
“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page i — #1

Quality-Efficiency Trade-offs
in Machine Learning
Applied to Text Processing

Zeinab Liaghat

TESI DOCTORAL UPF / 2016-2017

DIRECTOR DE LA TESI
Dr. Ricardo Baeza-Yates

DEPARTMENT OF INFORMATION AND COMMUNICATION
TECHNOLOGIES

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page ii — #2

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page i — #3

Acknowledgements

I would like to take this opportunity to say thank you to my advisor, Prof. Ricardo Baeza-
Yates for the continuous provision of my Ph.D. research, for his useful comments, motivation
and engagement through the different stages of this thesis. Without his valuable assistance, I
could not have completed this research. He has been tireless and kind in helping to deal with
difficult problems over the course of these three years.

I would like to thank my family for their unending support throughout my research both spiri-
tually and in general. My father has been my main motivation to achieve my PhD. My husband
has supported me during my entire studies and has been most understanding and has endured
the whole process with little or no complaints. I owe him a great deal for this.

i

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page ii — #4

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page iii — #5

Summary
Nowadays, the amount of available digital documents is rapidly growing, expanding at a con-
siderable rate and coming from a variety of sources. Sources of unstructured and semi-structured
information include the World Wide Web, news articles, biological databases, electronic mail,
digital libraries, governmental digital repositories, chat rooms, online forums, blogs, and social
media such as Facebook, Instagram, LinkedIn, Pinterest, Twitter, YouTube, Instagram, Pinter-
est, plus many others.

Extracting information from these resources and finding useful information from such col-
lections has become a challenge, which makes organizing massive amounts of data a necessity.
Data mining, machine learning, and natural language processing are powerful techniques that
can be used together to deal with this big challenge. Depending on the task or problem at hand,
there are many different approaches that can be used. The methods that are being implemented
are continuously being optimized, but not all these methods have been tested and compared for
quality after training on large size corpora for supervised machine learning algorithms. The
question is what happens to the quality of methods if we increase the data size from, say, 100
MB to over 1 GB? Moreover, are quality gains worth it when the rate of data processing dimin-
ishes? Can we trade quality for time efficiency and recover the quality loss by just being able
to process more data?

This thesis is first attempt to answer these questions in a general way for text process-
ing tasks, as not enough research has been done to compare those methods considering the
trade-offs of data size, quality, and processing time. Hence, we propose a trade-off analysis
framework and apply it to three important text processing problems: Named Entity Recog-
nition, Sentiment Analysis, and Document Classification. These problems were also chosen
because they have different levels of object granularity: words, passages, and documents. For
each problem, we select several machine learning algorithms and we evaluate the trade-offs of
these different methods on large publicly available datasets (news, reviews, patents). We use
different data subsets of increasing size ranging from 50 MB to a few GB, to explore these
trade-offs. We conclude, as hypothesized, that just because the method has good performance
in small data, it does not necessarily have the same performance for big data. For the two last
problems, we consider similar algorithms and also consider two different data sets and two
different evaluation techniques, to study the impact of the data and the evaluation technique on
the resulting trade-offs. We find that the results do not change significantly.

iii

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page iv — #6

Resum
Avui en dia, la quantitat de documents digitals disponibles està creixent ràpidament, expandint-
se a un ritme considerable i procedint de diverses fonts. Les fonts d’informació no estructurada i
semiestructurada inclouen la World Wide Web, articles de notícies, bases de dades biològiques,
correus electrònics, biblioteques digitals, repositoris electrònics governamentals, , sales de xat,
forums en línia, blogs i mitjans socials com Facebook, Instagram, LinkedIn, Pinterest, Twitter,
YouTube i molts d’altres.

Extreure’n informació d’aquests recursos i trobar informació útil d’aquestes col.leccions
s’ha convertit en un desafiament que fa que l’organització d’aquesta enorme quantitat de dades
esdevingui una necessitat. La mineria de dades, l’aprenentatge automàtic i el processament del
llenguatge natural són tècniques poderoses que poden utilitzar-se conjuntament per fer front
a aquest gran desafiament. Segons la tasca o el problema en qüestió existeixen molts emfo-
caments diferents que es poden utilitzar. Els mètodes que s’estan implementant s’optimitzen
continuament, però aquests mètodes d’aprenentatge automàtic supervisats han estat provats i
comparats amb grans dades d’entrenament. La pregunta és : Què passa amb la qualitat dels
mètodes si incrementem les dades de 100 MB a 1 GB? Més encara: Les millores en la qualitat
valen la pena quan la taxa de processament de les dades minva? Podem canviar qualitat per
eficiència, tot recuperant la perdua de qualitat quan processem més dades?

Aquesta tesi és una primera aproximació per resoldre aquestes preguntes de forma gene-
ral per a tasques de processament de text, ja que no hi ha hagut suficient investigació per a
comparar aquests mètodes considerant el balanç entre el tamany de les dades, la qualitat dels
resultats i el temps de processament. Per tant, proposem un marc per analitzar aquest balanç
i l’apliquem a tres problemes importants de processament de text: Reconeixement d’Entitats
Anomenades, Anàlisi de Sentiments i Classificació de Documents. Aquests problemes tam-
bé han estat seleccionats perquè tenen nivells diferents de granularitat: paraules, opinions i
documents complerts. Per a cada problema seleccionem diferents algoritmes d’aprenentatge
automàtic i avaluem el balanç entre aquestes variables per als diferents algoritmes en grans
conjunts de dades públiques (notícies, opinions, patents). Utilitzem subconjunts de diferents
tamanys entre 50 MB i alguns GB per a explorar aquests balanç. Per acabar, com havíem
suposat, no perquè un algoritme és eficient en poques dades serà eficient en grans quantitats
de dades. Per als dos últims problemes considerem algoritmes similars i també dos conjunts
diferents de dades i tècniques d’avaluació per a estudiar l’impacte d’aquests dos paràmetres en
els resultats. Mostrem que els resultats no canvien significativament amb aquests canvis.

iv

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page v — #7

Resumen
Hoy en día, la cantidad de documentos digitales disponibles está creciendo rápidamente, ex-
pandiéndose a un ritmo considerable y procediendo de una variedad de fuentes. Estas fuentes
de información no estructurada y semi estructurada incluyen la World Wide Web, artículos
de noticias, bases de datos biológicos, correos electrónicos, bibliotecas digitales, repositorios
electrónicos gubernamentales, salas de chat, foros en línea, blogs y medios sociales como Fa-
cebook, Instagram, LinkedIn, Pinterest, Twitter, YouTube, además de muchos otros.

Extraer información de estos recursos y encontrar información útil de tales colecciones se
ha convertido en un desafío que hace que la organización de esa enorme cantidad de datos sea
una necesidad. La minería de datos, el aprendizaje automático y el procesamiento del lenguaje
natural son técnicas poderosas que pueden utilizarse conjuntamente para hacer frente a este
gran desafío. Dependiendo de la tarea o el problema en cuestión, hay muchos enfoques dife-
rentes que se pueden utilizar. Los métodos que se están implementando se están optimizando
continuamente, pero estos métodos de aprendizaje automático supervisados han sido probados
y comparados con datos de entrenamiento grandes. La pregunta es ¿Qué pasa con la calidad de
los métodos si incrementamos los datos de 100 MB a 1GB? Más aún, ¿las mejoras en la cali-
dad valen la pena cuando la tasa de procesamiento de los datos disminuye? ¿Podemos cambiar
calidad por eficiencia, recuperando la perdida de calidad cuando procesamos más datos?

Esta tesis es una primera aproximación para resolver estas preguntas de forma general para
tareas de procesamiento de texto, ya que no ha habido investigación suficiente para comparar
estos métodos considerando el balance entre el tamaño de los datos, la calidad de los resultados
y el tiempo de procesamiento. Por lo tanto, proponemos un marco para analizar este balance y
lo aplicamos a tres importantes problemas de procesamiento de texto: Reconocimiento de En-
tidades Nombradas, Análisis de Sentimientos y Clasificación de Documentos. Estos problemas
fueron seleccionados también porque tienen distintos niveles de granularidad: palabras, opinio-
nes y documentos completos. Para cada problema seleccionamos distintos algoritmos de apren-
dizaje automático y evaluamos el balance entre estas variables para los distintos algoritmos en
grandes conjuntos de datos públicos (noticias, opiniones, patentes). Usamos subconjuntos de
distinto tamaño entre 50 MB y varios GB para explorar este balance. Para concluir, como ha-
bíamos supuesto, no porque un algoritmo es eficiente en pocos datos será eficiente en grandes
cantidades de datos. Para los dos últimos problemas consideramos algoritmos similares y tam-
bién dos conjuntos distintos de datos y técnicas de evaluación, para estudiar el impacto de estos
dos parámetros en los resultados. Mostramos que los resultados no cambian significativamente
con estos cambios.

