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Part I

WA R M - U P

To know what you know and what you do not know, that is true knowledge.

Confucius





A B S T R A C T

Urban modeling is a common topic in Computer Graphics applications. Urban
modeling includes several sub-topics depending on the urban elements to work
with: street network layouts, buildings, nature elements (like rivers, gardens, street
vegetation, ...) or traffic simulation, among others. In this thesis we basically work
with urban street layouts. Urban modeling can be used to create new cities, but
here we are interested in city models based on real world cities. A realistic city
model can be a real full model or not. Real full models are those in which every
element (street, intersection, building or tree) in the real world has a match with
the same element in the synthetic model. These real full models are usually used
in geographical information systems, public administrations, architecture, design
or even the cinema industry. However, there are also realistic models without nec-
essarily being an exact replica of the real world city. They are based as well on
real world cities but their difference is the fact that, without keeping all the city’s
elements, they keep the essence of the real city from a perceptual point of view.
These realistic city models are basically used in the video game industry, but also
in cinema, theater or other entertainment industries. Therefore, to get a good re-
alistic urban model, it is necessary to get a real data source and then, depending
on the expected usage, make it smaller without loosing its essential characteristics.

To create a realistic geometric city model, it is always needed to provide the geo-
graphical information of the real world city. One important source of 2D geograph-
ical information is cadastral urban data. This data is always available at public
administrations like city councils and governments. In fact, it is the most accurate
data source and the only one with legal value. However, this information is not
always well structured because it is often plagued with errors and inconsistencies,
usually introduced by council workers who care more about visual rendered ap-
pearance than data consistency when modifying it with any GIS application. We
present in this thesis a robust and generic solution to generate well structured
block and building layouts based on a repairing process applied when these data
are not correct. Our semi-automatic 2D structuring algorithm corrects errors and
ambiguities. It identifies not just simple elements from the input, but also their
connectivity and structure in the corresponding real world elements. Then we
generate the urban data hierarchically structured in blocks and buildings. From
this 2D well structured urban layout, we get a realistic 3D model by extruding
each building with its cadastral defined height.

One of the most important uses of realistic city environments is in the video game
industry. When a company works on a game whose action occurs in a real world
environment, a team of designers must draw and model a simplified model of the
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real city. They simplify the city by reducing its area, removing insignificant streets
and bringing important places closer together. Otherwise, the narrative rhythm
of the history would be too slow when moving from one place to another. The
process of designing a real inspired but simplified city model is a manual task
starting from zero, where the first step is to draw the street network of the final
designed city. We have proposed a solution to automatically generate a first draft
of the simplified city street network. We provide the designer team a shrunk lay-
out from which to continue their design. This shrunk city reduces the real city
area as much as desired, but always preserving the landmarks and most impor-
tant streets, keeping their relative positions. In this way, we get a smaller city but
with the essence of the real world one. This makes the video game player feel like
being there, in the original real city, although it is just a simplified version.

To work with a city model and enable basic operations over it to run as fast as
possible, we have designed and implemented a new data type (city) which uses
different data structures to store its street network. Depending on the algorithm
we want to execute on the street network, we implement it over one structure or
another, always looking to get the optimal computational cost for each operation.
We have also designed and implemented a system to simulate the evolution of
a city, by defining a pipeline of operator modules that are applied sequentially
to objects of type city. All the operators are independent (like black boxes) and
interchangeable to ease any pipeline change.



R E S U M

El modelatge urbà és un àmbit de recerca present en la comunitat de les apli-
cacions d’Informàtica Gràfica. Aquest àmbit inclou diversos camps de treball en
funció dels elements urbans d’interès que s’hi tracten: xarxes de carrers, edificis,
elements naturals (com ara rius, jardins, vegetació, ...) o simulació del trànsit, en-
tre d’altres. En aquesta tesi bàsicament treballem en el context de les xarxes de
carrers. El modelatge urbà pot ser usat per crear ciutats noves; però aquí estem
interessats en aquells models basats en ciutats reals. Un model de ciutat realista
pot ser un model exacte o no. Els models exactes són aquells en que cada element
(carrer, intersecció, edifici o arbre) del món real compta amb el seu corresponent
element en el model sintètic. Aquests models s’utilitzen normalment en sistemes
d’informació geogràfica, administracions públiques, arquitectura, disseny o fins i
tot en l’indústria del cinema. Però també hi ha models realistes que no necessàri-
ament són rèpliques exactes de la ciutat en el món real. Són models igualment
basats en ciutats reals però amb la diferència que, sense conservar tots els ele-
ments de la ciutat, mantenen la seva essència des del punt de vista perceptiu.
Aquests models realistes de ciutats s’usen, bàsicament, en l’indústria dels video-
jocs així com en cinema, teatre i altres produccions artístiques. Així doncs, per
obtenir models urbans realistes cal abans que res disposar d’una font de dades
real. Després, i depenent de l’ús que es vulgui fer amb aquest model, cal reduir-ne
les dimensions, sense perdre en cap moment les seves principals caracterísiques.

Per crear un model geomètric realista d’una ciutat cal sempre proporcionar la in-
formació geográfica de la ciutat real. Una font important d’informació geogràfica
2D són les dades cadastrals de les ciutats. Aquesta informació està disponible en
administracions públiques com ara ajuntaments i altres instàncies de govern. De
fet aquestes fonts són les més acurades, donat que són les utilitzades a nivell ofi-
cial i legal. Però, malauradament, la informació no sempre està ben estructurada
perquè sovint està farcida d’errors i inconsistències habitualment introduïts pels
encarregats del manteniment de l’aplicació GIS que es preocupen més de la vi-
sualització de les dades que de la seva consistència geomètrica. En aquesta tesi
presentem una solució robusta i genèrica per crear models ben estructurats d’illes
i edificis basada en un procés de reparació quan les dades no són correctes. El
nostre algorisme semiautomàtic d’estructuració 2D corregeix errors i ambigüitats.
No només identifica els elements de les dades d’entrada, sinó que també troba la
connectivitat i estructura dels elements corresponents en el món real. A continació,
es generen les dades urbanístiques estructurades de forma jeràrquica en illes i ed-
ificis. A partir d’aquesta disposició ben estructurada s’obté un model 3D realista
per extrusió de cada edifici usant la seva altura cadastral.
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Un dels usos més importants d’entorns realistes de ciutats es troba en l’indústria
dels videojocs. Quan es treballa en un joc l’acció del qual es desenvolupa en un
entorn del món real, un equip de dissenyadors s’ocupa de dibuixar i modelar un
model simplificat de la ciutat real. En aquesta simplificació redueixen l’àrea de
la ciutat, eliminen carrers no rellevants i acosten les posicions relatives dels llocs
importants de la ciutat. Altrament, el ritme narratiu de la història seria massa
lent l’usuari s’hagués de desplaçar d’un lloc a un altre. El procés de disseny d’un
model de ciutat inspirada en una de real però simplificada és manual. La primera
etapa consisteix en el dibuix de la xarxa de carrers tal i com es desitgi distribuir
la ciutat. Hem proposat una solució per generar automàticament un primer es-
borrany d’aquesta xarxa de carrers de la ciutat simplificada. Proporcionem una
disposició de carrers de la ciutat reduïda a partir de la qual l’equip de disseny
podrà continuar la seva tasca. Aquesta ciutat "encongida" redueix l’àrea real de la
ciutat en la mesura del desitjat per l’usuari preservant sempre els llocs importants
i els carrers principals, i mantenint les seves posicions relatives. D’aquesta manera
obtenim una ciutat més petita però amb l’essència de la ciutat real. Això fa que
l’usuari del videojoc se senti com si realment estigués en la ciutat de referència tot
i tractar-se d’una versió simplificada.

Per treballar amb un model de ciutat que permeti aplicar-hi operacions bàsiques
que s’executin el més ràpid possible, hem dissenyat i implementat un nou tipus
de dades (city) que fa servir diverses estructures de dades per emmagatzemar la
seva xarxa de carrers. Segons l’algorisme que vulguem aplicar a aquesta xarxa,
s’implementa sobre una estructura de dades o una altra per tal d’obtenir un cost
computacional òptim en cada cas. També hem dissenyat i implementat un sistema
per simular l’evolució d’una ciutat amb un pipeline d’operadors que s’apliquen
seqüencialment a objectes del tipus city. Aquests operadors són independents
(capses negres) i intercanviables per facilitar qualsevol canvi en el pipeline.



1
I N T R O D U C T I O N

T his chapter is an introduction to the work done in this thesis and what we
are going to talk about in this document. We can find in this chapter an
introduction to the topic in which this thesis is developed, the urban mod-

eling and specifically for realistic cities. Also in this chapter, we expose the specific
issues that we want to face and an explanation of how we want to contribute to
the urban modeling community achieving our goals. Finally, we also present an
overview of how this document is structured.
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8 introduction

1.1 introduction

In Computer Graphics (CG) applications, one of the ultimate goals is to generate a
synthetic image from a given scene by means of a computer. A scene file contains
3D models in a strictly defined language or data structure, and it is usually de-
scribed by geometry, camera, textures, lighting and shading properties. All these
elements are necessary to get an accurate realistic synthetic image, if one of theme
fails, the final results will not look as real as desired. Even so, we can consider the
3D models as the primary elements to create a computer-generated image. Pre-
cisely this point is the one of our main interest, how to generate 3D models of
real urban environments. CG is a wide community with many different research
lines in it. The CG line of research that studies the generation of synthetic urban
environments is called Urban Modeling. Since early 2000, computer graphics has
witnessed an explosion of research enthusiasm applied to the design of complex
and realistic entire city environments, as well as individual building exteriors. This
is certainly not surprising considering the great needs from architecture, cinema,
video game and other entertainment industries for such synthetic environments.
In Urban Modeling and CG applications, but also industry and research, we can
see city models of synthetic environments or realistic environments. We want to
focus our research on realistic models, which means that we want to get cities
representing real world ones.

The scope of this thesis is the design of realistic city environments with data ex-
tracted from official documents. The work has been divided in two main parts,
the first one is to create a 3D model from unstructured cadastral data. The second
is to reduce a real city model area, while maintaining it essential characteristics.
Both parts are expected to have a large impact on the different stakeholders, like
local city councils or video game developers.

As mentioned, we want to work on the creation of real city models. To gener-
ate this kind of models, we have to start from real data. One of the most accurate
sources of 2D geographical urban information is cadastral data. It is the most accu-
rate data source, the only one with legal value and, moreover, it is freely available
data on public administrations. However, this information is not structured in a
useful way to create a 3D city model. Cadastral data is often plagued with errors
and inconsistencies introduced by council workers when modifying it with any
Geographical Information System (GIS) application. We have found a surprising
lack of algorithms that automatically correct these errors and give a good struc-
ture to this data. Hence, our first challenge is to develop a robust and automatic
method to detect and correct cadastral urban data, cleaning it from errors, ambigu-
ities and inaccuracies. Then, we want to obtain well structured data by recognizing
blocks, buildings or any other urban element from which we could be able to gen-
erate a 3D model to be rendered in a synthetic scene. In this way, we can get model
with an accurate building footprints of any real city of the world based on it.



1.1 introduction 9

Nowadays, one of the most powerful industries of the world is the video game
industry. Besides, many video games are set in real cities. To make the player feel
like moving through a real city, the model designers should make a realistic model
of the city inspired by the real one. This realistic model should keep the essence of
the real city but reduce considerably its size. This city reduction should be done to
avoid situations in which the player may spend too much time in irrelevant streets
when going from one action point to another. To create such city, the first step is to
create its street network. The designer thus starts by detecting the most important
and characteristic streets and places (landmarks) that should be recognizable by
the player, making an association between the synthetic city and the real one. A
landmark can also be a key place for the game story, although perhaps without be-
ing a city famous place. The relative positions between landmarks should also be
respected as much as possible; imagine a New York model in which Liberty Statue
is in the North of the Manhattan island; this would not make good sense. Getting
these landmarks detected, the designer should put them in closer positions one
another. It also should keep the most important streets, avenues and parks. Finally
it should fill the areas between landmarks with less important streets to get rea-
sonable block densities. Once the city street network is created, the next step is to
design the buildings in each city block, putting special effort in having detailed
models of the landmarks. This is a manual process that designers often do. Our
goal is to automate the process of getting a reduced street network from a real
city. Our objective is to do this in a guided way, by removing the less important
areas and preserving landmarks, important streets and their relative positions to
get a smaller city while maintaining its original essence. The resulting city layout
should be a good draft from where designers can continue the city model design.

When working on the shrinking city project, we realized that we needed a ba-
sic platform to store a city in a robust and efficient data structure, together with a
set of basic algorithms to operate over it. Hence, we decided to implement a full
library to work with city data, a platform from which other researchers and de-
velopers can start working without being concerned about how to store their city
models or having to implement frequently used operations over street networks.
The city data type should be an optimized implementation in which all the basic
street network operations should go as fast as possible. Besides, we saw that our
shrinking process is an evolution of a city state: from an original state to a smaller
one. So, we implemented a generic way of simulating a city evolution by applying
a set of operators over the target city, sequentially. To do it, we define an interface
that any new operator should accomplish, and then define a pipeline in which
the library user can, in a flexible way, define the chain of operators to transform
the city. This challenge has resulted in the CityLib library, which implements the
city data type, a set of basic operators and the CTOps system to make the operator
pipeline.
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1.2 thesis overview

We have organized this thesis in the following chapters:

chapter 1 : introduction :
This first chapter is an introductory chapter to place the reader in urban
modeling and explain what this thesis is about.

chapter 2 : previous work :
The chapter establishes the basics to understand the urban modeling com-
munity work and interests. We will also present the different publications
related to the creation of real city models, and the difficulties to work with
real urban data providers. Then, we will analyze different publications doing
city street network generalizations and transformations with some similari-
ties to our shrinking process. In this final part we will also introduce different
data structures used in other papers to store a street network.

chapter 3 : structuring urban data :
In this chapter, we will explain our semi-automatic method to detect, process
and correct 2D urban data. We introduce the common errors, ambiguities
and inaccuracies that appear in an administration’s cadastral data and how
we find and fix them. Then we will propose a process to structure the differ-
ent entities used to "draw" the maps into a hierarchical structure of blocks
and buildings that can finally be extruded to get 3D models of real cities.

chapter 4 : shrinking cities :
In this chapter, we present a process that automates the first steps that de-
signers should do when they want to create a new real city model. We will
see how we transform an original city layout in a simplified one by reducing
less important areas and streets. The result is a smaller city with its essence
preserved by keeping its most important places and their relative positions.
We will explain how this process can help the video game industry when
designing real city-inspired models.

chapter 5 : system : the citylib library :
This chapter is more technical and it explains the library we have imple-
mented to support the shrinking process. We will present the CityLib library
with its three main parts: The city data type, a set of basic tools that can be
applied over a city street network and the CTOps (City Operations) pipeline
to simulate any urban evolution on a city model.

chapter 6 : conclusions :
The chapter recapitulates and summarizes the goals achieved in previous
chapters. We present our main conclusions about the Structuring and Shrink-
ing processes and also about the implementation of the CityLib library.
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chapter 7 : future work :
Finally, we explain in this last chapter all our ideas about how to continue
our work, about the different future work that can be proposed from the
processes presented in this thesis.





2
P R E V I O U S W O R K

I n this chapter we introduce the reader to the Urban Modeling area in Com-
puter Graphics (CG) and contextualize the content of this thesis. Firstly, we
give a brief introduction to Urban Modeling in the CG community and de-

limit our area of interest in it. Then we talk about the state of the art and publi-
cations related to our work: modeling real cities. Finally, we discuss the relevant
contributions of papers that we had to consider before starting this thesis.
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2.1 introduction

New solutions have been proposed and many commercialized software products
are dedicated to solve different problems related to urban and architectural envi-
ronment representation, design or planning. In this thesis we are interested mainly
on procedural techniques applied to city layout modeling, so our main focus is not
on techniques for the design of buildings or their photo-realistic rendering. Said
differently, in the context of urban representation we are not interested in the con-
ception of synthetic imaginary cities. Nonetheless, the results of our work may be
used in these contexts.

Our first interest is on the representation of real cities from cadastral informa-
tion provided by a city local council, looking for a robust solution that optimizes
the guarantee of using our results for applications that either require coherent real
cities or may take advantage of it, including entertainment and marketing appli-
cations in need of a realistic city model. Our other interest is on how to reduce
a real city area without loosing its essence by keeping its points of interest and
maintaining their relative positions; a smaller city thus inspired by a real one. We
mean by "real city" an existing one or a project for a future urban environment.
See Figure 1.

Figure 1: Real city procedural modeling includes considerations for different city levels of
detail.
Reprinted from [70].

In this chapter, we focus on the previous work related to our areas of interest and
goals. In this context, we thought from the beginning that we had to study some
of the work on synthetic city generation and building reconstruction given that
some problems could be common with our work.
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2.2 urban modeling

Existing methods for procedural urban modeling roughly use the pipeline shown
in Figure 2, or at least a part of it. As we can see, the traditional urban modeling
pipeline is a 5-step one, where two of its steps (roads and buildings) can be further
subdivided.

Figure 2: The traditional urban modeling pipeline.
Reprinted from [70].

The first conceptual step, the input, usually works on certain ranges of inputs,
like Vanegas et al.’s state-of-the-art report (STAR) [70] explains. Some papers have
as input a specific target architectural design, like Dosch et al. [20], Lewis and
Séquin [42] and Yin et al. [76]. Aliaga et al. [5] use as input a 3D model, GIS data
or imagery. Other papers use socioeconomic data or elevation data, like Vanegas
et al. [69], or tensor fields like Chen et al. [17]. Note that none of these approaches
aim at using accurate city data, generally available from local city council GIS
databases.

Road generation usually is divided in two different stages: Firstly, major roads
like avenues are produced, and after, minor roads are built in the areas generated
between the major roads. Techniques for generating these roads usually include
extended L-systems (Parish and Müller [52]), hyper-streamlines (Chen et al. [17]),
directed random walks (Aliaga et al. [5]) and growth from seeds or traffic sim-
ulation (Weber et al. [72]). Again, we observe a surprising lack of accurate data
processing, but this is understandable, as most of these techniques are aimed at
the creation of synthetic cities for entertainment or conceptual design purposes.

Following our pipeline, the next stage, creation of blocks and lots, usually consists
either of some sort of recursive block subdivision [52, 72] or a Voronoi-diagram-
based subdivision algorithm [5, 69] to fill in the areas between streets. Again, both
types of methods are focused on the production of synthetic cities, without any
attention to accuracy issues with respect to real cities. Once a layout exists, either
generated from scratch or imported, it may be modified using local edition of
streets and blocks, or applying more sophisticated techniques. These techniques
provide the user with the possibility of adding, removing or changing the loca-
tions of elements with a larger (global) effect on the new layout. An example of
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this could be to change the location of an important street (let us say a street
traversing the whole city for example) like Lipp et al. [43] do. Other proposed
powerful tools insert or merge layouts into (with) another layout designed inde-
pendently, like Aliaga et al. [5, 4] did, and again Lipp et al. [43] later on.

The final stage, building modeling, usually uses shape/split grammars (Müller
et al. [51] and Parish and Müller [52]), mass/façade modeling (Whiting et al. [73]),
build by numbers (Aliaga et al. [3] and Bekins et al. [8]) or image-based synthesis
techniques.

Most of these papers deal with new approaches or improving techniques for the
use of parametric tools for the generation of synthetic cities [5, 38, 51, 52, 71, 72,
74, 76], but no one of them directly face the cleaning process of real urban data.
Let us first introduce the paper main features and afterwards discuss the elements
of these contributions more strictly related to our work.

2.3 structuring

The first part of the thesis deals with the robustness of city cadastral data in order
to be able to derive reliable 3D models of real cities. What we actually realized is
that there is an important void in the field of CG concerning the study of restor-
ing cadastral data in order to provide reliable city structures. In this section we
review the geometric models of city layouts used in previous work. We analyze
the format of the 2D information in relevant urban modeling papers as well as
in different papers surveying urban modeling and building generation. We also
review papers that explicitly refer to real cadastral data.

Parish and Müller [52] proposed the first procedural approach to city modeling,
at least to our knowledge, based on L-systems (the system is named City Engine),
previously used in other applications like tree generation and blood vessel net-
works. L-systems are used for both street generation and building modeling. The
system starts generating a network of streets, roads, and highways, based on socio-
statistical information. Afterwards, it divides populated areas into smaller areas,
which each represents city blocks, taking into account given city rules like, for
instance, minimum block area. Finally, buildings are modeled in each block, also
using city rules like, for example, the relation between block area and building
height. The input information does not include cadastral data representing real
blocks of a given city. Blocks are generated using a recursive algorithm that stops
at a given area threshold. Therefore, the system creates cities that do not repre-
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sent real cities, even though, by introducing some specific feature rules, generated
cities could resemble existing ones. See Figure 3. Actually, an important constraint
is introduced in the block generation, as they are assumed to be "... convex and
rectangularly shaped. The system therefore forbids the creation of concave allot-
ments."

Figure 3: A procedural network model of Manhattan using an L-system for streets cre-
ation. Top: The L-system-based growth of streets. Middle: The resulting roadmap.
Bottom: The real Manhattan’s street network.
Reprinted from [52].

Later, Müller et al. [51] presented a novel grammar called Computer Graphics Ar-
chitecture (CGA) shape for the procedural modeling of high quality buildings with
geometric details. It is designed to produce complex architectural environments
for computer games and movies at low cost.

Weber et al. [72] introduced interactivity that allows edition during the simulation
of cities over time (Aliaga et al. [5] also allows it in a different way). The authors
claim also to be the first to propose an urban simulation system that includes re-
alistic geometric configurations that are not forced on a regular grid. Nonetheless,
we have understood that Parish and Müller [52] blocks are neither forced to be
on a regular grid. As input, the pipeline of the proposed methods receives, in ad-
dition to environment information (height map, water map, forest map and land
use type), an initial layout configuration ranging from a single street to a larger
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network of streets, potentially from real existing streets. Information on blocks
is not in the input data. Aliaga et al. [5] presented a novel technique to produce
new layouts, combining street and block structure with aerial image of synthetic
cities; either to create new urban layouts or to simulate the extension of new ones
based on examples (of real or synthetic cities). The system permits several editing
operations as joining, expanding and blending layout fragments. Lipp et al. [43]
presented a method specifically dedicated to edit with user criteria existing city
layouts.

