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Resum 

El consum total d’energia al sector de l’edificació ha estat incrementant des de l’any 

1971, arribant en l’actualitat a representar el 33% del consum final de l’energia global. 

El sector serveis, representa una quarta part del total, mentre que les tres quartes parts 

restants d’aquesta energia es consumida pel sector residencial, essent la calefacció i 

refrigeració els responsables del 40% del consum d’energia als edificis. 

D’acord amb l’informe de Energy Technology Prespectives 2016, la demanda d’energia 

i les emissions de carboni haurien de reduir-se al menys en un 30% al 2050, havent-se 

d’emprendre accions immediates als edificis. En aquesta línia, estudis realitzats per 

l’Agència Internacional de l’Energia, afirmen que realitzar millores en la envolvent dels 

edificis pot contribuir a reduir la demanda energètica fins a un 40% al 2050. 

En aquest context, durant l’última dècada les infraestructures verdes urbanes (sostres 

verds i sistemes verds verticals) implementades en la pell dels edificis han esdevingut 

prometedors sistemes d’estalvi energètic passiu i de reducció de les emissions de CO2 

en els entorns urbans. A més a més, aquests sistemes ofereixen molts beneficis 

(ecosystem services) tant a nivell ecològic, econòmic com social en un mateix entorn 

mitjançant solucions naturals. 

El principal objectiu d’aquesta tesi és analitzar dos d’aquests ecosystem services quan 

s’implementen infraestructures verdes als edificis. D’una banda, s’analitza l’eficiència 

energètica del sostres verds extensius i sistemes verds verticals per tal d’avaluar el seu 

potencial com a sistemes passius d’estalvi d’energia, mentre que per altra banda, 

s’avalua experimentalment la capacitat d’aïllament acústic de dos sistemes verds 

verticals (façanes i murs verds). 

 A més a més de proporcionar dades quantitatives d’aquests ecosystem services per 

cobrir una manca de resultats experimentals en la literatura, aquesta tesis també té com 

a objectiu analitzar l’impacte mediambiental dels sostres verds extensius per tal 

d’estudiar la seva sostenibilitat.  



   

 

 

Resumen 

El consumo total de energía en el sector de la edificación ha estado incrementando des 

del 1971, llegando hoy en día a representar el 33% del consumo de la energía global. El 

sector servicios, representa una cuarta parte del total, mientras que las tres cuartas partes 

restantes de esta energía son consumidas por el sector residencial, siendo calefacción y 

refrigeración las responsables del 40% del consumo de energía en los edificios. 

De acuerdo con el informe de Energy Technology Prespectives 2016, la demanda de 

energía y las emisiones de carbono deberían reducir-se al menos en un 30% en el 2050, 

debiéndose emprender acciones inmediatas en los edificios. En esta línea, estudios 

realizados por la Agencia Internacional de la Energía afirman que realizar mejoras en 

las envolventes de los edificios puede contribuir a reducir la demanda de energía hasta 

un 40% en el 2050. 

En este contexto, durante la última década las infraestructuras verdes urbanas (techos 

verdes y sistemas verdes verticales) implementadas en la envolvente de los edificios se 

han convertido en prometedores sistemas pasivos de ahorro energético y de reducción 

de las emisiones de CO2 en los entornos urbanos. Además, estos sistemas ofrecen 

muchos beneficios (ecosystem services) tanto a nivel ecológico, económico como social 

en un mismo entorno mediante soluciones naturales. 

El principal objetivo de esta tesis es analizar dos de estos ecosystem services cuando se 

implementan infraestructuras verdes en los edificios. De un lado, se analiza la eficiencia 

energética de los techos verdes extensivos y sistemas verdes verticales para evaluar su 

potencial cómo sistemas de ahorro de energía pasivos, mientras que del otro lado, se 

evalúa experimentalmente la capacidad de aislamiento acústico de dos sistemas verdes 

verticales (fachadas y muros verdes). 

Además de proporcionar datos cuantitativos de estos ecosystem services para cubrir una 

falta de resultados experimentales en la literatura, esta tesis también tiene el objetivo de 

analizar el impacto medioambiental de los techos verdes extensivos para estudiar su 

sostenibilidad. 

 



   

 

 

Summary 

The total energy consumption of the building sector has been growing since 1971 

arriving nowadays at 33% of the global final energy consumption. The services sub-

sector, accounts for one-quarter of this consumption, whereas the remaining three-

quarter parts of this energy is consumed by the residential sub-sector, being the space 

heating and cooling the 40% of the global buildings energy use. 

According to the Energy Technology Perspectives 2016, the primary energy demand 

and carbon emissions should be reduced over 30% by 2050, and hence immediate 

priorities in buildings need to be implemented. In this frame, studies delivered by the 

International Energy Agency stated that improvements in building envelopes can 

contribute to more than 40% of the energy savings expected by 2050. 

Within this context, the use of urban green infrastructures (green roofs and vertical 

greenery systems) on building envelopes have become more popular during the last 

decade as promising passive solutions regarding the energy consumption and CO2 

emissions in built environments. Moreover, they offer multifunctional benefits 

(ecosystem services) at ecological, economic, and social levels at the same spatial area 

through natural solutions. 

The main objective of this PhD thesis is to analyse two of these ecosystem services 

when green infrastructures are applied on buildings. On one hand, the energy efficiency 

of extensive green roofs and vertical greenery systems is studied to evaluate their 

potential as a passive energy saving systems, and on the other hand, the sound 

insulation capacity provided by two different vertical greenery systems (green facades 

and green walls or living walls) is experimentally tested. 

Besides providing quantitative data for some ecosystem services to address the lack of 

experimental results in the literature, this thesis is also focused on analysing the 

environmental impact of extensive green roofs in order to study their sustainability. 

  



   

 

 

Nomenclature 

ESS  Ecosystem services 

GI  Green infrastructures 

GR  Green roofs 

GW  Green walls or living walls 

GF  Double-skin green facade 

HVAC  Heating ventilation and air conditioning 

VGS  Vertical greenery systems 
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CHAPTER I 

Introduction 

1 Introduction 

1.1 Energy use in the building sector 

Being the building sector (residential and services) responsible of about 33 % of the 

global final energy consumption and the one-third of total direct and indirect CO2 

emissions, the significant reduction in both figures are key targets for all countries for 

the next decades [1]. According to the Energy Technology Perspectives (ETP) 2016 of 

the International Energy Agency, the primary energy demand and carbon emissions 

should be reduced over 30% and 70%, respectively, by 2050 [2]. 

The total energy consumption of the building sector has been growing 1.8% per year 

since 1971, reaching 117 EJ in 2010. The services sub-sector, accounted 25% of this 

consumption, whereas the remaining three-quarter parts of this energy (82 EJ) was 

consumed by the residential sub-sector as shown in Figure 1. Globally, the energy 

demand in buildings is dominated by space heating and cooling, especially in cities, 

which represents almost 40% of the global buildings energy use [2].  

 
Figure 1. Global buildings energy consumption by energy source and direct CO2 emissions [1] 

 

In addition to the present detailed scenarios and energy saving strategies for 2050 for 

buildings, the study delivered by the International Energy Agency (IEA) “Transition to 

Sustainable Buildings” emphasizes the necessity of implementing immediate priorities 

in buildings, such as high performance building envelopes, high efficiency equipment, 

and new strategies to address the energy consumption in this sector [1]. These priorities 
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need to be applied in both new and refurbished buildings, since half of the current 

global building stock is expected to be standing in 2050.  

The thermal performance of building envelope components, including roof, walls, 

basement, windows, and ventilation/air leakage, is critical to determine the energy 

requirements for heating and cooling [3]. Besides, they also provide security, fire and 

weather protection, structural integrity, aesthetics, etc. 

More than 40% of the savings expected by 2050 in Europe (EU) can be directly 

attributed to improvements in building envelopes, as shown in Figure 2 [1]. Therefore, 

their improvement is the first target and one of the most potential ways to reduce the 

overall energy demand in this sector. 

 

Figure 2. Energy savings perspectives to 2050 in EU in the residential and services sub-sectors 

[1] 

 

Within this context, the use of green infrastructures (GI) at urban scale and especially in 

buildings have become more popular during the last decade, contributing in many of the 

benefits well described in the abovementioned strategies, with promising contributions 

on reducing the energy demand and CO2 emissions in the built environment [4]. 

 

1.2 Green infrastructure to promote urban ecosystem services 

Nowadays there are many definitions to describe what green infrastructures are, and 

what the main benefits are provided to the society (ecosystem services). However, 

regarding the typology of green infrastructures and the field of their implementation 
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(urban, peri-urban and rural), they can widely contribute in different ecosystem services. 

Therefore, to continue within the scope of this PhD, only definitions about green 

infrastructures and their valuable benefits in the urban environment when applied as 

building envelopes were explored. 

Recently, besides providing a comprehensive study of GI in buildings and urban 

environments, John Dover [5] proposed a new definition based on an extensive 

literature review, where: 

“Green infrastructure is the sum of an area’s environmental assets, including stand-

alone elements and strategically planned and delivered networks of high-quality green 

spaces and other environmental features including surfaces such as pavements, car 

parks, driveways, roads and buildings (exterior and interior) that incorporate 

biodiversity and promote ecosystem services.” 

In order to better understand the GI concept, Figure 3 shows some examples of GI when 

are applied in an urban environment. 

  

        

Figure 3. Examples of GI in urban areas; (a) Green facade, TRIBU building, Costa Rica; (b) 

Intensive green roof, London; (c) Extensive green roof, Rooftop Haven for Urban Agriculture, 

Chicago; (d) Green road in Riudaura, Olot 

 

a

1 

b 

d c 
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With more than 54% of the world population living in urban areas, a percentage that is 

expected to increase up to 66% by 2050, especially in EU which is currently 66% [6], 

GI have become successful tools to provide multifunctional benefits at ecological, 

economic, and social levels at the same spatial area through natural solutions [7]. The 

GI development in urban areas is one way to help offset the losses caused by 

ecosystems fragmentation over the years due to the urbanisation, industrialisation, and 

the continued expansion of grey infrastructure [8]. These systems also could deal with 

the objectives of the European framework programme Horizon 2020, which are mainly 

focused on promoting the energy efficiency in buildings, industry, heating and cooling, 

SMEs and energy-related products and services, integration of ICT and cooperation 

with the telecom sector [9].  

