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Abstract
This thesis is a result of our research efforts in building a multi-modal knowledge-
base for the specific case of Carnatic music. Besides making use of metadata
and symbolic notations, we process natural language text and audio data to ex-
tract culturally relevant and musically meaningful information and structuring
it with formal knowledge representations. This process broadly consists of two
parts. In the first part, we analyze the audio recordings for intonation descrip-
tion of pitches used in the performances. We conduct a thorough survey and
evaluation of the previously proposed pitch distribution based approaches on a
common dataset, outlining their merits and limitations. We propose a new data
model to describe pitches to overcome the shortcomings identified. This expands
the perspective of the note model in-vogue to cater to the conceptualization of
melodic space in Carnatic music. We put forward three different approaches to
retrieve compact description of pitches used in a given recording employing our
data model. We qualitatively evaluate our approaches comparing the representa-
tions of pitched obtained from our approach with those from a manually labeled
dataset, showing that our data model and approaches have resulted in represen-
tations that are very similar to the latter. Further, in a raaga classification task
on the largest Carnatic music dataset so far, two of our approaches are shown to
outperform the state-of-the-art by a statistically significant margin.

In the second part, we develop knowledge representations for various concepts
in Carnatic music, with a particular emphasis on the melodic framework. We
discuss the limitations of the current semantic web technologies in expressing
the order in sequential data that curtails the application of logical inference. We
present our use of rule languages to overcome this limitation to a certain extent.
We then use open information extraction systems to retrieve concepts, entities
and their relationships from natural language text concerning Carnatic music.
We evaluate these systems using the concepts and relations from knowledge rep-
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resentations we have developed, and groundtruth curated using Wikipedia data.
Thematic domains like Carnatic music have limited volume of data available on-
line. Considering that these systems are built forweb-scale datawhere repetitions
are taken advantage of, we compare their performances qualitatively and quanti-
tatively, emphasizing characteristics desired for cases such as this. The retrieved
concepts and entities are mapped to those in the metadata. In the final step, using
the knowledge representations developed, we publish and integrate the informa-
tion obtained from different modalities to a knowledge-base. On this resource,
we demonstrate how linking information from different modalities allows us to
deduce conclusions which otherwise would not have been possible.



Resum
Aquesta tesi és el resultat de la nostra investigació per a construir una base de
coneixement multimodal per a la música Carnàtica. A part d’utilitzar metadades
i representacions simbòliquesmusicals, també processem text en llenguatge natu-
ral i l’àudio mateix per tal d’extreure informació que sigui rellevant tant des d’un
punt de vista cultural com musical i que puguem estructurar amb representa-
cions formals de coneixement. El procés que seguim està compost principalment
de dues parts. En la primera part analitzem les gravacions d’àudio per descriure’n
l’entonació de les altures tonals utilitzades. Comparem i avaluem aproximacions
existents basades en histogrames d’altures tonals utilitzant una base de dades co-
muna de referència i en subratllem els avantatges i les limitacions. Proposem un
nou model de dades per descriure l’altura tonal de les notes i superar les lim-
itacions prèviament identificades. Aquest model va més enllà dels ja establerts i
permet acomodar la conceptualització de l’espai melòdic en la música Carnàtica.
Utilitzant el nostre model de dades proposem tres mètodes diferents per extreure
descripcions compactes de les altures tonals de les notes d’una gravació. Fem una
avaluació qualitativa a través de la comparació de descripcions generades amb els
mètodes proposats i descripcions generades manualment, i comprovem que els
nostres mètodes generen descripcions molt semblants a les generades manual-
ment. També comprovem com els nostres mètodes són útils per a la classificació
de raga avaluant amb la base de dades més gran de música Carnàtica que s’ha
creat fins al dia d’avui. Dos dels nostres mètodes obtenen puntuacions més altes
que els millors mètodes existents, amb marges de millora estadísticament signi-
ficatius.

En la segona part de la nostra investigació desenvolupem representacions de
coneixement sobre diversos conceptes de la música Carnàtica, posant un èmfasi
especial en aspectes melòdics. Parlem sobre les limitacions de les tecnologies de
la web semàntica pel que fa a la representació del concepte d’ordre en dades se-
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qüencials, fet que limita les possibilitats d’inferències lògiques. Proposem l’ús de
llenguatges de normes per, fins a cert punt, superar aquestes limitacions. Després
utilitzem sistemes d’extracció d’informació per recuperar conceptes, entitats i les
seves relacions a partir de l’anàlisi de text natural sobre música Carnàtica. Aval-
uem aquests sistemes utilitzant conceptes i relacions extretes de representacions
de coneixement que nosaltresmateixos hem desenvolupat i també utilitzant dades
curades provinents de la Wikipedia. Per temàtiques com la música Carnàtica hi
ha un volum de dades limitat accessible en línia. Tenint en compte que aquests sis-
temes estan pensats per funcionar amb grans volums de dades on les repeticions
són importants, en fem una comparació qualitativa i quantitativa emfatitzant
aquelles característiques més rellevants per casos amb volums de dades limi-
tats. Els conceptes i entitats recuperades són emparellats amb conceptes i enti-
tats presents a les nostres metadades. Finalment, utilitzant les representacions de
coneixement desenvolupades, integrem les informacions obtingues de les difer-
ents modalitats i les publiquem en una base de coneixement. Utilitzant aquesta
base de coneixement demostrem com el fet de combinar informacions provinents
de diferents modalitats ens permet arribar a conclusions que d’una altra manera
no haurien estat possibles.

(Translated from English by Frederic Font)



Resumen
Esta tesis es resultado de nuestro trabajo de investigación para construir una
base de conocimiento multimodal para el caso específico de la música carnática.
Además de hacer uso de metadatos y notación simbólica, procesamos texto de
lenguaje natural y datos de audio para extraer información culturalmente rele-
vante ymusicalmente significativa, y estructurarla con representaciones formales
de conocimiento. En líneas generales, este proceso consiste en dos partes. En la
primera parte, analizamos grabaciones de audio para describir la entonación de
las alturas usadas en las interpretaciones. Llevamos a cabo un exhaustivo análisis
y evaluación de los métodos basados en distribución de altura propuestos ante-
riormente, señalando sus ventajas y limitaciones. Proponemos un nuevo modelo
de datos para la descripción de alturas con el fin de superar las limitaciones iden-
tificadas. Esto amplía la perspectiva del modelo actual de nota para contribuir a
la conceptualización del espacio melódico en música carnática. Ofrecemos tres
propuestas diferentes para la extracción de una descripción compacta de las al-
turas usadas en una grabación dada utilizando nuestro modelo de datos. Evalu-
amos cualitativamente nuestras propuestas comparando las representaciones de
alturas obtenidas según nuestro método con aquellas procedentes de un conjunto
de datos anotado manualmente, con lo que mostramos que nuestro modelo de
datos y nuestras propuestas resultan en representaciones muy similares a estas
últimas. Además, en una tarea de clasificación de raagas en el mayor conjunto
de datos de música carnática hasta la fecha, dos de nuestras propuestas muestran
mejor rendimiento que el estado del arte con un margen estadístico significativo.

En la segunda parte, desarrollamos representaciones de conocimiento para varios
conceptos en música carnática, con un particular énfasis en el marco melódico.
Discutimos las limitaciones de las tecnologías de web semántica actuales para ex-
presar el orden de datos secuenciales, lo que restringe la aplicación de inferencia
lógica. Presentamos nuestro uso de lenguajes de reglas para superar hasta cierto
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punto esta limitación. A continuación utilizamos sistemas abiertos de extracción
de información para extraer conceptos, entidades y sus relaciones a partir de texto
de lenguaje natural relacionado con música carnática. Evaluamos estos sistemas
usando los conceptos y las relaciones de las representaciones de conocimiento que
hemos desarrollado, así como información de referencia contrastada con datos de
Wikipedia. Dominios temáticos como el de música carnática tienen un volumen
limitado de datos disponibles en internet. Considerando que estos sistemas están
construidos para datos a escala de la web, en la que es posible beneficiarse de las
repeticiones, comparamos sus rendimientos cualitativa y cuantitativamente, en-
fatizando las características deseadas para casos como este. Los conceptos y enti-
dades extraídas son mapeadas a aquellos existentes en los metadatos. En el paso
final, usando las representaciones de conocimiento desarrolladas, publicamos e
integramos la información obtenida por diferentes modalidades en una base de
conocimiento. Con este recurso demostramos como la conexión de información
de diferentes modalidades nos permite deducir conclusiones que de otra manera
no habrían sido posibles.

(Translated from English by Rafael Caro Repeo)



Contents

Abstract xi

Resum xiii

Resumen xv

List of Figures xx

List of Tables xxv

I Setting the stage 1

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 An overview of the proposed approach . . . . . . . . . . . . . . . 7
1.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . 14
1.6 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Indian art music 17
2.1 Geographical, social and cultural context . . . . . . . . . . . . . . 17
2.2 Music concepts and terminology . . . . . . . . . . . . . . . . . . . 18
2.3 Kutcheri: the concert format . . . . . . . . . . . . . . . . . . . . . 24
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

xvii



xviii conen

3 A review of past resear concerning raagas in Indian art music 27
3.1 A categorical overview of the past work . . . . . . . . . . . . . . . 28
3.2 Raaga classification . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Consolidating pitch-distribution based approaches . . . . . . . . . 37
3.4 Evaluation over a common dataset . . . . . . . . . . . . . . . . . . 42
3.5 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . 53

4 Music knowledge representation 57
4.1 Introduction to Semantic web . . . . . . . . . . . . . . . . . . . . 58
4.2 Role of ontologies in music information research . . . . . . . . . . 67
4.3 Linked open data in the domain of music . . . . . . . . . . . . . . 74
4.4 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . 76

II Audio music analysis for intonation description 79

5 Parametrizing pit histograms 81
5.1 Overview of the approach . . . . . . . . . . . . . . . . . . . . . . 82
5.2 Segmentation of the audio music recording . . . . . . . . . . . . . 83
5.3 Predominant melody extraction . . . . . . . . . . . . . . . . . . . 86
5.4 Histogram computation . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5 Svara peak parametrization . . . . . . . . . . . . . . . . . . . . . . 88
5.6 Evaluation & results . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.7 Summary & conclusions . . . . . . . . . . . . . . . . . . . . . . . 97

6 Context-based pit distributions of svaras 99
6.1 Overview of the approach . . . . . . . . . . . . . . . . . . . . . . 100
6.2 Isolating svara pitch distributions . . . . . . . . . . . . . . . . . . 101
6.3 Refining the svara description: consolidating the learnings . . . . 110
6.4 Summary & conclusions . . . . . . . . . . . . . . . . . . . . . . . 113

7 Taking a step ba: alitative analysis of varnams 115
7.1 Relevance and structure of varnams . . . . . . . . . . . . . . . . . 115
7.2 Svara synchronization . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.3 Analysis of svara histograms . . . . . . . . . . . . . . . . . . . . . 117
7.4 Summary & conclusions . . . . . . . . . . . . . . . . . . . . . . . 121

8 Melodic phrase alignment for svara description 123
8.1 Consolidating svara representation . . . . . . . . . . . . . . . . . 123
8.2 Audio-score alignment . . . . . . . . . . . . . . . . . . . . . . . . 125
8.3 Computing svara representations . . . . . . . . . . . . . . . . . . 127



conen xix

8.4 Evaluation, comparison and discussion . . . . . . . . . . . . . . . 127
8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

III A multimodal knowledge-base of Carnatic music 137

9 Ontologies for Indian art music 139
9.1 Scope of our contributions . . . . . . . . . . . . . . . . . . . . . . 140
9.2 Raaga ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
9.3 The Carnatic music ontology . . . . . . . . . . . . . . . . . . . . . 150
9.4 Summary & conclusions . . . . . . . . . . . . . . . . . . . . . . . 154

10 Concept and relation extraction from unstructured text 157
10.1 Open Information Extraction . . . . . . . . . . . . . . . . . . . . . 158
10.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
10.3 Evaluation framework . . . . . . . . . . . . . . . . . . . . . . . . . 162
10.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 165
10.5 Summary & conclusions . . . . . . . . . . . . . . . . . . . . . . . 174

11 antifying the Salience of Musical Characteristics From Unstruc-
tured Text 177
11.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
11.2 Vichakshana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
11.3 Salience-aware semantic distance . . . . . . . . . . . . . . . . . . 184
11.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
11.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

12 Knowledge-base population: Structuring and interlinking the data
sources 191
12.1 Editorial metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
12.2 Intonation description . . . . . . . . . . . . . . . . . . . . . . . . . 193
12.3 Structured information from natural language text . . . . . . . . . 194
12.4 Possible courses of future work . . . . . . . . . . . . . . . . . . . 194
12.5 Summary & conclusions . . . . . . . . . . . . . . . . . . . . . . . 195

A Supplementary content for Part II 199
A.1 Additional plots and data for peak detection . . . . . . . . . . . . 199
A.2 Decision table resulting from raaga classification . . . . . . . . . . 201
A.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Bibliography 203



List of Figures

1.1 Overview of our work. Notice that the following modules - Align-
ment, Motif detection and Rhythmic analyses are not part of the work
reported in this thesis. They are part of CompMusic project. Also, the
Open Information Extractions systems that we use are neither part
of the thesis, nor the project. . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Statistics of the Carnatic corpus, which is a part of CompMusic cor-
pora. The numbers on connecting arrows indicate the relations be-
tween corresponding music concepts as annotated on MusicBrainz. . 9

2.1 This is a typical ensemble in south Indian Hindu weddings. The two
artists in the center play Nadaswaram, a reed instrument while the
other two players play Thavil, a rhythm instrument. . . . . . . . . . 19

2.2 A typical ensemble for a Carnatic music concert. From left to right
are mridangam player (the main rhythmic accompaniment), kanjira
player (co-rhythmic accompaniment), lead vocalist, tanpura player
(provides drone), ghatam player (co-rhythmic accompaniment) and
violin player (melodic accompaniment). . . . . . . . . . . . . . . . . 25

3.1 The pitch contour is shown superimposed on the spectrogram of a
short segment from a Carnatic vocal recording along with the iden-
tified stable pitch-regions. . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Confusion matrices for the two template matching methods (Ath and
Ade) on Carnatic datasets. The grayness index of (x,y) cell is propor-
tional to the fraction of recordings in class y labeled as class x. . . . 44

xx



li of fige xxi

3.3 Confusion matrices for the two template matching methods (Ath and
Ade) on Hindustani datasets. The grayness index of (x,y) cell is pro-
portional to the fraction of recordings in class y labeled as class x.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 F-measures for performances of Pinstances and Pduration on Carnatic
andHindustānī datasets, withTtime set to 0 andTslope varied between
600 to 1800. C & N denote number of rāgas, number of recordings
per rāga in the dataset. k denotes number of neighbors in k-NN clas-
sification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 F-measures for performances of Pinstances and Pduration on Carnatic
andHindustānī datasets, withTtime set to 0 andTslope varied between
600 to 1800. C & N denote number of rāgas, number of recordings
per rāga in the dataset. k denotes number of neighbors in k-NN clas-
sification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 F-measures for performances of Pinstances and Pduration on Carnatic
datasets, with Tslope set to 1500 and Ttime varied between 60 to 210.
C &N denote number of rāgas, number of recordings per rāga in the
dataset. k denotes number of neighbors in k-NN classification. . . . 50

3.7 F-measures for performances ofPinstances andPduration onHindustānī
datasets, with Tslope set to 1500 and Ttime varied between 60 to 210.
C &N denote number of rāgas, number of recordings per rāga in the
dataset. k denotes number of neighbors in k-NN classification. . . . 51

3.8 Comparison of the performances of different pitch class profiles (Pinstances,
Pduration, Pcontinuous (24 bins) on Carnatic and Hindustānī datasets.
C &N denote number of rāgas, number of recordings per rāga in the
dataset. k denotes number of neighbors in k-NN classification. . . . 52

3.9 Comparison of the performances of Pcontinuous with different bin-
resolutions on Carnatic datasets. C & N denote number of rāgas,
number of recordings per rāga in the dataset. k denotes number of
neighbors in k-NN classification. . . . . . . . . . . . . . . . . . . . . 54

3.10 Comparison of the performances of Pcontinuous with different bin-
resolutions on Hindustānī datasets. C & N denote number of rāgas,
number of recordings per rāga in the dataset. k denotes number of
neighbors in k-NN classification. . . . . . . . . . . . . . . . . . . . . 55

4.1 A stack of standards and technologies that make up the Semantic web. 59
4.2 Linking Open Data cloud diagram 2014, by Max Schmachtenberg,

Christian Bizer, Anja Jentzsch and Richard Cyganiak. . . . . . . . . . 66



xxii li of fige

5.1 Block diagram showing the steps involved inHistogrampeak parametriza-
tion method for intonation analysis. . . . . . . . . . . . . . . . . . . . 83

5.2 A sample histogram showing the peaks which are difficult to be iden-
tified using traditional peak detection algorithms. X-axis represents
cent scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 A semi-tone corresponding to 1100 cents is shown, which in reality
does not have a peak. Yet the algorithm takes the point on either of
the tails of the neighbouring peaks (at 1000 and 1200 cents) as the
maxima, giving a false peak. . . . . . . . . . . . . . . . . . . . . . . . 90

6.1 Block diagram showing the steps involved to derive context-based
svara distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 The positions of windows shown for a given segment Sk, which spans
th milliseconds. In this case, width of the window (tw) is four times
as long as width of the segment (th), which is also hop size of the
window. X-axis represents time and y-axis represents cent scale. . . . 101

6.3 Different classes of melodic movements, reproduced as categorized
by Krishnaswamy (2004). . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 The pitch contour (white) is shown on top of the spectrogram of a
short segment from a Carnatic vocal recording. The red (tw = 150ms,
th = 30ms), black (tw = 100ms, th = 20ms) and blue (tw = 90ms, th =
10ms) contours show the svara to which the corresponding pitches
are binned to. The red and blue contours are shifted few cents up the
y-axis for legibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.5 Comparison of svara histogram plots obtained using our approach
with those obtained using annotations in Varnam dataset. . . . . . . 109

7.1 Structure of the varṇaṁ shownwith different sections labeled. It pro-
gresses from left to right through each verse (shown in boxes). At the
end of each chiṭṭa svara, charaṇa is repeated as shown by the arrows.
Further, each of these verses is sung in two speeds. . . . . . . . . . . 116

7.2 Histograms of pitch values obtained from recordings in two rāgas:
Kalyāṇi and Śankarābharaṇaṁ. X-axis represents cent scale, normal-
ized to tonic (Sa). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3 Pitch histograms of Ga svara in four rāgas: Bēgaḍa, Mōhanaṁ, Āb-
hōgi and Śrī. X-axis represents cent scale. Different lines in each plot
correspond to different singers. . . . . . . . . . . . . . . . . . . . . . . 119

7.4 Pitch histogram for Ri svara in Śrī rāga. X-axis represents cent scale.
Different lines in each plot correspond to different singers. . . . . . . 119



li of fige xxiii

8.1 Pitch contours ofM1 svara in different raagas. . . . . . . . . . . . . . 124
8.2 Description ofM1 svara using annotated data. . . . . . . . . . . . . . 125
8.3 Description of M1 svara (498 cents in just intonation) using our ap-

proach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.4 Representation for R2 svara in Sahana raaga computed using the three

approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.5 Representation for G3 svara in Sahana raaga computed using the

three approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.6 Representation for M1 svara in Sahana raaga computed using the

three approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.7 Representation for D2 svara in Sahana raaga computed using the

three approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.8 Representation for N2 svara in Sahana raaga computed using the

three approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

9.1 A part of the svara ontology showing all the svaras, variants of a
couple of svaras, and the relationships between them. . . . . . . . . . 142

9.2 A part of the svara ontology showing all the svaras, variants of a
couple of svaras, and the relationships between them. . . . . . . . . . 143

9.3 Part of the raaga ontology showing Progression class and its relations
to other classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.4 Overview of our ontology showing Phrase and Gamaka classes with
their relationships. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9.5 Data Model extension to our ontology to express information ex-
tracted from audio analyses. . . . . . . . . . . . . . . . . . . . . . . . 148

9.6 Classes and relationships in the Taala ontology. . . . . . . . . . . . . 151
9.7 Classes and relationships in the Taala ontology. . . . . . . . . . . . . 152
9.8 Classes and relationships in the Taala ontology. . . . . . . . . . . . . 153
9.9 The Carnatic music ontology that subsumes Raaga, Taala, Form and

Performer ontologies to describe aspects of Carnatic music. . . . . . . 154

10.1 An example showing the CCG syntactic and semantic derivation of
‘John plays guitar’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

10.2 Distribution of no. of extractions from OIE systems for Carnatic mu-
sic shown along different aspects. For a given number of extractions
on x-axis, the y-axis shows the logarithmic count of the instances
within the aspect, which have at least those many extractions. . . . . 166



xxiv li of fige

10.3 Distribution of no. of extractions from OIE systems for Hindustani
music shown along different aspects. For a given number of extrac-
tions on x-axis, the y-axis shows the logarithmic count of the in-
stances within the aspect, which have at least those many extractions. 167

10.4 Results for rule-based concept assignment of entities identified in
Carnatic (top) and Hindustani (bottom) music. . . . . . . . . . . . . . 170

10.5 Results for bootstrapping-based concept assignment of entities iden-
tified in Carnatic music . . . . . . . . . . . . . . . . . . . . . . . . . . 172

10.6 Results for bootstrapping-based concept assignment of entities iden-
tified inHindustanimusic. The results for hindustani composerswere
not included due to space constraints. . . . . . . . . . . . . . . . . . . 173

10.7 Semantic relation extraction task: The number of valid relation types
marked for each concept, and the number of corresponding assertions
that include the entities in the domain. . . . . . . . . . . . . . . . . . 175

11.1 Results for the analysis of overlap between the two recommendation
systems. X-axis in both the figures denote the distance threshold be-
yond which two entities are considered unrelated. . . . . . . . . . . . 187

A.1 Impact of varying each parameter on the four peak detection meth-
ods. Y-axis indicates values of f-measure. and X-axis indicates label
and corresponding values for each parameter. . . . . . . . . . . . . . 200



List of Tables

1.1 Detailed statistics of the raaga dataset 1 (RD1). . . . . . . . . . . . . . 10

1.2 Details of the Raaga dataset 2 (RD2) with 40 raagas, each with 12
recordings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Details of the varṇaṁ dataset. . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Amore diverse dataset compared to the varnam dataset. This consists
of 45 recordings in 6 raagas performed by 24 unique singers encom-
passing 30 compositions. . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 The list of svarastānas used in Karṇāṭaka andHindustānīmusic, along
with the ratios shared with tonic. Note that the positions 3, 4, 10 and
11 are shared by two svarastānas each. . . . . . . . . . . . . . . . . . 22

3.1 Different datasets derived from CompMusic collections. . . . . . . . . 43

4.1 A summary of ontologies proposed so far in MIR domain. . . . . . . . 72

4.2 Continuation to table. 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Datasets published and interlinked as part of DBtune project as sum-
marized in Fazekas et al. (2010) . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Accuracies obtained in classification experiments conductedwith fea-
tures obtained from four groups of descriptors using different classifiers. 87

xxv



xxvi li of able

5.2 Results of feature selection on three-class combinations of all the rā-
gas in our music collection, using information gain and support vec-
tor machines. Ratio of total number of occurrences (abbreviated as
Occ.) and ratio of number of recordings in which features from a
given parameter are chosen at least once (abbreviated as Rec.), to the
total number of runs are shown for each parameter. Note that there
can be as many features from a parameter as there are number of
svaras for a given recording. Hence, the maximum value of Occ. ra-
tio is 5 (corresponding to 5 features selected per recording), while
that of Rec. ratio is 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Averages of accuracies obtained using different classifiers in the two
rāga classification experiments, using all the rāgas. The baseline cal-
culated using zeroR classifier lies at 0.33 in both experiments. . . . . . 94

5.4 Results of feature selection on sub-sampled sets of recordings in nC2

combinations of allied rāgas using information gain and support vec-
tor machines. Ratio of total number of occurrences (abbreviated as
Occ.) and ratio of number of recordings in which the parameter is
chosen at least once (abbreviated as Rec.), to the total number of runs
are shown for each parameter. . . . . . . . . . . . . . . . . . . . . . . 96

5.5 Accuracies obtained using different classifiers in the two rāga classi-
fication experiments, using just the allied rāga groups. The baseline
calculated using zeroR classifier lies at 0.50 in both experiments. . . . 96

6.1 Results of feature selection on sub-sampled sets of recordings in nC3

combinations of all rāgas using information gain and support vector
machines. Ratio of total number of occurrences (abbreviated as Occ.)
and ratio of number of recordings in which the parameter is chosen
at least once (abbreviated as Rec.), to the total number of runs are
shown for each parameter. . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Results of feature selection on sub-sampled sets of recordings in nC2

combinations of just the allied rāgas using information gain and sup-
port vector machines. Ratio of total number of occurrences (abbrevi-
ated as Occ.) and ratio of number of recordings in which the param-
eter is chosen at least once (abbreviated as Rec.), to the total number
of runs are shown for each parameter. . . . . . . . . . . . . . . . . . . 106

6.3 Accuracies obtained using different classifiers in the rāga classifica-
tion experiment with all the rāgas using histogram peak parametriza-
tion, and context-based pitch distributions. The baseline calculated
using zeroR classifier lies at 0.33 in both experiments. . . . . . . . . . 107



li of able xxvii

6.4 Accuracies obtained using different classifiers in the rāga classifica-
tion experiment with the allied rāga groups using histogram peak
parametrization and context-based pitch distributions. The baseline
calculated using zeroR classifier lies at 0.50 in both experiments. . . . 107

6.5 Accuracies obtained using different classifiers in the rāga classifica-
tion experiment with all the rāgas using histogram peak parametriza-
tion, and the improved context-based svara distributions. The base-
line accuracy calculated using zeroR classifier lies at 2.5%. . . . . . . . 112

6.6 Accuracies obtained by matching pitch distributions obtained using
different approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.1 Transition statistics for svaras discussed in the section. Each cell
gives the ratio of number of transitions made from the svara (cor-
responding to the row) to the number of transitions made to the svara. 120

8.1 Accuracies obtained using different classifiers in the rāga classifica-
tion task on the varnam dataset. The baseline accuracy calculated
using zeroR classifier lies at 14.29%. . . . . . . . . . . . . . . . . . . . 130

8.2 Accuracies obtained using different classifiers in the rāga classifica-
tion task on the kriti dataset. Note that there are no annotations avail-
able in this dataset, hence none is reported. The baseline accuracy
calculated using zeroR classifier lies at 16.67%. . . . . . . . . . . . . . 130

10.1 The number of sentences for each music, and the number of extrac-
tions obtained from the OIE systems. . . . . . . . . . . . . . . . . . . 162

10.2 The number of concepts in the ontologies for each music, and those
mapped from the assertions of the OIE systems. . . . . . . . . . . . . 169

10.3 The number of entities in the reference data for each music, and those
identified using the OIE systems. . . . . . . . . . . . . . . . . . . . . . 169

11.1 Details of the text-corpus taken from Wikipedia. . . . . . . . . . . . . 179
11.2 Topology of the graphs obtained on entity linking, before and after

the references to entities outside E are eliminated. Rows with ‘(I)’
denote the former. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

11.3 Top 15 characteristics ordered by their salience to different music
styles. Note that as Carnatic and Hindustani share a large portion
of musical terminology which are categorized into Carnatic music
on Wikipedia, we see many Carnatic music characteristics for Hin-
dustani music. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182



xxviii li of able

11.4 Results for rank-correlation between the two approaches, showing
the % of entities with positive and negative rank-correlation, along
with their mean and standard deviation. . . . . . . . . . . . . . . . . . 188

11.5 Proportions of the E1, E2 and E3 across all the music styles. . . . . . 188
11.6 Results of the subjective evaluation of the two recommendation sys-

tems. The first row of results show the % of query entities where
a particular recommender system is more favored. The second row
shows the % of query entities where more number of entities in the
corresponding recommendation list are marked as specifically rele-
vant to the query entity. . . . . . . . . . . . . . . . . . . . . . . . . . . 190

A.1 Range of values of each parameter over which grid search is per-
formed to obtain the best combination of parameters. . . . . . . . . . 199



Part I

Setting the stage

1





Chape 1
Introduction

“e main challenge is to gather musically relevant data of sufficient
quantity and quality to enable music information research that respects
the broad multi-modality of music.”

— Serra et al. (2013)

Music information research (MIR) is an interdisciplinary domain requiring co-
ordinated efforts between various fields of research including but not limited
to information technology, music theory, musicology, audio engineering, digi-
tal signal processing and cognitive science (Futrelle and Downie (2002)). So far,
majority of the work in this domain has been focused on analyses of audio-data,
placing a special emphasis on digital signal processing, machine learning and in-
formation retrieval that facilitate feature extraction and creation of data models,
aimed at addressing specific needs such as query by singing, structural analysis
and so on. However, music data is not limited to audio recordings and is mani-
fest across diverse modalities. The other equally important sources of music data
are: i) scores/symbolic notations, ii) music-context that includes metadata, lyrics,
artist biographical information and musicological resources, and iii) user-context
including data that helps in modeling user behavior and in personalization of var-
ious systems such as a recommendation engine (see ch. 2 in Serra et al., 2013). We
believe that music data available in these other modalities beyond audio music
recordings has not been exploited to a desirable extent.

There does exist a sizeable body of work that addresses different problems in
MIR domain putting forward hybrid approaches that feed on audio data, domain
knowledge, user behavior and folksonomies (see Celma, 2010, and the references
therein). However, the data sources under consideration remain islands of in-
formation in a vast majority of such approaches. We first explore the plausible
reasons for this situation, and then discuss what fundamental problems arise as

3
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a consequence. Data schemas are the most common means to structure data,
ranging from data stored in XML documents to relational databases. Often, such
schemas lack coherence even when comparing schemas of seemingly similar data
sources by virtue of their content. To some degree, this is expected as such
schemas are often driven by adhoc needs within an organization or a specific
application. They are clearly not intended to be coherent in their scope or mean-
ing. For instance, one schema may define a class of artists as people who play
an instrument or sing. Another schema might also include people who compose
music. Such differences are even more deeper in the case of music concepts. An-
other important reason for the status quo of the data sources is the way in which
they are deployed in hybrid approaches. Often the data models are trained using
the data sources separately from each other, and are only combined by weighing,
switching and cascading their predictions/results (Song et al. (2012)).

This leads to a fundamental issue. For instance, the conceptual description or in-
terpretation of a music concept for a specific need by itself is not usually the end
goal of information researchers. It forms a basis to build their data models, but
does not become a part of those models due to the aforementioned reasons. Con-
sequently it is lost, making it difficult to be reproducible/accessible for reuse by
other researchers and developers. This is mainly a result of the lack of semantics
in their data models. It limits their comprehensibility, and poses difficult chal-
lenges to their comparison or integration. Further, the cultural differences only
add more complexity to these already striking problems.

Advances in the domain of Semantic Web, and as a consequence in Knowledge
Representation subdomain of Artificial Intelligence have resulted in software in-
frastructure that can be used in addressing these aforementioned issues. Re-
searchers from Natural Language Processing and Bio-informatics communities
have taken advantage of these developmentswith reasonably good success (Stevens
et al., 2000; Fellbaum, 1998, are some examples). This thesis is a case-study of our
end-to-end efforts in building a multi-modal knowledge-base (KB) for the specific
case of Carnatic music. Through this, we hope to discover the problems involved
in its pragmatic implementation in the music domain and address a few during
the course.

We first discuss why this effort is important in sec. 1.1. Then in sec. 1.2, we present
a concrete set of problems we chose to address in order to make our goal a viable
one within the time constraints of this work. We then picture an overview of
our process in sec. 1.3 and the various datasets and repertoires that were used
during the course of this work in sec. 1.4. Finally, in sec. 1.5, we summarize our
contributions and in sec. 1.6, discuss how we organized rest of the thesis.
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1.1 Motivation

Our musical experiences are a combination of a variety of phenomena in our day-
to-day lives. In today’s connected world, such experiences have only multiplied.
Each such experience results in a data trace that leads us to understand more
about cultural and musical aspects of a community. These can include anything
from a gossip on a public forum about a music entity, to a scholarly treatment of
a music concept. Linking and integrating those data traces unleashes the latent
potential of their semantics.

Further, the world wide web in its current form has blurred the boundaries be-
tween data producers and consumers. A typical example is an e-commerce por-
tal. Vendors and customers in such portals both simultaneously play the roles of
data producers and consumers. Vendors put up a catalog which consumers use
to browse and make purchase decisions. On the other hand, the browsing and
buying patterns generated by consumers are used by vendors in optimizing their
offerings. This is a mutually rewarding data cycle. Other such examples include
social networks, media portals and so on. This fundamental behavior where the
erstwhile consumers actively engage with the services to produce more data, has
resulted in data of mammoth proportions, often openly accessible on the web.
Exploitation of such data in its various modalities becomes even more important
when seen in this context.

On the other hand, the cultural aspect of the music assumes great importance in
higher-level tasks such as judging the similarity between music entities and rec-
ommending new music (Serra (2011)). Analyses of audio music recordings can
only deliver us insights into the musical properties. The rest has to be gathered
from the aforementioned data traces that people generate in their musical expe-
riences. The information extracted from such different sources, including audio
music recordings, are often complementary in nature and mutually enrich their
value.

Therefore, there is an impending need for multi-modal KBs that have an immense
potential in many MIR-related higher level tasks. The objective of this work is to
present a case-study that discusses and documents our efforts in building a KB.
We have chosen Carnaticmusic for this case-study for two important reasons: i) It
is culturally very different from themusic cultures thatMIR community frequents
to. Therefore, from our understanding of this tradition, we believe it poses a set of
new challenges that will need solutions different from the state-of-the-art, ii) It is
one of the most thoroughly explored music tradition from a musicological point
of view. There exist compendiums andworks that span the last twomillennia, and
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it is an active contemporary form with scholarly conventions and music festivals
held throughout the year.

1.2 Problem statement

Keeping the viability of our goal in mind, we have constrained it to address the
following specific problems. Understanding some of these may require the reader
to go through the introduction to Carnatic music concepts in ch. 2 and/or the
introduction to semantic web in ch. 4.

• Extract a musically meaningful representation of svara intonation in Carnatic
music, analyzing audio music recordings.

Svaras in Carnatic music are analogous to, but quite different from notes
in western popular music. In this part of our work, we develop approaches
to model the svaras and obtain a representation out of which we can ex-
tract musically meaningful information. It is well known that a svara is not
a fixed frequency position, unlike a note. The continuous melodic move-
ments are integral to the identity of melodic atoms used in Indian art mu-
sic. Therefore, in order to better understand the nature of pitches used in a
recording, our data models need to go beyond studying intervals or steady
notes.

• Extract music concepts and the corresponding individual entities along with
relevant relations from natural language text.

Wemake use of the state-of-the-art Natural Language Programming (NLP)
techniques to identify musical concepts and their corresponding individ-
ual entities that find a mention in natural language text. Examples in-
clude Composer concept, in which Tyagaraja and Annamacharya are in-
dividual entities. We also extract the relations between them that are of
relevance. For instance, one such extraction can be Tyagaraja composed
Endaro Mahanubhavulu. Here, composed is a relation between a composer
and a composition. We exploit multiple semi-structured and unstructured
text resources available online, such as Wikipedia, Rasikas.org forum and
raaga listings on several music portals. The main challenge in this task is
the recall rate which is severely limited by the quantity of text available.
Therefore, our contribution is in adapting state-of-art concept and relation
extraction engines to a niche domain such as a specific music tradition.

• Build an ontology to structure information extracted from audio music record-
ings and natural language text.
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Figure 1.1: Overview of our work. Notice that the following modules - Align-
ment, Motif detection and Rhythmic analyses are not part of the work reported
in this thesis. They are part of CompMusic project. Also, the Open Information
Extractions systems that we use are neither part of the thesis, nor the project.

Ontology is a formal specification of a data schema that makes the seman-
tics of the schema explicit. To our knowledge, there are no ontologies de-
veloped for Indian art music so far. The formalization of music concepts in
this tradition, which is contrastingly different compared to western popu-
lar/classical music, pose challenges in designing suitable patterns. There-
fore, while reusing several existing ontologies, we also define new vocabu-
laries for modeling the semantics of various Carnatic music concepts. This
is later used in building the KB, thus publishing the information extracted
so far, while simultaneously enriching it.

1.3 An overview of the proposed approa

Fig. 1.1 shows a complete overview of the work reported in this thesis. We ex-
plain the flow presented in the figure in a bottom-up manner. Remember that the
end goal of the thesis is creation of a multi-modal KB. For this, we build ontolo-
gies necessary for structuring information that results from different processes.
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These processes include the three blocks marked as i) Information extraction, ii)
Intonation analysis and iii) Other analyses. The modules in the last block, viz.,
Motif detection and Rhythmic analyses are not part of our work, but are carried
out as part of the CompMusic project (Serra (2011))1. The information extracted
using those processes is to be published to the KB, and hence are an important
consideration in building ontologies.

In the first block, we take in a set of text documents and convert them to struc-
tured set of facts published using the ontologies. This is done using an Open In-
formation Extraction system to identify concepts and relations in the text, which
are further filtered using an adaptation procedure put in place specifically for this
domain. In the second block, we analyze the audio music recordings in conjunc-
tion with corresponding (approximate) notation to obtain intonation description
of constituent svaras. In the final step, this information is published using the
ontologies and is merged with the one obtained using the processes in the first
block.

1.4 Datasets

CompMusic corpora

Throughout the duration of the CompMusic project, one of the major efforts has
been to improve the quantity and quality of the data collection curated for re-
search. This corpora covers five distinct music traditions: Carnatic and Hindus-
tani from India, Beijing opera from China, Makam music of Turkey and Arab-
andalusian music from Maghreb region. It includes the metadata, audio record-
ings and various features and data extracted from the audio such as melody, tonic,
onsets and so on. All the metadata has been uploaded to MusicBrainz coordinat-
ing the efforts to make sure that their schema supports these music traditions.

Further, through regular systematic checks, the data is verified for wrong labels
and other errors. Except the audio, all the data is available online through a nav-
igation portal, Dunya (Porter et al. (2013))2 and also through an API attached to
the portal3. Srinivasamurthy et al. (2014b) gives a thorough account of the efforts
that have gone into the creation, maintenance and dissemination of this corpora.
The reference also explains how this corpora compares with data available on
commercial data portals in terms of size and completeness. All the datasets used

1http://compmusic.upf.edu
2http://dunya.compmusic.upf.edu
3https://github.com/MTG/pycompmusic
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Recordings
3524

Concerts
328

Instruments
13

Artists
437

Raagas
249

Taalas
22

Compositions
1612

Forms
21

10900
2771

3554
1066860

1466

Figure 1.2: Statistics of the Carnatic corpus, which is a part of CompMusic cor-
pora. The numbers on connecting arrows indicate the relations between corre-
sponding music concepts as annotated on MusicBrainz.

in this work for svara intonation description are drawn from the Carnatic cor-
pus. So far, this is the largest collection available for research on Carnatic music.
Fig. 1.2 gives an idea of its size.