Some of already mentioned references (Kelly and Mc Cabe [38], Watson et al. [71],
Yin et al. [76]) along with Vanegas et al. [70], present different overviews of the
field as surveys, tutorials or STARs. The most recent ones, so the most relevant
from an up-to-date point of view, are proposed by Yin et al. [76] and Vanegas
et al. [70]. The former is a survey with an overview and a comparison of tech-
niques and systems designed to deal with the automatic generation of 3D building
models from 2D architectural CAD-based drawings, as well as from architectural
drawings, from floor-plan images inform of pictures or hand-made (like Dosch
et al. [20]). Therefore, the part of this work of particular interest to us is about
accurate 2D files of the city layouts. We are specially interested on Yin et al. [76]
techniques to deal with the Computer-Aided Design (CAD) files. In Vanegas et
al. [70], there is a first step where the paper drawings are scanned and processed
in order to produce a file with segments or polylines (here human assistance may
be even more unavoidable than in the other systems we will review in the follow-
ing paragraph). After this phase, the problem is very similar to the one presented,
not clean data to process. This is very usual in architectural CAD files. If the CAD
files have been produced, modified, merged, etc. accurately the procedure is sim-
pler.

One of the main contributions mentioned in the survey of Yin et al. [76] is the pa-
per by Lewis and Séquin [42], (a similar method was developed at Massachusetts
Institute of Technology) where they use as input CAD-based floor plans. The sys-
tem applies a pre-process to organize the input in dedicated layers, as also done
in other work like Mas and Besuievsky [49]. Referring to Lewis and Séquin [42],
Yin et al. [76] say that: "Although some pre-process simplifies the recognition al-
gorithm task, the geometry typically suffers from errors and ambiguities". This
assertion, in our point of view, is a very important issue to take into account. An-
other interesting work, also referred in this survey, is the one by Lu et al. [45],
based on a heuristic that recognizes certain patterns. The system is highly auto-
mated with adequate inputs, but it is fragile when the input quality is insufficient.
Other techniques discussed in the survey require additional semantic information
associated to the geometry input or deal with simplified input geometries. Yin
et al. [76] insist on the need for a cleanup stage as both, vectorized hand-drawn
images and computer-sketched drawings, suffer from disjointed segments, over-
lapping vertices and false intersections. We may add from our experience that
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other problems arise like duplicated edges, adding further problems to the recon-
struction process. Hence, we can conclude that it is a common understanding that,
before working with polygons, designers must launch certain operations to clean
up geometrical errors. They can do this cleanup manually or by using algorithms
such as snapping to a grid. Although this solution may be suitable for architec-
tural reconstructions, it proves inadequate for dealing with a whole city cadastral
map. Also, in the conclusions of their survey, Yin et al. [76] state that few systems
fully address the problem of generating 3D building models from 2D architectural
drawings, and that they are not completely automated the computation of consis-
tent layouts, being an open issue that still requires significant manual intervention
and will continue to do so as long as architectural representations contain ambi-
guities or inconsistencies. The same can be said about cadastral city data.

Vanegas et al. [70] presented a STAR about very interesting topics and open prob-
lems in the field of city simulation. It covers the modeling and simulation of new
urban environments, proposes solutions for restoration/conversion of restricted
areas of a city, and simulates how a city will grow given an evolution model taking
into account not only geometric constraints. Nothing is said concerning eventual
errors and ambiguities of 2D layouts. The hypothesis of perfect 2D layouts is as-
sumed.

Previous to these two overviews, other papers look at the problems from different
points of view [38, 71, 74]. Kelly and McCabe [38] offer a systematic description
of several procedural techniques for city generation. For each technique, they de-
scribe road network and building generations. After the description of each sys-
tem, they provide a synthetic list of conclusions according to a number of criteria:
realism, scale, variation, input, efficiency, control and real time. Concerning the
input, of major interest for our work, the only significant information reports that
it is important to avoid using real-world data as input. We believe that they said
so perhaps because of their inherent problems: errors and ambiguities are com-
monplace in real-world data.

Wonka et al. [74] give, in their tutorial notes, a light introduction to Stiny’s shape
grammars and the algebra they are based on [65]. The tutorial deals with all the
steps, including rendering and texturing. It is aimed at the entertainment (video
game) applications. Concerning our topic of interest, the tutorial refers to the use
of techniques where the user interacts with the model; thus, no contributions on
automating the generation of the floor-plan model are presented. Also, Watson et
al. [71] present a short survey of techniques for the generation of urban environ-
ments (streets and buildings) for film and game applications. It is devoted more
to the generation of new cities than to the reconstruction of existing cities. Never-
theless, there is a paragraph reviewing the previous contributions on the use of
2D layouts as the basis for the modeling of the buildings.
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After reviewing the survey references on 2D inputs and how they manage this
information, we can mention a few other papers. Fabritius et al. [27] provide a
new approach, that has as goal to make easy and real-time the creation of high-
quality complex 3D city models from 2D map data and terrain informations. The
proposed technique for model generation is based on 2D street and building maps
of existing cities. Unfortunately, the authors state that the 2D data from real-world
sources contained a considerable amount of degeneracies such as isolated seg-
ments, holes, redundant vertices, that would make their algorithm fail without a
careful cleaning pre-processing step. Therefore, they use graph-based algorithms
for cycle detection to identify loops. Unfortunately the authors do not say which
algorithms they use neither how robust these algorithms are. They however say
that, for a small number of remaining ambiguous or inconsistent configurations, it
turned out that simple manual intervention was needed. Our objective is to avoid
such manual cleaning step by providing a completely automatic and robust solu-
tion.

We finish the presentation of this previous work with two mutually strongly re-
lated papers by Flamanc et al. [29] and Taillandier [66]. These two papers present
work done in the French Institut Géographique National (Laboratoire MATIS).
Both papers deal with the modeling of 3D buildings/cities using aerial images in
order to derive their roofs. When the roofs have been detected and categorized,
the authors use cadastral maps to determine the walls of the buildings. In the
two contributions we find the same kind of problems explicitly described by the
authors. Flamanc et al. [29], after assuming correct 2D cadastral polygons, write
that 2D ground map polygon edges are not always the real building facades. Then,
they add that some user-assisted tools are absolutely necessary to correct them. In
his discussion, Taillandier [66] underlines a limitation of the proposed technique,
explicitly stating its inability to account for cadastral map errors.

2.3.1 Summary

So far we have tried to group the papers on the basis of their main objectives,
always taking into account the proximity of these goals to our subject of interest.
Below we summarize the related previous work along the lines of our structuring
project, putting a special emphasis on aspects of our specific interest that we have
found in the studied papers.

We often find that the systems start by, or have as a target, creating a network
of streets based on different criteria. For example, Parish and Müller [52] start
with an L-system generating a network of streets, roads and highways based on
socio-statistical information. Then, they divide the populated areas into smaller
areas called blocks, taking into account given city rules (for example, minimum
block area). For Aliaga et al. [5], the objective is to produce new layouts for both,
streets and blocks, creating structure of synthetic cities based on examples (from
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real or synthetic cities). The system uses editing operations as joining, expanding
and blending pieces from other layouts.

Concerning the generation of blocks, we found several approaches (the most ad-
vanced using social and administrative constraints). For Parish and Müller [52],
the input does not include cadastral data defining real blocks. Blocks are gener-
ated using a recursive algorithm that stops at a given area threshold. Actually, an
important constraint is introduced in the block generation assuming they are con-
vex and rectangularly shaped. They also force the blocks to fit on a regular grid.

It is obviously of the highest interest for us, in the context of this work, to analyze
how previous work deal, if it is the case, with cadastral geometric information.
This data is imperative for systems working with real cities, while it is not with
synthetic cities. Therefore, given that many papers are applied for entertainment
purposes, they may obviate cadastral information. Although, sometimes they use
such a type of information in order to generate city layouts similar to existing
urban environments. In these cases, approximated cadastral information may be
acceptable. As we have seen above, Flamanc et al. [29], when the roofs have been
detected, use cadastral maps to determine the walls of the buildings assuming cor-
rect 2D cadastral polygons. Unfortunately, that assumption is not usually correct
unless a pre-process has been applied. In other contributions [76] a cleanup pro-
cess is applied to the input data in order to make the geometric cadastral CAD data
usable. If the input is a scanned map, then another previous pre-process is needed
to generate CAD-like files. As we will later see, even when the cleanup pre-process
is applied, the data still remains prone to several errors and inconsistencies, given
the numerous difficulties and ambiguities in the original data. Moreover, these pa-
pers do not give significant details on the cleanup pre-process itself.

To end this section we list a number of comments to summarize it. They are either
compiled from the studied papers or derived from them (according to our best
understanding). These comments from our point of view confirm the interest of
the problem we have dealt with in our project, and so the interest of our results.

assumptions & limitations

• Parish and Müller [52]. An important constraint is introduced in the
block generation: they are assumed to be "[...] convex and rectangu-
larly shaped. The system therefore forbids the creation of concave allot-
ments." This can not obviously be applied for many real cities.

• Vanegas et al. [70]. Nothing is stated concerning eventual errors and
ambiguities of the 2D layout. The hypothesis of coherent and correct
2D layouts is assumed.
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manual intervention

• Flamanc et al. [29]. They come to realize that cadastral data is not consis-
tent: "Moreover, 2D ground map polygon edges are not always the real
building facades" and their solution is to allow manual intervention: "it
is absolutely necessary to add some user-assisted tools".

• Wonka et al. [74]. It refers to the use of techniques where the user inter-
acts with the model. No contribution on automating the generation of
the floor plan model is suggested.

• Fabritius et al. [27]. They faced the difficulties related to cadastral data:
"Unfortunately the provided 2D data contained [...] a considerable amount
of degeneracies such as isolated segments, holes, redundant vertices".
They do not say which algorithms they used neither how robust these
algorithms were to solve these problems. They actually point out: "How-
ever, for a small number of remaining and ambiguous or inconsistent
configurations it turned out that simple manual intervention".

robustness

• Taillandier [66]. A limitation of their proposed technique is underlined:
"its inability to account for cadastral [...] errors".

• Kelly and McCabe [38]. They consider that it is important to avoid using
real world data as input. Perhaps because of the problems inherent to
them, probably in the form of errors and ambiguities.

• Referring to the paper of Lewis and Séquin [42], Yin et al. [76] say:
"Although this simplifies the recognition algorithm task, the geometry
typically suffers from errors and ambiguities".

• Referring to the work of Lu et al. [45], Yin et al. [76] state that the
system is highly automated with appropriate inputs, but its robustness
is fragile when the input quality fails.

Let us conclude this section with Yin et al. [76], who insist in their survey on
the need of an "error cleanup" stage as "Both vectorized, hand-drawn images and
computer-sketched drawings suffer from disjointed lines, overlapping vertices and
false intersections." The cleanup may be done "[...] manually or by using algo-
rithms such as coerce-to-grid". In the conclusions of their survey we find that the
"few systems that address the problem of generating 3D building models from
2D architectural drawings aren’t completely automated" the computation of con-
sistent layouts being an open issue given that it still requires "significant manual
intervention and will continue to do so as long as architectural representations
contain ambiguities or inconsistencies."
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2.4 shrinking

The second part of our work deals with simplification, in a broad sense, of city
layouts. We call this project shrinking cities. In the context of urban modeling we
find two correlated concepts that embed simplification: legibility and generalization.
Urban legibility was introduced by Lynch [46], stating that a legible city would be
one whose districts, landmarks or pathways are easily identifiable and are easily
grouped into an overall pattern. Lynch considers that people should intuitively
understand a city including not only geometry but also semantic information. We
did not find a formal, widely accepted definition for generalization. According to
Edwardes and Mackaness [23], generalization is a complex process that attempts
to mediate between detailed spatial data and cartographically represented geo-
graphic information. We also find definitions correlating both concepts, like by
Raheja and Kumar [62], where they assert that the purpose of cartographic gen-
eralization is to represent a particular situation adapted to the needs of its users,
with adequate legibility of the real situation and its perceptional congruity with
the representation. We actually have concluded that both words are often used
as synonyms even though the use of generalization prevails when referring to the
process and legibility is used as the quality of the result of the process.

Müller et al. [50] differentiate two types of generalization in GIS: cartographical
generalization and model-based generalization. We are interested on model-based
generalization that can be defined as mainly oriented to a structural-based filter-
ing, while cartographical generalization deals with geometrical simplification in a
scale reduction process. Therefore, we will use from now on the words simplifica-
tion and generalization indifferently as synonyms.

The contributions we have studied strongly rely on the use of graph theory tools
even though other fundamental tools are used, such as information theory princi-
ples (Bjørke et al. [11, 12]) or tree data structures (Chang et al. [15, 16]). A reference
work for the use of graphs in this field was provided by Mackaness and Beard [47].
In a primal graph, nodes represent street intersections and edges stand for streets
or street segments while in a dual graph, nodes represent streets and edges stand
for street intersections. For detailed discussion on the pros and cons of primal and
dual graphs we may refer to the work by Porta et al. [54, 55].

Let us clarify here the dual graph concept. In mathematical graph theory, the dual
graph has a node corresponding to each face of its primal graph and an edge join-
ing two neighboring faces through each primal graph edge. A different graph is the
line graph (also known as edge-to-vertex dual graph), where each vertex represents
an edge of its primal graph and each edge represents two primal graph edges with
a common endpoint. See Figure 4 for an example of a primal graph and its derived
dual graph and line graph. Hence, what Porta et al. –but also other authors in the
urban modeling community– call dual graph, is actually a line graph or, if we prefer,
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an edge-to-vertex dual graph. Aliaga et al. [5, 4] and Edwardes et al. [22, 24, 23] use a
dual graph but they named their graphs differently: tiles graph and adjacency graph
respectively. Jiang and Claramunt [36] use what they call connectivity graph, which
is in fact a line graph.

Figure 4: A primal graph (Left) and its derived line (Middle) and dual graphs (Right). Each
node in the dual graph represents a colored area in the primal graph.

In a first approach we may classify the papers related with our focus of interest
into two groups:

• Street network generalization.

• Application oriented generalization.

2.4.1 Street network generalization

In this section we review the background on generalization techniques for street
networks, regardless of the application which the simplification is used for. As
we will see, a number of techniques have been proposed in order to reduce the
complexity of street networks, producing new models with less information while
keeping the essential information. This is often associated to the change of scale
of the model, reducing the details to be visualized, but it is also employed to ob-
tain schematic representations (and, in general, better visualizations) of city street
networks.

Edwardes et al. [22, 23, 24] presented one of the first contributions in this do-
main. Their simplification criterion is to reduce the number of city partitions by
merging small areas into larger ones. In a first step they define strokes by means
of concatenating streets with "good continuation", without branches. From these,
cycles (polygons) representing partitions of the city are defined. Finally a dual
graph is built where nodes represent partitions and links represent adjacency be-
tween partitions. Weights derived from the strokes separating adjacent partitions
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are assigned to the links. This adjacency graph is the basis for the generalization
of the network, which is carried out by removing the less important streets. This
is achieved by eliminating partitions with an area below a given threshold while
keeping the characteristic structure of the city’s network and preserving its den-
sity distribution.

The principle of grouping partitions to simplify the model of a city is also ap-
plied by Chang et al. [15, 16]. The authors substantiate their technique on the
concept of legibility from Lynch’s book [46]. They aggregate elements in such a
way that provides different levels of abstraction using a level-of-detail (LOD) hierar-
chy. We consider only the concepts dealing with layout simplification even though
they also propose 3D visualization. In their first work [15], street networks and
building footprints are considered. Therefore, their input is a collection of paths
(the above strokes) representing streets, rivers, etc. and a collection of groups of
edges, each one representing the footprint of a building. In their later work [16],
the input information is just the set of building footprints of the city. In both cases
they generate a hierarchical tree structure where leaves are building footprints and
all other nodes represent clusters containing pairs of nearby buildings or clusters.
Proximity is bounded by the width of the paths in order to group partitions on
the same side of a street. A metric is proposed in both papers in order to obtain
an acceptable balanced tree. In the last step, for each non-terminal node, the pair
of elements (buildings or clusters) is merged, generating a single polygon (called
merged hull) that represents the corresponding level of abstraction. Pruning the re-
sulting tree at a given level provides the correlated simplified model of the city
layout.

Other criteria for the simplification of street networks are the use of centrality (im-
portance) measures assigned to elements of the network. Jiang and Claramunt [36]
use a line graph representation (called connectivity graph) where nodes represent
named streets (entire streets, not segments) and edges represent the intersection
of the nodes (streets) it connects. Here streets play a role similar to the strokes of
Edwardes et al. [23] and the paths of Chang et al. [15]. The following centrality
measures may be assigned to each node:

• Degree: The number of edges incident upon a node.

• Closeness: The reciprocal of farness. Farness of a node is the sum of its
distances from all other nodes, the distance between two nodes being the
length of their shortest path.

• Betweenness: The number of times a node is traversed by the shortest path
between two other nodes.

For each centrality measure, a hierarchical structure may be derived. The resulting
tree is used to simplify the network representation by means of pruning it based
on a given threshold of the centrality measure.
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An interesting approach that is a bit far away from our current interest is the
use of information theory principles to simplify road networks with the concept
of perceptual similarity of two elements. Bjørke and Isaksen [12] apply this idea
to delete roads that obtain close values when applying the similarity function. Of
course, the candidate to be removed could have a semantic value that demands
its presence anyway after the simplification process. In order to avoid removing
undesired roads, the proposed technique uses additional information related to
hierarchy and connectivity assigned to each road.

2.4.2 Application-oriented generalization

In different fields, network simplification techniques have been proposed for spe-
cific applications. We here review generalization methods designed to improve the
usability of route maps, i.e., to enhance their legibility (visualization). To reach this
goal there are two phases: determine the important elements (streets and Points
of Interest (POI)) of the map and generate clear and uncluttered visualizations of
them.

Some interesting work, not strictly related with our goal, have been proposed
to enhance the legibility of maps, offering clear visualizations of 3D landmarks
like by Grabler et al. [34] and Qu et al. [61]. These papers propose simplification
techniques to highlight important streets and landmarks.

The map simplification approaches related to our research focus on the genera-
tion of the following routes:

• Route from a starting point to a destination point [2].

• Routes from anywhere in a given region to a destination point [40].

• Routes for multiple destination points [9, 40].

Agrawala et al. [2] proposed route (from a starting point to a destination point)
generalization techniques based on cognitive psychology research, showing that
an effective route map must clearly communicate all turning points on the route,
and that precisely depicting the exact length, angle and shape of each road is much
less important. Therefore, they keep turning points and propose three generaliza-
tion operations: length generalization, to shorten or extend roads; angle generalization,
to open tight angles; and shape generalization, to remove useless changes of road
topology.

Kopf et al. [40] propose an automatic generation of destination maps. They con-
sider that destination maps are navigational aids designed to show anyone within
a region how to reach a location (the destination). This can be seen as a generaliza-
tion of the problem solved by Agrawala et al. [2], but it is addressed in a different
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way. A hierarchical navigation approach is used, selecting first globally important
roads (e.g., highways) and taking less-important ways (arterial streets, residential
streets) as they approach the destination point. In order to provide a good vi-
sualization, they apply well-known scale and orientation techniques to simplify
selected streets.

We include in the topic of multiple destination points two similar but different
problems. One of them is to automatically provide a legible and efficient set of
routes to reach n POIs from anywhere in a given area embracing those POIs. The
feasibility of solving this was experimentally verified by Kopt et al. using a hier-
archical approach [40]. The other problem to solve is to automatically generate a
legible and efficient set of routes to connect each of n POIs to the other n-1 POIs.
This is dealt with by Birsak et al. [9] to produce tourist brochures. The process
starts computing all the shortest paths between the n POIs. The result is a cluttered
and dense graph that requires a cleaning post-process to eliminate less significant
and, eventually, redundant paths. This post-process is applied iteratively until the
graph is sparse enough.

2.4.3 Summary

In our bibliography research we did not find papers addressing the problem we
want to face, i.e., to reduce a city area, getting a new street network layout with
closer POIs, while keeping the most important streets and the relative positions of
these landmarks; in other words, to automatically get smaller cities, retaining their
essence. In this section we have reviewed papers that focus on related problems.
These are solved based on principles and/or tools that could be of our interest. We
note that these contributions strongly rely on the use of graph theory tools [47],
even though other fundamental tools are used, such as information theory princi-
ples [12] or tree data structures [15, 16]. Two groups of papers have been studied,
one of them dealing with generic simplification operations and the other with a
specific application field for the generation of ad hoc route maps. From the point
of view of our work, the last group of contributions are mainly built on top of
techniques introduced by the former group.

From this previous work study, we conclude that these papers contribute to tech-
niques eventually useful for our work, even though none deals with problem we
are interest on [15, 16, 22, 23, 24, 36]. We assume their input information is either
a GIS database or a primal graph. All but Chang et al. [16] use, as basic modeling
unit, a group of connected street segments called strokes [22, 24], paths [15] and
streets (they are actual streets) [36]. Let us use stroke here to refer to these three
elements. Edwards et al. [22, 24] use strokes to define cycles that bound areas (not
necessarily lots, blocks or buildings), while Chang et al. [15] use building foot-
prints in addition to strokes. On the other hand, Chang et al. [16] use building
footprints as basic modeling units.



28 previous work

From a primal graph input, all papers build other structures to support their
simplification techniques. As central structure of the proposed simplification tech-
niques, Edwardes et al. [22, 24] build a dual graph called adjacency graph where
nodes represent partitions (areas) and edges represent adjacency between parti-
tions. A line graph called connectivity graph (nodes: streets, edges: street intersec-
tions) is used by Jiang and Claramunt [36]. Finally, Chang et al. [15, 16] build a
binary tree where leaves are building footprints and all other nodes represent clus-
ters containing pairs of nearby buildings or clusters. Edwardes et al. simplify the
networks by means of aggregating small area nodes to one of its neighbors. Jiang
and Claramunt’s simplification criteria are to remove nodes based on their central-
ity values. Finally, Chang et al. base their simplification technique on merging the
pairs of buildings or clusters of each node, generating the boundaries of a new
cluster representing both.



Part II

C O N T R I B U T I O N

It’s a dangerous business, Frodo, going out your door. You step onto the road,
and if you don’t keep your feet, there’s no knowing where you might be swept
off to.

J.R.R. Tolkien, The Lord of the Rings





3
S T R U C T U R I N G U R B A N D ATA

G eometric city modeling is an open problem without standard solutions.
Within this problem, several sub-problems must be faced, like the accu-
rate modeling of streets, buildings and other architectural structures. One

important source of geographical information is (measured) cadastral urban data.
However, this information is not always well structured, and sometimes it is even
simply some form of corrupted GIS data. In this chapter we present a robust and
generic solution for the generation of block and building layouts based on a re-
pairing process applied when this data is not correct. Our input data is a top
projection map of a city which usually has been created by a mixture of pho-
togrametric restitution and, in a second stage, of hand-drawn polylines, polygons
or curves using any GIS application. Moreover, these maps are under continuous
modifications, like in the case of public administrations. This process sometimes
results in the introduction of mistakes and anomalies, which are hard to correct
without the appropriate tools. Our solution is based on a novel semi-automatic 2D
restructuring algorithm, which uniformly corrects errors and ambiguities that are
commonly present in corrupted cadastral data. This problem is complex because
it is necessary to identify not just simple elements from the input file, but also
their connectivity and structure in the real world. The output of our algorithm is
the urban data restructured into a hierarchy of blocks and buildings, from which
we can get a realistic 3D model by extruding each building using the number of
floors within the cadastral data.