Within this context, many projects of GI in Denmark, France, Germany, Austria, 

Netherlands, and Spain among others, which promote GI in urban and peri-urban areas, 

are found [10]. However, end-use policies for their implementation at building scale are 

still scarce or do not exist. Thus, new end-use policies at European, national, regional 

and local levels should be delivered, to promote the research and the implementation of 

these technologies in buildings. 

In spite of helping to maintain a healthy environment and to contribute significantly to 

achieve many of the EU key policy objectives, GI can deliver valuable services (or 

benefits) to society and wildlife, also known as ecosystem services (ESS) [11]. 

In the first large scale ecosystem assessment, with the aim to link the ecosystem 

services and human well-being, four primary categories were proposed in the 

Millennium Ecosystem Assessment (MA) [12]: 

 Provisioning services – products obtained from ecosystems. 

 Regulating services – benefits obtained from the regulation of ESS. 

 Supporting services – the necessary services for the production of all other ESS. 

 Cultural services – the non-material benefits obtained from ESS. 
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Onwards, with the same objective and to better understand the economic value of ESS 

and the tools that take into account this value, The Economics of Ecosystems and 

Biodiversity (TEEB) [13] proposed an extended classification where 24 ecosystem 

services are sorted based on the same categories than MA, as shown in Table 1. 

 

Table 1. Classification of the 24 different ecosystem services sorted by ME categories 

 

Provisioning 

services 
Regulating services 

Habitat/supporting 

services 
Cultural services 

 Food 

 Raw materials 

 Fresh water 

 Medical 

resources 

 Genetic 

resources 

 Ornamental 

resources 

 Local Climate regulation 

 Air quality regulation 

 Carbon sequestration/storage 

 Moderation of extreme 

events 

 Waste-water treatment 

 Regulation of water flows 

 Erosion prevention  

 Maintenance of soil fertility 

 Pollination 

 Biological control 

 Maintenance of life cycles of 

migratory species 

 Habitats for species 

 Maintenance of 

genetic diversity 

 Recreation and mental 

and physical health 

 Tourism 

 Aesthetic appreciation 

and inspiration for 

culture, art and design 

 Spiritual experience 

and sense of place 

 Information for 

cognitive development 

 

The concept of ESS is well framed at global scale as well as it provides a useful tool for 

policymakers and other stakeholders, to evaluate the potential benefits of GI for the 

society. However, GI are relatively a new concept and the lack of quantitative analysis 

and the complexity to identify adequate indicators to assess its multifunctional benefits 

(ecological, economic and social), hinders the possibility to create adequate policies and 

initiatives to promote its final implementation [7]. Figure 4 shows the main ESS related 

to buildings and urban environment, their attributes and also some examples of their 

direct and indirect values for the human being. 
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To provide a better comprehension of the ESS values, the following definitions have 

been summarized [13]:  

 Direct use values: those most likely to be priced in markets, that can be counted 

and/or are directly related to obtain profits from the ecosystem (e.g. food, row 

materials, fresh water, energy savings, etc.). 

 Indirect use values: those are recently emerged to be assigned an economic value 

(e.g. water purification, carbon sequestration, local climate regulation, 

pollination, etc.). 

 Non-consumptive use values or non-use values: Those that may include the 

spiritual or cultural importance of a landscape or species, but these benefits are 

rarely valued in monetary terms (e.g. recreation, aesthetics, spiritual or cultural 

landscape relevance, etc.). 
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Figure 4. The main ecosystem services provided by green infrastructure when is applied in 

buildings and urban environments [5] 
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Within this context, when GI are applied on building envelopes (green roofs and 

vertical greenery systems), they are not only useful tools to address the global energy 

consumption and CO2 emissions issues but also they can deliver many of the 

abovementioned ecosystem services [4,5], such as energy efficiency in buildings, 

pollution control, enhance the biodiversity, human health, improving the visual 

environment, and the quality of life in cities as better places to live [14]. 

 

1.3 Use of green infrastructure on building envelopes 

The implementation of GI systems on buildings are becoming popular as passive tools 

to reduce their energy demand [15], to reduce the CO2 concentration in large cities [16], 

to restore the fragmented ecosystem in grey areas, and thus provide many benefits for 

the society aside from their good aesthetics [17]. 

There are currently two main ways to implement GI on buildings envelopes that are 

green roofs (GR) and vertical greenery systems (VGS). 

 

1.3.1 Green roofs (GR) 

According to the literature [18-20], GR are classified in two main groups, intensive and 

extensive systems. Furthermore, the International Green Roof Association (IGRA) [21] 

suggested an intermediate category called semi-intensive GR. In Table 2, all the 

different GR types are classified according to final use, construction factors and the 

maintenance required during their operational lives. 
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Table 2. Classification of green roofs according to final use, construction factors and 

maintenance requirements [15] 

 

   

 

Extensive Green Roof 
Semi-Intensive 

Green Roof 
Intensive Green Roof 

Maintenance  Low Periodically High 

Irrigation  No Periodically Regularly 

Plant 

communities  

Moss-Sedum-Herbs 

and Grasses 

Grass-Herbs and 

Shrubs 

Lawn or Perennials, Shrubs and 

Trees 

System build-up 

height  
60 - 200 mm 120 - 250 mm 

150 - 400 mm on underground 

garages > 1000 mm 

Weight  60 - 150 kg/m
2
 120 - 200 kg/m

2
 180 - 500 kg/m

2
 

Costs  Low Middle High 

Use 
Ecological protection 

layer 

Designed Green 

Roof 
Park like garden 

 

Among these systems, the extensive ones are the most implemented around the world, 

because they require less maintenance compared to intensive and semi-intensive and do 

not represent an excessive overweight for conventional roof structures, so that the 

reinforcement of the building structure is not required. Furthermore, according to 

several authors [22,23], after implement 100-150 mm of substrate thickness, the 

variability of the thermal performance is very low. 
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Their contribution as systems that provide interesting environmental benefits is well 

known since more than two decades ago. GR have high potential to reduce the energy 

consumption in buildings [24-25], to improve the storm water retention [26], to reduce 

the heat island effect [27-28] among other several advantages. However, some issues 

referring to these contributions must be addressed. Thus, studies regarding the thermal 

performance in winter time under different climate condition, the substrate composition, 

the environmental assessment of the materials used in different layers, and the thermal 

performance depending on the development of the vegetation, are still scarce in the 

literature and should be studied in depth. In addition, to go a step forward in this topic, 

more long term experimental data are necessary. 

 

1.3.2 Vertical greenery systems (VGS) 

In comparison with GR, there is no established standardization for VGS designs and its 

variations, making difficult the comparisons between them. However, Pérez et al. [29] 

provided a classification of VGS where both traditional and newly developed systems 

are considered as show in Table 3. According to the cost of implementation and further 

maintenance during the operational life, the author classified these systems into two 

main categories, extensive and intensive. Also, the classification differentiates the 

typology of VGS in two categories living walls or green walls and green facades. 

After perform a cost-benefit analysis for different VGS, Perini et al. [30] stated that 

initial investment and maintenance of VGS have an important role on the economic 

sustainability. In addition, this study agree with the statements done by Pérez et al. [29], 

where extensive systems are easy to build and requires minimum maintenance, whereas 

intensive systems have a complex implementation and require high levels of 

maintenance and extra cost during the implementation. 
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Table 3. Classification of VGS for buildings [29]. 

 Extensive systems Intensive systems 

Green facades 

Traditional green facades --- --- 

Double-skin green facade or green 

curtain 

Modular trellis --- 

Wired mesh --- 

--- 
Perimeter 

flowerpots 

Living walls 

--- --- Panels 

--- --- Geotextile felt 

 

The main differentiation is between green facades (GF) and green walls (GW) or living 

walls. On one hand, GF are systems in which climbing vegetation is developed using a 

structural support in order to cover the desired areas of the building facades. Thus, the 

vegetation can be planted directly on the ground level or in pots at different heights of 

the facade. As shown in Figure 5, GF are mainly divided in traditional green facades 

(where the vegetation is directly in contact with building walls) and double-screen green 

facades (where the vegetation is separated from building walls using modular trellises, 

wired, and mesh structures). 

  

Figure 5. Left, traditional green facade in Lleida (Spain); right, double-skin green facade in 

Pergola building (Costa Rica), architect Bruno Santiago 
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On the other hand, GW are made of panels and/or geotextile felts, which contain the 

growing medium (substrate) for the plants, as shown in Figure 6. These systems require 

a sub-structure anchored to the walls to withstand the loads of the overall system 

(irrigation system, pots/modular panels/geotextiles, substrate, water and vegetation). 

  

Figure 6. Green walls or living walls. Left, GW made of geotextile felt in Caixa Forum 

building, Madrid; right, GW made of panels in Multimedia Kyoto building (Japan), by Suntory 

Midory 

 

Traditionally, these systems have been used primarily for aesthetics purposes [31], 

whereas nowadays they have become interesting systems to be implemented in 

buildings as potential passive solutions to enhance the quality of life in dense urban 

areas [15]. 

The main environmental benefits of these systems when they are applied on building 

envelops are similar to those of GR. Likewise, VGS can protect the building envelope 

from overheating through shading effect [32], they can reduce the wind speed on the 

walls [33], as well as, they provide energy savings in summer periods. 

However, more studies concerning the thermal performance of the different typologies 

of VGS must be performed, especially in winter periods for different climate conditions. 

Furthermore, experimental data for both, GW and GF are scarce in the literature, and a 
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lack of energy savings studies provided by these passive systems are still missing. 

Studies regarding the leaf area index (LAI) of the species used, the noise reduction, the 

foliage thickness, are also topics that need to be addressed in deep. 
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2 Objectives 

The main objective of this PhD thesis is to analyse the performance of two different 

green infrastructure systems (extensive green roofs and vertical greenery systems) and 

to study their potential as a passive energy saving system in buildings to reduce the 

heating and cooling demand in a Mediterranean continental climate conditions. Besides 

providing quantitative data for some ecosystem services, an environmental impact 

analysis of extensive green roofs and experimental analysis of the sound insulation 

capacity of VGS are also objectives of this PhD. To accomplish the aim of this thesis 

several specific objectives, divided in the following two main topics, are defined: 

Green roofs: 

 To study experimentally the thermal performance of two different new extensive 

green roofs without insulation layer and to determine their potential in reducing the 

cooling demand during summer period when the vegetation was in a growth phase. 