v

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page vi — #8

vi

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page vii — #9

Contents

List of Figures xii

List of Tables xiv

1 INTRODUCTION 1
1.1 Motivation . 1
1.2 Formal Problem . 3
1.3 Contributions . 4
1.4 Organization . 5

2 BACKGROUND 7
2.1 Introduction . 7
2.2 Supervised Machine Learning Algorithms . 8

2.2.1 Logistic Regression . 8
2.2.2 Decision Trees . 8
2.2.3 K-Nearest Neighbors . 9
2.2.4 Support Vector Machines . 10
2.2.5 Naïve Bayes Classifier . 11
2.2.6 Random Forest . 11
2.2.7 Conditional Random Fields . 13
2.2.8 Multilayered Neural Networks . 13
2.2.9 Hidden Markov Models . 14
2.2.10 Language Models . 14

2.3 Classical Document Features . 14
2.3.1 Term Frequency . 14
2.3.2 Inverse Document Frequency . 15
2.3.3 Term Frequency-Inverse Document Frequency 17

2.4 Performance Trade-offs in Machine Learning 18
2.5 Named Entity Recognition . 24
2.6 Sentiment Analysis . 27
2.7 Document Classification . 29

3 TRADE-OFFS FRAMEWORK 35
3.1 Introduction . 35
3.2 Measuring Quality . 35

3.2.1 Confusion Matrix . 35
3.2.2 Precision and Recall . 36
3.2.3 F-measure . 37

3.3 Time Efficiency . 38
vii

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page viii — #10

3.4 Trade-off Analysis . 39
3.4.1 Quality and Data Size . 41
3.4.2 Time and Data size . 41
3.4.3 Quality, Time and Data Size . 41
3.4.4 Dominant Algorithms . 42

3.5 Methodology . 44
3.5.1 Data Collection . 44
3.5.2 Defining the Target Variable . 44
3.5.3 Pre-process Data . 45
3.5.4 Classification Methods . 45
3.5.5 Evaluation Metrics and Validation . 45
3.5.6 Trade-off Analysis . 46

3.6 Discussion . 47

4 NAMED ENTITY RECOGNITION 49
4.1 Introduction . 49
4.2 Algorithms . 50

4.2.1 Stanford NER . 51
4.2.2 Illinois Named Entity Tagger . 52
4.2.3 LingPipe . 52

4.3 Dataset: News . 52
4.4 Experimental Setup . 55

4.4.1 Extractor . 55
4.4.2 Searcher . 55
4.4.3 Disambiguator . 55

4.5 Experimental Results . 57
4.5.1 Quality Comparison . 57
4.5.2 Time Efficiency Comparison . 58
4.5.3 Dominant Algorithm . 58
4.5.4 Overall Comparison . 59

4.6 Discussion . 60

5 SENTIMENT ANALYSIS 61
5.1 Introduction . 61
5.2 Dataset: Amazon Reviews . 61
5.3 Movies and Television . 62

5.3.1 Dataset: Movies & TV Reviews . 62
5.3.2 Experimental Setup . 64
5.3.3 Experimental Results . 66

5.4 Books . 71
5.4.1 Dataset: Books Reviews . 71
5.4.2 Experimental Setup . 72
5.4.3 Experimental Results . 75

5.5 Discussion . 76
viii

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page ix — #11

6 DOCUMENT CLASSIFICATION 79
6.1 Introduction . 79
6.2 Algorithms . 80
6.3 News Classification . 81

6.3.1 Dataset: News . 81
6.3.2 Experimental Setup . 81
6.3.3 Experimental Results . 86
6.3.4 Analysis . 90

6.4 Patents Classification . 91
6.4.1 Dataset: USA Patents . 91
6.4.2 Experimental Setup . 93
6.4.3 Experimental Results . 95
6.4.4 Analysis . 98

6.5 Discussion . 99

7 CONCLUSIONS AND FUTURE WORK 101
7.1 Conclusions . 101
7.2 Future Work . 102

Bibliography 105

ix

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page x — #12

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page xi — #13

List of Figures

1.1 Machine learning workflow process. 2
1.2 Knowledge discovery process. 3

2.1 Complexity of language technology problems [Jurafsky and Martin, 2000]. . . 7
2.2 Logistic regression example. 8
2.3 Decision trees example. 9
2.4 K-nearest neighbors example [Wikipedia, 2017a]. 9
2.5 Support vector machine example [Wikipedia, 2017b]. 10
2.6 Examples of multilayer neural network architectures [Schmidt and Okt, 2000]. 13
2.7 Accuracy vs. speed for SD parsing. 21
2.8 Voting among classifiers [Banko and Brill, 2001]. 22
2.9 Active learning with large corpora [Banko and Brill, 2001]. 23
2.10 Learning Curves for Confusable Disambiguation [Banko and Brill, 2001]. . . . 23
2.11 An example of NER system. 25
2.12 Impact of data size [Ji and Grishman, 2006]. 27
2.13 Polarity of all methods across the labelled datasets [Goncalves et al., 2013]. . . 28
2.14 Coverage and F-measure comparison for all methods [Gonçalves et al., 2013]. . 29
2.15 Coverage vs F-measure trade-off for all methods [Gonçalves et al., 2013]. . . . 29
2.16 Data based on product categories [Fang and Zhan, 2015]. 30
2.17 Data based on review categories [Fang and Zhan, 2015]. 30
2.18 F1 Score of review-level categorization [Fang and Zhan, 2015]. 31
2.19 The text classification process. 32

3.1 Running time vs. data size. 41
3.2 Accuracy on basic dependencies. 42
3.3 Accuracy vs. tokens per second. 43
3.4 Performance vs. data size. 43
3.5 Example for dominant algorithms. 44
3.6 Example of a 5-fold cross validation scheme. 46
3.7 Knowledge discovery process. 47

4.1 Problems that need NER. 49
4.2 Example of the CoNLL03 dataset. 54
4.3 Sample of tokenized output generated by a system. 54
4.4 Sample clean tokenized. 56
4.5 Sample of output solution [Nadeau and Sekine, 2007]. 56
4.6 Sample of output from a system [Nadeau and Sekine, 2007]. 56
4.7 Comparison of recognizer based on different data sizes on CoNLL. 57
4.8 Running time vs. data size for all NER systems. 59
4.9 Dominant algorithm for NER systems on 100 MB. 59

xi

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page xii — #14

4.10 Dominant algorithm for NER systems on 500 MB. 60
4.11 Performance and data size in NER. 60

5.1 Semantic analysis workflow. 62
5.2 Rating system for Amazon.com. 62
5.3 Score distribution before normalization. 65
5.4 Sample of dataset after normalization. 66
5.5 Comparison of algorithms quality on different data sizes. 67
5.6 Time efficiency vs. data size. 68
5.7 Dominant algorithms on Sentiment Analysis for 50 MB. 68
5.8 Dominant algorithms on Sentiment Analysis for 500 MB. 69
5.9 Dominant algorithms on Sentiment Analysis for 1.2 GB. 69
5.10 Comparing three algorithms in time and quality. 70
5.11 Performance comparison of the algorithms on different data sizes. 70
5.12 Score distribution of Amazon reviews. 72
5.13 Sample of data after target variables. 72
5.14 Score distribution before normalization. 74
5.15 Comparison for quality on different data sizes. 75
5.16 Comparison for time efficiency on different data sizes. 76
5.17 Dominant algorithms on Sentiment Analysis for 10 MB. 76
5.18 Dominant algorithms on Sentiment Analysis for 50 MB. 77
5.19 Dominant algorithms on Sentiment Analysis for 3 GB. 77
5.20 Performance comparison for different data sizes. 78

6.1 Sample of XML file. 82
6.2 Sample of data after parsing. 83
6.3 Document classification process. 84
6.4 Frequency of topics in RCV1. 84
6.5 Frequency of selected topics in our dataset. 85
6.6 Quality vs. Data size. 87
6.7 Time efficiency vs. Data size. 88
6.8 Dominant algorithms on news classification for 500 MB data size. 88
6.9 Dominant algorithms for news classification for 1.2 GB data size. 89
6.10 Dominant algorithms for news classification for 1.5 GB data size. 89
6.11 Comparing the performance of all algorithms for news classification. 90
6.12 Example of patent metadata. 92
6.13 Data sample example. 94
6.14 Quality vs. Data size. 95
6.15 Time Efficiency vs. Data size. 96
6.16 Dominant algorithms on patents classification for 100 MB. 96
6.17 Dominant algorithms on patents classification for 500 MB. 97
6.18 Dominant algorithms on patents classification for 1 GB. 97
6.19 Dominant algorithms on patents classification for 4 GB. 98
6.20 Dominant algorithms on patents classification for 7.18 GB. 98
6.21 Comparing the performance of all algorithms for patents classification. 99

xii

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page xiii — #15

List of Tables

2.1 Training dataset. 15
2.2 Test dataset. 15
2.3 Performance comparison of different classification algorithms [Gandhi and Pra-

japati, 2012]. 19
2.4 Unlabeled and labelled attachment F1 score and time “to generate standard

Stanford dependencies with different types of parsers” [Cer et al., 2010]. 20
2.5 Basic SD parsing performance and running time [Kong and Smith, 2014]. . . . 20
2.6 F-measures for the eight methods [Gonçalves et al., 2013]. 28

