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ABSTRACT

This thesis constitutes one of the first investigations that lie at the intersection of
social influence propagation, viral marketing, and social advertising. The objec-
tive of this thesis is to take the algorithmic aspects of viral marketing out of the lab,
and further enhance these aspects to account for the real world social advertise-
ment models, by drawing on the viral marketing literature to study social influence
aware ad allocation for social advertising. To this end, we take a first step towards
enabling social influence online analytics in support of viral marketing decision
making, and propose efficient influence indexing framework that can accurately
answer topic-aware viral marketing queries with milliseconds response time. We
then initiate investigation in the area of social advertising through the viral mar-
keting lens, aligned with real world social advertisement models, and introduce
two fundamental optimization problems, regarding the allocation of ads to social
network users under social influence. We devise greedy approximation algorithms
with provable approximation guarantees for the novel problems introduced. We
also develop scalable versions of our approximation algorithms by leveraging the
notion of reverse reachability sampling on social graphs, and experimentally con-
firm that our algorithms are scalable and deliver high quality solutions.

vii



“Aslay˙thesis” — 2016/9/28 — 18:22 — page viii — #8

RESUM

Aquesta tesi constitueix una de les primeres investigacions en la intersecció en-
tre propagació d’influència social, màrqueting viral i publicitat social. L’objectiu
d’aquesta tesi és treure els aspectes algorı́tmics de màrqueting viral fora del labo-
ratori, i millorar-los per tenir en compte els models de publicitat del món real en
xarxes socials, fent ús de la literatura del màrqueting viral per estudiar l’assignació
d’anuncis basada en la influència social per a la publicitat en xarxes socials. Amb
aquesta finalitat, hem pres un primer pas cap al desenvolupament de anàlisi d’in-
fluència social en lı́nia que ajudin en la presa de decisions en el màrqueting viral,
i proposem un marc per a la indexació eficient d’influència que pugui respondre
amb precisió a les consultes de màrqueting viral orientades a temes especı́fics amb
temps de resposta de mil·lisegons. A continuació, comencem una investigació en
l’àrea de la publicitat social a través de la lent del màrqueting viral, en lı́nia amb
models de publicitat del món real, i introduı̈m dos nous problemes d’optimització
pel que fa a l’assignació d’anuncis als usuaris de la xarxa social sota la influència
social, amb garanties d’aproximació demostrables. També desenvolupem una ver-
sió escalable dels nostres algoritmes d’aproximació aprofitant la noció de presa de
mostres d’accessibilitat inversa en grafs socials, i confirmem experimentalment
que els nostres algoritmes són escalables i ofereixen solucions d’alta qualitat.
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RESUMEN

Esta tesis constituye una de las primeras investigaciones en la intersección entre
propagación de influencia social, marketing viral y publicidad social. El objetivo
es sacar los aspectos algorı́tmicos de marketing viral fuera del laboratorio, y me-
jorarlos para tener en cuenta los modelos de publicidad del mundo real en redes
sociales, haciendo uso de la literatura de marketing viral para estudiar asignación
de anuncios basada en la influencia social. Con este fin, tomamos un primer pa-
so hacia el desarrollo de análisis de influencia social en lı́nea que ayuden en la
toma de decisiones en el marketing viral, y proponemos un marco para la indexa-
ción eficiente de influencia que pueda responder con precisión a las consultas de
marketing viral orientadas a temas especı́ficos con tiempo de respuesta de milise-
gundos. A continuación, iniciamos una investigación en el área de la publicidad
social a través de la lente del marketing viral, en lı́nea con modelos de publicidad
del mundo real, e introducimos dos nuevos problemas de optimización respec-
to a la asignación de anuncios a los usuarios de la red social bajo la influencia
social, con garantı́as de aproximación demostrables. También desarrollamos una
versión escalable de nuestros algoritmos de aproximación aprovechando la noción
de toma de muestras de accesibilidad inversa en grafos sociales, y confirmamos
experimentalmente que nuestros algoritmos son escalables y ofrecen soluciones
de alta calidad.
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ÖZET

Bu doktora tezi, sosyal etki, viral pazarlama, ve sosyal ağ pazarlaması
kesişimindeki ilk akademik araştırmalardan biridir. Bu tezin amacı, viral pa-
zarlama algoritmalarını labdan çıkartmak, ve viral pazarlama literatüründen yola
çıkarak bu algoritmaları endüstrideki sosyal ağ pazarlama modellerini de kap-
sayacak şekilde geliştirmektir. Bu amaçla, milisaniyelik cevap süresi ile viral
pazarlama ve sosyal etki analitik çözümlerini mümkün kılan indeks uygulama-
ları geliştirdik. Ayrıca, viral pazarlama literatüründen yola çıkarak, endüstri-
deki sosyal ağ pazarlaması uygulamalarına yönelik, reklamları sosyal ağ ku-
llanıcılarına paylaştıran yeni optimizasyon problemleri tanımladık. Bu optimi-
zasyon problemlerimiz icin teorik garantisi olan algoritmalar geliştirdik. Ayrıca
ters ulaşılabilirlik örnekleme kavramından yararlanarak bu algoritmalarin hızlı ve
kaliteli bir şekilde çözümler üreten ölçeklenebilir versiyonlarını geliştirdik.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The study of complex networks to describe the topologies of a wide variety of
systems has received a great deal of attention from the scientific community over
the past decades. One of the main problems studied extensively by many so-
cial scientists is the phenomena of how new trends, information, and innovations
spread, analogous to the spread of a virus, through a social network. Earliest
studies tackling this problem focused on the adoptions of medical [43] and agri-
cultural [122] innovations, showing that the decisions about the adoption of an
innovation were made in the context of a social structure, in which people were
influenced by the decisions of their neighbors, friends, and colleagues. Since
then, the research on social influence theory took off, providing remarkable evi-
dence that social influence induces viral phenomena, such as the spread of obe-
sity, back pain, suicide, and political beliefs through a social network of individu-
als [27, 39, 40, 65, 78, 121, 137].

With the emergence and wide spread use of online social networking (e.g.,
Facebook), social microblogging (e.g., Twitter), and social media (e.g., Tumblr)
platforms, the dynamics of social influence on these platforms started to attract
the interests of computational scientists, technologists, and advertisers. From the
advertisers’ perspective, such processes of virality enabling to reach a wide audi-
ence is extremely appealing, and has lead to a popular business concept known as
viral marketing [3, 4, 70, 82, 87, 99].

The term viral marketing was first coined in 1997 by Steve Jurvetsen, an in-
vestor of Hotmail, to illustrate the viral phenomenon “network enhanced word-of-
mouth”, inspired from the adoption pattern of the free e-mail service Hotmail [87].
After its launch in 1996, Hotmail included a promotional message with a clickable

1
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URL of the service in every message sent by a Hotmail user. This way, every Hot-
mail user became an involuntary advertiser by simply using the Hotmail service.
Hotmail’s subscriber base grew from zero to 12 million users in just 18 months,
more rapidly than any company in the history of the world, and became the largest
e-mail provider in several countries, including the ones where it had performed no
marketing activity [87]. The successful viral growth of Hotmail, using only a
small advertising budget of $50,000, inspired several companies to adopt viral
marketing strategies up to day, including the launch of Google’s Gmail. Gmail
achieved wide spread usage with “no” advertising cost, by initially sending lim-
ited invitations to a set of carefully chosen users, each of whom could thereafter
invite more users [90].

Viral marketing is more powerful than traditional third-party advertising as it
conveys an implied endorsement from a friend. It takes advantage of the networks
of social influence among the individuals, by “targeting” the most influential indi-
viduals. By convincing them to adopt a product with free samples or promotions,
marketers can exploit the power of the network effect, fueled by word-of-mouth.
In this way, they can deliver their marketing message to a large portion of the
social network through a self-replicating viral process. One of the most challeng-
ing components of creating a successful viral marketing campaign is the seeding
strategy, i.e., selecting the initial individuals to target, such that the spread of a
marketing message in the social network is maximized. Kempe et al. [88] formu-
lated this problem in their seminal work as a discrete optimization problem under
the name influence maximization.

Influence maximization is the key algorithmic problem behind viral market-
ing. The problem, as originally defined by Kempe et al. [88] is as follows: given
(i) a social network, represented by a directed graph with individuals as nodes,
edges corresponding to social ties, and edge weights denoting the strength of so-
cial influence a node can exert on his neighbor in the graph; (ii) a stochastic propa-
gation model that governs how a certain behavior would diffuse from a node to his
neighbors; and (iii) a cardinality budget k; the goal is to identify a set of k nodes,
called the“seed set”, that should be targeted by the viral marketing campaign,
such that the expected number of influenced nodes in the network is maximized.
Kempe et al. show that influence maximization is NP-hard, and obtain provable
approximation guarantees under several stochastic propagation models.

Following this seminal work, research on the dynamics of social influence
propagation and influence maximization took off in several dimensions, from
learning and modeling the real-world social influence propagation, to improv-
ing the efficiency and scalability of the influence maximization algorithms, as we
will review in Chapter 2. Although the research on influence maximization and
its application to viral marketing is advancing with promising theoretical and ex-
perimental results, its applicability to the real-world viral marketing scenarios is

2
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still limited due to the computational challenges incurred by the hardness of the
problem. Indeed, even the recently proposed state-of-the-art scalable influence
maximization algorithms [22, 42, 112, 131, 132] can take several hours on reason-
ably large real-world online social networks, limiting their efficiency for applica-
tions that require milliseconds response time. Thus, in Chapter 3, we take a first
step towards enabling social-influence online analytics in support of viral market-
ing decision making, and propose an efficient influence indexing framework for a
very general type of viral marketing queries: topic-aware influence maximization
queries.

In addition to viral marketing, the rise of online advertisement models, imple-
mented by search engines, online social networking, or microblogging platforms,
have generated even more opportunities for advertisers in terms of personaliz-
ing and targeting their marketing messages. When users access a platform, they
leave a trail of information that can be correlated with their consumption tastes,
enabling better targeting options for advertisers. In particular, social networking
platforms can gather larger amount of users’ own shared information that stretches
beyond general demographic and geographic data. Hence, these platforms offer
more advanced interest, behavioral, and connection-based targeting options, en-
abling a level of personalization that is not achievable by other online advertising
channels. Consequently, advertising on social networking platforms has been one
of the fastest growing sectors in the online advertising landscape, further fueled
by the explosion of investments in mobile ads. For example, social advertising,
a market that did not exist until Facebook launched its first advertising service in
May 2005, is projected to generate 11 billion revenue by 2017, almost doubling
the revenue obtained in 2013.1

Driven by the multi-billion dollar industry, the area of computational advertis-
ing has attracted a lot of interest during the last decade [102]. The central problem
in the area is to find the “best match” between a given user in a given context, such
as a query submitted to a search engine or a webpage visited, and a suitable set
of advertisements. Considerable work has been done in sponsored search and
display advertising [52, 62, 63, 68, 105]. However, when online advertising is per-
formed on social networking and microblogging platforms, the context of the user
includes not just her interests or queries, but also her social context: the users she
follows and is influenced by, and the users that follow her and are influenced by
her. Hence, with the advent of social advertising, the standard interest-driven allo-
cation of ads to users has become inadequate as it fails to leverage the potential of
social influence. Thus, in Chapter 4 and 5, we initiate the research in the area of
social advertising through the viral marketing lens, and introduce novel optimiza-
tion problems regarding the allocation of ads to social network users, aligned with

1http://www.unified.com/historyofsocialadvertising/
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real-world social advertising models, and address the problems that viral market-
ing or computational advertising literature fail to address in isolation.

1.2 Contributions

This thesis constitutes one of the first investigations that lie at the intersection of
social influence propagation, viral marketing, and social advertising. Our main
work is divided in three parts, in Chapter 3, 4, and 5 respectively. Below we
provide a brief summary of the chapters and the key contributions.

• Online Topic-aware Influence Maximization Queries (Chapter 3)
In this part of the thesis, we take a first step towards enabling social-influence
online analytics in support of viral marketing decision making, and propose
efficient influence indexing framework for a very general type of viral mar-
keting queries: topic-aware influence maximization queries. Given a directed
social graph, where the arcs are associated with a topic-dependent user-to-
user social influence strength, and given a budget k, the problem requires to
find a set of k users that we shall target in a viral marketing campaign for a
given new item, described as a distribution over topics. The main challenge is
given by the enormous number of queries: any possible distribution over the
topic space (i.e., any possible item) induces a different probabilistic graph,
and thus a different instance of the influence maximization problem.
Regardless the substantial research effort devoted to improve the efficiency
and scalability of the influence maximization algorithms, their efficiency is
still limited for applications that require milliseconds response time. Thus,
our goal was to build an index over pre-computed solution seed sets that al-
lows to answer such queries in milliseconds, enabling online social influence
analytics, what-if simulation, and marketing decision making.
Exploiting a tree-based index for similarity search in non-metric spaces, a
clever approximate nearest neighbors search over the tree, and a weighted
rank aggregation mechanism, our index can provide, in few milliseconds,
a solution very similar to the one produced by the standard offline influ-
ence maximization computation, while achieving a similar expected influ-
ence spread.
Our work initiated the investigation of topic-aware influence indexing tech-
niques in the influence maximization literature, and was published in Interna-
tional Conference on Extending Database Technology (EDBT), 2014, under
the title “Online Topic-aware Influence Maximization Queries” [5].
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• Social Advertising: Regret Minimization (Chapter 4)
In this part of the thesis, we initiate the investigation in the area of social
advertising through the viral marketing lens. We propose a novel problem
domain of allocating users to advertisers for promoting advertisement posts,
taking advantage of the network affect, while at the same time paying atten-
tion to important factors such as relevance of the ad, effect of social influence,
users’ limited attention span, and limited advertisers’ budgets. We assume a
real-world business model in which the advertisers approach the host (i.e.,
social network owner) with a monetary budget, to pay for ad-engagements
in return for the social advertising service provided by the host. We show
that the allocation that takes into account the propensity of ads for viral
propagation can achieve significantly better engagement rates. However, un-
controlled virality could be undesirable for the host as it creates room for
exploitation by the advertisers: hoping to tap uncontrolled virality, an adver-
tiser might declare a lower budget for its marketing campaign, aiming at the
same large outcome with a smaller cost.
This creates a challenging trade-off: on the one hand, the host aims at lever-
aging virality and the network effect to improve advertising efficacy, while
on the other hand the host wants to avoid giving away free service due to un-
controlled virality. We formalize this as the problem of minimizing regret in
allocating users to ads, which we show is NP-hard and inapproximable w.r.t.
any factor. However, we devise an algorithm that provides approximation
guarantees w.r.t. the total budget of all advertisers. We also develop a scal-
able version of our approximation algorithm, which we extensively test on
four real-world data sets, confirming that our algorithm delivers high quality
solutions, is scalable, and significantly outperforms several natural baselines.
Our work initiated the investigation in the area of social advertising through
the viral marketing lens, and was published in International Conference
on Very Large Databases (VLDB), 2015, under the title “Viral Marketing
Meets Social Advertising: Ad Allocation with Minimum Regret” [6].

• Social Advertising: Revenue Maximization (Chapter 5)
In this part of the thesis, we study the novel advertisement model of incen-
tivised social advertising. Under this model, those users who are selected by
the host to be the seeds for the campaign on a specific ad, can take a “cut”
on the social advertising revenue. These users are typically selected because
they are influential or authoritative on the specific topic, brand, or market of
the ad. In this context, we study the fundamental problem of revenue max-
imization from the host perspective: an advertiser enters into a commercial
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agreement with the host to pay, following the cost-per-engagement model,
a fixed price per each engagement to his ad. The agreement also specifies
the finite budget of the advertiser for the incentivised social advertising cam-
paign for his ad. The host has to carefully select the seed users for the cam-
paign: given that the budget that it can receive from the advertiser is fixed, the
host must try to achieve as many engagements on the ad as possible, while
spending little on the incentives for “seed” users to increase his revenue. The
host’s task gets even more challenging by simultaneously accommodating
many campaigns by different advertisers.
We show that, keeping all important factors such as topical relevance of ads,
their propensity for social propagation, the topical influence of users, users
incentives, and advertisers budgets in consideration, the problem of revenue
maximization in incentivised social advertising is NP-hard and it corresponds
to the problem of monotone submodular function maximization subject to a
partition matroid constraint on the ads-to-seeds allocation and submodular
knapsack constraints on the advertisers’ budgets. For this problem we devise
two natural variants of the greedy approximation algorithm for which we
provide formal approximation guarantees.
Our work initiates the investigation in the area of incentivised social adver-
tising through the viral marketing lens, and is being prepared for submission.

The thesis is organized as follows. In Chapter 2 we provide necessary back-
ground and review related work. In Chapter 3, we build an influence index that
can efficiently and accurately process topic-aware influence maximization queries
with milliseconds response time. In Chapter 4, we build a bridge between viral
marketing and social advertising for the allocation of ads under social influence,
and formally define and study the regret minimization problem from the perspec-
tive of the social network owner. In Chapter 5, we introduce the novel adver-
tisement model of incentivised social advertising, and formally study the revenue
maximization problem under this model from the perspective of the social net-
work owner. In Chapter 6, we conclude the thesis by providing a summary of the
main results, open problems, and various directions for future research.

6
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CHAPTER 2

BACKGROUND

In this chapter, we provide necessary formal background that is at the core of our
research. We start by formally introducing the influence maximization problem
as originally defined by Kempe et al. [88].

2.1 Influence Maximization in Social Networks
Domingos and Richardson [54,118] are the first to consider the propagation of in-
fluence, and the identification of influential users as a data mining problem. They
used Markov Random Field (MRF) techniques to model and study the problem of
finding an optimal set of individuals on which a company should perform market-
ing actions, so that the expected increase in the profit is maximized. This problem
didn’t receive much attention from the data mining community, until Kempe et
al. [88] formulated the same problem in a discrete optimization setting, under the
name influence maximization.

Kempe et al. [88] formalized the influence maximization problem based on
the concept of a propagation model, i.e., a stochastic diffusion model which gov-
erns how individuals influence each other and how propagations happen. Given a
directed social graph G = (V,E), a propagation model, and a cardinality budget
k, the task of influence maximization is to find a set S ⊆ V of k nodes, such
that by targeting them initially for early activation, the expected number of ac-
tivated nodes, denoted by σ(S), is maximized. The initially activated set S of
nodes is commonly referred as the seed set, and σ(S) is commonly referred as the
expected influence spread of S. Kempe et al. mainly focused on two propagation
models from mathematical sociology, namely, the Independent Cascade [70] and
the Linear Threshold [77] models.
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Independent Cascade (IC) In an instance of the IC model, given a directed social
graph G = (V,E), each edge (u, v) ∈ E is labeled with an influence probability
pu,v, representing the strength of influence that node u exerts over node v. At any
time step t, each node is either active or inactive: an active node never becomes
inactive. Initially all nodes are inactive: at time step 0, a set S ⊆ V of seed nodes
are activated, and the propagation process starts to proceed in discrete times steps.
When a node u becomes active at time t, it has one chance at influencing each
inactive out-neighbor v ∈ N out(u), succeeding with probability pu,v, independent
of the diffusion history so far. If the attempt succeeds, v becomes active at time
t+ 1. The diffusion process terminates when no more nodes can be activated.

Linear Threshold (LT) In an instance of the LT model, given a directed social
graph G = (V,E), each node v ∈ V has an activation threshold θv uniformly
distributed in the interval [0, 1], which represents the minimum weighted fraction
of active in-neighbors that are needed to activate v. Each edge (u, v) ∈ E is
associated with an influence weight pu,v such that the sum of incoming weights to
v from the set of in-neighbors of v, denoted by N in(v) , does not exceed 1:

∑
u∈N in(v)

pu,v ≤ 1,

In the LT model, time proceeds in discrete time steps: at time step 0, a set S ⊆ V
of seed nodes are activated. At any time step t ≥ 1, any inactive node v becomes
active if the total influence weight from its active in-neighbors reaches or exceeds
θv:

∑
active u∈N in(v)

pu,v ≤ θv,

The diffusion process terminates when no more nodes can be activated.

Hardness and Approximation. Kempe et al. show that influence maximization
is NP-hard under both IC and LT propagation models. However, they show that
the objective function (expected influence spread σ : 2V 7→ R≥0) under both
IC and LT models is monotone and submodular. Monotonicity of σ(·) implies
σ(S) ≤ σ(T ) whenever S ⊆ T ⊆ V . Submodularity of σ(·) implies S ⊆ T

σ(S ∪ {w})− σ(S) ≥ σ(T ∪ {w})− σ(T ),

8
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Algorithm 1: Greedy Algorithm for Influence Maximization [88]
Input : G, k, σ
Output: seed set S

1 S← ∅
2 while |S| < k do
3 u← arg maxw∈V \S(σ(S ∪ {w})− σ(S))
4 S ← S ∪ {u}

for all S ⊆ T and w ∈ V \ T . Intuitively, monotonicity indicates that the ex-
pected influence spread cannot decrease as the seed set size increases. Similarly,
submodularity indicates that the marginal gain σ(S ∪ {w})− σ(S) from adding a
new node w shrinks as the seed set grows. This property is also known as the law
of diminishing returns. Based on the seminal result of Nemhauser et al. [109] for
the maximization of a monotone submodular subject to a cardinality constraint,
Kempe et al. show that the simple greedy algorithm, depicted in Algorithm 1,
that at each iteration greedily extends the set of seeds with the node providing the
largest marginal gain, produces a solution with provable approximation guarantee
(1− 1/e).

To explore the boundaries of approximability under different discrete propaga-
tion models, Kempe et al. further unified their results under the General Threshold
(GT) model, of which IC and LT models are special cases. GT model specifies
that each node v ∈ V is associated with a threshold function fv : 2V 7→ [0, 1] that
is monotone w.r.t. the set of in-neighbors of v. Mossel and Roch [106] later show
that whenever the threshold function at every node is monotone and submodu-
lar, the expected influence spread function σ(·) is also monotone and submodular,
which was a conjecture posed in [88].

Kempe et al., through extensive experimentation, verify that the greedy ap-
proximation algorithm for influence maximization (Algorithm 1) achieves signif-
icantly higher expected influence spread than the node selection heuristics based
on the well studied notions of degree centrality and distance centrality.

2.2 Modeling and Learning Influence Propagation

Learning Influence Probabilities. Most of the literature devoted to improving
the efficiency and scalability of algorithms for influence maximization assume
that the weighted social graph is given and do not address how the influence prob-
abilities pu,v on the edges can be obtained. This problem instead is addressed
in [73, 125, 126]: Saito et al. [125] study how to learn the probabilities for the IC
model from a log of past propagation data for a given social graph. They formalize
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this as a likelihood maximization problem and apply the Expectation Maximiza-
tion (EM) algorithm to learn the influence probabilities. However, their approach
suffers from overfitting due to sparsity of the past propagations data, hence, the
same set of authors propose to consider also the node attributes while learning
influence probabilities in [126]. Goyal et al. [73] devise algorithms that can learn
the influence probabilities for GT model in no more than 2 scan of the input log of
past propagations: their probabilistic inference techniques also can predict when
a user will perform an action accurately. These existing work assume that the so-
cial graph is given and focus only on learning the influence probabilities on the
edges. A line of research instead focus on inferring both the unknown network
structure and the influence probabilities in the case when the social graph is also
not available [50, 71, 110].

Alternative Propagation Models. In addition to IC, LT, and GT propagation
models, various other propagation models have been proposed to model social in-
fluence spread. One of earliest well known models was proposed by Bass [15],
showing that the product diffusion follows a S-shaped curve, where product adop-
tion starts slowly, takes off exponentially, and flattens at the end. He modeled
the rate of adoption as a function of the individuals who have already adopted
the product. However this model does not account for the structure of the social
networks.

Another well known propagation model is Susceptible-Infected-Recovered
(SIR) model, which has been extensively studied in the context of epidemics and
disease propagation: in this model, a person who is susceptible to a disease be-
comes infected with a certain probability if there is an infected neighbor in the
social network. The person then recovers at a certain rate and becomes immune
to the disease. Within the context of social influence, a few papers study the SIR
model and its variation Susceptible-Infected-Susceptible (SIS), which assumes
that the recovered nodes can become infected again [89, 123, 124, 143].

Considerable work has been done in order to better capture the real-world
social influence propagation dynamics: majority of the influence propagation
models assume discrete time diffusion, instead a few papers study the mod-
eling the propagation of influence in continuous time [56, 119, 120]. A dif-
ferent line of research focused on competitions of multiple propagation pro-
cesses [18,23,24,26,30,81,96,117], as well as, cooperations or complementarity
between different propagation processes [97, 107, 108].

Topic-aware Influence Propagation. Regardless the fact that users authoritative-
ness, expertise, trust and influence are evidently topic-dependent, only few papers
have looked at social influence from the topics perspective. Tang et al. [130] study
the problem of learning user-to-user topic-wise influence strength. The input to
their problem is the social network and a prior topic distribution for each node,
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which is given as input and inferred separately. Liu et al. [95] propose a proba-
bilistic model for the joint inference of the topic distribution and topic-wise influ-
ence strength: here the input is an heterogenous social network with nodes that are
users and documents. The goal is to learn users’ interest (topic distribution) and
user-to-user influence. Lin et al. [93] study the joint modeling of influence and
topics, by adopting textual models. However, none of these three papers define
an influence propagation model, instead Barbieri et al. [13] extend the classic IC
and LT models to be topic-aware: the resulting models are named Topic-aware
Independent Cascade (TIC), and Topic-aware Linear Threshold (TLT). Barbieri et
al. also devise methods to learn, from a log of past propagations, the model pa-
rameters, i.e., topic-aware influence strength for each link and topic-distribution
for each item. Their experiments show that: (i) topic-aware influence propagation
models are more accurate in describing real-world influence driven propagations
than the state-of-the-art topic-blind models, and (ii) by considering the character-
istics of the item a larger number of adoptions can be obtained in the influence
maximization problem.

2.3 Alternative Optimization Objectives
Leskovec et al. [91] study the influence maximization problem from a different
perspective, namely outbreak detection, which aims to find the nodes in a social
network such that the spread of a virus is detected as fast as possible. Nguyen
et al. [111] study budgeted influence maximization problem, in which the car-
dinality budget of the standard influence maximization problem is replaced with
monetary budget, and seed users are paid non-uniform incentives in exchange for
initial activation. The alternative problem definition of Leskovec et al. [91] also
model the budgeted influence maximization problem. Mathioudakis et al. [100]
proposed an algorithm for finding the k most important links in a social network
that maximizes the likelihood of the observed propagations.

Motivated by the resource and time constraints on viral marketing campaigns,
Goyal et al. [72] study two different optimization problems: (i) given a threshold
η on the expected influence spread, their Minimum Target Set Selection problem
asks to find the seed set of minimum size, whose activation can provide an ex-
pected influence spread that exceeds the threshold η; (ii) given a threshold on
expected influence spread η, and a threshold k on the seed set size, their Mini-
mum Time problem asks to find a seed set of at most k nodes whose activation can
provide at least η expected influence spread in the minimum possible time.

Barbieri et al. [12] study the interplay between viral product design and so-
cial influence with the goal to design the features of a novel product such that its
adoption, fueled by peer influence and word-of-mouth effect, is maximized. Lu et
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al. [98] studied the distinction between social influence and actual product adop-
tion by modeling the states of being influenced and of adopting a product with the
goal to maximize the revenue of a viral marketing campaign. Budak et al. [26]
study the problem of influence limitation for a bad campaign that starts propagat-
ing from certain nodes in the network by identifying the individuals to target with
the competing good campaign. He et al. [81] study a similar problem in which
one entity tries to block the influence propagation of its competing entity as much
as possible by strategically selecting a number of seed nodes that could initiate its
own influence propagation.

2.4 Improving Efficiency and Scalability

Though simple, the greedy approximation algorithm for influence maximization
(Algorithm 1) is computationally prohibitive, since the step of selecting the node
providing the largest marginal gain, depicted on Line 3, is #P-hard [37, 38].
Kempe et al. [88] run Monte Carlo simulations for sufficiently many times1 to
obtain an accurate estimate of the expected spread. In particular, they claim that
for any φ > 0, there is a δ > 0 such that by using (1 + δ)-approximate values of
the expected spread, we can obtain a (1−1/e−φ)-approximation for the influence
maximization problem.

Accurate estimation of influence spread requires a large number of Monte
Carlo simulations, thus, the greedy approximation algorithm for influence maxi-
mization (Algorithm 1) is computationally exhaustive due to its high time com-
plexity of O(knmr), where n is the number of nodes, m is the number of edges,
and r is the number of Monte Carlo simulations.

Leskovec et al. [91], by exploiting submodularity of the influence spread func-
tion, devised a cost-effective lazy forward (CELF) technique that improves the
run-time of Algorithm 1 up to 700 times. Goyal et al. [75] further optimized
CELF, by look ahead optimization of marginal gain computations, and proposed
CELF++ that empirically improves the run-time of CELF by 35%− 55%.

Despite the big improvements of CELF [91] and CELF++ [75] over Algo-
rithm 1, their efficiency and scalability are still limited: CELF++ [75], takes from
few days to more than a week in order to extract a seed set of 50 nodes on a
graph with only a few thousand of nodes [5]. Therefore, a number of heuris-
tics have been proposed to improve the efficiency and scalability of the influence
maximization computation [37, 38, 76, 86]: Chen et al. propose the Maximum
Influence Arborescence (MIA) algorithm, a degree-discount heuristic, for the IC
model [37], and the Local Directed Acyclic Graph (LDAG) algorithm for the LT

1The authors report 10,000 simulations.
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model [38], all of which restrict the computation of influence spread to local trees
and DAGs surrounding seed nodes. Goyal et al. [76] proposed SimPath algorithm
for the LT model which operates based on enumerating paths originating from
seeds. Jung et al. [86] propose the IRIE algorithm for the IC model that operates
based on a belief propagation approach for their global influence ranking proce-
dure. Although these heuristics approaches provide significant run-time improve-
ment over the greedy approximation algorithm [88], and its optimizations [75,91],
the scalability of these approaches and the quality of the solutions are limited.

Orthogonal to these efforts for devising scalable and efficient influence maxi-
mization algorithms, Mathioudakis et al. [100] proposed an algorithm for finding
the k most important links in a social network that maximizes the likelihood of the
observed propagations, which can also be used as a preprocessing step to aid with
the scalability of influence maximization algorithms. Similarly, we introduced
topic-aware influence indexing techniques to the influence maximization litera-
ture [5], and our work has several follow-ups [35, 36, 92], all of which similarly
exploit pre-computed information, and are orthogonal to the efforts devoted to im-
proving the efficiency and the scalability of influence maximization algorithms.

Recently, Borgs et al. [22] make a theoretical breakthrough by introducing
the idea of sampling “reverse-reachable” (RR) sets in the graph for the efficient
estimation of influence spread, referred as Reverse-Influence Sampling (RIS),
and present a quasi-linear time randomized algorithm that runs in O(k`2(m +
n) log2 n/ε3) time, returning (1 − 1/e − ε)-approximate solution with at least
1− 1/n` probability. Based on RIS, Tang et al. [132] propose TIM, a more run-
time efficient algorithm that runs in O ((k + l)(m+ n) log n/ε2), while providing
the same approximation guarantee. Tang et al. [131] later proposed IMM, that im-
proves over TIM by addressing its deficiencies that arises during the computation
of a lower bound on the statistically required sample size for accurate estimation.
Cohen et al. [42] proposed a sketch-based design for fast computation of influ-
ence spread, achieving efficiency and effectiveness comparable to TIM. Nguyen
et al. [112], adapting ideas from TIM [132], and the sequential sampling design
proposed by Dagum et al. [49], propose SSA that provides significant run-time
improvement over TIM and IMM, while providing an influence spread estimate
that keeps up with the (1− 1/e− ε)-approximation guarantee.

Next we provide a more detailed background on the RIS framework which
was introduced by Borgs et al. [22].