31
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3.1 introduction

As said in this thesis introduction (Chapter 1), in recent years urban authorities
have demonstrated an apparent urge to have high quality 3D models of their
cities. These models are important for stakeholders such as architects and urban
designers, cinema and theater, virtual reality and even videogames. Companies
like Google R© and Microsoft R© use high-end digital cameras to acquire aerial or
street-side images for large areas in a cost-efficient way. Once the images are cap-
tured, photogrametric restitution (e.g., [35]) plus manual touches complete the
model. The Infrastructure for Spatial Information in the European Community
(INSPIRE) [18], in 2007, defined rules for addressing the interoperability of spatial
data, including cadastral data. When these guidelines are followed, cadastral infor-
mation is good, reliable and well formatted. However, many local city councils still
operate with legacy data that is plagued with errors and inconsistencies (usually
introduced by council workers who care more about visual appearance than data
consistency). This renders the data unreliable for 3D reconstruction. In these cases,
local authorities face a difficult choice of hiring external 3D scanning services, as-
signing personnel to repair the information, or searching for a cheaper automated
solution. As we concluded in previous work (Chapter 2), from a literature search
on GIS and city modeling [28, 41, 53, 68, 44], we observe a surprising lack of al-
gorithms that automatically (or semi-automatically) solve the problem: the most
promising approaches up to now only provide partial solutions, and commercial
packages fall short of correcting anything beyond the simplest situations (e.g., du-
plicated vertices, missing street intersections or open polygons) [63, 33, 48].

Our objectives are: (1) to develop a robust and semi-automatic method to de-
tect, process and correct 2D urban data, cleaning up errors, ambiguities and in-
accuracies that appear in legacy cadastral maps; and (2) to obtain well structured
cadastral data, recognizing blocks, buildings and any interesting urban structure
accurately while providing a reliable GIS structure. Figure 5 shows a mess of el-
ements used to create a city blocks map. Once we get well structured data, we
can take advantage of it. As practical example, we use other CAD layers like the
number of floors of each building element to convert the 2D urban data into a 3D
urban model.
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Figure 5: Input data from a CAD file: (a) complete CAD map, (b) only the block layer is
activated in the CAD tool, and (c) block layer with each CAD entity using different
colors.

3.2 definitions

In this section we will introduce a few definitions that will be used throughout
the rest of this manuscript. Most of these concepts are closely related to the input
cadastral data layers and how we use them.
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block : A block is a physical city block, which can be defined as a set of structures
(e.g., buildings) surrounded by streets, or possibly gardens or squares.

sub-block : These are the sub-areas into which a block can be subdivided. They
are defined in the same block layer data, and they represent a partition of the
block area. In Figure 13 (c.i) and (c.ii) we can see two schematic sub-block
situations. In the case the block layer contains only the block outlines, there
is only one sub-block for each block: the block itself. In Figure 8 we can
observe that a sub-block only represents a sub-part of a block. It should not
be confused with a lot, which has property implications.

pre-block : It is a data structure that we use during computation, to represent
all the polyline entities that define a block; and it containes buildings.

lot : It is each of the minor closed areas into which a block (or sub-block) is
subdivided. In general, in cadastral data, lot information is incomplete, and
requires the building layer to, together, provide consistent information. Be-
cause of this, we decided to ignore this layer and directly work with the
building layer, enriched with the polylines from the lot layer.

building : A building, in our case, is each of the minor closed areas into which a
lot is subdivided. Buildings are formed by building elements. Observe that
detecting which building elements are part of a given building requires ex-
plicit ownership relations to be set in the data, which might not be available.

building element : Each of the closed polygons with different heights that de-
fine the parts of a building. If a building element has an associated zero
height, then it is a courtyard. As a result of the fusion of the lot and building
layers, the system will not be able to distinguish the building elements that
belong to one building or another.

From now on, we will use the terms building and building element interchange-
ably, although we will always be referring to the latter.

3.3 overview

As we said, our input is a two-dimensional GIS map. In general, local city coun-
cils use CAD tools to create and manage files with many layers of information
storing not only buildings but also information about streets, public environment,
hydrology, green spaces, sewers, electrical installations, etc. For our application,
the interesting layers are the ones associated to blocks, lots, buildings and heights
(number of floors data).
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Manual editing of CAD files often introduces errors in the data. In Figure 6 we can
see a simple and schematic example of a badly structured polygon. If we zoom
out we easily appreciate that this polygon is a square. This visual information is
usually enough for the vast majority of tasks that a council needs to do. But it is
not enough for many others, like associating a height to each building to generate
a 3D city model. For this purpose, we need closed and well defined polygons. If
we zoom in near the square vertices and edges, we notice a set of inaccuracies.
Here we can classify the data errors in the six following categories:

Figure 6: Schematic unstructured polygon example. Non structured connectivity, vertex
mismatches and redundant segments (in red) should be corrected to a well struc-
tured closed polygon (in green).

• Redundant vertices, because of duplicated vertices or many vertices that
should be replaced for a single one. This happens, for instance, when a
straight segment is generated as multiple smaller segments.

• Redundant segments, where there are some sort of overlaps between the
segments of a polyline or between different polylines.

• Joint errors, where the ends of two polylines do not met at a common vertex.

• Mixed layers, where polylines that should be on a layer (e.g., block) are in
another one (e.g., building).

• Isolated polylines, where we find a set of disconnected polylines instead of
a coherent and structured set of closed polygons.

• Lack of structure, which is the most usual situation, as the provided poly-
lines are not structured in any way. Although polylines can be connected,
they may have no coherent structure.

Our goal is to go from an unstructured CAD file input to the desired output: a set
of ground polygons representing hierarchical, coherent and well structured urban
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data. In this work we will follow a process with the following stages, with its
pipeline shown in Figure 7.

1. Input parser:
This stage parses the input CAD file and returns a structure that we call
CityRawData, which is a set of CAD polylines representing city building data.
The user is expected to provide the names of the interesting layers. As a re-
sult, the algorithm gets as input a large data structure that acts as a container
of the CAD entities used. (Section 3.4.1)

2. Clean data:
This stage takes the CityRawData as input and returns the same set of poly-
lines as output, but without erroneous or redundant information. In order
to correct the source data, the algorithm looks over all vertices and polyline
segments from the raw data. The vertex cleaning process merges vertices
that are too similar to each other according to a user selected Collapsing
Threshold. The polyline cleaning process removes any duplicated segments.
(Section 3.4.2 and Section 3.4.3)

3. Generate blocks:
Because our final goal is to get a consistent simple closed polygon for each
building element and each block, this stage takes the cleaned CAD entities
from the block layer and returns a set of closed polygons representing blocks.
In this stage appears the structuring of the city information. It is important
to observe that the set of adjacent building element polygons surrounded by
an outline block polygon can be seen as a Planar Straight-Line Graph (PSLG).
We can divide the process in two sub-tasks:

a) Create the Pre-block graph:
The algorithm groups nearby polylines from the previous stage. First, it
processes the polylines with a plane sweep algorithm where it considers
not only the segment intersections, but also the point-to-point and point-
to-segment coincidences, using a user-defined Block Threshold. Then, it
stores the grouped polylines in a graph structure (pre-block), where each
node is an intersection or a polyline endpoint. Note that this stage is
actually performing a clustering over the input data into the final blocks.
(Section 3.5.1.1)

b) Identify block internal structures:
This task finds the graph minimal circuits to get all the subdivisions
the current pre-block has, and the final block outline that his pre-block
represents. (Section 3.5.1.2)

4. Generate buildings:
This stage processes the lot and building layers together. The output of this
stage is a set of pre-block graphs, one for each city block, where each minimal
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circuit of the graph –except the block outline– represents a building element
footprint. (Section 3.5.2)

5. Assign heights:
This stage takes as input a set of pre-blocks and returns, for each pre-block
building element, its height, which could be retrieved from the number-of-
floors text data layer. With these heights, each building element can be ex-
truded, resulting in a 3D model of the city. (Section 3.5.3)

Figure 7: Structuring application pipeline.

3.4 data cleaning

In previous introductory sections we have put special emphasis on the problems
we can find in the input data because it is plagued with error. Those errors arise,
for instance, when council workers introduce information –any city element– us-
ing CAD tools as drawing tools and not as technical tools. In these occasions, they
usually only take care of the visual result and do not pay much attention to the
structure of each element (block, building, etc.). Therefore, they do not always
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choose the most pertinent or correct way of drawing each element. This makes
this data very difficult to use directly as input to reconstruct urban models. Fig-
ure 5 clearly shows this situation with a section of a Girona city map with all
information layers activated (top left) and with just the Block layer activated (top
right). The urban elements can be easily identified by the human eye. But if we
color each entity in the Block layer with a different color, we observe that there is
not any structural coherence, see Figure 5 (c). To see more examples where this is
happening, see Figures 19 (b) and 20 (a). So, before structuring the urban data, it
must be cleaned to eliminate redundancies, errors, ambiguities and inaccuracies
from our input.

3.4.1 Input data

Our input source is a CAD file, specifically in an open format Drawing Exchange
Format (DXF). These files usually have lot of layers –often some tens– each one for a
specific type of information. Details about this format can be found in Autodesk R©

DXF Reference manual for AutoCAD R©
2012 [6]. To run our structuring process, the

user is required to choose the layers to get block, building and height information
from. The algorithm records each entity of the selected layer as a polyline in a
rough draft data structure (CityRawData) with all its attributes. In Figure 8 we
have an example of a block in the Girona city with layers colored differently.

Figure 8: CAD block cadastral data (our input source). Different layers are highlighted with
different colors.
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3.4.2 Vertex cleaning process

The first thing we have to do is to remove the redundant vertices while preserving
the shape. In this cleaning process, the algorithm goes layer by layer and polyline
by polyline, simplifying them. It can be considered as relevant the work done
by Bischoff et al. [10]. The interested reader may refer to the excellent book by
Bostch et al. [14] too. In our case, we have implemented our own method that
goes through each polyline vertex, considering one of three possible situations:

1. The analyzed vertex already exists in the stored city structure vertex list.
In this case it is discarded.

2. The analyzed vertex is very similar to a previously stored one (i.e., closer
than the user’s defined Collapsing Threshold). In this case the algorithm dis-
cards the analyzed vertex in favor of the stored one, but updates its position
by averaging both coordinate values.

3. The analyzed vertex is different from any other city vertex already stored.
In this case the algorithm adds it to the city structure.

As already mentioned, if the second situation occurs, the algorithm tries to col-
lapse the two vertices. But not all vertex collapsing algorithms are appropriate.

A first approach that can come to mind is the a snapping grid method. We can see
how it works in Figure 9 (a). The rationale behind the vertex cleaning process is
to try to connect vertices that would probably be the same vertex but are not be-
cause of human or numerical errors. For this purpose, the snapping method is not
feasible, as this can introduce some new errors that will not help reach our goal.
Figure 9 (b) shows how two different polyline ending vertices candidates to be
merged become into different and more separated ones vertices. Another option
would be a naive vertex snapping. This decision would also bring new problems
as important information could be lost, as Figure 10 (left column) demonstrates.

Figure 9: Naive snapping vertices to a grid. (a) Simple polyline snapping. (b) Snapping
two polylines could result in disconnected polylines even though what we want
is to join them.
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We have implemented our own collapsing method, illustrated in Figure 10 (right
column) and explain it in the following lines. This algorithm tries to solve prob-
lems of the naive collapsing algorithm. When two vertices are collapsed, the new
vertex also stores coordinate values of the original vertices in a list. This way, when
a new vertex tries to collapse with a vertex representing previously collapsed ones,
the algorithm calculates for all of them their distance to the new vertex. If all col-
lapsed vertices are closer than the user’s defined Collapsing Threshold, the new
vertex is collapsed, updating the representing vertex coordinates and adding the
new vertex coordinates to the list. Figure 10 (ii.d) illustrates this situation. Other-
wise, the collapsing operation of the representing vertex is reverted and the new
vertex and the farther previously collapsed vertex are added to the vertex list, as
shown in Figure 10 (ii.b). Applying this method, the algorithm eliminates similar
vertices and guarantees that vertices are separated by a minimum distance in be-
tween without affecting polylines continuity.

Discussion:
Any simplification method that preserves the curve shape would work correctly in
our context, like the polyline simplification method of Douglas and Peucker [21].
However, no method can guarantee no modification of the geometry: by definition,
any simplification method will introduce some distortion. Moreover, the larger the
user defines the Collapsing Threshold, the larger the distortion will be. On the other
hand, if the user defines a very small threshold, it will better preserve the shape,
but it will store more vertices and more disconnection situations will occur. Ob-
viously, depending on the Collapsing Threshold value, results will change. Thus,
this method cannot be completely automatic, the user must define the proper Col-
lapsing Threshold value and even more, take a look to possible remaining errors
after the process. See Figure 21. Note that we are working with a 2D algorithm,
mainly because we are looking for polygons defining the projection of blocks and
buildings. However, as each vertex has three coordinates, if we do not change its
height, the ground may not necessarily be flat. When collapsing different vertices,
we calculate the main value for each of the three coordinates.

3.4.3 Segment cleaning process

In the same way as with vertices, we want to avoid repeated segments. We de-
signed two methods to remove this redundant information. The first one removes
all redundant information a polyline itself may have, while the other removes
repeated information that two given polylines may share.
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Figure 10: Collapsing method. The left column shows a naive sequential collapsing pro-
cess, where the new processed vertex (x) is always collapsed with last represent-
ing vertex if they are close enough (disk) along the polyline. The right column
shows our method. Green ticks and red crosses show if the collapsed vertices
are close enough to the new vertex.
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3.4.3.1 Cleaning self-redundant information

The algorithm of this stage should detect when one polyline segment (or a sequen-
tial set of such segments) is represented more than once, eliminating all repetitions.
For each pair of polyline segments, it checks whether they are redundant or not,
either as a part of the segment or as the entire segment. Two segments are con-
sidered as redundant when they have the same slope (or a very similar one) and
have a distance between them not larger than the Collapsing Threshold defined by
the user. When eliminating self-redundant segments, the incoming polyline can
result in a set of outgoing polylines, all them pieces of the original one. Figure 11

shows an example of this situation.

Figure 11: (a) Polyline redundant segment example. (b) A situation of redundant segment
is indicated in red. (c) The new generated polyline, indicated in violet, while
the original polyline edited is still in blue.

3.4.3.2 Cleaning redundant information between different polylines

In this stage, the algorithm moves all polylines from CityRawData to the definitive
city structure while removing repeated segments overlapping between different
polylines. After this process, a set of cleaned polylines without redundancies are
stored in the city structure. For each polyline, the algorithm looks for redundant
segments between the polyline and the ones already stored in the city structure.
Again, like in the previous stage, for each input polyline we may have a list of
polylines as output. When a candidate CityRawData segment is checked against
an already stored segment, there are three possible situations that can be found.
Figure 12 illustrates them and here we enumerate them:

1. The candidate segment is completely redundant:
When there is a complete superposition of the analyzed segment of the can-
didate polyline with respect to already stored polyline segments, no infor-
mation needs to be added.

2. The complete stored segment is redundant:
When there is a complete superposition the other way around, the non-
coincident parts of the candidate segment should be added to the city struc-
ture.

3. The candidate and the stored segments have a coincident fragment:
When candidate and already stored segments are partially redundant, the
candidate polyline segment should be divided in redundant and non-redundant
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fragments. Then the algorithm discards the redundant fragments and adds
the other parts to the city structure.

Figure 12: Polylines superposition: Eliminating redundant information (superposed seg-
ments).

Once the algorithm has cleaned the vertices and polylines, we have all the needed
information to start the city structuring stage.

Discussion:
Again, like in the vertex-cleaning process, the user’s defined Collapsing Threshold
value could affect the results. Also note that, at this point, no polygons are found
yet: we just have a set of polylines. Talking about computational cost, despite
the fact that the order of this stage is O(n2), where n is the number of polyline
segments, it could be easily improved to O(logn) using a similarity search solu-
tion (e.g., with a space partitioning tree like a quad-tree), once the tree is already
created. Finally, note that different polylines could share a T-vertex (three inci-
dent segments), or there even can be vertices with an n-degree. But this will not
represent a problem to detect block and building footprints, as we will see in
Section 3.5.1.2.
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3.5 structuring

The segment cleaning process results in a very fragmented polyline set, but with-
out repeated vertices or segments. Now, we want to give urban structure to that
data. The structuring algorithm generates blocks as closed polygons and then
buildings, also as polygons. All the buildings are associated to it respective blocks,
so each block has it own set of buildings.

3.5.1 Block generation

In this first stage the block-layer polylines are processed. After, all blocks are com-
posed of closed polygons representing footprint silhouettes, which each defines
the area of the city block projection (see Figure 13). It is important to mention that,
in order to process the block layer, the algorithm has to take care of the Sub-blocks
(see Section 3.2 and Figure 13 (c.i) and (c.ii)). The algorithm performs the steps we
describe in the following subsections to get the city blocks.

Figure 13: Schematic representation of possible block and sub-block situations. (a) Cases
with just one polyline. (b) Cases with more than one polyline. (c) Cases gener-
ating sub-blocks.

3.5.1.1 Pre-block graph creation

In this first stage, we want to group polylines into smaller sets, considering if they
are close enough to each other to belong to the same block. This way, we are cre-
ating a clustering of all the input data into the candidate future blocks. Each set
of polyline candidates to become a block, is grouped in a graph structure called a
pre-block. Each pre-block is a graph G =< N,P > with a list of nodes N and a list of
paths P, as can be seen in the right hand of Figure 14.

Each node represents either an intersection between polyline segments, or the end-
point of a polyline. A node stores its respective vertex coordinates, and a list of all
paths reaching to the respective "neighbor" nodes. Each path P = (Pl,< Ni,Nj >)



3.5 structuring 45

Figure 14: A diagram of a pre-block’s graph from a set of polylines. Left: The set of polylines
with its ending and intersection nodes marked in red. Right: The corresponding
graph with polylines transformed in graph edges (paths).

represents the polyline fragment Pl that links node Ni to node Nj as a list of
the original polyline vertices linking Ni and Nj. Note that this graph is a Planar
Straight-Line Graph (PSLG) as we avoid intersections between edges.

Before starting with the pre-block generation, we link polylines to form continu-
ous and longer polylines. We concatenate any pair of polylines with coincident
starting or ending vertices. By doing this, we considerably reduce the number of
input polylines before starting this pre-block graph creation step, which is the most
computationally expensive one of our process pipeline.

Pre-block generation starts by going through the input polyline list, trying to add
each polyline to the currently processing pre-block. When the polyline has any
self-intersection, it is broken down into its respective non-intersecting component
polylines, and processed as a set of independent entities. A polyline is added if
it is close enough to any path of the current pre-block structure. It is possible to
know this by searching for intersecting segments or vertices closer to a path seg-
ment than the user-defined Block Threshold. There may be (one or more of) the
following four conditions, where "similar" means closer than the Block Threshold
(see Figure 15):

1. A vertex is similar to a pre-block path vertex.

2. A vertex is similar to its projection on a pre-block path segment.

3. A pre-block path vertex is similar to its projection on a polyline segment.

4. A segment and a pre-block path segment intersect.

Each similar vertex and polyline endpoints are stored as new pre-block nodes. Fi-
nally the algorithm eliminates the polyline from this stage input polyline list. Note
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that there could appear nodes with a degree larger than four but, as we will see
in next section, this will not cause any problem to our method.

Figure 15: Nearby vertex conditions: adding a candidate polyline to a pre-block graph. Can-
didate polylines are drawn in blue and pre-block paths in black.

After adding a new polyline to the pre-block, the algorithm continues by checking
all remaining polylines. A pre-block generation is finished when no more polylines
can be added. In this case, the current pre-block is considered to be finished and a
new pre-block is created with the first not-assigned polyline of the input set. The
process is repeated until there are no polylines left.

Finally, we must do a "cleaning" process over the graph paths, cutting out all
fringe paths. A fringe path is a path with only one ending node connected to the
rest of the graph. In Figure 14, paths p1, p4, p7, p9, p10 and p14 would be elimi-
nated.

Implementation details:
The pre-block graph creation is similar to the known problem of segment inter-
section in computational geometry, with the only difference being the notion of
proximity. The algorithm also needs to detect situations of vertices and segments
closer than the given Block Threshold. It is convenient to define an "inflated point"
as a point plus a user-defined radius, which is our already mentioned threshold.
Hence, we could consider this stage as one that computes intersection detections,
where an intersection could be generated by an overlap between two inflated
points or an inflated point and a segment. The best implementation of this al-
gorithm is a plane sweep algorithm using a sweep line, with order O(n logn), where
n is the number of points. This algorithm is implemented in the CGAL library [13].

Discussion:
In this stage, results will depend on the user-defined Block Threshold value. It is
important to observe that, in certain situations, it can be difficult to find a good
value for this threshold, and a wrong choice can result in situations where no
point similarities are found or the other way around. Situations of false similarity
detection can happen when setting a value too large for this threshold. For this
block generation stage, we set the Block Threshold to be slightly smaller than the
smallest street width. We have found that this value makes the algorithm perform
remarkably well.
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3.5.1.2 Block footprint and internal structure

A block is a closed area surrounded by streets. At a high level, we can say that
streets define the block outline, but in practice the actual outline comes from the
architectural elements that the block contains. Block generation requires that we
define the footprint delimiting its area (i.e., its outer boundary), together with a
(possibly empty) list of courtyards, and then identify the building elements with
their respective heights. The courtyard and building element areas should be a
set of sub-areas that partition the overall block area. The algorithm of this step
uses the pre-block graph previously created to define the polygons representing
the block and the interior sub-block footprints. It is in this process that the pre-block
graph is transformed into a block structure with a footprint outline and interior
elements. The process computes the graph’s closed minimal circuits and stores
them in a list. Therefore, a pre-block stores a list of circuits, where each circuit is a
list of paths defining a closed polygon.