3.1 Contingency table binary categorization quality for a category. 36
3.2 Document classification confusion matrix. 36
3.3 Table of confusion for the sport’s class. 37
3.4 Sport class. 38
3.5 Economic class. 38
3.6 Micro Average Table. 38
3.7 Example running time of two algorithms A and B. 39
3.8 Example running time for algorithms A and B. 39
3.9 Example running time for Algorithms A and B on the same data size. 40
3.10 Example of correct entities of Algorithms A and B on the same running time. . 40
3.11 Accuracy vs. time on computing Stanford dependencies. 42
3.12 Raw datasets, features, and evaluation techniques used for our experiments. . . 48
3.13 Problem, datasets, and algorithms considered. 48

4.1 Summary of NER systems. 51
4.2 Comparison of the corpora properties [Atdağ and Labatut, 2013]. 53
4.3 Example errors that were found by a NER system. 56
4.4 NER error types. 57
4.5 Scalability evaluation. 58
4.6 Improved version for handling larger data. 58

5.1 Sample of Movies & TV reviews. 63
5.2 Algorithms that had the best quality, speed, and performance on 1.2 GB data size. 71
5.3 Samples of books reviews. 73
5.4 Number of ratings per category before and after removing null reviews. 73
5.5 Algorithms that had the best quality, speed, and performance on 3.3 GB data size. 78

6.1 Selected topics and article counts. 85
6.2 Algorithms that had the best quality, speed, and performance of all algorithms

on 1.2 and 1.5 GB. 91
6.3 Data structure for published document. 92

xiii

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page xiv — #16

6.4 Data structure for patent. 93
6.5 Target value preparation. 94
6.6 Algorithms that had the best quality, speed, and performance on 7.18 GB data

size. 99

7.1 Summary of problems, final datasets, evaluation metrics, and features. 102
7.2 Dominant algorithm and best performance for all problems in the largest data

size. 102

xiv

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 1 — #17

Chapter 1

INTRODUCTION

1.1 Motivation
In recent years, big data has been one of the hottest topics in computer science. The volume
of data is expanding at a considerable rate with the use of technology such as smartphones,
megapixel cameras, tablets, computers, ubiquitous social media, and satellites that are all gen-
erating more data than ever [Chen and Zhang, 2014, Mayer-Schönberger and Cukier, 2013, Sa-
giroglu and Sinanc, 2013].

Big data is commonly characterized using several V’s [Sagiroglu and Sinanc, 2013]. The
first three V’s are Volume, Velocity, and Variety. It is these three main characterizations that
define and describe the challenges that come with large data [Tarekegn and Munaye, 2016]. We
describe all V’s below:

• Volume describes the large amounts of data that are processed in our digital world

• Variety describes the different forms data can come in such as text, images, voice, and
geospatial data. There are varying sizes of data in a variety of formats and quality which
must be processed quickly.

• Velocity describes the speed at which data is processed.

• Veracity refers to the noise, biases, and abnormality in data.

• Valence describes large amounts of data in terms of graphs.

• Value refers to the real impact of the solution.

“The amount of data has been increasing and data set analyzing has become more com-
petitive. The challenge is not only to collect and manage vast volumes and different types of
data, but also to extract meaningful value from this data” [Bakshi, 2012, Nguyen et al., 2016]
Without innovative, perceptive and analytical managers, it is difficult to decide how to handle
large amounts of data.

The high volume of data makes extracting information a very big challenge that is both
difficult and time consuming. Machine learning (ML) is a powerful tool that can help us with
that task (extracting information or knowledge discovery from data). Depending on the task,
we need to decide which approach is the most appropriate, such as classification, regression,
or clustering. Each approach has been implemented using different ML algorithms. On the
other hand, the ability of a machine learning model to perform accurately on new, unseen

1

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 2 — #18

Figure 1.1: Machine learning workflow process.

examples/tasks (after being trained by a given data set) is different. Therefore, it is necessary
to compare and analyze the result of different models to be able to choose the best possible for
each task.

Each data set comes in one or more varieties such as text, images, voice or geospatial data.
This data needs to be formatted in a specific way for a specific target to make it readable by the
ML algorithm. Then, given a task, ML will teach itself to extract the correct information from
the large set of formatted data to give a result. Knowledge is extracted from the results that are
obtained by the ML algorithm. Figure 1.1 shows the typical workflow of this process.

Knowledge Discovery (KD) as a process, depicted in Figure 1.2, is perceived as the leading
research model in academic research per Fayyad. KD consists of following steps [Cios et al.,
2007]:

1. Developing and understanding the application domain. In this step, we learn the
compatibility of previously gained insights and planned objectives of the end user of
found knowledge.

2. Creating a target data set. In this step the data miner is selecting a subset of variables
or attributes and performing a discovery task by using a data sample. In this step, the
data miner usually uses queries on the existing data to select desired subset.

3. Data cleaning and pre-processing. This step consists of dealing with missing values
and noise, removing outliers inside the data, and the consideration for the time sequence
information and known changes.

4. Data representation: data representation contains the following two steps:

(a) Data reduction and projection. This step includes finding helpful attributes by
using the transformation method and dimension reduction, and finding similar rep-
resentation of the data.

(b) Choosing the data mining task. In this step the data miner can match the goal that
is defined in Step one with a precise data mining method, like regression, clustering,
classification, etc.

5. Choosing the ML algorithm. In this section the data miner chooses a method to find
patterns in the data and find the most appropriate model and parameter of the methods
used.

6. Machine learning. In this step, patterns in a particular representational form are gener-
ated, like, decision trees, classification rules, trends, regression models, etc.

2

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 3 — #19

Figure 1.2: Knowledge discovery process.

7. Interpreting mined patterns. In this step, the analyst performs visualization of the ex-
tracted patterns and models, and the visualization of the data that is based on the extracted
models.

8. Consolidating discovered knowledge. In the final step, we can merge the knowledge
we have discovered, reporting and documenting it to the organizations that are interested.
Here we may be able to check and resolve any potential conflict that may arise from any
previous belief knowledge.

Our work follows mainly this process.

1.2 Formal Problem
The main goal of natural language processing and machine learning is to obtain a high level
of accuracy and efficiency. Unfortunately, obtain the high accuracy often comes at the cost of

3

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 4 — #20

slow computation [Jiang et al., 2012]. There is a lot of research that tries to improve accuracy.
There is little research, which considers time and accuracy together.

Now with increasing size of data, we will need natural language processing systems to be
fast and accurate on larger amounts of data. Quick processing with accuracy of large amounts
of data is just as important as being really accurate. Typically, one seeks a reasonable trade-off
between speed and accuracy. “What is reasonable for one person might not be reasonable for
another” [Jiang et al., 2012]. The same comment applies to a given task. We want to find an al-
gorithm with respect to a customer-specified speed/accuracy trade-off, on a customer-specified
data distribution. In most cases, it is hard to find annotated datasets and using professional
humans to annotate the unannotated dataset can be expensive and time consuming.

Many algorithms exist to perform a task. Among the algorithms for a particular task, the
algorithms may vary by processing methodology as well as by efficiency. This makes it difficult
for a customer to select an appropriate algorithm for a specific situation. The situation is even
more difficult considering that the answer may depend on the specific data set and/or its size
as well as the set of algorithms and the type of evaluation used. We can even complicate even
more this problem by adding space or time restrictions for the training and/or the prediction
phase.

With respect to data size, when it increases, quality improves and efficiency also increases.
However, after a point, quality is not increasing as much, while the running time keeps increas-
ing and hence the quality gain is not worth it. Therefore, increasing data after that point for
training is not efficient nor effective any more.

We address this problem by considering the trade-offs between efficiency and accuracy on
different sizes of data and examining several algorithms on three different problems/tasks in
text processing, comparing algorithms by three factors: running time, data size, and quality. To
start we define a framework that allows us to compare different algorithms and define relevant
trade-offs.

1.3 Contributions
The main contributions of this work are the following:

• A trade-off analysis framework between quality and efficiency that can be applied to
most problems that use ML algorithms. In fact, the framework borrows from similar
ideas used for generic algorithms.

• Application of this framework to text processing tasks that are typically solved with su-
pervised ML algorithms, analyzing the impact of the object granularity of the tasks (en-
tities, opinions, documents), the specific data set as well as the type of evaluation used
(simple versus k-fold). The main finding here is that the best algorithm is not necessarily
the one that achieves best quality nor the most efficient one, but the one that balances
well both dimensions.

• An experimental comparison of well-known Named Entity Recognizers (SNER, INET,
LingPipe) using a news dataset that is relevant on its own. The main results is that the
clear winner is the Stanford NER [Liaghat, 2016].

• An experimental comparison of several ML algorithms for Sentiment Analysis using two
subsets of the same dataset of reviews, to analyze what is the impact of changing the
dataset when they are of similar type. For one of the subsets we also analyze the impact

4

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 5 — #21

of the evaluation technique used. The main result is that Support Vector Machines (SVM)
is the best algorithm, followed by Logistic Regression, among the algorithms considered.

• An experimental comparison of several ML algorithms for Document Classification us-
ing two different tasks (binary and multi-class) for two different datasets (news and
patents), to analyze the impact of changing those parameters. For one of the sets we
also analyze the impact of the evaluation technique used. The main result is that SVM is
the best algorithm, among the algorithms considered.

