patterns

http://compmusic.upf.edu/bo-perc-patterns
http://compmusic.upf.edu/bo-perc-patterns
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2.3 A review of automatic rhythm
analysis

Automatic rhythm analysis has been an important research area
within MIR, with over a decade of research on several relevant
rhythm and percussion related problems. A review of the state of
the art of the relevant rhythm research problems is presented to
provide a basis for further work proposed in the dissertation. The
review of previous works in this section is generic and not specific
to Indian art music. A more detailed review of approaches spe-
cific to Indian art music, and an evaluation of the state of the art on
Indian art music is discussed in Chapter 3.

Several researchers have suggested a decomposition of auto-
matic rhythm description into complementary modules, each con-
sidering a specific task, and possibly using information and out-
puts from other modules (Gouyon, 2005; Gouyon & Dixon, 2005).
An example of such a rhythm description system is shown in Fig-
ure 2.6. Starting from audio and/or music scores, the system shows
several rhythm analysis modules that give out important rhythm
analysis outputs such as tempo, beats, swing, time signature, and
rhythmic patterns. Though such a rhythm description for Indian art
music would involve significant changes, this system nevertheless
provides a suitable basic framework to start formulating research
problems.

2.3.1 Onset detection
Musical note/stroke onset detection is the most fundamental pre-
processing task for most rhythm analysis problems. Within the task
of onset detection, we can include the task of extracting features
from audio that are indicative of onsets, and the approaches to ob-
tain the onsets from those features.

A musical note/stroke onset is defined as the single instant that
marks a detectable start of an extended transient of the note/stroke,
when the music audio signal evolves quickly in a non-trivial man-
ner over a short time (Bello et al., 2005). In simpler words, onsets
mark the start of a melodic note or a percussion stroke. Onsets
mark important musical events in time and the automatic detection
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Figure 2.6: Functional units of a rhythm description system as described
by Gouyon (2005) (Figure reproduced with permission)
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of onset events is an essential part of many music signal analysis
algorithms. Onset detection has various applications in identifica-
tion, retrieval, musicological analysis, audio editing and coding,
content-based processing and many other applications.

A detailed tutorial on onset detection methods is provided by
Bello et al. (2005), with additional improvements suggested by
Dixon (2006). Onset detection needs transient detection in audio
signals. The transients can be measured either in amplitude, en-
ergy, phase, frequency, and several other signal parameters. Most
approaches to onset detection involve a signal pre-processing step,
followed by a signal reduction (extracting features that are indica-
tive of transients) into an onset detection function, and a peak-
picking step that estimates the onset times as the peaks on the onset
detection function.

The pre-processing step is optional and aims to enhance rele-
vant parts of the signal. Signal reduction often involves frame-wise
Short-Time Fourier Transform (STFT) based analysis of signals,
often in multiple frequency bands using filter banks to capture fre-
quency information from different instruments in the audio signal.
The result of such a feature extraction is an onset detection func-
tion, also sometimes called a novelty function. The peaks of the
onset detection function are then the onsets.

There are several methods to compute the onset detection func-
tion, based on signal features and probabilistic models. The signal
features include time domain features such as amplitude envelope,
that works well for percussive onsets. More popular features are
spectral features that measure some form change in spectral am-
plitudes and energy. The spectral flux feature is the most often
used one, which measures a positive change (for onsets, negative
change would indicate offsets) of spectral energy across frames of
audio. The spectral flux can be computed both with the magnitude
of STFT or the complex STFT, across adjacent frames or across a
local set of frames. There are several ways a spectral flux can be
computed, described by Bello et al. (2005), and further improved
by many researchers, e.g. as LogFilt-SpecFlux by Böck, Krebs,
and Schedl (2012).

The definition of an onset could become ambiguous in the case
of instruments having longer transient times without sharp bursts
of energy rises. Vos and Rasch (1981) approached this issue by in-
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troducing the concept of perceptual onset as the time when the most
salient metrical feature of the music signal is perceived relative to
its physical onset. Dixon (2006) examined and proposed improve-
ments to the then state of the art spectral methods. Klapuri (1999)
proposed a method utilizing band-wise processing and a psychoa-
coustic model of intensity coding to detect perceptual onsets.

Instrument-wise onset detection

Instrument-wise onset detection refers to detecting the onsets of
specific instruments from an audio signal that is a mixture of many
music instruments. By detecting onsets of specific instruments, we
can focus on characterizing the aspect of music that the instrument
dominates, e.g. the onsets of the percussion instruments might be
more useful for rhythmic analysis. One approach to instrument-
wise onset detection is to separate out the part of audio that contains
the information from the specific instrument we wish to extract on-
sets from. To detect percussion onsets, it might be advantageous
to enhance the percussive parts of the signal and suppress the har-
monic component.

Harmonic-Percussive Source Separation (HPSS) aims to sepa-
rate an audio signal into harmonic (melodic instruments) and per-
cussive (drums) components. Though an accurate source separa-
tion for human listening is a difficult task, HPSS for further compu-
tational analysis is simpler. Most approaches to HPSS process the
spectrogram using characteristics shown by melodic and percus-
sive music sources. The basic idea is that melodic sources show up
as horizontal lines (owing to all their harmonics) in the spectrogram
while percussive sources (due to their sharp attacks and broadband
spectra) as vertical lines (Fitzgerald, 2010). This enables us to en-
hance the vertical spectral lines (or suppress the horizontal spectral
lines) to enhance the percussive component of the audio, and vice
versa to enhance the melodic component, such as the approaches
by Thoshkahna and Ramakrishnan (2011) and Ono, Miyamoto, Le
Roux, Kameoka, and Sagayama (2008).

A more informed approach uses a predominant melody extrac-
tion algorithm, which tracks the fundamental frequency (F0) of the
audio signal to uses signal analysis tools to suppress all the har-
monics of the melodic source. The residual left in the spectrogram
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corresponds to the percussive component of the signal. The Har-
monic plus residual model by Serra (1989) along with a melody
extraction algorithm e.g. by Salamon and Gómez (2012) are some
of the tools that could be used for the task. The onsets from the
percussion enhanced signal would give us the percussion onsets.

2.3.2 Tempo estimation
Tempo estimation refers to estimating the period of the predomi-
nant pulse in the music recording, at the correct metrical level of
the beat (or at a different metrical level, if musically well defined).
The definition of such a tempo is not clear and there can be dis-
agreement on the correct metrical level. Further, in pieces where
tempo can change over time, it is necessary to estimate a time vary-
ing tempo curve through the piece instead of single tempo estimate
for a music piece. Despite the metrical ambiguity, tempo estima-
tion is a useful task for further analysis tasks such as beat and meter
tracking.

Tempo estimation algorithms use some form of periodicity es-
timation using mid-level features extracted from audio, mostly the
onset detection functions. An autocorrelation of such a novelty
function is a basic measure of periodicity. Following the onset
detection functions, there are distinctly two different approaches
that have been used for tempo induction. Some methods, such as
the BeatRoot system proposed by Dixon (2007) are pulse selection
methods that measure the Inter-Onset Interval (IOI) and use them to
estimate the tempo. An IOI histogram has peaks at the periodicity
of the beat period, which can then be measured. However, sig-
nificant metrical ambiguity exists in such approaches since the IOI
histograms are oftenmultimodal. The other approaches, such as the
ones by Klapuri, Eronen, and Astola (2006); Davies and Plumbley
(2007); Ellis (2007) derive a periodicity function from the detection
function, which provides an estimate of tempo.

Several mid-level audio features have been proposed to esti-
mate a time varying tempo curve: a few examples of such features
include novelty functions used for structural segmentation (Foote,
2000), Tempogram (Grosche & Müller, 2011b) and Predominant
Local Pulse (Grosche & Müller, 2011a).
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2.3.3 Beat tracking
In the context of MIR, beat tracking is commonly defined as de-
termining the time instances in the audio recording where a human
listener is likely to tap his/her foot to the music. Being an impor-
tant and relevant MIR task, several approaches have been proposed
for beat tracking on audio music recordings in a wide variety of
genres. Conventional beat tracking algorithms generally use three
main sub components - feature extraction, tempo induction, and
beat induction. The rhythm features extracted are typically based
on onsets and onset detection functions. A good overview of sev-
eral beat tracking algorithms is provided by Holzapfel, Davies, Za-
pata, Oliveira, and Gouyon (2012).

Dixon (2007) uses a multiple agent architecture using a col-
lection of tempo hypotheses, which are all tested for continuity to
obtain the set of beat locations. Ellis (2007) developed a beat track-
ing algorithm based on dynamic programming, which computes a
global set of optimal beat candidates, given an accent signal and a
tempo estimate. The algorithm pursues a tradeoff between the tem-
poral continuity of beats and the salience of the detection function
using the dynamic programming approach. The main drawback of
the algorithm is the assumption of a constant tempo, which causes
problems for music with varying tempo. Further, errors in tempo
estimation translate to an incorrect estimation of the beats. Wu et al.
(2011) also proposed a similar dynamic programming approach to
beat tracking, but with extensions to handle a time-varying tempo.
Davies and Plumbley (2007) proposed a context dependent beat
tracking algorithm which handles varying tempo, by providing a
two statemodel inwhich the first state tracks the tempo changes and
provides continuity, while the second state tracks the beat pulses
maintaining contextual continuity, assuming a constant tempo.

The algorithm proposed by Klapuri et al. (2006) estimates the
musical meter jointly at three metrical levels of bar, beat and sub-
division, which are referred to as measure, tactus and tatum, re-
spectively. A time frequency analysis computes accent signals in
four frequency bands, which are aimed at emphasizing changes
due to note onsets in the signal. A bank of comb filter resonators
is applied for periodicity analysis to each of the four accent sig-
nals. The periodicities thus found are processed by a probabilistic
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model that incorporates musical knowledge to perform a joint esti-
mation of the tatum, tactus, and measure pulsations. Peeters and
Papadopoulos (2011) present another approach for simultaneous
beat and downbeat tracking using a probabilistic framework using
beat templates built using linear discriminant analysis and an algo-
rithm that estimates the beat positions within a bar, with an evalua-
tion on six different datasets. Some early approaches have explored
particle filtering and approximate inference for beat tracking task
(Hainsworth &Macleod, 2003), while probabilistic graphical mod-
els (see Section 2.4.1) have also been explored for the task of beat
tracking (Lang, 2004; Lang & Freitas, 2005).

Böck and Schedl (2011) proposed a data driven approach to
beat tracking using context-aware neural networks. A Recurrent
Neural Network (RNN) with Long Short-Term Memory (LSTM)
cells (Hochreiter & Schmidhuber, 1997) can learn contextual in-
formation and can classify and predict time series when there are
long time lags of unknown size between important events. Mel-
spectrogram based spectral features and their relative differences
were used to train a bidirectional LSTMnetwork to perform a frame
by frame beat classification of a signal. The network outputs a
beat activation function directly using the input signal and an au-
tocorrelation function was then used to determine the predominant
tempo to eliminate the erroneously detected beats and complement
the missing beats. Recently, neural network beat trackers have sig-
nificantly improved beat tracking state of the art and have aimed
towards joint beat and downbeat tracking.

Ensemble approaches have also been proposed for beat track-
ing, which uses mutual agreement between several beat trackers
to improve beat tracking performance (Holzapfel et al., 2012). The
approach is useful to identify pieces that are difficult for beat track-
ing, and also to create a dataset of such difficult pieces. The dis-
agreement between beat trackers indicates that a piece is difficult
to track (for the automatic beat trackers) and hence such pieces can
further be used to improve beat tracking performance with better
beat trackers.

Beat tracking is an important MIR task and has been a part of
Music Information Retrieval EXchange (MIREX) challenge since
its inception. There are also several datasets that have been used
for evaluating beat tracking algorithms, such as the SMC dataset
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(Holzapfel et al., 2012), Ballroom dataset (Gouyon et al., 2006;
Dixon, Guoyon, & Widmer, 2004; Böck & Schedl, 2011), RWC
database (Goto, 2006), Hainsworth dataset (Hainsworth&Macleod,
2003), McKinney dataset (Moelants&McKinney, 2004), andmore
recently, theGTZAN-Rhythmdataset (Marchand, Fresnel, & Peeters,
2015) that adds the beat, downbeat and swing annotations to the
GTZAN dataset (Tzanetakis & Cook, 2002). We use the Ballroom
dataset to evaluate our approaches in this dissertation.

Despite a significant effort, beat tracking algorithms still need
to be significantly improved for use in practical systems. They
suffer from metrical level ambiguities and poor generalizability to
other musical genres. The beats are assumed to be isochronous,
which is another limitation of the beat tracking algorithms so far.
However, several improvements have been suggested to improve
the performance. Zapata and Gómez (2013) explore the use of
voice suppression to improve beat tracking performance. A mu-
tual agreement of several beat trackers can also be used to assign
a confidence level to the beat tracking performance and identify
samples difficult for beat tracking (Holzapfel et al., 2012; Zapata,
Holzapfel, Davies, Oliveira, & Gouyon, 2012).

2.3.4 Time signature estimation
Automatic rhythm annotation problems apart from onset detection,
beat and tempo tracking have been less explored by the MIR com-
munity. Gainza (2009) used beat tracking to perform musical me-
ter detection for western music using a beat similarity matrix based
approach and Foote and Uchihashi (2001) suggested a new beat
spectrum for rhythm analysis. Uhle and Herre (2003) extended the
tempo tracking framework for time signature and micro-time esti-
mation on percussive music.

In themethod proposed by Pikrakis, Antonopoulos, and Theodor-
idis (2004), time signature is estimated from a self-distance matrix
computed fromMel-Frequency Cepstral Co-efficients (MFCC) ex-
tracted from the audio signal. To this end, minima in the distance
matrix are assumed to be caused by repetitions related to the met-
rical structure of the piece. Hence, this algorithm does not track
pulsations in a piece, but relies on existence of patterns caused by
general repetitions in the MFCC features. Because MFCC features
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capture timbral characteristics, it can be stated that similarities in
local timbre are used by the algorithm. The algorithm was tested
on East-European music styles, including Greek traditional dance
music.

2.3.5 Downbeat tracking
Downbeat tracking is the estimation of the instant of beginning of
the bar. The methods described in this section were developed for
the identification of downbeats within sequences of beats. So far
mainly music with a 4/4 time signature has been the focus of eval-
uations, usually in the form of collections of Eurogenetic popular
and/or classical music.

The approach presented byDavies and Plumbley (2006) is based
on the assumption that percussive events and harmonic changes
tend to be correlated with the downbeat position. Therefore, they
partition an audio signal into beat segments and compute a STFT
of each segment, neglecting frequencies above 1.4 kHz. Then the
magnitude differences between all neighboring blocks are com-
puted. Subsequently, for a given bar length in beats, the sequence
of bar length distant segments that is related to the maximum spec-
tral change is chosen as downbeats.

Hockman, Davies, and Fujinaga (2012) presented an algorithm
for detecting downbeats in music signals, specifically at hardcore,
jungle, and drum and bass genres of music. Their approach com-
bines information from low level onset event information, period-
icity information from beat tracking, and high-level information
from a regression model trained with classic breakbeats. The ap-
proach is an extension of a downbeat detection system proposed by
Jehan (2005) that applies support vector regression. The features of
the regression consist of Mel-frequency spectral coefficients, loud-
ness descriptors, and chroma features, all computed for the sep-
arate beat segments. The extension proposed by Hockman et al.
comprises a post-processing of the regression, a combination with
a low-frequency onset detection, and a beat-time weighting. While
the post-processing compensates for spurious downbeat detections,
the combination of the regression with a low-frequency onset fea-
ture is motivated by the fact that strong bass drums tend to be lo-
cated at the downbeat for the form of music they considered.
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Downbeat estimation has been addressed as a part of beat track-
ing (Klapuri et al., 2006; Peeters & Papadopoulos, 2011) resulting
in a joint estimation of beats and downbeats. In both cases, a proba-
bilistic framework is used to estimate the downbeats from the beats.

2.3.6 Meter tracking
Most of the approaches presented so far considered the task of beat
tracking and downbeat tracking as separate tasks. The task of es-
timating the tempo, beats and the downbeats is what we refer to
as meter tracking. Recent approaches in meter tracking have suc-
cessfully applied Bayesian models that jointly estimate beat and
downbeats together, using rhythmic patterns learned from onset
detection functions as features (Krebs et al., 2013; Böck, Krebs,
& Widmer, 2014; Krebs, Holzapfel, et al., 2015). Recent interest
has also been to explore deep neural networks for meter tracking,
where multiple musically inspired features capturing different as-
pects of music have been used (Durand, Bello, David, & Richard,
2015), with extensions that used feature adapted convolutional neu-
ral networks (Durand, Bello, & David, 2016).

2.3.7 Evaluation measures
There are several measures that have been proposed for measur-
ing the accuracy of performance of beat and downbeat trackers
(Davies, Degara, & Plumbley, 2009). Starting with an annotated
dataset with beat marked audio, these measures consider the accu-
racy of beat locations estimated, continuity of beats, and the met-
rical level at which the beats were tracked. There have also been
information theoretic measures proposed based on the entropy of
beat tracking errors, which measures the extent of correlation be-
tween the annotations and the estimated beat locations. McKinney,
Moelants, Davies, and Klapuri (2007) present a survey of the per-
formance of several beat tracking algorithms using multiple accu-
racy measures5. For our evaluation, we use the f-measure, infor-
mation gain, CMLt and AMLt measures. These measures are char-
acterized by a set of diverse properties and are often used in beat

5An implementation of the evaluation measures is available at http://
code.soundsoftware.ac.uk/projects/beat-evaluation/

http://code.soundsoftware.ac.uk/projects/beat-evaluation/
http://code.soundsoftware.ac.uk/projects/beat-evaluation/
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tracking evaluations in MIREX6. The measures are now explained
for the task of beat tracking, but extend to downbeat tracking as
well, with the same tolerances.

For amusic piece, given the ground truth beat times and the esti-
mated beat sequence, a beat is marked as correctly detected if it lies
inside a tolerance window around a ground truth annotation. The
f-measure (denoted as f in this dissertation) is a number between
0 and 1 computed as the harmonic mean of the popular informa-
tion retrieval performance metrics - precision and recall. Precision
(p) is the ratio between the number of correctly detected beats and
all detected beats, while recall (r) is the ratio between the number
of correctly detected beats and the total annotated beats. The f-
measure can take a maximum value of 1, while beats tapped on the
off-beat relative to annotations will be assigned an f-measure of 0.
Estimated beats with time-spans either half or double the annotated
time-span are penalized with a value of 0.667.

The CMLt measure (Correct Metrical Levels, no continuity) is
a number between 0 and 1, is the ratio between the number of cor-
rectly estimated beats divided by the number of annotated beats. It
takes the value of 1 only for sequences that coincide with the an-
notations. It does not penalize discontinuities in beat tracking as
the CMLc (Correct Metrical Levels, continuity required) measure,
but penalizes any beats tracked at half or double time-spans of the
annotated metrical level. AMLt (Allowed Metrical Levels with no
continuity required) is also a number between 0 and 1, where beat
sequences are considered as correct if the beats occur on the off-
beat, or are double or half of the annotated tempo, allowing for
metrical ambiguities. The value of this measure is then the ratio be-
tween the number of correctly estimated beats divided by the num-
ber of annotated beats. Similar to f-measure, small misalignments
in the estimated beats are allowed by applying tolerance windows
before computing the CMLt and AMLt measures.

Information gain (I) aims at determining if there exists any kind
of relation between the estimated beats and the annotations, and in-
dicates how much information the estimated beats provide about
the annotations. It uses the entropy of the beat error distribution

6e.g. MIREX 2012, http://www.music-ir.org/mirex/wiki/2012:
Audio_Beat_Tracking

http://www.music-ir.org/mirex/wiki/2012:Audio_Beat_Tracking
http://www.music-ir.org/mirex/wiki/2012:Audio_Beat_Tracking
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and can be interpreted as an information theoretic measure. This
measure is a numerical score that takes a value of 0 bits only for
completely unrelated sequences and by using the default setting
of 40 bins in the beat error histogram, a maximum value of 5.3
bits for highly related beat sequences. Timing errors are calculated
between an annotation and all beat estimations within a one-beat
length window around the annotation. Then, a beat error histogram
is formed from the resulting timing error sequence. A numerical
score is derived by measuring the K-L divergence between the ob-
served error histogram and the uniform distribution.

2.3.8 Rhythm similarity measures
Defining and extracting music similarity is one of the primary ar-
eas of MIR. An important component of defining overall similarity
between two music pieces is rhythmic similarity. Similarity mea-
sures to compare rhythms have been explored both with audio and
symbolic scores. These rhythm similarity measures are quite useful
in computational musicology to compare rhythms.

Rhythm similaritymeasures have been used to classify and com-
pare rhythms, trace ancestry of rhythms using phylogenetic analy-
ses, to match prototypical rhythm patterns to their micro-variations.
Toussaint (2004) discusses several measures and compares them
based on howmuch insight they provide about the inter-relationships
that exist among families of rhythm.

One approach to compare rhythmic content of music is by us-
ing onset patterns (OP), as initially presented by Pohle, Schnitzer,
Schedl, and Knees (2009). Starting from a magnitude spectrum
obtained from the STFT of a monophonic piece of music, a set
of energy coefficients are computed in 32 logarithmically spaced
frequency bands. A band-wise accent signal is then derived by ap-
plying a moving average filter and half wave rectification to each
of the 32 bands. A second STFT operating on longer time scale (8
second window with 1 second hop) is applied to each band-wise
accent signal. This way, a description of periodicities referred to
as OP features (Holzapfel, Flexer, &Widmer, 2011) is obtained for
5 bands per octave, and 5 periodicity octaves from 30 BPM to 960
BPM. The rhythm of awhole sample is described by themean of the
OP obtained from the various segments of this sample. Pohle et al.
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(2009) showed that combining rhythmic descriptors with a timbral
component improved the performance of the task of rhythm simi-
larity computation on the “BallroomDancers” collection (Ballroom
dataset).

Holzapfel and Stylianou (2011) use the scale transform to com-
pute rhythm descriptors to classify Greek traditional dances and
Turkish traditional songs. The first step is a computation of an ac-
cent signal. To this end, the sum of the 32 band-wise accent sig-
nals used for the OP features are applied to obtain a single vector
describing the note onset characteristics. Then, within the mov-
ing windows of eight seconds length, autocorrelation coefficients
are computed from this accent signal and then transformed into the
scale domain by applying a discrete Scale Transform. For one
piece, the mean of the Scale Transform Magnitudes (STM) ob-
tained from all the analysis windows are the STM descriptors of the
rhythmic content of the piece. Both the mapping onto a logarith-
mic axis of the magnitudes in the second STFT in the OP features,
and the application of a Scale transform in the STM features pro-
vide varying degrees of robustness to tempo changes. Holzapfel
and Stylianou (2011) provide more details and the exact computa-
tion of parameters of the two descriptors. The scale transform is
also shown to capture relevant properties of usuls (metrical frame-
work in Turkish makam music) and has been used for classifying
symbolic traditional Turkish music scores to their usuls (Holzapfel
& Stylianou, 2009). Holzapfel et al. (2011) discuss improved de-
scriptors for rhythm similarity.

Fouloulis, Papadelis, Pastiadis, and Papanikolaou (2010) present
a system containing two artificial neural networks in cascade - a
self-organizing neural network (called SARDNET) and a Multi-
Layer Perceptron - that receives a sequence of temporal intervals
(performed rhythm pattern) as input and maps it into a given set
of prototypical rhythm patterns showing strong evidence that this
type of network architecture may be successful to compute similar-
ity between a prototypical rhythm pattern and its micro-variations.
Parry and Essa (2003) proposed a similarity metric based on rhyth-
mic elaboration that matches rhythms that share the same beats re-
gardless of tempo or identicalness. Rhythmic elaborations can help
an application decide where to transition between songs.
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2.3.9 Domain-specific approaches
Including domain specific music knowledge to build culture-aware
algorithms is an important focus of the dissertation. From the ex-
tracted low level audio features, we can use domain specific prior
knowledge to derive mid-level representations. As mentioned ear-
lier, a few examples of such mid-level representations include nov-
elty functions used for structural segmentation (Foote, 2000), Tem-
pogram and Predominant Local Pulse (Grosche & Müller, 2011b).
Though these functions are not generally built using domain spe-
cific parameters, we can easily extend them to incorporate priors
based on the music culture, e.g. the kernel size in Novelty compu-
tation.

There are several machine learning algorithms that can include
domain specific priors into their modeling parameters. Most prob-
abilistic graphical models allow for including some form of priors
and encode complex relationships. Simple examples of these in-
clude the kinds of priors and relationships that can be encoded us-
ing a HiddenMarkov model (HMM). Hidden semi-Markov models
allow us to encode explicit timing information into the algorithm,
which might be very useful for tracking rhythmic events, as ex-
plored with some promise for chord recognition by Chen, Shen,
Srinivasamurthy, and Chordia (2012). Dynamic Bayesian Network
(DBN) (Murphy, 2002) based models have been successfully ap-
plied for beat and downbeat tracking, and hold significant promise.
Context-aware neural networks, as discussed in Section 2.3.3, might
also be useful to bring the modeling capabilities of neural networks
to modeling structured data such as music.

2.3.10 Percussion pattern analysis
One of themain percussion pattern analysis tasks is percussion tran-
scription from audio. Music transcription addresses the analysis of
an acoustic musical signal so as to write down the pitch, onset time,
duration, and source of each sound that occurs within it (Klapuri
& Davy, 2006). Percussion transcription focuses on percussion
and aims to transcribe an audio recording, typically a percussion
solo, into a sequence of symbolic drum stroke indicators. Though
promising results have been achieved in percussion transcription
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(Gillet & Richard, 2004b; Paulus & Virtanen, 2005; Fitzgerald &
Paulus, 2006), state of the art music transcription systems are still
clearly inferior to skilled human annotation in their accuracy.

Most works onmusic transcription have focused onmelodies of
pitched instruments. However, recent years havewitnessed a grow-
ing interest for transcribing non-pitched percussive instruments.
The percussion instruments investigated in automatic transcription
tasks fall into twomain categories: membranophones, such as drums
that have a stretched membrane or skin, and idiophones, such as
cymbals that produce sound from their own bodies (Fletcher &
Rossing, 1998).

To address the problem of percussion transcription, some event-
based systems (Gillet &Richard, 2004b; Gouyon, Herrera, &Cano,
2002; Goto & Muraoka, 1994; Gillet & Richard, 2008) have been
proposed that segment the input signal into events informed by the
percussion and then extract and classify features from these seg-
ments to uncover its musically meaningful content, such as on-
sets. An alternative to this approach is to rely on source separa-
tion based methods to decompose the input audio signal into ba-
sis functions that capture the overall spectral characteristics of the
sources. Commonly used source separation techniques and tools
such as independent component analysis (ICA) and Non-negative
Matrix Factorization (NMF) have proven to be useful in percussion
onset detection tasks, especially when analyzing mixtures of differ-
ent percussion instruments (Paulus & Virtanen, 2005; Smaragdis,
2004a, 2004b; Abdallah & Plumbley, 2003).

A parallel to natural language can be drawn with percussion or
drum patterns - patterns composed using a small alphabet can be
analogous to words. A corpus-wide analysis of rhythm patterns
using a data-driven natural language processing approach was pre-
sented by Mauch and Dixon (2012), identifying the analogy be-
tween rhythm patterns and natural language.

Nakano, Ogata, Goto, and Hiraga (2004) explored drum pattern
retrieval using vocal percussion, using an HMM based approach.
They used onomatopoeia as the internal representation for drum
patterns, with a focus on retrieving known fixed sequences from a
library of drum patterns with snare and bass drums. Kapur, Ben-
ning, and Tzanetakis (2004) explored query by beatboxing, aiming
to map the beatboxing sounds into the corresponding drum sounds.
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A distinction to be noted here is that in vocal percussion systems
such as beatboxing, the vocalizations form the music itself, and not
a means for transmission, which is the case with oral syllables of
Indian art music percussion.

More recently, Paulus and Klapuri (2009) have proposed the
use of connected HMMs for drum transcription in polyphonic mu-
sic. Thompson, Dixon, and Mauch (2014) explored the task of
drum transcription by classifying bar length rhythm patterns, utiliz-
ing low level timbre features and long term statistics from rhythm
patterns. Both these approaches aim to transcribe individual drums
and not overall timbres due to combinations, and no reference to
syllabic percussion is made. However all these approaches have
indirectly and implicitly used some form of symbolic representa-
tions for drum patterns.

2.4 Relevant technical concepts
The thesis uses several well established and well studied signal pro-
cessing and machine learning algorithms and techniques to address
automatic rhythm analysis problems. There are excellent resources
available to study and understand those models and approaches in
depth, and hence only a brief mention of those methods along with
references to the resources are provided in this section. The purpose
is to list the algorithms and techniques and provide adequate refer-
ences for a background study, and hence the section is not compre-
hensive in description.

2.4.1 Bayesian models
A probabilistic graphical model is a probabilistic model that ex-
presses conditional dependence between random variables using a
graph. A Bayesian model (or a Bayesian network) is a probabilis-
tic graphical model that represents a set of random variables along
and their (conditional) dependencies with a directed acyclic graph.
Graphical models are generic models and most of the classical mul-
tivariate probabilistic systems (e.g. mixture models, HMMs and
Kalman filters) are special cases of graphical models.
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With a fundamental dependence on time, any model that aims
to accurately represent rhythm and metrical structures should work
on sequential data from audio features, and must be able to incor-
porate several different variables within one probabilistic frame-
work. A Dynamic Bayesian Network (DBN) (Murphy, 2002) is
well suited in such cases, since it relates variables over time through
conditional (in)dependence relations. A DBN is a generalization of
the traditional linear state-space models such as Kalman filters and
stochastic models such as the HMM and provides a general prob-
abilistic representation and inference schemes for arbitrary non-
linear and non-gaussian time-dependent processes.

DBNs hence provide an effective and explicit way to encode
dependence relationships between different components of rhythm
in music and are further explored for meter analysis. The HMM is
a special case of a DBN and is used for modeling percussion syl-
lables in the thesis. The book by Koller and Friedman (2009) is a
comprehensive guide for probabilistic graphical models including
practical applications. HMMs have been extensively used in ma-
chine learning research, and basics of an HMM along with the core
problems are discussed in a beginner friendly tutorial by Rabiner
(1989). A comprehensive resource to understand and apply DBNs
in theory and to practical applications is written byMurphy (2002).

Inference in Bayesian models

Inference with a built Bayesian model refers to the operation in
which we estimate the probability distribution of one or more un-
known variables (or attributes), given that we know the values of
other variables. In the context of rhythm analysis, inference can
refer to using the “observed” audio features extracted from music
to estimate the unknown rhythm and meter related variables.

Exact inference in Bayesian models, in its simplest form in-
volves marginalizing over variables to obtain the distribution over
the required set of variables, achieved by direct marginalization,
factoring, variable elimination and other techniques (D’Ambrosio,
1999). With the exception of some toy examples, exact inference
is complex, without closed form solutions for real world Bayesian
models and hence we resort to approximate methods.
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There are efficient inference algorithms for specific inference
problems in HMM, one such being the Viterbi algorithm (Rabiner,
1989) to decode the most likely sequence of hidden states given
an observed feature sequence. In more complex DBNs, Sequential
Monte Carlo (SMC) methods are often effective. SMC methods
(also called particle filters) are a class of approximate inference al-
gorithms that have been effectively applied for estimating posterior
densities in DBNs. Particle filters are used for efficient approxi-
mate inference in Bayesian models and are described in detail in
the tutorial by Doucet and Johansen (2009).

2.4.2 Speech recognition technologies and tools
Automatic speech recognition aims to build tools and techniques
for automatic understanding of speech, primarily focusing on tran-
scribing spoken utterances into written words. Being an important
ICT for natural language processing, it has received attention from
a large research community over the past many decades and has
evolved into a mature research area with state of the art methods
for the task (Huang & Deng, 2010). While research continues in
speech recognition on several open problems, there is a potential
to utilize some of its proven technologies and extend them to anal-
ogous tasks in MIR. There is extensive literature on speech recog-
nition, with comprehensive description provided by, e.g. Huang,
Ariki, and Jack (1990), Rabiner and Juang (1993) and recently by
Huang and Deng (2010). Percussion syllables provide a language
for percussion, with a significant analogy to speech. Hence, we
explore the use of speech recognition tools for percussion pattern
transcription and discovery.

Percussion transcription follows the standard data flow of speech
recognition, aiming to transcribe an audio recording into a sequence
of syllables. A string search on transcribed sequence can then be
used to search for patterns, using string search methods. However,
transcription is often inaccurate with many errors, and any pattern
search on transcribed data needs to use approximate search algo-
rithms (Navarro, 2001). There are several other attempts to deal
with search in symbolic sequences, many are described in detail by
Typke, Wiering, and Veltkamp (2005). Well explored techniques
formulate pattern search as Longest Common Subsequence (LCS)
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problem. However, LCS does not consider the local correlation
while searching for a subsequence (Lin, Wu, & Wang, 2011). To
overcome this limitation, Lin et al. (2011) proposed a novel Rough
Longest Common Subsequence (RLCS) method for music match-
ing, that we adapt for the problem of approximate string search in
the thesis.





Chapter 3
Automatic rhythm
analysis of Indian

art music

A problem well stated is a problem half-solved

Charles Kettering

The formulation of the problem is often more essen-
tial than its solution, which may be merely a matter
of mathematical or experimental skill

Albert Einstein

Automatic rhythm analysis of Indian art music has not been ex-
plored systematically, which further means that the challenges, op-
portunities and relevant research problems have not been formally
studied. The chapter presents the efforts to open up this research
area by introducing several relevant research problems, with a re-
view of the state of the art in these problems for Indian art music.
With the background from all the relevant research problems, we
define and formulate the thesis problems of meter analysis and per-
cussion pattern discovery. The main objectives of the chapter are:

1. To identify, present, and discuss main challenges to automatic
rhythm analysis in Indian art music

63
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2. To identify, present, and discuss main opportunities in automatic
rhythm analysis in Indian art music

3. To identify several interesting, important and relevant research
problems within the context of Indian art music and identify key
challenges in addressing them, as a means to provide pointers
for further future work in rhythm analysis.

4. From the relevant problems, identify a subset of research prob-
lems and formulate them in detail, to be addressed in the scope
of this dissertation.

5. To present an overview of the state of the art in automatic rhythm
analysis of Indian art music, and present an evaluation of the
existing state of the art applied to rhythm analysis tasks in Indian
art music.

3.1 Challenges and Opportunities
There are significant challenges to automatic rhythm analysis in In-
dian art music. We elaborate and discuss challenges and opportuni-
ties from the standpoints of state of the art and musical relevance.
Some of these challenges will help us to rethink and reformulate
the existing problems to be more inclusive, while improving their
performance. The opportunities in turn help us to pursue novel di-
rections of research in MIR.

3.1.1 Challenges
The most important challenge when addressing automatic rhythm
analysis in Indian art music is the inconsistency in definition of
rhythmic concepts. Though we can draw analogies between the
hierarchical metrical pulsation structure of bar, beats, and subdivi-
sions to the āvartana/āvart, beat/mātrā, and the akṣara of Indian art
music, these analogies are mostly approximations that try to force-
fit these concepts to the components of a tāḷa and not exactly equiv-
alent. Though, for the ease of readability and clarity of presenta-
tion, we will still use the commonly used terms, but it is necessary
to be aware of the differences and handle them as such. Objective
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definitions, or even approximate definitions of these concepts from
an engineering perspective are absent, and the main challenge is to
first develop consistent engineering definitions for these concepts
prior to developing algorithms for analysis.

We identified the tāḷa cycles (at the level of āvartana or āvart) as
the most important and musically relevant cycles in Indian art mu-
sic. But the theoretical frameworks of the tāḷa described previously
also show cyclical structures at time-spans different from the tāḷa
cycle. There exist sub-cycles that can be perceived at the section
level, the vibhāg level in certain tāls. A tīntāl can be seen to have
four sub-cycles in an āvart, one at each vibhāg. Similarly, Carnatic
music has sub-cycles at the level of aṅga, and further at the beat
level defined by the naḍe, e.g. rūpaka tāḷa (See Figure 2.1c) can be
seen to be comprised of three sub-cycles of four akṣaras each. This
implies that depending on the metrical levels we focus upon, the
metrical structure is determined by either duple or triple relations.
While this is not a distinct feature of meter in Indian music, it is en-
countered quite frequently here. Furthermore, in Carnatic music,
the grouping structure might also vary within a piece while main-
taining the same tāḷa. For example, though rūpaka tāḷa is generally
defined with four akṣaras in a beat and three beats in an āvartana,
it might change within a piece to be grouped as 4 units of 3 akṣaras
(giving the “feel” of a ternary meter), without changing the cycle
length. For the purpose of analysis in this dissertation, we consider
rūpaka to have the structure shown in Figure 2.1c. This further in-
dicates that ideally, the metrical structure of the piece needs to be
estimated at all levels, taking into account possible changes in the
metrical structure. This flexibility in interpretation of a tāḷa and
the presence of additional metrical sub-cycles can be a significant
challenge to MIR approaches.

A specific composition can be rendered in different tāḷas. Even
though the melody is the same and the total akṣaras add up to the
same value, the listener experience varies with different tāḷas. In
Carnatic music, avadhāna pallavi is one such form of singing a
composition set to two different tāḷas (and two different naḍe). The
lead musician uses hand gestures to indicate both the tāḷas at the
same time, a difficult task for the musician. These compositions
are rare but worth a mention in this context to emphasize the fact
that the tāḷa of a musical piece is a perceived notion of periodicity,
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and an objective formulation of the tāḷas provides only a incomplete
picture. As with most other musical concepts, the notion of a tāḷa
involves a significant amount of subjectivity.

An important aspect of meter in Indian art music is the presence
of pulsation at some metrical level with unequal time-spans. The
vibhāgs in Hindustani music and aṅgas in Carnatic music are ex-
amples of such possibly non-isochronous pulsations. Such forms
of additive meter have so far not been widely considered for com-
putational analysis and present additional challenges.

Neither of Carnatic and Hindustani music traditions have the
notion of an absolute tempo. An expressive performance without a
metronome, coupled with a lack of annotated tempo for a piece can
lead to a single composition being performed in different tempi,
at the convenience of the musician. This lack of a definite tempo
value and the choice of a wide variety of tempo classes further com-
plicate the choice of a relevant timescale for tracking tāḷa cycles,
causing further metrical level ambiguity.

In Hindustani music, the āvart cycle durations vary from 1.5
second in ati-dhr̥t (very fast) tīntāl to 65 second in ati-vilaṁbit (very
slow) ēktāl (Clayton, 2000, p. 87). Long time scales such as these
are far too long to be perceived as single entities (Clayton, 2000),
since they are beyond the range of the phenomenon called the per-
ceptual present, which is about 5 seconds long (Clarke, 1999). At
such long time scales, the rhythm of the piece is rather character-
ized by the grouping structure of the piece (Lerdahl & Jackendoff,
1983). Such long cycles are replete with filler strokes to maintain
a continuity in pulse, which leads a dense surface rhythm, on top
of a time-sparse mātrā pulsation. This implies that algorithmic ap-
proaches for rhythm analysis that are solely based upon estimation
of pulsation from surface rhythm might not be capable of analyz-
ing the temporal structure in the presence of such long cycles. Car-
natic music has a smaller range of tempo and the tāḷas are more
concretely defined, and hence the choice of time scale is an easier
problem. With a wide range of tempo, cycles as long as a minute,
and non-isochronous subdivisions of the cycle, Indian art music is a
suitable case for experimentation to extend the horizon of the state
of the art in meter analysis.

MIR algorithms have difficulty tracking metrical structures that
have expressive timing and varying tempo (Holzapfel et al., 2012).
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Due to the freedomof improvisation and the absence of ametronome,
there are local tempo variations, and a possible increase/decrease of
tempo through the piece over time. Both of these are not anomalies
but accepted characteristics of Indian art music, and can be a poten-
tial source of challenge for MIR algorithms, with repercussions in
tempo tracking, music similarity matching, and drum transcription
tasks.

In Carnaticmusic, the tāḷa only provides a basic structural skele-
ton to play rhythmic patterns, with significant scope for improvisa-
tion. Several different rhythmic patterns different from the canoni-
cal structure of a tāḷa can be performed, as long as the basic cyclical
structure and length is maintained, e.g. a musician might decide to
play a rhythmic pattern that can grouped as 7,7,4,6,8 akṣaras (adds
up to 32 akṣaras) in a cycle of ādi tāḷa. Several such rhythmic com-
binations are allowed and is a part of the music, which leads a va-
riety of rhythms played within the basic skeletal structure of a tāḷa.
Hindustani music, except within a drum solo or explicit sections,
has less rhythmic improvisation compared to Carnatic music, but
is still significant.

A performance of Carnatic or Hindustani music does not use
any form ofmusic scores, while some skeletal scores are usedmainly
in teaching and music training. This implies that a universally
agreed system of written music does not exist, while there are sev-
eral efforts to standardize melodic notation for accurate transmis-
sion in Hindustani music (Bhatkhande, 1990; Jha, 2001) and Car-
natic music (Ravikiran, 2008). There are also recent efforts in
creating machine readable representations (Chordia, 2006; Srini-
vasamurthy & Chordia, 2012b). However, the use of scores itself
is limited as the scores are only indicative. This problem extends to
representation of percussion patterns too. The use of the tabla and
mridangam syllables is an accurate way to represent percussion pat-
terns, but the syllables themselves vary across schools, geographic
regions, and languages. This is a potential challenge in the use of
syllabic system to represent percussion patterns.

In summary, there is a need for concrete engineering definitions
for rhythm concepts in Indian art music. The cycle lengths in In-
dian music can be meaningfully tracked at multiple time levels, and
distinguishing between these multiple time levels is difficult due to
the wide variety of tempo classes. The absence of an absolute an-
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notated tempo and expressive tempo are further challenging. The
presence of additive meters is expected to pose challenges to exist-
ing analysis approaches, especially for Hindustani music. The sig-
nificant scope for improvisation leads to a wide variety of rhythmic
patterns interpreted freely, while a basic adherence to tāḷa structure
is maintained. Since the scores are only indicative, there are no
standardized representation systems for both melodic and rhythmic
patterns, which is a necessity to be addressed. Finally, we must not
forget that we attempt to track the tāḷa as a theoretical concept in
music performance. However, in both music cultures, artists can be
assumed to deviate from such concepts, resulting in a divergence
between surface rhythm and theoretical framework that is hard to
conceive in any kind of rhythm analysis using only audio.

3.1.2 Opportunities
There are several unique features in Indian art music which open
new opportunities to pursue novel directions of research in MIR.
The challenges outlined also open up new opportunities to propose
novel methodologies for automatic rhythm analysis, and improve
the current state of the art in MIR. The complex rhythmic frame-
work of the tāḷa necessitates a holistic approach to rhythm descrip-
tion, and will be useful in rhythm analysis of various other music
cultures based on similar metrical structures, such as the usul in
Turkish makam music.

In this dissertation, wemainly consider audio for rhythmic anal-
ysis. But the associated notations, lyrics and information regarding
musical form also carry rhythm information which can be used for
a combined approach to rhythm analysis. The scores, though in-
dicative, can be used to provide prior information to systems and
hence are useful.

The onomatopoeic syllables of tabla (bōls) and that of mridan-
gam (solkaṭṭu) define a language for Indian percussion and play a
very important role in defining rhythmic structures and percussion
patterns in Indian art music. These syllables, which can be (loosely)
considered as the “solfege” of percussion are standardized for tabla,
while less so for mridangam and form an essential part of percus-
sion training. In Hindustani music, the ṭhēkās are defined using
these bōls and hence these bōls can be used to track the movement
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through the āvart. The oral recitation of percussion patterns using
these syllables in both Carnatic (konnakōl) and Hindustani music
are an important part of percussion solos and used extensively in
the performances of Indian art dance forms such as Kathak (using
Hindustani bōl) and Bharatanāṭyaṁ (using solkaṭṭu). This system
of syllabic percussion is sophisticated and the rhythmic recitation
of the syllables requires high skills.

These syllables take an important role in drum transcription
tasks, a new way of addressing percussion patterns, where a signif-
icant analogy exists to speech and language. We can draw method-
ologies and approaches from the mature research area of speech
technologies to address percussion pattern transcription and discov-
ery. The percussion solo performance in both Carnatic and Hin-
dustani music are a rich source of typical rhythm and percussion
patterns for the corresponding tāḷa and an analysis of these solos
can be very useful for extracting these patterns for analysis.

Another important aspect of Carnatic music is that the progres-
sion through the āvartana is explicitly shown through visual hand
gestures. In a performance context, these visual cues play an im-
portant role in communication of rhythm among the performers, as
well as between the performers and the audience. Listeners often
are able to track through complex tāḷa cycles because of these ges-
tures. In fact, in many concerts, these visual cues become a part
of expressiveness of the musician and the appreciation of the audi-
ence, and hence is a part of the complete experience of the music.
Since these cues consist mainly of claps, they can be quite sonorous
and it is not very surprising that they can be audible in some record-
ings. A multi-modal approach to rhythm analysis can be done from
video recordings of Carnatic music concerts, a problem that is in-
teresting, but beyond the scope of this dissertation.

In summary, the complex metrical structures and syllabic per-
cussion systems open up several opportunities for novel methods
of automatic rhythm analysis in Indian art music. In addition, a
complete description of rhythm for effective discovery and experi-
ence of music involves integrating various sources of information
such as audio, scores, lyrics, visual cues, information about musical
form, and other culture specific aspects. Tools for rhythm analy-
sis need to combine these data-sources in order to arrive at a more
consistent analysis than by just taking into account the audio signal.
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3.1.3 Characteristics of Indian art music
It is necessary to illustrate some basic signal characteristics of In-
dian art music that will be useful to extract relevant audio features
for rhythm analysis. Figure 3.1 shows an illustrative example of
the spectrogram of audio excerpts of both Carnatic music1 (Fig-
ure 3.1a) and Hindustani music2 (Figure 3.1b). To focus on melody
and percussion, the spectrogram is plotted only up to a frequency
of 3 kHz, though there is information from higher harmonics and
percussion strokes at higher frequencies. The time durations of the
excerpts are also different, with the Carnatic music example being
shorter in duration.

Indian art music is predominantly melodic and heterophonic,
with usually two (sometimes more) simultaneous melodic voices
- a lead melody and a melodic accompaniment. The lead melody
and its harmonics can be clearly seen in both the figures, along
with the continuously changing fundamental frequency (F0). There
is a drone in the background that provides the tonic for the per-
formance, provided by the tānpura (Hindustani music) or tambūra
(Carnatic music). The drone can also been seen as the unchanging
set of spectral frequencies in both the spectrograms. The melodic
accompaniment (violin) in Carnatic music closely follows the lead
voice and can be seen with a lower amplitude in Figure 3.1a. Har-
monium is the melodic accompaniment in the Hindustani music
excerpt, which can also been seen with a lower amplitude in Fig-
ure 3.1b.

The percussion instruments tabla and mridangam have a bass
drum head, and a treble drum head that is pitched. The pitched
drum head is tuned to the tonic of lead musician. The pitched
strokes can be sharp or sustained. Both the figures show the per-
cussion strokes as vertical lines, showing their broad spectrum. We
can identify the strokes from the left and right drums distinctly in
different frequency ranges in both cases. In addition, we can see

1A short excerpt from Seethamma, a kr̥ti in rāga Vasanta and rūpaka tāḷa,
from the album K P Nandini at Arkay by K P Nandini: http://musicbrainz
.org/recording/559b19c7-2d30-47db-8aab-6e4448d867fb

2A short excerpt from Bhor Hi Aheerin, a bandiś in rāg Āhir Bhairon
in jhaptāl, from the album Geetinandan : Part 3 by Pt. Ajoy Chakrabarty:
http://musicbrainz.org/recording/51656b20-295c-40f9-8dab
-005b9b90fa98

http://musicbrainz.org/recording/559b19c7-2d30-47db-8aab-6e4448d867fb
http://musicbrainz.org/recording/559b19c7-2d30-47db-8aab-6e4448d867fb
http://musicbrainz.org/recording/51656b20-295c-40f9-8dab-005b9b90fa98
http://musicbrainz.org/recording/51656b20-295c-40f9-8dab-005b9b90fa98
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(a) Carnatic music

(b) Hindustani music

Figure 3.1: Audio signal characteristics of Indian art music signals. The
figure shows the spectrogram of the audio excerpt of Carnatic and Hin-
dustani music, showing the frequencies up to 3 kHz.

the some of the harmonics of the pitched percussion strokes, and
the quick decay of the percussion strokes. The Hindustani excerpt
is taken from a madhya lay piece and we can see the longer notes
and sparser tabla strokes, indicating lower rhythmic density due to
lower tempo.

3.2 Research problems in rhythm
analysis of Indian art music

With the background provided so far, several relevant and inter-
esting automatic rhythm analysis problems in Indian art music are
identified and discussed. For each problem, we briefly describe
the problem, explain its relevance, identify any specific challenges,
discuss possible approaches, and review any prior existing work
for the problem. Some allied research problems not directly in the
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Figure 3.2: Relevant automatic rhythm analysis topics and applications
in Indian art music. The solid lines indicate the flow of data and signals.
The dot-dash lines indicate the flow of high level information such as
parameters and priors. The subset of problems focused in this dissertation
are shown in gray.

scope of rhythm analysis, but have related applications or could
benefit from rhythm analysis are also discussed for the sake of com-
pleteness. Many of the rhythm analysis problems have not been
addressed before, while there have been attempts in MIR aiming
to solve similar problems in Eurogenetic music. While some basic
rhythmic feature extraction methods such as onset detection can be
easily extended to Indian art music, more complex tasks have to
reformulated with the context. Hence, some of the existing general
rhythm descriptors such as onset detectors and tempo estimators
are deemed to be useful to develop specific algorithms.

Rhythm is characterized by structures and patterns. The struc-
tures provide the basis for patterns, through which rhythms are
played. The problems presented here revolve mainly around these
two concepts, and are categorized into several groups, with the fi-
nal goal of using all these components to define musically mean-
ingful and useful rhythm similarity measures for Indian art music.
There are several sub-problems that lead towards the final goal.
The problems span the whole range of complexity, starting from
basic tasks processing the audio signal to abstract tasks requiring
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extensive music knowledge. The categorization of problems pre-
sented here is only for the purpose of presentation, and the prob-
lems in each category cannot be addressed in isolation. There is
significant interplay and overlap between the groups - with prob-
lems benefiting from outputs of other problems in a different group,
e.g. onset detection can help in both meter analysis and pattern dis-
covery tasks.

At the outset, from a literature review, we see that automatic
rhythm analysis of Indian music has been attempted only recently,
and concrete methods for Hindustani music and Carnatic music do
not exist as yet. Koduri, Miron, Serra, and Serra (2011) also elu-
cidate several unsolved problems in rhythm analysis of Carnatic
music. Figure 3.2 shows an overview of the rhythm related re-
search topics and applications Indian art music. It also shows the
flow of data and information across the important units. The set
of topics addressed in the dissertation are shown in gray. Each of
those topics uses information and knowledge representations de-
rived from music theory and practice, making them more informed
and culture-aware. The data-driven approaches finally culminate
with rhythm similarity measures computed from the data outputs
from different automatic analyses. Each of the units are further
described in detail, with sub-problems within them.

3.2.1 Building data corpora

A significant part of data-driven research with signal processing
and machine learning approaches needs good quality data. Data
corpora that are representative of the music culture under study
are essential for building and testing such approaches. The data
sources comprise of audio, metadata accompanying audio, music
scores, lyrics, manual and automatic annotations, and linked (se-
mantic) data. One of the main problems addressed in this disserta-
tion is building suitable data corpora for rhythm analysis research,
a problem that is described further in Section 3.3.3. Building useful
datasets also involves building tools for rhythm annotation and de-
veloping machine readable representations for the annotations and
metadata for effective linking and integration of these data sources.
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3.2.2 Automatic rhythm annotation
Automatic rhythm annotation encompasses a broad set of problems
that aim to annotate and tag audio recordings with several rhythm
related metadata and tags. The tags could be descriptor tags that are
not time aligned with audio, such as the tags related to the compo-
nents of the tāḷa and median tempo descriptors. There could one or
more such tags associated with each recording. The rhythm annota-
tions could also be time aligned, indicating the locations of several
rhythmic events in audio recordings, such as a time varying tempo,
beats, and downbeats (sama). The common tasks of tempo, beat
and downbeat tracking can be classified as automatic rhythm an-
notation problems.

Automatic rhythm annotation, in the context of Indian art mu-
sic can be defined as the estimation of the characteristic compo-
nents of the tāḷa from audio. For Carnatic music, the most impor-
tant rhythm related tags include estimating the median tempo of
the piece (in akṣaras per minute or beats per minute), the length of
the cycle (in number of beats or akṣaras), the tāḷa label (and hence
implicitly the underlying metrical structure), the naḍe (and hence
the subdivision structure), and the eḍupu of the piece. For Hin-
dustani music, the most important rhythm related tags include the
median tempo of the piece (in mātrās per minute), the lay class,
the cycle length (in mātrās) and the tāl label. Estimating the time
varying tempo curve, the akṣara pulse locations, the beats, the aṅga
(section) boundaries and the sama instants are the important time
aligned annotation problems in Carnatic music. The most impor-
tant problems in Hindustani music are the estimation of the mātrā
pulsation, the vibhāg boundaries, and the sam instants.

Automatic rhythm annotation is an important rhythm analy-
sis topic, and there are several applications in which these rhythm
annotations are useful, such as music autotagging, rhythm based
segmentation of audio, beat aligned processing of music, audio
summarization, music transcription, and different rhythmic pattern
analyses. Tracking the components of the tāḷa through a music
piece is essential for most other rhythm description tasks such as
segmentation and extraction of rhythmic patterns to define similar-
ity. Each of these problems are now described in detail. It is to be
noted again that many rhythm annotation problems can be jointly
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addressed, estimating several components together, e.g. the tāḷa,
tempo, beats and the sama can be jointly estimated, in a task that
we call as meter inference.

Tāḷa recognition

Tāḷa recognition, defined as tagging an audio recording with a (pos-
sibly more than one) tāḷa tag is a central research problem of Indian
art music. A tāḷa tag is the most basic information for listeners to
follow the rhythmic structure of the music piece. As the most im-
portant rhythm relatedmetadata associated with a recording, know-
ing the tāḷa is useful for archival, navigation, and enriched listening
with large audio music collections of Indian art music.

Since there are only a limited set of tāḷas in Indian art music, tāḷa
recognition can be formulated as a classification task based of fea-
tures of the tāḷa estimated from audio. Barring a few exceptions,
most compositions are composed in only one tāḷa, and hence an
audio recording with the performance of the composition has only
one tāḷa tag. However, audio recordings with long concerts with
multiple compositions performed can have multiple tāḷa tags, with
the additional problem of marking the regions of audio where these
compositions are performed. Further, many recordings start with
an ālāpana, which is an unmetered section and hence has no tāḷa.
Hence, tāḷa recognition has to first be preceded by such segmen-
tation of audio recording into parts that have only one or no tāḷa.
Exceptions can occur despite that, when some rare compositions
can be performed in two different tāḷas, a case that is uncommon
and only has esoteric importance. Such marginal cases are beyond
the scope of engineering approaches in this dissertation.