 To evaluate the thermal performance of the two aforementioned extensive green 

roofs when the vegetation was completely developed, to determine their potential in 

reducing both, cooling and heating demands during the whole year. 

 To evaluate the environmental impact of four different roof systems, two extensive 

green roofs (pozzolana and rubber crumbs without insulation) and two conventional 

(with and without insulation) through their whole life cycle. 

Vertical greenery systems (VGS): 

 To review the VGS used as passive tools for energy efficiency in buildings. 

 To analyse experimentally the Leaf Area Index (LAI) for a double-skin green 

facade and to study its influence on the building thermal performance in summer. 

 To study experimentally two different VGS (green wall and new double-skin green 

facade) in summer and winter conditions and to evaluate their potential in reducing 

the cooling and heating demands. 

 To evaluate experimentally the acoustic insulation capacity of VGS when are used 

on building walls. 
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3 PhD thesis structure 

The PhD thesis is based on seven papers; five of them have been already published in 

SCI journals while the other two have been submitted. 

This thesis is framed in the long-term investigation on green infrastructure (GI) in 

buildings that GREA research group started some years ago with the aim to increase the 

energy efficiency in buildings, while improves at the same time, the sustainability of the 

built environment. 

The structure of the PhD thesis is divided into green roofs (GR) and vertical greenery 

systems (VGS), which are the most common ways to implement GI in buildings. 

In order to continue with the GREA planning, the first step was building three houses-

like cubicles in order to study the benefits of two different extensive green roofs (with 

pozzolana and rubber crumbs as drainage layer) in terms of energy consumption and to 

compare them with a common insulated flat roof in a Mediterranean continental 

climate. 

First of all, to analyse the importance of the substrate and drainage layers in extensive 

green roofs, the thermal performance during the summer 2011 after the plantation of the 

vegetation, when only 20 % of extensive green roofs were covered by the vegetation 

was studied and presented in Paper 1. 

The next step (Paper 2) consisted of assessing the thermal performance of the same 

cubicles with the vegetation completely developed and considering a whole year 2012 

analysis, in which the summer and winter periods were included. 

After that, the results obtained during the summer and winter experiments related to 

energy consumption during the operational phase were used to perform an LCA 

analysis of these systems. In Paper 3, an environmental comparison between four 

different roof construction systems, two extensive green roofs (rubber crumbs and 

pozzolana), and two common flat roofs (with and without insulation layer) was carried 

out. 
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On the other hand, to start the research on VGS topic, a comprehensive literature review 

about their implementation as passive energy saving systems in buildings was presented 

in Paper 4. This study showed the lack of literature in relation to some ecosystem 

services such as energy efficiency and noise insulation capacity provided by VGS. 

After that, the next step consisted of to characterize the leaf area index (LAI) in a 

double-skin green facade (GF), which is the main factor related to evaluate the shade 

effect and consequently to evaluate the potential as a passive system. For this purpose, a 

methodology to be applied on VGS was proposed. Furthermore, a relation between LAI 

and energy savings was found and presented in Paper 5. 

Moreover, so as to evaluate the potential of an intensive GW and extensive GF as 

passive systems in buildings, the thermal performance during summer and winter, with 

and without controlled indoor temperatures was analysed and presented in Paper 6. 

Also, an evaluation of the thermal performance of walls depending on the facade 

orientation was presented for both green systems. 

Finally, to provide quantitative data and to address the lack of knowledge of these two 

VGS as acoustic insulation tools for buildings, experimental tests were performed and 

presented in Paper 7. 

All the papers presented in the thesis are organized as shown in Figure 7. 
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Figure 7. PhD structure scheme 
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4 Green roofs as passive system for energy savings in buildings 

during the cooling period: use of rubber crumbs as drainage 

layer 

4.1 Introduction 

The European Union (EU) directives concerning to the reduction of energy demand in 

buildings [1] are still a priority in the framework of the objectives Horizon 2020. 

Nevertheless, the process to apply these regulations is a long term plan that provides 

time to the scientific community to develop new or enhanced construction systems, 

materials, buildings facilities, etc. 

Referring to the energy efficiency in buildings, green roofs are suitable to contribute in 

reducing passively the energy consumption during the lifetime of the building as shown 

in literature [2,3]. In addition, these systems provide other several benefits for buildings 

such as: storm water retention capacity [4], capturing the CO2 emissions [5], increasing 

the durability of internal membranes [6], increasing the biodiversity in cities [7]. 

However, several gaps about the effectiveness of extensive green roofs as passive 

energy saving systems in different climate conditions, especially during low vegetation 

cover periods e.g. after plantation, have been found. 

 

4.2 Contribution to the state-of-the-art 

In order to better understand the thermal performance and energy consumption of 

extensive green roofs in Mediterranean areas, one of the overall objectives of this paper 

is to provide a real scale comparison for three identical house-like cubicles, where the 

only difference between them is the construction roofing system. Two of cubicles have 

9 cm depth extensive green roofs without insulation (comparing rubber crumbs and 

pozzolana as drainage materials) while the reference cubicle had a conventional flat roof 

with insulation. The experimental results and details about this research are presented 

in: 



   

22 

 

CHAPTER IV 

Green roofs as passive system for energy savings in buildings during 

the cooling period: use of rubber crumbs as drainage layer 

 J. Coma, G. Pérez, A. Castell, C. Solé, L.F. Cabeza. Green roofs as passive 

system for energy savings in buildings during the cooling period: use of rubber 

crumbs as drainage layer. Energy Efficiency 2014;7:841-849. 

This paper provides a step forward in terms of comparing the energy efficiency of two 

different extensive green roofs systems in Mediterranean Continental climate conditions 

during the first summer after planting the vegetation. In addition, to show the potential 

implementation of these green systems, without insulation, a comparison with a 

common insulated flat roof used in standard buildings has been performed. 

In order to compare the thermal performance of the inner environment and the energy 

consumption of the HVAC systems of three different house-like cubicles, two types of 

tests have been carried out. The first one consists of maintaining the inner environment 

in a comfort range during the cooling period using an HVAC system. Accordingly to 

the ASHRAE standards [8], the comfort range for cooling purposes is between 23 ºC 

and 26 ºC. Therefore a set point of 24 ºC was used to evaluate the thermal behaviour. 

The second test consists of comparing the thermal performance of inner environment 

under free floating conditions, when no HVAC system is used. 

The main results obtained in this paper shows that, even the green roof area covered by 

plants was only 20 % of the total surface, both extensive green roof provided energy 

savings during cooling periods (5 % for rubber crumbs and 14 % for pozzolana) in 

comparison to the reference roof system (Figure 8). 

On the other hand, the results of experiments without HVAC systems also showed 

similar trends where the cooling performance of green roofs systems was higher. Both 

showed 1.5 ºC lower internal ceiling temperature profiles compared to the reference 

roof (Figure 9). 

The results highlight that internal layers (substrate and drainage) of extensive green 

roofs play an important role in the overall thermal performance of these systems 

especially when the area covered by the vegetation is scarce. 
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Figure 8. Cumulative electrical energy consumption. Controlled temperature (set point 24 ºC), 

first week of July 2011 

 

 

Figure 9. Internal ceiling temperatures of different cubicles under free floating conditions, third 

week of September 2011 

  

On the other hand, from this study it can be verified how a simple 9 cm extensive green 

roof without insulation layer provides better cooling performance in comparison to an 

insulated flat roof typically used in buildings under Mediterranean Continental climate. 
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In addition, this system also provides a representative reduction of the internal ceiling 

surface temperature when the HVAC system is not used. 

 

4.3 Contribution of the candidate 

The research group started in green infrastructure (GI) topic few years before the 

candidate began the PhD, being green roofs (GR) the one of the main topics of 

experimental research as a passive energy saving system. Then, the tests presented in 

this paper were performed by the candidate in order to be familiar with the green roof 

experimental set-up. The candidate leaded with the experimental tests, the analysis of 

the data, as well as the writing of the scientific article. 

 

4.4 References 

1. Directive 2010/31/eu of the European parliament and of the council of 19 May 2010 

on the energy performance of buildings. Available from: http://www.epbd-ca.eu. 

Accessed July 2016. 

2. M. Santamouris, C. Pavlou, P. Doukas, G. Mihalakakou, A. Synnefa, A. Hatzibiros. 

Investigating and analysing the energy and environmental performance of an 

experimental green roof system installed in a nursery school building in Athens, 

Greece. Energy 2007;32:1781-1788. 

3. H.F. Castleton, V. Stovin, S.B.M. Beck, J.B. Davison. Green roofs; building energy 

savings and the potential for retrofit. Energy and Buildings 2010;42:1582-1591. 

4. E.L. Villareal, L. Bengtsson. Response of a Sedum green-roof to individual rain 

events. Ecological Engineering 2005;25:1–7. 

5. J. Li, O.W.H. Wai, Y.S. Li, J.Zhan, Y.A. Ho, E. Lam. Effect of green roof on 

ambient CO2 concentration. Building and Environment 2010;45:2644-2651. 

6. L. Kosareo, R. Ries. Comparative environmental life cycle assessment of green 

roofs. Building and Environment 2007;42:2606-2613. 



   

25 

 

CHAPTER IV 

Green roofs as passive system for energy savings in buildings during 

the cooling period: use of rubber crumbs as drainage layer 

7. S. Brenneisen. Space for urban wildlife: designing green roofs as habitats in 

Switzerland. Urban Habitats 2006;4:27-36. 

8. Non-residential cooling and heating load calculations. In: Parsons RA, editor. 

Ashrae Handbook Fundamentals, Atlanta: American Society of Heating, 

Refrigerating and Air-Conditioning Engineers, Inc.; 1997, p.28.7-28.16 

 

4.5 Journal paper 

 

 

J. Coma, G. Pérez, A. Castell, C. Solé, L.F. Cabeza. Green roofs as passive system for 

energy savings in buildings during the cooling period: use of rubber crumbs as drainage 

layer. Energy Efficiency 2014;7:841-849. 