1.4 Organization
The outline of the rest of the thesis follows:

Chapter 2 presents the background NLP and text documents classification as well as per-
formance trade-offs in Machine learning. Six supervised ML algorithms (Logistic regression,
Decision Tree,K-Nearest Neighbors, Support Vector Machine, Naïve Bayes, and Random For-
est, Conditional Random Fields Model, Multilayered Neural Networks, Hidden Markov Model,
and N-gram Character Language Models) are presented. It surveys the current state of trade-off
performance, speed, and sizes of data in different problems. We show how the change of data
size affects the performance of models. We explain the three problems, which is our main focus
and we survey some of the research on this domain.

In Chapter 3, we explore our problem statement and define the trade-off framework. We
explain how measuring quality and running time affect performance. Therefore, we need to
consider running time, quality, and size of data for calculating performance and comparing
methods. Then, our methodology and framework are presented. This includes all the steps
needed for data preparation and extraction of information from texts by machine learning algo-
rithms. Finally, we discuss the metrics used for our evaluation.

In Chapter 4, we consider the named entity recognition problem. The dataset selected is ex-
plained and three algorithms (Stanford Named Entity recognition, Illinois NET, and LingPipe)
are studied. Then our experimental results are reported.

In Chapter 5, we address sentiment analysis. We study several algorithms on two different
subsets of the Amazon reviews dataset (Movies & TV and Books). Both sets are explained. All
steps we followed for sentiment analysis are explained. At the end of the chapter, the results of
both datasets are presented and discussed.

In Chapter 6, we address the document classification problems in two different datasets
(news and patents). In the case of news, we have a multi-class prediction problem and in the
case of patents we have a binary classification problem. To solve these two cases, we use
up to six classification algorithms (Logistic regression, Decision Tree, K-Nearest Neighbors,
Support Vector Machine, Naïve Bayes, and Random Forest).

In Chapter 7, we discuss the conclusions of this dissertation and revisit our hypothesis as
posed in the formal problem section. We also propose several avenues for further research
suggested by our findings.

5

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 6 — #22

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 7 — #23

Chapter 2

BACKGROUND

2.1 Introduction

There are a lot of problems in the world of Language Technology in general and Natural Lan-
guage Processing (NLP) in particular, as shown in Figure 2.1 [Jurafsky and Martin, 2000], such
as Spam detection, Part of speech tagging, Name Entity Recognition (NER), Sentiment anal-
ysis, Coreference resolution, Word sense disambiguation, Parsing, Machine translation (MT),
Information extraction (IE), Question Answering (QA), Paraphrase, Summarization, and Dia-
log [Moens, 2006]. Also, a lot research has been done to improve accuracy, time complexity,
and the effect of increasing the size of data on performance. This chapter contains reviews
of some of the articles about NLP and IE problems. We reviewed studies performed on the
effect of size of training data on classifier performance and investigated the trade-off between
efficiency and quality. After that, we chose three of the problems where machine learning is
used on text processing and reviewed the state of the art on those problems.

Figure 2.1: Complexity of language technology problems [Jurafsky and Martin, 2000].

7

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 8 — #24

Figure 2.2: Logistic regression example.

2.2 Supervised Machine Learning Algorithms
“Machine learning is the subfield of computer science that have been developed from the fields
of pattern recognition, artificial intelligence, and computational learning theory” [Isoni, 2016].
Machine learning gives computers the ability to automatically learn to make accurate predic-
tions based on past observations. The predictions can be binary (decide between two classes)
or multi-class. ML algorithms can be supervised (that is, they learn with training data) or un-
supervised and their output is a model that will be used to predict. In this section, we cover the
most well know supervised ML algorithms that are used in this thesis.

2.2.1 Logistic Regression
Logistic Regression uses a logistic function to measure the relationship between a dependent
variable and one or more independent variable by estimating probabilities. The use of a logistic
function makes logistic regression usable in many cases because it can take any positive or
negative value and outputs a value between zero and one. Therefore logistic regression can be
considered a probability. Figure 2.2 shows an example where the logistic function is defined as
follows:

σ(t) =
et

et + 1
=

1

1 + e−t
(2.1)

2.2.2 Decision Trees
The decision tree handles the classification task through creating a tree of true or false ques-
tions. The tree structure of the decision tree is well defined. The leaves represent the categories
required to classify against. The nodes are the true or false queries. The root node is the doc-
ument to be classified. The document passes through the queries which directs the document
to one of the leaves which represent the category or the goal of classification of document. An
example is shown in Figure 2.3.

The decision tree classification algorithms perform extremely well and are highly recom-
mended in multiple cases because they have several advantages. Decision trees are easily un-

8

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 9 — #25

Figure 2.3: Decision trees example.

derstood and represented even to non-experts because of their simple structure. The path of
the document from the root node to the leaf which shows the chosen category shows the effect
of the features of the decision making process. The result of a decision tree can be replicated
using simple mathematics techniques. “When there are a small number of structured attributes,
the performance, simplicity and understandability of decision trees for content-based models
are all advantages” [Kobsa, 2007, Khan et al., 2010].

The main disadvantage of decision trees is that they can easily overfit. This is because
classification algorithms tend to classify the training data better and neglect the effect of unseen
data. If the document has many features, this will lead to a complex tree structure.

2.2.3 K-Nearest Neighbors

The K-Nearest Neighbors (KNN) algorithm measures the similarity between objects by main-
taining the k-nearest neighbors to each object. Through this similarity we can determine the
category of the tested object. In KNN, the categorized object is based on the nearest feature
space and therefore KNN is an instance based learning algorithm.

To find the similarity between objects, the features of the training set are mapped into

Figure 2.4: K-nearest neighbors example [Wikipedia, 2017a].

9

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 10 — #26

Figure 2.5: Support vector machine example [Wikipedia, 2017b].

multidimensional space. The required categories divide this multidimensional space. Each
point in this multidimensional space is classified to a certain category because most of its k
nearest neighbors belongs to this category. Multiple distance metrics can be used to compute
the distance between a point and its neighbors. Euclidean distance is one of the most used
distance metrics. See an example in Figure 2.4.

In the training phase, KNN stores the feature vectors and categories of the training set are
stored. The vector of the new object is computed in the classification phase [Khan et al., 2010].
Then the distance between this vector and all the other vectors is calculated. The k smallest
distances are selected and the major category from these k vectors is chosen for the object.

2.2.4 Support Vector Machines

Support Vector Machines (SVM) is considered one of the most accurate classification methods.
SVM is one of the discriminative classification methods based on the idea of finding a hypoth-
esis that finds the lowest true error. SVM differs from many classification methods in that it
needs both, positive and negative examples in the training set [Khan et al., 2010].

“These positive and negative examples are needed to seek for the surface that best separates
the positive from the negative data in the n-dimensional space, so called hyper-plane. The
objects representatives which are closest to the decision surface are called the support vector.
The performance of the SVM classification remains unchanged if objects that do not belong to
the support vectors are removed from the training data set” [Khan et al., 2010]. See an example
in Figure 2.5.

The SVM classification method stands out from the other methods due to its outstanding
classification effectiveness. Furthermore, it can handle objects in a high-dimensional input
space, and culls out most of the irrelevant features. However, the major drawback of the SVM
is their relatively complex training and the high time and memory consumptions during the
training stage and the classifying stage [Khan et al., 2010]. Besides, confusions may occur
during the classification tasks if the documents could be annotated to several categories because
the similarity is typically calculated individually for each category. So SVM is a supervised
learning method for classification to find out the linear separating hyper-plane which maximizes
the margin between the two datasets. “To calculate the margin, two parallel hyper-planes are
constructed, one on each side of the separating hyper-plane, which are “pushed up against” the

10

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 11 — #27

two data sets. Intuitively, a good separation is achieved by the hyper-plane that has the largest
distance to the neighboring data points of both classes, since in general the larger the margin
the lower the generalization error of the classifier” [Khan et al., 2010].

2.2.5 Naïve Bayes Classifier

The Naïve Bayes classifier is based on Bayes theorem of conditional probability:

p(Ck|x) =
p(Ck)p(x|Ck)

p(x)
(2.2)

So the Naïve Bayes classifier is a simple probabilistic classifier that has strong independence
assumptions as in Bayes theorem.

In Naïve Bayes classifiers, the feature order is irrelevant which means that the presence of
a feature does not influence the other features in the classification process. This is because of
the independence assumptions. Hence, the computation of the Bayesian classification is more
efficient but has very limited applicability. Due to the nature of the probabilistic model, Naïve
Bayes classifiers require a small set of practice data to calculate the parameters required to
efficiently classify the objects with the following formula:

ŷ = argmax
k∈{1,....K}

p(Ck)
n∏
i=1

p(xi|Ck) (2.3)

Naïve Bayes classifiers have been reported to work efficiently on many complex real world
classification problems due to their over simplified assumptions. Naïve Bayes classification
correctly classifies the objects if the correct category is more probable than all other categories.
The classifier is strong enough to ignore the problems of its Naïve probability. This means that
the category probabilities do not have to be calculated extremely well. The only problem with
Naïve Bayes classifiers is that they are not as discriminative as some other classifiers like SVM
[Khan et al., 2010].