Random RR sets. Interpreting G as a distribution over unweighted directed
graphs, where each edge (v, w) ∈ E is realized with probability pv,w, let g ∼ G
be a graph drawn from the random graph distribution G. For a given set S, Borgs
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et al. [22] show that:

σ(S) = n · Pr
u∼V,g∼G

[S ∩Ru,g(u) 6= ∅] (2.1)

where Ru,g(u) is a random RR set, with the subscripts denoting the 2 level of
randomness in its creation: (i) selection of a root node u ∈ V uniformly at random,
(ii), sampling of a possible world rooted at node u from the transposed graph GT ,
by removing each encountered edge (w, v) in GT with probability 1 − pw,v. For
notational convenience, we will simply use R to denote a random RR set Ru,g(u),
with the randomness over u ∼ V and g ∼ G already implied by definition.

Influence spread estimation. For a given set S, let XS ∼ Bernoulli(µS) denote
the indicator random variable for the event [S ∩ R 6= ∅], succeeding with proba-
bility µS , and failing with probability 1 − µS , where µS is the probability that a
random RR set R has non-empty intersection with S:

µS =
σ(S)

n
= Pr [S ∩R 6= ∅].

For a fixed set S, the problem of estimating σ(S) reduces to the classic problem
of estimating the unknown mean µS of a Bernoulli random variable XS . A typi-
cal statistical approach to estimate an unknown mean is to design an experiment
that produces independent copies of the random variable XS , and use the average
of the experiment outcomes as the estimate µ̂S: let XS

1 , X
S
2 , · · · , XS

θ be indepen-
dently and identically distributed according to XS , where each XS

i denotes the
outcome of the experiment [S ∩ Ri 6= ∅] for given a sequence R1, · · · , Rθ of θ

randomly sampled RR sets (with replacement). Here,
∑θ

i=1X
S
i

θ
is an unbiased

estimator of µS , i.e., given E[XS
i ] = µS , ∀i ∈ [1, θ], we have:

E

[∑θ
i=1X

S
i

θ

]
=

∑θ
i=1E[XS

i ]

θ
= µS.

While
∑θ

i=1X
S
i

θ
is an unbiased estimator of µS , the accuracy ε, and the confidence

(1−δ) of estimation depends on the choice of the sample size θ, s.t. the estimation
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µ̂S satisfies:

Pr[(1− ε)µS ≤ µ̂S ≤ (1 + ε)µS] ≥ 1− δ. (2.2)

Following Dagum et al. [49], we can refer to µ̂S as (ε, δ)-approximation of µS if
it satisfies Eq. 2.2.

Influence maximization with RIS. For a given input k, TIM [132] generates
a sample R of θ random RR sets, such that, for any set S ⊆ V of size k, the

estimation σ̂(S) = n ·
∑θ

i=1X
S
i

θ
satisfies:

|σ(S)− σ̂(S)| ≤ ε ·OPTk, (2.3)

with at least 1 − δ/
(
n
k

)
probability. Note that, Eq. 2.3 corresponds to (ε′, δ/

(
n
k

)
)-

approximation of σ(S), for each S of size k, where ε1 =
ε ·OPTk
2 · µS · n

. To obtain

(ε′, δ/
(
n
k

)
)-approximation of σ(S), for all S of size k, TIM uses Chernoff Bounds

to find the following lower bound on θ:

θ ≥
(8 + 2 · ε) · n · (log δ + log

(
n
k

)
+ log 2)

ε2 ·OPTk
. (2.4)

such that Eq. 2.3 holds for all size k sets. TIM then returns the set that greedily
covers the most number of random RR sets in R as the approximate greedy solu-
tion with at least 1 − δ probability. The computation of θ using Eq. 2.4 requires
the knowledge of the unknown OPTk, hence, TIM also computes a lower bound
on OPTk: IMM [131] addresses the deficiencies of TIM that arises during the
computation of a lower bound on OPTk, by providing a tighter lower bound on
OPTk, which translates to tighter lower bound on θ, hence improved efficiency.
IMM also optimizes the computation of a lower bound on OPTk, by allowing
dependencies during the generation of random RR sets, which allows to reuse the
random RR sets produced for the determination of θ.

SSA [112], adaping ideas from SRA [49] and TIM, defines a stopping con-
dition Λ1: initially starting with an empty R, SSA keeps adding Λ1 random RR
sets to R each time checking the value of the greedy-cover solution Sc on the
evolving R, until the first time the value of the greedy-cover computed on the
evolving R is greater than Λ1. Then, SSA this time starts with an empty R′ and
employs SRA, with a pre-defined coverage Λ2, and estimates the influence spread
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of Sc: if the two estimates for Sc, computed from R and R′, are close to each
other, SSA returns Sc, otherwise it repeats the same process by generating Λ1

more random RR sets into the current R. In the worst case, SSA terminates with
(8+2 ·ε) ·n · (log δ+log

(
n
k

)
+log 2)/ε2 random RR sets inR, which is computed

from Eq.2.4 by setting OPTk = 1.
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CHAPTER 3

ONLINE TOPIC-AWARE INFLUENCE
MAXIMIZATION QUERIES

3.1 Introduction
Viral marketing, a popular concept in business literature, has recently attracted a
lot of attention also in computer science, thanks to the fascinating computational
challenges that it entails. In this area, the most studied computational problem,
known as influence maximization [88], requires the identification of a set of k
influential users (called the “seed set”), that should be targeted by the viral mar-
keting campaign. Here, targeting might mean to give a free sample of a product,
a special promotion or a big discount. In order to enjoy the special promotion, the
targeted user has to accept to automatically re-post it on her timeline over the so-
cial networking platform, so that her followers are exposed to the same marketing
message.

As we previously discussed in Chapter 2, the bulk of the literature on influence
maximization problem just focuses on a generic item, thus implicitly assuming
that the influence among users of the social network remains the same, regard-
less of the characteristics of the item being propagated. In this chapter, we drop
such assumptions, and study how to address Topic-aware Influence Maximization
(TIM) queries in an online fashion: given a directed social graph, in which the arcs
are associated with a topic-dependent user-to-user social influence strength, and
given a cardinality budget k, a TIM query requires to find a seed set of k users that
we shall target in a viral marketing campaign for a given new product (described
as a distribution over topics) in order to maximize the product adoption.
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Figure 3.1: INFLEX high-level overview.

Regardless the substantial research effort devoted to improving the efficiency
and scalability of the influence maximization algorithms [22, 37, 42, 86, 112, 131,
132], their efficiency is still limited for real world applications, such as interactive
decision support systems, that require milliseconds response time on large-scale
social networks.

As an application example, consider a social networking platform that allows
to implement viral marketing campaigns: the users initially targeted by the cam-
paign accept to spread the marketing message over the social network to their
friends. Advertisers come to the platform with a description of the ad (e.g., a set
of keywords) to be promoted and they compete for the attention of the users which
are considered influential w.r.t. the given description. In this kind of setting, not
only it is important to consider the given description for selecting the seed set
appropriately, but such a decision must also be taken in an online fashion. Thus,
in this chapter, our goal is to build an index over pre-computed solution seed sets
that allows to answer such queries in milliseconds, enabling online social influ-
ence analytics, what-if simulation, and marketing decision making.

Our contribution is INFLEX, an index to answer TIM queries in milliseconds
with excellent accuracy. INFLEX employs a tree-based index for similarity search
with Bregman divergences, to efficiently retrieve a good-enough set of topic-wise
neighbor points for the query item. Then, it performs rank aggregation on their
seed sets to produce the final answer to the query. Experimental results on real
data show that INFLEX can provide, in few milliseconds, a solution very similar
(Kendall-τ distance< 0.1) to the one produced by the offline ground-truth compu-
tation [75], which usually takes several days. A high level depiction of our setting
is provided in Figure 3.1.
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3.1.1 Problem Definition

Given a directed social graph G = (V,A) and a space of Z topics, we assume the
TIC propagation model [13] that we previously presented in Chapter 2. In the TIC
model, for each arc (u, v) ∈ A and for each topic z ∈ [1, Z], we have a probability
pzu,v that represents the strength of influence that user u exerts over user v for topic
z. Similarly, an item i is described by a probability distribution ~γi over the topics:
that is for each topic z ∈ [1, Z], we are given γzi , with

∑Z
z=1 γ

z
i = 1.

In the TIC model, a propagation happens as in the IC model: when a node
u first becomes active on item i, it has one chance of influencing each inactive
neighbor v, independently of the history thus far. The tentative succeeds with
a probability that is the weighted average of the link probability w.r.t. the topic
distribution of the item i:

piu,v =
Z∑
z=1

γzi p
z
u,v. (3.1)

A TIM query Q(~γq, k) takes as input an item description ~γq and an integer k,
and it requires to find the seed set S ⊆ V , |S| = k, such that the expected number
of nodes adopting item q, denoted by σ(S,~γq), is maximized:

Q(~γq, k) = argmax
S⊆V,|S|=k

σ(S,~γq). (3.2)

It is important to observe that a TIM query can always be processed by a stan-
dard influence maximization computation in the IC model: given the query item
description, we can derive a directed probabilistic graph G = (V,A, p), where the
probability pu,v for each arc is defined as in Equation 3.1. This means that, TIM
queries maintain the same properties of standard influence maximization, thus,
they can exploit the standard algorithms and enjoy the usual approximation guar-
antees. However, our goal is to build a topic-aware influence index to efficiently
process TIM queries with milliseconds response time, opening the door to online
influence maximization analytics.

3.1.2 Contributions and Roadmap

The main challenge of using pre-computed information in our setting is the enor-
mous number of potential queries: essentially any possible item description ~γi
lying on the probability simplex that contains all possible probability distributions
with state space [Z]. It is also very hard to build smart indexes exploiting the graph
structure, as any potential query corresponds to a different probabilistic graph.
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Motivated from the fact that similar items are likely to interest similar people,
thus, are likely to have similar influence patterns, we propose INFLEX, an index-
ing framework to efficiently answer TIM queries. INFLEX is based on the idea
of appropriately selecting a set of items, and by extracting their seed sets using
a standard influence maximization process. Then, at query time, given a query
item, we select a “large enough” set of neighbor index points and combine their
pre-computed seed sets, by means of rank aggregation, into a final seed set that
we return as the result to TIM query.

Next, for each step, we briefly describe the associated challenge and the intu-
ition behind the proposed solution.

Selecting the items to build the index. The number of items used to build the
index governs the trade-off between accuracy and space-time efficiency. In fact,
for each index point, we have to run a standard influence maximization algorithm,
which can be extremely time consuming, and store its seed. Another challenge is
given by the space from which we have to select the index points: on one hand
we want to follow the distribution observed in the catalog of items that we have
available, because also new items are expected to come from the same distribution;
on the other hand selecting index points directly from the catalog can be risky in
the case of sparsely distributed catalog items - we might end up finding nearest
neighbors which are not very similar to the query item. Our approach here is to
select, for a given preprocessing budget, a reasonable number of points that can
provide a good coverage of the space. This is obtained as follows: we use the
catalog of available items to define, by means of the maximum likely Dirichlet
distribution, the space from which we sample a large enough number of points.
Then we apply Bregman K-means++ [10] to these points, and select the resulting
centroids as our index points (details are provided in Section 3.4.1).

Fast, approximate, and unbounded nearest neighbors. At query time, given a
TIM query, we want to efficiently retrieve the index points which are topic-wise
similar to the query item. Given that index points and query items are probability
distributions over the space of topics, we adopt Kullback-Leibler divergence as
a measure of their distance. Our task is then a similarity search with Kullback-
Leibler divergence.

Our task differs from other types of similarity search in the literature as it is not
based on a pre-specified radius (“range search”), nor on a number of neighbors
to return (“k-NN search”). Instead, how many points to retrieve depends on how
close the points we retrieve are to the query item. The intuition is that, if we
find index points extremely similar to the query item, then we can just use few
of them (at an extreme, if we find exactly the query item in the index, then we
can simply retrieve the associated seed set without looking for any other point).
Instead, when there are no index points very close to the query point, we aggregate
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a larger number of them.
Another requirement for our similarity search is to be fast, for which we drop

exactness: our solutions are approximate nearest neighbors, in the sense that, if
we return k index points, these are not necessarily the k nearest neighbors of the
query item. For this task we adopt Bregman ball tree (Section 3.4.2) with a novel
approximate nearest neighbors search procedure (Section 3.5.1).

Seed set aggregation. In the final step, we perform rank aggregation of the seed
sets1 of the retrieved index points. The goal is to provide a final list of nodes that
has the minimum Kendall-τ distance to all the seed set lists. As this problem is
NP-hard and we aim for quick computation, we look at approximate solutions. In
particular, we adopt and compare Borda [21] and Copeland aggregation [47], both
followed by the Local Kemenization procedure that have been shown to be fast
and good in practise [127]. We enrich these two methods with a novel importance
weighting scheme based on the KL-divergence of the index points from the query
item: intuitively, the closer a point is to the query item, the more predominant its
role will be in the aggregation (details are provided in Section 3.5.2).

Evaluation. The evaluation of our framework is straightforward. For a given
query item, we assess the performance of the INFLEX framework in terms of ac-
curacy and query evaluation time. For both we can compare against performing
an influence maximization computation, for the given query, from scratch, as well
as other smarter baselines. Our experiments on a real dataset (Section 3.6) show
that INFLEX produces seed sets that are very close to the “best offline” ones
(Kendall-τ distance generally < 0.1), while achieving an expected spread very
close (NRMSE < 2%) to the spread achieved by standard offline influence maxi-
mization computation, but it does so in few milliseconds instead of several hours
or days of computation, thus opening the door to online influence maximization
analytics.

3.2 Related Work

3.2.1 Influence Maximization

Kempe et al. [88] formalized the NP-hard influence maximization problem, and
proposed a simple greedy approximation algorithm, which we reviewed in Chap-
ter 2. Though simple, the greedy algorithm is computationally prohibitive,
since the step of selecting the node providing the largest marginal gain is #P-
hard [37, 38]. In their paper, Kempe et al. run Monte Carlo simulations for
sufficiently many times to obtain an accurate estimate of the expected spread.

1It is important to note that, although usually called seed “sets”, these are ranked lists of nodes.
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However, running many propagation simulations is extremely costly on real-world
social networks. Therefore, following [88], considerable effort has been devoted
to developing methods for improving the efficiency and scalability of influence
maximization [22, 37, 42, 74, 75, 86, 91, 112, 131, 132].

Alternatively, with the published contents of this chapter, we initiated the in-
vestigation of topic-aware influence indexing techniques in the influence maxi-
mization literature [5], and our work has several direct follow-ups [35, 36, 92],
all of which similarly exploit pre-computed information and are orthogonal to the
efforts devoted to improving the efficiency and the scalability of influence maxi-
mization algorithms.

3.2.2 Similarity Search
Similarity search (a.k.a. proximity search) studies the problem of searching the
items of the database that are similar to a given query item: given a database X of
items, a dissimilarity measure d, and a query item q, two typical similarity queries
can be defined using d: (i) range query, that reports all the objects in X that are
within a distance r to q; (ii) K-Nearest Neighbors query (K-NN), that reports the
k closest objects to q in X .

If similarity is modeled with a dissimilarity measure d that satisfies the fol-
lowing metric axioms:
• Reflexivity: d(x, y) = 0 ⇐⇒ x = y

• Non-negativity: d(x, y) ≥ 0

• Symmetry: d(x, y) = d(y, x)

• Triangle Inequality: d(x, y) ≤ d(x, z) + d(z, y)

then the dissimilarity measure is metric, and the set of objects in the databaseX is
called a metric space. If the dissimilarity is not a metric, then the similarity search
is referred as non-metric similarity search.

Similarity Search in metric spaces have important applications in many com-
mercial databases and web search. For efficient processing of similarity queries
in terms of I/O and CPU time, a common approach is to use data structures to
filter out irrelevant items during the search to avoid the costly sequential scan of
the database. To this end, many data structures have been proposed, which mainly
operate on the decomposition of the metric space into smaller cells, with branch
and bound exploration methods defined w.r.t. metric space axioms, particularly
triangle inequality [16,17,66,79,141,144]. Interested reader may refer to Chávez
et al. [34] for an in-depth survey on similarity search in metric spaces.

Non-metric similarity search has recently attracted a lot of attention from re-
searchers due to the increasing need to perform content-based retrieval of multi-
media data [20, 46, 69, 101]. When the dissimilarity measure of interest fails to
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Figure 3.2: Bregman Divergence between 2 points p and q.

satisfy metrix axioms, data structures relying on metric space axioms cannot be
directly used. Common approaches to perform non-metric similarity search in-
clude mapping of the problem to metric space, or designing index structures that
rely on particular properties of the non-metric measure [28, 129].

Our dissimilarity measure of interest in this study, Kullback-Leibler (KL) di-
vergence, is a non-metric information theoretic measure, and belongs to a broad
of family of dissimilarity measures called Bregman divergences. Bregman Diver-
gences form a family of distortion measures that are defined by a strictly convex
and differentiable generator function f : X 7→ R+ on a multi-dimensional con-
vex domain X . The Bregman Divergence based on f is defined as:

df (p, q) = f(p)− f(q)− 〈∇f(q), p− q〉 (3.3)

where ∇f(x) is the gradient of the function f(x) at point q and 〈., .〉 denotes the
dot product between the two vectors.

The Bregman Divergence df (p, q) is geometrically measured as the vertical
distance between the point (p, f(p)) and the hyperplane Hq that is tangent to f at
the point (q, f(q)). Bregman divergence df (p, q) can be interpreted as the distance
between a function f(p) and its linear approximation centered at q, in other terms,
the distance between a function and its first-order Taylor series approximation.
Some examples of Bregman Divergences include Squared Euclidean Distance,
Kullback-Leibler Divergence, Mahalanobis Distance, and Itakura-Saito Distance.

Bregman divergences are not metrics, since none of them satisfies the triangle
inequality, and some of them fail to satisfy the symmetry property as in the case
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for KL-divergence. Cayton [31, 32] proposed Bregman Ball Trees (bb-tree) for
nearest neighbor and range search with Bregman divergences, analogous to met-
ric ball trees [135,136,144], which operates on the hierarchical decomposition of
space by simple convex bodies. He designed optimization procedures for the prun-
ing of nodes, based on convexity and projective duality properties of the Bregman
divergences. Nielsen et al. [115] proposed bb-tree++ as an improvement to Cay-
ton’s bb-tree [31, 32] in terms of construction time and solution quality. Nielsen
et al. [114] later proposed Bregman Vantage Point Tree, coupled with a pruning
strategy based on the intersection of Bregman balls, with an adaptation from its
metric counterpart vp-tree [144] that uses triangle inequality of metric spaces.

3.2.3 Rank Aggregation
Rank aggregation addresses the problem of combining rankings of a set of candi-
dates from different sources to one consensus ranking. It is a classical problem,
dating back to the eighteenth century [21,44], from Social Choice and Voting The-
ory, in which each voter gives a preference on a set of alternatives, and the system
outputs a single preference order on the set of alternatives, based on the voters’
preferences. A rank aggregation function computes an aggregated ranking order
which minimizes the distance to the set of orderings given as input. The ordering
received as input can specify either a full or partial ranking on the objects of the
domain and the techniques for rank aggregation differ slightly if they are applied
to the first case or the latter.

All commonly used rank aggregation methods satisfy one or more of the de-
sirable goodness properties: unanimity, neutrality, monotonicity, and Concordet
Criterion. Concordet Criterion suggests that if a candidate is ranked ahead of all
other candidates by an absolute majority of voters, it should be declared as the
winner, thus, it should be ranked first [44]. Truchon et al. [133] made an exten-
sion to the Concordet criterion named as Extended Concordet Criterion which
suggests that if there is any partition {C,R} of a set S of candidates, such that for
any i ∈ C and j ∈ R, if a majority of rankers prefer i to j, then the aggregate
ranking should prefer i to j. Aggregation mechanisms that satisfy the Concordet
Criterion and its natural extensions such as the Extended Concordet Criterion are
considered to yield robust results that cannot be ”spammed” by a few bad voters.

The Kemeny optimal rank aggregation problem requires to identify the ranking
that has the minimum number of pairwise disagreements, i.e., minimum Kendall
Tau distance, with all rankers. Kemeny optimal aggregation satisfies neutrality,
monotonicity, Concordet Criterion and Extended Concordet Criterion. Kemeny
optimal aggregated list corresponds to the true geometric median of the input lists.
Bartholdi et al. [14] showed that computing Kemeny optimal aggregation is NP-
hard.
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Figure 3.3: INFLEX detailed overview.

Recently, rank aggregation problem is studied widely in computer science
in the context of meta-search engines [57, 58], cache-based query processing in
search engines [29], similarity search in databases [61] and collaborative filter-
ing [9]. Dwork et al. [57,58] applied rank aggregation to the context of metasearch
in IR, showing that computing the Kemeny optimal aggregation is NP-hard even
when there are at least four lists to aggregate, and proposed solutions based on
Markov chains or minimum-cost matching in bipartite graphs. They also intro-
duced the notion of Local Kemenization, as a relaxation of the Kemeny opti-
mality, that ensures satisfaction of the extended concordet criterion but remains
computationally tractable O(kn log n). ()A detailed comparison of the rank ag-
gregation algorithms having constant factor approximation or PTAS is addressed
by Schalekamp and van Zuylen [127].

3.3 Overview of the Framework

In Figure 3.1 we already provided a very high-level view of the framework. In
this section we start giving more details, opening the INFLEX box and describing
its components as depicted in Figure 3.3. The starting point is a social graph G =
(V,A) where each arc (u, v) ∈ A has associated a probability pzu,v for each topic
z ∈ [1, Z] representing the strength of influence that user u exerts over user v for
topic z. Moreover we have a database I of items, where each item i is represented
by a distribution ~γi over the topics. Both these two pieces of input (depicted in
the upper-left corner of Figure 3.3) are jointly learnt in a pre-processing phase
from a log of past propagation traces [13] (depicted in the top half of Figure 3.1).
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The database of items I is used to define, by means of maximum likely Dirichlet
distribution, the space from which we select h index points (details are given in
Section 3.4.1).

Let H = {~γ1, · · · , ~γh} be our index points. For each ~γi ∈ H, and for a fixed
` ∈ N we extract a seed set of size `, or equivalently, we solve the TIM query
Q(~γi, `), by transforming it to a standard influence maximization computation
over the IC model (as discussed in Section 3.1.1) and running the standard greedy
algorithm: in particular, we use its optimization CELF++ [75]. This phase is
depicted in the top-right corner of Figure 3.3. It is important to note that, at the
time of the publication of INFLEX [5], CELF++ [75], was the state-of-the-art
influence maximization algorithm, hence, we used CELF++ for pre-computing
the seed sets required by the index. Our methods are orthogonal to the latest
advances on devising scalable influence maximization algorithms [22, 42, 112,
131, 132], which can replace CELF++ for the pre-computation of the seed sets
more efficiently.

Let τ1, · · · , τh denote the index lists containing pre-computed seed sets re-
turned for the h index points. For a given query Q(~γq, k) our goal is to (i) retrieve
the points whose topic distributions are similar to the topic distribution of the
query item q, (ii) combine their pre-computed seed sets, by means of rank aggre-
gation into a final seed set τq∗ and return as the result to TIM query. As already
discussed in the previous section, the search of index points similar to the query
items is developed on top of a Bregman ball tree index structure (depicted in the
center of Figure 3.3 and described in full details in Section 3.4.2).

Note that the size of the seed set k requirement, can be satisfied this way even
when k > `. In fact, the rank aggregation can return up to m seeds, where m
is the cardinality of the union of the seed lists of all index points retrieved in the
similarity search phase. By retrieving more index points, we can satisfy larger k
requirements.

In the next section we present the offline phase of the index construction. Then
in Section 3.5 we will present the online TIM query evaluation mechanism over
INFLEX.

3.4 Index Construction
In the TIC propagation model, each item i ∈ I is represented by a distribution
over topics, ~γi, that lies on the probability simplex4Z−1. Each topic z encodes an
abstract influence pattern. The assumption is that pairwise influence probabilities
between users depend on the topic. More specifically, pzu,v ∈ [0, 1] denotes the
likelihood that user u will trigger the activation of user v, on topic z. Given an
item i, the item-specific influence probability on each arc (u, v) ∈ A is the dot
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product of the user-to-user topic dependent influence probabilities and the item’s
topic distribution (Equation 3.1). Under these assumptions, two items that exhibit
a similar distribution over topics will also exhibit a similar propagation pattern, as
they will enable close pairwise influence probabilities.

This observation is the core of the overall approach, as it allows us to cast
the efficient processing of TIM query as a similarity search problem. Intuitively,
given a queryQ(~γq, k), we can retrieve the closest items for which the list of users
to target is available, and exploit this information to provide a list of k seed nodes
that can boost the adoption of q on the considered network.

The first step towards the design of the index is the formalization of the no-
tion of similarity between two items. In this context, it is natural to instantiate
the dissimilarity measure between two items as the KL-divergence between their
respective topic distributions. Given two discrete distributions P and Q, the KL-
divergence

DKL(P‖Q) =
∑
i

P (i) log
P (i)

Q(i)

quantifies the average information lost when we use Q to approximate P . Since
KL is asymmetric, one must choose between the right-sided (the query item is the
second argument) and left-sided formulation, or opt for a symmetrized version that
can be computed by considering the average of the sided definitions. Since our
task is to retrieve the nearest-neighbors for a given query item ~γq, the definition of
dissimilarity should penalize the difference between the topic distribution of each
item i and the query item, proportionally to each component γzi . The dissimilarity
that best suits to this setting is the right-sided KL: DKL(~γi‖~γq), which prefers to
stretch over all components γzi , rather then focusing only on the highest mode of
~γq [113].

3.4.1 Selection of the Index Points
The topic distributions of items recorded in I, form a data-space on 4Z−1. This
is the overall search space for similarity queries on topic distributions.

The first step to build INFLEX is to select a set of h index points H =
{~γ1, · · · , ~γh} where each ~γ ∈ H lies on4Z−1. On one hand, we want the h points
to provide a good coverage of 4Z−1. On the other hand, the actual choice of the
budget h depends on, both, limitations in terms of memory2 and index construc-
tion time, due to the need of running a full influence maximization computation
for each index point.

One way of selecting the index points would be to use a space-based approach,
by selecting h items whose topic distributions are positioned equi-distantly on

2The cost of keeping one preprocessed index item in memory is (Z − 1) * sizeof(double) +
` * sizeof(int).
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4Z−1. This would provide a fair coverage of the space. The drawback is that it
disregards the available workload: in fact, the topic distribution of the items learnt
from past data, might be clustered in some area of the simplex.

At the opposite extreme, we have the fully data-driven approach: assuming
that future items will follow the same distribution of the items learnt from past
data, we might select as index points, items from the catalog I. However, this
way we might end up finding nearest neighbors which are actually not very close
to the query item if there are some items in the catalog whose topic distributions
are sparse.

To realize a good compromise between these two indexing approaches, we re-
sort on a sampling strategy on the simplex. By applying the Maximum-Likelihood
Dirichlet Estimation procedure described in [104], given the topic distributions
learnt from data ΘI = {~γ1, · · · , ~γ|I|}, we estimate the hyper-parameters α =
{α1, · · · , αZ} which define the Dirichlet distribution that maximizes:

∏
i∈I

P (~γi|α) =
∏
i∈I

Γ(
∑

z αz)∏
z Γ(αz)

∏
z

(γzi )
αz−1.

Then, the next step is to generate a large number of samples from Dirichlet(α),
identify h clusters by applying K-means++ [10] and finally use their centroids as
the topic distributions of the index points.

After the selection of index items, we start building the list-based index
which will store the seed sets returned to the preprocessing of TIM queries for
the selected index items. For each item i ∈ H, let Gi denote an instance of
G = (V,A, p) which is obtained by assigning item-specific influence probability,
according to Eq. 3.1, to each arc (u, v) ∈ A. We then compute the seed set τi for
each index item i ∈ [1 : h] using a standard influence maximization computation.

3.4.2 Bregman-ball Tree Index

As already anticipated in the previous sections, the problem of TIM query pro-
cessing can be addressed by retrieving index points which are similar to the query
item. To make the similarity search phase efficient, we turn our attention to index
structures to organize the points inH.

The choice of indexing strategy for similarity search is naturally tied to the
choice of similarity/dissimilarity function. As discussed above, INFLEX em-
ploys an information theoretic measure, the KL-divergence, which belongs to
the family of Bregman divergences. This family comprises distortion measures
(Squared Euclidean distance, Mahalanobis distance, Itakura-Saito distance, and
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KL-divergence, just to cite a few) that are defined by a strictly convex and differ-
entiable generator function f : X 7→ R+ on a d− dimensional convex domain
X . The Bregman divergence based on f is defined as:

df (p, q) = f(p)− f(q)− 〈∇f(q), p− q〉 (3.4)

where ∇f(x) is the gradient of the function f(x) at point q and 〈., .〉 denotes
the dot product between two vectors. Bregman divergences are not metrics since
none of them satisfies the triangle inequality and some of them fail to satisfy
the symmetry property as in the case for KL-divergence. When the dissimilarity
measure of interest fails to satisfy metric axioms, data structures relying on metric
space axioms cannot be directly used.

For efficient similarity search with KL-divergence, we adopt the Bregman ball
tree (bb-tree) [31, 115], a tree-based index structure designed to work with the
family of Bregman divergences, to avoid the costly sequential scan of the database
of index points with O(Zh) time.

Similar to its metric counterparts [34], bb-tree is built in a top-down fashion,
by recursive partitioning of the database of items to be indexed (H), and thus
defining a hierarchical space partition based on convex bodies called Bregman
balls. A Bregman ball with a center µ and a radius R is defined as:

Bf (µ,R) = {i ∈ H | df (i, µ) ≤ R}. (3.5)

Each node of the bb-tree corresponds to a set of database items Hi ⊆ H and is
associated with a Bregman ball Bf (µ,R) such that Hi ⊂ Bf (µ,R) which covers
all data points indexed in the subtree rooting at the node. Following Nielsen et
al. [115], the tree is built from the root to leaves, by recursively applying Bregman
K-means++ at each node to generate child nodes from the parent node. The tree-
branching factor is computed by applying Gaussian clustering, which allows to
find the optimal number of children that avoids the overlapping of the Bregman
balls of the child nodes. The tree is built in O(h log h) time for h index points.

We equip bb-tree with a novel approximate nearest neighbors search proce-
dure, that we introduce in the next section.

3.5 Query Processing
In this section, we present the query evaluation mechanism of the INFLEX frame-
work. As anticipated in the previous sections it consists of two phases:
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1. similarity search aimed at quickly retrieving a good set of index points for
the given query item (Section 3.5.1);

2. rank aggregation of the seed list associated to the retrieved index points
(Section 3.5.2).

3.5.1 Searching for Topic-wise Similar Items
The kind of search needed in the INFLEX framework has several peculiar require-
ments, that make the standard approaches, such as range search or K-NN search,
unsuitable. Let us first discuss these requirements, and then present our solution.

• The search is neither based on a pre-specified radius as in range search, nor
on a number of neighbors as in “k-NN search”. Instead, how many points
to retrieve is decided dynamically as the points are retrieved. The intuition
is that if we find, in the currently visited leaf, index points similar to the
query item, then we can stop the search, otherwise we might need to visit
more leaves.

• An extreme case is when there is an index point whose topic-distribution is
identical (or extremely similar) to the query item: in that case we want to
directly return the seed set of the index point, without further looking for
similar points and performing rank aggregation.

• The search must be fast and can be approximate, in the sense that if it returns
k results, those do not necessarily have to be the k nearest neighbors. In
any case, the selected points will have a weight in the rank aggregation,
proportional to their distance from the query item: so unimportant points
will be treated accordingly.

Given these requirements, the similarity search in INFLEX is implemented
as follows. We visit the bb-tree in depth-first search order, from the root to the
leaf nodes, heuristically moving towards the branch whose associated Bregman
ball has the center closer to the query item ~γq, and adding the other children to
a priority queue to ensure the early successive exploration of sub-trees that most
likely contain the nearest neighbors. When we reach a leaf node, we compute the
divergence of the query item from all the index points stored in the node. At this
point we have three options:

1. there exists a point i in the leaf such that DKL(~γi ‖ ~γq) ≤ ε for ε ≈ 0. In
this case we say we have an ε-exact match: we stop the search and return
the top-k elements in τi;
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2. the population of points in the leaf is considered “similar enough” to the
query item: we stop the search and move to the rank aggregation phase with
this group of points;

3. the population of points in the leaf is not considered “similar enough” to the
query item: in this case we consider the next leaf.