Raaga dataset 1

During the course of this thesis, we have drawn several datasets from the Carnatic
corpus each meeting a certain set criteria. This criteria depends on both the task
at hand and the size of the corpus at that point in time. Raaga dataset 1 is one of
the first datasets drawn from the Carnatic corpus. We chose only those rāgas for
which there are at least 5 recordings. Table 1.1 gives the complete details of the
dataset. We use this dataset in the evaluation of approaches developed early in
the thesis (ch. 5).
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Rāga Recordings Duration (minutes) Lead artists Concerts
Ābhōgi 5 104 4 5
Ānandabhairavi 10 85 10 10
Asāvēri 14 134 13 12
Aṭāṇa 6 42 6 6
Bēgaḍa 10 74 8 8
Behāg 8 47 7 8
Bhairavi 18 411 15 17
Bilahari 7 107 6 6
Dēvagāndhāri 6 42 6 6
Dēvamanōhari 5 53 4 4
Dhanāśri 7 8 2 2
Dhanyāsi 8 141 6 8
Dhīraśankarābharanaṁ 16 367 10 15
Haṁsadhvani 11 95 10 11
Hari kāṁbhōji 8 115 8 8
Hindōlaṁ 8 113 6 6
Jaunpuri 5 17 5 5
Kāpi 7 31 6 6
Kalyāṇi 14 303 11 13
Kamās 19 230 13 13
Kāmbhōji 11 265 10 11
Karaharapriya 9 195 8 8
Kēdāragauḷa 5 58 5 5
Madhyamāvati 10 100 10 9
Mānji 5 49 5 5
Mōhanaṁ 8 127 8 8
Mukhāri 8 81 8 8
Nagasvarāḷi 5 28 5 5
Nāṭakuranji 7 88 6 7
Pantuvarāḷi 17 257 16 15
Pūrvīkalyāṇi 9 177 7 9
Ranjani 5 74 4 4
Rītigaula 5 70 5 5
Sahāna 7 103 6 6
Sauraṣṭraṁ 40 44 9 9
Senchuruṭṭi 7 28 6 6
Ṣanmukhapriya 5 96 5 4
Śrīranjani 5 47 5 5
Śudhdha sāvēri 6 96 6 6
Sindhu bhairavi 6 28 5 5
Suraṭi 9 78 8 9
Tōḍi 27 841 19 21
Vāchaspati 5 46 1 1
Vasanta 6 42 5 5
Yadukula kāṁbhōji 5 54 5 5
45 rāgas 424 5617 38 62

Table 1.1: Detailed statistics of the raaga dataset 1 (RD1).



1.4. daae 11

Raaga dataset 2

This dataset is drawn post consolidation of the Carnatic corpus. To our knowl-
edge, it is by far the largest Carnatic music dataset used for research. It is first
used in an evaluation by Gulati et al. (2016b). We use this dataset for most of
the evaluations performed towards the end of the thesis (ch. 6). It consists of 40
raagas, each with 12 recordings. These recordings together account for 65 vocal
artists and 311 compositions in different forms such as varnam, kriti, keertana
and so on. Table. 1.2 gives the list of all raagas in the dataset, total duration of
songs, number of unique lead artists and concerts per raaga. More details of this
dataset are available online4.

Varnam dataset

Varṇaṁ5 is a compositional form in Carnatic music. They are composed in dif-
ferent rāgas (melodic framework) and tālas (rhythmic framework). Though they
are lyrical in nature, the fundamental emphasis lies in a thorough exploration of
the melodic nuances of the rāga in which it is composed. Hence, varṇaṁs are in-
dispensable in an artist’s repertoire of compositions. They are an invariable part
of the Carnatic music curriculum, and help students to perceive the nuances of a
rāga in its entirety. The coverage of the properties of svaras and gamakas covered
in a varṇaṁ within a given rāga is quite exhaustive. This makes the varṇaṁs in a
particular rāga a good source for many of the characteristic phrases of the rāga.

We recorded 28 varṇaṁs in 7 rāgas sung by 5 young professional singers each of
whom received training for more than 15 years. Tomake sure we have clean pitch
contours for the analysis, all the varṇaṁs are recorded without accompanying
instruments, except the drone. The structure of varṇaṁ allows to attribute each
part shown in Figure 7.1 to a select few taala cycles depending on the speed. We
take advantage of this information to semi-automate the synchronization of the
notation and the pitch-contour of a given varṇaṁ. For this, we annotated all
the recordings with tāla cycles. Also, in order to further minimize the manual
intervention in using the annotations, all the varṇaṁs are chosen from the same
tāla (adi tāla, the most popular one (Viswanathan and Allen, 2004)). Table. 1.3
gives the details of the varṇaṁ collection recorded for this analysis. This dataset
is made publicly accessible for download6.

4http://compmusic.upf.edu/node/328
5This Sanskrit word literally means color, and varṇaṁs in Carnatic music are said to portray

the colors of a rāga
6http://compmusic.upf.edu/carnatic-varnam-dataset
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Rāga Duration (hours) Lead artists Concerts
Ṣanmukhapriya 3.05 12 12
Kāpi 1.19 9 12
Bhairavi 5.51 9 12
Madhyamāvati 3.45 12 12
Bilahari 3.37 11 12
Mōhanaṁ 4.71 8 12
Sencuruṭṭi 0.92 10 12
Śrīranjani 1.93 12 12
Rītigauḷa 3.23 11 12
Hussēnī 1.25 10 12
Dhanyāsi 3.37 8 12
Aṭāna 1.67 11 12
Behāg 1.26 10 12
Suraṭi 2.3 11 12
Kāmavardani 3.51 11 12
Mukhāri 3.3 12 12
Sindhubhairavi 1.01 10 12
Sahānā 2.63 11 12
Kānaḍa 2.82 9 12
Māyāmāḷavagauḷa 2.58 11 12
Nāṭa 1.74 11 12
Śankarābharaṇaṁ 4.76 8 12
Sāvēri 2.97 10 12
Kamās 2.39 8 12
Tōḍi 7.23 9 12
Bēgaḍa 2.98 9 12
Harikāmbhōji 3.8 9 12
Śrī 1.51 10 12
Kalyāṇi 5.42 9 12
Sāma 1.16 10 12
Nāṭakurinji 1.8 10 12
Pūrvīkaḷyāṇi 5.87 9 12
Yadukula kāṁbōji 2.13 11 12
Dēvagāndhāri 2.27 11 12
Kēdāragauḷa 4.08 11 11
Ānandabhairavi 1.84 9 12
Gauḷa 2.05 6 11
Varāḷi 3.92 10 12
Kāṁbhōji 6.2 9 12
Karaharapriya 7.28 11 12

Table 1.2: Details of the Raaga dataset 2 (RD2)with 40 raagas, eachwith 12 record-
ings.
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Rāga #Recs Duration (min) #Taala annotations
Ābhōgi 5 29 158
Bēgaḍa 3 27 147
Kalyāṇi 4 27 143
Mōhanaṁ 4 24 158
Sahāna 4 28 156
Sāvēri 5 36 254
Śrī 3 26 138
Total 28 197 1154

Table 1.3: Details of the varṇaṁ dataset.

Kriti dataset

Varnam dataset allowed us to gain valuable insights into svara intonation. How-
ever, it comes with a limitation that all the performances of a given raaga are of
the same composition. Therefore, the representation computed for a svara can be
specific to either the raaga or the composition. In order to eliminate this ambi-
guity and cross-verify the learnings from varnam dataset, we have put a similar
effort in building a dataset with the most performed musical form in Carnatic
music - kriti.

A kriti differs from varnam in many ways, starting from their preferred time slot
during the course of concert and their intent. Unlike a varnam exposition where
patterns sung with svara syllables are pre-composed, kriti often accommodates
improvised patterns with svara syllables. Kriti also makes room for a certain kind
of improvisation on lyrical phrases called Neraval where the performer brings
out subtle variations in a selected line from a composition (see ch. 2). Such dif-
ferences call for another dataset that can potentially offer more insights on svara
intonation.

Table. 1.4 gives the details of the kriti dataset. This dataset is a collection of com-
mercial audio recordings. Hence, unlike varnam dataset, the recordings can not
be put in the public domain. Hence, we made the predominant melody avail-
able. The notations of these Kritis are taken from several books including Rao
(1997b,a, 1995), and are manually transformed to machine-readable format. Like
the varnam dataset, this dataset is publicly accessible as well7

7http://compmusic.upf.edu/node/314.

http://compmusic.upf.edu/node/314
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Raaga #Comp. #Singer #Rec.
Anandabhairavi 3 5 7
Atana 4 5 5
Bhairavi 5 7 8
Devagandhari 5 5 5
Kalyani 4 4 5
Todi 9 15 15
Total 30 24 45

Table 1.4: A more diverse dataset compared to the varnam dataset. This consists
of 45 recordings in 6 raagas performed by 24 unique singers encompassing 30
compositions.

1.5 Summary of contributions

Following are the main contributions of this thesis.

• Novel approaches to svara intonation description.

• Ontologies for various Carnatic music concepts, importantly svara, raaga
and melodic phrases.

• A multi-modal KB, and identifying the limitations and challenges in the
process of building it.

• A thorough comparison of raaga classification approaches based on pitch
histograms.

• Machine readable varnam and kriti datasets.

And following are the other contributions stemming from our work, which we
believe need further research.

• A novel semantic distance measure to be used with linked open data.

• A set of guidelines to improve the recall of Open IE systems in domains
with scarce data.

• An approach to bring out the salient aspects of different music cultures
analyzing natural language text.
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1.6 esis organization

We divide the thesis into three parts: I. Setting the stage, II. Audio music analysis
for intonation description, and III. A multi-modal KB of Carnatic music. In the
first part (the current one), we introduce the basics of Carnatic music that form
a necessary background to understand the contents herein. Then we survey the
computational work related to melodic framework in Indian art music. As part of
this, we present a thorough evaluation of histogram-based approaches for raaga
classification, on a common dataset derived from an earlier snapshot CompMusic
Carnatic corpus. We then introduce the semantic web concepts and present a
survey of work concerning ontologies and linked data in the music domain.

In the second part, we present four approaches, each building on observations
from the previous one, for intonation description of svaras in Carnatic music.
In the third part, we first discuss the ontologies developed for Carnatic music
concepts. We then present and document the details of the KB. We also discuss
an approach to extract salient features of a music tradition using natural language
text to distinguish it from others, and propose a novel semantic distance measure
that can take advantage of this knowledge in providing better recommendations.





Chape 2
Indian art music

“ough one devote himself tomany teachers, hemust extract the essence.
As the bee from flowers.”

— Kapila

This chapter is a brief primer on the music theory necessary to understand this
work and its context. We begin with a succinct introduction to the social and
cultural context of the Indian art music to help the reader in sensing the ecosys-
tem this music thrives in. It is followed by a discussion on the fundamental mu-
sic concepts and the relevant terminology. We then go over the concert format,
which helps us understand the relevance of those musical concepts in the actual
performance context. This chapter is not intended to be an exhaustive source
of information about the music traditions we discuss, rather we limit ourselves
to the scope of our work. We do point the reader to several musicological re-
sources to gain further insights. Also, we defer some of the relevant discussion
on a few aspects to chapter 9, where we present the knowledge representations
we developed for this music.

2.1 Geographical, social and cultural context

There are two prominent art-music traditions in the Indian subcontinent: Car-
natic in the Indian peninsular andHindustānī in north India, Pakistan and Bangladesh.
Both are actively practiced and have a very relevant place in the current societal
and cultural context. They are taught orally in a “guru-shishya parampara”, which
is a lineage of teachers and students. Typically a student trains from as early as
2-3 years for at least about two decades before they are considered ready to per-
form. The role of notation in these music traditions is limited to a memory aid in

17
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recalling the melody and lyrics. It is not meant to represent the music to be repro-
duced as is. This, combined with oral transmission of the heritage, has resulted
in several “banis” or “gharanas”1 which have recognizable stylistic differences in
how they interpret a composition, a melody or a musical concept.

Both the music traditions share many musical concepts at a higher level as they
have evolved together throughout much of the past. Historically, the northern
part of the subcontinent has witnessed several foreign invasions which had a
significant impact on their culture - music in particular. Of those, Persian cul-
ture of the Moghuls have had arguably the most visible and lasting influences -
ranging from instruments and compositions to the music itself (Kaul (2007)). On
the contrary, the Indian peninsular has been relatively untouched but for the in-
ternational trade. As a consequence, today there are considerable differences in
these two music traditions (Narmada (2001) compares how and in what manner
the melodic framework differs in Carnatic and Hindustani music).

Indian art music and dance have been under the patronage of kings, temples, za-
mindars2 and politicians until the early years of democracy (Sriram (2007)). Ex-
cept the temples, all of them are now replaced by corporate funds, crowd-funded
organizations and paid concerts. Both the art forms have been greatly influenced
and inspired by the Indian philosophy, mythology and religious thought besides
the life of the people. They are intertwined with people’s lives in their many ac-
tivities such as weddings, religious rituals and various celebrations (see fig. 2.1).
Their telling influence can also be felt in the contemporary music forms such as
Film music and dance (e.g: Bollywood).

Numerous annual events and festivals through out the year are testimonials to
a flourishing ecosystem of Indian art music. These also include scholarly con-
ventions that engage musicians and scholars in the community on a common
platform3. We have took part in some of them attempting to further our under-
standing of this music.

2.2 Music concepts and terminology

While there are several treatises in the last two thousand years that are con-
sidered land mark references for musical aspects in Indian art music, Dikshitar
et al. (1904) is the one that is closest to discussing the concepts as they are prac-

1Loose translation is schools of music
2Indian aristocrats, who held huge tracts of land which were lent to other people.
3One example for such an event is Margazhi festival also known as Madras Music Season -

http://en.wikipedia.org/wiki/Madras_Music_Season
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Figure 2.1: This is a typical ensemble in south Indian Hindu weddings. The two
artists in the center play Nadaswaram, a reed instrument while the other two
players play Thavil, a rhythm instrument.

ticed in the contemporary Carnatic music. Though most of our definitions and
discussion of music concepts are largely in line with the aforementioned com-
pendium, our understanding of the music is more influenced by the contempo-
rary musicologists and musicians. In the context of this thesis, Jairazbhoy (1971);
Shankar (1983); Bhagyalekshmy (1990); Sambamoorthy (1998); Viswanathan and
Allen (2004); Janakiraman (2008) are few of the important musicological refer-
ences. The concepts and terminology used throughout this work refer to Car-
natic music unless mentioned otherwise. Wherever necessary, the differences
with Hindustani music would be explicitly stated. We use the term Indian art
music to refer to both.

Melody

Raga

Rāga is the melodic framework of the Indian art music. There are hundreds of
different raagas in use in the contemporary Indian art music. Though literature
in the past drew parallels between raaga and scale to help the reader understand
the former, it must be clarified that scale is just one structural component of raaga.
Moreover from amusical point of view, it is not the primary differentiating aspect
between raagas. Each raaga is characterized by a set of properties which are
largely a result of the functional roles different svaras play, melodic phrases that
carry the identity of the raaga and the organic growth of compositions/repertoire
that enrich such vocabulary of melodic phrases.
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Mātanga, in his epic treatise Br̥haddēśī, defines rāga as “that which colors the
mind of good through a specific svara (defined below) and varṇa (literally col-
or/shade) or through a type of dhvani (sound)” (Sharma and Vatsayan (1992)).
Each rāga therefore, can be thought of as a musical entity that leaves an im-
pression on the minds of listeners which is shaped by the properties of its sub-
structures. Taking cues from the past computational works concerning raagas
(mainly Chordia and Rae (2007) and Krishnaswamy (2004)), we define raaga as
such - “Rāga is a collection of melodic atoms and a technique for developing
them. Thesemelodic atoms are sequences of svaras that are inflected with various
micro-pitch alterations and articulated with expressive sense of timing. Longer
musical phrases are built by knitting these melodic atoms together ”. Notice that
one must comprehend that rāga is more than a sequence of discrete svaras for
understanding it, especially so in developing a computational representation for
analytical purposes.

There are several classification systems of raagas based on varied criteria ranging
from objective properties of its substructures (eg: the number of svaras) to sub-
jective or cultural notions (eg: part of the day the raaga is intended for). In ch. 9,
we go over many such classifications as we attempt to represent such knowl-
edge in an ontology. Here however, we go over two types of classifications in
the interest of comprehensibility of this thesis. Remember that we referred to
the organic growth of a raaga’s repertoire as one of most important aspects in
defining a raaga’s identity. There are raagas which have been around for a long
time, and there are newer raagas which have been created/revived by recent com-
posers. Musicians and scholars differentiate them as phraseology-based raagas
and scale-based raagas respectively (Krishna and Ishwar (2012)). The latter do
not often posses a strong identity but for their scale structure. Therefore, most of
the sung music is based on the former class of raagas. We have taken measures
to ensure that the audio music collections used in our work reflect this. Another
classification of raagas calls a set of raagas sharing the same set of svaras as al-
lied raagas. Note that the musical characteristics of raagas in a given allied group
differ owing to their phraseology and properties of svaras.

Svara

Wedefined raaga as a collection of melodic atoms. Svaras and gamakas (discussed
in a short while) are inseparable constituents that togethermake up thesemelodic
atoms. It is common to find analogies between svara in Indian art music and note
in western classical music. However, much like the analogy between raaga and
scale, this obscures the actual purpose of svara. A note can be understood as
a pitch-class, which is a set of points, each an octave distant from its immediate
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successor and predecessor on the frequency spectrum. A svara on the other hand,
manifests itself as a region on the frequency spectrum than a point, the extent
of which depends mainly on its immediate neighbors in a given raaga. Their
identity as a region rather than a point arises due to the fact that svaras are sung
inseparably with gamakas.

There are seven symbols used in Indian art music for svaras - Sa, Ri, Ga, Ma, Pa,
Da, Ni. A svara can have two or three variants called svarasthanas, which liter-
ally mean locations of the svara. For example, Ma has two variants Ma1, and
Ma2. In a given raaga, each svara in it assumes one such location4. Table. 2.1
gives the list of svarastānas with their Karṇāṭaka and Hindustānī names and the
ratios they share with tonic (Shankar (1983)). Although there are 16 svarastānas
in all, 4 of them share ratios with others (In the Table. 2.1, the svarastānas sharing
the ratios are indicated with same Position value). Tonic frequency is chosen ac-
cording to the singer’s comfort, and all the accompanying instruments are tuned
accordingly. Note that the transposition of a set of svaras, i.e., shifting all of them
linearly by a given interval, do not change the rāga. But making another svara
Sa can result in a different rāga.

Gamaka

Given a svara, a rapid oscillatory movement about it is one of the several forms
of movements, which are together called as gamakas. Another form of gamaka
involves making a sliding movement from one svara to another. There are a num-
ber of such movements discussed in musicological texts (Dikshitar et al. (1904)).
Gamakas bear a tremendous influence on how a tune is perceived, and eventu-
ally on the identity of the raaga itself. They are often considered the soul of these
art-music traditions (Krishna and Ishwar (2012)). The melodic shape and the ex-
tent of gamakas sung with svaras determine the identity of melodic atoms that
constitute a raaga.

Though gamakas are used in both Carnatic and Hindustānī, the pattern of usage
is very distinct. Besides gamakas, there are alankāras (literally ornamentations)
which are patterns of svara sequences which beautify and enhance the listening
experience. On this note, we would like to emphasize that gamakas are not just
decorative patterns or embellishments (whereas alankāras are), they are very es-
sential to the definition of rāga. Krishna and Ishwar (2012) discuss various man-
ifestations of the most important gamaka in Carnatic music, called Kaṁpita.

4Hence, svara and svarastāna are normally used interchangeably in this article, as elsewhere,
except when the distinction is necessary.
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Symbol Position Ratio Karṇāṭaka/Hindustānī name
Sa 1 1 Ṣaḍjama
R1 2 16/15 Śuddha/Kōmal Riṣabha
R2 3 9/8 Chatuśr̥ti/Tīvra Riṣabha
G1 3 9/8 Śuddha Gāṇdhāra
G2 4 6/5 Sādāraṇa/Kōmal Gāṇdhāra
R3 4 6/5 Ṣaṭśr̥ti Riṣabha
G3 5 5/4 Aṇtara/Tīvra Gāṇdhāra
M1 6 4/3 Śuddha/Kōmal Madhyama
M2 7 64/45 Prati/Tīvra Madhyama
Pa 8 3/2 Pañchama
D1 9 8/5 Śuddha/Kōmal Daivata
D2 10 5/3 Chatuśr̥ti/Tīvra Daivata
N1 10 5/3 Śuddha Niṣāda
N2 11 16/9 Kaisiki/Kōmal Niṣāda
D3 11 16/9 Ṣaṭśr̥ti Daivata
N3 12 15/8 Kākali/Tīvra Niṣāda

Table 2.1: The list of svarastānas used in Karṇāṭaka and Hindustānī music, along
with the ratios sharedwith tonic. Note that the positions 3, 4, 10 and 11 are shared
by two svarastānas each.

Unlike several other music traditions where music notation is a crucial source
of information during learning as well as performing, notation is very sparingly
used. Indeed, it is considered just a memory aid. One of the multitude of possible
reasons can be the difficulty in notating gamakas, owing to the complexity of
movements.

Melodic phrases

It is often noted by musicians and musicologists that a rāga can only be learned
by getting familiar with several compositions in it. Any phraseology-based rāga
is endowed with a generous repertoire of characteristic phrases, each of which
encapsulates its properties. These phrases are known by the names prayogas and
svara sancharas in Carnatic and pakads in Hindustani. Typically in a concert, the
artist starts with singing these phrases. They are also the main clues for listeners
to identify rāga. This pool of phrases for a rāga keeps evolving over time, often
taken from landmark compositions in that rāga.
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Rhythm

Taala in Carnatic music, is one of the highly developed rhythmic frameworks
around the world. The most typical representation of a taala in musicological
texts shows its angas (literally parts). There are three angas5 laghu (I), drutam (O),
anudrutam (U). The time-measures of the latter two are 2 and 1 akshara (syllable)
respectively. The time-measure corresponding to a laghu depends on the jaati
(literally class) of corresponding taala, which can be one of the five that makes it
3, 4, 5, 7 or 9 aksharas long. Suppose we are given a taala with an anga structure
of I3UO, where the subscript 3 on I indicates the jaati of the taala, and conse-
quently of the laghu. The total number of aksharas in this taala can be counted
as 3+1+2. In theory, there are seven basic taala classes knows together as suladi
sapta taalas, corresponding to the severn basic templates of anga structures (Eg:
IOI, OI, IUO etc). These, in conjunction with the five jaatis of laghu give 35 taalas
in that category. On top of this, there is a layer that determines the gati/nade (lit-
erally gait) of the taala, which takes one of the five levels that divide each akshara
into 3, 4, 5, 7 and 9 minor units. Therefore, the 35 taalas in conjunction with dif-
ferent gatis/nades result in 175 taalas. There are other taalas as well, which have
origins from folk music and fall outside this structure. Chapu taalas are exam-
ples of these. Srinivasamurthy et al. (2014a) discusses Carnatic taala structure
in a detailed manner with an emphasis on exploring them using computational
approaches. Clayton (2000) gives a thorough account of Hindustani taalas.

Forms

Broadly, forms in Indian art music are classified into two categories: composi-
tional and improvisational forms. However, they can also be categorized based
on the characteristics of lyrical content and/or musical properties. Though there
exist several forms and corresponding classification schemes historically, it suf-
fices to present a subset of forms that are currently practiced in Carnatic music
in order to convey the overall picture.

There are various compositional forms with differing musical content and the
intended purpose within the social/musical context: geetham, varnam, padam,
javali, swarajati, kirtana, krti, and thillana etc. There are several classification
schemes of which we discuss a few. For a more complete list of forms and their
classifications, the reader may refer to Janakiraman (2008); Shankar (1983). One
such classification scheme distinguishes vocal, instrumental and dance forms,
with a possibility that several forms can be simultaneously classified to more

5There are six historically, but the other three are very seldom used in contemporary art music.
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than one category. Another classification scheme distinguishes pure and applied
music. The forms which emphasize the melodic aspects to portray the rāga are
classified under pure music, whereas compositions used for a specific purpose
(eg: thillana which is often used in classical dance forms) are classified under ap-
plied music. Another classification scheme divides them into abhyasa gana and
sabha gana. The forms intended for learning technicalities of the music (such
as geetams, varnams, various svara exercises) are classified under abhyasa gana.
The forms which are intended for performance are classified under sabha gana.

There are four kinds of improvisational forms in Carnaticmusic: alapana, taanam,
neraval and kalpana-svara. Alapana is an unmetered, free form of improvisation
to elaborate on properties of the rāga. It is sung with nonsensical syllables such
as vowels and does not contain lyrics. Taanam is a metered form of improvisation
sung with syllables such as tom, nam, tam, anantam and namtam, but it is usually
unaccompanied by percussion instruments. For neraval, the artist picks up a line
from the composition, and sings it with variousmelodic variations allowedwithin
the rāga, subject to rhythmic constraints. The kalpana-svara is a form where the
artist sings solfege in groups of varying lengths of rhythmic cycles, which usually
end on a line chosen from a composition. Rhythmic accompaniment is allowed
in both neraval and kalpana-svara.

2.3 Kuteri: the concert format

Indian art music is heterophonic in nature and is characterized by elaborate im-
provisations that are often interspersed with composed bits of a song. A typical
Carnatic music concert has a lead artist, a violinist (melodic accompanist), a mri-
dangam player (rhythmic accompanist), a ghatam player and a kanjira player
(supporting rhythmic accompanists), and a tanpura player (drone). See Fig. 2.2.

The violinist often closely imitates the lead artist with a lag of few milliseconds,
improvising on it as s/he finds fit. The role of rhythmic accompaniment is to
enhance and accentuate the melodic presentation. One major difference between
Carnatic and Hindustani concert format is that, the rhythmic accompanists in
Carnatic music are free from the duty of keeping the time for the lead artist, while
in Hindustani it is their primary role. The tanpura player strums the strings of
the instrument producing frequencies of tonic and fourth/fifth and their many
harmonics. This is used as the melodic reference for the performance.

The concert can last anywhere between 2-4 hours. There is no strict standard as
such for a lead artist to conduct a concert. However, one that was popularized by
Ariyakudi Ramajuna Iyengar during the 1970s has become a relatively dominant
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Figure 2.2: A typical ensemble for a Carnatic music concert. From left to
right are mridangam player (the main rhythmic accompaniment), kanjira player
(co-rhythmic accompaniment), lead vocalist, tanpura player (provides drone),
ghatam player (co-rhythmic accompaniment) and violin player (melodic accom-
paniment).

choice in the current years (Krishna (2013)). In this format, the concert starts
with a varnam, which is usually sung as it was composed. It is followed by a
few kritis and keertanas, performed with short bursts of improvisation such as
alapana and kalpana-svara, within each song. The main piece of the concert is
what is known as a Raagam-Taanam-Pallavi (RTP). In this, the artist sings an
elaborate alapana and taanam in a raaga of her/his choice, and performs a pallavi
(resembling neraval) using a lyrical line from an existing composition in that
raaga. The violinist also gets her share of time in this piece alongside the lead
artist. The RTP is followed by Tani-avaratanam which is when the rhythmic
accompanists showcase their improvisatory skills.

The lead artist typically communicates her/his choice of compositions and the
concert structure beforehand with the accompanists. It is common that the artists
do not practice together before the concert. Usual venues for the concerts include
renowned music sabhas, hindu temples, corporate, social and cultural events, and
small gatherings of neighborhoods. Of these, sabhas are community-funded not
for profit organizations and more importantly, contribute to major chunk of the
activity.
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2.4 Summary

The computational study of Carnatic music offers a number of problems that re-
quire new research approaches. Its instruments emphasize sonic characteristics
that are quite distinct and not well understood. The concepts of Raaga and Taala
are completely different from the western concepts used to describe melody and
rhythm. Their music scores serve a different purpose than the ones of western
music. The tight musical and sonic coupling between the singing voice, the other
melodic instruments and the percussion accompaniment within a piece, requires
going beyond the modular approaches commonly used in music information re-
search (MIR). The tight communication established in concerts between perform-
ers and audience offer great opportunities to study issues of social cognition.
The study of the lyrics of the songs is also essential to understand the rhythmic,
melodic and timbre aspects of the Carnatic music.



Chape 3
A review of past research

concerning raagas in Indian art
music

There is an abundance of musicological resources that thoroughly discuss the
melodic and rhythmic concepts in Indian art music (see Dikshitar et al., 1904;
Sambamoorthy, 1998; Bagchee, 1998; Clayton, 2000; Narmada, 2001; Viswanathan
and Allen, 2004; Ramanathan, 2004, and the references therein). However, only
a few which approach from a computational perspective are available. In this
chapter, we present a survey of scientific literature that concern melodic frame-
work in Indian art music traditions, with a specific emphasis on work related to
Carnatic music.

In sec. 3.1, we present computational and analytical approaches proposed to un-
derstand different characteristics of the raaga framework, categorizing thembased
on what aspects of the melodic framework they pursue. Of these, one that gar-
nered more attention is classification of raagas, arguably the most relevant task
seen from an application perspective. Therefore, we have put additional effort in
surveying work related to this. In sec. 3.2, we discuss the relevance of this task
in the practical context, and discuss how people with varying levels of exposure
to this music identify raagas. This helps us understand the relevance of different
characteristics of raagas in their classification. We then consolidate approaches
that are based on various features extracted from pitch-distributions in sec. 3.3.
In the next section, we present our evaluation of these approaches on a common
dataset to understand better their strengths and drawbacks. Finally, we sum-
marize the chapter by presenting our understanding of the state-of-the-art, and
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outlining few potential ways forward.

3.1 A categorical overview of the past work

Different aspects of raagas which interested the music information research com-
munity include validation of microtonal intervals, tuning and svara positions,
identifying raaga-specific patterns, perception of emotion, and the automatic clas-
sification of raagas. In this section, we summarize past work concerning these
with an emphasis on work related to understanding raagas through their svaras.

Microtonal intervals

The topic of positions of svaras and their relation to shrutis has been a matter of
intense debate among musicologists and musicians in the last millennium. The
term shruti is overloaded with several interpretations of musicologists trying to
understand and fit it into their contemporary systems of music. Over the last
century however, there is a growing consensus that the purpose of shrutis varied
much since the time they are first defined ((Read Ramanathan, 1981; Rao, 2004;
Meer and Rao, 2009, for different interpretations of sruti historically for the past
few hundred years, and their relevance to contemporary art music)).

However, the long-standing debate has not been settled completely yet. Some of
the important questions that were addressed in this are: i) How does one define
shruti? ii) Do shrutis form a basis for svara positions in contemporary music? iv)
Are shrutis still relevant? Since the advances in signal processing, researchers
have been exploring ways to get answers to these through an objective and qual-
itative analysis of the audio music content. We summarize some of the represen-
tative portions of the work here and the stand point they assume by the virtue of
their findings and/or arguments.

Ramanathan (1981) has carried out an extensive study of the musicological liter-
ature concerning sruti spanning the last two millennia. In his work, the author
quotes musicologists from various centuries to clarify each of their interpreta-
tions of the term shruti. He clarifies that there are at least two distinct interpre-
tations prevalent for shruti at various periods of time. One of them, tracing back
to Natyashastra (Rangacharya, 2010, is an English translation of the magnus opus
on theater arts originally written in Sanskrit), treats shruti as a unit that is used
in defining intervals of varying sizes between svaras. The other interpretation
which he quotes from Naradiya Siksha, another magnus opus on music which
predates Natyashastra, treats shruti as a musical concept that refers to the flexible
yet distinct intonation of svaras in different modes of music. He exemplifies a few
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common pitfalls scholars and researchers often are unaware of in understanding
shruti (such as the legacy names of svaras, for example chatushurti rishaba, that
can be misleading). He also goes on to explain why the ancient interpretations
are not relevant to today’s practice.

Rao (2004); Meer and Rao (2009); Rao and Wim van der Meer (2010) extend this
work and defend the latter interpretation to be the most relevant to the contem-
porary music. They substantiate this by juxtaposing the analyses of audio sam-
ples showing how maestros sang when asked to sing the same svara in different
raagas in their respective shrutis. On the other hand, researchers who advocate
the former interpretation of shruti have worked towards conducting quantitative
analyses to show how shruti forms the basis for the svara positions in the contem-
porary music. Datta et al. (2006) have curated a collection of over 116 recordings
in 4 raagas by 23 singers to verify this. They have considered 8 different tuning
systems (with differing ratios between svara positions) as possible references of
svara positions. They identify stead segments from the pitch contour extracted
from these audio music recordings and extract the scale used for the recording.
The intervals between the svara positions are then represented in units of shrutis.
The authors claim that the results support the hypothesis that shrutis form the
basis for the svara positions, and further calculate the sizes of intervals between
the svara positions in terms of shrutis. However, this work assumes an interval-
lic size of a shruti, which was said to be never defined in Natyashastra, or later
works that carry the same interpretation (Ramanathan (1981)).

Tuning

Besides the work on shruti, another aspect that was also well-explored is the tun-
ing system and svara positions. In Indian art music, tonic can correspond to any
frequency value chosen by the lead performer. Hence, there is no given standard.
Therefore, automatically identifying the tonic (Sa) of a recorded performance be-
comes fundamental to any melodic analyses. Chordia et al. (2013) propose an ap-
proach that estimates the tonic and the raaga of the audio music sample. In this
work, shifted versions of the pitch distribution of the given audio is compared
against samples in the training set. The nearest neighbor gives both the tonic
and the raaga label for the test sample. Their best result reports an accuracy of
93.2% in tonic estimation. Gulati et al. (2014) compare and thoroughly evaluate
different approaches to automatic tonic identification in both Carnatic and Hin-
dustani music traditions, proposed in Bellur et al. (2012); Gulati (2012); Ranjani
et al. (2011). Seven different approaches are evaluated over six diverse datasets in
varying contexts such as presence/absence of additional metadata, gender of the
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singer, quality and duration of the audio samples and so on. This comparative
study concludes that methods which combine multi-pitch analysis with machine
learning techniques perform better compared to those which are mainly based
on expert knowledge.

Another line of work concerning tuning is about verifying the hypothesis that
svara positions can be explained by and correlated to one or the other known
tuning systems such as just-intonation or equal-temperament. Even for other
melodic analyses that go beyond the tuning aspects, this hypothesis has been
a starting point. Levy (1982) conducted a study with Hindustani music perfor-
mances to understand the aspects of tuning and intonation. This work concluded
that the svaras used in the analyzed performances did not strictly adhere to either
just-intonation or equal-tempered tuning systems. Further, pitch consistency of
a svara was shown to be highly dependent on the nature of gamaka usage. The
svaras sung with gamakas were often found to have a greater variance within and
across performances and different artists. Furthermore, the less dissonant svaras
were also found to have greater variance. However, it was noted that across the
performances of the same rāga by a given artist, this variance in intonation was
minor. More recently, Swathi (2009) conducted a similar experiment with Car-
natic music performances and draws similar conclusions about the variance in
intonation.

Krishnaswamy (2003) discusses various tuning studies in the context of Carnatic
music, suggesting that they use a hybrid tuning scheme based on simple fre-
quency ratios plus various tuning systems, especially equal temperament. His
work also points out the lack of empirical evidence for the same thus far. Re-
cently, Serrà et al. (2011) have shown existence of quantitative differences be-
tween the tuning systems in the current Carnatic and Hindustani music tradi-
tions. In particular, their results seem to indicate that Carnatic music follows a
tuning system which is very close to just-intonation, whereas Hindustani music
follows a tuning system which tends to be more equal-tempered. Like in the case
of work done by Datta et al. (2006), their work only considers the steady regions
in the pitch contour in coming to the aforementioned conclusions.

Throughout these efforts, we come across a recurring observation, that under-
standing the identity of a svara has much more to it than their exact positions
(which roughly translate to steady regions in the pitch contour). For this very
reason, Rao (2004) criticizes the limited view through which the analysis was
conducted in the past. Rao (2004); Krishnaswamy (2004) reemphasize that a svara
is a multidimensional phenomenon, and an exact position does not have much
relevance in these art music traditions. This potentially is the reason why Levy
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(1982); Meer and Rao (2009); Serrà et al. (2011) observe that there is a lot of vari-
ability in the usage of pitches for the same svara in different raagas. In the light of
these works, a statistic that was observed by Subramanian (2007) assumes high
relevance. In an analysis of a sample rendition in Carnatic music, the author
finds that only 28% of the rendition constitutes a steady melody, in which the
tonic (15%) and the fifth (9%) are the dominant svaras. This alone reflects on the
fact that there is much more musically meaningful information in the melody
that has not been yet paid attention to. The work done by Belle et al. (2009) is
indicative of the potential this information holds as they classify a limited set of
five Hindustani rāgas imagining svara as a region than a point.

Melodic motifs

Motifs are repeating patterns in the melody. In IAM, they often emerge in a
composition or an improvisation as a reflection of, and/or a reinforcement to
characteristics of the respective raaga. Ross et al. (2012) propose an approach to
detect motifs in Hindustani music taking advantage of the fact that a specific set
of raaga-characteristic phrases called mukhdas are always aligned to the begin-
ning of a taala cycle. This fact is used in restricting the search space for finding
the candidate motifs. SAX and dynamic time warping (DTW) for measuring sim-
ilarity between such candidates of non-uniform length. Rao et al. (2014) employ
DTW based template matching and HMM based statistical modeling on labeled
datasets in both Hindustani and Carnatic for matching and classifying phrases.

Ishwar et al. (2013) use a two-pass dynamic programming approach to extract
matching patterns in a melody given a query. In the first pass, they use rough
longest common subsequence (RLCS) in matching the saddle points of the query
against those in the complete melody. In order to get rid of the false alarms
amongst the resulting matches, they employ RLCS to match the continuous pitch
contours of the results with the query. This approach is used in locating raaga
specific motifs in alapanas. They obtain a mean f-measure of 0.6 on fours queries
over 27 alapanas in Kambhoji raaga, and 0.69 over 20 alapanas in Bhairavi raaga.
Dutta and Murthy (2014) addresses some of the issues reported by Ishwar et al.
(2013) in their approach, the main being the number of false alarms which are
still evident even after the second pass. Three different measures are proposed
to weed out them: density of the match, normalized weighted length and linear
trend of the saddle points. Hypothesizing that the beginning lines in different
sections of a song are more potent in containing raaga-specific patterns, they
employ this approach in finding the common patterns between those lines and
further filtering them based on their occurrence across compositions in a given
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raaga, to extract raaga-specific motifs from among them.

Gulati et al. (2015, 2016a,b) first identify melodic motifs in a large collection of
1764 audio recordings combining four variants of DTW with techniques to limit
the computational complexity of the task. Then they pick a smaller subset of
160 recordings which are distributed in 10 ragas, to automatically characterize
raaga specific motifs. For this they use network analysis techniques like the net-
work’s topological properties and community detection therein, arriving at non-
overlapping clusters of phrases which are then characterized as belonging to a
raaga based on its properties. Expert review of the results show that 85% of the
motifs are found to be specific to the raaga cluster they are assigned to. Further,
considering each audio recording as a document with its motifs as terms, this
network is used in a raaga classification task which now becomes analogous to
topic modeling in text-based information retrieval. The results show 70% accu-
racy on a 480 recording collection having 40 raagas, and 92% accuracy on a 10
raaga subset.