For many years, Naïve Bayes was one of the popular machine learning methods. Its sim-
plicity makes it attractive in various tasks and reasonable performances are obtained, although
is based on an unrealistic independence assumption [Khan et al., 2010].

2.2.6 Random Forest

Random forest (RF) is an ensemble learning method for regression, classification, and other
tasks, that works by building a a lot of decision trees at training time and outputting the class
that is the mean prediction of the individual trees. Random decision forests corrects decision
trees’ usual overfitting of their training set [Fang and Zhan, 2015, Chen et al., 2004].

A random forest grows many classification trees. To classify a new item from an input
vector, we put the input vector down each of the trees in the forest. Each tree gives a classifica-
tion result, and the trees “votes” for that class. The forest selects the classification having the
maximum votes over all the trees in the forest [Breiman and Cutler, 2016].

11

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 12 — #28

Each tree is grown as follows [Breiman and Cutler, 2016]:

1. If the number of instances in the training set is N , sample N instance at random - but
with replacement, from the original data. This sample will be the training set for growing
the tree.

2. If there are M input variables, a number m << M is specified such that at each node,
m variables are selected at random out of the M and the best split on these m is used to
split the node. The value of m is held constant during the forest growing.

3. Each tree is grown to the largest expanse possible without pruning.

The random forest error rate depends on two things [Breiman and Cutler, 2016]:

• The correlation between any two trees in the forest. Increasing the correlation increases
the forest error rate.

• The strength of each individual tree in the forest. A tree with a low error rate is a strong
classifier. Increasing the strength of the individual trees decreases the forest error rate.

Two parameters are important in the Random forest algorithm [Fang and Zhan, 2015, Chen
et al., 2004]:

1. Number of trees used in the forest (ntree) and

2. Number of random variables used in each tree (mtry).

Reducing mtry (Number of random variables used in each tree) reduces both the correlation
and the strength. Increasing mtry increases both. Somewhere in between is an “optimal” range
of mtry - usually quite wide. Using the Out-of-Bag (OOB) error rate a value of m in the range
can quickly be found. This is the only adjustable parameter to which RF is somewhat sensitive
[Breiman and Cutler, 2016].

The first step is to set the mtry to the default value (square root of total number of all
predictors) and search for the optimal ntree value. To find the number of trees that correspond
to a stable classifier, Random forest is built with different increasing ntree values. Ten RF
classifiers are built for each ntree value, record the OOB error rate and see the number of trees
where the out of bag error rate stabilizes and reaches a minimum [Bhalla, 2016].

There are two ways to find the optimal mtry [Bhalla, 2016]:

1. Apply a alike procedure such that Random forest is run 10 times. The optimal number
of predictors selected for split is selected for which out of bag error rate stabilizes and
reaches a Minimum.

2. Experiment with including the (square root of total number of all predictors), (half of this
square root value), and (twice of the square root value). Then check which mtry returns
the maximum area under curve. Thus, for 1, 000 predictors, the number of predictors to
select for each node would be 16, 32, and 64 predictors.

12

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 13 — #29

Figure 2.6: Examples of multilayer neural network architectures [Schmidt and Okt, 2000].

2.2.7 Conditional Random Fields

Conditional Random Fields (CRF) [McCallum and Li, 2003a, Finkel et al., 2005] is an undi-
rected graphical model, which allows the bi-directional flow of probabilistic information across
a sequence and provides discriminative training. CRF encodes known relationships between
constructed consistent interpretations and observations. Given some observation, CRF is known
as a conditional model that represents the probability of a hidden state sequence. It corresponds
to conditionally-trained finite state machines. Given the values assigned to other designated in-
put nodes, CRF can calculate the conditional probability of values on designated output nodes.
In some cases, edges in a linear chain, links the output nodes of the graphical model, which
is based on the same exponential form as maximum entropy models. They also have adequate
methods for complete, non-greedy finite-state inference and training. It also does not consider
that features are self sufficient. On the other hand, CRF is a bit slower than Hidden Markov
Models (HMMs) and MaxEnt Markov Models (MEMMs).

2.2.8 Multilayered Neural Networks

A Multilayered Neural network is like an artificial neural network as it contains two or more
trainable layers. Multilayer neural network is a feedforward neural network. “Multilayer Neu-
ral Networks implement linear discriminants in a space where the inputs have been mapped
non-linearly. The form of the non-linearity can be learned from simple algorithms on train-
ing data” [Jeff Robble, 2008]. Several different algorithms can be used for training multilayer
neural networks such as generalized delta rule and back propagation algorithms. One of the
difficulties developing neural network is adjusting the complexity of the network or regulariza-
tion. Multilayer neural networks can be used for nonlinear sets by employing hidden layers,
whose neurons are not connected to the output directly [Schmidt and Okt, 2000]. Figure 2.6
shows examples of typical multilayer network architectures.

13

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 14 — #30

2.2.9 Hidden Markov Models
An HMM [Sutton and McCallum, 2006] models a sequence of observations X = {xt}Tt=1 by
assuming that there is an underlying sequence of states Y = {yt}Tt=1 drawn from a finite state
set S. In NLP, HMMs have been used for sequence labeling tasks such as part-of-speech tag-
ging, named-entity recognition, and information extraction. For example, the named-entity in
each observation xt is the identity of the word at position t, and each state yt is labeled for each
word that can be identified as one of the entity types such as Location, Person, Organization,
and Other. To model the joint distribution p(y, x) in tractably way, an HMM makes two inde-
pendence observation. In the first step, it considers each state depends only on its immediate
predecessor, which explains that each state yt is independent of all its ancestors y1, y2, ..., yt=2

given its previous state yt−1 . Next, an HMM assumes that each observation variable xt de-
pends only on the present state yt . Then, we can specify an HMM using three probability
distributions: first, the distribution p(y1) over initial states; second, the transition distribution
p(yt|yt=1); and third, the observation distribution p(xt|yt). That is, the joint probability of a
state sequence y and an observation sequence x factorizes as

p(y, x) =
T∏
t=1

p(yt|Yt − 1)p(xt|yt) .

2.2.10 Language Models
Language models estimate the likelihood of a given word in a text. They are trained using
samples of text and then can match other text that is similar to the one used during the train-
ing phase. They use an n-gram model of sequences, notably for natural language, using the
statistical properties of n-grams [Carpenter, 2013] . Hence, a n-gram model is some sort of
probabilistic language model for finding the next item in a sequence of length n. The prob-
ability of a word w given some previous documents d, is computed by P (w|d). In a simple
example, if we want to calculate the probability that the word “the” comes after the sentence
“This water is so transparent that”, we can count how many times we see this sentence in all the
documents, and how may times we see the sentence followed by “the” at the end of sentence.
Hence:

P (the|its water is so transparent that) =
Count(its water is so transparent that the)

Count(its water is so transparent that)

2.3 Classical Document Features
In this section we present the main features used for represent documents as vectors. This is
used later in Chapter 6.

2.3.1 Term Frequency
For term frequency tf(t, d) (TF), we measure the frequency of the term t in the document d
[Baeza-Yates and Ribeiro-Neto, 2011]. By frequency we mean the number of occurrences of
this term in this document. If frequency is ft,d then tf(t, d) = ft,d. There are other ways to
calculate the frequency as follows:

• Boolean: tf(t,d) = 1 if it occurs in d and 0 otherwise;
14

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 15 — #31

Document 1 The night is black.
Document 2 The stars are shiny.

Table 2.1: Training dataset.

Document 3 The stars in the night are shiny.
Document 4 I can see the bright stars, the shiny stars.

Table 2.2: Test dataset.

• Logarithmically scaled frequency to smooth it: tf(t,d) = 1 + log ft,d , or zero if ft,d is
zero; [Baeza-Yates and Ribeiro-Neto, 2011]

• Normalized frequency, to prevent a bias towards longer documents, e.g. raw frequency
divided by the maximum raw frequency of any term in the document [Baeza-Yates and
Ribeiro-Neto, 2011]:

tf(t, d) = 0.5 + 0.5
ft,d

max{ft,d : t ∈ d}
(2.4)

2.3.2 Inverse Document Frequency
The inverse document frequency (IDF) measures the rarity of the term in the corpus, thus
measuring how much information the word holds for the classification process. IDF is the
inverse fraction of the count of documents containing the word then logarithmically scaled to
smooth it. This means common words like “the” gets penalized to reduce their weight. It is
defined as [Baeza-Yates and Ribeiro-Neto, 2011]:

IDF (t,D) = log
N

|{d ∈ D : t ∈ d}|
(2.5)

with

• N : total number of documents in the corpus N = |D|.

• |{d ∈ D : t ∈ d}|: number of documents where the t term appears in corpus (i.e.
tf(t, d) 6= 0). This will lead to a division-by-zero, if the term is not in the corpus. Hence,
it is common to modify the denominator to 1 + |{d ∈ D : t ∈ d}|..