DOI: 10.1007/s12053-014-9262-x 

 

 



   

26 

 

CHAPTER V 

Thermal assessment of extensive green roofs as passive tool for energy 

savings in buildings 

5 Thermal assessment of extensive green roofs as passive tool for 

energy savings in buildings 

5.1 Introduction 

It is well known that extensive green roofs provide interesting environmental benefits 

for buildings such like: increase the water retention capacity [1], mitigation the urban 

heat island effect (UHI) [2], increase the durability of internal membranes [3], storm 

water retention [4], etc. In addition, extensive green roofs are widely studied as passive 

energy saving systems for cooling proposes [5,6]. They are capable of reducing the 

indoor-outdoor temperature variations and decreasing the annual energy consumption of 

buildings [3,7] relying their final thermal performance on different factors such as the 

building insulation characteristics, the climate zone, the plant spices [8-10], the growing 

media [8,10,11], and the drainage layer properties [8,12,13]. 

However, the most results from those studies are from mathematical models and 

parametric analysis [3, 6, 8, 10, 14] while the experimental studies are much less. In 

addition, literature regarding heating periods (winter) is still scarce and the results are 

often controversial [14]. 

In this study two different extensive green roofs systems where the only difference 

between them is the drainage layer composition (pozzolana and recycled rubber crumbs, 

Figure 10 left) are in order to evaluate their potential as a passive tool for energy savings 

during summer and winter seasons. 

The scope of the work was to test experimentally the thermal performance of both 

extensive green roofs systems under different cooling and heating requirements. An 

experimental set-up consisting of three house-like cubicles with identical internal 

volumes (2.4 x 2.4 x 2.4 m) was built in Puigverd de Lleida (Spain). The only 

difference between these three cubicles was the roof construction system. Two of them 

are made with extensive green roofs (one with pozzolana and the other one with 

recycled rubber crumbs as drainage layers) as shown in Figure 10 left, while a third 
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cubicle was made with an insulated flat roof, which was used as a reference (Figure 10 

right). 

   

Figure 10. Construction section of green roof cubicles (left) and construction section of the 

reference cubicle (right) 

 

5.2 Contribution to the state-of-the-art 

Two extensive green roof systems without any insulation material and with 85% of the 

total area covered by vegetation have been experimentally tested for cooling and heating 

purposes. Furthermore, in order to study their potential as passive energy saving 

systems, a comparison with a traditional insulated flat roof was carried out. This work is 

presented in the following paper: 

 J. Coma, G. Pérez, C. Solé, A. Castell, L.F. Cabeza. Thermal assessment of 

extensive green roofs as passive tool for energy savings in buildings. Renewable 

Energy 2016; 85:106-1115. 

This paper provides new experimental results for summer seasons thereby increasing 

the experimental literature as well as providing new quantitative data to enrich the 

scarce literature available regarding the thermal performance of extensive green roofs 

during winter period. In addition, the study also provides a plant development analysis 
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throughout three years of uninterrupted experimentation, where the evolution of 

different plant spices and the area covered by the vegetation were discussed. 

       

Figure 11. a) Extensive green roof. Growth phase during first summer (2011). 20% plant 

coverage. b) Extensive green roof. Winter view (2011-2012). c) Extensive green roof. Summer 

2012 view. 85% plat coverage 

 

The experimental results demonstrated the high potential of both green roof cubicles in 

reducing the electrical energy consumption of the HVAC systems of a building during 

the summer season. The rubber crumbs and pozzolana cubicles showed a 16.7 % and 

2.2 % respectively less energy consumption in comparison to the reference cubicle 

during representative periods of cooling demand. 

On the other hand, the results showed that during representative periods of heating, the 

electrical energy consumption of rubber crumbs and pozzolana cubicles increased in 

6.1% and 11.1% respectively compared to the reference cubicle. After analysing the 

results and thermal properties for all the three constructive systems, the most 

dominating parameter during winter conditions seems to be thermal transmittance, 

which is higher for both extensive green roofs, leading to higher energy consumption. 

Moreover, the better thermal performance of the green roof with rubber crumbs as 

drainage layer compared to the green roof with rubber crumbs was experimentally 

demonstrated. In addition, coherency between the results and the theoretical thermal 

transmittance (U-value) of both green roofs was observed. 

Finally, the experimental results also highlighted the importance of both drainage and 

substrate layers on the overall thermal performance of these systems. Therefore, 
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theoretical improvements for winter periods were proposed, increasing the thickness of 

the drainage layer from 5 cm to 8 cm to reduce the thermal transmittance of the whole 

green roof system and increasing the thickness of the growing media (substrate) from 5 

cm to 10 or 15 cm. 

 

5.3 Contribution of the candidate 

The experimental test, data treatment, and analysis of the tests were the main tasks of 

the candidate as well as the writing of the scientific article. The co-authors collaborated 

along the elaboration of the paper to discuss both, the organization and the main 

findings of the results as well as during the answer to reviewers. 
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6 Environmental performance of recycled rubber as drainage 

layer in extensive green roofs. A comparative Life Cycle 

Assessment 

6.1 Introduction 

During the last decade, the potential of extensive green roofs as sustainable constructive 

system that offers exceptional ecosystem services over traditional roof solutions in 

urban areas has been consolidated. The improvement of the visual environment [1], the 

human health [2], the mitigation of the urban heat island effect [3], the reduction of CO2 

concentration [4,5], the increment of the biodiversity in large cities [6] and the energy 

efficiency [7,8] are the most important ones. 

However, the materials used in different layers of these systems are still based on 

conventional materials [9], which in some cases could lead to high energy consumption 

during the production and disposal phase of the building. According to the 

aforementioned, several studies [10-12] highlight the importance to replace the current 

green roof materials by more environmentally friendly and sustainable products. 

On the other hand, some examples of Life Cycle Assessment methodologies (LCA) 

applied in green roofs were found in literature. However, there are still few experiences 

about the LCA of recycled materials and any for its use as drainage layer in extensive 

green roofs. Moreover, most studies use simulations to estimate the energy consumption 

of the building with green infrastructures during the operational phase, but there is a 

lack of analysis in using real data about energy consumption from experimental tests for 

both heating and cooling periods. 

Therefore, the objective of this paper is to evaluate the environmental performance 

applying an LCA methodology for two new extensive green roofs where the drainage 

layer of one of them is made of a recycled material (rubber crumbs from used tire 

waste) and is compared to other one which is made of natural pozzolana (Figure 12). In 

addition, the LCA applied for both green roofs was compared with the LCA applied for 
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two conventional flat roofs, with and without thermal insulation (polyurethane). For this 

purpose, data used for the operational phase of the LCA calculations was obtained from 

an experimental set-up consisting of four house-like cubicles with each type of roof, 

located in a Mediterranean continental climate (Puigverd de Lleida, Spain). 

 

Figure 12. Substrate used in the extensive green roofs; left, view of the substrate over the 

pozzolana drainage layer, right, view of the substrate over the rubber crumbs drainage layer 

 

6.2 Contribution to the state-of-the-art 

In order to evaluate the potential in reducing the environmental impact of whole house-

like cubicles by using two new extensive green roofs systems, this paper presents an 

LCA study, which is carried out based on the last impact assessment method 

EcoIndicator 99 [13]. 

 L. Rincón, J. Coma, G. Pérez, A. Castell, D. Boer, L.F. Cabeza. Environmental 

performance of recycled rubber as drainage layer in extensive green roofs. A 

comparative Life Cycle Assessment. Building and Environment 2014;74:22-30. 

In the production phase the recycled rubber crumbs roof showed the highest 

environmental impact due to the tire dismantling process and the use of compost in the 

substrate. Moreover, no representative environmental differences in the construction 

phase of the analysed roofs were found, what lead to very similar environmental results 

of the four roofing systems (green roof with recycled rubber showed about 1.5% impact 

reduction compared to the other roofs). 
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On the other hand, the study verified that the operational phase was crucial in the 

overall results for all the studied roofs, representing about 85.7% - 87.2% of the total 

environmental impact. Therefore, any improvement in the energy performance of the 

building would lead to a lower environmental impact in the operational phase and 

consequently in the overall assessment. During the operational phase, the extensive 

green roof with recycled rubber got 7.8% impact reduction in comparison to the 

extensive green roof with pozzolana, 8.4% impact reduction compared to the non-

insulated conventional roof, and only 2% impact increase with respect to the insulated 

conventional roof. 

Finally, the main LCA results show that the extensive green roof with recycled rubber 

crumbs as drainage layer presented significant reductions in the overall environmental 

impact, 7% in comparison to the non-insulated conventional and 6.7% compared to the 

green roof with pozzolana, while has a similar environmental impact (2% increase) than 

an insulated conventional roof. 

 

6.3 Contribution of the candidate 

The candidate looked for the references and LCA standards to carry out the study and 

helped writing the state-of-the-art of green roofs in the introduction and the main 

conclusions. Moreover the "materials and methodology" section was leaded by the 

candidate as well as the heating and cooling tests performed in an experimental set-up, 

to collect and analyse all the data used in the life cycle analysis (LCA). Finally, the 

candidate also took part giving a deep revision and in the answer to reviewers. 
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7 Vertical Greenery Systems (VGS) for energy saving in 

buildings: A review 

7.1 Introduction 

As it has been highlighted in chapter one of this thesis, green infrastructures (parks, city 

gardens, green roofs, vertical greenery, etc.) are becoming one of the most promising 

systems contributing to a more sustainable development not only at building but also at 

urban scale. From this approach, closing the cycle of materials and water and reducing 

the energy demand are priority objectives [1]. 

Focusing on buildings, there are two ways to integrate green infrastructures. On one 

hand, the green roofs systems (intensive and extensive) [2], which are being studied and 

used for more than fifty years around the world, and on the other hand vertical greenery 

systems (VGS). In this case, there is some dispersion in the scarce literature regarding 

its classification, construction system, plant species used, climate influence, and the 

thermal performance when implemented in buildings. The lack of its implementation 

could be attributed to the economical (high initial investment) and technical points of 

view, where it is probably easier to use a flat space (roof) in comparison to a vertical 

facade, and finally due to a lack of knowledge about their performance and 

environmental benefits. 

However, vertical systems can offer higher potential than green roofs on the building 

environment because the area of walls is always bigger than the area of the roof. In the 

case of high-rise buildings, the ratio of the walls could be 20 times the roof area [3]. 