A closed circuit is detected by starting from any node in the graph. For that node,
the algorithm chooses the outgoing path segment which has the lowest positive
angle with respect to the positive x-axis. Then it continues through the chosen
path to the next node. When arrived to the next node, it chooses the outgoing
path segment with the minimal angle (counterclockwise) with respect to the in-
coming one. When a neighbor node has already been visited, it is marked on the
node’s neighbor list, also marking the path that connects both nodes from its path
list. This step is repeated, moving from one node to the next one, until we readh
the initial node. At that moment, the circuit is closed and stored in a list of cir-
cuits for the current block. After finding a circuit, a new search is started from any
node with a remaining unmarked neighbor. Note that all graph edges will be used
in both directions for it two adjacent circuits. When all nodes have no more un-
marked neighbor nodes, all current pre-block circuits have been found. Figure 16

left illustrates this process. Note that the degrees of the nodes are irrelevant in
this algorithm, as all circuits will be found. Also note that each pre-block circuit
is a closed polygon with no self-intersections. In the case of a simple block, our
method stores the block outline twice, both clockwise and counterclockwise. But
when a block has sub-blocks, the method gets a closed polygon whose layout is the
block outline, plus a set of interior polygons (sub-blocks) representing a partition
of the block.

Our method lists its outline as the first entry in the pre-block circuits. We enforce
this situation by starting the first circuit search always from the path having the
vertex with the lowest y-coordinate value. Figure 16 right shows how it finds the
exterior red circuit. In this first circuit search, the ending test to know that the
circuit is closed, is not only to arrive to the initial node. We have to also check
that the best possible continuing path is the first starting path of the circuit. If not
done this way, the full outline may not be well identified in cases of "eight shaped"



48 structuring urban data

circuits. See in Figure 16 right: We start from node six and going through path 0,
when reaching to node six again, we have to continue with path II and not stop
there. The full outline silhouette is found when reaching node six from path VI
and the next path to continue with would be again the starting path 0. Then, cir-
cuit detection continues as described finding the rest of interior sub-block circuits.

Figure 16: Examples of pre-block graph circuit search. (Left) An interior closed polygon
starting form node two. (Right) An outline circuit starting from the lowest point
(path 0) and using the node six more than once.

Once all the pre-block circuits are found and stored internally, the method searches
for possible block courtyards. As courtyards are independent closed polygons, the
previous steps stored them as city pre-blocks themselves, as Figure 17 left shows.
The main difference between blocks and courtyards is that a courtyard is a pre-block
completely enclosed by another sub-block (or pre-block circuit). Hence, it becomes a
sub-block of the enclosing outline without connection with other sub-block paths. To
find all the courtyards in the city, all block structures are analyzed, checking if they
are inside another larger block circuit by executing a simple point-in-polygon test.
As blocks do not have intersections between them, if any block point is contained
inside any other one, then we can be sure that it is a courtyard, being completely
enclosed in the second one. In that case, we eliminate the courtyard pre-block from
the city block list and add it to the enclosing block courtyard list. In Figure 17 we
can see how green and blue polygons were independent pre-blocks before this step
and how they are colored in orange like the rest of sub-blocks when they have been
added to the final block where they belong.
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Figure 17: A city block after processing the block layer: pre-block outline, sub-blocks and
courtyards. Left: Three pre-block outline have been detected, in different colored
outlines. Right: After courtyard detection, just one pre-block (dotted red line) re-
mains with two sub-blocks and courtyards inside one of them drawn in different
orange each sub-block.

With all courtyards associated to their respective blocks, we consider that we have
well structured city blocks. As a graphical example, compare Figure 19 (b) and
(c). Note all CAD entity polylines used to draw a block in Figure 19 (b). After the
structuring process of the blocks layer, Figure 19 (c) shows in a unique color the
block and it sub-blocks and courtyards.

Summarizing, each block is stored as a pre-block graph and has an outline footprint,
a (possibly empty) set of sub-blocks and a (again possibly empty) set of courtyards.
This way, the simplest block possible only has its outline and one sub-block, which
is the same as the outline.

We point out that blocks in a city can be seen as a kind of spatial tiling, i.e., a
partition of the city data. Thus, after generating the block footprints, any polyline
belonging to any layer can be classified and processed after locating it in a block,
i.e., the block where it belongs.

Discussion:
Information lost and erroneous recognition of blocks may affect the pre-block graph
creation. Once a pre-block graph is created, if it does not contain any circuit (e.g.,
it is not well connected), the algorithm will consider it as a large fringe path and
eliminate it. Any pre-block considered in this stage will have at least its own block
outline, and all the circuits found will be closed non-intersecting polygons.
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3.5.2 Building generation

When the processing of the block layer is finished, the algorithm can start working
on the other layers. These next layers are called building information layers. As we
have mentioned, it is not convenient to define lots at this stage because very often
this layer and the building layer are incomplete and need each other to properly
define the building boundaries as closed polygons. If they are processed separately,
it can wrongly remove fringe paths needed in the next layers to define buildings.
Actually, what is defined in these layers is a set of closed polygons with associated
heights. Each of these polygons is called a building element.

The entities in these layers will always be processed after localization calculation
is done, where each entity is associated to an existing pre-block, the block it belongs
to. For the building information layers, the algorithm processes a set of polylines in
the same way as described in Section 3.5.1. Therefore, knowing to which block the
building information is associated, the building element polylines are processed
as follows:

1. Add building element polylines to the pre-block.
This step increases significantly the graph complexity.

2. Find the pre-block minimal closed circuits.

As with the block’s layer process, the result is a set of graph circuits, where each
one is a closed polygon. In this case, a circuit defines a specific building element,
instead of a sub-block. For this updated graph, the first circuit is the block outline
footprint, while the rest of the circuits are building footprints. See Figure 18. Con-
sequently, the result is a coherent structured city data consisting of a set of blocks
and a set of building elements for each block. In the results section, Figure 19 (c)
shows a block of the Girona city structured after processing only the blocks layer.
On the other hand, Figure 19 (d) shows the same block after all building layers
have been processed.

Discussion:
Note that what we called a building is just a portion of the complete block foot-
print area with a polygonal boundary. The way input CAD maps are created, each
of these polygonal boundaries are areas with a specific height. Thus, we call build-
ing elements all these height polygons. A real city building could be represented
with different pre-block circuits if a single building contains different heights. More-
over, the pre-block circuits are building projections, so there could be overhangs
with no walls on ground floors, that will be represented in the same way as a
building element with a normal ground floor.
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Figure 18: A city block after processing lot and building layers: a pre-block outline, and
circuits for sub-block, courtyard and building circuits. Left: After the blocks layer
is processed. Outline in red dotted line. Sub-blocks and courtyards are outlined
in orange. Right: After processing lot and building layers. Each building element
detected is in a different color. Note that courtyards (with zero height) are in
black.

3.5.3 Height assignment

From the data output from this last stage, we get a city structure with blocks as
closed polygons internally well structured with a set of building elements and
courtyards. building elements are 2D geometric entities. By extruding each build-
ing element footprint polygon by a given height, we get prisms. That way, we get
a 3D structure like the LoD1 of the CityGML [39] standard.

Processing an extra layer, called number-of-floors text (see Figure 8), a height can
be associated to each building element. This layer has positioned labels with infor-
mation about the number of floors in each building element. From a simple point-
in-polygon test, we know to which building element any label belongs to, and use
this information as an educated guess of the actual building element height. Thus,
all 2D building elements become 2.5D elements considering that each footprint
polygon has an associated height information.

3.5.3.1 3D model extrusion

At this point, our 2D structured data can generate a 3D model of the city. Let us as-
sume that, like in most traditional buildings, a building 3D model is a prism, based
on its footprint stored as an arbitrary closed polygon without self-intersections.
For each city building element, we want to extrude its footprint polygon vertices
to this height value. Note that before having well-defined closed polygons this
was impossible to be realized. To get the height value we multiply its associated
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number of floors by a standard floor height (three meters for the ground floor, 2.5
meters for superior floors), and add a small random offset. This small offset is
added because in the real world, there are no fixed heights for all buildings, so
we add a certain degree of randomness. The triangulation of the model –ground
polygon, roof and facade– is always possible because each building facade is a
rectangle and the building roof and footprint are closed polygons. We store this
3D geometric data in an open format like Wavefront’s OBJ. Figure 19 (e) shows a
Girona city 3D block model example. The number-of-floors text layer labels indicates
the number of floors for each building element, but also give information about
underground floors, overhangs, yards, roofs, etc. So, the previously explained over-
hang situation (see the discussion in Section 3.5.2) could be resolved when a 3D
model is reconstructed, considering all the information this layer provides.

Figure 19: A Girona block (the "1-block" case) process visualization. (a) Block and building
layers with a CAD tool. (b) Block layer cleaned but unstructured entity polylines.
(c) Block layer structured, with courtyards and sub-blocks. (d) Block and building
layers structured. (e) The respective 3D model triangulation shown with an OBJ
viewer.

Discussion:
The final result of our work is equivalent to a LoD 1 of cityGML [39], consisting of
block models comprising prismatic buildings with flat roofs. More detailed repre-
sentations are not possible to be built from our source of data (e.g., roofs [29]). Of
course, we can always use procedural techniques (e.g., Esri’s City Engine [26]) to
add details to each building. Also, building heights are not exactly real ones. Us-
ing only the height information we have (number of floors), we have only done an
approximation. As an obvious example, a cathedral’s floor height is much higher
than a residential building floor. Thus, in this stage we are not reflecting exact real
values. Also, in the case of overhangs, our reconstruction is not accurate: we are
creating walls from the ground to the roof for all buildings, while we would need
to create walls from the first floor to the roof in these cases, or in case of roof-style
terraces, with open walls, but a roof on top of it only for that floor. Although
we consider this is beyond the scope of our work, it could be solved by a more
accurate process of 3D model reconstruction considering all the information that
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the number-of-floors text layer provides, unlike non flat roofs that cannot be solved
without more information that the one provided from our process input data.

3.6 results

The results given below are from DXF CAD files provided by Girona and Barcelona
local city councils. Girona’s file has more than 50 layers, each one having different
features. As we explained in Section 3.4.1, we worked with four layers. Three for
block and building footprint geometries and the other for the text of the num-
ber of floors. In Table 1, some execution statistics are shown. The 1-block column,
refers to the block shown in Figure 19. The Some blocks column is a region of 11

blocks of the available data (Figure 20). The Girona Jewish neighborhood is the whole
Girona old neighborhood city map (Figure 22) and Girona full city is the complete
city model. About Barcelona’s file, we presented the Barcelona Eixample column re-
sults. This is a section of the famous Eixample neighborhood of Barcelona, design
by Ildefons Cerdà. The Girona Jewish and Barcelona Eixample neighborhoods are
good examples of very different kinds of cities. The first one has very irregular
blocks and buildings, while Barcelona’s Eixample is specially famous for its regu-
lar blocks delimited by the grid of parallel and perpendicular streets. Figures 24

and 25 show renderings of the resulting models.

As a reference, in Table 1, we have added the current number of buildings in
the corresponding part of the real map. This number has been obtained by a man-
ual process, precisely because of the unstructured nature of the input data. We
counted what the human eye can appreciate when looking at the CAD map.

All these results were obtained using the following thresholds, which proved to
be quite general for the streets and structures of the whole model, even for very
narrow ones:

collapsing threshold : It decides if two vertices should be collapsed in the
data cleaning process (Section 3.4). A good value for this user-provided pa-
rameter will depend on the precision used in the map generation, so the
exact value is not significant, but we used 1 meter as threshold value.

block threshold : It decides whether a polyline should belong to a pre-block
or not in the pre-block graph creation process (Section 3.5.1.1). We suggest to
use a value slightly smaller than the smallest street width. In our case, we
used a threshold value of about 3 meters.
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CASES Girona Girona Girona BCN Girona
1-block some blocks Jewish neig. Eixample full city

Number of input file CAD entities
Block layer 158 580 4235 4557 36988

Building layer 211 522 6228 60135 54284

Total 392 1116 11507 65295 100346

Real number of elements
Block layer 1 7 287 178 '2500

Building layer 141 468 — — —

Number of processed elements
Block layer 1 7 287 178 2497

Building layer 131 441 4622 24268 38834

Statistics
Collapsed vertices 38% 16% 26% 27% 28%
Entities/Building 5.98 5.06 4.98 5.38 5.17

Buildings/Block 131 63 16.1 136.3 15.6
Block Errors 0% 0% 0% 0% —
Building Errors 7% 6% — — —

Table 1: Structuring process results.

As we focus on the reconstruction of buildings, the layers we are interested in
are: blocks, buildings and textual height information. For the Girona’s model, the
input consisted of more than 100.000 entities. All of them were transformed into
polylines. When all polylines had been processed through the vertex cleaning step,
about 25% of the resulting vertices were collapsed (see Table 1 Collapsed vert. row
values for all the cases). In our polyline cleaning step, the process removes also hun-
dreds of redundant segments.

After then structuring process (Section 3.5), we got 2497 blocks with their respec-
tive 38834 courtyards and building elements, with their associated heights. Con-
sidering that the 100.000 input entities were distributed, 16988 in block layers and
54284 in building layers, we can conclude that:
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• Each block is defined with an average of 15 input entities. We get this value
by dividing the number of block layer input entities by the number of blocks
processed (for Girona full city case: 36988/2497).

• Each set of block building elements is defined with an average of 40 in-
put entities. We get this value by dividing the total of input entities by the
number of processed blocks (for Girona full city case: 100346/2497).

• Each build is defined with an average of 5 input entities. We get this value
with the following formula. Considering Be as the number of input entities in
block layers, be the number of entities in building layers and bi the number
of output buildings:

Be+ 2be

bi

The building layer entities are considered as doubled, due to the fact that
each entity segment is always delimiting two buildings, the ones of each
segment side. For Girona full city case: (36988+ 2 ∗ 54284)/38834. We con-
sider this last value the most important statistic. All cases results are in the
Entit./Build. row of Table 1.

The two last rows in Table 1 show an estimation of the number of errors done
while searching for blocks and buildings in the city. This error is calculated by
comparing the obtained buildings with the real ones: we estimated this value to
be less than 6% of the total number of buildings in the city. The same calculation
is done for the blocks.

In the cases of the Girona Jewish neighborhood and the Girona full city, the den-
sity of buildings per block is lower than the other cases (see Table 1 Build./Block
row). This is because there are many detached houses considered as blocks. So
this is skewed data. Nonetheless, this is data that depends on the urban density
and architectural characteristics, it does not have crucial importance for our work.
Comparing the Barcelona Eixample neighborhood (Figure 25), it has larger blocks
(100x100 meters square) than the Girona Jewish neighborhood (Figure 24), which has
smaller and more elongated blocks. This could result in the false impression that
the Eixample model has a higher complexity, specially with respect to its roofs,
but a detailed inspection reveals they have roughly the same complexity.

In Figure 19 we can see how our application structures the urban data for a single
block and also the resulting 3D model. Figure 19 (a) shows how the useful layers
look like using a traditional CAD tool. Our way to view different unconnected ob-
jects (either CAD entities or blocks) is to use different colors. Thus, in Figure 19 (b)
the block appears with only the input block layer entities drawn, each one in a spe-
cific color. Instead, within our final 2D structured city (Figures 19 (c) and 19 (d)),
each block is drawn with a unique color, in this case red. In Figure 19 (c) we can
see that, after the process, we have just one unique block with its sub-blocks and
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courtyards. In Figure 19 (d) we can appreciate all the block buildings processed
and structured. Finally, in Figure 19 (e) we have the OBJ model, rendered using
MeshLab [19].

In Figure 20 (a) we can see each input entity in the block layer in a different
color, which we labeled as the Some blocks case. In Figure 20 (b) we can see each
structured block colored differently, with its sub-blocks, courtyards and buildings.
Finally, in Figure 20 (c) we have an image of the generated 3D model.

Figure 20: The" Some blocks" case: a result of urban data structuring. (a) Block layer cleaned
but unstructured entity polylines. (b) Block and building layers structured.
(c) The respective 3D model shown in an OBJ viewer.

Figures 22 and 24 show that for all the Girona Jewish neighborhood case, the same
process as the one explained above, with the difference that in Figure 22 (b) we
show only the block layers because it is easier to compare then with the respective
input entities in Figure 22 (a).

To close the comments on the resulting images, Figures 23 and 25 show results
of processing the Barcelona Eixample case. In Figure 23, we can see how our input
–the whole unstructured CAD entities, block and building layer entities– occur in
our output –a set of blocks with its respective buildings. The resulting OBJ model
of this set of the Barcelona Eixample blocks is rendered using City Engine [26] in
Figure 25. We can observe all the buildings processed there. It is interesting to
observe that some blocks seem to be incomplete, but they are not: areas like gar-
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dens, squares, and parks are closed polygons without height, like courtyards. If
the height is zero, our implementation does not generate any polygon. So, in cases
that a garden is located on the limits of the block, which is typical in the octag-
onal blocks of the Eixample neighborhood, the block may loose its characteristic
squared silhouette.

Let us remind in this final section, that a process with improper threshold values
would give undesirable outcome. Figure 21 shows the 1-block case when using too
large and too small Collapsing Threshold values. In Figure 21 (a), a large threshold
value causes too many vertex collapses, and this involves too much loss of geom-
etry. In Figure 21 (b), the small threshold value causes missing geometry. Some
polylines are not attached to others, so they are eliminated and some circuits are
not found, loosing the corresponding building footprints.

Figure 21: The 1 block case with undesired results. (a) Outcome using a too large threshold.
(b) Outcome using a too small threshold, there are missing buildings in the blue
circle when comparing with Figure 19 (d).

Talking about timing, it takes about one and a half minutes to process the block’s
layer of Girona Jewish neighborhood case and get the completely restructured city.
This time is got by using an Intel(R) Core(TM)2 Quad CPU at 2.33GHz and 3.25GB
of RAM (GPU features not used). From this one and a half minutes, twenty-two
seconds are for cleaning vertices and polylines and the remaining for the structur-
ing process, one minute and eight seconds. We can appreciate from this that the
most expensive process is to group polylines in nearby sets to generate blocks and
their posterior connecting process.

The increment of the number of CAD entities on block’s layer EB, means a quadratic
increment of the process time, to get all the blocks B structured. This is because
we have to check all entities against the others to know which are considered to
belong to the same block. On the other hand, the increment of number of building
entities Eb affects linearly to the timings. This is because of the previous localiza-
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tion process that associate the building entity to an specific block. After getting
the number of entities belonging to the same block, then the cost is a constant KB
or Kb considering cities of the same CAD entities per block factor. So, time to get
block layer TB and buildings layer Tb processed is:

TB = EB
2 ·KB

Tb = B ·Kb
where,

KB =

(
EB
B

)2
and Kb =

(
Eb
B

)2
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Figure 22: The Girona Jewish neighborhood case. (a) Block layer cleaned but with unstruc-
tured entity polylines. (b) Block layer structured, with courtyards and sub-blocks.
Its 3D model is shown in Figure 24.

Figure 23: The Barcelona Eixample case (one region of it) before and after our process. (a)
Before the process, unstructured CAD entities in different colors. (b) Block and
building layers structured after running our process.
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Figure 24: Girona Jewish neighborhood case in 3D. Observe the reconstructed tallest tower in
the center of the image, which represents the Gothic Cathedral.

Figure 25: Barcelona Eixample neighborhood in 3D. We display only the building models.
Note that empty spaces are streets and courtyards, but also squares, parks and
any other element processed without heights.



4
S H R I N K I N G C I T I E S

T he video game industry is one of the most powerful industries in the world
nowadays. There are many kinds of video games, some set in fantastic
environments and others set in real world environments. In particular the

second kind needs the work of a designer, who maps out a simplified model of
the real city (or any other kind of environment). This is a manual work starting
from zero, where the first step is to outline the street network of the final city. In
this chapter we present a solution to generate automatically a first approach for
the simplified design of a city model. This first draft of the city street network is
like a kind of skeleton or template, from which the artist can (and should) start
working until getting the desired result. The output that our process provides to
designers is a street network that reduces the city area as much as the designer
wants, including landmarks and most important streets, but keeping the relative
position between them. To proceed it, we select the most important places of the
city and connect them with the most important streets. Then, we run the shrinking
process which reduces the area in an irregular way, prioritizing the removal of the
areas of less important places.

61
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4.1 introduction

Nowadays, the video game industry is one of most powerful and wealthy in the
world, even more than cinema and music put together. There are many kinds of
games. Games for kids, youths, gils, adults and even for babies. There are games
for one player and for multiple players. Video games to play off line and on line,
collaborating or competing against other players from around the world. We can
also find games with different environments and atmospheres. This last character-
istic is the one that interests us the most for this chapter. Architecture –meaning
both landscapes and structures– is what turns the monotonous grid into the living
world of the computer game. Its importance is on a par with character design in
creating the player’s visual experience. Character design tells you who you are and
who you interact with; architecture tells you where you are. But more than that,
it also tells you what might happen there, and even sometimes what you ought
to be doing [1]. There are video games elapsing in imaginary worlds. Those new
worlds have new architecture, sometimes are abstract or surrealistic, and some
other times realistic. Likewise, they can transmit wonderful and even funny, or
apocalyptic and dangerous worlds. In any case, any new synthetic world is not in-
spired by a real environment. On the other hand, there are video games inspired
by real environments and also historic moments. In this second case, video game
companies put efforts on giving to the player the feeling of that real world. To
fulfill this purpose, it is important to make the architecture design look familiar to
those that know the real place. This can be achieved with allusions to real architec-
tural elements, architecture styles and clichés. Some famous examples are Grand
Theft Auto IV (RockStar Games R©) in Manhattan (New York), and Assassin’s Creed
II (Ubisoft R©) in Venice and Firenze. See Figures 26, 27 and 28. These are only a
few examples in a large list of realistic experience video games.

To create a top realistic video game a team of hundreds of people is needed. An
important subset of this team are designers. Designers are responsible to create the
visuals of the environment and characters, but also the history narrative, different
game levels, game dynamics, etc. Here we are interested in their creative work to
design city models. To create a synthetic model of a realistic city, designers start
by drafting the street network. This outline captures the landmarks (essential im-
portant places of interest). Once this draft is done, they continue on by designing
buildings. In both steps, they may start with manual designs and then move them
to 3D modeling, texturing, illumination, etc. The majority of these city designs
generate cities considerably smaller than the original cities serving as inspiration
source. The reason is that essential places where the actions take place, may be
too far apart in the real world, forcing the player to travel long, boring landscapes
between key game events. A good example to illustrate this situation is Manhat-
tan. In the real world, if you want to go from Central Park to the southern limit of
the island to see the Statue of Liberty, you have to walk through more than fifty
blocks. Now, let us imagine that we recreate a real scale city for a video game.
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If the video game script requires the character to walk from Central Park to the
Statue of Liberty it would imply a several-hour walk. This probably would be
one of the most boring games ever created. One reason is that most of the blocks
are similar and this walk quickly becomes repetitive. Therefore, in a real game,
a designed city must reduce the number of blocks between interesting places to
keep the action more dynamic while retaining the essence of the city. If you look
at Figure 26, the number of blocks from Central Park to the southern limit of the
island has been reduced to about twelve blocks instead of the more than fifty in
the real Manhattan.