Perception of emotion

Wieczorkowska et al. (2010); Chordia and Rae (2009); Devadoss and Asservatham
(2013); Balkwill and Thompson (1999), Koduri and Indurkhya (2010) Indian art
forms use a sophisticated classification of mental states based on the rasa theory,
which has been evolving since it was discussed in Natyashastra. In a nutshell,
the theory defines a set of mental states, and each state has associated emotions
with it. For instance, Raudram (literally Fury) is one such category. There can be
different emotions associated to this mental state such as love, hatred, anger and
so on.

Past treatises on music have discussed at length the association between raagas
and rasas. It is in this context that researchers have tried to validate and/or es-
tablish if raagas do elicit specific emotions1. Balkwill andThompson (1999) study
the emotional responses of enculturated and non-enculturated listeners to Hin-
dustani raagas.They have used the alapana recordings with a mean duration of 3
minutes, and chose four emotions for the study - joy, sadness, anger and peace.
Their results seem to indicate that despite having no cultural and musical ex-
posure to Hindustani music, the responses of non-enculturated listeners were by
and large in agreement with the responses of enculturated listeners. Further, they
indicate that the listeners responded with the intended emotion in most cases.

1Notice that we have used the term emotion and not rasa here.
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Wieczorkowska et al. (2010) also conducted a similar experiment with results
somewhat different from those reported by Balkwill and Thompson (1999). They
find that short melodic sequences of 3 seconds do elicit emotions in both en-
culturated and non-enculturated listeners, and the similarity in their respective
responses is significant. However the results show that the emotional responses
recorded by the listeners are largely not in conformity with those prescribed for
the raagas in the literature. Results from the study carried out by Chordia and Rae
(2009) also indicate that the responses from enculturated and non-enculturated
listeners largely agree and also that the responses within a raaga are consistent
with each other. Koduri and Indurkhya (2010) conducted a survey on Carnatic
raagas and gathered responses from enculturated listeners. They also find that
the raagas elicited specific emotional responses, and they are largely consistent
across listeners. The later two studies also attempt to correlate these emotional
responses with various musical attributes automatically extracted from the audio
music recordings.

There are a few assumptions that run across the research on this subject which
often go unstated. It is important to take note of these before making an assess-
ment of their results. The rasa theory almost always has been discussed within
the context of theatrical arts, of which music is only a part. In trying to ’validate’
the raaga-rasa associations from such treatises, one can be said to automatically
assume the relevance of such association between raagas and rasas outside the
theater arts. Further, the rasa theory clearly distinguishes between a mental state
(rasa) and an emotion. However, this distinction is often ignored in the related
work which leads to another assumption as follows: When a raaga is said to elicit
a rasa, it is assumed to elicit the emotions associated with that rasa.

To put the first assumption into perspective - rasa theory as discussed in the
treatises has more practical relevance to Indian art dance forms today than the
music forms. This is however not to say that emotional associations to music
are not of relevance. For instance, in Bharatanatyam or Kuchipudi2, the students
are trained to elicit the various rasa and emotion combinations in the audience
using their facial expressions and body movements. Such explicit associations
with rasa are not part of teaching raagas. The second assumption we discussed is
also an important one, especially when the distinction between rasa and emotion
is clearly spelled out.

The final takeaway from the past research on this topic seems to be that raagas
do elicit specific emotions, which are consistent across enculturated and non-
enculturated listeners. However, due the aforementioned implicit assumptions

2Two of the widely known classical dance forms of India
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that are made, other aspects of the work including the association between raa-
gas and rasas as discussed in the past musicological treatises, need further inves-
tigation.

3.2 Raaga classification

Seasoned listeners develop a keen ear over the years that help them develop an
ability to identify a raaga when it is performed. In this section, we first go over
how this is done in practical context by both listeners and musicians. This will
help us in understanding how different characteristics of raaga allow people to
recognize it. Indeed, most computational approaches developed to understand
raaga are often evaluated over a classification test that involves labeling a test
sample with a raaga. We briefly review some of these in chronological order in
the latter part of the section.

Practical relevance of the task

Given the intricacies of the melodic framework, the task of identifying a rāga can
seem overwhelming. But the seasoned rasikas3 identify rāga within a few sec-
onds of listening to a performance. During a performance, there is an interplay
between the performer and the audience in communicating the identity of the
raaga being performed. Rasikas enjoy the unveiling of the raaga’s identity, and
also the performer’s ability to reinforce it throughout. Though there are no rules
of thumb in identifying rāga, expert musicians believe that broadly there are two
procedures by which people identify it from a performance. This normally de-
pends on whether the person is a trained musician or a rasika. People who do
not have much knowledge of rāgas cannot identify them unless they memorize
the compositions and their rāgas.

The procedure followed by rasikas typically involves correlating two tunes based
on how similar they sound. Years of listening to tunes composed in various rāgas
gives listener enough exposure. A new tune is compared with the known ones
and is classified depending on how similar it sounds to a previous tune. This
similarity can arise from a number of factors: characteristic phrases, rules in
transition between svaras, usage-pattern of few svaras and gamakas.

This process depends heavily on the cognitive abilities of a person. Without
enough previous exposure, it is not feasible for a person to attempt identifying

3A term often used for a seasoned Carnatic music listener, which literally means the one who
enjoys art.
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rāga. There is a note-worthy observation in this approach. Though many people
cannot express in a concrete manner what the properties of rāga are, they are still
able to identify it. This very fact hints at a possible supervised classifier, that can
take advantage of properties of rāga.

On the other hand, a trained musician tries to identify the characteristic phrases
of rāga. These are called svara sañchāras in Carnatic and pakaḍs in Hindustānī. If
the musician finds these phrase(s) in the tune being played, rāga is immediately
identified. In some cases, musicians play the tune on an instrument (imaginary
or otherwise) and identify the svaras being used. They observe the gamakas used
on these svaras, locations of various svaras within the melodic phrases and the
transitions between svaras.

This process seems to use almost all the characteristics of rāga. It looks more
systematic in its structure and implementation. The procedures used by trained
musicians and non-trained listeners provide useful insights to implement a rāga
recognition system. As we will see, the existing approaches try to mimic them as
much as possible. They can broadly be classified as example-based or knowledge-
based or both. The example-based approaches correspond to the intuitive ap-
proach used by rasikas to identify a rāga, such as matching similar phrases. The
knowledge-based approaches reflect the analytic approach which is employed by
the trained musicians, such as identifying the svaras, their roles and gamakas.

Given several attributes of a rāga that serve to distinguish it from all the other
rāgas, and the fact that rāgas are learnt by listening and imitation rather than by
an analytical application of rules, there appear to be no clear-cut guidelines for
the machine recognition of rāgas. The lay listener’s intuitive approach suggests
a loosely constrained machine learning strategy from a large rāga-labeled audio
database of compositions.

Computational approaes to raaga classfication

Chakravorty et al. (1989) proposed recognition of rāgas from notation. They use
a scale-matching method to group the raagas into scale-groups4 in the first-level.
This involves matching set of permitted svaras and forbidden svaras in a test
sample against those of the training samples. Next within each scale-group, they
match a lexicon of phrases of each rāga against those in the training set. The
input notation is segmented into approximate ārōhaṇa-avarōhaṇa sections for
each candidate rāga considered. Then lexical matching is carried out, first with
exact sequences, then with coarse search allowing partial matching. The system

4Rāgas in each scale-class or scale-group have identical svaras but different phrases.
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is evaluated on 75 rāgas distributed over 45 scale groups in all. They report perfect
accuracy for grouping raagas into their scale-groups and 73% accuracy for raaga
classification within each scale-group.

Inspired by Sahasrabuddhe andUpadhye (1992) on the use of a finite automaton to
generate svara sequences characteristic of a raaga, Pandey et al. (2003) used a gen-
erative statistical model in the form of a hidden markov model (HMM) for each
rāga. Sequence of svaras was automatically extracted from solo vocal recording
applying heuristics driven note-segmentation technique. The individual svaras
form the states. The HMM (actually, just MM since nothing is “hidden”) that best
explained the observed svara sequence was the detected rāga. Thus sequential
information is exploited subject to the limitations of a first-order Markov model.
The same work also proposed phrase matching expressed as an approximate sub-
string search for the pakaḍ (catch phrase) of the rāga. In another method, the rāga
was identified by counting the occurrences of n-grams of svaras in the pakaḍ. The
evaluation was restricted to discriminating 31 samples in 2 rāgas. An average ac-
curacy of 77% and 87% is reported in raaga classification using only HMMs and
HMMs along with pakad matching. The central idea in this work, which is to
model a rāga as HMM, was also used by Sinith and Rajeev (2006). The same idea
was used in an attempt to automatically generate Hindustānī music (Das and
Choudhury (2005)), albeit with less success.

Chordia and Rae (2007) used pitch-class profiles to represent the distributions and
hence the relative prominences of the different svaras. They also used svara bi-
gram distributions to capture some sequential information. Using just the pitch-
class profiles to classify 17 rāgas (142 audio segments of 60s each), the system
achieves an accuracy of 78%. Using only the bi-grams of pitches, the accuracy
is 97.1%. Using both was reported to give an almost perfect result. Gedik and
Bozkurt (2010); Bozkurt (2011) present a similar approach for makam classifi-
cation in Turkish-makam music, by matching pitch histograms with higher bin
resolution.

Sridhar and Geetha (2009) have followed an approach where the set of svaras
used in an audio recording is estimated, and compared with the templates in the
database. The rāga corresponding to the best matched template is selected as the
class label. Their test data consisted of 30 tunes in 3 rāgas sung by 4 artists, out of
which 20 tunes are correctly labeled by the system. The tonic is manually input,
and the other svaras are identified based on the respective ratio with the tonic.A
similar approach based on detecting the svaras used in ārōhaṇa and avarōhaṇa
to find the rāga is presented by Shetty and Achary (2009).

Dighe et al. (2013) use the energy information from chromagram to extract the
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swara sequence from a given audio recording. Vadi of the raaga of that piece
is used in identifying the label of the most occurring svara. This consequently
allows them to label the rest of the swaras found in the sequence. A svara his-
togram is computed to be used to be used with random-forest classifier for raaga
classification. An average accuracy of 94.28% is reported over 10-fold cross vali-
dation experiment on a dataset comprising of 8 raagas and 127 recordings. Kumar
et al. (2014) propose kernels for similarity using pitch-class profiles and n-grams,
and employ them with an SVM classifier to test how they perform in a raaga
classification test. On a dataset of 170 samples in 10 raagas5, they have reported
highest average accuracies of 70.51%, 63.41% and 83.39% when using kernel for
pitch-class profiles, n-grams and both in a linear combination respectively.

3.3 Consolidating pit-distribution based approaes

The approaches surveyed in sec. 3.2 can be broadly categorized as the following,
based on the source of the features computed: pitch-distributions, phrase detec-
tion and svara transitions. Of these, pitch-distributions are the most explored.
In this section, we discuss few experiments which fall into this category, test-
ing the impact of various sources of information and also the effect of changing
different parameters specific to each approach. In 3.4, we report the results of
these experiments conducted on a much comprehensive dataset compared to the
ones on which they were tested in the past literature. This will help us to better
understand the merits and limitations of each approach.

The datasets used in the surveyed rāga recognition approaches are not represen-
tative enough for several reasons. Pandey et al. (2003) and Sridhar and Geetha
(2009) used datasets which had as few as 2 or 3 rāgas. The datasets were also con-
strained to some extent by the requirement ofmonophonic audio for reliable pitch
detection. The dataset used by Chordia and Rae (2007) is also quite limited. The
data available on a popular commercial online music portal such as raaga.com (>
500 performers,> 300 rāgas)6, shows that there is a scope to improve the quality
and size of the data used for the task. Therefore the conclusions drawn from the
existing experiments can not be easily generalized.

First, we discuss different approaches to obtain rāga-specific measurements from
a pitch distribution computed from the continuous pitch contour. Then we de-
scribe few common computational steps needed for an evaluation of these ap-
proaches. Finally, the results are reported and discussed in sec. 3.4.

5This is the dataset we used in 3.3, and later shared it with authors of this paper.
6Observations made on 25/05/2012.
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Template mating

In this approach, the set of svaras identified in a given recording are matched
against the rāga templates and then the rāga corresponding to the template that
scores the highest is output as the class label. We use two different methods to
determine the svaras present in a given recording and to obtain the rāga tem-
plates.

In both themethods, from a given recording, pitch is extracted and a high-resolution
octave-folded histogram (1200 bins) aligned to the tonic of the recording is ob-
tained. In the first method (Ath), we consider the set of svaras of a rāga as defined
in theory as template for the respective rāga. From the histogram of a given
recording, we obtain the values of bins at locations corresponding to the 12 just
intonation intervals. The top 7 are taken as the svaras used in the recording. In
the secondmethod (Ade), the rāga template is obtained by averaging tonic-aligned
histograms corresponding to individual recordings in the rāga, and picking the
most salient peaks, a maximum of 7. The svaras used in an individual recordings
are also inferred in the same manner.

Distributions constrained to “steady regions”

The pitch contour obtained from the recording may be used as such to obtain a
pitch-class distribution. On the other hand, given the heavy ornamentation in
Indian art-music (see fig. 6.4), marking or estimating the boundaries of svaras is
impractical. Therefore in the past work, pitch-class distributions are often com-
puted using only the stable pitch-regions in the melody.

In order to determine a stable region in pitch-contour, the local slope of the pitch-
contour is used to differentiate stable svara-regions from connecting glides and
ornamentation (Pandey et al. (2003)). At each time instant, the pitch value is
compared with its two neighbors to find the local slope in each direction. If the
magnitude of either of the local slopes lies below a threshold value Tslope, the
current instant is considered a stable svara region:

|F (i− 1)− F (i)| < Tslope Or

|F (i+ 1)− F (i)| < Tslope (3.1)

where F is the pitch contour converted to cent scale. All the instances where the
slope is beyond Tslope are discarded as they don’t belong to the stable regions.
Finally, the pitch values in the segmented stable svara regions are quantized to
the nearest available svara value in the just intonation scale using the tonic. This
step helps to smooth-out the minor fluctuations within intended steady svaras.
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Figure 3.1: The pitch contour is shown superimposed on the spectrogram of a
short segment from a Carnatic vocal recording along with the identified stable
pitch-regions.

Fig. 6.4 shows a continuous pitch contour with the corresponding segmented and
labeled svara sequence superimposed.

A pitch-class profile is computed using only the stable svaras thus obtained, and
hence is a 12-bin histogram corresponding to the octave-folded values quantized
to just intonation intervals. There are two choices of weighting for histogram
computation. We call the pitch-class profiles corresponding to those two choices
as Pinstances and Pduration, where former refers to weighting a svara bin by the
number of instances of the svara, and the latter refers to weighting by total du-
ration over all instances of the svara in the recording. In each case, results are
reported for different values of Tslope. Further, we also experimented setting a
minimum time threshold (Ttime) to pick the stable regions.

Distributions obtained from full pit contour

In this approach, we consider the whole pitch-contour without discarding any
pitch values. We call this Pcontinuous. In this case, we consider different bin
resolutions for quantization in constructing the histogram to observe its impact.
This step is motivated by the widely discussed microtonal character of Indian art
music, which in particular identifies svara as a region rather than a point (Krish-
naswamy (2004)).

For all the classification experiments of sections. 3.3 and 3.3, we need a distance
measure and a classifier to perform rāga recognition. A good distance measure
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for comparing distributions should reflect the extent of similarity between their
shape. Further, we would also like to observe the impact of adding tonic in-
formation. Therefore, we conduct experiments twice: with tonic and without
it. For this to be possible, the distance measure should also facilitate compar-
ing pitch-class profiles in the absence of tonic information. Hence, we choose
Kullback-Leibler (KL) divergence measure as a suitable measure for comparing
distributions. Symmetry is incorporated into this measure by summing the two
values as given below (Belle et al. (2009)).

DKL(P,Q) = dKL(P |Q) + dKL(Q|P ) (3.2)

dKL(P |Q) =
∑
i

P (i) log
P (i)

Q(i)
(3.3)

where i refers to the bin index in the pitch-distribution, and P and Q refer to
pitch-distributions of two tunes. In the cases where tonic information is not avail-
able, we consider all possible alignments between P and Q, and choose the one
that scores best in terms of minimizing the distance measure.

k-NN classifier is used in conjunction with the selected distance measure. Re-
sults are reported over several values of k. In a leave-one-out cross-validation
experiment, each individual tune is considered a test tune while all the remain-
ing constituted the training data. The class label of the test tune is estimated
by a simple voting method to determine the most recurrent rāga in the k near-
est neighbors. The selection of the class label C is summarized in the following
equation:

C = arg maxc
∑
i

δ(c, fi(x)) (3.4)

where c is the class label (rāga identity in our case), fi(x) is the class label for the
ith neighbor of x and δ(c, fi(x)) is the identity function that is 1 if fi(x) = c, or
0 otherwise.

Common computational steps

In all our experiments, we use pitch-contour, tonic information and histogram
analysis. Here we briefly explain the computational steps to obtain them.

Pit extraction To accurately mark the F0 of the stable pitch-regions, the es-
timation errors that are generated by all F0 detection methods need to be mini-
mized. In many portions of the vocal recording used, accompanying violinist fills
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the short pauses of vocalist, and also very closely mimics vocalist with a small
time lag. This is one of the main problems we encountered when using pitch
tracking algorithms like YIN (de Cheveigné et al. (2002)): violin was also being
tracked in a number of portions. As it is usually tuned an octave higher, this
resulted in spurious pitch values. To overcome this, we use predominant melody
extraction (Salamon and Gomez (2012)) based on multi-pitch analysis. But this
has an inherent quantization step which does not allow high bin resolutions in
histogram analysis. Sowe use a combination of both. In each frame, we transform
the estimated pitch value from both methods into one octave and compare them.
In those frames where they agree within a threshold, we retain the correspond-
ing YIN pitch transforming it to the octave of the pitch-value from multi-pitch
analysis. We discard the data from frames where they disagree with each other.
On an average, data from 53% of the frames is retained. Though it is a computa-
tionally intensive step, this helps in obtaining clean pitch tracks, which have less
f0 estimation errors. The frequencies are then converted to cents. We use tonic
information as base frequency when it is available, otherwise we use 220Hz. The
octave information is retained.

Figure 6.4 shows the output pitch track superimposed on the signal spectrogram
for a short segment of Carnatic vocal music where the instrumental accompani-
ment comprised violin and mr̥daṅgaṁ (percussion instrument with tonal charac-
teristics). We observe that the detected pitch track faithfully captures the vocal
melody unperturbed by interference from the accompanying instruments.

Tonic identification Tonic is the base pitch chosen by a performer that allows
to fully explore the vocal (or instrumental) pitch range in a given rāga exposition.
This pitch serves as the foundation for melodic tonal relationships throughout the
performance and corresponds to Sa svara of rāga. All the accompanying instru-
ments are tuned in relation to tonic of the lead performer. The artist needs to hear
tonic throughout the concert, which is provided by the constantly sounding drone
that plays in background and reinforces tonic. The drone sound is typically pro-
vided by Tāmpura (both acoustic and electric), sr̥tī box or by sympathetic strings
of instrument such as Sitār or Vīṇa.

For computational analysis of Indian art music, tonic identification becomes a
fundamental task, a first step towards many melodic/tonal analyses including
rāga recognition, intonation analysis and motivic analysis. There is not much re-
search done in the past on tonic identification. However recent studies have re-
ported encouraging results. Ranjani et al. (2011) explores culture-specific melodic
characteristics of Carnatic music that serve as cues for tonic (Sa svara). A more
general approach applicable to both Carnatic and Hindustānī music is proposed
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by Gulati (2012), which takes advantage of the presence of drone sound to iden-
tify tonic. However each of these approaches have there own limitations and re-
quirements. We followed the approach proposed by Gulati (2012), which is based
on multi-pitch analysis of the audio data, and automatically learned set of rules
(decision tree) to identify the tonic pitch. We evaluated our implementation on
the same database that the author had used and achieved nearly the same results
( 93% accuracy for 364 vocal excerpts of Hindustānī and Carnatic music).

Histogram Computation The pitch contour in cents is folded to one octave.
Given the number of bins and the choice of weighting, the histogram is computed:

Hk =

N∑
n=1

mk, (3.5)

where Hk is the k-th bin count, mk = 1 if ck ≤ F (n) ≤ ck+1 and mk = 0
otherwise, F is the array of pitch values and (ck, ck+1) are the bounds on k-th
bin. If the histogram is weighted by duration, N is the number of pitch values.
If it is weighted by the number of instances, the pitch contour is first segmented
and N corresponds to the number of segments.

3.4 Evaluation over a common dataset

A well annotated and comprehensive database is of fundamental value for this
field of research. The Carnatic and Hindustānī datasets, taken from the growing
collections of CompMusic project (Serra (2011)), provide a convenientmechanism
of organization and retrieval of audio and metadata (Serra (2012)). We use full-
length recordings, which range in length from 2 minutes to 50 minutes. The
dataset encompasses all the possible improvisational and compositional forms of
Carnatic music, and Dr̥pad and Khayāl genres of Hindustānī music7.

Table. 3.1 shows the configurations, the tasks in which they are used and their
short handles which are used henceforth. The discussion on relevance of using
these configurations is deferred to subsequent sections.

The first experiment is based on matching just the scale templates. It is followed
by an experiment which matches pitch-class profiles with and without availing
the tonic information. Later, we test the same approach choosing finer bin res-
olutions in the distribution. In the last experiment, we briefly discuss how the

7The other genres in Hindustānī include Ghajal, Ṭhumrī, Kavvāli etc., which are classified as
semi-classical in nature.
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Task Collection Recordings/rāga Rāgas

Template matching Carnatic 7 14
Hindustānī 4 17

Pitch-distribution based
approaches Carnatic

5 43
5 12
10 12

Hindustānī
5 16
5 8
8 8

Table 3.1: Different datasets derived from CompMusic collections.

intonation information helps to disambiguate rāgas which are confused when
using the pitch-class profiles alone. Before reporting the results of the evalua-
tion, we present the details of the datasets used, and the common computational
steps involved.

Template mating

The template matching approaches rely on just the svara positions. To evaluate
such approaches, it is necessary to have a dataset which is representative of 72
mēḷakarta rāgas for Carnatic music and ten tāṭ families in Hindustānī music. In
mēḷakarta scheme of rāgas, each one differs by a svara from its neighbors. Hence,
having several pairs of rāgas in the dataset such that they are also neighbors in
the mēḷakarta scheme contributes to the dataset’s completeness. However, it is
difficult to find recordings for most of the mēḷakarta rāgas. The Carnatic and
Hindustānī datasets we chose for this purpose consist of 14 and 17 rāgas respec-
tively (see. Table. 3.1). The rāgas are chosen such that they differ in constituent
svaras.

Figs. 3.2 and 3.3 show the confusion matrices for both the methods (Ath, Ade,
ref. to sec. 3.3) over Carnatic and Hindustānī datasets respectively. F-measures
for (Ath, Ade) over Carnatic and Hindustānī datasets are (0.26, 0.23) and (0.35,
0.39) respectively. In both the methods, there are cases where the actual rāga is
correctly matched, and also the cases where there is another rāga which scores
equal to the actual rāga.

It is interesting to note that Ath suits Carnatic and Ade suits Hindustānī in com-
parative terms though the difference in their performances is marginal. This can
be a consequence of the fact that svaras in Carnatic music are rarely sung without
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Figure 3.2: Confusion matrices for the two template matching methods (Ath and
Ade) on Carnatic datasets. The grayness index of (x,y) cell is proportional to the
fraction of recordings in class y labeled as class x.
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Figure 3.3: Confusion matrices for the two template matching methods (Ath and
Ade) on Hindustani datasets. The grayness index of (x,y) cell is proportional to
the fraction of recordings in class y labeled as class x.
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gamakas, which influence the peak characteristics of svaras in histogram. As as
result, the peaks corresponding to such svaras often appear as slides with a little
bump, which can not be identified using a conventional algorithm to find local
maxima and have a good probability to be accounted for only in Ath. Where as
in Hindustānī music where the svaras are held relatively steady, Ade performs
marginally better than Ath. On the other hand, it is to be noted that the method-
ologies which we have adopted to obtain the svaras used in a given recording are
not the best and can be improved. A further step ahead would be to obtain his-
tograms from stable pitch-regions. In order to quickly test if this helps, from the
stable pitch-regions obtained, we picked the most recurrent intervals from each
recording and matched those against templates obtained in Ath and Ade. The ac-
curacies obtained are not very different from those reported in Figures. 3.2 and
3.3. This observation reinforces our belief that rāga classification using template
matching approach alone cannot be scaled to classify, say, even just the mēḷakarta
rāgas.

Distributions constrained to “steady regions”

When the number of rāga classes also include janya rāgas of a few of themēḷakarta
rāgas in the dataset, we will require additional information beyond svara po-
sitions. Pitch-class profiles contain information about relative usage of svaras
besides their positions. Though several of such mēḷakarta-janya rāga groups
can possibly be distinguished using the template-matching approaches, for most
cases we expect the additional information from pitch-class profiles to contribute
for a better classification.

There are two crucial factors in determining stable svara regions: slope threshold
and time-duration threshold (Tslope and Ttime, 3.3). We conducted three experi-
ments to check their impact on the performances of Pinstance and Pduration. The
datasets chosen for this task are listed in Table. 3.1. The datasets are chosen to
facilitate observation of the impact of number of rāgas, and number of recordings
per rāga in all the experiments.

In the first experiment, Ttime is set to 0 and Tslope is varied from 600 to 1800 cents
in steps of 300. Figs. 3.4 and 3.5 show the results. The performance of Pduration

stays the same while that of Pinstance slightly degrades with increasing Tslope.
With lower Tslope, we observed that a svara sung with even a slight inflection is
divided into multiple segments, which primarily effects Pinstance. Better perfor-
mance of Pduration over Pinstance in general, also explains the slight increase in
the performance of Pinstance at lower Tslope.
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Figure 3.4: F-measures for performances of Pinstances and Pduration on Carnatic
andHindustānī datasets, withTtime set to 0 andTslope varied between 600 to 1800.
C & N denote number of rāgas, number of recordings per rāga in the dataset. k
denotes number of neighbors in k-NN classification.
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Figure 3.5: F-measures for performances of Pinstances and Pduration on Carnatic
andHindustānī datasets, withTtime set to 0 andTslope varied between 600 to 1800.
C & N denote number of rāgas, number of recordings per rāga in the dataset. k
denotes number of neighbors in k-NN classification.



3.4. ealaion oe a common daae 49

In the second experiment, Tslope is set to 1500 and Ttime is varied from 60 to 210
milliseconds, in steps of 30. Figs. 3.6 and 3.7 show the results. With increasing
Ttime, the amount of pitch-data shrinks drastically for Carnatic recordings. This
taxes the classification performance heavily (see. fig. 3.6a, 3.6b). Further, the
effect is even more pronounced on the performance of Pinstance. On the other
hand, these observations are not as strong in the results over Hindustānī datasets
(see. fig. 3.7a, 3.7b). The can be explained by presence of long steady svaras in
Hindustānī music, which aligns with our observations in sec. 3.3.

In the third experiment, we set Tslope to 1500 and Ttime to 0, and classified Car-
natic andHindustānī datasets usingPinstances andPduration andPcontinuous (24 bins)
to compare their performances. Fig. 3.8 shows the results. Pduration outperforms
the other two, which is more evident in the classification of Carnatic rāgas. This
implies that svara durations play an important role in determining their relative
prominence for a particular rāga realization. This is consistent with the fact that
long sustained svaras like dīrgha svaras play a major role in characterizing a rāga
than other functional svaras which occur briefly in the beginning, the end or
in the transitions. The benefit of identifying stable svara-regions is seen in the
superior performance of Pduration over Pcontinuous (24 bins).

From fig. 3.8b, it can be seen that as the number of classes increase, the perfor-
mance of Pduration is less affected compared to others. It is possible that a fall
in number of samples per class causes it, but this argument can be ruled out as
there is no noticeable difference between the results based on the three pitch-
distributions when we keep number of classes at 5 for Hindustānī and 12 for
Carnatic, and vary the number of samples per class (see fig. 3.8). Further, a con-
siderable rise in f-measures with an increase in number of samples per class, for
all the three distributions, indicate that there is a large diversity in the perfor-
mances of a rāga. This also falls in line with the general notion that one has to
get familiar with a number of compositions in a rāga in order to learn it.

Distributions obtained from full pit contour

In this experiment, we would like to see the impact of bin resolution and tonic
information on classification performance. We vary bins from 12 to 1200, and
evaluate the performance of pitch-distributions thus obtained, with and without
tonic information. Figs. 3.9 and 3.10 show the results. For both Carnatic and
Hindustānī datasets. when the tonic information is available, pitch-distributions
with higher number of bins performed better. But it is also clear that beyond 24
bins, the accuracies for each combination of k and dataset, more or less remain
saturated. In the case where tonic information is not given, however, there is a
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Figure 3.6: F-measures for performances of Pinstances and Pduration on Carnatic
datasets, with Tslope set to 1500 and Ttime varied between 60 to 210. C & N
denote number of rāgas, number of recordings per rāga in the dataset. k denotes
number of neighbors in k-NN classification.
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Figure 3.7: F-measures for performances of Pinstances and Pduration on Hin-
dustānī datasets, with Tslope set to 1500 and Ttime varied between 60 to 210. C
& N denote number of rāgas, number of recordings per rāga in the dataset. k
denotes number of neighbors in k-NN classification.
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Figure 3.8: Comparison of the performances of different pitch class profiles
(Pinstances, Pduration, Pcontinuous (24 bins) on Carnatic and Hindustānī datasets.
C & N denote number of rāgas, number of recordings per rāga in the dataset. k
denotes number of neighbors in k-NN classification.
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slight but comparatively steady increase in the accuracieswith increasing number
of bins.

However, the tonic identification method we used has an error rate of 7%. The
results reported in figs. 3.9a & 3.10a, therefore carry this error too. In order to
realize the impact of tonic information on the performance of the system, we
have analyzed the cases where the systems with, and without tonic information
failed. In the cases where a correct class label is output, let Ts and Ns be the
set of cases where the tonic information is used and not used respectively. Then,
|Ts−Ns|

N where N is total number of recordings in the dataset, is the proportion
of cases where the availability of tonic information has helped in improving the
accuracy. This comes out to be 5% for most configurations run with Pcontinuous

(12 bins). As there is a 7% inherent error in the tonic identification method, we
expect this proportion to go up further.

3.5 Summary and conclusions

In this chapter, we have presented a brief categorical review of computational
and analytical approaches to understanding the melodic framework of Indian
art music. Of the different aspects that are studies, viz., validation of micro-
tonal intervals, tuning and svara positions, identifying raaga-specific patterns,
perception of emotion, and the automatic classification of raagas, the last one
is the most explored one. Within the raaga classification approaches, we have
thoroughly evaluated the ones based on pitch-distributions on a larger and com-
prehensive database. In template matching, we have explored two methods to
determine rāga templates from pitch-contour. In the approaches based on distri-
butions constrained to stable-regions, we have reported our experiments vary-
ing the parameters involved in determining stable-regions. Further, on uncon-
strained pitch-distributions, the impact of different bin resolutions and the effect
of adding tonic information are reported.

In all the experiments reported thus far, the overall best accuracy among each of
the datasets is way higher than chance, indicating the effectiveness of pitch-class
profile as a feature vector for rāga identification. It is encouraging to find that a
simple pitch distribution based approaches are able to exploit considerable infor-
mation about the underlying rāga. However, we soon observed the limitations of
these different approaches on introducing more classes/raagas.

Including the non-steady regions in the pitch-class distribution did not help in
the approaches surveyed. However as mentioned before, the gamakas play very
important role in characterizing the rāga as evidenced by performance as well as
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Figure 3.9: Comparison of the performances of Pcontinuous with different bin-
resolutions on Carnatic datasets. C & N denote number of rāgas, number of
recordings per rāga in the dataset. k denotes number of neighbors in k-NN clas-
sification.
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Figure 3.10: Comparison of the performances of Pcontinuous with different bin-
resolutions on Hindustānī datasets. C & N denote number of rāgas, number
of recordings per rāga in the dataset. k denotes number of neighbors in k-NN
classification.
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listening practices followed. Therefore, for gamakas to be effectively exploited in
automatic identification, it is necessary to tune the approaches in ways that allow
capturing this information in amusically meaningful manner. An aggregate pitch
distribution which discards all time sequence information seems inadequate for
the task. One way is to directly capture their temporal characteristics such as the
actual pitch variationwith time. Another viable way is to abstract themovements
in the pitch contour such that the abstraction itself makes musical sense.

Approaches aimed at understanding the pitches used in Indian art music (such
as Levy, 1982; Serra, 2011; Krishnaswamy, 2003), or for that matter those which
use information about pitches to further understand raaga have usually followed
a ‘stable region’ approach, which inherently assumes that svaras are points on
frequency spectrum. However, from our discussion in 3.1, it is clear that such
assumption does not help in understanding the identify of svaras and therefore of
raagas. So far, tuning analysis has been employed to explain the interval positions
of Carnatic music with one of the known tuning methods like just-intonation or
equal-temperament Krishnaswamy (2003); Serra (2011), and this has been criti-
cized owing to the fundamental difference between popular western music tradi-
tions in conceptualizing theway pitches are employed in the performance. There-
fore, future research on aspects concerning raagamust be grounded in its concep-
tualization as it is practiced today. A study that seeks to find the exact locations of
the svaras does not seem to address a musically sound problem, whereas studying
the nature of usage of pitches about each svara, and within the greater context of
a given raaga seem to be of value.



Chape 4
Music knowledge

representation

Knowledge representation is a subdomain of research within Artificial Intelli-
gence. The primary objective of this field is to enable machines to understand
and perform tasks which would otherwise need human analytical capabilities.
This further requires a computational representation of knowledge concerning
the domain of interest. Grounded in formal logic, such representations would
allow reasoning over a knowledge-base (KB) allowing machines to perform com-
plex tasks.

With an exponential rise of the data available on the World Wide Web (WWW),
the domain of knowledge representation has seen a revived attention in the last
decade. In this direction, semantic web is an extension to the current web that fa-
cilitates machine consumption of the data alongside humans, and their interoper-
ability (Berners-Lee et al. (2001)). The linked open data movement is another step
towards this which leverages the semantic web technologies to promote prag-
matic adaptability of semantic web principles in the web community (Bizer et al.
(2009a)). In this chapter, we first introduce the semantic web technologies and
discuss the relevance of knowledge representation for music in the context of se-
mantic web. We review the current state of the art within the intersection of MIR
and semantic web, specifically in two categories: ontologies (sec. 4.2) and linked
data (sec. 4.3).

57
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4.1 Introduction to Semantic web

Web to Semantic web

WWW has evolved through many milestones since its infancy of passively shar-
ing information (Aghaei (2012)). Broadly speaking, various stages in this evo-
lution are marked by the shift in its emphasis over the information shared, the
users and the machine itself. In its formative years, the web had been a place
for sharing information, a one-way communication platform where the users of
the web were passive consumers of the information hosted. During this time,
the emphasis has solely been on the information shared. This period is loosely
termed as Web 1.0 where various sources of the information are inter-connected
by hyperlinks allowing users to navigate between them. With an advent of web
logging services which allowed users to write and publish on the web, the status-
quo was dramatically transformed to place its emphasis now on users and the
content they generate. The web services have also access to better technology
that allowed them to constantly improve and adapt to the needs. The social net-
working and media-sharing services have further added to this cause, leading up
to Web 2.0 (O’Reilly (2007)).

With users being engaged in content creation, the size of the web has multiplied
rather quickly. Most of the content is either unstructured, or structured often in
relational databases with an ad-hoc schema. This has restricted the consumption
of this data mostly to human users and also resulted in data islands. There is a
discerning need for this data to be machine-readable for further-reaching appli-
cations. As a result, the primary emphasis of Web 3.0, also known as Semantic
web, is on structuring the data and interlinking different sources of data, with an
objective of making the web machine readable (Berners-Lee et al. (2001)).

Semantic web is based on a set of standards and technologies shown in fig. 4.1.
We discuss those which are W3C recommendations1. The first layer has URI
(Uniform Resource Identifier)2 and Unicode as the constituent blocks. The latter
allows any human language to be used on the semantic web under a common
standard. This is an important fundamental consideration. Because in the early
days of the web, languages from around theworld have their own coding schemes
often clashing with others. This had resulted in a practical impossibility of a
multi-lingual web. URI, which manifests as a URL (Uniform Resource Locator)

1The technologies or standards that acquire W3C recommendation status are usually consid-
ered to be extensively reviewed, tested and are stable.

2IRI (Internationalized Resource Identifier) is an international variant of URI that is not limited
to the set of ASCII characters. We use IRI and URI interchangeably.
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Figure 4.1: A stack of standards and technologies that make up the Semantic web.

in the context of web or URN (Uniform Resource Name) elsewhere, is a string
of Unicode characters that helps in identifying any resource. An example URL
is http://dbpedia.org/resource/Purandara_Dasa (a Carnatic music composer), and
an example URN is urn:isbn:978-2-9540351-1-6 (a publication).

The second layer consists of XML (Extensible Markup Language) which provides
a common format to structure data into documents. A data model is defined
to structure the data from a given source using XML Schema3, whereas XML
Namespace4 allows referring to information in multiple sources as is often the
necessity on the semantic web.

The RDF (Resource Description Framework)5 constitutes the third layer in the
stack. Knowledge in a given domain is represented as a set of statements. RDF
defines a simple framework which allows creation of such statements in the form
of triplets consisting a subject, an object, and a predicate that establishes rela-
tion between them. These statements result in an interconnected graph of such

3https://www.w3.org/XML/Schema
4https://www.w3.org/TR/1999/REC-xml-names-19990114/
5http://www.w3.org/RDF/
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statements. We consider the class of Composers to illustrate the use of RDF and
other semantic web technologies. Listing. 4.1 shows these sentences using RDF:
i) Tyagaraja is a Composer, ii) He composed Endaro Mahanubhavulu, iii) It is a
composition and iv) It is composed in Sri raga.

Listing 4.1: Sample RDF statements.
1 <?xml version="1.0"?>
2
3 <rdf:RDF
4 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
5 xmlns:so="http://abc.org/demo#">
6
7 <rdf:Description
8 rdf:about="http://abc.org/demo/Tyagaraja">
9 <rdf:type rdf:resource="http://abc.org/demo/Composer" />
10 <so:has_composition rdf:resource="http://abc.org/demo/

Endaro_Mahanubhavulu" />
11 </rdf:Description>
12
13 <rdf:Description
14 rdf:about="http://abc.org/demo/Endaro_Mahanubhavulu">
15 <rdf:type rdf:resource="http://abc.org/demo/Composition" />
16 <so:has_raaga rdf:resource="http://abc.org/demo/Sri_raga" />
17 </rdf:Description>
18
19 </rdf:RDF>

RDF Schema6 in the next layer provides constructs that allow us to define a set
of classes and properties, more generally a vocabulary appropriate to an applica-
tion/purpose using RDF. As an example, we can define a class called Artist and
make statements about it (like, all Artists are Person, Composer is an Artist where
Person, Composer are other classes). This allows to create class and property hi-
erarchies. The code snippet from listing. 4.1 shows the usage of constructs from
RDF Schema to describe the class of Composer. We omit the header declaring
namespaces (i.e., rdf and so from listing. 4.1) from snippets hereafter.