 

7.2 Contribution to the state-of-the-art 

In order to provide a clear overview of the vertical greenery systems and to analyse the 

weak spots of the current state-of-the-art, the aim of this study is to organize and 

summarize the existent literature concerning these systems when they are used as 



   

38 

 

CHAPTER VII 

Vertical Greenery Systems (VGS) for energy saving in buildings: A 

review 

passive system for energy savings in buildings. The main findings of the study are 

presented and discussed in the following paper: 

 G. Pérez, J. Coma, I. Martorell, L.F. Cabeza. Vertical Greenery Systems (VGS) 

for energy saving in buildings: A review. Renewable and Sustainable Energy 

Reviews 2014;39:139-165. 

First of all, it is highly recommended establishing a classification between different 

VGS for buildings because unlike other building systems, such as green roofs, which 

are classified between extensive and intensive, there is no established standardization 

for VGS designs and its variations. However, according to the growing method used 

these systems are labelled as green facades and living walls systems by some authors 

[4] and organizations [5]. Moreover, the classification proposed by Pérez et al. [6] 

encompasses both, green facades and living walls definitions, while at the same time it 

connects these definitions with the extensive and intensive concepts. Thus, to better 

understand this review, the classification presented in the Table 4 is used along the 

paper. 

Table 4. Classification of vertical greenery systems for buildings [6] 

 Extensive systems Intensive systems 

Green facades 

Traditional green facades --- --- 

Double-skin green facade or green curtain 

Modular trellis --- 

Wired mesh --- 

--- Perimeter flowerpots 

Living walls 

--- --- Panels 

--- --- Geotextile felt 

 

After this literature review, some key factors that influence the final thermal 

performance of vertical greenery systems, such as the construction system used, the type 

of vegetation implemented, the operation mechanisms, and finally the climate influence, 
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are clarified. In addition, a comprehensive review and discussion sorted by construction 

system, simulations, and climatic situation are summarized. Finally, the paper includes a 

section about related literature which provides complementary information for the 

paper, such as the influence of VGS over urban environment, influence over indoor 

environments, maintenance of different systems, life cycle analysis (LCA), and sound 

insulation capacity. 

The main outcomes concerning the thermal performance of these systems are known 

when applied as a passive cooling system. They can decrease the external wall surface 

temperature, ranging from 1 ºC and 20.8 ºC depending on the system, orientation, plant 

species and climate conditions, thus the energy consumption of the building from 5 to 

50 %. However, a lack of data of the thermal performance during the heating periods as 

well as for a whole year (spring, autumn and winter) was found for all classified 

systems. Only one simulation study conducted by McPherson et al. [7], showed a 21 % 

extra energy consumption during the heating period in Madison (EE.UU.), but no VGS 

was specified. 

Moreover, the importance of the facade orientation is relevant for energy savings, 

especially for cooling periods, but a lack of studies related to the performance of East 

and West facades is seen, because the published studies are mainly focused on the 

South. In addition, a world classification according to the climate conditions presented 

in Figure 13 showed that most of the studies are located in a warm temperate climate 

(C) with some exceptions in equatorial climate (A) [8]. Therefore, it is necessary to 

perform more studies in different climates, throughout the whole year, providing the 

performance for the different facade orientations. 

On the other hand, other important factors that affect to the final performance of these 

systems, such as the evapotranspiration effect, the foliage thickness, the air gap created 

between the vegetation and walls (green walls and double-screen facades), wind barrier 

effect, and the characterization of the shadow effect by the leaf area index (LAI), must 

be studied in depth. 



   

40 

 

CHAPTER VII 

Vertical Greenery Systems (VGS) for energy saving in buildings: A 

review 

 

Figure 13. (a) The Köppen Climate Classification, (b) The Köppen Climate Classification and 

situation of analysed papers by categories 
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In order to show an overview of the literature review, a total of twenty-five different 

VGS studies about energy savings in buildings were reviewed and classified with a 

comprehensive discussion. Seven of them were related to traditional green facades (five 

case studies and two simulations). Moreover, ten studies were found regarding double-

skin green facades (seven experimental and three case studies). Finally, eight green wall 

studies were reviewed; where five were experiments, two of them were simulations, and 

only one was an analysis of a real case. 

Finally, the necessity to do more research on different VGS topics, such as 

standardization of the system classification, experiments at real scale, thermal 

performance analysis for both heating and cooling purposes, where the results can be 

compared with similar studies, different climate conditions, facade orientations, 

characterization of the shadow effect by leaf area index (LAI), and the air gap between 

green facades and building walls, is highlighted. Furthermore, other interesting fields to 

be studied in depth, where the aim is enhancing the buildings and their environment are 

the noise insulation capacity of all these systems and a comparative analysis of the life 

cycle between VGS and other commercial systems used for the same purpose. 

 

7.3 Contribution of the candidate 

The candidate contributed to the research, proposing an extended list of references to 

review and classify the vertical greenery when it is applied as a passive system for 

energy savings in buildings. Afterward the list was extended by the co-authors. 

Moreover, the candidate took part in the organization of the paper as well as in the 

redaction of vertical greenery systems for energy savings in buildings, discussion and 

conclusions sections. Finally, a comprehensive and deep revision of the whole paper 

was carried out. 

 



   

42 

 

CHAPTER VII 

Vertical Greenery Systems (VGS) for energy saving in buildings: A 

review 

7.4 References 

1. Building Green. A guide to using plants on roofs, walls and pavements. Mayor of 

London. Greater London Authority; May2004. ISBN1852616377. 

2. E. Oberndorfer, J. Lundholm, B. Bass, R.R. Coffman, H. Doshi, N. Dunnett, S. 

Gaffin, M. Kohler, K.K.Y. Liu, B. Rowe. Green roofs as urban ecosystems: 

ecological structures, functions, and services. Bio Science 2007;57(10):823-833. 

3. N. Dunnet, N. Kingsbury. Planting green roofs and living walls. Timber Press; 

2008. 

4. K. Perini, M. Ottelé. Designing green facades and living wall systems for 

sustainable constructions. Design and Nature and Ecodynamics 2014;9(1):31-46. 

5. Green roofs for healthy cities. Available at: http://www.greenroofs.org/ (last access 

July 2016). 

6. Pérez G, L. Rincón, A. Vila, J.M. González, L.F. Cabeza. Green vertical systems for 

buildings as passive systems for energy savings. Applied Energy 2011;88:4854–

4859. 

7. E.G. McPherson. Impacts of vegetation on residential heating and cooling. Energy 

and Buildings 1988;12:41–51. 

8. M. Kottek, J. Grieser, C. Beck, B. Rudolf, F. Rubel. World map of the Köppen–

Geiger climate classification updated. Meteorologische Zeitschrift 2006;15(3):259–

263. 



   

43 

 

CHAPTER VII 

Vertical Greenery Systems (VGS) for energy saving in buildings: A 

review 

7.5 Journal paper 

 

 

G. Pérez, J. Coma, I. Martorell, L.F. Cabeza. Vertical Greenery Systems (VGS) for 

energy saving in buildings: A review. Renewable and Sustainable Energy Reviews 

2014;39:139-165. 

 

DOI: 10.1016/j.rser.2014.07.055 

 

 

 



   

44 

 

CHAPTER VIII 

Green facade for energy savings in buildings: the influence of Leaf 

Area Index and facade orientation on the shadow effect 

8 Green facade for energy savings in buildings: the influence of 

leaf area index and facade orientation on the shadow effect 

8.1 Introduction 

As the potential of vertical greenery systems (VGS) to provide many ecosystems 

services, such as energy savings in buildings, was highlighted in the previous chapter, 

with the aim to enrich this topic, next steps of the research were focused on filling some 

gaps found in the literature review [1]. 

Referring to the contribution of these systems as a passive tool for energy savings in 

buildings, this ecosystem service is essentially developed due to the shadow effect 

provided by the vegetation, which is a key factor as Pérez et al. stated in 2011[2]. Other 

important factors, but with minor magnitude, are the water transpiration from plants and 

the evaporation from substrates, the insulation effect from the system used (substrates, 

felts, air gap, panels), and finally the modification of wind influence on the building 

surfaces [3]. 

Since the shadow effect is directly related to the amount of foliage in the green facade, 

the relation of the leaf mass and the energy savings could be a simple way to 

characterize the benefit that a green facade provides at any time during its development. 

Being the Leaf Area Index (LAI) the most used methodology in agriculture and ecology 

to measure the development and yield of crops [4], also could be a useful tool to 

characterize the leaf mass and the consequent shadow effect of VGS in buildings. 

Some previous studies [5-7] used the LAI concept to analyse the potential of VGS as a 

passive energy saving system in buildings, but some important issues such as the 

methodology to measure the LAI in these systems and the relation between LAI and 

energy savings provided have not yet been resolved. Likewise, further studies have to 

address e.g. the LAI of the different species used for VGS, the variations of LAI 

according to the height and the climatic influence on the plant development and its 

consequent LAI variations. 
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8.2 Contribution to the state-of-the-art 

The main objectives of this paper were: (1) to summarize the main results of the 

different experiments carried out in a double-skin green facade addressed, (2) to provide 

an easy methodology to measure the leaf area index (LAI), and (3) to relate it to the 

shadow effect, as well as the energy savings provided. This work is presented in the 

following paper: 

 

 G. Pérez, J. Coma, S. Sol, L.F. Cabeza. Green facade for energy savings in 

buildings: the influence of Leaf Area Index and facade orientation on the 

shadow effect. Submitted to Applied Energy 2016. 

To carry out the study, two equal house-like cubicles with identical shape and materials 

were used. The only difference was on the East, South and West facades of one of them, 

where a simple lightweight steel mesh was anchored at 20 cm separated from the 

building wall creating an intermediate space between the Boston Ivy, which is 

deciduous, and the building wall (Figure 14). 

  

Figure 14. Double-skin green facade under study made with Boston Ivy (Parthenocissus 

tricuspidata), left, summer 2013; right, summer 2015 

 

First of all, in order to better understand the paper, the LAI concept is clarified. Thus 

LAI is defined as a dimensionless parameter (ranging from 0 to 10) to measure the 

different plant canopies (LAI = leaf area/ground area, m
2
/m

2
) [8], and can be generally 

measured according two methodologies, direct or indirect. On one hand, the direct 
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method involves harvesting all the leaves of a plot and measuring the area of each leaf 

(Figure 15, left). On the other hand, as shown in Figure 15 right, indirect methods are 

based on the measurement of parameters directly related to LAI, such as the amount of 

light transmitted or reflected by the plant canopy [9]. 