We have to formally define what does it mean for a group of nodes to be “simi-
lar enough”. As anticipated abstractly before, this concept depends on the number
of index points retrieved and on their distance from the query item. We instantiate
this concept by resorting to the application of the Anderson-Darling test [2], which
assesses whether a sample of data comes from a population following a specific
distribution. Following [115], this test has been previously applied in the phase
of building the tree index, to learn the branching factor of the bb-tree by applying
the G-means procedure [80]. Given a population of points which currently define
a node in the bb-tree, we apply the Anderson-Darling normality test to check if,
given a confidence level α, the hypothesis of normality is rejected. If this happens,
the node should be split. In a similar fashion, here we check if the query item and
the population of items contained in the current leaf are compatible with a normal
distribution.3 If we accept the null hypothesis that the underlying distribution is
Normal, then it is likely that the population of indexed items in the current leaf can
already provide good neighbors for the query item, and hence we stop the search.
The early stopping criterion based on this test achieves good performance in our
framework, as we will show in Section 3.6.

Let Bn denote the Bregman ball B(µn, Rn) associated with node n, where µn
is its center and Rn the radius, and let Xn denote set of data points contained in
node n. The overall search procedure on bb-tree is specified in Algorithm 2.

Some implementation details are hidden in the pseudocode in Algorithm 2.
The function similar enough(·, ·) implements the Anderson-Darling test dis-
cussed earlier. For practical reasons the function has been implemented with
maximum number of leaves to consider. In all our experiments we keep this value
equal to 5.

When we need to select the next node to explore, we can use the current solu-
tion set to produce a bound that helps us to avoid the exploration of unpromising
subtrees while traversing back the tree. In particular, we use the maximum di-
vergence of the query point from the current solution set NN . Let δ be such
divergence:

δ = max
i∈NN

DKL(~γi ‖ ~γq).

3The test is performed by projecting all the considered points in one dimension, where the
application of the test is straightforward, and assuming unknown mean and unknown variance.
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Algorithm 2: INFLEX similarity search
Input : bb-tree T , query item ~γq
Output: approximate nearest neighbors of ~γq

1 PQ← T.root // init. priority queue
2 NN ← ∅ // init. solution set
3 while PQ 6= ∅ do
4 n← top element in PQ
5 while n is not leaf do
6 c← argmin c∈n.ChildrenDKL(µc ‖ ~γq)
7 PQ.insert(n.Children \ {c})
8 n← c

9 if n is leaf then
10 if ∃~γi ∈ Xn s.t. DKL(~γi ‖ ~γq) ≤ ε then
11 return ~γi
12 NN ← NN ∪Xn

13 if similar enough(Xn, q) then
14 return NN
15 return NN

Analogous to triangle inequality of metric spaces, we apply the following
pruning strategy. A yet unexplored node n should be visited only if the diver-
gence of ~γq from the closest point in Bn (i.e. Bregman projection of q onto Bn),
is less than δ, otherwise the subtree rooted at node n can be pruned:

min
~γx∈B(µn,Rn)

DKL(~γx ‖ ~γq) < δ. (3.6)

To test whether a node should be explored based on this strategy, we use the
bisection search algorithm proposed by Cayton [31] that calculates the Bregman
projection onto a Bregman ball efficiently, by using primal and dual function eval-
uations as the stopping criterion.

3.5.2 Aggregation of Seed Sets

We have retrieved a good-enough set of index points for the given query Q(~γq, k),
let us denote this set NN(~γq). The next step is to aggregate their seed sets to
produce the final answer to the given TIM query. Let Lq denote the set of the
pre-computed seed lists for the index points in NN(~γq), i.e., Lq = {τi | ~γi ∈
NN(~γq)}. Our task can be nicely formalized as an optimization problem named
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rank aggregation. Intuitively, the goal is to combine the rankings provided by the
pre-computed seed sets for topic-wise nearest neighbors to one consensus ranking
which minimizes the overall disagreement. A rank aggregation function computes
an aggregated ranking order which minimizes the distance to the set of orderings
given as input. The ordering received as input can specify either a full or partial
ranking on the objects of the domain and the techniques for rank aggregation differ
slightly if they are applied to the first case or the latter.

Assume that two full ranking lists τ1 and τ2, defined on the same domain of
n objects, are available. We can compute their distance by measuring the number
of pairwise disagreements among their rankings. The Kendall-τ (K) distance
between two full lists is defined as:

K(τ1, τ2) =
n∑
i=1

n∑
j=1

1{τ1(i) ≺ τ1(j) ∧ τ2(j) ≺ τ2(i)} (3.7)

where 1{.} is the indicator function and i ≺ j is the comparison operator to
denote if i is ranked ahead of j.

As we are dealing with the aggregation of lists that contain top-` ranked nodes
instead of complete rankings on the set of users in the network, we can employ
the extension of Kendall-τ to the top-` case [60]:

K(τ1, τ2) =
∑

{i,j}∈τ1∪τ2

K̄
(p)
i,j (τi, τj) (3.8)

where 0 ≤ p ≤ 1 is a fix parameter4 and K̄(p)
i,j (τi, τj) is the penalty defined ac-

cordingly to the following four cases:

• when i and j appear in both lists: if they appear in the same order (i is
ranked ahead of j in both lists or vice versa), then K̄(p)

i,j (τi, τj) = 0;

• when i and j both appear in one list and only i appears in the other: if
i is ahead of j in the list where they both appear, then K̄(p)

i,j (τi, τj) = 0,
otherwise K̄(p)

i,j (τi, τj) = 1;

• when i appears in one list and j appears in the other list, then K̄(p)
i,j (τi, τj) =

1;

• when i and j both appear in only one of the lists, then K̄(p)
i,j (τi, τj) = p.

4In our calculations, we use the neutral approach by setting p = 0.5.
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We normalize the Kendall-τ distance to lie in the [0, 1] interval, where a distance
of 0 corresponds to identical lists, by dividing Eq.3.7 and Eq.3.8 with the maxi-
mum number of possible disagreements among two full lists and among two top-`

lists, which is equal to
`(`− 1)

2
and `2 + `(`− 1)p respectively.

The Kemeny optimal rank aggregation problem requires to identify the ranked
list of nodes, τ ∗q , that has the minimum Kendall-τ distance to all the ranked lists
Lq:

τ ∗q = argmin
τq

1

|Lq|
∑
τi∈Lq

K(τi, τq). (3.9)

This optimization problem has shown to be NP-hard when there are at least four
lists to aggregate [57]. Solutions based on Markov chains or by casting the prob-
lem as minimum-cost matching in bipartite graphs have been proposed.

As efficiency is one of our main design requirements, we turn our attention
to fast rank aggregation techniques, such as Borda [21] and Copeland aggrega-
tion [47], whose result can be improved by implementing a Local Kemenization
procedure.

Motivated by Social Choice Theory, rank aggregation methods treat all avail-
able rankings with equal importance. However, in our context, the aggregation
should favor index lists of items who are more similar to the query item. This idea
is implemented in INFLEX by incorporating importance weights into the rank
aggregation.

The weighting can be further exploited to prune, for efficiency sake, lists that
contribute only marginally to the final aggregation, gaining considerably in query
execution time, while losing very little in terms of accuracy.

Weighted ranking aggregation techniques and a procedure for weight-based
list pruning are discussed next.

Importance weights for rank aggregation. The rank aggregation module re-
ceives as input a set Lq of seed sets. During the aggregation, the idea is to favor
the rankings entailed by index lists which correspond to the closest neighbors
with respect to query item. For each i ∈ NN(~γq) we compute a rank aggregation
weight 0 ≤ wi ≤ 1, which is inversely proportional to the KL-divergence from
the query item. Recall that minimum value for KL-divergence is 0, while this
measure is not bounded above. The weighting function W : [0,∞) 7→ [0, 1] can
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be specified by applying a non-linear transformation of the KL-divergence values:

W (~γi, ~γq) =
eKLmax − eDKL(~γi‖~γq)

1− e−KLmax
, (3.10)

whereKLmax is an empirical upper bound of the KL-divergence, computed as the
distance between two corners of the considered simplex and employing a smooth-
ing factor of machine-ε value to handle zero probabilities during the computation
of KL-divergence.

Selection of nearest neighbors. Since the task of rank aggregation introduces a
heavy processing burden, a careful selection of which (and how many) seed lists
to consider in the aggregation is a key component towards speeding up the query
evaluation phase. Therefore, we propose a procedure for the empirical selection
of a subset of Lq, based on weighting scheme introduced above.

The idea is that by iteratively inspecting the retrieved index points, from the
largest to the smallest weight, we can automatically distinguish neighbors which
will contribute to the weighted rank aggregation, from neighbors whose contribute
is marginal. The goal is to determine the minimum number t ≤ |Lq|, such that the
top-t nearest neighbors hold the highest impact in the procedure of weighted rank
aggregation. We implement this test by comparing the weight assigned to the t-th
index lists with the ones assigned to the previous. If the top-t nearest neighbors
are equally close to the query item, then their normalized weights should tend
to 1

t
. Let w̃t be the normalized weight assigned to the t closest point, where the

normalization is over all the weights up to t. Using a threshold ω ∈ [0, 1], we scan
iteratively the set of points and stop as soon as we find a t such that:

w̃t −
1

t
≥ ω.

Borda aggregation. Borda aggregation [21] is a positional method that corre-
sponds to the descending order arrangement of the average Borda score for each
element averaged across all ranker preferences, where Borda score for an element
is the number of candidates below it in each ranker’s preferences. Ordering an
element by its Borda score is equivalent to ranking the vertices by increasing in-
degree in the corresponding weighted feedback arc set problem in tournaments
and has a factor 5 approximation of the optimal Kemeny ranking [48].

Let U ⊆ V denote the union of users belonging to the nearest neighbors’ pre-
computed seed lists, i.e. U =

⋃
i∈[1,t] τi. Moreover, let τi(v) denote the rank of

the node v in the index list τi, and let wi be the importance weight assigned to the
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i-th index list. In the case of top-` lists aggregation, the weighted Borda score for
each v ∈ V can be defined as follows:

Bordaw(v) =


t∑
i=1

wi (`− τi(v) + 1) if v ∈ U

`+ 1 otherwise

When wi = 1, ∀i ∈ [1, t], weighted Borda score calculation is equal to the nor-
mal Borda score calculation. For a given query Q(~γq, k), the top-k nodes having
highest score are returned as output.
Copeland aggregation. Copeland aggregation [47] is a form of majority vot-
ing where the pairwise comparison among the elements in the ranked lists are
taken into account. Copeland score of an element v corresponds to the number
of elements v′ such that v was ranked ahead, v ≺ v′, in the majority of the lists.
Copeland aggregation corresponds to the sorting of elements by non-increasing
indegree on the majority tournament. The Markov Chain method (MC4) [57] is
a generalization of the Copeland aggregation. For a given query Q(~γq, k), we
formulate the Copeland score calculation for each v ∈ U as:

Copeland(v) =
∑
v′∈ U

1{(
t∑

j=1

1{τj(v) ≺ τj(v
′)} >

t∑
j=1

1{τj(v′) ≺ τj(v)}}
(3.11)

This can be implemented by introducing a pairwise comparison matrix Pv,v′ that
stores the number of times that v preceeds v′ among given lists. We propose to in-
corporate the importance weights by promoting, in the calculation of the pairwise
matrix P , those comparisons which come from index lists having greater impor-
tance weight. This weighting schema for Copeland aggregation is described in
Algorithm 3. Again, for a given query Q(~γq, k), the top-k nodes having the
highest Copeland scores are returned as output.
Local Kemenization. Local Kemenization [57] is a greedy post-processing step
which takes an initial aggregation result τq and computes a locally Kemeny opti-
mal aggregation of {τ1, ..., τt}, that is maximally consistent with τ ∗q . This means
that no better list, in terms of lower Kendall-τ distance to all the ranked lists in
input, can be achieved by just flipping an adjacent pair of elements.

We implement the procedure by an insertion sort algorithm applied on the
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Algorithm 3: Weighted Copeland
Input : Seed set τi, importance weight wi ∀ ~γi ∈ NN(~γq)
Output: Weighted Copeland scores Copelandw

1 U ← ∪i∈[1,t]τi
2 Pv,v′ ← 0 ∀ {v, v′} ∈ U
3 Copelandw ← 0 ∀ v ∈ U
4 for each {v, v′} ∈ U do
5 for i← 1 to t do
6 if τi(v) ≺ τi(v

′) then
7 Pv,v′ ← Pv,v′ + wi
8 else if τi(v′) ≺ τi(v) then
9 Pv′,v ← Pv′,v + wi

10 for each v ∈ U do
11 for each v′ ∈ U do
12 Copelandw(v)← Copelandw(v) + Pv,v′

aggregated final list. The sorting starts from the lowest ranked element in the
list which is “bubbled up” as long as it is preferred by the majority of the input
rankings. To apply this procedure for the weighted counterparts of Borda and
Copeland aggregation, we incorporate weights into this procedure by (i) using
weighted ranks for applying this on top of weighted Borda aggregation results,
and (ii) using weighted pairwise comparisons on top of weighted Copeland ag-
gregation results.

3.6 Experiments
In this section we describe the experimental setup for evaluating the effectiveness
and efficiency of INFLEX 5. The overall evaluation aims at:
• Understanding and quantifying the relationship between distance of items

in the simplex and the distance between their respective ranked list of seed
nodes. In other words, to what extent the ranked seed list for an item can be
used to approximate the one of its neighbors in the simplex?
• Evaluating the overall retrieval accuracy of the approximate nearest neigh-

bors search on the bb-tree index, and the performances of the early stopping
criterion based on the Anderson-Darling test.
• Comparing the performance of different rank aggregation methods and as-

sessing the gain of the weighted versions.

5The software is available from https://github.com/aslayci/INFLEX
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Parameter Value
Nr. of topics (Z) 10

Nr. index items (h) 1000
Max. nr of children of a node 4

Max. nr of items in a leaf 50
Max. leaf radius 0.01

Significance level for AD Test (α) 0.05
K-determination threshold ω 0.005

Seed set budget for pre-computed lists (`) 50

Table 3.1: Parameters used in experimentation.

• Finally, and more importantly, evaluating the accuracy of the answers pro-
vided by the overall framework and its effectiveness.

Experimental setting and dataset. Experiments were performed on a real-world
dataset from Flixster:6 a social movie web site, where users can discover new
movies and share reviews and ratings with their friends.

The network is defined by roughly 30k users and 425k unidirectional social
links between them, while the propagation log records the timestamp at which a
user provided a rating on a particular movie, out of a catalog of 12k items. This
dataset comes with the social graph and a log of past propagations (ratings on
movies), and it has been widely used to test the effectiveness of social influence
propagation models and influence maximization problems [13, 74]. We focus on
the influence episode defined by a user v rating a movie which is later on rated by
one of his friend u: in this case we see it as a potential influence of v over u. In the
movie context, it is natural to assume that each item can exhibit several topics (i.e
genres) and each user may exhibit different degree of influence on different topics.
We learn the topic-aware influence probabilities and the item specific topic distri-
butions, by applying the TIC learning procedure provided in [13] with employing
Z = 10 topics.

To evaluate the framework with respect to the aforementioned dimensions of
analysis, we generated TIM queries according to, both, a data-driven and a ran-
dom perspective. This differentiation allows us to study the performances of IN-
FLEX under the assumption that query items will follow the same distributions
of already indexed items, but also to assess its robustness to very diverse data
distributions. To this aim, out of a total of 200 query items, half were generated
by sampling from the Dirichlet distribution learnt from the item-specific distri-
butions over topics provided by TIC learning, and the remaining were randomly
generated by sampling from a uniform distribution on the simplex. We assess the

6http://www.cs.sfu.ca/˜sja25/personal/datasets/
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Figure 3.4: Selection of index items: from the catalog items (a), we learn a Dirich-
let distribution that we use for sampling a large number of points (b). Index items
are identified as the centroids provided by K-Means++ (c).

performance of the INFLEX framework in terms of accuracy and query evaluation
time.

A summary of the setting of all the parameters considered in this evaluation is
given in Table 3.1. A detailed analysis of the experimental evaluation is provided
next.
Index construction. As discussed in Sec. 3.4.1, the procedure for selection of
items to include in the index starts with estimating the Dirichlet distribution that
maximizes the likelihood of generating the item-specific distributions over topics
learnt from data. To this end, we apply the generalized Newton iteration proce-
dure,7 described by Minka [104]. Then, we run Bregman K-means++ [10] over
100k samples from the Dirichlet distribution with a number of clusters equal to
the number of items that we are willing to index. We use h = 1000. The h
centroids are identified by the clustering procedure form our set of index itemsH.
The output of this 3-phase process is given in Fig. 3.4: by applying dimensionality
reduction on the mapping of the4Z−1 simplex to EuclideanRZ−1 with isometric
log-ratio [59], we show (a) the distribution over the topics for items in the Flixster
dataset, (b) 100k samples from the Dirichlet distribution, and (c) index items.

Finally, for each item in the index we run the CELF++ algorithm for selecting
their seed set: on average, the computation required 60 hours for an item, when
employing 5k Monte Carlo trials with ` = 50. Due to extremely heavy computa-
tional burden of standard influence maximization computation, we limit the seed
budget for influence maximization to ` = 50.

To confirm the soundness of the main assumption that motivated INFLEX,
we investigate in Figure 3.5 the relationship between the KL-divergence among
randomly selected pair of items in the index, and the Kendall-τ distance among
their corresponding ranked lists. The high correlation coefficient clearly shows
that the items that are close in the simplex will tend to agree on the ranking of
seed nodes, while their agreement in identifying the influential nodes consistently
decreases with their distance.
Retrieval accuracy of similarity search. To assess the accuracy of the similarity
search on bb-tree (Algorithm 2), we measure the recall of the search procedure in

7http://research.microsoft.com/en-us/um/people/minka/software/
fastfit/
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Figure 3.5: High correlation between the KL-divergence of items’ topic distribu-
tions and the Kendall-τ distance among their seed sets.

identifying the top-K true nearest neighbors, with K ∈ [5, 10, 15, 20] on 40 ran-
domly chosen query items. Figure 3.6(a) reports such recall for varying number
of visited leaves, without using the Anderson-Darling test as the early-stopping
criterion. The plot shows that when K ≤ 20, the 80% of the top-K true nearest
neighbors can be found in the first 5 visited leaves.

In Figure 3.6(b), we compare the accuracy of the search procedure equipped
with the Anderson-Darling test, with the one achieved by visiting the first 5 leaves.
We found the average number of leaves visited when applying early-stopping cri-
terion to be 3.65. We further checked the statistical performance of leaf-by-leaf
retrieval against Anderson-Darling test based early-stopping criterion by paired
t-tests, (p < 0.05) on (i) the maximum KL-divergence observed, (ii) the re-
trieval recall, and (iii) the number of KL-divergence calculations, and found that
our early-stopping criterion statistically works better than visiting upto 3 leaves,
i.e., smaller KL-divergences and higher retrieval recall, while, visiting 3 or more
leaves statistically have smaller KL-divergences and higher retrieval recall (al-
though with lower confidence level (p < 0.10)). Our findings are expected as the
number of visited leaves increases in bb-tree, the probability of finding true near-
est neighbors increases. While on the other hand, by using the early-stopping cri-
terion, we significantly have lower number of divergence calculations (p < 0.01),
in average, half of the KL-divergence calculations (101 vs 200). Thus, the choice
of using an early-stopping criterion is a trade-off between retrieval recall and run-
time, since visiting each internal node during the traversal of the tree has a compu-
tational overload of solving a convex optimization problem via Newton iterations,
that is more costly than a linear-time Anderson Darling test. Thus, while exhibit-
ing a limited loss in recall, the early stopping criterion results to be more effective.
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(a) (b)

Figure 3.6: (a) Retrieval accuracy in case of leaf-based search.; (b) Comparison
in retrieval accuracy between the nearest neighbors search with early stop criterion
based on the Anderson-Darling test and the visit of the first 5 leaves of the bb-tree.

Accuracy of rank aggregation. In order to assess which rank aggregation tech-
nique is better suited for INFLEX, we conduct an analysis on the accuracy of the
aggregations provided by Borda and Copeland. In Table 3.2, we report the aver-
age Kendall-τ distance for both unweighted and weighted aggregations, obtained
by processing TIM queries with different seed set sizes, while employing top-10
exact nearest neighbors search to retrieve the similar items. In general, weighted
versions outperform the unweighted standard ones. Copelandw achieves the high-
est accuracy (lowest Kendall-τ ) and outperforms all the other techniques (paired
t-tests, (p < 0.05)). We also obtained similar results with varying values for K.
TIM query evaluation. As highlighted by the previous analysis, given a list of
ranked lists, their best aggregation can be achieved by employing the weighted
Copeland aggregation technique. However, how to effectively select the ranked
lists to pass to the aggregation module is still an open question.

INFLEX implements a fast approximate nearest neighbors search based on an
early stopping criterion and a procedure for the automatic selection of ranking
lists to aggregate. To evaluate the effect of the combination of these two compo-
nents in retrieving good seed lists for the aggregation phase, we compare the final
performance of INFLEX with the following alternatives:

• exactKNN: K-NN exact nearest neighbors search. This is implemented by
a complete visit of the bb-tree, which provides true K nearest neighbors.
The main drawback of this approach is the costly traversal time.

• approxKNN:K-NN approximate nearest neighbors search, realized by set-
ting a maximum number of leaves to explore during the traversal of the bb-
tree. The K nearest neighbors among the index items in the visited leaves
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k Borda Bordaw Copeland Copelandw

5 0.100 0.096 0.104 0.087
10 0.073 0.066 0.068 0.062
15 0.071 0.065 0.068 0.061
20 0.068 0.063 0.068 0.061
25 0.068 0.066 0.069 0.064
30 0.068 0.067 0.071 0.066
35 0.071 0.069 0.072 0.069
40 0.074 0.073 0.075 0.072
45 0.079 0.076 0.077 0.075
50 0.081 0.080 0.079 0.077

Table 3.2: Kendall-τ distance between the seed sets produced by aggregation al-
gorithms and the ground truth computed by standard offline influence maximiza-
tion computation.

are returned as output. This procedure provides approximate nearest neigh-
bors as output, while it exhibits a speed up over exact search.

• approxKNN + Sel: K-NN approximate nearest neighbors search with au-
tomatic seed lists selection. Neighbors retrieved by the approximate nearest
neighbors search are further refined by applying our procedure of automatic
nearest neighbors selection. This is expected to speed up the phase of rank
aggregation.

• approxAD: fast approximate nearest neighbors search based on the An-
derson Darling test. In this case, at each leaf visited, we apply Anderson
Darling test, to decide whether or not to continue the search. This heuristic
stopping criterion is expected to speed up the search in bb-tree. Its differ-
ence from INFLEX is that we do not apply the procedure of nearest neigh-
bors selection.

Preliminary experiments shows that the best accuracy for K-NN based meth-
ods is achieved by employing 10 neighbors, which we assume as K in the follow-
ing analysis. Figure 3.7(a) summarizes the accuracy performance of the consid-
ered methods. INFLEX outperforms in accuracy both the approximate K-NN
search with automatic selection of index points and the fast search procedure
based on the Anderson Darling test. The effectiveness of the procedure for the
automatic selection of index points is witnessed by consistent gain of INFLEX
over approxAD. The paired t-test between Kendall-τ values for INFLEX and ap-
proxKNN shows that there is no statistical difference between their performance
in accuracy (p < 0.01). As expected, we see that the top performing method in
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(a) (b)

(c) (d)

Figure 3.7: (a)Accuracy comparison; (b) Run-time comparison; (c) Expected
spread comparison; (d) Run-time vs. expected spread trade-off.

terms of running time, given in Figure 3.7(b), is approxKNN + Sel since it ap-
plies the procedure of automatic selection of neighbors to already pre-determined
number of points and reduce the computational cost of the rank aggregation pro-
cedure. INFLEX exhibits a consistent gain in running time over K-NN based
methods that do not implement the automatic selection of index lists. Overall, the
general framework is able to provide highly accurate estimate of seed sets in less
than 30 milliseconds.

An alternative way of assessing the effectiveness of seed sets produced by IN-
FLEX is to consider their resulting expected spread, which can be computed by
running Monte Carlo simulations employing the TIC propagation model. More
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Method Exp.Spread RMSE NRMSE
offline TIC 1686.31± 60.06 - -
exactKNN 1679.47± 60.12 33.23 0.020

INFLEX 1673.26± 60.80 40.05 0.023
approxKNN 1673.24± 60.84 39.24 0.023

approxAD 1655.30± 61.45 55.05 0.033
approxKNN + Sel 1655.79± 61.31 98.83 0.059

offline IC 737.15± 0.00 1020.61 1.384
random 118.47± 5.70 1609.30 13.583

Table 3.3: Avg. Expected Spread of the seed sets for k = 50.

specifically, we compare the spread achieved by seed sets provided by INFLEX
with the ones achieved by: (i) standard offline TIC influence maximization com-
putation (offline TIC), (ii) topic-blind version of standard offline influence maxi-
mization computation that is achieved by running the TIC model with a uniform
topic distribution (offline IC), and (iii) randomly selected seed sets for each item
(random).

As we can see from Figure 3.7(c), the seed sets produced by INFLEX and
similar aggregation-based alternatives proposed in this chapter can achieve an ex-
pected spread that is very close to the one achieved by considering seed sets pro-
duced by running compute-intensive TIC influence maximization. On the other
hand, seed sets identified by running topic-blind influence maximization com-
putation perform badly, achieving less than half of the spread of the seed nodes
provided by TIC influence maximization. We also provide in Table 3.7(c) the
Root Mean Square Error (RMSE) and its normalized version (NRMSE) between
spread values achieved by different approaches and the ones achieved by offline
TIC, which is assumed as ground truth. We see that, although approxKNN +
Sel performs better than INFLEX in terms of running time, the expected spreads
achieved by the seed sets produced by INFLEX are much closer to the ones pro-
duced by offline TIC, when compared to the expected spreads achieved by the
seed sets of approxKNN + Sel (on average 40.05 vs 98.83). The low deviation in
terms of expected spread achieved by INFLEX with respect to the ground truth,
which is stable also for different choices of k as shown in Table 3.4, statistically
confirms the accuracy as well as the robustness of the framework.

3.7 Discussion and Future Work
As a first step towards enabling social-influence online analytics in support of vi-
ral marketing decision making, in this chapter we propose an efficient index for
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k INFLEX offline TIC RMSE NRMSE
10 725.33± 32.24 730.39± 32.11 9.95 0.014
20 1066.20± 44.17 1073.28± 43.82 14.35 0.013
30 1314.08± 51.39 1321.32± 50.96 18.50 0.014
40 1513.73± 56.91 1521.21± 55.96 24.73 0.016
50 1673.26± 60.80 1686.31± 60.07 40.85 0.024

Table 3.4: Accuracy of the expected spread of seed sets produced by INFLEX.

a very general type of viral marketing queries: influence maximization queries
where each item is described by a distribution over a space of topics. The chal-
lenge is given by the enormous number of possible queries: essentially any point
on the simplex of the topics space. Exploiting a tree-based index for similarity
search in non-metric spaces, a clever approximate nearest neighbors search over
the tree, and a weighted rank aggregation mechanism, our index can provide, in
few milliseconds, a solution very similar (Kendall-τ < 0.1) to the one produced
by the standard ground-truth computation, achieving also similar expected spread
(NRMSE < 3%).

In our future work, we plan to investigate the automatic determination of
the number of index items that is required for maintaining the accuracy of the
framework. At the time of the publication of INFLEX [5], CELF++ [75], was
the state-of-the-art influence maximization algorithm: on the problem instances
that we consider in this chapter, the pre-processing step with CELF++ [75] took
from few days to more than a week in order to extract 50 seed nodes for a sin-
gle item. With the latest advances on devising scalable influence maximization
algorithms [22, 42, 112, 131, 132], CELF++ can be directly replaced for the pre-
computation of the seed sets, which would provide greater flexibility in choosing
the number of index and query items, and testing influence indexing techniques.

Another interesting future direction is studying efficient evaluation of other
types of viral marketing queries, e.g., when specific market segments are targeted
by the viral marketing campaign, combined with what-if analysis and visualiza-
tion paradigms for social-influence online analytics.
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CHAPTER 4

SOCIAL ADVERTISING:
REGRET MINIMIZATION

4.1 Introduction
Advertising on social networking and microblogging platforms is one of the
fastest growing sectors in digital advertising, further fueled by the explosion of
investments in mobile ads. Social ads are typically implemented by platforms
such as Twitter, Tumblr, and Facebook through the mechanism of promoted posts
shown in the “timeline” (or feed) of their users. A promoted post can be a video,
an image, or simply a textual post containing an advertising message. Similar to
organic (non-promoted) posts, promoted posts can propagate from user to user in
the network by means of social actions such as “likes”, “shares”, or “reposts”.1

Below, we blur the distinction between these different types of action, and gener-
ically refer to them all as clicks. These actions have two important aspects in
common: (1) they can be seen as an explicit form of acceptance or endorsement
of the advertising message; (2) they allow the promoted posts to propagate, so that
they might be visible to the “friends” or “followers” of the endorsing (i.e., click-
ing) users. In particular, the platform may supplement the ads with social proofs
such as “X, Y, and 3 other friends clicked on it”, which may further increase the
chance that a user will click [7, 134].

This type of advertisement usually follows a cost per engagement (CPE)
model. The advertiser enters into an agreement with the platform owner, called
the host: the advertiser agrees to pay the host an amount cpe(i) for each click

1Tumblr’s CEO David Karp reported (CES 2014) that a normal post is reposted on
average 14 times, while promoted posts are on average reposted more than 10 000 times:
http://yhoo.it/1vFfIAc.
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received by its ad i. The clicks may come not only from the users who saw i as a
promoted ad post, but also their (transitive) followers, who saw it because of viral
propagation. The agreement also specifies a budget Bi, that is, the advertiser ai
will pay the host the total cost of all the clicks received by i, up to a maximum
of Bi. Naturally, posts from different advertisers may be promoted by the host
concurrently.

Given that promoted posts are inserted in the timeline of the users, they com-
pete with organic social posts and with one another for a user’s attention. A large
number of promoted posts (ads) pushed to a user by the system would disrupt
user experience, leading to disengagement and eventually abandonment of the
platform. To mitigate this, the host limits the number of promoted posts that it
shows to a user within a fixed time window, e.g., a maximum of 5 ads per day
per user: we call this bound the user-attention bound, κu, which may be user
specific [94].

A subtle point here is that, ads directly promoted by the host count against
user attention bound. On the contrary, an ad i that flows from a user u to her
follower v should not count toward v’s attention bound. In fact, v is receiving ad i
from user u, whom she is voluntarily following: as such, it cannot be considered
“promoted”.

A naı̈ve ad allocation2 would match each ad with the users that are most likely
to click on the ad. However, the above strategy fails to leverage the possibility of
ads propagating virally from endorsing users to their followers. We next illustrate
the gains achieved by an allocation that takes viral ad propagation into account.

Viral ad propagation: why it matters. For our example we use the toy social
network in Figure 4.1. We assume that each time a user clicks on a promoted
post, the system produces a social proof for such engagement action, thanks to
which her followers might be influenced to click as well. In order to model the
propagation of (promoted) posts in the network, we can borrow from the rich
body of work done in diffusion of information and innovations in social networks.
In particular, the Independent Cascade (IC) model [88], adapted to our setting,
says that once a user u clicks on an ad, she has one independent attempt to try
to influence each of her neighbors v. Each attempt succeeds with a probability
piu,v which depends on the topics of the specific ad i and the influence exerted by
u on her neighbor v. The propagation stops when no new users get influenced.
Similarly, we model the intrinsic relevance of a promoted post i to a user u, as
the probability δ(u, i) that u will click on ad i, based on the content of the ad
and her own interest profile, i.e., the prior probability that the user will click on a
promoted post in the absence of any social proof. Since the model is probabilistic,

2In the rest of the chapter we use the form “allocating ads to users” as well as “allocating users
to ads” interchangeably.
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we focus on the number of clicks that an ad receives in expectation. Formal details
of the propagation model, the topic model, and the definition of expected revenue
are deferred to Section 4.1.1.