6http://www.w3.org/TR/rdf-schema/
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Listing 4.2: Class hierarchy defined using RDF Schema constructs.
1 <rdfs:Class rdf:ID="Artist" />
2 <rdfs:Class rdf:ID="Composer" />
3 <rdfs:Class rdf:ID="Person" />
4
5 <rdf:Description
6 rdf:about="#Composer">
7 <rdf:subClassOf rdf:resource="#Artist" />
8 </rdf:Description>
9
10 <rdf:Description
11 rdf:about="#Artist">
12 <rdf:subClassOf rdf:resource="#Person" />
13 </rdf:Description>
14
15 </rdf:RDF>

Next in the stack are OWL (Web Ontology Language), RIF (Rule Interchange For-
mat)/SWRL (Semantic Web Rule Language) and SPARQL (SPARQL Protocol and
RDFQuery Language). OWL7 is a class of semantic markup languages, which is
grounded in description logics of varying expressiveness. It builds on top of RDF
and RDF Schema, and includes more expressive constructs such as universal and
existential quantifiers, and cardinality constraints. For instance, as the example
from listing. 4.1 shows, OWL constructs facilitate expressing that a class called
Person can only have one birth place. In this listing, in continuation to previous
listings, we define a Place class, then a property called has_birthplace, confin-
ing its domain and range to Person and Place classes respectively. Then we use
owl:Restriction construct to enforce the constraint that a person can have only
one birth place.

Listing 4.3: Usage of cardinality constraints in OWL.
1 <rdfs:Class rdf:ID="Place" />
2
3 <owl:ObjectProperty rdf:about="has_birthplace">
4 <rdfs:domain rdf:resource="#Person"/>
5 <rdfs:range rdf:resource="#Place"/>
6 </owl:ObjectProperty>
7
8 <owl:Restriction>
9 <owl:onProperty rdf:resource="#has_birthplace" />
10 <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">1</

owl:maxCardinality>
11 </owl:Restriction>
12 </rdf:RDF>

7http://www.w3.org/TR/owl-ref/
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There are certain semantics that are conditional. These need to be expressed as
rules over the hierarchies and statements created with the constructs provided in
OWL and RDFS. RIF8 and SWRL9 are two such standards/rule languages defined
for this purpose. Like SWRL, there exist several rule languages. RIF is a standard
that facilitates integration of synthesis of rulesets across such languages. These
rules allow inferring facts that can be true given a set of RDF statements, and
can also trigger actions that result in modifications to KB. For instance, let us say
that we would like to classify an artist who is both a singer and a composer of a
song as a singer-songwriter of that song. This can be achieved using RIF rule as
specified in listing. 4.1.

Listing 4.4: Example RIF rule.
1 Document(
2 Prefix(rdf <http://www.w3.org/1999/02/22-rdf-syntax-ns#>)
3 Prefix(rdfs <http://www.w3.org/2000/01/rdf-schema#>)
4 Prefix(so <http://abc.org/demo#>)
5
6 Group(
7 Forall ?Artist ?Song (
8 If And(so:singer(?Artist ?Song) so:composer(?Artist ?Song))
9 Then so:singer_songwriter(?Artist ?Song)
10 )
11 )
12 )

SPARQL10 allows to efficiently query over the resultant knowledge-graph. This
knowledge graph can be a set of simple RDF statements, or ontologies and KBs
built using RDFS and OWL. Listing. 4.1 shows an example SPARQL query that
retrieves the names of composers who are born in India. These queries also help
in adding new statements to the KB based on a set of observations. For instance,
for any Person who composed at least one Composition, we add a statement that
is the Person is a Composer.

8https://www.w3.org/TR/rif-overview/
9https://www.w3.org/Submission/SWRL/ - not a w3c recommendation yet.
10https://www.w3.org/TR/sparql11-overview/
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Listing 4.5: Example RIF rule.
1 PREFIX rdf: <http://www.w3.org/2000/01/rdf-schema#>
2 PREFIX so: <http://abc.org/demo#>
3
4 SELECT ?Composer
5 WHERE {
6 ?Composer rdf:type so:Composer .
7 ?Composer so:has_birthplace so:India .
8 }

These technologies and standards allow sharing complex knowledge about a do-
main with great flexibility in their form, yet facilitating interoperability between
different sources of data. Ontologies further facilitate evolution of data schemas
without impeding the interaction between applications. MusicBrainz11, an on-
line public music metadata cataloging service, is one such example. It publishes
the editorial metadata about various entities of an audio recording together with
relationships between those entities, as XML serialized RDF. Client applications
such as MusicBrainz Tagger and MusicBrainz Picard use this medium to commu-
nicate with the data server. RDF facilitates easy merger of data from different
sources, for example, from MusicBrainz and DBpedia12, as it dereferences each
entity using an URI on the web.

Ontologies

Relational databases have been arguably the most popular choice for structuring
data served and created on the web as of date. The major difference between
a relational database schema and an ontology lies in exposing the semantics of
things they are defined to describe. Take the specific case of music metadata.
The intended definition of Artist changes from one relational database to another
across different services. For instance, a database might list only people who
perform music as artists, while another might also include people who compose.
This practice in itself is harmless, and in fact a necessity for diverse needs of
different cultures, or even different applications. However, as the semantics of
Artist are formally undefined in a database schema, there is no logical way to
verify if the intended semantics are mutually compatible, and consequently if the
two given sources of data can be interlinked.

Thefirst requirement in structuring the datawhile interconnectingmultiple sources,
is to define a common vocabulary or a schema, that all data sources can comply

11http://musicbrainz.org/
12http://dbpedia.org/
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with. Such a vocabulary/schema is referred to as ontology. More formally, it is
defined as ”themanifestation of a shared understanding of a domain that is agreed
between a number of agents and such agreement facilitates accurate and effective
communications of meaning, which in turn leads to other benefits such as inter-
operability, reuse and sharing” (Uschold and Gruninger (1996)). Note that it is
not necessary to use identical ontologies for two data sources to be integrable, it
is only necessary that the conceptualization of different things in the ontologies
used are not logically conflictive. Which in case they are, the data models now
spell it out explicitly unlike in the case of a relational database schema.

There have been several ontologies built to describe most common objects/things
on the web such as people, time, biological concepts and so on13. Schema.org14
is an early effort in designing light-weight ontologies for things often found on
commercial websites such as electronic goods, places, people etc. The content
producers on the web are encouraged to structure their content using these on-
tologies for better visibility and aggregation, especially on search engines such
as google, yahoo or bing.

Friend of a friend (FOAF)15 is one of the most commonly used ontologies on the
web. It is used in describing people and their relationships which result in a
social network. This ontology has several use cases. Let’s say we are defining
the class Artist in an ontology, where every Artist is a person. The first step
would be to define semantics of the Person class. But FOAF already has a Person16
class. A good practice in the spirit of Semantic web would be to reuse this class
and build on it as necessary. Several ontologies and KBs indeed reuse the exist-
ing ontologies in describing things and structuring data concerning them. Other
commonly used ontologies include Dublin Core (DC)17 for metadata, Semanti-
cally Interlinked Online Communities (SIOC)18, Simple Knowledge Organization
System (SKOS)19 and geonames20 for geospatial information.

13Ontology search engines are a common way to find if ontologies exist for a con-
cept one is looking for. Some of the popular ontology search engines are listed here -
https://www.w3.org/wiki/Search_engines

14http://schema.org
15http://www.foaf-project.org
16http://xmlns.com/foaf/spec/#term_Person
17http://dublincore.org/documents/dcmes-xml
18http://sioc-project.org
19https://www.w3.org/2004/02/skos/
20http://www.geonames.org/ontology/documentation.html
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Data to Linked data

As a result of such efforts in developing ontologies for the commonly described
things, an increasing number of sources are publishing their data structured us-
ing these ontologies. This has also resulted in reuse of ontologies between related
data sources. For instance, one can borrow the concept of Artist from an existing
ontology and build on top it as necessary, so long as there is no logical conflict
in conceptualization of Artist in both the ontologies. Such proliferation of struc-
tured data on the web meant that the concerned sources of data are now linked
with each other. This results in a transformation of the current web into a giant
knowledge graph that subsumes all the different sources of data.

Fig. 4.2 shows the different sources of data in the linked open data (LOD) cloud,
and the links between them which signify cross-referencing among the sources.
This was the state of linked open data on the web as of 201421. Notice that central
to this network of sources is DBpedia22. It is a collection of all the structured data
available on Wikipedia in its different language editions. Majority of this comes
from infoboxes23 and categories of Wikipedia. The media related datasets amount
to around 2.2% of this data, while the majority (around 18%) consist of datasets
coming from different governments thanks to their open data initiatives across
the world. Elaborate statistics of the LOD cloud can be accessed at this link24.

Linked data further fostered applications that can take advantage of richer seman-
tics of the data and interoperability between various sources (Bizer et al. (2009a)).
Some of the first applications were linked data browsers akin to the traditional
web browsers that helped us navigate hyperlinked HTML pages. Examples in-
clude Tabulator25 (Berners-lee et al. (2006)), Disco Hyperdata Browser26, FOAF-
naut27 and DBpedia Mobile28. The other class of early applications were linked
data search engines. A few like Falcons take a search query from the user and
return results that match the query. This patternmimics what the users are accus-
tomed to traditional search engines like Google, Yahoo! and Bing. They further
allow narrowing the search to specific type of object (viz., top-level classes in
ontologies), or a concept (corresponding to a class in ontology), or a document.
Typically these search engines are used in retrieving documents containing in-

21http://lod-cloud.net
22http://wiki.dbpedia.org
23https://en.wikipedia.org/wiki/Infobox#Wikipedia
24http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state
25https://www.w3.org/2005/ajar/tab
26http://wifo5-03.informatik.uni-mannheim.de/bizer/ng4j/disco
27http://jibbering.com/foaf
28http://wiki.dbpedia.org/projects/dbpedia-mobile
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stance data matching a given query, or the ontologies which have the concepts
of interest. Few other search engines like Swoogle or Sindice offer access to their
underlying indexes through an Application Programming Interface (API). These
are intended for other applications built on top of linked data for easy access to
RDF data, eliminating the need to built indexes for each application.

Commercial applications have also tapped into linked data to offer sophisticated
functionalities. For instance, tasks like comparing products offerings to make a
purchase decision can now be automated as product details across ecommerce
portals can be mapped, their reviews analyzed and prices compared (Eg: Google
shopping29). Applications can also combine information from multiple sources,
for instance restaurant history and geographical location, to generate personal-
ized recommendations of higher relevance to the user (Eg: Zomato30). Linked
data has also been used as a means to data integration in information portals (Eg:
British Broadcasting Corporation31)

4.2 Role of ontologies in music information resear

Why do we need ontologies?

In the MIR community, there is a growing interest towards developing culture-
specific approaches Serra (2011); Serra et al. (2013). In order to better under-
stand the interpretation of music concepts involved in computational modeling,
researchers collaborate with musicologists and musicians. The conceptual de-
scription of music arising out of such collaborations by itself is not usually the
end goal of information researchers. It forms a basis to build their models, but
does not become a part of them. Consequently it is lost, making it difficult to be
reproducible/accessible for reuse by other researchers. This is mainly a result of
the lack of semantics in their data models. It limits the comprehensibility of those
models, and poses difficult challenges to compare or integrate different models
of a given musical concept.

The knowledge representation technologies discussed in the previous section can
be utilized to bridge the gap between music information research and music the-
ory. This will greatly enhance the impact they have on each other. Further, it will
facilitate a knowledge-guided comparison and integration of different models of
music concepts.

29https://www.google.com/shopping
30https://www.zomato.com
31https://www.w3.org/2001/sw/sweo/public/UseCases/BBC
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Ontologies have been successfully used under similar context in other domains,
like bioinformatics Stevens et al. (2000). Besides addressing the problems stated,
ontologies, in the context of semantic web Berners-Lee et al. (2001), serve a host
of purposes relevant to information retrieval. Advances in the development of
efficient inference procedures for highly expressive description logics, have en-
abled them to provide a suitable logical formalism to ontology languages Baader
(2007). This enables ontologies to be KBs, which combined with reasoning en-
gines can be integrated into information systems. Further, an ontology specifi-
cation allows the agents on semantic web to communicate with each other using
common terminology and semantics. This in turn opens avenues to a multitude
of machine-intelligent applications Berners-Lee et al. (2001).

A summary of past work

Consequently, there has been a noticeable interest in ontologies in the informa-
tion research community (see ch.1 in Staab and Studer, 2009). Within the domain
of MIR, ontologies that concern different aspects of music, like production, cata-
loging, consumption and analysis have been developed: some of them are specific
to applications in which the developer intends to use the ontology (Eg: Playback
Ontology32), and some others are a bit more general in their scope (Eg: Timeline33
and Event34 ontologies).

Garcia and Celma (2005); Celma (2006) developed a music ontology that is later
used in recommending new songs to users. This ontology converts the XML
schema of metadata covered in the MPEG-7 standard to an OWL ontology. Later
this ontology is used in integrating three different schemas includingMusicBrainz,
Simac music ontology35 and Kanzaki music ontology36. This ontology is popu-
lated with information extracted from the analysis of RSS feeds covering the lis-
tening habits of users (from last.fm), new music releases and events, podcasts,
blogs and reviews. The resulting KB in conjunction with users’ FOAF profiles is
used in generatingmusic recommendations. In summary, this work combines the
users’ personal information like demographics, socio-economics, relationships
etc with their explicit music preferences to generate personalized recommenda-
tions.

32http://smiy.sourceforge.net/pbo/spec/playbackontology.html
33http://purl.org/NET/c4dm/timeline.owl
34http://purl.org/NET/c4dm/event.owl
35Both MPEG-7 and Simac music ontologies cannot be accessed anymore.
36http://www.kanzaki.com/ns/music#
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Ferrara et al. (2006) builds on the so called MX formalism for music representa-
tion to develop and populate a music ontology. The MX format, an XML-based
one, is a multilayer structure for music resource description with the following
layers: structural, music logic, notational, performance and audio. This is shown
to allow for an accurate representation of scores. Then they propose MX-Onto
ontology which has two layers - Context37 and Genre classification38. To cap-
ture the semantics of a music resource, information related to ensemble, rhythm,
harmony and melody are abstracted by analyzing scores represented using MX
formalism. The abstraction process involves simplifying data into pieces of in-
formation albeit with some loss of accuracy in description. For instance, say a
given song is performed by an ensemble of two violins, a viola and a cello. Then
this is abstracted as a string quartet rather than representing the ensemble using
exact numbers and instruments. The context layer, once it is populated using the
aforementioned abstraction processes over the scores, is used in populating the
genre classification layer using SWRL rules.

Raimond (2008); Raimond et al. (2007) proposed Music Ontology (MO) which
builds on top of several other ontologies. It subsumes Timeline ontology for rep-
resenting the varied range of temporal information, including but limited to re-
lease dates, durations, relative positions and so on. It depends on Event ontology
for representing events such as performances and compositions. For the edito-
rial metadata, it builds on Functional Requirements and Bibliographic Records
(FRBR)39 (specifically for concepts likeWork, Manifestation, Item and Expression)
and Friend Of A Friend (FOAF)40 (for its Person and Group concepts) ontologies,
defining music specific vocabulary using the concepts and properties therein. As
a result, MO allows representing music creation workflows, temporal informa-
tion, events and editorial metadata. MO is also extended by other ontologies in-
cluding Key Ontology41, Chord Ontology42, Tonality Ontology43, Symbolic Music
Ontology44, Temperament Ontology45, Instrument Ontology46, and Audio Fea-
tures Ontology47 (see Fazekas et al., 2010, and the references there in for a de-

37http://islab.dico.unimi.it/ontologies/mxonto-context.owl
38http://islab.dico.unimi.it/ontologies/mxonto-genre.owl
39http://vocab.org/frbr/core
40http://xmlns.com/foaf/spec/
41http://purl.org/net/c4dm/ keys.owl
42http://purl.org/ontology/chord/
43http://purl.org/ontology/tonality
44http://purl.org/ontology/symbolic-music
45http://purl.org/ontology/temperament
46http://purl.org/ontology/mo/mit, this is a SKOS transformation of MusicBrainz instrument

taxonomy
47http://motools.sourceforge.net/doc/audio_features.html
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scription of these ontologies). It has been used as ameans to integrate and publish
data from MusicBrainz48, BBC (Kobilarov et al. (2009)), DBTune49 and so on.

Gracy et al. (2013) conducted an extensive case study in mapping several linked
music data projects and further linking these to library data that are structured
using more broader vocabularies which are not specific to music. In this regard,
they pointed out the limitations of MO in representing the content creation work-
flow for music. In their work, they identify three sphere of activity in the life
cycle of a musical work - composition, production and use. The first two are
well-representable using MO. The user generated data like their listening histo-
ry/habits and folksonomies which are part of the third sphere of activity, are not
made a part of the creation workflow as envisaged in MO. However, this can at
least be partially overcome by using ontologies like SIOC in tandem with MO.
They also review how users search for information related to different facets fo
music including artists, works, performance and so on, placing context as a valu-
able source to expand the scope of content-based music information retrieval.

Jacobson and Raimond (2009); Jacobson (2011) proposed SimilarityOntology (MuSim)
which builds on top of MO to describe the connections between various music
entities. Such connections are modeled as directed or undirected associations be-
tween two given entities, which include similarity. Further, these associations
can be detailed with a description including the method used for creating them.
This helps in not only expressing whether two given entities are connected, but
also the method used for deciding the association. This meant that the MuSim
provided provenance information alongside the description of connections.

Fazekas and Sandler (2011) proposed Studio Ontology50 for representing the as-
pects concerning music production in detail. It builds on several existing ontolo-
gies such as Event and MO. It defines Device and Connectivity ontologies for
describing devices used in music production and connections between them. It
is designed in a modular way so as to be extended by ontologies specific to an
application such as audio mixing, recording, effects and editing. Wilmering et al.
(2013) extend this with Audio Effects ontology which helps in structuring the
data about implementation and usage of audio effects.

The Ordered List Ontology51, Counter Ontology52 and Playback Ontology 53 are
48http://linkedbrainz.c4dmpresents.org/
49http://dbtune.org
50http://isophonics.net/content/studio-ontology
51http://purl.org/ontology/olo/core#
52http://purl.org/ontology/co/core#
53http://purl.org/ontology/pbo/core#
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defined for representing playback related aspects of music such as playlists which
are an ordered sequence of music recordings, and play count or skip. Ordered List
and Counter ontologies can also be applicable in other domains where sequential
information and counting objects are necessary for knowledge representation.

Tables. 4.1 and 4.2 summarize the ontologies discussed so far54. We have included
the total number of axioms, classes and properties of each ontology which we
have been able to resolve and/or find on the web. The ‘Expr’ column indicates
expressivity, which tells us what variety of Description Logic was used in creating
the ontology. We also summarize in a few words what the ontology is intended
for.

The work discussed so far follows the top-down approach in annotating web re-
sources with their semantics, where the ontologies are built manually before be-
ing used in describing data on the web. While this has the obvious benefits, it is
also difficult to scale, especially to the web context ((Bizer et al., 2007, discusses
the same and sketches the beginnings of DBpedia as a step to address this)). There
is another line of work which follows a bottom-up approach that complements
the former. These approaches, like the ones discussed by Wu et al. (2006); Spe-
cia et al. (2007), infer semantic models or partial ontologies from folksonomies
- user given tags and categories. Wang et al. (2010); Sordo et al. (2012); Oramas
et al. (2015) use such data about music resources to extract semantic information
which is further used in creating an ontology and/or generating music recom-
mendations.

Wang et al. (2010) proposes an approach that combines a music taxonomy, such
as the one taken fromAllMusic55, andWordNet56 to predict mood of a song based
on its social tags. First the terms in the taxonomy are transformed to an ontol-
ogy, and each class is mapped to a concept level in the WordNet. Then the terms
in the ontology are expanded using hyponyms, synonyms and sibling words ob-
tained from the wordnet. Following this the tags are matched with the ontology
with expanded terms. A seed set of songs are tagged with mood tags based on
a content-based mood tagging system. A set of DL-safe rules further allow in
inferring mood of target songs from the set of labeled seed songs. The results are
shown to be more accurate than a few alternate SVM-based methods.

Sordo et al. (2012) discuss a method to automatically extract meaningful infor-
mation from the analysis of natural language text in the online music discussion

54Some of them cannot be traced as of writing this thesis and have been left out in this summary
55http://www.allmusic.com
56WordNet is a lexical database of English, where words are grouped in cognitive synonyms,

each of which is a distinct concept. It can be accessed at https://wordnet.princeton.edu
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forums such as rasikas.org. First a dictionary of common music terms in the re-
spective music tradition is defined. This dictionary is used in creating a complex
network by matching the terms therein against the forum posts. The resultant
network is studied by observing various characteristics like node relevance, co-
occurrences and term relations via few semantically connecting words. Examples
of potent relations exposed using this approach include the lineage information
of an artist, musical influence and similarity.

Oramas et al. (2015) proposes an approach similar to the one proposed by Wang
et al. (2010) in leveraging knowledge graphs in a hybrid recommendation engine.
In this approach, the tags and textual descriptions are analyzed for concept iden-
tification which are then linked to semantically rich sources like WordNet and
DBpedia57. A knowledge graph built using this data, in conjunction with data
about users’ listening habits is used in generating recommendations, which are
shown to be significantly better than those obtained using state-of-the-art col-
laborative filtering approaches.

4.3 Linked open data in the domain of music

DBpedia since its beginnings in 2007 (Bizer et al. (2007)) have remained an impor-
tant effort that bootstrapped activity in the semantic web by helping realizing the
potential of interlinked information. It is a community effort in which the goal
is to publish the structured data content in Wikipedia as an RDF dataset. This
has become the nucleus to which nearly every open data project linked to re-
sulting in a giant web of data (Bizer et al. (2009b)). As noted earlier, this can
be observed in the snapshot of the web of data presented in fig. 4.2. DBpedia
2014 boasts 3 billion RDF triples in which 580 million are from English edition of
Wikipedia while the 2.46 billion come from 124 other language editions. In all,
the dataset has 38.3 million unique things, a majority of which also have multi-
lingual presence. In this release, there were about 123,000 music albums. There
are also other parallel efforts to DBpedia, such as Freebase58 which serves 1.9
billion triples, YAGO which serves 120 million triples (Mahdisoltani et al. (2014))
and WikiData (Erxleben et al. (2014)).

In the domain of music, MO has been instrumental in integrating schemas and
linking data across a large number of sources including Jamendo, Magnatune,
BBC music, AudioScrobbler data, MySpace, MusicBrainz and Echonest (Kobi-

57http://wiki.dbpedia.org
58https://developers.google.com/freebase/, now discontinued and data migrated to Wikidata -

https://www.wikidata.org/wiki/Wikidata:WikiProject_Freebase
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Dataset Triples in millions Interlinked with
Magnatune 0.322 DBpedia
Jamendo 1.1 Geonames, MusicBrainz
BBC peel 0.277 DBpedia
Last.fm 600 MusicBrainz
MySpace 12000 -
MusicBrainz 60 DBpedia, MySpace, Lingvoj
Isophone 0.457 MusicBrainz

Table 4.3: Datasets published and interlinked as part of DBtune project as sum-
marized in Fazekas et al. (2010)

larov et al. (2009); Raimond et al. (2009)). DBtune project59 is part of Linking
Open Data community project60, which undertook the aforementioned integra-
tion. Table. 4.3 gives an overview of the status of this project and the related
statistics. Cumulatively over all the sources of data, DBtune now provides access
to around 14 billion triples. Another set of tools such as Sonic Visualizer, Sonic
Annotator and the VAMP audio analysis plugin API use MO in publishing the
feature information as RDF (Cannam et al. (2010b)).

These efforts in linking data have lead to a valuable KB of huge proportions, even
if it is still at a nascent stage especially considering that a majority of the web
data still needs to be structured and linked using semantic web standards. This
KB has been exploited by research and development community in building new
or better information retrieval algorithms and applications. Freebase had been
central to the knowledge graph that Google uses to improve and personalize the
search results. DBpedia, WordNet and other rich linked data sources have been
used for improving the performance of Natural Language Processing and infor-
mation retrieval algorithms by facilitating entity linking and relation extraction
(Mendes and Jakob (2011)). There are also more direct usages of linked data such
as those which Passant (2010a,b) suggest. In this work, they proposed a set of
distance measures over linked data capitalizing on i) direct links between two
given resources and ii) shared links between such resources via other resources.
These set of distance measures are used in recommending music and literature
resources and the results are found to be comparable to those of collaborative
filtering approaches used on commercial platforms such as last.fm.

59http://dbtune.org
60https://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
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However, there are certain limitations to publishing structured data, interlink-
ing and using it. To begin with, ontologies in music domain are not complete
enough and need to be updated frequently to include more vocabulary or modify
the existing classes and properties. This may result in a conflict with data sources
which already have published their data using the previous version of the ontol-
ogy. At the web scale, this problem is not easily tracked to be able to address it.
Though there is a limited support to versioning ontologies in the form of annota-
tions, this does not strictly result in a compliance that is needed to alleviate this
problem altogether. Another important limitation is the lack of infrastructure,
i.e., proliferation of standards and software tools, that allows a reliable, seamless
access and provides querying of linked data across multiple sources. The feder-
ated query capabilities of SPARQL 1.1 specification61 is a step in a direction to
address this limitation. With increasing reliability of linked data endpoints, we
believe this issue can be overcome in near future.

Cannam et al. (2010b) summarizes other issues that were faced in publishing au-
dio features using RDF. As RDF is text-heavy, it results in wastage of space, pro-
cessing time and network resources which impedes the consumption of this data.
Also, there is no efficient means of representing numerical data such as feature
vectors or matrices. Further, inconsistencies in encoding of even simple numer-
ical data pose a problem to querying the data, especially more so when using
a federated setup. This problem gets worse with more sophisticated data types.
And lastly, as RDF data does not enforce order of statements, query optimization
for tasks such as distance computation is not straight-forward.

4.4 Summary and conclusions

In this chapter, we have discussed how the web evolved through various stages
leading up to the semantic web. We have briefly introduced the technologies and
standards that are part of it, emphasizing ontologies and linked data sources that
played an important role in bootstrapping its take off. We have also stressed on
the need for knowledge representation in the domain of music, discussing the
related past work in this domain. The work so far has been instrumental in de-
veloping ontologies for varied aspects of music relevant for both structuring/in-
tegration of data sources, and computational tasks in music information research
such as recommendation and similarity. There is also considerable interest in the
research community in leveraging folksonomies and natural language data in or-

61https://www.w3.org/TR/sparql11-federated-query/
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der to build bottom-up approaches to automatically extract semantic information
which can further lead to partial ontologies.

It is clear that in the domain of MIR, we are just beginning to understand the
potential of knowledge representation and linking data sources, in the context of
semantic web. While the existing ontologies are a right step in getting started,
to our knowledge, work on developing ontologies for deeper musicological infor-
mation is yet to be realized. Further, we need to take into account that the current
ontologies which model the music concepts such as scales or chords, do so in the
context of western popular music. This does not mean that an ontology needs to
be all engulfing to include musical aspects of different cultures (Read Veltman,
2004, for knowing the challenges in modeling cultural differences). But, we need
music related knowledge in those cultures to be represented using semantic web
technologies, especially for the reasons we have argued in sec. 4.2. This becomes
even more important considering the recent surge of interest in the MIR commu-
nity for developing culture-aware approaches (Serra (2011); Serra et al. (2013)).
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Chape 5
Parametrizing pitch histograms

Intonation is a fundamental music concept that has a special relevance in Indian
art music. It is characteristic of a rāga and key to the musical expression of the
artist. Computational description of intonation is of importance to several music
information retrieval tasks such as developing similarity measures based on rāgas
and artists. For computational purposes, we define intonation as characteristics
of pitches and pitch modulations used by an artist in a given musical piece. From
this definition, our approach will consider a performance of a piece as our unit of
study. In Carnatic music practice, it is known that the intonation of a given svara
varies significantly depending on the style of singing and the rāga (Swathi, 2009;
Levy, 1982). Our work is only concerned with intonation as a property of raaga,
and therefore differences that arise from various styles of singing are beyond the
scope of this work.

The study of svara intonation differs from that of tuning in its fundamental em-
phasis. The later refers to the discrete frequencies with which an instrument is
tuned, thus it is more of a theoretical concept than intonation, in which we fo-
cus on the pitches used during a performance. The two concepts are basically the
same when we study instruments that can only produce a fixed set of discrete fre-
quencies, like the piano. On the other hand, given that in Indian art music even
when the instruments are tuned using a certain set of intervals, the performances
feature a richer gamut of frequencies than just the steady notes (the harmonium
in Hindustani music is an important exception). Therefore, an understanding of
tuning alone cannot explain the real performances. Therefore, the study of in-
tonation as we just defined it assumes a greater importance. We maintain the
distinction between these terms, tuning or intonation, as necessary through out
the rest of the thesis.
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In this part of the thesis, we document our efforts chronologically in under-
standing this task and developing automated approaches that help us get closer
to a meaningful description from audio music signals. Pitch histograms have
been used with fair degree of success in classifying raagas in Indian art mu-
sic (Chordia et al. (2013); Chordia and Rae (2007)) and makams in Makam music
of Turkey (Bozkurt (2011)). The conclusions drawn in our evaluation of pitch-
histogram based approaches (3) point us to the fact that despite the importance
of gamaka-filled svara movements, they do not seem to add more information
that can help discriminate raagas.

In our first approach which we discuss in this chapter, we further verify this con-
clusion. Our hypothesis in doing so is as follows: If each peak in the histogram
accounts to a svara sung in the performance, then the movements involving the
svara influence the properties of pitch distribution around it. For instance, if a
given svara is always sung taking off from the previous semitonal position, then
we assume that the pitch distribution of the svara ought to have certain mea-
surable predisposition towards the take off point. In this chapter, we propose
parametrization of svara peaks in the pitch histograms to partly capture this in-
formation which will help us verify the aforementioned conclusion. This can also
potentially help us understand more about intonation of svaras.

5.1 Overview of the approa

From the observations made by Krishnaswamy (2003) and Subramanian (2007), it
is apparent that steady svaras only tell us part of the story that goes with a given
Carnatic music performance. However, the gamaka-embellished svaras pose a
difficult challenge for automatic svara transcription. Therefore, alternativemeans
of deriving meaningful information about the intonation of svaras becomes im-
portant. Gedik and Bozkurt (2010) present a survey of histogram analysis inmusic
information retrieval tasks, and also emphasize the usefulness of histogram anal-
ysis for tuning assessment and makam recognition in Makam music of Turkey.
As we already noted earlier, the gamakas and the role of a svara are prone to
influence the aggregate distribution of a svara in the pitch histogram of the given
recording. We believe that this information can be derived by parametrizing the
distribution around each svara (cf. Belle et al., 2009).

Our intonation description approach based on histogram peak parametrization
involves five steps. In the first step, prominent vocal segments of each perfor-
mance are extracted (sec. 5.2). In the second step, the pitch corresponding to the
voice is extracted using multipitch analysis (sec. 5.3). In the third step, a pitch
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Figure 5.1: Block diagram showing the steps involved in Histogram peak
parametrization method for intonation analysis.

histogram for every performance is computed (sec. 5.4) and in the final step, its
prominent peaks are detected and each peak’s distribution is characterized by
using the valley points and an empirical threshold. Then the parameters that
characterize each of the distributions are extracted (sec. 5.5). Figure 5.1 shows
the steps in a block diagram.

5.2 Segmentation of the audio music recording

In a typical Carnatic ensemble, there is a lead vocalist who is accompanied by a
violin, drone instrument(s), and percussion instruments with tonal characteris-
tics (Raman, 1934). Based on the instruments being played, a given performance
is usually a mix of one or more of these: vocal, violin and percussion. The drone
instrument(s) is heard throughout the performance. The order and interspersion
of these combinations depend on the musical forms and their organization in the
performance. For different melodic and rhythmic analysis tasks, it is required to
distinguish between these different types of segments. Therefore, it is necessary
to have a segmentation procedure which can automatically do this.
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In this study, we do not address the intonation variations due to artists. However,
as we consider each recording as a unit for describing intonation, there is a need
to assert the artist and the rāga which characterize the intonation of the record-
ing. For this reason, we have considered those recordings in which only one rāga
is sung, which is the case for most of the recordings. Furthermore, we also dis-
tinguish between the segments where the lead artist exerts a dominant influence
and the segments in which the accompanying violin is dominant. We choose the
pitch values only of the former segments. In order to do this, we consider three
broad classes to which the aforementioned segments belong to: vocal (all those
where the vocalist is heard, irrespective of the audibility of other instruments),
violin (only those where the vocalist is not heard and the violinist is heard) and
percussion solo.

To train our segmentation algorithm to classify an audio excerpt into the three
classes, we manually cropped 100 minutes of audio data for each class from com-
mercially available recordings1, taking care as to ensure diversity: different artists,
male and female lead vocalists, clean, clipped and noisy data, and different record-
ing environments (live/studio). The audio data is split into one-second fragments.
There are few fragments which do not strictly fall into one of the three classes:
fragments with just the drone sound, silence, etc. However, as they do not affect
the intonation analysis as such, we did not consciously avoid them.

After manual segmentation we extract music descriptors. Mel-frequency cep-
stral coefficients (MFCCs) have long been used with a fair amount of success as
timbral features in music classification tasks such as genre or instrument classi-
fication (Tzanetakis and Cook, 2002). Jiang et al. (2002) proposed octave based
spectral contrast feature (OBSC) for music classification which is demonstrated
to perform better than MFCCs in a few experiments with western popular music.
Shape based spectral contrast descriptor (SBSC) proposed by Akkermans et al.
(2009) is a modification of OBSC to improve accuracy and robustness by employ-
ing a different sub-band division scheme and an improved notion of contrast. We
use both MFCC and SBSC descriptors, along with a few other spectral features
that reflect timbral characteristics of an audio excerpt: harmonic spectral cen-
troid, harmonic spectral deviation, harmonic spectral spread, pitch confidence,
tristimulus, spectral rolloff, spectral strongpeak, spectral flux and spectral flat-
ness (Tzanetakis and Cook, 2002).

A given audio excerpt is first split into fragments of length 1 second each. The
sampling rate of all the audio recordings is 44100 Hz. Features are extracted

1These recordings are also derived from CompMusic collection, some of which also are part of
the sub-collection we chose for evaluation.



5.2. egmenaion of he adio mic ecoding 85

for each fragment using a framesize of 2048 and a hopsize of 1024 (double sided
Hann window is used). The mean, covariance, kurtosis and skewness are com-
puted over each 1-second fragment and stored as features. MFCC coefficients,
13 in number, are computed with a filterbank of 40 mel-spaced bands from 40
to 11000Hz (Slaney, 1998). The DC component is discarded, yielding a total of 12
coefficients. SBSC coefficients and magnitudes, 12 each in number, are computed
with 6 sub-bands from 40 to 11000Hz. The boundaries of sub-bands used are 20
Hz, 324 Hz, 671 Hz, 1128 Hz, 1855 Hz, 3253 Hz and 11 kHz (see Akkermans et al.,
2009). Harmonic spectral centroid (HSC), harmonic spectral spread (HSS) and
harmonic spectral deviation (HSD) of the ith frame are computed as described
by Kim et al. (2006):

HSCi =

∑NH
h=1(fh,iAh,i)∑NH

h=1Ah,i

(5.1)

HSSi =
1

HSCi

√√√√∑NH
h=1[(fh,i −HSCi)2A2

h,i]∑NH
h=1A

2
h,i

(5.2)

HSDi =

∑NH
h=1

∣∣log
10
Ah,i − log

10
SEh,i

∣∣∑NH
h=1 log10Ah,i

(5.3)

where fh,i and Ah,i are the frequency and amplitude of hth harmonic peak in
the FFT of the ith frame, andNH is the number of harmonics taken into account,
ordering them by frequency. For our purpose, the maximum number of harmonic
peaks chosen was 50. SEh,i is the spectral envelope given by:

SEh,i =


1
2(Ah,i +Ah+1,i) if h = 1
1
3(Ah+1,i +Ah,i +Ah−1,i) if 2 ≤ h ≤ NH − 1
1
2(Ah−1,i +Ah,i) if h = NH

All the features thus obtained are normalized to the 0-1 interval. In order to ob-
serve how well each of these different descriptors perform in distinguishing the
aforementioned three classes of audio segments, classification experiments are
conducted with each of the four groups of features: MFCCs, SBSCs, harmonic
spectral features and other spectral features. Furthermore, different classifiers
are employed: naive Bayes, k-nearest neighbors, support vector machines, mul-
tilayer perceptron, logistic regression and random forest (Hall et al., 2009). As the
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smallest group has 12 features, the number of features in other groups is also lim-
ited to 12 using information gain feature selection algorithm (Hall et al., 2009).
The classifiers are evaluated in a 3-fold cross validation setting in 10 runs. All
three classes are balanced. Table 5.1 shows the average accuracies obtained.

MFCCs performed better than the other features, with the best result obtained
using a k-NN classifier with 5 neighbors. The other spectral features and SBSCs
also performed considerably well. Using paired t-test with a p-value of 0.05, none
of the results obtained using harmonic spectral features were found to be statis-
tically significant with respect to the baseline at 33% using zeroR classifier.

From among all features, we have selected 40 features through a combination of
hand-picking and information-gain feature selection algorithm. These features
come from 9 descriptors: MFCCs, SBSCs, harmonic spectral centroid, harmonic
spectral spread, pitch confidence, spectral flatness, spectral rms, spectral strong-
peak and tristimulus. Themajority of these features are means and covariances of
the nine descriptors. Table 5.1 shows results of classification experiments using
all the features. In turn, k-NN classifier with 5 neighbors, performed significantly
better than all the other classifiers.

5.3 Predominant melody extraction

With the segmentation module in place, we minimize to a large extent the inter-
ference from accompanying instruments. However, there is a significant number
of the obtained voice segments in which the violinist fills short pauses or in which
the violin is present in the background, mimicking the vocalist very closely with
a small time lag. This is one of the main problems we encountered when using
pitch tracking algorithms like YIN (de Cheveigné et al., 2002), since the violin was
also being tracked in quite a number of portions. To address this, we obtain the
predominant melody using a multi-pitch analysis approach proposed by Salamon
et al. (2012). In this, multiple pitch contours are obtained from the audio, which
are further grouped based on auditory cues like pitch continuity and harmonic-
ity. The contours which belong to the main melody are selected using heuristics
obtained by studying features of melodic and non-melodic contours.