   

Figure 15. Left, direct LAI measurements summer 2013. Right, indirect LAI measurements 

2015 

 

In this paper, both methodologies are applied in order to analyse the LAI of the double-

skin green facade. The results summarized in Table 5 confirm that both methodologies 

provide similar values for the LAI with slightly differences because the plants evolved 

from 2013 to 2015 decreasing their values in the lower level and increasing in middle 

and upper levels. 

Table 5. Comparative LAI values between intensive and extensive methods in a GF made with 

Boston Ivy (Parthenocissus tricuspidata) 

 Direct method 2013 Indirect method 2015 

Upper 2.1 3.3 

Middle 3.2 3.5 

Lower 3.9 3.4 

 

Furthermore, it is interesting to highlight that the direct method is the most accurate to 

measure the LAI, but it requires a lot of time to harvest and measure one by one all 

leafs. However, the indirect method is not intrusive for the plant, being the easiest and 

fastest methodology to obtain LAI values from plants. 
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On the other hand, the shadow factor obtained during the daily solar radiation peaks in 

the experiments were also compared to those provided by artificial barriers (cantilevers, 

facade setbacks, awnings, vertical and horizontal slats, etc.), which are mainly used in 

buildings [10]. The results showed that a simple double-skin green facade can provide 

equal or better shadow factors in all the orientations in comparison to the artificial 

barriers above mentioned. 

In addition, to study the cooling performance of the double-skin green facade, several 

tests under controlled temperature at 24 ºC, according the ASHRAE standards [11], 

were carried out. In these experiments, LAI values were related to the external wall 

surface temperature reductions (Figure 16) as well as with the accumulated energy 

consumption, which was 34% less in comparison to the reference cubicle for the same 

representative summer period of August 2015. 

 

Figure 16. Evolution of external surface wall temperatures during 4th week of August 2015 

 

8.3 Contribution of the candidate 

The main contributions of the candidate were to perform the experimental tests and to 

contribute in writing some parts of the scientific paper related to the thermal 

performance of the system. The data treatment, the artwork, and analysis of the tests 

were also a task of the candidate. 
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9 Vertical Greenery Systems (VGS) for energy savings in 

buildings: a comparative study between green walls and green 

facades 

9.1 Introduction 

As it has been presented in the two previous chapters, vertical greenery systems (VGS) 

are one of the most potential systems to promote many ecosystem services at building 

and city scales, increasing biodiversity, decreasing pollution, enhancing aesthetics, as 

well as energy efficiency of buildings, being this last the focus of this paper [1]. 

Even though there are some authors that are studying the thermal performance of these 

systems, it is difficult to establish a technical comparison between them when critical 

factors such as the construction system, the climate conditions, the plant species, the 

foliage thickness, the air layer, the thermal performance according to the orientation of 

the facade, and the duration and periods of the study are considered. In addition, the 

construction system of the walls used in the studies is often different, fact that 

influences the results of energy flows through the building facade, spoiling the 

possibilities of comparison. None of them provides enough key factors to establish a 

proper comparison. A remarkable fact is that a lack of studies of the thermal 

performance during heating periods was observed. 

Despite of the dispersion in the literature, it can be stated that one key factor to compare 

the potential as passive energy saving systems for all of these studies is the reduction of 

the building wall surface temperature due to the combined effects provided by the 

vertical greenery system, as it was concluded by Pérez et al. 2014 [2]. 

Further studies to obtain experimental data from VGS in different climates under the 

above mentioned defined critical factors would allow a comparison between the 

systems, quantifying the building wall surface temperature reductions as well as the 

energy savings in order to help architects and engineers to make more appropriate 

decisions in the design phase of buildings. 
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9.2 Contribution to the state-of-the-art 

First of all and as already pointed out, a clear classification to be able to compare VGS 

regarding energy efficiency in buildings was missing. Therefore, the most significant 

previous experimental studies on the use of VGS as passive tool for energy savings in 

buildings are reviewed and sorted by construction system. 

The main objectives of this paper were: (1) to provide an overview of the main findings 

in the state-of-the-art regarding the energy efficiency of VGS in buildings, (2) to 

characterize the thermal performance of two different VGS (double-skin green facade 

and living wall or green wall) for cooling and heating purposes, (3) to compare the 

energy consumption of each system with the reference one, and (4) to analyse the 

influence of facade orientation on the thermal performance of these systems. All the 

studies conducted to achieve these objectives were done under Mediterranean 

continental climate conditions. The experimental results and details about this research 

are presented in: 

 J. Coma, G. Pérez, A. de Gracia, S. Burés, M. Urrestarazu, L.F. Cabeza. Vertical 

Greenery Systems (VGS) for energy savings in buildings: a comparative study 

between green walls and green facades. Submitted to Building and Environment, 

2016. 

The experimentation presented in the paper shows the performance of three house-like 

cubicles with the same wall and roof construction systems and the same dimensions. 

The difference between them is that one of them has no greenery on the facades (REF), 

another has a double-skin green facade (GF) on the East, South and West facades, and 

the last one has living wall or green wall (GW) on the same three facades as shown in 

Figure 17. 
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Figure 17. Studied cubicles in the experimental set-up in Puigverd de Lleida. From left to right: 

Reference, Double-skin green facade, and Green wall 

 

Two different types of experiments were performed: “free floating”, without any 

cooling device where no HVAC system was used, and “controlled temperature”, where 

a set point temperature in the heat pump was established. 

After performing several experiments during Summer 2015 with an internal controlled 

temperature at 24 ºC, both GW and GF cubicles showed the big potential of the VGS as 

a passive tool for cooling purposes in buildings, obtaining energy savings up to 58.94 % 

and 33.83 %, respectively, in comparison to the reference cubicle. 

To better understand the energy savings in both VGS, the hourly energy consumed by 

each cubicle and the solar irradiance are shown in Figure 18. Furthermore, a direct 

relation between solar irradiation and energy savings was found indicating higher 

energy savings potential in climates with high solar irradiance. The experimental 

analysis highlights the importance of the shade effect to control this ecosystem service. 

Experiments without HVAC systems were performed during Summer 2015, supplying 

useful information to compare the shadow effect provided by the vegetation on different 

facade orientations. The main results showed interesting temperature reductions on East, 

South and West facades being 17.0 ºC, 21.5 ºC and 20.1 ºC, respectively, for the GW 

cubicle, and 13.8 ºC, 10.7 ºC and 13.9 ºC, respectively, for the GF cubicle. 
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Figure 18. Hourly electrical energy consumption (6 and 7 July 2015). Controlled temperature at 

24 ºC (cooling) 

 

On the other hand, the performed experiments for winter were studied considering a 

comfort set point of 22 ºC. The double-skin green facade cubicle (GF) with deciduous 

plants, as it do not intercepts the solar radiation because the lack of foliage during 

winter period, showed the same energy consumption than the reference cubicle, whereas 

the evergreen GW showed an interesting reduction of 4.2 % of energy demand. That 

fact could be attributed to the night radiative protection (insulation effect) supplied by 

the vertical recycled polyethylene modules filled with substrate that are part of the 

construction system. This is a remarkable and promising finding which must be studied 

in depth to improve the thermal performance of GW during the whole year. 

 

9.3 Contribution of the candidate 

The candidate led the long term experimental research, the analysis of the tests, the 

figures presented as well as the writing of the scientific article. The sensors installation, 

the data registration connection and the monitoring of both VGS was also carried out by 

the candidate. On the other hand, the co-authors contributed to write some parts of the 
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introduction and to provide a comprehensive discussion, dissertation of the results and a 

deep review of the whole paper. Also the candidate was supported by the co-authors to 

build the experimental set-up presented. 

 

9.4 References 

1. John W. Dover. Green Infrastructure: Incorporating plants and enhancing 

biodiversity in buildings and urban environments. ISBN 978-0-415-5213-9. 

Routledge, 2015. 
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9.5 Journal paper 

 

 

J. Coma, G. Pérez, A. de Gracia, S. Burés, M. Urrestarazu, L.F. Cabeza. Vertical 

Greenery Systems (VGS) for energy savings in buildings: a comparative study between 

green walls and green facades. Submitted to Building and Environment 2016. 
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10 Acoustic insulation capacity of Vertical Greenery Systems for 

buildings 

10.1 Introduction 

Nowadays, green infrastructure (GI) is a successfully tested tool, which provides 

ecological, economic and social benefits using natural solutions in the built 

environment, also known as urban ecosystem services. As John W. Dover stated in his 

book [1], these multiple benefits are sorted by the services that they provide to the 

humans and wildlife such us visual amenities, human health, food production, climate 

control, biodiversity, energy efficiency in buildings, and pollution control. 

Several of the abovementioned urban ecosystems services delivered by the vegetation in 

buildings have been studied throughout the last decades. In the case of energy efficiency 

in buildings, most of the main gaps found in the literature [2] are addressed in the 

previous chapters of this thesis. However, other ecosystem services such like pollution 

control are still scarcely studied. In this regard, the main attributes of the pollution 

control ecosystem service are water resources, light, air pollution, and noise reduction, 

being the last, one of the main attributes of VGS to be addressed for buildings [1]. 

In the literature, some authors [3,4] highlight the contribution of VGS and green roofs 

on the reduction of noise. Nevertheless, few case studies and even less experimental 

data were found [5,6]. From these previous studies, no strong conclusions were 

established due to both, the different experimental methodologies and construction 

systems evaluated. Furthermore, it is interesting to point out that only one in-situ 

experiment was found, being the others laboratory studies with small samples or 

simulations [7]. 
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10.2 Contribution to the state-of-the-art 

The main objectives of this paper are to provide a literature review of the acoustic 

insulation capacity of vertical greenery systems, and to provide in-situ measurements 

from two different VGS, double-skin green facade (extensive system) and living wall or 

green wall (intensive system). Two main comparisons were carried out: to compare the 

noise reduction due to the existence of vegetation in each system, and to establish a 

comparison between both systems in terms of noise reduction. This work is presented in 

the following paper: 

 G. Pérez, J. Coma, C. Barreneche, A. de Gracia, M. Ufrrestarazu, S. Burés, L.F. 

Cabeza. Acoustic insulation capacity of Vertical Greenery Systems for 

buildings. Applied Acoustics 2016;110:218-226. 

In order to study the acoustic insulation potential of these two VGS the standard UNE-

EN ISO 140-5 Acoustics, measurement of sound insulation in buildings and of building 

elements, part 5: Field measurements of airborne sound insulation of facade elements 

and facades was followed. 