Consider the example in Figure 4.1, where we assume peer influence proba-
bilities (on edges) are equal for all the four ads {a, b, c, d}. The figure also reports
δ(u, i) and advertiser budgets. For each advertiser, CPE is 1 and the attention
bound for every user is 1, i.e., no user wants more than one ad promoted to her
by the host. The expected revenue for an allocation is the same as the resulting
expected number of clicks, as the CPE is 1. Below, for simplicity, we round all
numbers to the second decimal after calculating them all.

Let us consider two ways of allocating users to ads by the host. In allocation
A, the host matches each user to her top preference(s) based on δ(u, i), subject
to not violating the attention bound. This results in ad a being assigned to all six
users, since it has the highest engagement probability for every user. No further
ads may be promoted without violating the attention bound. In allocation B, the
host recognizes viral propagation of ads and thus assigns a to v1 and v2, b to v3, c
to v4 and v5, and d to v6.

Under allocation A, clicks on a may come from all six users: v1, v2 click on a
with probability 0.9. However, v3 clicks on a w.p. (1− (1−0.9 ·0.2)2(1−0.9)) =
0.93. This is obtained by combining three factors: v3’s engagement probability
of 0.9 with ad a, and probability 0.9 · 0.2 with which each of v1, v2 clicks on a
and influences v3 to click on a. In a similar way one can derive the probability
of clicking on a for v4, v5, and v6 (reported in the figure). The overall expected
revenue for allocation A is the sum of all clicking probabilities: 2× 0.9 + 0.93 +
2× 0.95 + 0.92 = 5.55.

Under allocation B, the ad a is promoted to only v1 and v2 (which click on
it w.p. 0.9). Every other user that clicks on a does so solely based on social
influence. Thus, v3 clicks on a w.p. 1 − (1 − 0.9 · 0.2)2 = 0.33. Similarly
one can derive the probability of clicking on a for v4, v5, and v6 (reported in the
figure). Contributions to the clicks on b can only come from nodes v3, v4, v5, v6.
They click on b, respectively, w.p. 0.8, 0.8 · 0.5 = 0.4, 0.8 · 0.5 = 0.4, and
1− (1− 0.8 · 0.5 · 0.1)2 = 0.08.

Finally, it can be verified that the expected number of clicks on ad c is 0.7 +
0.7 + (1− (1− 0.7 · 0.1)2), while on d is just 0.6. The overall number of expected
clicks under allocation B is 6.3.

Observations: (1) Careful allocation of users to ads that takes viral ad propaga-
tion into account can outperform an allocation that merely focuses on immediate
clicking likelihood based on the content relevance of the ad to a user’s interest
profile. It is easy to construct instances where the gap between the two can be
arbitrarily high by just replicating the gadget in Figure 4.1.
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• Ads = {a, b, c, d}

• piuv (on the edges) are the same ∀i ∈ {a, b, c, d}

• ∀u ∈ {v1, . . . , v6} : δ(u, a) = 0.9, δ(u, b) = 0.8,
δ(u, c) = 0.7, δ(u, d) = 0.6

• Ba = 4, Bb = 2, Bc = 2, Bd = 1

• κu = 1 ∀u ∈ {v1, . . . , v6}

v2 

v1 

v6 

v4 

v5 

v3 

0.2 

0.2 

0.5 

0.5 
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0.1 

Allocation A: maximizing δ(u, i)
〈v1, a〉, 〈v2, a〉, 〈v3, a〉, 〈v4, a〉, 〈v5, a〉, 〈v6, a〉

PrA(click(v1, a)) = PrA(click(v2, a)) = 0.9
PrA(click(v3, a)) = 1− (1− 0.9 · 0.2)2(1− 0.9) = 0.93
PrA(click(v4, a)) = PrA(click(v5, a)) = 1− (1− 0.93 · 0.5)(1− 0.9) = 0.95
PrA(click(v6, a)) = 1− (1− 0.95 · 0.1)2(1− 0.9) = 0.92

Expected number of clicks = 2× 0.9 + 0.93 + 2× 0.95 + 0.92 = 5.55

Allocation B: leveraging virality
〈v1, a〉, 〈v2, a〉, 〈v3, b〉, 〈v4, c〉, 〈v5, c〉, 〈v6, d〉

PrB(click(v1, a)) = PrB(click(v2, a)) = 0.9
PrB(click(v3, a)) = 1− (1− 0.9 · 0.2)2 = 0.33
PrB(click(v4, a)) = PrB(click(v5, a)) = 0.33 · 0.5 = 0.16
PrB(click(v6, a)) = 1− (1− 0.16 · 0.1)2 = 0.03
PrB(click(v3, b)) = 0.8
PrB(click(v4, b)) = PrB(click(v5, b)) = 0.8 · 0.5 = 0.4
PrB(click(v6, b)) = 1− (1− 0.8 · 0.5 · 0.1)2 = 0.08
PrB(click(v4, c)) = PrB(click(v5, c)) = 0.7
PrB(click(v6, c)) = 1− (1− 0.7 · 0.1)2 = 0.14
PrB(click(v6, d)) = 0.6

Expected number of clicks = 2 · 0.9 + 0.33 + 2 · 0.16 + 0.03 + 0.8 + 2 · 0.4 + 0.08 +

2 · 0.7 + 0.14 + 0.6 = 6.3.

Figure 4.1: Illustrating viral ad propagation. For simplicity, we round all numbers
to the second decimal.
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(2) Even though allocation A ignores the effect of viral ad propagation, it still
benefits from the latter, as shown in the calculations. This naturally motivates
finding allocations that expressly exploit such propagation in order to maximize
the expected revenue.

In this context, we study the problem of how to strategically allocate users
to the advertisers, leveraging social influence and the propensity of ads to propa-
gate. The major challenges in solving this problem are as follows. Firstly, the host
needs to strike a balance between assigning ads to users who are likely to click and
assigning them to “influential” users who are likely to boost further propagation
of the ads. Moreover, influence may well depend on the “topic” of the ad. E.g., u
may influence its neighbor v to different extents on cameras versus health-related
products. Therefore, ads which are close in a topic space will naturally compete
for users that are influential in the same area of the topic space. Summarizing, a
good allocation strategy needs to take into account the different CPEs and bud-
gets for different advertisers, users’ attention bound and interests, and ads’ topical
distributions.

An even more complex challenge is brought in by the fact that uncontrolled
virality could be undesirable for the host, as it creates room for exploitation by
the advertisers: hoping to tap uncontrolled virality, an advertiser might declare
a lower budget for its marketing campaign, aiming at the same large outcome
with a smaller cost. Thus, from the host perspective, it is important to make sure
that the expected revenue from an advertiser is as close to the budget as possible:
both undershooting and overshooting the budget results in a regret for the host, as
illustrated in the following example.
Example 4.1. Consider again our example in Figure 4.1. Rounding to the first
decimal, allocation A leads to an overall regret of |4− 5.6|+ |2− 0|+ |2− 0|+
|1 − 0| = 6.6: the expected revenue exceeds the budget for advertiser a by 1.6
and falls short of other advertiser budgets by 2, 2, 1 respectively. Similarly, for
allocation B, the regret is |4− 2.5|+ |2− 1.7|+ |2− 1.5|+ |1− 0.6| = 2.7.

The host knows it will not be paid beyond the budget of each advertiser, so
that any excess above the budget is essentially “free service” given away by the
host, which causes regret, and any shortfall w.r.t. the budget is a lost revenue
opportunity which causes regret as well. This creates a challenging trade-off: on
the one hand, the host aims at leveraging virality and the network effect to improve
advertising efficacy, while on the other hand, the host wants to avoid giving away
free service due to uncontrolled virality.

4.1.1 Problem Definition
The Ingredients. The computational problem studied in this chapter is from the
host perspective. The host owns: (i) a directed social graphG = (V,E), where an
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arc (u, v) means that v follows u, thus v can see u’s posts and can be influenced
by u; (ii) a topic model for ads and users’ interest, defined on a space of K topics;
(iii) a topic-aware influence propagation model defined on the social graph G and
the topic model.

The key idea behind the topic modeling is to introduce a hidden variable Z
that can range among K states. Each topic (i.e., state of the latent variable) rep-
resents an abstract interest/pattern and intuitively models the underlying cause for
each data observation (a user clicking on an ad). In our setting the host owns
a pre-computed probabilistic topic model. The actual method used for produc-
ing the model is not important at this stage: it could be, e.g., the popular Latent
Dirichlet Allocation (LDA) [19], or any other method. What is relevant is that the
topic model maps each ad i to a topic distribution ~γi over the latent topic space,
formally: γzi = Pr(Z = z|i) with ΣK

z=1γ
z
i = 1.

Propagation Model. The propagation model governs the way that ads propa-
gate in the social network driven by social influence. In this work, we extend
a simple topic-aware propagation model introduced by Barbieri et al. [13], with
Click-Through Probabilities (CTPs) for seeds: we refer to the set of users Si that
receive ad i directly as a promoted post from the host as the seed set for ad i. In the
Topic-aware Independent Cascade model (TIC) of [13], the propagation proceeds
as follows: when a node u first clicks an ad i, it has one chance of influencing
each inactive neighbor v, independently of the history thus far. This succeeds
with a probability that is the weighted average of the arc probability w.r.t. the
topic distribution of the ad i:

piu,v =
∑K

z=1
γzi · pzu,v. (4.1)

For each topic z and for a seed node u, the probability pzH,u represents the
likelihood of u clicking on a promoted post for topic z. Thus the CTP δ(u, i) that
u clicks on the promoted post i in absence of any social proof, is the weighted
average (as in Eq. (5.1)) of the probabilities pzH,u w.r.t. the topic distribution of i.
In our extended TIC-CTP model, each u ∈ Si accepts to be a seed, i.e., clicks on
ad i, with probability δ(u, i) when targeted. The rest of the propagation process
remains the same as in TIC.

Following the literature on influence maximization we denote with σi(Si) the
expected number of clicks (according to the TIC-CTP model) for ad i when the
seed set is Si. The corresponding expected revenue is Πi(Si) = σi(Si) · cpe(i),
where cpe(i) is the cost-per-engagement that ai and the host have agreed on.

We observe that for a fixed ad i, with topic distribution ~γi, the TIC-CTP model
boils down to the standard Independent Cascade (IC) model [88] with CTPs,
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where again, a seed may activate with a probability. We next expose the rela-
tionship between the expected spread a σic(S) for the classical IC model without
CTPs, and the expected spread under the TIC-CTP model for a given ad i.

Lemma 4.1. Given an instance of the TIC-CTP model, and a fixed ad i, with topic
distribution ~γi, build an instance of IC by setting the probability over each edge
(u, v) as in Eq. 5.1. Now, consider any node u, and any set S of nodes. Let δ(u, i)
be the CTP for u clicking on the promoted post i. Then we have

δ(u, i)[σic(S ∪ {u})− σic(S)] = σi(S ∪ {u})− σi(S). (4.2)

Proof. The proof relies on the possible world semantics. For the IC model [88],
consider a graphG = (V,E) with influence probability pu,v on each edge (u, v) ∈
E. A possible world, denoted X , is a deterministic graph generated as follows.
For each edge (u, v) ∈ E, we flip a biased coin: with probability pu,v, the edge is
declared “live”, and with probability 1− pu,v, it is declared “blocked”.

Define an indicator function IX(S, v), which takes on 1 if v is reachable by S
via a path consisting entirely of live edges in X , and 0 otherwise. In the IC model,

σic(S ∪ {u})− σic(S)

=
∑
X

Pr[X] · (|{w : IX(S ∪ {u}, w) = 1}| − |{w : IX(S,w) = 1}|)

=
∑
X

Pr[X] · |{w : IX(S ∪ {u}, w) = 1 ∧ IX(S,w) = 0}|

=
∑
X

Pr[X] · |{w : IX({u}, w) = 1 ∧ IX(S,w) = 0}|.

Notice that for a node to be active in a possible world, it must be reachable
from a seed. In each of the possible worlds, node u has probability δ(u, i) to
accept to become a seed. Thus, in the TIC-CTP model, we have:

σi(S ∪ {u})− σi(S)

= δ(u, i) ·
∑
X

Pr[X] · |{w : IX({u}, w) = 1 ∧ IX(S,w) = 0}|.
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This directly leads to

δ(u, i)(σic(S ∪ {u})− σic(S)) = σi(S ∪ {u})− σi(S),

which was to be shown.

A corollary of the above lemma is that, for a fixed ~γi, the expected spread
σi(·) function under the TIC-CTP model, inherits the properties of monotonicity
and submodularity from the IC model (see Section 4.2 and [13, 88]). In turn,
Πi(Si) = cpe(i) · σi(Si) is also monotone and submodular, being a non-negative
linear combination of monotone submodular functions.

Budget and Regret. As in any other advertisement model, we assume that
each advertiser ai has a finite budget Bi for a campaign on ad i, which lim-
its the maximum amount that ai will pay the host. The host needs to allocate
seeds to each of the ads that it has agreed to promote, resulting in an allocation
S = (S1, ..., Sh). The expected revenue from the campaign may fall short of the
budget (i.e., Πi(Si) < Bi) or overshoot it (i.e., Πi(Si) > Bi). An advertiser’s
natural goal is to make its expected revenue as close to Bi as possible: the for-
mer situation is lost opportunity to make money whereas the latter amounts to
“free service” by the host to the advertiser. Both are undesirable. Thus, one op-
tion to define the host’s regret for seed set allocation Si for advertiser ai is as
|Bi − Πi(Si)|.

Note that this definition of regret has the drawback that it does not discrimi-
nate between small and large seed sets: given two seed sets S1 and S2 with the
same regret as defined above, and with |S1| � |S2|, this definition does not pre-
fer one over the other. In practice, it is desirable to achieve a low regret with a
small number of seeds. By drawing on the inspiration from the optimization lit-
erature [25], where an additional penalty corresponding to the complexity of the
solution is added to the error function to discourage overfitting, we propose to add
a similar penalty term to discourage the use of large seed sets. Hence we define
the overall regret as

Ri(Si) = |Bi − Πi(Si)|+ λ · |Si|. (4.3)

Here, λ · |Si| can be seen as a penalty for the use of a seed set: the larger
its size, the greater the penalty. This discourages the choice of a large number
of poor quality seeds to exhaust the budget. When λ = 0, no penalty is levied
and the “raw” regret corresponding to the budget alone is measured. We assume
w.l.o.g. that the scalar λ encapsulates CPE such that the term λ|Si| is in the same
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monetary unit as Bi. How small/large should λ be? We will address this question
in the next section. The overall regret from an allocation S = (S1, ..., Sh) to all
advertisers is

R(S) =
∑h

i=1
Ri(Si). (4.4)

Example 4.2. In Example 4.1, the regrets reported for allocations A (6.6) and B
(2.7) correspond to λ = 0. When λ = 0.1, the regrets change to 6.6+0.1×6 = 7.2
for A and to 2.7 + 0.1× 6 = 3.3 for B.

As noted earlier in Section 4.1, in practice, the number of ads that can be
promoted to a user may be limited. The host can even personalize this number
depending on users’ activity. We model this using a user-specific attention bound
κu for each user u ∈ V . An allocation S = (S1, ..., Sh) is called valid provided
for every user u ∈ V , |{Si ∈ S | u ∈ Si}| ≤ κu, i.e., no more than κu ads are
promoted to u by the allocation. We are now ready to formally state the problem
we study.

Problem 4.1 (REGRET-MINIMIZATION). We are given h advertisers a1, . . . , ah,
where each ai has an ad i described by topic-distribution ~γi, a budget Bi, and
a cost-per-engagement cpe(i). Also given is a social graph G = (V,E) with a
probability pzu,v for each edge (u, v) ∈ E and each topic z ∈ [1, K], an attention
bound κu, ∀u ∈ V , and a penalty parameter λ ≥ 0. The task is to compute a valid
allocation S = (S1, . . . , Sh) that minimizes the overall regret:

S = argmin
T =(T1,...,Th):Ti⊆V
T is valid

R(T ).

Discussion. Note that Πi(Si) denotes the expected revenue from advertiser ai. In
reality, the actual revenue depends on the number of engagements the ad actually
receives. Thus, the uncertainty in Πi(Si) may result in a loss of revenue. Another
concern could be that regret on the positive side (Πi(Si) > Bi) is more acceptable
than on the negative side (Πi(Si) < Bi), as one can argue that maximizing revenue
is a more critical goal even if it comes at the expense of a small and reasonable
amount of free service. Our framework can accommodate such concerns and can
easily address them. For instance, instead of defining raw regret as |Bi −Πi(Si)|,
we can define it as |B′i−Πi(Si)|, whereB′i = (1+β)·Bi. The idea is to artificially
boost the budget Bi with parameter β allowing maximization of revenue while
keeping the free service within a modest limit. This small change has no impact
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on the validity of our results and algorithms. Theorem 4.2 provides an upper
bound on the regret achieved by our allocation algorithm (Section 4.3.1). The
bound remains intact except that in place of the original budget Bi, we should use
the boosted budgetB′i. This remark applies to all our results. We henceforth study
the problem as defined in Problem 4.1.

4.1.2 Contributions and Roadmap
In this chapter we make the following major contributions:
• We propose a novel problem domain of allocating users to advertisers for pro-

moting advertisement posts, taking advantage of the network effect, while
paying attention to important practical factors like relevance of ad, effect
of social proof, user’s attention bound, and limited advertiser budgets (Sec-
tion 4.1.1).
• We formally define the problem of minimizing regret in allocating users to

ads (Section 4.1.1), and show that it is NP-hard and is NP-hard to approxi-
mate within any factor (Section 4.3).
• We develop a simple greedy algorithm and establish an upper bound on the

regret it achieves as a function of advertisers’ total budgets (Section 4.3.1).
• We then devise a scalable instantiation of the greedy algorithm by leveraging

the notion of random reverse-reachable sets [22, 132] (Section 4.4).
• Our extensive experimentation on four real datasets confirms that our algo-

rithm is scalable and it delivers high quality solutions, significantly outper-
forming natural baselines (Section 4.5).

To the best of our knowledge, regret minimization in the context of promoting
multiple ads in a social network, subject to budget and attention bounds has not
been studied before. Related work is discussed in Section 4.2, while Section 4.6
concludes the chapter discussing future work.

4.2 Related Work
Datta et al. [51] study influence maximization with multiple items, under a user
attention constraint. However, as in classical influence maximization, their objec-
tive is to maximize the overall influence spread, and the budget is w.r.t. the size of
the seed set, so without any CPE model. Their diffusion model is the (topic-blind)
IC model, which also doesn’t model the competition among similar items. Du
et al. [55] study influence maximization over multiple non-competing products
subject to user attention constraints and budget constraints, and develop approxi-
mation algorithms in a continuous time setting. Lin et al. [94] study the problem
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of maximizing influence spread from a website’s perspective: how to dynami-
cally push items to users based on user preference and social influence. The push
mechanism is also subject to user attention bounds. Their framework is based on
Markov Decision Processes (MDPs).

Our work departs from the body of work in this field by looking at the possi-
bility of integrating viral marketing into existing social advertising models and by
studying a fundamentally different objective: minimize host’s regret. A notewor-
thy feature of our work is that, as will be shown in §4.5, the budgets we use are
such that thousands of seeds are required to minimize regret. Scalability of algo-
rithms for selecting thousands of seeds over large networks has not been demon-
strated before.

While social advertising is still in its infancy, it fits in the more general (and
mature) area of computational advertising that has attracted a lot of interest dur-
ing the last decade. The central problem of computational advertising is to find
the “best match” between a given user in a given context and a suitable advertise-
ment. The context could be a user entering a query in a search engine (“sponsored
search”), reading a web page (“content match” and “display ads”), or watching a
movie on a portable device, etc. The most typical example is sponsored search:
search engines show ads deemed relevant to user-issued queries, in the hope of
maximizing click-through rates and in turn, revenue. Revenue maximization in
this context is formalized as the well-known Adwords problem [103]. We are
given a set Q of keywords and N bidders with their daily budgets and bids for
each keyword in Q. During a day, a sequence of words (all from Q) would ar-
rive online and the task is to assign each word to one bidder upon its arrival, with
the objective of maximizing revenue for the given day while respecting the bud-
gets of all bidders. This can be seen as a generalized online bipartite matching
problem, and by using linear programming techniques, a (1 − 1/e) competitive
ratio is achieved [103]. Considerable work has been done in sponsored search and
display ads [52, 62, 63, 68, 105]. For a comprehensive treatment, see a recent sur-
vey [102]. Our work fundamentally differs from this as we are concerned with the
virality of ads when making allocations: this concept is still largely unexplored in
computational advertising.

Recently, Tucker [134] and Bakshy et al. [7] conducted field experiments on
Facebook and demonstrated that adding social proofs to sponsored posts in Face-
book’s News Feed significantly increased the click-through rate. Their findings
empirically confirm the benefits of social influence, paving the way for the appli-
cation of viral marketing in social advertising, as we do in our work.
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4.3 Theoretical Analysis
We first show that REGRET-MINIMIZATION is not only NP-hard to solve opti-
mally, but is also NP-hard to approximate within any factor (Theorem 4.1). On
the positive side, we propose a greedy algorithm and conduct a careful analysis to
establish a bound on the regret it can achieve as a function of the budget (Theo-
rems 4.2-4.4).

Theorem 4.1. REGRET-MINIMIZATION is NP-hard and is NP-hard to approxi-
mate within any factor.

Proof. We prove hardness for the special case where λ = 0, using a reduction
from 3-PARTITION [67].

Given a set X = {x1, ..., x3m} of positive integers whose sum is C, with
xi ∈ (C/4m,C/2m), ∀i, 3-PARTITION asks whether X can be partitioned into
m disjoint 3-element subsets, such that the sum of elements in each partition is
the same (= C/m). This problem is known to be strongly NP-hard, i.e., it remains
NP-hard even if the integers xi are bounded above by a polynomial in m [67].
Thus, we may assume that C is bounded by a polynomial in m.

Given an instance I of 3-PARTITION, we construct an instance J of REGRET-
MINIMIZATION as follows. First, we set the number of advertisers h = m and
let the cost-per-engagement (CPE) be 1 for all advertisers. Then, we construct a
directed bipartite graph G = (U ∪ V,E): for each number xi, G has one node
ui ∈ U with xi − 1 outneighbors in V , with all influence probabilities set to 1.
We refer to members of U (resp., V ) as “U” nodes (resp., “V ” nodes) below. Set
all advertiser budgets to Bi = C/m, 1 ≤ i ≤ m and the attention bound of
every user to 1. This will result in a total of C nodes in the instance of REGRET-
MINIMIZATION. Since C is bounded by a polynomial in m, the reduction is
achieved in polynomial time.

We next show that if REGRET-MINIMIZATION can be solved in polynomial
time, so can 3-PARTITION, implying hardness. To that end, assume there exists
an algorithm A that solves REGRET-MINIMIZATION optimally. We can use A to
distinguish between YES- and NO-instances of 3-PARTITION as follows. Run A
on J to yield a seed set allocation S = (S1, ..., Sm). We claim that I is a YES-
instance of 3-PARTITION iff R(S) = 0, i.e., the total regret of the allocation S is
zero.
(=⇒): Suppose R(S) = 0. This implies the regret of every advertiser must be
zero, i.e., Πi(Si) = Bi = C/m. We shall show that in this case, each Si must
consist of 3 “U” nodes whose spread sums to C/m. From this, it follows that
the 3-element subsets Xi := {xj ∈ X | uj ∈ Si} witness the fact that I is a
YES-instance. Suppose |Si| 6= 3 for some i. It is trivial to see that each seed set
Si can contain only the “U” nodes, for the spread of any “V ” node is just 1. If
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Algorithm 4: Greedy Algorithm
Input : G = (V,E); λ; attention bounds κu, ∀u ∈ V ; items ~γi with cpe(i) &

budget Bi, i = 1, . . . , h; δ(u, i), ∀u∀i
Output: S1, . . . , Sh

1 Si ← ∅, ∀i = 1, . . . , h
2 while true do
3 (u, ai)← argmax v,aj Rj(Sj)−Rj(Sj ∪ {v}), subject to:

|{S`|v ∈ S`}| < κv ∧ Rj(Sj ∪ {v}) ≤ Rj(Sj))
4 if (u, ai) is null then return ;
5 else Si ← Si ∪ {u} ;

|Si| 6= 3, then Πi(Si) =
∑

uj∈Si
xj 6= C/m, since all numbers are in the open

interval (C/4m,C/2m). This shows that every seed set Si in the above allocation
must have size 3, which was to be shown.
(⇐=): Suppose X1, ..., Xm are disjoint 3-element subsets of X that each sum to
C/m. By choosing the corresponding “U”-nodes we get a seed set allocation
whose total regret is zero.

We just proved that REGRET-MINIMIZATION is NP-hard. To see hard-
ness of approximation, suppose B is an algorithm that approximates REGRET-
MINIMIZATION within a factor of α. That is, the regret achieved by algorithm B
on any instance of REGRET-MINIMIZATION is ≤ α · OPT , where OPT is the
optimal (least) regret. Using the same reduction as above, we can see that the
optimal regret on the reduced instance J above is 0. On this instance, the regret
achieved by algorithm B is ≤ α · 0 = 0, i.e., algorithm B can solve REGRET-
MINIMIZATION optimally in polynomial time, which is shown above to be im-
possible unless P = NP .

4.3.1 A Greedy Algorithm
Due to the hardness of approximation of Problem 1, no polynomial algorithm
can provide any theoretical guarantees w.r.t. optimal overall regret. Still, instead
of jumping to heuristics without any guarantee, we present an intuitive greedy
algorithm (pseudo-code in Algorithm 4) with theoretical guarantees in terms of
the total budget. It is worth noting that analyzing regret w.r.t. the total budget has
real-world relevance, as budget is a concrete monetary and known quantity (unlike
optimal value of regret) which makes it easy to understand regret from a business
perspective.

The algorithm starts by initializing all the seed sets to be empty (line 1). It
keeps selecting and allocating seeds until regret can no longer be minimized. In
each iteration, it finds a user-advertiser pair (u, ai) such that u’s attention bound
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is not violated (that is, |{Si|u ∈ Si}| < κu) and adding u to Si (the seed set of ai)
yields the largest decrease in regret among all the valid pairs: clearly, we want to
ensure that regret does not increase in an iteration (that is,Ri(Si∪{u}) < Ri(Si))
(line 3). The user u is then added to Si. If no such pair can be found, that is, regret
cannot be reduced further, the algorithm terminates (line 4).

Before stating our results on bounding the overall regret achieved by the
greedy algorithm, we identify extreme (and unrealistic) situations where no such
guarantees may be possible.
Practical considerations. Consider a network with n users, one advertiser with
a CPE of 1 and a budget B � n. Assume CTPs are all 1. Clearly, even if all n
users are allocated to the advertiser, the regret approaches 100% of B, as most of
the budget cannot be tapped.

At another extreme, consider a dense network with n users (e.g., clique), one
advertiser with a CPE of 1 and a budget B � n. Suppose the network has high
influence probabilities, such that assigning any one seed u to the advertiser will
result in an expected revenue Π({u}) � B. In this case, the allocation with the
least regret is the empty allocation (!) and the regret is exactly B!

In many practical settings, the budgets are large enough that the marginal gain
of any one node is a small fraction of the budget, and small enough compared to
the network size, in that there are enough nodes in the network to allocate to each
advertiser in order to exhaust or exceed the budget.

4.3.2 The General Case
In this subsection, we establish an upper bound on the regret achieved by Al-
gorithm 4, when every candidate seed has essentially an unlimited attention
bound. For convenience, we refer to the first term in the definition of regret
(cf. Eq. 4.3) as budget-regret and the second term as seed-regret. The first
one reflects the regret arising from undershooting or overshooting the budget
and the second arises from utilizing seeds which are the host’s resources. For
a seed set Si for ad i, the marginal gain of a node x ∈ V \ Si is defined as
MGi(x|Si) := Πi(Si ∪ {x}) − Πi(Si). By submodularity, the marginal gain of
any node is the greatest w.r.t. the empty seed set, i.e., MGi(x|∅) = Πi({x}). Let
pi be the maximum marginal gain of any node w.r.t. ad i, as a fraction of its bud-
get Bi, i.e., pi := maxx∈V Πi({x})/Bi. As discussed at the end of the previous
subsection, we assume that the network and the budgets are such that pi ∈ (0, 1),
for all ads i. In practice, pi tends to be a small fraction of the budget Bi. Finally,
we define pmax := maxhi=1 pi to be the maximum pi among all advertisers.
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Theorem 4.2. Suppose that for every node u, the attention bound κu ≥ h, the
number of advertisers, and that λ ≤ δ(u, i) · cpe(i), ∀ user u and ad i. Then the
regret incurred by Algorithm 4 upon termination is at most

h∑
i=1

piBi + λ

2
+ λ ·

h∑
i=1

(
1 + sioptdln

1

pi/2− λ/2Bi

e
)
,

where siopt is the smallest number of seeds required for reaching or exceeding the
budget Bi for ad i.

of Theorem 4.2. We establish a series of claims.

Claim 4.1. Suppose Si is the seed set allocated to advertiser ai and Πi(Si) < Bi.
Then the greedy algorithm will add a node x to Si iff |Πi(Si ∪ {x}) − Bi| <
|Πi(Si)−Bi| and x = argmax w∈V \Si

(|Πi(Si)−Bi|− |Πi(Si∪{w})−Bi|), with
ties broken arbitrarily.

PROOF OF CLAIM: Let x be a node such that its addition to Si strictly reduces
the budget-regret and it results in the greatest reduction in budget-regret, among
all nodes outside Si. The contribution of every node outside Si to the seed regret
(i.e., the penalty term) is the same and is equal to λ. Thus, any node that achieves
the maximum budget-regret reduction will have the maximum overall regret re-
duction. Furthermore, the overall regret reduction of adding such a node x to Si
will be non-negative, since its contribution to budget-regret reduction is at least
1 ·δ(u, i) ·cpe(u, i) ≥ λ. So Greedy will add such a node x to Si. Attention bound
does not constrain this addition in anyway since κu ≥ h, ∀u.
(=⇒): Let x be the node added by Greedy to Si. By definition, the addition of x to
Si results in a non-negative reduction in overall regret and it leads to the maximum
overall regret reduction. By the argument in the “If” direction, x must also lead
to the maximum reduction in the budget-regret, since seed-regret cannot discrim-
inate between nodes. We will show that this reduction is strictly positive. Since
Greedy added x to Si, we haveR(Si∪{x}) = |Πi(Si∪{x})−Bi|+λ·(|Si|+1) ≤
|Πi(Si)−Bi|+ λ · (|Si|) = R(Si).
=⇒ |Πi(Si ∪ {x})−Bi| ≤ |Πi(Si)−Bi| − λ, that is,
|Πi(Si ∪ {x})−Bi| < |Πi(Si)−Bi|. This was to be shown.

Claim 4.2. The budget-regret of Greedy for advertiser ai, upon termination, is at
most (piBi + λ)/2.

PROOF OF CLAIM: Consider any iteration j. Let x be the seed allocated to
advertiser ai in this iteration. The following cases arise.
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• Case 1: Πi(Si ∪ {x}) < piBi. By submodularity, for any node y ∈ V \ (Si ∪
{x}) : MGi(y|Si ∪ {x}) ≤ MGi(y|∅) ≤ piBi. Thus, from Claim 4.1, we know
the algorithm will continue adding seeds to Si until Case 2 (below) is reached.
• Case 2: Π(Si ∪ {x}) ≥ piBi.
• Case 2a: Π(Si ∪ {x}) < Bi. If x is the last seed added to Si, then ∀y ∈

V \ (Si ∪ {x}) : Bi − Π(Si ∪ {x}) + λ(|Si| + 1) < Πi(Si ∪ {x} ∪ {y}) −
Bi + λ(|Si| + 2). Notice that upon adding any such y, a cross-over must occur
w.r.t. Bi: suppose otherwise, then adding y would cause net drop in regret and
the algorithm would just add y to Si ∪ {x}, a contradiction. Simplifying, we get
Bi − Πi(Si ∪ {x}) < Πi(Si ∪ {x} ∪ {y}) − Bi + λ. Also by submodularity, we
have Πi(Si ∪ {x} ∪ {y})− Πi(Si ∪ {x}) ≤ piBi. Thus,
=⇒ Πi(Si ∪ {x} ∪ {y})−Bi +Bi − Πi(Si ∪ {x}) ≤ piBi.
=⇒ 2(Bi − Πi(Si ∪ {x}))− λ ≤ piBi.
=⇒ Bi − Πi(Si ∪ {x}) ≤ (piBi + λ)/2.
• Case 2b: Πi(Si ∪{x}) > Bi. Since Greedy just added x to Si, we infer that

Πi(Si) < Bi and [Bi − Πi(Si)] + λ|Si| ≥ Πi(Si ∪ {x})−Bi + λ(|Si|+ 1).
=⇒ Bi−Πi(Si) ≥ Πi(Si∪{x})−Bi +λ. Clearly, x must be the last seed added
to Si, as any future additions will strictly raise the regret. By submodularity, we
have

Πi(Si ∪ {x})− Πi(Si) ≤ piBi.
=⇒ Πi(Si ∪ {x})−Bi +Bi − Πi(Si) ≤ piBi.
=⇒ 2(Πi(Si ∪ {x})−Bi) + λ ≤ piBi.
=⇒ Πi(Si ∪ {x})−Bi ≤ (piBi − λ)/2.