For example [Perone, 2011], Table 2.1 and 2.2 define our document space:
Now, what we have to create a index dictionary of the words of the train dataset, we will

have the following index vocabulary by using the documents one and two from the document
set, define as E(t) where the t is the term:

E(t) =

1 : if t is “black”
2 : if t is “stars”
3 : if t is “shiny”
4 : if t is “night”

Note that the terms like “are” and “the” were ignored as cited before because they do not
carry any meaning to the documents. Now that we have an index dictionary, “we can convert
the test document set into a vector space where each term of the vector is indexed as our index

15

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 16 — #32

vocabulary. So the first term of the vector represents the” “black” term of our vocabulary,
the second represents “stars” and so on. Them, “we are going to use the term-frequency to
represent each term in our vector space; the term-frequency is” the count of how many times
the term occurs in our corpus. E(t) are present in the documents tree or four, we define the
term-frequency as a counting function:

tf(t, d) =
∑
X∈d

fr(X, t)

then tf(t, d) is :

fr(x, t) =

{
1, if x = t
0, otherwise

Therefore, what the tf(t, d) returns the count of the occurrences of the term t in the the
document d. An example of this, could be tf(starts, d4) = 2 since we have only two occur-
rences of the term “stars” in the document d4. Now we can create the document vector, which
is represented by [Perone, 2011]:

~vdn = (tf(t1, dn), tf(t2, dn), tf(t3, dn), tf(t4, dn), . . . , tf(tn, dn))

The term of the vocabulary represents each dimension of the document vector. For instance,
the tf(t1, d2) represents the frequency-term of the term 1 or t1 (which is our “black” term of
the vocabulary) in document 2.

Below shows a concrete example of how the documents 3 and 4 are then represented as
vectors:

~vd3 = (tf(t1, d3), tf(t2, d3), tf(t3, d3), tf(t4, d3), . . . , tf(tn, d3))

~vd4 = (tf(t1, d4), tf(t2, d4), tf(t3, d4), tf(t4, d4), . . . , tf(tn, d4))

This evaluates to:

~vd3 = (0, 1, 1, 1)

~vd4 = (0, 2, 1, 0)

Since the documents three and four are:
Document 3: The stars in the night are shiny
Document 4: I can see the bright stars, the shiny stars.
The resulting vector ~vd3 shows that we have, in order, one occurrence of the term “stars”,

zero occurrences of the term “black”, and so on. In the vector ~vd4, we have zero occurrences of
the term “black”, two occurrences of the term “stars”, etc.

Since we have a corpus, now represented as a vector space model, they can be represented
by a matrix with |D| ∗ F shape, where |D| is the total number of documents and F is the
number of features (total number of different words or vocabulary). An example of the matrix
representation of the vectors described above is:

M|D|∗F =

[
0 1 1 1
0 2 1 0

]
These matrices tend to be very sparse (with majority of terms zeroed), so they are usually

represented in a compact way.
16

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 17 — #33

2.3.3 Term Frequency-Inverse Document Frequency

The formula for the Term Frequency-Inverse Document Frequency (TF-IDF), TF − IDF is
then [Baeza-Yates and Ribeiro-Neto, 2011]:

TF − IDF (t) = tf(t, d) ∗ IDF (t)

Notice that a term gets a high TF − IDF weight if the term frequency for this document is
high (local context) and the inverse document frequency is low for the whole corpus (global
context) .

Following our previous example [Perone, 2011], by calculating the IDF for each term (fea-
ture) present we obtain the following matrix:

Mtrain =

[
0 1 1 1
0 2 1 0

]
Since we have four features, we have to calculate IDF (t1), IDF (t2), IDF (t3), IDF (t4):

IDF (t1) = log
|D|

1 + |{d : t1 ∈ d}|
= log

2

1
= 0.69314718

IDF (t2) = log
|D|

1 + |{d : t2 ∈ d}|
= log

2

3
= −0.40546511

IDF (t3) = log
|D|

1 + |{d : t3 ∈ d}|
= log

2

3
= −0.40546511

IDF (t4) = log
|D|

1 + |{d : t4 ∈ d}|
= log

2

2
= 0.0

The vector below represents the IDF weights:

~IDFtrain = (0.69314718,−0.40546511,−0.40546511, 0.0)

After we have our matrix with the term frequency (Mtrain) and the vector representing
the IDF for each feature of our matrix (~IDFtrain), we can calculate our TF-IDF weights. To
calculate the TF-IDF, We multiply each column of the matrix Mtrain with the corresponding

~IDFtrain vector. For doing that, we need to create a square diagonal matrix called MIDF with
both the horizontal and vertical dimensions equal to the vector ~IDFtrain dimension: [Perone,
2011]

MIDF =

0.69314718 0 0 0

0 −0.40546511 0 0
0 0 −0.40546511 0
0 0 0 0.0

The next step is to multiply with the term frequency matrix, then the final result is:

MTF−IDF =Mtrain ∗MIDF

The matrix multiplication is not commutative, the result of A × B will not be the same
as the result of the B × A, and therefore MIDF is on the right side of the multiplication, to

17

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 18 — #34

accomplish the required effect of the multiplication each IDF value to its corresponding feature
[Perone, 2011]:

[
tf(t1, d1) tf(t2, d1) tf(t3, d1) tf(t4, d1)
tf(t1, d2) tf(t2, d2) tf(t3, d2) tf(t4, d2)

]
×

IDF (t1) 0 0 0

0 IDF (t2) 0 0
0 0 IDF (t3) 0
0 0 0 IDF (t4)

=

[
tf(t1, d1)× IDF (t1) tf(t2, d1)× IDF (t2) tf(t3, d1)× IDF (t3) tf(t4, d1)× IDF (t4)
tf(t1, d2)× IDF (t1) tf(t2, d2)× IDF (t2) tf(t3, d2)× IDF (t3) tf(t4, d2)× IDF (t4)

]
An example of this multiplication is [Perone, 2011]:

MTF−IDF =Mtrain ×MIDF =[
0 1 1 1
0 2 1 0

]
×

0.69314718 0 0 0

0 −0.40546511 0 0
0 0 −0.40546511 0
0 0 0 0.0

=

[
0 −0.40546511 −0.40546511 0
0 −0.81093022 −0.40546511 0

]
Finally, we can apply our L2 normalization process to the MTF−IDF matrix. This normal-

ization is “row-wise” because we are going to handle each row of the matrix as a separated
vector to be normalized, and not the matrix as a whole [Perone, 2011]:

MTF−IDF =
MTF−IDF

‖MTF−IDF‖2
=

[
0 −0.70710678 −0.70710678 0
0 −0.89442719 −0.4472136 0

]
The result is the normalized TF-IDF weight of our testing document set, which is a collec-

tion of unit vectors. If you take the L2-norm of each row of the matrix, you will see that they
all have a L2-norm of 1 [Perone, 2011].

2.4 Performance Trade-offs in Machine Learning
There are many performance measures used in machine learning, such as [Han et al., 2011]:

• Accuracy: the percentage of test set tuples that classify correctly.

• Lift: lift is a simple correlation measure. It measures how well a targeting model can
(association rule) at predict or classify cases as having an enhanced response, measured
against a random choice-targeting model.

• Weighted (cost sensitive) Accuracy: It is the measure of the performance of a ML al-
gorithm based on its accuracy of classifying a data set where the classes are imbalanced
and/or the cost of errors per class is not equal. It represents the differing cost of each type
of misclassification.

• Precision/Recall: precision and recall are explained in section 3.2.2.

– F-measure: This is explained in section 3.2.3.
18

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 19 — #35

Author Naïve Bayes KNN SVM Neural Network
Yang 71.5 85.0 85.0 82
Weiss 73.4 86.3 86.3 -

Joachims 72.0 82.3 86.0 -

Table 2.3: Performance comparison of different classification algorithms [Gandhi and Prajap-
ati, 2012].

– Break Even Point: Tradition is to evaluate classifiers in terms of precision and re-
call. Breakeven is the point where precision is the same as recall.

• ROC: ROC curve is presented by plotting false positives (FP) vs. true positives (TP)

– AUC Area: the area under the ROC curve is called AUC.

It is important to take the right measurements to evaluate our machine learning algorithms.
In order to correctly measure and compare the performance of machine learning algorithms, we
must choose the correct metrics. These measurements will influence the result and ultimately
the decision making of which algorithm to choose [Brownlee, 2016].

Gandhi and Prajapati [Gandhi and Prajapati, 2012] described three classification algorithms
and compared them with F-measure. The three classification algorithms are K-Nearest Neigh-
bors, Naïve Bayes, and Support Vector Machines. They have researched some problems of
automatically classifying text documents into categories, which are dependent on standard ma-
chine learning algorithms. They believe that the demand for text classification is increasing to
a large extent. Keeping this demand in mind, there are developments of new and updated tech-
niques happening for automated text classification for which they present an algorithm. Finally,
they describe the performance of their experiment on the data by defining the settings of their
scenario. Table 2.3 shows the result of the comparison of three algorithms on Reuters-21578
by break even point. Between the algorithms, which were suggested for the use in text classi-
fication, the most important one is Support Vector Machines which was shown to continuously
outperform other techniques.