First of all, to quantify the acoustic performance of the vegetation, two different 

measurement periods was established. The first was carried out with low vegetation 

conditions and the second measurement was performed when the vegetation was 

completely developed as shown in Figure 19. 

 

Figure 19. In situ acoustic measurements according to UNE-EN ISO 140-5 
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The main results obtained after comparing low and high values of vegetation, 

highlighted the differences between the double-skin green facade (GF) and green wall 

(GW) systems. The importance of substrate contribution to noise attenuation in the GW 

allowed developing a constant noise profile along the frequency spectrum tested in both 

measured periods, whereas GF showed a much more irregular profile (Figure 20). In 

addition, the improvement of the acoustic insulation capacity from both greenery 

systems provided by plants (scattering) in high frequencies, as well as from substrate 

(absorption) in the middle frequencies by Green Wall, were verified in the standardized 

difference of levels profiles. 

 

Figure 20. Standardized difference of levels D2m,nT. Green Wall vs Green Facade 

 

Moreover, to better understand the noise insulation capacity of these systems, the study 

provides the value used (single-number quantity) to express the acoustic insulation 

between a room and the outdoor conditions. In Table 6 the main results are summarized 

(refer to paper to see how corrected values are calculated). 

Table 6. Standardized levels difference (D2m,nT,w) [dB]. Single-number quantities 

  D2m,nT [dB] 
Corrected value to 

pink noise [dB] 

Corrected value to 

traffic noise [dB] 

With foliage Green facade 46 45 43 

 Green wall 46 44 41 

Without foliage Green facade 44 42 42 

 Green wall 44 42 40 
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Regarding the noise insulation capacity against the outdoor influences at low 

frequencies (≤315 Hz, aircrafts, urban traffic, railway traffic at low speeds, disco music 

or certain industrial noises), the cubicle with green wall presents smaller sound 

insulation (41 dB) in comparison with the double-skin green facade (43 dB). 

In quantitative terms, a thin layer of vegetation (20–30 cm) was able to provide an 

increase in the sound insulation of 1 dB for traffic noise (in both, green wall and green 

facade), and an insulation increase between 2 dB (Green Wall) to 3 dB (Green Facade) 

for a pink noise. 

The study highlight the necessity to consider other factors, in addition to the vegetation, 

in order to improve the acoustic insulation capacity of VGS, such as the mass (thickness 

and composition of the substrate and vegetation layers), impenetrability (sealing joints 

between modules) and structural insulation (support structure). 

 

10.3 Contribution of the candidate 

The list of references purposed, which after were extended by the co-authors, the 

writing of several parts of the scientific paper and the control and maintenance 

throughout experimental tests from 2013 to 2016, were the main contributions of the 

candidate. Also, the candidate took part in the organization of the paper, in the analysis 

and discussion of the results, along with the co-authors. 
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11 Conclusions and recommendations for future work 

11.1 Conclusions of the thesis 

This PhD thesis studied two of the ecosystem services provided by the most common 

green infrastructures when are applied in buildings, on one hand the energy efficiency 

of extensive green roofs and vertical greenery systems, and on the other hand the sound 

insulation capacity provided by VGS. In spite of providing quantitative experimental 

data to address the lack of information in the literature, this thesis also focused on 

analysing the environmental impact of extensive green roofs in order to study their 

sustainability. 

The main accomplishments of this PhD are the following: 

 The literature reviewed about green infrastructures in buildings highlighted the 

extended research done in the green roofs topic, whereas scarce literature is available 

for VGS. This fact pointed out the novelty of this topic and the necessity to develop 

new research, since VGS implemented in buildings not only provide aesthetics, but 

also supply many benefits to the built environment. 

 In general, the experimental studies have demonstrated the potential of both, 

extensive green roofs and VGS, to reduce the cooling demand in a building in 

summer. 

The main conclusions obtained after performing long-term experimental tests for both 

non-insulated extensive green roofs with two different drainage layers (pozzolana and 

rubber crumbs) in the facility of Puigverd de Lleida, are listed below: 

 Both extensive green roofs without insulation layer demonstrated their potential as 

passive systems during the summer season, even when only the 20% of the roof area 

was covered by vegetation. The same thermal behaviour was observed when 

vegetation was completely developed (85% roof covered), showing 2.2 to 16.7 % 

energy savings in comparison to the reference roof. 



   

62 

 

CHAPTER XI  

Conclusions and recommendations for future work 

 The substrate and drainage layers have important roles in the overall thermal 

performance of green roof system, especially when the vegetation is scarce during 

the first year after its installation. 

 The set of experiments performed without HVAC systems, demonstrated that both 

extensive green roofs provided significant reductions (1.5 ºC) in internal ceiling 

temperatures, in comparison to the reference one. 

 In winter, the thermal inertia provided by extensive green roofs, is not useful in 

preventing energy losses, since the external air temperature variations between day 

and night were below the desired internal comfort temperature. 

 Several limitations in relation to the thermal performance of extensive green roofs in 

winter indicate that they are extremely dependent on the climate when an insulation 

layer is not used. 

 Consequently, the experimental results of a severe winter highlighted that a 9 cm 

extensive green roof system has not enough thermal resistance to provide energy 

savings in a building. Thereby, the electrical energy consumption of the heating 

system was increased by 11% in pozzolana roof and 5% in rubber crumbs roof. 

 In addition, the experiments carried out when the vegetation was completely 

developed, have demonstrated the better thermal performance of the rubber crumbs 

layer in comparison to the pozzolana layer for both summer and winter conditions. 

 

Moreover, an environmental performance of extensive green roofs systems was carried 

out by a life cycle analysis (LCA) methodology, and the following conclusions are 

drawn: 

 The LCA study demonstrated that the extensive green roof with rubber crumbs 

reduces by 7% the overall environmental impact compared to a non-insulated 

conventional roof, 6.7% compared to the green roof with pozzolana, and showed a 

similar environmental impact (2% increase), in comparison to the insulated 

conventional roof. 
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 The results confirm that the operational phase is crucial in the overall impact, being 

85.7% to 87.2% of the total. Therefore, any improvement of the energy performance 

due to the roof system, would led to a lower overall environmental impact. 

Following the structure of this thesis, the main conclusions extracted from the literature 

review of the VGS when are used as passive energy saving systems, are the following: 

 After conducting a literature review, a disparity in the VGS nomenclature was found. 

Thus, an international classification of the different types of VGS to allow technical 

comparisons between them is highly recommended. 

 Regarding the global location of VGS research, many studies were generally found 

in Europe and Asia, while a lack of studies in areas of the world with high solar 

radiation where VGS could be much more effective, were found. 

 The external wall temperature reduction is the only parameter which allows a 

thermal performance comparison between the different types of VGS. 

 For this reason, a minimum set of parameters such as the type of system and plants 

used, climate conditions, season, orientation of the studied facade, external wall 

surface reductions, air layer, and the foliage thickness should be delivered in future 

studies in order to establish better comparisons between different systems available 

in the market. 

 Future VGS designs need to be developed from thermal, sustainable and acoustic 

engineering approaches instead of only for aesthetics or “gardening-landscaping a 

building”. 

 

Finally, the main conclusions obtained after performing long-term experimental tests for 

both VGS (green wall and double-skin green facade) in the facility of Puigverd de 

Lleida, are listed below: 

 The experimental studies demonstrated the high potential of GW and GF systems in 

reducing the electrical energy consumption of the HVAC system of a building during 

the summer season. These passive savings are dependent on one hand to the solar 
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irradiation, and on the other hand to the shadow factor supplied by the typology of 

vertical greenery system. In Mediterranean continental climate conditions, GW and 

GF systems showed 58% and 33% energy savings, respectively. 

 A direct relation between energy savings and the solar irradiance on the building 

facades was observed for both GW and GF systems. The higher the solar radiation, 

the higher the VGS cooling effect. 

 In all the set of experiments performed in summer, the air gaps between building 

walls and green skins of GW showed an average temperature of 6 ºC cooler than GF 

system during daytimes, which demonstrates the  better cooling performance of GW 

in comparison to GF. 

 The study of the thermal performance by facade orientation in summer conditions 

has demonstrated that huge temperature reductions on external walls, ranging from 

10.7 ºC to 13.9 in GF, and from 17 ºC to 21.5 ºC in GW, were obtained. 

 The experimental studies in winter pointed out a promising radiative insulation effect 

during the night time provided by the GW system on the building that accounted up 

to 4% energy savings in a Mediterranean continental climate. 

 A better thermal performance of the intensive GW compared to the extensive GF, 

was demonstrated for summer and winter seasons. 

 A suitable indirect methodology to measure the leaf area index (LAI) on vertical 

surfaces was established. 

 A relation between LAI factor and temperature reduction on external walls and 

energy savings, was found, resulting accumulated electrical energy savings up to 

34% for cooling periods with a LAI of 3.5 to 4 during summer period, using a 

Boston Ivy (Parthenocissus tricuspidata) under Mediterranean continental climate. 

 The acoustic experimental “in situ” measurements have demonstrated that a thin 

layer of vegetation (20–30 cm) was able to provide an increase in the sound 

insulation of 1 dB for traffic noise (in both cases, GW and GF), and an insulation 

increase between 2 dB (GW) to 3 dB (GF) for a pink noise. 
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11.2 Recommendations for future work 

From the research presented in this thesis, quantitative data and new studies that 

increase the knowledge in the building GI topic have been provided. However, during 

the experimental part of the thesis, technical aspects that can improve the thermal 

performance, the sustainability and the sound insulation capacity of these systems were 

observed. Furthermore, many research topics in relation to green infrastructures in 

buildings are still waiting to be addressed. In the following section, several 

recommendations for further research are presented divided in green roofs and VGS. 

11.2.1 Green roofs 

 The low thermal resistance observed in the current design of the extensive green 

roofs limits their performance during winter. By means slightly increasing the 

drainage layer quickly improvements could be achieved for this purpose without 

compromise the sustainability of the whole system if recycled materials e.g. rubber 

crumbs can be used. 

 The thermal performance of the whole GR system can vary depending on the 

vegetation density, the substrate composition and its thermos-physical properties (the 

lower the vegetation density, the higher the substrate contribution to the total system 

performance). Regarding this topic, only three studies concerning the thermos-

physical characterization of substrates varying their composition and moisture 

content were detected. 