By combining both cases, we conclude that the budget-regret of Greedy for ai
upon termination is ≤ (piBi + λ)/2.

Next, define η0 = Bi. Let Sji be the seed set assigned to advertiser ai by
Greedy after iteration j. Let ηj := η0 − Πi(S

j
i ), i.e., the shortfall of the achieved

revenue w.r.t. the budget Bi, after iteration j, for advertiser ai.

Claim 4.3. After iteration j, ∃x ∈ V \ Sji : Πi(Si ∪ {x})− Πi(Si) ≥ 1/siopt · ηj ,
where siopt is the minimum number of seeds needed to achieve a revenue no less
than Bi.

PROOF OF CLAIM: Suppose otherwise. Let S∗i be the seeds allocated to ad-
vertiser ai by the optimal algorithm for achieving a revenue no less than Bi. Add
seeds in S∗i \ S

j
i one by one to Sji . Since none of them has a marginal gain

w.r.t. Si that is ≥ 1/siopt · ηj , it follows by submodularity that Πi(S
j
i ∪ S∗i ) ≤

Π(Sji ) + siopt · 1/siopt · ηj < Bi, a contradiction.
It follows from the above proof that ηj ≤ ηj−1 · (1 − 1/siopt), which implies

that ηj ≤ 1/ηj−1 · e−1/s
i
opt . Unwinding, we get ηj ≤ η0 · e−j/s

i
opt . Suppose

Greedy stops in ` iterations. We showed above that the budget-regret of Greedy,
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for advertiser ai, at the end of this iteration, is either at most (pi ·Bi+λ)/2 or is at
most (piBi − λ)/2 depending on the case that applies. Of these, the latter is more
stringent w.r.t. the #iterations Greedy will take, and hence w.r.t. the #seeds it will
allocate to ai. So, in iteration `− 1, we have η`−1 ≥ (piBi − λ)/2. That is,
η`−1 = Bi · e−(`−1)/s

i
opt ≥ (piBi − λ)/2, or

=⇒ e−(`−1)/s
i
opt ≥ (pi − λ/Bi])/2.

=⇒ ` ≤ 1 + siopt · dln{1/(pi/2− λ/2Bi)}e. Notice that this is an upper bound on
|S`i |.

We just proved that, when Greedy terminates, the seed-regret for advertiser ai,
upon termination, is at most λ ·(1+siopt ·dln{1/(pi/2−λ/2Bi)}e). Combining all
the claims above, we can infer that the overall regret of Greedy upon termination
is at most

∑h
i=1(piBi +λ)/2 +λ

∑h
i=1[1 + siopt(1 + dln{1/(pi/2−λ/2Bi)}e.

Discussion: The term δ(u, i) · cpe(i) corresponds to the expected revenue from
user u clicking on i (without considering the network effect). Thus, the assump-
tion on λ, that it is no more than the expected revenue from any one user clicking
on an ad, keeps the penalty term small, since in practice click-through probabil-
ities tend to be small. Secondly, the regret bound given by the theorem can be
understood as follows. Upon termination, the budget-regret from Greedy’s allo-
cation is at most (1/2)B · pmax (plus a small constant λ/2). The theorem says
that Greedy achieves such a budget-regret while being frugal w.r.t. the number
of seeds it uses. Indeed, its seed-regret is bounded by the minimum number of
seeds that an optimal algorithm would use to reach the budget, multiplied by a
logarithmic factor.

4.3.3 The Case of No Penalty
In this subsection, we focus on the regret bound achieved by Greedy in the special
case that penalty term λ = 0, i.e., the overall regret is just the budget-regret.
While the results here can be more or less seen as special cases of Theorem 4.2, it
is illuminating to restrict attention to this special case. Our first result follows.

Theorem 4.3. Consider an instance of REGRET-MINIMIZATION that admits a
seed allocation whose total regret is bounded by a third of the total budget. Then
Algorithm 4 outputs an allocation S with a total regret R(S) ≤ 1

3
· B, where

B =
∑h

i=1Bi is the total budget.

Proof. Consider an arbitrary iteration of Algorithm 4, where the algorithm assigns
a node, say u, to advertiser ai, i.e., it adds u to the seed set Si. In particular, notice
that u has been assigned to < κu advertisers before this iteration, where κu is the
attention bound of u. Three cases arise as shown in Figure 4.2.
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Bi 

Case 2 
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Figure 4.2: Interpretation of Theorem 4.3.

Case 1: 2
3
Bi ≤ Πi(Si ∪ {u}) ≤ 4

3
Bi. In this case, clearly, the regret for this

advertiser is |Πi(Si ∪ {u})−Bi| ≤ min{4
3
Bi −Bi, Bi − 2

3
Bi} ≤ 1

3
Bi.

Case 2: Πi(Si ∪ {u}) < 2
3
Bi. Consider the next iteration in which another seed,

say u′, is assigned to the same advertiser ai, i.e., u′ is to Si. Clearly, the marginal
gain of u′ w.r.t. Si ∪ {u} cannot be more than 2

3
Bi, by submodularity. Thus,

Πi(Si∪{u, u′}) < 4
3
Bi. Now, if Πi(Si∪{u, u′}) ≥ 2

3
Bi, then by Case 1, we have

that the regret of advertiser ai is at most 1
3
Bi. Otherwise, Πi(Si ∪ {u, u′}) < 2

3
Bi,

and then it is similar to Case 2 condition, where u′ is also added to Si after u. In
this case, subsequent iterations of the algorithm grow Si until Case 1 is satisfied.
A simple inductive argument shows that the regret for advertiser ai is no more that
1
3
Bi.

Case 3: Πi(Si∪{u}) > 4
3
Bi. The algorithm adds u to Si only when Πi(Si∪{u})−

Bi < Bi−Πi(Si), which implies Πi(Si ∪ {u}) + Πi(Si) < 2Bi.3 However, since
Πi(Si ∪ {u}) > 4

3
Bi, this implies Πi(Si) <

2
3
Bi. This means the marginal gain of

uw.r.t. Si, i.e., Πi(Si∪{u})−Πi(Si), is larger than 2
3
Bi. However, Πi(Si) <

2
3
Bi,

which by submodularity, implies no subsequent seed can have a marginal gain of
2
3
Bi or more, a contradiction. Thus, Case 3 is impossible.

We just showed that for any advertiser, the regret achieved by the algorithm
is at most 1

3
Bi. Summing over all advertisers, we see that the overall regret is no

more than 1
3
B.

The regret bound established above is conservative, and unlike Theorem 4.2,
does not make any assumptions about the marginal gains of seed nodes. In prac-
tice, as previously noted, most real networks tend to have low influence probabil-
ities and consequently, the marginal gain of any single node tends to be a small
fraction of the budget. Using this, we can establish a tighter bound on the regret
achieved by Greedy.

3Since the algorithm makes the choice with lesser regret, we can assume w.l.o.g. that it adds u
only when the addition will result in strictly lower regret than not adding it.
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Theorem 4.4. On any input instance that admits an allocation with total regret
bounded by min{pmax

2
, 1−pmax} ·B, Algorithm 4 delivers an allocation S so that

R(S) ≤ min{pmax

2
, 1− pmax} ·B.

Proof. The proof is similar to the proof of Theorem 4.3. Consider an arbitrary
iteration of Algorithm 4. Suppose u is the seed that the algorithm assigned to ai
(i.e., added to seed set Si) in this iteration. The following two cases arise.
Case 1: Πi(Si ∪ {u}) < pi ·Bi. Then, the algorithm will continue to add seeds to
the seed set Si, until the condition of Case 2 is met.
Case 2: Πi(Si ∪ {u}) ≥ pi ·Bi. There can be two sub-cases in this scenario:
Case 2a: Πi(Si ∪ {u}) ≤ Bi. Clearly, regret is

Bi − Πi(Si ∪ {u}) ≤ Bi − pi ·Bi = (1− pi)Bi.

If u is the last seed added to the seed set Si, then we have regret ≤ (1− pi)Bi.
Moreover, u being the last seed also implies that for any other node u′ 6∈ Si, we
have

Bi − Πi(Si ∪ {u}) ≤ Πi(Si ∪ {u, u′})−Bi,

since otherwise, the algorithm would have added u′ to Si to decrease the regret.
Also, due to submodularity,

Πi(Si ∪ {u, u′})− Πi(Si ∪ {u}) ≤ pi ·Bi,

=⇒ Πi(Si ∪ {u, u′})−Bi +Bi − Πi(Si ∪ {u}) ≤ pi ·Bi,

=⇒ 2 · (Bi − Πi(Si ∪ {u})) ≤ pi ·Bi,

=⇒ Bi − Πi(Si ∪ {u}) ≤
pi
2
·Bi.

Therefore, in Case 2a, if u is the last seed selected by the algorithm, then regret
of advertiser ai is min{pi

2
, 1− pi} · Bi. Otherwise, the algorithm would continue

with the next iteration and add seeds until Case 2a or Case 2b is satisfied.
Case 2b: Πi(Si ∪ {u}) > Bi. Then regret for advertiser ai is Πi(Si ∪ {u})−Bi.

In this case, umust be the last seed selected by the algorithm as adding another
seed can only increase the regret. Therefore, it is clear that

Πi(Si ∪ {u})−Bi ≤ Bi − Πi(Si).
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Moreover, due to submodularity, we know that

Πi(Si ∪ {u})− Πi(Si) ≤ pi ·Bi,

=⇒ Πi(Si ∪ {u})−Bi +Bi − Πi(Si) ≤ pi ·Bi,

=⇒ 2 · (Πi(Si ∪ {u})−Bi) ≤ pi ·Bi,

=⇒ Πi(Si ∪ {u})−Bi ≤
pi
2
·Bi.

Combining Cases 2a and 2b, and summing it over all advertisers, it is easy to
see that total regret is ≤ min(pmax

2
, (1− pmax)) ·B.

We note that this claim generalizes Theorem 4.3. In fact, the two bounds: pmax

2

and 1 − pmax meet at the value of 1/3 when pmax = 2/3. In practice, pmax may
be much smaller, making the bound better.

4.4 Scalable Algorithms
Algorithm 4 (Greedy) involves a large number of calls to influence spread compu-
tations, to find the node for each advertiser ai that yields the maximum decrease
in regretRi(Si). Given any seed set S, computing its exact influence spread σ(S)
under the IC model is #P-hard [37], and this hardness trivially carries over to the
topic-aware IC model [13] with CTPs. A common practice is to use Monte Carlo
(MC) simulations to estimate influence spread [88]. However, accurate estima-
tion requires a large number of MC simulations, which is prohibitively expensive
and not scalable. Thus, to make Algorithm 4 scalable, we need an alternative
approach.

In the influence maximization literature, considerable effort has been devoted
to developing more efficient and scalable algorithms [22,37,42,86,132]. Of these,
the IRIE algorithm proposed by Jung et al. [86] is a state-of-the-art heuristic for
influence maximization under the IC model and is orders of magnitude faster than
MC simulations. We thus use a variant of Greedy, GREEDY-IRIE, where IRIE
replaces MC simulations for spread estimation. It is one of the strong baselines
we will compare our main algorithm with in Section 4.5. In this section, we
instead propose a scalable algorithm with guaranteed approximation for influence
spread.

Recently, Borgs et al. [22] proposed a quasi-linear time randomized algorithm
based on the idea of sampling “reverse-reachable” (RR) sets in the graph. It was
improved to a near-linear time randomized algorithm – Two-phase Influence Max-
imization (TIM) – by Tang et al. [132]. Cohen et al. [42] proposed a sketch-based
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design for fast computation of influence spread, achieving efficiency and effec-
tiveness comparable to TIM. We choose to extend TIM as it is the current state-
of-the-art influence maximization algorithm and is more adapted to our needs.

In this section, we adapt the essential ideas from Greedy, RR-sets sampling,
and the TIM algorithm to devise an algorithm for REGRET-MINIMIZATION,
called Two-phase Iterative Regret Minimization (TIRM for short), that is much
more efficient and scalable than Algorithm 4 with MC simulations. Our adapta-
tion to TIM is non-trivial, since TIM relies on knowing the exact number of seeds
required. In our framework, the number of seeds needed is driven by the budget
and the current regret and so is dynamic. We first give the background on RR-sets
sampling, review the TIM algorithm [132], and then describe our TIRM algorithm.

4.4.1 Reverse-Reachable Sets and TIM

RR-sets Sampling: Brief Review. We first review the definition of RR-sets,
which is the backbone of both TIM and our proposed TIRM algorithm. Conceptu-
ally speaking, a random RR-set R from G is generated as follows. First, for every
edge (u, v) ∈ E, remove it from G w.p. 1 − pu,v: this generates a possible world
X . Second, pick a target node w uniformly at random from V . Then, R consists
of the nodes that can reach w in X . This can be implemented efficiently by first
choosing a target node w ∈ V uniformly at random and performing a breadth-first
search (BFS) starting from it. Initially, create an empty BFS-queue Q, and insert
all of w’s in-neighbors into Q. The following loop is executed until Q is empty:
Dequeue a node u from Q and examine its incoming edges: for each edge (v, u)
where v ∈ N in(u), we insert v into Q w.p. pv,u. All nodes dequeued from Q thus
form a RR-set.

The intuition behind RR-sets sampling is that, if we have sampled sufficiently
many RR-sets, and a node u appears in a large number of RR sets, then u is likely
to have high influence spread in the original graph and is a good candidate seed.

TIM: Brief Review. Given an input graph G = (V,E) with influence prob-
abilities and desired seed set size s, TIM, in its first phase, computes a lower
bound on the optimal influence spread of any seed set of size s, i.e., OPTs :=
maxS⊆V,|S|=s σ

ic(S). Here σic(S) refers to the spread w.r.t. classic IC model.
TIM then uses this lower bound to estimate the number of random RR-sets that
need to be generated, denoted θ. In its second phase, TIM simply samples θ RR-
sets, denoted R, and uses them to select s seeds, by solving the Max s-Cover
problem: find s nodes, that between them, appear in the maximum number of sets
in R. This is solved using a well-known greedy procedure: start with an empty
set and repeatedly add a node that appears in the maximum number of sets in R
that are not yet “covered”.

67



“Aslay˙thesis” — 2016/9/28 — 18:22 — page 68 — #84

TIM provides a (1−1/e−ε)-approximation to the optimal solutionOPTs with
high probability. Also, its time complexity is O((s + `)(|V | + |E|) log |V |/ε2),
while that of the greedy algorithm (for influence maximization) is Ω(k|V ||E| ·
poly(ε−1)).
Theoretical Guarantees of TIM. Consider any collection of random RR-sets,
denoted R. Given any seed set S, we define FR(S) as the fraction of R covered
by S, where S covers an RR-set iff it overlaps it. The following proposition says
that for any S, |V | · FR(S) is an unbiased estimator of σic(S).

Proposition 4.1 (Corollary 1, [132]). Let S ⊆ V be any set of nodes, and R be a
collection of random RR sets. Then, σic(S) = E[|V | · FR(S)].

The next proposition shows the accuracy of influence spread estimation and
the approximation gurantee of TIM. Given any seed set size s and ε > 0, define
L(s, ε) to be:

L(s, ε) = (8 + 2ε)n ·
` log n+ log

(
n
s

)
+ log 2

OPTs · ε2
, (4.5)

where ` > 0, ε > 0.

Proposition 4.2 (Lemma 3 & Theorem 1, [132]). Let θ be a number no less than
L(s, ε). Then for any seed set S with |S| ≤ s, the following inequality holds w.p.
at least 1− n−`/

(
n
s

)
:

||V | · FR(S)− σic(S)| < ε

2
·OPTs. (4.6)

Moreover, with this θ, TIM returns a (1 − 1/e − ε)-approximation to OPTs w.p.
1− n−`.

This result intuitively says that as long as we sample enough RR-sets, i.e.,
|R| ≥ θ, the absolute error of using |V | · FR(S) to estimate σic(S) is bounded by
a fraction of OPTs with high probability. Furthermore, this gives approximation
guarantees for influence maximization. Next, we describe how to extend the ideas
of RR-sets sampling and TIM for regret minimization.

4.4.2 Two-phase Iterative Regret Minimization
A straightforward application of TIM for solving REGRET-MINIMIZATION will
not work. There are two critical challenges. First, TIM requires the number of
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seeds s as input, while the input of REGRET-MINIMIZATION is in the form of
monetary budgets, and thus we do not know the precise number of seeds that
should be allocated to each advertiser beforehand. Second, our influence prop-
agation model has click-through probabilities (CTPs) of seeds, namely δ(u, i)’s.
This is not accounted for in the RR-sets sampling method: it implicitly assumes
that each seed becomes active w.p. 1.

We first discuss how to adapt RR-sets sampling to incorporate CTPs. Then we
deal with unknown seed set sizes.

RR-sets Sampling with Click-Through Probabilities. Recall that in our model,
when a node u is chosen as a seed for advertiser ai, it has a probability δ(u, i) to
accept being seeded, i.e., to actually click on the ad. For ease of exposition, in the
rest of this subsubsection only, we assume that there is only one advertiser, and
the CTP of each user u for this advertiser is simply δ(u) ∈ [0, 1]. The technique
we discuss and our results readily extend to any number of advertisers.

For clarity, we call the RR-sets generated with CTPs incorporated RRC-sets
to distinguish them from normal RR-sets, which have no associated CTPs. The
procedure for generating a random RRC-set is similar to that for generating a
normal (random) RR-set. First, a root w is chosen uniformly at random from V .
Let Rw denote the associated RRC-set being generated. Then, we enqueue w into
a FIFO queue Q.

Until Q is empty, we repeat the following: dequeue the next node from Q, and
let it be u. For all of its in-neighbors v ∈ N in(u), we first test the edge (v, u): it is
live w.p. pv,u, and blocked w.p. 1 − pv,u. If the edge is blocked, we ignore it and
continue to the next in-neighbor, if any. If the edge is live, we further flip a biased
coin, independently, for the node v itself: w.p. δ(v), we declare v live, and w.p.
1− δ(v), declare v blocked. The following two cases arise: (i). If v is live, then it
can be a valid seed, and thus we add v to Rw as well as enqueue v into Q. (ii). If
v is blocked, then it cannot be a valid seed itself, but it should still be added to Q,
since its in-neighbors may still be valid seeds, depending on their own edge- and
node-based coin flips.

Note that for the root w itself, the node test should also be performed using its
CTP: w.p. δ(w), w is added toRw. Again, even if this CTP test fails, which occurs
w.p. 1 − δ(w), the above procedure is still correct in terms of first enqueuing w
into Q, since w’s in-neighbors can be valid seeds to activate w.

Let Q be a collection of RRC-sets. Similar to FR(S), for any set S, we define
FQ(S) to be the fraction of Q that overlap with S. Let σicctp(S) be the influence
spread of a seed set S under the IC model with CTPs. We first establish a similar
result to Proposition 4.1 which says that |V |FQ(S) is an unbiased estimator of
σ(S).
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Lemma 4.2. Given a graph G = (V,E) with influence probabilities on edges, for
any S ⊆ V , σicctp(S) = E[|V | · FQ(S)].

Proof. We show the following equality holds:

σicctp(S)/|V | = E[FQ(S)]. (4.7)

The LHS of (4.7) equals the probability that a node chosen uniformly at random
can be activated by seed set S where a seed u ∈ S may become live with CTP
δ(u), while the RHS of (4.7) equals the probability that S intersects with a ran-
dom RRC-set. They both equal the probability that a randomly chosen node is
reachable by S in a possible world corresponding to the IC-CTP model.

In principle, RRC-sets are those we should work with for the purpose of seed
selection for REGRET-MINIMIZATION. However, note that by Equation (4.5) and
Proposition 4.2, the number of samples required is inversely proportional to the
value of the optimal solution OPTs. However, in reality, click-through rates on
ads are quite low, and thus OPTs, taking CTPs into account, will decrease by
at least two orders of magnitude (e.g., OPTs with CTP 0.01 would become 100
times smaller than OPTs with CTP 1). This in turn translates into at least two
orders of magnitude more RRC-sets to be sampled, which ruins scalability.

An alternative way of incorporating CTPs is to pretend as though all CTPs
were 1. We still generate RR-sets, and use the estimations given by RR-sets to
compute revenue. More specifically, for any S ⊆ V and any u ∈ V \ S, we
compute the marginal gain of u w.r.t. S, namely σC(S ∪ {u})− σC(S), by δ(u) ·
|V | · [FR(S ∪ {u})− FR(S)]. This avoids sampling of numerous RRC-sets.

We can show that in expectation, computing marginal gain in IC-CTP model
using RRC-sets is essentially equivalent to computing it under the IC model using
RR-sets in the manner above.

Theorem 4.5. Consider any u ∈ S and any S ⊆ V . Let δ(u) be the probability
that u accepts to become a seed. Let R and Q be a collection of RR-sets and of
RRC-sets, respectively. Then,

δ(u)(E[FR(S ∪ {u})]− E[FR(S)]) = E[FQ(S ∪ {u})]− E[FQ(S)].

Proof. Consider a random RR-set X , and define an indicator function IX(u, S),
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which takes on 1 if u ∈ X and S ∩X = ∅, and 0 otherwise. Then, we have:

E[FR(S ∪ {u})]− E[FR(S)]

=
∑
X

Pr[X] · IX(u, S) =
∑

X : IX(u,S)=1

Pr[X], (4.8)

where Pr[X] is the probability of sampling the RR-set X .
Note that the only difference between the generation of an RR-set and that

of an RRC-set is the additional coin flips on nodes, with CTPs, which are all
independent. Now, consider a fixed RR-set X that does contain u. If we were
to generate an RRC-set — meaning that the outcomes of all edge-level coin flips
would remain the same — then X may contain u w.p. δ(u). This is true since
all edge- and node-level coin flips are independent. If u belongs to the RRC-set
realization of X , we denote it by Xu.

Now, for the expected marginal gain of u under the model with CTPs, we
have:

E[FQ(S ∪ {u})]− E[FQ(S)]

=
∑
Xu

Pr[Xu] =
∑

X:IX(u,S)=1

δ(u) · Pr[X]

= δ(u) · (E[FR(S ∪ {u})− E[FR(S)]),

where we have applied (4.8) in the last equality. This completes the proof.

This theorem shows even with CTPs, we can still use the usual RR-sets sam-
pling process for estimating spread efficiently and accurately as long as we mul-
tiply marginal gains by CTPs. This result carries over to the setting of multiple
advertisers.
Iterative Seed Set Size Estimation. As mentioned earlier, TIM needs the re-
quired number of seeds s as input, which is not available for the REGRET-
MINIMIZATION problem. From the advertiser budgets, there is no obvious way to
determine the number of seeds. This poses a challenge since the required number
of RR-sets (θ) depends on s. To circumvent this difficulty, we propose a frame-
work which first makes an initial guess at s, and then iteratively revises the esti-
mated value, until no more seeds are needed, while concurrently selecting seeds
and allocating them to advertisers.

For ease of exposition, let us first consider a single advertiser ai. Let Bi be the
budget of ai and let si be the true number of seeds required to minimize the regret
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Algorithm 5: TIRM

Input : G = (V,E); attention bounds κu,∀u ∈ V ; items ~γi with cpe(i) & budget
Bi, i = 1, . . . , h; CTPs δ(u, i),∀u∀i

Output: S1, · · · , Sh
1 foreach j = 1, 2, . . . , h do
2 Sj ← ∅; Qj ← ∅; // a priority queue
3 sj ← 1; θj ← L(sj , ε); Rj ← Sample(G,~γj , θj);

4 while true do
5 foreach j = 1, 2, . . . , h do
6 (vj , covj(vj))← SelectBestNode(Rj) ; // Algo 6
7 FRj (vj)← covj(vj)/θj ;
8 i← argmax h

j=1Rj(Sj)−Rj(Sj ∪ {vj}) subject to:
Rj(Sj ∪ {vj}) < Rj(Sj); //find the (user, ad) pair with
max drop in regret.

9 if i 6= NULL then
10 Si ← Si ∪ {vi};
11 Qi.insert(vi, covi(vi));
12 Ri ← Ri \ {R | vi ∈ R ∧ R ∈ Ri};
13 //remove RR-sets that are covered;
14 else return ;
15 if |Si| = si then
16 si ← si + bRi(Si)/(cpe(i) · n · δ(vi, i) · FRi(vi))c;
17 θi ← max{L(si, ε), θi};
18 Ri ← Ri ∪ Sample(G,~γi,max{0, L(si, ε)− θi)};
19 Πi(Si)← UpdateEstimates(Ri, θi, Si, Qi); //revise

estimates to reflect newly added RR-sets;
20 Ri(Si)← |Bi −Πi(Si)|;

for ai. We do not know si and estimate it in successive iterations as s̃ti. We start
with an estimated value for si, denoted s̃i1, and use it to obtain a corresponding
θ1i (cf. Proposition 4.2). If θti > θt−1i ,4 we will need to sample an additional
(θti − θt−1i ) RR-sets, and use all RR-sets sampled up to this iteration to select
(s̃ti − s̃t−1i ) additional seeds. After adding those seeds, if ai’s budget Bi is not
yet reached, this means more seeds can be assigned to ai. Thus, we will need
another iteration and we further revise our estimation of si. The new value, s̃t+1

i ,
is obtained by adding to s̃ti the floor function of the ratio between the current
regret Ri(Si) and the marginal revenue contributed by the s̃ti-th seed (i.e., the
latest seed). This ensures we do not overestimate, thanks to submodularity, as
future seeds have diminishing marginal gains.

4Assuming θ0i = 0, i = 1, . . . , h.
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Algorithm 6: SelectBestNode(Rj)
Output: (u, covj(u))

1 u← argmax v∈V |{R | v ∈ R ∧ R ∈ Rj}| subject to: |{Sl|v ∈ Sl}| < κv;
2 covj(u)← |{R | u ∈ R ∧ R ∈ Rj}|; //find best seed for ad aj
as well as its coverage.

Algorithm 7: UpdateEstimates(Ri, θi, Si, Qi)
Output: Πi(Si)

1 Πi(Si)← 0 ;
2 for j = 0, . . . , |Si| − 1 do
3 (v, cov(v))← Qi[j] ;
4 cov′(v)← |{R | v ∈ R,R ∈ Ri}|;
5 Qi.insert(v, cov(v) + cov′(v));
6 Πi(Si)← Πi(Si) + cpe(i) · n · δ(v, i) · ((cov(v) + cov′(v))/θi);

//update coverage of existing seeds w.r.t. new
RR-sets added to collection.

Algorithm 5 outlines TIRM, which integrates the iterated seed set size esti-
mation technique above, suitably adapted to multi-advertiser setting, along with
the RR-set based coverage estimation idea of TIM, and uses Theorem 4.5 to deal
with CTPs. Notice that the core logic of the algorithm is still based on greedy
seed selection as outlined in Algorithm 4. Algorithm TIRM works as follows. For
every advertiser ai, we initially set its seed budget si to be 1 (a conservative, but
safe estimate), and find the first seed using random RR-sets generated accordingly
(line 3). In the main loop, we follow the greedy selection logic of Algorithm 4.
That is, every time, we identify the valid user-advertiser pair (u, ai) that gives the
largest decrease in total regret and allocate u to Si (lines 6 to 12), paying attention
to the attention bound of u (line 1 of Algorithm 6). If |Si| reaches the current es-
timate of si after we add u, then we increase si by bRi(Si)/(cpe(i) · n · FRi

(u))c
(lines 15 to 20), as described above, as long as the regret continues to decrease.
Note that after adding additional RR-sets, we should update the spread estimation
of current seeds w.r.t. the new collection of RR-sets (line 19). This ensures that
future marginal gain computations and selections are accurate. This is effectively
a lower bound on the number of additional seeds needed, as subsequent seeds will
not have marginal gain higher than that of u due to submodularity. As in Algo-
rithm 4, TIRM terminates when all advertisers have saturated, i.e., no additional
seed can bring down the regret. Note that in Algorithm 7, we update the estimated
revenue (coverage) of existing seeds w.r.t. the additional RR-sets sampled, to keep
them accurate.
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Estimation Accuracy of TIRM. At its core, TIRM, like TIM, estimates the spread
of chosen seed sets, even though its objective is to minimize regret w.r.t. a mone-
tary budget. Next, we show that the influence spread of seeds estimated by TIRM

enjoys bounded error guarantees similar to those chosen by TIM (see Proposi-
tion 4.2).

Theorem 4.6. At any iteration t of iterative seed set size estimation in Algorithm
TIRM, for any set Si of at most s =

∑t
j=1 s

j nodes, |n · FRt(Si)− σi(Si)| <
ε

2
·OPTs holds with probability at least 1−n−`/

(
n
s

)
, where σi(S) is the expected

spread of seed set Si for ad i.

Proof. When t = 1, our claim follows directly from Proposition 4.2. When t > 1,
by definition of our iterative sampling process, the number of RR-sets, |Rt|, is
equal to maxj=1,...,t Lj, where Lj = L

(∑j
a=1 s

a, ε
)

. This means that at any
iteration t, the number of RR-sets is always sufficient for Eq. (4.6) to hold. Hence,
for the set Si containing seeds accumulated up to iteration t, our claim on the
absolute error in the estimated spread of Si holds, by virtue of Proposition 4.2.

4.5 Experiments
In this section, we conduct an empirical evaluation of the proposed algorithms 5.
The goal is manifold. First, we would like to evaluate the quality of the algorithms
as measured by the regret achieved, the number of seeds they used to achieve a
certain level of budget-regret, and the extent to which the attention bound (κ) and
the penalty factor (λ) affect their performance. Second, we evaluate the efficiency
and scalability of the algorithms w.r.t. advertiser budgets, which indirectly control
the number of seeds required, and w.r.t. the number of advertisers. We measure
both running time and memory usage.
Datasets. Our experiments are based on four real-world social networks, whose
basic statistics are summarized in Table 4.1. Of the four datasets, we use
FLIXSTER and EPINIONS for our quality experiments, and DBLP and LIVE-
JOURNAL for scalability experiments. FLIXSTER is from a social movie-rating
site (http://www.flixster.com/). The dataset records movie ratings from
users along with their timestamps. We use the topic-aware influence probabili-
ties and the item-specific topic distributions provided by the authors of [13], who
learned the probabilities using maximum likelihood estimation for the TIC model
with K = 10 latent topics. In our quality experiments, we set the number of
advertisers h to be 10, and used 10 of the learnt topic distributions from Flixster

5The software is available from https://github.com/aslayci/TIRM
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FLIXSTER EPINIONS DBLP LIVEJOURNAL

#nodes 30K 76K 317K 4.8M
#edges 425K 509K 1.05M 69M

type directed directed undirected directed

Table 4.1: Statistics of network datasets.

Budgets CPEs
Dataset mean max min mean max min

FLIXSTER 375 200 600 5.5 5 6
EPINIONS 215 100 350 4.35 2.5 6

Table 4.2: Advertiser budgets and cost-per-engagement values.

dataset, where for each ad i , its topic distribution ~γi has mass 0.91 in the i-th topic,
and 0.01 in all others. CTPs are sampled uniformly at random from the interval
[0.01, 0.03] for all user-ad pairs, in keeping with real-life CTPs (see Section 4.1).