Figure 26: Manhatan (New York). Top: Real map from Google Maps R©. Bottom: Grand Theft
Auto 4 map designed by RockStar Games R©.
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Figure 27: Firenze. Top: Real map from Google Maps R©. Bottom: Assassin’s Creed II map
designed by Ubisoft R©. Landmarks highlighted: Basilica di San Lorenzo (blue),
Piazza del Duomo and Piazza San Giovanni (green), Palazzo Vecchio and Piazza
della Signoria (yellow), Ponte Vecchio (red) and Basilica di Santa Croce (purple).

Figure 28: Venice. Top: Real map from Google Maps R©. Bottom: Assassin’s Creed II map de-
signed by Ubisoft R©.
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We want to help automatizing this process to let designers start from an initial
street network with landmarks. From free GIS data as input, we want to process
it and get a shrunk city street network. The resulting city draft should have a sur-
face area smaller than its real world counterpart. Also, landmarks should keep
their geometries and relative positions within the city distribution. Our process
will remove less-important streets and preserve important places. The city area is
reduced in an irregular way; the surface removed is from unimportant, more dis-
tant elements from the key places. Hence, we do an irregular reduction guided by
the area important place density. The output of our process is a city street network
with a set of streets and other important city elements: gardens, buildings, bridges,
etc. This first approach should be considered only a kind of template or skeleton
from which designers should start their work, not the final city model. Designers
can –in fact, should– add more streets if needed and edit some street geometries
if needed to achieve the desired city model.

In this chapter, we are going to explain the steps to get the shrunk city. Imple-
mentation details about the city data structure; core street operations and how
city operators work in a pipeline are presented in the next chapter, Chapter 5.

4.2 input

To start the shrinking process, the algorithm needs an input consisting of two
elements: the city map to shrink and the list of important places to keep in the
output resulting city. We explain in the next subsection what each one of these
input elements is and how we get them.

4.2.1 City map

The first input element that the shrinking process needs is an original real city
map. We use open GIS data to get the city map and therefore the city street net-
work. This provider is the OpenStreetMap [31] community. OpenStreetMap is a
free, editable map of the whole world that is being built by volunteers largely
from scratch and released with an open-content license. This project creates and
distributes free geographic data for the world. They started it because most avail-
able maps actually have legal or technical restrictions on their use, holding back
people from using them in creative, productive, or unexpected ways. This last mo-
tivation of OpenStreetMap is what convinced us to use this data source as our
input.



66 shrinking cities

When users download data form OpenStreetMap (OSM), they do it in an specific
format with the extension .osm. The OSM file is basically an eXtensible Markup
Language (XML) file with a header, a list of nodes, a list of ways and a list of
relations, each one with a unique identifier.

node : defines a specific point in the earth’s surface defined by its latitude and
longitude. A node has a set of attributes. Within them, the only mandatory
ones are the identifier and the latitude and longitude coordinate values. It
can also have a list of tags adding information to the node. Generally speak-
ing, if the node is a standalone point, it has its own tags, but if it is used as
a point along a way it usually has not.

• Attributes: id, lat, lon, ...

• Tags: name, traffic_sign, ...

way : is an ordered list of nodes (between 2 and 2000) that defines a polyline.
Ways can also represent the boundary of an area. In this case, the first and
last nodes are the same. It has a set of attributes, including the mandatory
identifier value. It has also the ordered list of references to the nodes that
defines it shape. Finally it can also have a list of tags enriching the way with
extra information.

• Attributes: id, ...

• Node references: Each one with the node reference identifier.

• Tags: highway, name, ...

relation : is a multi-purpose data structure that basically documents a relation-
ship between two or more elements (nodes, ways and/or other relations).
These elements are grouped between them for any conceptual relationship,
so the meaning of the relation should be defined by its tags. Again it has a set
of attributes within the identifier. Then a list of relation members, specifying
the kind of member of each one, and a list of tags to give extra information
about the relation.

• Attributes: id, ...

• Members: Each one with type (node|way), element reference identifier
and role.

• Tags: name, route, type, ...

tag : All types of data elements can have tags. Tags enrich element information
giving them their particular meaning. A tag consists of two free format text
fields: key and value. There is no fixed dictionary of tags, but there are many
conventions documented on the OSM wiki Map Features page [31]. For exam-
ple, highway = residential defines the way as a road whose main function
is to give access to people’s homes.
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You can see a simple incomplete example in the following code:

<! - - ########## OSM FILE EXAMPLE ########## - - >

<?xml version="1.0" encoding="UTF-8"?>
<osm version="0.6" generator="CGImap 0.0.2">
<bounds minlat="54.0889580" minlon="12.2487570" maxlat="54.0913900" maxlon="12.2524800"/>

<node id="298884269" lat="54.0901746" lon="12.2482632" user="SvenHRO" uid="46882" visi-
ble="true" version="1" changeset="676636" timestamp="2008-09-21T21:37:45Z"/>

<node id="261728686" lat="54.0906309" lon="12.2441924" user="PikoWinter" uid="36744"
visible="true" version="1" changeset="323878" timestamp="2008-05-03T13:39:23Z"/>

<node id="1831881213" version="1" changeset="12370172" lat="54.0900666" lon="12.2539381"
user="lafkor" uid="75625" visible="true" timestamp="2012-07-20T09:43:19Z">

<tag k="name" v="Neu Broderstorf"/>
<tag k="traffic_sign" v="city_limit"/>

</node>
...
<node id="298884272" lat="54.0901447" lon="12.2516513" user="SvenHRO" uid="46882" visi-

ble="true" version="1" changeset="676636" timestamp="2008-09-21T21:37:45Z"/>
<way id="26659127" user="Masch" uid="55988" visible="true" version="5" changeset="4142606"

timestamp="2010-03-16T11:47:08Z">
<nd ref="292403538"/>
<nd ref="298884289"/>
...
<nd ref="261728686"/>
<tag k="highway" v="unclassified"/>
<tag k="name" v="Pastower Strasse"/>

</way>
<relation id="56688" user="kmvar" uid="56190" visible="true" version="28" changeset=

"6947637" timestamp="2011-01-12T14:23:49Z">
<member type="node" ref="294942404" role=""/>
...
<member type="node" ref="364933006" role=""/>
<member type="way" ref="4579143" role=""/>
...
<member type="node" ref="249673494" role=""/>
<tag k="name" v="Kustenbus Linie 123"/>
<tag k="network" v="VVW"/>
<tag k="operator" v="Regionalverkehr Kuste"/>
<tag k="ref" v="123"/>
<tag k="route" v="bus"/>
<tag k="type" v="route"/>

</relation>
...

</osm>

This is a file structure that makes an expensive computational cost for any basic
operation over nodes and ways. To start working on the shrinking process, we
obviously decided to implement an efficient data structure to store the city and
provides us optimized algorithms for common nodes and ways operations, the
CityLib. This library is explained in the next chapter, Section 5.1.
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One last thing to take in consideration is that an OSM file can store many kinds
of geographical information. Highways, railways, aerial ways, buildings, historic
elements, power lines, nature, waterways, leisure, shopping and a large etcetera.
To know how we differentiate the street information and the rest of information,
see Section 5.1.

4.2.2 Important places

With a city street network, it is not enough to decide which are the important
places to keep when shrinking the city. Besides from the .osm file, the algorithm
needs also information about the city important places. For this purpose, we cre-
ated the .osmi (open street map importance) file that encodes important places
information. The .osmi file is also an XML structured file storing a list of important
places, inspired by the same organization of .osm files. An important place in an
.osmi file is similar to a relation in a .osm file, both files group a set of nodes and
ways. Basically, an .osmi file place element stores a list of one or more nodes and
way elements which together make an important place, street or region.

place : A place defines an element or a set of elements of the associated .osm
file with a high importance or interest weight within the city. Each place has
a unique identifier, a list of members configuring the important place and
a list of tags giving more information to the place element. We can add as
many tags as information we need.

• Attributes: id, role (important|interesting)

• Members: Each member has an .osm file node or a way reference identi-
fier and it type (node|way)

• Tags: appearW, modifyW, name, function, ...

The mandatory and most important tag is appearW. This tag value defines how
important this place is. This value is between 1 and 0; 1 being the most important.
Another relevant tag is function. In case that we want to keep a neighborhood or
area exactly like it is, we don not need to add all its inner elements. We can define
a place, tagging it with key function and value boundary and defining the bound-
ary polygon of the area. To define the polygon we should list the place members
alternating nodes and ways starting and ending with the same node, like with
the following example: n1,w1,n2,w2,n3, ...,nn,wn,n1. The nodes before and af-
ter a way delimit the section of the way used to get the polygon of delimiting
the important area. Hence, the resultant polygon will be the one defined when
concatenating for all the wi ways, their segments between nodes ni and ni+1. For
this kind of boundary important area elements, the algorithm will consider all
elements inside the polygon with the same weight that the boundary has.
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You can see a simple example in the following code:

<! - - ########## OSMI FILE EXAMPLE ########## - - >

<?xml version="1.0" encoding="UTF-8"?>
<osmi version="0.1" osm="firenze.osm">

<place id="112" role="interesting">
<member ref="23396102" type="way"/>
<tag k="appearW" v="1."/>
<tag k="modifyW" v="0."/>
<tag k="name" v="Battistero di San Giovanni"/>

</place>
<place id="113" role="interesting">

<member ref="24758173" type="way"/>
<tag k="appearW" v="1."/>
<tag k="modifyW" v="0."/>
<tag k="name" v="Campanile di Giotto"/>

</place>
<place id="100" role="interesting">

<member ref="270928894" type="node"/>
<member ref="27648129" type="way"/>
<member ref="250253340" type="node"/>
<member ref="23158535" type="way"/>
<member ref="270929658" type="node"/>
<member ref="113775998" type="way"/>
<member ref="270928894" type="node"/>
<tag k="appearW" v="1."/>
<tag k="modifyW" v="0."/>
<tag k="name" v="Piazza del Duomo AREA"/>
<tag k="function" v="bounding"/>

</place>
...

</osmi>

The list of important or interesting places, or, in other words, the content of the
.osmi file, can be created manually or automatically by running a process able to
find the most important places in the city and finding their .osm element refer-
ences, like Grabler et al. [34] do.

4.3 clean input city

The process must start with a preliminary cleaning step. As we have explained in
the previous chapter, any introduced data is prone to inaccuracies. OSM is not an
exception. Besides, when we download the data from OSM we select a rectangular
area and all the ways inside that rectangle are downloaded. Some of them can be
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very long and extend far outside the selected area. To solve these problems, we
run a cleaning process to the street tagged ways. This process can be parametrized
to do different kinds of cleaning operations:

• Add intersection:
Finds intersecting ways without a node at that position. If it finds it, adds a
new intersection node to both way node lists.

• Remove empty ways:
Finds all ways with a void list of nodes or with only one node. It removes all
the ways fulfilling this condition.

• Remove segments outside bounding box:
Removes all nodes falling outside the bounding box defined when down-
loading the map. In consequence, all way segments defined outside the box
are removed.

We run this cleaning process by activating the removal of void and single-node
ways, also removing the way segments falling outside the area of interest. But we
do not activate the addition of way intersections. The reason is to not connect ways
that may not be sharing an intersection node. For example, two roads crossing, one
being a bridge and the other going down the first one. They are at different heights
so are not connected. See results of this step in Figure 29.

Figure 29: Firenze center: The clean-up process removes streets outside the selected bound-
ing box. Left: Some ways extending outside the selected bounding box. Right:
Way segments outside the bounding box are cropped.
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4.4 streets selection, creating the skeleton city

We can clearly divide all the process steps in two main parts: selecting the impor-
tant streets when doing the city shrinking process, and the shrinking itself. This
section explains the first step and the sequence of operations that the original city
must go through before starting with the shrinking algorithm. The goal of this
part is to go from the original full city to an importance skeleton city, with only the
most important places and streets, and the best streets to connect them. From now
on, we are going to talk about the skeleton city as the city which stores the most
important places and streets, plus the streets to connect the important places.

4.4.1 Add indirect important streets

In this first step, expand the list of important places that the .osmi provides us
with. This expansion adds some streets that should be considered as important
as a consequence of other .osmi elements. Basically, in the .osmi file we have the
important places. An important commercial street can be in the file, but also build-
ings of historical or architectural value, monuments, parks... On the other hand,
an .osmi file can define an area of interest without selecting all the interior ways of
that area. So, we have to do two tasks here: add streets surrounding a (non-street)
landmark and add all streets inside an important delimited area. For example, see
Figure 30 for streets close to the Piazza del Duomo in Firenze.

Figure 30: Firenze center: Adding indirect important streets. Left: The .osmi important
places in gray, with a boundary area highlighted in red. Right: The added indi-
rect streets in black. Note all the indirect streets inside the area highlighted on
the left image.

To get the streets surrounding a (non-street) landmark, we take all the nodes of
the important place and find their nearest streets. Then we add all the resulting
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streets as important streets with the same weight as the place analyzed. If the
place is a complex place element with more than one member, we do exactly the
same for all the place members. The method to get a node’s nearest street takes
advantage of the City proximity acceleration structure of Section 5.1.6. Note that
the nearest streets found can be parallel or perpendicular to the building facade.
Also, this process may not find all the streets surrounding an important place.
Imagine an important building where two consecutive nodes of a large segment
find their nearest street perpendicular to the building facade. Then a short street
parallel to that segment might not be found. These situations are not a problem
for our process, because we are not aiming at surrounding the important places,
but we need to have at least one way to arrive to them.

To get all the streets inside an important region defined in the .osmi as a bounding
place, we run a point-in-polygon test to find street nodes falling inside the region.
To do it, the first thing needed is to define the polygon delimiting the important
surface. This polygon is defined by listing, for each way wi of the place, the nodes
between the previous and next nodes ni and ni+1. Once we get the polygon, we
find the rectangular space that covers the City proximity grid (see Section 5.1.6).
With this polygon positioned, we run the point-in-polygon algorithm only for the
nodes in the grid cells covered by the polygon. This avoids many expensive com-
putations.

4.4.2 Select streets

After the previous step, we get a list with the important places and also their
nearest streets, each one with an importance weight value, encoded in the tag ap-
pearW. The next step is to select those streets that together will form the original
city skeleton to be shrunk. To get them, we have to sort all city streets by their
importance index. Then we select a percentage of the streets of the city with the
highest importance values. This threshold is the shrinking factor, specified by the
user. From this selection, we get a list with one element for each city street se-
lected. The list stores four values for each element: importance weight (impW),
street length (len), importance density (impD, which is computed as impW/len)
and the important place identifier it belongs to if it is an indirect added important
street.

The street importance weight is a value between 0 and 1. All the streets in the
important place list will have a value in the range impW ∈ [0.5, 1], while unim-
portant places will get a value in the range impW ∈ [0, 0.5). Figure 31 shows the
schema of how the importance weight is calculated. In the next paragraphs we
extend the explanation about how we built it.
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We process the importance value of the street member of an important place by
using the following formula:

impW = 0.5+ 0.5 · appearW

where appearW is the place importance weight and impW ∈ [0, 1]. In case that the
important place is tagged with the indirect key, we add the important place from
which it is related to. If not, we leave this value empty. For streets not member
of any important place, we should calculate their weight, too. To do it, we firstly
process all city streets to get the following data:

• Number of intersection nodes for each street (nInt).

• Length of each street (len).

• Shortest city street length (lenm).

• Largest city street length (lenM).

• Maximum number of intersection nodes in a street (nIntM).

With this data, we can calculate the importance weight of the the unimportant
streets, by summing two factors. The first one is an associated weight value de-
pending on the type of street, and thus in the .osm highway tag value. The impor-
tance associated to each street type is defined by the user. We configure it from
more to less important depending on the highway tag value: motorway, primary,
secondary, tertiary, residential, with any other value grouped together. The second
factor considers the length and number of intersections that the street has. The
algorithm normalizes each street length and its number of intersection nodes, con-
sidering the maximum and minimum values found in the whole city. We have
distributed the influence of each of these factors in the following way:

impW = strT + lenF+ intF

• Street type value strT :

– strT = 0.05 for unspecified street type.

– strT = 0.10 for residential street.

– strT = 0.15 for tertiary street.

– strT = 0.20 for secondary street.

– strT = 0.25 for primary street.

– strT = 0.30 for motorway.

• Length factor lenF ∈ [0, 0.1] adds a normalized value:

lenF =
nInt

nIntM
· 0.1
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• Intersection factor intF ∈ [0, 0.1] adds a normalized value:

intF =
len− lenm
lenM − lenm

· 0.1

The sum of the street type value and the length and the intersection factor will
always result in a value between 0.05 and 0.5, that will guarantee that all those
unimportant streets have a lower weight than all the important ones.

To summarize, we get each street importance weight impW and importance den-
sity impD by using the following formulas:

• Important place streets weight:

impW = 0.5+ 0.5 · appW

• unimportant streets weight:

impW = strT +
nInt

nIntM
· 0.1+ len− lenm

lenM − lenm
· 0.1

• For all streets importance density:

impD =
impW

len

Figure 31: Color gradient chart for street importance weight. From less important in blue
to most important in red. Streets between 0.5 and 1.0 are the marked as impor-
tant in an .osmi file. Unimportant ones get their importance weight between 0
and 0.5 depending on the street type, length and number of intersections.
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After getting the list of streets sorted by importance weight, we select a given
percentage of streets on the top of the list. This percentage is the user-defined
shrinking factor (shF). Depending on this value, the algorithm will take more or
fewer streets to create the new importance skeleton city. In Figure 32 we can see the
difference depending on the shF value. With a value of 0.1 it takes only the 10%
top weighted streets, while with 0.2 it takes the 20%. These two examples are very
useful to be compared with Figure 30 Right, which shows the important places and
their indirect associated important streets. If the user selects a shrinking factor of
0.1, it will not get all the important places and associated streets, while increasing
it to 0.2 it will get all of them plus some other unimportant streets. Probably, in
this case, the best decision is to define a shF value of 0.15 or higher.

Figure 32: Firenze center: Streets selected to create the importance skeleton city of Firenze,
using shrinking factors of 0.1 and 0.2. The red ways are the important places that
are not streets defined in the .osmi file.

4.4.3 Connect important streets

At this point in the process, we have a set of ways, with large importances. But it is
highly probable that they form (the ways) a disconnected city model. Therefore, in
this step we are going to interconnect them. For this, we find all the disconnected
clusters and connect them by using a few city streets discarded from the previous
step. Each connecting path is added to the resulting importance skeleton city. The
path to connect two clusters will be the one with the highest importance value.

To get all the disconnected clusters, we run a tool which implements a vector-
based flood fill algorithm (see Section 5.2.2). You can see in Figure 33 the set of
clusters found in the Firenze center example using a shrinking factor value of 0.15.
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The work of connecting the different clusters found is again a City library tool
which implements an A? (A-star) algorithm. This implementation is explained in
more depth in Section 5.2.1. However, let us introduce here that our A? implemen-
tation allows to run the algorithm considering the city network either as a directed
or indirected graph. On the other hand, we can specify the desired distance func-
tion to consider the cost of moving between two consecutive nodes.

To find the shortest path between two street clusters, we first get the centroid of
each cluster. Then we sort the clusters from closer to farther from the city bound-
ing box center. In this way we avoid the possibility of getting bad situations like
starting the cluster’s connection process with the two most distanced clusters –
hence, with longest path to connect them. Finally we run the A? algorithm over
the original city trying to connect two nodes of two different clusters with the
shortest path in the sorted clusters list order. The A? algorithm finds the minimal-
cost path from an initial node to a goal node. The cost of the path depends on
the distance function we define to calculate the cost from one node to another one.
The initial and goal nodes in our case are one node from each one of the pair of
clusters to be connected. Note that the selection of the initial and goal cluster nodes
to be connected is not important, because in the defined distance function we give
a distance of 0 to all transitions between two nodes inside the same cluster, and
to segments already on the importance skeleton city. Once we get two clusters con-
nected, we try to connect the resulting new cluster to the next cluster in the sorted
list. The process finishes when we can not connect more clusters. Hopefully the
resulting importance skeleton city will have only one cluster because all the original
clusters have been connected, but this is not always the case. If the resulting city
still has a disconnected street cluster, and this cluster has no important place in
it, so we remove it. This implies to remove all cluster ways and nodes. See the
resulting connected city in Figure 33.

Clearly, in this step, the most important thing is to define a distance function
according to the characteristics of our desired connecting path between two clus-
ters. The distance function is provided to our A? method. This function defines
the cost distAB of going from node A to node B. For this, we combine two values:
the inverse importance of the street segment impAB (using the importance density
impD calculated in the previous step, see Section 4.4.2) and the Euclidean distance
dAB. The impAB gives preference to paths through important streets, while dAB is
used to guide the path to the destiny node B. The respective weight of each factor
can be decided by the user using parameter α ∈ [0, 1]. The more balanced toward
impAB (higher α), the more computational cost we have. Therefore, we define the
distance function like it follows:

distAB = α · 1

impAB
+ (1−α) · dAB
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To get the importance value imp, we have to apply the following function:

impAB =


0 if A and B are not neighbor nodes.
0 if a street from A to B is already in the skeleton city.
impDAB · distAB otherwise.

The A? algorithm finds the shortest path to go from initial node I to goal node
G. The path distance is the overall sum of all segments ABi of the resulting con-
necting path. A? gives the shortest path, which is the one with lowest path distance
distIG:

distIG =

n∑
i=1

distiAB

In Figure 33 we can see the result of connecting the clusters after running our
algorithm on the Firenze city center with a shF of 0.15. We can see different un-
connected sets of streets (the clusters) in Figure 33 Left, and in Right, the resulting
paths in red added to connect the city. The importance skeleton city is now a con-
nected city (its network is a connected graph).

Figure 33: Firenze center: Connecting important street clusters. Left: The original skeleton
city after selecting the most important streets. There are unconnected sets of
streets. Right: The added streets highlighted in red to connect the city.
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4.4.4 Connecting fringe paths

At this point we have a new importance skeleton city with a connected street net-
work. This new city is a subset of all original city streets, i.e., the most important
ones. These streets are the ones to keep in the resulting shrunk city. Among them
there are some dead-end streets. In the real world, the proportion of dead-end
streets in a city is really small. However, because of our previous step, the new
skeleton city has too many of them. This gives an undesirable look for the city
street map.