 Regarding the environmental impact of these systems, a future LCA should consider 

the benefit of carbon mitigation by plants in the operational phase, since it would 

show a more accurate and realistic analysis.  

11.2.2 Vertical greenery systems 

 Studies about suitable plants to be installed in VGS are still scarce, and are manly 

focused on few species. Better knowledge of what species could be used for a 

determined climate conditions, sorted by LAI value, shadow factor, water 

requirements, climbing capacity, etc., is necessary. 



   

66 

 

CHAPTER XI  

Conclusions and recommendations for future work 

 LCA analysis to compare the environmental impact between intensive and extensive 

VGS using experimental data is suggested. In addition, a comparison between these 

systems among other technologies used with the same aim, such as ventilated facades 

with and without PCM, horizontal and vertical slats, etc., could provide an 

interesting overview for engineers, architects and householders to select the best 

option from an environmental point of view. 

 Regarding to the acoustic insulation contribution of VGS, studies regarding to the 

types of plants, the thickness of the vegetation layer, the thickness and composition 

of the substrate layer, the type of support structure and materials to be used, as well 

as to take measures to prevent transmission of sound on the early design phase 

(structural impenetrability and insulation) should be made. 

 With the aim to quantify and compare the benefits provided by green infrastructures 

on building envelopes between different studies in a fast and simple manner, as well 

as to help engineers and architects in taking decisions thought the design phase, more 

research concerning indirect measurements of the leaf density (e.g. LAI, scanner 3D, 

etc.) should be carried out. 
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12 Other research activities 

12.1 Other publications 

Other scientific research about green roofs and vertical greenery systems was carried 

out during the execution of this thesis. The resulting publications are listed below: 

 G. Pérez, A. Vila, C. Solé, J. Coma, A. Castell, L. F. Cabeza. The thermal 

behaviour of extensive green roofs under low plant coverage conditions. Energy 

Efficiency 2015;8(5):881-894.  

 P. Bevilacqua, J. Coma, G. Pérez, C. Chocarro, A. Juárez, C. Solé, M. De Simone, 

L.F. Cabeza. Plant cover and floristic composition effect on thermal behaviour of 

extensive green roofs. Building and Environment 2015;92:305-316. 

 Z. Azkorra, G. Pérez, J. Coma, L.F. Cabeza, S. Bures, J.E. Álvaro, A. Erkoreka, M. 

Urrestarazu. Evaluation of green walls as a passive acoustic insulation system for 

buildings. Applied Acoustics 2015;89:45-56. 

 

12.2 Contributions to international conferences 

The PhD candidate also contributed to some international conferences: 

 G. Pérez, J. Coma, A. Vila, C. Solé, A. Castell, L.F. Cabeza. Green roofs as passive 

system for energy savings in Mediterranean Continental climate when using rubber 

crumbs as drainage layer. Innostock 2012 - The 12th International Conference on 

Energy Storage, Lleida (Spain). 

 G. Pérez, J. Coma, A. Vila, C. Solé, A. Castell, L.F Cabeza. Green facades as 

passive systems for energy savings in Mediterranean Continental climate. Innostock 

2012 - The 12th International Conference on Energy Storage, Lleida (Spain). 

 J. Coma, G. Pérez, L.F Cabeza. Cubiertas verdes extensivas como sistema pasivo 

de ahorro de energía en edificios: uso de granza de caucho reciclado en la capa 

drenante. XV Congreso Ibérico y X Congreso Iberoamericano de Energía Solar - 

CIES 2012, Vigo (Spain). 
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 G. Pérez, J. Coma, C. Solé, A. Castell, L.F. Cabeza. Green roofs as passive system 

for energy savings when using rubber crumbs as drainage layer. SHC 2012 - 

International Conference on Solar Heating and Cooling for Buildings and Industry, 

San Francisco (USA).  

 G. Pérez, J. Coma, I. Martorell, L.F Cabeza. Experimental results of energy 

measurements in green roofs and green facades in Mediterranean continental 

climate. COINVEDI - 2nd International Conference on Construction and Building 

Research 2012, Valencia (Spain). 

 G. Pérez, J. Coma, C. Solé, L.F. Cabeza. Experimental evaluation of the 'ecological 

roof' in Mediterranean continental climate. Eurosun 2012, Rijeka (Croatia). 

 G. Pérez, J. Coma, A. Castell, C. Solé, L.F. Cabeza. La vegetación de edificios 

como sistema pasivo de ahorro energético. III Jornadas Low Tech UPC, 2012, 

Barcelona (Spain). 

 L. Rincón, J. Coma, G. Pérez, A. Castell, D. Boer, L.F. Cabeza. Comparative Life 

Cycle Assessment of extensive green roofs with recycled rubber or pozzolana as 

drainage layer. Sustainable Energy Storage in Buildings - the 2nd IC-SES 2013, 

Dublín (Ireland). 

 J. Coma, G. Pérez, C. Solé, A. Castell, L.F. Cabeza.  Extensive green roofs as 

passive system for energy savings in buildings when using rubber crumbs as 

drainage layer. The Fifth International Conference on Applied Energy (ICAE 2013), 

Pretoria (South-Africa). 

 J. Coma, G. Pérez, C. Solé, A. Castell, L.F. Cabeza. New green facades as passive 

systems for energy savings on buildings. ISES SOLAR WORLD CONGRESS 

2013, Cancun (Mexico). 

 J. Coma, P. Bevilacqua, M. de Simone, G. Pérez, L.F. Cabeza. Green roofs for 

building energy savings. A comparative study. Eurotherm Seminar #99 - Advances 

in Thermal Energy Storage 2014, Lleida (Spain). 

 J. Coma, P. Bevilacqua, M. de Simone, A. de Gracia, G. Pérez, L.F. Cabeza. 

Thermal characterisation of different materials for extensive green roofs. Eurotherm 

Seminar #99 - Advances in Thermal Energy Storage 2014, Lleida (Spain). 
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(VGS) for energy savings in buildings. International Green Wall Conference 2014, 

Stock-on-Trent (U.K). 

 J. Coma, G. Pérez, L.F. Cabeza. Green infrastructure improvements for a more 

sustainable building sector. World SB14 Barcelona. Sustainable Building: Results... 

Are we moving as quickly as we should? It's up to us! 2014, Barcelona (Spain). 
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Thermal characterization of different materials for extensive green roofs. EuroSun 

2014 - International Conference of Solar Energy and Buldings, Aix-les-Bains 

(France). 

 J. Coma, A. de Gracia, G. Pérez, L.F. Cabeza. Thermal characterization of different 

materials for extensive green roofs. GREENSTOCK 2015 - The 13th International 

Conference on Energy Storage, Beijing (China). 

 J. Coma, G. Pérez, L.F. Cabeza. Vertical greenery systems (VGS) as passive tool 

for energy savings and acoustic insulation in buildings. International Conference on 

Living Walls and Ecosystem Services 6-8th July 2015 University of Greenwich, 

London (U.K). 

 

12.3 Scientific foreign-exchange 

The PhD candidate did three research stays abroad during the realization of this thesis. 

12.3.1 University of Calabria (Cosenza, Italy) 

The Department of Mechanical, Energy and Management Engineering has a strategic 

landmark of the University of Calabria for teaching, research and technology transfer in 

the field of Building and Industrial Engineering. During the three month period in this 

department, under the supervision of Dr. Marilena De Simone, the candidate developed 

research activities on Green roofs for energy savings in buildings in two different main 

topics. On one hand, to perform a technical comparison between six different extensive 

green roofs systems, and on the other hand to determine experimentally the thermo-
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physical properties of eight different substrates from the internal layers of extensive 

green roofs. 

 

 

12.3.2 University of Greenwich (Gillinham, United Kingdom) 

The candidate worked on a design and implementation of a green roof monitoring 

system, in the Water & Environmental Management Faculty of Engineering & Science 

in University of Greenwich during three month supervised by Dr.Alejandro Dussaillant-

Jones. The main work was to provide technical support in a green roof project in order 

to measure the evapotranspiration effect in an extensive green roof. The experimental 

study took place in a new building constructed in the southern part of the city of London 

in 2013, located exactly below Thames River on a Stockwell Building. 

 

 

12.3.3 University of South Australia (Adelaide, Australia) 

PhD candidate Julià Coma has done a research in the field of building applications. He 

has been collaborating advised by Prof. Dr. Frank Bruno and Dr. Martin Belusko to do a 

state-of-the-art comparing the embodied energy of two different energy storage systems 

and to study the potential of vertical greenery systems as a tool to reduce the heat waves 

effect during summer periods. 
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12.4 Others activities 

12.4.1 Book chapters participation 

 G. Pérez, J. Coma, L.F. Cabeza. Green Building and Phase Change Materials: 

Characteristics, Energy Implications and Environmental Impacts. Green roofs and 

green facades for energy savings in buildings. Nova Science Publishers, Inc. 2015. 

 

12.4.2 Projects participation 

 INNOSTOCK 2012, The 12th International Conference on Energy Storage, 2012 

 El almacenamiento de energía térmica como herramienta de mejora de la eficiencia 

energética en la industria (TES in industry), ENE2011-22722, 2012-2014. 

 Mejora de la eficiencia energética en edificios mediante el almacenamiento de 

energía térmica, ENE2011-28269-C03-02, 2012-2014 

 EUROTHERM Seminar Nº99 - Advances in thermal Energy Storage, 2014 

Currently 

 Identificación de barreras y oportunidades sostenibles en los materiales y 

aplicaciones del almacenamiento de energía térmica, ENE2015-64117-C5-1-R, 

Ministerio de Ciencia e Innovación, 2016-2018. 

 Use of innovative thermal energy storage for marked energy savings and significant 

lowering of CO2 emissions (INNOSTORAGE), PIRSES-GA-2013-610692, 2013-

2017. 

 PhD on Innovation Pathways for TES (INPATH-TES), European Union's Horizon 

2020 research and innovation programme under grant agreement No 657466, 2015-

2018. 
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12.4.3 Organizing committee participation 

 Innostock 12
th

 International Conference on Thermal Energy Storage. 

 Eurotherm Seminar nº 93 - Thermal energy storage and transportation: materials, 

systems and applications. 

 INSPIRES July 19
th

, 2016: Behavioural and physical factors in the definition of 

energy building performance. 
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