In another research, Cer, Marneffe, and Jurafsky [Cer et al., 2010] studies different ap-
proaches to generating Stanford Dependencies (SD), a semantically-oriented set of dependen-
cies. SD presents the grammatical relation between words in a sentence. They study the trade-
offs between time and accuracy and examine the comparison between constituent parsers and
fast algorithms that have been particularly developed for dependency parsing. Afterward, they
compare these dependency parsers to techniques used to speed up the traditional ways we ex-
tract data, namely more aggressive elimination of fundamental parsers. They present different
approaches in terms of aggregate speed and accuracy, and then provide explanations of charac-
teristic errors. For their experiments, they used dual CPU Intel Xeon E5520 and Penn Treebank
dataset. They compared five popular algorithms specifically designed for dependency parsing:
Stanford, Charniak, Charniak-Johnson, Bikel, and Berkeley. Such parsers differ in terms of
accuracy, as well as how quickly they process with respect to balancing time and accuracy.
They also compare different dependency parsers: several models from Nivre, Nivre Eager,
Covington, Eisner and the Re lExparser. As Table 2.4 shows, the most accurate algorithm
for generating dependencies was the Charniak-Johnson re-ranking parser and the fastest algo-
rithms were Nivre, Nivre Eager, and Covington. By using multiple threads the speed of the
algorithm can be improved. Parsing speed nearly doubles when two threads are used instead
of one. However, increasing to four threads results is much slower performance than just using
one thread.

19

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 20 — #36

Parser Attachment F1 Attachment F1 Total Time
Unlabeled Labeled (min:seconds)

Berkeley 90.5 87.9 10:14
Bikel 88.7 85.3 29:57

Charniak 90.5 87.8 12:10
CJ 91.7 89.1 11:18

Covington 80.0 76.6 0:16
Nivre Eager 80.1 76.2 0:16

Nivre 80.2 76.3 0:15
Nivre Eager Feature

Interact
84.8 81.1 3:23

MSTParser 82.6 78.8 6:01
RelEx 57.8 48.1 31:38

Stanford 87.2 84.2 11:05

Table 2.4: Unlabeled and labelled attachment F1 score and time “to generate standard Stanford
dependencies with different types of parsers” [Cer et al., 2010].

Stanford dependencies Accuracy Tokens per second
Stanford english PCFG 90.06 123.63

Huang 90.90 616.55
MSTParser 91.24 239.6

Full TurboParser 92.29 209.98
Stanford RNN 93.11 66.57

Berkeley 93.33 200.0
Charniak-Johnson 93.91 100.72

Table 2.5: Basic SD parsing performance and running time [Kong and Smith, 2014].

Kong and Smith [Kong and Smith, 2014] conducted an experiment to compare the different
methods of obtaining Stanford typed dependencies. They showed the trade-off between speed
and accuracy in obtaining Stanford dependencies, as it shown in Table 2.5. They also examine
the effects of input representations of this trade-off, part-of-speech tags, the novel use of a
different dependency representation as input, and distributional representations of words. As
the paper explained, parsing is well-known for the extensive computational impediments it
creates in text analysis systems. They found that direct dependency parsing could achieve
similar results to the Stanford CoreNLP pipeline at much greater speeds.

In another article, Jiang, Teichert, and Eisner [Jiang et al., 2012] studied the trade-off be-
tween accuracy and speed. The nominal goal of ML natural language processing (NLP) is
to achieve high accuracy. Much dedicated research has been done to find exact or approxi-
mate speedups in a broad range of inference problems. They introduce a hybrid reinforcement
learning algorithm that even with comprehensive features can automatically achieve better ac-
curacies with much better improvement in speed over state-of-the-art baselines by connect-
ing reinforcement learning and more improved learning techniques. They can also create a
learning algorithm that can find better ways to balance constituency parsing. This article fo-
cuses on parsing. They expect the approach to transfer to prioritization under other agenda-
based inference algorithms, such as in machine translation. They present a simple formula
(Quality = Accuracy−λT ime) to obtain quality from speed and accuracy. The results of the

20

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 21 — #37

Figure 2.7: Accuracy vs. speed for SD parsing.

algorithms are compared with this formula with different factors.
21

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 22 — #38

Figure 2.8: Voting among classifiers [Banko and Brill, 2001].

Banko and Brill [Banko and Brill, 2001] studied the effects of data size on ML for natural
language disambiguation. They also studied the problem of selection among confusable words.
The training corpus used in this study is three times larger than the training corpus which was
used previously for this problem. They cover a larger size of data, and they get better results
as shown in Figure 2.8. Figure 2.9 shows learning curves for four different ML algorithms.
Then, they examine the efficiency of voting, selection of samples, and partially unsupervised
learning with large training corpora with respect to being able to retrieve the benefits that may
come from much greater training corpora without acquiring greater cost. One billion words of
data were collected from a mixture of English texts. These include scientific abstracts, news
articles, literature, government transcripts, and other texts. In this article, the effect of data size
on machine learning for classification is studied.

In another paper, Banko and Brill [Banko and Brill, 2001] applied machine learning tech-
niques to the task of confusion set disambiguation. They used more than a thousand times more
data than previously researchers had been used for their training in disambiguation-in-string-
context problem. They collected a one billion word training corpora from news, government,
articles, scientific abstract, etc. They try to find out effect of training data size on performance
and when benefit from additional training data will cease in the learning methods in Natu-
ral language processing. Also, they analyzed residual errors made by learners when issues of
sparse data have been significantly mitigated. They reduced the error rate, and they compared
performance the best system trained on the standard training set size, by adding more data.
Figure 2.10 shows benefit from additional training data.

Ma and Ji [Ma and Ji, 1999] reviewed various general techniques on supervised learning
to improve performance and efficiency. They introduce performance as “the generalization
capability of a learning machine on randomly chosen samples that are not included in a train-
ing set. Efficiency deals with the complexity of a learning machine in both space and time”.
This paper presents two factors, bias and variance dilemma, as important factors that effects

22

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 23 — #39

Figure 2.9: Active learning with large corpora [Banko and Brill, 2001].

Figure 2.10: Learning Curves for Confusable Disambiguation [Banko and Brill, 2001].

performance. The authors present and discuss three types of learning approaches: training
an individual mode, combinations of many weak models, and combinations of several well-

23

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 24 — #40

trained models. For their experience Decision tree, Incremental Learning, and Em algorithm
implemented. Three different approaches to improve the performance have been discussed
through making a trade-off between the variance and bias evolutionary computation of models:
1-finding the an optimal structure for a single model, 2-training several oversized models which
have a high variance and low bias and then decrease the variance by combining well-trained
models, 3- training a large set of weak models which have a small variance and a large bias and
then decrease the bias by combinations of weak classifiers. They also evaluate the advantages
and disadvantages of each approach.

In the next sections, we describe the three problems we study (Named entity recognition,
Sentiment analysis, Document classification) and then review the state of the art for each prob-
lem.

2.5 Named Entity Recognition

Named Entity Recognition (NER) technology helps to recognize proper nouns (entities) in
a text while correlating them with applicable types. There are several common types in a
NER system, including a person’s name, date, location, address, etc. Some NER systems are
integrated into Parts-of-Speech (POS) taggers; still there are many stand-alone applications.
Most NER systems analyze POS tag patterns by using lists of typed entities (like list of possible
locations) or regular expressions of certain types (address patterns) [Sun, 2010].

Figure 2.11 is an online demo from Stanford NER system, marked up with seven entity
types: <Location>, <Organization>, <Date>, <Money>, <Person>, <Percent>, and <Time>.
This system gets text, types of classifier, and output format as input. After submitting, we can
see the result of the classifier in highlights. Each class uses a different color.

Machine-learned NER have been designed with many different classifiers [Finkel et al.,
2005]. A type of discriminative probabilistic model that is used often is a conditional random
field for labeling or parsing sequential data. For example, in natural language text or biological
sequences. CRF, like Markov random fields, is an undirected graphical model where each
vertex represents a random variable for which the distribution is implied and the individual
edges serve as a dependency between two random variables [Sun, 2010]. Now we cover some
NER applications.

Radev and Dragomir [Radev, 1998] used machine learning technology for extracting a set
of rules that can predict option of description out of an entity profile. They have used 35, 206
tuples, that contain entity, a description, article ID and position of entity description occurs on
the articles. A descriptions identifies a textual passage is described in a given Name Entity. For
instance, Barack Obama can be described as “the President of the U.S.”, or “the Democratic
presidential candidate” or “a Hawaiian native”, depending on the document. Personal name
authorization is used as a description or identification in a cue. Description identification can
be used as a cue in personal name disambiguation. Reusing these describers in a context of
natural language generation was the authors’ intention.

Mann, Gideon S. and Yarowsky [Mann and Yarowsky, 2003] presents personal name dis-
ambiguation as a task of identifying the correct referent of a given designator. In each context,
it identifies whether Jim Clark is a film editor, Netscape founder, or even a race car driver.
Corpus-wide authorizes information retrieval from personal names applications in document
clustering.

Dimitrov, Bontcheva, Cunningham, and Maynard [Dimitrov, 2005] worked on Entity anaphora
resolution that mainly consists of resolving pronominal co-reference when the antecedent is an

24

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 25 — #41

Figure 2.11: An example of NER system.