Tāḷa recognition is a subjective task that needs priormusic knowl-
edge. It can be achieved through a set of proxy tasks, all of which
help in identifying the tāḷa. The clues to identifying a tāḷa are re-
lated to its structure and the rhythmic patterns played in it. The
patterns (such as the ṭhēkā) played are indicative of the tāḷa, but
many patterns are also shared across many tāḷas. From an MIR
perspective, it is harder to recognize these patterns, but instead, it
is easier to recognize these patterns if the tāḷa is known, creating a
circular dependency.
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The structure attributes of the tāḷa that can be used to identify
the tāḷa are the cycle length and when defined, the subdivision me-
ter (in Carnatic music). Estimating the cycle length in beats (or
mātrās) can help significantly to identify the tāḷa. However, there
are several tāḷas in both Carnatic and Hindustani music that have
the same length, e.g. ēktāl and cautāl both have 12 mātrās in a
cycle (Clayton, 2000), and hence additional information is needed
to disambiguate them. Nevertheless, cycle length estimation is an
important task that has received some attention from the research
community, with the analogous tasks in Eurogenetic music being
time signature estimation and meter estimation.

In Indianmusic, we can track well-defined cycles at several lev-
els of the meter. As described earlier, though the aim of the task is
to estimate the length of tāḷa cycle (length of a āvart/āvartana), the
algorithms might track a different time scale, which need not cor-
respond to the tāḷa cycle. One such other specific level of interest
apart from the tāḷa cycle is the division within the beat pulsation,
i.e. the periodic structure dominating the rhythmic content between
the beat instances. In Carnatic music, this corresponds to the naḍe
estimation. Further, we need to point out here that there is a clear
definition of the subdivision meter in the form of naḍe in Carnatic
music. However, such an explicit subdivision meter for Hindustani
music is not clearly given by the theoretical framework.

Though the tāḷa cycle is an important part of rhythmic orga-
nization, it is not necessary that all phrase changes occur on the
sama. In ādi tāḷa for example, most of the phrase changes occur
at the end of the 8 beat cycle, there are compositions where some
phrase changes and strong accents occur at the end of half-cycle or
the phrase might span over two cycles (16 beats).

Since the tāḷa cycles have a periodicity, prior approaches in In-
dian art music track the periodicity in pulsation. Gulati, Rao, and
Rao (2011) and Gulati, Rao, and Rao (2012) proposed a method for
meter detection from audio for Indian music, and classify a piece
as belonging to duple (2/4/8), triple (3/6), or septuple (7) meter. A
mel-scale frequency decomposition of the signal is used to drive a
two stage comb filter bank. The filter bank output is used to esti-
mate the subdivision time-spans and the meter of the song. It was
tested on an Indian film music dataset with encouraging results.
This is one of the first proposed approaches to rhythm modeling



3.2 Research problems in rhythm analysis 77

applied specifically to Indian music. However, the algorithm was
tested on a different repertoire than Hindustani and Carnatic music.
The algorithm only aims to classify into these broad meter classes
and does not attempt to assign a tāḷa label, which is more complex
than such a classification. Though proposed for Indian music, the
algorithm is general in approach and does not consider any spe-
cific characteristics of rhythm in Indian music. Miron (2011) ad-
dressed the problem of tāl recognition in Hindustani music, based
on recognizing the ṭhēkā played on the tabla. Using a labeled cor-
pus of Hindustani music with tabla accompaniment, he explored
segmentation and stroke recognition in a polyphonic context, and
concluded that recognizing Hindustani tāls is a challenging task.

Srinivasamurthy, Subramanian, Tronel, andChordia (2012) also
proposed a culture-specific beat tracking based approach to tāḷa de-
scription, and applied it to Carnatic music. They proposed a sys-
tem to describe meter in terms of the time-span relations between
pulsations at bar, beat and akṣara levels. The tempo estimation in
the algorithm, which is adapted from the algorithm by Davies and
Plumbley (2007), is modified to peak at 90 BPM allowing a wide
range of tempi (from 20 bpm to 180 bpm) to be estimated. The al-
gorithm applies the beat tracker proposed by Ellis (2007) with the
estimated tempo as input. The algorithm then uses a beat similar-
ity matrix and IOI histogram to automatically extract the sub-beat
structure and the long-term periodicity of a musical piece, from
which a set of rank ordered candidates could be obtained for the
naḍe and āvartana length. The algorithm was tested on a manu-
ally annotated Carnatic music dataset consisting of 86 thirty sec-
ond song snippets of both vocal and instrumental music with differ-
ent instrumentation, set to different tāḷas and naḍe. The algorithm
was also tested on an Indian light classical music dataset consist-
ing of 58 semi-classical songs based on popular Hindustani rāgas.
Though formulated using the knowledge of the tāḷa, the algorithm
does not make an effort to resolvemetrical level ambiguities, which
can severely affect the accuracy since the performance of the algo-
rithm depends mainly on reliable beat tracking at the correct met-
rical level.

Rhythmic similarity can also be used in tāḷa recognition, with
the assumption that the rhythmic patterns played in a tāḷa across
recordings are similar. Rhythmic similarity can be applied to the
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task by assigning an unknown piece to a class of rhythm it is deemed
to be most similar to, based on some low level signal features.
Given tāḷa annotated audio examples, rhythmic features can be ex-
tracted from audio and used to learn models of rhythm similarity
that can classify tāḷas. If the classes of rhythm present in a collec-
tion have distinct cycle lengths, we can also obtain the length of the
cycle for an unknown piece through this classification.

Practically, most commercially released music collections pro-
vide the tāḷa of each piece as editorial metadata. The name of the
tāḷa is present in most pieces in the collection. However, it is often
not present in archived recordings, personal music collections, or
open music collections. Since most of the work in this dissertation
is with commercial music recordings, we already have access to
tāḷa tags of these music recordings and hence the task of tāḷa recog-
nition is redundant and not relevant with these collections. Further,
manually curating audio collections with tāḷa tags is less time con-
suming and less resource intensive than tasks such as tempo and
beat tracking. Hence, we do not work explicitly on tāḷa recogni-
tion problem in this dissertation, but however, it is expected to be
a byproduct of other automatic rhythm annotation tasks.

Lay classificaion in Hindustani music

With the wide range of tempo divided into tempo classes, lay classi-
fication into vilaṁbit, madhya and dr̥t (and possibly more extended
ranges of lay classes) is a useful problem. Since surface rhythm is
not an accurate indicator of the underlying tempo, a knowledge of
the lay class can significantly help in reducing metrical level errors
in tracking the tempo and the tāl. Since surface rhythm can be mis-
leading, lay classification needs to combine features from melody
and identify specific tabla stroke timbres to determine the actual
underlying tempo class.

Eḍupu estimation in Carnatic music

Eḍupu estimation in Carnatic music is a unique problem. Though
the eḍupu is a metadata of the composition, unlike the tāḷa label,
it is never recorded as standard metadata and hence needs estima-
tion. When not available as metadata, eḍupu estimation needs to be
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addressed based on accents and salience of the beats and their corre-
lation with the lyrics and melodic phrases. Estimating eḍupu might
be necessary for correct alignment of the samas since in pieces with
a non-zero eḍupu, it is likely that the melodic changes tend to oc-
cur at the eḍupu point rather than at the sama of the tāḷa cycle. This
might lead to confusion in sama tracking algorithms. We also no-
ticed that non-zero eḍupu pieces tend to give poorer performance in
tasks such as cycle length recognition (Srinivasamurthy, Holzapfel,
& Serra, 2014). However, with a robust sama tracking algorithm
which can handle different rhythmic patterns, the effect of non-zero
eḍupu is less. To the best of our knowledge, this problem has not
been addressed by the research community so far. Since the prob-
lem of eḍupu estimation is very specific to Carnatic music, it is of
limited interest and is not addressed in this dissertation. But when
required, we will examine the effect of non-zero eḍupu on other
rhythm analysis tasks.

Tāḷa tracking

Tāḷa tracking (or generally meter tracking) refers to a set of prob-
lems that aim to estimate the different components of the tāḷa (the
metrical structure) over time in an audio recording, and estimate
several time aligned annotations related to the meter. By tracking
these tāḷa components, a complete description of the metrical struc-
ture of the piece at different hierarchical levels can be achieved -
tracking the cycles as described by the theoretical framework over
time. From such a task, all the components such as tempo, akṣaras,
beats and mātrās, sections, and sama can be obtained. Tāḷa track-
ing is an important automatic rhythm annotation task and is the first
step towards any further structural analysis of music pieces.

Tāḷa tracking can be done without any prior knowledge of the
music piece, in which case identifying the tāḷa is an implicit step
in the process. We call such an uninformed tracking as meter in-
ference - to identify the meter type, and estimate the time varying
tempo, beats and the sama (downbeats) all together. The tāḷa track-
ing algorithms can greatly benefit from knowing the tāḷa, tracking
a known metrical structure. We call such a task as meter tracking
(in contrast to meter inference) - given the tāḷa, estimating the time
varying tempo, beats, and downbeats. We can categorize the sub-
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tasks in tāḷa tracking as tempo tracking, beat tracking, and sama
tracking.

Tempo tracking: Tempo tracking aims to estimate the time-
varying tempo over the audio recording of a music piece, mea-
sured in akṣaras/beats/mātrās per minute. The knowledge of time-
varying tempo is useful to track the beats. Even a good estimate
of median tempo helps in tracking the beats at the correct metrical
level. Median tempo is a good indicator of tempo and can be used
as a rhythm tag on a music piece. As described earlier, the tempo
changes both locally and over longer periods of time, and the algo-
rithms for tempo estimation need to be robust to these changes.

Beat tracking: In the context of MIR, as noted earlier, beat
tracking is commonly defined as determining the time instances
where a human listeners are likely to tap their foot to the music.
This definition is likely to cause problems in our context, as for ex-
ample in Carnatic khaṇḍa chāpu tāḷa, listeners familiar to the music
tend to tap an irregular sequence of pulses, at the section level, in-
stead of the faster regular pulsation. Also, depending on the lay,
listeners of Hindustani music tap on either the mātrā level for vi-
laṁbit and madhya lay, or at the vibhāg level for dr̥t lay (Clayton,
2000, p. 91). In such a case, the more appropriate task of tracking
the possibly irregularly spaced beats is more relevant for Indian art
music.

Despite these ambiguities, we pursue the task in the present
context using a more adapted definition of a beat for the purpose of
consistency, defined as a uniform pulsation defined at the “beat” (as
defined in Section 2.2.2) level for Carnatic music, and at the mātrā
level for Hindustani music. This definition of an equidistant beat
pulsation can later help in deriving the musically relevant possibly
non-isochronous beat sequence that is a subset of the equidistant
pulses. The possibly irregular pulse sequence is a subset of the uni-
form pulsation estimated from the algorithms. This approximation
is further inconsequential if the whole cycle along with the sama
are tracked, using which any pulsation within the beat - uniform or
non-uniform can be derived out of that information. The vibhāg or
aṅga boundaries also coincide with a subset of the beats and hence
can be derived from the estimated beat locations. A task that is
specific to Carnatic music is akṣara pulse tracking, estimating the
subdivisions of the beat, an algorithm for which is elaborated in
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Section 5.2.
Sama (downbeat) tracking: The information about where a

tāḷa cycle begins provides us with the ability to comprehend most
of melodic, rhythmic and structural development of a piece, which
is typically synchronized with the phase of the tāḷa cycle. This cor-
responds to detecting the sama (or sam) instants of the tāḷa cycle.
In Hindustani music, the sam is highly significant structurally, as
it frequently marks the coming together of the rhythmic streams of
soloist and accompanist, and the resolution point for rhythmic ten-
sion (Clayton, 2000, p. 81). In Carnaticmusic, most of the phrasing
and improvisations, both melodic and rhythmic, are tied with the
sama and hence its relevant and meaningful to explore tracking the
sama as a primary problem in automatic rhythm annotation.

Note that while the term downbeat has been mostly applied to
eurogenetic music, we apply it here as well because it generally
denotes the pulse at the beginning of a bar. The downbeat does
not necessarily correspond to the strongest accent in the cycle. In
this sense, downbeat in Indian art music and Eurogenetic music are
likely to be concepts with different meaning.

It is to be noted that all the above components can be tracked
together jointly, instead of individually. Such meter tracking algo-
rithms are an important focus of the dissertation. Automatic rhythm
annotation one the main topics of this dissertation, and a subset of
the problems described above form the subject matter of Chapter 5.
To the best of our knowledge, the problem of meter tracking for In-
dian art music is addressed for the first time in this thesis. The
subset of problems that will be explored deeper in this dissertation
are better formulated in Section 3.3.1.

3.2.3 Rhythm and percussion pattern analysis
While tāḷa provides a framework and structure, the rhythm and per-
cussion patterns form the content through which the metrical struc-
tures and rhythms are illustrated, and hence form the other main
component of rhythm analysis. Rhythm patterns mainly refer to
the temporal arrangement of different events with different accents,
while percussion patterns include a temporal arrangement of differ-
ent percussion timbres. To contrast, percussion patterns are rhyth-
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mic patterns, but rhythmic patterns need not contain only percus-
sion, and can be formed by melodic and/or percussion instruments.

A pattern is defined as a temporal sequence of events and hence
it is necessary to estimate onsets of various instruments in music,
since that creates the time-aligned sequence of note/stroke events
that can be further used to obtain both rhythmic and percussion
patterns. Some important sub-problems within pattern analysis are
instrument-wise onset detection, pattern transcription, and pattern
discovery, each of which is described further. Transcription aims
to map an audio recording into a time aligned sequence of symbols
(strokes, accents, e.g.). The problem of discovery is more open
ended and aims to automatically retrieve interesting patterns and
insights about those patterns, in a data-driven way.

Instrument-wise onset detection

The task of instrument-wise onset detection refers to detecting the
onsets of specific instruments from an audio signal that is a mixture
of many music instruments and was described in Section 2.3.1. For
rhythm analysis in Indian art music, instrument-wise onset detec-
tion can help to obtain cues for both meter tracking and for anal-
ysis of percussion patterns. The onsets of percussion instruments
mridangam and tabla provide cues to the tāḷa and delimit percus-
sion patterns. A differentiation between the left (bass) and right
drum onsets in both instruments is additionally insightful and use-
ful. Instrument-specific onsets are often not estimated explicitly,
but are estimated as a part of a bigger task, such as percussion tran-
scription.

It is a difficult task to extract out percussion onsets with a great
accuracy, given that the percussion in Indian art music is also tuned
and shares the same frequency range as the melody. Within Comp-
Music, instrument-wise onset detection has been explored for Bei-
jing opera (Tian et al., 2014). HPSS can help to improve onset de-
tection of percussion instruments (Section 2.3.1) and has been ap-
plied to Carnatic music by Srinivasamurthy and Serra (2014) with
limited success. Given the complexity of the task, it is preferable to
build models that are robust to errors in onset detection of specific
instruments.
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Rhythm pattern analysis

Rhythm patterns extracted from audio recordings are representative
patterns of the tāḷa, and hence useful for both automatic tāḷa recog-
nition and meter tracking. The most relevant rhythmic patterns are
cycle length rhythmic patterns - patterns that are played in one full
cycle of the tāḷa. Shorter patterns, played within a cycle mostly act
as rhythmic atoms to make up the whole cycle and are played more
often. However, there are long rhythmic patterns played on mri-
dangam/tabla and accentuated through melody that can last many
cycles. Automatic discovery of rhythm patterns can be used to de-
fine content based rhythmic similarity between pieces of music,
which is expected to be more relevant than metadata based similar-
ity. Automatic extraction of rhythm patterns can also be a tool for
musicologists to study various rhythm patterns in larger corpora.

Rhythmic patterns are closely tied to the tāḷa, and within a tāḷa
cycle to the sections of the cycle. Hence, a pattern discovery system
can significantly benefit from all forms of tāḷa related metadata.
Consequently, rhythm pattern discovery needs tāḷa annotated (with
time-aligned sama and beats) datasets for a better performance. A
systematic study of rhythm patterns in Indian art music is lacking,
and an illustrative effort towards that is a part of the dissertation
(Section 4.2.1-4.2.2).

Percussion pattern transcription and discovery

Percussion pattern transcription is mainly applied on audio record-
ings with percussion solo, and aims to transcribe the audio record-
ing into a time-aligned sequence of drum stroke labels, and in the
case of Indian art music, into percussion syllables. Percussion tran-
scription is a sub-problem of the more general music transcription.
Transcription of a solo into symbolic syllables is an example of au-
dio segmentation at a fine grain level. Transcription of solo perfor-
mances are useful for percussion training. Since Indian art music
is mostly improvised, the need for such a fine grained transcrip-
tion system is limited, except for music education and performance
analysis applications. However, a transcription can be used to au-
tomatically discover percussion patterns and develop rhythm sim-
ilarity measures using such discovered patterns.
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The use of oral mnemonics is not unique to Indian art music.
Many music traditions around the world have developed particular
systems of oral mnemonics for transmission of the repertoire and
the technique. D. Hughes (2000) coined the term acoustic-iconic
mnemonic systems for these phenomena, and described their use
in different genres of traditional Japanese music. As he points out,
the core aspect of these systems is that the syllables are chosen for
the similarity of their phonetic features with the acoustic properties
of the sounds they are representing, establishing an iconic relation-
ship with them. Therefore, these systems are essentially different
from those of solmization (A. Hughes & Gerson-Kiwi, 2001, ac-
cessed June 2016), like for instance the syllables of solfège, of the
Indian svaras (notes) or the Chinese gongche notation, which are
nonsensical in relation to the acoustic phenomena they represent.

The use of the aforementioned systems for the transmission
of percussion is wide extended among many traditional musics.
D. Hughes (2000) mentions the shōga used for the set of drums of
Noh theatre. In Korea, the young genre of samul nori, a percussion
quartet of drums and gongs, draws on traditional syllabic mnemon-
ics for the transmission of the repertoire. Furthermore, these sys-
tems are also known to be used in Turkish traditional music and
Javanese music.

The benefits of using oral syllabic systems from an MIR per-
spective are both the cultural specificity of the approach and the
accuracy of the representation of timbre, articulation and dynam-
ics. The characterization of these percussion traditions need to con-
sider elements that are essential to them such as the richness of
their palettes of timbres, subtleties of articulation, and the differ-
ent degrees and transitions of dynamics, all of which is accurately
transmitted by the oral syllables.

As discussed earlier, the onomatopoeic percussion system in
Indian art music provides a language for percussion and hence is
themostmusicallymeaningful way to represent percussion patterns
of tabla and mridangam. Such a link between drum patterns and
natural language has been explored by Mauch and Dixon (2012).
However, there are some challenges to percussion transcription in
Indian art music. The syllables of tabla and mridangam are not
unique across all the schools. Since these syllables closely mimic
the timbre and dynamics of the drum stroke, the mapping between
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the strokes to syllables is not unique and one to one, with several
different syllables mapping to one stroke timbre. Further, within a
percussion solo, a syllabic pattern can also be loosely interpreted,
leading to further complexity.

Percussion pattern transcription can be formulated as a super-
vised learning task, using labeled training data to build syllable
stroke models, which can then be used to transcribe a test record-
ing. Percussion pattern discovery is an unsupervised task, aiming
to extract percussion patterns from audio and/or scores in an un-
supervised way, though some priors can be used. Music scores of
percussion solos (represented by syllables) are used for percussion
training. Such scores can be used for symbolic analysis of percus-
sion patterns, and used to discover percussion patterns from score
corpora, a task that much less complex than extracting them from
audio. We can then use these patterns and search for them in longer
percussion solo recordings. Such an approach with pattern discov-
ery from scores followed by pattern search in audio is explored
further in this dissertation.

A scientific study of Indian percussion instruments can be traced
back to the study of acoustics of Indian drums by Sir C. V. Raman
(Raman & Kumar, 1920; Raman, 1934). In the last decade, most
of the MIR work with Hindustani music percussion has focused on
drum stroke transcription, creative modeling for automatic impro-
visation of tabla and predictive modeling of tabla sequences. The
first attempt at tabla stroke transcription was done by Gillet and
Richard (2004a), with their more recent work mainly on sequence
modeling of rhythm sequences (Gillet & Richard, 2007). Parag
Chordia (Chordia, 2005a, 2005b) focused on automatic transcrip-
tion of strokes from solo tablamusic. He developed a new encoding
scheme for transcription of tabla bols called the **bol format based
on the humdrum syntax (Huron, 2002). Rae and Chordia (2010)
developed an automatic tabla improviser. Extending further, most
of work using tabla sequences has been in a predictive modeling
setup using the multiple viewpoint modeling framework (Chordia,
Sastry, & Albin, 2010; Chordia, Sastry, & Şentürk, 2011; Chordia,
Sastry, Mallikarjuna, & Albin, 2010; Sastry, 2012). Miron (2011)
explored segmentation and transcription of tabla strokes within the
context of tāl recognition in Hindustani music.

The work with Carnatic percussion has been limited so far. Mo-
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tivated by the work of Raman (1934), Anantapadmanabhan, Bel-
lur, and Murthy (2013) used a NMF based approach to decom-
position of mridangam strokes into its modes, and used them for
transcription. The work was further extended using cent-filterbank
based features to make the transcription approach independent of
the tonic (Anantapadmanabhan, Bello, Krishnan, &Murthy, 2014).
More recently, Kuriakose, Kumar, Sarala, Murthy, and Sivaraman
(2015) proposed an algorithm for mridangam stroke transcription
and evaluated it on an annotated dataset of mridangam solos (see
Section 4.2.4 for the dataset). Percussion pattern transcription and
discovery in both mridangam and tabla solos is one of the problems
addressed in the dissertation and is formulated more comprehen-
sively in Section 3.3.2.

3.2.4 Rhythm based audio segmentation
Segmentation problems refer to a broad category of problemswhich
involve the labeling segments of audio with a label/tag. Segmen-
tation can be done at several levels, based on different music con-
cepts. Segmentation problems are useful since they provide addi-
tional metadata to navigate through music collections (and within a
single recording), and to further develop similarity measures. Au-
dio segmentation is not the main focus of the dissertation, but sev-
eral rhythm related segmentation problems are briefly described for
completeness.

A music recording can be segmented based on the instruments
that are playing, a problem that can also be described as instrument
tracking in audio. In Indian art music, this is useful to segment
a piece into structural segments that are known to have specific
instruments, e.g. an ālāpana only has melodic instruments playing,
while a percussion solo only has percussion instruments. In the
context of Indian art music, Ranjani and Sreenivas (2015) recently
proposed an approach to track different instruments from amixture.

Segmentation can also be refer to segmenting a concert into the
pieces that were performed in it, which is useful for archival. Seg-
mentation at a structural level within a piece aims to segment the
piece into different sections of the piece, and is useful for naviga-
tion and similarity. An applause based segmentation of Carnatic
music concerts was proposed by Sarala and Murthy (2013), which
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was also extended to intra-piece segmentation into sections of a
piece. Hindustani khyāl music concert recordings are often pre-
sented as a single recording with multiple pieces, performed in pos-
sibly different lay and tāl. Segmenting Hindustani concert record-
ings based mainly on rhythm features using a modified tempogram
was proposed by Vinutha and Rao (2014), and structural segmenta-
tion using additional audio features was proposed by Verma, Vin-
utha, Pandit, and Rao (2015). A recent approach to estimate reli-
able tempo that aids in rhythmic segmentation was applied to sarōd
concerts by Vinutha, Sankagiri, and Rao (2016). A rhythm based
segmentation of such an audio recording is also useful for tāḷa track-
ing on the recording. Tempo or lay class based segmentation can
use a novelty function for onset detection and detect changes in
tempo to segment audio.

Segmentation of recordings at the time scale where we can de-
fine meaningful rhythmic phrases is relevant. The span of these
phrases are closely tied to the metrical positions of the tāḷa cycle.
These phrases can characterize the rhythm of the piece and would
be instrumental to measure rhythmic similarity between two pieces
of music. Given some form of automatic rhythm annotations, such
as the sama and the beats, extracting rhythmic patterns and rhythm
phrase boundaries in the music piece, e.g. ṭhēkā segmentation aims
to segment the piece at ṭhēkā changes. More generally, it encom-
passes the task of segmentation at rhythm phrase changes. Fur-
ther, though the tāḷa of a song is fixed, the naḍe could change
through the song, and naḍe based segmentation of audio would be
further useful for structure segmentation of the song. Rhythm in
both Carnatic and Hindustani music is highly improvised with a
possibility of wide variety of rhythms. However, there are regions
in the music piece with well defined structures that contain rhyth-
mic phrases characteristic of the tāḷa. Identifying these “regions
of stable rhythm” would be helpful in rhythm annotation tasks.
Further, these stable regions can be used to extract representative
rhythm templates for measuring rhythmic similarity.

3.2.5 Ontologies for rhythm concepts
Though not a topic addressed in the dissertation, ontology engineer-
ing (also called as knowledge engineering) aims to integrate human
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knowledge into computer systems to solve complex problems that
require human expertise (Brachman & Levesque, 2004; Gómez-
Pérez, Fernández-López, & Corcho, 2004; Berners-Lee, Hendler,
& Lassila, 2001). An ontology specifies concepts, attributes, re-
lations, constraints, and instances in a domain. Since music is a
complex and varied phenomenon with many perspectives, a cul-
tural domain specific ontology is needed to define the relationships
that pertain to a specific type of music.

Tāḷa ontologies are knowledge representations of rhythm. They
encode the relationships that exist among the rhythm concepts in In-
dian art music. Built using the knowledge ofmusic theory and prac-
tice, the ontologies would be useful for querying complex rhythmic
relationships between the pieces. The ontologies complement the
features derived from the data with music knowledge based rela-
tionships that can be used for defining rhythmic similarity, e.g. us-
ing a tāḷa ontology and the knowledge of cycle length, it might be
easier to identify the tāḷa from audio. Further, the ontologies will
also be useful to create specific models with priors obtained from
the ontology. In summary, ontologies can be built both for a direct
use in navigation and inference, and for building domain specific
machine learning algorithms.

Previous work on ontologies have been mainly on organizing
music and metadata (Swartz, 2002; Raimond, 2008). The Comp-
Music project aims to develop ontologies for all the music cul-
tures under study, some examples include the work by Koduri and
Serra (2013) and Koduri (2014). Building comprehensive ontolo-
gies needs expertise in music theory and ontology languages, an ef-
fort that is beyond the scope of this dissertation. In this dissertation
however, we use basic knowledge representations to incorporate
prior information in several rhythm analysis tasks.

3.2.6 Rhythm similarity measures
Rhythm similarity measures aim to use rhythm descriptors, meta-
data and segmentation information to provide an objective similar-
ity value between two phrases, two music pieces, or two parts of
the same piece. Developing culture-aware similarity measures is
one of the final goals of the CompMusic project, and rhythm simi-
larity is a major component of it. Since rhythmic similarity is not a
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very concrete notion, we need definitive and objective measures of
similarity, especially in a multicultural setting. This would neces-
sitate the use of knowledge based approaches for similarity model-
ing. An in-depth study of rhythm similarity measures is not a part
of the dissertation. However, some possible directions of research
towards the goal are discussed.

The onus of developing new similarity measures clearly lie on
the choice of metrics that correspond to rhythm similarity as per-
ceived through musically relevant concepts - based on tāḷa and the
rhythmic patterns. The tāḷa ontologies provide the empirical a pri-
ori music theory based models for similarity. As a data based ev-
idence for the prior from metadata and audio, we need novel mid-
level features obtained from both the automatic rhythm annota-
tions and the rhythmic phrases extracted using audio segmentation.
These mid-level features provide a semantic abstraction that is in
between thewell defined but less definitive signal level features and
the abstract high level music theory based features. These features
can then be used to define objective measures of rhythm similar-
ity. These features are a combination of the parameters computed
on the whole piece as well as those computed on each rhythmic
phrase that has been extracted from the piece. This way, we will
be able to define measures and compute similarity between rhyth-
mic phrases, between music pieces and between parts of the same
music piece.

With the automatic rhythm annotations, rhythm based segmen-
tation tasks can be used to extract characteristic patterns of the
piece. With the tāḷa information, we can then make a library of
rhythm patterns that can be used for measuring rhythmic similar-
ity. Since melodic and rhythmic phrases are closely tied to tāḷa
cycles, we can use the sama and beat markers to segment the au-
dio into relevant phrases. Each phrase can then be characterized
using the notes/strokes, duration and their salience. Further, using
intra-piece similarity between these phrases, we can aim to perform
structural segmentation of the piece.

With the rhythmic phrases extracted from each piece, we can
cluster the pieces based on empirical distance measures to form
families of phrases with phylogenetic relationships with some basic
characteristic phrases of a tāḷa. This would be the initial approach to
definingmeasures of similarity from data. We also define empirical
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distance measures based on music theoretic concepts such as tāḷa,
naḍe and lay classes. The measures obtained from data can be used
to further refine these empirical measures. We can also cross test
the data derived measures and empirical measures on data to eval-
uate and improve their performance. The empirical measures and
the data derived measures can be combined using the inference ob-
tained from ontologies and then used to define culture-aware mea-
sures of rhythm similarity. These culture-aware measures will fi-
nally have to be evaluated with listening tests on trained musicians
and both experienced and non-experienced listeners.

3.2.7 Symbolic music analysis
Symbolic music scores in Indian art music are not comprehensive
and are only indicative. They are seldom used in performance, but
used to a limited extent in music training and archival. There are no
standard notation systems for melody or percussion, in both Hin-
dustani and Carnatic music, which are widely accepted and used.

Rhythm related information encoded in scores of compositions
is limited to the tāḷa and akṣara or mātrā durations. In Carnatic mu-
sic, with a knowledge of the composition, the percussionist closely
follows the composition. Though the percussion accompaniment
is largely improvised, the score implicitly encodes the note dura-
tions and the set of possible ṭhēkās played during the composition.
Thus a rhythmic analysis on symbolic scores using note durations
and sama boundaries provide a good starting point for tasks such
as audio to score alignment, and structure similarity problems. The
syllabic scores of tabla and mridangam are useful to discover per-
cussion patterns from symbolic data, a problem that is further ad-
dressed.

Due to the large deviation of performed music from the indica-
tive scores, score analysis can at best be good starting points to-
wards rhythm analysis. Further, there is no comprehensive collec-
tion of machine readable music scores in Indian art music. We do
not therefore explicitly work on symbolic score analysis, but make
use of the available scores when they provide useful information.

Automatic score analysis research in the context of melody,
rhythm, and percussion for Indian art music is scarce. Symbolic
scores have been used for different melodic analyses by Koduri,
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Ishwar, Serrá, and Serra (2014) and Ranjani and Sreenivas (2013)
for Carnatic music, and by Srinivasamurthy and Chordia (2012a)
for Hindustani music vocal compositions, creating a machine read-
able Hindustani melodic music score dataset. As described earlier,
tabla bōl sequences have been used for predictive modeling of solo
tabla performances using the multiple viewpoint modeling frame-
work (Chordia, Sastry, Mallikarjuna, & Albin, 2010; Chordia, Sas-
try, & Albin, 2010).

3.2.8 Evaluation and Integration
The algorithms andmeasures developed as a part of the dissertation
need comprehensive evaluation. Most of the automatic rhythm an-
notation tasks are well defined have a ground truth that musicians
and listeners largely agree upon, and hence are suitable for auto-
matic evaluation using information retrieval measures. However,
they require substantial amount of good quality annotated datasets,
which need to be built. Percussion pattern transcription also can
be evaluated using measures borrowed for speech recognition re-
search. Audio segmentation for rhythmic phrases is not very well
defined and objective performance measures need to be defined,
based on their usefulness in defining rhythm similarity measures.

Rhythm similarity is the hardest to formulate and evaluate, since
a significant amount of human subjectivity is involved. The best
evaluation for rhythm similarity is through listening tests, with the
defined measures and the target audience. Listening tests are both
time consuming and need a lot of responses before reaching con-
crete conclusions. Since these measures are not concrete, the most
effective strategy would be to iteratively improve these measures
with feedback from listening tests, or use proxy tasks as a measure
of rhythm similarity.

Integration: Dunya (Porter et al., 2013) is a web-based soft-
ware application that lets users interact with an audio music col-
lection through the use of musical concepts that are derived from
a specific music culture. Dunya is the best showcase of research
resulting from this dissertation. Dunya can be used to visualize all
the automatically generated rhythm annotations and segmentation
of a music piece. This leads to an enriched experience in listening
with a better understanding of the underlying rhythmic processes
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in the piece. Further, Dunya provides an interface to integrate the
ontologies and data derived measures of similarity. It also provides
an interface to integrate rhythm similarity measures developed in
the thesis to other similarity measures (such as melodic and tim-
bral) to be developed in the CompMusic project, aiming to provide
a complete system for similarity based navigation of music collec-
tions. The rhythm similarity measures are a part of the suite of sim-
ilarity measures being developed as a part of CompMusic project.
These measures need to be combined to provide an overall simi-
larity measure, which will be the basis for navigation through the
music collections of Dunya.

3.2.9 Extensions to other music cultures
The algorithms in the dissertation are developed with the possibil-
ity of extensions to rhythm analysis of other music cultures within
the context of CompMusic project. Turkish makam music is based
on rhythmic cycles called usul. An usul is a rhythmic pattern of a
certain length that defines a sequence of strokes with varying ac-
cent. An usul is analogous to tāḷa, but is less complex than the tāḷa
system. Hence, most of the algorithms developed for Indian music
would extend to makam music. In Beijing opera, banshi represent
the metrical patterns to set lyrical couplets into music. A rhythmic
analysis of Beijing opera, such as tracking the banshi through an
aria is a task analogous to tāḷa tracking. Beijing opera percussion
shares the concept of a syllabic percussion system, which is sim-
pler and better defined than Indian art music. It is hence an ideal
pilot case for percussion transcription with syllabic representation
of percussion patterns, a topic of study in Chapter 6.

3.3 Thesis problems: A formulation
With an overview of the relevant research problems, some chal-
lenges in them, possible approaches and the state of the art for those
problems, a subset of those problems that are addressed in this dis-
sertation are formally defined and discussed. For these problems,
we formulate the research question, discuss any assumptions with
justification, discuss the terminology used, and give a basic idea
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about the approaches. The problems across Hindustani and Car-
natic music are quite analogous, but all the experiments are done
separately for each music culture - implicitly assuming that the mu-
sic culture of the piece is known a priori. A detailed discussion of
the approaches, experiments and results is presented in subsequent
chapters.

3.3.1 Meter inference and tracking
The main problem addressed in the thesis is meter analysis of au-
dio recordings. Meter analysis is an umbrella term used for the
problems of meter inference and meter tracking. To the best of
our knowledge, a comprehensive automatic meter analysis has not
been researched in Indian art music and hence the primary goal of
the dissertation is to propose and present meter analysis approaches
for Indian art music. In addition, we also ask the following research
question: to what extent does building culture specific models of
tāḷa and informed meter analysis (that provides additional informa-
tion about the tāḷa a priori into algorithms) improve performance
leading to more accurate tracking of the components of the tāḷa ?

To address the problem, we formulate tasks that can incorporate
additional known rhythm information - informed meter analysis.
The additional information provided to the algorithms is studied at
various levels, from the least informed meter inference to the most
informed meter tracking. We then build Bayesian models that can
explicitly incorporate higher level metrical information explicitly,
and study their effectiveness and applicability for meter analysis
in Indian art music. Finally, we use data-derived audio features
indicative of rhythmic events in music. All together, these three
focus points lead to data-driven informed Bayesian approaches for
meter analysis.

In the scope of the work presented in this dissertation, the mu-
sic culture to which the audio recording belongs to - Carnatic or
Hindustani music, is known a priori. The audio recordings are as-
sumed to have a percussion instrument playing, mainly the mri-
dangam in Carnatic music and tabla in Hindustani music. This im-
plies that only metered forms of music are analyzed, leaving out
the unmetered melodic improvisations (e.g. ālāpana). We restrict
our scope in Hindustani music to khyāl performances. The music
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recording is assumed to have been already segmented into pieces
that are in a single tāḷa, e.g. long recordingswithmultiple pieces are
segmented into pieceswith one tāḷa and presented to the algorithms.
We don’t make an assumption that the audio file presented contains
the beginning of the piece - any excerpt of audio of any length can
be presented for analysis, as long as it is in a single lay (Hindustani
music) and tāḷa. This assumption mainly stems from the limita-
tion of our approaches in handling changing tāḷas through a piece.
Most commercial releases already are segmented into pieces and
hence such an assumption a fair assumption. Even with large mu-
sic collections, amanual or a semi-automatic segmentation of audio
recordings into excerpts with a single tāḷa is less time consuming
than meter tracking, and hence such an assumption is also relevant.
We do not assume any restrictions on tempo range and its variabil-
ity in time over the piece.

We restrict our work to four popular tāḷas that span a majority
of recordings in Indian art music. For Carnatic music, we restrict
our work to ādi, rūpaka, miśra chāpu, and khaṇḍa chāpu tāḷas, and
for Hindustani music to tīntāl, ēktāl, jhaptāl, and rūpak tāl. Since
our approaches are supervised and data-driven, this restriction is
mainly due to the lack of availability of annotated training data in
less popular tāḷas - the rare tāḷas have very few examples available
even in large music archives. The performance of the approaches
is likely to extend to other tāḷas as well, provided we have suffi-
cient training data. From a practical standpoint, these four tāḷas
will cover a majority of compositions in both Carnatic and Hindus-
tani music, and hence such a restriction is justified.

Let a music recording z be represented as an audio signal f [n]
and can be reduced by frame-wise analysis to a feature vector se-
quence yk, for k = {1, 2, 3, · · · , K}, where K is the total number
of audio frames. Let the set of time instants of beats/mātrās labeled
with their position in the cycle be Bz, and the set of sama/sam time
instants be denoted as Sz. In addition, the set of akṣara pulses in a
Carnatic music recording be denoted as Oz. By this definition, we
haveSz ⊂ Bz ⊂ Oz. The beats are labeledwith their position in the
cycle. Given that the section (aṅga or vibhāg) boundaries are a sub-
set of the set of beats, the beat number and beat times can be used
to obtain the section boundaries in a straightforward way selecting
only those beats with labels corresponding to section boundaries.
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The time varying sequence of tempo value estimates for every
frame k, called a tempo curve can be measured in inter-beat/mātrā
interval τb,k (or equivalently 60/τb,k measured in beats/mātrās per
min), or as inter-sama/sam interval τs,k. For Carnatic music, tempo
can additionally be measured in inter-akṣara interval τo,k (or equiv-
alently 60/τo,k measured in akṣaras per minute). The approaches,
experiments and results for meter inference and tracking problems
are presented in Chapter 5.

3.3.2 Percussion pattern transcription and
discovery

The problem of discovery of percussion patterns in percussion solo
recordings is the second problem that is addressed in this thesis.
Not being the primary problem, it is explored to a lesser extent and
most experiments presented contain preliminary results, needing
further work. The approach we explore in this dissertation is to use
syllables to define, transcribe, and search for percussion patterns.
The goal in the dissertation is to test the effectiveness and relevance
of percussion syllables in representation and modeling of percus-
sion patterns for automatic transcription and discovery. Since these
syllables have a clear analogy to speech and language, we present
a speech recognition based approach to transcribe a percussion pat-
tern into a sequence of syllables.

We assume that the percussion solos have been segmented out
of the concert/performance, since structural segmentation is not a
problem that is addressed in this dissertation and some prior meth-
ods can be used for the task (Sarala & Murthy, 2013). We focus
only on tabla and mridangam solos in Hindustani and Carnatic mu-
sic, respectively, since they form a majority of the recordings. Per-
cussion solos with other instruments (e.g. khañjira, ghaṭam, and
mōrsiṅg) in Carnatic music is left for future work.

The syllabic percussion system in both Carnatic and Hindus-
tani music provides a musically relevant representation system for
percussion patterns. However, there are considerable differences
in names of syllables that represent a specific stroke timbre, which
vary across regions and schools. Hence, while using syllables for
representation, we aim to base percussion pattern definitions on
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stroke timbres and not on specific syllable names. To that effect, we
group syllables that represent similar timbre, and use these syllable
groups to represent percussion patterns. Though each syllable on its
own has a functional role, this timbral grouping is presumed to be
sufficient for discovery of percussion patterns. Though this leads
some form of reduced representation and not a rich representation
using the whole set of percussion syllables, it leads to a smaller
subset of syllables and hence can be trained with lower amount
of training data. Further, it makes the definition of patterns more
concrete from timbral perspective, removing ambiguities - similar
sounding patterns will have the same representation. The sylla-
ble grouping for mridangam and tabla, along with the datasets that
were created for percussion transcription research are presented in
Section 4.2.4 and Section 4.2.3, respectively. It is to be noted that
this syllable grouping is only for the ease of representation in the
task of automatic transcription and discovery.

Let the set of syllables be denoted as A = {A1, A2, · · ·ANs},
where each Aj is a syllable in the set and Ns is the total number of
syllables. A percussion pattern is not well defined and varied defi-
nitions can exist. In this work, we use a simple definition of a per-
cussion pattern - as a sequence of syllables and their time-stamps.
A patternA indexed by i is defined asAi = [a1, a2, · · · , aLi

], where
aj ∈ A and Li is the length of Ai. Though, for defining patterns,
it is important to consider the relative and absolute durations of the
constituent syllables, as well as the metrical position of the pattern
in the tāḷa, we use a simple definition and leave a more comprehen-
sive definition for future work.

The pattern transcription and discovery problem is addressed
using both audio and syllabic scores. From an analysis of symbolic
scores, we build a library P of query syllabic patterns of different
lengths, P = {A1,A2, · · ·ANa}, where Na is the number of query
patterns. Different strategies can be used to build such libraries of
percussion patterns, but we extract the most frequent patterns and
consider them as representative.

Given an audio recording f [n], it is first transcribed into a se-
quence of time-aligned syllables A∗ using syllable level timbral
models. Hence, A∗ = [(t1, a1), (t2, a2), · · · , (t∗, aL∗)], where tj
is the onset time of aj and L∗ is the length of the transcribed se-
quence. The task of syllabic transcription has a significant analogy
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to connected word speech recognition using word models. Sylla-
bles are analogous to words and a percussion pattern to a sentence
- a sequence of words.

Given a query pattern Aq of length Lq from the set P , we per-
form an approximate search for the pattern in the output syllabic
transcription A∗ to obtain the locations {t(·)q } of the patterns in the
audio recording. Syllabic transcription is often not exact and it can
have common transcription errors such as insertions, substitutions
and deletions, to handle which we need an approximate search al-
gorithm. An analogous task for this search in speech recognition
research is keyword spotting, where a known word (or a phrase) is
searched in a longer piece of speech recording (Wilpon, Rabiner,
Lee, & Goldman, 1990).

The whole approach can be formulated as a discovery prob-
lem with percussion solo recordings and percussion scores - to dis-
cover characteristic audio percussion patterns from these record-
ings. The characteristic patterns are first discovered automatically
from scores, and the audio training data is used to build timbremod-
els for the syllables. Given a new test recording, the timbre models
are used to transcribe the recording, and symbolic percussion pat-
terns are then searched in the transcribed score. The approaches,
experiments and results for both tabla andmridangam solos are pre-
sented in Chapter 6.

3.3.3 Datasets for research
Building such data corpora scientifically forMIR itself is a research
problem (Serra, 2014; Peeters & Fort, 2012). Setting up criteria for
selection and curation of music, and designing datasets for research
are to be done with objective parameters that can then be used to
measure the goodness of a corpus for a particular research task.
One of the primary aims of the CompMusic project is to build such
data corpora and make it available for research. Collection of good
quality data and easy access to both audio and metadata is essential
for reproducibility of research and to further the work presented in
the dissertation.

For developing algorithms, we focus on commercial quality au-
dio from CDs, with manually edited metadata. The CompMusic
audio collection is comprehensive for both Carnatic and Hindus-
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tani music and includes rhythm related metadata such as the tāḷa,
rhythmic form and the lay. For tasks such as automatic rhythm an-
notation and rhythm segmentation, we need rhythm annotated au-
dio data. Starting from the vast CompMusic collection, we build a
representative rhythm annotated sub-collection with beat and sama
level annotations. For rhythm based segmentation, time aligned
segment boundaries are needed as appropriate.

For both Carnatic and Hindustani music, we aim to build an
annotated audio sub-collection that representative of the real world
performance practices. The pieces chosen need to span all the tāḷas,
lay, and forms as needed for experiments. The datasets built in the
context of this thesis are further elaborated in Chapter 4. An in-
teresting corpus level cycle length rhythmic pattern analysis using
the rhythm annotated datasets is also presented in Section 4.2.1 for
Carnatic music and in Section 4.2.2 for Hindustani music. Interest-
ing musicological inferences can be drawn from such an analysis,
showing the potential of such a methodology.

A note on terminology and style

When clear from context, we use the commonly used Eurogenetic
music terminology and the specific Indian music terminology in-
terchangeably, primarily to enhance readability to an unfamiliar
reader. E.g., the term meter tracking and tāḷa tracking are equiv-
alent, the term syllable and bōl are interchangeable in Hindustani
music, a bar or a cycle is used to mean an āvartana or āvart of a
tāḷa. Such interchangeable use, however, assumes only the lim-
ited equivalence between these terms as defined in Section 2.2,
and hence the distinction still is to be clearly maintained. The al-
gorithms and datasets presented in the dissertation are all identified
using acronyms, but a consistency is maintained throughout the dis-
sertation.

3.4 In search of automatic rhythm
analysis methods

To conclude the chapter, we present an evaluation of the perfor-
mance of some existing approaches in MIR applied to automatic
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rhythm annotation tasks in Indian art music. Most of the content of
this section comes from the paper by Srinivasamurthy, Holzapfel,
and Serra (2014). The evaluation presented here is an early eval-
uation of the algorithms, and the goal of such an evaluation is not
to compare performance of these algorithms with the proposed ap-
proaches. The goal is to obtain insights into the nature of rhythm
in these cultures and the challenges to rhythm analysis, and to learn
about the capabilities and limitations of the existing approaches
when applied to Indian art music to further use these insights in
proposing novel approaches.

Many of these approacheswere not proposed to handle the rhyth-
mic structures encountered in Indian art music, and hence their per-
formance is at best sub-optimal. The algorithms and the data had
to be adapted to a common ground in which an evaluation could be
done. Hence, the evaluations are not strict and comprehensive, but
still provide insights into the approaches.

We focus on the problems that are not explicitly addressed in
subsequent chapters. In specific, meter estimation (cycle length
estimation) and downbeat tracking are evaluated here. These two
tasks however are implicitly addressed within the task of meter
inference in Chapter 5. Cycle length estimation task is used as a
proxy for tāḷa recognition. Downbeat tracking is an important fo-
cus of this dissertation, but we approach it together as a part of me-
ter analysis, while the approaches evaluated here attempt downbeat
tracking as an independent task.

If existing methods from MIR are capable of handling the fol-
lowing tasks in a satisfying way for Indian art music, we will be
able to automatically analyze the content of these music signals in
a well-structured way. However, as recent research results show
(Holzapfel et al., 2012), these tasks are far from being solved even
for the Eurogenetic forms of music, for which most methods have
been presented. We evaluate several approaches for each of the
three tasks and analyze which of those are promising in their results
and can provide directions for future work. It should be pointed out
here that there are algorithmic approaches which tackle more than
one task in a combined way (Klapuri et al., 2006, e.g.,). We will
report the accuracy of individual tasks for such systems in our ex-
periments as well. Further, it is also to be noted that we use only
audio and its associated metadata in these tasks, because none of
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the available methods are capable of combining audio processing
with the several other cues that were specified in Section 3.1.2.

Datasets for evaluation

The recordings used for evaluation in this section are a subset of the
bigger CompMusic collection that is described in detail in Chap-
ter 4. The CompMusic collection is a comprehensive collection
representative of Indian art music, and in the context of this sec-
tion, we use only a subset of the audio collection and the associated
rhythm metadata from commercially available releases. The audio
recordings are short clips extracted from full length pieces.

In order to evaluate the algorithms, we need collections of audio
recordings that are annotated in various aspects. For cycle length
recognition we only need high-level information about the tāḷa,
which decides the length of the tāḷa. For the tasks of downbeat
tracking however, we need low-level annotations that specify the
alignment between organized pulsation andmusic sample. Because
no such annotated music collection was available, a collection of
samples had to be manually annotated. As the process of manual
annotation is very time consuming, we decided to compile a bigger
set of recordings with high-level annotation and selected a smaller
set of recordings for the evaluation and downbeat tracking.

For both Hindustani and Carnatic music, recordings from four
popular tāḷas were selected for evaluation. The Carnatic dataset has
61, 63, 60, and 33 pieces in ādi, rūpaka, miśra chāpu, and khaṇḍa
chāpu tāḷas, respectively. The Hindustani dataset has 62, 61, 19,
and 15 pieces in tīntāl, ēktāl, jhaptāl, and rūpak tāl, respectively.
The Hindustani dataset has compositions in three lay classes - vi-
laṁbit, madhya and dr̥t. In the datasets, the pieces are 2 minute
long excerpts sampled at 44100 Hz. Though the audio recordings
are stereo, they are down-mixed to mono since none of the algo-
rithms evaluated in this study make use of additional information
from stereo audio and primarily work on mono. They include in-
strumental as well as vocal recordings. The tāḷa/tāl annotation of
these pieces were directly obtained from the accompanying edito-
rial metadata contained in the CompMusic collection.

The downbeat recognition task is evaluated only on Carnatic
music, with piecess from ādi and rūpaka tāḷa. Thirty two examples
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in ādi tāḷa and thirty four examples in rūpaka tāḷa of Carnatic music
have beat and sama instants manually annotated, which we refer to
as the Carnatic low-level-annotated dataset. Similar to the Carnatic
dataset, Carnatic low-level-annotated dataset also consists of two
minute long excerpts. All annotations were manually done using
Sonic visualizer (Cannam, Landone, & Sandler, 2010) by tapping
along to a piece and then manually correcting the annotations.

3.4.1 Cycle length estimation
The algorithms that are evaluated for cycle length estimation can
be divided into two substantially different categories. On one hand,
we have approaches that examine the characteristics in the surface
rhythm of a piece of music, and try to derive an estimate of cycle
length solely based on the pulsations found in that specific piece -
called self-contained approaches in this section. The self-contained
approaches evaluated are:

GUL algorithm: The meter estimation algorithm by Gulati et al.
(2012) that focused on music with a regular divisive meter. Fur-
ther, the algorithm only considers a classification into double,
triple, or a septuple meter. Therefore, we had to restrict the evalu-
ation to those classes that are based on such a meter. For Carnatic
music, ādi, rūpaka, and miśra chāpu tāḷas have a double, triple
and septuple meter respectively. In Hindustani music, tīntāl, ēk-
tāl, and rūpak tāl were annotated to belong to double, triple and
septuple meter classes.

PIK algorithm: The time signature estimation algorithm proposed
by Pikrakis et al. (2004). The approach presents two different
diagonal processing techniques and we report the performance
for both methods (Method-A and Method-B). As suggested by
Pikrakis et al., we also report the performance using a combina-
tion of the two methods.

KLA algorithm: Themeter analysis algorithm proposed byKlapuri
et al. (2006) can be used for cycle length recognition task by using
the bar, beat, and subdivision interval durations. Ideally, divid-
ing the inter-downbeat interval by the inter-beat interval should
present us with the bar length in beats. However, we explore the
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use of the bar-beat, beat-subdivision, and bar-subdivision inter-
val relations to estimate cycle length and evaluate how well they
coincide with the known cycle lengths of a piece.

SRI algorithm: Similar to KLA algorithm, the long term periodic-
ity and the sub-beat structure estimated by the algorithm proposed
by Srinivasamurthy et al. (2012) can be used for cycle length recog-
nition, and we explore the use of the bar-beat, beat-subdivision,
and bar-subdivision interval relations to estimate cycle length. For
the present evaluation, the tempo estimation in the algorithm, which
is adapted from Davies and Plumbley (2007), is modified to peak
at 90 BPM. Further, the tempo analysis was modified to include a
wide range of tempi (from 20 BPM to 180 BPM).

On the other hand, there are rhythmic similarity approaches that
can give an insight into the rhythmic properties of a piece by com-
paring with other pieces of known rhythmic content. To this end,
we will use the music collections that contain pieces with known
cycle lengths. There, we can determine the rhythmic similarity of
an unknown piece to all the pieces in our collection. We can then
assign a cycle length to the piece according to the observation of
the cycle lengths of other similar pieces. The approaches based on
rhythm similarity measures (called Comparative approaches in this
section) evaluated are:

OP algorithm: The approach proposed by Pohle et al. (2009) that
uses Onset Patterns (OP) as the rhythm similarity measure.

STM algorithm: The approach proposed byHolzapfel and Stylianou
(2011) that uses Scale TransformMagnitudes (STM) as the rhythm
similarity measure.

Evaluation criteria

For comparative approaches, we apply a 1-nearest-neighbor clas-
sification in a leave-one-out scheme, and report the accuracy for a
dataset. For self-contained approaches, we examine the accuracy
of the outputs obtained from various algorithms.

We note that the algorithms PIK and GUL consider short time
scales for cycle lengths and may track cycles of shorter length than
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the measure cycle. Hence, as explained in Section 3.1.1, the algo-
rithms may track meter at the subdivision level. As the algorithms
were not specifically designed to perform the task of cycle length
recognition as defined in Section 3.2.2, the evaluation has to be
adapted to the algorithms. For example, GUL classifies the audio
piece into three classes - duple, triple, and septuple meter. For this
reason, samples in the dataset are labeled as being duple, triple or
septuple based on the tāḷa for evaluating GUL. Rhythm classes in the
datasets that do not belong to any of these categories are excluded
from evaluation.

We are primarily interested in estimating the cycle length at
the āvart/āvartana level, a problem related to estimating the mea-
sure length in Eurogenetic music. However, as explained in Sec-
tion 3.1.1, cycles may exist at several metrical levels, with espe-
cially Carnatic tāḷas having equal subdivisions at lower metrical
levels in many cases. In connection with the fact that the measure
cycles might extend over a long period of time, these shorter cycles
contribute an important aspect to forming what can be perceived as
beats. For the evaluations on Carnatic music in this section, we
will refer to the subdivision meter and the cycle length as given in
Table 2.1. Since there is no well-defined subdivision meter in Hin-
dustani music, we will refer to only the cycle length in number of
mātrās from Table 2.3.