To resolve this issue, we connect those dead-end streets in the skeleton city that
were not in the original city. We first detect all these streets by finding the ending
nodes with only one connected neighbor. Then the algorithm tries to find a way
through the original city streets, from the ending nodes to other nodes existing
in the skeleton city, but without using segments already in the skeleton. Obviously,
we can always find a path for this situation, but we restrict the connecting paths
to have a maximum of m steps (street segments) between the ending node and
the connecting one. This m value defines the "beautification" degree and can be
defined by the user by deciding how restrictive to be when removing dead-end
streets in the new city. For each ending node ni, we visit its m-degree neighbors
in the full city and store all the nodes that are candidate to connect paths. A candi-
date path is a path with two ending nodes in the skeleton city, one of them being the
ending node ni itself. Hence, for each ending node we have a set (maybe empty)
of candidate paths. We want to get the best, shortest connecting path for each
dead-end street. To do it, we run an A? algorithm for each ni node pair over the
original city. This A? uses the Euclidean distance between two node coordinates
as distance function, differentiating with the more complex distance function used
in the previous step (Section 4.4.3). When the best m-degree connecting path is
found, we add the path street segments to the importance skeleton city. We want to
emphasize that we are adding street segments, not full streets from the full city to
the skeleton city, giving to each path a brand new way identifier. This is done to
avoid generating new dead-end streets. It is mandatory to add connecting streets
with no new dead-end nodes. See the result of this step in Figure 34 right. The con-
necting paths are highlighted in red. In these images we can appreciate how the
connected dead-end streets depend on the degree value m. With degree m = 3,
there are three dead-end streets that cannot be connected. This is because their
possible connecting path has a larger number of nodes to connect. If we increase
this value to m = 10, the algorithm solves for all dead-end streets.



4.4 streets selection, creating the skeleton city 79

Figure 34: Firenze center: Connecting fringe paths with degrees 3 and 10. Left: Black circles
mark dead-end streets absent in the original city. Right: The dead-end street
extension paths added due to the connecting step are highlighted in red. The
ones that could not be connected are still black circles. Note that the number of
still unconnected dead-end streets is larger with m = 3 than with m = 10.

4.4.5 Add important places

This is the last step before the actual shrinking process of the skeleton city. It does
not affect the street map. The previous steps created the important streets for the
directed shrinking process, so we have a street network without any other im-
portant element. Before starting the shrinking process, the algorithm also adds
all the non-street important elements, specified in the .osmi file (buildings, parks,
squares, rivers, etc.). For the example of the Firenze center, this step will add land-
marks like Basilica di San Lorenzo, Piazza del Duomo, Arno river and Ponte Vecchio,
among others, as can be seen in red in Figure 35 Right.
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Figure 35: Firenze center: Adding the .osmi non-street important places to the skeleton city.
Right: In red, the important places added. There is no change in the street map.

Summarize skeleton city:
Before leaving this section, we want to illustrate the partial result at this point of
the shrinking pipeline. In Figure 36 we show, in Right, the resulting skeleton city
that is going to be shrunk with the subset of ways selected from the complete
original city (In Figure 36 Left). Note that the city area has not suffered any reduc-
tion yet. This figure shows the result by using a shrinking factor of shF = 0.15,
a balance of importance and distance equivalent impDistBalance = 0.5, and a
connecting fringe paths degree of m = 10.

Figure 36: Firenze center: The resulting skeleton city. Left: The original Firenze center with
all its streets, buildings and its river. Right: The skeleton city with the 15% most
important streets and places.
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4.5 city shrinking

From the previous section, we have an importance skeleton city from the original
city. This skeleton city has the most important places and streets of the city with
the same sizes and positions that in the original city. Now, we reduce de city area
by running the shrinking process. This process is applied over the skeleton city
instead of the full city because we do not want to consider all the city elements
in the same way. The shrinking process is a directed area reduction with the goal
of reducing those areas with smaller element densities. To avoid processing those
less important areas, we removed all streets and elements without importance.

4.5.1 Seam Carving algorithm

Before explaining the city shrinking process, it is essential to understand how
the Seam Carving algorithm works [7]. Seam Carving is basically an image re-
targeting operator. This operator is a non-homogeneous resizing system with
content-awareness. Avidan and Shamir [7], argue that an image resize should not
only use a geometric constraint, but consider the image content as well. See in
Figure 37, a summarizing figure of Seam Carving that explains the process and
shows the results of a resized image with a regular scale process or with it algo-
rithm.

Figure 37: Seam Carving.A seam is a connected path of low-energy pixels in an image.
On the left, the original image with one horizontal and one vertical seam. In
the middle, the energy function used in this example (the magnitude of the
gradient), along with the vertical and horizontal path maps used to calculate the
seams. By automatically carving out seams to reduce image size, or expanding
on both sides of seams, content-aware resizing is achieved. The example on the
top right shows a result of extending in one dimension and reducing in the
other, compared to standard scaling on the bottom right.
Reprinted from [7].

A seam is an 8-connected path of pixels from top to bottom or from left to right
that optimizes an image energy function. By carving out repeatedly this optimal
path pixels, the image can be reduced. And the other way around, by inserting pix-
els along this optimal path repeatedly, the image can be elongated. The resulting
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image depends on the selection and order of the seams, and this selection depends
basically on the energy function. In our code, we are interested in reducing a city
map. Thus, we should define an appropriate energy function.

Even though Seam Carving is an image operator initially designed to retargeting,
Avidan and Shamir also explore more utilities of the algorithm [7], for example re-
moving image elements. Furthermore, the Seam Carving operator has been used
for other purposes beyond image retargeting in other papers. As examples, Qu
et al. [61] use it to redimension urban landmarks and streets to visit them and
Emilien et al. [25] to straighten or distribute natural elements throughout a terrain.
We want to shrink the city surface considering the content of the city, by applying
non-homogeneous resizing. Therefore, we should find a proper energy function to
find seams and remove them. The problem here is that we do not have an image
(a set of pixels with their respective color), we have a City structure, with a graph
representing the city street map. To directly apply this technique to our city, we
map the city area to an image. If we divide the city in a grid, then we can consider
each cell to be an image pixel. In this way, when removing a seam from the image,
we will be removing a proportional city surface area.

4.5.2 Create city image

In this subsection we explain how to convert the vector-based city representation
into a raster image without losing crucial connectivity information.

To create the image corresponding to the skeleton city we take a two-step process
using two different tools. The first one converts the city from an OSM file (.osm
XML format) to a vectorial image file (.svg), and the second turns the vectorial im-
age (.svg) to a raster image (.png). To transform the .osm file to the .svg file, we
use Osmarender tool [32] which is a rule-based rendering tool. It takes as input an
OSM dataset (.osm file) and a rule file (.xslt file). It outputs a Scalable Vector Graph-
ics (SVG) image (.svg) that is marked up in accordance with the styles defined in
the eXtensible Stylesheet Language Transformation (XSLT) file. XSLT is a language
for transforming XML documents, that defines, for each kind of XML element, how
it should transform in the .svg file. We have basically defined rules to make as
dark as possible the important places and lighter the unimportant elements. After
getting the vectorial format .svg image, we transform it from vectorial to raster
format, getting a .png file. We use a SVG rasterizer. The resulting image for the
Firenze center city (with an shrinking factor of 0.15) is shown in Figure 38.
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Figure 38: Firenze center: Skeleton city transformation from .osm file to a rasterized image
in .png file. Right: See how the important places are colored in black and empty
areas in white. Nearby roads are in darker gray and streets in lighter gray.

4.5.3 Shrinking pre-process

We add extra information for each image pixel. This extra data will be used in the
Seam Carving process to calculate the energy function and to determine seams
to remove. The extra data structure is a matrix of the same size as the image. For
each matrix cell (representing a pixel) we store the following six information:

gray scale value : We translate the city image to a gray scale image and then
we invert it. Each pixel stores its gray scale value in the range [0, 255]. Because
of the inverse operation, black pixels in the original image become white and
white ones become black.

distance field : The pixel’s shortest distance to a skeleton city element. The al-
gorithm implemented is a standard diffusion algorithm. We normalize dis-
tances also in the range [0, 255]. As a result, we get a new gray scale image.

pixel skeleton nodes : We store a list of all skeleton city node identifiers whose
coordinates fall inside the pixel "area".

pixel full nodes : We store a list of all original city node identifiers whose
coordinates fall inside that pixel.

original image coordinates : We also store the coordinates (longitude, lat-
itude) in the original skeleton city of the center position of the pixel. This
value is important to calculate, after the process, the new position of the
pixel, which can be at a smaller latitude and/or longitude if any seam is
removed with pixels of lower coordinate values.
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frozen pixel : This is a boolean value that declares that a pixel cannot be re-
moved (it is frozen). Therefore, it cannot be added to a seam path to be
removed. The criteria to consider a pixel as frozen is:

• The pixel has a skeleton city node of an important non-street element.

• The pixel has a skeleton city street intersection node.

4.5.4 Shrinking Seam Carving process

We have implemented the Seam Carving algorithm, but with some peculiarities to
adapt the energy function to our needs and process the changes of the image in
the extra data matrix, to keep coherences between them.

4.5.4.1 Seam Carving energy function

As already explained in the beginning of this section, Seam Carving goes repeat-
ing the same process of finding a vertical or horizontal seam to remove. This seam
is the pixel path to go from top to bottom or from left to right of the image, op-
timizing an energy function. The original Seam Carving algorithm uses a Sobel
filter over the image. The Sobel filter is an image processing operator that empha-
sizes the edges and transitions. In our case, we are going to calculate a different
energy function because we do not want to consider the pixel gradient; we use a
blend between two images, the gray scale and the distance field, and we balance
the blending factor to promote one or the other. In this way, we are giving more
weight to important places and streets while giving less energy to empty areas
(which are the ones without important elements). This is certainly a very specific
energy function for our purpose but in practice it turns out to cover our needs. In
Figure 39 we can see an example of this process and the resulting energy function
image by blending gray scale and distance field images, with a 50/50 balance.

4.5.4.2 Seam Carving finding seams

As we can see, we can tune the energy function to make the seam carving algo-
rithm select seams with specific characteristics. By overloading image pixels with
the information we want, we can use different data and mix them to get the de-
sired energy function image.

With our energy function, we can find the best seam to remove at each itera-
tion. This path is the one with minimum energy, that is, the minimum sum of
pixel values in the energy function image. This process can be done via Dijkstra’s
algorithm, graph cuts or dynamic programming. Our implementation uses dy-
namic programming with one special modification: When computing the energy
value of a pixel with the frozen value, it sums an infinite value. That way, the algo-
rithm avoids to get any seam passing through these pixels. Dynamic programming
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Figure 39: Firenze center: The skeleton city Seam Carving energy function. Top-Left: Raster
image of the original importance skeleton city. Top-Right: The inverse gray scale
image. Bottom-Right: The distance field got from the gray scale image. Bottom-
Left: By blending gray scale and distance field images, we get the final energy
function used to find seams.

stores the result of the sub-calculations in order to simplify calculating more com-
plex results. For example, if attempting to compute a vertical seam path, for each
pixel in a row we compute the energy of the current pixel plus the energy of one
of the three possible pixels above it to obtain the one with minimum accumulated
energy. See Figure 40, with in black number the pixel’s energy value, and in red
the accumulated energy. When arriving to the bottom of the image, the optimal
seam is the path ending in the last row pixel with the lowest accumulated energy.
We have used a naive implementation with a computational cost of O(m× n), m
and n being the image size. To get the final result we sum this cost for each of the
seams S to be found, sm and sn being the number of vertical and horizontal:

O(m×n) +O(m− 1×n) + ... +O(m− i×n− j) + ... +O(m− sm ×n− sn)
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Hence, the order of this step is: O(m×n× S)

Figure 40: Seam Carving finding vertical seam using dynamic programming. For each
pixel, the number in black is its energy value and in red the lowest accumu-
lated energy to arrive to it. Left: First row, the pixel accumulated value is the
same as the pixel value. The second row gets the lowest accumulated energy,
considering their three (or two, along the image borders) previous neighbors.
Middle: Processing the last row. Right: In green the lowest energy seam path.

In Figure 41, we see in red the set of seams to be removed over the skeleton city
image. Note that seams run over darker pixels in the left image, which is the
energy function image.

Figure 41: Firenze center: Seam Carving seams to be removed from the skeleton city image.
Left: The energy function of Firenze’s center importance skeleton city image. Right:
The Firenze center importance skeleton city image with all seams that can be
removed in red. This case shows 100 vertical and 100 horizontal seams.
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4.5.4.3 Seam Carving removing seams

After finding each seam, we remove it from the image. The user can decide how
many seams to remove, in both vertical and horizontal directions. Hence, the de-
signer can get as a result a city with required aspect ratio. To remove a seam means
to delete all the pixels that form the seam path, and to move all the pixels by one
pixel, on the right of the seam, when a vertical seam is removed. Similarly for the
upper pixels when the removed seam is a horizontal one. When moving all those
pixels to occupy the seam pixel space, we also move the extra data matrix cells
correspondingly, such that we continue having coherent information of pixel color
and extra data.

The resulting raster image is the shrunk image. We can appreciate the city im-
age reduction in Figure 42 between the original area in the left column and a
shrunk area in the right column. Note how all the important places are kept and
they are closer together, while keeping their relative positions (Figure 42 Bottom,
green arrows). However, this image does not look entirely correct, because those
streets crossed by many seams have been cut, resulting in inconsistent orientations.
In Figure 42 Top-right and Bottom-right, red circles show this case. This will not be
a problem when translating this result to the City structure because of its vectorial
nature. A street segment in the raster image is a set of pixels drawing the line
between the two end points, while in the vectorial space it is represented by the
two end points and nothing else in between.

4.5.5 Shrinking post-process

After running the Seam Carving operator over the raster city image, we have to
translate this result back to vectorial space, getting a new City structure, the final
shrunk city.

During the Seam Carving process, when removing the seam, we update accord-
ingly the extra data matrix. So we have now an original skeleton city image and a
shrunk skeleton city image, but also an original-size extra data matrix and a shrunk-
size extra data matrix. This is the extra data explained in Section 4.5.3.

Obviously, in the shrunk extra data matrix, the pixel coordinate values are wrong:
Any pixel moved by a seam passing through a lower longitude or latitude keeps
its original pixel position coordinates. On the other hand, the pixels containing
city nodes that have been moved have the City node identifier, but its coordinates
should be updated: The ones defined in the original skeleton city are not appropri-
ate any more. To provide new coordinates to all shrunk city nodes, we process all
the nodes that extra data cell has. In this process, we decrease the original node
coordinates by the number of pixels it has been moved times a pixel side length.
Therefore, considering P = (i, j) the pixel with at least one node matrix position,
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Figure 42: Firenze center: Skeleton image shrinking by Seam Carving reduction. Top: Impor-
tance skeleton city images. Bottom: The respective energy functions with green
arrows to indicate the shortened distances between important places. Left: The
original size of the skeleton city image. Right: The shrunk skeleton city image
after removing 100 vertical and 100 horizontal seams with disturbing streets in
red circles. Top-left image has seams removed in the background to facilitate the
understanding of the resulting top-right image.

P′ = (i′, j′) the same pixel after the Seam Carving process changed its position,
csize the matrix cell side size in real word measures, N = (x,y) the original city
node coordinates andN′ = (x′,y′) the same node in shrunk city, we can relate them
by:

x′ = x− csize · (i′ − i)

y′ = y− csize · (j′ − j)

Note that some nodes can be removed during the Seam Carving process (but
not intersection street nodes). These are not frozen pixels with nodes in them.
This leaves the possibility of experiencing some street deformation. Removing one



4.5 city shrinking 89

street node can make the street lose curvature, so this could result in a simpli-
fication of its shape. This effect is undesired, because in fact we are getting a
simplified city. Anyhow, it can easily be corrected by changing all the street nodes
to be frozen pixels.

With the new node coordinates we have to create the new shrunk city. It adds
all the nodes with new coordinates (x′,y′). If a node has no new coordinates it
means that the node has been removed. In this case, we update all the ways using
this node, removing the node from the node list. See the resulting shrunk city in
Figure 43. Note that those streets deformed and unconnected in the raster image
become connected and stretched because of the vectorial nature of the City struc-
ture.

Figure 43: Firenze center: Shrunk image transformation to a shrunk city street map. Left:
The raster image after running the Seam Carving process. Right: The street map
of the City model. Zoomed-in areas show the change from raster to vectorial
space, resulting in a satisfying vectorial street map.

Nonetheless, depending on the structure of the city map, the non-intersecting
nodes in a street, and because of the Seam Carving nature, even after the conver-
sion of the raster image to City structure, we can get streets with undesired extra
curvature. See as an example the resulting shrunk Barcelona in Figure 44 Middle.
Many streets have sinuosities that were not there in the original map. Two exam-
ples are marked with red circles in the images. In these cases, we run a stretching
process. We stretch all the street segments that were straight in the original city
but not in the shrunk city. We keep the streets having curvature on the original
city without experiencing any stretching process. The resulting city map after the
stretching process has a better appearance than the one after the Seam Carving
process, although it has lost rectangular-shaped intersections, which is an impor-
tant feature of the Barcelona Eixample. Even so, this characteristic can be recov-
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ered by designer editing (see Figure 50) or by applying the process modification
proposed in Section 4.6.1 (see Figure 51).

Figure 44: Barcelona: Shrunk city and stretching map. Left: The skeleton Barcelona Eixample
map with seams to remove (150× 150) in the background. Middle: The shrunk
city map. See the undesired sinuosity of the streets in the red circles. Right: The
shrunk city after the stretching process.

Figure 45: Firenze center: Shrinking the Skeleton map. Left: The original size Firenze center
importance skeleton city, with important places in red. Note the colored (yellow,
blue and green) areas without important places in them, and the black arrows
for some distances between important places. Right: The shrunk city. Note how
unimportant areas are smaller, and important places are closer together and
mostly maintained their relative positions.
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Summarize shrunk city:
The resulting shrunk city is smaller in comparison with the original size skeleton
city. Nevertheless, it brings closer together the important places and with their
sizes and shapes untouched (see Figure 45). We have been illustrating step-by-
step the example of the Firenze center map. If we run the shrinking process to
this city map with a shrinking factor shF = 0.15 and removing 100 vertical and
100 horizontal seams, we get the resulting shrunk city shown in Figure 45. The
shrunk city is a city with its unimportant areas decreased and distances between
important places reduced (see yellow, blue and green colored areas and black
arrows in Figure 45). In the same image the important places are colored in red.

4.6 results

We have implemented a pipeline of city operations that takes an original city map
with a set of important places and streets, and converts them to a smaller city
with a similar distribution, retaining its essence. After the shrinking process, the
designer gets the shrunk city. This city has only the elements (streets and other
places) selected to be on the skeleton city. This final city is a generalization of
the original city with smaller surface areas, keeping its important places closer
together. From this proposal of a smaller city, the designer can start editing it to
get the desired final city (see Figure 46).

Figure 46: Firenze center: The Shrunk city designer edition. Left: Shrunk city and all full
city streets experiencing the same transformation due to the shrinking process,
in lighter gray. Right: The red streets are streets that a designer decided to add
or modify. The added ones are inspired by full city streets.
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The designer can then add new streets, remove undesired ones (or street segments)
or edit a street by changing its shape. The streets added can be based on the
original streets not included in the skeleton city, so we provide them to the designer
as can be seen in the left image of Figure 46, in lighter gray. Note that all streets
experience the same transformation due to the shrinking process with the skeleton
city energy function. The streets already included in the shrunk city, can also be
edited to change their shapes. See an example of this modification on the center
bottom street of the figure. In the left image, the street has a shape like a stair
while in the right it becomes smoother, in red.

Figure 47: Firenze center: Shrinking process final result. Top-left: The original Firenze cen-
ter importance skeleton city, with important places in red. Top-right: The colored
neighborhood areas (yellow, blue and green) representing areas with no impor-
tant places within them. Bottom-right: The shrunk city, after applying the shrink-
ing process. Note how unimportant areas are smaller and important places are
closer together while respecting their relative positions.
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Figure 47 summarizes our shrinking process. Note how the resulting city has a
smaller area and maintain the most important places but placing them in closer
positions. Figure 47 Top-left is the full original city with the skeleton selected el-
ements highlighted in red. And the Bottom-left the final city after being shrunk
with the designer’s modifications in red. The less important area of the city has
been removed. In Figure 47 Top-right and Bottom-right, we can see the unimportant
areas (colored in yellow, blue and green) and how they have been reduced in the
bottom one. By doing this shrinking process, important places become closer to-
gether, like it is illustrated by the shortened black arrows in Figure 47 Bottom-right.

This process can be parameterized by the user with different values if the de-
fault ones do not result in a satisfying shrunk city. We show below the list of these
tunable parameters (sorted in the order of their use in the pipeline process):

proximity street threshold : A real value to limit the maximum distance
that a street could be from an important place to be added as an indirect
important street.
Default: proxStrThreshold = 0.00033

street weights : A dictionary for each kind of city way importance weight.
Default: highwayWeightsd = {motorway = 3., primary = 2.5,
secondary = 2.0, tertiary = 1.5, residential = 1.0}

shrinking factor : A real value shF ∈ [0.0, 1.0] which specifies the fraction of
streets to keep when creating the original importance skeleton city. It is the
most important parameter in our implementation.
Default: shF = 0.2

importance|distance balance : A real value impDistBalance ∈ [0.0, 1.0].
It specifies the weight that has the distance or the street importance on the A?

algorithm to make the city connected. A value of 0.0 means just importance
criteria, while 1.0 means the whole weight applied to the distance criterion.
Default: impDistBalance = 0.5

remove unimportant clusters : A boolean to decide if the algorithm should
keep unconnected clusters with no specified important places or remove
them. This is processed when creating the skeleton city.
Default: noImpClusters = True

connecting degree : An integer value to define the maximum number of way
segments to use when trying to connect dead-end nodes.
Default: m− degree = 3

image size : An integer to specify the maximum size, in pixels, of the image
to run the Seam Carving algorithm on (it will be used as height or width
depending on the aspect ratio of the City bounding box).
Default: imageSize = 500
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grayscale|distancefield balance : A real value to specify the image blend-
ing balance grayDistBalance ∈ [0.0, 1.0] between the gray scale pixel values
(important elements) and the distance field pixel values (distance to impor-
tant elements).
Default: grayDistBalance = 0.5

seams to remove : A two-integer tuple to specify the number of horizontal and
vertical seams to remove. Considering the image size and the seams to re-
move, we can easily define the area of the reduction of the city area. (These
values would also be possible to be defined height and width fractions.)
Default: imageSizeReduction = (100, 100)

Figure 48: Firenze center: Shrinking results by changing shF (shrinking factor). From left
to right, using smaller to larger numbers of streets. Top: Original size skeleton
map. Middle:The 100× 100 seams removed. Bottom: Skeleton shrunk map.
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In Figure 48, we can see different shrunk cities by changing the shrinking factor
(shF = 0.05, shF = 0.15 and shF = 0.5) and keeping the same number of seams to
remove (100× 100). In Figure 49, we can see the different shrunk cities by chang-
ing the number of seams to remove (#seams = 50× 50, #seams = 100× 100 and
#seams = 200× 150) and keeping a fixed shrinking factor shF = 0.15.