The frequencies are converted to cents and normalized with the tonic frequency
obtained using the approach proposed by Gulati (2012). In Carnatic music, the
lead artist chooses the tonic to be a frequency value which allows her/him to
explore close to three octaves. The range of values chosen for tonic by the artist
usually is confined to a narrow range and does not vary a lot. Hence, we take
advantage of this fact to minimize the error in tonic estimation to a large extent,
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using a simple voting procedure. A histogram of the tonic values is obtained
for each artist and the value which is nearest to the peak is obtained. This is
considered to be the correct tonic value for the artist. The tonic values which are
farther than 350 cents from this value are then set to the correct tonic value thus
obtained. After these preprocessing steps, we go ahead to obtain the intonation
description.

5.4 Histogram computation

As Bozkurt et al. (2009) point out, there is a trade-off in choosing the bin resolu-
tion of a pitch histogram. A high bin resolution keeps the precision high, but sig-
nificantly affects the peak detection accuracy. However, unlike Turkish makam
music, where the octave is divided into 53 Holdrian commas, Carnatic music uses
roughly 12 svarastānas (Shankar, 1983). Hence, in this context, choosing a finer
bin width is not as much a problem as it is in Turkish makam music. In addi-
tion, we employ a Gaussian kernel with a large standard deviation to smooth the
histogram before peak detection. However, in order to retain the preciseness in
estimating the parameters for each peak, we consider the values from the distri-
bution of the peak before smoothing, which has the bin resolution as one cent.
We compute the histogramH by placing the pitch values into their corresponding
bins:

Hk =
N∑

n=1

qk, (5.4)

where Hk is the k-th bin count, N is the number of pitch values, qk = 1 if
ck ≤ P (n) ≤ ck+1 and qk = 0 otherwise, P is the array of pitch values and
(ck, ck+1) are the bounds on k-th bin.

5.5 Svara peak parametrization

Peak detection

Traditional peak detection algorithms can broadly be said to follow one of the
three following approaches (Palshikar, 2009): (a) those which try to fit a known
function to the data points, (b) those whichmatch a known peak shape to the data
points, and (c) those which find all local maximas and filter them. We choose to
use the third approach owing to its simplicity.

The important step in such an approach is filtering the local maximas to retain
the peaks we are interested in. Usually, they are processed using an amplitude
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Figure 5.2: A sample histogram showing the peaks which are difficult to be iden-
tified using traditional peak detection algorithms. X-axis represents cent scale.

threshold (Palshikar, 2009). However, following this approach, the peaks such
as the ones marked in Figure 5.2 are not likely to be identified, unless we let the
algorithm pick up a few spurious peaks. The cost of both spurious and undetected
peaks in tasks such as intonation analysis is very high as it directly corresponds
to the presence/absence of svaras.

To alleviate this issue, we propose two approaches to peak detection in pitch
histograms which make use of few constraints to minimize this cost: peak ampli-
tude threshold (AT ), valley2 depth threshold (DT ) and intervallic constraint (IC ).
Every peak should have a minimal amplitude of AT , with a valley deeper than
DT on at least one side of it. Furthermore, only one peak is labelled per musical
interval given by a predetermined window (IC ).

Thefirst one of the peak detection approaches is based on the slope of the smoothed
histogram. A given histogram is convolved with a Gaussian kernel to smooth out
jitter. The length and standard deviation of the Gaussian kernel are set to 44 and
11 bins respectively. The length of the histogram is 3600 (corresponding to 3 oc-
taves with 1 cent resolution). The local maximas andminimas are identified using
slope information. The peaks are then found using DT , and with an empirically
set intervallic constraint, IC . A local maxima is labelled as a peak only if it has
valleys deeper than DT on both sides, and it is also the maxima at least in the
interval as defined by IC .

The second one is an interval based approach, where the maximum value for
every musical interval (IC ) is marked as a peak. The interval refers to one of
the just-intonation or the equal temperament intervals. In the case of a just-
intonation interval, thewindow size is determined as the range between themean

2Valley is to be understood as the deepest point between two peaks.
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Figure 5.3: A semi-tone corresponding to 1100 cents is shown, which in reality
does not have a peak. Yet the algorithm takes the point on either of the tails of
the neighbouring peaks (at 1000 and 1200 cents) as the maxima, giving a false
peak.

values obtained with the preceding and succeeding intervals. In the case of an
equi-tempered interval, it is constant for all the intervals, which is input as a
parameter. The window is positioned with the current interval as its center. The
peaks thus obtained are then subject toAT andDT constraints. In this approach,
it is sufficient that a valley on either side of the peak is deeper thanDT .

Among all the points labelled as peaks, only a few correspond to the desired
ones. Figure 5.3 shows three equi-tempered semi-tones at 1000, 1100 and 1200
cents. There are peaks only at 1000 and 1200 cents. However, as the algorithm
picks the maximum value in a given window surrounding a semi-tone (window
size is 100 cents in this case), it ends up picking a point on one of the tails of the
neighbouring peaks. Therefore, we need a post-processing step to check if each
peak is a genuine local maxima. This is done as follows: the window is split at
the labelled peak position, and the number of points in the window that lie to
both sides of it are noted. If the ratio between them is smaller than 0.15, there
is a high chance that the peak lies on the tail of the window corresponding to a
neighbouring interval3. Such peaks are discarded.

In order to evaluate the performance of each of these approaches, we have man-
ually annotated 432 peaks in 32 histograms with pitch range limited from -1200
cents to 2400 cents. These histograms correspond to the audio recordings sam-
pled from the dataset reported in table. 1.4. As there are only a few parameters,
we performed a limited grid search to locate the best combination of parameters

3This value is empirically chosen.
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for each approach using the given ground-truth. This is done using four different
methods: one method from slope based approach (MS), two methods from inter-
val based approach corresponding to just-intonation (MJI ) and equi-tempered
intervals (MET ), and a hybrid approach (MH ) where the results ofMS andMJI

are combined. The intention of including MH is to assess whether the two dif-
ferent approaches complement each other. The reason for selecting MJI in the
hybrid approach is explained later in this section.

Table A.1 shows the ranges overwhich each parameter is variedwhen performing
the grid search. For the search to be computationally feasible, the range of values
for each parameter are limited based on the domain knowledge of the intervals
and their locations, and empirical observations Shankar (1983); Serra (2011). A
maximum F-measure value of 0.96 is obtained using MH with AT , DT and IC
set to 5.0 · 10−5, 3.0 · 10−5 and 100 respectively. In order to further understand
the effect of each parameter on peak detection, we vary one parameter at a time
keeping the values for the other parameters as obtained in the optimum case.
Figure A.1 in Appendix. A.1 shows the impact of varying different parameters on
different methods.

The kernel size for Gaussian filter was also evaluated, giving optimal results when
set to 11. Higher and lower values are observed to have poor impact on the results.
In the case of the window size, the larger it is, the better has been the performance
of MH and MS . We suppose it is because the large window sizes handle devi-
ations from the theoretical intervals with more success. Unlike equi-tempered
intervals, just-intonation intervals are heterogeneous. Hence, a constant win-
dow has not been used. InMET , there does not seem to be a meaningful pattern
in the impact produced by varying the window size. From Figure A.1, we ob-
serve thatDT andAT produce an optimum result when they are set to 5.0 ·10−5,
3.0 · 10−5 respectively. Further increasing their values results in the exclusion of
many valid peaks.

As Serra (2011) have shown, Carnaticmusic intervals alignmorewith just-intonation
intervals than the equi-tempered ones. Therefore, it is expected that the sys-
tem achieves higher accuracies when intervals and IC are decided using just-
intonation tuning. This is evident from the results in Figure A.1. This is also
the reason why we chose MJI over MET to be part of MH . Serra (2011) also
show that there are certain intervals which are far from the corresponding just-
intonation intervals. As slope-based approach does not assume any tuningmethod
to locate the peaks, in the cases where the peak deviates from theoretical inter-
vals (just intonation or equi-tempered), it performs better than interval-based
approach. In the interval based approach, the peak positions are presumed to
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be around predetermined intervals. As a result, if a peak is off the given inter-
val, it will be split between two windows with the maximums located at extreme
position in each of them, and hence are discarded in the post-processing step de-
scribed earlier. This is unlike the slope based approach, where the local maximas
are first located using slope information, and IC is applied later. The results from
Figure A.1 emphasize the advantage of a slope-based approach over an interval-
based approach.

On the other hand, the interval based approach performs better when the peak
has a deep valley only on one side of the peak. As a result, methods from the
two approaches complement each other. Hence, MH performs better than any
other method. Therefore we choose this approach to locate peaks from pitch
histograms. Most peaks are detected by bothMJI/MET andMS . For such peaks,
we preferred to keep the peak locations obtained using MS . The source code
corresponding to the three peak detection approaches is made openly available
online4.

Parametrization

In order to parametrize a given peak in the performance, it needs to be a bounded
distribution. We observe that usually two adjacent peaks are at least 80 cents
apart. The valley point between the peaks becomes a reasonable bound if the
next peak is close by. But in cases where they are not, we have used a 50 cent
bound to limit the distribution. The peak is then characterized by six parameters:
peak location, amplitude, mean, variance, skewness and kurtosis. We extract
parameters for peaks in three octaves. Each peak corresponds to a svarastāna. For
those svarastānas which do not have a corresponding peak in the pitch histogram
of the recording, we set the parameters to zero. Since for each octave there are
12 svarastānas, the total number of features of a given recording is 216 (3 octaves
× 12 svarastānas × 6 parameters).

5.6 Evaluation & results

Intonation is a fundamental characteristic of rāga. Therefore, automatic rāga clas-
sification is a plausible way to evaluate computational descriptions of intonation.
The two parameters from histogram analysis that have been used for rāga clas-
sification task in the literature are position and amplitude of the peaks (3). We
devise an evaluation strategy that tests whether the new parameters we propose

4https://github.com/gopalkoduri/pypeaks
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are useful, and also if they are complementary and/or preferred to the ones used
in the literature.

The evaluation strategy consists of two tasks: feature selection and classification.
The feature selection task verifies if the new parameters are preferred to the fea-
tures fromposition and amplitude parameters. In this task, we pool in the features
from all the parameters and let the information gain measure and support vector
machine feature selection algorithms pick the top n features among them (Hall
et al., 2009; Witten and Frank, 2005). We then analyze how often features from
each pool of the parameters get picked.

The rāga classification task allows us to check if the features from the new param-
eters bring in complementary information compared to the features from position
and amplitude. For this, we divide this task into two subtasks: classification with
features obtained from the position and amplitude parameters, and classification
with features obtained from all the parameters (position, amplitude and new pa-
rameters: mean, variance, skewness and kurtosis). We compare the results of the
two subtasks to check if the features from the new parameters we propose carry
complementary information to distinguish rāgas.

To ensure that the comparison of results in the two subtasks is fair, we use top
n features in each subtask picked by information gain algorithm in feature selec-
tion task. Furthermore, six different classifiers were used: naive Bayes, k-nearest
neighbours, support vector machines, logistic regression, multilayer perceptron
and random forest (Hall et al., 2009; Witten and Frank, 2005)5, and the accuracies
obtained for each of them are checked if they stabilize after a few runs of the
experiment.

The number of raagas/classes is large in our dataset (table. 1.4), and each svara
in a given raaga can be equally important in its identity. Feature selection over
all the classes together will not result in meaningful behavior due to competitive
tradeoff that would ensue. To address this issue, we perform numerous classifi-
cation experiments each of which has 3 classes. As 45C3 is a huge number, for
the sake of computational feasibility, we listed all the possible combinations and
picked 800 of them in a random manner. Each such combination is further sub-
sampled thrice so that all the classes represented in that combination have equal
number of instances, which is 5 as it is the minimum number of instances in a
class in our music collection. As the total number of instances in each case is 15,
we limit the number of features picked by the feature selection algorithms to 5.

5The implementations provided in Weka were used with default parameters.
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Table. 5.2 shows the statistics of outcomes of the two feature selection algorithms.
For each parameter, two ratios are shown. The first one, abbreviated as Occ., is
the ratio of total number of occurrences of the parameter to the total number of
runs. The second one, abbreviated as Rec., is the ratio of number of recordings
in which the parameter is chosen at least once, to the total number of runs. The
former lets us know the overall relevance of the parameter, while the latter allows
to know the percentage of recordings to which the relevance scales to. Clearly,
the position and amplitude of a peak are the best discriminators of rāgas given
the high values for both ratios. It is also an expected result given the success
of histograms in rāga classification (Koduri et al., 2012). The mean of the peak is
also equally preferred to the position and amplitude, by both the feature selection
algorithms.

Mean, variance, skewness and kurtosis are chosen in nearly 40-50% of the runs.
Recall that each recording has 216 features, with 36 features from each of the
parameters. Therefore, in 40-50% of the runs, features from the new parame-
ters (mean, variance skewness and kurtosis) are preferred despite the availability
of features from position and amplitude. This shows that the new parameters
carry important information for distinguishing rāgas, than the positions and am-
plitudes for few svaras.

The results from the rāga classification task help us to assess the complementari-
ness of the features from new parameters. Table 5.3 shows the averages of all
the results obtained using each classifier over all the sub-sampled combinations
for the two subtasks (classification of rāgas using features from all parameters,
and those of position and amplitude). There is only a marginal difference in the
results of the two subtasks, with a noticeable exception in the case of results ob-
tained using SVMwhich seems to indicate that the features from new parameters
made a difference.

There is a class of rāgas which share exactly the same set of svaras, but have dif-
ferent characteristics, called allied rāgas. These rāgas are of special interest as
there is a chance for more ambiguity in the positions of svaras. This prompted
us to report separately the results of the feature selection and rāga classification
tasks described earlier, on 11 sets of allied rāgas which together have 332 record-
ings in 32 rāgas. For those allied rāga sets which have more than two rāgas per
set (say n), we do the experiments for all nC2 combinations of the set.

Table 5.4 shows the statistics over the outcomes of feature selection algorithms.
One noteworthy observation is that the relevance of variance and kurtosis param-
eters is more pronounced in the classification of the allied rāgas, compared to the
classification of all the rāgas (ref. table 5.2). This is in line with our hypothesis
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owing to the special property of allied rāgas. Table 5.5 shows the classification
results. However, the results from table 5.3 show only a marginal increase in the
accuracies of classification using features from all the parameters, compared to
the case of using features from just position and amplitude parameters. This in-
dicates that though the new parameters are preferred to position and amplitude
parameters, they do not bring in much complementary information.

5.7 Summary & conclusions

We started out with an objective to verify the conclusion from our comprehen-
sive evaluation of histogram-based raaga classification approaches. It states that
despite the importance of gamaka-filled svara movements in Carnatic music, they
do not seem to add more information that can help discriminate raagas. We have
proposed a histogram peak parametrization approach in order to verify this and
evaluated it qualitatively using two tasks. The new parameters describing the
pitch distribution around each svara peak were shown to be useful in discrim-
inating rāgas. However, as observed in the general rāga classification task, the
information contained in the new parameters obtained through this approach do
not seem to out do or add to the information given by position and amplitude
parameters. Therefore, we conclude that part of the earlier conclusion holds true,
which is the distribution of pitches around a svara peak in the histogram do not
add substantial information to peak position and amplitude parameters. How-
ever, the preference for the new parameters in feature selection algorithm does
not completely rule out the potential of the information they hold.

The code resulting from these experiments is consolidated and is made available
as two python modules - intonation and pypeaks. Instructions to install and use
the former can be found at this link6. The source code for this module can be
accessed at this link7. The pypeaks peak detection module can be installed from
this link8, and the source code can be accessed from a github repository9.

6https://pypi.python.org/pypi/intonation
7https://github.com/gopalkoduri/intonation
8https://pypi.python.org/pypi/pypeaks
9https://github.com/gopalkoduri/pypeaks





Chape 6
Context-based pitch

distributions of svaras

There are certain limitations to the histogram peak parametrization (HPP) ap-
proach discussed in the last chapter. Few svaras, by the nature of the role they
play, will not be manifested as peaks at all. Rather, they will appear as a grad-
ual slide latched on to a neighboring peak that cannot be identified by a peak
detection algorithm. Even more common than those are the melodic movements
which often span a few semitones. They result in a cross distribution of pitch
values among svara peaks. The HPP is an aggregate approach which does not ac-
count for the contextual information of pitches: the melodic & temporal contexts.
The former refers to the larger melodic movement of which a given pitch instance
is part of. The later refers to the properties of a given modulation: whether it is a
fast intra-svara movement, a slower inter-svara movement, a striding glide that
stretches from one svara to another, etc. In HPP, pitch value gets the same treat-
ment irrespective of where it occurs in pitch contour.

We believe addressing this limitation can substantially improve the information
held by the new parameters describing the distribution of pitch values around a
svara, which we proposed as part of HPP. Consider the following two scenarios:
(i) a given svara being sung steadily, and (ii) the same svara appearing as a tran-
sitory contour or even as a brief take off point. Using HPP, it is not possible to
handle them differently. But in reality, the first occurrence should be part of the
given svara’s distribution, and the second occurrence should belong to a svara
that gets the local emphasis. The objective of the approach we propose in this
chapter is to handle such cases by incorporating the local melodic and temporal
context of the given pitch value.

99
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Figure 6.1: Block diagram showing the steps involved to derive context-based
svara distributions.

6.1 Overview of the approa

Fig. 6.1 shows an overview of the steps involved in this approach in a block dia-
gram. Notice that this method alleviates the need for peak detection and finding
the distribution bounds as we obtain each svara distribution independently (com-
pared with steps required for HPP shown in fig. 5.1). As we have already noted
earlier, these two steps which are part of HPP have their own limitations. The
peak detection algorithm is prone to pick erroneous peaks and/or leave out few
relevant ones, especially so in an aggregate pitch histogram. On the other hand,
in order to estimate the parameters it is necessary to determine the bandwidth
of peaks from the histogram. In the cases where the valley points of a peak are
not so evident and the peak distribution overlapped with that of a neighboring
svara, we chose a hard bound of 50 cents on either side of the peak. This affects
the parameters computed for the distribution. Therefore, it is indeed desirable to
to avoid both those steps in this approach to avoid such issues altogether.
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Figure 6.2: The positions of windows shown for a given segment Sk, which spans
th milliseconds. In this case, width of the window (tw) is four times as long as
width of the segment (th), which is also hop size of the window. X-axis represents
time and y-axis represents cent scale.

6.2 Isolating svara pit distributions

Estimating melodic context using moving windows

In this approach, the pitches are distributed among the 12 svarastānas based on
the context estimated from the pitch contour. The entire melody extracted from
the song is viewed as a collection of small segments, each of a few milliseconds
duration. For each segment, we consider the mean values of a few windows con-
taining the segment. Those windows are positioned in time such that, in each
subsequent hop, the segment moves from the end of the first window to the be-
ginning of the last window. Each window is further reduced to a statistic, such as
mean, median or mode. A series of such values provide us with useful contextual
information. Figure 6.2 shows the positions of windows for a given segment Sk.

In the context of analysis and synthesis of gamakas in Carnatic music, Subrama-
nian (2002, 2007) points out that the mean of a melodic movement often corre-
sponds to the svara perceived by listeners. Therefore, we use the mean statistic
as a way to compactly represent the pitch content of a given window. Further,
given these series of mean values of windows containing the given segment, the
next step is to make an intelligent guess of the svara being sung, to which the
segment belongs to.
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Figure 6.3: Different classes of melodic movements, reproduced as categorized by
Krishnaswamy (2004).

There are two aspects that influence the process to decide the svara being sung.
Remember that we noted earlier that it is not uncommon to find melodic move-
ments which span atleast two semitones. Indeed, among the movements docu-
mented and categorized by Krishnaswamy (2004) and Subramanian (2007), they
make up the majority. Therefore this is the first aspect we should account for,
in deciding the svara. Fig. 6.31 shows a few classes of these movements in their
synthetic forms. The real contours however would be a mix and continuum of
these patterns.

The other important aspect is that inflexion points in the contour typically are the
places which account for relatively higher duration of time, compared to transi-
tory points. Given the possibilities of different types of contours around a svara,
we assume that in general more time is spent closer to the svara being sung.
However, one glance at the categories and examples shown in fig. 6.3 says that
there are cases where this is not true. As this assumption allows to keep our
methodology simple, we would like to verify if it can at least partially benefit our
analysis.

The median statistic over the mean values of the windows running through the
given segment is likely to address both these aspects if we quantize it to the near-
est svara location. Choosing the median value downplays the influence of ex-

1This is reproduced from Krishnaswamy (2004) for convenience of the reader, as we often refer
to these movements in the remainder of this chapter.
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treme points in the contour especially in those where an inflexion point is far
from the actual svara being sung (such kinds as the inflections at S end in R1+,
R1-movements listed in fig. 6.3). This addresses the first aspect we discussed. Fur-
ther, quantizing this value to the nearest svara location will help us in addressing
the second aspect partially. Given that a movement can be a near symmetric os-
cillation around a svara location, or based off it where the oscillation extends to
either the svara above or below it. A median value is a trade off between a mean
value that would only address the former, and a mode that accounts for the later.

Formalizing our discussion, we define a shifting window with its size set to tw
milliseconds and hop size set to th milliseconds. For a kth hop on pitch contour
P, k=0,1,…N

th
, where N is the total number of samples of the pitch contour, we

define segment (Sk) as:

Sk = P(tw + (k− 1)th : tw + kth) (6.1)

where Sk is a subset of pitch values of P as given by Eq. 6.1. Notice that the width
of the segment is th milliseconds. The mean of each window that contains the
segment is computed as:

µk =
1
tw

tw+kth∑
i=kth

P(i) (6.2)

The width of each window is tw milliseconds. We now define ϵ, the total number
of windows a given segment Sk can be part of, and m̄k, the median of the mean
values of those ϵ windows as:

ϵ =
tw
th

(6.3)

m̄k = median(µk, µk+1, µk+2 . . . µk+ϵ−1) (6.4)

Given Eqs. 6.1-6.4, a pitch-distribution DI of a svara I is obtained as:

DI = {Sk | argmin
i
|Γi − m̄k| = I} (6.5)

where Γ is a predefined array of just-intonation intervals corresponding to four
octaves. Therefore, DI corresponds to the set of all those vocal pitch segments
for which the median of mean values of windows containing that segment is
closest to the predetermined just-tuned pitch (ΓI ) corresponding to svarastāna
I. A histogram is computed for each DI, and the parameters are extracted as
described in ch. 5. As evident, the key difference between the two approaches
lies in the way parameters for each svara are obtained. In the earlier approach,
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we identify peaks corresponding to each svara from the aggregate histogram of
the recording. In this approach, we isolate the pitch values of each svara from
the pitch contour and compute a histogram for each svara.

The crucial parameters in this approach are tw and th. A Carnatic music perfor-
mance usually is sung in three speeds: lower, medium and higher ((Viswanathan
and Allen, 2004)). A large part of it is in the middle speed. Also, singing in higher
speed is more common than in the lower speed. From our analysis of varṇaṁs
in Carnatic music, we observed the average duration each svara is sung in the
middle speed to be around 200-250ms, while in the higher speed it is observed to
be around 90-130ms.

Therefore, based on the choice of the window size ( tw), two different contexts
arise. In the cases where the window size is less than 100ms (thus a context of
200ms for each segment), the span of the context more or less will be confined to
one svara. Whereas in the other cases, the context spans more than one svara. In
the first set of experiments reported below, we explore the first case.

Hop size ( th) decides the number of windows (ϵ) which a given segment in the
pitch contour is part of. A higher value for ϵ is preferred as it provides more fine-
grained contextual information about the segment Sk (See Eqs. 6.1 and 6.3). This
helps to take a better decision in determining the svara distribution to which it
belongs to. However, if ϵ is too high, it might be that either tw is too high, or th is
too low, both of which are not desired: a very high value for tw will span multiple
svaras which is not we explore in this set of experiments, and a very low value
for th is not preferred as it implies more computations. Keeping this in mind, we
empirically set tw and th to 100ms and 20ms respectively. Figure 6.4 shows the
results for tw = 150ms, th = 30ms, tw = 100ms, th = 20ms and tw = 90ms,
th = 10ms. In the figure, the intra-svara movements tend to be associated with
the corresponding svara whereas the inter-svara movements are segmented and
distributed appropriately.

Using this approach, we intend that the pitch segments be attributed to the ap-
propriate svarastānas. However, as we noted earlier in our discussion at the be-
ginning of the section, our assumptions and the complexity of the task mean that
we have only limited success in doing so. Hence we do not claim that the final
distributions are representative of the actual intonation of svaras as intended by
the artists. Yet, as we obtain the context for segments in every recording using
the same principle, we believe there will be more intra-raaga correspondences
than the inter-raaga ones.
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Figure 6.4: The pitch contour (white) is shown on top of the spectrogram of a
short segment from a Carnatic vocal recording. The red (tw = 150ms, th = 30ms),
black (tw = 100ms, th = 20ms) and blue (tw = 90ms, th = 10ms) contours show
the svara to which the corresponding pitches are binned to. The red and blue
contours are shifted few cents up the y-axis for legibility.

Evaluation & results

We run the same set of tasks as we did for HPP, but with the parameters obtained
using context-based svara distributions. We will regard the results from HPP as
the baseline and compare with them. Tables 6.1 & 6.2 show the statistics over the
outcome of feature selection on all rāgas and allied rāga groups respectively.

Unlike the statistics from tables 5.2 and 5.4, the position parameter assumes a
relatively lesser role in rāga discrimination, while amplitude still is the most dis-
criminating parameter. With an exception of kurtosis, all the newly introduced
parameters (mean, variance and skewness) also are chosen by the feature selec-
tion algorithmsmore frequently than before. This marks the relevance of melodic
and temporal context of svaras for their intonation description. Also it clearly in-
dicates that the approach has been, at least partially, successful in leveraging such
context.

In order to assess if the parameterization of context-based svara distributions
bring in complementary information, here too, we conducted the same set of
rāga classification experiments as we have done for HPP. Tables 6.3 and 6.4 show
the averages over all the results for classification experiments conducted over all
the rāgas in our music collection, and the allied rāga groups respectively. There is
a notable and consistent improvement in the accuracies when all raagas are con-
sidered in the classification test, while the differences are marginal when classi-
fying just the allied raagas. This too clearly indicates that our approach has been
successful, though not to a desirable extent in which case the results over allied
raagas would have clearly established it.
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Retrospection of the approa

Music transcription in Carnatic music is a very challenging task; musicologists
believe that it is harder even for expertmusicians2. Therefore, we came upwith an
approach that rather than aiming at an accurate transcription, partially captures
the melodic and temporal context so that the svara distributions can reflect the
types of movements and the role of other svaras in a given svara’s delineation in
the performance. The results do indicate that the approach is partially successful
in doing so. However, as the results from allied raaga classification indicate, there
is still ample room for improvement (Table. 6.4).

Fig. 6.5a shows the pitch histograms of Ga svara in Ābhōgi, Bēgaḍa andMōhanaṁ
rāgas, obtained using our approach. Fig. 6.5b (reproduced from ch. 7 for con-
venience) shows the same, but are generated using annotations from Varnam
dataset as we will describe in the next chapter. For now, consider the later to
be the closest we can get to the groundtruth. We can observe that in the case
of Ābhōgi rāga, our method is partially successful in showing two peaks (i.e., at
200 and 500 cents), vaguely resembling the peaks in the corresponding plot in
fig. 6.5b. However, this is not the case with Mōhanaṁ rāga where the pitch his-
tograms obtained from our method failed to show peaks at 200 and 700 cents,
though we see a slight bump around 450 cents. For Bēgaḍa rāga, we observe a
single peak in the histograms shown in both figures. This is due to our deliberate
choice, which is to constrain the window size so that it does not stretch beyond
the typical duration of a svara which is 150 milliseconds. The plots clearly reflect
this showing subdued presence of other svaras in a given svara’s histogram.

As we already mentioned, the categories of melodic movements listed in fig. 6.3
are only representative. In the real pitch contours, such movements form a con-
tinuum that is even more challenging for analysis. Especially, if we allow the
window size to stretch over 150 milliseconds, handling the transitory cases be-
tween the categories assumes higher relevance. In the next section, we try to
address these issues and improve our approach further.

2In our interactions with musicians who had more than 15 years of training, they were confi-
dent in labeling only parts of the pitch contour when asked to do so. When it comes to the svara
boundaries, they clearly convey that the transitions are fuzzy and cannot be marked objectively.



6.2. iolaing aa pich diibion 109

Cents

N
or

m
al

iz
ed

 c
ou

nt

(a) Pitch histograms of Ga svara in three rāgas: Ābhōgi, Bēgaḍa and Mōhanaṁ, obtained
using context-based svara distributions. Different lines in each plot correspond to differ-
ent singers.

Cents

N
or

m
al

iz
ed

 c
ou

nt

(b) Pitch histograms of Ga svara in four rāgas: Bēgaḍa, Mōhanaṁ, Ābhōgi and Śrī. X-axis
represents cent scale. Different lines in each plot correspond to different singers.

Figure 6.5: Comparison of svara histogram plots obtained using our approach
with those obtained using annotations in Varnam dataset.
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6.3 Refining the svara description: consolidating the
learnings

Changes to our approa

We first discuss ways to improve the usage of simple statistics in estimating
melodic and temporal context of a given pitch segment. As a shorter window is
ruled out as a suitable choice in our earlier discussion, we now work with a win-
dow size that spans more than a svara. This changes the very premise for argu-
ments which lead us to mean and median statistics. Earlier, we used mean value
over a window as its summary as it concerned movements over single svaras
(see fig. 6.3). However, the rationale behind doing so cannot be extended to the
present case when every window we look at almost always spans more than one
svara.

As a result, the mean can no longer be a valid summary of a window that extends
beyond a svara. Therefore, we suggest the following alternative procedure. We
pick the twomost common pitch values from thewindow. If their counts are com-
parable, we pick the mean value of the window to be its summary. Otherwise, we
choose the most common pitch value (i.e., mode). To even out subtle variations
in the pitch data, we quantize the values to 30 cent bins. Taking a count of the
resulting values makes it more robust to subtle variations in the pitch contour.
The rationale in this method is to determine the dominant svara when there are
more than one in a window. If the two most commonly occurring pitch values
have similar counts, we assume it is the case when the window spans an oscil-
latory movement over two semitones. In this case, we pick the mean value over
the window, in line with our choices in the experiment before. Notice that there
can also be cases where non-oscillatory movements result in being summarized
by mean, but we believe there are fewer such cases, especially in Carnatic music
where the oscillatory movement is the most common type (Krishna and Ishwar
(2012)).

We found another shortcoming of our approach observing the svara plots such as
the ones shown in fig. 6.5. As already mentioned, our aim is not the transcription
of melodic contours. Therefore, not using the information about svaras that are
allowed in a given raaga, has resulted in pitch values being distributed to those
which are not part of the raaga. This is another potential cause which may have
resulted in subdued presence of other svaras in a given svara plot. This can be
easily addressed by distributing the pitch values only among the svaras allowed
in the raaga.
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Evaluation & results

We evaluate our approach with these modifications discussed, in a raaga classi-
fication test on a dataset drawn from the CompMusic collection (sec. 1.4). Note
that, we used batches of 3 raagas in an earlier raaga classification task (see sec. 5.6)
as it is carried out in conjunction with a feature selection task. Unlike that, in the
current evaluation, we use all 40 classes in one classification task. We report two
different sets of results. The first set listed in table. 6.5 are the results obtained
using the parameters computed from the pitch distributions.

In our dataset, the number of parameters for an instance far exceeds the number
of instances per class. Therefore, most classifiers are prone to overfitting problem.
Given this caveat, table. 6.5 reports results using different kinds of classifiers. Our
discussion concerns those which are easier to interpret and are relatively not
effected by the nature of our dataset. These include the k-Nearest Neighbours
and the tree-category of classifiers (Decision tree and Random Forest).

In particular, we are interested in observing the resulting set of rules in a decision
tree. We already know from our previous results that the position and amplitude
are the most relevant parameters (see tables. 6.1 and 6.2). We also saw that the
new parameters - mean, variance, kurtosis and skew - do carry useful information
for distinguishing raagas. Inspecting the decision tree model built using these
parameters would give us more insights about the role each of them play in raaga
classification, and therefore their relevance.

Results from table. 6.5 clearly show that our current approach outperforms his-
togram peak parametrization in its efficiency in raaga classification. Further, in
a paired t-test with a significance level of 5%, improvement in results from the
current approach across all the classifiers is shown to be statistically significant.
Evidently, this proves that parameters from isolated svara histograms hold much
more relevant information than those from an aggregate histogram. Further, the
decision tree (reproduced in sec. A.2) shows that the new parameters introduced
are more effective towards the lead nodes of the tree, which is expected as posi-
tion and amplitude play a role in the beginning to segregate raagas differing by
presence/absence of svaras. For those that share the svaras, the new parameters
do seem to make a significant different in classification.

Having established that, sans parametrization, we need to validate whether the
isolated svara histograms themselves are more informative compared to an ag-
gregate histogram. From a musicological perspective, svara histograms do have
a certain advantage wherein one can measure the presence of other svaras in its
movements more precisely. Whereas an aggregate histogram does not facilitate
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Method Accuracy
Aggregate histograms 77.3%
Isolated svara distributions 84.6%

Table 6.6: Accuracies obtained by matching pitch distributions obtained using
different approaches.

this at all. However, observing how they fare in a raaga classification test may
help us understand how deep the difference between them is.

The second set of results listed in table. 6.6 are accuracies obtained by directly
matching pitch distributions. In this case, we use Kullback-Leibler divergence
measure as given in eq. 3.2 to match two given normalized pitch distributions.
Thereafter, we find k-Nearest Neighbours (k=1, 3, 5) in a leave-one-out cross-
validation experiment to label a given test sample with a raaga. Though the dif-
ference in their performances is not as striking as it is in table. 6.5, isolated svara
histograms still outperform aggregate histograms by a fair margin. The differ-
ence between accuracies obtained by matching aggregate histograms and using
their parameters indicates that peak parametrization in histograms does result in
a loss of valuable information. The isolated svara histograms obtained using the
current approach however do not seem to be affected by parametrization, which
seems to indicate their robustness.

6.4 Summary & conclusions

We have presented an approach to parametrize context-based svara distribu-
tions to obtain intonation description from Carnatic music recordings. In this
approach, we addressed some of the major drawbacks of the histogram peak
parametrization method (ch. 5): lack of melodic and temporal context, and find-
ing the bandwidth of the peaks. Unlike the former approach where pitches for
each svara are derived from a histogram, in this method, the pitches correspond-
ing to each svara are obtained directly from the pitch contour by considering it’s
melodic and temporal context. For each svara, a histogram is then computed from
which the parameters are obtained. Thus, it alleviates the need for estimating the
location and bandwidth of peaks. As a result, this approach requires lesser num-
ber of parameters to be tuned. The results from the final evaluation task (sec. 6.3)
show that this approach outperforms the earlier one, proving that this approach
provides a better intonation description. The source code for both the methods
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is made openly available online3.

We believe these results are sufficient to justify the usefulness and robustness of
our svara representation and parametrization compared to the earlier approaches.
In the next couple of chapters, our emphasis will be on qualitative analysis that
can further improve this representation so that they are suitable for extracting
musically meaningful parameters.

The code resulting from this chapter will be consolidated and published to the
intonation python module4. The source code can be accessed from the corre-
sponding github repository5. The usage instructions are contained therein.

3URL: https://github.com/gopalkoduri/intonation
4https://pypi.python.org/pypi/intonation
5https://github.com/gopalkoduri/intonation



Chape 7
Taking a step back:

Qualitative analysis of varnams

All through our work on intonation description of svaras, there has been a need
for a reference that can be used to compare the representations of svaras obtained
using our approaches. For this, ideally we need an annotated dataset of Carnatic
songs where each svara is clearly marked. But as we already mentioned, labeling
svara boundaries turns out to be a challenging task even for an expert musician.
Therefore, we look for alternate ways to get as close to the ideal reference as
possible.

Varṇaṁs are a particular form inCarnaticmusic that succinctly capture the essence
of a raaga. Further, they are often sung as composed, allowing us to take advan-
tage of their notation. We have put together a dataset which we introduced in
sec. 1.4 that has monophonic audio, notations and annotations of taala cycles.
We make use of this dataset in getting to the aforementioned reference for svara
representations.

First, we introduce the structure of varnams and explain why they are suitable
for our analysis. Then we discuss how we semi-automatically synchronize the
taala cycles in svara notation of a varnam to those in its annotations. We use the
svara timestamps to compute svara histograms.

7.1 Relevance and structure of varnams

The macro structure of varṇaṁ has two parts: pūrvāṅga and uttarāṅga. The
pūrvāṅga consists of the pallavi, anupallavi and muktāyi svara. The uttarāṅga

115
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Pallavi Anupallavi Muktāyi
svara

Charaṇa
Chiṭṭa 

svara: 1
..... Chiṭṭa 

svara: n

Uarāṅga
(Second part)

Pūrvāṅga
(First part)

Varṇaṁ

Figure 7.1: Structure of the varṇaṁ shown with different sections labeled. It
progresses from left to right through each verse (shown in boxes). At the end of
each chiṭṭa svara, charaṇa is repeated as shown by the arrows. Further, each of
these verses is sung in two speeds.

consists of the charaṇa and the chiṭṭa svaras. Figure 7.1 shows the structure
of the varṇaṁ with two parts and different sections labeled. A typical varṇaṁ
performance begins with the singing of pūrvāṅga in two different speeds, fol-
lowed by uttarāṅga, where in after each chiṭṭa svara, the singer comes back to
charaṇa. Different variations to this macro structure give rise to various types of
varṇaṁs: pada varṇaṁs, tāna varṇaṁs and dhāru varṇaṁs ((Rao, 2006)). Varṇaṁs
are composed in a way such that the structure includes variations of all the im-
provisational aspects of Carnatic music ((for an in-depth understanding of the
relevance of varṇaṁs in Carnatic music, see Vedavalli, 2013b,a)). For example,
chiṭṭa svaras1 are composed of svaras that capture all their possible combina-
tions and structures in a given rāga. This helps singers in an improvisational
form called kalpana svaras, where they permute and combine svaras as allowed
by the rāga framework to create musically aesthetic phrases.

Due to the varṇaṁ structure and it’s purpose, the rendition of varṇaṁs across
musicians is fairly less variant than the variations seen in the renditions of other
compositional forms. This is because most performances of the varṇaṁs devi-
ate less from the given notation. Though the artists never use the notations in
their actual performances, they have been maintained in the tradition as an aid
to memory. Our work exploits this rigidity in structure of the varṇaṁ to align
the notation with the melody and extract the pitch corresponding to the various
svaras. Rāgas were chosen such that all the 12 svarastānas in Carnatic music are
covered ((Serra, 2011; Krishna and Ishwar, 2012)). This would allow us to observe
the impact of different melodic contexts (i.e., in different rāgas) on each of the
svaras.