For KLA and SRI algorithms we report the accuracy of estimat-
ing the annotated cycle length at the CorrectMetrical Level (CML).
We also report the Allowed Metrical Levels (AML) accuracy con-
sidering cycle length estimates by the algorithms to be correct that
are related to the annotated cycle length by a factor of 2 or 1/2,
which is referred to as doubling or halving, respectively. For cycle
lengths which are odd we only consider doubling of cycle length
estimates in AML. Halving and doubling of cycle lengths can be
interpreted as estimating sub-cycles and supra-cycles related to the
annotated cycle length by a multiple, and can provide insights on
tempo estimation errors committed by the algorithms. Though the
tāḷa cycle is an important part of rhythmic organization, it is not
necessary that all phrase changes occur on the sama. In ādi tāḷa
for example, most of the phrase changes occur at the end of the 8
beat cycle, there are compositions where some phrase changes and
strong accents occur at the end of half-cycle or the phrase might
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Dataset Accuracy (%)

Carnatic (without khaṇḍa chāpu) 75.27
Hindustani (without jhaptāl) 49.30

Table 3.1: Performance of meter estimation using GUL algorithm.

span over two cycles (16 beats). Hence, in this case a cycle length
of 4, 8, or 16 would be acceptable, depending on the composition.
This needs to be considered when we evaluate the performance of
algorithms.

Self-contained approaches

Wedifferentiate between self-contained and comparative approaches,
and the self-contained approaches are divided into two types of
methods. The first type attempts to estimate the meter or the time
signature based on repetitions observed in the signals, while the
second type aims at tracking the pulsations related to those repe-
titions. We start our evaluations with methods that belong to the
first type (GUL, PIK), and evaluate then the tracking methods (KLA,
SRI).

Table 3.1 shows the accuracies for the two datasets, using the
types of rhythms that can be processed by the algorithm. The per-
formance on Carnatic music is better than the performance on Hin-
dustani music. A detailed analysis revealed that the performance on
rūpaka tāḷa is only 65.08%, which leads to considerable decrease
in the performance on Carnatic music. This poorer performance
can be attributed to the ambiguity between duple and triple meter
that is an intrinsic property of this tāḷa (see Section 3.1.1). Fur-
thermore, the performance on Hindustani music was found to be
poor on rūpak tāl and ēktāl while the performance on just tīntāl is
80.64%. This can be attributed to the fact that there are very long
cycles in Hindustani music in vilaṁbit lay, where the long subdivi-
sion time-spans restrains the algorithm from a correct estimation.
In most of such cases in ēktāl and rūpak tāl, the estimated meter is
a duple meter, which might be related to the further division of the
mātrās using filler strokes.

Pikrakis algorithm (PIK) looks for measure lengths between 2
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Dataset Method-A Method-B Combined

Carnatic 52.53 49.30 64.06
Hindustani 35.67 53.50 57.96

Table 3.2: Performance of cycle length estimation using PIK algorithm.
The Method-A and Method-B refer to the two methods suggested by
Pikrakis et al. (2004). All values are in percentage.

and 12. We report the accuracy accepting an answer if it is correct
at one of the metrical levels. For example, for ādi tāḷa and tīntāl,
4/4, 8/4, 4/8, 8/8 are all evaluated to be correct estimates, because
4 is the subdivision meter, and 8 is the length of the āvartana (cy-
cle length). Further, the algorithm outputs an estimation for every 5
second frame of audio, and therefore time signature of a song is ob-
tained by using a majority vote for a whole song. The performance
is reported as the accuracy of estimation (% correctly estimated)
for both the diagonal processing methods (Method-A and Method-
B) in Table 3.2. As suggested by Pikrakis et al., we also use both
methods to combine the decision and it improves the performance,
as can be seen from the table. The performance on Carnatic music
is better than that on Hindustani music. Though the performance
on Hindustani dataset is poor, further analysis shows that for tīntāl,
the accuracy is 74.19%. PIK algorithm performs better in the cases
where the meter is a simple duple or triple, while the performance
is worse with other meters. For example, miśra chāpu (length 7)
has an additive meter and the cycle can be visualized to be a com-
bination of 3/4 and 4/4. On that class the PIK algorithm estimates
most of miśra chāpu pieces to have either a 3/4 meter or a 4/4 meter.

To evaluate the tracking methods, we can compare the pulsa-
tions estimated by the algorithms with the ground truth annota-
tions at all three metrical levels to determine if the large possi-
ble tempo ranges cause the beat to be tracked at different levels of
the meter. From the estimates obtained from KLA for downbeats,
beats and subdivision pulses on a specific piece, we define the fol-
lowing time-spans: let Tc denote the median cycle duration (inter-
downbeat interval), Tb the median beat duration, and Ta the median
subdivision duration. We use a different terminology for these as
compared to τs, τb, and τo defined in Section 3.3.1 to highlight the
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CML (%) AML (%)
Dataset Lcb Lca Lba Lcb Lca Lba

Carnatic 11.06 8.76 4.15 34.10 45.16 25.81
Hindustani 0.00 25.40 - 45.22 46.50 -

Table 3.3: Accuracy of cycle length recognition using KLA algorithm.
Subdivision meter (Lba) in Hindustani music is not well-defined and
hence omitted.

CML (%) AML (%)
Dataset Lcb Lca Lba Lcb Lca Lba

Carnatic 3.69 0.46 6.45 40.55 50.69 14.28
Hindustani 14.64 9.55 - 43.95 55.41 -

Table 3.4: Accuracy of cycle length recognition using SRI algorithm.
Subdivision meter (Lba) in Hindustani music is not well-defined and
hence omitted.

difference that these approaches evaluated here were not specifi-
cally designed for Indian art music. We then compute the cycle
length estimates as,

Lcb =

⌊
Tc
Tb

⌉
Lca =

⌊
Tc
Ta

⌉
Lba =

⌊
Tb
Ta

⌉
where ⌊.⌉ indicates rounding to the nearest integer. We exam-
ine which of the three estimates more closely represents the cycle
length. We report both the CML and AML accuracy of cycle length
recognition. Table 3.3 shows the recognition accuracy (in percent-
age) of KLA algorithm separately for Lcb, Lca, or Lba as the cycle
length estimates.

We see in Table 3.3 that there is a large difference betweenCML
and AML performance, which indicates that in many cases tracked
level is related to the annotated level by a factor 2 or 1/2. We also
see that for Hindustani music, the cycle length is best estimated
using Lca, with the CML accuracy being very low or zero when
we use the other cycle length estimates instead. As discussed ear-
lier, in Hindustani music, the cycle length is defined as the number
of mātrās in the cycle. However, in the case of vilaṁbit pieces,
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the mātrās are longer than the range of the tatum pulse time-span
estimated by the algorithm and hence the performance is poor. In-
terestingly, we see a good performance when evaluated with Lcb
only with tīntāl, which resembles the Eurogenetic 4/4 meter, with
an AML accuracy of 88.71% in spite of the CML accuracy being
zero. In fact, it is seen thatLcb is always four in the case of a correct
estimation (AML), which is the estimate of the number of vibhāgs
in the tāl. Further, it follows from Klapuri et al. (2006, Figure 8)
that relation between neighboring levels in KLA cannot be larger
than 9, which implies longer cycle length estimates (as needed by
e.g. ēktāl or tīntāl) could possibly appear only in the Lca length.

The CML accuracy in Carnatic dataset with Lcb is better than
the other cycle length estimates, showing that KLA tracked correct
tempo in a majority of cases in Carnatic music. However, the per-
formance is poor because the algorithm often under-estimates the
cycle length. Further, in tāḷas of Carnatic music that have two
akṣaras in a beat (khaṇḍa chāpu and miśra chāpu), Lca is a better in-
dicator of the cycle length than Lcb, since akṣaras are closer to the
estimated subdivision duration. In general, Lba performs poorly
compared to Lca or Lcb, which is not astonishing since the cycle
lengths we are looking for are longer than the estimated subdivi-
sion meter. Summing up, none of the estimated meter relations can
serve as a robust estimate for the āvartana cycle length.

SRI algorithm estimates the cycle length at two metrical levels
using the beats tracked by Ellis (2007) beat tracker, one being at
the cycle level (bar length in beats), and the second at the beat level
(subdivision meter, or naḍe). The algorithm computes a list of pos-
sible candidates for the subdivision meter and bar length, ordered
by a score. We consider the top candidate in the list and compute
the cycle length estimates Lcb, Lba, and the Lca, assuming that the
beats tracked by Ellis beat tracker correspond the beat duration Tb.
Similar to KLA algorithm, we present the CML and AML accuracy
of performance in Table 3.4.

We see that there is large disparity between the CML and AML
accuracy, which indicates that the beat tracker and the correct beat
are related by a factor of 2 or 1/2. In general, the algorithm per-
forms poorly, which can be mainly attributed to errors in tempo and
beat tracking. The tempo estimation uses a weighting curve that
peaks at 90 beats per minute, which is suitable for Carnatic music,
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but leads to an incorrect estimation of cycle length for Hindustani
music. A beat tracking based approach as the SRI algorithm might
in general not be well suited for Hindustani music which often in-
cludes long cycles.

The poor performance on Carnatic music can in part be also at-
tributed to variation in percussion accompaniment, which is com-
pletely free to improvise within the framework of the tāḷa. Further,
the algorithm is based on the implicit assumption that beats at the
same position in a measure cycle are similar between various re-
currences of the cycle. For certain music pieces where there are no
inherent rhythmic patterns or the patterns vary unpredictably, the
algorithm gives a poorer performance. For Carnatic music, the al-
gorithm specifically estimates the subdivision-meter (naḍe), as the
number of akṣaras per beat. Using Lba as an estimate of the naḍe,
we obtain a reasonably good performance comparable to GUL with
an accuracy of 39.63% and 79.72% at CML andAML (of the subdi-
vision meter), respectively. We see that a reasonable performance
when demanding an exact numerical result for the meter (CML) is
only reached for the naḍe estimation in Carnatic music.

We observe that the duration of cycles in seconds is often esti-
mated correctly, but the presence or absence of extra beats causes
the estimated length in beats to be wrong. Ellis beat tracker is sen-
sitive to tempo value and cannot handle small tempo changes effec-
tively. This leads to addition of beats into the cycle and the cycle
length in many cases were estimated to be one-off from the actual
value, though the actual duration of the cycle (in seconds) was es-
timated correctly.

Comparative approaches

The comparative approaches are based on a description of period-
icities that can be derived from the signal without the need to per-
form meter tracking. Performances of the two evaluated methods,
OP and STM, is the average accuracy in a 1-nearest neighbor classi-
fication. It tells us how often a piece found to be most similar to a
test piece belongs actually to the same class of rhythm as the test
piece. The results of this classification experiment are depicted in
Table 3.5. It is apparent that the comparative approaches lead to
a performance significantly better than random, which would be
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Dataset OP (%) STM (%)

Carnatic 41.0 42.2
Hindustani 47.8 51.6

Table 3.5: Accuracy of cycle length recognition using comparative ap-
proaches

25% for our compiled four-class datasets. In fact, accuracies are in
the same range as the results of the PIK algorithm, with PIK per-
forming better on Carnatic music (64.1% instead of 42.2%). This
might indicate the potential of combining self-contained and com-
parative approaches, because none of the approaches evaluated for
cycle length recognition provide us with a sufficient performance
for a practical application.

3.4.2 Downbeat tracking
So far mainly music with a 4/4 time signature was focused upon in
evaluations, usually in the form of collections of Eurogenetic pop-
ular and/or classical music. Hence, we will address the questions if
such approaches can cope with the lengths of cycles present in our
data and if Indian art music poses challenges of unequal difficulty.
The approaches evaluated are:

DAV algorithm: The algorithm proposed by Davies and Plumbley
(2006) that assumes that percussive events and harmonic changes
tend to be correlated with the downbeat.

HOC algorithm: The algorithm proposed byHockman et al. (2012)
for downbeat tracking in hardcore, jungle, and drum and bass gen-
res of music.

It is apparent that both systems are conceptualized for styles of
music with notable differences to Indian art music. The system
by Davies and Plumbley (2006) is mainly sensitive to harmonic
changes, whereas Indian art music does not incorporate a notion
of harmony similar to the Eurogenetic concept of functional har-
mony. On the other hand, the system by Hockman et al. (2012)
is customized to detect the bass kick on a downbeat, which will
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Method ādi (8) rūpaka (3)

DAV 21.7 41.2
HOC-SVM 22.9 42.1
HOC 49.9 64.4

Table 3.6: Accuracy of downbeat tracking on Carnatic low-level-
annotated dataset. The cycle lengths are indicated in parentheses next
to the tāḷa. All values are in percentage.

not occur in the music we investigate here. As the latter system
contains this low-frequency feature as a separate module, we will
examine the influence of the low-frequency onsets and the regres-
sion separately our experiments.

Evaluation results

The evaluation metrics we use are the same as the continuity-based
approach applied by Hockman et al. (2012). This measure applies
a tolerance window of 6.25% of the inter-annotation-interval to the
annotations. Then it accepts a detected downbeat as correct, if

1. The detection falls into a tolerance window.
2. The precedent detection falls into the tolerance window of

the precedent annotation.
3. The inter-beat-interval is equal to the inter-annotation-interval

(accepting a deviation of the size of the tolerance window).
In Table 3.6, we depict the downbeat recognition accuracies (in per-
centage) for the two systems. The results are given separately for
each of the two tāḷas in the Carnatic low-level-annotated dataset.
The HOC algorithm was applied with and without emphasizing the
low-frequency onsets, denoted as HOC and HOC-SVM, respectively.
The DAV algorithm has the lowest accuracies for all presented tāḷas.
This is caused by the focus of the method on changes in harmony
that is related to chord changes - concepts not present in Indian
art music. However, the results obtained from HOC are more accu-
rate and allows for an interesting conclusions that taking onsets in
the low-frequency region into account improves recognition for all
contained rhythms. However, Carnatic music with its wide rhyth-
mic variations and its flexible rhythmical style seems to represent
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a more difficult challenge for downbeat recognition, with the range
of accuracy smaller than that reported for electronic dance music
(Hockman et al., 2012). Pieces without such phenomenal cues are
very likely to present both automatic systems and human listen-
ers with a more difficult challenge when looking for the down-
beat. Furthermore, the accuracies depicted in Table 3.6 can only be
achieved with known cycle length, and correctly annotated beats,
tasks that are already complex and cannot be achieved with a high
accuracy.

3.4.3 Discussion
We summarize and discuss the key results of the evaluation pre-
sented in this section. The results provide us with useful insights
to indicate promising directions for further work. At the outset, the
results indicate that the performance of evaluated approaches is not
adequate for the presented tasks, and that methods that are suitable
to tackle the culture specific challenges in computational analysis
of rhythm need to be developed.

Cycle length estimation is challenging in Indian art music since
cycles of different lengths exist at different time-scales. Although
we defined the most important cycle to be at the āvart/āvartana
level, the other cycles, mainly at the beat and subdivision level,
also provide useful rhythm related information. The evaluated ap-
proaches PIK and GUL estimate the subdivision meter and time sig-
nature. This is possible to an acceptable level of accuracy, when
restricting to a subset of rhythm classes with relatively simple sub-
division meters. Though they do not provide a complete picture of
the meter, they estimate the underlying metrical structures at short
time scales and can be used as pre-processing steps for estimating
longer and more complex cycles.

Both SRI and KLA aimed to estimate the longer cycle lengths
but show a performance that is inadequate for any practical appli-
cation involving cycle length estimation. Tempo estimation and
beat tracking have a significant effect on cycle length estimation,
especially in the self-contained approaches and also need to be ex-
plored further. The comparative approaches show that the applied
signal features capture important aspects of rhythm but are not suf-
ficient to be used standalone for cycle estimation. A combination
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of self-contained and comparative approaches might provide useful
insights into rhythm description of Indian art music through mutual
reinforcement.

Downbeat trackingwas explored using HOC and DAV algorithms.
The downbeat detectors evaluated here needed an estimation of
beats and the cycle length of the piece, which in themselves are
difficult to estimate. Since downbeat information can help in esti-
mating the cycle length and also beat tracking, a joint estimation of
the beat, cycle length, and downbeat might be a potential solution
since each of these parameters are mutually useful for estimating
the others. A combination of bottom up and top down knowledge
based approach which performs a joint estimation of these parame-
ters is to be explored further, using models that better represent the
underlying metrical structures.

Long āvart cycle is a significant challenge in Hindustani music.
For tāls with a very long cycle duration, estimating the correct met-
rical level is essential and methods that aim at tracking short time-
span pulsation will be not adequate due to the grouping structure of
the tāl. With a wide variety of rhythms, coupled with the perceptual
eḍupu, Carnatic music poses a difficult challenge in sama tracking.
Since there is no time adherence to a metronome, tempo drifts are
common and lead to small shifts in the sama instants.

For estimating the components of meter from audio, we need
signal descriptors that can be used to reliably infer the underlying
meter from the surface rhythm in audio. The availability of such
descriptors will greatly enhance the performance of automatic an-
notation algorithms. At present, we have suitable audio descriptors
for low level rhythmic events such as note onsets and percussion
strokes, but better descriptors for higher level rhythmic events are
necessary.

The inadequate performance of the presented approaches leads
us to explore the specific problems more comprehensively. It also
motivates us to explore varied and unconventional approaches to
rhythm analysis. Though we considered beat tracking, cycle length
estimation and downbeat tracking as separate independent tasks, it
might be better to consider a holistic approach and build a frame-
work of methods in which the performance of each element can be
influenced by estimations in another method. Ironically, we see
from the HOC algorithm, a downbeat detector for electronic dance
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music, that sometimes the most rigid specialization leads to good
performance on apparently completely different music. Thus, it
still remains an open question if we needmore specialist approaches,
or more general approaches that are able to react to a large vari-
ety of music. Generally, it appears desirable to have generic ap-
proaches, which can be adapted to a target music using machine
learning methods that can adapt flexibly to the underlying rhyth-
mic structures.

We discussed several important rhythm analysis tasks in the
chapter, opening up the area of rhythm analysis research in Indian
art music. While onlymeter analysis and percussion pattern discov-
ery problemswill be addressed in the subsequent chapters, the other
relevant problems are yet unexplored. The evaluation of the state
of art motivates us to explore culture-aware informed approaches
to these relevant rhythm analysis tasks, using well curated datasets
to test our approaches.





Chapter 4
Data corpora for

research

Data is a precious thing and will last longer than the
systems themselves.

Tim Berners-Lee

Computational data-driven approaches in MIR need data for devel-
oping algorithms and for testing approaches. A carefully designed
data collection is critical for the success of these approaches. To
develop such MIR approaches and advance knowledge, there is a
need for research corpora that can be considered authentic and rep-
resentative of the real world.

A research corpus is an evolving collection of data that is rep-
resentative of the domain under study and can be used for relevant
research problems. A good data corpus includes data from multi-
ple sources and can even be community driven. In the context of
MIR, since it is practically infeasible to work with the whole uni-
verse of music, a research corpus acts as a representative subset for
research. Hence, algorithms and approaches developed and tech-
nologies demonstrated on the research corpus can be assumed to
generalize to real world scenarios.

A test corpus or a test dataset is often a subset of the research
corpus, possibly with additional metadata for use in a specific re-
search task. In experiments, test datasets are used to develop tools,
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and to evaluate and improve their performance. Computational ap-
proaches are developed using these datasets and then extended to
the research corpus. Hence test datasets can even consist of syn-
thetic data that can be used for testing. Unlike a research corpus,
a test corpus is fixed for use in a specific experiment. A test cor-
pus can evolve, but each version of the dataset used in a specific
experiment is retained for better reproducibility of research results.

Building a research corpus itself is a research problem and has
been studied in many fields such as linguistics, speech and biomed-
ical signal processing (Wynne, 2005; Pan & Weng, 2002; Cohen,
Ogren, Fox, & Hunter, 2005). There are also many central repos-
itories of corpora such as the Linguistic Data Consortium1 (LDC)
by Liberman and Cieri (1998) for language resources and Phys-
ioBank2 for physiological signals. Other open repositories of data
such as MusicBrainz3 or Wikipedia4 themselves can be used as re-
search corpora for different MIR related tasks.

There have been efforts to compile large collections of music
related data, e.g. the Million Song Dataset5 (Bertin-Mahieux, El-
lis, Whitman, & Lamere, 2011) and AcousticBrainz6 (Porter, Bog-
danov, Kaye, Tsukanov, & Serra, 2015) which are good research
corpora for severalMIR tasks on contemporary popularmusic. How-
ever, despite the importance of a good research corpus in MIR,
the problem of building it has received little attention by the re-
search community. There have been no studies on a systematic
way to compile and curate a research corpus. Recently, Peeters and
Fort (2012) presented a unified way to describe annotated MIR test
datasets. Serra (2014) elucidated a set of design principles to build
and compile a research corpus, based on a set of primary consid-
erations such as Purpose, Coverage, Completeness, Quality and
Reusability. We use these primary considerations to develop a cor-
pus for MIR in Indian art music.

In this chapter, we address some of these concerns and focus
on a systematic compilation and analysis of data for research. The

1https://www.ldc.upenn.edu/
2http://www.physionet.org/physiobank/
3http://musicbrainz.org/
4http://www.wikipedia.org/
5http://labrosa.ee.columbia.edu/millionsong/
6https://acousticbrainz.org/

https://www.ldc.upenn.edu/
http://www.physionet.org/physiobank/
http://musicbrainz.org/
http://www.wikipedia.org/
http://labrosa.ee.columbia.edu/millionsong/
https://acousticbrainz.org/
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criteria and the evaluation methodology discussed here can be used
to systematically build representative and comprehensive research
corpora and test datasets. Our primary focus in the chapter would
be on Indian art music, while other test datasets that are relevant to
the thesis are also presented and discussed. The main aims of the
chapter are:

1. To describe and discuss the research corpora and the test datasets
(built for automatic rhythm analysis) that have been built as a
part of CompMusic, relevant for this thesis - emphasizing on
the research problems and tasks in which these datasets can be
used. In addition, other state of the art datasets that are used in
the thesis are also presented in brief for completeness.

2. To present a systematic framework and elucidate a set of design
principles to curate and compile a research corpus, and then use
those principles to illustrate amethodology tomeasure the good-
ness of the Carnatic and Hindustani research corpora.

3. To present corpus level statistical analyses of relevant rhythm
annotated datasets, to see if we can draw musically meaningful
inferences from those analyses.

As we described earlier, the research corpora are growing enti-
ties through continued efforts. Hence, the numbers and quantities
presented for the research corpora in this dissertation are only in-
dicative and are of secondary importance. We primarily emphasize
on presenting a scientific approach to develop a corpus and evaluate
its suitability for a particular set of research tasks. We emphasize on
methodologies that can be used to evaluate a corpus on the aspects
of coverage and completeness. Apart from the description of the
corpora, a methodology for evaluation of the corpus is an impor-
tant contribution of this chapter. We further note that in addition to
the sources described in this article, there are several other sources
that can be used for computational research in Indian art music, and
eventually could be a part of the corpus. Finally, whenever possi-
ble, in the spirit of open research and data, the research corpora and
the test datasets will be made accessible and available for further
work on these music cultures.
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4.1 CompMusic research corpora
Musics of theworldmight share some basic concepts such asmelody
and rhythm, but some salient aspects can be described completely
only by considering the specificities of that music culture. For such
studies, in the context of the CompMusic project, Serra (2011) em-
phasized the need for culture specific research corpora to develop
approaches that utilize the important aspects of the music culture.

Working with five music traditions of the world, the data-driven
methodologies in CompMusic primarily involve signal processing,
machine learning and semantic web technologies. Hence, there has
been a significant effort towards the design and compilation of re-
search corpora for relevant problems in the music cultures being
studied. This effort complements the primary aim of CompMusic,
which is to build culture-aware computational methodologies for
better exploration of music collections through meaningful music
concepts and automatically extracted melody, rhythm and semantic
descriptors.

In this chapter, we focus mainly on Indian art music. The Turk-
ish makam music research corpus has been presented in detail by
Atlı, Uyar, Şentürk, Bozkurt, and Serra (2014), while Caro and
Serra (2014) have described the Beijing opera (jingju) research cor-
pus comprehensively. We first discuss the criteria for creating re-
search corpora, and then describe the Carnatic and Hindustani mu-
sic research corpora. Most of the content in this section is from
papers by Serra (2014) and Srinivasamurthy, Koduri, et al. (2014),
and describe the collective efforts of the CompMusic team in cre-
ating CompMusic research corpora. Due to continued efforts in
building corpora, the research corpora grows continually. The num-
bers and analysis presented for the Indian art music research cor-
pora are correct as of June 2014.

4.1.1 Criteria for creation of research corpora
Serra (2014) listed the primary criteria for creating research cor-
pora, which are described in brief here.

Purpose A research corpus is built for a specific purpose and it
is necessary to define the research problem(s) and the ap-
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proaches that will be used. In CompMusic, we wish to de-
velopmethodologies to extractmusicallymeaningful features
from audio recordings, mainly related to melody and rhythm.
The research corpus has to be aligned to this purpose.

Coverage The coverage of a corpus is a measure of representative-
ness of the corpus with respect to several relevant concepts
that we wish to study. For our quantitative approaches, we
need sufficient samples of each instance for the data to be
statistically representative and significant. For rhythm anal-
ysis, we need to have audio recordings, plus appropriate ac-
companying metadata covering different rhythms and metri-
cal structures present in the music culture.

Completeness Completeness refers to the completeness of the ac-
companying metadata for each audio recording. Since the
research corpus contains data from many different sources,
ensuring completeness of audio and metadata is important
for its use in different research tasks.

Quality The data in the corpus needs to be good quality: the au-
dio needs to be well recorded and the accompanying meta-
data must be accurate, obtained from reliable sources and
validated by experts. The manual and automatic annotations
on audio files must be carefully done and verified indepen-
dently.

Reusability The reusability of research corpora and datasets and
reproducibility of research results is necessary for continued
and sustainable research using these datasets, leading to bet-
ter research corpora and research results. Reusability can be
addressed by emphasizing the use of open sources of infor-
mation, and providing a platform for easy access to data for
research.

All the music cultures under study can be described in terms of
musical concepts, music content and the music community. The
elements of the corpora can be associated with one or more of these
categories and hence useful for computational tasks in these three
aspects. Central to each corpus is an audio music recording with
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its metadata. We first present the Carnatic music research corpus
followed by the Hindustani music corpus. All audio in both the
corpora are stereo recordings sampled at 44.1 kHz and stored as
160 kbps mp3 files for ease of transmission and storage.

4.1.2 Carnatic music research corpus
TheCarnaticmusic research corpusmainly comprises audio record-
ings, associated editorial metadata, lyrics, scores, contextual in-
formation on music concepts, and community (social) information
from online music forums and other sources. Audio recordings,
editorial metadata, scores, and lyrics are the content used by sig-
nal processing and machine learning approaches. Contextual in-
formation and the forum discussions form the music concepts and
community information used for semantic analysis.

There are several considerations in collecting a corpus of Car-
natic music. Given that a kachēri (concert) is the natural unit of
Carnatic music and the main unit of music distribution, most com-
mercial releases are concerts, comprising of several pieces that are
improvised renderings of compositions. Vocal music is predomi-
nant and even in instrumental music, the lead artist aims to mimic
vocal singing. The rāga and tāḷa are the most important metadata
associated with a composition and hence a recording of the com-
position.

Based on these considerations, we consulted expert musicians
and musicologists, such as T M Krishna7 to arrive at a representa-
tive collection of Carnatic music audio. The main institutional ref-
erence for Carnatic music is the Madras Music Academy (MMA)8,
which is a premier institution dedicated to Carnatic music and or-
ganizes the annual music conference in Chennai, India. The annual
Carnatic music festival is one of the largest music festivals in the
world, with a significant part of the Carnatic music community tak-
ing part in it. The MMA has been driving scholarly research and
opinion in Carnatic music. The MMA has a panel of experts that
formulates the procedure and standards for the selection of artists
for the music festival. The MMA has been recording concerts and

7http://www.tmkrishna.com/
8http://musicacademymadras.in/

http://www.tmkrishna.com/
http://musicacademymadras.in/
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its archive can be considered a standard repository of Carnatic mu-
sic. However, the archive is not openly available online. We thus
followed the criteria followed by the MMA and procured the audio
from commercially available releases. Though Carnatic music is
spread across South India, the choice of MMA as an institutional
reference has an influence on the research corpus introducing a bias
towards the music scene in Chennai, India.

We wished to compile concerts over several generations of mu-
sicians. We started with the artists that have been performing at
the MMA in the last five years, and then expanded the collections
to include their teachers, and popular musicians of their era. The
record label Charsur9 specializes in Carnatic music and the core of
our audio collection is from their catalog of music concerts. Hence,
the corpus consists of audio from commercially available releases
from Charsur and other music labels.

The corpus presently consists of 248 releases (concerts) with
1650 audio recordings (346 hours) spanning 1068 compositions.
The number of other relevant music entities in the corpus is de-
scribed in Table 4.1 (column 2). Though we focus on concerts with
vocalist leads, we also have instrumental music releases (mainly
with vīṇā, violin, flute, saxophone, and mridangam as lead instru-
ments). The whole audio collection is commercial and hence easily
accessible, but is not open and distributable.

The editorial metadata associated with each release has been
stored and organized in MusicBrainz. The primary metadata asso-
ciated with each concert is the name of the release, the lead and
the accompanying artists, and the musical instruments in the con-
cert. For each audio recording contained in the release, the rele-
vant metadata are the artists performed on the track, the name of
the composition/s and the composer, rāga/s, tāḷa/s, musical form/s.
MusicBrainz assigns a unique MusicBrainz IDentifier (MBID) for
each entity in MusicBrainz, such as the artist, composer, instru-
ment, recording, work, and a release. This helps to organize the
metadata in an effective way. All the editorial metadata was entered
using Latin alphabet and a Latin transliteration (ISO/TC, 2001) was
used when the language of the release was not English. The rāga
and tāḷa information have been added as work attributes.

9http://www.charsur.com/

http://www.charsur.com/
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Since Carnatic music is predominantly a vocal music tradition,
lyrics play an important role. A significant part of the rendition of
a composition is improvised and hence the scores associated with
a composition are of limited use, nonetheless important. The lyrics
and scores, even though not time aligned to audio recordings, are
useful for computational analysis and hence we compiled them.
The primary languages in which Carnatic music is composed are
Telugu, Tamil, Kannada, Sanskrit, and Malayalam. There are sev-
eral published compilations of lyrics and scores for most of the cur-
rently performed compositions, such as the ones of the three most
popular composers in Carnatic music: Tyāgarāja, Śyāmā śāstri, and
Muttusvāmi dīkṣitar, in published compilations by T. K. Govinda
Rao (2009), T. K. Govinda Rao (2003b) and T. K. Govinda Rao
(2003a), respectively. However, these compilations are not ma-
chine readable and hence not amenable to computational analysis.

There are several good online open repositories for lyrics, such
as sahityam.net10, which is a wiki of lyrics of Carnatic composi-
tions. Sahityam.net is our primary source for machine readable
lyrics. It uses a uniform scheme for transliteration to Latin script
and hence has minimal ambiguity. In some cases, it provides addi-
tional commentary, references and example renditions. It currently
hosts lyrics for about 1820 compositions of Carnatic music. Ma-
chine readable scores are more difficult to access, with no compre-
hensive machine readable score compilations available. A set of
machine readable (HTML, Word) scores compiled by Dr. Shivku-
mar Kalyanaraman11 is the main source of machine readable music
scores.

The music community and music concepts related information
in the corpus form the primary source of information for semantic
analysis, and come from various reliable sources on the Internet.
Kutcheris.com12 is an up-to-date directory of artist biographies,
music venues, concerts and events. The category of Carnatic music
onWikipedia13 is a source of contextual information including mu-
sic concepts. We have added a lot of information and contributed
to Wikipedia with the help of experts. While Wikipedia acts as an

10http://www.sahityam.net
11http://www.shivkumar.org
12http://www.kutcheris.com
13http://en.wikipedia.org/wiki/Category:Carnatic_music

http://www.sahityam.net
http://www.shivkumar.org
http://www.kutcheris.com
http://en.wikipedia.org/wiki/Category:Carnatic_music
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Corpus Raaga.com Kutcheris Charsur

Rāgas 246 489 (42%) N/A 301 (68%)
Tāḷas 18 16 (100%) N/A 21 (85%)
Composers 131 598 (17%) N/A 256 (42%)
Artists 233 501 2978 264 (48%)

Table 4.1: Coverage of the Carnatic music research corpus. The number
in parentheses is the overlap measure in percentage. N/A indicates data
not available.

encyclopedia of music concepts providing linked information, on-
line music forums with discussions provide opinions from which
some of these links can be inferred. The rasikas.org14 Carnatic mu-
sic forum is an active forum of Carnatic music listener community
with useful discussions about Carnatic music concepts, concerts,
and performances. It is an important source of data useful for com-
munity profiling.

Coverage

A research corpus needs to be representative of the real world in the
concepts that are primary to the music culture. The aim of a cov-
erage analysis is to estimate the comprehensiveness of the corpus
with respect to another representative reference source. For Car-
natic music, a coverage analysis is presented for artists, rāgas, tāḷas,
and composers. For artist coverage, we chose to use Kutcheris.com
as the primary reference since it is up-to-date with current artists
and their performances. We use the last five years of their concert
listings. Many of the artists and the concerts listed onKutcheris.com
are from Chennai. Charsur’s release catalog provides information
about rāgas, tāḷas, composers and artists. Raaga.com15 is an Indian
music streaming service and its Carnatic channel is another refer-
ence for rāgas, tāḷas, composers and artists. However, Raaga.com
has many light music forms included in its Carnatic channel, some
of which we have consciously excluded from our corpus. Hence it
is to be noted that numbers and the analysis with Raaga.com will

14http://www.rasikas.org/
15http://www.raaga.com

http://www.rasikas.org/
http://www.raaga.com
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Figure 4.1: The number of artists by the number of their performances
in the Carnatic music research corpus

have an adverse influence from these other included music forms.
The data from each of these reference sources was crawled from
their online catalogues. The data from Raaga.com was crawled in
March, 2012 and from the others in March, 2014. We observed
that nearly every source had duplicate entities mostly arising due
to spelling variations (e.g. Tyagaraja, Tyaagaraaja). We merged
the duplicates by matching the longest common subsequence in
the strings and by using Damerau-Levenshtein distance (Damerau,
1964).

Table 4.1 shows the coverage of the Carnatic corpus in compar-
ison to the references. For eachmusic entity i, we define a coverage
measure called the overlap (Θ) as,

Θj
i =

∣∣ςci ∩ ςji ∣∣∣∣ςji ∣∣ (4.1)

where Θj
i is the overlapmeasure of the entity i with reference j, ςci

is the set of entities in the corpus, ςji is the set of entities in the refer-
ence, and |ς| denotes the cardinality of a set ς . An overlap of 100%
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Figure 4.2: Coverage of Carnatic artists. The ordinate is the overlap
value of the set of artists in corpus, compared against a set of artists in
Kutcheris.com who have performed in at least as many concerts as the
abscissa.

is achieved if all the elements in the reference set are present in the
corpus. Table 4.1 shows the overlap measure for rāgas, tāḷas and
composers for both Raaga.com and Charsur. We can see that there
is a good coverage of tāḷas and a satisfactory coverage of rāgas in
the corpus. A good coverage of tāḷas is necessary for rhythm anal-
ysis. The composer coverage with respect to Raaga.com is poor
since it includes the light music composers in its set of composers.

Among the 233 artists who have at least one recording in the
corpus, 74 are lead artists (lead vocal or lead instrumental). Further,
we have 28 violin accompanying artists and 48 unique percussion
artists in the corpus. The concerts listed by Kutcheris.com span the
whole year and all through the day. However, the evening concerts
are more recognized, and we took it to be a measure of popularity
of the artists. Moreover, the evening concerts during the music sea-
son lasting from November to January are ticketed. For a coverage
analysis, we thus consider three categories of artists: Artists-Set-
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1 (all the artists), Artists-Set-2 (artists who have performed in the
evening concerts, through the year) and Artists-Set-3 (artists who
have performed in evening concerts between November and Jan-
uary). Of the 2978 total artists present in Set-1 on Kutcheris.com
concert listings, there are 1814 artists in Set-2 and 1472 artists in
Set-3.

The number of concerts performed by each artist is also an in-
dicator of popularity. Though there are a large number of artists
in Kutcheris, we see that the distribution of the number of con-
certs they have performed is exponential (Figure 4.1), e.g. there
are only about 200 artists who have over 50 concerts. Hence to
capture this fact, we used the set of artists in the corpus and com-
puted the overlap as defined in Eq. 4.1 through different subsets of
artists in Kutcheris.com, sweeping over the number of concerts (at
least) they have performed.

Figure 4.2 shows the overlap, using a set of artists that have
performed at least as many concerts as the number shown on the
abscissa. The overlap is also shown for the three categories of
artists we discussed before. We can see that the overlap increases
as we consider more frequently performing artists and becomes
almost constant. The artists who have performed the most con-
certs are often the accompanying artists, and are few in number,
which explains why the overlap becomes a constant, when we dis-
count the overlap for more than 150 concerts. When we consider a
large number of concerts, the overlap values are unreliable since the
number of artists is less. In general, we can see that the overlap is
better for Artists-Set-2 than Artists-Set-1 and Artists-Set-3, show-
ing that the corpus has more representation of artists from evening
concerts round the year.

Completeness

In the context of this thesis, completeness of the corpus refersmainly
to the completeness of the associated metadata for each recording,
primarily from MusicBrainz. Even though carefully built, the edi-
torial metadata associated with a release and its recordings can be
incomplete. There are three possible reasons for incomplete meta-
data. Many releases do not provide all the required metadata on
the CD. In many releases, only the lead artist is listed, without the
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Accompanying metadata #Recordings % of total

Lead artist 1650 100.0
Accompanying artists 1221 74.0
Rāga 959 58.1
Tāḷa 917 55.6
Work (Composition) 989 59.9

Table 4.2: Completeness of the Carnatic music research corpus, showing
the number of recordings in which the corresponding metadata is avail-
able.

accompanying artists. It is seen very often that the composition
information is also absent on the CD cover. The second reason
is that the editorial metadata was not completely entered into Mu-
sicBrainz. This is sometimes seen with release and recording re-
lationships that were left incomplete by the person who added the
metadata. Further, since all the metadata, including the rāga/tāḷa
tags, are imported and linked automatically, there can be import er-
rors due to variations in transliterations and spelling. Multiplicity
of languages used in Carnatic music further adds to these incon-
sistencies. These import errors are the third reason for incomplete
metadata.

Missing metadata in MusicBrainz can only be completed by
manually adding the missing fields to MusicBrainz. However, we
are also exploring automatic metadata completion based on other
relations on the release or the recording, using semantic web ap-
proaches. The missing data due to transliteration errors have been
addressed to an extent by making curated lists of entities such as
rāgas and tāḷas, and using robust algorithms for matching and link-
ingmetadata. Despite significant efforts, there are many recordings
and releases that have incomplete metadata.

Table 4.2 shows the completeness of the recordings in the cor-
pus (as of June 2014), including all the three factors that result in in-
complete metadata. All the recordings have a lead artist, but about
a quarter of the recordings (429/1650) do not have accompanying
artist information. Rāga, tāḷa and work (composition) are listed
for about half the recordings. It is to be noted that these numbers
reflect only the recordings for which we were completely sure of
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the editorial metadata. There are several recordings that have the
required metadata but deemed incomplete since we could not ac-
curately match it to a related entity in the curated lists.

4.1.3 Hindustani music research corpus
Similar to Carnatic music, rāg and tāl are the fundamental music
concepts in Hindustani music and hence the main theme around
which the corpus has been built. Hindustani music tradition is
much more diverse and heterogeneous and thus presents a signif-
icant challenge to compile a good research corpus. Though vocal
music is predominant, instrumental music in Hindustani music is
also popular. The main focus in Hindustani music is on improvisa-
tion and compositions are short. For Hindustani music corpus we
focus on two important vocal music styles - dhrupad and khyāl.

There are many public and private institutions that have com-
piled large audio archives of Hindustani music. The primary of
them are the ITC Sangeet Research Academy (ITC-SRA), Sangeet
Natak Academy, and the All India Radio (AIR). Each of these insti-
tutions own thousands of hours of expert curated music recordings
that represent the real world performance practice.

ITC-SRA is a premier music academy of Hindustani music and
has taken up major efforts in the archival of music. Sangeet Natak
Academy is India’s national academy for music, drama and dance.
AIR is the largest public broadcaster in India and has a huge archive
ofHindustanimusic curated overmany decades. AIR awards grades
tomusicians and its archives can be considered as a reference. None
of these archives are publicly available and we compiled the audio
in our corpus using these collections as a reference. We consulted
expert musicians and musicologists, such as Dr. Suvarnalata Rao
at the National Centre for the Performing Arts (NCPA), Mumbai,
India to curate the audio collection in the corpus.

The audio collection in the corpus comprises commercially avail-
able music releases from several music labels. It mainly consists
of khyāl and dhrupad vocal music releases, though a significant
number of instrumental music releases are present. The corpus
presently has 233 releases with a total of 1096 recordings (300
hours). As with Carnatic music, the editorial metadata associated
with each release is stored in MusicBrainz.
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Corpus ITC-SRA Swarganga

Artists 360 240 (19%) 629 (14%)
Rāgs 176 185 (48%) 534 (13%)
Tāls 32 N/A 59 (37%)
Works (Bandiś) 685 N/A 1957

Table 4.3: Coverage of the Hindustani music research corpus. The num-
ber in parentheses is the overlap measure in percentage. N/A indicates
data not available.

The metadata associated with each release is the name of the
release, the lead and the accompanying artists, and the musical in-
struments in the concert. For each audio recording in the release,
the relevant metadata are the artists performed on the track, the
name of the composition/s (bandiś) and the composer/s (if com-
posed), rāg/s, tāl/s, lay/s (tempo class), form/s, and section/s. All
the editorial metadata was entered using Latin alphabet, following
a uniform transliteration scheme to maintain consistency.

Hindustani music is mainly improvised and hence lyrics and
scores are not very relevant for computational analysis. Bhatkhande
(1990) and Jha (2001) compiled lyrics and scores of bandiśes us-
ing a standardized notation for Hindustani music. However, they
are not available in a machine readable form, though a small col-
lection of scores from these books are available in machine read-
able Humdrum format (Srinivasamurthy&Chordia, 2012b). Swar-
ganga Music Foundation16 has a good archive of rāgs, tāls and
bandiśes. The category of Hindustani music on Wikipedia17 is a
source of contextual information including music concepts of Hin-
dustani music.

Coverage

The methodology followed for the coverage analysis of Hindustani
music is the same as followed for Carnatic music. We present the
coverage analysis for artists, rāgs, tāls and compositions. The cov-
erage analysis for Hindustani music is more complex than Carnatic

16http://www.swarganga.org/
17http://en.wikipedia.org/wiki/Category:Hindustani_music

http://www.swarganga.org/
http://en.wikipedia.org/wiki/Category:Hindustani_music
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Accompanying metadata # Recordings % of total

Lead Artist 1096 100.0
Accompanying artist 658 60.0
Rāg 960 87.6
Tāl 627 57.2
Work (Bandiś) 576 52.5

Table 4.4: Completeness of the Hindustani music research corpus show-
ing the number of recordings in which the corresponding metadata is
available.

music. This can be attributed to the heterogenous nature of the
music repertoire, and to the lack of dedicated recording labels like
Charsur in the case of Carnatic music. For each of these entities we
choose two main references, ITC-SRA and Swarganga.

Unlike Carnatic music, the unit of music distribution in Hindus-
tani music is not often a concert. Further, it is geographically spread
over the Indian subcontinent and hence there is no single repository
of Hindustani music performances, such as Kutcheris.com for Car-
natic music. Therefore, it is challenging to do a comprehensive
artist coverage analysis like the one presented for Carnatic music.

Table 4.3 shows the coverage of the Hindustani corpus. We see
that the corpus and the chosen references have comparable number
of entities, but the overlap is less. This is primarily because we
mainly focused on recordings made in last 20-30 years to ensure
good recording quality and to reflect current performance practices.
On the other hand both the references focus primarily on archiv-
ing Hindustani music and hence consist of several generations of
artists, infrequent rāgs and tāls, and a more comprehensive list of
compositions. Further, the Hindustani corpus is mainly composed
of vocal music recordings with a focus on only two styles, khyāl
and dhrupad. The reference archives additionally include instru-
mental music and several other styles of Hindustani music.

Completeness

The completeness of the editorial metadata for Hindustani music
(as of June 2014) is shown in Table 4.4. We see that the edito-
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rial metadata for all the recordings at least includes the lead artist,
and for more than half of the collection, the accompanying artists
(658/1096). Roughly 90% of the corpora is annotated with the
rāg label and more than half with the tāl label. Work or compo-
sitions (bandiś) labels are present for nearly half of the collection
(576/1096). Ālāp performances in Hindustani music are not com-
positional works, and hence should be discounted while assessing
the completeness of work metadata. But due to the unavailabil-
ity of such an information (ālāp labels), ālāp performances are also
included in assessment and hence work completeness is an under-
estimate.

An important concern in research is the reproducibility of the
experiments, which necessitates a corpus accessible to the research
community. When possible, we emphasize the use of open repos-
itories of information such as MusicBrainz and Wikipedia. The
releases in the Carnatic18 and Hindustani19 corpora have been or-
ganized into collections in MusicBrainz. For audio, we use easily
accessible commercial recordings. Further, the test datasets and the
derived information such as annotations and extracted features are
openly available20. In CompMusic, have developed a tool for navi-
gating through music collections calledDunya (Porter et al., 2013),
which also acts as the central permanent online repository to store
the metadata, audio, annotations and research results. Dunya is
open source and provides an API for accessing these data.

4.1.4 Creative Commons music collections
The audio in the Carnatic and Hindustani research corpora are com-
mercial releases. Though easily accessible, they cannot be dis-
tributed openly. Since there are no open repositories of quality au-
dio, one effort of CompMusic is to create and open audio collection
released under Creative Commons licenses (CC BY-NC 4.0). In
addition to the audio, the collection has carefully curated editorial
metadata, and semi-automatically extracted melody and rhythm re-

18Carnatic collection: http://musicbrainz.org/collection/
f96e7215-b2bd-4962-b8c9-2b40c17a1ec6

19Hindustani collection: http://musicbrainz.org/collection/
213347a9-e786-4297-8551-d61788c85c80

20CompMUsic corpora: http://compmusic.upf.edu/corpora

http://musicbrainz.org/collection/f96e7215-b2bd-4962-b8c9-2b40c17a1ec6
http://musicbrainz.org/collection/f96e7215-b2bd-4962-b8c9-2b40c17a1ec6
http://musicbrainz.org/collection/213347a9-e786-4297-8551-d61788c85c80
http://musicbrainz.org/collection/213347a9-e786-4297-8551-d61788c85c80
http://compmusic.upf.edu/corpora
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lated annotations. Due permissions from artists have been secured
for redistribution. The audio will be hosted on Internet Archive21,
with both the audio and associated metadata and annotations avail-
able through the Dunya API. The open music collections are grow-
ing collections with new releases being added, and hence the num-
bers in this section (correct as of June 2016) are approximate and
indicative.

The Carnatic Creative Commons music collection (CMDo)22 is a
collection of 20 vocal Carnatic concerts (with more releases being
added) with 197 tracks and over 41 hours of music by professional
Carnatic musicians. The audio in the CMDo collection was profes-
sionally recorded in multi-track at 44.1kHz sampling rate at Arkay
Convention Center, Chennai, India, and mastered professionally.
The pieces from the concerts were split into individual recordings
and released together as an album. Each recording has the follow-
ing accompanying metadata: rāga, tāḷa, artists, composer, com-
position, and form. It has manually annotated time aligned char-
acteristic melodic phrases and sections. In addition, it has semi-
automatically extracted tonic, vocal pitch track, tempo, and time
aligned sama annotations. The collection has about 16880 sama
annotations that can be used for meter analysis.

The Hindustani Creative Commons music collection (HMDo)23
is a collection of 36 vocal Hindustani music albums (with more re-
leases being added) with 108 tracks and over 43 hours of music by
professional Hindustani musicians, sourced from personal collec-
tions of musicians. The audio in the HMDo collection are stereo mp3
tracks sampled at 44.1 kHz. The tracks procured from personal col-
lections have been grouped into musically meaningful short com-
pilations and then released as albums. Each recording in the col-
lection has the following accompanying metadata: rāg, tāl, lay/s,
artists, form, and if applicable, the bandiś and the composer. It has
manually annotated time aligned characteristicmelodic phrases and
lay based sections. In addition, it has semi-automatically extracted
tonic, vocal pitch track, tempo, and time aligned sam annotations.

21www.archive.org
22Carnatic CC collection: https://musicbrainz.org/collection/

a163c8f2-b75f-4655-86be-1504ea2944c2
23Hindustani CC collection: https://musicbrainz.org/collection/

6adc54c6-6605-4e57-8230-b85f1de5be2b

www.archive.org
https://musicbrainz.org/collection/a163c8f2-b75f-4655-86be-1504ea2944c2
https://musicbrainz.org/collection/a163c8f2-b75f-4655-86be-1504ea2944c2
https://musicbrainz.org/collection/6adc54c6-6605-4e57-8230-b85f1de5be2b
https://musicbrainz.org/collection/6adc54c6-6605-4e57-8230-b85f1de5be2b
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The collection has about 11260 sam annotations that can be used
for meter analysis.

The Creative Commons collections are useful for several MIR
tasks. From a rhythm analysis perspective, the collection is useful
for meter inference and tracking, rhythmic and percussion pattern
analysis, and rhythm based structural segmentation. To the best of
our knowledge, this collection is the largest tāḷa and sama annotated
music collection of Indian art music.

4.2 Test datasets
The test corpora (or test datasets) are designed for specific tasks
and contain additional information such as annotations and derived
data. They are useful for various melody and rhythm analysis tasks.
There are several test datasets for different music cultures built
within CompMusic24, while we describe only those test datasets
that are useful in rhythm analysis tasks. We describe each dataset
briefly emphasizing the primary research task they can be used for.

4.2.1 Carnatic music rhythm dataset
The Carnatic Music Rhythm dataset (CMRf)25 is a rhythm annotated
test corpus for many automatic rhythm analysis tasks in Carnatic
Music (Srinivasamurthy & Serra, 2014). The dataset consists of
audio excerpts from the Carnatic research corpus, manually anno-
tated time-aligned markers indicating the progression through the
tāḷa cycle, and the associated tāḷa related metadata.

CMRf dataset is described in Table 4.5, showing the four tāḷas
and the number of pieces for each tāḷa. The dataset has pieces in
four popular tāḷas that encompass a majority of current day Car-
natic music performance. The pieces include a mix of vocal and
instrumental recordings, recent and old recordings, and span a wide
variety of forms. All pieces have a percussion accompaniment,
predominantly mridangam. There are also several different pieces
by the same artist (or release group), and multiple instances of
the same composition rendered by different artists. Each piece is

24http://compmusic.upf.edu/datasets
25http://compmusic.upf.edu/carnatic-rhythm-dataset

http://compmusic.upf.edu/datasets
http://compmusic.upf.edu/carnatic-rhythm-dataset
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Tāḷa #Pieces Total Duration Tf #Ann. #Sama
hours (min)

Ādi 50 4.21 (252.78) 4m51s 22793 2882
Rūpaka 50 4.45 (267.45) 4m37s 22668 7582
Miśra chāpu 48 5.70 (342.13) 6m35s 54309 7795
Khaṇḍa chāpu 28 2.24 (134.62) 4m25s 21382 4387

Total 176 16.61 (996.98) 5m4s 121602 22646

Table 4.5: CMRf dataset showing the total duration and number of anno-
tations. #Sama shows the number of sama annotations and #Ann. shows
the number of beat annotations (including samas). Tf indicates the me-
dian piece length in the dataset (m and s indicate minutes and seconds,
respectively)

Tāḷa τs ± σs τo ± σo [τs,min , τs,max]

Ādi 5.34 ± 0.723 0.167 ± 0.023 [2.88, 7.07]
Rūpaka 2.13 ± 0.239 0.178 ± 0.020 [1.21, 3.10]
Miśra chāpu 2.67 ± 0.358 0.191 ± 0.026 [1.63, 3.65]
Khaṇḍa chāpu 1.85 ± 0.284 0.185 ± 0.028 [0.91, 2.87]

Table 4.6: Tāḷa cycle length indicators for CMRf dataset. τs and σs indi-
cate the mean and standard deviation of the median inter-sama interval
of the pieces, respectively. τo and σo indicate the mean and standard
deviation of the median inter-akṣara interval of the pieces, respectively.
[τs,min , τs,max] indicate theminimum andmaximumvalue of τs and hence
the range of τs in the dataset. All values in the table are in seconds.

uniquely identified using the MBID of the recording. The pieces
are mp3 stereo recordings, and sampled at 44.1 kHz. The audio is
also available as downmixedmonoWAV files for experiments. The
audio files are full length pieces or clips extracted from full length
pieces. Of the 176 audio files, 120 contain full length pieces.

There are several annotations that accompany each excerpt in
the dataset. The primary annotations are audio synchronized time-
stamps indicating the different metrical positions in the tāḷa cy-
cle - the sama (downbeat) and other beats shown with numerals
in Figure 2.1. The annotations were created using Sonic Visual-
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Tāḷa # Pieces Total Duration # Ann. # Sama
hours (min)

Ādi 30 0.98 (58.87) 5452 696
Rūpaka 30 1.00 (60.00) 5148 1725
Miśra chāpu 30 1.00 (60.00) 8992 1299
Khaṇḍa chāpu 28 0.93 (55.93) 9133 1840

Total 118 3.91 (234.80) 28725 5560

Table 4.7: CMR dataset showing the total duration and number of anno-
tations. #Sama shows the number of sama annotations and #Ann. shows
the number of beat annotations (including samas).

Tāḷa τs ± σs τo ± σo [τs,min , τs,max]

Ādi 5.32 ± 0.868 0.17 ± 0.027 [2.88, 7.07]
Rūpaka 2.12 ± 0.225 0.18 ± 0.019 [1.40, 3.10]
Miśra chāpu 2.81 ± 0.272 0.20 ± 0.019 [2.03, 3.65]
Khaṇḍa chāpu 1.87 ± 0.290 0.19 ± 0.029 [1.00, 2.84]

Table 4.8: Tāḷa cycle length indicators for CMR dataset. τs and σs indi-
cate the mean and standard deviation of the median inter-sama interval
of the pieces, respectively. τo and σo indicate the mean and standard
deviation of the median inter-akṣara interval of the pieces, respectively.
[τs,min , τs,max] indicate theminimum andmaximumvalue of τs and hence
the range of τs in the dataset. All values in the table are in seconds.

izer (Cannam et al., 2010) by tapping to music and manually cor-
recting the taps. The annotations have been verified by a profes-
sional Carnatic musician. Each annotation has a time-stamp and
an associated numeric label that indicates the position of the beat
marker in the tāḷa cycle. In addition, for each excerpt, the tāḷa of
the piece and eḍupu (offset of the start of the piece, relative to the
sama) are recorded. The possibly time varying tempo of a piece
can be obtained using the beat and sama annotations.