Figure 49: Firenze center: Shrinking results by changing the number of seams to remove.
From left to right, removing fewer to more seams. Hence the resulting shrunk
city area decreases from left to right. Note how the more seams we remove, the
more deformed the streets become.

Another example in Figure 50, changing the city processed, shows the Barcelona
Eixample neighborhood map. In Figure 50 Top-left, the important places are high-
lighted: In blue, interesting places like Sagrada Família, Plaça Catalunya, Catedral de
Barcelona, Torre Agbar, Passeig Lluís Companys and bullring La Monumental. In green
the Parc de la Ciutadella and Zoològic area. And finally, in red, important streets and
squares like Rambla de Catalunya, Gran Via de les Corts Catalanes, Diagonal, Merid-
iana or Plaça de les Glòries. In Top-right image we can see the seams removed to
shrink the Barcelona map. The Figure 50 bottom images are the shrunk city map
before and after the designer’s work. In the Bottom-left, we can see some originally
straight streets with their resulting curvatures, which makes the shrunk city lose
the characteristic regular blocks of the Barcelona Eixample neighborhood. We dis-
cuss this issue in the following paragraphs. The designer has the responsibility
to recover this city feature by moving the blocks and adding new streets, like in
Figure 50 Bottom-left.
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Figure 50: Barcelona Eixample: Shrinking process final result. Top-left: The original city
with important places highlighted like Sagrada Família, Plaça Catalunya or Cate-
dral de Barcelona in blue; the Parc de la Ciutadella and Zoològic area in green; and
some of the most important streets and squares like Rambla de Catalunya or Di-
agonal in red. Top-right: The skeleton with black arrows to compare distances be-
tween important places. Bottom-right: The shrunk city removing 150× 150 seams
shown with shorter black arrows. Bottom-left: The designed shrunk city after the
stretching process and the designer’s work.

The timings of the overall process are in Table 2. Note that our Seam Carving
implementation is rather naive. The computational cost of the operator to find a
seam is linear O(N) in the original paper [7], and the cost is also linear with the
number of seams to process O(S) for S seams to process. We have an implemen-
tation of order O(N× S). Therefore, our achieved timings are of a few minutes to
run out Seam Carving (depending on the number of seams to run), should reduce
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to just a few seconds. Avidan and Shamir[7] report that an image of 500× 400
pixels (size used for our examples) can be reduced to a 100× 100 pixels in 2.2
seconds. The reason why such a big difference between their timings and ours is
that we have implemented the dynamic programming algorithm in a naive way
and using Python, which is an interpreted programming language (always slower
than a compiled language).

In Table 2 we can see the time spent in each shrinking step. These numbers have
been obtained with different parameters and for different cities. The times are in
seconds and the executions ran on a Mac BookPro 2011 with OS X 10.10 and pro-
cessor Intel Core i7 2.66GHz. All the code is run on the CPU, no GPU is used in
our implementation.

The first and main conclusion we can draw from the table is that the most expen-
sive step is the shrinking process itself, i.e., the sum of columns step8Pre, step8SC
and step8Pos. To get the skeleton city from the original city is quite fast, around
20 seconds. The cost of the shrinking process is divided between the time of pro-
cessing the extra data matrix and running the Seam Carving algorithm. The fast
timings on the city operations are thanks to the City library structure and tools.
See this library details in Sections 5.1 and 5.2. The next conclusion to make is that,
when finding the indirect important streets, those streets near to a non-street im-
portant place, require a longer time if the important places have more nodes and
a higher density of nodes in that area of the city. See in Table 2 how Barcelona
executions take much more time than Firenze executions in step1. Also, when the
first selection of streets to add to the skeleton city has more unconnected clusters,
the connecting clusters step takes more time. The case of Barcelona takes more
time to connect them than the Firenze case, see highlighted cells in step3&4. An-
other nice conclusion is that, for higher shF values, the time to create the skeleton
city image is higher, while the time to process the extra data matrix is smaller.
The reason for these two facts is basically that the skeleton city has more elements
selected as important. In one case, to create the skeleton image, the increasing time
is because the tool that translates from .osm file to .svg file needs to process more
elements. In the other case, to process the extra data matrix, the decreasing time
is because, when processing the distance field with the flood fill algorithm from
each pixel, the distance to the nearest city element is smaller. We ran a flood fill al-
gorithm from each pixel, visiting pixel neighbors while searching for an important
element. Because of the higher density of important elements, all pixels stop their
search before because they find an important place earlier. See step7 and step8Pre
columns for Firenze with shF = 0.5 in comparison with Firenze with shF = 0.05
and shF = 0.15. The last conclusion we want to draw is that the running time of
the Seam Carving is longer when removing more seams, which is logical. Note
how, when increasing the number of seams to remove, the time also increases in
the highlighted cells of step8SC column.
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Steps definition

step1 Add indirect important streets 4.4.1
step2 Select important streets 4.4.2

step3&4 Connect clusters (and remove no important ones) 4.4.3
step5 Connect fringe paths 4.4.4
step6 Add non-street important places to skeleton city 4.4.5
step7 Create skeleton city image 4.5.2

step8Pre Shrinking pre-process, extra data matrix 4.5.3
step8SC Shrinking Seam Carving execution 4.5.4

step8Pos Shrinking post-process, new shrunk city coordinates 4.5.5

step1 step2 step3&4 step5 step6 step7 step8Pre step8SC step8Pos

Firenze center (shF = 0.15, #seams = 50× 50):
15.8 0.2 3.4 1.2 0.0 4.6 304.5 201.1 0.6
Firenze center (shF = 0.15, #seams = 100× 100):
16.5 0.2 3.3 1.2 0.0 4.5 295.6 359.4 0.7
Firenze center (shF = 0.15, #seams = 150× 150):
15.3 0.2 3.2 1.1 0.0 4.4 301.0 448.6 0.6
Firenze center (shF = 0.15, #seams = 200× 150):
15.9 0.2 3.6 1.3 0.0 4.4 290.3 489.9 0.4

Firenze center (shF = 0.05, #seams = 100× 100):
15.9 0.1 3.6 1.1 0.0 3.1 331.4 342.0 0.5
Firenze center (shF = 0.15, #seams = 100× 100):
16.5 0.2 3.3 1.2 0.0 4.5 295.6 359.4 0.7
Firenze center (shF = 0.5, #seams = 100× 100):
15.4 0.3 7.7 1.8 0.0 7.1 73.2 355.8 1.0

Barcelona Eixample (shF = 0.2, #seams = 50× 50):
61.2 0.7 25.9 2.5 0.0 8.2 151.3 231.0 1.5
Barcelona Eixample (shF = 0.2, #seams = 150× 150):
63.3 0.6 26.6 2.5 0.0 8.2 157.8 507.9 1.1
Barcelona Eixample (shF = 0.2, #seams = 200× 200):
63.0 0.7 26.0 2.4 0.0 8.2 151.1 590.6 0.8

Table 2: Shrinking process step timings in seconds.
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4.6.1 Shrinking process discussion

We want to organize our discussion around five different topics: the freedom of
the designer to get different results from the same original city, the possible gener-
alization of the shrinking criteria, the behavior of the process for cities with very
regular street network, and the addition of unimportant streets on the shrunk city
large empty areas.

• Designer’s freedom:
We give the designer the opportunity of achieving the desired final city in
two ways. First of all, he can tune the parameters to get the result as similar
as the expected final city (shF, number of seams to remove, connecting fringe
paths pass degree, etc.). But we also provide the unimportant streets –shrunk
too– to fill large areas without any street, a part from the option of modifying
and removing streets from the resulting process, as shown in Figure 46.

• Seam Carving generalization:
We explained in Section 4.5.4.1 how we calculate the energy function to run
the Seam Carving operator over the city. This energy function can be imple-
mented in many ways, adjusting the energy of the pixels according to each
case. Moreover, we have added an extra data matrix that can be used to get
as much information as desired for each pixel. Hence, we can think of any
energy function for different purposes and shrink the city for any criteria
we can imagine. In this way, we can control more our algorithm to froze all
street nodes (not only the intersections) or all the surfaces of the important
areas (instead of only the elements inside it). Even more, we can define any
new specialized criteria for resizing the city by considering, for example, to
keep only the most significant commercial streets, the most populated dis-
tricts, etc. Also, we can consider that the translation from vectorial space to
raster space can be generalized. Any kind of graph or data can be mapped
over the raster image. Then, giving a desired information to each pixel can
create a new specific energy function to run the Seam Carving on.

• Strong pattern street networks:
As seen in the Barcelona Eixample results, cities with strong street patterns
can lose a bit of their shapes even after the stretching process. Examples can
be squared blocks (perpendicular intersections), radial and circular streets,
etc. In these cases, the nature of the vertical and horizontal seams of the
Seam Carving operator can give undesired results because street intersec-
tions can change angles. For the squared block pattern, this issue is specially
problematic when the streets have a diagonal orientation with respect to the
longitude and latitude axes. A way to solve it is to rotate the whole skeleton
city before running Seam Carving, to have the more streets as possible in
vertical and horizontal directions, run the operator and then rotate again the
resulting shrunk city. See in Figure 51 how the straight streets (in green) re-
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main straight after shrinking when they are parallel to longitude or latitude
axis, while the streets at 45◦ have an undesired curvature (red circles).

Figure 51: Barcelona Eixample: Shrinking after a 45◦ rotation. Left: The skeleton and shrunk
city maps keeping node coordinates. Right: The skeleton city after a rotation of
45◦ to all the nodes, and the resulting shrunk city rotated back to its original
coordinates, −45◦. Red circles show straight streets being deformed because of
the Seam Carving.

• Filling unimportant empty areas:
The resulting shrunk city leaves large areas without important places. We can
consider there areas as big blocks or small neighborhoods. This is because
we are shrinking the skeleton city with only important places and streets in
mind. Filling these areas is mainly a work for the designer even though this
is routine work. We provide them with all the shrunk city streets, and they
can select the ones to be added and modified. For this, we introduced two
approaches to get the shrunk unimportant streets. The first idea was using
a cage-based deformation algorithm (Mean Value Coordinates) [30]. For this,
we find the cages with the skeleton city streets and their bounding box mini-
mal closed circuits. Then, for all those cages that were too large, we get the
same cage on the shrunk city. Having the transformation of the cage, we ap-
ply the same transformation to the inner nodes. This first approach did not
give us the expected results because cages and Seam Carving are different
deformation systems. Some street nodes fell out of the shrunk cage. Seeing
that this was not a good idea we decided to apply exactly the same Seam
Carving deformation to the whole full streets map. All node coordinates are
added to the extra data matrix explained in Section 4.5.3. The nodes of the
unimportant streets are not frozen, so they can be removed if a seam goes
thought them. This changed its shape, but if we decided previously to con-
sider this street as an unimportant one, its shape is not transcendental to the
resulting city. Note that we did not run a Seam Carving over the energy func-
tion of the full map, we only ranit with the skeleton city map energy function,
and the seams removed in this process are applied for both, skeleton and full
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map node coordinates. Trying to fill automatically these areas is not an easy
task, but it would be a nice future work. We point out how to explore this
issue in the future work in Section 7.2.

• Raster image operator in vectorial urban graph:
It might be strange to turn from a graph vectorial space to an image raster
space to run the Seam Carving, and turn back to the graph again after the
shrinking process is finished. But this change of space is to take benefit of the
Seam Carving algorithm, that provides us a good way to do the guided resiz-
ing of the city that interest us. Combining both spaces is also done by Emilien
et al. [25] to take profit of the Seam Carving algorithm. The way of changing
from one space to the other is explained in depth in Section 4.5.3. Aliaga et
al. [4], explicitly say that Avidan and Shamir image-processing algorithms
(Seam Carving), enables image resizing and retargeting. But this algorithm
is not suitable for images with highly structured information. They also ar-
gue that it is not an appropriate algorithm for urban layouts because they
consist of building contours, road networks, and local details that can not
be treated the same way as a patch of grass or sand. Important boundaries,
angular relationships, and logical connectivity must be maintained, and tiles
should not be deformed. Despite this, in our case, it can be used, precisely
because the empty unimportant areas in the skeleton can be considered like
large patches of grass, sand or any other unstructured elements. We have to
consider any element in these areas as unimportant and it will not appear in
the resulting shrunk city. The only affectation is the changing of the angles
of the intersecting streets and the relations between important places, but in
general, a little angle distortion does not change the essence and the feeling
of being in the target city.





5
S Y S T E M : T H E C I T Y L I B L I B R A RY

T o carry on the shrinking process, we have implemented a data structure
to store cities and apply operations on them. This chapter summarizes
this work and explains the foundations over which we have developed

the shrinking process. The chapter is divided in three sections: the city type (Sec-
tion 5.1), some specific city tools (Section 5.2) and the explanation of the city op-
eration pipeline used to chain together the Shrinking process steps (Section 5.3).
In the city type section, we explain the data structures implemented to store the
OSM files and discuss the reason why we implement them in this way. We intro-
duce also how we manage the node and way atomic operations. In the city tools
section, we explain some more sophisticated tools implemented to be run over a
city structure, tools that support the shrinking process. In the section on city op-
eration pipeline, we present the implementation of a generic and modular way of
concatenating city operations to make a city object experience changes from one
state to another.

103



104 system : the citylib library

5.1 city type

To manage the shrinking process, we had to implement a library to store the input
urban data (the OSM data) and a set of methods and tools to manage this data.
We call this library CityLib. CityLib is an efficient structure for common network
operations implemented in Python. It can be divided in three main parts: parsers,
the city class itself, and tools. We have implemented a parser to read an .osm file
and load it as a class called city, and the other way around, a parser to store a
city object into an .osm file. Other parsers can be implemented to load and store
any other urban data sources as a city object. The city class, like any other class in
Object-Oriented programming, has its structure (a set of fields) but also its behav-
ior (a set of methods). City methods are basic and atomic node and way operations
with an optimized computational cost, thanks to the internal city structure that we
will present in the next subsections. Finally, the CityLib library has also some tools
which are more expensive or sophisticated algorithms. All these algorithms can be
applied to a city object. Most of them are implementations of well known graph
theory algorithms.

5.1.1 City bare data (nodes & ways)

Most GIS data sources provide their data as a set of nodes and ways. A node is a
geo-positioned point over the earth surface. Its position is defined by a tuple with
values for latitude, longitude, and sometimes height above the sea level. A way is
a list of nodes drawing a path over the earth surface. These are basic and common
data that GIS has. Nonetheless, each geographic data source can have extra meta-
data associated to each node or way. In the case of OSM, their XML-based format
adds a set of tags to each node or way to define its characteristics. See more infor-
mation about this format in Section 4.2.

We implemented a parser to load the data from an .osm file and store its nodes,
ways and meta-data into a city object. We store this data without filtering any kind
of information. We store everything: city streets, buildings, gardens, electric lines,
vegetation or whatever that the parsed GIS file provides in node and way elements.
The way to store this data is the following:

• Nodes: A dictionary with all the nodes of the city. The dictionary key is the
unique node identifier.

• Ways: A dictionary with all the ways of the city. The dictionary key is again
the unique way identifier.

• Bounding box: A four-value tuple delimiting the city in a rectangular area
(minLat, minLon, maxLat, maxLon).

• StreetNWAdmin: The StreetNWAdmin (street network administrator) is an
object that encapsulates different representations (or structures) of the city
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street network (not all the city ways) and it manages which of them to use
depending on the query. See Section 5.1.2.

A city node stores all its information, which is: the unique identifier, the coordi-
nates (latitude and longitude) and the meta-data. The meta-data, in case of the OSM
data, is the XML node element header attributes and also internal tags. All the meta-
data is stored as tuples with a key and a value, for example traffic_sign:city_limit.
In the same manner, a way stores all its information: the unique identifier, the list
of nodes that make it up and the meta-data. In the case of the ways, the meta-
data is again the XML way element header attributes and internal tags. Also for
the ways, each meta-data information is a tuple with a key and a value, like for
example, highway:residential.

5.1.2 Street structure manager

The streetNWAdmin is a class that manages the different data structures in which
we store all the street ways. Let us emphasize that these data structures only store
the street network of the city; that is, in the OSM data, all those city ways with the
highway tag. To improve the speed of any operation on the city streets, we have
implemented different data structures to store this information, the street network
of the city. Each data structure is more appropriate for some operations and less for
some others. We want to keep transparent to CityLib users which structure is used
to implement which city operation method. For this reason, we call always city
methods to the city object and it is the streetNWAdmin who has the responsibility
to call the most efficient data structure, the one which implements that operation
in the optimal way. We can see the schematic class diagram in Figure 52, observing
that all class methods referring on the city street network are in the streetNWAdmin
class, but each one implemented only in one of the specific data structures, the
most appropriate for that algorithm, getting the best computational cost possible.

Figure 52: Street structures manager class diagram.

We have four different data structures storing in a different way the same city
street network:
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direct graph : This is a direct graph, which stores a node for each city street
node and stores an edge for each way segment delimited by two consecutive
street nodes.

line graph : This is the line graph of the previous graph. Each node is a street
and each segment represents the intersection of the two nodes that are con-
nected. Therefore, a line graph edge represents the point in which two streets
intersect.

intersection accelerator : This is a dictionary with a city street intersection
node as key and the list of intersecting streets at that node as values.

proximity accelerator : This is a regular grid splitting the city area in a reg-
ular grid. In each grid cell we list the nodes whose coordinates fall within
that cell boundaries.

In Figure 53 we can see a simple city example with its respective four representa-
tions: directGraph, lineGraph, intersectionAcc and proximityAcc. All the node identi-
fiers are numbers and way identifiers are letters. The intersection accelerator dictio-
nary has the intersection node keys in yellow background and all its intersecting
ways are listed in its value. Finally, we can see that in the proximity accelerator
grid there are three negative node identifiers in red. These are extra nodes whose
existence and utility are explained in Section 5.1.6.

5.1.3 Direct graph

The first data structure that the streetNWAdmin manages is the directGraph. This
class is a graph structure where each node is an OSM node and each edge is a
straight OSM way fragment that joins two consecutive OSM nodes. It is the data
structure with the most similar visual representation of the street network. It does
not consider the direction of the streets.

This structure is ideal for neighboring node operations and routing algorithms.
Moving from one node to any other node of the graph is like traveling over the
street network itself.

5.1.4 Line graph

The second data structure that we implemented to store the street network infor-
mation is the lineGraph. As its name indicates, this class is a graph structure rep-
resenting the line graph of the street network direct graph. In the previous work
Section 2.4, we talked about graph theory definitions of direct (or primal) graph,
line (or vertex-to-edge dual) graph and dual graph. The lineGraph is a graph where
each node is an OSM way and each edge is an intersection OSM node between two
OSM ways.
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Figure 53: Example of city street network structures. Left: The city example with black
streets and orange block areas. Top: Direct graph and it respective line graph.
Bottom: the two accelerator structures for intersection and proximity operations.

This structure is ideal to find, given any street, all the streets crossing it. This is
because all graph nodes adjacent to a graph node (a street) are the streets travers-
ing this node (street). This structure is not the best and fastest one to compute all
the streets crossing in a concrete intersection: Note that, for each intersecting OSM
node, the number of lineGraph edges with this node associated is the factorial of
the number of OSM ways intersecting minus one. Therefore, if four streets intersect
in the same node, we will have 3! = 6 edges in the lineGraph associated with this
node value. We can see in Figure 53 how the direct graph intersection node 6, with
intersecting streets D, H and J, is tagged in three line graph edges connecting D, H
and J nodes. The same happens in Figure 4 with primal (or direct) graph node 2

and ways A, C and D.

5.1.5 Intersection accelerator

We have added another class named intersectionAccelerator which is a classical dic-
tionary with an OSM intersection node as key and the list of OSM street ways inter-
secting it. Note that this class is a good complement of the previous one, grouping
the line graph edges with the same intersection node. This is the most efficient
structure to get all streets crossing an intersection point. It has order O(1) access,
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because with the intersection node identifier we can get all the streets intersecting
there in constant time.

5.1.6 Proximity accelerator

Finally, the proximityAccelerator class is a grid representing the city surface area
delimited by the city bounding box. It is a regular grid with squared cells. All OSM
street nodes are grouped in those cells. Each cell of the grid contains a list of city
street node identifiers. The nodes placed in a specific cell have their coordinates
(latitude and longitude) within the respective cell of the city area. This regular
grid partition could also be implemented in a quad-tree to avoid empty cells in a
non-uniform distribution of city nodes.

This data structure is more appropriate for operations related on proximity, for
example the nearest node or nearest street to a given point. With this structure,
we can find a point nearest to any node or way by only analyzing those nodes or
ways belonging to the neighboring cells within a given radius.

There is one situation that can lead to a false positive when searching the near-
est street of a given point. This case is illustrated in Figure 54, where a straight
way has two consecutive nodes between them. In such a case, and because we
store only the nodes in its grid cell, it can happen that none of the tested cells
contain one of the two nodes delimiting the actual nearest street segment. This
situation can be solved in two ways. The first one is by adding information about
the streets that each cell contains, which can add a certain burden to the computa-
tions. The second one, and the one we have implemented, is by adding extra nodes
dividing regularly those street segments that are too long. These extra nodes have
a negative-value identifier to differentiate them from the original OSM city nodes.
These nodes are shown in red in Figure 54. This figure shows, at inset (1), a simple
city street network with its nodes (black circles) placed in the proximity acceler-
ator grid, and a given point P (green cross). Then, the figure illustrates how the
algorithm would get the nearest street from point P without extra nodes (insets 2
and 3) and with them (insets 4 and 5). At inset (2), we can see in green, the cells
that the algorithm will process to find the nearest street. At inset (3), we show in
blue the nodes inside the processed cells and their adjacent street segments. We
can see that the nearest one is not detected (the segment in red). It also shows,
with dotted lines, the distances from P to the street segments, and with a thicker
line the one found. If we do the same, but adding the extra nodes to the long seg-
ments, as shown in inset (4) with red circles, then we process more nodes and the
resulting nearest street is the correct one, as its shown it inset (5). In fact, we could
use a simple 2D Digital Differential Analyzer (DDA) algorithm for scan-conversion
of line segments to identify the cells that a segment traverses, and to generate only
one extra node per cell that had no nodes from this line segment.
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We can find detailed explanations of all the classes, fields and methods of the
city type in the technical report of Pueyo et al. [56].