1Chiṭṭa svaras in Sanskrit literally mean the svaras in the end.
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7.2 Svara synronization

Recall that our goal is to have a reference representation for svaras in their dif-
ferent melodic context, viz., raagas. For this, we obtain all the pitch values cor-
responding to each svara in a given raaga, and analyze their distributions. The
method consists of five steps: (1) The pitch contour of the recording is obtained
(in the same way as described in sec. 5.3). (2). Tāla cycles are manually annotated
by twomusicians. (3)These tāla cycles are semi-automatically synchronized with
the notation. (4). Pitch values corresponding to each svara are obtained from the
pitch-contour. (5). A normalized histogram from the pitch values of each svara is
computed and interpreted (as in sec. 5.4).

In order to be able to semi-automate the synchronization process, we confine our
analysis to a predetermined structure of the varṇaṁ in its sung form: pūrvāṇga
in two speeds, followed by a verse-refrain pattern of charaṇa and chiṭṭa svaras,
each in two speeds. Using Sonic Visualizer ((Cannam et al., 2010a)), we marked
the time instances which correspond to the start and end of tāla cycles which fall
into this structure. A sequence of tāla cycles is generated from the notation such
that they correspond to those obtained from the annotations. Hence, we now
have the start and end time values for each tāla cycle (from annotations) and the
svaras which are sung in that cycle (from notation).

Recall that we chose to analyze the varṇaṁs sung only in adi tāla (sec. 1.4). Each
cycle in ādi tāla corresponds to 8 or 16 svaras depending on whether the cycle
is sung in fast or medium speed. Each cycle obtained from annotations is split
into appropriate number of equal segments to mark the time-stamps of individual
svaras. The pitches for each svara are then obtained from the time locations in
the pitch contour as given by these time-stamps. A normalized histogram is then
computed for each svara combining all its pitch-values (see eq. 5.4).

7.3 Analysis of svara histograms

Fig. 7.2 shows pitch histograms for performances in two rāgas: Kalyāṇi and Śankarāb-
haraṇaṁ. Even though they theoretically have all but one svara in common, the
pitch histograms show that the peak locations and their characteristics are dif-
ferent. This is a clear indication that the rāgas cannot be differentiated by using
just their svarastānas.

There are many such rāgas which have common svaras. However, their into-
nation is very different depending on the respective rāga’s characteristics. To
elaborate this, we take the example of svara Ga which is common between the
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Figure 7.2: Histograms of pitch values obtained from recordings in two rāgas:
Kalyāṇi and Śankarābharaṇaṁ. X-axis represents cent scale, normalized to tonic
(Sa).

rāgas Mōhanaṁ and Bēgaḍa. Due to the context in which the Ga is sung in each
of the rāgas, the intonation and the gamakas expressed on the svara change. Fig-
ure 7.3 shows that the svara Ga in Bēgaḍa corresponds to one sharp dominating
peak at 400 cents. This concurs with the fact that the Ga in Bēgaḍa is always
sung at its position with minimum gamakas. It is a steady note in the context of
the rāga Bēgaḍa. On the other hand, the same figure shows that Ga in Mōhanaṁ
corresponds to two peaks at 400 and 700 cents with a continuum from one peak
to the other. The dominant peak is located at 400 cents (i.e., Ga’s position). This
is in line with the fact that Ga in Mōhanaṁ is rendered with an oscillation around
its pitch position. The oscillation may vary depending on the context in which it
is sung within the rāga. Ga in Mōhanaṁ, generally, starts at a svara higher (Ma
or Pa) even though it may not be theoretically present in the rāga, and ends at its
given position after oscillation between its own pitch and a higher pitch at which
the movement started.

Another example of such svara is Ga in Ābhōgi and Śrī2. Fig. 7.3 shows that
Ga in Ābhōgi is spread from 200 cents to 500 cents, with peaks at 200 cents and
500 cents respectively. These peak positions correspond to the svaras Ri and Ma,
respectively. The inference one can make from this is that the Ga in Ābhōgi is
sung as an oscillation between Ri and Ma of the rāga Ābhōgi, which is true in
practice. The pitch histogram for Ga of Śrī in fig. 7.3 shows that the peak for Ga
in Śrī is smeared with a peak at 200 cents which is the Ri in Śrī. This is consistent

2Ga in Bēgaḍa and Mōhanaṁ correspond to a svarastāna which is different from the one that
Ga in Ābhōgi and Śrī correspond to.
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Figure 7.3: Pitch histograms of Ga svara in four rāgas: Bēgaḍa, Mōhanaṁ, Ābhōgi
and Śrī. X-axis represents cent scale. Different lines in each plot correspond to
different singers.
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Figure 7.4: Pitch histogram for Ri svara in Śrī rāga. X-axis represents cent scale.
Different lines in each plot correspond to different singers.
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Svara (Rāga) Sa Ri Ga Ma Pa Da Ni
Ga (Bēgaḍa) 0/14 74/56 - 80/64 0/18 2/0 0/4
Ga (Mōhanaṁ) 4/2 72/71 - - 68/96 28/4 -
Ga (Ābhōgi) 24/0 44/68 - 55/58 - 2/0 -
Ga (Śrī) 0/2 88/88 - 0/0 0/0 0/0 2/0
Ri (Śrī) 106/132 - 88/88 52/46 6/6 0/0 26/6

Table 7.1: Transition statistics for svaras discussed in the section. Each cell gives
the ratio of number of transitions made from the svara (corresponding to the row)
to the number of transitions made to the svara.

with the fact that Ga in Śrī is rendered very close to Ri. A comparison of the pitch
histograms of the Ri in Śrī (Figure 7.4) and the Ga in Śrī shows that the peaks of
Ga and Ri almost coincide and the distribution of the pitch is also very similar.
This is because the movement of Ga in Śrī always starts at Ri, touches Ga and
lands at Ri again. Ga in Śrī is always a part of any phrase that ends with RGR
sequence of svaras, and in this context Ga is rendered as mentioned above.

Insights such as the ones we discussed in this section require musical knowledge
about the svaras and their presentation in the context of a rāga. To complement
this, we have derived the transition matrices of svaras in each varṇaṁ from nota-
tions. The transition statistics of a given svara are observed to usually correspond
to the pattern of peaks we see in its pitch histogram. Table. 7.1 lists the transitions
involving Ga in Bēgaḍa, Mōhanaṁ, Ābhōgi and Ga, Ri in Śrī.

With the exception of Ga in Bēgaḍa, we notice that the other svaras to/fromwhich
the transitions occur are the ones which are manifest in the pitch histogram of
the given svara. Combining this information with peaks in pitch histogram yields
interesting observations. For instance, a svara such as Ga in Bēgaḍa rāga records
a number of transitions with Ri and Ma svaras, but the pitch histogram shows a
single peak. This clearly indicates that it is a svara sung steadily without many
gamakas. On the other hand, in the case of svaras like Ga in Mōhanaṁ, we see
that there are a number of transitions with Ri and Pa svaras, while there are also
several peaks in the histogram. This is an indication that the svara is almost al-
ways sung with gamakas, and is anchored on other svara or sung as a modulation
between two svaras. The transitions are also indicative of the usage of svaras in
ascending/descending phrases. For instance, the transitions for Ga svara in Śrī
rāga mark the limited context in which it is sung.

To keep the discussion concise and to the point, we have taken a few examples to
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explain how the same svara in different raagas is manifest differently. Plots for
all the svaras are available at [url] for further reference.

7.4 Summary & conclusions

We analyzed varṇaṁs to get a reference for svara representation that can act
as a groundtruth for comparing the representations obtained using different ap-
proaches. We have presented arguments as to how these representations are mu-
sicologically valid. The observations juxtaposing resulting svara histograms with
the corresponding svara transition statistics indicate that the former are reliable
models capturing adequate details concerning svara intonation and the melodic
movements involving it.

In the next chapter, we propose an alternative approach to context-based pitch
distributions of svaras. In this, wemake use of an automaticmelodic phrase align-
ment approach to get timestamps of svaras in the absence of taala annotations.
We compare the svara histograms obtained using these two approaches with the
reference histograms obtained using varnam dataset in this chapter. Doing so
will allow us to qualitatively understand the merits and limitations of context-
based pitch histograms of svaras, and those obtained by automatic melodic phrase
alignment.





Chape 8
Melodic phrase alignment for

svara description

In this chapter, we consolidate the svara representation we have been working
with so far, and place it in context alongside other representations used in differ-
ent contexts for musical notes. We then use a methodology that partially aligns
the audio recording with its music notation in a hierarchical manner first at met-
rical cycle-level and then at note-level, to describe the pitch content using our
svara representation. The intonation description of svaras using this represen-
tation is evaluated extrinsically in a classification test using the varnam and the
kriti datasets (see sec. 1.4).

8.1 Consolidating svara representation

A musical note can be defined as a sound with a definite pitch and a given du-
ration. An interval is a difference between any two given pitches. Most melodic
music traditions can be characterized with a set of notes it uses and the corre-
sponding intervals. They constitute the core subject matter of research concern-
ing the tonality and melodies of a music system. For any quantitative analyses
therein, it is required to have a working definition and a consequent computa-
tional model of notes which dictate how and what we understand of the pitch
content in a music recording.

In much of the research in music analysis and information retrieval, the most
commonly encountered model is one that considers notes as a sequence of points
separated by certain intervals on frequency spectrum. There are different rep-
resentations of the pitch content from a given recording based on this notion,
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Figure 8.1: Pitch contours ofM1 svara in different raagas.

the choice among which is influenced to a great degree by the intended appli-
cation. Examples include pitch class profiles (Fujishima (1999)), harmonic pitch
class profiles (Gómez (2006)) and pitch histograms (Gedik and Bozkurt (2010))
besides others.

Albeit a useful model of notes used alongside several information retrieval tasks,
we believe it is limited in its purview. To illustrate this, we took the case of Car-
natic music, where the counterpart to note is svara, which as we know has a
very different musicological formulation (sec. 2). A svara is defined to be a defi-
nite pitch value with a range of variability around it owing to the characteristic
movements arising from its melodic context. It is emphasized that the identity of
a svara lies in this variability (Krishna and Ishwar (2012)), which makes it evident
that the former model of notes has a very limited use in this case.

Fig. 8.1 shows melodic contours extracted from the individual recordings ofM1

svara (498 cents) in different raagas. It shows that a svara is a continuum of vary-
ing pitches of different durations, and the same svara is sung differently in two
given raagas. Note that a svara can vary even within a raaga in its different con-
texts (Subramanian (2007); Krishnaswamy (2003)). Taking this into consideration,
we proposed an alternate representation of pitches constituent in a svara. In this,
we define a note as a probabilistic phenomenon on a frequency spectrum. This no-
tion can be explored in two complementary approaches: i) temporal, which helps
to understand the evolution of a particular instance of a svara over time and ii)
aggregative, which allows for studying the whole pitch space of a given svara in
its various forms, often discarding the time information.

The representation we proposed takes the latter approach. From the annotations
in the varnam dataset, we aggregate the pitch contours over the svara reported
in fig. 8.1 for the same set of raagas. Fig. 8.2 shows its representations, which are
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Figure 8.2: Description ofM1 svara using annotated data.

normalized distributions of values in respective pitch contours. The correspon-
dences between the two figures are quite evident. For instance,M1 in Begada is
sung as an oscillation betweenG3 (386 cents) andM1. The representation reflects
this with peaks at the corresponding places. Further, the shape of the distribu-
tions reflect the nature of pitch activity therein.

8.2 Audio-score alignment

In this section, wemake use of an audio-score alignment system to build the svara
representation we discussed. This alleviates the need for taala cycle annotations
which we found to be necessary for our analysis in the previous chapter. Further,
this approach also employs the notation information which we believe will result
in a better svara representation compared to our approach discussed in ch. 6.

Audio-score alignment can be defined as the process of finding the segments in
the audio recording that correspond to the performance of each musical element
in the music score. For this task, several approaches have been proposed using
techniques such as Hidden Markov models (Cont (2010); Maezawa et al. (2011)),
conditional random fields (Joder et al. (2010)) and dynamic time warping (Dixon
and Widmer (2005); Fremerey et al. (2010); Niedermayer (2012)).

The structural mismatch between the music score and the audio recording is a
typically encountered challenge in audio-score alignment. This is also common
phenomenon in the performances of varnams and kritis, where the singers tend
to repeat, omit or insert cycles in the score. To overcome this problem there exists
methodologies, which allow jumps between structural elements (Fremerey et al.
(2010); Holzapfel et al. (2015)). However these methodologies are not designed
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to skip musical events in the performance, which are not indicated in the score,
such as impromptu improvisations commonly sung in kritis. Moreover, we may
not need a complete alignment between the score and audio recording in order
to accumulate a sufficient number of samples for each svara.

Senturk et al. (2014) introduced an audio-score alignment methodology for align-
ing audio recordings of Ottoman-Turkish makam music with structural differ-
ences and events unrelated to the music score. Şentürk et al. (2014) later extended
it to note-level alignment. The methodology proposed by the former divides the
score into meaningful structural elements using the editorial section annotations
in the score. It extracts a predominant melody from the audio recording and
computes a synthetic pitch of each structural element in the score. Then it com-
putes a binarized similarity matrix for each structural element in the score from
the predominant melody extracted from the audio recording and the synthetic
pitch. The similarity matrix has blobs resembling lines positioned diagonally, in-
dicating candidate alignment paths between the audio and the structural element
in the score. Hough transform, a simple and robust line detection method (Bal-
lard (1122)), is used to locate these blobs and candidate time-intervals for where
the structural element is performed is estimated. To eliminate erroneous estima-
tions, a variable-length Markov model based scheme is used, which is trained on
structure sequences labeled in annotated recordings. Finally, Şentürk et al. (2014)
applies Subsequence Dynamic TimeWarping (SDTW) to the remaining structural
alignments to obtain the note-level alignment.

The alignment methodology used in our work is based on the work of Senturk
et al. (2014); Şentürk et al. (2014). Since the original methodology is proposed for
Ottoman-Turkish makam music, several parameters are optimized according to
the characteristics of our data. Also, several steps are modified in the original
methodology for the sake of generalization and simplicity. These changes are
detailed in ?. Here, we summarize the procedure as follows:

1. Extract the predominant melody from the audio recording ( Salamon et al.
(2012)), normalize it using tonic.

2. Get synthetic pitch contour from the notation assuming just-intonation
temperament and 70 bpm (corresponding to average tempo in varnamdataset).

3. Estimate possible partial alignments between the predominant melody and
the synthetic pitch contour at cycle-level.

4. Discard erroneous estimations using k-means clustering to purge clusters
with low scores.
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5. Extract svara samples from within each aligned cycle assuming equal du-
ration for each svara.

8.3 Computing svara representations

For a given recording, for each svara, σ, in the corresponding raaga, we obtain
a pool of normalized pitch values, xσ = {xσ1 , xσ2 , . . . }, aggregated over all the
aligned instances from its melodic contour. Our representation must capture
the probabilities of the pitch values in a given svara. We compute a normal-
ized histogram over the pool of pitch values for each svara. For brevity sake, we
consider pitch values over the middle octave (i.e., starting from the tonic) at a
bin-resolution of one cent:

hσm =

∑
i λm(xσi )

|xσ|
,

where hσm is the probability estimate of them-th bin, |xσ| is the number of pitch
values in xσ and λ function is defined as:

λm(a) =

{
1, cm ≤ a ≤ cm+1

0, otherwise

where a is a normalized pitch sample and (cm, cm+1) are the bounds of them-th
bin.

Figure 8.3 shows the representations obtained in this manner for M1 svara (our
running example from Figure 8.1) in different raagas. Notice that the represen-
tations obtained forM1 are similar to the corresponding representations shown
in Figure 8.2. This representation allows to deduce important characteristics of a
svara besides its definite location (i.e., 498 cents) in the frequency spectrum. For
instance, from Figure 8.3, one can infer that M1 in Begada and Saveri are sung
with an oscillation that ranges fromG3 (386 cents) to P (701 cents) in the former
andM1 to P in the latter.

8.4 Evaluation, comparison and discussion

As we already mentioned, our primary goal is to have a qualitative comparison
between the svara representations obtained from our different approaches. A
quick albeit opaque way to verify how they compare against each other is to em-
ploy the parameters from those representations in a raaga classification task. Post



128 melodic phae alignmen fo aa decipion

200 300 400 500 600 700 800

Begada raga

0.002

0.004

0.006

200 300 400 500 600 700 800

Saveri raga

0.002

0.004

Normalized pitch with 
respect to tonic (cents)

Normalized pitch with 
respect to tonic (cents)

R
el

at
iv

e 
O

cc
ur

en
ce

Figure 8.3: Description of M1 svara (498 cents in just intonation) using our ap-
proach.

this, we directly compare howwell the svara representations from the current ap-
proach and the context-based pitch distributions of svaras compare against those
computed using annotations in the varnam dataset.

Therefore, the svara-level alignment and the computed representation are first
evaluated extrinsically using a raaga classification task on the varnam and the
kriti datasets introduced in ch. 1. In the varnam dataset, we aligned 606 cycles
and 15795 svaras in total. Out of these cycles 490 are true positives. By inspecting
the false positives we observed two interesting cases: occasionally an estimated
cycle is marked as false positive when one of the boundary distances is slightly
more than 3 seconds. The second case is when the melody of the aligned cycle
and performance is similar to each other. In both situations considerable number
of the note-level alignments would still be useful for the svara model. Within our
kriti dataset, 1938 cycles and 59209 svaras are aligned in total. We parametrize
the representation of each svara using the same set of features we used in our
earlier approaches:

i. The highest probability value in the normalized histogram of the svara

ii. Mode, which is the pitch value corresponding to the above

iii. Mean of the distribution, which is the probability-weighted mean of pitch
values

iv. Pearson’s second skewness coefficient
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v. Fisher’s kurtosis

vi. Variance

As we know, there are 12 svaras in Carnatic music, where each raaga has a subset
of them. For the svaras absent in a given raaga, we set the features to a nonsen-
sical value. Each recording therefore has 72 features in total. The smallest raaga-
class has three recordings in the varnam dataset, with few classes having more,
so we subsampled the dataset thrice each time with a different seed. The number
of instances per class is three. We have also subsampled kriti dataset in a similar
manner, with number of instance per class set to five, and the dataset is further
subsampled five times.

We performed the classification experiment over the subsampled sets of the two
datasets using the leave-one-out cross-validation technique. The mean F1-scores
using the representations obtained from the annotations in the varnam dataset,
the current approach and context-based pitch distributions of svaras across the
subsampled datasets for the two datasets are reported in table. 8.1. Results corre-
sponding to all the methods remain more or less the same. Owing to the limita-
tion of the varnam dataset wherein all the recordings in a given raaga are of the
same composition, the results turn out to be near perfect. The results over the
kriti dataset are reported in table. 8.2. We can observe that here the context-based
pitch distributions have performed marginally better than the current approach.
However, this difference is statistically insignificant.

The series of figures. 8.4- 8.8 show representations of svaras in Sahana except
Sa and Pa, which aren’t shown here as they are mostly sung steady. We can
observe that in most cases, there are clear correspondences between svara plots
from different approaches. These include the overall shape of the distribution, the
peak positions and their relative importance indicated by the peak amplitude. It
is encouraging to see that the context-based pitch distributions approach which
uses just the svara information performs very similar to our current approach
which uses scores. For brevity sake, we have shown the plots of svaras in one
raaga. Those corresponding to other raagas are available at [url].

8.5 Conclusions

Wehave consolidated our representationalmodel for svara that expands the scope
of the current note model in use by addressing the notion of variability in svaras.
We have discussed an approach that exploits scores to describe pitch content in
the audio music recordings, using our model. However, we seek attention to the
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fact that the alignment method used relies on the average tempo of the recordings
computed from the annotations of the varnam dataset. In order to make the sys-
tem more self-reliant, there needs to be an initial tempo estimation step similar
to Holzapfel et al. (2015).

We have compared the svara representations computed from different approaches
qualitatively and quantitatively. It is very encouraging to find that the context-
based pitch distributions of svaras which just use the svara information of the raa-
gas perform more or less similar to the approach presented in this chapter which
uses scores. Though the lack of diversity in compositions in the varnam dataset
did not offer conclusive insights, the results over the kriti dataset show that both
the approaches are fairly robust to the variability of svaras across compositions
in a given raaga. The varnam dataset helped us in qualitatively analysing the
svara representations from the two approaches and comparing them to those ob-
tained using manual annotations. The similarity of the representations and the
correspondences therein reinforce that both approaches have been successful in
getting close to the ideal representation of svaras.

In the next part, we build ontologies to publish musically meaningful information
that can be extracted from this representation. For instance, these can include
answering questions such as: i) Is the svara sung steadily? ii) What svaras are
part of the movement sung over a given svara? and so on. We discuss ways to
incorporate such information in a knowledge-base developing ontology patterns
capable of capturing the semantics involved.

The experimental setup including code and data (or links to thereo) are made
publicly accessible in a github repository1.

1https://github.com/gopalkoduri/score-aligned-intonation
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A multimodal knowledge-base
of Carnatic music
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Chape 9
Ontologies for Indian art music

As part of the CompMusic project (Serra (2011)), we analyze melodic and rhyth-
mic aspects of different music traditions taking advantage of the domain knowl-
edge obtained from musicological texts and experts. This analyses yields musi-
cally meaningful information that can be directly related to higher-level musical
concepts. Examples of this information include tonic of a given performance
(Gulati (2012)), melodic motifs specific to raagas (Gulati et al. (2016a)), intona-
tion characteristics of svaras in different raagas (Part. II), rhythmic events (Srini-
vasamurthy et al. (2016)) and so on. Further, we have put a major effort in curat-
ing an audio collection with well structured metadata that is well-linked within
and also to other data sources such as Wikipedia. Our goal is to turn all the
aforementioned information coming from different processes and sources into a
logically consistent knowledge-base that is publicly accessible.

In chapter 4, we have discussed the aspects of Semantic web domain that help us
to realize this objective. The first step in this direction is building ontologies. We
discussed how they can help bridge the gap between music information research
and disciplines like musicology and music theory. However, the current state of
the ontologies for music domain is still limited in its scope to be able to address
these issues. There is a need to develop ontologies for concepts and relationships
coming from music theory. In the current chapter, we present ontologies which
we have developed for Carnatic music addressing these limitations as a first step
towards building a multimodal knowledge base. We present what is the first on-
tology for raaga to the best of our knowledge, and discuss the challenges posed
by modeling semantics of its substructures: svara, gamaka and phrases. We also
present the top-level ontology developed for Carnatic music, reusing several ex-
isting ontologies and defining new vocabularies as necessary.
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9.1 Scope of our contributions

An ontology of any concept depends on its purpose and the perspective of knowl-
edge engineer/ontologist, concerning political, cultural, social and philosophical
aspects (Bohlman (1999)). An ontology for rāga can stem from different points of
view - it’s historical evolution, teaching methodologies, role in the society, tax-
onomies etc. Our choice of design is influenced primarily by its intended use in
melodic analysis and data navigation. Therefore, our intent in developing on-
tologies for Carnatic music concepts is to eventually pave way for a multimodal
knowledge-base. We limit ourselves to only those aspects that are essential to this
objective. Therefore, it is imperative that these ontologies are not comprehensive
of Carnatic music domain in its entirety.

The concept of raaga has evolved through millenia: few aspects like association
with time have become less relevant, while a few others like arohana and avaro-
hana have assumed more relevance as the concept is theorized in the last few
centuries. The raaga ontology presented in sec. 9.2 represents it as understood in
the contemporary context. A complete record of its evolution is beyond the scope
of this work. Further, within the contemporary theory of the raaga, we chose to
represent those aspects that are deemed relevant for contemporary practice by
musicians and musicologists.

The Carnatic music ontology presented in sec. 9.3 builds on top of several ontolo-
gies including the raaga ontology and the music ontology (Raimond et al. (2007)).
We constrain the scope of this ontology to the intended applications of the result-
ing knowledge-base1.. Primarily, it is developed to support systems that facilitate
navigation and browsing of music collections, such as Dunya2 and Saraga3. This
would require interlinking and computing similarity between diverse music en-
tities. This requires representing a number of music concepts. In the first version
of the Carnatic music ontology we present, the concepts included are as follows:
raaga, taala, forms, concert, recording, musician, venue and instrument. We reuse
several existing ontologies in due course.

1The said constraints only help us to limit the scope of the development of ontologies and
consequently the knowledge-bases. However, it is to be noted that we have not traded off the
completeness in representing a musical concept that we address.

2http://dunya.compmusic.upf.edu
3https://play.google.com/store/apps/details?id=com.musicmuni.saraga



9.2. aaga onolog 141

9.2 Raaga ontology

From our discussion in ch. 2, recall that the fundamental substructures of raaga
framework are: svara, gamaka and melodic phrases. In this section, we further
elaborate their properties while building ontology patterns which help us in rep-
resenting those properties and their semantics. Particular emphasis is given to
svaras, for they are both central to our work presented in Part. II and to vari-
ous theories of raaga classification described in musicological texts Ramanathan
(2004).

Svaras and their functions

We continue our discussion about svaras from where we left in sec. 2.2. Recall
that we mentioned that there are 4 svaras that share their positions with 4 others.
This leads to two classes of svaras: natural and vivadi. The latter literally means
excluded. From table. 2.1, all except G1, R3, N1 and D3 are considered natural
svaras, while those four are classified as vivadi. We begin building our svara
ontology using this information4. Fig. 9.1 shows part of this ontology. As it
evolves, we will explain how the semantics represented in the class hierarchy
and relationships come into play.

As aptly put by Viswanathan and Allen (2004), just like various checkers in the
game of chess, svaras in rāga have different functions. Certain svaras are said
to be more important than the rest. These svaras bring out the mood of the
rāga. They are called the jīva svaras. The svara which occurs at the beginning
of melodic phrases is referred to as graha svara. And likewise, nyāsa svaras are
those svaras which appear at the end of melodic phrases. Dīrgha svaras are svaras
that are prolonged. A svara that occurs relatively frequently is called aṁsa svara,
and that which is sparingly used is called alpa svara, and so on. Therefore, a given
svara in two different raagas can play very different roles. Further, as we learned
from our work in previous chapters, svaras also assume their identity from the
nature of melodic movements allowed in a raaga. In addition to these roles, we
add two more arising from our analyses of svara intonation, and are of relevance
to music similarity. These are steady svaras and gamakita svaras. The former
refers to svaras sung with gamakas, and the latter without. Fig. 9.2 shows the
skeletal definition of raaga class with these relationships.

Svaras also play a major role in several classification schemes of raagas. Certain
schemes are said to be outcomes of theorizing the raaga framework, while some of

4We present our ontology visually throughout this thesis, unless using syntactic form helps
comprehension. When it is required to do so, we use Manchester OWL syntax.
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Figure 9.1: A part of the svara ontology showing all the svaras, variants of a
couple of svaras, and the relationships between them.

them are a direct consequence of properties of raagas. We begin with introducing
a popular framework that organizes raagas based on the constituent svaras. It is
called the mēḷakarta system (Sambamoorthy (1998)). According to this system,
there are 72 rāgas which are obtained through combinations of the 12 svarastānas
with following conditions in place: only one variant of a svara is allowed in a
combination, all the svara classes are to be represented, two given combinations
differ by at least one svarastāna, and the svaras should be linearly ordered with
no vakra5 pattern. The rāgas thus obtained are called janaka rāgas, literally the
parent rāgas. These are further divided into 12 subgroups eachwith 6 rāgas, based
on the svarastānas chosen for five positions of R, G, M, D, N (S, P are invariably
present in all parent raagas). The others, called janya/child rāgas are, in theory,
derived from them.

However, several janya rāgas pre-date the janaka rāgas by centuries clearly indi-
cating that the mēḷakarta system serves mainly the academic and theoretical pur-

5Vakra in Sanskrit literally means twisted. In this context, it means the order of the svaras is
twisted/abnormal.
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Figure 9.2: A part of the svara ontology showing all the svaras, variants of a
couple of svaras, and the relationships between them.

pose of organizing rāgas. This resulted in another classification scheme that di-
vides raagas as scale-based/progression-based (i.e., artificially created scale struc-
ture without the defining aspects of a traditional raaga) and phraseology-based
raagas (Krishna and Ishwar (2012)).

Progressions

A rāga is typically represented using the ascending (ārōhaṇa) and descending
(avarōhaṇa) progressions of the constituent svaras. Order and proximity of the
svaras determine their usage in building melodic phrases. The svaras in ascend-
ing progression can only be used in melodic phrases which are ascending in na-
ture, and viceversa. This seems to be especially important if the rāga has either
differing sets of svaras in the progressions (Eg: Bhairavi rāga in Karṇāṭaka), or
there is a vakra pattern in any of them (Eg: Saurāṣṭraṁ rāga in Karṇāṭaka). In
the first case, it is imperative that the differing svaras are either used only during
ascents or descents. In the latter case, the twisted svara positions allow few tran-
sitions which otherwise would not be possible. However, it has been noted that
these progressions may not be as relevant to the identity of phraseology-based
rāgas (Krishna and Ishwar (2012)).
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Based on the characteristics of these progressions and the constituent svaras,
there are several other classification schemes of rāgas. We mention a few of them
here and refer the readers to extensive musicological texts for more complete list
of classifications: Shankar (1983); Bhagyalekshmy (1990). The vakra/krama clas-
sification of rāgas is based on the order of svaras in the progressions of the rāga.
If there is a deviation or a zig-zag pattern in either of these progressions, the
rāga is said to be a vakra rāga. Otherwise, it is a krama rāga. The varjya/sam-
pūrṇa classification of progressions is based on the number of unique svaras they
consist of. The sampūrṇa progression have all the 7 svaras. Among the varjya
progressions, there can be one, two or three omissions from among the seven
svara positions. Based on the number of such omissions, the progression is said
to be ṣāḍava, auḍava and svarāntara progression. Different combinations of such
ascending and descending progressions give rise to different classes of rāgas.

We now define the Progression class in our ontology. Progression is a melodic
sequence which is an ordered list of svaras. OWL in itself does not facilitate
modeling order in any data as of yet (Drummond et al. (2006)). To the best of our
knowledge, there is no design pattern that represents the order information in a
way reasoners can work with. The available alternatives that allow representing
sequences are: RDF containers (rdf:Seq in particular), OrderedList ontology6 and
OWL-List ontology (Drummond et al. (2006)). RDF containers do not come with
formal semantics which a Description Logic reasoner can make use of7. OWL-
List ontology is neither maintained nor available. OrderedList ontology makes
use of index values of elements to maintain the order in a sequence, which limits
the reasoning capabilities over the ontology, but can be used in conjunction with
appropriate rules for deducing inferences conditional to a given set of criteria.
That said, the rest of the relations over the Progression class in our ontology are
shown in fig. 9.3.

We now turn to different kinds of progressions, which are all subclasses of Pro-
gression class in hierarchy. Each kind of progression asserts certain criteria on
svaras. For instance, all Shadava progressions must contain exactly 5 unique
svaras. Some of these criteria can be represented using OWL constructs, and a
few others need rules to work with. Listings. 9.2 and 9.2 show the definitions
of Sampoorna and Shadava progression classes using cardinality constraints on
properties. Audava, Svarantara progressions are also defined likewise. Note that
the svaras listed as S, R1 … D3, N3 are all instances of respective svara classes.
That is, R1 is an instance of Suddha Rishaba class and so on. The definition for

6http://purl.org/ontology/olo/core#
7http://www.w3.org/TR/rdf11-mt/#rdf-containers
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Figure 9.3: Part of the raaga ontology showing Progression class and its relations
to other classes.

Sampoorna progression says that it equals to a progression that has at least one
variant of each svara. The definition for Shadava progression says that it is a
progression that has exactly 6 containsSvara relations with svaras among those
listed.

Listing 9.1: Class definition of Sampoorna progression.
1 Progression
2 and (containsSvara some ({S}))
3 and (containsSvara some ({R1 , R2 , R3}))
4 and (containsSvara some ({G1 , G2 , G3}))
5 and (containsSvara some ({M1 , M2}))
6 and (containsSvara some ({P}))
7 and (containsSvara some ({D1 , D2 , D3}))
8 and (containsSvara some ({N1 , N2 , N3}))

Listing 9.2: Class definition of Shadava progression.
1 Progression
2 and (containsSvara exactly 6 ({S, R1, R2, R3, G1, G2, G3, M1, M2, P

,
3 D1, D2, D3, N1, N2, N3}))

Phrases and gamakas

Phrases, like progressions, are sequences of svaras. This notion helps in rep-
resenting scores/notations, however the melodic contours cannot be fit in this
definition for reasons we have presented throughout Part. II. Unless the melodic
contours are represented using a data model for further abstraction, we do not
see any particular advantage in representing them as they are (i.e., a sequence of
pitch values) in an ontology. Having said that, it is beneficial to instead link them
to their symbolic counterparts which find place in the ontology. Therefore, the
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Figure 9.4: Overview of our ontology showing Phrase and Gamaka classes with
their relationships.

Phrase class is defined as a subclass of OrderedList, which further can be linked
to Segment class in Segment ontology (Fields and Page (2011)). The latter is a
subclass of Interval class in Timeline ontology used to express relative/absolute
positions and durations over a timeline.

On the other hand, gamakas are not defined as a sequences of svaras. They are
melodic movements, whose shape can vary depending on the context, given the
rāga and the svaras they are sung with. As of yet, marking gamaka boundaries
either in an audio sample or a pitch contour is a difficult task as they are coalesced
in the pitch continuum. Hence, one can only assert if the gamaka is used in a cer-
tain segment, but not demarcate it precisely. For this reason, we chose to model
the gamakas as abstract sequences in which we do not specify the exact nature
of gamaka in a direct manner. It is made a part of a longer sequence without an
explicit indication of its beginning and ending within the sequence. Further, like
in the case of phrases, each sequence is linked to a segment of an audio recording
which corresponds to its rendition. Fig. 9.4 shows the corresponding extensions
to include phrase and gamaka concepts in our ontology.

Further, there are various ways to classify gamakas. Themost accepted classifica-
tion schemes speak of 10 or 15 different types (Dikshitar et al. (1904); Janakiraman
(2008)). However, Krishna and Ishwar (2012) clarifies that only a subset of them
are used in contemporary practice and lists them plotting their melodic contours.
Our ontology lists the latter as possible individual instances of Gamaka class.
Krishna and Ishwar (2012) lists them and discusses each type elaborately.
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Data models

One of the main sources of information in our knowledge-base is analyses of
audio music recordings. Each analysis results in a compact representation of a
music concept conceived as or extracted using a data model. In our analysis of
svara intonation, this data model is a normalized pitch histogram that represents
a given svara as a probabilistic phenomenon. The information resulting from
such models needs to be linked to concerned music concepts in our ontology.

For this, we put forward an ontology that is subsumed by raaga ontology, to fa-
cilitate expressing and linking this information. It consists of the Data Model
class. This class contains further subclasses each further differing and narrow
in their definition as required. Right now though, it has just one subclass called
Pitch Distribution. Note that the Data Model class is a general class that is in-
tended to model anything. Therefore, the relation is_about is not restricted to
be defined with any specific class. In our case though, this relation links it with
the Svara_Manifestation class, which links it with appropriate Svara class and
the audio recording from which it is extracted from, using manifest_svara and
manifest_in relations defined on it.

Including provenance of such information becomes important for various rea-
sons: i) enhances trust in applications using it, as the origin of the model is made
transparent, and ii) most importantly, it also facilitates a systematic and qualita-
tive comparison of different models about the same concept. Therefore, we define
a property on Data Model class that links it to a relevant resource. The latter cor-
responds to frbr:Work8. Fig. 9.5 shows the corresponding new classes and their
relations linked with the raaga ontology.

Rules

As fig. 9.4 shows, the rāga ontology subsumes sequence and svara ontologies to
effect various classification schemes. Within the limits of expressiveness in OWL
2 DL, we have represented a few within the ontology (eg: listings. 9.2 and 9.2).
We have earlier mentioned that a few other classification schemes need rules
outside the ontology to be effected. This is both in part due to the limitations
of OWL 2 DL, and also due to limited support for property chaining among the
reasoners. Relations defined using property chain are those where, if a given
series of relations exist between class A and class B through other classes, then
a new relation is brought into effect between A and B. Such properties are often
referred to as ’complex relations’, and have scant support in inference procedures.

8http://vocab.org/frbr/core
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Figure 9.5: Data Model extension to our ontology to express information ex-
tracted from audio analyses.

Therefore, a viable alternative is defining rules outside the ontology. These set of
rules lead to the necessary classification of raagas from which the resulting facts
can be added back to the ontology or knowledge-base. There is more than one
way to do this (see ch. 4): Rule Interchange Format (RIF), SPARQL Inferencing
Notation (SPIN/SPARQL rules) and Semantic Web Rule Language (SWRL). As the
kind of rules one requires are often application and task specific, we do not put
efforts into building a comprehensive list of rules. Here, we only demonstrate
them using SPARQL rules9 to perform krama/vakra classification.

As mentioned in sec. 9.2, each rāga has two progressions - ascending and de-
scending. A descent in an ascending progression, or an ascent in the descending
progression makes the rāga a vakra rāga. Otherwise, it is classified as a krama
rāga. In order to do this using our svara and melodic sequence ontologies, in
each given descending progression, we check if a ol:isFollowedBy relationship ex-
ists between any two consequent svaras among Shadja, Rishaba, Gandhara, Mad-
hyama, Panchama, Dhaivata and Nishada, in that order. Such relationship would
mark an ascent pattern in descending progressions. This order of svaras is re-
versed and the operation is repeated for checking descent patterns in ascending
progressions. Listing 9.2 shows an example SPARQL rule for the classification
scheme.

9The rule examples are shown using SPARQL query syntax
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Listing 9.3: One of the several SPARQL rules used in the classification of
rāgas into vakra/krama rāgas.
CONSTRUCT {?raaga a :vakraRaaga}
WHERE {

?raaga :hasArohana ?progression.
?progression olo:has_slot ?slot1.
?progression olo:has_slot ?slot2.
?slot1 olo:has_item :Gandhara.
?slot2 olo:has_item :Rishaba.
?slot1 olo:has_index ?index1.
?slot2 olo:has_index ?index2.

FILTER (?index1 > ?index2).
}

Rules can achieve a lot more than just classification. Take the case of constraints
over a svara with regards to usage of gamakas. For instance, if the given rāga has
R1 and G1 svaras, R1 can not take a gamaka since G1 is very close and it is difficult
to sing a gamaka on R1 without touching G2, which would result in violation of
rāga’s properties10. Such conditions can be used in creating new facts on svaras,
and even in cross-verifying the svara representations whether the observations
from them fall in linewith such deduced facts. A similar inference is possible from
observing the peak positions of Pitch Distribution class. If it has multiple peaks,
it clearly indicates that the svara is sung with gamakas, else it can be classified
as a steady svara (see fig. 9.2 to understand how these inferences can be added to
knowledge-base).

Summary

We discussed different aspects of the rāga framework and developed ontology
patterns to capture their semantics. This version of the ontology clearly laid more
emphasis on the role of svaras - ranging from their functions in the raaga to their
importance in various classification schemes.

We demonstrated with examples that the description of a musical aspect obtained
from the analysis of the audio recordings, interpreted with the help of the ontol-
ogy, gives insights which otherwise are not explicit or obvious. For instance, the
way a particular svara is intoned (say, the nature of semi-tonal oscillation) can

10A Karṇāṭaka musician and trainer explains this taking an example from Karṇāṭaka mu-
sic in this podcast episode: http://raagarasika.podbean.com/2008/09/30/episode-15-featured-raaga-
sivaranjani/
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be identified by combining the intonation description (obtained from audio data
analysis) and the nature of usage of svara in the rāga (obtained from ontology).