The total duration of audio in the dataset is over 16.6 hours,
with 121062 time-aligned beat annotations. The median length
of a piece is about 5 minutes in the dataset. Table 4.6 shows a
basic statistical analysis of the tāḷa cycle length indicators in the
dataset, which is useful to understand the tempo characteristics and
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Figure 4.3: A histogram of the inter-sama interval τs in the CMRf dataset
for each tāḷa. The ordinate is the fraction of the total count corresponding
to the τs value shown in abscissa. The median τs for each tāḷa is shown
as a red dotted line.

the range of the metrical cycle lengths in the dataset. Ādi tāḷa is the
longest tāḷa in the dataset and hence has the highest τs among all
the tāḷas. Despite no notated tempo, we can see from the values of
the median inter-akṣara interval, τo and its standard deviation that
the tempo in Carnatic music does not vary much across the tāḷas.
The range of τs values show that a wide range of cycle durations
that are present in Carnatic music pieces. The shortest cycle in the
dataset is less than second long, while the longest cycle is over 7
seconds long.

A representative subset of the CMRf dataset is also compiled as
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Figure 4.4: A histogram of the inter-beat interval τb in the CMRf dataset
for each tāḷa. The ordinate is the fraction of the total count corresponding
to the τb value shown in abscissa. The median τb for each tāḷa is shown
as a red dotted line.

the CMR dataset, with two minute excerpts of pieces in CMRf (or the
full piece if the piece is shorter than 2 minutes). These short ex-
cerpts additionally contain all the annotations of the full dataset,
including time aligned sama and beat annotations. The smaller
CMR dataset will be useful for faster testing of approaches and al-
gorithms.

The CMR dataset is described in Table 4.7, showing the four tāḷas
and the number of pieces for each tāḷa. The total duration of audio
in the dataset is about 4 hours, with 28725 time-aligned beat anno-
tations. Table 4.8 shows a basic statistical analysis of the tāḷa cycle



138 Data corpora for research

0.8 1 1.2

0

0.05

0.1

0.15

0.2

(a) Ādi
0.8 1 1.2 1.4

0

0.05

0.1

0.15

0.2

0.25

(b) Rūpaka

0.8 1 1.2

0

0.05

0.1

0.15

(c)Miśra chāpu
0.7 0.8 0.9 1 1.1

0

0.05

0.1

0.15

(d) Khaṇḍa chāpu

Figure 4.5: A histogram of the median normalized inter-sama interval τs
in the CMRf dataset for each tāḷa. The ordinate is the fraction of the total
count corresponding to the normalized τs value shown in abscissa.

length indicators in the CMR dataset, which are similar to the indi-
cators of CMRf dataset shown in Table 4.6, showing that CMR dataset
is a representative subset of CMRf dataset.

The tempo values are not notated in Carnatic music, and the
pieces are not played to a metronome. Hence, in addition to the
median values tabulated in Table 4.6 we present further analysis of
the inter-sama interval (τs) and inter-beat interval (τb) for each tāḷa
over the whole CMRf dataset. A histogram of τs and τb for each tāḷa
is shown in Figure 4.3 and Figure 4.4 respectively. This shows the
distribution of cycle lengths in the dataset over the whole range of
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Figure 4.6: A histogram of the median normalized inter-beat interval τb
in the CMRf dataset for each tāḷa. The ordinate is the fraction of the total
count corresponding to the normalized τb value shown in abscissa.

τs for each tāḷa, around the median value. Despite the large range
of τs values, the distribution in Figure 4.3 and Figure 4.4 show that
the tempo often is limited to a small range of values. Though the
musicians are free to choose any tempo, we empirically observe
that they tend to choose a narrow range of tempo.

To illustrate andmeasure the time varying tempo ofmusic pieces
in Carnaticmusic, we normalize all the τs and τb values in a piece by
the median value of the piece to obtain median normalized τs and
τb values, a histogram of which is shown for CMRf dataset in Fig-
ure 4.5 and Figure 4.6, respectively. These histograms are centered
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around 1 since they are normalized by the median, and the spread
of these histograms around the value of 1 is a measure of deviation
of tempo from the median value. From the figures, it is clear that
the tempo is time varying but with less than about 20% maximum
deviation from the median tempo of the piece for all tāḷas.

Rhythm patterns in CMRf and CMR datasets

With a sizeable annotated corpus of Carnatic music, we can do cor-
pora level analysis of patterns in rhythm and percussion. The idea is
to showcase these patterns as a potential application of corpus level
analysis, while showing their utility for meter tracking in MIR, and
for performance analysis and comparative analysis in musicology.

The aim here is not to seek all musicological insights from data,
but to illustrate the possibilities of a corpus level analysis data, and
how such analysis tools can help aid and advance musicology. The
MIR applications of such datasets is the primary goal of the thesis
and discussed in subsequent chapters. Hence, an example of cor-
pus level musicological analysis is presented in this chapter, which
amounts to a performance analysis ofmusic in current practice from
audio recordings.

These analyses can corroborate severalmusicological inferences,
and can provide additional insights into the differences between
musicology, music theory and music practice. At the outset, it is
necessary to note that the insights we discuss and conclusions we
draw are limited by the available annotated dataset, and hence need
further validation. It is however useful to focus on the methodol-
ogy, which can aid musicologists and engineers to build systems
that use these patterns for different analyses.

The rhythm patterns are computed using a spectral flux feature
(called LogFilt- SpecFlux as proposed by Böck et al. (2012) and
used further by Krebs et al. (2013)) that is used for detecting musi-
cal onsets in audio recordings. The STFT of the audio signal with
a window size of 46.4 ms (2047 samples of audio at a sampling
rate of 44.1 kHz), DFT size of 2048 and hop size of 20 ms is com-
puted from audio. The successive difference between frames of the
logarithm of the filter bank energies in 82 different bands is then
computed. Since the bass onsets have significant information about
the rhythmic patterns, the features are computed in two frequency
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Figure 4.7: Computation of the spectral flux onset feature in two fre-
quency bands, from Holzapfel et al. (2014).

bands (Low: ≤ 250 Hz, High: > 250 Hz) to additionally consider
the bass onsets. The process of computing the spectral flux feature
is outlined in Figure 4.7.

Using beat and downbeat annotated training data, the audio fea-
tures from all music pieces in a specific tāḷa are then grouped into
cycle length sequences, and interpolated to equal lengths using a
fine grid. A mean of all such cycle length sequence instances for a
specific tāḷa is computed in both the frequency bands and used as
a representative rhythmic pattern illustrated here.

At the outset, it is necessary to note here that the patterns played
in a tāḷa cycle are to be described using timing, energy and timbre
descriptors. The rhythm patterns generated here using the spec-
tral flux feature and can only explain timing and energy accents.
A minor effect of timbre can be seen in these rhythm patterns, but
are predominantly affected by the other two characteristics. These
patterns are averaged over the whole dataset for a tāḷa, and hence
cannot capture specific nuances of individual pieces, but only can
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give a broad perspective. The patterns here are indicative of the sur-
face rhythm present in the audio recordings, and hence completely
reflect the underlying canonical metrical structures.

Figures 4.8-4.15 show the ensemble average of cycle length
patterns over all the pieces in the dataset for each tāḷa, computed
using the spectral flux feature in two different frequency bands as
outlined above. In each figure, the bottom pane corresponds to the
low frequency band (yl) and the top pane corresponds to the high
frequency band (yh). The abscissa is the beat number within the
cycle (dotted lines), with 1 indicating the sama (marked with a red
line). The start of each aṅga is indicated with beat numbers at the
top of each pane (sama shown as ×). The patterns in each figure
pane is normalized so that maximum value is 1, to comment on
relative onset strengths at different metrical positions of the cycle.

The rhythm patterns are roughly indicative of the energies of
mridangam strokes played in the cycle. In the figures, the bottom
pane that shows the low frequency band has content from the left
bass drum while the top pane has content predominantly from the
right pitched drum (and additionally from the leadmelody). Hence,
for the purpose of this discussion, we use the terms left and right
accents to refer to the accents in rhythm patterns shown on the bot-
tom and top pane, respectively. The left and right accents provide
interesting insights into the patterns played within a tāḷa cycle. In
addition, these rhythm patterns help in meter tracking.

We list down and discuss some salient qualitative observations
from figures for each tāḷa, for both CMRf dataset and its subset CMR.
The Figures 4.8-4.15 show the cycle length rhythm patterns for all
tāḷas for both CMRf and CMR datasets. For each tāḷa, we plot the
rhythm patterns together to compare patterns across the short ex-
cerpts in CMR dataset and full length pieces in CMRf dataset.

Overall, we see stronger accents on the akṣaras, with sama hav-
ing the strongest accent in most cases. We can clearly see the ac-
cents organized in three different strengths, reflecting the metrical
levels of the aṅga, the beat and the akṣara. The two akṣara long
beats in miśra chāpu and khaṇḍa chāpu tāḷas, and the four akṣara
long beats in ādi and rūpaka tāḷas can be additionally seen. The
patterns and ṭhēkās played in Carnatic music are quite diverse, and
no obvious representative tāḷa pattern can be inferred, apart from
the varied accents at three metrical levels.
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Figure 4.8: Cycle length rhythmic patterns learned from CMRf dataset
for ādi tāḷa. In each of the following Figures 4.8-4.15, the patterns are
computed from spectral flux feature and averaged over all the pieces in
the dataset. The bottom/top pane corresponds to the low/high frequency
bands, respectively. The abscissa is the beat number within the cycle
(dotted lines), with 1 indicating the sama (marked with a red line). The
start of each aṅga is indicated with beat numbers at the top of each pane
(sama shown as ×). The plot shows the cycle extended by a beat at the
beginning and end to illustrate the cyclic nature of the tāḷa.
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Figure 4.9: Cycle length rhythmic patterns learned from CMR dataset for
ādi tāḷa.

The patterns illustrated here are average patterns that occur and
do not tell us much about the various individual patterns that might
occur in specific points in particular recordings. The tāḷas are met-
rical structures that allow many different patterns to be played, and
not a specific rhythm. It is further seen that the first akṣara after
sama has softer accents. Fewer strokes are played after the sama,
to emphasize that the sama has just passed and a new cycle has
begun. It might also perhaps indicate some form of recovery time
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Figure 4.10: Cycle length rhythmic patterns learned from CMRf dataset
for rūpaka tāḷa.
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Figure 4.11: Cycle length rhythmic patterns learned from CMR dataset for
rūpaka tāḷa.

after the intense stroke-playing towards the end of the cycle.
The rhythm patterns computed using CMR dataset are very sim-

ilar to those computed using CMRf dataset, showing that CMR is a
good representative subset of the larger CMRf. Additionally, all the
observations we make with patterns from CMRf extend to CMR. We
now discuss several tāḷa specific observations.

The Figures 4.8-4.9 show the rhythm patterns for ādi tāḷa. We
see that a three level hierarchy of aṅga, beats and akṣaras is well
demarcated. The akṣara at half cycle (beat 5) has an accent as strong
as the sama. The odd beats (marked 1, 3, 5, 7) have stronger right
accents. The left accents are distributed through the cycle, with
strong accents at half cycle.

The Figures 4.10-4.11 show the rhythm patterns for rūpaka tāḷa.
Apart from the three level hierarachy of accents that is quite appar-
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Figure 4.12: Cycle length rhythmic patterns learned from CMRf dataset
for miśra chāpu tāḷa.
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Figure 4.13: Cycle length rhythmic patterns learned from CMR dataset for
miśra chāpu tāḷa.

ent, the half beat accent between the beats 2 and 3 are strong - in-
dicating the often played 6+6 akṣara grouping structure of rūpaka,
with a ternary meter.

The Figures 4.12-4.13 show the rhythm patterns formiśra chāpu
tāḷa. We see that the aṅga boundaries have strong left and right ac-
cents showing their use as anchor points to indicate the progression
through the cycle. Though defined with a 3+2+2 akṣara grouping
structure, a 1+2+2+2 structure is often seen in miśra chāpu tāḷa,
which can be observed here, based on the strong left accent on beat
2. A additional strong left accent on beat 5 shows that it is also used
as an anchor.

The rhythm patterns of khaṇḍa chāpu tāḷa shown in Figures 4.14-
4.15 have a strong left accent on beat 4, which is used an anchor
within the cycle. A stronger right accent on beat 3 shows the pro-
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Figure 4.14: Cycle length rhythmic patterns learned from CMRf dataset
for khaṇḍa chāpu tāḷa.
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Figure 4.15: Cycle length rhythmic patterns learned from CMR dataset for
khaṇḍa chāpu tāḷa.

gression through the unequal aṅgas. The 2+1+2 akṣara grouping
structure of khaṇḍa chāpu is often played out as 3+2 or 2+3, show-
ing strong accents on beats 3 and 4.

These are some observations from rhythm patterns that have in-
teresting musicological significance. A professional Carnatic mu-
sician has informally validated these observations, but they still
have to be formally studied in depth to make valid musicological
conclusions.

Applications of the Carnatic rhythm dataset

The CMRf dataset and its subset CMR dataset are intended to be test
corpora for several automatic rhythm analysis tasks in Carnatic
music. Possible tasks include sama and beat tracking, tempo es-
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timation and tracking, tāḷa recognition, rhythm based segmenta-
tion of musical audio, structural segmentation, audio to score/lyrics
alignment, and rhythmic pattern analysis. In this thesis, these two
datasets are primarily used for rhythmic pattern analysis and me-
ter inference/tracking. Most of the research results are presented
for CMR with some experiments extended to the full CMRf dataset to
verify their applicability to larger datasets.

4.2.2 Hindustani music rhythm dataset
Hindustani Music Rhythm dataset (HMRf)26 is a rhythm annotated
test corpus for automatic rhythm analysis tasks in Hindustani Mu-
sic (Srinivasamurthy et al., 2016). The collection consists of audio
excerpts from the CompMusic Hindustani research corpus, man-
ually annotated time aligned markers indicating the progression
through the tāl cycle, and the associated tāl related metadata. The
dataset has pieces from four popular tāls of Hindustani music (Ta-
ble 4.9), which encompasses a majority of Hindustani khyāl music.

The audio recordings are chosen from the CompMusic Hindus-
tani music research corpus. The pieces include a mix of vocal and
instrumental recordings, new and old recordings, and span three
lay classes. For each taal, there are pieces in dr̥t (fast), madhya
(medium) and vilaṁbit lay. All pieces have tabla as the percus-
sion accompaniment. All the audio recordings in the dataset are 2
minute excerpts of full length pieces. Each piece is uniquely iden-
tified using the MBID of the recording. The pieces are stereo, 160
kbps, mp3 files sampled at 44.1 kHz. The audio is also available
as downmixed mono WAV files for experiments.

There are several annotations that accompany each audio file in
the dataset. The primary annotations are audio synchronized time-
stamps indicating the different metrical positions in the tāl cycle.
The sam and mātrās of the cycle are annotated. The annotations
were created using Sonic Visualizer by tapping to music and man-
ually correcting the taps. Each annotation has a time-stamp and an
associated numeric label that indicates the mātrā position in the tāl
cycle illustrated in Figure 2.3. The sams are indicated using the

26http://compmusic.upf.edu/hindustani-rhythm-dataset

http://compmusic.upf.edu/hindustani-rhythm-dataset
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Tāl # Pieces Total Duration # Ann. # Sam
hours (min)

Tīntāl 54 1.80 (108) 17142 1081
Ēktāl 58 1.93 (116) 12999 1087
Jhaptāl 19 0.63 (38) 3029 302
Rūpak tāl 20 0.67 (40) 2841 406

Total 151 5.03 (302) 36011 2876

Table 4.9: HMRf dataset showing the total duration and number of anno-
tations. #Sam shows the number of sam annotations and #Ann. shows
the number of mātrā annotations (including sams).

Tāl τs ± σs τb ± σb [τs,min , τs,max]

Tīntāl 10.36 ± 9.875 0.65 ± 0.617 [2.32, 44.14]
Ēktāl 30.20 ± 26.258 2.52 ± 2.188 [2.23, 69.73]
Jhaptāl 8.51 ± 3.149 0.85 ± 0.315 [4.06, 16.23]
Rūpak tāl 7.11 ± 3.360 1.02 ± 0.480 [2.82, 16.09]

Table 4.10: Tāl cycle length indicators for HMRf dataset. τs and σs indi-
cate the mean and standard deviation of the median inter-sam interval
of the pieces, respectively. τb and σb indicate the mean and standard
deviation of the median inter-mātrā interval of the pieces, respectively.
[τs,min , τs,max] indicate theminimum andmaximumvalue of τs and hence
the range of τs in the dataset. All values in the table are in seconds.

numeral 1. The time varying tempo of the piece can be obtained
from the mātrā and sam annotations.

For each excerpt, the tāl and the lay of the piece are recorded.
Each excerpt can be uniquely identified and located with theMBID
of the recording, and the relative start and end times of the excerpt
within the whole recording. The artist, release, the lead instrument,
and the rāg of the piece are additional editorial metadata obtained
from the release. There are optional comments on audio quality and
annotation specifics. The annotations and the associated metadata
have been verified for correctness and completeness by a profes-
sional Hindustani musician and musicologist.
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Tāl # Pieces Total Duration # Ann. # Sam
hours (min)

Tīntāl 13 0.43 (26) 1020 65
Ēktāl 32 1.07 (64) 967 79
Jhaptāl 6 0.2 (12) 592 59
Rūpak tāl 8 0.27 (16) 701 101

Total 59 1.97 (118) 3280 304

Table 4.11: HMRl dataset showing the total duration and number of anno-
tations. #Sam shows the number of sam annotations and #Ann. shows
the number of mātrā annotations (including sams).

Tāl τs ± σs τb ± σb [τs,min , τs,max]

Tīntāl 26.16 ± 7.963 1.63 ± 0.498 [18.57, 44.14]
Ēktāl 52.16 ± 12.531 4.35 ± 1.044 [14.43, 69.73]
Jhaptāl 12.30 ± 1.935 1.23 ± 0.194 [10.20, 16.23]
Rūpak tāl 10.28 ± 3.050 1.47 ± 0.436 [6.95, 16.09]

Table 4.12: Tāl cycle length indicators for HMRl dataset. τs and σs indi-
cate the mean and standard deviation of the median inter-sam interval
of the pieces, respectively. τb and σb indicate the mean and standard
deviation of the median inter-mātrā interval of the pieces, respectively.
[τs,min , τs,max] indicate theminimum andmaximumvalue of τs and hence
the range of τs in the dataset. All values in the table are in seconds.

The HMRf dataset is described in Table 4.9, showing the four tāls
and the number of pieces for each tāl, totaling to 151 pieces. The
total duration of audio in the dataset is about 5 hours, with 36011
time-aligned mātrā annotations of which 2876 are sam annotations.
Table 4.10 shows a basic statistical analysis of the tāl cycle length
indicators in the dataset to understand the tempo characteristics and
the range of the metrical cycle lengths in the dataset. The large
range of tempi seen in Hindustani music is reflected in the dataset,
with the values of median inter-sam interval τs, ēktāl cycle lengths
ranging from 2.2 seconds to 69.7 seconds, which is about 5 tempo
octaves. This also shows that the mātrā period can vary from less
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Tāl # Pieces Total Duration # Ann. # Sam
hours (min)

Tīntāl 41 1.37 (82) 16122 1016
Ēktāl 26 0.87 (52) 12032 1008
Jhaptāl 13 0.43 (26) 2437 243
Rūpak tāl 12 0.40 (24) 2140 305

Total 92 3.07 (184) 32731 2572

Table 4.13: HMRs dataset showing the total duration and number of an-
notations. #Sam shows the number of sam annotations and #Ann. shows
the number of mātrā annotations (including sams).

Tāl τs ± σs τb ± σb [τs,min , τs,max]

Tīntāl 5.35 ± 1.823 0.33 ± 0.114 [2.32, 9.89]
Ēktāl 3.17 ± 0.471 0.26 ± 0.039 [2.23, 4.11]
Jhaptāl 6.77 ± 1.688 0.68 ± 0.169 [4.06, 9.97]
Rūpak tāl 5.00 ± 1.191 0.71 ± 0.170 [2.82, 6.68]

Table 4.14: Tāl cycle length indicators for HMRs dataset. τs and σs indi-
cate the mean and standard deviation of the median inter-sam interval
of the pieces, respectively. τb and σb indicate the mean and standard
deviation of the median inter-mātrā interval of the pieces, respectively.
[τs,min , τs,max] indicate theminimum andmaximumvalue of τs and hence
the range of τs in the dataset. All values in the table are in seconds.

than 150ms to over 6 seconds. This huge range of cycle lengths and
mātrā periods is a significant challenge in automatic meter analysis
of Hindustani music. Across different tāls, we see that tīntāl and
ēktāl have the largest range of τs, since they are performed in all
the lay classes, vilaṁbit to dr̥t. Jhaptāl and rūpak tāl have smaller
τs ranges.

The dataset consists of excerpts with a wide tempo range from
10 MPM (mātrās per minute) to 370 MPM. As discussed in Chap-
ter 2, Hindustanimusic divides tempo into threemain tempo classes
(lay). Since no exact tempo ranges are defined for these classes, we
determined suitable values, measured in mātrās per minute (MPM),
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Figure 4.16: A histogram of the inter-sam interval τs in the HMRl dataset
for each tāl. The ordinate is the fraction of the total count corresponding
to the τb value shown in abscissa. The median τs for each tāl is shown as
a red dotted line.

in correspondence with a professional Hindustani musician as 10-
60 MPM, 60-150 MPM, and >150 MPM for the slow (vilaṁbit),
medium (madhya), and fast (dr̥t) tempi, respectively.

The lay of a piece has a significant effect on meter tracking and
rhythm analysis due to this wide range of possible tempo. To study
any effects of the tempo class, the full HMRf dataset is divided into
two other subsets - the long cycle duration subset called the HMRl
dataset (shown in Table 4.11) consisting of vilaṁbit pieces with a
median tempo between 10-60 MPM, and the short cycle duration
subset HMRs dataset (shown in Table 4.13) with madhya lay (60-150
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Figure 4.17: A histogram of the inter-mātrā interval τb in the HMRl dataset
for each tāl. The ordinate is the fraction of the total count corresponding
to the τb value shown in abscissa. The median τb for each tāl is shown as
a red dotted line.

MPM) and the dr̥t lay (150+ MPM) pieces.
HMRl dataset shown in Table 4.11 consists of 59 pieces in vi-

laṁbit lay, with over 3200 mātrā and sam annotations. A majority
of pieces are in ēktāl and tīntāl. Since its very uncommon for a
piece to be performed in vilaṁbit lay jhaptāl and rūpak tāl, there
are only 6 and 8 pieces for those tāls, respectively. As described
with HMRf, a basic statistical analysis of the tāl cycle length indica-
tors in Table 4.12 shows that the median inter-sam interval and its
range for jhaptāl and rūpak tāl are less than that for tīntāl and ēktāl.

HMRs dataset in Table 4.13 consists on 92 pieces in madhya and
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Figure 4.18: A histogram of the inter-sam interval τs in the HMRs dataset
for each tāl. The ordinate is the fraction of the total count corresponding
to the τb value shown in abscissa. The median τs for each tāl is shown as
a red dotted line.

dr̥t lay, with over 3 hours of audio and over 32700 mātrā and sam
annotations. A basic statistical analysis of the tāl cycle length in-
dicators in Table 4.14 shows that the pieces of tīntāl and ēktāl have
higher tempi in the dataset. Comparing the median mātrā period
for ēktāl between Table 4.12 (4.35 second) and Table 4.14 (0.26
second) shows that ēktāl is performed either in vilaṁbit or dr̥t and
its rare for a piece to be performed in madhya lay ēktāl.

The pieces is Hindustani music have a tempo class indicated but
not a specific tempo value, nor are they performed to a metronome.
The tempo varies over a piece in time - often the tempo increases
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Figure 4.19: A histogram of the inter-mātrā interval τb in the HMRs dataset
for each tāl. The ordinate is the fraction of the total count corresponding
to the τb value shown in abscissa. The median τb for each tāl is shown as
a red dotted line.

with time. Hence, in addition to the median values tabulated in
Table 4.6 we present further analysis of the inter-sam interval (τs)
and inter-mātrā interval (τb) for each tāl. For better comparison, we
present this analysis for each data subset HMRl and HMRs separately.

A histogram of τs and τb for each tāl for HMRl dataset is shown
in Figure 4.16 and Figure 4.17, respectively, and those for HMRs
dataset is shown in Figure 4.18 and Figure 4.19, respectively. These
figures show the distribution of cycle lengths in the dataset over the
whole range of τs for each tāl, around the median value. The large
range of τs and τb values and an irregular distribution spanning the
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Figure 4.20: A histogram of the median normalized inter-sam interval τs
in the HMRl dataset for each tāl. The ordinate is the fraction of the total
count corresponding to the normalized τs value shown in abscissa.

whole range is seen with both datasets, unlike the Carnatic music
CMRf dataset with a smaller tightly defined range of tempo.

In addition, similar to what was presented for Carnatic music,
to illustrate and measure the time varying tempo of music pieces in
Hindustanimusic, we normalize all the τs and τb values in a piece by
the median in the piece to obtain median normalized τs and τb val-
ues, a histogram of which is shown in Figure 4.20 and Figure 4.21,
respectively for HMRl dataset and Figure 4.22 and Figure 4.23, re-
spectively for HMRs dataset. These histograms are centered around
1 and normalized by the median.

From the figures, it is clear that the tempo is time varying but
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Figure 4.21: A histogram of the median normalized inter-mātrā interval
τb in the HMRl dataset for each tāl. The ordinate is the fraction of the total
count corresponding to the normalized τb value shown in abscissa.

with less than about 10% maximum deviation from the median
tempo of the piece for all tāls. This is in contrast to Carnatic music
where the median normalized tempo had a higher maximum devia-
tion (∼ 20 %). One possible reason for this lower tempo deviation
in Hindustani music compared to Carnatic music is because of less
rhythmic improvisation, with the tabla acting as an accurate time-
keeper. However, this could also be possibly due to the fact that
the Hindustani pieces in the dataset are two minute short excerpts,
compared to full length Carnatic pieces in the CMRf dataset, and
hence have lower tempo variability.
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Figure 4.22: A histogram of the median normalized inter-sam interval τs
in the HMRs dataset for each tāl. The ordinate is the fraction of the total
count corresponding to the normalized τs value shown in abscissa.

Rhythm patterns in Hindustani rhythm datasets

Similar to Carnatic music, we do corpora level analysis of rhythm
patterns in Hindustani music and illustrate several musicological
inferences and insights, and contrast if there are any differences
between music theory and practice. The rhythm patterns described
in this section were obtained using spectral flux, in an identical
process as described for Carnatic music.

The Figures 4.24-4.31 show the cycle length rhythm patterns
for all tāls for both HMRl and HMRs datasets, using the spectral flux
feature computed identically to the way it was computed for Car-
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Figure 4.23: A histogram of the median normalized inter-mātrā interval
τb in the HMRs dataset for each tāl. The ordinate is the fraction of the total
count corresponding to the normalized τb value shown in abscissa.

natic music rhythm patterns, as an average over the entire dataset
indicated. In each figure, the bottom pane corresponds to the low
frequency band (yl) and the top pane corresponds to the high fre-
quency band (yh). The abscissa is the mātrā number within the
cycle (dotted lines), with 1 indicating the sam (marked with a red
line). The start of each vibhāg is indicated at the top of each pane
(sam shown as ×).

The rhythm patterns inHindustani are indicative of tabla strokes
played in the cycle. In the figures, the bottom pane that shows the
low frequency band has content from the bāyān (the left bass drum)
of the tabla while the top pane has content predominantly from the
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dāyān (the right pitched drum) of the tabla, but additionally from
the lead melody. Hence, for the purpose of this discussion, we use
the terms left and right accents to refer to the accents in rhythm
patterns from the bottom and top pane, respectively.

The left and right accents provide interesting insights into the
patterns played within a tāl cycle. We additionally compare rhythm
patterns across the layas by plotting the patterns for HMRl dataset
(with vilaṁbit lay pieces) and HMRs dataset (madhya and dr̥t lay
pieces) - for each tāl, the patterns for these two data subsets are
plotted in two figures one below the other.

The patterns played in a tāl cycle have both energy/amplitude
accents due to varying strength of the tabla stroke and also tim-
bral characteristics, due to the specific stroke played. The rhythm
patterns have been generated using the spectral flux feature, which
models mostly only energy, and hence can only explain energy ac-
cents with these figures. We list down and discuss some salient
qualitative observations from the figures for each tāḷa, for both vi-
laṁbit lay and dr̥t lay. The patterns are indicative of the surface
rhythm present in these audio recordings.

There are several observations from the plotted rhythm patterns
that have interesting musicological significance. A professional
Hindustani musician has informally validated these observations,
but they still have to be formally studied in depth to make valid
musicological conclusions. Overall, from Figures 4.24-4.31, we
observe across all tāls and layas that accents are stronger on the
mātrās, with accents present even at half and fourth divisions of
the matra in many cases. The sam most often has the strongest
accent. Unlike Carnatic tāḷas, ṭhēkās in Hindustani music are less
flexible, and hence we can infer several concrete conclusions from
the rhythm patterns of Hindustani music.

Across all tāls in vilaṁbit lay, we see additional filler strokes
present between mātrās, showing that percussionists add further
metrical subdivisions lower than the mātrā, though not defined in
theory. These fillers are also mostly concentrated towards the sec-
ond half of the mātrā. The 1st mātrā (and often the 2nd mātrā) is
quite empty with few accents, while the last few mātrās of the cy-
cle have dense accents. This is to place a special emphasis on the
sam, indicating the approaching of samwith fillers and dense stroke
playing, while there is a short recovery period after the sam with
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fewer strokes. In addition, a dense matra with many fillers is often
followed by a sparsely accented mātrā to better contrast the pro-
gression through the tāl cycle, e.g. a dense mātrā 9 after a quieter
mātrā 8 in Figure 4.24.

Due to the large mātrā period (τb) in vilaṁbit lay, each mātrā
acts as an anchor for timekeeping, and can be played without any
effect from the previous strokes (in fast tabla playing in dr̥t, the pre-
vious stroke can possibly affect the sound, intonation, and playing
technique of the following strokes). Further, due to a large time
interval available to play the ṭhēkā, the tabla playing musician fo-
cuses on modulation of left bass strokes that can sustain longer. Fi-
nally, left and right hand can operate independently, which means
modulation of accents through the cycle can be different for left
and right accents. The left and right strokes also complement each
other. Each of these effects can be observed in the patterns of vi-
laṁbit lay.

In contrast, across all tāls in madhya and dr̥t lay, given the
shorter cycles, we see that vibhāgs are anchors. The fillers are
largely restricted only to half mātrā, with lower accents. Dr̥t pieces
also have a relatively more relaxed timing, and the focus is on right
strokes, with the left hand playing the theory defined “textbook”
strokes for timekeeping. In addition, the left and right hands are in
sync, which can be seen in the modulation of accents through the
cycle being well correlated for both left and right accents - the left
and right strokes work together here, in contrast to complement-
ing each other as in vilaṁbit lay. Furthermore, the patterns differ
widely between the lay classes, especially for ēktāl and tīntāl.

We now present some tāl specific observations from the rhythm
patterns for each tāl. Some of these observations corroborate the
theory while some of them show the contrast between theory and
practice. These inferences mainly address tabla stroke playing dur-
ing the cycles, while the effects of melody has not been considered
into account. This is a valid assumption to make since these pat-
terns are averaged over several cycles, averaging out and reducing
the effect of melody on these rhythm patterns.

Vilaṁbit tīntāl: From Figure 4.24, we see that the 14th matra has
the strongest left accent, and the last mātrā (matra 16) has many
fillers, both to indicate the arrival of sam - a phenomenon known
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Figure 4.24: Cycle length rhythmic patterns learned from HMRl dataset
for tīntāl, computed from spectral flux feature and averaged over all the
pieces in the dataset. The bottom/top pane corresponds to the low/high
frequency bands, respectively. The abscissa is the mātrā number within
the cycle (dotted lines), with 1 indicating the sam (marked with a red line).
The start of each vibhāg is indicated at the top of each pane (sam shown
as×). The plot shows the cycle extended by a mātrā at the beginning and
end to illustrate the cyclic nature of the tāl.
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Figure 4.25: Cycle length rhythmic patterns learned from HMRs dataset
for tīntāl.

in music theory as āmad (literal meaning - the approach). A strong
left accent on the 9th matra is not defined in theory (the stroke in the
ṭhēkā is a right stroke NA), but often a DHA is played instead. This
is a known (to practising musicians) difference between theory and
practice and can additionally be observed in the patterns too. As
described earlier, the right stroke fillers are fewer in mātrās 1 and
2, and the left accents support the timekeeping task when the right
accents are weaker there. 4thmātrā has a strong right accent perhaps
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to indicate the end of the 1st vibhāg, after a filler-less mātrās 2 and
3. The beginning of the 2nd and 3rd vibhāgs, labeled 2 and 0 have
higher number of fillers. The left accents between the 11th and the
14th matra are weak - with the 11th and 14th mātrā accents acting as
anchors for the “quiet” created in between them. It is interesting to
note the varying modulation of accent levels through the vibhāgs
of the cycle. Specifically, we can see that the left and right accent
envelopes through the cycle are complementary, indicating that left
and right drums are complementary in vilaṁbit lay.

Madhya and dr̥t lay tīntāl: From Figure 4.25, we see that the
filler strokes in dr̥t tīntāl are restricted to a single filler at half mātrā
positions in contrast to three of more fillers in vilaṁbit. The ac-
cents are more regular due to higher tempi associated. Similar to
vilaṁbit, the 9thmatra has a strong left accent, which again is a well
known difference between theory and practice. The 11th and 14th
mātrās have strong left accents to support the build up of accents
through mātrās 12-14 and indicate the arrival of sam (āmad). It is
interesting to note that the right accent at vibhāg boundary (mātrā
13) is weaker than that at the previous mātrā 12. This is perhaps
due to the stroke on mātrā 13 being skipped and a strong left stroke
on mātrā 14 often played to indicate the approaching sam.

Vilaṁbit ēktāl: From Figure 4.26, we see that the last matra of the
cycle before the sam (mātrā 12) has dense accents, with the final
filler strokes having stronger left accents than the sam. This is an-
other example of āmad, where the approach of a sam is distinctly
indicated. The mātrās 4 and 10 (both with the ṭhēkā bōl TI RA KI
TA, see Table 2.5) have equal accents in theory. However, mātrā 10
has stronger accents than 4 in practice since it is closer to the sam.
TI RA KI TA is often played with more than four strokes towards
the end of the matra 4 and 10. Since TI RA KI TA is dense, the
mātrā following them (mātrās 5 and 11) have less fillers. In addi-
tion, only mātrās 4 and 10 have fillers distributed throughout the
mātrā, while the rest have fillers only towards the end. Vibhāgs 2
and 3 (spanningmātrās 3-6) and vibhāgs 5 and 6 (spanningmātrā 9-
×) are identical in theory, but we can see several deviations in per-
formance, with vibhāgs 5 and 6 having stronger left accents since
they are closer to sam. Further, the strokes DHIN at mātrā 1 and
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Figure 4.26: Cycle length rhythmic patterns learned from HMRl dataset
for ēktāl.
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Figure 4.27: Cycle length rhythmic patterns learned from HMRs dataset
for ēktāl.

mātrā 2 are identical in theory, but in practice the DHIN at mātrā 2
is played softer to differentiate it from the DHIN at the sam. The
modulation of right accent levels through the cycle is interesting,
with stronger accents occurring when the mātrā is less dense with
lesser number of accents. This has a functional role in timekeeping
- aided by stronger accents and denser mātrās, which complement
each other.

Madhya and dr̥t lay ēktāl: Though defined with six vibhāgs in
theory, dr̥t ēktāl is described better as having four vibhāgs of 3
mātrās each, as shown in Figure 2.4, with the vibhāgs starting at
mātrās 1, 4, 7, and 10. As can be seen from Figure 4.27, the strong
right accents due to NA stroke at mātrās 3, 6, 9 and 12 are distinctly
seen. This suggests that for dr̥t lay, timekeeping is done more with
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Figure 4.28: Cycle length rhythmic patterns learned from HMRl dataset
for jhaptāl.
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Figure 4.29: Cycle length rhythmic patterns learned from HMRs dataset
for jhaptāl.

the sharp right strokes (e.g. ‘NA’ here) and accentuation can even
be at non-vibhāg marker mātrās such as 6 and 12. Even though the
last vibhāg starts on matra 10, there is strong right accent on matra
9, an indication of the approaching sam (āmad). The four strokes
in TI RA KI TA is often not played in dr̥t, replacing it with just
two strokes TE KE - we see only two accents in mātrās 4 and 10.
In addition, due to the dense stroke playing on mātrā 4 and 10, the
left accents in mātrā 6 and 12 are quiet with relatively weaker ac-
cents. Similar to vilaṁbit ēktāl, though the first and second matra
have equal accented DHIN stroke in theory, DHIN on the second
mātrā is played considerably softer with weak accent. As with all
tāls in dr̥t lay, the accents on left and right through the cycle are
correlated.
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Figure 4.30: Cycle length rhythmic patterns learned from HMRl dataset
for rūpak tāl.
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Figure 4.31: Cycle length rhythmic patterns learned from HMRs dataset
for rūpak tāl.

Vilaṁbit jhaptāl: From Figure 4.28, we see that all the NA strokes
(mātrās 2, 5, 7, 10) have a strong right accent and weak left accents,
as described in theory. There are filler strokes to end the vibhāgs
at mātrās 2 and 7. This can be explained with the often played
variant of the jhaptāl ṭhēkā (DHI NA-TE-KE DHI DHI NA | TI
NA-TE-KE DHI DHI NA). There are further strong accented fillers
on mātrās 5 and 10 that act as anchor points to indicate the end of
half and full cycle.

Madhya and dr̥t lay jhaptāl: Figure 4.29 shows that the left ac-
cents are as defined in theory with basic ṭhēkā playing. The enve-
lope of accents through the cycle is more regular than in vilaṁbit
jhaptāl. In theory, the vibhāg 2 (mātrās 3-5) and vibhāg 4 (mātrās
8-10) are identical, but some deviations can be observed in practice.
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Vilaṁbit rūpak tāl: Rūpak tāl is defined in theory with no left
accents on mātrās 1 and 2, but in practice left strokes are often
played (with closed strokes than modulated sustained left strokes).
This also implies that rūpak tāl having a khālī (0) on the sam does
not mean it is less accented. Rūpak tāl is defined to have a 3+2+2
structure, but we see from Figure 4.30 that mātrā 2 has a strong
left accent, which acts as an anchor, giving the vilaṁbit rūpak tāl
a 1+2+2+2 structure, which is close to the tapping of miśra chāpu
tāḷa of Carnatic music in practice. This could also be because mu-
sicians might play with the same accent on both TIN (mātrās 1 and
2) with a KAT stroke to contrast with the NA stoke which is less
left-accented. The vibhāg 2 (mātrās 4-5) and vibhāg 3 (mātrā 6-7)
are identical in theory, but in practice the accents differ. Mātrā 5
has the strongest right accent (NA stroke), perhaps indicating āmad.
Fillers are more on mātrā 3, to end vibhāg 1. In general, we also
see that the fillers get more dense towards the end of vibhāgs.

Madhya and dr̥t lay rūpak tāl: From Figure 4.31, the left strokes
and accents closely follow the description in theory. The strongest
left accent is on mātrā 4, as defined in theory. The vibhāg 2 and
3 are identical with similar accents. Interestingly, the fillers grow
through the cycle, becoming more dense towards the end of the
cycle. In dr̥t rūpak tāl, the accent on the second mātrā is softer
than vilaṁbit rūpak tāl, going back to its canonical 3+2+2 structure
compared to 1+2+2+2 structure in vilaṁbit rūpak tāl.

Applications of the HMRf dataset

The HMRf dataset and its subsets HMRl and HMRs datasets are intended
to be test datasets for several automatic rhythm analysis tasks in
Hindustani music. Possible tasks where the datasets can be used
include sam and mātrā tracking, tempo estimation and tracking, tāl
recognition, rhythm based segmentation of musical audio, audio
to score/lyrics alignment, and rhythmic pattern discovery. In this
thesis, these datasets are primarily used for rhythmic pattern anal-
ysis and meter inference/tracking. Most of the research results are
presented on the two subsets separately, to contrast performance of
algorithms across different lay.
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ID Syllable #Inst. ID Syllable #Inst.

1 DA 132 10 KI 1482
2 DHA 582 11 NA 1308
3 DHE 277 12 RE 294
4 DHET 67 13 TA 2375
5 DHI 156 14 TE 18
6 DHIN 149 15 TII 64
7 DIN 117 16 TIN 61
8 GE 961 17 TIT 43
9 KDA 95 18 TRA 64

Table 4.15: The Mulgaonkar Tabla Solo dataset (MTS) with 8245 sylla-
bles, showing the number of instances of each syllable in the dataset. The
syllable group names correspond to that presented in Table 2.4.

4.2.3 Tabla solo dataset
The Mulgaonkar Tabla Solo dataset (MTS) is a parallel corpus of
tabla solo compositions with time-aligned scores and audio record-
ings. We built a dataset comprising audio recordings, scores and
time aligned syllabic transcriptions of 38 tabla solo compositions of
different forms in tīntāl. The compositions were obtained from the
instructional video DVD Shades Of Tabla by Pandit Arvind Mul-
gaonkar27. Out of the 120 compositions in the DVD, we chose
38 representative compositions spanning all the gharānās of tabla
(Ajrada, Benaras, Dilli, Lucknow, Punjab, Farukhabad).

The booklet accompanying the DVD provides a syllabic tran-
scription for each composition. We used Tesseract (Smith, 2007),
an open source Optical Character Recognizer (OCR) engine to con-
vert printed scores into a machine readable format. The scores ob-
tained from OCR were manually verified and corrected for errors,
while adding the vibhāgs (sections) of the tāl to the syllabic tran-
scription. The score for each composition has additional metadata
describing the gharānā, composer and its musical form.

We extracted audio from the DVD video and segmented the au-
dio for each composition from the full audio recording. The audio

27http://musicbrainz.org/release/220c5efc-2350-43dd-95c6
-4870dc6851f5

http://musicbrainz.org/release/220c5efc-2350-43dd-95c6-4870dc6851f5
http://musicbrainz.org/release/220c5efc-2350-43dd-95c6-4870dc6851f5
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recordings are stereo, sampled at 44.1 kHz and have a soft har-
monium accompaniment. A time aligned syllabic transcription for
each score and audio file pair was obtained using a spectral flux
based onset detector (Bello et al., 2005) followed by manual cor-
rection. The dataset contains about 17 minutes of audio with over
8200 syllables. The syllables in the dataset are grouped based on
timbre as described in Table 2.4, and Table 4.15 lists the number of
instances in the dataset for each group syllable.

The dataset is freely available for research purposes through a
central online repository28. The dataset was created in collabora-
tion with Swapnil Gupta and more details are also described in the
masters thesis byGupta (2015). The dataset is useful both for build-
ing isolated stroke timbre models and for a comprehensive evalu-
ation of tabla solo pattern transcription and discovery, as used by
Gupta et al. (2015). The scores in the dataset can be used to do
symbolic analysis of percussion patterns.

4.2.4 Mridangam datasets
There are two percussion datasets for Carnatic music built as a
part of CompMusic: a collection of audio examples of mridangam
strokes compiled by Akshay Anantapadmanabhan, and a parallel
corpus of scores and audio recordings of mridangam solos played
by Padmavibhushan Dr. Umayalpuram K. Sivaraman and com-
piled by IIT Madras, Chennai, India.

Mridangam stroke dataset

The Anantapadmanabhan Mridangam Strokes dataset (AMS)29 is
a collection of 7162 audio examples of individual strokes of the
mridangam in various tonics. The dataset can be used for train-
ing models for each mridangam stroke (Anantapadmanabhan et al.,
2013). The dataset comprises of ten different strokes played on
mridangams with six different tonic values. The audio examples
were recorded from a professional Carnatic percussionist in semi-
anechoic studio conditions using SM-58 microphones and an H4n
ZOOM recorder. The audio was sampled at 44.1 kHz and stored as

28http://compmusic.upf.edu/tabla-solo-dataset
29http://compmusic.upf.edu/mridangam-stroke-dataset

http://compmusic.upf.edu/tabla-solo-dataset
http://compmusic.upf.edu/mridangam-stroke-dataset
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Stroke B C C# D D# E Total Syl.

Bheem 5 3 1 0 15 25 49 DM
Cha 57 50 54 67 49 53 330 CH
Dheem 127 86 78 12 111 54 468 DNT
Dhin 48 48 63 12 198 113 482 DN
Num 81 98 97 18 143 60 497 NM
Ta 145 165 217 180 119 105 931 TA
Tha 200 185 211 224 196 160 1176 TH
Tham 88 80 35 29 92 50 374 NMT
Thi 438 334 369 283 444 345 2213 DH3
Thom 136 80 72 91 128 135 642 TM

Total 1325 1129 1197 916 1495 1100 7162

Table 4.16: The Anantapadmanabhan Mridangam Strokes dataset (AMS).
The row and column headers are the stroke labels and the tonic values,
respectively. The last column shows the analogous syllable used in the
dissertation from Table 2.2.

16 bit WAV files. All the audio in the dataset is also available on
Freesound30.

The dataset is described in Table 4.16, with stroke labels along
rows and tonic values along columns. As can be seen from the
table, the dataset uses different stroke names compared to the no-
tation used in the dissertation, and hence the analogous syllabic
symbol corresponding to each stroke label is also shown in the ta-
ble.

Mridangam solo dataset

The UKS Mridangam Solo dataset (UMS) is a transcribed collec-
tion of two tani-āvartanas (percussion solo) played by the renowned
mridangammaestro PadmaVibhushanDr. UmayalpuramK. Sivara-
man. The audio was recorded at IIT Madras, India and annotated
by professional Carnatic percussionists (Kuriakose et al., 2015).

Since percussion in Carnatic music is organized and transmit-
ted orally with the use of onomatopoeic syllables representative of
the different strokes of the mridangam, a syllabic representation of

30https://www.freesound.org/

https://www.freesound.org/
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ID Syllable #Inst. ID Syllable #Inst.

1 AC 119 12 DNT 922
2 ACT 50 13 LF 467
3 CH 114 14 LFT 12
4 CHT 112 15 NM 850
5 DM 14 16 NMT 632
6 DH3 1266 17 TH 776
7 DH3T 23 18 TA 754
8 DH3M 602 19 TAT 13
9 DH4 367 20 TM 913
10 DH4T 12 21 TG 30
11 DN 829 - - -

Table 4.17: The UKS Mridangam Solo dataset (UMS) with 8877 sylla-
bles, showing the number of instances of each syllable in the dataset. The
syllable group names correspond to that presented in Table 2.2.

the tani and the patterns provides a musically meaningful repre-
sentation for analysis. The dataset uses such a representation. The
dataset consists of two tani-āvartanas played on a mridangam tuned
to tonic C#, one played in vilaṁbita ādi tāḷa (a cycle of 16 beats)
and the other played in rūpaka tāḷa. Each tani is about 12 minutes
long. Both tanis were recorded in studio-like conditions using a
Zoom H4n recorder with an SM 57 microphone for the treble head
(right) and SM 58 microphone for the bass head (left) of the mri-
dangam. The audio files are mono, sampled at 44.1KHz, and stored
as 16 bit WAV files.

The audio file of each tani has been segmented into short mu-
sically relevant phrases, and each phrase has been transcribed into
its constituent strokes, represented as syllables. The segmentation
of audio files and syllabic transcription of each phrase was done
by professional Carnatic percussionists. The transcriptions also in-
clude pauses (denoted by , ) and change in speed (denoted by {
and } ). The combined duration of both the tanis is about 24 min-
utes and consists of 8863 strokes. The stroke syllables are grouped
based on timbre as described in Table 2.2 into syllable groups, and
the dataset is described in Table 4.17, showing the number of in-
stances for each syllable (group) in the audio recordings. The tran-
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Dataset Bangu Daluo Naobo Xiaoluo Total

Training 59 50 62 65 236
Test 1645 338 747 291 3021

Table 4.18: The Jingju Percussion Instrument dataset (JPI dataset) show-
ing the number of examples for each instrument in the training and test
dataset.

scription is not time aligned, but only a sequence of the strokes
played in the phrase.

The dataset can be used for several MIR tasks such as onset
detection, percussion transcription, rhythm and percussion pattern
analysis, and mridangam stroke modeling. The dataset (audio +
annotations) is freely available for research purposes31 and has been
recently used by Kuriakose et al. (2015) in their work.

4.2.5 Jingju percussion instrument dataset
The Jingju Percussion Instrument dataset (JPI) is an annotated col-
lection of Beijing opera percussion instruments, with audio and
time aligned onset annotations (Tian et al., 2014). The dataset is
split into training set with audio files containing single strokes of in-
dividual percussion instruments and a test dataset that has thewhole
percussion ensemble playing together.

The audio in the dataset was recorded by Mi Tian at the Cen-
tre for Digital Music (C4DM), Queen Mary University of London.
The dataset was built by recording sound samples with professional
musicians in studio conditions at C4DM. The audio was recorded
in mono using an AKGC414microphone at a sampling rate of 44.1
KHz.

The dataset, shown in Table 4.18, consists of recordings of the
four percussion instrument classes: bangu, daluo, naobo and xi-
aoluo. Unlike pitched instruments, most idiophones cannot be tuned.
These percussion instruments are made frommetal casting or wood
carving hence subtle differences might exist between the physical
properties of individual instruments even of the same kind. For

31http://compmusic.upf.edu/mridangam-tani-dataset

http://compmusic.upf.edu/mridangam-tani-dataset
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each kind of the above instruments, sound samples of 2-4 indi-
vidual instruments were recorded, played with different playing
styles commonly used in Beijing opera performances with a hope
to achieve a better coverage of timbre and variations of playing
techniques.

The training set consists of short audio samples with single
strokes of each individual instrument that capture most of the possi-
ble timbres of the instrument that exist in Beijing opera. For the test
dataset, the individually recorded instrument examples were man-
ually mixed together using Audacity32 into 30-second long tracks,
with possibly simultaneous onsets to closely emulate the real world
conditions. The audio examples used in training and test dataset are
mutually exclusive.

For annotating the onsets, manual labeling of onset locations
was tedious and time consuming, especially for complex ensemble
music consisting of instruments with diverse properties. The onset
ground truth was constructed by the taking the average onset loca-
tions marked by three participants without any Beijing opera back-
ground. Participants were asked to mark the onset locations in each
recording using the audio analysis tool Sonic Visualiser (Cannam
et al., 2010) displaying the waveform and corresponding spectro-
gram.

The set of training examples are freely available for research
and reuse33. The dataset can be used for training models for each
percussion instrument class, and MIR tasks such as percussion in-
strument identification, source separation, and instrument-wise on-
set detection, as used by Tian et al. (2014).

4.2.6 Jingju percussion pattern dataset
The Jingju Percussion Pattern dataset (JPP) is a collection of au-
dio examples and scores of percussion patterns played by the per-
cussion ensemble in Beijing opera (Srinivasamurthy, Caro, et al.,
2014). The dataset was built from commercial jingju aria record-
ings with the help of Rafael Caro, a musicologist working on jingju.

32http://audacity.sourceforge.net
33http://compmusic.upf.edu/bo-perc-dataset

http://audacity.sourceforge.net
http://compmusic.upf.edu/bo-perc-dataset
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ID Pattern Class # Instances Tf (σ)

1 daoban tou【导板头】 66 8.70 (1.73)
2 man changchui【慢长锤】 33 13.99 (4.47)
3 duotou【夺头】 19 7.18 (1.49)
4 xiaoluo duotou【小锣夺头】 11 8.16 (2.15)
5 shanchui【闪锤】 8 10.31 (3.26)

Total 133 9.85 (3.69)

Table 4.19: The Jingju Percussion Pattern dataset (JPP dataset). The
last column is the mean pattern length (Tf ) and standard deviation (σ) in
seconds. Figure 2.5 shows the music scores for these patterns.

The dataset is a collection of 133 audio percussion patterns
spanning five different pattern classes described in Section 2.2.5,
and comprises about 22 minutes of audio with over 2200 sylla-
bles in total. The audio files are short segments containing one
of the above mentioned patterns. The audio is stereo, sampled at
44.1 kHz, and stored as wav files. The segments were chosen from
the introductory parts of arias, which are characteristic and impor-
tant. The recordings of arias are from commercially available re-
leases spanning various artists chosen from the CompMusic jingju
research corpus (Caro & Serra, 2014).

The music pieces and audio segments were chosen carefully by
a musicologist to be representative of the percussion patterns that
occur in jingju. The audio segments contain diverse instrument
timbres of percussion instruments (though the same set of instru-
ments are played, there can be slight variations in the individual
instruments across different ensembles), recording quality and pe-
riod of the recording. Though these recordings were chosen from
introductions of arias where only percussion ensemble is playing,
there are some examples in the dataset where the melodic accom-
paniment starts before the percussion pattern ends.

Each of the audio patterns has an associated syllable level tran-
scription of the audio pattern. The syllabic transcription of each
audio pattern is directly obtained from the score of the pattern class
it belongs to, and hence is not time aligned to the audio. In case of
patterns where a sub-sequence of the pattern can be repeated (e.g.
man changchui and shanchui), the additional syllables that occur
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due to repetitions were manually added by listening to the pattern.
Though most of the dataset consists of isolated percussion patterns,
there are a few audio examples that contain a melodic background
apart from the percussion pattern. The transcription is done using
the reduced set of five syllables described in Table 2.6 and is suffi-
cient to computationally model the timbres of all the syllables. The
annotations are stored as Hidden Markov model Toolkit (HTK)34
label files. There is also a single master label file provided with all
the annotations for batch processing using HTK.

The annotations are publicly shared and available to all35. The
audio is from commercially available releases and can be easily
accessed using the associated MBIDs. The dataset can be used for
instrument-wise onset detection and percussion pattern transcrip-
tion and classification, as applied by Srinivasamurthy, Caro, et al.
(2014).

4.2.7 Other evaluation datasets
As discussed in Section 2.3.3, there are several datasets available
for beat tracking evaluation, used in MIREX or otherwise, e.g.
SMC dataset (Holzapfel et al., 2012), Ballroom dataset (Gouyon
et al., 2006), McKinney dataset (Moelants & McKinney, 2004),
RWC database (Goto, 2006), Hainsworth dataset (Hainsworth &
Macleod, 2003), and GTZAN-Rhythm dataset (Marchand et al.,
2015). Of all these datasets, in addition to Indian art music rhythm
datasets, we use the Ballroom dataset for evaluating algorithms and
approaches presented in the thesis. There are other non-eurogenetic
music (Turkish and Cretan music) datasets for testing automatic
rhythm analysis approaches. We do not use them and present any
evaluations on those datasets, but they are briefly described for
completeness.

Ballroom dataset

TheBallroomdataset includes beat and bar annotations audio record-
ings of several dance styles sourced from BallroomDancers.com
and was first introduced by Gouyon et al. (2006). The beat and bar

34HTK: http://htk.eng.cam.ac.uk/
35http://compmusic.upf.edu/bopp-dataset

BallroomDancers.com
http://htk.eng.cam.ac.uk/
http://compmusic.upf.edu/bopp-dataset
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annotations were then added by Krebs et al. (2013). The ballroom
dataset contains eight different dance styles (Cha cha, Jive, Quick-
step, Rumba, Samba, Tango, Viennese Waltz, and (slow) Waltz)
and has been widely used for several MIR tasks such as genre clas-
sification, tempo tracking, beat and downbeat tracking, e.g. by
Gouyon et al. (2006); Krebs, Holzapfel, et al. (2015); Böck et al.
(2014).