Figure 54: Example of city proximity grid with extra nodes. (1) Proximity grid, street net-
work nodes and target point P. (2) Cells to visit to find the nearest street. (3) In
blue, the nodes in the processed cells and their adjacent segments (the nearest
one with a thicker line) and in red, a segment not processed. (4) Extra nodes (in
red) added to long segments. (5) The same situation as in (3), but now consid-
ering the extra nodes. (6) The nearest street found is the correct one.

5.2 city tools

Beyond the basic methods of the class city, the CityLib also has a set of tools that
can be used. Some of these tools are algorithms from graph theory that can be
used over a city street network. Here is a list of the tools already implemented in
the CityLib Tools namespace:



110 system : the citylib library

• Astar: Explained in depth in Section 5.2.1.

• BoundCity: A new rectangular street is added to the street network, creating
a street like a bounding box.

• ConvexHullCity: A new street is added corresponding to the street network
convex hull.

• CleanFringePaths: Removes all city dead-end street segments.

• ClosedMinimalCircuits: Gets a set of street network closed minimal circuits
(closed polygons) which can be considered as city blocks.

• FloodFillClusters: Explained in depth in Section 5.2.2.

• RotateCity: Rotate all city streets by a certain angle counter-clockwise with
the center of rotation of the centroid of the city bounding box.

• TranslateCity: Translate all city streets by a certain distance along a given
direction.

The Tools namespace can obviously be expanded with the implementation of more
tools. In the following sub-sections we present some of the most useful we have
implemented and used in the shrinking process steps.

5.2.1 A?

One of the most useful tools implemented is an A? (A-star) algorithm in the class
called Astar. A? is a search algorithm widely used in path-finding and graph-
traversal problems. It finds the minimum-cost path from a given initial node to
a goal node. The cost of going from one node to an adjacent one is defined by a
function. The two most simple cost functions probably are the Euclidean distance
and a constant value (e.g., 1) between two adjacent nodes. Depending on the cost
function, the resulting minimum-cost path to go from the same origin to the same
goal nodes in the same street network can change. We can see in Figure 55 how
the resulting green paths are not the same when using different cost functions.

We decided to implement an A? also as generic as possible. To achieve this goal,
we specify to the algorithm if we want to consider the street network as a directed
or undirected graph. Thus, we can find the minimum-cost path considering the
street traffic direction or not, depending on our interests. Moreover, we can spec-
ify to the Astar object the cost function to be used when computing the cost to go
from one node to the other by using lambda expressions (i.e., functions that are
not bound to a name, also known as anonymous functions). Hence, this class will
process an A? algorithm over the city street network with the input parameters:
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• The city itself.

• A list of tuples with node pairs to find their minimum-cost path (originNode,
goalNode).

• (Optional) A boolean to specify if the street network should be considered as
a directed graph.

• (Optional) A cost function. Defined out of this class, this function should at
least have two parameters with the origin and goal nodes. If the user does not
specify any specific cost function, the default one is the Euclidean distance
between two adjacent nodes.

After creating the class, the algorithm is run and we get as result a list with a tuple
for each input pair (originNode, goalNode). Each of these tuples has two elements:

• List of nodes defining the minimum-cost path to go from the origin to the
goal nodes.

• Cost value of the resulting path.

Figure 55: Example of A? algorithm using different cost functions. Left: The cost function
is a constant value (1) to go from one node to an adjacent one. The minimum-
cost path (in green) is 3 and going through the right most curve street costs 4.
Right: Using the Euclidean distance between two adjacent nodes, the resulting
minimum-cost path (in green) is different than using a constant value as cost
function.

The possibility of specifying the cost function to the A? algorithm is very power-
ful, because it lets the user define his own cost function, as complex as needed,
without implementing anything else than a method with the desired cost function.
The lambda expression is the method processing the cost function and the origin
and goal nodes. This cost function can also have extra parameters.
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To clarify how it works, let us take as an example the function used in Section 4.4.3.
That function balances (with an α value) the importance of the street that connects
two consecutive nodes (impAB), and the Euclidean distance (dAB) between them
to connect unconnected clusters by the most important streets:

distAB = α · 1

impAB
+ (1−α) · dAB

For this case, we have to specify not only the A and B nodes and the city itself,
but also the α value balance and a list with the street importances streetsImp_sl.
We defined the following method to process the previous function:

appearWeightDist(A,B,city,streetsImp_sl,balance)

Then, the following lambda expression for any origin node x and goal node y
computes the cost function:

costF = lambda x,y: self.appearWeightDist(x,y,city,streetsImp_sl,balance)

Finally, we create the Astar class specifying with the pair of orign and goal nodes
(nodeClusterA, nodeClusterB), a boolean to consider the graph as directed graph
or not (directed), and the cost function (costF):

astar = Astar(city,[(nodeClusterA,nodeClusterB)],directed,costF)

5.2.2 Flood fill clusters

Another useful tool that we have implemented is the FloodFillClusters class. This
class implements a Flood Fill algorithm to detect the different clusters in a city
street network not totally connected (actually only possible after experiencing
other changes making the city connectivity crashed). This is a well known algo-
rithm that determines the area connected to a given node in a multi-dimensional
array. It is very common to apply it on an image to fill a particular bounded area
with a given color. In this case, it is also known as a Boundary Fill. We have imple-
ment it by considering the nodes connected by a street segment.

When we apply this algorithm over a city, it returns a list with all the discon-
nected clusters of the city. Each cluster is a list of the connected street ways. We
can see in Figure 56 an example of a disconnected city with each output cluster in
a different color.
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Figure 56: Example of three disconnected city clusters detected by a flood fill algorithm.
The three detected clusters are colored differently: red, blue and green.

5.3 city operations pipeline

As we mentioned in Chapter 4, the shrinking process is a concatenation of oper-
ations on the city structure. The output of one step is the input of the following
step. In each step, we take a city, apply a set of changes to it and get a different
city as output. Actually, it is the same city object but with certain changes applied.
This could be considered as a generalized work flow applied to city evolutions.
For this reason, we decided to implement a generic solution to ease the CityLib
library users define new city operations and to sequence them without problems.
We called this system CTOps (City Operations).

A city is an urban structure that can experience many changes. We want to get
a way to simulate these changes. The problem is that a city is a complex concept
to represent and operate with. We created the city type explained in Section 5.1. To
apply a complex modification to a city, it is recommendable to divide the task in a
sequence of operations, each one doing smaller changes, following a divide-and-
conquer approach. Our goal is to have a system able to apply those changes to a
city object, changing its urban state. An urban state is a snapshot of a particular
city structure at a certain moment in time. A city operator is a modular algorithm
applied to a city street network to make it evolve from one state to another.
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Ideally, we want a CityLib with many operators that could be applied to a city
object in any arbitrary order, each of them resulting in a new city state. Each one
of these operators should work as a black box that takes a city state and, after
applying a set of changes, returns another city state as output. In other words it
changes the city data stored. The users of CityLib can use any of the operators we
provide, but also expand the operator library by implementing their own ones to
fulfill other city changes.

When a user wants to simulate a complex city evolution, he can select an ordered
set of operators from the library. Basically, the CTOps system works as an operator
pipeline. One city experience the changes of an operator, giving as result a dif-
ferent urban state of the same city. This second state experiences the changes of
another operator, giving as result a third urban state, and so on. In Figure 57 we
show a pipeline which illustrates a generic example of a possible city evolution
applying two operators.

Figure 57: Example of a city evolution pipeline: City operators and states.

The operators are always applied to the city in sequential order. The sequence
of operators determines the final result. The set of operators used, and also their
order, will strongly condition the final city. Therefore, users should design the op-
erators pipeline consciously to get a desired goal city state. A city going through
a given chain of operators and a second one going thorough a chain of different
operators, different operator order or different operator parameters, will result in
different final urban states. Figure 58 illustrates an example where changing the
order of two operators in a pipeline applied over the same original city, results in
two very different cities. Imagine that the first operator, let us call it A, shortens as
mush as possible all vertical streets. And the second operator, operator B, fills hor-
izontal streets empty spaces with random buildings. We can see in Figure 58 the
different resulting urban states after applying these two operators in a different
order, A⊕B and B⊕A.
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Figure 58: Operator pipeline results changing the operator’s order. Left: The original ur-
ban state. Middle: Urban state after applying one operator. Right: Final pipeline
urban state. Top-Right: Result when applying first operator A and then B (chain
A⊕ B). Bottom-Right: Result when applying first operator B and then A (chain
B⊕A).

In our implementation, an operator could also be a list of simpler basic operators,
while continues being considered an operator, keeping the same behavior of basic
operators along explained. The way we apply basic operators within larger opera-
tor is important, too. Continuing with the example of Figure 58, we can implement
a complex operator AB and another one BA, that both apply basic operators A and
B in the specified order. These complex operators will return different resulting
urban states, as shown in the figure. Moreover, we can have a complex operator
applying two (or more) simpler operators, plus extra processing before, between
or after the basic operators are applied. Using the same naming convention as in
this paragraph, we could have for example an operator AB&more. We can see a
set of different operators, simple and complex, combining with other operators in
Figure 59.

One more thing we want to put emphasis on is that, for the same operator ap-
plied to the same input city, we can get different results depending on the input
parameters. Imagine for example an operator that creates buildings on both sides
of a street if it finds empty areas. The surface occupied by each building can be
parametrized to get fewer large buildings or more smaller ones as a result. Ob-
viously, the resulting urban state will be different depending on the value of the
parameter that the user decides to use.
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Figure 59: Examples of operator sets: simple operators and complex operators built by
combining others. In the top row we see basic operators. The rest of the oper-
ators are complex, with their code calling other operators and, eventually also
adding new source code.

Therefore, with the CTOps system we have designed a modular way of applying
complex operations over city objects. Let us summarize what CTOps system pro-
vides to the CityLib users:

• A set of complex city operators.

• An easy and modular way to simulate city evolution. Users only need to
design a chain of city operators to run the operator pipeline and apply the
desired transformation to the city.

• A clear and flexible way of writing new operators:

– By combining them.

– By overwriting them.

– By creating new ones.

We want to make the CTOps operators independent of each other, but follow-
ing a common contract to allow the replacement of any of them in a designed
pipeline without undesired consequences. For this purpose, we have defined an in-
terface (I_CityOperator) which defines a contract that all operators implemented
should respect. The main method is the eval method, which is the one that exe-
cutes the operator algorithm. This method always gets as input a city object and
a dictionary of parameters. The eval result is the input city with a new urban
state. Hence, this method is where the city will experience a set of changes that
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takes it from the input state to the new output state. See the class diagram of
Figure 60.Note how operators CityOperator_A, CityOperator_B, CityOperator_C
and CityOperator_ABmore all implement the interface I_CityOperator. Also note
that CityOperator_ABmore uses inside it the basic operators CityOperator_A and
CityOperator_B, like we have previously explained.

Figure 60: City operator class diagram. All the operators implement I_CityOperator.
CityOperator_ABmore has a dependency with operators CityOperator_A and
CityOperator_B, because it uses them inside its implementation.





Part III

C O N C L U S I O N S A N D F U T U R E W O R K

A conclusion is simply the place where you got tired of thinking.

Dan Chaon, Stay Awake





6
C O N C L U S I O N S A N D C O N T R I B U T I O N S

I n this chapter, to present the conclusions that we can take from the work
done in this thesis. We review all the work done and results obtained for each
chapter of this thesis.
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6.1 conclusions

In this thesis we have presented two new processes for the urban modeling com-
munity: one to structure cadastral data in a hierarchical structure of blocks and
buildings, and one to shrink real city street networks in a guided way to keep
the essence of the original city. Moreover, we have presented the implementation
of CityLib, a library that defines efficient data structures to store city models and
a system to apply, in a flexible way, different complex operators to simulate the
evolution of a city.

6.1.1 Structuring conclusions

We have developed a mechanism for semi-automatically getting robust structured
data able to represent city blocks, buildings and any interesting urban structure
from potentially badly structured legacy cadastral urban data. We have designed
and implemented methods for processing and correcting the existing errors and
ambiguities. Then we have developed algorithms for the accurate structuring of
the layout data in blocks and buildings. The resulting structured city consists of a
list of blocks, each one with its well-defined outline and a list of building elements
and courtyards. The whole process only needs the user to identify the useful lay-
ers and set two thresholds. In this way, we consider that we have made cadastral
data reusable, a valuable source of information that often is neglected because of
its many errors. See Figures 23 and 25 as representative images of the processes’
results.

Also, after getting our structured data, we have been able to generate 3D urban
models representing actual buildings of an existing city. Throughout the process
we assume we are provided with an input file with different layers for block and
building data, but our method remains robust even with a single mixed layer with
all architectural data clustered together.

6.1.2 Shrinking conclusions

We have designed an automatic process to simplify real city street networks. This
a process that nowadays is done by designers when creating city models for video
games located in real world cities. For our algorithm input, we take a real city lay-
out and a list of "protected" city elements: the most important places (landmarks),
streets and areas. Then, the shrinking process reduces the original city area to the
desired size. This is not a standard resizing, but a guided reduction. It removes
the less important areas, those with less important elements, protecting the impor-
tant elements and areas. The result is a smaller city street network with unaltered
landmarks that retain their relative positions. Also, the mean of block areas is not
reduced, only the number of blocks to go from one landmark to an other. Thus
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we keep the essence of the city: If one walks, along this shrunk city, he should still
have the feeling of being in the original one. Figure 47 illustrates a summary of
the process and results. This process delivers a first draft of the final designed city.
Our process is a first step from where the designer should continue working to get
a desired city. The designer can add, remove or modify any street of the resulting
city. In fact, we provide the first draft of the reduced city but also the set of not
added to the shrunk city streets. These unimportant streets are provided with the
corresponding deformation, the same that the shrunk city has experienced, to let
the artist use them if he consider it necessary.

6.1.3 CityLib conclusions

There are many data structures to store city models. The street network can be
considered as a graph, but again there are different kinds of graphs that can store
the city layout, each one better suited for one or an other usage. We have analyzed
efficient structures for different basic operations and implemented a full Python
library to work with cities, the CityLib.

This library defines city, a data type to store a city. This type data structure is
in fact a multi-structure for its street network (direct graph, line graph, intersec-
tion accelerator and proximity accelerator) that uses a different data structure de-
pending on the algorithm to apply on the city. Even though, this multi-structure
is transparent to the city model user. We consider that we have an efficient city
data structure for any operation we want to do, taking advantage of each data
structure, also providing some implemented common algorithms. We can see a
representation of the different internal structures in Figure 53.

Furthermore, CityLib has a city evolution system implemented that consists in
a set of city operations and a pipeline to apply them sequentially in a flexible way.
The operator set can be expanded with new operators or by overwriting any one
of them. The only condition to use new operators is respecting with a defined in-
terface class. This system provides the users of the library a way to easily change a
city state by applying a list of operators and then to change the chain of operators
applied without problems. Figure 58 shows a city evolution after applying two
pipelines with the same operators, but in reverse order.
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6.2 contributions

As a result of this thesis, a first paper has already been published. and three more
papers are in the process of being submitted soon to well-known Computer Graph-
ics conferences or journals. I have also co-advised undergraduate final projects,
which have been developed using the library CityLib.

publications :

• Structuring urban data. Oriol Pueyo and Gustavo Patow. The Visual
Computer, volume: 30, number: 2, pages: 159–172, publisher: Springer.
February 2014. doi: 10.1007/s00371-013-0791-7 [57]

• The CityLib system. Oriol Pueyo and Gustavo Patow. To be submit-
ted. [59]

• City Shrinking. Oriol Pueyo, Gustavo Patow and Michael Wimmer. To
be submitted. [58]

• An overview of generalisation techniques for street networks. Oriol
Pueyo, Xavier Pueyo and Gustavo Patow. To be submitted. [60]

co-advised projects :

• Generació automàtica de mapes turístics a partir d’informació d’interès.
Jordi Escobar Avila. (ETIS) July 2012. Co-advisor: Gustavo Patow.

• Sistema de gestió de camins gps i càlcul de recorreguts a mida. Marc
Rovira Alsina. (ETIG) September 2013. Co-advisor: Gustavo Patow.

software :

• CityLib. Python library to manage urban layouts.
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F U T U R E W O R K

I n this final chapter we discuss new avenues for future research, from each
of the main contributions: structuring and shrinking, but also from a generic
viewpoint. During a PhD, new ideas always come to our mind. Some of these

ideas are closely connected to the work documented here and some are farther
from it. In this chapter we present some of the ideas that we would like to consider
for our research and work.
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7.1 structuring future work

Several useful new avenues are open for further research. We see two clear direc-
tions to follow after our work done on structuring. One goes in the direction of
improving our algorithms: we did continuous improvements on our algorithms
during this project, but we continue thinking that we could still do better. The
other direction considers our structuring algorithms as robust enough and pro-
poses to continue development on the pipeline of the procedural generation of
virtual real cities, looking for a nicer and richer render of the model with as much
real information as possible. We present these different ideas in the following
items:

• Hierarchical automatic thresholds:
One important target is to find on how to "close" all blocks as polygons
without losing any detail of the real block shapes. The main structuring pro-
cess drawback is the one explained in Section 3.6: The user must provide a
threshold value, if it is too large then some blocks are not closes, and contrar-
ily, if it is too small, then some shape distortions are introduced. Finding the
best option may require a few trials to get the best value. Anyhow, in most
times a fixed threshold value for the whole city makes it impossible to detect
all the building elements if we do not want to lose shape details. Hence, we
would like to use a variable threshold with different values depending on the
processing step (searching for blocks or for buildings) and also the nature,
dimension and shape of the elements (blocks and buildings). Moreover, such
a variable threshold value would be automatically adapted to suit to the ele-
ment characteristics. This improvement would make the whole process fully
automatic.

• Improve 3D models:
We could also improve the quality of the 3D models generated from the
structured data. The main goal of the structuring section is to give coherence
to the city blocks and lots data, while the 3D model generation is a simple
extrusion of building elements as a set of prisms. Without processing more
DXF layers, we could make some improvements on the 3D model generation.
The first one would be to place the buildings at different heights according
to a terrain elevation map of the city (Digital Elevation Map). The next one
would be to add overhangs on the building prims which have this character-
istic. This last improvement has already been mentioned in the discussion
paragraph of Section 3.5.3.1.

• Add more urban elements from cadastral data:
Another way to continue our work with the city modeling process is by in-
troducing more cadastral layers, and processing and structuring them to get
a much more detailed city model. Some of the layers that cadastral data
provides and could be processed are: urban environment, green lands, hy-
drology, traffic signs, etc.
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• Improve building facades:
We have not worked on realistic building models, because we have only
accurate descriptions of the envelopes of the buildings. A nice way to get a
more realistic 3D urban scene is to improve the building facades and roofs.
But the data to achieve it is not readily available in our DXF input file. This
could be done by applying textures to facades and roofs from real pictures
of the city, or by reconstructing facades from range scan data or other vision-
based techniques [37, 64, 67, 75].

7.2 shrinking future work

On the shrinking process, we achieved the goal of providing smaller street network
inspired by real world cities. The design experts could use this first approach to
continue modeling the final city. The first future challenge is to continue autom-
atizing the process to finally get a smaller model of a real city with not only the
street network but also buildings, vegetation and so on. But also on the street net-
work shrinking process, there are a few aspects that can be improved and that will
be interesting to continue investigating. In the following list, we want to introduce
those different points of interest that we would like to continue working on:

• Fill large areas automatically:
We would like to fill the resulting shrunk city large areas with a subset of the
unimportant original streets. This is currently the first step that designers
should do from the street network we provide, and we consider this task
is candidate to be automated. We discuss how to deform the unimportant
streets (those not included on the skeleton city) in Section 4.6.1, by using a
cage-based algorithm (without achieving the expected result) and by apply-
ing the same Seam Carving guided deformation. Once we have those streets,
our goal should be to select the ones that fill better each large area. Filling
large areas in the best way means to add one by one the best candidate, unim-
portant, streets to the shrunk city, until we achieve the goal of getting block
area mean equal to the one of the original city. To reach this city blocks area
mean should also be considered the standard deviation, because we want to
keep a small block areas variance.

• Automatically calculate the number of seams to remove:
In our shrinking process, the user should give two basic parameters: the shF
(shrinking factor) and the number of seams to remove in vertical and hori-
zontal dimensions. The shF value is to determine how many of the streets
should be considered as important. We would like to relate these parameters.
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In this way, only with a single shrinking factor value, the algorithm could
calculate the number of seams to be removed and thus the area reduction
of the final shrunk city. It can look some simple step but it’s a challenging
point to investigate considering that one parameter defines how much we
want to reduce the city area while the other defines how many city elements
we consider important and hence how much respectable we are with the city
characteristics.

• Error calculation:
We would also like to find a way to get an error measure between the original
and the shrunk city. There are different ways we would like to evaluate the
differences between the input and output cities of this process. The first one
could be to apply information-theory to compare both cities. Another one
could be to compare a set of geometric characteristic values between both
cities. Some example geometric characteristics are: angles between important
places, important street deformations, important street intersection angles,
etc. Getting values for this set of characteristics, we could then calculate the
relative error between the original and shrunk cities.

7.3 overall future work

In this thesis we have given structure to cadastral data, which is one of the most
precise data we can get of urban environments, resulting in a city model hierar-
chically structured in blocks and buildings. We have also reduced a city street
network in a guided way, keeping the important data unaffected, but removing
the less important areas. In this shrinking process we get less blocks than in the
original city. This means that a shrunk city block represents a set of the original
city blocks. Combining the two previous results, bringing together structuring and
shrinking processes, is a promising research line.

• Merging buildings:
We would like to investigate how to represent a big set of buildings from
different blocks into a smaller set of buildings for a unique block. Obviously,
landmarks, points of interest and important buildings should be kept out
of this process. The idea is to merge different blocks into a new one with
similar global characteristics, trying to keep the essence of the real world city,
like we did with the urban layout on the shrinking process. For procedural
buildings, it would be an interesting way to investigate, to search how to
find common procedural rules and patterns from different buildings and
then trying to combine them, generating new similar buildings with similar,
but not identical rules.



Part IV

B I B L I O G R A P H Y

I must say I find television very educational. The minute somebody turns it
on, I go to the library and read a good book.

Groucho Marx
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I might find somewhere where I can finish my book. I have thought of
a nice ending for it:
’And he lived happily ever after to the end of his days.’

J.R.R. Tolkien, The Lord of the Rings
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