Modeling sequences, more specifically gamakas, is not trivial given the limita-
tions on expressiveness of OWL-DL11 and also due to the variety of temporal
variations possible for a given gamaka based on the context. Despite that, the
way we currently represent gamaka in the rāga ontology possibly gives way to
a symbiotic loop with motif analysis of audio recordings. For a given gamaka,
melodic sequences similar to the ones which have the gamaka, obtained using
motif analysis, can be used to enhance/reinforce the prevailing representation of
the gamaka in the knowledge-base. In turn, the broad variety of sequences thus
pooled in for a gamaka in the ontology can potentially help is zeroing in on more
concrete form of a gamaka. This further can guide a supervised system to identify
more musically meaningful melodic sequences from audio recordings.

As mentioned in sec. 9.1, the scope of this ontology is limited by our goals. How-
ever, one can further extend this to overcome such limitations depending on their
application needs. These include but not limited to: differences in the definition
of rāga based on school/lineage and historical periods, other theory-driven raaga
classifications, therapeutic aspects of raaga and so on. In the rest of the chapter,
we develop ontologies for music concepts like taala (rhythmic framework), forms
and instruments, eventually bringing them together along with raaga ontology
resulting in the Carnatic music ontology.

9.3 e Carnatic music ontology

The Carnatic music ontology brings together several concepts in describing their
hierarchies and relationships which are relevant for use in navigation and brows-
ing systems in the semantic web context. The core set of sub-ontologies presented
in the version discussed here include raaga, taala, forms, performer andwork. Be-
sides the raaga ontology, the bulk of Carnatic music ontology is made of taala and
forms ontology extensions. For the rest, we depend on existing ontologies and
vocabularies, which mainly consist of the music ontology, event ontology, and
schema.org vocabularies.

Taala ontology

Taala is the rhythmic framework in Carnatic music. We have introduced the re-
lated concepts in sec. 2.2. Following that discussion, our taala ontology comprises

11Constructors used for the rāga ontology come from SROIQ variety of Description Logics.
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Figure 9.6: Classes and relationships in the Taala ontology.

of the following top-level classes: Taala, Jaati, Gati, Anga and Anga Structure.
There are two classes of taalas that are in-vogue in Carnatic art music: Suladi
sapta taalas and Chapu taalas. The Suladi Sapta taalas is a collection of seven
kinds of anga structures. Where as chapu taalas are represented using the num-
ber of beats per cycle without reference to anga structure. As we learned earlier,
Jaati and Gati are modifiers to the Suladi sapta taala class which determine the
number of beats and its speed respectively. Each of them have five variants. The
three Angas: Dhrutam, Anudhrutam and Laghu are listed as subclasses of Anga
class. Taala is related to this class by has_anga property. However, the actual
sequence of these angas is important in the definition of a taala. Therefore, we
define another class which is a subclass of OrderedList, called Anga Structure to
facilitate this. Fig. 9.6 shows these classes and their relationships.

Carnatic Forms ontology

We have discussed different types of melodic forms in Carnatic music, and a few
of their classification schemes (sec. 2.2). We consolidate those schemes to the
following pairs of classes in our ontology: Pure and Applied, Improvisatory and
Compositional, Abhyasa gana and Sabha gana, Lyrical and Syllabic, and Freeflow
and Rhythmic. In Lyrical and Syllabic classification, the latter refers to those
forms which are sung with individual syllables - non-sensical (Like in alapana,
where vowels and a few consonants are used) or otherwise (Like in swara kalpana
where syllables correspond to Carnatic solfege). Each melodic form can simulta-
neously belong to more than a class. Fig. 9.7 shows a few of these classes with a
couple of forms appropriately classified. For comprehensibility, we have omitted
other forms, which can be found in the ontology.
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Figure 9.7: Classes and relationships in the Taala ontology.

Performer ontology

We found the existing ontologies to be limited in expressing a seemingly general
aspect of music concerts and/or albums, which is to express the role of different
artists in the ensemble. It requires expressing that in a given concert, an artist X
played an instrument Y in a role Z. The Performance class in the music ontology
comes close to expressing this. However, it defines instrument, performer prop-
erties directly on the Performance class, which results in a loss of information
that conveys who played what instrument. Further, it does not have role infor-
mation. The performer relation defined in schema.org vocabulary is too generic
and falls short of expressing the required information.

We designed an ontology pattern that would facilitate expressing such relations.
Fig. 9.8 shows the Performer ontology. The Performer class links to Artist, Instru-
ment and Role classes in defining a given instance of a performer. This pattern
enables expressing any possible combination of artist, instrument and role as a
performer, which can be linked to an mo:Event such as a co:Concert (defined
soon), or a mo:MusicalManifestation such as a mo:Release or a mo:Record. Note
that the Performer and Role classes can easily be extended to meet other possible
requirements.
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Figure 9.8: Classes and relationships in the Taala ontology.

Concepts imported from other ontologies

Rest of the concepts required to express the knowledge and facts in Carnatic mu-
sic domain, relevant to our intended applications, are modeled after and linked
to those from the existing ontologies. We further define additional relations over
them as required. Following are some of the concepts reused from the music
ontology: Instrument (defaults to a SKOS representation of MusicBrainz instru-
ment tree), Record, Release, Lyrics, Score, Performance and MusicArtist. Their
usage and hierarchy in our ontology is logically consistent with their definitions
as given in the music ontology. However, we create new relations among them
in order to express the knowledge is Carnatic music domain as succinctly as pos-
sible. The Place concept is reused from the schema.org vocabulary to represent
concert venue and other places such as artist birth and death place.

Concert becomes the central unit of all musical activity in Carnatic music. So
much so, that most commercial releases are basically recordings of concerts. Con-
sequently, our ontology reflects this leaning towards Concert class. It is modeled
as a subclass of Event class in the event ontology. It contains a set of Performance-
s, which are modeled as Event-s too. They are essentially renditions in one cre-
ative Work or the other. This Work can correspond to any kind of Form, and has
Raaga and Taala defined as applicable. If it corresponds to a Compositional Form,
the Work is linked to appropriate Notation and mo:Lyrics as well. Each such Per-
formance of a Work has a set of Performer-s indicating which artist played what
instrument. Fig. 9.9 shows these concepts and the relations defined among them.
Note that we did not reuse mo:MusicalWork in the place of Work class. There are
significant differences in the way a creativeWork is used and interpreted in west-
ern music and Indian art music. For instance, the composition of a work involves
creating an indicative notation which is not intended to be performed as is. The
notation is used only as a memory aid, unlike a score in western classical/popular
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Figure 9.9: The Carnatic music ontology that subsumes Raaga, Taala, Form and
Performer ontologies to describe aspects of Carnatic music.

music, where it is intended to be faithfully reproduced.

9.4 Summary & conclusions

In this chapter, we presented the raaga ontology and the Carnatic music ontol-
ogy which subsumes it besides other extensions that include form, taala and per-
former. The raaga ontology models the concepts of svara and phrase in Carnatic
music to further facilitate various classification schemes that depend of properties
of these substructures. OWL 2 DL facilitates expressing a few of these properties
in the definitions of the classes, such as Sampoorna Progression. However, a few
others such as Vakra Progression had to be defined outside the ontology in one of
the rule languages. This is partly due to the limitations of expressiveness of OWL
2 DL, and partly due to the lack of support in reasoners for complex properties
such as the ones defined by chaining multiple other properties.

We reuse several concepts and relations from the existing ontologies such as the
music ontology in developing the Carnatic music ontology. However, the bulk
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of this ontology comes from the definitions of these concepts: raaga, taala, form
and performer. The Taala and Form ontology extensions define a hierarchy of
concepts and their relations, both coming from music theory (E.g: Improvisatory
vs Compositional forms) and an application perspective (E.g: Lyrical vs Syllabic
forms). We also define a Work class that is different from mo:MusicalWork ow-
ing to the differences in their usage and interpretation in their respective com-
munities. Taking note of the limitations of current ontologies in expressing the
association between role (lead, accompanying etc), instrument and artist (person,
band or computer) in a performance and/or a recording, we define the Performer
class to overcome the same.

The landscape of semantic web technologies is a rapidly changing one. Though
on one hand, we had to continually update the ontologies to take advantage of
these changes, we believe the advantages offered by explicit semantics far out-
weigh the efforts needed to maintain the ontologies. Often, these changes bring
in improved expressiveness of OWL DL ontology language or better support for
OWL DL semantics in the reasoners. However, owing to this, backward compati-
bility becomes a challenge which to an extent can be handled by enforcing proper
versioning of the ontologies. In the following chapters, we make use of these on-
tologies in providing for a groundtruth of concepts and relations for information
extraction from text (ch. 10), and structuring and integrating information from
multiple sources (ch. 12).

The ontologies developed as part of this thesis, and the CompMusic project in
general, are available as a github repository12. The same will be the main web
reference for the persistent URLs and the documentation of the ontologies.

12https://github.com/gopalkoduri/ontologies





Chape 10
Concept and relation

extraction from unstructured
text

In the past decade, domain-independent approaches to information extraction
have paved way for its web-scale applications. Adapting them further to acquire
knowledge from thematic domains can greatly reduce the need formanual knowl-
edge engineering. This requires understanding how amenable the assertions ex-
tracted by such approaches are to ontologization. To this extent, we propose a
framework for a comparative extrinsic evaluation of the open information extrac-
tion systems. The first part of the framework compares the volume of assertions
along different dimensions with an aim to understand their coverage of the do-
main quantitatively. In the second part, the assertions are evaluated qualitatively
by employing them in three of the fundamental tasks of ontologization: entity
identification, concept identification and semantic relation extraction. The results
from each task are validated against structured content in Wikipedia and/or are
manually checked as necessary. The results from the two parts of the framework,
when juxtaposed against each other, give us concrete insights into the differences
between the performances and the nature of the approaches.

The advent of the semantic web and the linked open data movements have not
only resulted in a growing number of community-built structured data sources
likeWikidata andDBpedia, but also catalyzed the development of domain-independent
approaches for extracting information from unstructured text, further enriching
them. Open information extraction (OIE) is one such paradigm that has emerged
in the past decade, and has been used to extract assertions from unstructured data
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at web-scale with a considerable success (Etzioni and Banko (2008)). Until re-
cently, domain-specific approaches to information extraction from text required
manual knowledge engineering as a prerequisite (Sarawagi (2008)). The OIE ap-
proaches, however, do not require a pre-specified vocabulary and/or relation-
specific input. Therefore, adapting them to information extraction from thematic
domains, like Carnatic music, would alleviate the need or manual knowledge en-
gineering.

The process of structuring the assertions extracted from these approaches poses
certain challenges. There has been little work so far to identify and address such
issues. The advances in OIE, including the recent systems such as NELL1, are
largely directed towards taking advantage of the volume of web data. This meant
such systems rely to a good measure on repetitions in the data. In doing so, the
recall of the systems is often traded off for a good precision. The adaptation of
such systems to acquire knowledge from a given domain is an exciting prospec-
tive direction. Soderland et al. (2010) have first attempted to adapt TextRunner
system (Etzioni and Banko (2008)) to populate the knowledge-base concerning
facts in the domain of football game. One of their findings is that the limited
recall of the OIE systems is the major bottleneck in acquiring a good coverage of
the relation types.

This chapter is organized as follows. In sec. 10.1, the OIE approaches that we
chose to compare are discussed and in sec. 10.2, an overview of the data we work
with is presented. In sec. 10.3, we present the framework with various quanti-
tative and qualitative measures for analyzing the quality of assertions extracted,
and in sec. 10.4, we demonstrate it on the music domain. Sec. 11.5 concludes the
paper with our remarks and future direction of this work.

10.1 Open Information Extraction

Information extraction is the task of obtaining a set of assertions from the nat-
ural language text, featuring the entities and the relations of the corresponding
domain. The approaches are diverse ranging from those which learn from the
labeled training samples for the desired set of target relations, to those which op-
erate in an unsupervised manner. An easy access to large volume of unstructured
text on the web has necessitated approaches that scale appropriately to take ad-
vantage of this data. Open information extraction aims to extract the assertions
from voluminous data without requiring a pre-specified vocabulary or labeled
data for relations (Etzioni and Banko (2008)).

1http://rtw.ml.cmu.edu/rtw/
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ReVerb & OpenIE 4.0 For demonstrating our evaluation framework, we choose
two state-of-the-art OIE systems: ReVerb (Fader et al. (2011)) andOpenIE 4.0 (Mausam
et al. (2012)), which are shown to have outperformed the earlier systems such as
TextRunner,woepos andwoeparse (Wu andWeld (2010)). ReVerb addresses the is-
sue of incoherent and uninformative extractions2 found with the former systems,
by using few syntactic and lexical constraints. OLLIE (Mausam et al. (2012)) is
a successor of ReVerb, and includes the noun-mediated relations which are not
handled by the latter. It also incorporates the context of the assertions in the form
n-ary relations. OpenIE 4.0 employs a similar methodology to that of OLLIE, to
retrieve assertions using semantic role labeling, also known as shallow seman-
tic parsing. The implementations for both ReVerb and OpenIE 4.0 are available
online3.

Semantic parsing On the other hand, deep semantic parsing is an active research
topic in the natural language processing (NLP) community, which aims to ob-
tain a complete logical form of a given sentence. It is used in applications such
as question-answering systems, robotic navigation and further has several di-
rect implications for OIE as it is domain-independent and is shown to be web-
scalable (Harrington and Clark (2007)). To our knowledge, there is no existing
literature that compares semantic parsing with the likes of ReVerb and OpenIE
4.0. We therefore built an information extraction wrapper around a state-of-the-
art semantic parser and compare with the selected OIE systems. What follows is
a brief description of this system.

We use Combinatory Categorial Grammar (CCG) (Steedman (2000)) as our gram-
matical framework to parse natural language sentences to logical representa-
tion. CCG is known for its transparency between syntax and semantics, i.e.
given the syntactic structure (CCG derivation) of a sentence, a semantic rep-
resentation can be built deterministically from its derivation. Each word in a
sentence is first assigned a CCG category based on its context. Each category
represents the syntactic constraints that the word has to satisfy. For example,
in Fig. 10.1, the word plays is assigned a syntactic category (S\NP )/NP im-
plying that plays take a noun (NP ) argument on its right, and a noun argu-
ment (NP ) on its left to form a sentence (S). An equivalent semantic category
in terms of a lambda function is constructed from the syntactic category, here
λx.λy.plays(subj, y) ∧ plays(obj, x) with plays representing the predicate, x
and y representing the object (guitar) and subject (John) arguments. CCG de-
fines a set of combinators using which the adjacent categories combine to form

2We have used the terms assertions and extractions analogously.
3Available at https://github.com/knowitall/
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John plays guitar

NP (S\NP )/NP NP

john λxλy. plays(subj, y) guitar
∧ plays(obj, x)

>
S\NP

λy. plays(subj, y) ∧ plays(obj, guitar)
<

S
plays(subj, john) ∧ plays(obj, guitar)

1
Figure 10.1: An example showing the CCG syntactic and semantic derivation of
‘John plays guitar’.

syntactic categories of larger text units like phrases (e.g: plays guitar), from there
on leading to parsing a whole sentence. Correspondingly, the lambda functions
of the categories compose, eventually leading to the semantic representation of
the sentence. The advantage with CCG is that the complexity of obtaining a logi-
cal representation of a sentence is simplified into the task of assigning categories
to words. We use a modified version of Boxer (Bos et al. (2004)) to further convert
our sentences of interest to the triple form (subject, relation phrase, object).

10.2 Data

A major challenge in developing technologies for the exploration and the nav-
igation of music repertoires from around the world lies in obtaining and using
their cultural context. The vocabulary used for describing and relating the enti-
ties (musical concepts, roles of people involved etc) differs to a great extent from
music to music. Most commercial platforms have a limited view of such context,
resulting in poor navigation and exploration systems that fail to address the cul-
tural diversity of the world. Within the music information research community,
there is a growing interest for developing culture-aware approaches to address
this problem (Serra (2011)). Such approaches are diverse in terms of the data
they work with (audio, metadata and contextual-data) and methodologies they
employ (Serra et al. (2013)).

However, to our knowledge, there are no major attempts that use web text, ar-
guably the largest openly available data source. As a first step in this direction,
we choose to demonstrate our framework in the music domain. As we know from
ch. 2, Indian art music traditions: Carnatic and Hindustani, have a very distinct
character, especially when compared to the popular music styles that drive the
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music market worldwide. The terminology and the structuring of the knowledge
in these music traditions differs substantially from what people are accustomed
to, on most commercial platforms (Krishna and Ishwar (2012)). Therefore, we be-
lieve they make a suitable yet challenging thematic domain to analyze the quality
of the assertions for ontologization.

Text corpus

Our data consists of the plain text obtained from theWikipedia pages correspond-
ing to the Carnatic and Hindustani music traditions, after removing the tables,
listings, figures, infoboxes and other structured content. Pages from the parent
categories corresponding to both music traditions are obtained recursively. Text
from each page is tokenized to sentences, which are further filtered using the fol-
lowing constraints: a minimum number of 3 words and a maximum of 21 words
per sentence, with each word not exceeding 30 characters in length. By trial
and error, these constraints are found to reduce the number of malformed and
highly complex sentences. In the semantic parsing based system, to address the
multiword named entities, we identify consecutive NNPs and merge them into
one in a pre-processing step. In ReVerb and OpenIE4.0, they are handled in their
respective implementations.

We observed that a majority of the sentences featured pronouns. The resulting
assertions only partially contribute to ontologization. For instance, consider the
sentence ‘She is a composer’. The resulting assertion would be (She, is a, com-
poser). A few such sentences might help us learn that there exists a concept called
composer. However, such assertions are not useful in identifying entities of the
corresponding concept. Therefore, the pronouns in the text from each page are
resolved using the deterministic coreference resolution described by Lee et al.
(2013)4. There were a few false assertions as a result. However, we observed a
substantial rise in the recall of the entities in the domain. Table. 10.1 lists the
total number of sentences, and the number of assertions extracted using the OIE
systems. ReVerb and Open IE 4.0 associate a confidence score with the extracted
assertions. We did not however choose to filter them based on this score, as
Soderland et al. (2010) advocates that a system with a better recall at the cost of
lower precision is actually preferred for knowledge-base population using open
information extraction. All the assertions are converted to the triple form.

4Available online at http://nlp.stanford.edu/software/dcoref.shtml
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Music #Sentences #ReVerb #OpenIE
4.0

#Sem.
Parsing

Carnatic 10284 9844 15013 19241
Hindustani 10724 9944 15777 18496

Table 10.1: The number of sentences for each music, and the number of extrac-
tions obtained from the OIE systems.

Gold standard

We use the ontologies manually engineered in ch. 9 as a reference to prepare
groundtruth for the evaluation in the tasks of concept identification and seman-
tic relation extraction5. The concepts and relation-types used in our evaluation
framework come from the ontologies, with added synonyms and possible varia-
tions. The groundtruth for entities for each concept correspond to the page-titles
in the respective subcategory in the Wikipedia (eg: Carnatic_musicians).

10.3 Evaluation framework

In the information extraction literature, different approaches are evaluated by
measuring their performances on a set of labeled sentences or by employing hu-
man judges (Fader et al. (2011); Mausam et al. (2012)). Our goal, however, is to
evaluate them by the usefulness of the assertions extracted. We quantify this us-
ing a series of tasks that help in understanding the coverage of the entities and
the relation types of a given domain in the extracted assertions, quantitatively
and qualitatively. The tasks discussed in the first part of the evaluation compare
the volume of the assertions. While in the second part, we validate to what extent
the assertions yield to be structured using our ontologies. We then juxtapose and
compare the results from both parts of the evaluation.

antitative assessment

We study the distribution of the extracted assertions along four different aspects
to gain an insight into their coverage of the domain with respect to each of them:
sentences, entities, relation types and concepts. For the purpose of analyses
discussed in this subsection, the subject of a triple is taken for an entity, and

5Available at https://github.com/gopalkoduri/ontologies
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the object of a triple featuring a subsumption relation phrase6 (e.g: is a, be etc..)
is taken for a concept. For instance, in the triplet (Tyagaraja, is a, composer),
Tyagaraja is taken for an entity, and as the triple has a subsumption relation type
is a, composer is taken for a concept.

Observations from the distribution of the number of extractions for sentences
give a crude perspective of themodularity of the information extraction approach,
which is its ability to identify multiple, distinct relations from a given sentence.
The distribution of extractions for the entities allows us to gain an overview of
the scope of the extracted relations in identifying the entities in the given domain
as well as in describing a given entity. The distribution of extractions for rela-
tion types allows us to understand the relevance and coverage of an identified
relation-type in the domain.

As we will see, a large majority of the assertions from all the OIE systems corre-
spond to the subsumption relation type, often outnumbering the other relation
types by orders of magnitude. Therefore, it is important to further analyze this
relation type. These relations mainly inform us about the concept membership
of the entities. Hence, they assume importance for ontologization as they are
resourceful in defining the taxonomy of the given domain. The distribution of
extractions for concepts would reveal to what extent the assertions actually carry
the required information.

alitative assessment

Though the number of relation-types, concepts and entities are representative
of the size of the ontology learned and the volume by which it is populated, the
numbers alone might be misleading as not all the extractions from a given system
are unique and meaningful. The differences between relative performances in
quantitative and qualitative analysis expose those systems which overgenerate
wrong/redundant relation-types.

Consequently, the tasks discussed in this subsection are complementary to those
presented in the former, validating whether the quantitative observations cor-
relate with the performances of OIE systems on various tasks in ontologization.
For this, we consider the three fundamental tasks of ontologization: entity iden-
tification, concept identification and semantic relation extraction (Petasis and
Karkaletsis (2011)).

6A subsumption relation phrase is that which indicate a hierarchy in the taxonomy of the
domain.
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Concept identification. It is the task of identifying the concepts in the domain.
Objects from all the triples featuring a subsumption relation phrase are collected.
They are disambiguated based on their spellings, mostly automatically using string
matching and edit distance measures7 with minimal manual intervention where
necessary. The resulting objects are taken to be the candidate concepts of the
given domain. We compare the coverage of these against the concepts8 in the
manually built ontologies.

Entity identification. It concerns with finding the entities of a given domain and
assigning each to a concept. The set of subjects from all the triples are considered
as candidates entities in the domain. A list of titles of the Wikpedia pages in the
domain along with the categories each page belong to, is acquired. The page titles
correspond to entities, and the categories aremanually mapped to concepts in our
ontology. This constitutes the reference with which we compare the results from
the two subtasks of entity identification.

For evaluating the first subtask of entity identification, i.e., finding the entities of
the given domain, we measure the overlapping (O) and the residual (R) portions
of the candidate entities from each system with respect to the reference set. IfX
is the set of candidate entities and Y is the reference set, O and R are defined as:

O(X,Y ) =
|X ∩ Y |

|Y |
(10.1)

R(X,Y ) =
|X − Y |

|X|

The overlap and residual measures are preferred to other standard measures such
as precision and recall as there are legitimate entities recognized in the asser-
tions that are not part of the groundtruth. For technical correctness, we chose
to evaluate using custom measures that convey the same information. The O
measure is the same as recall measure provided that Y has all the possible true
positives. But in our case, it is not so andX potentially will have candidates that
are true positives but not in Y . Therefore, we avoid terming O a recall measure.
On the other hand, R tells us about the proportion of those candidates obtained,
which are not found in Y . We employ R with inter-system agreement to draw
meaningful conclusions about their results.

The second subtask, concept assignment, is evaluated using two methods. In the
first method, we manually build a set of rules over subsumption relation type
for each concept. For instance, for an entity to belong to the concept singers, it

7Available at https://github.com/gopalkoduri/string-matching
8The term concept is used analogous to a class in ontologies.
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must have either of the words vocalist or singer in the object of the corresponding
triples with subsumption relation type. All the entities satisfying the rules for a
given concept are assigned to it.

In the secondmethod, a given entity is reduced to be represented by a term vector
corresponding to the words from objects of the assertions it is part of. Following
this, each concept is initiated with a seedset of entities belonging to it. A given
concept is taken to be an abstract super entity, represented by the union of the
term vectors of the constituting entities. A bootstrapping mechanism is started,
which in a given iteration, finds the closest entity to the given concept and adds
it to the seedset, and recomputes its representation. The distance between given
two entities corresponds to the cosine similarity between the term vectors trans-
formed using TF-IDF, followed by Latent Semantic Indexing (Řehůřek and Sojka
(2010)). Unlike the first method, which is constrained to assertionswith subsump-
tion relation type, this method takes advantage of the full spectrum of relation
types. Results from the both methods are evaluated using O and R measures
from eq. 10.1, where X and Y correspond to the candidate set of entities ob-
tained using one of the methods for a given concept, and the reference set of
entities respectively.

Semantic relation extraction. It refers to the relation types other than those
which convey concept hierarchies. The assertion shown in Fig. 10.1 is one such
example, where plays is a relation that connects person and musical instrument
concepts. We compare the OIE systems in this task by two measures: breadth
and depth of the identified relation types. Breadth corresponds to the absolute
number of valid relation types identified for each concept, and the depth corre-
sponds to the number of assertions for a given relation type that consist of the
identified entities. The valid relation types are manually marked from among the
relation phrases in the assertions.

10.4 Results and discussion

antitative assessment

Figs. 10.2a and 10.3a show the distribution of the number of extracted assertions
using each of the OIE systems. Notice that the y-axis is a log scale. Between Re-
Verb and OpenIE 4.0, the latter seem to perform better, which can be attributed
to the noun mediated relations. The semantic parsing based system, however, re-
trieves substantially more relations per sentence than these two. A tight coupling
between syntax and semantics proves to be advantageous in chunking different
types of assertions, as well as relating entities far off each other in a given sen-
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Figure 10.2: Distribution of no. of extractions from OIE systems for Carnatic
music shown along different aspects. For a given number of extractions on x-
axis, the y-axis shows the logarithmic count of the instances within the aspect,
which have at least those many extractions.

tence. For instance, in sentences which feature a single subject, but multiple
relations (e.g: Chittibabu is a renowned Veena player, born in Kakinada to Ranga
Rao and Sundaramma.), it performed thoroughly well compared to others.

Figs. 10.2b and 10.3b show the corresponding distribution for entities. Recall that
we defined an entity to be the subject of a triple. The few entities with a dispropor-
tionately high number of extractions are usually the pronouns (despite resolving
most of them), followed by musical terms. The semantic parsing based system
retrieves slightly more number of assertions per entity compared to OpenIE 4.0,
which in turn performs better than ReVerb. We observed some redundancy in as-
sertions for a given entity, which is beneficial as this can be used as a measure of
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Figure 10.3: Distribution of no. of extractions from OIE systems for Hindustani
music shown along different aspects. For a given number of extractions on x-axis,
the y-axis shows the logarithmic count of the instances within the aspect, which
have at least those many extractions.
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confidence in asserting the corresponding relation. In order to analyze this, we
have also plotted the distributions of number of unique extractions for entities
(shown in dashed lines in the figures). We can observe that the semantic parsing
based system retrieves substantially more number of redundant assertions per
entity compared to the other two.

Figs. 10.2c and 10.3c show the distribution of the number of extracted assertions
for the relation types. The results for semantic parsing based system and OpenIE
4.0 are more or less the same, both of which are substantially better than ReVerb.
The redundancy in assertions, seen as the difference between the distributions
shown by solid and dashed lines, is not as pronounced as it is for entities. The
decline in the total number of relation-types as the number of extractions go
higher, is less steep than in the case of entities. Unless the vocabulary in the
domain is itself limited, this may indicate a slightly better coverage of relation
types compared to that of the entities in the domain.

Figs. 10.2d and 10.3d show the distribution of the number of extracted assertions
for the concepts. Recall that a concept is defined to be the object of a triple with
subsumption relation phrase. The difference between the semantic parsing based
system and the other two is quite marked, with the former retrieving more asser-
tions per concept. For Hindustani music, the coverage of concepts in the asser-
tions of ReVerb and OpenIE 4.0 is very low, with no concept having more than
20 assertions.

To summarize, the results indicate that the semantic parsing based system has a
better coverage of entities, concepts and relation types of the domain thanOpenIE
4.0, which is followed by ReVerb. It also retrieves more assertions per sentence
compared to the other two. The results of quantitative assessment for Carnatic
and Hindustani music correlate with each other, which shows that results are
consistent. Note that this subsection has only provided the quantitative infor-
mation, which by no means is complete in itself. The results we discuss in the
following subsection complement these providing qualitative observations along
the same dimensions (i.e., entities, concepts and relation types).

alitative assessment

In this subsection, we present the results for various tasks in the ontologization
of Indian art music domain: concept identification, entity identification and se-
mantic relation extraction.

Concept identification. Recall that we define candidate concepts to be the col-
lection of objects from the triples with subsumption relation type. We map these
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Music #Ontology #ReVerb #OpenIE
4.0

#Sem.
Parsing

Carnatic 53 4 4 22
Hindustani 55 1 2 9

Table 10.2: The number of concepts in the ontologies for each music, and those
mapped from the assertions of the OIE systems.

Music #Reference #ReVerb #OpenIE
4.0

#Sem.
Parsing

Carnatic 618 349 364 364
Hindustani 697 396 410 399

Table 10.3: The number of entities in the reference data for each music, and those
identified using the OIE systems.

to the concepts in the ontologies as described in sec. 10.3. Table. 10.2 shows the
number of concepts in the ontolgies for each music, and the number of concepts
mapped from the assertions of the OIE systems. These results are consistent with
our earlier observations of the results shown in fig. 10.2d.

Entity identification. The first subtask in this part is to find the entities in the
domain. The candidate entities from each OIE system are defined to be the collec-
tion of subjects from all its triples. Table. 10.3 shows the total number of entities
in the reference data taken from Wikipedia for each music, and the number of
entities in the intersubsection of these with the candidate entities of each OIE
system. There is no marked difference between the results, with nearly all the
systems having about 60% of the entities from reference data in their assertions.
However, it is observed that these correspond to only about 7% of all the possible
candidate entities.

For the second subtask of entity identification, i.e., assigning entities to concepts,
we have considered those concepts from our ontology for which there is a cor-
responding category on Wikipedia, each having at least 20 pages. This was done
to avoid manual labeling of entities. We found 5 such concepts for Hindustani
music: musicians, singers, instrumentalists, composers and ragas. For Carnatic
music, in addition to these, we have found another concept: compositions. As dis-
cussed, we evaluate this task using two methods: rule-based and bootstrapping-
based method.
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Figure 10.4: Results for rule-based concept assignment of entities identified in
Carnatic (top) and Hindustani (bottom) music.
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Figs. 10.4a and 10.4c show the overlap (O, see eq. 10.1) on rule-based concept
assignment for entities found in Carnatic and Hindustani music using the OIE
systems. The stem plots in the figures show residual portion of entities (R). The
most notable performances are seen for the raga concept in Carnatic music. This
can be attributed to two specific reasons: most Carnatic ragas on Wikipedia are
described using a template, and the terminology consists mainly of Sanskrit terms
which set them apart from the rest (mainly people). On the other hand, the de-
scription for Hindustani ragas varied a lot from raga to raga, and often the San-
skrit terms are inconsistently romanized making it hard for OIE systems to re-
trieve meaningful assertions. In theory, there is a template for almost every cate-
gory, but there is a lot of variability, such as this, in describing the corresponding
entities, except in the case of Carnatic ragas. OpenIE 4.0 seems to perform slightly
better in terms of overlap, compared to the semantic parsing based system and
ReVerb.

It is noteworthy to observe that residual entity candidates are consistently less in
number for the semantic parsing based system. As mentioned earlier, there are
two possibilities with them: they can be either false positives, or true positives
which are not found in the reference data. In most cases, they are observed to
be false positives. However, there are also a few of the latter. In order to un-
derstand them further, we have plotted the inter-system agreement in figs. 10.4b
and 10.4d, which is given by the cosine similarity betweenR of different systems.
ReVerb and OpenIE 4.0 agree with each other consistently higher over many of
the concepts. We have observed that the cases where two or more systems agree
on the candidature of a given entity, it is highly probable that the entity actually
belongs to the concept. All the figures also show absolute numbers to put into
perspective the proportion of residual entities where the systems agree with each
other.

The second method for the evaluation of concept assignment employs bootstrap-
ping as discussed in sec. 10.3. This process involves selection of a seedset and
determining the number of bootstrapping iterations. For the sake of brevity, we
have set the size of seedset to be the same for all the concepts, which is 3. The
entities in the seedset are randomly chosen from the ones among the reference
data taken from Wikipedia. However, as the bootstrapping process itself can be
sensitive to the initial selection of the entities in the seedset, the whole process
is repeated 5 times with randomly chosen seedsets. The bootstrapping method
is terminated once the size of seedset reaches that of the corresponding concept
in the reference data. After every 5 instances added during the process, we mea-
sure the overlap (O) and residual (R) portions of the seedset with respect to the
reference data. Figs. 10.5 and 10.6 show their mean over 5 runs.
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Figure 10.5: Results for bootstrapping-based concept assignment of entities iden-
tified in Carnatic music
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Figure 10.6: Results for bootstrapping-based concept assignment of entities iden-
tified in Hindustani music. The results for hindustani composers were not in-
cluded due to space constraints.
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In most categories and for all the three systems, it can be seen that R grows
quickly over iterations, making the residual portion the majority among the can-
didate entities, which brings the precision down. The semantic parsing based
system consistently outperforms the other two methods, both in terms of having
higher O, and lower R. Between ReVerb and OpenIE 4.0, there is no substan-
tial difference in terms of O. For Carnatic singer and instrumentalist categories,
however, the latter results in a lower R, and a slightly higher O compared to the
former. These results partly contrast with those obtained for the rule-based con-
cept assignment (fig. 10.4). However, remember that the coverage of concepts in
the domain is observed to be remarkably better in the case of the semantic pars-
ing based system (fig. 10.2d). As the bootstrapping method uses the objects from
the triples (which are the candidate concepts), it seems logical that the semantic
parsing based system has performed substantially better than the other two.

Semantic relation extraction. For the purpose of this task, the subsumption rela-
tion types and also those relation phrases which do not have a consistent meaning
across the assertions were discarded. Then, following the procedure discussed in
sec.10.3, we have marked the valid relation types for each concept, and obtained
the corresponding assertions featuring the entities in the domain. Fig. 10.7 shows
the results, for both Carnatic and Hindustani music.

In terms of the breadth of the valid relation types (see sec. 10.3), the semantic
parsing based system performs better than OpenIE 4.0, which in most cases fares
better than ReVerb. However, in terms of the depth of relation types, both the
semantic parsing based system and OpenIE 4.0 perform competitively, with the
former scoring high in a few categories while the latter in few others. Com-
pared to these two, ReVerb scores substantially less in this task. These results can
be attributed to two reasons: the former two handle noun-mediated relations,
whereas ReVerb does not, the average number of assertions for a noun-mediated
relation type is observed to be usually higher than the verb-mediated relations.
The second reason can be specific to the domain, where the relations with musical
concepts are mostly noun-mediated (e.g: Abhogi, is a raga in, Carnatic music).
Notice that there is a strong concurrence between these results and those shown
in fig. 10.2c, with a noticeable correlation in the differences between the perfor-
mance of the OIE systems.

10.5 Summary & conclusions

Domains like Indian art music often lack the advantages of the scale of data avail-
able. The OIE systems rely to a great extent on repetition in the data which is a
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Figure 10.7: Semantic relation extraction task: The number of valid relation types
marked for each concept, and the number of corresponding assertions that in-
clude the entities in the domain.
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natural consequence of the scale of the web. As a result, OIE systems perform
with very low recall over domains with limited data. In this context, it becomes
important to bring out the differences between OIE systems in terms of their
performance over such domains.

In this chapter, we have presented a framework for comparative evaluation of OIE
systems for ontologization of thematic domains like Carnatic music. We have
demonstrated it using three OIE systems in ontologizing the Indian art music
domain. The results lead us to better understand the behavior of the systems
from different perspectives, which can be used to guide the work in adapting
OIE to thematic domains. The source code for the framework, links to various
software components used in the demonstration, the ontologies and the data are
made available online9. As we have seen, the results from the quantitative and
the qualitative evaluation have a strong agreement with each other. The results
indicate that the semantic parsing based system has performed comparatively
better than the other two systems, and has certain desirable advantages over the
other two.

A particular limitation of the framework that is of concern is the availability of
groudtruth for qualitative evaluation. The current framework hinges on the struc-
tured content in Wikipedia/DBpedia to this extent. However, as our case study
with Indian art music shows, they lack finer segregation of concepts (compared
to our ontologies). The measures proposed in eq. 10.1, used in conjunction with
inter-system agreement and various other observations over the data, helped us
to overcome this limitation to a certain extent.

In ch. 12, we consolidate the information extracted using the three OIE systems to
be published as a knowledgebase using our ontologies. Further, we combine this
with metadata and intonation description extracted from the audio data. In the
next chapter, we propose a methodology to use natural language text in bringing
the salient aspects of a givenmusic, which contrast it with othermusic genres/tra-
ditions. Further, as part of its evaluation, we propose a salience-aware semantic
distance to use the acquired knowledge in a recommendation task.

The code, data and results constituting the experiments reported in this paper can
be accessed at this github repository10.

9https://github.com/gopalkoduri/openie_eval
10https://github.com/gopalkoduri/nerpari



Chape 11
Quantifying the Salience of

Musical Characteristics From
Unstructured Text

Music is a discerning window to the rich diversity of the world. We hypothesize
that identifying the differences between music from different cultures will lead
to richer information models representative of them. Using five music styles, this
paper presents a novel approach to bring out the saliences of a given music by
rank-ordering its characteristics by relevance analyzing a natural language text
corpus. The results agree with the cultural reality reflecting the diverse nature of
the music styles. Further, to gather insights into the usefulness of this knowledge,
an extrinsic comparative evaluation is performed. Similarities between entities in
each music style are computed based on a salience-aware semantic distance pro-
posed using the knowledge acquired. These are compared with the similarities
computed using an existing linked-data based distance measure. A sizable over-
lap accompanied by an analysis of experts’ preferences over the non-overlapping
portions indicate that the knowledge acquired using our approach is indeed mu-
sically meaningful and is further complementary in nature to the existing struc-
tured information.

Music traditions from around the world share a few common characteristics. Yet,
they differ substantially when viewed within their geographical and cultural con-
text (Serra (2011)). Even among the seemingly usual characteristics, such as the
musical concepts (melody, rhythm, …) and the people involved in making the
music (performers, composers, …), their relevance and role vary from music to
music. Consider the role of dance in different music styles. In Flamenco, it be-

177
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comes an integral part of the music and is therefore seen as an important aspect
of the music itself. Whereas in Jazz, it is not as closely associated.