It consists of 697 thirty second long audio excerpts and has
tempo and dance style annotations. The dataset contains two dif-
ferent meters (3/4 and 4/4) and all pieces have constant meter. The
tempo restrictions given the dance style label from http://www
.ballroomdancers.com/Dances/were used to annotate the beats
and downbeats at the correct metrical level.

The ballroom dataset is used as a dataset to present several eval-
uations of the algorithms and approaches presented in thesis - to
compare performance with the state of the art, and to test if the
proposed approaches scale and extend to different music genres and
cultures.

Turkish rhythm dataset

The Turkish music rhythm dataset was compiled and annotated by
Dr. Andre Holzapfel (Holzapfel et al., 2014) and is an extended
version of the annotated data used by Srinivasamurthy, Holzapfel,
and Serra (2014). It includes 82 excerpts of oneminute length each,
and each piece belongs to one of three rhythm classes that are re-
ferred to as usul in Turkish makam music. 32 pieces are in the 9/8-
usul Aksak, 20 pieces in the 10/8-usul Curcuna, and 30 samples in
the 8/8-usul Düyek.

Cretan music dataset

The Cretan music dataset consists of 42 full length music pieces
of Cretan leaping dances compiled and annotated by Dr. Andre
Holzapfel (Holzapfel et al., 2014). While there are several dances
that differ in terms of their steps, the differences in the sound are
most noticeable in the melodic content, and all the pieces of the
dataset belong to one rhythmic style. All these dances are usually
notated using a 2/4 time signature, and the accompanying rhyth-

http://www.ballroomdancers.com/Dances/
http://www.ballroomdancers.com/Dances/
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mical patterns are usually played on a Cretan lute. While a variety
of rhythmic patterns exist, they do not relate to a specific dance and
can be assumed to occur in all of the 42 songs in this dataset.

To summarize, the chapter presented a comprehensive discus-
sion of the research corpora and test datasets useful for rhythm re-
lated MIR tasks, focusing on Indian art music. The corpora and
datasets are easily accessible and hence are valuable resources for
data-driven MIR. An illustrative analysis of the Indian art music
rhythm datasets showed a good potential for data-driven compu-
tational musicology research. The Indian art music rhythm and
percussion datasets, along with the Ballroom dataset will be exten-
sively used for the experiments in meter analysis and percussion
pattern discovery.



Chapter 5
Meter inference and

tracking

...the first beat (sam) is highly significant struc-
turally, as it frequently marks the coming together
of the rhythmic streams of soloist and accompanist,
and the resolution point for rhythmic tension.

Clayton (2000, p. 81)

Meter analysis of audio music recordings is an important MIR task.
It provides useful musically relevant metadata not only for enriched
listening, but also for pre-processing of music for several higher
level tasks such as section segmentation, structural analysis and
defining rhythm similarity measures.

To recapitulate, meter analysis aims to time-align a piece of au-
dio music recording with several defined metrical levels such as
tatum, tactus, measure (bar). In addition, it also tags the recording
with additional meter and rhythm related metadata such as time sig-
nature, median tempo and salient rhythms in the recording. Within
the context of Indian music, meter analysis aims to time-align and
tag a music recording with tāḷa related events and metadata.

This chapter aims to address some of these important tasks re-
lated to meter analysis within the context of Indian art music, pre-
senting several approaches and a comprehensive evaluation of those
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approaches. The main aims of the chapter are:

1. To address meter analysis tasks for the music cultures under
study - Carnatic and Hindustani music. The tasks of meter infer-
ence, meter tracking and informed meter tracking are addressed
in detail to formulate these tasks and propose several approaches
to address the tasks.

2. To present a detailed description of the state of the art and the
proposedBayesianmodels and inference schemes formeter anal-
ysis.

3. To present an evaluation of the state of the art meter tracking
approaches based on Bayesian models and explore extensions to
those approaches, for the rhythm annotated datasets of Carnatic
and Hindustani music. A comprehensive performance analysis
is presented for these approaches, identifying their strengths and
limitations for the tasks under study.

5.1 The meter analysis tasks
We describe the meter analysis tasks addressed in this dissertation,
from the least informed to the most informed. This order of tasks
also emphasizes different practical scenarios for such tasks, and
hence the results can indicate the type of task and the additional
information to be provided to achieve the level of performance re-
quired for an application. We will also describe how the set of
tools and approaches described in the chapter can be adapted and
used in each of these tasks, making the task of meter analysis flex-
ible to the available audio data and the related additional metadata.
We continue and elaborate building on the formulation presented
in Section 3.3.1.

Meter inference

Given an audio music recording, meter inference aims to estimate
the rhythm class (ormeter type or tāḷa), possibly time-varying tempo,
beats and downbeats. In the context of Carnatic music, the task of
meter inference aims to recognize the tāḷa, estimate the time vary-
ing tempo (τo or τb), the beat locations and the sama (downbeat)
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locations. Since some of the beats correspond to the aṅga bound-
aries, with the sama and numbered beat locations (beat number in
the cycle), the aṅga (section) boundaries can be indirectly inferred,
e.g. the beats 1 (sama), 5, 7mark the start of the three sections of the
ādi tāḷa. Similarly, for Hindustani music, meter inference task aims
to recognize the tāl, estimate the time varying tempo (τb), the mātrā
and the sam locations. With the numberedmātrā and sam locations,
the vibhāg boundaries can be indirectly inferred, e.g. the mātrās 1
(sam), 3, 6, 8 indicate the start of the four sections in jhaptāl. For
Carnatic music, in addition to the beats, we can also estimate the
subdivision akṣaras, which can be grouped into beats.

Without any prior information on metrical structure, meter in-
ference is a difficult task owing to the large range of tempi and
different tāḷas. The problem is further made harder due to several
tāḷas having similar structure. In Carnatic music, it is quite pos-
sible that the same composition can be performed in two different
tāḷas, which further can lead to confusion, e.g. the compositions in
rūpaka tāḷa (12 akṣaras in a cycle) can be performed in tiśra naḍe
ādi tāḷa (24 akṣaras in a cycle, see Figure 2.2). A common example
is the composition Himadri Suthe1 in rāga Kalyāṇi.

From a practical application point of view, most of commer-
cially released music in both Carnatic and Hindustani music has
the name of the tāḷa as a part of the editorial metadata, and hence
tāḷa recognition is a redundant task. Even within a live concert,
the musician announces the tāḷa of the piece, or shows it with hand
gestures in Carnatic music. Meter inference is used as a baseline
task to understand the complexity of uninformed meter analysis.

Meter tracking

Given that the tāḷa of an audio music piece is often available as ed-
itorial metadata, the most relevant meter analysis task for Indian
art music is meter tracking. Given an audio music recording and
the rhythm class (or meter type or tāḷa) of the music piece, meter
tracking aims to estimate the time varying tempo, the beat and the
downbeat locations. In the context of Carnatic music, meter track-
ing aims to track the time varying tempo, beats and the sama from

1https://musicbrainz.org/work/6155262b-601a-41ba-8dcf
-6f5b15b744f6

https://musicbrainz.org/work/6155262b-601a-41ba-8dcf-6f5b15b744f6
https://musicbrainz.org/work/6155262b-601a-41ba-8dcf-6f5b15b744f6
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an audio music recording, given the tāḷa. For Hindustani music,
given the tāl, the task aims to track the time varying tempo (τb), the
mātrā and sam. The section boundaries of the tāḷa can be indirectly
inferred as explained earlier.

Assuming that the tāḷa, and hence themetrical structure is known
in advance is a fair and practical assumption to make, we explore
if providing this information helps to track the metrical structure
better. Meter tracking is the main problem and the most compre-
hensively addressed task in this thesis. We explore different ap-
proaches and evaluate them on the rhythm annotated datasets of
Carnatic andHindustani music. The proposed novel extensions and
enhancements are also evaluated for the task of meter tracking.

Informed meter tracking

Informed meter tracking is a sub-task of meter tracking in which
some additional information apart from the meter type is provided
along with the audio recording. The additional information could
be in the form of a tempo range, a few instances of beats and down-
beats annotated, or even partially tracked metrical cycles. These
additional metadata could come from manual annotation or as an
output of other automatic algorithms, e.g. the median tempo of a
piece can be obtained from a standalone tempo estimation algo-
rithm, or some melodic analysis algorithms might output (with a
high probability) some beats/downbeats as a byproduct.

From a practical standpoint, it is useful to explore informedme-
ter tracking. While it is prohibitively resource intensive to man-
ually annotate all the beats and downbeats of a large music col-
lection, it might be possible to seed the meter tracking algorithms
with the first few beats and downbeats, which could improve meter
tracking performance. For a musician or even an expert listener,
it would be very easy to tap some instances of the beat and sama,
which could then be used automatically track meter, which is a use-
ful application.

We aim to explore these questions, to see whether providing
additional higher level information improves meter tracking per-
formance. In specific, we explore two variants of informed meter
tracking:
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1. Tempo-informed meter tracking in which the median tempo of
the piece is provided as an additional input to the meter tracking
algorithm. Providing the median tempo is hypothesized to help
reduce tempo octave errors - tracking the metrical cycles at the
correct metrical level instead of tracking half and double cycles.
The median tempo can be obtained through simpler state of the
art tempo estimation algorithms outlined in Section 2.3.2 (one
such algorithm for Carnatic music is also described later in this
chapter in Section 5.2.1). Since the tempo of a piece can vary
over time, a narrow range of tempo for the piece can also be
provided in addition or in lieu of the median tempo.

2. Tempo-sama-informedmeter tracking inwhich themedian tempo
and the first downbeat location in the excerpt are provided as
additional inputs to the meter tracking algorithm. The practi-
cal scenario for such a case is a semi-automatic meter tracking
system, where a human listener can tap along to the first one
(or few) downbeats of the piece and an automatic meter tracker
would then track the rest of the piece. In this thesis, we only
explore the use of first downbeat of the piece in informed meter
tracking.

There are other meter analysis tasks that have been addressed in
MIR, such as beat tracking, and downbeat tracking from the set of
known beats. The task of beat tracking as defined in the state of art
is ill defined in Indian art music, due to possibly non-isochronous
pulsation. We can adapt the task and track a uniform pulsation as
the beat. However, since the tasks of meter inference and meter
tracking aim to track all the relevant events of the metrical cycle,
the task of beat tracking is subsumed in those tasks. We do not
address the task of beat tracking in Indian music directly, but as
a sub-task of the meter tracking/inference tasks. Estimating the
downbeats and the start of measure from a set of beats, as done
by Davies and Plumbley (2006) and Hockman et al. (2012) is also
handled as a sub-task within the joint estimation of tempo, beats
and the downbeats.

We now describe the approaches to these tasks, starting with
some preliminary approaches followed by Bayesian models. With
Bayesian models, several different extensions are proposed over
the state of the art models.



182 Meter inference and tracking

5.2 Preliminary experiments
The preliminary experiments around the task of meter analysis are
exploratory experiments with existing features, rhythm descriptors,
methods and algorithms to gain insights into the problem and test
their relevance and utility in these tasks. The aim of including them
in thesis is to gain useful insights and understand the limitations
of those algorithms in meter analysis tasks for Indian art music.
Only a selection of them are described here, primarily for Carnatic
music, as a base for improved Bayesian models for meter analy-
sis. We proposed a novel meter tracking algorithm in Carnatic mu-
sic (Srinivasamurthy & Serra, 2014) using pre-existing tools and
rhythm descriptors, which is described in detail. The features and
tools are explained as a part of the proposed meter tracking algo-
rithm, emphasizing on their utility.

5.2.1 Meter tracking using dynamic
programming

The primary philosophy of meter tracking is to incorporate specific
knowledge of the rhythmic structures we aim to estimate, which is
also used in this approach. However, the approach aims to estimate
the components of meter separately using a descriptor for each mu-
sic concept. Using Carnatic music as an illustration, the algorithm
estimates the akṣara period τo, the akṣara pulse locations, and the
sama. For estimating these components, a set of rhythm descriptors
are first computed from the audio that are indicative of the possi-
ble candidates for each musical concept. The periodicity and the
relationships between these structures are then utilized to estimate
the components. This framework can be generalized to estimating
other rhythmic structures by suitably modifying the audio descrip-
tor for the specific music culture and the rhythmic structure under
consideration.

The algorithm for Carnatic music is explained in detail in this
section. A hypothesis is that the akṣara pulses can be estimated
from the onsets of mridangam, and hence a percussion onset based
rhythm descriptor (Bello et al., 2005) is useful for tracking the
akṣara pulses. Tempogram, a mid-level tempo representation for
music signals proposed by Grosche and Müller (2011b) is used to
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b

Figure 5.1: Block diagram of the algorithm showing the signal flow and
representative illustrations of different stages of the algorithm. The im-
portant outputs at each stage are also shown at the bottom. In each panel,
the vertical lines that run through the panel indicate the sama ground truth
instants. The estimated sama/akṣara candidates are shown with red dots
and the estimated sama are shown with ×.

track the time-varying akṣara period. A novelty function is com-
puted using a self similarity matrix constructed using frame level
onset and timbral features. These are then used to estimate possi-
ble akṣara and sama candidates, followed by a candidate selection
based on periodicity constraints, which leads to the final estimates.
A block diagram of the approach is shown in Figure 5.1. The fea-
tures and the approach are explained further in detail.

Pre-processing: Percussion enhancement

The akṣara pulse most often coincides with the onsets of mridan-
gam strokes. To enhance the mridangam onsets, percussion en-
hancement is performed on the downmixed mono audio signal f [n]
obtained from amusic piece z, as it has been shown to improve beat
tracking performance in pieces with predominant vocals by Zapata
and Gómez (2013). The predominant melody (F0) is estimated us-
ing the algorithm proposed by Salamon and Gómez (2012) using
which the harmonic component of the signal is extracted using a si-
nusoidal+residual model proposed by Serra (1997). The percussion
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Figure 5.2: An illustration of percussion enhancement on a short audio
excerpt of Carnatic music. The figure shows the spectrogram of the audio
excerpt, before percussion enhancement (top panel) and after percussion
enhancement by suppressing the lead melody (bottom panel). The lead
melody is suppressed, while the tambūra (drone) is still present.

enhanced signal fp[n], with the harmonic component suppressed, is
used for further processing (Figure 5.1(c)). An illustration of per-
cussion enhancement for a short audio excerpt of Carnatic music is
shown in Figure 5.2.

Akṣara period and pulse tracking

The spectrogram of fp[n] is used to compute two frame level spec-
tral flux based onset detection functions (Bello et al., 2005) com-
puted every 11.6 ms. For each audio frame k (k ≤ K), the first
function (yf [k]) uses the whole frequency range of the spectrogram
and the other function computes the spectral flux only in the range
of 0− 120 Hz (yl[k]) and captures the low frequency onsets of the
left (bass) drum head of the mridangam.

The function yf [k] is used to compute a Fourier-based Tem-
pogram G proposed by (Grosche & Müller, 2011b), computed ev-
ery 0.25 second using a 8 second long window (Figure 5.1(d)). If
the time indexes at which the tempogram is computed is denoted
with i, (1 ≤ i ≤ KG), the most predominant τo curve can be
tracked by estimating the best path Γ = {γi : i = 1, 2, · · · , KG}
through the tempogram matrix G that provides a balance between
tempogram amplitude at time index i, Gγi ,i

, and the local continu-
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ity of τo. An objective function, that is an extended version of the
one used by Wu et al. (2011), is defined as shown in Eq. 5.1.

J1 (Γ, θ1, θ2) =

KG∑
i=1

Gγi ,i
−

KG−1∑
i=1

(
θ1 |γi − γi+1|+ θ2 O

(
γi
γi+1

))
(5.1)

The functionO(γi/γi+1) is an extra penalty term to penalize tempo
doubling and halving between adjacent frames, and the parameters
θ1 (= 0.01) and θ2 (= 106) provide different weights to the three
terms. Based on observations from the CMRf dataset, the search for
the best path through the tempogram is restricted between the range
of 120 to 600 APM (akṣaras per minute).

The above objective function is solved using a Dynamic Pro-
gramming (DP) based approach to obtain a τo curve. Assuming the
longest tracked τo curve to be at the correct metrical level, any pos-
sible tempo doubling/halving errors that are present are corrected
to obtain the final curve Γ∗ (Figure 5.1(d), Γ∗ is shown as a thick
red line). Using the τo and the tāḷa information, we can obtain the
time varying τs curve for the piece by multiplying the τo by the
number of akṣaras in a cycle of the tāḷa. A further example of a
tempogram and the estimated time varying τo curve for a piece of
Carnatic music2 from CMRf dataset is shown in Figure 5.3. The fig-
ure shows the variations in tempo through a Carnatic music piece.

The akṣara pulse locations predominantly lie on strong mri-
dangam onsets. The akṣara pulse candidates are estimated as the
peaks of the function yf [k]. Using these κ candidate peaks {oi},
i = 1, 2, 3, · · · , κ, with locations ti and peak amplitude ξi, a cost
function is setup as shown in Eq. 5.2 to select the best candidates
that provide a balance between the amplitude of these candidates
and a periodicity provided by the estimated akṣara period. The best
set of candidates Oz = {o∗i } ⊂ {oi} are estimated using a DP ap-
proach (Figure 5.1(e)).

J2 ({oi}, δ) =
∑

i⊂{1,2,··· ,κ}

(ξi + δΥ(ti, ti+1,Γ)) (5.2)

2Kamalamba, a kr̥ti in rāga Ānandabhairavi and miśra chāpu tāḷa, from
the album Madrasil Margazhi 2005 by Aruna Sairam: http://musicbrainz
.org/recording/3baa722d-480e-4ae7-8559-a88dce41e1d4

http://musicbrainz.org/recording/3baa722d-480e-4ae7-8559-a88dce41e1d4
http://musicbrainz.org/recording/3baa722d-480e-4ae7-8559-a88dce41e1d4
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Figure 5.3: Estimated time varying tempo curve (shown as a bold blue
line) plotted on top of a tempogram, for a Carnatic music piece. In the
piece, apart the local tempo variations, we can see that the tempo increases
with time. The tempogram shows high values in tempo octave related
bands, with the highest value (in yellow) at the estimated τo.

The function Υ(ti, ti+1,Γ) is a function that returns an exponen-
tially decaying weight based on the time difference between ti and
ti+1 in relation to the local akṣara period, γtk . The parameter δ(= 3)
provides a tradeoff between the two terms.

Sama tracking

The use ofMFCC as features for timbral characteristics is explored.
As a detection function for sama (ys[k]), a novelty function is com-
puted through the diagonal processing of a self similarity matrix
(Foote, 2000) constructed using frame level z-scoreMFCC features
from audio (using audio processing library Essentia (Bogdanov et
al., 2013a)) as shown in Figure 5.1(f). Based on the τs shown in
Table 4.6, a checkerboard kernel with size of 7, 3, 4, and 3 seconds
is used for the tāḷas ādi, rūpaka, miśra chāpu and khaṇḍa chāpu re-
spectively so that the novelty function is computed over about an
āvartana.
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The peaks of the novelty function ys[k] indicate a significant
change of timbre at that time. Starting with the premise that tim-
bral change is an important indicator of sama location, the peaks
of the novelty function are used to estimate sama candidates. Two
methods are explored to estimate the candidates. In Method-A, to
uniformly choose sama candidates throughout a piece, the piece is
cut into segments of length 120, 40, 40 and 30 seconds for ādi, rū-
paka, miśra chāpu and khaṇḍa chāpu respectively (∼10 āvartanas),
and the top five most prominent peaks in each segment of the piece
are estimated as sama candidates ({sAi }).

Another approach, Method-B, is also proposed for candidate
estimation that enforces a periodicity constraint while estimating
sama candidates. Starting from the peaks of ys[k] and estimated τs
curve, for a specific peak, the tāḷa cycle is induced starting from
it. The number of other peaks that would support such an induced
tāḷa is assigned as the weight of the specific peak. The peaks are
then rank ordered using this weight and the top ten ranked peaks
are chosen as the sama candidates ({sBi }).

In addition, two random baseline methods RB-1 and RB-2 are
created to compare the performance. In RB-1, a randomly chosen
constant τs between 1-8 seconds is used, and a random starting time
between 0-2 seconds to induce periodic samas. In RB-2, the esti-
mated τs is used with 10 randomly chosen akṣara locations from
{oi} as sama candidates. RB-1 neither uses the τs, nor the candi-
date estimation using ys[k], while RB-2 uses the estimated τs but
not the candidate estimation using ys[k].

Starting with the sama candidates obtained either fromMethod-
A or Method-B, for each candidate, the tāḷa cycles are induced
based on local τs period obtained from the τs curve. For each seed,
the next and previous three estimated cycle periods are searched
for onset peaks in yf [k] that support a sama. If a supporting onset
is found, it is marked as a sama and the algorithm proceeds further
with the new estimated onset as the new anchor. The induction is
stopped from a candidate when it does not lead to such a support-
ing onset. For each candidate, an estimated sama sequence is thus
obtained. Since all candidates are not necessarily sama locations,
though the estimated τs is right, the sequences can have different
offsets.

The final step of the algorithm is to shift, align and merge these



188 Meter inference and tracking

Measure CML AML

τo estimation 81.2 98.9
τo tracking 80.4 96.3

Table 5.1: Accuracy (%) of akṣara period tracking on the CMRf dataset.
The values are measured using a 5% tolerance, at both correct metrical
level (CML) and allowed metrical levels (AML).

sequences obtained from each candidate. Starting with the longest
sama sequence that has been estimated, other sequences are merged
into this based on maximum correlation between the sequences.
Themerging of these sequences often leads tomany sama estimates
concentrated around the true location of sama due to small offsets.
Since the left bass onsets on the mridangam are often strong at the
samas, all groups of sama estimates that are closer than 1/3rd of τs
are merged into a single sama estimate aligned with the closest left
stroke onset obtained from yl[k]. This forms the final set of sama
locations Sz = {sti} estimated from the candidates and the onset
detection function, as shown in Figure 5.1(f) with ×.

Results

The annotated CMRf dataset has annotations only for beats and samas
of the piece. From the sama locations, we can obtain the ground
truth for τs curve, and hence the ground truth for τo curve. Since
we do not have the ground truth for akṣara locations, we present
the results only for tempo (τo) and sama tracking.

The performance of akṣara period tracking is measured by com-
paring the ground truth akṣara period curvewith the estimated curve
with an error tolerance of 5%. The results of median akṣara pe-
riod estimation computed from the whole akṣara period curve of
the piece is also reported. Further, since there can be tempo dou-
bling and halving errors, the accuracies are reported at the anno-
tated correct metrical level (CML) and then using a weaker AML
measure that allows tempo halving and doubling (AML - allowed
metrical levels).

The results are presented in Table 5.1. We see that an acceptable
level accuracy is achieved at CML for both median akṣara period
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Variant p r f I (bits) Cand. Accu. (%)

Method-A 0.290 0.190 0.216 1.17 20.46
Method-B 0.246 0.202 0.215 1.25 27.85
RB-1 0.155 0.175 0.137 0.40 -
RB-2 0.228 0.200 0.206 1.11 15.3

Table 5.2: Accuracy of sama tracking. The measures p: Precision, r:
Recall, f: f-measure, I: information gain, are shown. The values are
mean performance over the whole CMRf dataset. The last column shows
the fraction (as a percentage) of the estimated sama candidates that are
true samas.

estimation and akṣara period tracking and further, there is not a sig-
nificant difference between their performances, indicating that the
algorithm can track changes in tempo effectively. Even when the
akṣara period tracking fails at CML, the algorithm tracks a metri-
cally related akṣara period, as indicated by a high AML accuracy.

For sama tracking, the accuracy of estimation is reported with a
margin of 7% the annotated τs of the piece. Given the ground truth
and the estimated sama time sequence, we use the common evalu-
ation measures used in beat tracking - precision, recall, f-measure
and information gain (McKinney et al., 2007) to measure the per-
formance. The results are shown in Table 5.2, which also shows
the accuracy of sama candidate estimation. The results for RB-1
and RB-2 show mean performance over 100 and 10 experiments
for each piece, respectively.

We see that the performance of sama candidate estimation and
sama tracking is poor in general, with samas correctly tracked only
in about a fifth of cases. The precision is higher than recall in
all cases, and information gain is lower than a perceptually ac-
ceptable threshold (Zapata et al., 2012). Both methods perform
better than RB-1, but have comparable results with RB-2, with a
slightly better f-measure performance (statistically significant in a
Mann–Whitney U test at p = 0.05). This shows that the estimated
inter-sama interval (τs) is useful for sama estimation, whereas can-
didate estimation using novelty function is only marginally useful.
The poor performance can be mainly attributed to poor sama candi-
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date estimation with either of Method-A or Method-B. This is fur-
ther substantiated by the fact that Method-B achieves an f-measure
of 0.436 and an information gain of 1.70 bits when at least half the
estimated candidates are true samas. This clearly shows that the
performance of sama tracking crucially depends on sama candidate
estimation. There are only four pieces (among all pieces with ac-
curate τs estimation) in which all the estimated candidates are true
samas, for which an f-measure of 0.894 and a information gain of
3.51 bits is achieved. This clearly indicates that the novelty func-
tion from which the sama candidates were estimated is not a very
good indicator of sama, and better descriptors need to be explored.

Conclusions

The presented approach to meter tracking with relevant rhythm de-
scriptors for tempo, akṣara, and sama and a hierarchical framework
is promising, but has several limitations. The onset detection func-
tions have information about surface rhythms and hence can be uti-
lized for tempo tracking and akṣara pulse tracking, but the novelty
function used presently is not a good indicator for sama. Further,
it is observed that akṣara pulse period tracking performs to an ac-
ceptable accuracy for practical applications, while sama tracking is
challenging and performs poorly primarily due to poor sama can-
didate estimation.

Though tempo, akṣara and sama are related, they were tracked
separately. Even though information from tempo estimation was
used in estimating the sama, a joint estimation of the meter compo-
nents is desired, since it can tightly couple these related components
together.

The approach uses themusical characteristics in isolation, with-
out considering the interdependence between them. Further, many
heuristic measures are used to track the components of the tāḷa.
The learning from such heuristic approaches can be used to build
a model that can more effectively model the underlying metrical
structure, one that would consider the problem of meter inference
and tracking more holistically. Such a model would also be adapt-
able to different metrical structures and handle variations in real
world scenarios. The tracking algorithm based on dynamic pro-



5.3 Bayesian models for meter analysis 191

gramming is also ad hoc and loosely uses the tightly coupled infor-
mation between the tempo, akṣaras and the sama.

Considering these insights and limitations, we explore Bayesian
models for meter inference, which provide an effective probabilis-
tic framework for the task, with several useful inference algorithms
and well studied formulations that can be utilized to our benefit.
The framework learns from training examples and hence the large
number of heuristics used in these initial experiments become un-
necessary.

5.3 Bayesian models for meter analysis
Recently, Bayesian models have been applied successfully to me-
ter analysis tasks (Krebs et al., 2013; Böck et al., 2014; Krebs,
Holzapfel, et al., 2015). The effectiveness of such models stem
from their ability to accurately model metrical structures and their
adaptability to different metrical structures, music styles and vari-
ations. These advantages are supplemented by the huge literature
on Bayesian models and efficient exact and approximate inference
algorithms. Since metrical structures are mostly mental constructs,
the use of such generative graphical probabilistic models can even
perhaps be hypothesized that they closely (better than other ap-
proaches to meter analysis) emulate the mechanisms of progression
through metrical cycles used by listeners and musicians.

As discussed earlier in Section 2.4.1, a Dynamic Bayesian Net-
work (DBN) (Murphy, 2002) is well suited for meter analysis, since
it relates variables over time through conditional (in)dependence
relations. The bar pointer model is one suchDBN that has been suc-
cessfully applied to meter analysis. Proposed byWhiteley, Cemgil,
and Godsill (2006), it has been improved since then and applied to
various meter analysis tasks over different music styles (Whiteley,
Cemgil, & Godsill, 2007; Krebs et al., 2013; Krebs, Holzapfel, et
al., 2015; Böck et al., 2014; Holzapfel et al., 2014; Krebs, Böck, &
Widmer, 2015; Srinivasamurthy et al., 2015, 2016).

In this chapter, we start with the bar pointer model and present
several extensions and explore different inference schemes for those
extensions, all in the context of Indian art music. The performance
of such models and inference schemes are evaluated on the Car-
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natic and Hindustani music test datasets presented in Chapter 4,
with additional evaluations on the Ballroom dataset to test for gen-
eralization and to baseline performance. An extensive evaluation
of the algorithms in the thesis is on the most relevant task of meter
tracking, while meter inference and informed meter tracking tasks
are addressed to a limited extent.

The remainder of the chapter is organized as follows. The bar
pointer model is first described, explaining its model structure and
inference schemes (Section 5.3.1). The following extensions and
enhancements to the model structure are then proposed and de-
scribed in Section 5.3.2:

1. A simplified bar pointermodel with amixture observationmodel,
that aims to complement observation likelihood frommany rhyth-
mic patterns (Srinivasamurthy et al., 2015).

2. The section pointermodel that aims to use patterns that are shorter
than bar for meter tracking, and hence might be useful to track
long metrical structures (Srinivasamurthy et al., 2016).

Extensions and enhancements to inference schemes on the bar pointer
model extensions are proposed and described in Section 5.3.3:

1. End of bar rhythm pattern sampling, which proposes to defer
pattern sampling to the end of the bar.

2. Hop inference for fast meter tracking, which aims to do faster
inference by performing inference only when there is a signifi-
cant rhythmic event in audio (such an an onset).

Finally, an evaluation of these algorithms is presented in Section 5.4,
followed by a discussion and summary of the experiments and re-
sults.

5.3.1 The bar pointer model
The bar pointer model (or dynamic bar pointer model), referred to
as BP-model in this chapter, is a generative model that has been
successfully applied for meter analysis tasks. The model assumes
a hypothetical time pointer within a bar that progresses at the speed
of the tempo to traverse through the bar and then reinitializes at the
end of the bar to track the next bar. The model also assumes that
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(a) Bar pointer model (BP-
model)

(b) Bar pointer model using
a mixture observation model
(MO-model)

(c) Section pointer model (SP-
model)

(d) Simplified section pointer
model

Figure 5.4: Themeter analysis models used in the dissertation. In each of
these DBNs, circles and squares denote continuous and discrete variables,
respectively. Grey nodes and white nodes represent observed and latent
variables, respectively.

specific bar length rhythm patterns are played in a bar depending on
the rhythmic style, and uses these patterns to track the progression



194 Meter inference and tracking

through the bar. These rhythmic patterns can be fixed a priori or
learned from data to build an observation model for each position
in the bar. When learned from data, the rhythmic patterns are built
using a signal representation derived from audio, most often from
frame level audio features to preserve the temporal information in
features. Progressing through the bar, the model can hence be used
to sample the observation model and generate a rhythmic pattern
that is possible and allowed in the rhythm style. The model allows
for different metrical structures, tempi ranges and rhythm styles,
providing a flexible framework for meter analysis. Though applied
only for meter analysis from audio recordings in this dissertation,
the BP-model can be applied even to symbolic music (Whiteley et
al., 2006). BP-model can be represented as a DBN with specific
conditional dependence relations between the variables that lead to
several variants and extensions of the model. The structure of the
BP-model is shown in Figure 5.4a.

In a DBN, an observed sequence of features derived from an au-
dio signal y1:K = {y1, . . . , yK} is generated by a sequence of hid-
den (latent) variables x1:K={x1, . . . , xK}, whereK is the length of
the feature sequence (number of audio frames in an audio excerpt).
The joint probability distribution of hidden and observed variables
factorizes as,

P (y1:K , x0:K) = P (x0) ·
K∏
k=1

P (xk | xk−1)P (yk | xk) (5.3)

where, P (x0) is the initial state distribution, P (xk|xk−1) is the tran-
sition model, and P (yk|xk) is the observation model.

Hidden variables

In the bar pointer model, at each audio frame k, the hidden vari-
able vector xk describes the state of a hypothetical bar pointer xk =
[ϕk ϕ̇k rk], representing the bar position, instantaneous tempo and
a rhythmic pattern indicator, respectively (see Figure 5.5 for an il-
lustration).

• Rhythmic pattern indicator: The rhythmic pattern variable r ∈
{1, . . . , R} is an indicator variable to select one of the R obser-
vation models corresponding to each bar (cycle) length rhythmic
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Figure 5.5: An illustration of the progression of bar position and instan-
taneous tempo variables over two consecutive audio frames in a cycle of
rūpaka tāḷa. The effect of instantaneous tempo is greatly exaggerated for
clarity in the illustration.

pattern of a rhythm class. Each pattern r has an associated length
of cycleMr and number of beat (or mātrā) pulsesBr. In the scope
of this dissertation, all rhythmic patterns are learned from train-
ing data and not fixed a priori. We can infer the rhythm class
or meter type (tāḷa) by allowing rhythmic patterns of different
lengths from different rhythm classes to be present in the model,
as used by Krebs, Holzapfel, et al. (2015). However, it is to be
noted that for the problem of meter tracking, we assume that the
cycle length is known and that all theR rhythmic patterns belong
to the same rhythm class (tāḷa),Mr =M and Br = B ∀ r.

• Bar position: The bar position ϕ ∈ [0,Mr) variable indicates
a position in the bar at any audio frame and tracks the progres-
sion through the bar. Here, Mr is the length of the bar (cycle),
which is also the length of the bar length rhythmic pattern be-
ing tracked. The bar position variable traverses the whole bar
and wraps around to zero at the end of the bar to track the next
bar. The maximum value of bar (cycle) length, M , depends on
the longest bar (cycle) that is tracked. We set the length of the
longest bar being tracked to a fixed value, and scale other bar
(cycle) lengths accordingly.

• Instantaneous tempo: Instantaneous tempo ϕ̇ is the rate at which
the bar position variable progresses through the cycle at each time
frame, measured in bar positions per time frame. The range of
the variable ϕ̇k ∈ [ϕ̇min, ϕ̇max] depends on the length of the cycle
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M and the analysis frame hop size (h = 0.02 second used in this
thesis), and can be preset or learned from data. A tempo value
of ϕ̇k corresponds to a bar (cycle) length of (h ·Mr/ϕ̇k) seconds
and (60 · B·ϕ̇k/(M ·h)) beats/mātrās per minute. The range of the
variable can be used to restrict the range of tempi that is allowed
within each rhythm class.

Initial state distribution

The initial state distribution P (x0) can be used to incorporate prior
information about themetrical structure of themusic into themodel.
Different initializations are explored depending on the meter anal-
ysis task under consideration. A uniform initialization is used for
meter inference and tracking, while a narrower informed initializa-
tion is done for informed meter tracking.

Transition model

Given the conditional dependence relations between the variables
of the BP-model in Figure 5.4a, the transition model factorizes as,

P (xk | xk−1) = P (ϕk | ϕk−1, ϕ̇k−1, rk−1)P (ϕ̇k | ϕ̇k−1)

P (rk | rk−1, ϕk, ϕk−1) (5.4)

The individual terms of the equation can be expanded as,

P (ϕk | ϕk−1, ϕ̇k−1, rk−1) = 1ϕ (5.5)

where 1ϕ is an indicator function that takes a value of one if ϕk =
(ϕk−1 + ϕ̇k−1)mod(Mrk−1

) and zero otherwise. The tempo transi-
tion is given by,

P (ϕ̇k | ϕ̇k−1) ∝ N (ϕ̇k−1, σ
2
ϕ̇k
)× 1ϕ̇ (5.6)

where 1ϕ̇ is an indicator function that equals one if ϕ̇k ∈ [ϕ̇min, ϕ̇max]
and zero otherwise, restricting the tempo to be between a prede-
fined range. N (µ, σ2) denotes a normal distribution with mean µ
and variance σ2. The value of σϕ̇k depends on the value of tempo
to allow for larger tempo variations at higher tempi. We set σϕ̇k =

σn · ϕ̇k−1, where σn is a user parameter that controls the amount
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of local tempo variations we allow in the music piece. The pattern
transitions are governed by,

P (rk | rk−1, ϕk, ϕk−1) =

{
A(rk−1, rk) if ϕk < ϕk−1

1r else
(5.7)

where, A is the R × R time-homogeneous transition matrix with
A(i, j) being the transition probability from ri to rj , and 1r is an
indicator function that equals one when rk = rk−1 and zero oth-
erwise. Since the rhythmic patterns are one bar (cycle) in length,
pattern transitions are allowed only at the end of the bar (cycle).
When there are multiple patterns, these transition probabilities in-
dicate the most probable movement through these patterns from bar
to bar, as the piece progresses. To reflect the performance practice,
the pattern transition probabilities are learned from data.

Observation model

The observation model aims to model the underlying rhythmic pat-
terns present in the metrical structure being inferred/tracked, ex-
plaining the possible rhythmic events at each position in the bar.
Some of the positions in a bar have a higher probability of an on-
set occurring than other parts (e.g. the positions corresponding
to downbeats, beats). Further, the strength of these onsets also
vary depending on accent patterns of a rhythm class (which can
be modeled from labeled data). The observation model used in this
dissertation aims to address both these aspects (the locations and
strengths of the rhythmic events), and closely follows the observa-
tion model proposed by Krebs et al. (2013).

The utility of spectral flux based rhythmic audio features was
outlined in preliminary experiments Section 5.2. A similar audio
derived spectral flux feature is used in this dissertation as well,
identical to features used by Krebs et al. (2013), as explained in
Section 4.2.1 (see Figure 4.7). Since the bass onsets have signifi-
cant information about the rhythmic patterns, the features are com-
puted in two frequency bands (Low: ≤ 250 Hz, High: > 250 Hz).

It is assumed that the audio features depend only on the bar
position and rhythmic pattern variables, without any influence from
tempo. While this assumption is not completely true, it simplifies
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the observation model and helps to train better models with limited
training data. Further, it is assumed that the audio features do not
vary too much over short changes in position in cycle (e.g. the
spectral flux variations within a small fraction of an akṣara might
be negligible), which additionally helps to tie several positions to
have the same observation probability and helps train models with
limited training data.

Using beat and downbeat annotated training data, the audio fea-
tures are then grouped into bar length patterns. The bar is then dis-
cretized into 64th note cells (four cells per akṣara for Carnatic mu-
sic, and four cells per mātrā for Hindustani music, corresponds to
25 bar positions withM = 1600). A k-means clustering algorithm
clusters and assigns each bar of the dataset to one of the R rhyth-
mic patterns. All the features within the cell are then collected for
each pattern, and maximum likelihood estimates of the parameters
of a two component GaussianMixtureModel (GMM) are obtained.
The observation probability within a 64th note cell is assumed to be
constant, and computed as,

P (y | x) = P (y | ϕ, r) =
2∑
i=1

πϕ,r,iN (y;µϕ,r,i,Σϕ,r,i) (5.8)

where,N (y;µ,Σ) denotes a normal distribution of the two dimen-
sional feature y. For the mixture component i, πϕ,r,i,µϕ,r,i and
Σϕ,r,i are the component weight, mean (2-dimensional) and the co-
variance matrix (2× 2), respectively.

Inference in bar pointer model

The goal of inference in meter analysis tasks is to find a hidden
variable sequence that maximizes the posterior probability of the
hidden states given an observed sequence of features: a maximum
a posteriori (MAP) sequence x∗1:K that maximizes P (x1:K | y1:K).
The inferred hidden variable sequence x∗1:K can then be translated
into a sequence of:

• downbeat (sama) instants: Sz = {t∗k | ϕ∗
k = 0}

• beat instants: Bz = {t∗k | ϕ∗
k = i · Mr∗/Br∗ , i = 1, . . . , Br}

• local instantaneous tempo: ϕ̇∗
k

• estimated rhythmic patterns: r∗
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Two different inference schemes are now described, an inference
using the Viterbi algorithm in a discretized state space, and an ap-
proximate inference using particle filters in the continuous space of
ϕ and ϕ̇, with the discrete variable r.

Viterbi algorithm

The continuous variables of bar position and tempo can be dis-
cretized, which transforms the DBN into an HMM over the carte-
sian product space of the discretized variables. In the HMM, an
inference can be performed using the Viterbi algorithm to compute
themost likely sequence of hidden states given the observed feature
sequence.

We follow a discretization scheme that is identical to themethod
proposed by Krebs, Holzapfel, et al. (2015), by replacing the con-
tinuous variables ϕ and ϕ̇ by their discretized counterparts m and
n, respectively, as

m ∈ {1, 2, . . . , ⌈Mr⌉} (5.9)
n ∈ {nmin, nmin + 1, nmin + 2, · · · , N − 1, N} (5.10)

Here, nmin = ⌊ϕ̇min⌋ and N = nmax = ⌈ϕ̇max⌉ is the discrete min-
imum and maximum tempo values allowed, where ⌊·⌋ and ⌈·⌉ de-
note floor and ceil operations, repsectively.

With such a discretization in place, the transition model equa-
tions Eq. 5.4, Eq. 5.5 and Eq. 5.7 remain as defined. However, the
tempo transition probability is redefined within the allowed tempo
range as,

P (nk | nk−1) =


1− pn if nk = nk−1

pn
2

if nk = nk−1 ± 1

0 otherwise
(5.11)

where pn is the probability of tempo change. It is to be noted that
that the discretization of ϕ and ϕ̇ need not be done on an integer or
on a uniform grid. It is possible that the tempo range can be non-
uniformly sampled, as was proposed by Krebs, Böck, and Widmer
(2015). In this dissertation, however, only a uniform discretization
is explored in the context of the HMM. Viterbi algorithm (Rabiner,
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1989) is then used to obtain a MAP sequence of states with the
HMM. The HMM based Viterbi decoding inference algorithm in
BP-model as described in the section will be denoted as HMM0 in
the dissertation.

The drawback of this approach is that the discretization has to
be on a very fine grid in order to guarantee good performance,
which leads to a prohibitively large state space (specially with long
cycles) and, as a consequence, to a computationally demanding in-
ference. The size of the state space is S = M ·N · R and needs a
S×S sized transition matrix. As an example, dividing a bar into
M = 1600 position states, with N = 15 tempo states and R = 4
patterns, the size of the state space is S = 96000 states. The com-
putational complexity of the Viterbi algorithm isO(K·|S|2). Even
though the state transition matrix is sparse due to a lower number
of allowed transitions leading to a complexity ofO(K ·M ·R), the
inference with HMM can become computationally prohibitive and
does not scale well with increasing number of states. This prob-
lem can be overcome, for instance, by using approximate inference
methods such as particle filters.

Particle Filter (PF)

Particle filters (or SMC methods) are a class of approximate infer-
ence algorithms to estimate the posterior density in a state space.
They overcome two main problems of the HMM - discretization of
the state space and the quadratic scaling up of the size of state space
with additional hidden variables. In addition, they can incorporate
long term relationships between hidden variables.

In the continuous state space of x1:K , the exact computation of
the posterior P (x1:K |y1:K) is often intractable, but it can be evalu-
ated pointwise. In particle filters, the posterior is approximated us-
ing a weighted set of points (known as particles) in the state space
as,

P (x1:K | y1:K) ≈
Np∑
i=1

w
(i)
K δ(x1:K − x(i)1:K) (5.12)

Here, {x(i)1:K} is a set of points (particles) with associated weights
{w(i)

K }, i = 1, . . . , Np, x1:K is the set of all state trajectories until
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frameK, δ(x) is the Dirac delta function, and Np is the number of
particles.

With this particle system, starting with P (x0), to approximate
the posterior pointwise, we need a suitable method to draw sam-
ples x(i)k and compute appropriate weights w(i)

k recursively at each
time step. It is clearly non-trivial to sample from an arbitrary poste-
rior distribution. A simple approach is Sequential Importance Sam-
pling (SIS) (Doucet & Johansen, 2009), where we sample from a
proposal distribution Q(x1:k|y1:k) that has the same support and is
as similar to the true (target) distribution P (x1:k|y1:k) as possible.
To account for the fact that we sampled from a proposal and not
the target, we attach an importance weight w(i)

k to each particle,
computed as,

w
(i)
k =

P (x1:k | y1:k)
Q(x1:k | y1:k)

(5.13)

With a suitable proposal density, these weights can be computed
recursively as,

w
(i)
k ∝ w

(i)
k−1

P (yk | x(i)k )P (x(i)k | x(i)k−1)

Q(x(i)k | x(i)k−1, yk)
(5.14)

Following Krebs, Holzapfel, et al. (2015), we choose to sample
from the transition probability Q(x(i)k | x(i)k−1, yk) = P (x(i)k | x(i)k−1),
which reduces Eq. 5.14 to

w
(i)
k ∝ w

(i)
k−1P (yk | x

(i)
k ) (5.15)

The SIS algorithm derives samples by first sampling from proposal,
in this case the transition probability and then computes weights
according to Eq. 5.15. Once we determine the particle trajectories
{x(i)1:K}, we then select the trajectory x

(i∗)
1:K with the highest weight

w
(i∗)
K as the MAP state sequence.
Many extensions have been proposed to the basic SIS filter

(Doucet and Johansen (2009) provide a comprehensive overview)
to address several problemswith it. Some of the relevant extensions
are briefly mentioned, emphasizing their key aspects. A more de-
tailed description of the algorithms has been presented by Krebs,
Holzapfel, et al. (2015).
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The most challenging problem in particle filtering is the degen-
eracy problem, where within a short time, most of the particles have
a weight close to zero, representing unlikely regions of state space.
This is contrary to the ideal case when we want the proposal to
match well with the target distribution leading to a uniform weight
distribution with low variance. To reduce the variance of the par-
ticle weights, resampling steps are necessary, which replace low
weight particles with higher weight particles by selecting particles
with a probability proportional to their weights. Several resampling
methods have been proposed, but we use systematic resampling in
this dissertation as recommended by Doucet and Johansen (2009).
With resampling as the essential difference, the SIS filter with re-
sampling is called as Sequential Importance Sampling/Resampling
(SISR) filter.

In meter analysis problems, due to metrical ambiguities, the
posterior distributionP (xk|y1:k) is highly multimodal. Resampling
tends to lead to a concentration of particles in one mode of the pos-
terior, while the remaining modes are not covered. One way to
alleviate this problem is to compress the weights wk = {w(i)

k },
i = 1, . . . , Np by a monotonically increasing function to increase
the weights of particles in low probability regions so that they can
survive resampling. After resampling, the weights have to be un-
compressed to give a valid probability distribution. This can be for-
mulated as an Auxiliary Particle Filter (APF) (Johansen & Doucet,
2008).

A particle system that is capable of handling metrical ambi-
guities must maintain the multimodality of posterior distribution
and be able to track several hypotheses together, which SISR and
APF cannot do explicitly. A system called the Mixture Particle Fil-
ter (MPF) was proposed by Vermaak, Doucet, and Pérez (2003) to
track multiple hypotheses, and was adapted to meter inference by
Krebs, Holzapfel, et al. (2015).

In aMPF, each particle is assigned to a cluster that (ideally) rep-
resents a mode of the posterior. During resampling, the particles of
a cluster interact only with particles of the same cluster. Resam-
pling is done independently in each cluster, while maintaining the
probability distribution intact. This way, all the modes of the pos-
terior can be tracked through the whole audio piece, and the best
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hypothesis can be chosen at the end. In this work, we use an identi-
cal clustering scheme using a cyclic distance measure as described
by Krebs, Holzapfel, et al. (2015) to track several different possible
metrical positions at a given time. We use a cyclic distance mea-
sure that can take into account the cyclic nature of the bar position
ϕ. By representing the bar position as a complex phasor on the unit
circle, we can compute the corresponding angle φ(ϕk) = 2πϕk/M.
A distance between two particles indexed by i and j can then be
computed as,

d(i, j) = λϕ

[(
cos(φ(i))− cos(φ(j))

)2
+
(
sin(φ(i))− sin(φ(j))

)2]
+ λϕ̇

(
ϕ̇(i) − ϕ̇(j)

)2

+ λr(r
(i) − r(j))2 (5.16)

where, the parameters [λϕ, λϕ̇, λr] control the relative weights in
the distance.

In the MPF, after an initial cluster assignment, we perform a
reclustering before every resampling step, merging or splitting clus-
ters based on the average distance between cluster centroids. The
clustering, merging and splitting of clusters is necessary to con-
trol the number of clusters, which ideally represents the number
of modes in the posterior. The mixture particle filter can be com-
bined with auxiliary resampling to give the Auxiliary Mixture Par-
ticle Filter (AMPF). As recommended by Krebs, Holzapfel, et al.
(2015), we resample at a fixed interval Ts.

It has been clearly shown by Krebs, Holzapfel, et al. that AMPF
can be effectively used for the task of meter inference and tracking.
In this dissertation, theAMPF algorithm, as outlined inAlgorithm 1
is used for all meter analysis tasks that need approximate inference.
The AMPF algorithm with the BP-model as described in this sec-
tion will be denoted as AMPF0 in the dissertation.

The complexity of the PF schemes scales linearly with the num-
ber of particles Np irrespective of the size of state space, leading
to an efficient inference in large state spaces. Further, compared
to the HMM using Viterbi decoding that has a space complexity
of O(K · |S|), the PF needs to store just Np state trajectories and
weights, significantly reducing the memory requirements. An ad-
ditional advantage is that the number of particles can be chosen
based on the computational power we can afford, and we can make
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Algorithm 1 An outline of the AMPF0 algorithm (AMPF for infer-
ence in BP-model)
1: for i = 1 to Np do
2: Sample x(i)0 ∼ P (x0) ◃ xk = [ϕk, ϕ̇k, rk]

3: Set w(i)
0 = 1/Np

4: Cluster {x(i)0 |i = 1, 2, · · · , Np}, get cluster assignments {c(i)0 }
5: for k = 1 toK do
6: for i = 1 to Np do ◃ ϕ, r: Proposal and weights
7: Sample ϕ(i)

k ∼ P (ϕ
(i)
k | x(i)k−1), Set c

(i)
k = c

(i)
k−1

8: if ϕ(i)
k < ϕ

(i)
k−1 then ◃ Bar crossed

9: r
(i)
k ∼ P (r

(i)
k | r(i)k−1) ◃ Sample patterns

10: else
11: r

(i)
k = r

(i)
k−1

12: w̃
(i)
k = w

(i)
k · P (yk | ϕ(i)

k , r
(i)
k )

13: for i = 1 to Np do ◃ Normalize weights
14: w

(i)
k =

w̃
(i)
k

Np∑
i=1

w̃
(i)
k

15: if mod (k, Ts) = 0 then ◃ Cluster, resample, reassign
16: Cluster and resample {x(i)k , w

(i)
k , c

(i)
k |i = 1, 2, · · · , Np}

to obtain {x̂(i)k , ŵ
(i)
k = 1/Np, ĉ

(i)
k }

17: for i = 1 to Np do
18: x(i)k = x̂(i)k , w(i)

k = ŵ
(i)
k , c(i)k = ĉ

(i)
k

19: Sample ϕ̇(i)
k ∼ P (ϕ̇

(i)
k | ϕ̇(i)

k−1) ◃ Sample tempo
20: Compute x∗1:K = x(i

∗)
1:K | i∗ = argmax

i
w

(i)
K ◃MAP sequence

the state space larger with no or only a marginal increase in the
computational requirements.

To conclude, the bar pointer model is a state of the art model
useful in all the meter analysis that are addressed in the thesis. The
performance of meter analysis with BP-model will be a baseline
for all the datasets and music cultures under study. Though a state
of the art model explored before, the dissertation presents a further
exploration of the model with the following novelties compared to
the previous approaches:
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1. The bar pointer model has been extended and evaluated on In-
dian art music, showing its utility and discussing its limitations
with the kinds of metrical structures that occur in Indian music.
These learnings and insights will help improve the components
of the model, pushing the state of the art ahead.

2. Even though the bar pointer model can handle multiple rhyth-
mic patterns per rhythm class (or meter type), only one previous
study has applied it to include more than one rhythmic pattern
per rhythm class (Holzapfel et al., 2014). The dissertation for
the first time applies the bar pointer model to multiple rhythm
patterns per rhythm class and presents an evaluation.

3. Several novel extensions to the bar pointer model are explored
and presented in the dissertation to address several shortcomings
of the model, and to extend the functionality of the model.

Several extensions and enhancements to the bar pointer model can
be proposed. For better organization, these extensions are grouped
into two categories: model extensions that propose changes to the
model structure of the BP-model, either by adding additional hid-
den variables or using different conditional independence relation-
ships, and inference extensions that aim to improve inference in
BP-model, for better and faster inference.

5.3.2 Model extensions
The model extensions proposed to the bar pointer model improve
upon the model structure. Two different model extensions are pro-
posed in the dissertation: a mixture observation model, and the sec-
tion pointer model.

Bar pointer model with a mixture observation model
(MO-model)

We propose a simplification to the bar pointer model that uses a di-
verse mixture observation model incorporating observations from
multiple rhythmic patterns. The bar pointer model as described in
Section 5.3.1 uses multiple rhythmic patterns for meter analysis.
When the task is only to track the beats and downbeats in meter
tracking (assuming the meter type is known a priori), tracking pat-
tern transitions is superfluous. However, to capture the diversity of
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patterns, a diverse mixture observation model can be used to incor-
porate observations from multiple rhythmic patterns.

In meter tracking, since all the rhythmic patterns belong to the
same type of meter, we can simplify BP-model to track only the ϕ
and ϕ̇ variables while using an observationmodel that computes the
likelihood of an observation by marginalizing over all the patterns.
The motivation for this simplification is two-fold: the inference
is simplified with only two hidden variables, and we can increase
the influence of diverse patterns that occur throughout a metrical
cycle in the inference. This simplification of the BP-model that
uses a mixture observation model is referred to as MO-model and
is shown in Figure 5.4b.

With this simplification in the model structure in Figure 5.4b,
the transition model in Eq. 5.4 now changes to,

P (xk | xk−1) = P (βk | βk−1) = P (ϕk | ϕk−1, ϕ̇k−1)P (ϕ̇k | ϕ̇k−1)
(5.17)

Here, β = [ϕ, ϕ̇] is defined as the subset of the hidden variables
tracked using the MO-model. The tempo transition term of the
above equation remains identical to the BP-model, as in Eq. 5.6.
The term for ϕ also remains similar to Eq. 5.5 in the BP-model,
apart from the removal of the dependence on rk−1 as,

P (ϕk | ϕk−1, ϕ̇k−1) = 1ϕ (5.18)

where 1ϕ is an indicator function that takes a value of one if ϕk =
(ϕk−1 + ϕ̇k−1)mod(M) and zero otherwise, noting that the length
of all rhythmic patterns are equal,Mr =M , for all values of r.

The observation model aims to utilize information from multi-
ple rhythmic patterns. The MO-model uses a mixture observation
model computed from Eq. 5.8 by marginalizing over the patterns,
assuming equal priors.