EPINIONS is a who-trusts-whom network taken from a consumer review web-
site (http://www.epinions.com/). For Epinions, we similarly set h = 10
and use K = 10 latent topics. For each ad i, we use synthetic topic distribu-
tions ~γi, by borrowing the ones used in FLIXSTER. For all edges and topics, the
topic-aware influence probabilities are sampled from an exponential distribution
with mean 30, via the inverse transform technique [53] on the values sampled
randomly from uniform distribution U(0, 1).

For scalability experiments, we adopt two large networks, DBLP and LIVE-
JOURNAL (both are available at http://snap.stanford.edu/). DBLP is
a co-authorship graph (undirected), where nodes represent authors, and there is
an edge between two nodes if they have co-authored a paper indexed by DBLP.
We direct all edges in both directions. LIVEJOURNAL is an online blogging site
where users can declare which other users are their friends.

In all datasets, advertiser budgets and CPEs are chosen in such a way that the
total number of seeds required for all ads to meet their budgets is less than n.
This ensures no ads are assigned empty seed sets.Table 4.2 contains a statistical
summary of the budgets and CPEs. Notice that since the CTPs are in the 1-3%
range, the effective number of targeted nodes is correspondingly larger. We defer
the numbers for DBLP and LIVEJOURNAL to Section 4.5.2.

All experiments were run on a 64-bit RedHat Linux server with Intel Xeon
2.40GHz CPU and 65GB memory. Our largest configuration is LIVEJOURNAL

with 20 ads, which effectively has 69M · 20 = 1.4B edges; this is comparable
with [132], whose largest dataset has 1.5B edges (Twitter).
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Figure 4.3: Total regret (log-scale) vs. attention bound κu.

Algorithms. We test and compare the following four algorithms.

• MYOPIC: A baseline that assigns every user u ∈ V in total κu most relevant
ads i, i.e., those for which u has the highest expected revenue, not considering
any network effect, i.e., δ(u, i) · cpe(i). This baseline is called “myopic”
as it solely focuses on CTPs and CPEs, and effectively ignores virality and
budgets. Allocation A in Figure 4.1 follows this baseline.
• MYOPIC+: This is an enhanced version of MYOPIC which takes budgets,

but not virality, into account. For each ad, it first ranks users w.r.t. CTPs, and
then selects seeds using this order until budget is exhausted. User attention
bounds are taken into account by going through the ads round-robin, and
advancing to the next seed if the current node u is already assigned to κu ads.
• GREEDY-IRIE: An instantiation of Algorithm 4, with the IRIE heuristic [86]

used for influence spread estimation and seed selection.
IRIE has a damping factor α for accurately estimating influence spread in its
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Figure 4.4: Total regret (log-scale) vs. λ.

framework. Jung et al. [86] report that α = 0.7 performs best on the datasets
they tested. We did extensive testing on our datasets and found that α = 0.8
gave the best spread estimation, and thus used 0.8 in all quality experiments.
• TIRM: Algorithm 5. We set ε to be 0.1 for quality experiments on FLIXSTER

and EPINIONS, and 0.2 for scalability experiments on DBLP and LIVE-
JOURNAL (following [132]).

For all algorithms, we evaluate the final regret of their output seed sets using
Monte Carlo simulations (10K runs) for neutral, fair, and accurate comparisons.

4.5.1 Quality

Overall regret. First, we compare overall regret (as defined in Eq. (4.4)) against
attention bound κu, varied from 1 to 5, with two choices 0 and 0.5 for λ. Figure 4.3
shows that the overall regret (in log-scale) achieved by TIRM and GREEDY-IRIE

77



“Aslay˙thesis” — 2016/9/28 — 18:22 — page 78 — #94

0

50

100

150

0 1 2 3 4 5 6 7 8 9
advertisement

re
ve

nu
e 

−
 b

ud
ge

t
algorithm

IRIE
TIRM

(a)FLIXSTER

−120

−80

−40

0

0 1 2 3 4 5 6 7 8 9
advertisement

re
ve

nu
e 

−
 b

ud
ge

t

algorithm
IRIE
TIRM

(b)EPINIONS

Figure 4.5: Distribution of individual regrets (λ = 0, κu = 5).

are significantly lower than that of MYOPIC and MYOPIC+. For example, on
FLIXSTER with λ = 0 and κu = 1, overall regrets of TIRM, GREEDY-IRIE, MY-
OPIC, and MYOPIC+, expressed relative to the total budget, are 2.5%, 26.1%,
122%, 141%, respectively. On EPINIONS with the same setting, the correspond-
ing regrets are 6.5%, 15.9%, 145%, and 205%. MYOPIC, and MYOPIC+ typically
always overshoot the budgets as they are not virality-aware when choosing seeds.
Notice that even though MYOPIC+ is budget conscious, it still ends up overshoot-
ing the budget as a result of not factoring in virality in seed allocation. In almost all
cases, overall regret by TIRM goes down as κu increases. The trend for MYOPIC

and MYOPIC+ is the opposite, caused by their larger overshooting with larger κu.
This is because they will select more seeds as κu goes up, which causes higher
revenue (hence regret) due to more virality.

We also vary λ to be 0, 0.1, 0.5, and 1 and show the overall regrets under those
values in Figure 4.4 (in log-scale), with two choices 1 and 5 for κu. As expected,
in all test cases as λ increases, the overall regret also goes up. The hierarchy
of algorithms (in terms of performance) remains the same as in Figure 4.3, with
TIRM being the consistent winner. Note that even when λ is as high as 1, TIRM

still wins and performs well. This suggests that the λ-assumption (λ ≤ δ(u, i) ·
cpe(i), ∀ user u and ad i) in Theorem 4.2 is conservative as TIRM can still achieve
relatively low regret even with large λ values.
Drilling down to individual regrets. Having compared overall regrets, we drill
down into the budget-regrets (see Section 4.3) achieved for different individual ads
by TIRM and GREEDY-IRIE. Figure 4.5 shows the distribution of budget-regrets
across advertisers for both algorithms. On FLIXSTER, both algorithms overshoot
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FLIXSTER κu = 1 2 3 4 5

TIRM 868 352 319 263 257
GREEDY-IRIE 3.7K 1.7K 1.5K 1237 1222

MYOPIC 29K 29K 29K 29K 29K
MYOPIC+ 27K 13K 9.6K 7.5K 6.6K
EPINIONS κu = 1 2 3 4 5

TIRM 4.4K 901 396 233 175
GREEDY-IRIE 3.1K 826 393 251 183

MYOPIC 76K 76K 76K 76K 76K
MYOPIC+ 55K 28K 19K 15K 13K

Table 4.3: Number of nodes targeted vs. attention bounds (λ = 0).

for all ads, but the distribution of TIRM-regrets is much more uniform than that
of GREEDY-IRIE-regrets. E.g., for the fourth ad, GREEDY-IRIE even achieves a
smaller regret than TIRM, but for all other ads, their GREEDY-IRIE-regret is at
least 3.8 times as large as the TIRM-regret, showing a heavy skew. On EPINIONS,
TIRM slightly overshoots for all advertisers as in the case of FLIXSTER, while
GREEDY-IRIE falls short on 7 out of 10 ads and its budget-regrets are larger than
TIRM for most advertisers. Note that MYOPIC and MYOPIC+ are not included
here as Figures 4.3 and 4.4 have clearly demonstrated that they have significantly
higher overshooting6.

Number of targeted users. We now look into the distinct number of nodes tar-
geted at least once by each algorithm, as κu increases from 1 to 5. Intuitively, as
κu decreases, each node becomes “less available”, and thus we may need more
distinct nodes to cover all budgets, causing this measure to go up. The stats in
Table 4.3 confirm this intuition, in the case of TIRM, GREEDY-IRIE, and MY-
OPIC+. MYOPIC is an exception since it allocates an ad to every user (i.e., all
|V | nodes are targeted). Note that on EPINIONS, TIRM targeted more nodes than
GREEDY-IRIE. The reason is that GREEDY-IRIE tends to overestimate influence
spread on EPINIONS, resulting in pre-mature termination of Greedy. When MC
is used to estimate ground-truth spread, the revenue would fall short of budgets
(see Figure 4.5). The behavior of GREEDY-IRIE is completely the opposite on
FLIXSTER, showing its lack of consistency as a pure heuristic.

4.5.2 Scalability

We test the scalability of TIRM and GREEDY-IRIE on DBLP and LIVEJOURNAL.
For simplicity, we set all CPEs and CTPs to 1 and λ to 0, and the values of these

6Their regrets are all from overshooting the budget on account of ignoring virality effects.
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Figure 4.6: Running time of TIRM and GREEDY-IRIE on DBLP and LIVEJOUR-
NAL.

parameters do not affect running time or memory usage. Influence probabilities
on each edge (u, v) ∈ E are computed using the Weighted-Cascade model [37]:
piu,v = 1

|N in(v)| for all ads i. We set α = 0.7 for GREEDY-IRIE and ε = 0.2 for
TIRM, in accordance with the settings in [86, 132]. Attention bound κu = 1 for
all users. We emphasize that our setting is fair and ideal for testing scalability as
it simulates a fully competitive case: all advertisers compete for the same set of
influential users (due to all ads having the same distribution over the topics) and
the attention bound is at its lowest, which in turn will “stress-test” the algorithms
by prolonging the seed selection process.

We test the running time of the algorithms in two dimensions: Figure 4.6(a) &
4.6(c) vary h (number of ads) with per-advertiser budgetsBi fixed (5K for DBLP,
80K for LIVEJOURNAL), while Figure 4.6(b) & 4.6(d) varyBi when fixing h = 5.
Note that GREEDY-IRIE results on LIVEJOURNAL (Figure 4.6(c) & 4.6(d)) are
excluded due to its huge running time, details to follow.
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DBLP h = 1 5 10 15 20

TIRM 2.59 12.6 27.1 40.6 60.8
GREEDY-IRIE 0.16 0.30 0.48 0.54 0.84

LIVEJOURNAL h = 1 5 10 15 20

TIRM 3.72 15.6 32.5 47.7 60.9

Table 4.4: Memory usage (GB).

At the outset, notice that TIRM significantly outperforms GREEDY-IRIE in
terms of running time. Furthermore, as shown in Figure 4.6(a) & 4.6(c), the gap
between TIRM and GREEDY-IRIE becomes larger as h increases. Furthermore,
as shown in Figure 4.6(a), the gap between TIRM and GREEDY-IRIE on DBLP
becomes larger as h increases. For example, when h = 1, both algorithms finish
in 60 secs, but when h = 15, TIRM is 6 times faster than GREEDY-IRIE.

On LIVEJOURNAL, TIRM scales almost linearly w.r.t. the number of adver-
tisers, It took about 16 minutes with h = 1 (47 seeds chosen) and 5 hours with
h = 20 (4649 seeds). GREEDY-IRIE took about 6 hours to complete for h = 1,
and did not finish after 48 hours for h ≥ 5, thus we exclude it from Figure 4.6(c).
When budgets increase (Figure 4.6(b)), GREEDY-IRIE’s time will go up (super-
linearly) due to more iterations of seed selections, but TIRM remains relatively
stable (barring some minor fluctuations). On LIVEJOURNAL, TIRM took less than
75 minutes with Bi = 50K (254 seeds), while GREEDY-IRIE could not finish in
48 hours, thus we exclude it from Figure 4.6(d). Note that once h is fixed, TIRM’s
running time depends heavily on the required number of random RR-sets (θ) for
each advertiser rather than budgets, as seed selection is a linear-time operation
for a given sample of RR-sets. Thus, the relatively stable trend on Figure 4.6(b)
& 4.6(d) is due to the subtle interplay among the variables to compute L(s, ε)
(Eq. 4.5); similar observations were made for TIM in [132].

Table 4.4 shows the memory usage of TIRM and GREEDY-IRIE. As TIRM

relies on generating a large number of random RR-sets for accurate estimation of
influence spread, we observe high memory consumption by this algorithm, similar
to the TIM algorithm [132]. The usage steadily increases with h. The memory
usage of GREEDY-IRIE is modest, as its computation requires merely the input
graph and probabilities. However, GREEDY-IRIE is a heuristic with no guarantees,
which is reflected in its relatively poor regret performance compared to TIRM.
Furthermore, as seen earlier, TIRM scales significantly better than GREEDY-IRIE

on all datasets.
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4.6 Discussion and Future Work
In this work, we build a bridge between viral marketing and social advertising,
by drawing on the viral marketing literature to study influence-aware ad alloca-
tion for social advertising, under real-world business model, paying attention to
important practical factors like relevance, social proof, user attention bound, and
advertiser budget. In particular, we study the problem of regret minimization
from the host perspective, characterize its hardness and devise a simple scalable
algorithm with quality guarantees w.r.t. the total budget. Through extensive ex-
periments we demonstrate its superior performance over natural baselines.

Our work takes a first step toward enriching the framework of social advertis-
ing by integrating it with powerful ideas from viral marketing and making the lat-
ter more applicable to real online marketing problems. It opens up several interest-
ing avenues for further research. Studying continuous-time propagation models,
possibly with the network and/or influence probabilities not known beforehand
(and to be learned), and possibly in presence of hard competition constraints, is a
direction that offers a wealth of possibilities for future work.
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CHAPTER 5

SOCIAL ADVERTISING:
REVENUE MAXIMIZATION

5.1 Introduction
The rise of online advertising platforms has generated new opportunities for ad-
vertisers in terms of personalizing and targeting their marketing messages. When
users access a platform, they leave a trail of information that can be correlated
with their consumption tastes, enabling better targeting options for advertisers.
Social networking platforms particularly can gather larger amount of users’ own
shared information that stretches beyond general demographic and geographic
data, hence, offers more advanced interest, behavioral, and connection-based tar-
geting options, enabling a level of personalization that is not achievable by other
online advertising channels. Hence, advertising on social networking platforms
has been one of the fastest growing sectors in the online advertising landscape,
further fueled by the explosion of investments in mobile ads: social advertising,
a market that did not exist until Facebook launched its first advertising service in
May 2005, is projected to generate 11 billion revenue by 2017, almost doubling
the 2013 revenue.1

Social advertising. Social advertising models are typically employed by plat-
forms such as Twitter, Tumblr, and Facebook through the implementation of the
promoted posts that are shown in the “news feed” of their users.2 A promoted

1http://www.unified.com/historyofsocialadvertising/
2According to a recent report, Facebook’s news feed ads have 21 times higher click-

through rates than standard web retargeting ads and 49 times the click-through rate
of Facebook’s right-hand side display ads. https://blog.adroll.com/trends/
facebook-exchange-news-feed-numbers

83

http://www.unified.com/historyofsocialadvertising/
https://blog.adroll.com/trends/facebook-exchange-news-feed-numbers
https://blog.adroll.com/trends/facebook-exchange-news-feed-numbers


“Aslay˙thesis” — 2016/9/28 — 18:22 — page 84 — #100

post can be a video, an image, or simply a textual post containing an advertising
message. Social advertising models of this type are usually associated with a cost
per engagement (CPE) pricing scheme: the advertiser does not pay for the ad im-
pressions, but pays to the platform owner (that hereafter we refer to as the host)
only when a user actively engages with the ad. The engagement can be in the form
of a social action such as “like”, “share”, or “comment”. In this chapter we blur
the distinction between these different type of actions, and generically refer to all
of them as engagements or clicks interchangeably.

Similar to organic (i.e., non-promoted) posts, promoted posts can propagate
from user to user in the network,3 potentially creating a virus-like contagion:
whenever a user u engages with an ad i, the host is paid some fixed amount from
the advertiser, moreover u’s engagement with i appears in the feed of u’s follow-
ers, that are hence exposed to the ad i and could in turn be influenced to engage
with i, producing further revenue for the host [7, 134].

Incentivised social advertising. In this chapter we study the novel model of
incentivised social advertising. Under this model, those users which are selected
by the host to be the seeds for the campaign on a specific ad i, can take a “cut” on
the social advertising revenue. These users are typically selected because they are
influential or authoritative on the specific topic, brand, or market of i.

A recent report4 indicates that Facebook is experimenting with the idea of in-
centivising users. YouTube launched a revenue-sharing program for prominent
users in 2007. Twitch, the streaming platform of choice for gamers, lets part-
ners make money through revenue sharing, subscriptions, and merchandise sales.
YouNow, a streaming platform popular among younger users, earns money by
taking a cut of the tips and digital gifts that fans give to its stars. On platforms
without partner deals, including Twitter and Snapchat, celebrity users often strike
sponsored deals to include brands in their posts, by-passing the platform host.5

In particular, in this chapter we consider incentives that are proportional to the
topical influence of the seed users for the specific ad. More concretely, given an
ad i, the financial incentive that a seed user u would get for engaging with i is
proportional to the social influence that u has exhibited in the past in the topic of
i. For instance, a user which often produces relevant content about long-distance
running, capturing the attention of a relatively large audience, might be a good

3Tumblr’s CEO David Karp reported (CES 2014) that a normal post is reposted on
average 14 times, while promoted posts are on average reposted more than 10 000 times:
http://yhoo.it/1vFfIAc.

4http://www.theverge.com/2016/4/19/11455840/facebook-tip-
jar-partner-program-monetization

5http://www.wsj.com/articles/more-marketers-offer-
incentives-for-watching-ads-1451991600
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seed for endorsing a new model of running shoes. In this case, her past demon-
strated influence on the topic would be taken in consideration when defining the
lump amount for her engagement with the new model of running shoes. The same
user could be selected as seed also for a new model of tennis shoes, but in that
case the incentive would be lower, due to the lower past influence demonstrated.

The incentives model based on the past demonstrated social influence has sev-
eral advantages. First of all, it captures in a neat uniform framework both the
“celebrity-influencer”, whose incentives are naturally very high (as her social in-
fluence), and who are typically preferred by more traditional types of advertising,
such as TV ads; and the “ordinary-influencer” [8], a normal individual who is ex-
pert in some specific topic, thus, has a relatively restricted audience, or tribe, that
trust her. Secondly, incentives do not only play their main role, that is to encourage
the seed users to endorse an adverting campaign, but also, as a by-product, they
incentivise the users of the social media platform to be influential in some top-
ics by actively producing good-quality content, which also has an obvious direct
benefit for the social media platform.

Revenue maximization. In this context, we study the fundamental problem of
revenue maximization from the host perspective: an advertiser enters into a com-
mercial agreement with the host to pay, following the CPE model, a fixed price
pi per each engagement with ad i. The agreement also specifies the finite budget
Bi of the advertiser for the incentivised social advertising campaign for ad i. The
host has to carefully select the seed users for the campaign: given that the budget
Bi that it can receive from the advertiser is fixed, the host must try to achieve as
many engagements on the ad i as possible, while spending little on the incentives
for “seed” users. The host’s task gets even more challenging by simultaneously
accommodating many campaigns by different advertisers. As a quality guarantee
for the advertising platform, for a fixed time window (say a 24-hours window),
the host can tactically decide to select each user as the seed endorser for at most
one ad: this constraint avoids the bad phenomenon of having, e.g., the same sport
celebrity endorsing Nike and Adidas in the same time window. Therefore two ads
i and j, which are in the same topical area, naturally compete for the influential
users in that area.

We show that, keeping all important factors, such as topical relevance of ads,
their propensity for social propagation, the topical influence of users, users incen-
tives and advertisers budgets in consideration, the problem of revenue maximiza-
tion in incentivised social advertising is NP-hard and it corresponds to the prob-
lem of monotone submodular function maximization subject to a partition matroid
constraint on the ads-to-seeds allocation and submodular knapsack constraints on
the advertisers’ budgets. For this problem we devise two natural variants of the
greedy algorithm for which we provide formal approximation guarantees. The
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two algorithms differentiate on their sensitivity to advertisers’ payment functions:

1. Cost-Agnostic Greedy Algorithm (CA-GREEDY), which greedily chooses
the seed users solely based on the marginal gain in the revenue until the
advertisers’ budgets run out;

2. Cost-Sensitive Greedy Algorithm (CS-GREEDY), which greedily chooses
the users based on the rate of marginal gain in revenue per marginal gain in
the advertiser’s payment, for each advertiser, until the advertisers’ budgets
run out.

Our results generalize the results of Iyer et al. [83,85] on submodular function
maximization by (i) generalizing from a single submodular knapsack constraint to
multiple submodular knapsack constraints, and (ii) by adding a partition matroid
constraint.

5.1.1 Problem Definition

We first introduce the data model, then the business model, and finally we formally
define the revenue maximization problem.

Data model, topic model, and propagation model. The social network platform,
i.e., the host H , owns:

1. a directed social graph G = (V,E), where an arc (u, v) means that v fol-
lows u, thus v can see u’s posts and can be influenced by u;

2. a topic model for ads and users’ interest, defined on a space of K topics;

3. a topic-aware influence propagation model defined on the social graph G
and the topic model.

The topic model is defined by a hidden variable Z that can range among K
states. Each topic (i.e., state of the latent variable) represents an abstract inter-
est/pattern and intuitively models the underlying cause for each data observation
(a user clicking on an ad). In our setting, the host owns a pre-computed proba-
bilistic topic model. The topic model maps each ad i to a topic distribution ~γi over
the latent topic space, formally:

γzi = Pr(Z = z|i) with
K∑
z=1

γzi = 1.

86



“Aslay˙thesis” — 2016/9/28 — 18:22 — page 87 — #103

The propagation model governs the way that ads propagate in the social net-
work driven by social influence. In this work, we adopt the Topic-aware Inde-
pendent Cascade model (TIC) introduce by Barbieri et al. [13] which extends the
standard Independent Cascade (IC) model [88]: in TIC not only the ad is de-
scribed by a distribution on the topic space, but also the strength of the social
influence of user u over user v is topic-dependent, i.e., it is a probability pzu,v for
each topic z. Following the TIC model, when a node u clicks with an ad i, it has
one chance of influencing each neighbor v, which has not yet clicked i, to do the
same. This succeeds with a probability that is the weighted average of the arc
probability w.r.t. the topic distribution of the ad i:

piu,v =
∑K

z=1
γzi · pzu,v. (5.1)

Following the literature we denote with σi(Si) the expected number of clicks
on ad i when Si is the set of seed nodes, i.e., the nodes which are selected to
endorse i and that get a financial incentive to do so. The influence value of a user
u for ad i is defined as the expected spread of the singleton seed {u} for the given
ad description, under the TIC model i.e., σi({u}): this is the quantity that is used
to determine the incentive for user u to endorse the ad i.
Business model. An advertiser6 enters into an agreement with the host for an
incentivised social advertising campaign on his ad i: the advertiser agrees to pay
the host a cost-per-engagement amount pi for each click received by its ad i. The
agreement also specifies the financial incentive for the seed users to endorse ad i:
advertiser pays each seed user u ∈ Si, an incentive

ci(u) := α · σi({u}),

where α > 0 is a fixed amount in dollar cents set by the host. Abusing the notation
slightly, we will denote the total cost of incentivising the users of the seed set Si
by ci(Si), as the sum of the individual incentive costs of each seed user u ∈ Si,

ci(Si) :=
∑
u∈Si

ci(u).

The advertiser’s finite budget Bi limits the amount the advertiser can spend in

6We assume each advertiser has one ad to promote per time window, and use i to refer
to the i-th advertiser and his ad interchangeably.
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a social advertising campaign on ad i: when the seed set is Si, the total payment
advertiser i needs to make for the campaign on his ad i, denoted by ρi(Si), is the
sum of his total costs for the ad-engagements, and incentivising the seed users:

ρi(Si) := pi · σi(Si) + ci(Si). (5.2)

Let πi(Si) denote the expected revenue of H from the total expected engage-
ments to ad i when Si is the seed set. Then, the expected revenue of H from ad i
is given by

πi(Si) := pi · σi(Si).

The revenue maximization problem. From the business model, the trade-off that
the host faces when trying to maximize his own revenue is evident: on one hand,
having a larger number of more influential seeds helps to increase the likelihood of
having a successful campaign, or in other terms, it increases the expected number
of clicks to ad i, hence the expected revenue of the host; on the other hand, each
seed user has the associated cost of the financial incentives they receive, and the
more influential they are, the larger is their incentive. The picture is made even
more complex by the fact that, the host has to serve many advertisers at the same
time, which could have potentially competitive ads (ads which are very close in
the topic space).

Hereafter we assume a fixed time window (say a 24-hours period) in which
the revenue maximization problem is defined. Within this time window we have
h advertisers with ad description ~γi, cost-per-engagement pi, and budget Bi,
∀i ∈ [h]. We define an allocation ~S as a vector of h pairwise disjoint sets
(S1, · · · , Sh) ∈ 2V × · · · × 2V , where Si is the seed set assigned to advertiser
i to start the ad-engagement propagation process. Within the time window, each
user in the platform can be selected to be seed for at most one ad, that is to say
Si ∩ Sj = ∅, ∀i, j ∈ [h].

We denote the total revenue of the host from h advertisers as the sum of all the
ad-specific revenues:

π(~S) =
∑
i∈[h]

πi(Si) (5.3)

Next, we formally define the revenue maximization problem for incentivised
social advertising from the host perspective.
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Problem 5.1 (REVENUE-MAXIMIZATION (RM)). Given a social graph G =
(V,E) with an instance of the TIC model, h advertisers with ad description ~γi,
cost-per-engagement pi, and budget Bi, ∀i ∈ [h], and ad-specific seed user incen-
tive costs ci(u), ∀u ∈ V , ∀i ∈ [h], find an allocation ~S such that the revenue of
the host is maximized:

maximize
~S

π(~S)

subject to ρi(Si) ≤ Bi,∀i ∈ [h],

Si ∩ Sj = ∅, i 6= j,∀i, j ∈ [h].

5.1.2 Contributions and Roadmap

The main contributions of this chapter can be summarised as follows:
• We initiate investigation in the area of incentivised social advertising, by

formalizing the fundamental problem of revenue maximization from the host
perspective, when the incentives paid to the seed users are proportional to
their demonstrated past influence in the topic of the specific ad.
• We show that the problem is NP-hard and it corresponds to the problem

of monotone submodular function maximization subject to partition matroid
constraint on the ads-to-seeds allocation, and multiple submodular knapsack
constraints on the budgets of advertisers. We devise 2 greedy algorithms
with provable approximation guarantees, generalizing the results of Iyer et
al. [83, 85].

The rest of the chapter is organized as follows. Section 5.3 presents the the-
oretical algorithms and prove their approximation guarantees. In Section 5.4 we
provide a formal discussion of our ongoing efforts on devising scalable approx-
imation algorithms. Relevant prior literature is surveyed in Section 5.2, while
Section 5.6 concludes the chapter by discussing open challenges and future inves-
tigation.

5.2 Related Work

Computational advertising. As advertising on the web has become one of the
largest businesses during the last decade, the general area of computational ad-
vertising has attracted a lot of research interest. The central problem of compu-
tational advertising is to find the “best match” between a given user in a given
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context and a suitable advertisement. The context could be a user entering a query
in a search engine (“sponsored search”), reading a web page (“content match”
and “display ads”), or watching a movie on a portable device, etc. The most typ-
ical example is sponsored search: search engines show ads deemed relevant to
user-issued queries, in the hope of maximizing click-through rates and in turn,
revenue. Revenue maximization in this context is formalized as the well-known
Adwords problem [103]. We are given a set Q of keywords and N bidders with
their daily budgets and bids for each keyword in Q. During a day, a sequence of
words (all from Q) would arrive online and the task is to assign each word to one
bidder upon its arrival, with the objective of maximizing revenue for the given
day while respecting the budgets of all bidders. This can be seen as a generalized
online bipartite matching problem, and by using linear programming techniques,
a (1− 1/e) competitive ratio is achieved [103]. Considerable work has been done
in sponsored search and display ads [52, 62, 63, 68, 105]. For a comprehensive
treatment, see a recent survey [102].

Social advertising. While computational advertising is a quite mature area, the
sub-area of advertising on social network platforms is still in its infancy. Recent
efforts, including Tucker [134] and Bakshy et al. [7], have shown, by means of
field studies on sponsored posts in Facebook’s News Feed, the importance and
potentiality of keeping social influence in consideration when developing social
advertising strategies. Nevertheless the literature concerning the exploitation of
social influence for social advertising is rather limited.

Google’s Bao and Chang have proposed AdHeat [11], a social ad model con-
sidering social influence in addition to relevance for matching ads to users. Ad-
Heat diffuses hint words of influential users to others and then matches ads for
each user with aggregated hints. Bao and Chang’s experiments on a large on-
line Q&A community show that AdHeat outperforms the relevance model on
click-through-rate by significant margins. Wang et al. [140] also propose a new
model for learning relevance, based on a heterogeneous social network approach,
and apply it to the problem of selecting relevant ads for Facebook’s users. In
both [11] and [140] the proposed model is just assessed as a relevance model in
terms of click-through-rate: neither viral propagation of ads nor revenue maxi-
mization are studied.

Our previous work [6] also study social advertising through the viral-
marketing lens: in this work we study a different optimization problem and our
business model is different as we do not consider an explicit monetary incentive
to the seed users in [6].

Chalermsook et al. [33] take a viral-marketing perspective at the problem of
social advertising, and study the revenue maximization problem for the host, when
dealing with multiple advertisers at the same time. In their setting, each advertiser
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ai has to pay the host an amount ci for each adoption of its product, up to a mon-
etary budget Bi. However, an important difference from our setting is that in [33]
each advertiser also specifies the maximum size si of its seed set. Thus, in prac-
tice, they have a double budget: one on the size of the seed set, one on the total
CPE. Not having seed set size specified beforehand is a significant challenge we
address in our work. Another important difference is that in our model both ads
and social influence are topic-aware: this produces an interesting natural compe-
tition among ads which are close in a topic space for the attention of the users
which are influential in the same area of the topic space. Instead Chalermsook et
al. [33] adopt the simple IC model where all the ads are exactly the same.

Abbassi et al [1] also study social advertising through the viral-marketing lens.
However, differently from our work and [6, 33] which are all based on CPE, they
consider a CPM (cost-per-mille) pricing model: i.e., the advertiser enters in a con-
tract with the host for its ad to be shown to a fixed number of users, agreeing to
pay a certain CPM amount for every thousand impressions. Under this model
the number of engagements (or clicks) that the ad receives, does not directly in-
fluences the revenue of the host. However, optimizing click-through-rate is nev-
ertheless an important goal as it makes more likely that the advertiser will come
back for another advertising campaign. Therefore the problem studied by Abbassi
et al [1] is that of allocating ads to users so to optimize the number of clicks, for a
predefined number of ads impressions, keeping in consideration social influence.
Their results are mostly of theoretical interest and negative nature (i.e., hardness
and strong inapproximability). None of these previous papers studies incentivised
social advertising where the seed users are paid monetary incentives.

Viral marketing. As exemplified by the three papers discussed above, our work is
also related to viral marketing, whose algorithmic optimization embodiment is the
influence maximization problem [88], which we reviewed in detail in Chapter 2.
The key difference between this literature and our setting, is that in the standard
influence maximization the budget of an advertiser is modeled as a cardinality
constraint on the number of free products to offer, hence the number of seed users
to target [88]. Some work has studied the possibility to target the seed users
non-uniformly, that is to say that different seeds might have a different cost, in
which case the budget of an advertiser is modeled as a monetary amount that
will be spend on the non-uniform costs of incentivising seed users [91, 111]. On
the other hand, the real-world social advertisement models operate with monetary
budgets, which is used not only for incentivising the seed users, but more generally
for paying the CPE. Hence, the classic treatment of budgets in the optimization
of a viral marketing campaign is inadequate for modeling the real-world social
advertising scenarios, which is currently addressed by our work in this chapter.
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5.3 Theoretical Analysis

In this section we we first show the correspondance of RM problem (formally
defined in Problem 5.1) to the problem of monotone submodular function maxi-
mization subject to a partition matroid constraint on the ads-to-seeds allocation,
and h submodular knapsack constraints on advertisers’ payments for the total
campaign costs. After showing that RM problem is NP-hard, we define the key
concepts required for the theoretical analysis of RM problem, for which we devise
two natural variants of the greedy algorithm, and provide formal approximation
guarantees.