Most commercial music platforms are agnostic to such differing characteristics of
music, which inhibits them from scaling their recommendation services to meet
the cultural diversity. To a certain extent, collaborative filtering techniques (Sar-
war et al. (2001)) and context-based recommendation systems (Knees and Schedl
(2013)) implicitly avail such information latent in listener activities and the com-
munity provided data such as tags. However, to our knowledge, there are no
known approaches that explicitly incorporate the relevance of different musical
characteristics.

We formally define the problem of quantifying the relevance or salience of char-
acteristics of a given music as follows. E is a set of entities that make up the
music, which includes its entire vocabulary. C is a set of its characteristics. Any
given entity can possesmore than a characteristic. Ck is a set of entities that share
a characteristic, ck. Entities include names of scales, chords, raagas, rhythm cy-
cles, people and so on. An example for a characteristic is composing (ck). All the
entities who possess this characteristic constitute a set, Ck.

E = {ei | ei is an entity} (11.1)
C = {ci | ci is a characteristic}
Ck = {ei | ei has a characteristic ck}

The first part of this paper presents our system, called Vichakshana1, for quanti-
fying the salience of the characteristics (C) of a given music and rank-ordering
them, thus bringing out the most defining aspects of each music. Using the scores
of C , we then propose a salience-aware semantic distance (SASD) to discover
the related entities of a query entity. In the second part of the paper, We use an
evaluation methodology to compare the results of a recommendation system2 us-
ingSASDwith a linked data based recommendation system (Passant andDecker
(2010)). Our primary intention is to understand the common and complementary
aspects between the knowledge available as linked open data and the information
our approach extracts.

The remainder of the paper is organized as follows. In 11.1, we describe the data
we work with. Secs. 11.2 & 11.3 present our approach with details of its appli-
cation on different music styles, and the SASD. In sec. 11.4, we present the

1Vichakshana, in Telugu language, means [wise] discretion.
2In this paper, we use the term recommendation system loosely to mean any system that can

be used in retrieving related entities.
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Music Pages (E) Categories
(C)

Words

Baroque 2439 2476 901243
Carnatic 618 631 251533
Flamenco 322 1113 100854
Hindus-
tani 697 492 317241

Jazz 21566 14500 5797726

Table 11.1: Details of the text-corpus taken from Wikipedia.

evaluation methodology and an extrinsic comparative analysis of the recommen-
dation system built using SASD. In sec. 11.5, we conclude with a summary of
the paper, the current work in progress and possible future directions.

11.1 Data

The natural language descriptions are a rich source of data about a given music.
The web is voluminous in this sense, but also very noisy: with varying spellings,
scholarly value etc. As the impact of such noise on the results is difficult to keep
track of, we chose to present the results of our approach using text corpus ex-
tracted from the Wikipedia. Further, for our work, we need to acquire the char-
acteristics of a given music. Automatically detecting them is part of the research
on ontologization at the intersection of information extraction and knowledge
engineering domains, which is a challenge in itself. These characteristics often
directly correspond to the subsumption hierarchies and the class memberships in
ontologies (Petasis and Karkaletsis (2011)). In this paper, we address the issue of
rank-ordering the characteristics based on their salience. Therefore, in order to
avoid digression from the problem being addressed, we rely onWikipedia for ob-
taining the characteristics which roughly correspond to the categories each page
is associated with. We keep only the plain text from the pages removing other
structured information such as hyperlinks, info-boxes and tables.

We have selected five different music styles to work with: two Indian art mu-
sic traditions (Carnatic and Hindustani), Baroque, Flamenco and Jazz, which to-
gether constitute a diverse set of music styles. Table. 11.1 shows the number of
pages, categories (which correspond to E, C respectively), and the cumulative
number of words across all the pages for each music style. There are as many
contrasting features between them as there are similarities. Baroque is an Eu-
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ropean classical music tradition which is no longer active, while Carnatic and
Hindustani are actively practiced Indian art music traditions. Flamenco and Jazz
are active popular music styles with distinct characteristics.

11.2 Viakshana

A given entity in a music can be characterized by the references to other related
entities in its description. In a way, such references can be understood to explain
the given entity. Analysis of the structure of a network of references combined
with the characteristics of each entity would yield us certain insight into the
nature of the music. This is the intuition that our system, Vichakshana, builds
upon.

The process broadly consists of three steps: entity linking, entity ranking and
salience computation. The first step involves identifying the references to other
entities from the content of a given page. This is performed using the DBpedia
spotlight3, which uses a combination of language-dependent and -independent
approaches to contextual phrase spotting and disambiguation (Daiber et al. (2013)).
A weighted directed graph (G) is created with the entities as nodes and the ref-
erences as edges. The weight of an edge (wei,ej ) is defined as follows:

wei,ej =
nei,ej

Σknei,ek

(11.2)

where nei,ej is the number of references from ei to ej . We have observed that
the link structure in the graphs thus obtained is very sparse. Therefore, the refer-
ences to entities which are outside the set of E are eliminated. Table. 11.2 shows
topology of all the graphs.

In order to compute the salience score for a given Ci, we require a measure for
the relevance of the constituting entities in the given music. Pagerank is a widely
used algorithm to compute the relevance of a node in a hyperlink graph (Page
et al. (1999)). Intuitively, it is an iterative algorithm in which nodes acquire rel-
evance from their incoming edges. A reference from a node with a high pager-
ank to another node contributes positively to the relevance score of the latter.
In this sense, it can also be understood as a variant of the eigenvector central-
ity (Newman (2010)). We use a slightly modified version of the original pagerank
algorithm to use edge weights in propagating the score of a given node to its

3We use a locally deployed version of DBpedia spotlight with the statistical backend, available
openly at https://github.com/dbpedia-spotlight/dbpedia-spotlight
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Graph Nodes Edges Density Avg.
Clust.

Avg.
Deg.

Baroque (I) 14278 44809 0.0002 0.002 3.14
Baroque 2059 7118 0.0017 0.018 3.46
Carnatic (I) 4524 12952 0.0006 0.003 2.86
Carnatic 602 3291 0.0091 0.03 5.47
Flamenco
(I) 2671 5459 0.0008 0.004 2.04

Flamenco 312 846 0.0087 0.027 2.71
Hindustani
(I) 7011 17754 0.0004 0.002 2.53

Hindustani 681 3774 0.0081 0.027 5.54
Jazz (I) 87918 381514 0.0 0.004 4.34
Jazz 17650 119107 0.0004 0.019 6.75

Table 11.2: Topology of the graphs obtained on entity linking, before and after
the references to entities outside E are eliminated. Rows with ‘(I)’ denote the
former.

neighbors. Eq. 11.3 describes the corresponding computations.

Aei,ej = wei,ej (11.3)
Dei,ei = max(eouti , 1)

P = D(D − αA)−1β

whereA is the adjacency matrix corresponding to the graphG,D is the diagonal
matrix with the diagonal elements set to the out degree of the corresponding
node (eouti ), P is the resulting pagerank values of all the nodes. α is an activation
constant set to 0.85 in our analysis, and β is an array of additive constants which
are all set to 1. For more explanation on pagerank and the constants, we refer the
reader to (Newman (2010); Page et al. (1999)).

Given aCk, a naive and simple salience score can be the mean of pagerank scores
of all the constituting entities. Remember that an entity can havemultiple charac-
teristics. A simple scoring method, such as this one, would imply that the pager-
ank score of a given entity equally contributes to the salience score of every Ck

it belongs to. However, it is desirable that an entity contributes more to those
characteristics which are more specific to it. As our data does not contain this
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information, we hypothesize that the fewer the number of other entities which
share a characteristic with the given entity, the more specific it is. Formally, if
each entity (ei) represents a document with the characteristics (ci) as the terms,
the inverse document frequency of a ck with respect to E would yield us a mea-
sure that can be used to weigh the pagerank score of a given entity in computing
the saliences of all Ck it is associated with. Eq. 11.4 describes this process in de-
tail along with the steps for computing the salience score of a Ck (given by SCk

)
from the pagerank values of its entities.

idf(ck) = log
|E|

1 + |{ei ∈ Ck}|
(11.4)

SCk
=

1

|Ck|
∑
ei∈Ck

P (ei)× idf(ck)

This gives us a list of characteristics of a music ordered by their salience. We
have observed that several characteristics have a considerable overlap between
them. For instance, the characteristics Music festivals in India and Carnatic mu-
sic festivals in India have more or less the same set of entities, with respect to
Carnatic music. We consider them redundant even though semantically one is a
more specific form of the other. As we will see in sec. 11.3, this is undesirable
for applications using these salience scores. We handle such cases by merging
them and assigning a common rank to each such group. This is performed using
an undirected weighted graph constructed with the characteristics (C) as nodes.
Theweights of edges correspond to the cosine similarity between the correspond-
ing sets of entities, Ci andCj . Those edges with a weight less than 0.5 are filtered
out, and then the closely related communities are identified using the Louvain
method (Blondel et al. (2008)). Each such community represents a group of char-
acteristics which have a great overlap between the corresponding entities, and
is assigned a common rank based on the new salience score recomputed using
eq. 11.4 considering each community as a single characteristic.

It is also observed that the weights from Eq. 11.4 inadvertently resulted in a high
rank for characteristics that are relevant to a musician, but not to the given music
in general. For instance, if a very popular musician also happens to be a politi-
cian, the political characteristics are ranked high even though they are irrelevant
to the music. However, if there is a certain regularity to such associations (eg:
more musicians are also politicians), it is dsizeesirable to incorporate and rank
those characteristics. Towards this extent, we constrain the ranked characteris-
tics to a set of those which have at least a minimum number of entities linked to
them. A high threshold includes the risk of discardingmeaningful characteristics,
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while not employing such threshold would result in spurious ranking. Merging
overlapping characteristics minimizes the impact of irrelevant ones provided they
are not associated to a musical entity by chance. We have empirically chosen the
value for the threshold to be three.

Table. 11.3 shows the top few characteristics of each music style, ordered by their
salience to the music. The similarities and contrasts between the music styles
are quite apparent. In Baroque, Carnatic and Flamenco, various groups of people
identified by their region/language occupy a prominent place, while in Hindus-
tani and Jazz, such groups are relatively less prominent. This might be due to the
fact that the latter two are spread out over larger regions than the former three.
In Carnatic and Hindustani, the terminology and musical concepts turn out to be
more relevant than in other music styles. In Jazz and Flamenco, the salience of
record labels is quite high whereas in other music styles, it is almost non-existent
or very less. This can be due to the fact that the primary medium by which Car-
natic/Hindustani music reaches people is a concert. In the case of Baroque, this
is because it is no longer an active music tradition. The results also highlight the
distinct features of each music. The prominence of religion in Carnatic music,
dance in Flamenco, and Gharanas/schools in Hindustani music is noticeable and
each contrasts with other music styles.

A direct objective evaluation of these results in not feasible as it is impractical to
obtain a consensus on a highly subjective notion such as the relevance or salience
of something/ somebody in a music. Therefore, we present an extrinsic evalua-
tion of the results using the task of music recommendation. We use the salience
scores of the characteristics of a given music to relate the entities using a distance
measure, and compare the results with a recommendation system that feeds on
linked-data.

11.3 Salience-aware semantic distance

Using the graph (G) and salience scores (S), we propose a salience-aware se-
mantic distance (SASD). It is a weighted average of three parts. The first and
prominent part is a function of salience scores. The second part is a function of
length of the shortest path between the two nodes in G, while the third part is
a function of their cocitation index, which is the number of other nodes in G
that point to both the given nodes. Eq. 11.5 formally defines the three parts and
the sum. The values of all the parts of the distance and the weighted sum range
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between 0 (nearest) and 1 (farthest).

Sei,ej = {SCk
| ei ∈ Ck and ej ∈ Ck} (11.5)

A′
ei,ej =

{
1 if Aei,ej > 0

0 otherwise .

D1 =
1

1 + |Sei,ej |+mean(Sei,ej )

D2 =
p2ei,ej

1 + p2ei,ej

D3 =
ΣkA

′
ek,ei

A′
ek,ej√∣∣ΣA′

ek,ei

∣∣× ∣∣∣ΣA′
ek,ej

∣∣∣
SASDei,ej =

(
1

2

)
D1 +

(
1

4

)
(D2 +D3)

where Sei,ej corresponds to the salience scores of the common characteristics
of ei and ej , A′ corresponds to the adjacency matrix of the unweighted graph
equivalent ofG, and pei,ej is the length of the shortest path between ei and ej in
G. The first part of the distance is weighed more making the role of knowledge
extracted using Vichakshana more pronounced in relating the entities. The role
of the other two parts of the distance is often limited to further sort the list of
related entities obtained using the first part.

11.4 Evaluation

Methodology

Our evaluation methodology is primarily intended to streamline the two stages
of the objective and the subjective forms of evaluations for comparing the rec-
ommendation systems. The first stage corresponds to an objective comparison of
the results over three measures: yield (Y ), overlap (O) and rank-correlation (RC)
within the overlap. The former two measures are defined as follows:

Y I =

∣∣{ek |
∣∣RI

ek

∣∣ > 0}
∣∣

|E|
(11.6)

Oek =
|RI

ek
∩RJ

ek
|

max(|RI
ek
|, |RJ

ek
|)
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whereRI
ek
denotes an ordered-list of recommendations for a given entity ek gen-

erated using an approach I . Therefore, Y I is the proportion of entities which
have non-empty set of recommendations using approach I . Oek is the proportion
of the common set of entities in RI

ek
and RJ

ek
. For measuring rank-correlation,

we use Kendall’s Tau, which is preferred over other standard alternatives as it
is known to be robust for smaller sample sizes. We use the Tau-b variant which
accounts for tied pairs (Kendall and Gibbons (1990)).

The set E is divided into three different sets based on our analysis in this stage.
The first one (E1) is the set of entities for whichO ≥ 1

3 andRC is greater than the
median of all values. This set corresponds to those entities where both approaches
broadly agree with each other. The second set (E2) consists of those entities
whereO ≥ 1

3 andRC is less than the median of all values. The last set of entities
(E3) is where O < 1

3 .

In the second stage, which is a subjective form of evaluation, the music experts
(mostly practicing musicians) record their feedback for questionnaires based on
the latter two sets of entities. The one based on E2 has, for each query entity,
two rank-ordered lists with exactly the same set of entities (i.e., the overlapping
portion). The experts are asked to pick the better one. Themotive behind this is to
understand whether one system is preferable to the other in ranking the entities.
The questionnaire based on E3 also has two lists for each query entity, but this
time without an emphasis on the order of the items. The experts are asked to
pick the entities in each list that are the most relevant to the query entity, and
also the overall better list. Evidently, the motive here is to understand which
of the approaches produces more appropriate recommendations. An analysis of
their opinions would let us know whether a particular approach is preferred over
the other, and can further be used to investigate why.

Results & discussion

As mentioned earlier, our approach borders on the unstructured contextual-data
based approaches and the linked-data based approaches. More specifically, SASD
is used to relate entities with the knowledge extracted from unstructured data us-
ingVichakshana. This is unlike the other contextual-data based approacheswhich
use community-generated data such as social networks, tags and user behavior,
where the latent information in the social dynamics plays a significant role in
their outcome. Therefore, we choose to compare our approach with others that
build upon similar data sources to ensure a fair evaluation.

We compare the results fromour approachwithDBrec system (Passant andDecker
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Figure 11.1: Results for the analysis of overlap between the two recommendation
systems. X-axis in both the figures denote the distance threshold beyond which
two entities are considered unrelated.

(2010)), which is based on DBpedia4. As it is shown to perform comparably well
with other context-based approaches that build on diverse sources of data, this
comparison helps us to put the results of our system in perspective with both
the linked-data based and the other context-based systems. However, note that
our system uses only the salience scores and the entity references, but not the
structured data from Wikipedia.

For all the experiments hence forth, the size of the recommendations corresponds
to ten5. Fig. 11.1a shows Y sasd and Y ldsd, and fig. 11.1b shows the mean overlap
between Rsasd and Rldsd for different distance thresholds. Y ldsd steeply rises
until 0.6 and saturates, indicating that the practical limit for LDSD between two
entities is 0.6, where as it is 0.8 for SASD. In line with this, the mean overlap
in fig. 11.1b rises until a distance threshold of 0.75, where the overlap for all the
music styles between the two systems is the maximum. Following that, it slightly
drops, which must be a consequence of the gain in Y sasd compared to Y ldsd as
shown in fig. 11.1a. We can deduce that there is a sizable overlap between the
recommendations of the two systems. However, which of the non-overlapping

4DBpedia collects the structured content from Wikipedia.
5Results for other sizes of the recommendations show a similar behavior. For the sake of

brevity, we report on recommendation sets of size ten.
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Mus Pos Mean Std Neg Mean Std
Baroque 59% 0.47 0.25 41% -0.32 0.3
Carnatic 56% 0.47 0.26 44% -0.29 0.26
Flamenco 69% 0.41 0.22 31% -0.2 0.29
Hindus-
tani 65% 0.49 0.26 35% -0.23 0.24

Jazz 55% 0.47 0.25 45% -0.27 0.28
Avg 60% 0.46 0.24 39% -0.26 0.27

Table 11.4: Results for rank-correlation between the two approaches, showing the
% of entities with positive and negative rank-correlation, along with their mean
and standard deviation.

Music E1 E2 E3

Baroque 17% 12% 31%
Carnatic 27% 21% 39%
Flamenco 31% 14% 29%
Hindus-
tani 28% 14% 39%

Jazz 11% 8% 34%

Table 11.5: Proportions of the E1, E2 and E3 across all the music styles.

recommendations are more meaningful is an issue we will have to address in the
subjective evaluation.

The rank-correlation (RC) is analyzed between thoseRsasd
ek

andRldsd
ek

which have
an overlap of 0.3, with a distance threshold of 0.75 (which is roughly the same as
the configuration corresponding to the highest overlap from fig. 11.1b). Note that
RC ranges from -1 (complete disagreement) to 1 (perfect agreement). We con-
sider a value of zero to be a negative correlation. Table. 11.4 shows the results.
We observe consistently more positive correlations across all styles of music. Fur-
ther, the mean of the positive correlations indicates a strong agreement between
the recommendation systems. Based on the analysis so far, we divide the entities
into three sets as discussed in sec. 11.4. Table. 11.5 shows the proportions of the
three sets for different music styles.

For the subjective evaluation with music experts to further understand E2 and
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E3, we randomly sampled 20 entities from Carnatic music6 ensuring that there is
equal coverage of popular and less popular entities, as well as E2 and E3. Note
that these entities comprise of not just artists and songs, but any musical entity
(eg: a place). The measure of popularity of an entity is its PageRank value in the
graph G.

A total of 424 responses were recorded from 10 Carnatic music experts7, all of
whom are practicing musicians with a median age of 25. Table. 11.6 shows the
aggregate results for questionnaires based on E2 and E3. The overall results do
not seem to indicate a strong preference to one system or the other. However, it
is evident that the responses concerning different entities are very divided. There
are certain interesting observations from the responses over E3. The number
of cases in E3 where DBrec system is preferred seems slightly higher. Yet, the
number of cases where more entities are specifically marked relevant to the given
query entity is higher for SASD.

In order to further understand this phenomenon, we have gone through the rec-
ommendations from the two systems and the responses recorded for each entity.
Consider the case of Kshetrayya, a composer in E3. The list of recommenda-
tions using SASD is dominated by other composers sharing some characteris-
tics (like geographic location, language etc). Those from DBrec system ranks the
performers who often sing his compositions higher than the fellow composers.
This resulted in more experts preferring DBrec system. However, the number of
recommendations explicitly marked as relevant aremarginally higher forSASD.
Another example is the case of M. Balamuralikrishna, a performer. The recom-
mendations from SASD do not include his teacher whereas those from DBrec
system do. This is a result of a low recall in entity linking using DBpedia Spot-
light. While the ratio of experts preferringDBrec system to SASD is 7:2, the corre-
sponding ratio of absolute number of entities selected as relevant is 7:6. There are
several other cases like these. This trend clearly indicates that though our system
missed few important relations between entities (such as those between different
types of entities), the recommendations made are still very relevant, often times
even more than the recommendations from DBrec system.

More formally, for a given query entity, SASD is inherently biased to select and
rank higher other entities which are of the same type (Eg: Composer). It is also
highly sensitive to recall in entity linking. On the other hand, DBrec system has

6Carnatic music was chosen for the subjective evaluation as the authors have better access to
its community compared to other music styles.

7By experts, we mean those who are thoroughly well-versed with the domain and are learned-
artists.
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E2 E3

SA. LD. Both None SA. LD. Both None
Overall preference 30% 30% 10% 30% 40% 50% 10% 0%
Entities
specifically
marked as relevant

n/a n/a n/a n/a 50% 30% 20% 0%

Table 11.6: Results of the subjective evaluation of the two recommendation sys-
tems. The first row of results show the % of query entities where a particular
recommender system is more favored. The second row shows the % of query en-
tities where more number of entities in the corresponding recommendation list
are marked as specifically relevant to the query entity.

access to a richer link structure that spans different entity types.

When we view the results again in the light of this stark difference in the nature
of information both the systems had access to, the results seem to clearly indicate
that the information extracted using Vichakshana is meaningful in itself. Further,
it is complementary to the existing structured content onWikipedia which DBrec
depends on, and is useful for improving the music recommendations, both in
terms of better ranking and more importantly, finding relevant content with an
emphasis on the distinct characteristics of a given domain.

11.5 Conclusions

We have presented and formally defined the idea of quantifying the salience of
characteristics of a music, and how it leads us to extracting culture-specific in-
formation about a music using natural language text. We have shown that the
performance of a recommendation system built using the information extracted
is comparable to that of the linked-data based recommendations. The main con-
tributions of the paper are as follows: i) A novel approach that quantifies the
salience of characteristics of a music, ii) A salience-aware semantic distance that
builds upon the knowledge extracted, iii) Open-source python implementations
of Vichakshana and SASD8.

8Available at https://github.com/gopalkoduri/vichakshana-public



Chape 12
Knowledge-base population:

Structuring and interlinking the
data sources

This is the concluding chapter in which we describe the processes for merging
the information from various data sources and publish them using our ontolo-
gies. This procedure involves three steps. In the first step, we publish the editorial
metadata of commercial releases that are part of the Carnatic corpus of the Comp-
Music collection, using our ontologies and the music ontology amongst others.
In the second step, we compute the context-based pitch distributions for svaras
in different raagas using the audio data and link them to the recordings in the
KB. In the third step, we link the assertions retrieved from the open information
extraction systems to appropriate concepts and relationships in the KB. Each of
these steps are presented in the following sections, mentioning their quantitative
contribution to the KB. We then conclude with the main challenges that we en-
countered in accomplishing our goals initially stated, and layout future course of
research to take this work further.

12.1 Editorial metadata

Statistics of the Carnatic corpus are shown in fig. 1.2. All themetadata is uploaded
and structured on Musicbrainz1. We use the URLs originating on Musicbrainz as
unique identifiers for most entities. For others which do not have a URI/unique

1Available at https://musicbrainz.org/user/compmusic/collections
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identity onMusicbrainz, like raagas and taalas, we use the URLsminted in Dunya.
One of the challenges in structuring this data had been the common occurrence
of numerous variations in the spellings of entity names. We automated merging
of such aliases partly, using a combination of string matching algorithms2. In
the next step, we create a wrapper on Dunya API that maps its database schema
to concepts and relations in our ontologies. Following this, these concepts are
further mapped to DBpedia using DBpedia spotlight. This completes publishing
of the editorial metadata and its interlinking with Musicbrainz and DBpedia.

We observe that keeping concepts and relations that are part of music creation
workflows adds a certain overhead in adding information to the KB. For KBs
that are specific to applications that are not concerned about such information,
this overhead does not add any value. For instance, using the current version of
our ontology as described in the thesis, the relation between a mo:Record and a
mo:Release consists of a chain of at least 3 relations that connect 4 concepts inclu-
sive of them. The intermediary concepts include mo:Performance and mo:Signal,
which in our case do not have an identifier and hence had to be represented using
a blank node. For queries, and even inferences, this adds to the complexity and
hence we believe custom relations defined directly between the relevant concepts
are more preferred. However, we keep the status quo for two reasons: i) This KB
is not being tailored to a specific use, ii) The scale of the KB is small.

Svara information in raagas will be of particular interest to the possible applica-
tions of the resulting knowledge-base. Hence, we also crawled semi-structured
data from the web concerning raagas such as this3 listing of raagas. We then
publish this information using our ontology and link it with entities from edi-
torial metadata. This brings in valuable information about a raaga such as its
arohana and avarohana progressions, therefore the svaras it has, whether it is a
melakartha raaga or a janya raaga and so on. Together, the editorial metadata and
the information extracted from semi-structured data account for 83000 triples in
the KB (73670 and 9333 triples respectively) as of the date of writing this thesis4.
Listing. 12.1 shows Hanumatodi, an entity belonging to Raaga class, as expressed
using our ontology.

2Available at https://github.com/gopalkoduri/string-matching
3http://www.nerur.com/music/ragalist.php
4As this KB is an evolving resource, we refer the reader to a companion page for up-to-date

examples, details and statistics of the KB - https://github.com/gopalkoduri/knowledge-bases
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Listing 12.1: Part of Hanumatodi as expressed using our ontology.
1 <http://dunya.compmusic.upf.edu/carnatic/raaga/a9413dff-91d1-4e29-

ad92-c04019dce5b8> a co:Melakarta_Raaga ;
2 co:has_arohana [ a olo:OrderedList ;
3 ns1:creator "semi-structured-nerur"^^xsd:string ;
4 olo:length 2 ;
5 olo:slot [ olo:index 5 ;
6 olo:item co:P ],
7 [ olo:index 2 ;
8 olo:item co:R1 ],
9 [ olo:index 1 ;
10 olo:item co:S ],
11 [ olo:index 3 ;
12 olo:item co:G2 ],
13 [ olo:index 7 ;
14 olo:item co:N2 ],
15 [ olo:index 4 ;
16 olo:item co:M1 ],
17 [ olo:index 6 ;
18 olo:item co:D1 ] ] ;
19
20 co:has_svara co:D1,
21 co:G2,
22 co:M1,
23 co:N2,
24 co:P,
25 co:R1,
26 co:S ;
27
28 co:mela_number 8 .

Besides the assertions that we explicitly published, the KB can also be used to
make inferences resulting from definitions of other concepts or a set of rules
(see sec. 9.2). For instance, our definitions of Sampoorna_Progression and Sam-
poorna_Sampoorna raaga further trigger Hanumathodi’s classification into Sam-
poorna_Sampoorna raaga. They together conclude that, any raaga that has at
least one variant of each top-level svara class (such as Shadjama, Rishaba and so
on) in both its arohana and avarohana, is a Sampoorna_Sampoorna raaga. Let us
now consider the case of Dharbaru raaga. In this case, it is a rule outside the on-
tology that results in its classification as a Vakra raaga. Therefore, we find several
such inferred statements about the domain in this KB.

12.2 Intonation description

We compute the context-based pitch distributions of svaras for all the recordings
in corpus for which we have raaga and svara information. From the normalized
distributions, we identify peaks (see sec. 5.5). We use the Data Model class to
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link this information to Record class. This added knowledge of svaras facilitates
computation of similarity between recordings and raagas, by extension.

Not all the svaras are equally important in a raaga, as we mentioned earlier. A
few assume greater role by virtue of their functionality. This information can be
availed from the KB and then used in weighing the role of different svaras when
computing similarities. Further, as in the case of editorial metadata, rules can
be applied to draw inferences. For instance, if a given distribution has multiple
peaks, it can be inferred that the corresponding svara is sung as a movement that
spans an interval corresponding to the maximum difference in the peak locations.
Whereas those which have just one peak marked can be inferred to be sung as
steady svaras.

In the Carnatic corpus, there are 2338 recordings in 161 raagas for which we
have all the necessary data to compute the intonation description. Information
extracted from these result in about 70000 triples being added to the KB. These
do not include the inferences. The Pitch_Distribution class has information about
peaks described in RDF Literals (integers) in our current version of the ontology.
We use rules and SPARQL queries over these to make observations and infer
further valid facts to be added to the KB.

12.3 Structured information from natural language text

As we already know from ch. 10, the precision and recall of different open in-
formation extraction systems in identifying concepts, objects (instances) and re-
lations from natural language text are not at a desirable level. However, if we
restrict the relation-types to a known set, we observed that the resulting extrac-
tions, though fewer in number, come with better precision. These relations in-
clude the hierarchical relation (is a) and biographical relations (brother of, born
in etc). We further link most of the concepts and the objects to those on DBpedia,
which links them to the relevant structured information published elsewhere.

12.4 Possible courses of future work

There are two main lines of work in this thesis that can be further extended.
The first one concerns the intonation description from audio music recordings.
In this thesis, we have explored aggregate approaches that discard the temporal
information. Though the resulting description is musically meaningful, it lacks
the granularity that becomes necessary in more sophisticated systems such as
those studying variations between artists performing the same raaga. This line
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of work can benefit from both the current thesis and thework concerningmelodic
pattern analysis in the CompMusic project (see ?, and the references therein).

The other line of work which we believe can further be extended from this thesis
is combining ontology development with natural language text processing. For
thematic domains where the natural language text is a scant resource, OIE sys-
tems are shown to have a very limited success. Of the ones that are evaluated,
semantic parsing based system is the most promising and we believe this requires
further exploration. Its main advantage is in extracting a greater number of as-
sertions per natural language statement, compared to other competing systems.
This brings in the much required redundancy in the assertions, although to a lim-
ited extent. A particular advantage of thematic domains is that it mostly requires
a smaller vocabulary (hierarchy of concepts) required to describe it. This can be
used in our favor where vocabularies manually engineered can be combined with
a semantic parsing based system in building a knowledge-base.

Improving and revising the ontologies and knowledge-bases is something which
we will continue to do post this thesis duration. In connection to this, and be-
sides the possible extensions to our work which we already mentioned, another
important line of work in MIR that complements this, is research and develop-
ment of applications that take advantage of the knowledge-bases and ontologies.
We have been working on three applications that use parts of the information in
the KB. We discuss them briefly in Appendix. XX.

12.5 Summary & conclusions

Wehave discussed and documented our research efforts in building amulti-modal
knowledge-base for the specific case of Carnatic music. Recall that there are three
primary objectives to our work (sec, 1.2), for each of which we now review the
status.

• Extract a musically meaningful representation of svara intonation in Carnatic
music, analyzing audio music recordings.

We have consolidated a representational model for svara that expands the
scope of the current note model in use by addressing the notion of vari-
ability in svaras. We have presented two approaches that partially (ch. 6)
and fully (ch. 8) exploit scores to describe pitch content in the audio mu-
sic recordings, using our model. These approaches are shown to perform
significantly better than the state-of-the-art parametrization of svara dis-
tributions, by a good margin in a raaga classification task.
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We have qualitatively compared the svara representations computed from
these approaches to those obtained using manually annotated data (ch. 7).
For most svaras, there are clear correspondences between svara represen-
tations from different approaches. These include the overall shape of the
distribution, the peak positions and their relative importance indicated by
the peak amplitude. This clearly indicates that our approaches have been
successful to a good measure in obtaining representations of svaras which
can further be used in retrieving musically meaningful information.

• Extract music concepts and the corresponding individual entities along with
relevant relations from natural language text.

We have presented a framework for comparative evaluation of OIE sys-
tems for ontologization of thematic domains. We have demonstrated it
using three OIE systems in ontologizing the Indian art music domain. The
results lead us to better understand the behavior of the systems from dif-
ferent perspectives, which can be used to guide the work in adapting OIE
to thematic domains. The main challenge with these domains is the lack of
large scale data. The OIE systems rely to a great extent on repetition in the
data which is a natural consequence of the scale of the web. As a result, OIE
systems perform with very low recall over domains with limited data. In
this context, it has become important to bring out the differences between
OIE systems in terms of their performance over such domains.
We have shown that the semantic parsing based system performs better
compared to the other two that are discussed. Owing to the fact that there
are very few repetitions in the data we could gather, we had to rely on
inter-system agreement in concept and relation extraction for determining
precision. Linking concepts and entities has been relatively less hassle-
free compared to mapping relations extracted with properties in ontolo-
gies. Due to the possible variations in expressing a relation, the number of
useful relation extractions that can be mapped is also scanty. For instance,
all the following sentences express the same information: i) Tyagaraja is
born in Thiruvarur, ii) Tyagaraja is fromThiruvarur, iii) Tyagaraja’s native
place is Thiruvarur. Active and passive variations of these sentences fur-
ther complicate the consolidation of relation types and their mapping to
ontology.

• Build an ontology to structure information extracted from audio music record-
ings and natural language text.

We have presented the raaga ontology and the Carnatic music ontology
which subsumes it besides the other extensions that include form, taala and
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performer. The raaga ontology models the concepts of svara and phrase in
Carnatic music to further facilitate various classification schemes that de-
pend of properties of these substructures. We have outlined the limitations
of OWL DL languages in expressing sequence information across these on-
tologies, which are overcome using rules alongside them.
In this chapter, we presented the use of these ontologies in building a
knowledgebase encompassing information extracted fromdifferent sources,
and the challenges involved in doing so. We have also elucidated the new
possibilities in computing similarities between different entities taking ad-
vantage of the enriched information.
The knowledge-bases resulting fromourwork can be accessed at this github
repository5. This will remain the main reference for these data dumps
which will be version in conjunction with the ontologies. We will also
keep the companion page6 for this thesis updated with all the resources
related to this thesis.

5https://github.com/gopalkoduri/knowledge-bases
6http://compmusic.upf.edu/node/333





Appendi A
Supplementary content for

Part II

A.1 Additional plots and data for peak detection

The following plots show the impact of varying different parameters on different
peak detection methods reported in sec. 5.5.

Parameter Range (step size)
Kernel size for Gaussian filter 5 to 15 (2)
Intervallic constraint (IC ) 30 to 100 cents (10)
Peak amplitude threshold (AT ) 1.0 · 10−5 to 1.0 · 10−4 (1.0 · 10−5)
Valley depth threshold (DT ) 1.0 · 10−5 to 1.0 · 10−4 (1.0 · 10−5)

Table A.1: Range of values of each parameter over which grid search is performed
to obtain the best combination of parameters.
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FigureA.1: Impact of varying each parameter on the four peak detectionmethods.
Y-axis indicates values of f-measure. and X-axis indicates label and corresponding
values for each parameter.
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A.2 Decision table resulting from raaga classification

Following is a part of the decision tree model obtained in raaga classification test
reported in sec. 6.3. It clearly indicates the prominence of the features that we
introduced in intonation description, especially in the deeper sections of the tree.
Notice how variance, kurtosis, variance, skew and mean are influential at various
points.
amp l i t ude_813 > −0.61524
| amp l i t ude_386 <= −1.207681
| | v a r i a n c e _ 4 9 8 <= −2.339884
| | | v a r i a n c e _ 9 9 6 <= −1 .355139 : V a r a l i ( 1 2 . 0 )
| | | v a r i a n c e _ 9 9 6 > −1 .355139 : Sanmukhapriya ( 1 2 . 0 )
| | v a r i a n c e _ 4 9 8 > −2.339884
| | | amp l i t ude_111 <= −0.535038
| | | | k u r t o s i s _ 8 1 3 <= 1 . 6 1 6 0 3 3 : Husseni ( 8 . 0 )
| | | | k u r t o s i s _ 8 1 3 > 1 . 6 1 6 0 3 3
| | | | | p o s i t i o n _ 8 1 3 <= 1 . 6 1 7 0 5 5 : Husseni ( 3 . 0 )
| | | | | p o s i t i o n _ 8 1 3 > 1 . 6 1 7 0 5 5
| | | | | | skew2_701 <= 0 . 0 4 2 3 2 4 : Mukhari ( 7 . 0 )
| | | | | | skew2_701 > 0 . 0 4 2 3 2 4
| | | | | | | amp l i t ude_0 <= −0 .708484 : Mukhari ( 4 . 0 / 1 . 0 )
| | | | | | | amp l i t ude_0 > −0.708484
| | | | | | | | mean_315 <= 1 . 3 0 7 3 4 5 : Bh a i r a v i ( 1 1 . 0 )
| | | | | | | | mean_315 > 1 . 3 0 7 3 4 5 : Mukhari ( 3 . 0 / 1 . 0 )
| | | amp l i t ude_111 > −0.535038
| | | | amp l i t ude_203 <= −1.935112
| | | | | mean_813 <= 1 . 6 2 1 4 2 8 : Todi ( 1 2 . 0 )
| | | | | mean_813 > 1 . 6 2 1 4 2 8 : Dhanyasi ( 1 2 . 0 )
| | | | amp l i t ude_203 > −1 .935112 : S i n dhubha i r a v i ( 1 2 . 0 )
| amp l i t ude_386 > −1.207681
| | amp l i t ude_498 <= −2 .339884 : Kamavardani / P a n t u v a r a l i ( 1 2 . 0 )
| | amp l i t ude_498 > −2.339884
| | | k u r t o s i s _ 4 9 8 <= 0 . 4 1 5 9 5 6
| | | | v a r i a n c e _ 3 8 6 <= 0 . 8 2 6 2 9 8 : Mayamalavagaula ( 3 . 0 )
| | | | v a r i a n c e _ 3 8 6 > 0 . 8 2 6 2 9 8 : S a v e r i ( 1 2 . 0 )
| | | k u r t o s i s _ 4 9 8 > 0 . 4 1 5 9 5 6 : Mayamalavagaula ( 9 . 0 )

A.3 Applications

Dunya

Dunya comprises the music corpora and related software tools that have been
developed as part of the CompMusic project. Each corpus has specific character-
istics and the developed software tools allow to process the available information
in order to study and explore the characteristics of each musical repertoire. The
web interface available online1 allows researchers and users to browse and nav-
igate through the collections using criteria originating in metadata, cultural in-
formation, audio features and musically meaningful information extracted from
the audio music recordings. The recording and raaga similarities are computed
using intonation descriptions developed in this thesis.

1http://dunya.compmusic.upf.edu



202 pplemena conen fo pa ii

Saraga

Saraga is an android application that provides an enriched listening atmosphere
over a collection of Carnatic and Hindustani music. It allows Indian art music
connoisseurs and casual listeners to navigate, discover and listen to these music
traditions using familiar, relevant and culturally grounded concepts. Sarāga in-
cludes inclusive designing of innovative visualizations and inter and intra-song
navigation patterns that present musically rich information to the user on a lim-
ited screen estate such as mobiles. These time synchronized visualizations of
musically relevant facets such as melodic patterns, samas locations and sections
provides a user with better understanding and appreciation of these music tradi-
tions. This application contains the svara distribution plots presented in a way
users understand the relative distribution of pitches in a given recording. This
application is available for use on Google playstore2.

Riyaz

Riyaz is an android application that aims to facilitate music learning for begin-
ner to intermediate level music students by making their practice (riyaz) sessions
more efficient. This application includes music technologies that employ percep-
tually relevant models to automatically evaluate how well a student is singing
compared to a reference music lesson. Students get a fine grained feedback on
their singing. In this application, we intend to incorporate the intonation de-
scription developed in this thesis as a way to compare the user sung snippets to
those from a known reference. This application is available for use on Google
playstore3.

2https://play.google.com/store/apps/details?id=com.musicmuni.saraga
3https://play.google.com/store/apps/details?id=com.musicmuni.riyaz
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