P (y | x) ∝
R∑
j=1

P (y | ϕ, r = j) (5.19)

This observation model makes the MO-model simpler, while giv-
ing a computational advantage. Since the observation likelihood
can be precomputed, inferencewithMO-model requiresmuch lower
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computational resources, with only a marginal increase in cost dur-
ing inferencewith increase in number of patterns. SinceMO-model
assumes that the length of all rhythmic patterns are equal, it can-
not be applied for the task of meter inference where many different
tāḷas of different lengths are present, but can be applied for the task
of meter tracking.
Inference inMO-model: The inference in MO-model is similar to
that using BP-model, by discretizing the state space to lead to an
HMM and applying Viterbi algorithm, or using particle filters. The
inference in HMM can be performed with pre-computed likelihood
from different rhythmic patterns from theMO-model, denoted to as
HMMm in this dissertation. Similarly, the AMPFwith theMO-model
extension is outlined in Algorithm 2 and is denoted as AMPFm in
the rest of the chapter.

Algorithm 2Outline of the AMPFm algorithm (AMPF for inference
in MO-model)
1: for i = 1 to Np do
2: Sample β(i)

0 ∼ P (ϕ0)P (ϕ̇0), w
(i)
0 = 1/Np ◃ βk = [ϕk, ϕ̇k]

3: Cluster {β(i)
0 |i = 1, 2, · · · , Np}, get cluster assignments {c(i)0 }

4: for k = 1 toK do
5: for i = 1 to Np do ◃ ϕ: Proposal and weights
6: Sample ϕ(i)

k ∼ P (ϕ
(i)
k | β(i)

k−1), Set c
(i)
k = c

(i)
k−1

7: w̃
(i)
k = w

(i)
k ×

R∑
j=1

P (yk | ϕ(i)
k , r = j)

8: for i = 1 to Np do ◃ Normalize weights
9: w

(i)
k =

w̃
(i)
k∑Np

i=1 w̃
(i)
k

10: if mod (k, Ts) = 0 then ◃ Cluster, resample, reassign
11: Cluster and resample {β(i)

k , w
(i)
k , c

(i)
k |i = 1, 2, · · · , Np}

to obtain {β̂
(i)

k , ŵ
(i)
k = 1/Np, ĉ

(i)
k }

12: for i = 1 to Np do
13: β

(i)
k = β̂

(i)

k , w(i)
k = ŵ

(i)
k , c(i)k = ĉ

(i)
k

14: Sample ϕ̇(i)
k ∼ P (ϕ̇

(i)
k | ϕ̇(i)

k−1)

15: Compute β∗
1:K = β

(i∗)
1:K | i∗ = argmax

i
w

(i)
K ◃MAP sequence
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Section pointer model

To the best of our knowledge, the methods for meter tracking and
inference so far, including the bar pointer model, have been ap-
plied and evaluated on metrical cycles of short durations. E.g.,
the typical duration of a 4/4 measure in popular Eurogenetic music
would last from a bit less than 2s to little more than 4s. Longer
metrical cycles were reported to cause problems in existing ap-
proaches (Holzapfel et al., 2014). Interestingly, this upper dura-
tion coincides with the limit of a perceptual phenomenon referred
to as perceptual present (Clarke, 1999), and it has been argued that
longer metrical cycles might not be perceived as a single rhythmic
entity (Clayton, 2000). In tracking such long metrical cycles, lis-
teners often track shorter, but musically meaningful sections of the
cycle. This motivates the use of sub-bar or sub-cycle length rhyth-
mic patterns in meter analysis tasks. Compared to the longer cycle
length patterns, shorter patterns have lower variability and hence
might provide better cues for meter tracking.

A similar idea was applied by Böck et al. (2014), where rhyth-
mic patterns of beat length are learned in order to perform beat
tracking. However, the paper assumes that the beats form a regu-
lar isochronous sequence - an assumption that does not hold for
many musics of the world, such as Indian, Turkish, Balkan, or
Korean musics. Furthermore, the paper does not attempt to infer
higher level metrical information, e.g. downbeat positions. By
proposing a generalization to the bar pointer model, we address
for the first time, the two basic limitations of the existing meter
tracking approaches including the BP-model: the restrictions to
short cycles and isochronous beat sequences (Srinivasamurthy et
al., 2016). The generalization of the BP-model, called the section
pointer model (SP-model), uses musically meaningful and possi-
bly unequal section length rhythmic patterns in the task of meter
tracking. With the new model, it is further possible to evaluate if
using shorter section length rhythmic patterns can improve meter
tracking compared to bar (cycle) length rhythmic patterns, in the
presence of long metrical cycles.

The idea behind the SP-model is to track sections instead of the
whole bar (cycle). The rhythmic patterns are now one section in
length, and hence possibly unequal in length. A pointer tracks the
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progression through each section, and a over-arching section iden-
tifier handles the progression through the sections of a cycle. The
structure of the SP-model is shown in Figure 5.4c, and is a gener-
alization to the BP-model, with the BP-model being a special case
of the SP-model. Hence the SP-model can be applied to arbitrary
music styles in a straight forward way, just like the BP-model.

Meter tracking in Indian art music is a suitable case for testing
the SP-model. Both Carnatic and Hindustani music have sections
within the tāḷa (aṅga and vibhāg, respectively), which are musically
well defined and hence the use of section length rhythmic patterns
in the task of meter analysis can be explored with musically mean-
ingful cycle divisions.

Hindustani music has tāl cycles that last over aminute (Clayton,
2000), which is a good test case for the SP-model. The large tempo
range and the filler strokes in Hindustani music (especially vilaṁbit
pieces) can provide a denser surface rhythm than what is expected
from the underlying metrical structure. This surface rhythm can
confuse the meter trackers and bias it towards the higher values of
tempo, something that can be mitigated by tracking shorter section
length patterns. Further, tracking large mātrā periods in vilaṁbit
pieces causes an unstable local tempo estimate that leads to a drift-
ing of the tracking algorithms, which also is expected to be miti-
gated by tracking shorter length patterns.

In the SP-model shown in Figure 5.4c, a hypothetical pointer
traverses each section of a metrical cycle. Hence, in addition to
the variables ϕ, ϕ̇, r of the bar pointer model, we now additionally
introduce a section indicator variable. In reference to the SP-model,
at each audio frame, we redefine and denote the hidden (latent)
variable vector as xk = [ϕk, ϕ̇k, rk, vk], where:

• Section indicator: The section indicator variable v ∈ {1, . . . , V }
is an indicator variable that identifies the section (vibhāg in Hin-
dustani music or aṅga in Carnatic music) of a bar (tāl/a), and se-
lects one of the V observation models corresponding to each sec-
tion length rhythmic pattern learned from data. A rhythm class
(tāl/a) might have many sections of different lengths. We denote
the number of mātrās/beats in a section v by Bv.

• Rhythmic pattern indicator: For each section v, there are one
or more associated rhythm patterns denoted by r. The rhythm
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pattern indicator r, along with the section indicator v select the
appropriate observation model to be used. For convenience and
without loss of generality, we assume each section to be mod-
eled by an equal number of patterns, with a total of R distributed
across all the sections equally. Hence, the number of rhythmic
patterns per section is given as, R/V patterns, with the assump-
tion that R is an integer multiple of V .

• Position in section: The position variableϕ in the SP-model tracks
the position within a section as ϕ ∈ [0,Mv), where Mv is the
length of section v. ϕ increases from 0 to Mv and then resets
to 0 to start tracking the next section. We set the length of the
longest section asM , and then scale the lengths of other sections
accordingly.

• Instantaneous tempo: Instantaneous tempo variable ϕ̇ (measured
in positions per time frame) is similar to the instantaneous tempo
variable of the BP-model and denotes the rate at which the posi-
tion variable ϕ progresses through a section at each time frame.
The allowed range of the variable ϕ̇k ∈ [ϕ̇min, ϕ̇max] depends on
the frame hop size (h = 0.02 second used here as before), and
can be preset or learned from data. In a given section v, a value
of ϕ̇k corresponds to a section duration of (h ·Mv/ϕ̇k) seconds
and (60 · Bv ·ϕ̇k/(Mv ·h)) mātrās/beats per minute.

Given the conditional dependence relations in Figure 5.4c, the tran-
sition probability in SP-model factorizes as,

P (xk | xk−1) = P (ϕk | ϕk−1, ϕ̇k−1, vk−1)P (ϕ̇k | ϕ̇k−1, vk−1)

P (vk | vk−1, ϕk, ϕk−1)P (rk | rk−1, vk, vk−1) (5.20)

Each of the terms in Eq. 5.20 can be expanded as,

P (ϕk | ϕk−1, ϕ̇k−1, vk−1) = 1ϕ (5.21)

where 1ϕ is an indicator function that takes a value of one if ϕk =
(ϕk−1 + ϕ̇k−1)mod(Mvk−1

) and zero otherwise. The tempo transi-
tion is given by,

P (ϕ̇k | ϕ̇k−1, vk−1) ∝ N (ϕ̇k−1, σ
2
ϕ̇k
)× 1ϕ̇ (5.22)
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where 1ϕ̇ is an indicator function that equals one if ϕ̇k ∈ [ϕ̇min, ϕ̇max]
and zero otherwise, restricting the tempo to be between a prede-
fined range. N (µ, σ2) denotes a normal distribution with mean µ
and variance σ2. As before with the BP-model, the value of σϕ̇k
depends on the value of tempo, to allow for larger tempo variations
at higher tempi. In addition, σϕ̇k also depends on the length of the
section, providing higher flexibility of tempo in longer sections.
We set σϕ̇k = σn · ϕ̇k−1 · (Mvk−1/M), where σn is a user parameter
that controls the amount of local tempo variations we allow in the
music piece.

The section transition probability is given by,

P (vk | vk−1, ϕk, ϕk−1) =

{
B(vk−1, vk) if ϕk < ϕk−1

1v else
(5.23)

where, B is the V ×V time-homogeneous section transition matrix
with B(i, j) being the transition probability from vi to vj , and 1r
is an indicator function that equals one when vk = vk−1 and zero
otherwise. The pattern transitions are governed by,

P (rk | rk−1, ϕk, ϕk−1) =

{
A(rk−1, rk) if ϕk < ϕk−1

1r else
(5.24)

where, A is theR×R time-homogeneous pattern transition matrix
with A(i, j) being the transition probability from ri to rj , and 1r
is an indicator function that equals one when rk = rk−1 and zero
otherwise.

Section changes are permitted only at the end of the section.
Since the rhythmic patterns are also one section in length, pattern
transitions are also allowed only at the end of a section. The matrix
B is used to determine the order of the sections as defined in the
tāl/a by allowing only those defined transitions. Further, B can be
set to do meter tracking by including only the section transitions
of a specific tāl/a. A larger B including all the sections from all
the rhythm classes can be used for meter inference as well. The
matrix A closely follows B and has non-zero probabilities only for
allowed pattern transitions. For illustration, consider tracking rū-
pak tāl (which has three vibhāgs V = 3) with the SP-model and two
rhythmic patterns per section (hence,R = 6). The canonical forms
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B =

 0 1 0
0 0 1
1 0 0

 A =



0 0 p1 1− p1 0 0
0 0 p2 1− p2 0 0
0 0 0 0 p3 1− p3
0 0 0 0 p4 1− p4
p5 1− p5 0 0 0 0
p6 1− p6 0 0 0 0


Figure 5.6: An illustration of the form of section (B) and rhythmic pattern
(A) transition matrices for tracking rūpak tāl with the SP-model. The
patterns with index {1, 2}, {3, 4}, {5, 6} correspond to sections 1, 2, and
3, respectively. The values p1 to p6 are learnt from training data.

of the section transition matrices B and A can then be illustrated as
in Figure 5.6.

The observation model with the SP-model is similar to that of
the BP-model, with an assumption that the audio features depend on
the position in section, the rhythmic pattern, and the section indica-
tor variables. The annotated data has mātrās/beats numbered with
their position in the cycle and hence they can used to extract sec-
tion length rhythmic patterns from audio recordings. Section length
patterns from each section are then clustered into R/V pattern clus-
ters using a k-means algorithm. Each section is further discretized
into 64th note cells, all features within the cell are accumulated and
a two component GMM is fit to each cell. The observation likeli-
hood with the SP-model can hence be computed as,

P (y | x) = P (y | ϕ, r, v) =
2∑
i=1

πϕ,r,v,iN (y;µϕ,r,v,i,Σϕ,r,v,i)

(5.25)
where, N (y;µ,Σ) denotes a normal distribution and for the mix-
ture component i, πϕ,r,v,i,µϕ,r,v,i and Σϕ,r,v,i are the component
weight, mean (2-dimensional) and the covariance matrix (2 × 2),
respectively. Hence, there is an observation GMM for each section,
rhythmic pattern, and tied section position states.

It is straightforward to see that the BP-model is a special case
of the SP-model, when the rhythmic patterns span the whole bar
(cycle). By pooling in all the section length patterns from different
tāḷas together, SP-model can also be applied for meter inference
task. Further, a special case of the SP-model is when the num-
ber of sections equals the number of rhythmic patterns, V = R,
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Algorithm 3 Outline of the AMPFs algorithm (AMPF for inference
in SP-model)
1: for i = 1 to Np do
2: Sample x(i)0 ∼ P (x0) ◃ xk = [ϕk, ϕ̇k, rk, vk]

3: Set w(i)
0 = 1/Np ◃ αk = [ϕk, ϕ̇k, vk]

4: Cluster {x(i)0 |i = 1, 2, · · · , Np}, get cluster assignments {c(i)0 }
5: for k = 1 toK do
6: for i = 1 to Np do ◃ ϕ, r, v: Proposal and weights
7: Sample ϕ(i)

k ∼ P (ϕ
(i)
k | α(i)

k−1), Set c
(i)
k = c

(i)
k−1

8: if ϕ(i)
k < ϕ

(i)
k−1 then ◃ Section crossed

9: r
(i)
k ∼ P (r

(i)
k | r(i)k−1) ◃ Sample from A

10: v
(i)
k ∼ P (v

(i)
k | v(i)k−1) ◃ Sample from B

11: else
12: r

(i)
k = r

(i)
k−1, v

(i)
k = v

(i)
k−1

13: w̃
(i)
k = w

(i)
k · P (yk | ϕ(i)

k , v
(i)
k , r

(i)
k )

14: for i = 1 to Np do ◃ Normalize weights
15: w

(i)
k =

w̃
(i)
k

Np∑
i=1

w̃
(i)
k

16: if mod (k, Ts) = 0 then ◃ Cluster, resample, reassign
17: Cluster and resample {x(i)k , w

(i)
k , c

(i)
k |i = 1, 2, · · · , Np}

to obtain {x̂(i)k , ŵ
(i)
k = 1/Np, ĉ

(i)
k }

18: for i = 1 to Np do
19: x(i)k = x̂(i)k , w(i)

k = ŵ
(i)
k , c(i)k = ĉ

(i)
k

20: Sample ϕ̇(i)
k ∼ P (ϕ̇

(i)
k | ϕ̇(i)

k−1, vk−1) ◃ Sample tempo
21: Compute x∗1:K = x(i

∗)
1:K | i∗ = argmax

i
w

(i)
K ◃MAP sequence

with each section being modeled with just one rhythmic pattern. In
such a case, the matrices A = B rendering the additional r variable
superfluous. In such a case, the SP-model can be simplified, as
proposed and applied by Srinivasamurthy et al. (2016), to the form
shown in Figure 5.4d.
Inference in SP-model: Both exact and approximate inference
schemes can be used for inference in SP-model, similar to those
for BP-model. The Viterbi algorithm inference on a discretized
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SP-model state space is denoted as HMMs. The AMPF inference in
SP-model will be referred to in the rest of the chapter as AMPFs and
the algorithm is outlined in Algorithm 3.

5.3.3 Inference extensions
The proposed inference extensions aim for better approximate in-
ference in the BP-model, either bymaking it faster, or by improving
approximate inference.

End-of-bar pattern sampling

The use of bar (cycle) length rhythmic patterns for meter analysis
in BP-model is well motivated. When there are multiple rhythmic
patterns being tracked, we can theoretically infer the rhythmic pat-
tern that occurred in the current bar only after observing the features
corresponding to the whole bar. However, in the AMPF0 algorithm
with the BP-model, at the beginning of every bar, the pattern tran-
sition matrixA is used to sample a pattern for the current bar that is
held fixed for the whole bar. This is contrary to intuition, in which
we need the whole bar to see and infer which pattern occurred, a
decision that can only be made at the end of the bar, not the begin-
ning. The strategy of sampling a rhythmic pattern at the beginning
of the bar and fixing it for the whole bar is not intuitive and hence
is suboptimal. An extension to AMPF0 algorithm is proposed to
address this limitation.

The extension, called end-of-bar pattern sampling extension to
AMPF (calledAMPFe in short), defers the decision of sampling (and
hence inferring) the pattern in the current bar to the end of the bar.
In every bar being tracked, the algorithm accumulates weights for
each of the patterns over the whole bar, and uses the final accu-
mulated weight to choose the most likely pattern at the end of the
bar.

The proposed enhancement can be formulated in a particle sys-
tem using two different cluster groups. In addition to AMPF clus-
tering based onmetrical position and tempo (ignoring rhythmic pat-
terns), an additional grouping is achieved with the rhythmic pat-
terns. Within a single system of particles, we can then defer the
inference of patterns till the end of a bar, as outlined in detail next.
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We first start by rewriting the particle system of Eq. 5.12 as,

P (x1:K | y1:K) ≈
Np∑
i=1

R∑
j=1

w
(i,j)
K δ(x1:K − x(i,j)1:K ) (5.26)

where x(i,j)1:K are particle trajectories with weights w(i,j)
K , both in-

dexed by i and j. Compared to the particle system in Eq. 5.12, the
additional index j is used to index the rhythmic patterns. For each
metrical position and tempo β = [ϕ, ϕ̇], there are R different parti-
cles, one per rhythmic pattern. The weights can hence be organized
in two dimensions (for the ease of understanding): one dimension
denotes the subset of hidden variables β, and the other dimension
stores the weights of all the R patterns for each β. With a suitable
proposal density, these weights can be computed recursively as,

w
(i,j)
k ∝ w

(i,j)
k−1

P (yk | x(i,j)k )P (x(i,j)k | x(i,j)k−1)

Q(x(i,j)k | x(i,j)k−1, yk)
(5.27)

As before, we choose to sample from the transition probability
Q(x(i,j)k |x(i,j)k−1, yk) = P (x(i,j)k |x(i,j)k−1), which reduces weight update
to,

w
(i,j)
k ∝ w

(i,j)
k−1P (yk | x

(i,j)
k ) = w

(i,j)
k−1P (yk | β

(i)
k , r

(i)
k = j) (5.28)

Let us define the following terms:

w(i,:)
k = [w

(i,1)
k , w

(i,2)
k , · · · , w(i,R)

k ] (5.29)

Ω
(i)
k =

R∑
j=1

w
(i,j)
k (5.30)

Here, w(i,:)
k is a vector of weights of all rhythmic patterns for each

β
(i)
k , and Ω(i)

k denotes the weight of β(i)
k , computed as the marginal

over all rhythmic patterns.
The AMPFe algorithm is outlined in Algorithm 4. The algorithm

can be interpreted to have two groups of particles in the particle sys-
tem, one clustered based onβ and the other is a group ofR particles
(for each β) representing rhythmic patterns. The weights w(i,j) ac-
cumulate the weight for every pattern j. For every β(i) that crosses
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Algorithm 4 Outline of the AMPFe algorithm (AMPF inference in
BP-model with end-of-bar pattern sampling)
1: for i = 1 to Np do
2: Sample β(i)

0 ∼P (ϕ0)P (ϕ̇0), (r
(i)
0 )∼P (r0) ◃ βk=[ϕk, ϕ̇k]

3: Set w(i,:)
0 = 1/(Np·R), Ω(i)

k = 1/Np, ψ(i) = 0

4: Cluster {β(i)
0 |i = 1, 2, · · · , Np}, get cluster assignments {c(i)0 }

5: for k = 1 toK do
6: for i = 1 to Np do ◃ ϕ: Proposal and weights
7: Sample ϕ(i)

k ∼ P (ϕ
(i)
k | ϕ(i)

k−1, ϕ̇
(i)
k−1), Set c

(i)
k = c

(i)
k−1

8: if ϕ(i)
k < ϕ

(i)
k−1 then ◃ Bar crossed

9: j∗ = argmax
j

(w
(i,j)
k ); Set r(i)

ψ(i):k−1
= j∗, ψ(i) = k

10: for j = 1 to R do
11: w

(i,j)
k = A(j∗, j) · Ω(i)

k ◃Weights redistributed
12: else
13: r

(i)
k = r

(i)
k−1

14: for j = 1 to R do
15: w̃

(i,j)
k = w

(i,j)
k · P (yk | ϕ(i)

k , r = j)

16: for i = 1 to Np do ◃ Normalize weights
17: for j = 1 to R do
18: w

(i,j)
k =

w̃
(i,j)
k

Np∑
i=1

R∑
j=1

w̃
(i,j)
k

19: if mod (k, Ts) = 0 then ◃ Cluster, resample, reassign
20: Cluster and resample {β(i)

k ,Ω
(i)
k , c

(i)
k |i = 1, 2, · · · , Np}

to obtain {β̂
(i)

k , Ω̂
(i)
k = 1/Np, ĉ

(i)
k }

21: for i = 1 to Np do
22: Set β(i)

k = β̂
(i)

k

23: for j = 1 to R do ◃Weights redistributed
24: w

(i,j)
k = w
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the end of a bar, the pattern j∗ with maximum w(i,j) is assigned to
the previous bar, thus deferring the decision of inference of rhyth-
mic pattern to the end of the bar. Once the decision of previous
bar is done, the weights in the vector w(i,:) of the current frame are
redistributed based on the transition probabilities of the patterns
from the inferred pattern j∗ of the previous bar. As with system-
atic resampling in the AMPFwith BP-model, the resampling across
β(.) is done at a fixed interval of Ts using the marginal summed up
weights Ω(.). Each of the two resampling/reweighting steps ensure
that the new weights maintain a valid probability distribution over
the particle system.

It is necessary that all the R rhythmic patterns associated with
β(i) to be of the same length, and hence the AMPFe algorithm can
only be applied to the task of meter tracking.

Faster Inference

The MO-model presented in Section 5.3.2 simplifies the BP-model
and makes inference faster. Inference in BP-model can also be
made faster by utilizing the time sparsity of onsets, using what we
propose as hop inference. The idea of hop inference is that instead
of performing inference at every time frame, we do inference only
at specific frames that are associated with rhythmic events such as
onsets.

Onset events are important cues to infer progression through
metrical structures, and it is hypothesized that humans listen to
these cues and use an inherent sense of time to track metrical struc-
tures accurately. We wish to analyze if automatic approaches can
do a faster and accurate inference by just focusing on the onsets.
Hop inference makes inference faster by skipping likelihood com-
putation and sampling steps, and can speed up inference by a factor
as large as 10. Two different hop inference algorithms extensions
are proposed for AMPF with BP-model in this work:

Peak Hop Inference (AMPFp) : The peaks of the spectral flux fea-
ture sequence is an indicator of events such as onsets. Using a
peak finding algorithm, the frames at which onset peaks occur
are estimated. The progression of the particles by sampling from
transition model and an update of their weights are done only at
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these peak frames, skipping the non-peak frames. The transition
model update equations Eq. 5.4-5.7 are to be redefined accord-
ingly. In particular, the position variable update shown in Eq. 5.5
scales the instantaneous tempo by the number of frames hopped
from the previous peak in order to maintain the same tempo even
with a peak hop inference. Peak hop inference can speed up in-
ference by up to a factor of 10.

Onset gated weight update (AMPFg) : Despite the advantage of
a faster inference, peak hop inference can lead to sharp disconti-
nuities in ϕ and tempo values due to large jumps in their values
since they are sampled with large gaps of a significant number of
frames. An improvement to peak hop while maintaining conti-
nuity is the onset gatedweight update, where ϕ̇ andϕ are sampled
and updated every frame tomaintain continuity, while weights of
the particles (using the likelihoods from the observation model)
are updated only at frames where there is a peak in the spectral
flux feature, indicating a rhythmic event. The basic premise is to
maintain the continuity in tracking the ϕ and ϕ̇ variables, while
retaining the principle of peak hop. Gated weight update needs
an observation likelihood computation only at peak frames, and
hence speeds up inference. The computational advantage how-
ever is lower than that for peak hop inference.

The different meter tracking models that were presented in this
section are listed and summarized in Table 5.3. The table also
shows the acronyms for the algorithms we use in the dissertation,
along with the meter analysis tasks to which they can be applied.
We now present the experiments and results of evaluation of these
models and extensions on the annotated datasets.

5.4 Experiments and results
This section comprehensively presents the experiments and results
of meter analysis for different tasks and datasets with the models
and algorithms described in the chapter. The goals of the experi-
ments presented in the section are:

• To evaluate different meter analysis tasks: Meter inference, me-
ter tracking and informed meter tracking on both Carnatic and
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Acronym Model Inference algorithm Meter Analysis
Inference Tracking

§HMM0 BP-model† Viterbi algorithm X X
§AMPF0 BP-model AMPF X X
⋆HMMm MO-model† Viterbi algorithm × X
⋆AMPFm MO-model AMPF × X
⋆HMMs SP-model† Viterbi algorithm X X
⋆AMPFs SP-model AMPF X X
⋆AMPFe BP-model AMPF with end-of-

bar pattern sampling
× X

⋆AMPFp BP-model Peak hop inference
in AMPF

X X

⋆AMPFg BP-model Onset gated weight
update in AMPF

X X

Table 5.3: A summary of the meter analysis models and inference algo-
rithms presented in this section. The symbol § indicates an existing state
of the art algorithm while the symbol ⋆ is used to denote an algorithm
proposed in this thesis. The symbol † indicates that a discretized coun-
terpart of the model is used. The last two columns show the applicability
of the algorithm in the meter analysis tasks of meter inference and meter
tracking: X indicates applicable, × indicates not applicable.

Hindustani music datasets. The main focus is on evaluation of
meter tracking with different algorithms discussed for the task.

• To compare performance across different approaches to meter
analysis. To compare and discuss the performance of different
models and inference algorithms - the BP-model with Viterbi
and particle filter inference, model extensions (MO-model, SP-
model) and the inference extensions (end-of-bar pattern sampling,
peak hop, onset gated weight update).

• To compare performance of these approaches across different In-
dian art music datasets (both Carnatic and Hindustani), with a
baseline comparison with the ballroom dataset.
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• To further identify challenges to meter analysis in Indian art mu-
sic and identify the limitations of these approaches to suggest
further improvements.

5.4.1 Experimental setup
The goal of the experiments is to use as much prior information
on the metrical structures being tracked. All experiments are done
on the dataset from each music culture separately, to capture the
specificities of each music culture. This implicitly assumes that
the music culture is known a priori in all experiments. Unless oth-
erwise specified, the following global settings for the experiments
is used.

The results on the Carnatic music dataset (CMR) and Hindus-
tani music data subsets HMRs and HMRl are focused on. From the
experiments, we see that the datasets CMR and CMRf have equiva-
lent content and show equivalent results. Hence only the results
on the CMR dataset are reported in the dissertation. As discussed
earlier in Section 4.2.2, Hindustani music divides tempo into three
main tempo classes (lay): slow (vilaṁbit, 10-60 MPM), medium
(madhya, 60-150 MPM), and fast (dr̥t, > 150MPM). In our exper-
iments, we will examine how the tempo class affects the tracking
accuracy. Hence for Hindustani music, results are presented for
HMRl (vilaṁbit pieces) and HMRs (madhya and dr̥t pieces) datasets
separately to assess performance individually on pieces with long
and short cycle duration. The results are presented for each dataset
as an average over the pieces in all the tāḷas (or meters), while spe-
cific comments on the performance on each tāḷa is discussed when
needed. Performance on ballroom dataset is reported for meter in-
ference and tracking tasks for comparison.

All results are reported as the mean performance over three runs
in a two fold cross validation experiment. The train and the test data
folds have equal number of pieces (with a maximum difference of
one piece when there are odd number of pieces in a dataset). In
meter inference experiments, the total set of tāḷas being tracked is
known, along with their structure. The training data contains pieces
pooled from all the tāḷas contained in the whole dataset. In meter
tracking experiments, the specific tāḷa being tracked and its struc-
ture is known, and the training data contains pieces from the spe-
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cific tāḷa only. In all the meter tracking experiments on Hindustani
music, experiments are done separately on the two subsets HMRs and
HMRl. Hence the meter tracking experiments on Hindustani music
are not only just tāl informed, but also lay (tempo class) informed,
i.e. the algorithm implicitly knows if it is tracking long cycles or
short cycles. For informed tracking, as discussed earlier, additional
information is provided to the tracking algorithms on tempo and the
first instance of downbeat in tempo-informed meter tracking and
tempo-sama-informed meter tracking, respectively.

The performance of algorithms is presented for both beat and
sama (downbeat) tracking. For beat tracking, we use the evaluation
measures f-measure (fb), AMLt (AMLt,b) and information gain (Ib).
The subscript b indicates that the measure refers to beat tracking.
Sama tracking is measured using f-measure (fs). For evaluation
in this dissertation, we used the evaluation toolkit developed by
Matthew Davies3. To compute the f-measure in CMR, HMRs, and
Ballroom datasets, an error tolerance window of 70 ms is used be-
tween the annotation and the estimated beat/sama. For other eval-
uation measures, we use default parameters in the evaluation tool-
box.

The computation of f-measure with HMRl dataset is an excep-
tion, where a bigger margin window is allowed. Since cycles are
of long duration in HMRl dataset and current evaluation approaches
were not designed with such long cycles in mind, an error toler-
ance window of 70 ms is very tight. To account for the length of
the cycle in the error margin, a 6.25% median inter annotation in-
terval is used as the tolerance window, as used in many other beat
tracking evaluations (e.g. by Hockman et al. (2012)). This choice
of a larger allowance window also corroborates well with the ob-
servation that in vilaṁbit pieces of the HMRl dataset, there can be
significant freedom in pulsation and that larger errors go unnoticed
since the pieces are not rhythmically dense. Arguably, the pulsa-
tion in vilaṁbit pieces is also beyond the duration of what is called
the perceptual present (Clarke, 1999). However, it is to be noted
that this approach is a compromise and better evaluation measures
that can handle these complexities are to be developed. The prob-

3We use the code available at http://code.soundsoftware.ac.uk/
projects/beat-evaluation/

http://code.soundsoftware.ac.uk/projects/beat-evaluation/
http://code.soundsoftware.ac.uk/projects/beat-evaluation/
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lem of evaluating the accuracy of meter tracking in vilaṁbit pieces
of Hindustani music (and other musics with long duration cycles)
is itself a research problem that needs to be studied systematically,
including musicians and listeners into the study.

For meter inference and tracking, we additionally report the
results of median tempo estimation as computed from the output
beats. For evaluating median tempo estimation, we compare the
median estimated tempo and the median annotated ground truth
tempo with a 5% error margin. In addition, to understand a met-
rical ambiguities in tempo estimation, we compute both CML and
AML tempo estimation accuracy. In addition to the correct metri-
cal level, AML assumes that a tempo scaling by factors of 0.25, 0.5,
1 (correct metrical level), 2, 4 to be correct. For meter inference,
the algorithms also detect the rhythm class (or meter) and hence the
accuracy of tāḷa recognition is also reported for the task.

Most experiments are conducted for rhythmic patterns R = 1
and R = 2 (per rhythm class), but the results are presented only
for R = 1 pattern per tāḷa. Experiments with R = 2 do not show
any significant improvement/change. Hence they are not presented
with all models but when necessary, performance withR = 2 is in-
dicated and discussed. It is to be noted that with R = 1, model ex-
tension MO-model (with AMPFm) and inference extension AMPFe
are equivalent to the baseline AMPF0.

The tempo ranges are learned from training data of each fold,
with 20%margin allowed on learned ranges for unseen data. How-
ever, a minimum and maximum tempo is set for each music cul-
ture independently, and if the learned tempo ranges lie outside that
range, they are set to the these preset min andmax values. The min-
imum and maximum tempo range for Carnatic music is set as [140,
520] akṣaras per minute (equivalent to [35, 130] beats per minute
in ādi tāḷa), that for Hindustani music is set as [10, 370] mātrās
per minute, and for ballroom dataset as [60, 230] beats per minute.
For meter tracking, the tempo range for each tāḷa is independently
learnt. Further, with SP-model, the tempo ranges learned for a par-
ticular tāḷa are applied to track all the section length patterns of the
tāḷa, assuming that the tempo ranges are properties of a tāḷa and not
of its sections.

We use the number of bar positions,Mr = 1600 for the longest
rhythmic pattern we encounter in the dataset and scale all other pat-
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tern lengths accordingly. As indicated in Section 5.3.1, for meter
tracking experiments, Mr = M = 1600 is set for the longest pat-
tern being tracked. The maximum M = 1600 corresponds to ādi
tāḷa in Carnaticmusic (8 beats and 32 akṣaras) and tīntāl (16mātrās)
in Hindustani music. If a different tāḷa is being tracked, we set the
value ofM accordingly, e.g. M = 600 for tracking the three beat
rūpaka tāḷa (3 beats and 12 akṣaras) in Carnatic music. For Ball-
room dataset, we usedM = 1600 andM = 1200 for tracking time
signatures 4/4 and 3/4, respectively.

The number of beats B and the number of sections are set ac-
cordingly, depending on the dataset and the tāḷa/s being tracked
from Table 2.1 and Table 2.3. When R > 1, the transition prob-
abilities of patterns are also learned from training data from the
clustered bar/section length patterns.

For meter inference and tracking, we use uniform priors on all
hidden variables within the allowed range of values. For informed
tracking, priors on tempo and the position variables are set accord-
ing to the prior information we have available on the tempo and
the sama instances. The observation model uses a two dimensional
spectral flux feature computed at a hop size h = 0.02 seconds, as
described in Figure 4.7. The bar is discretized into 64th note cells
within which the observation probability is assumed to be constant.

For the HMM based Viterbi algorithm inference, the tempo
state transition probability in Eq. 5.11 is set to np = 0.02, as used
by Krebs et al. (2013), allowing a small probability of change of
tempo. For the AMPF, the number of particles is set as Np =
1500× R. We set the user parameter that controls tempo variance
in Eq. 5.6 and Eq. 5.22 to σn = 0.02 and the maximum number
of clusters in the MPF to 200. The resampling interval is set to
Ts = 30 frames, which corresponds to a resampling step every 0.6
seconds of audio. The other AMPF parameters are identical to the
values used by Krebs, Holzapfel, et al. (2015).

There are several combinations of datasets (and their subsets),
algorithms, evaluation measures and parameter settings for which
the results can be reported. While the experimentation was com-
prehensive, only a selected set of relevant results are presented in
the dissertation for brevity and conciseness. We first present re-
sults of meter inference with the bar pointer model as a baseline,
followed bymeter tracking for different model and inference exten-
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sions. Informed meter tracking is then discussed. A final summary
of results over all the Indian art music datasets is also presented for
a comparison of the performance of different approaches.

5.4.2 Meter inference
The results of meter inference provide a baseline for meter analy-
sis algorithms when the underlying metrical structure is unknown.
It is the hardest and most uninformed task in meter analysis: es-
timating the tāḷa, the tempo, the beats and the sama. The results
are presented for inference on the BP-model on CMR, HMRs, HMRl
and Ballroom datasets for both HMM0 and AMPF0 algorithms in Ta-
ble 5.4. The model training uses pooled data from all the rhythm
classes within a particular dataset. The results are presented only
for R = 1 per rhythm class, without any improvement seen for
R = 2.

At a broad level, we see that the performance onBallroomdataset
is better than that for the Indianmusic datasets. The performance on
long cycle pieces in HMRl dataset is poor, showing the challenges in
tracking longmetrical cycle durations. The performancewithHMM0
is marginal poorer than AMPF0 for Indian music datasets. Since
metrical cycles in Indian music are longer in duration, it is neces-
sary to have a finer discretization grid. The poorer performance is
largely attributed to the coarse grained discretization of the state
space that is used.

From Table 5.4, from the last column that indicates tāḷa recog-
nition accuracy, we see that the tāḷa recognition is better with short
metrical cycle duration pieces in CMR and HMRs dataset with an ac-
curacy between 60-70%. For long cycle duration pieces in HMRl
dataset, the tāḷa recognition accuracy drops significantly (to less
than 40%) indicating the difficulty in tracking long duration cycles.
The time signature recognition performance in Ballroom dataset is
also higher than that for Indian music datasets (about 89%).

We further can observe that the f-measure for sama/downbeat
tracking (indicated by fs) is significantly poorer than beat track-
ing performance (indicated by fb), showing that while beat track-
ing is still possible without the knowledge of underlying metrical
structures, estimating the downbeats is difficult. Beat AMLt mea-
sure AMLt,b is comparable to beat f-measure. It was reported by
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Algo. fb AMLt,b Ib fs Tempo Tāḷa
Bits CML AML %

HMM0 0.718 0.722 1.44 0.440 0.718 0.938 64

CM
R

AMPF0 0.825 0.906 2.17 0.574 0.802 1.000 68

HMM0 0.759 0.698 1.21 0.551 0.533 0.721 60

HM
R s

AMPF0 0.828 0.834 1.54 0.569 0.714 0.946 63

HMM0 0.338 0.225 0.77 0.280 0.119 0.350 37

HM
R l

AMPF0 0.390 0.427 1.35 0.268 0.350 0.740 27

HMM0 0.853 0.910 2.52 0.666 0.755 0.988 91

B
lrm

.

AMPF0 0.813 0.850 2.15 0.529 0.709 0.957 89

Table 5.4: Results of meter inference with the bar pointer model (HMM0
and AMPF0) on different datasets. The first column indicates the dataset,
with Blrm. denoting the Ballroom dataset. The last column of the ta-
ble shows the tāḷa recognition (or time signature estimation for Ballroom
dataset) accuracy. The table also reports tempo estimation performance
(at both CML andAML), beat and sama (downbeat) tracking performance
with different measures.

Holzapfel et al. (2012) that an information gain of 1.5 beats is ac-
ceptable to users as satisfactory beat tracking. Such an acceptable
beat tracking is achieved in many cases.

Median tempo estimation performance is poorer for meter in-
ference at CML. The large difference in CML and AML tempo
tracking performance shows that there are signficant metrical level
estimation errors in meter inference. This further contributes to
poorer beat and downbeat tracking performance.

There is a large performance difference between HMRs and HMRl
datasets, further emphasizing the difficulties of tracking long du-
ration cycles. The tempo estimation at CML with HMRl dataset is
as low at 12% with HMM0 showing that the correct metrical level of
tracking is achieved in very small number of cases. Discretization
of the tempo state space is one reason for the inability to track long
cycles, where an extremely fine grid of variables is needed. AMPF0
has no such restrictions and hence performs better for this case.

Within the CMR dataset, the performance is poorer for longer
cycle ādi tāḷa for both beat and sama estimation at fs = 0.36 and
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fb = 0.67 with HMM0. Ādi tāḷa is the most popular tāḷa in Car-
natic music and there is a huge variety of rhythmic patterns that are
played in the tāḷa. The large difference between beat tracking and
sama tracking performance shows that though beats were estimated
at the correct metrical level, sama estimation is difficult from the
rhythmic patterns used here. This additionally means that captur-
ing the wide variety of patterns of ādi tāḷa within a single rhythmic
pattern used here is suboptimal and hence it is harder for the in-
ference algorithms to get a cue of the metrical position from this
pattern.

In Hindustani music HMRs dataset, the performance is best for
dr̥t ēktāl pieces that tend have high tempo and short duration cy-
cles. Both these observations further emphasize that short duration
cycles are better tracked by the inference algorithm than longer du-
ration cycles.

5.4.3 Meter tracking
Meter tracking is the most relevant task in the context of Indian
art music and hence is the main focus of the experiments presented
here. Meter tracking experiments assume that the tāḷa is known,
and hence meter tracking is done for each tāḷa in the datasets sepa-
rately. The training data also includes pieces from the specific tāḷa
being tracked. Some of the results presented in this section are pub-
lished results from previous publications by Holzapfel et al. (2014);
Srinivasamurthy et al. (2015, 2016) with minor differences in for-
mulation and experimental parameters.

Before presenting the results for model and inference exten-
sions, we tabulate the performance of meter tracking with the bar
pointer model on the Indian music datasets and Ballroom dataset
with both HMM0 and AMPF0 algorithms in Table 5.5. This provides
another baseline performance to compare with meter inference and
all the extensions discussed in the thesis.

At a broad level, Table 5.5 shows an improvement in perfor-
mancewithmeter tracking compared tometer inference (Table 5.4).
In addition, we see a lower difference between beat and down-
beat tracking f-measure values, indicating a larger improvement
in downbeat estimation when the underlying metrical structure is
known i.e. knowing the tāḷa improves the sama tracking perfor-
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Algo. fb AMLt,b Ib fs Tempo
Bits CML AML

HMM0 0.784 0.771 1.59 0.624 0.890 0.915

CM
R

AMPF0 0.827 0.840 1.97 0.671 0.955 0.997
HMM0 0.835 0.796 1.39 0.733 0.663 0.830

HM
R s

AMPF0 0.884 0.858 1.64 0.772 0.844 0.964
HMM0 0.353 0.305 0.86 0.429 0.294 0.435

HM
R l

AMPF0 0.374 0.513 1.40 0.396 0.390 0.610
HMM0 0.929 0.921 2.78 0.821 0.987 0.989

B
lrm

.

AMPF0 0.909 0.895 2.56 0.735 0.98 0.98

Table 5.5: Results of meter tracking with the bar pointer model (HMM0
and AMPF0) on different datasets. The first column indicates the dataset,
with Blrm. denoting the Ballroom dataset. The table shows the tempo
estimation performance at CML and AML, beat and sama (downbeat)
tracking performance with different measures.

mance. Similar to meter inference, the performance on short du-
ration cycle datasets CMR, HMRs, and Ballroom datasets is better
than that on HMRl dataset. As with meter inference, the poorer per-
formance of HMM0 compared to AMPF0 is largely attributed to the
coarse grained discretization of the state space.

The median tempo estimation performance with meter track-
ing is better than meter inference since a more narrow and accu-
rate range of tempo is trained due to the presence only one tāḷa in
the training dataset. The accuracy of tempo estimation is high for
Carnatic music, and the difference between CML and AML perfor-
mance is significantly lower in Carnatic music, showing that most
pieces have been tracked at the correct metrical level. Tempo es-
timation in Hindustani music datasets is however lower, with poor
tempo estimation with HMRl dataset. There is a siginficant scope
for improvement in both CML and AML accuracy in Hindustani
music. With the Ballroom dataset, tempo estimation is accurate for
most pieces, with a high accuracy.

In Carnatic music, with an fs = 0.41 and 0.39 for HMM0 and
AMPF0, ādi tāḷa has a significantly lower sama tracking perfor-
mance compared to the other tāḷas, e.g. fs = 0.74 for HMM0 in
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Dataset fb AMLt,b Ib fs Tempo
Bits CML AML

CMR 0.838 0.840 1.96 0.671 0.958 1.00
HMRs 0.886 0.864 1.66 0.783 0.837 0.942
HMRl 0.364 0.506 1.39 0.455 0.401 0.554
Ballroom 0.907 0.895 2.56 0.730 0.981 0.981

Table 5.6: Results of meter tracking with the bar pointer model using a
mixture observationmodel (MO-model with AMPFm algorithm) on differ-
ent datasets. The table shows the tempo estimation performance at CML
and AML, beat and sama (downbeat) tracking performance with differ-
ent measures. The table shows results withR = 1, which is equivalent to
AMPF0 algorithm.

khaṇḍa chāpu tāḷa, showing that the variety of rhythmic patterns
in ādi tāḷa makes it harder to track. Compared to meter inference,
ādi tāḷa shows an improvement in tracking, indicating that knowing
the tāḷa and the underlying metrical structure helps to track longer
cycles better.

With such a baseline of meter tracking using the bar pointer
model, and given that AMPF0 shows an equivalent or better perfor-
mance than HMM0, we report the results for all further model and in-
ference extension experiments for particle filter inference only with
AMPF. The results also show that approximate inference methods
such as particle filters can be effectively applied to meter analysis
tasks. The results on model extensions MO-model and SP-model
are presented next.

Mixture observation model (MO-model)

The results ofmeter trackingwith bar pointermodel using amixture
observation model (MO-model) is shown in Table 5.6, for R = 1.
With R = 1, the AMPFm algorithm is equivalent to AMPF0 algo-
rithm. Contrary to expectation, it is also observed that there is no
significant improvement for AMPFm fromR = 1 toR = 2. Further
analysis and comparison of MO-model with AMPFm algorithm is
presented at the end of this section along with comparisons among
all the algorithms.
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Dataset fb AMLt,b Ib fs Tempo
Bits CML AML

CMR 0.868 0.879 2.16 0.717 0.958 1.00
HMRs 0.924 0.890 1.88 0.850 0.855 0.971
HMRl 0.414 0.590 1.63 0.509 0.458 0.644

Table 5.7: Results of meter tracking with the section pointer model (SP-
model with AMPFs algorithm) on Indian music datasets. The table shows
the tempo estimation performance at CML and AML, beat and sama
tracking performance with different measures.

Section pointer model

The experiments aim to compare the performance of meter track-
ing using bar length (BP-model) and the proposed section length
(SP-model) patterns. The BP-model applies the position variable
ϕ to the whole tāḷa cycle, while the proposed SP-model applies ϕ
to the sections (vibhāg/aṅga) and imposes a sequential structure as
described in Section 5.3.2. It is hypothesized that section pointer
model would be useful for tracking long duration metrical cycles
often encountered in Indian art music. Since sections are not musi-
cally well defined for the music styles in the Ballroom dataset, an
evaluation of SP-model is limited to Carnatic and Hindustani music
datasets.

The results of meter tracking with the SP-model and AMPFs is
shown in Table 5.7. It shows a significant improvement in sama
tracking f-measure compared to AMPF0 with bar pointer model.
The beat tracking performance also improves, but to lesser extent
than sama tracking, showing that using section length patterns help
tracking the sama more accurately. There is no further improve-
ment in tempo estimation in SP-model compared to BP-model. The
utility of the SP-model is hence primarily in improving downbeat
tracking performance.

The improvement with the long cycle duration pieces in HMRl
dataset is further encouraging to use shorter section length patterns
to track longer cycles. A significant improvement is also observed
in Carnatic music with ādi tāḷa with the sama tracking f-measure
of fs = 0.46 from fs = 0.39 for AMPF0. Both these observations
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Dataset fb AMLt,b Ib fs Tempo
Bits CML AML

AMPFe 0.826 0.842 1.97 0.668 0.958 0.997
AMPFp 0.519 0.561 0.67 0.213 0.927 0.969

CM
R

AMPFg 0.756 0.756 1.51 0.580 0.938 0.98

AMPFe 0.882 0.858 1.64 0.777 0.833 0.935
AMPFp 0.655 0.572 0.59 0.273 0.768 0.822

HM
R s

AMPFg 0.821 0.653 1.25 0.653 0.743 0.895

AMPFe 0.908 0.895 2.56 0.734 0.98 0.98
AMPFp 0.631 0.694 1.49 0.322 0.922 0.923

B
lrm

.

AMPFg 0.831 0.815 2.13 0.579 0.939 0.943

Table 5.8: Results of meter tracking with inference extensions to the bar
pointer model on different datasets. The first column indicates the dataset,
with Blrm. denoting the Ballroom dataset. The table shows the tempo
estimation performance at CML and AML, beat and sama (downbeat)
tracking performance with different measures.

show that using shorter section length patterns have a potential ap-
plication in tracking long duration metrical cycles.

Inference extensions

After model extensions, we now present the results for inference
extensions to meter tracking. We present results for three differ-
ent inference extensions - end of bar sampling (AMPFe), peak hop
inference (AMPFp), and onset gated weight update (AMPFg). The
goal of these experiments is to compare the performance of the in-
ference extensions with AMPF0 algorithm. The long cycle duration
HMRl dataset is excluded from evaluation of the inference exten-
sions. Inference extensions are only evaluated on CMR and HMRs
datasets (Performance on Ballroom dataset also shown for refer-
ence) and compared with AMPF0. The results are shown in Ta-
ble 5.8. The table shows results only for R = 1, which means that
AMPFe is equivalent to AMPF0. From the table, we see that AMPFe
has equivalent performance to AMPF0. It is important to note that
AMPFe does not show any significant improvement from R = 1 to
R = 2.
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For both AMPFp and AMPFg algorithms, a peak picking algo-
rithm is used to select the frames at which inference is done. A
peak picking threshold of 5% of the maximum value of the spec-
tral flux sequence is used to select peaks. Further if two peaks are
within three frames of each other, then only the highest valued peak
is added into the peak sequence.

Though peak hop inference (AMPFp) provides a significant boost
in inference time (up to 10× faster), we see from Table 5.8 that its
performance is significantly poor. By tracking and doing inference
only at peaks, continuity of tracking meter is lost and leads to poor
performance. In most cases, the continuity in tracking is necessary,
and hop inference with large hops loses on tempo continuity. Fur-
ther, in many cases, the beats and downbeats do not always occur
at the peaks of the spectral flux feature sequence. Doing inference
only at peaksmisses on these events, and leads to an unstable tempo
and beat/downbeat tracking leading to poor performance.

Onset gated weight update (AMPFg) overcomes this limitation
by progressing the tempo and position variables of the bar pointer
model every frame and hence maintains continuity. Though it also
speeds up inference (to a lesser extent than peak hop), its perfor-
mance is poorer since it fails to model the rhythmic events that hap-
pen between the two peaks as the observation probability is updated
only at peaks in observation feature sequence.

These extensions show the importance of non-peak values in
the observations and the importance of continuity in the task of
meter tracking. Though these two ideas are promising to improve
inference, they need further exploration to improve their perfor-
mance. Further analysis and comparison of these extensions with
AMPF0 is presented at the end of this section.

5.4.4 Informed meter tracking
Informedmeter tracking aims to incorporate additional information
into meter tracking to improve performance. The results for in-
formed meter tracking with BP-model (with AMPF0) and SP-model
(with AMPFs) is presented here to evaluate if providing additional
information is useful for meter tracking. If it improves perfor-
mance, then several semi-automatic automatic rhythm annotation
applications can benefit from this, utilizing varying levels of addi-



232 Meter inference and tracking

Dataset Algo. fb AMLt,b Ib fs

AMPF0 0.899 0.952 2.35 0.792
CMR AMPFs 0.898 0.950 2.38 0.814

AMPF0 0.939 0.941 1.99 0.882
HMRs AMPFs 0.943 0.943 2.00 0.918

AMPF0 0.425 0.959 2.76 0.786
HMRl AMPFs 0.439 0.979 2.83 0.848

Table 5.9: Results of tempo-informed meter tracking with AMPF0 and
AMPFs on Indian music datasets. The table shows beat and sama tracking
performance with different measures.

tional prior information to improve meter tracking. Informedmeter
tracking is evaluated only within the context of Indian art music and
hence only on Indian music datasets.

We will present results for two different informed meter track-
ing schemes as discussed at the beginning of the chapter: tempo-
informed meter tracking, and tempo-sama-informed meter track-
ing. For tempo-informedmeter tracking, we use themedian ground
truth tempo of themusic piece being tracked and initialize the tempo
variable ϕ̇within a tight bound allowing for 10% variation in tempo
around the median value. This enables the tracking algorithm to
restrict the tempo variable within this allowed tight tempo range
and track the correct tempo at the right metrical level. For tempo-
sama-informed meter tracking, we assume that in addition to the
true median tempo, we have the first instance of the downbeat in
the music piece being tracked. We use the ground truth median
tempo to initialize the ϕ̇ within a tight range as before, and further
use the first instance of sama to initialize the ϕ variable to zero at
that sama instant. The tracking algorithm hence knows the tempo
and the beginning of the cycle in the piece, tracking the remaining
beats and downbeats.

The results of tempo-informed meter tracking with the bar and
section pointer model (BP-model and SP-model, with AMPF0 and
AMPFs, respectively) on Indian art music datasets is shown in Ta-
ble 5.9. A similar set of results for tempo-sama-informed tracking
is shown in Table 5.10. The tables show that AMPFs marginally
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Dataset Algo. fb AMLt,b Ib fs

AMPF0 0.880 0.943 2.37 0.834
CMR AMPFs 0.917 0.946 2.40 0.901

AMPF0 0.959 0.920 2.02 0.911
HMRs AMPFs 0.958 0.915 2.01 0.933

AMPF0 0.530 0.978 2.84 0.99
HMRl AMPFs 0.542 0.98 2.83 0.99

Table 5.10: Results of tempo-sama-informed meter tracking with AMPF0
and AMPFs on Indian music datasets. The table shows beat and sama
tracking performance with different measures.

performs better than AMPF0 in informed tracking, while including
sama information in tempo-sama-informed meter tracking further
improves sama tracking performance with a marginal improvement
in beat tracking performance.

We see from these tables that a high f-measure for both sama
and beat tracking is achieved in informed meter tracking. We also
see that the beat tracking performance in the two informed track-
ing cases is similar, while sama tracking performance improves in
tempo-sama-informed tracking. A high beat and downbeat track-
ing performance is achieved in CMR and HMRs datasets. With sig-
nificant allowance on tempo variation allowed in Hindustani music
vilaṁbit pieces, the beat tracking performancewith informed track-
ing is poorer since we use the median tempo and tighter bounds
for tracking. However, sam tracking with vilaṁbit pieces is good
showing that the algorithm is capable of recovering from these local
tempo changes and track the sam accurately. The limited number
of sam examples in the HMRl dataset is also another possible reason
for higher performance in tempo-sama-informed meter tracking.

Though tested with a limited number of pieces within the con-
text of Indian art music, it is encouraging to observe that easily ob-
tainable additional prior information can be used to improve meter
tracking performance, and that the Bayesian models and inference
algorithms allow for incorporating such prior information seam-
lessly for tracking.
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Algo. ID fb AMLt,b Ib fs Tempo
Bits CML AML

HMM0 1 0.648 0.605 1.21 0.443 0.51 0.72

In
f.

AMPF0 2 0.730 0.776 1.77 0.505 0.67 0.92

HMM0 3 0.707 0.677 1.36 0.618 0.67 0.77
AMPF0 4 0.747 0.774 1.73 0.645 0.79 0.89
AMPFm 5 0.750 0.775 1.73 0.662 0.79 0.88Tr

ac
k

AMPFs 6 0.779 0.817 1.92 0.704 0.81 0.91

AMPF0 7 0.809 0.950 2.32 0.822 0.99 0.99

t-T
r.

AMPFs 8 0.813 0.954 2.35 0.857 1.00 1.00

AMPF0 9 0.830 0.943 2.35 0.896 1.00 1.00

ts
-T
r.

AMPFs 10 0.849 0.943 2.36 0.931 1.00 1.00

Table 5.11: Summary of meter analysis results on Indian music datasets.
The meter analysis tasks are shown in the first column - with Inf., Track,
t-Tr., and ts-Tr. referring to meter inference, meter tracking, tempo-
informed meter tracking, and tempo-sama-informed meter tracking, re-
spectively. The second column shows the different models and algo-
rithms. The table shows the tempo estimation performance at CML and
AML, beat and sama (downbeat) tracking performance with different
measures. The column ID on third column corresponds to the labels used
in Figure 5.7, which shows the results of statistical significance tests on
these algorithms.