The monotonicity and submodularity of the ad-specific revenue function πi(·)
follows directly from the monotonicity and submodularity of the influence spread
function σi(·). Being a linear combination of h monotone and submodular ad-
specific revenue functions, the total revenue function π(~S) =

∑
i∈[h] πi(Si), is

also monotone and submodular. Similarly, the ad-specific payment function, ρi(·),
being a non-negative linear combination of two monotone and submodular func-
tions, σi(·) and ci(·), is also monotone and submodular. Hence, the constraint that,
for an advertiser i, the total cost of an incentivised social advertising campaign on
his ad i should be less than his budget Bi, i.e., ρi(Si) ≤ Bi, corresponds to a
submodular knapsack constraint, for each i ∈ [h].

Before we proceed further with our theoretical analysis, we first provide the
required preliminary definitions.

Definition 5.1 (Independence System). A set system (E , I) defined with a finite
ground set E of elements, and a family I of subsets of the ground set E is an
independence system if it satisfies the following axiom:

• ∅ ∈ I
• Downward Closure: If X ⊆ Y and Y ∈ I, then X ∈ I

Definition 5.2 (Matroid). An independence system (E , I) is a matroid M = (E , I)
if it also satisfies the Augmentation axiom:

• Augmentation: If X ∈ I and Y ∈ I and |Y | > |X|, then ∃e ∈ Y \ X :
X ∪ {e} ∈ I.

Definition 5.3 (Partititon Matroid). Let E1, · · · , El be a partition of the ground
set E into l disjoint sets. Let di be an integer, 0 ≤ di ≤ |Ei|. In a partition
matroid M = (E , I), a set X is defined as independent when, for every index i,
|X ∩ Ei| ≤ di. Thus, I is defined as the following:

I = {X ⊆ E : |X ∩ Ei| ≤ di, ∀i = 1, · · · , l} (5.4)
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In our RM problem, the constraint that the allocation ~S = (S1, · · · , Sh) should
be composed of pairwise disjoint sets, i.e., Si ∩ Sj = ∅, i 6= j,∀i, j ∈ [h], forms
a partition matroid on the ground set of all possible node and advertiser pairings:
given G = (V,E), |V | = n, and a set A = {i : i ∈ [h]} of advertisers, let
E = V ×A denote the ground set of all possible (node, advertiser) pairs, defined
as:

E = {(u, i) : u ∈ V, i ∈ A}.

Let Eu = {(u, i) : i ∈ A}, ∀u ∈ V , and let {Eu : ∀u ∈ V } denote a partition of the
ground set into n disjoint sets, i.e., Eu ∩ Ev = ∅, whenever u 6= v, and

⋃
u∈V Eu =

E . Let X ⊆ E denote a feasible solution to the constraint that ∀Si, Sj ∈ ~S,
Si∩Sj = ∅ when i 6= j: there is one-to-one correspondance between the pairwise
disjoint seed sets S1, · · · , Sh and the subsets X ∈ E that satisfy X ∩ Eu ≤ 1,
where the correspondance is given by

Si = {u : (u, i) ∈ X},∀i ∈ [h] (5.5)

Then, the collection of independent subsets of E that provide feasible solutions to
this constraint is defined as

I = {X : X ⊆ E , |X ∩ Eu| ≤ 1,∀u ∈ V }

forming a partition matroid M = (E , I), on the ground set E .
We have just showed that RM problem corresponds to the problem of sub-

modular function maximization subject to partition matroid M = (E , I), and h
submodular knapsack constraints. Next, we show that RM problem is NP-hard.

Theorem 5.1. RM problem is NP-hard.

Proof. When h = 1, RM problem has only one submodular knapsack constraint,
and no partition matroid constraint that aries from the requirement of disjoint-
ness of the seed sets (as the solution is a single seed set). Hence, the NP-
hard Submodular-Cost Submodular-Knapsack (SCSK) problem, which tackles the
problem of submodular function maximization subject to a submodular knapsack
constraint, as studied by Iyer et al. [85], is a special case of RM problem when
h = 1.

Now, we show that the constraints of the NP-hard RM problem form an an
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independence system defined on the ground set E of (node, advertiser) pairs.
Given the partition matroid constraint M = (E , I), and h submodular knapsack
constraints, let C denote the family of subsets, defined on the ground set E of
(node, advertiser) pairs, that are feasible solutions to RM problem. For each
knapsack constraint ρi(·) ≤ Bi, let Fi ⊆ 2V denote the collection of feasible
subsets of the ground set V , defined as follows:

Fi = {Si ⊆ V : ρi(Si) ≤ Bi}.

The set system (V,Fi) defined by the set of feasible solutions to any knapsack
constraint is downward-closed, hence is an independence system. Given Fi, ∀i ∈
[h] and M = (E , I), we can define the family of subsets defined on E that are
feasible solutions to RM problem as follows:

C = {X : X ∈ I and Si ∈ Fi,∀i ∈ [h]}

where Si = {u : (u, i) ∈ X}. Let X ∈ C and X ′ ⊆ X . In order to show that C is
an independence system, we need to show that it satisfies the downward closure
axiom as follows:

X ∈ C and X ′ ⊆ X =⇒ X ′ ∈ C. (5.6)

Let S ′i = {u : (u, i) ∈ X ′}, ∀i ∈ [h], hence we have S ′i ⊆ Si. As each sin-
gle knapsack constraint ρi(·) ≤ Bi is associated with the independence system
(V,Fi), we have S ′i ∈ Fi for any S ′i ⊆ Si, ∀i ∈ [h]. Similarly, as X ∈ I, we
have Si ∩ Sj = ∅, hence, we should also show that S ′i ∩ S ′j = ∅, which directly
follows from one-to-one correspondence between S ′i and X ′, and X ′ ∈ I due to
the downward closure property of the partition matroid M. Hence, C satisfies the
downward closure axiom depicted in Eq. 5.6, thus, is an independence system.

Our theoretical guarantees for the greedy approximation algorithms to RM
problem depend on the notion of curvature of submodular functions, which was
introduced by Conforti et al. [45] to the submodular function optimization litera-
ture: given a submodular function f , Conforti et al. [45] define the total curvature
κf of f as:

κf = 1−min
j∈V

f({j} | V \ {j})
f({j})

,
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and the curvature κf (S) of f wrt a set S as:

κf (S) = 1−min
j∈S

f({j} | S \ {j})
f({j})

.

where f({j} | S \ {j}) = f(V )− f(S \ {j}).
In plain words, the curvature 0 ≤ κf ≤ 1 measures the distance of f from

modularity: κf = 0 iff for modular functions, and κf = 1 for totally normalized
and saturated functions like matroid rank functions [85]. Noting that κf = κf (V ),
curvature κf (S) of f wrt a set S similarly reflects how much the marginal values
f(j | S) can decrease as a function of S, deviating from modularity. As studied
in [45, 83–85, 138], there are several closely related forms of curvature defined in
the literature, all of which provide improved bounds for submodular optimization
problems. Iyer et al. [83] introduced the notion of average curvature κ̂f (S) of f
wrt a set S as

κ̂f (S) = 1−
∑

j∈S f({j} | S \ {j})∑
j∈S f({j})

,

and demonstrated the following relation between these several forms of curvature:

0 ≤ κ̂f (S) ≤ κf (S) ≤ κf (V ) = κf ≤ 1.

Next, we study the greedy approximation algorithms for RM problem. As
we are dealing with submodular knapsack constraints on advertisers’ total pay-
ments, i.e., their total spendings on the costs of the incentivised social advertis-
ing campaign for their ads, we consider two natural variants of the greedy algo-
rithm based on its mindfulness to the revenue produced for the money spent on
the campaign costs: (i) Cost-Agnostic Greedy Algorithm (CA-GREEDY), which
greedily chooses the seed users solely based on the marginal gain in the revenue
until the advertisers’ budgets run out; (ii) Cost-Sensitive Greedy Algorithm (CS-
GREEDY), which greedily chooses the users based on the rate of marginal gain in
revenue per marginal gain in the advertiser’s payment, for each advertiser, until
the advertisers’ budgets run out.

Note that, Iyer et al. [83, 85], also consider these 2 greedy algorithm vari-
ants for their Submodular-Cost Submodular-Knapsack (SCSK) problem, that is
the special single knapsack case of our RM problem when h = 1: their cost-
agnostic greedy approximation results appears in [85], and their cost-sensitive

95



“Aslay˙thesis” — 2016/9/28 — 18:22 — page 96 — #112

greedy approximation results later appears in [83], since, as stated in [85], they
didn’t have the theoretical results for cost-sensitive greedy approximation at the
time of publication.

5.3.1 Cost-Agnostic Greedy Algorithm

Cost-Agnostic Greedy Algorithm (CA-GREEDY) for RM problem, depicted in
Algorithm 8, chooses at each iteration a (node, advertiser) pair that provides
the maximum increase in the revenue of the host: let Xg ⊆ E denote the greedy
solution set of (node, advertiser) pairs, returned by CA-GREEDY, having one-
to-one correspondance with the greedy allocation ~S, i.e., Si = {u : (u, i) ∈ Xg},
∀Si ∈ ~S. Also let X t

g denote the greedy solution set after t iterations of CA-
GREEDY. At each iteration t, CA-GREEDY first finds the (node, advertiser)
pair (u∗, i∗) ← argmax

(u,i)∈Et−1

πi(u | St−1i ), and tests whether the addition of this pair

to the current greedy solution set X t−1
g would violate any matroid or knapsack

independence constraint: if (u∗, i∗) is feasible, i.e., X t−1
g ∪ {(u∗, i∗)} ∈ C, the

pair (u∗, i∗) is added to the greedy solution as the t-th (node, advertiser) pair.
Otherwise, (u∗, i∗) is removed from the current ground set of (node, advertiser)
pairs E t−1, as it violates either the partition matroid constraint or the knapsack
constraint. CA-GREEDY terminates when there is no feasible (node, advertiser)
pair left in the current ground set E t−1.

Observation 5.1. The total revenue function π(~S) has a total curvature κπ, de-
fined on the ground set E:

κπ = 1− min
(u,i)∈E

πi({u} | Si \ {u})
πi({u})

.

Proof. Let g : 2E 7→ R≥0 be a monotone submodular function defined on the
ground set E . Then, the total curvature κg of g is defined as follows:

κg = 1−min
x∈E

g({x} | E \ {x})
g({x})

,

where x = (u, i) ∈ E . Using the one-to-one correspondance between the seed sets
S1 ⊆ V, · · · , Sh ⊆ V , and the set of (node, advertiser) pairs X ⊆ E (Eq. 5.5),
we can alternatively formulate RM problem as follows:
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maximize
X⊆E

g(X )

subject to X ∈ C.

where g(X ) =
∑

i∈[h] πi(Si) with Si = {u : (u, i) ∈ X}.

Using this correspondance, we can rewrite κg as κπ as follows:

κg = κπ = 1− min
(u,i)∈E

πi({u} | Si \ {u})
πi({u})

.

Theorem 5.2. CA-GREEDY obtains an approximation guarantee of

1

κπ

[
1−

(
R− κπ
R

)r]

where κπ is the total curvature of the total revenue function π(~S) as defined in
Observation 5.1, R is the upper rank of C, i.e., the maximum cardinality of a max-
imal feasible set in C, and r is the lower rank of C, i.e., the minimum cardinality
of a maximal feasible set in C, defined as follows:

r = min{|X| : X ∈ C and X ∪ {(u, i)} 6∈ C, ∀(u, i) 6∈ X}

and
R = max{|X| : X ∈ C and X ∪ {(u, i)} 6∈ C, ∀(u, i) 6∈ X}.

Proof. Given that the family C of subsets that provide feasible solutions to the RM
problem, is an independence system on the ground set E of (node, advertiser)
pairs as we have shown, the approximation guarantee of CA-GREEDY directly
follows from the result of Conforti et al. [45] for submodular function maximiza-
tion subject to an independence system constraint.

Given the partition matroid M = (E , I), and h submodular knapsack con-
straints, ρi(Si) ≤ Bi, we can infer the following worst-case values for r and R:
r = h (where each advertiser i gets just one seed node ui whose payment ρi({ui})
exhausts its budget Bi) and R = n.
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Algorithm 8: CA-GREEDY

Input : G = (V,E), E , C, ~B, ~p, ~γi,∀i ∈ [h], c(u),∀u ∈ V
Output: ~S = (S1, · · · , Sh)

1 t← 1, E0 ← E , X 0
g ← ∅

2 S0
i ← ∅, ∀i ∈ [h]

3 while E t−1 6= ∅ do
4 (u∗, i∗)← argmax

(u,i)∈Et−1

πi(u | St−1i )

5 if (X t−1
g ∪ {(u∗, i∗)}) ∈ C then

6 Sti∗ ← St−1i∗ ∪ {u∗}
7 Stj ← St−1j , ∀j 6= i∗

8 X t
g ← X t−1

g ∪ {(u∗, i∗)}
9 E t ← E t−1 \ {(u∗, i∗)}

10 t← t+ 1

11 else
12 E t−1 ← E t−1 \ {(u∗, i∗)}
13 Si ← St−1i , ∀i ∈ [h]

14 return ~S = (S1, · · · , Sh)

5.3.2 Cost-Sensitive Greedy Algorithm

Cost-sensitive greedy algorithm (CS-GREEDY) for RM problem, at each iteration

t, first finds the (node, advertiser) pair (u∗, i∗) ← argmax
(u,i)∈Et−1

πi(u | St−1i )

ρi(u | St−1i )
, and

tests whether the addition of this pair to the current greedy solution setX t−1
g would

violate any matroid or knapsack independence constraint: if (u∗, i∗) is feasible,
i.e., X t−1

g ∪{(u∗, i∗)} ∈ C, the pair (u∗, i∗) is added to the greedy solution as the t-
th (node, advertiser) pair. Otherwise, (u∗, i∗) is removed from the current ground
set of (node, advertiser) pairs E t−1, as it violates either the partition matroid
constraint or the knapsack constraint. CS-GREEDY terminates when there is no
feasible (node, advertiser) pair left in the current ground set E t−1. CS-GREEDY

can be obtained by simply replacing Line 4 of Algorithm 8 with

(u∗, i∗)← argmax
(u,i)∈Et−1

πi(u | St−1i )

ρi(u | St−1i )

thus, we do not provide the pseudocode.

98



“Aslay˙thesis” — 2016/9/28 — 18:22 — page 99 — #115

Theorem 5.3. CS-GREEDY obtains an approximation guarantee of

1 +
B ·K

(1− max
i∈[h]

κ̂ρi(S
∗
i )) ·∆ρmin

−1

where ~S∗ = (S∗1 , · · · , S∗h) is the optimal allocation, ~S = (S1, · · · , Sh) is the
greedy allocation, B =

∑
i∈[h]Bi is the total of advertisers’ budgets, K =⋃

i∈[h]
|Si|, ∆ρmin := min

i∈[h],t∈[1,K]
ρi(S

t
i ) − ρi(S

t−1
i ), i.e., minimum marginal gain

in payment obtained in an iteration of the greedy algorithm, and κ̂ρi(S
∗
i ) is the

average curvature of ρi(·) wrt S∗i , ∀i ∈ [h].

Fact 5.1. (Fact 1.10 in [142]) For given positive numbers a1, · · · , ah and
b1, · · · , bh, the following always holds:

min
i∈[h]

ai
bi
≤
∑

i∈[h] ai∑
i∈[h] bi

≤ max
i∈[h]

ai
bi

Proof of Theorem 5.3. Let X ∗ ⊆ E denote the optimal solution set of
(node, advertiser) pairs corresponding to the optimal allocation ~S∗ such that
S∗i = {u : (u, i) ∈ X ∗}. Similarly, let Xg ⊆ E denote the greedy solution set
of (node, advertiser) pairs, having one-to-one correspondance with the greedy
allocation ~S, i.e., Si = {u : (u, i) ∈ Xg}, ∀Si ∈ ~S. Let K = |Xg| = |XK

g |
denote the total size of the greedy solution of (node, advertiser) pairs. Due to
submodularity and monotonicity, we have:

π( ~S∗) ≤ π(~S) +
∑

(u,i)∈X ∗\Xg

πi(u | Si)

≤ π(~S) +
∑

(u,i)∈X ∗
πi(u | Si).

At each iteration t, greedy algorithm first finds the (node, advertiser) pair

(u∗, i∗) ← argmax
(u,i)∈Et−1

πi(u | St−1i )

ρi(u | St−1i )
, and tests whether the addition of this pair to

the current greedy solution set X t−1
g would violate any independence constraint:

if (u∗, i∗) is feasible, i.e., if X t−1
g ∪ {(u∗, i∗)} ∈ C, the pair (u∗, i∗) is added to
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the greedy solution as the t-th (node, advertiser) pair, which we will denote by
(ut, it). Otherwise, (u∗, i∗) is removed from the current ground set E t−1 since it is
not feasible (violating at least one matroid or knapsack constraint). Let U t denote
the set of (node, advertiser) pairs that the greedy algorithm tested to add to the
greedy solution in the first (t + 1) iterations, before the addition of the (t + 1)-st
pair (ut+1, it+1) into the greedy solution set X t

g . Then, ∀(u, i) ∈ U t \ U t−1, we
have:

πi(u | Sti )
ρi(u | Sti )

≥
πit+1(ut+1 | Stit+1

)

ρit+1(ut+1 | Stit+1
)
.

since they had the maximum
πi(u | Sti )
ρi(u | Sti )

, but they failed the independence test to

be the (t+ 1)-st pair, and were removed from E t. Moreover, ∀(u, i) ∈ U t \ U t−1,
we can also infer that

πi(u | St−1i )

ρi(u | St−1i )
≤
πit(ut | St−1it

)

ρit(ut | St−1it
)
.

since they they do not belong to U t−1 \ U t−2, i.e., they were not good enough
to be tested during the selection of the t-th pair. Note that, the greedy algorithm
terminates when there is no feasible pair left in the ground set. Hence after the
K iterations of the greedy algorithm, EK contains only the infeasible pairs that
violate some matroid or knapsack constraint. Thus, we have X ∗ =

⋃K
t=1[X ∗ ∩

(U t \ U t−1)]. Let U∗t := X ∗ ∩ (U t \ U t−1). Then, we have:

π( ~S∗) ≤ π(~S) +
∑

(u,i)∈X ∗
πi(u | Si)

= π(~S) +
K∑
t=1

∑
(u,i)∈U∗t

πi(u | Si)

≤ π(~S) +
K∑
t=1

∑
(u,i)∈U∗t

πit(ut | St−1it
)

ρit(ut | St−1it
)
· ρi(u | St−1i ).
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where the last inequality is due to, ∀(u, i) ∈ U∗t :

πi(u | Si) ≤ πi(u | St−1i ) ≤
πit(ut | St−1it

)

ρit(ut | St−1it
)
· ρi(u | St−1i ).

Continuing, we have:

π( ~S∗) ≤ π(~S) +
K∑
t=1

∑
(u,i)∈U∗t

πit(ut | St−1it
)

ρit(ut | St−1it
)
· ρi(u | St−1i )

= π(~S) +
K∑
t=1

πit(ut | St−1it
)

ρit(ut | St−1it
)
·
∑

(u,i)∈U∗t

ρi(u | St−1i )



π( ~S∗) ≤ π(~S) +

(
K∑
t=1

πit(ut | St−1it
)

ρit(ut | St−1it
)

)
·

 K∑
t=1

∑
(u,i)∈U∗t

ρi(u)


= π(~S) +

(
K∑
t=1

πit(ut | St−1it
)

ρit(ut | St−1it
)

)
·

 ∑
(u,i)∈X ∗

ρi(u)

 .

Being monotone and submodular, each ρi(·) has the following average curvature
κ̂ρi(S

∗
i ) defined wrt its optimal seed set S∗i , ∀i ∈ [h]:

κ̂ρi(S
∗
i ) = 1−

∑
u∈S∗i

ρi(u | S∗i \ u)∑
u∈S∗i

ρi(u)
.

Rearranging the terms, we get:

1− κ̂ρi(S∗i ) =

∑
u∈S∗i

ρi(u | S∗i \ u)∑
u∈S∗i

ρi(u)
.
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Using Fact 5.1, we have:

min
i∈[h]

∑
u∈S∗i

ρi(u | S∗i \ u)∑
u∈S∗i

ρi(u)
≤

∑
i∈[h]

∑
u∈S∗i

ρi(u | S∗i \ u)∑
i∈[h]

∑
u∈S∗i

ρi(u)
≤ max

i∈[h]

∑
u∈S∗i

ρi(u | S∗i \ u)∑
u∈S∗i

ρi(u)
.

Thus, we have:

min
i∈[h]

(1− κ̂ρi(S∗i )) ≤

∑
i∈[h]

∑
u∈S∗i

ρi(u | S∗i \ u)∑
i∈[h]

∑
u∈S∗i

ρi(u)
≤ max

i∈[h]
(1− κ̂ρi(S∗i )).

Since κ̂ρi(S
∗
i ) ∈ [0, 1], ∀i ∈ [h], we can alternatively write:

1−max
i∈[h]

κ̂ρi(S
∗
i ) ≤

∑
i∈[h]

∑
u∈S∗i

ρi(u | S∗i \ u)∑
i∈[h]

∑
u∈S∗i

ρi(u)
≤ 1−min

i∈[h]
κ̂ρi(S

∗
i ).

Then, we have:

∑
(u,i)∈X ∗

ρi(u) =
∑
i∈[h]

∑
u∈S∗i

ρi(u)

≤
∑

i∈[h]
∑

u∈S∗i
ρi(u | S∗i \ u)

1−max
i∈[h]

κ̂ρi(S
∗
i )

≤
∑

i∈[h]Bi

1−max
i∈[h]

κ̂ρi(S
∗
i )
.

where the last inequality follows from the fact that

∑
i∈[h]

∑
u∈S∗i

ρi(u | S∗i \ u) ≤
∑
i∈[h]

ρi(S
∗
i ) ≤

∑
i∈[h]

Bi = B

due to submodularity and the knapsack constraints. Thus, continuing from where
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we left, we have:

π( ~S∗) ≤ π(~S) +

(
K∑
t=1

πit(ut | St−1it
)

ρit(ut | St−1it
)

)
·

 ∑
(u,i)∈X ∗

ρi(u)


≤ π(~S) +

(
K∑
t=1

πit(ut | St−1it
)

ρit(ut | St−1it
)

)
· B

1−max
i∈[h]

κ̂ρi(S
∗
i )

π( ~S∗) ≤ π(~S) +

(
K∑
t=1

∑K
t=1 πit(ut | S

t−1
it

)

ρit(ut | St−1it
)

)
· B

1−max
i∈[h]

κ̂ρi(S
∗
i )

= π(~S) + π(~S)

(
K∑
t=1

1

ρit(ut | St−1it
)

)
· B

1−max
i∈[h]

κ̂ρi(S
∗
i )

≤ π(~S) + π(~S) · B · k
(1−max

i∈[h]
κ̂ρi(S

∗
i )) min

t∈[1,K]
ρit(ut | St−1it

)

= π(~S) + π(~S) · B ·K
(1−max

i∈[h]
κ̂ρi(S

∗
i ))∆ρmin

.

Notice that, for handling the matroid constraint, our proof technique for The-
orem 5.3 follows the reasoning applied by Fisher et al. [64] to the theoretical
analysis of submodular function maximization subject to matroid constraints.

Similar to the findings of Iyer et al. [83] for the single knapsack version of our
RM problem, our results also show that the approximation guarantee of the cost-
sensitive greedy algorithm is unbounded when κ̂ρi(S

∗
i ) = 1, which is the case for

matroid rank functions. However, combining the cost-sensitive and cost-agnostic
results, we can obtain the bounded approximation guarantee.

5.4 Scalable Algorithms

In this section, we provide a formal discussion on our ongoing efforts for devising
scalable versions of our approximation algorithms for RM problem.
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Remember that, we consider two natural variants of the greedy algorithm for
RM problem based on its mindfulness to the revenue produced for the money
spent on the campaign costs: (i) CA-GREEDY which greedily chooses the seed
users solely based on the marginal gain in revenue; (ii) CS-GREEDY, which
greedily chooses the users based on the rate of marginal gain in revenue per
marginal gain in payment. These 2 variants of the greedy algorithm involve a large
number of calls to influence spread computations: at each iteration t, for each ad-
vertiser i, and for each node u ∈ V \ St−1i , CA-GREEDY and CS-GREEDY need

to compute πi(u | St−1i ) and
πi(u | St−1i )

ρi(u | St−1i )
respectively.

Given any seed set S, computing its exact influence spread σ(S) under the
IC model is #P-hard [37, 38], and this hardness trivially carries over to the topic-
aware IC model. A common practice is to use Monte Carlo (MC) simulations [88],
however, accurate estimation requires a large number of MC simulations, which
is prohibitively expensive and not scalable. Thus, to make CA-GREEDY and CS-
GREEDY scalable, we need an alternative approach.

In the influence maximization literature, considerable effort has been devoted
to developing more efficient and scalable algorithms, which we have previously
reviewed in Chapter 2. The latest state-of-the-art influence maximization algo-
rithms built on RIS framework [22, 112, 131, 132] provide significant improve-
ments over using MC simulations. However, a straightforward application of these
algorithms for solving RM problem would not work since their estimation proce-
dures rely on knowing the exact number k of seed nodes required, which is the
input to the influence maximization problem: the number of seed nodes needed
to solve RM problem is driven by the current payments and the budgets of adver-
tisers, hence is dynamic. Moreover, IMM [131], and SSA [112] are particularly
very specialized for solving the influence maximization problem as they need to
fine tune the many different parameters they use w.r.t. the (1−1/e)-approximation
guarantee and optimal solution OPTk of the influence maximization problem.

5.4.1 Scalable CA-GREEDY

Notice that CA-GREEDY follows a similar greedy framework like the influence
maximization problem, i.e., for each advertiser i, choosing the (feasible) seed set
that provides the maximum revenue, hence, the maximum influence spread. This
allows us to easily adjust the TIRM algorithm we propose in Chapter 4 for devis-
ing a scalable version of CA-GREEDY, which we will refer as Two-phase Itera-
tive Cost-Agnostic Revenue Maximization (TI-CARM): TI-CARM directly adopts
the RR-sets sampling framework of TIRM, and maximizes the marginal gain in
revenue at each iteration as opposed to minimizing regret, while appropriately
estimating the latent seed set size required for the estimation.
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The estimation of the latent seed set size required by TI-CARM can be obtained
as follows: for ease of exposition, let us first consider a single advertiser i. Let
Bi be the budget of advertiser i and let si be the true number of seeds required to
maximize the cost-agnostic revenue for advertiser i. We do not know si and we
estimate it in successive iterations as s̃ti. Thus, we start with an estimated value
for si, denoted s̃i1, and use it to obtain a corresponding θ1i . If θti > θt−1i , we will
need to sample an additional (θti − θt−1i ) RR-sets, and use all RR-sets sampled up
to this iteration to select (s̃ti − s̃t−1i ) additional seeds. After adding those seeds,
if the current assigned payment ρi(Si) of i is still less than Bi, more seeds can
be assigned to ai. Thus, we will need another iteration and we further revise
our estimation of si. The new value, s̃t+1

i , is obtained by adding to s̃ti the floor
function of the ratio between the current unspent budget Bi − ρi(Si) and the sum
of the marginal revenue contributed by the s̃ti-th seed and cmaxi , i.e., the maximum
seed user incentive cost specific for advertiser i, cmaxi := max

v∈V
ci(v). This ensures

we do not overestimate, thanks to submodularity, as future seeds have diminishing
marginal gains and lower incentive costs.

5.4.2 Scalable CS-GREEDY

Notice that the greedy node selection criteria employed by CS-GREEDY signif-
icantly deviates from the greedy framework of CA-GREEDY, hence, from the
influence maximization problem. Consider the pair

(u∗, i∗) := argmax
(u,i)∈Et−1

πi(u | St−1i )

ρi(u | St−1i )
. (5.7)

that has the maximum rate of marginal gain in revenue per marginal gain in pay-
ment at an iteration t of CS-GREEDY. In order to find the pair that satisfies Eq. 5.7
at an iteration t, CS-GREEDY needs to compute for each advertiser i:

uti := argmax
v:(v,i)∈Et−1

πi(u | St−1)
ρi(u | St−1)

. (5.8)

Finding the node uti (Eq. 5.8) at an iteration t, for an advertiser i, requires to
compute σi(v|St−1i ), ∀v : (v, i) ∈ E t−1, using MC simulations. Notice that,
node uti might even correspond to the node that has the minimum marginal gain
in influence spread, since the rate defined in Eq. 5.8 is not necessarily monotonic.
Thus, any effort to devise a scalable alternative to the MC simulations of CS-
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GREEDY should estimate σi(v|St−1i ), ∀v : (v, i) ∈ E t−1.
None of the influence maximization algorithms built on RIS framework [22,

112, 131, 132] are capable of working as an influence spread oracle that can effi-
ciently estimate the influence spread of any given node or set of nodes. Among
these algorithms, TIM is the only algorithm that could be considered to adopt as
an influence spread oracle, since the size of the sample that TIM uses is derived
such that the influence spread of any set of at most k nodes can be accurately esti-
mated: however, in practise, the nodes that are not very influential most likely do
not appear in the random RR sets sampled, hence, making it impossible to obtain
their estimates as we have experimentally witnessed. Due to this, adjusting TI-
CARM to employ the cost-sensitive node selection criteria would similarly ignore
the less influential node as it uses the same sampling framework as TIM.

Thus, if we want to find a “fully” cost-sensitive solution, i.e., that computes
Eq. 5.7 over “all” the pairs in (u, i) ∈ E t−1, we should either use MC simulations
to be able to perform the marginal gain level estimation operations, or devise
alternative estimation procedures, that can perform marginal gain level operations
more efficiently than MC simulations.

To this end, as an alternative to MC simulations, next we introduce the integra-
tion of the sequential sampling design [49,139] into the RIS framework, which we
refer shortly as SEQ-RIS. Then we formally demonstrate, by forming an equiva-
lence between the possible world semantics and the RIS framework, how we can
relate the marginal gain σ(u|S) to a Bernoulli random variable with a parameter
that is equal to the probability that a random RR set intersects the node u, but
not with S. We then use this formalization for the estimation of σ(u|S) using
SEQ-RIS framework.

Sequential Sampling Design. For a given set S, the sample size required to
achieve an influence spread estimate σ̂(S) that is (ε, δ)-approximation of σ(S)
is also a random variable: one of the classical tools that can be used to identify
a lower bound on the required sample size is Chernoff Bounds [41]. However,
Chernoff Bounds require the knowledge of the unknown mean µS (or OPTk as
in the case of TIM) which translates to additional estimation procedures, and
loose bounds on the statistically required sample size. Alternatively, rather than
fixing a sample size in advance, a sequential sampling design [139] allows to
use the outcomes of previous experiments to decide, in accordance with a pre-
defined stopping rule, whether the current sample provides an estimate that is
(ε, δ)-approximation of σ(S).

Based on sequential sampling design, Dagum et al. [49] propose, for any ran-
dom variable X distributed in the interval [0, 1], a simple but powerful “Stopping
Rule Algorithm” (SRA) that provides (ε, δ)-approximation of its mean µX . SRA,
by using a pre-defined stopping rule Υ(ε, δ) (depicted in Eq. 5.9), sequentially per-
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forms experiments by generating independent and identical copies X1, X2, · · · of
the random variable X , until the first time the current number θ of experiments
satisfies

∑θ
i=1Xi ≥ Υ(ε, δ). Once this stopping condition is satisfied, SRA termi-

nates with µ̂X := Υ(ε, δ)/θ, that is (ε, δ)-approximation of µX . As stated in [49],
if X is a Bernoulli random variable, then the expected number of experiments
SRA runs is within a constant factor of the optimal.

Υ(ε, δ) := 1 + (1 + ε) · 4(e− 2) · log(2/δ)/ε2 (5.9)

Notice that, SRA [49] can be directly employed, for a given S, to produce
an estimate µ̂S that is (ε, δ)-approximation of µS: we start with an empty sample
R at iteration 0; then, at each iteration, we generate a random RR set, and add
into R, until the first iteration θS in which the current R (|R| = θS) satisfies
covR(S) =

∑θS
i=1X

S
i = dΥ(ε, δ)e 7. Once this stopping condition is satisfied, we

can return µ̂S := Υ(ε, δ)/θS , that is (ε, δ)-approximation of µS .
Next, we first briefly review the possible world semantics, which was intro-

duced to the influence maximization literature by Kempe et al. [88], and the com-
putation of marginal gains within this context.