5.4.5 Summary of results
A summary of the results to compare the performance of different
algorithms is presented here. To compare results across algorithms,
we pool the results from all the relevant Indian music datasets to-
gether and present the mean performance for the algorithm. It is to
be noted that though a mean over all datasets is presented, the train-
ing and testing are separate for each dataset (for meter inference)
and for each tāḷa within a dataset (for meter tracking).

A paired sample t-test with p = 0.05 is used to assess statis-
tically significant differences between the performances of algo-
rithms. Statistical significance tests are done for the meter infer-
ence, meter tracking (including model extensions MO-model and
SP-model), and informed meter tracking methods by pooling the
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(a) Beat f-measure (fb) (b) Sama f-measure (fs)

(c) Beat AMLt (AMLt,b) (d) Beat information Gain (Ib)

Figure 5.7: Results of statistical significance testing of meter analysis re-
sults on Indian art music datasets. The figure shows the results for the four
different performance measures: Beat f-measure (fb), Sama f-measure
(fs), Beat AMLt (AMLt,b) and Beat information gain (Ib) in panels (a),
(b), (c), and (d), respectively. For each measure, the figure shows the re-
sults of a pairwise statistical test between methods (algorithms) numbered
1-10 as amatrix. A gray boxwith numeral 1 indicates a statistically signif-
icant difference (at p = 0.05) while a white box with numeral 0 indicates
a difference that is not statistically significant. The methods 1-10 map to
the ID shown in column-3 of Table 5.11.

results over all Indian music datasets (CMR, HMRs, HMRl datasets -
269 pieces in total). Statistical significance tests are done for BP-
model inference extensions (AMPFe, AMPFp, AMPFg) by pooling
the results over CMR and HMRs (210 pieces in total) to compare with
AMPF0.
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We pool the results of meter inference, meter tracking (model
extensions), tempo-informed tracking, and tempo-sama-informed
tracking on all the Indianmusic datasets and present it in Table 5.11.
The results of statistical significance tests between these approaches
is presented in Figure 5.7. Table 5.11 and Figure 5.7 are to be ana-
lyzed in conjunction. In both the table and the figure, since R = 1,
note that AMPFm is equivalent to AMPF0.

From Table 5.11, we see a consistent increase over the rows
of the table across different meter analysis experiments (inference,
tracking and informed tracking) indicating that incorporating ad-
ditional prior information leads to improved meter analysis. In-
formed meter tracking has the best performance, while we see that
meter tracking performance is mid-way between inference and in-
formed meter tracking.

The Figure 5.7 shows that AMPF0 and AMPFm are equivalent
and produces results that are not statistically significantly different
for all performance measures. The panel (a) in the figure for beat f-
measure (fb) shows that AMPF0 algorithm in inference and tracking
have statistically insignificant differences. In addition, AMPF0 and
AMPFs in tempo-informed tracking have insignificant differences
with AMPF0 in tempo-sama-informed tracking. Sama f-measure
(fs) shown in panel (b) indicates statistically insignificant differ-
ences between HMM0 and AMPF0.

The SP-model shows statistically significant improvement over
the methods that use BP-model indicating the use of section length
shorter patterns for tracking downbeats. The significance results
of beat AMLt,b measure in panel (c) is comparable to that for beat
f-measure. Informed tracking methods have several statistically
insignificant differences among themselves with the beat AMLt,b
measure since the correct metrical level is already provided to the
informed tracking algorithm, and hence leads to similar perfor-
mance. An acceptable beat information gain (Ib > 1.5 bits) is ob-
tained in most cases, with several statistically insignificant differ-
ences in informed tracking.

To summarize the results from Table 5.11 and Figure 5.7, we
see that informed tracking and algorithms using SP-model improve
sama tracking performance significantly, while beat tracking per-
formance also improves, but to a lesser extent.

For an analysis and comparsion of inference extensions, we
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Algo. ID fb AMLt,b Ib fs Tempo
Bits CML AML

AMPF0 1 0.852 0.848 1.83 0.715 0.90 0.97
AMPFe 2 0.850 0.849 1.82 0.716 0.90 0.97
AMPFp 3 0.579 0.566 0.63 0.240 0.85 0.93
AMPFg 4 0.784 0.761 1.40 0.612 0.85 0.94

Table 5.12: Summary of meter tracking performance of inference exten-
sions on CMR and HMRs datasets. The second column shows the different
algorithms. The table shows the tempo estimation performance at CML
and AML, beat and sama (downbeat) tracking performance with different
measures.

Algo. fb AMLt,b Ib fs Tempo
Bits CML AML

AMPF0 0.735 0.751 1.68 0.641 0.77 0.88
AMPFm 0.749 0.773 1.75 0.660 0.78 0.89

Table 5.13: Comparing the meter tracking performance of AMPF0 and
AMPFm algorithms on Indian art music datasets forR = 2 patterns. Num-
bers in bold for the beat and sama trackingmeasures indicate a statistically
significant improvement.

pool the results on Indian music datasets CMR and HMRs and present
it in Table 5.12. We compare the extensions AMPFe, AMPFp and
AMPFg with the baseline meter tracker AMPF0. In the table, since
R = 1, note that AMPFe is equivalent to AMPF0. Statistical tests in-
dicate that for all measures, AMPF0 and AMPFe are equivalent and
show no statistically significant difference in performance. In ad-
dition, for all measures, AMPFp and AMPFg both give significantly
lower performance compared to AMPF0. The hop inference exten-
sions need further improvement and do not match up to the perfor-
mance of doing a full inference at every frame.

With that summary of results, we now focus on somemore anal-
ysis with R = 2 comparing meter tracking performance of AMPF0
with AMPFm and AMPFe. Table 5.13 shows a summary of results
over all the Indian music datasets for meter tracking with AMPF0
and AMPFm andR = 2. An analysis showed that there is no statisti-
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cally significant difference in results betweenR = 1 andR = 2 for
either AMPF0 or AMPFm (for all measures). However, for R = 2,
the beat tracking measures show an improvement for AMPFm over
AMPF0. For the case of AMPFe compared with AMPF0 however,
there was no statistically significant improvement with more pat-
terns, showing the need for further exploration of the end-of-bar
sampling AMPF algorithm to improve its performance.

5.5 Conclusions
We defined different meter analysis tasks within the context of In-
dian art music, pointing out the distinctions between meter infer-
ence, meter tracking and informed meter tracking. After a set of
preliminary experiments on Carnatic music, we explored Bayesian
models for jointly tracking several aspects of meter. The state of
the art bar pointer model was presented, and several model and in-
ference extensions were proposed to improve meter analysis.

An extensive evaluation of different meter analysis models and
algorithms was discussed for different Indian art music datasets,
with Ballroom dataset results reported for comparison. Indian art
music, with complexmetrical structures is an ideal case to study the
performance of novel methods for meter analysis and hence such an
evaluation is valuable to improve state of the art in meter tracking
in MIR.

The Bayesian models explicitly considered musically relevant
information formeter analysis, leading to culture-aware algorithms.
However, the algorithms and models are flexible and can easily
adapt to cyclical metrical structures in other music cultures such as
Turkishmakammusic (usul) and toArab-andalusianmusic (mîzân).
Such Bayesian machine learning models require a small amount of
beat and downbeat annotated training data fromwhich we can learn
these models and build specific algorithms. Exploring such exten-
sions to different music cultures is one of the goals of future work
in the area.

The SP-model shows significant promise in automatic meter
analysis. It is a flexible model that can track any cyclical met-
rical structure by tracking smaller meaningful sub-patterns of the
cycle. It provides a significant improvement with Indian music,
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and it would be fruitful to explore it further in other music cultures.
It additionally goes on to show that tracking shorter length patterns
is useful for tracking long duration metrical structures, an intuitive
conclusion considering that several additive meters are tracked that
way.

The results were mostly reported on the CMR, HMRs, and HMRl
datasets that consist of two minute long pieces. However, as re-
ported by Srinivasamurthy et al. (2015) and as seen from additional
experiments, these algorithms extend to full length pieces in Car-
natic music, showing an equivalent performance. While compu-
tational complexity is one factor for meter analysis in full length
pieces, there can be several ways in which it can be reduced and
the approaches described in the chapter can be applied. A future
evaluation on a larger dataset with full length pieces, such as the
rhythm annotated pieces in HMDo and CMDo collections will further
boost such a claim.

One main limitation of the algorithms presented in the chapter
was the assumption of a single tāḷa for the whole audio record-
ing presented to the algorithm. While this is a fair and realistic
assumption for Carnatic music, which is distributed as segmented
recordings containing a single piece, Hindustani music recordings
can have two or more pieces in different tāl and lay. A rhythm
based segmentation might be necessary there before applying the
meter analysis algorithms. Such segmentation could be performed
using, e.g. Bayesian change point detection (Barber, Cemgil, &
Chiappa, 2011), a problem that needs further exploration.

The approaches in the chapter utilized bar/section length rhythm
patterns for meter tracking. Indian art music is replete with several
rhythmic patterns and hence should benefit algorithms that usemul-
tiple patterns to model a cycle. However, the experiments did not
show such an improvement. There was no statistically significant
improvement observed with additional rhythmic patterns (R > 1).
This can be primarily attributed the simplistic GMM based obser-
vation model and the spectral flux based feature that fail to capture
nuances from multiple patterns and model them effectively. Better
features that can capture nuances and a better observation model
need to explored to utilize the variability in patterns we encounter
in Indian art music and use them for meter analysis.

Vilaṁbit (slow tempo) pieces in Hindustani music pose a sig-
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nificant challenge for meter tracking. They are further a challenge
for evaluating a meter tracker output. During the rendering of met-
rical cycles as long as a minute, the mātrās within the cycle are
quite flexibly rendered with expressive timing. In addition, given
the large inter-mātrā interval, larger errors in tracking are accept-
able for listeners. However, the mātrā at the beginning and end of
the cycle are more important to keep the time and hence have to be
more accurate. An evaluation measure that treats all the beats of
an output as the same is not the best evaluation measure for such
a case. The standard evaluation measures considered in the thesis,
including the continuity measures CMLt and AMLt, cannot handle
such cases where there needs to different weights on errors depend-
ing onmetrical position and tempo. In the evaluation of HMRl pieces
in this chapter, we used 6.25% of the median inter-mātrā interval
as the error window for all mātrā of the piece. Though it allows
for more flexibility in evaluation of long duration metrical cycles,
better measures that can consider the metrical position might be
more meaningful. Such measures are to be further developed and
tested to reflect a more accurate measure of performance of the me-
ter tracking algorithms from a listener’s perspective.

A comparison across different tāḷas showed that longer tāḷas
that have a higher diversity of patterns played in them are more
difficult to track, e.g. ādi tāḷa in Carnatic music. Vilaṁbit ēktāl in
Hindustani music is also difficult to track owing to its long duration
cycles and equal length vibhāgs. The section length rhythmic pat-
terns in ēktāl are equal in length and similar, which is confusing to a
tracker that uses only spectral energy based features. In summary,
longer tāḷas that have wider scope for improvisation are difficult to
track, with longer duration cycles adding further to tracking com-
plexity.

Apart from the percussion patterns played on mridangam and
tabla that are indicative of the position in metrical cycle, in many
cases, melodic patterns also indicate the position in cycle. This is
further true in compositional forms of both Hindustani and Carnatic
music, which are composed in a specific tāḷa. Melody also can be
used to track the progression through a tāḷa with several melodic
and lyrical markers indicating the sama. Incorporating melody and
lyrics based features into the observation model is hence hypothe-
sized to additionally help to improve meter analysis performance.
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The presented Bayesian models can be further improved to in-
corporate other structures and priors that can be utilized for im-
proving meter tracking - such as tighter bounds on tempo, tighter
restriction on continuity, and allowance for errors such a skipping
a beat. This is in addition to the ideas explored already: such as
hop inference that aims to track meter only at specific event cues.
Suchmodels need to be further explored, with suitable and efficient
inference algorithms. The computationally efficient mixture obser-
vation model and the inference extensions presented in the chapter
show some promise, but need further improvement. They can be
better utilized with more rhythmic patterns modeling a tāḷa, which
needs more diverse features. The use of better features and faster
inference with better models can be a focus in future research on
the topic. Recent approaches that use deep learning to build obser-
vation models have also seen some success (Böck & Schedl, 2011),
motivating us to explore them further.

The meter analysis algorithms discussed in the chapter were
developed within the context of CompMusic project and hence are
aligned with its goals to lead towards defining relevant rhythm sim-
ilarity measures. Meter analysis is the first step towards that goal.
Automatic meter analysis provides valuable content based meta-
data for a piece of music with several useful applications: a few of
them are detailed in Chapter 7.





Chapter 6
Percussion pattern

transcription and
discovery

The metaphorical usage of ‘language’ for a musical
system is paralleled by a literal usage that refers to
the ways in which many drum musics may be rep-
resented with spoken syllables.

Kippen and Bel (1989)

Percussion plays an important role in Indian art music with a sig-
nificant freedom to improvise, leading a wide variety of percussion
patterns that help to createmultiple layers of rhythm. An analysis of
these percussion patterns hence is an important step towards devel-
oping rhythm similarity measures. We wish to discover percussion
patterns from audio recordings in a data-driven way, while using a
musically meaningful representation for percussion patterns.

We address the task of percussion pattern discovery in this chap-
ter taking an approach of transcription followed by a search for pat-
terns. The work presented in the chapter is basic and exploratory,
and only for demonstrating the utility of a syllabic percussion sys-
tem in percussion pattern transcription and discovery. Most experi-
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ments presented contain preliminary results, needing further work.
The goals of the chapter are:

1. To discuss two broad approaches to percussion transcription. To
focus on timbre based transcription, and to present how mean-
ingful representations can be obtained for overall timbres of per-
cussion strokes in syllabic percussion systems.

2. To present an approach to percussion pattern transcription and
discovery in syllabic percussion systems based on a speech recog-
nition framework.

3. To present experiments on jingju percussion patterns, as a sim-
pler example test case of percussion pattern transcription and
pattern classification. To extend the approach to Indian art mu-
sic, and evaluate it on mridangam and tabla solo datasets.

4. To identify the advantages and shortcomings of such an approach,
with possible future research directions to pursue.

We first start by describing two broad approaches that can be taken
for the task of percussion pattern transcription.

6.1 Approaches
Percussion transcription aims to transcribe an audio recording of
a percussion solo into a time aligned sequence of symbols. De-
pending on the symbol set chosen and the acoustic events being
modeled, transcription can be approached in two different broad
ways. The two approaches differ mainly in the way they define
percussion patterns in audio.

Transcription based on individual instruments

An audio recording can be transcribed into time aligned sequence
of individual percussion instrument stroke onsets, e.g. transcribing
a drum solo into a sequence of bass, hi-hats and snare drum onsets.
The output of such a task is a drum score showing all the drums,
and their onset times. A percussion pattern can then be described
and represented using that score, using the onset information from
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all instruments. Such an approach is useful for transcription from
drum mixtures, when percussion patterns are defined as a sequen-
tial combination of different instruments, each retaining their own
musical identity. Since most percussion solos have simultaneous
strokes from multiple instruments, such an approach needs a de-
composition of the audio containing drum mixtures into individual
drum components. As a pre-processing step, an instrument-wise
onset detection might be needed.

As discussed before in Section 2.3.10, event-based transcrip-
tion algorithms (Gillet & Richard, 2004b; Gouyon et al., 2002;
Goto &Muraoka, 1994; Gillet & Richard, 2008) segment the input
signal based on percussion events then extract and classify features
from these segments to uncover its musically meaningful content,
such as onsets. Source separation based methods (Paulus & Vir-
tanen, 2005; Smaragdis, 2004a; Abdallah & Plumbley, 2003) de-
compose the input audio signal containing drummixtures into basis
functions capturing spectral characteristics of the sources (ideally,
individual percussion instruments). Tian et al. (2014) present an
exploratory study on the use of NMF based source separation tech-
niques for instrument specific onset detection in jingju percussion
instrument ensembles, aiming at providing a baseline for further
research in jingju percussion transcription.

Transcription based on overall timbre

A contrasting approach is to consider the overall timbre sequence
of a percussion solo, without any regard to individual instruments.
A percussion pattern is then defined as a sequence of combined
instrument timbres and the goal is to transcribe an audio recording
into a sequence of such combined timbres. Such an approach is
useful when percussion patterns can be defined based on timbral
sequences e.g. in syllabic percussion systems. A notable limitation
of the approach however is when a pattern cannot be accurately
defined by the overall timbre, and individual instrument timbres
are necessary, as often is the case with a drum set.

In syllabic percussion systems, patterns can be defined using
syllables, which is both musically meaningful and accurate in rep-
resentation. In certain percussion systems such as in jingju per-
cussion, the syllables represent the overall combined timbre of a
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percussion ensemble, while in Indian art music (both Carnatic and
Hindustani music), the syllables represent the different timbres that
can be produced by the (often) single percussion instrument used,
either the tabla or the mridangam. In either case, the overall timbre
represented by the syllable is sufficient to define a percussion pat-
tern. In such a case, a percussion pattern can be represented solely
based on these syllables and transcribed as such.

In this chapter, we explore only the second approach, using syl-
lables to define overall timbres of percussion strokes. We then use
them to define, transcribe and discover percussion patterns. In the
remainder of the chapter, the goal is to test the effectiveness and
relevance of percussion syllables in representation and modeling
of percussion patterns for automatic transcription and discovery.
Since these syllables have a clear analogy to speech and language,
the transcription task has a definite analogy to speech recognition
and we can apply several tools and knowledge from this well ex-
plored research area with many state of the art algorithms and sys-
tems (Huang & Deng, 2010).

The final goal is to automatically discover percussion patterns
from segmented percussion solo audio recordings of Indian art mu-
sic, and we take a transcription + search approach as briefly dis-
cussed in Section 3.3.2. The task however is challenging since it
requires a concrete definition of a percussion pattern, while such a
definition of what constitutes a percussion pattern is ambiguous in
Indian art music. Further, Indian percussion has a great scope for
improvisation within the framework of the tāḷa. This leads a large
number of percussion patterns that can be played on the mridangam
and tabla, which makes it further difficult to define relevant percus-
sion patterns without ambiguity. We address this issue by making
the discovery unsupervised and data-driven, by using transcribed
ground truth music scores to define relevant patterns.

Given the complexity of the task in Indian art music due to ill-
defined large number of patterns, we consider the case of percus-
sion patterns in jingju as an initial test case for our hypothesis and
methods. Percussion patterns in jingju are simpler in both these
aspects when compared to Indian art music: jingju percussion pat-
terns are well defined and limited in number. Once we demonstrate
and validate our hypothesis with jingju, we extend themethodology
to Indian art music, with a data-driven but extendable definition of
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Figure 6.1: The waveform and spectrogram of an audio example contain-
ing all four instrument groups of jingju. The top panel shows the wave-
form and the bottom panel is the spectrogram, the x-axis for both panels
is time (in seconds). The vertical lines (in red) mark the onsets of the
instruments. The onsets are labeled to indicate the specific instruments:
bangu-1, daluo-2, naobo-3, xiaoluo-4.

a percussion pattern. Since there are a limited number of jingju
percussion patterns, the problem of pattern discovery in jingju is
simplified into a pattern classification task, as is described further
in the following section.

6.2 The case of Beijing opera (Jingju)
To recall from Section 2.2.5, percussion ensemble in jingju consists
of five instruments played by four musicians, and can be grouped
based on timbre into four instrument groups - bangu (clapper-drum),
xiaoluo (small gong), daluo (big gong) and naobo (cymbals). The
waveform and spectrogram of an audio example with all four of
these instrument classes is shown in Figure 6.11. We can see the
amplitude dynamics and spectral shapes for each instrument. Daluo

1The audio example is available here: http://www.freesound.org/
people/ajaysm/sounds/205971/

http://www.freesound.org/people/ajaysm/sounds/205971/
http://www.freesound.org/people/ajaysm/sounds/205971/
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has a falling pitch, while xiaoluo has a rising pitch profile. Naobo
has a broadband spectrum with significant energy in higher fre-
quencies, as is characteristic of cymbals. Onsets generated by bangu
are sharp, have a much lower amplitude and shorter transient time,
and happen in higher density than those generated by the other in-
struments. Hence, the bangu onsets are easily masked by the cym-
bals and gongs. We can also see how the bangu stroke is masked
by an adjoining xiaoluo stroke (0-0.5s in Figure 6.1).

Using combinations of these instruments, several different com-
bined percussion strokes are produced, each of which is labeled
with an onomatopoeic oral mnemonic syllable. Since there are
many syllables that map to a single timbre, we reduced the com-
plete set of syllables into five syllable groups - DA, TAI, QI, QIE,
and CANG, as listed in Table 2.6. The use of these oral syllabic
sequences simplify and unify the representation of these patterns
played by an ensemble.

To further recall Section 2.2.5, the percussion patterns in jingju
music are sequences of strokes played by different combinations
of the percussion instruments, and the resulting variety of timbres
are transmitted using oral syllables as mnemonics. Each percus-
sion pattern is a sequence of syllables in their pre-established order,
along with their specific rhythmic structure and dynamic features.
Each particular pattern has a single unique syllabic representation
shared by all the performers. Hence, the use of these oral syllabic
sequences simplify and unify the representation of these patterns
played by an ensemble, making them optimal for the transcription
and automatic classification of the patterns.

A performance starts and ends with percussion patterns, they
generally introduce and conclude arias, and mark transition points
within them. The patterns accompany the actors’ movements on
stage and set the mood of the play, the scene, the aria or a section
of the aria. An automatic description of these percussion patterns is
thus quite important in providing the overall description of the aria.
Therefore, the detection and characterization of percussion patterns
is a fundamental task for the description of the music dimension in
Beijing opera. In practice, there is a limited set of named patterns
that are played in performance.

Though the patterns are limited in number and predefined, there
are several challenges to the problem of percussion pattern tran-
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Figure 6.2: The waveform and spectrogram of an audio example of the
pattern shanchui. The top panel shows thewaveform and the bottom panel
is the spectrogram. The vertical lines (in red) mark the onsets of the syl-
lables. The onsets are labeled to indicate the specific syllable group: DA-
1, TAI-2, QI-3, QIE-4, and CANG-5 (QI is not present in this pattern).
The score for the pattern is shown in Figure 2.5e. Notice that the audio
example has two additional repetitions of the sub-sequence CANG-TAI-
QIE-TAI in the pattern.

scription and classification. Being an oral tradition, the syllables
used for the representation of the patterns lack full consistency and
general agreement. The result being that one particular timbremight
be represented bymore than one syllable. Furthermore, the syllabic
representation conveys information for the conjoint timbre of the
ensemble, so only the main structural sounds are represented. In
an actual performance, a particular syllable might be performed by
different combinations of instruments - e.g. in Figure 2.5e, the first
occurrence of the syllable TAI is played just by the xiaoluo, but in
the rest of the pattern is played by xiaoluo and the bangu together.
In fact, generally speaking, the strokes of the bangu are seldom con-
veyed in the syllabic sequence (as can be seen in the third measure
in Figure 2.5e for the second sixteenth-note of the bangu), except
for the introductions and other structural points played by the drum
alone. As indicated in Table 2.6, CANG is mostly a combination of
all the three metallophones, but in some cases, CANG can be played
with just the daluo, or just the daluo+naobo combination.

In the cases where the percussion pattern is to accompany the
movements of actors on stage, certain syllable subsequences in the
pattern are repeated indefinitely. This causes the same pattern in
different performances to have variable lengths, and these repeti-
tions need to be explicitly handled. The timing of these patterns
is expressive and matches the acting in the scene, and hence we
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consider only the sequence of syllables and do not consider timing
relationships between the syllables to define patterns. Finally, al-
though the patterns are usually played in isolation, in many cases
the string instruments or even the vocals can start playing before the
patterns end, presenting challenges in identification and classifica-
tion. Figure 6.2 shows an audio example of the pattern shanchui,
along with time alignedmarkers to indicate the syllable onsets. The
spectrogram also shows the timbral characteristics of the percus-
sion instruments xiaoluo (increasing pitch) and daluo (decreasing
pitch). Some variation to the notated score can also be seen, such
as expressive timing and additional insertion of syllables.

At the outset, it is clear that Beijing opera percussion patterns
are well defined and limited in number. Further, in jingju, the
recognition of the pattern as a whole is more important than an
accurate syllabic transcription of the pattern. Due to the limited set
of pattern classes and owing to all the variations possible in a pat-
tern, we are primarily interested in classifying an audio pattern into
one of the possible pattern classes. Syllabic transcription is only
considered as an intermediate step towards pattern classification.
The named patterns can be used to build a library of patterns. The
patterns can be referred to as “pattern classes” for the purpose of
classification, and classifying an instance of a pattern occurring in
the audio recording of an aria into one of these pattern classes is
thus a primary task.

6.2.1 Percussion pattern classification
Beijing opera percussion pattern transcription and classification is
a first test case for percussion pattern discovery approaches. In this
work, we restrict to five predominantly used percussion patterns in
jingju - daoban tou, man changchui, duotou, xiaoluo duotou, and
shanchui (pattern scores provided in Figure 2.5). Further, we re-
strict ourselves to percussion patterns that occur at the introduc-
tion of the aria, since they convey significant information about
the structure of the aria that follows it, e.g. daoban tou pattern is
followed by an aria in banshi daoban.

We now present a formulation for transcription and recogni-
tion of syllable based audio percussion patterns, and evaluate it
on the Jingju Percussion Pattern dataset (JPP) (see Section 4.2.6).
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The dataset is a collection of 133 audio percussion patterns span-
ning five different pattern classes, with over 2200 syllables in total.
There is a significant analogy of this task to connected word speech
recognition using word models. Syllables are analogous to words
and a percussion pattern to a sentence - a sequence of words. There
are language rules to form a sentence using a vocabulary, just as
each percussion pattern is formed with a defined sequence of syl-
lables from a vocabulary. However unlike in the case of speech
recognition where infinitely many sentences are possible, in our
case we have a small number of percussion patterns to be recog-
nized.

Similar to thework byNakano et al. (2004), we explore a speech
recognition based framework in this study. Their approach is dif-
ferent from ours in the sense that the onomatopoeic representa-
tions they used were created by the authors, while we are rely-
ing on already existing oral traditions. To the best of our knowl-
edge, Srinivasamurthy, Caro, et al. (2014) presented the first work
that explored automatic transcription and classification of syllable
based percussion patterns, as applied to Beijing opera. The method
and results presented in this section are from that work.

Following the notation presented in Section 3.3.2, consider a set
ofNa pattern classesP = {A1,A2, · · ·ANa}, each of which is a se-
quence of syllables from the set of syllablesA = {A1, A2, · · ·ANs},
where Ns is the total number of syllables in the set. Hence, a
percussion pattern is represented as Ai = [a1, a2, · · · , aLi

] where
aj ∈ A and Li is the length of Ai. Given a test audio signal f [n]
containing a percussion pattern, the transcription task aims to ob-
tain a syllable sequence A∗ = [a1, a2, · · · , aL∗ ] and the classifica-
tion task aims to assign A∗ into one of the patterns in the set P .

The syllables are non-stationary signals and to model their tim-
bral dynamics, we build an HMM for each syllable (analogous to a
word-HMM). Using these syllable HMMs and a language model,
an input audio pattern is transcribed into a sequence of syllables
using Viterbi decoding, and then classified to a pattern class in the
library using a measure of distance.

A block diagram of the approach is shown in Figure 6.3. We
first build syllable level HMMs {Λj}, 1 ≤ j ≤ Ns(= 5), for
each syllable Aj using features extracted from the training audio
patterns. We use the MFCC features to model the timbre of the
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Pattern classification 
using Edit distance

Viterbi 
Decoding

Training Data

Figure 6.3: The block diagram jingju percussion pattern classification
approach

syllables. To capture the temporal dynamics of syllables, we add
the velocity and the acceleration coefficients of the MFCC. The
stereo audio is converted to mono, since there is no additional in-
formation in stereo channels. The 13 dimensional (including the
zeroth coefficient) MFCC features are computed from audio pat-
terns with a frame size of 23.2 ms and a shift of 5.8 ms. We also
explore the use of energy (as measured by the zeroth MFCC coef-
ficient) in classification performance. Hence we have two sets of
features, MFCC_0_D_A, the 39 dimensional feature including the
zeroth, delta (velocity) and double-delta (acceleration) coefficients,
and MFCC_D_A, the 36 dimensional vector without the zeroth co-
efficient.

We model each syllable using a 5-state left-to-right HMM in-
cluding an entry and an exit non-emitting states. The emission den-
sities for each state is modeled with a four component GMM to
capture the timbral variability in syllables. We experimented with
eight and sixteen component GMM, but with little performance
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improvement. Since we do not have time aligned transcriptions
in the JPP dataset, an isolated HMM training for each syllable is
not possible. Hence we use an embedded model Baum-Welch re-
estimation (Huang et al., 1990) to train the HMMs using just the
syllable sequence corresponding to each feature sequence. The
HMMs are initialized with a flat start using all of the training data.
All the experiments were done using the Hidden Markov model
Toolkit (HTK) (Young et al., 2006).

Given a test audio pattern, we use these syllable HMMs to ob-
tain a rough syllabic transcription and then classify the test pat-
tern into one of the pattern classes in the library based on a mea-
sure of distance between the test pattern and the pattern classes.
Since we only need a rough syllabic transcription independent of
the pattern class, we treat the test audio pattern as a first order time-
homogenous discrete Markov chain, which can consist of any fi-
nite length sequence of syllables, with uniform unigram and bi-
gram (transition) probabilities, i.e. P (a1 = Ai) = 1/Ns and
P (ak+1 = Aj | ak = Ai) = 1/Ns, 1 ≤ i, j ≤ Ns, with k be-
ing the sequence index. This also forms a simple uninformed lan-
guage model for forming the percussion patterns using syllables.
Given a feature sequence extracted from test audio pattern, we use
the HMMs {Λj} to do a Viterbi (forced) alignment, which aims to
provide the best sequence of syllables A∗, given a syllable network
constructed from the language model.

Given the decoded syllable sequenceA∗, we compute the string
edit distance (Navarro, 2001) betweenA∗ and patterns in the set P .
The use of edit distance is motivated by two factors. First, due to
errors in Viterbi alignment, A∗ can have insertions (I), deletions
(D), substitutions (S), and transposition (T) of syllables compared
to the ground truth. Secondly, to handle the allowed variations in
patterns, an edit distance is preferred over an exact match to the
sequences in P . We explore the use of two different string edit
distance measures, Levenshtein distance (d1) that considers I, D, S
errors and the Damerau–Levenshtein distance (d2) that considers I,
D, S, and also T errors (Navarro, 2001).

As discussed earlier, there can be repetitions of a subsequence
in some patterns. Though the number of repetitions is indefinite,
we observed in the dataset that there are at most two repetitions in a
majority of pattern instances. Hence for the pattern classes that al-
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low repetition of a sub-sequence, we compute the edit distance for
the cases of zero, one and two repetitions and then take the mini-
mum distance obtained among the three cases. This way, we can
handle repeated parts in a pattern. Finally, the A∗ is assigned to the
pattern class Ao ∈ P for which the edit distance d (either d1 or d2)
is minimum, as in Eq. 6.1.

Ao = argmin
1≤j≤Na

d(A∗,Aj) (6.1)

6.2.2 Results and discussion
We present the syllable transcription and pattern classification re-
sults on the JPP dataset described in Section 4.2.6. The results
shown in Table 6.1 are themean values in a leave-one-out cross val-
idation. We report the syllable transcription performance using the
measures of Correctness (C) and Accuracy (A). If L is the length
of the ground truth sequence, then the two measures are defined as,

C =
L− D− S

L
(6.2)

A =
L− D− S− I

L
(6.3)

TheCorrectnessmeasure penalizes deletions and substitutions, while
Accuracy measure additionally penalizes insertions too. The pat-
tern classification performance is shown for both edit distancemea-
sures d1 and d2 in Table 6.1. All the results are reported for both
the features, MFCC_0_D_A and MFCC_D_A. The difference in
performance between the two features was found to be statistically
significant for both Correctness and Accuracy measures in aMann-
Whitney U test at p = 0.05, assuming an asymptotic normal distri-
bution (Mann & Whitney, 1947).

In general, we see a good pattern classification performance de-
spite a low syllable transcription accuracy. We see that the feature
MFCC_0_D_A leads to a better performance with syllable tran-
scription, while both kinds of features provide a comparable per-
formance for pattern classification. Though syllable transcription
is not the primary task we focus on, an analysis of its performance
provides several insights. The set of percussion instruments in Bei-
jing opera is fixed, but there can be slight variations across different
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Feature Syllable Pattern
C A d1 d2

MFCC_D_A 78.14 26.32 93.23 89.47
MFCC_0_D_A 84.98 39.63 91.73 89.47

Table 6.1: Syllable transcription and pattern classification performance
on JPP dataset, with Correctness (C) and Accuracy (A) measures for syl-
lable transcription. Pattern classification results are shown for both dis-
tance measures d1 and d2. All values are in percentage.

Pattern class Total ID 1 2 3 4 5

daoban tou 62 1 100
man changchui 33 2 93.9 6.1
duotou 19 3 10.5 68.4 21.1
xiaoluo duotou 11 4 18.2 81.8
shanchui 8 5 12.5 87.5

Table 6.2: The confusion matrix for pattern classification in JPP dataset,
using the feature MFCC_0_D_A with d1 distance measure. The first
and second column show the pattern class label and the total examples
in each class, and class labels correspond to the ID in Table 4.19. The
rows and column headers represent the True Class and Assigned Class,
respectively. All other values are in percentage and the empty blocks are
zeros (omitted for clarity).

instruments of the same kind. The training examples are varied and
representative, andmodels built can be presumed to be source inde-
pendent. Nevertheless, there can be unrepresented syllable timbres
in test data leading to a poorer transcription performance. A bigger
training dataset can improve the performance in such a case. The
energy (zeroth) co-efficient provides significant information about
the kind of syllables and hence gives a better syllable transcription
performance.

We see that the Correctness is higher than Accuracy showing
that the exact sequence of syllables, as indicated in the score was
not achieved in amajority of the cases, with several insertion errors.
This is due to the combined effect of errors in decoding and allowed
variations in patterns. However, an edit distance based distance
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measure for classification is quite robust in the present five class
problem and provides a good classification performance, despite
the low transcription accuracy.

Both distance measures provide comparable performance, in-
dicating that the number of transposition errors are low. To see if
there are any systematic classification errors, we compute a confu-
sion matrix (Table 6.2) with one of the well performing configura-
tions: MFCC_0_D_A with d1 distance. We see that duotou (ID =
3) has a low recall, and gets confused with shanchui (ID = 5) often.
A close examination of the scores showed that a part of the pattern
duotou (Figure 2.5c) is contained within shanchui (Figure 2.5e),
which explains the source of confusion. From the scores, we also
see that xiaoluo duotou (ID = 4) and duotou (ID = 3) have simi-
lar structure, with the daluo and naobo strokes replaced by xiaoluo,
explaining the confusion between these two patterns. Such con-
fusions can be handled with better language models for modeling
percussion patterns, a topic of research that needs further explo-
ration.

Conclusions and summary

Wepresented a formulation based on connected-word speech recog-
nition for transcription and classification of syllabic percussion pat-
terns on Beijing Opera, as a initial study case. On a representative
collection of Beijing opera percussion patterns, the presented ap-
proach provides a good classification performance, despite a sim-
plistic language model and inadequate syllabic transcription accu-
racy. The approach is promising, however, the evaluation using a
small dataset necessitates a further assessment of the generalization
capabilities. Better language models can be explored, that use se-
quence and rhythmic information more effectively, and the task can
be extended to a much larger dataset spanning more pattern classes.
We used isolated patterns in this study, assuming segmented audio
patterns. But an automatic segmentation of patterns from audio is
a good direction for future work.

Given the effectiveness of the approach using syllables for per-
cussion pattern representation, we can now do similar formulation
for Indian art music - for both tabla andmridangam solo recordings.
The percussion system in Indian art music is more complex than
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jingju, with a larger variety of syllables and ill defined indefinite
number of patterns, while it still has a syllabic percussion system.

6.3 The case of Indian art music
The syllabic percussion system in both Carnatic and Hindustani
music provides a musically relevant representation system for per-
cussion patterns. In the remainder of this section, we describe an
approach for percussion pattern discovery from audio recordings
of percussion solos. We define percussion patterns using a reduced
set of syllable groups (instead of the inconvenient term of syllable
group, we call the syllable groups as just syllables) using the map-
ping described for Carnatic music in Table 2.2 and for Hindustani
music Table 2.4. To address the problem of percussion pattern dis-
covery in Indian art music percussion solo recordings, we follow a
data driven transcription + search approach. The approach mainly
has three sub-tasks:

Pattern library generation: Create a library of characteristic per-
cussion patterns (query patterns) from a corpus of syllabic percus-
sion pattern scores of solos.

Automatic transcription: Transcribe a given percussion solo au-
dio recording into a time aligned sequence of syllables using syl-
lable timbre models.

Approximate pattern search: Search for the query patterns in the
transcribed output syllable sequence using (approximate) string
search algorithms.

We describe each of these sub-tasks in greater detail. Despite in-
volving a search for a known query pattern in transcribed scores,
since the query patterns are also discovered automatically from a
collection of scores, this method is different from a supervised pat-
tern search. The task hence is a discovery problem that can auto-
matically find audio percussion patterns from a corpus of percus-
sion solo audio recordings in a data-driven way.

The framework is similar for both Hindustani and Carnatic mu-
sic, and hence we describe the approach for both tabla and mridan-
gam solos together. The approach is evaluated on a collection of
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tabla solo recordings (the MTS dataset) and mridangam solo record-
ings (the UMS dataset). A block diagram of the approach is shown
in Figure 6.4. Some of the work described in this section has been
discussed by Gupta et al. (2015) and Gupta (2015).

6.3.1 Pattern library generation
Percussion patterns are built hierarchically in Indian art music, with
smaller standard phrases used to build longer sequences of percus-
sion patterns. With a limited set of syllables, there are shorter pat-
terns that are played very often, which are grouped in different com-
binations to create longer patterns. In a data-driven way, a library
of such patterns can be obtained from music scores of percussion
solos - we use the accompanying scores in MTS dataset and UMS
dataset for tabla and mridangam, respectively to build such pattern
libraries. In tabla solos, despite the differences across gharānās,
there are also many similarities due to the fact that the same forms
and standard phrases reappear across these repertoires (Gottlieb,
1993, p. 52). This enables the creation of a library of standard
phrases or patterns across compositions of different gharānās present
in the MTS dataset.

From Section 3.3.2, we recall the use of a simplistic definition
of a pattern as a sequence of syllables, without considering the rel-
ative and absolute durations of the constituent syllables, as well as
the metrical position of the pattern in the tāḷa. In this dissertation,
we take a data-driven approach to build a set of Na query patterns,
P = {A1,A2, · · ·ANa}. In addition, we assume that the most of-
ten played patterns are the most characteristic. Without any prior
knowledge, such an assumption enables us to create a library of
valid set of patterns with an objective criterion and further allows
for a better evaluation since there are several examples of those pat-
terns in the test datasets. It is however to be noted that discovery
approaches need not make this assumption, and any other musi-
cally relevant criteria for automatic discovery of patterns can also
be used.

Using the simple definition of a pattern as a sequence of sylla-
bles, we use the scores of the compositions in the MTS dataset (for
tabla) and UMS dataset (for mridangam) to generate all the L length
patterns that occur in the score collection. We sort them by their
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Figure 6.4: A block diagram of percussion pattern discovery approach
in Indian art music. The figure considers the example of tabla solos for
illustration.

frequency of occurrence to get an ordered set of patterns for each
stated length. We then manually choose musically representative
patterns from this ordered set of most commonly occurring patterns
to form a set of query patterns P . We create a set of query patterns
of length L = 4, 6, 8, 16. These lengths were chosen based on the
structure of tāḷas in the score collections (ādi and rūpaka tāḷa in
mridangam solo dataset and tīntāl in tabla solo dataset).

Table 6.3 shows the query tabla patterns used in this work ob-
tained from the MTS dataset. The table also shows their length and
their count in the dataset, leading to a total of 1425 instances. We



260 Percussion pattern transcription and discovery

ID Pattern L Count

A1 DHE, RE, DHE, RE, KI, TA, TA, KI,
NA, TA, TA, KI, TA, TA, KI, NA

16 47

A2 TA, TA, KI, TA, TA, KI, TA, TA,
KI, TA, TA, KI, TA, TA, KI, TA

16 10

A3 TA, KI, TA, TA, KI, TA, TA, KI 8 61
A4 TA, TA, KI, TA, TA, KI 6 214
A5 TA, TA, KI, TA 4 379
A6 KI, TA, TA, KI 4 450
A7 TA, TA, KI, NA 4 167
A8 DHA, GE, TA, TA 4 97

Table 6.3: Query tabla percussion patterns, their ID, length (L) and the
number of instances in the MTS dataset (Total instances: 1425).

want a diverse collection of patterns to test if the algorithms gen-
eralize. Hence we choose patterns that have a varied set of syl-
lables with different timbral characteristics, like syllables that are
harmonic (DHA), syllables played with a flam (DHE,RE) and syl-
lables having a bass component (GE).

Table 6.4 shows the querymridangam patterns used in this work
obtained from the UMS dataset. The table also shows their length
and their count in the dataset, leading to a total of 976 instances.
As confirmed by a carnatic percussionist, these patterns are very
commonly played in practice and hence are a good set of candidates
to evaluate pattern discovery methodologies.

6.3.2 Automatic transcription
An audio example of a percussion pattern is shown in Figure 6.5
for tabla, and in Figure 6.6 for mridangam. In the figures, we can
see the pitched nature of some of the strokes, with clear onsets in
many cases, but an overlap between adjacent strokes of the pattern.
This needs a modeling of timbre, along with modeling of sequential
information in syllables.
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ID Pattern L Count

A1 DH3, TA, DH3, TA, TH, DH3, TH,
TA

8 70

A2 TA, DH3, TA, TH, DH3, TH, TA, TM 8 69
A3 DH3, TA, DH3, TA, TH, DH3 6 89
A4 DH3, TA, TH, DH3, TH, TA 6 70
A5 TA, TH, DH3, TH, TA, TM 6 69
A6 DH3, TA, TH, DH3 4 291
A7 DH3, TA, DH3, TA 4 114
A8 TH, DH3, TA, TH 4 102
A9 TA, TH, DH3, TH 4 102

Table 6.4: Query mridangam percussion patterns, their ID, length (L)
and the number of instances in the UMS dataset (Total instances: 976).

Some bōls of tabla may be pronounced with a different vowel
or consonant depending on the context, without altering the drum
stroke (Chandola, 1988). Furthermore, the bōls and the strokes
vary across different gharānās, making the task of transcription of
tabla solos challenging. Mridangam syllables are further less spe-
cific as discussed earlier, and using the timbral grouping aims to
address this challenge. To model the timbral dynamics of syllables,
we build an HMM for each syllable (analogous to a word-HMM).
We use these HMMs along with a language model to transcribe an
input audio solo recording into a sequence of syllables.

The stereo audio is converted to mono, since there is no addi-
tional information in stereo channels. We use the MFCC features
to model the timbre of the syllables. To capture the temporal dy-
namics of syllables, we add the velocity and the acceleration co-
efficients of the MFCC. The 13 dimensional MFCC features (in-
cluding the zeroth coefficient) are computed from the audio with
a frame size of 23.2 ms and a shift of 5.8 ms. We also explore
the use of energy (as measured by the zeroth MFCC coefficient)
in transcription performance. Hence we have two sets of features,
MFCC_0_D_A, the 39 dimensional feature including the zeroth,
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Figure 6.5: The waveform and spectrogram of an audio example of a
tabla percussion pattern shown with the onsets and the mapped syllable
names from Table 4.15. The x-axis is time in seconds.
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Figure 6.6: Thewaveform and spectrogram of an audio example of amri-
dangam percussion pattern shownwith the onsets and themapped syllable
names from Table 4.17. The x-axis is time in seconds.

delta and double-delta coefficients, and MFCC_D_A, the 36 di-
mensional vector without the zeroth coefficient.

Using the features extracted from training audio recordings, we
model each syllable Aj using a 7-state left-to-right HMM {Λj},
1 ≤ j ≤ Ns, including an entry and an exit non-emitting states.
For tabla solo transcription, Ns = 18 while for mridangam solo
transcription task,Ns = 21. The emission density of each emitting
state is modeled with a three component GMM to capture the tim-
bral variability in syllables. We experimented with higher number
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of components in the GMMs, but with little performance improve-
ment.

The MTS tabla solo dataset is a parallel corpus of audio and
time aligned syllabic transcriptions, each syllable HMM is initial-
ized through an isolated HMM training of each syllable. The UMS
mridangam solo dataset lacks such time aligned transcriptions and
hence all syllables are initialized with a flat start HMMusing all the
data in the dataset. Additionally for comparison, we report results
with a flat start on MTS tabla dataset too. The initialized HMMs
are then trained further in an embedded model Baum-Welch re-
estimation to get the final syllable HMMs.

Percussion solos in Indian art music are built hierarchically us-
ing short phrases, and hence some bōls/solkaṭṭus tend to follow
a bōl/solkaṭṭu more often than others. In such a scenario, a lan-
guage model can improve transcription. In addition to a flat lan-
guage model with uniform unigram and transition probabilities, i.e.
P (a1 = Aj) = 1/Ns and P (ak+1 = Aj|ak = Ai) = 1/Ns, with
1 ≤ i, j ≤ Ns and k being the sequence index, we explore the
use of a bigram language model learned from data. The bigram
language model is learned from all the scores in the training data.

For testing, we treat the feature sequence extracted from test au-
dio file to have been generated from a first order time-homogeneous
discrete Markov chain, which can consist of any finite length se-
quence of syllables. From the extracted feature sequence, we use
the HMMs {Λj} and a syllable network constructed from the lan-
guage model to do a Viterbi (forced) alignment, which provides the
most likely sequence of syllables and their onset timestamps, given
as A∗ = [(t1, a1), (t2, a2), · · · , (t∗, aL∗)], where ti is the onset time
of ai andL∗ is the length of the transcribed sequence. Similar to the
experiments with Beijing opera, all the transcription experiments
were done using HTK (Young et al., 2006).

6.3.3 Approximate pattern search
The automatically transcribed output syllable sequence A∗ is used
to search for the query patterns. Transcription is often inaccurate
in both the sequence of syllables and in the exact onset times of
the transcribed syllables. We need to handle both these errors in a
pattern search task from audio. We primarily focus on the errors in
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syllabic transcription in this work. We use the syllable boundaries
output by the Viterbi algorithm, without any additional post pro-
cessing. We can improve the output syllable boundaries using an
onset detector (Bello et al., 2005), but we leave this task to future
work.

Searching of a query syllable sequence in a transcribed sequence
of syllables is akin to string search. As discussed in the case of
jingju percussion pattern transcription task, errors in transcription
are mainly insertions (I), deletions (D), substitutions (S), and trans-
positions (T). Further, the query pattern is to be searched in the
whole transcribed composition, where several instances of the query
can occur. With both these issues, the problem of pattern search can
be addressed as a subsequence search. Rough Longest Common
Subsequence (RLCS) method is a suitable choice for such a case.
RLCS is a subsequence search method that searches for roughly
matched subsequences while retaining the local similarity (Lin et
al., 2011). We make further enhancements to RLCS to handle the
I, D and S errors in transcription.

We use a modified version of the RLCS approach as proposed
by Lin et al. (2011) with changes proposed by S. Dutta and Murthy
(2014) to handle substitution errors. We propose a further enhance-
ment to handle insertions and deletions, and explore its use in the
current task. S. Dutta and Murthy (2014) used a modified version
of RLCS for motif spotting in ālāpanas of Carnatic music. We pro-
pose to use a similar approach with minor modifications to suit the
symbolic domain specific to our use case. We first present a general
form of RLCS and then discuss different variants of the algorithm.

Given a query pattern Aq ∈ P of length Lq and a reference
sequence (transcribed syllable sequence) A∗ of length L∗, RLCS
uses a dynamic programming approach to compute a score matrix
(of size L∗×Lq) between the reference and the query with a rough
length of match. We can use a threshold on the score matrix to
obtain the instances of the query occurring in the reference. We
can then use the syllable boundaries in the output transcription and
retrieve the audio segment corresponding to the match.

For the ease of notation, we index the transcribed syllable se-
quence A∗ with i and the query syllable sequence Aq with j in
this section. We compute the rough and actual length of the sub-
sequence matches similar to the way computed by S. Dutta and
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Murthy (2014). At every position (i, j), a syllable is included into
the matched subsequence if d(ai, aj) ≤ δ, where d(ai, aj) is the
timbral distance between the syllables at positions i and j in the
transcription and query, respectively. δ is the threshold distance
below which the two syllables are said to be equivalent. The ma-
trices of rough length of match (H) and the actual length of match
(Ha) are updated as,

H(i, j) = H(i− 1, j − 1) + (1− d(ai, aj)).1d (6.4)
Ha(i, j) = Ha(i− 1, j − 1) + 1d (6.5)

where, 1d is an indicator function that takes a value of 1 if d(ai, aj) ≤
δ, else 0. The matrix H thus contains the length of rough matches
ending at all combinations of the syllable positions in reference and
the query. The rough length and an appropriate distance measure
handles the substitution errors during transcription.

To penalize insertion and deletion errors, we compute a “den-
sity” of match using two measures called the Width Across Refer-
ence (WAR) and Width Across Query (WAQ), respectively. The
WAR (R) and WAQ (Q) matrices are initialized to Ri,j = Qi,j = 0
when i.j = 0, and propagated as,

Ri,j =


Ri−1,j−1 + 1 d(ai, aj) ≤ δ

Ri−1,j + 1 d(ai, aj) > δ, Hi−1,j ≥ Hi,j−1

Ri,j−1 d(ai, aj) > δ, Hi−1,j < Hi,j−1

(6.6)

Qi,j =


Qi−1,j−1 + 1 d(ai, aj) ≤ δ

Qi−1,j d(ai, aj) > δ, Hi−1,j ≥ Hi,j−1

Qi,j−1 + 1 d(ai, aj) > δ, Hi−1,j < Hi,j−1

(6.7)

Here, Ri,j is the length of substring containing the subsequence
match ending at the ith and the j th position of the reference and the
query, respectively. Qi,j represents a similar measure in the query.
When incremented, Ri,j and Qi,j are incremented by 1 similar to
the way formulated by Lin et al. (2011). At the same time, the
increment is done based on the conditions formulated by S. Dutta
and Murthy (2014).

Using the rough length of match (H), actual length of match
(Ha), and width measures (R andQ), we compute a score matrix σ
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that incorporates penalties for substitutions, insertions, deletions,
and additionally, the fraction of the query matched as,

σi,j =

{ [
η ·W

(
Hi,j

Ri,j

)
+ (1− η)·W

(
Hi,j

Qi,j

)]
·Hi,j

Lq
if Ha

i,j

Lq
≥ ρ

0 otherwise
(6.8)

where σi,j is the score for the match ending at the ith and the j th po-
sition of the reference and the query, respectively. W is a warping
function for the rough match length densities Hi,j

Ri,j
in the reference

and Hi,j

Qi,j
in the query. The parameter η controls their weights in the

convex combination for score computation. The term Ha
i,j

Lq
is the

fraction of the query length matched and is used for thresholding
the minimum fraction of the query to be matched. The parameter
ρ is the threshold for the minimum fraction that contributes to the
score. Starting with all combinations of i and j as the end points of
the match in the reference and the query, respectively, we perform
a traceback to get the starting points of the match.

RLCS algorithm outputs a match when the score is more than
a score threshold ξ. However, with a simple score thresholding,
we get multiple overlapping matches, from which we select the
match with the highest score. If the scores of multiple overlapping
matches are equal, we select the ones that have the lowest width
(WAR). This way, we obtain a match that has the highest score den-
sity. We use these non-overlapping matches and the corresponding
syllable boundaries to retrieve the audio patterns.

Variants of RLCS

The generalizedRLCS provides a robust framework for subsequence
search. The parameters ρ, η, ξ and δ can be tuned to make the algo-
rithm more sensitive to different kinds of transcription errors. The
variants we consider here use different distance measures d(ai, aj)
in Eq. 6.4 to handle substitutions and different functions f(.) in
Eq. 6.8 to handle insertions and deletions. We explore these vari-
ants for the current task and evaluate their performance.

In a default RLCS configuration (RLCS0), we only consider ex-
act syllable matches. We set δ = 0 and use a binary distance met-
ric based on the syllable label, i.e. d(ai, aj) = 0 if ai = aj , and
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1 otherwise. Further, an identity warping function, W(u) = u is
used. The rough length match densities can be transformed using
a non-linear warping function to penalize low density values more
than the higher ones, leading to another variant of RLCS called the
warped density RLCS (denoted as RLCSs in this chapter). In this
dissertation, we only explore warping functions of the form,

W(u) =
eκu − 1

eκ − 1
(6.9)

where κ > 0 is a parameter to control warping, larger values of κ
lead to more deviation from an identity transformation. RLCS0 is
a limiting case of RLCSs when κ→ 0.

We hypothesize that the substitution errors in transcription are
due to the confusion between timbrally similar syllables. A tim-
bral similarity (distance) measure between the syllables can thus
be used to make an RLCS algorithm robust to specific kinds of
substitution errors. In essence, we want to disregard and give a
greater allowance for substitutions between timbrally similar syl-
lables during RLCS matching. Computing timbral similarity is a
wide area of research and has many different proposed methods
(Pachet & Aucouturier, 2004), but we restrict ourselves to a ba-
sic timbral distance measure: the Mahalanobis distance between
the cluster centers obtained using a k-means clustering of MFCC
features (with 3 clusters) from isolated audio examples of each syl-
lable (Aucouturier & Pachet, 2002). We call this variant of RLCS
that uses a timbral distance d(ai, aj) as RLCSd and experiment with
different thresholds δ.

6.3.4 Results and discussion
Similar to the results in Section 6.2.2, we present an evaluation of
percussion pattern transcription and discovery for both tabla and
mridangam solo datasets. The results of automatic transcription
and those of approximate pattern search are presented separately
in each case. We first present it for the tabla solo dataset (MTS
dataset), followed by the mridangam solo dataset (UMS dataset). It
is important to note the contrast between the two datasets being
evaluated: the recordings in UMS dataset have already been seg-
mented into short phrases with the query patterns being the same
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order of length as the test audio recording, while the recordings
in MTS dataset are full length compositions spanning multiple tāl
cycles, and hence much longer than the query patterns. We will
also analyze the effect of this difference in datasets on the results
of pattern search.

Results on tabla solo dataset

The tabla solo dataset (MTS dataset) described in Section 4.2.3 is
used to evaluate the performance of transcription and discovery in
tabla percussion solo recordings. The results of automatic tran-
scription is first presented, and the best performing transcription
system is used to present the results of approximate pattern search
using different variants of RLCS.

The performance of automatic transcription is shown in Ta-
ble 6.5-6.6 as the mean value over the whole dataset in a leave-one-
piece out cross validation experiment. The performance measures
are Correctness (C) and Accuracy (A) as defined in Eq. 6.2. We
experimented with the two different MFCC features (MFCC_D_A
andMFCC_0_D_A), two different initializations of HMMs (an iso-
lated training and a flat start, both followed by embedded reestima-
tion training) and two language models (a flat model and a bigram
learned from data).

With the parallel time aligned transcriptions in the dataset, we
experiment with both a flat initialization of syllables with an iso-
lated training initialization of syllable HMMs, followed by embed-
ded training. The results with flat start initialization of HMMs is
shown in Table 6.5 and the results for HMMs initialized with iso-
lated stroke examples are shown in Table 6.6. In each table, the
results are shown for both a flat (uniform) language model that as-
sumes equal unigram and bigram probabilities, and for a bigram
language model learned from training data. The tables also show
both training accuracy (measured on training data) and test accu-
racy (measured on test data). In both tables, the best performing
combination with highest test Accuracy is shown in bold. For test
data performance, the values underlined in each column of the ta-
bles are statistically equivalent to the best result (in a paired-sample
t-test at 5% significance levels).
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Training Test
LM Feature C A C A

Flat MFCC_D_A 67.82 46.05 64.21 37.94
MFCC_0_D_A 70.63 51.78 66.30 43.86

Bigram MFCC_D_A 68.50 50.48 65.33 44.10
MFCC_0_D_A 69.33 46.72 64.49 39.48

Table 6.5: Automatic transcription results on the MTS dataset (tabla) us-
ing HMMs initialized with a flat start for each syllable. The table shows
both training and test performance, for both a flat and a bigram language
model, using the Correctness (C) and Accuracy (A) performance mea-
sures. The best performing combination with highest test Accuracy is
shown in bold. For test data performance, the values underlined in each
column are statistically equivalent to the best result. All values are in
percentage.

Training Test
LM Feature C A C A

Flat MFCC_D_A 68.42 52.69 64.07 45.01
MFCC_0_D_A 68.91 56.78 64.26 49.27

Bigram MFCC_D_A 70.16 57.83 65.53 49.97
MFCC_0_D_A 70.71 60.77 66.23 53.13

Table 6.6: Automatic transcription results on the MTS dataset (tabla) using
HMMs initialized using isolated stroke examples for each syllable.

Overall, we see a best test Accuracy of 53.13% for isolated
stroke initialization with the MFCC_0_D_A feature and a bigram
languagemodel, which justifies the use of robust approximate string
search algorithm for pattern retrieval. We see that the Accuracy
measure for all cases is lower than the Correctness measure, which
shows that there are a significant number of insertion errors in tran-
scription. Training Accuracy is higher than test Accuracy, but with
a small margin showing that there is some difficulty in modeling
unseen data. Isolated stroke HMM initialization improves perfor-
mance, and hence it is useful to work with time aligned transcrip-
tions. The use of a bigram language model learned from data im-
proves the transcription performance when using isolated stroke
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Variant Parameter Precision (p) Recall (r) f-measure (f)

Baseline - 0.479 0.254 0.332
RLCS0 δ = 0 0.384 0.395 0.389
RLCSd δ = 0.3 0.139 0.466 0.214
RLCSd δ = 0.6 0.084 0.558 0.145
RLCSs κ = 1 0.412 0.350 0.378
RLCSs κ = 4 0.473 0.268 0.342
RLCSs κ = 7 0.482 0.259 0.336
RLCSs κ = 9 0.481 0.258 0.335

Table 6.7: Performance of approximate pattern search on MTS dataset
(tabla) using different RLCS variants using the best performing parameter
settings for RLCS0 (ρ = 0.875, η = 0.76 and ξ = 0.6).

HMM initialization. With the features, when using isolated stroke
HMM initialization, we see that the use of the energy co-efficient
in MFCC_0_D_A performs better when compared to the feature
MFCC_D_A, which shows that the use of relative volume dynam-
ics between strokes improves transcription performance.

We use the output transcriptions from the best performing com-
bination (MFCC_0_D_A and a bigram language model) to report
the performance of pattern search with approximate string match-
ing in Table 6.7, using different RLCS variants for the query pat-
terns from Table 6.3. For pattern retrieval, we don’t evaluate the
accuracy of boundary segmentation. However, we call a retrieved
pattern from RLCS as correctly retrieved if it has at least a 70%
overlap with the pattern instance in ground truth.

To evaluate pattern search performance, we use the standard in-
formation retrieval measures precision (p), recall (r) and their har-
monic mean f-measure (f). To form a baseline for string search
performance with the output transcriptions, we used an exact string
search algorithm and report its performance in Table 6.7 (shown as
Baseline). We see that the baseline has a precision that is similar to
transcription performance, but a very poor recall leading to a poor
f-measure.

To establish the optimum parameter settings for RLCS, we per-
formed a grid search over the values of η, ρ and ξ with RLCS0. The
parameters η and ξ are varied in the range 0 to 1. To ensure that the
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minimum length of the pattern matched is at least 2, we varied ρ in
the range, 1.1/min(Lq) < ρ < 1. The parameter η is the convex sum
parameter for the contribution of the rough match length density of
the reference and the query towards the final score. With increasing
η, we give more weight to the reference length ratio, allowing more
insertions. We observed a poor true positive rate with larger η, and
hence we validate the observation that insertion errors contribute
to a majority of transcription errors.

The best average f-measure over all the query patterns in an ex-
periment using RLCS0 is reported in Table 6.7. We see that RLCS0
improves the recall, but with a lower precision and an improved f-
measure, showing that the flexibility in approximate matching pro-
vided by RLCS comes at the cost of additional false positives. It is
observed that the patterns composed of smaller repetitive patterns
(and hence having ambiguous boundaries) result in a poor precision
(e.g. A2 and A3 in Table 6.3 with a precision of 0.108 and 0.239,
respectively). Both are commonly played patterns with several rep-
etitions and have a poor precision due to incorrect segmentation.
A1 in Table 6.3, on the contrary, has non-ambiguous boundaries
leading to a good precision of 0.692. The effect of the length of a
pattern on precision is also evident. Small patterns (with L = 4)
that have non-ambiguous boundaries (e.g. A8 in Table 6.3 with a
precision of 0.384) have a poor precision as compared to longer
patterns with non-ambiguous boundaries (e.g. A1). The reason for
this is that the smaller patterns aremore prone to errors as the search
algorithm has to match a lower number of syllables.

The values of ρ, η and ξ that give the best f-measure withRLCS0
are then fixed for all subsequent experiments to compare the per-
formance of the proposed RLCS variants. The results with other
variants of RLCS are also reported in Table 6.7. The results from
RLCSd show that the use of a timbral syllable distance measure
with higher threshold δ further improves the recall, but with a much
lower precision and f-measure. Although we find matches that
have substitution errors using the distance measure, we retrieve ad-
ditional matches that do not have substitution errors contributing
to additional false positives. On the contrary, using a non-linear
warping function f(.) in RLCSs improves the precision with larger
values of κ. The penalties on matches with higher number of inser-
tions and deletions is large and they are left out, leading to a good
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Training Test
LM Feature C A C A

Flat MFCC_D_A 76.66 59.43 74.08 55.64
MFCC_0_D_A 76.63 63.79 74.13 60.23

Bigram MFCC_D_A 78.12 57.69 75.90 54.02
MFCC_0_D_A 78.78 60.54 76.50 57.38

Table 6.8: Automatic transcription results on the UMS dataset using
HMMs trained using a flat start for each syllable. The table shows both
training and test performance, for both a flat and a bigram language
model, using the Correctness (C) and Accuracy (A) performance mea-
sures. The best performing combination with highest test Accuracy is
shown in bold. For test data performance, the values underlined in each
column are statistically equivalent to the best result.

precision at the cost of a poorer recall. We observe that both the
above mentioned variants improve either precision or recall at the
cost of the other measure. They need further exploration with bet-
ter timbral similarity measures to be combined in an effective way
to improve the search performance.

Results on mridangam solo dataset

Similar to an evaluation on the tabla solo dataset, we present a par-
allel evaluation with themridangam solo dataset (UMS dataset). Un-
like the tabla solo dataset, since the mridangam solo dataset does
not have time aligned ground truth transcriptions, we report auto-
matic transcription results only for flat start embedded HMM train-
ing. With the best performing combination, we then report results
of pattern search using different RLCS variants using the query pat-
terns from Table 6.4. We use identical definitions of performance
measures as used while reporting results for tabla solo dataset.

The results of automatic transcription are shown in Table 6.8
for all the combinations of conditions. For test data performance,
the values underlined in each column of the table are statistically
equivalent to the best result (in a paired-sample t-test at 5% signif-
icance levels). Overall, we see a best test Accuracy of 60.23% for
MFCC_0_D_A. Similar to results on tabla dataset, we see that the
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Variant Parameter Precision (p) Recall (r) f-measure (f)

Baseline - 0.902 0.492 0.637
RLCS0-1 δ = 0 0.902 0.492 0.637
RLCS0-2 δ = 0 0.258 0.762 0.386

Table 6.9: Performance of approximate pattern search for baseline and
RLCS0. RLCS0-1 shows the best f-measure in the experiments, obtained
with parameter settings ρ = 0.525, η = 0.51 and ξ = 0.95, while RLCS0-
2 shows the best recall achieved, obtained with parameter settings ρ =
0.275, η = 0.11 and ξ = 0.45.

Accuracy measure for all cases is lower than the Correctness mea-
sure, which shows that there are a significant number of insertion
errors in transcription. Training Accuracy is higher than test Accu-
racy, but with a small margin showing that there is some difficulty
in modeling unseen data. With the features, we see that the use
of the energy co-efficient in MFCC_0_D_A performs better when
compared to the feature MFCC_D_A, which shows that the use of
relative volume dynamics between strokes improves transcription
performance.

Contrary to results on tabla dataset, the use of a bigram lan-
guage model learned from data does not improve the transcription
performance. The better performing combination uses a flat lan-
guage model. We hypothesize that it is because there is much more
variety in mridangam stroke playing in the dataset and a bigram
language model learned from training data restricts the possibility
of unseen stroke sequences adversely. It also hints towards the use
of better language models that can incorporate longer contexts than
a simplistic bigram language model.

Using the output transcriptions from the best performing com-
bination (MFCC_0_D_A and a flat language model), we report the
performance of approximate string matching with RLCS algorithm
for the query patterns from Table 6.4. Table 6.9 shows the average
results of pattern search with the UMS dataset (mridangam) with the
RLCS0 algorithm, with an exact string search baseline also shown.
We further establish the optimum parameter settings for RLCS us-
ing a grid search similar to experiments with tabla solo dataset. The
numbers in the table show the results for the best performing pa-
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rameter settings. Since RLCSd and RLCSs algorithms did not show
any improvement in f-measure for tabla solos, only the results of
RLCS0 are reported for mridangam solos.

The results in Table 6.9 are significantly different compared
to Table 6.7 and need further explanation. We see a higher base-
line performance using exact string match with a good precision
and a poorer recall, indicating an improved transcription accuracy
with mridangam. The lowest recall of 0.348 is achieved for pat-
tern A3 in Table 6.4. Further, interestingly, the best performing
f-measure with RLCS0 (shown in the table as RLCS0-1) is equiv-
alent to the baseline, giving an identical performance. On closer
inspection, we see that this is achieved at a high score threshold of
ξ = 0.95. Such a high score threshold makes the RLCS algorithm
to be equivalent to exact search, penalizing any approximate length
scores and looking for exact matches. However, the best recall (of
0.762) with RLCS0 (shown in the table as RLCS0-2) is obtained for
a lower score threshold of ξ = 0.45, but with a significantly lower
f-measure of 0.386 as shown in the table. In the case of the mri-
dangam dataset, RLCS does not show a significant advantage in
improving f-measure. In addition, we see that the results on UMS
dataset are insensitive to a wide range of values of ρ and η.

Both these interesting observations can be explained from the
nature of the UMS dataset. The dataset consists of audio files that
contain short segmented phrases, with query patterns being in the
same order of length as the test audio files. In such a case, the com-
puted rough match lengths and densities are not well defined, lead-
ing to the insensitivity of the mixing parameter (η) and the mini-
mum fraction ofmatch parameter (ρ). In addition, an algorithm that
considers rough lengths but uses a binary distance measure (such
as RLCS0) would provide no significant advantage over an exact
search. We can summarize that the present formulation of RLCS0
algorithm is advantageous only when the query patterns are much
shorter than the audio recordings in which these patterns are being
queried. In addition, there is hence a need to explore improvements
to pattern search in cases such as the mridangam dataset, where a
query pattern is being searched over a large number of audio files
that also contain short phrases. However, a more comprehensive
experimentation on larger datasets with such characteristics would
be necessary to confirm this claim.
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6.4 Conclusions
The chapter presented a detailed formulation of the task of percus-
sion pattern discovery in music cultures syllabic percussion sys-
tems. The approaches utilized the overall timbres of percussion
strokes (either from a single drum or from an ensemble) to define
patterns. An evaluation on percussion datasets in jingju and Indian
art music datasets formally showed the possibility of such an ap-
proach, along with its advantages and current limitations. The goal
of evaluations on percussion datasets of jingju, tabla and mridan-
gam was to present a methodology for transcription and discov-
ery/classification of percussion patterns in syllabic percussion sys-
tems. The work presented was preliminary and not comprehensive,
with a significant scope for deeper study and improvement. How-
ever, the basic idea of using a musically meaningful representation
system to define and describe patterns is valid and useful. Beijing
opera provided a useful test case for percussion pattern classifica-
tion, showing promising results.

We mainly addressed the unexplored problem of a discovering
syllabic percussion patterns in Indian drum (tabla and mridangam)
solo recordings. The presented formulation used a parallel corpus
of audio recordings and syllabic scores to create a set of query pat-
terns, that were searched in an automatically transcribed (into syl-
lables) piece of audio. We used a simplistic definition of a pattern
and explored RLCS based subsequence search algorithm, using an
HMM based automatic transcription. Compared to a baseline, we
showed that the use of approximate string search algorithms im-
proved the recall at the cost of precision. Additionally, proposed
variants evaluated on the MTS dataset improved either the preci-
sion or recall, but do not provide a significant improvement in the
f-measure over the basic RLCS. Similar experiments on the UMS
dataset showed a better transcription performance, while pointing
out a limitation of the RLCS approach when querying patterns in
segmented short audio files.

For future work, we aim to improve syllable boundaries out-
put by transcription using onset detection. Inclusion of rhythmic
information can be an interesting aspect in defining and discov-
ering percussion patterns, and will help in evaluating the task of
pattern discovery with a more inclusive definition of a percussion
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pattern. The next steps would be to incorporate better timbral sim-
ilarity measures, include segment boundaries into the RLCS algo-
rithm formulation and effectively combine the proposed variants,
while addressing its limitations when searching short audio files.



Chapter 7
Applications, Summary

and Conclusions

The outcome of any serious research can only be
to make two questions grow where only one grew
before.

Thorstein Veblen (1908)

The concluding chapter of the dissertation aims to present some
concrete applications of the rhythm analysis approaches and results
presented in the previous chapters. It is followed by a summary of
the work presented in the dissertation, along with some key results
and conclusions. The thesis opens up a host of open problems -
pointers and directions for future work based on the thesis form the
last part of the chapter.

7.1 Applications
There are several applications for the researchwork presented in the
dissertation. Some of these applications have already been iden-
tified in Chapter 1 and Chapter 3. The goal of this section is to
present concrete examples of such applications, and further suggest
other applications that might be built or get benefited from the work
presented here. The section describes some of the applications that
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have resulted from the work in CompMusic so far, and those that
have been planned within the efforts of the project. Possible future
applications with the data and methods are also discussed briefly.

At the outset, the primary objective and application of auto-
matic rhythm analysis is to use it for defining rhythm similarity
measures between (and within) music pieces in large collections of
music. While this has not been addressed formally in this thesis,
there are several ways in which the research discussed in the thesis
can be used to define similarity measures and use them for various
applications.

The main application area for automatic rhythm analysis algo-
rithms in the thesis is enriched listening, with additional rhythm
related metadata along with the music recording. Meter analysis
outputs can be further used to improve higher level MIR tasks ana-
lyzing the musical structure. The tools can also aid in corpus level
musicological studies for analysis of both music theory and perfor-
mance.

Enhanced music listening is a primary application of the meter
analysis methods presented in the thesis. The additional rhythm
related information such as the tāḷa, time varying tempo, beats and
the sama can all enhance the music listening experience. It finds
audience both in serious music listeners and also music students
who wish to understand more about the underlying rhythmic struc-
tures. Large archives of music can be organized with added rhythm
metadata and presented to listeners. Semi-automatic rhythm anno-
tation applications can be built with these analysis tools. For a mu-
sic expert (such as a musician, musicologist, an expert listener, or
even a music student) curating these collections, it might be pos-
sible to tap some instances of the tāḷa for a piece and an informed
meter tracking algorithm can track the rest of the piece using that
initialization. Such a semi-automatic annotation tool significantly
enhances the accuracy of tāḷa tracking and hence is practical for
real world applications.

Percussion pattern transcription and discovery finds its appli-
cation in helping navigate through percussion solo recordings (tani
recordings in Carnatic music) in a more meaningful way. Appli-
cations such as search by patterns can be conceived, such as query
by example, query by drumming, or in the case of Indian art music,
query by syllabic vocalization. The syllabic system in Indian art
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music enables us to build a query system where the query is the vo-
calized pattern of syllables, which can then be searched in a corpus
of percussion solos. Such a query by vocals system can be further
used to build a machine improvisation system.

During Hindustani music concerts, it is common to have a call-
response improvisatory passages between the musicians, called a
sawaal-jawaab (literally, question-answer). It is also common in
tabla solos to have a sawaal-jawaab between a musician reciting
vocal syllables and a response by the musician playing the tabla. A
basic prototype system called Sawaal-Jawaab1 has been built with
this idea, with the call being the vocal recitation of syllables. The
response is an improvisation of the call built using timing, rhyth-
mic and timbral features from the call, exploiting the onomatopoeic
nature of the tabla bōls. Such an improvisation is done within the
framework of a specific tāl.

Musicologists workingwith rhythmwould benefit from the cor-
pora and tools developed in the thesis. Musicological applications
include tools for analysis of large corpora. The CompMusic cor-
pora and datasets are representative and well curated with useful
metadata, and can be used to derive valid musicological findings.
Semi-automatic meter analysis tools can lead to complete accu-
rate meter tracking and hence be used to analyze larger corpora
of recordings, which would otherwise be a tedious time consuming
task if done manually by musicologists. Percussion pattern discov-
ery is useful for style analysis of different tabla gharānās and mri-
dangam style schools of teaching. Though it would require larger
corpora and significant musicological intervention, automatic pat-
tern discovery framework would aid such a task.

To conclude, two specific applications built within CompMusic
are described below: Dunya and Sarāga. Both these applications
are collaborative efforts of the CompMusic team. A brief introduc-
tion to the applications is provided for a better understanding, and
then we emphasize on how the rhythm analysis methods developed
in the thesis apply and integrate into these applications.

1Further details and a demo available at http://labrosa.ee.columbia
.edu/hamr_ismir2015/proceedings/doku.php?id=sawaal-jawaab or
http://compmusic.upf.edu/ismir-15-hacks

http://labrosa.ee.columbia.edu/hamr_ismir2015/proceedings/doku.php?id=sawaal-jawaab
http://labrosa.ee.columbia.edu/hamr_ismir2015/proceedings/doku.php?id=sawaal-jawaab
http://compmusic.upf.edu/ismir-15-hacks
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7.1.1 Dunya
As described earlier, Dunya2 comprises a set of cross-platform open
source tools for navigating through music collections in a culture
aware and musically relevant way. It is also a test platform to eval-
uate the research results of CompMusic where users can interact
with the music collections under study, helping us to evaluate the
research results from a user perspective. Dunya is aimed at the mu-
sic community of the particular music traditions. It uses the tech-
nologies developed for melody and rhythm description to navigate
through the audio recordings and through other information items
available in a particular music collection. This navigation promotes
the discovery of relationships between the different information en-
tities.

Dunya aggregates music and related metadata from various se-
lected sources such as music archives, Wikipedia andMusicBrainz,
andmakes it available to users for an enriching and engaging listen-
ing experience with music. Audio, automatically and manually ex-
tracted features, and curated metadata can also be accessed through
Dunya. Dunya has a front endweb based tool where users can inter-
actively browse through these music collections. Dunya provides
an interface for music similarity based navigation through music
collections, and has a detailed recording page that will provide an
interactive interface with a visualization of automatically extracted
metadata. It will also provide an interface for navigating through
the main musically meaningful entities of the specific music cul-
ture using characteristic rhythmic and melodic patterns. It also has
a back end along with an API that provides access to all these data.
Dunya hence acts as the central permanent online repository to store
the metadata, audio, annotations and research results.

The research results from the presented work on rhythm anal-
ysis are partly integrated into Dunya, and further integration is in
progress. The rhythm analysis tools developed will be a part of
the suite of MIR tools integrated into Dunya. Essentia3 is an au-
dio analysis and audio based MIR toolkit (Bogdanov et al., 2013a,
2013b). TheDunya backend uses Essentia to extract features. Hence,

2https://dunya.compmusic.upf.edu
3http://essentia.upf.edu/

https://dunya.compmusic.upf.edu
http://essentia.upf.edu/
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Figure 7.1: A screenshot of the recording page of Dunya showing rhythm
related metadata in the top panel superimposed on top of the waveform.
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specific rhythm extractors from the developed algorithms are also
be added to Essentia.

Drawing information from various data sources and relating
them with ontologies, Dunya is the best platform to showcase the
tools and algorithms developed as a part of the thesis. A screenshot
of the Dunya recording page interface for a Carnatic music record-
ing4 is shown in Figure 7.1. The recording page shows important
rhythm related metadata related to the recording such as tāḷa ed-
itorial metadata and automatically extracted median akṣara pulse
period (τo). In addition, the waveform panel on the top shows the
time varying τo curve along with akṣara pulse markers extracted au-
tomatically using the approach presented by Srinivasamurthy and
Serra (2014). All of these editorial, automatically extracted, and
manually annotated rhythmmetadata can also be accessed from the
Dunya API.

7.1.2 Sarāga
Culture-awareMUsic Technologies (CAMUT) is a project that aims
to take the research results of CompMusic to practical real-world
commercial applications, aiming to build technologies to foster learn-
ing and teaching of Indian music forms. Sarāga5 is a music ap-
preciation and infotainment application for students and listeners
developed as a part of CAMUT. Sarāga is an android application
that provides an enriched listening atmosphere over the open CC
collections of Carnatic (CMDo collection) and Hindustani (HMDo col-
lection) music. It allows Indian art music connoisseurs and casual
listeners to navigate, discover and listen to these music traditions
using familiar, relevant and culturally grounded concepts.

Sarāga includes innovative visualizations in addition to inter
and intra-song navigation patterns that present musically rich in-
formation to the user. These time synchronized visualizations of
musically relevant facets such as melodic patterns, sama locations

4The recording shown in Figure 7.1 is a violin rendering of the com-
position Jagadanandakaraka (http://musicbrainz.org/recording/
de94ed93-7399-47e3-aa8e-d77b49d94bd3) from the album Pure expres-
sions (http://musicbrainz.org/release/bcb30e6f-bb13-499d-8e0f
-9447af8555a3) by Aneesh Vidyashankar

5Application summary paraphrased from http://musicmuni.com/

http://musicbrainz.org/recording/de94ed93-7399-47e3-aa8e-d77b49d94bd3
http://musicbrainz.org/recording/de94ed93-7399-47e3-aa8e-d77b49d94bd3
http://musicbrainz.org/release/bcb30e6f-bb13-499d-8e0f-9447af8555a3
http://musicbrainz.org/release/bcb30e6f-bb13-499d-8e0f-9447af8555a3
http://musicmuni.com/
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(a) The entire music piece (b) The caraṇa section zoomed

Figure 7.2: Screenshots of the mobile application Sarāga visualizing a
music recording. Panel (a) shows the entire music piece with all the sec-
tions, while panel (b) shows the caraṇa section zoomed. The sama mark-
ers can be seen as white colored ticks on the outer circle. The tempo of
the piece is displayed at the bottom of the screen.

and sections provide a user with better understanding and apprecia-
tion of these music traditions. It additionally features unique com-
pound filters over rāgas, tāḷas, instruments and artists for finding
songs.

A screenshot of the application in Figure 7.2 shows the rich
and novel visualization of a music recording6 including several
different associated metadata. Figure 7.2a shows all the sections
of the piece while Figure 7.2b shows only the caraṇa (also called
caraṇam) section. The median tempo of the piece is shown as 170

6The screenshot shows the recording of a tillāna in rāga Pahāḍi
(http://musicbrainz.org/recording/50c2fea1-d267-4506
-a155-73bbefd5da27) from the album Akkarai Sisters in Arkay
(http://musicbrainz.org/release/513e205a-8d71-4d4a-95f7
-96d131fa15bc)

http://musicbrainz.org/recording/50c2fea1-d267-4506-a155-73bbefd5da27
http://musicbrainz.org/recording/50c2fea1-d267-4506-a155-73bbefd5da27
http://musicbrainz.org/release/513e205a-8d71-4d4a-95f7-96d131fa15bc)
http://musicbrainz.org/release/513e205a-8d71-4d4a-95f7-96d131fa15bc)
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BPM at the bottom of the panel. Thewhole piece (or a sectionwhen
zoomed in) is summarized in concentric circles, with white colored
time ticks on the outer circle indicating the location of samas. Both
the tempo and the samas shown on recordings in Sarāga have been
semi-automatically extracted from audio using AMPF0 algorithm
with the bar pointer model, and then corrected for any errors man-
ually.

7.2 Contributions
A summary of the specific contributions from the work presented
in the dissertation are listed below.

Contributions to creating research corpora and datasets

Building research corpora for MIR is one of the primary tasks of
CompMusic project. Significant collaborative efforts have been
put into building research corpora and datasets, and relevant datasets
that have a major contribution by the author are listed below. The
links to access all these datasets are provided in Appendix B.

• CompMusic Carnatic Music Rhythm (CMRf) dataset: Tāḷa, beat
and sama annotated collection of 176 Carnatic music pieces, built
with the support of Vignesh Ishwar, a professional Carnatic mu-
sician who also verified the annotations. The dataset has about
16.6 hours of audio with pieces spanning four popular tāḷas. A
representative subset of the dataset with 118 pieces (CMR dataset)
was also built (Section 4.2.1).

• CompMusicHindustaniMusic Rhythm (HMRf) dataset: Tāl, mātrā
and sam annotated collection of 151 Hindustani music excerpts,
built with the support of Kaustuv Kanti Ganguli, a professional
Hindustani musician who also verified the annotations. The full
dataset has about 5 hours of audio with pieces spanning four pop-
ular tāls and three different lay (tempo classes). Two subsets of
the dataset grouped based on lay: HMRl and HMRs datasets were
also built (Section 4.2.2).

• CompMusic Carnatic Creative Commons music (CMDo) collec-
tion: The sama annotations for the music pieces of the CMDo



7.2 Contributions 285

collection in collaboration with Vignesh Ishwar. The collection
presently contains over 41 hours of music with 197 pieces and
16880 sama annotations (Section 4.1.4).

• CompMusic Hindustani Creative Commons music (HMDo) col-
lection: The sam and section annotations for the music pieces of
the HMDo collection in collaboration with Kaustuv Kanti Ganguli.
The collection presently contains over 43 hours of music with
over 108 tracks, 11260 sam and 215 section annotations (Sec-
tion 4.1.4).

• CompMusicMulgaonkar tabla solo dataset (MTS) dataset: A tabla
solo dataset comprising audio recordings, scores and time aligned
syllabic transcriptions of 38 tabla solo compositions from differ-
ent gharānās with time-aligned syllabic transcription was built
with Swapnil Gupta (Section 4.2.3).

• CompMusic Jingju percussion pattern (JPP) dataset: The JPP
dataset was built with Rafael Caro Repetto, and consists of 133
audio percussion patterns spanning five different pattern classes,
with about 22 minutes of audio and over 2200 percussion sylla-
bles (Section 4.2.6).

• Jingju percussion instrument (JPI) dataset: Built with Mi Tian
at the Centre for Digital Music (C4DM), Queen Mary University
of London, the dataset has over 3000 audio examples for four
different percussion instrument classes in jingju (Section 4.2.5).

Technical and scientific contributions

• Identification of challenges, opportunities and applications of au-
tomatic rhythm analysis of Indian art music (Section 3.1).

• Identification of several interesting automatic rhythm analysis
problems in Indian art music, along with a review and evalua-
tion of the state of art for some of the tasks, establishing the need
for culture-aware methods that can incorporate higher level mu-
sic information (Chapter 3).

• Engineering formulation of meter analysis (meter inference, me-
ter tracking and informed meter tracking) and percussion pattern
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discovery (transcription and search) in Indian art music (Sec-
tion 3.3).

• An illustrative evaluation of the Carnatic and Hindustani music
research corpora based on themethodology by Serra (2014) (Sec-
tion 4.1).

• An illustrative demonstration of the utility of corpora and rhythm
analysis tools for a corpus level musicological analysis, as exem-
plified by rhythmic pattern analysis on Carnatic and Hindustani
music rhythm annotated datasets (Section 4.2.1-4.2.2).

• Bayesian methods for meter analysis in Indian art music: The
task of meter analysis addressed for the first time in Carnatic and
Hindustani music, developing approaches that are aware of un-
derlying metrical structures and utilize them explicitly. Novel
meter analysis model extensions (MO-model and SP-model) and
inference extensions are proposed. The novel SP-model shows
improvement in tracking long metrical cycles, a task which has
been addressed for the first time in MIR (Chapter 5).

• Demonstration of the utility of percussion syllables in represen-
tation, transcription and discovery of percussion patterns, using
a syllabic mapping and grouping system for syllables based on
timbral similarity for both tabla and mridangam percussion syl-
lables (Chapter 6, joint work with Swapnil Gupta and IITMadras
CompMusic team).

• Approaches for percussion solo transcription and discovery in
syllabic percussion systems, applied on Beijing Opera as a test
case and then extended to tabla and mridangam percussion solos
in Indian art music (Section 6.2).

7.3 Conclusions and summary
We present a summary, conclusions and the key results from the
thesis, organized based on the chapters of the dissertation. Broadly,
the dissertation aimed to build culture-aware and domain specific
data-driven MIR approaches using Bayesian models for automatic
rhythm analysis in Indian art music, focusing mainly on the tasks of
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meter analysis and percussion pattern discovery, with the eventual
goal of developing rhythm similarity measures. Such approaches
would lead to tools and technologies that can improve our expe-
rience with music by helping us to navigate through large music
collections in a musically meaningful way, all of it within the so-
ciocultural context of the music culture. The applications lie in
enriched music listening, music archival, music learning, musicol-
ogy, and as pre-processing steps for MIR tasks extracting higher
level information such as structure and style analysis.

The dissertation focused on rhythm analysis tasks within the
purview of CompMusic project. The scope of the thesis was lim-
ited to rhythm analysis in audio collections of Indian art music us-
ing Bayesian approaches, emphasizing on data and models. The
thesis also addressed the question of the need for culture-aware
data-driven approaches to rhythm analysis and its applications.

An introduction to rhythm in Indian art music was presented in
Chapter 2 to provide a background to music concepts encountered
in the thesis, showing the contrasting differences between several
rhythm concepts in Eurogenetic popular music and Indian art mu-
sic. Jingju (Beijing opera) percussion is a suitable case to study
percussion patterns and hence a basic introduction to jingju was
also provided. A review of the state of the art in rhythm analysis
tasks in MIR provided a basis for understanding relevant rhythm
analysis tasks in Indian art music.

Chapter 3 identified some of the unique challenges and opportu-
nities to rhythm analysis in Indian art music. The complexities and
characteristics of rhythm in Indian art music make it an ideal candi-
date for automatic analysis and to push the boundaries of the state
of the art in rhythm analysis inMIR. Important and relevant rhythm
analysis problems within the context of Indian art music were iden-
tified and described. An evaluation of the state of the art with some
of these problems indicated the need for culture-aware domain spe-
cific methods to address these tasks. The set of tasks identified
in the chapter will be useful to a researcher looking to solve rel-
evant problems in this new area of research. Definitions relating
to rhythm in Indian art music suffered inconsistencies, which were
addressed by formulating the research problems of meter analysis
and percussion pattern discovery more accurately.

The problem of creating research corpora and datasets for data-
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driven MIR, addressed in Chapter 4 shows that significant efforts
are needed to build relevant datasets for research. It is possible to
build relevant high quality datasets, using a combination of crite-
ria that are used to continuously evaluate the datasets and corpora
for their suitability to the tasks at hand. Further, research corpora
can be used for corpus level analysis to draw several inferences
from it. The dissertation is aimed to be a comprehensive resource
for the rhythm related datasets developed as a part of CompMusic,
with suggestions on tasks where each of those datasets can be use-
ful. To promote the ideas of open data and reproducible research,
all the metadata and some of the audio from the research corpora
are openly available through the Dunya API, while the copyrighted
commercial audio is easily accessible.

Meter analysis was one of the main problems addressed in the
thesis. Chapter 5 presented a comprehensive analysis of meter in-
ference, meter tracking, and informed meter tracking in Indian art
music. Preliminary experiments showed poor performance with
sama tracking in Carnatic music, indicating the need for meter anal-
ysis methods that can utilize metrical structure information. The
bar pointer model is one such Bayesian model that allows for a joint
estimation of components of meter and explicitly incorporates the
underlying metrical structure.

An evaluation of the state of the art BP-model on Indian art
music showed the utility of Bayesian models for meter analysis.
Novel model extensions (MO-model and SP-model) to improve
on BP-model were proposed. In addition, novel inference exten-
sions based on particle filters for faster inference from these mod-
els were also proposed. The algorithmswere evaluated for the tasks
of meter inference, meter tracking, tempo-informedmeter tracking,
and tempo-sama-informedmeter tracking. The experiments clearly
show that incorporating additional tāḷa information and making the
algorithms more “informed” improves performance of algorithms.
Further, the SP-model shows improvement in tracking long met-
rical cycles, a task which has been addressed for the first time in
MIR.

Contrary to intuition, more number of rhythmic patterns in the
observation model did not improve meter analysis performance,
which can be attributed to the simplistic spectral flux based au-
dio feature. Further, the MO-model and the inference extensions
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did not show much improvement in performance, but are promis-
ing ideas to make inference better and faster with these Bayesian
models. The approaches are capable of generalizing to other music
cultures, as was demonstrated with the evaluation on the Ballroom
dataset.

A framework for percussion pattern discovery from solo record-
ings, along with some exploratory experiments for the task was the
subject matter of Chapter 6. Utilizing the syllabic percussion sys-
tem in Indian art music, we used the onomatopoeic oral-mnemonic
syllables to represent, transcribe and search for percussion patterns
from audio recordings of percussion solos. A syllabic representa-
tion is suitable for timbrally similar percussion patterns and a tran-
scription + search framework was explored for discovery of pat-
terns.

Preliminary experiments on percussion pattern transcription and
classification were presented on jingju percussion patterns. The ap-
proach was then extended to pattern discovery by transcription fol-
lowed by approximate search on tabla and mridangam solo record-
ings. The transcription was based on a speech recognition frame-
work using timbral syllable models along with a simple language
model. A set of query patterns were automatically derived from
symbolic syllabic scores. To make the approach robust to errors in
automatic transcription, an approximate search algorithm (RLCS)
was used to search for these query patterns in transcribed record-
ings.

Preliminary experiments on the MTS and UMS datasets showed
the large number of insertion errors and the need for approximate
search algorithms. Exact string search algorithm had a good pre-
cision but a poor recall due to all the transcription errors. An ap-
proximate string search algorithm RLCS showed improvement in
pattern recall with the MTS dataset that included full length com-
positions. The UMS dataset consists of short audio files segmented
by phrases and hence RLCS did not show much improvement in
overall f-measure over an exact string search.

The variants of RLCS need to be further explored and improved.
For the task, the combination of transcription + search for the prob-
lem is a promising approach, while further experiments with a com-
prehensive evaluation is needed to make stronger claims on perfor-
mance and suggest improvements.
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7.4 Future directions
There are several directions for future work based on the thesis.
One of the goals of the dissertation was to present relevant research
problems in rhythm analysis of Indian art music. Some of these
problems presented in Chapter 3 are a good start to extend the work
presented in the dissertation. Several rhythm tasks for Indian art
music were proposed in Chapter 3, while only a few of them were
addressed in the thesis. The problems such as building rhythm on-
tologies and rhythm based segmentation have received little atten-
tion from the research community so far. Both are relevant areas
of research with a potential to be explored in the future.

The goal of automatic rhythm analysis is to define musically
relevant rhythm similarity measures, a topic that has not been ad-
dressed in the dissertation. Using both rhythmic structures and pat-
terns extracted from audio to define better measures is an impor-
tant part of future work. In addition, the work in the thesis used
only audio recordings to extract meaningful rhythm information.
However, using additional metadata (such as lyrics, scores, edito-
rial metadata) along with audio features and combining them with
suitable rhythm ontologies can lead to better similarity measures,
which is to be explored as a part of future work.

The sizeable curated research corpora and datasets built in Comp-
Music provide an immense opportunity to be utilized for a variety
of research problems in the future. The availability of the datasets
now opens up the possibility of significant data-driven automatic
rhythm analysis research in these music cultures. The problems
that can use these datasets were detailed in Chapter 4. In addition,
the Creative Commons music collections developed for Carnatic
andHindustani music can be used to build open data and algorithms
without restrictive copyright issues.

The research corpora evolves over time. Improving the research
corpora sustainably and building additional datasets for automatic
rhythm analysis are important tasks for future. The use of these
datasets for musicological research was hinted in our experiments,
but a rigorous study of suitability of the corpora and datasets for
musicology, and its adoption for musicological studies is one di-
rection to pursue.

Meter analysis tasks such as meter inference and tracking were
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addressed in detail in the dissertation. However, there are several
open questions that still have to be more rigorously answered. The
experiments need to be extended to full length music pieces from
the present experiments on shorter excerpts, to make it more practi-
cal. A part of immediate future work would be to evaluate it further
on larger Indian music datasets. The SP-model for meter analysis
showed significant promise in tracking a wide range of metrical
structures in both Carnatic and Hindustani music. Formal evalu-
ations on its extendability to other music cultures is an important
part of future work. The model and inference extensions need to be
analyzed further to improve their performance. The use of spectral
flux feature for meter analysis is limiting. Developing better au-
dio features that can perhaps also include information from other
dimensions such as melody and lyrics are to be further explored.

Percussion pattern discovery was a problem that was addressed
to a lesser extent in the dissertation with only preliminary results
presented on small datasets. While the framework using syllabic
representation for percussion patterns is promising, an extensive
evaluation on larger datasets spanning different instrument timbres,
playing styles, schools (gharānās), and variability in patterns is to
be done in the future. Better transcription can be achieved in real
world scenarios with the availability of such diverse data to build
acoustic and language models. Approximate string search using
RLCS shows promise in searching for short query patterns in longer
transcribed audio recordings, while some improvements suggested
to it need further exploration to make the search algorithm robust
to transcription errors.

The tasks of meter analysis and percussion transcription and
discovery were addressed as independent tasks in the thesis, while
there is also significant interplay between the tasks. Meter analy-
sis could benefit from percussion instrument timbre based features
to track metrical structures (the strokes of tabla played in a ṭhēkā
are indicative of position in the tāl cycle). Percussion pattern dis-
covery can benefit significantly if the sama and beat information
is available, since percussion patterns are often aligned with beats
(and sometimes sama) of the tāḷa. New approaches that can ad-
dress the two tasks together and build joint analysis algorithms are
promising.

Integration of these algorithms and methods into practical ap-
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plications requires additional effort to understand the gaps between
research tasks and practical needs. Tools such as Dunya aim to
bridge that gap by providing an evaluation framework for research
algorithms. In the future, an integration of all the described rhythm
analysis approaches into Dunya is necessary and it helps to im-
prove the algorithms through user feedback, while aiming to pro-
vide users with an engaging experience with large collections of
music.

We sincerely believe that the dissertation has opened up the new
area of research in automatic rhythm analysis of Indian art music.
With several challenging and interesting research problems in the
area, there is significant scope and potential for novel approaches
and methodologies to solve these problems. The future directions
discussed here provide pointers for further research in the field, and
this is perhaps where a new PhD thesis can begin!
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Appendix B
Resources

This appendix is a compendium of links to resources and addi-
tional material related to the work presented in the thesis. An up-
to-date set of links is also listed and maintained on the companion
webpage http://compmusic.upf.edu/phd-thesis-ajay or its
mirror at www.ajaysrinivasamurthy.in/phd-thesis . Latest
updates on the CompMusic project can be obtained from http://
compmusic.upf.edu/.

Some of the results not reported in the dissertation and audio
examples showcasing the results are presented on the companion
webpage. The companion webpage will also be updated with any
additional resources and material that will be built in the future.

Music concepts and audio examples
A resource page for Carnatic tāḷas, with additional explanation of
the structure of many different tāḷas and audio examples of music
pieces in popular Carnatic tāḷas
http://compmusic.upf.edu/examples-taala-carnatic

A resource page for Hindustani tāls, with additional explanation of
the structure of many different tāls and audio examples of music
pieces in popular Hindustani tāls
http://compmusic.upf.edu/examples-taal-hindustani
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Audio examples for the different percussion instruments used in
Beijing opera

http://compmusic.upf.edu/examples-percussion-bo

A resource page for percussion patterns in Beijing opera, including
scores and audio examples of popular percussion patterns

http://compmusic.upf.edu/bo-perc-patterns

A resource page for usul, the cyclic rhythmic framework in Turkish
makam music, with audio examples and scores

http://compmusic.upf.edu/examples-usul-mmt

Corpora and datasets
Access to the corpora and datasets will be through the Dunya API
that provides access to audio recordings, metadata and features.
Standalone archives of datasets are also distributed in some cases
outside of the Dunya API. All the research corpora and datasets
related to the thesis are additionally listed at the links below.

Research corpora - http://compmusic.upf.edu/corpora

Test datasets - http://compmusic.upf.edu/datasets

TheDunyaCarnatic collection onMusicBrainz that forms the Comp-
Music Carnatic music research corpus

http://musicbrainz.org/collection/
f96e7215-b2bd-4962-b8c9-2b40c17a1ec6

The Dunya Hindustani collection on MusicBrainz that forms the
CompMusic Hindustani music research corpus

http://musicbrainz.org/collection/
213347a9-e786-4297-8551-d61788c85c80

The Carnatic Creative Commons music collection (CMDo) on Mu-
sicBrainz with openly accessible music

http://musicbrainz.org/collection/
a163c8f2-b75f-4655-86be-1504ea2944c2

http://compmusic.upf.edu/examples-percussion-bo
http://compmusic.upf.edu/bo-perc-patterns
http://compmusic.upf.edu/examples-usul-mmt
http://compmusic.upf.edu/corpora
http://compmusic.upf.edu/datasets
http://musicbrainz.org/collection/f96e7215-b2bd-4962-b8c9-2b40c17a1ec6
http://musicbrainz.org/collection/f96e7215-b2bd-4962-b8c9-2b40c17a1ec6
http://musicbrainz.org/collection/213347a9-e786-4297-8551-d61788c85c80
http://musicbrainz.org/collection/213347a9-e786-4297-8551-d61788c85c80
http://musicbrainz.org/collection/a163c8f2-b75f-4655-86be-1504ea2944c2
http://musicbrainz.org/collection/a163c8f2-b75f-4655-86be-1504ea2944c2
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TheHindustani Creative Commonsmusic collection (HMDo) onMu-
sicBrainz with openly accessible music

http://musicbrainz.org/collection/
6adc54c6-6605-4e57-8230-b85f1de5be2b

The Carnatic Music Rhythm dataset (CMRf) containing rhythm an-
notated pieces of Carnatic music, from which a subset CMR dataset
is also available

http://compmusic.upf.edu/carnatic-rhythm-dataset

The Hindustani Music Rhythm dataset (HMRf) containing rhythm
annotated pieces of Hindustanimusic, fromwhich two subsets HMRs
and HMRl datasets are also available

http://compmusic.upf.edu/hindustani-rhythm-dataset

The Anantapadmanabhan Mridangam Strokes dataset (AMS) con-
taining audio examples of individual strokes of the mridangam in
various tonics

http://compmusic.upf.edu/mridangam-stroke-dataset

The UKS Mridangam Solo dataset (UMS) containing a transcribed
collection of two tani-āvartana played by the renowned mridangam
maestro Padmavibhushan Umayalpuram K. Sivaraman

http://compmusic.upf.edu/mridangam-tani-dataset

The Mulgaonkar Tabla Solo dataset (MTS) containing a transcribed
collection of tabla solo audio recordings spanning compositions
from six different gharānās of tabla, compiled from the album Shades
of Tabla by Pandit Arvind Mulgaonkar

http://compmusic.upf.edu/tabla-solo-dataset

The Jingju Percussion Instrument dataset (JPI) containing isolated
strokes spanning the four percussion instrument classes used in Bei-
jing opera

http://compmusic.upf.edu/bo-perc-dataset

http://musicbrainz.org/collection/6adc54c6-6605-4e57-8230-b85f1de5be2b
http://musicbrainz.org/collection/6adc54c6-6605-4e57-8230-b85f1de5be2b
http://compmusic.upf.edu/carnatic-rhythm-dataset
http://compmusic.upf.edu/hindustani-rhythm-dataset
http://compmusic.upf.edu/mridangam-stroke-dataset
http://compmusic.upf.edu/mridangam-tani-dataset
http://compmusic.upf.edu/tabla-solo-dataset
http://compmusic.upf.edu/bo-perc-dataset
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The Jingju Percussion Pattern dataset (JPP) containing a collection
of audio percussion patterns covering five pattern classes in Beijing
opera

http://compmusic.upf.edu/bopp-dataset

Results
An extended set of results, along with a few audio examples ana-
lyzed with the models and algorithms presented in the dissertation
are available on the companion page.

Audio examples
http://compmusic.upf.edu/phd-thesis-ajay#examples

Extended results
http://compmusic.upf.edu/phd-thesis-ajay#results

Tools and code
The links to tools and code related to the thesis are listed. Up-to-
date links to code (including future releases) will be available on:
http://compmusic.upf.edu/phd-thesis-ajay#code

Essentia audio analysis library
http://essentia.upf.edu/

Dunya API
https://github.com/MTG/pycompmusic

Dunya front end
http://dunya.compmusic.upf.edu/

Dunya server and back end
https://github.com/MTG/dunya

A MATLAB package for meter analysis (Florian Krebs)
https://github.com/flokadillo/bayesbeat

AMATLABpackage for beat tracking evaluation (MatthewDavies)
https://code.soundsoftware.ac.uk/projects/beat-evaluation/

http://compmusic.upf.edu/bopp-dataset
http://compmusic.upf.edu/phd-thesis-ajay#examples
http://compmusic.upf.edu/phd-thesis-ajay#results
http://compmusic.upf.edu/phd-thesis-ajay#code
http://essentia.upf.edu/
https://github.com/MTG/pycompmusic
http://dunya.compmusic.upf.edu/
https://github.com/MTG/dunya
https://github.com/flokadillo/bayesbeat
https://code.soundsoftware.ac.uk/projects/beat-evaluation/
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Rhythm analysis tools for jingju, from the tutorial in ISMIR 2014
http://compmusic.upf.edu/jingju-tutorial

Sawaal-Jawaab Code and Demo
http://compmusic.upf.edu/ismir-15-hacks

Sonic Visualizer, for visualization and annotation of audio
http://www.sonicvisualiser.org/

BeatStation, an interface to record beat tapping
https://github.com/ajaysmurthy/beatStation

http://compmusic.upf.edu/jingju-tutorial
http://compmusic.upf.edu/ismir-15-hacks
http://www.sonicvisualiser.org/
https://github.com/ajaysmurthy/beatStation
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Glossary

C.1 Carnatic music
akṣara The lowest metrical pulse (subdivision)
ālāpana An unmetered melodic improvisation
aṅga The sections of a tāḷa
āvartana One complete cycle of a tāḷa
caraṇa The end section of a Carnatic music composition
kachēri A concert of Carnatic music
eḍupu The phase/offset of the composition relative to the sama
ghaṭam A percussion instrument used in Carnatic music (specially

made clay pot with a narrow mouth)
khañjira A tambourine like percussion instrument used in Car-

natic music
konnakōl The art form of reciting percussion syllables
kr̥ti A common compositional form in Carnatic music
mōrsiṅg The Indian jaw (jew’s) harp
mr̥daṅgaṁ The primary percussion accompaniment in Carnatic

music (common spelling mridangam)
muttusvāmi dīkṣitar A prominent Carnatic music composer
naḍe The subdivision structure within a beat

caturaśra A naḍe with 2 or 4 akṣaras per beat
tiśra A naḍe with 3 or 6 akṣaras per beat

rāga The melodic framework of Carnatic music
sama The beginning of an āvartana (equivalent to a downbeat)
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śyāmā śāstri A prominent Carnatic music composer
solkaṭṭu The onomatopoeic oral percussion syllables
tāḷa The rhythmic framework of Carnatic music

ādi A tāḷa with 32 akṣaras in a cycle
khaṇḍa chāpu A tāḷa with 10 akṣaras in a cycle
miśra chāpu A tāḷa with 14 akṣaras in a cycle
rūpaka A tāḷa with 12 akṣaras in a cycle

tambūra The drone instrument used in Carnatic music
tani-āvartana The solo performance of a percussion ensemble
tani Short for tani-āvartana
tillāna A rhythmic piece in Carnatic music widely used in dance

performances
tyāgarāja A prominent Carnatic music composer
vīṇā A fretted string instrument used in Carnatic music

C.2 Hindustani music
āvart One complete cycle of a tāl
ālāp An unmetered melodic improvisation
āmad (literally approach) A phrase leading to a sam
bandiś A fixed melodic composition in Hindustani music
bōl The onomatopoeic oral percussion syllables of the tabla
dhrupad A music style in Hindustani music
gharānā The stylistic schools of Hindustani music
khālī A hand wave in the tāl cycle (unaccented)
khyāl A music style in Hindustani music
lay The tempo class

dr̥t Fast tempo class
madhya Medium tempo class
vilaṁbit Slow tempo class

mātrā The lowest definedmetrical pulse inHindustanimusic (equiv-
alent to a beat)

pakhāvaj A double barrel drum used as rhythm accompaniment
in Hindustani music

rāg The melodic framework of Hindustani music
sam The first mātrā of an āvart
santūr A trapezoid-shaped hammered dulcimer used in Hindustani

music
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sāraṅgi A bowed music instrument used in Hindustani music
sarōd A fretless plucked string instrument used in Hindustani mu-

sic
sitār A fretted plucked string instrument used in Hindustani music
tāl The rhythmic framework of Hindustani music

ēktāl A tāl with 12 mātrās in a cycle
jhaptāl A tāl with 10 mātrās in a cycle
rūpak tāl A tāl with 7 mātrās in a cycle
tīntāl A tāl with 16 mātrās in a cycle

tabla The primary percussion accompaniment in Hindustani music
bāyān The left drum
dāyān The right drum
diggā Alternative name for the left drum

tānpura The drone music instrument used in Hindustani music
thālī A hand clap in the tāl cycle (accented)
gaṭ A compositional form in tabla
kāyadā A compositional form in tabla
palaṭā A compositional form in tabla
pēśkār A compositional form in tabla
rēlā A compositional form in tabla
ṭhēkā The basic bōl pattern associated with a tāl
vibhāg The sections of a tāl cycle

C.3 Beijing opera (Jingju)
bangu Clapper-drum
banshi Rhythmic modes of Beijing opera
daluo Big gong
naobo Cymbals
luogu jing Percussion pattern
xiaoluo Small gong

C.4 Acronyms
AMS Anantapadmanabhan Mridangam Strokes dataset
JPI Jingju Percussion Instrument dataset
JPP Jingju Percussion Pattern dataset
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CMRf Carnatic Music Rhythm dataset
CMDo Carnatic Creative Commons music collection
CMR Carnatic Music Rhythm dataset (subset of CMRf)
HMRf Hindustani Music Rhythm dataset
HMRl Hindustani Music Rhythm dataset (subset of HMRf with vi-

laṁbit lay pieces)
HMDo Hindustani Creative Commons music collection
HMRs Hindustani Music Rhythm dataset (subset of HMRf with mad-

hya and dr̥t lay pieces)
HMMm HMM(Viterbi) inference algorithmwith discretizedmixture

observation model (Srinivasamurthy et al., 2015)
HMM0 HMM(Viterbi) inference algorithmwith discretized bar pointer

model
HMMs HMM (Viterbi) inference algorithm with discretized section

pointer model
AMPFe AMPF inference algorithm with end-of-bar sampling
AMPFm AMPF inference algorithmwithmixture observationmodel

(Srinivasamurthy et al., 2015)
AMPFg AMPF inference algorithm with onset gated weight update
AMPFp Peak hop inference with AMPF
AMPF0 AMPF inference algorithm with bar pointer model
AMPFs AMPF inference algorithm with the section pointer model

(Srinivasamurthy et al., 2016)
DAV The algorithm by Davies and Plumbley (2007)
GUL The algorithm by Gulati et al. (2012)
HOC-SVM The algorithm by Hockman et al. (2012)
HOC The algorithm by Hockman et al. (2012)
KLA The algorithm by Klapuri et al. (2006)
OP The algorithm by Pohle et al. (2009)
PIK The algorithm by Pikrakis et al. (2004)
SRI The algorithm by Srinivasamurthy et al. (2012)
STM The algorithm by Holzapfel and Stylianou (2011)
MTS Mulgaonkar Tabla Solo dataset
UMS UKS Mridangam Solo dataset
AML Allowed Metrical Levels
AMPF Auxiliary Mixture Particle Filter
APF Auxiliary Particle Filter
CML Correct Metrical Level
DBN Dynamic Bayesian Network
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DP Dynamic Programming
GMM Gaussian Mixture Model
HMM Hidden Markov model
HPSS Harmonic-Percussive Source Separation
HTK Hidden Markov model Toolkit
ICT Information and Communication Technologies
IOI Inter-Onset Interval
LCS Longest Common Subsequence
LSTM Long Short-Term Memory
MAP maximum a posteriori
MBID MusicBrainz IDentifier
MFCC Mel-Frequency Cepstral Co-efficients
MFCC_0_D_A MFCC features with energy, velocity and accel-

eration coefficients
MFCC_D_A MFCC features without energy but with velocity and

acceleration coefficients
MIR Music Information Research
MIREX Music Information Retrieval EXchange
MMA Madras Music Academy
MPF Mixture Particle Filter
NMF Non-negative Matrix Factorization
OCR Optical Character Recognizer
RLCS Rough Longest Common Subsequence
RNN Recurrent Neural Network
SIS Sequential Importance Sampling
SISR Sequential Importance Sampling/Resampling
SMC Sequential Monte Carlo
STFT Short-Time Fourier Transform
WAQ Width Across Query
WAR Width Across Reference
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