Possible world semantics. Let W denote the set of all possible worlds that we
can generate from G = (V,E), by removing each encountered edge (v, w) ∈ E,
with probability 1 − pv,w. Kempe et al. [88] show that, for a given set S, σ(S) is
the weighted average over all possible worlds:

σ(S) =
∑
ω∈W

Pr[ω] · σω(S)

where

Pr[ω] =
∏

(u,v)∈ω

puv ·
∏

(u,v)∈G\ω

(1− puv)

and σω(S) is the influence spread of S in the possible world ω. As stated by
Kempe et al. [88], applying principle of deferred decisions, we can think of σω(S)
as the influence spread of S in the deterministic realization of the possible world

7Since XS
i can only take values {0, 1}, the first time θS satisfies

∑θS
i=1X

S
i ≥ Υ(ε, δ) corre-

sponds to when
∑θS
i=1X

S
i = dΥ(ε, δ)e
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ω, hence, treat σω(S) as a deterministic quantity, computed as:

σω(S) =
∑
u∈V

pathω(S, v)

where pathω(S, v) is the indicator variable that equals 1 if ∃u ∈ S that can reach
node v ∈ V through a directed path in the deterministic world ω, and 0 otherwise.
Let ωT denote the deterministic graph obtained by reversing the edges of ω, and
let pathωT

(v, S) denote an indicator variable that equals 1 if there exists u ∈ S
that v can reach through a directed path in ωT , and 0 otherwise. Then we can
further interpret pathω(S, v) as follows:

σω(S) =
∑
u∈V

pathω(S, v)

=
∑
u∈V

pathω
T

(v, S)

=
∑
u∈V

1[S∩Rω(v)6=∅]

where Rω(v) is the deterministic RR set rooted as node v in the deterministic
world ω. Using this simple correspondance, and interpreting G as a distribu-
tion over unweighted directed graphs with a sample space W , where each edge
(v, w) ∈ E is realized with probability pv,w, Borgs et al. [22] formed the following
equivalence that is the backbone of the RIS framework:

σ(S) =
∑
ω∈W

Pr[ω] · σω(S)

=
∑
ω∈W

Pr[ω] ·
∑
v∈V

pathω(S, v)

=
∑
v∈V

∑
ω∈W

Pr[ω] · pathω(S, v)

=
∑
v∈V

E
g∼G

[pathg(S, v)]
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σ(S) =
∑
v∈V

Pr
g∼G

[pathg(S, v) = 1]

=
∑
v∈V

Pr
g∼G

[pathgT (v, S) = 1]

=
∑
v∈V

Pr
g∼G

[S ∩Rg(v) 6= ∅]

where the deterministic variables are accompanied by superscripts, and the ran-
dom variables by subscripts. Following possible world semantics, for a given S
and u 6∈ S, we can compute σ(u|S) = σ(S ∪ {u})− σ(S) as follows:

σ(u|S) =
∑
ω∈W

Pr[ω] · σω(u|S)

where

σω(u | S) =
∑
v∈V

pathω(S ∪ {u}, v)−
∑
v∈V

pathω(S, v)

= |{v : pathω(S ∪ {u}, v) = 1| − |{v : pathω(S, v) = 1}|
=| {v : pathω(u, v) = 1 and pathω(S, v) = 0} |

We can further extend this definition, and establish its equivalence using deter-
ministic RR sets as follows:

σω(u | S) =| {v : [{u} ∩Rω(v) 6= ∅] and [S ∩Rω(v) = ∅]} | (5.10)

Marginal Gain Estimation. Now, we formally demonstrate how submodularity
of the influence spread function translates to the decomposition of the indicator
random variable XS into mutually exclusive indicator random variables, all of
which define compound events, w.r.t. the nodes or sets of nodes of S, that are
directly associated to the definition of marginal gains.

Remember that, for a given set S,XS ∼ Bernoulli(µS) is the indicator random
variable for the event [S ∩R 6= ∅], with success probability µS and failure proba-
bility 1− µS , where µS is the probability that a random RR set R has non-empty
intersection with S:

µS =
σ(S)

n
= Pr [S ∩R 6= ∅].
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Let S ′ = S ∪ {u}, and let XS′ ∼ Bernoulli(µS′) denote the indicator random
variable for the event [(S ∪ {u}) ∩ R 6= ∅], succeeding with probability µS

′ ,
failing with probability 1−µS′ , where µS′ is the probability that a random RR set
R has non-empty intersection with S ′:

XS′ =

{
1, if (S ∪ {u}) ∩R 6= ∅
0, otherwise

Notice that, we can interpret the random variable XS′ as follows:

XS′ =

{
1, if S ∩R 6= ∅ or {u} ∩R 6= ∅
0, otherwise

Hence, we can interpret the event [(S ∪ {u}) ∩R 6= ∅] as the union of 2 events:

[(S ∪ {u}) ∩R 6= ∅] := [S ∩R 6= ∅] or [{u} ∩R 6= ∅]

hence, using principle of inclusion and exclusion, we have:

Pr [(S ∪ {u}) ∩R 6= ∅] = Pr [S ∩R 6= ∅] + Pr [{u} ∩R 6= ∅]−
Pr [(S ∩R 6= ∅) and {u} ∩R 6= ∅]

Notice that, Pr [{u} ∩ R 6= ∅] = µu = σ({u})/n is the probability that a random
RR set R has non-empty intersection with node u. Using the basic difference rule
of probability, we can further derive the following equivalence:

Pr [(S ∪ {u}) ∩R 6= ∅] = Pr [S ∩R 6= ∅] + Pr [({u} ∩R 6= ∅) and (S ∩R = ∅)]

Realize that the event [({u} ∩ R 6= ∅) and (S ∩ R = ∅)] directly follows the
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definition of marginal gain, which we demonstrated in Eq. 5.10. Hence, we have:

σ(u|S) = n · (σ(S ∪ {u})− σ(S))

= n · (Pr [(S ∪ {u}) ∩R 6= ∅]− Pr [S ∩R 6= ∅])
= n · (Pr [{u} ∩R 6= ∅ and S ∩R = ∅]).

For a given set S and node u, let Xu|S ∼ Bernoulli(µu|S) denote the indicator
random variable for the event

[{u} ∩R 6= ∅ and S ∩R = ∅],

succeeding with probability µu|S where µu|S := σ(u|S)/n is the probability that
a random RR set intersects node u, but not with S. In order to estimate, σ(u|S),
we can simply follow any usual estimation procedure, by designing an experi-
ment that produces independent copies of the random variable Xu|S , and use the

average of the experiment outcomes as the estimate µ̂u|S :=
σ̂(u|S)

n
. Next, we

demonstrate how we can perform this operation within our SEQ-RIS framework.
For a given set S, node u, and sample R of random RR sets, let covR(u|S)

denote the marginal gain in coverage of adding u to S inR:

covR(u|S) = |{R ∈ R | S ∩R = ∅ ∧ u ∈ R}| (5.11)

In order to produce an estimate µ̂u|S , that is (ε, δ)-approximation of µu|S ,
SRA [49] can be directly employed. Algorithm 9 depicts the adaptation of SRA to
our setting, with more efficient implementation that takes advantage of the mono-
tonicity of the coverage function.

Application to Cost-Sensitive Greedy Algorithm. We have formally demon-
strated the nice relation between the submodularity of the influence spread func-
tion and the compound events defining the marginal gain estimators. Now we
provide remarks on its applicability to devise a scale alternative to CS-GREEDY.

Notice that, while MC simulations are computationally expensive, SRA itself
is not “always” very efficient for estimating the influence spread of non-influential
nodes: given an advertiser seed set Si and a node u, assume the extreme scenario
that σi(u|Si) = 1, i.e., node u can only influence himself given Si. Using Wald’s
Equation [139], the expected size of the sample Ri that SRA needs to use to
produce an estimate σ̂i(u|Si), that is (ε, δ)-approximation of σi(u|Si) can be com-
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Algorithm 9: SEQ-RIS Marginal Gain Estimation
Input : G = (V,E), S ⊆ V, u ∈ V \ S, ε, δ
Output: σ̂(u|S)

1 R ← ∅ ;
2 Υ(ε, δ) := 1 + (1 + ε) · 4(e− 2) · log(2/δ)/ε2;
3 R ← R∪ GenRandRRSets(dΥ(ε, δ)e) ;
4 covR(u|S)← |{R ∈ R | S ∩R = ∅ ∧ u ∈ R}|;
5 while covR(u|S) < Υ(ε, δ) do
6 R ← R∪ GenRandRRSets(dΥ(ε, δ)e − covR(u|S)) ;
7 covR(u|S)← |{R ∈ R | S ∩R = ∅ ∧ u ∈ R}|;
8 σ̂(u|S) = n ·Υ(ε, δ)/|R| ;
9 return σ̂(u|S).

puted from:

E [θ] =
µu|Si

E

[∑θ
j=1X

u|Si

j

] (5.12)

=
1

n ·Υ(ε, δ)
(5.13)

For a small directed graph of n = 15229 nodes, using ε = 0.1, and δ = 1/n,
this translates to generating almost 50 million random RR sets just to estimate
σi(u|Si).

Thus, for the problems in which the greedy node selection criteria does not
follow the maximum coverage problem, like our cost-sensitive RM problem and
the budgeted influence maximization problem [91, 111], scalability still remains
an open challenge for finding a fully cost-sensitive greedy solution: we are cur-
rently working on devising an efficient and scalable algorithm to find a fully cost-
sensitive greedy solution to RM problem.

Thus, for our experiments, rather than resorting on a fully cost-sensitive solu-
tion that computes σi(v|St−1i ), ∀v : (v, i) ∈ E t−1 at each iteration t and for each
advertiser i, we will replace the MC simulations of CS-GREEDY with the SRA
algorithm adapted for marginal gain estimation (Algorithm 9), and will inspect
only a “window” of nodes that provide the highest w marginal gains in influence
spread for applying cost-sensitive selection criteria. We will refer to this algorithm
as CS-GREEDY-SRA. Notice that, this requires CS-GREEDY-SRA to efficiently
approximate the top W nodes having the maximum marginal gains for each ad-
vertiser i at each iteration t. Next, in Theorem 5.4, we present our formal results
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Algorithm 10: SEQ-RIS Maximum Marginal Gain Approximation
Input : G = (V,E), S ⊆ V , u ∈ V \ S, ε, δ
Output: 〈u, σ̂(u|S)〉

1 Υ := Υ(ε, δ/(n− |S|));
2 u← argmax

v∈V \S
|{R ∈ R | S ∩R = ∅ ∧ v ∈ R}| ;

3 covR(u|S)← |{R ∈ R | S ∩R = ∅ ∧ u ∈ R}|;
4 while covR(u|S) < Υ do
5 R ← R∪ GenRandRRSets(dΥe − covR(u|S)) ;
6 u← argmax

v∈V \S
|{R ∈ R | S ∩R = ∅ ∧ v ∈ R}| ;

7 covR(u|S)← |{R ∈ R | S ∩R = ∅ ∧ u ∈ R}|;
8 σ̂(u|S) = n ·Υ/|R| ;
9 return 〈u, σ̂(u|S)〉.

for efficiently approximating the node with the maximum marginal gain under the
IC model, which directly applies to the TIC model, given their equivalence for an
item ~γi. We will use this approximation to select the pair (u∗, i∗) among the W ·h
pairs: notice that when W = 1, cost-sensitive greedy solution is equivalent to the
cost-agnostic greedy solution.

Theorem 5.4. Given a set S ⊆ V , let u∗ ∈ V \ S denote the node that provides
the maximum marginal gain to the influence spread of S under the IC model:

u∗ = argmax
v∈V \S

σ(v|S).

Then, Algorithm 10 returns a node ũ such that:

Pr [σ(u∗|S)(1− ε) ≤ σ̂(ũ|S) ≤ σ(u∗|S)(1 + ε)] > 1− δ.

Proof. First, notice that, in order to find a node ũ that approximately provides the
maximum marginal gain, we can run SRA simultaneously8, with input parameters
(ε, δ/(n − |S|)), to compute (ε, δ/(n − |S|))-approximation of σ(v|S) for each
v ∈ V \ S: generate a random RR set R into initially emptyR, and compute

covR(v|S) = |{R ∈ R | S ∩R = ∅ ∧ v ∈ R}|,
8In the rest of the proof, we will refer to this algorithm, that executes SRA simultaneously for

more than one random variable, using the same pool of random RR sets, as simultaneous-SRA.
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for each v ∈ V \ S; whenever for some v at some iteration θ, covR(v|S) =
dΥ(ε, δ/(n − |S|))e, compute its estimate Υ(ε, δ/(n − |S|)/θ, and continue the
estimation procedure with the rest of the nodes, until simultaneous-SRA com-
putes all the estimates. When simultaneous-SRA terminates, for each v ∈ V \ S,
we have:

Pr
[
µ̂v|S < (1− ε)µv|S

]
+ Pr

[
µ̂v|S > (1 + ε)µv|S

]
≤ δ

n− |S|
. (5.14)

Then, using union bound over these n − |S| estimation failure scenarios, we can
select the node ũ := argmax

v∈V \S
σ̂(v|S) as the node that approximately provides the

maximum marginal gain with 1− δ probability.

Notice that, the size of the sample R when simultaneous-SRA generates a
marginal gain estimate for a node v is the stopping time such that:

Υ(ε, δ/(n− |S)) ≤ covR(v|S) < Υ(ε, δ/(n− |S|)) + 1. (5.15)

Using Wald’s Equation [139]:

E [covR(v|S)] = E
[
θv|S
]
· µv|S. (5.16)

Hence, during the execution of simultaneous-SRA, we can expect that the first
node that could reach dΥ(ε, δ/(n − |S|))e coverage would be the node u∗ since
µu
∗|S is the maximum among all the n− |S| means:

Υ(ε, δ/(n− |S|))
µu∗|S

≤ E[θu∗ ] ≤ · · · ≤
Υ(ε, δ/(n− |S|))

µumin|S
≤ E[θumin

] (5.17)

where umin = argmin
v∈V \S

σ(v|S).

Hence, thanks to the stopping rule that takes into account possible n−|S| bad
over- or under-estimation scenarios, rather than executing simultaneous-SRA un-
til it generates all n−|S| estimates, we can stop the estimation procedure early, as
soon as a node, ũ, reaches Υ (ε, δ/(n− |S|)) coverage, and return it as the approx-
imate solution with more than 1− δ probability, as depicted in Algorithm 10.
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FLIXSTER EPINIONS

#nodes 30K 76K
#edges 425K 509K

type directed directed

Table 5.1: Statistics of network datasets.

5.5 Experiments
In this section, we provide an empirical discussion on our algorithms. We test and
compare the following algorithms that we formally discussed in Section 5.4.
• TI-CARM: For finding a cost-agnostic solution, we use the TI-CARM algo-

rithm obtained from the adaptation of TIRM to RM problem.
• TI-CSRM: For finding a restricted cost-sensitive solution, we use TI-CSRM

algorithm, simply derived from TI-CARM by applying the cost-sensitive node
selection criteria for the selection of seed nodes.
• CS-GREEDY-SRA: For finding a restricted cost-sensitive solution, we use

the CS-GREEDY-SRA algorithm that replaces the MC simulations of CA-
GREEDY with SRA, and for each advertiser, computes the top W maximum
marginal gains, using our maximum marginal gain approximation procedure
(Algorithm 10) for SEQ-RIS. We will use several values of W to measure
the affect of the window size on the total revenue and running time obtained.

Datasets. For our experiments, we use two real-world social networks, whose
basic statistics are summarized in Table 5.1. FLIXSTER is from a social movie-
rating site (http://www.flixster.com/). The dataset records movie ratings
from users along with their timestamps. We use the topic-aware influence prob-
abilities and the item-specific topic distributions provided by the authors of [13],
who learned the probabilities using maximum likelihood estimation for the TIC
model with K = 10 latent topics. In our quality experiments, we set the num-
ber of advertisers h to be 10, and used 10 of the learnt topic distributions from
Flixster dataset, where for each ad i , its topic distribution ~γi has mass 0.91 in the
i-th topic, and 0.01 in all others.

EPINIONS is a who-trusts-whom network taken from a consumer review web-
site (http://www.epinions.com/). For Epinions, we similarly set h = 10
and use K = 10 latent topics. For each ad i, we use synthetic topic distribu-
tions ~γi, by borrowing the ones used in FLIXSTER. For all edges and topics, the
topic-aware influence probabilities are sampled from an exponential distribution
with mean 30, via the inverse transform technique [53] on the values sampled
randomly from uniform distribution U(0, 1).

In both datasets, advertiser budgets and CPEs are chosen in such a way that
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Budgets CPEs
Dataset mean min max mean min max

FLIXSTER 5700 2000 10,000 1.5 1 2
EPINIONS 6000 2000 10,500 1.9 1 2.5

Table 5.2: Advertiser budgets and cost-per-engagement values.

Algorithms Revenue Incentives # Seeds Runtime (min.s)
TI-CARM 42542.9 14251.4 840 2.8

TI-CSRM 42542.6 14371 867 2.9

CS-GREEDY-SRA (W = 1) 42571.2 14298.7 847 5.9

CS-GREEDY-SRA (W = 10) 42644.9 14206 883 15.1

CS-GREEDY-SRA (W = 50) 42973.5 13858.3 914 21.3

Table 5.3: Comparison on FLIXSTER dataset.

the total number of seeds required for all ads to meet their budgets is less than n.
This ensures no ads are assigned empty seed sets.Table 5.2 contains a statistical
summary of the budgets and CPEs.

For assigning ad-specific seed user incentives to nodes, we run MC simula-
tions (10K runs) to obtain the singleton influence spread of each node per each ad,
and multiply by α = 0.1 to compute the seed user incentives.

For each of the considered algorithms, we evaluate the final revenue of their
output seed sets using Monte Carlo simulations (10K runs) for neutral, fair, and
accurate comparisons.

Table 5.3 summarizes our findings for FLIXSTER dataset. We had previously
discussed that none of the influence maximization algorithms built on RIS frame-
work [22, 112, 131, 132], as well as, our TI-CARM are capable of working as
an influence spread oracle, thus, these algorithms would ignore less influential
nodes. The indistinguishable results we obtain for TI-CARM and TI-CSRM ex-
perimentally verifies this behavior. On the other hand, although being restricted
cost-sensitive, CS-GREEDY-SRA can obtain significantly higher revenue, with
relatively lower money spent on seed user incentives, as it works as an influence
spread oracle, and is mindful of the revenue obtained for the money spent. We can
directly notice the increase in the revenue and decrease in the seed user incentives
as the window applied to each advertiser increases. However, CS-GREEDY-SRA
is not compatible with TI-CARM and TI-CSRM in terms of running time as it
works as an influence spread oracle on the restricted set of nodes. We can see that
the runtime significantly increases as we increase the window size W per each
advertiser, while the revenue increases.

Table 5.4 summarizes our findings for EPINIONS dataset. Our results on EPIN-
IONS dataset is similar to the trend we observe for the FLIXSTER dataset. Notice
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Algorithms Revenue Incentives # Seeds Runtime (min.s)
TI-CARM 55464.4 3240.17 752 1.96

TI-CSRM 55468.9 3251.21 758 1.99

CS-GREEDY-SRA (W = 1) 55496.8 3246.65 755 18.3

CS-GREEDY-SRA (W = 10) 56116.9 3129.21 747 21.2

CS-GREEDY-SRA (W = 50) 56395.1 3141.17 757 31.4

Table 5.4: Comparison on EPINIONS dataset.

that, when W = 1, CS-GREEDY-SRA provides a cost-agnostic solution since
it directly uses the node with the maximum marginal gain as in the case of TI-
CARM. However, in both datasets, the runtime of CS-GREEDY-SRA even for
W = 1 is not compatible with TI-CARM due to the marginal gain level estimation
procedure it employs.

Our results on both datasets show that TI-CARM is a scalable and efficient al-
ternative to CA-GREEDY. However, the total revenue obtained by TI-CARM is
significantly outperformed by the total revenue obtained by the SEQ-RIS based
CS-GREEDY-SRA that is capable of doing marginal gain level operations, even
when using a restricted cost-sensitive node selection criteria. On the other hand,
while the total revenue obtained by CS-GREEDY-SRA significantly increases as
we inspect a higher window of nodes, the runtime of the algorithm also starts
to increase. As we previously stated, for the problems in which the greedy
node selection criteria does not follow the maximum coverage problem, like
our cost-sensitive RM problem and the budgeted influence maximization prob-
lem [91,111], scalability still remains an open challenge: we are currently working
on devising an efficient and scalable algorithm to find a fully cost-sensitive greedy
solution to RM problem, by integrating the seed user incentives directly into the
RIS estimation process, rather than limiting their presence to cost-sensitive node
selection criteria.

5.6 Discussion and Future Work
In this work, we initiate investigation in the area of incentivised social advertis-
ing, by formalizing the fundamental problem of revenue maximization from the
host perspective, when the incentives paid to the seed users are proportional to
their demonstrated past influence in the topic of the specific ad. We show that,
keeping all important factors, such as topical relevance of ads, their propensity for
social propagation, the topical influence of users, users incentives and advertis-
ers budgets in consideration, the problem of revenue maximization in incentivised
social advertising is NP-hard and it corresponds to the problem of monotone sub-
modular function maximization subject to a partition matroid constraint on the
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ads-to-seeds allocation and submodular knapsack constraints on the advertisers’
budgets. For this problem we devise two natural variants of the greedy algo-
rithm w.r.t. their sensitivity to the advertisers’ payment functions, and provide
formal approximation guarantees. As scalability still remains an open challenge
for devising algorithms that do not follow the greedy framework of influence max-
imization problem, like our CA-GREEDY and the budgeted influence maximiza-
tion problem [91, 111], we provide a formal discussion on our ongoing efforts
for devising an efficient and scalable version of CS-GREEDY that do not rely on
computationally exhaustive MC simulations.

Our work takes a first step toward enriching the framework of incentivised
social advertising by integrating it with powerful ideas from viral marketing and
making the latter more applicable to real online marketing problems. It opens
up several interesting avenues for further research. Capturing the auction dynam-
ics of the real-world social advertising models by the integration of algorithmic
mechanism design techniques to the allocation of ads, integrating hard compe-
tition constraints to the influence propagation process are directions that offer a
wealth of possibilities for future work.
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CHAPTER 6

CONCLUSIONS

In this thesis we develop techniques to take the algorithmic aspects of viral mar-
keting out of the lab, and further enhance these aspects to account for the real
world social advertisement models, by drawing on the viral marketing literature
to study social influence aware ad allocation for social advertising. This chapter
summarizes our contributions, open problems, and directions for future research.

6.1 Summary

Viral marketing, by “targeting” the most influential individuals, takes advantage
of the networks of social influence to deliver a marketing message to a large por-
tion of the social network. In addition to its popularity in the business literature,
viral marketing has recently attracted substantial interest from the computer sci-
ence community due to the fascinating computational challenges that it entails:
influence maximization is the key algorithmic problem behind viral marketing,
formally defined as a discrete optimization problem for the identification of the
influential users [88].

Regardless the substantial research effort devoted to improve the efficiency
and scalability of the influence maximization algorithms, their efficiency is still
limited for applications that require milliseconds response time. Thus, in Chap-
ter 3, we took a first step towards enabling social-influence online analytics in
support of viral marketing decision making, and proposed an efficient influence
indexing framework for a very general type of viral marketing queries: topic-
aware influence maximization queries. Exploiting a tree-based index for similarity
search in non-metric spaces, a clever approximate nearest neighbors search over
the tree, and a weighted rank aggregation mechanism, we showed that our index
can provide, in few milliseconds, a solution very similar to the one produced by
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the standard offline influence maximization computation that usually takes hours
or sometimes days, while achieving a similar expected influence spread.

Driven by the multi-billion dollar industry, the area of computational advertis-
ing has attracted a lot of interest during the last decade. Considerable work has
been done in sponsored search and display advertising, mainly focusing on the
central problem of finding the “best match” between a given user in a given con-
text and a suitable advertisement. However, with the advent of social advertising,
the standard interest-driven allocation of ads to users has become inadequate as it
fails to leverage the potential of social influence. Thus, in Chapter 4, we initiate
the investigation in the area of social advertising through the viral marketing lens.
We assume a real-world business model in which the advertisers approach the host
with a monetary budget, to pay for ad-engagements in return for the social adver-
tising service provided by the host. In this context, we defined regret as the abso-
lute value of the difference between the budget of an advertiser and the total cost
paid by the advertiser to the host based on a cost-per-engagement pricing model,
and formally studied the regret minimization problem for the allocation of ads
under social influence. We showed that regret minimization problem is NP-hard
and inapproximable w.r.t. any factor. However, we devised an algorithm that pro-
vides approximation guarantees w.r.t. the total budget of all advertisers. We also
developed a scalable version of our approximation algorithm, which we exten-
sively tested on four real-world data sets, confirming that our algorithm delivers
high quality solutions, is scalable, and significantly outperforms several natural
baselines.

In Chapter 5, we introduce the novel advertisement model of incentivised so-
cial advertising, where the users that are selected by the host to be the seeds for the
campaign on a specific ad, can take a “cut” on the social advertising revenue. We
assume a real-world business model in which an advertiser enters into a commer-
cial agreement with the host to pay, following the cost-per-engagement pricing
model, a fixed price per each engagement to his ad. In this context, we stud-
ied the fundamental problem of revenue maximization from the host perspective.
We showed that the problem of revenue maximization for incentivised social ad-
vertising is NP-hard and it corresponds to the problem of monotone submodular
function maximization subject to a partition matroid constraint on the ads-to-seeds
allocation, and submodular knapsack constraints on the advertisers’ budgets. We
then devised two natural variants of the greedy approximation algorithm, based on
their sensitivity to advertisers’ payments, for which we provided formal approxi-
mation guarantees. We also presented experimental results and open problems.
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6.2 Future Directions
While acknowledging that there are still a large number of problems that remain
unexplored at the intersection of social influence propagation, viral marketing,
and social advertising, in this thesis we took a first step to enable social influence
analytics for viral marketing, and initiated the investigation on the area of social
advertising through the viral marketing lens. Below we provide a discussion of
directions that offer a wealth of possibilities for future work.

One immediate future direction regarding influence indexing frameworks is to
study the automatic determination of the number of index items that is required
for maintaining the accuracy of the framework. At the time of the publication of
INFLEX [5], CELF++ [75] was the state-of-the-art influence maximization algo-
rithm: on the problem instances that we consider in Chapter 3, the pre-processing
step with CELF++ [75] took from few days to more than a week in order to ex-
tract a seed set of 50 nodes for a single item. Thus, our choice for the number of
index items, query items, and the datasets to be used in the experimentation were
limited, due to the extremely heavy computational burden of the standard influ-
ence maximization computation. However, with the latest advances on devising
scalable influence maximization algorithms [22, 112, 131, 132], CELF++ can be
directly replaced for the pre-computation of the seed sets, which would provide
greater flexibility in choosing the number of index and query items, as well as,
testing influence indexing techniques.

The latest advances on devising scalable influence maximization algo-
rithms [22,112,131,132] provide very promising theoretical and practical results.
However, their applicability to the problems that do not necessarily follow the
greedy framework of the maximum coverage problem, as in the case of the bud-
geted influence maximization problem [91, 111], is still very limited. In Chap-
ter 5, we have both theoretically and experimentally demonstrated the drawbacks
of these influence maximization algorithms for finding a cost-sensitive greedy so-
lution. Thus, further enhancing the Reverse Influence Sampling framework to
efficiently and accurately solve the problems that deviate from the greedy frame-
work of the maximum coverage problem is a promising future direction.

Another interesting direction is to adapt the influence indexing framework to
handle the queries composed of multiple items in the presence of matroid, budgets,
or hard competition constraints. Currently our INFLEX is designed for efficiently
processing topic-aware influence maximization queries, where each query con-
sists of a single item. Using a similar influence indexing framework adapted to
handle the presence of multiple items in a single query, under budget and matroid
constraints, would provide enormous efficiency for solving the social advertising
problems we define in Chapters 4 and 5.

In Chapters 4 and 5, we initiated the research on the real world social adver-
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tising models through the viral marketing lens to address the problems that viral
marketing or computational advertising literature fail to address in isolation. How-
ever, to better capture the real world dynamics, we still have work to do. Currently,
one of the important missing piece in these models is the auction-based dynamics
of the real-world social advertising models. In our research, we assumed that the
advertisers declare their preferred cost-per-engagement (CPE) value to the host,
and the host charges this exact amount per engagement to their ads. However, real
world social advertising platforms, such as Facebook and Twitter, implement ad
auctions, which determine not only the allocation of ads, but also the CPE amount
that advertisers should pay. The CPE value that advertisers declare is usually re-
ferred as their valuation regarding the maximum amount they are willing to pay
to the host per engagement.

The determination of the price and allocation in an auction is widely studied
under the name Algorithmic Mechanism Design [116]. Currently, within the con-
text of incentivised social advertising that we study in Chapter 5, we are at the
process of designing an envy-free revenue maximization mechanism: differently
from our work in Chapter 5, we assume that the host runs ad auctions to deter-
mine both the ads-to-seeds allocation and the CPE for each advertiser based on
the values they declare. We adopt the classic quasi-linear utility model for quan-
tifying the advertisers’ preferences and study the game-theoretic fairness notion
of envy-freeness: the host should carefully determine the CPE and the seed set
for each advertiser, with the rational goal of maximizing his revenue from the ad
engagements, while ensuring that no advertiser envies another advertiser, i.e., no
advertiser can gain higher utility by exchanging his seed set and CPE assignment
with another advertiser. At the moment, we have an envy-free revenue maxi-
mization mechanism, based on the dynamic programming formulation of envy
constraints, for the case in which advertisers have uniform budgets. We will also
be working on extending our results for the general case in which advertisers may
have different budgets.

The design of envy-free and incentive compatible mechanisms lie at the in-
tersection of computer science, economics, and game theory, and is widely stud-
ied by computational advertising researchers. Moreover, many real world online
advertisement platforms, such as “Google’s Sponsored Search” and “Facebook
Ads”, implement such mechanisms for operating their ad auctions. In addition
to envy-freeness, many other game-theoretical aspects of ad allocation for social
advertising offer a wealth of possibilities for future directions, such as incentive
compatible mechanisms that ensure the truthfulness of advertisers in their CPE
and budget declarations. Given the combinatorial nature of the problems we study
in Chapters 4 and 5, introducing the real-world auction dynamics to these prob-
lems would require to handle combinatorial auctions in a virality-aware manner.
However, this is not an easy task as the literature on combinatorial auctions is full
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of impossibility results [128].
Lastly, the formal social advertising setting that we introduce in Chapters 4 and

5 provides tremendous directions for defining different combinatorial optimiza-
tion problems that cannot be addressed by the influence maximization literature.
As we studied in detail in this thesis, the classic model of treating the budgets in a
viral marketing campaign does not model a real-world social advertising scenario:
if the advertiser offers the same products to seed users as incentives in a viral mar-
keting campaign, the advertiser’s budget is modeled as a cardinality constraint on
the number of free products to offer [88]. Alternatively, advertisers might choose
to target the seed users non-uniformly, offering incentives of arbitrary costs, in
which case the budget of an advertiser is modeled as a monetary amount that
will be spend on the non-uniform costs of incentivizing seed users [91, 111]. On
the other hand, in a social advertising campaign, the budget of an advertiser is
used for paying the ad engagements, while these engagements might be due to
the viral propagation of the ad. Moreover, in the case of an incentivised social
advertising campaign, the budget is used for paying both the engagements and
the seed user incentives. In this thesis, we defined two novel optimization prob-
lems, regret minimization and revenue maximization, addressing the inadequacies
of the influence maximization literature for handling real-world social advertising
scenarios. Building on our formal study, one can define many other interesting
problems, such as finding the ads-to-seeds allocation that minimizes the money
spent on seed user incentives, or minimizing the time for reaching a predefined
engagement threshold. Finally, one of the most challenging but required piece
is to design explore-exploit algorithms for these problems, along with theoretical
guarantees, that can perform ads-to-seeds allocation in an online manner based on
the real-time observed propagation traces.
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