Named Entity (NE). For example, in the sentence, “John finished playing the game boy and he
took it back to the store”, the pronoun “he” refers to “John”. Anaphora is one of the ways used
in solving the NER problem which can be done by allowing the use of extended co-reference
networks.

Charniak [Charniak, 2001] worked on analysis of name structure. In analysis of name
structure they break down a person’s name into parts. For instance, the name “Doctor Aileen
A Anderson” is made of the title, first name, middle initial, and the last name. This is a way
to start the process of the first step toward NER and toward the solution of co-references to
determine that “George W Bush” and “President Bush” are the same person, but “George W
Bush” and “Laura Bush” are two completely different people.

Swan and Allan [Swan and Allan, 1999] studies the key items in a corpus at any period
or given time. The event detection application becomes broader significantly by analysis or
aggregation. Extracting events on several news articles or a given scenario, Swan and Allan can
create a story that is made of chosen textual passages. For example, the story is that “Obama
was elected as president” on November 18th and “Obama picks Biden as Vice President” on
November 25th. Commercial buzz is a simple analysis of entity frequencies over time.

To identify semantics of interest in unstructured text we use NER purports. This includes
finding ways to add structure to unstructured data. Investigation has been done on NER
and classification (NERC) by using supervised, semi-supervised and unsupervised learning
methods. The investigation was done in special domains and multilingual settings, such as
biomedicine. Ekbal, Sourjikova and Frank [Ekbal et al., 2010] evaluated the challenge of fine
grained NER and classification. They introduced a method to perform fine grained NERC

25

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 26 — #42

on a large scale. A pattern-based approach was proposed to acquire the fine grained seman-
tic classes and instances. The baseline of this approach is modeled using Maximum Entropy
(ME). To model this approach, different features were needed. These features included: part of
speech tagging, word prefix and suffix, chunk information, capitalization, word length, context
words, and some dynamic features.

Smith [Smith, 2002] worked on detect the physical entities in conjunction with any other
entities. For example, symposiums consist of name, location and beginning and end date, (e.g.,
name: “Science Symposium”, location: “Los Angeles”, start date: “February 10th, 2017”, end
date: “February 13th, 2017”). Another example is a person’s date of birth (name: “James
Jones”, date: “September 21, 1977”).

Srihari and Li [Srihari and Li, 1999] studied question answering that involves NER at its
core of the answering efficiency. The low-level information extraction like NER is important
component to handle most types of questions. Eighty percent of 200 questions regarding a
TREC-8 competition required the response of a named entity (e.g. when [time or date], who
[person], where [location]).

In another paper about NER, Zhang and Pan [Zhang et al., 2004] focused on the problem
of searching for the thematic named entity among all items in a document. They proposed a
statistical model for important NER by converting it to classification algorithms in Machine
learning. They also compare several classification algorithms such as RRM, Decision Tree and
Naïve Bayes. The data set was from news articles. The features were used to identify type, In
Title or Not, Document Frequency in corpus and Entity Frequency.

Nadeau and Sekine [Nadeau and Sekine, 2007] present a survey of fifteen years of research
in NERC from 1991 to 2006. They introduce Named entities task that can also be looked at as
an Information Extraction task. This way, the entities (company activities and defense related
activities in this research) are extracted from any unstructured text like news articles. In this
task, it was noticed that it is important to identify information expressions and numerical ex-
pressions. Information expressions are like names, organizations and location names. Numeric
expressions are like time, data, percent and money. They also present the word level features
and evaluation techniques for NERC.

Florian, Ittycheriah, Jing, and Zhang [Florian et al., 2003] present a classifier combination
with NER for four different classifiers (Robust Risk Minimization, Maximum Entropy, Hidden
Markov Model, and Transformation-Based Learning) and they compare the results for two
languages; German and English. As a machine learning method, they introduce the RRM
classifier algorithm as a good candidate algorithm for NERC.

Pasca, Lin, Bigham, and Jain [Pasca et al., 2006, Nadeau and Sekine, 2007] used techniques
inspired by mutual bootstrapping. The distributional similarity to generate synonyms can be
used for pattern generalization. For example, In a pattern like: [PERSON was born in Decem-
ber], synonyms for December are the other 11 months generating new patterns as [PERSON
was born in June]. In this research, it was shown that using this technique on very large corpora
(100 million web documents) a small seed of 10 examples can be used to generate 1 million
facts with 88% precision. They also show that a large collection of data is not sufficient alone to
train a NE classifier and that it can be improved using information retrieval relevance measures
and focusing on specific contexts that enrich the classifier.

Heng and Grishman [Ji and Grishman, 2006, Nadeau and Sekine, 2007] addressed the prob-
lem of unlabeled data selection. They applied two semi-supervised learning algorithms (boot-
strapping and self-training) to improve F-measure on Chinese and English language datasets.
Using the bootstrapping method, they can improve an existing NE classifier. They reported
that is not possible to rely on large collection of documents by itself. In order to get the best

26

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 27 — #43

Figure 2.12: Impact of data size [Ji and Grishman, 2006].

result, they must select the documents using information retrieval-like relevance measures and
specific contexts that are rich in proper names and co-references. They found performance can
get worse by adding off-topic unlabeled data and it is a demand to have a good data selection
measures for some application. Figure 2.12 shows the result of each segment of the unlabeled
data is added to the training corpus.

2.6 Sentiment Analysis

Sentiment classification is a kind of text classification problem. Text Classification is aimed at
categorizing the text to one of many topics according to the available categories. The classi-
fication is performed through the topic related words. For instance, “Politics” topic is repre-
sented by words representing different political aspects like “president” , “country”, “policy”
and many more. Sentiment analysis is the analysis aimed to understand the hidden emotion,
subjectivity, opinion, review, or any hidden meaning in the context. Therefore sentiment anal-
ysis can have many names, all under the same meaning such as opinion extraction, opinion
mining, review mining, sentiment mining, affect analysis, emotion analysis, subjectivity analy-
sis, etc. In sentiment classification, the key features are words that represent positive or negative
opinion like: awesome, great, amazing, worse, bad, etc. [Liu, 2012].

Pang, Lee, and Vaithyanathan [Pang et al., 2002] were the first researchers to take a negative
or positive opinions approach to classify online movie reviews into two classes (negative and
positive). They used bigrams and unigrams as features in classification which performed quite
well with either Naïve Bayes or SVM. They also tried several other characterization options
as well. They implemented three machine learning methods (Naïve Bayes, Maximum entropy
classification, and Support vector machines). The authors also introduced sentiment analysis
as a very result driven NLP task which uses many NLP sub-tasks to give perceptive analysis
from various text sources.

Qu, Ifrim and Weikum [Qu et al., 2010] introduced the “bag-of-opinions”: a certain way
to represent the documents that is a representative of documents used to show the power of
n-grams with opinions. The bag of opinions is a variant of the traditional bag of words where

27

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 28 — #44

Method Twitter MySpace YouTube BBC Digg Runner’s World
Emoticons 0.929 0.952 0.948 0.359 0.939 0.947

Happiness Index 0.774 0.925 0.821 0.246 0.393 0.832
LIWC 0.690 0.862 0.731 0.377 0.585 0.895

PANAS-t 0.643 0.958 0.737 0.296 0.476 0.689
SASA 0.750 0.710 0.754 0.346 0.502 0.744

SenticNet 0.757 0.884 0.810 0.251 0.424 0.826
SentiStrength 0.843 0.915 0.894 0.532 0.632 0.778
SentiWordNet 0.721 0.837 0.789 0.284 0.456 0.789

Table 2.6: F-measures for the eight methods [Gonçalves et al., 2013].

Figure 2.13: Polarity of all methods across the labelled datasets [Goncalves et al., 2013].

each opinion consists of three parts: sentiment, modifier, and negator. For instance, in “not
very good”, the sentiment word is ”good“, the modifier is “very”, and the negator is “not”.

Goncalves, Araújo, Benevenuto, and Cha [Gonçalves et al., 2013] investigated multiple
methods for measuring sentiments, including supervised machine learning methods and lexical-
based approaches. They developed a new method that is a combination of eight methods.
They compared all methods on small data size from Twitter, MySpace, YouTube, BBC Forum,
Runner’s World, and Digg. The results for the F -measure are shown in Table 2.6 while Figure
2.13 shows the result of polarity for eight methods in different datasets.

They also computed and compared the coverage of all the methods on representative events
from Twitter. As shown in Figure 2.14, the proposed method (the red point) has better quality
and better coverage compared to all other methods. Figure 2.15 shows the trade-off between
the coverage versus F-measure for right methods including the proposed method.

Fang and Zhan [Fang and Zhan, 2015] have investigated the issue of sentiment polarity
categorization. This is one of the issues of sentiment analysis. In this paper, they were geared
toward the fundamental problem of sentiment analysis and sentiment polarity categorization.
They have used the product reviews from Amazon.com as data for this study. This data was
selected from February to April 2014, and included, in total, over 5.1 million of product reviews

28

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 29 — #45

Figure 2.14: Coverage and F-measure comparison for all methods [Gonçalves et al., 2013].

Figure 2.15: Coverage vs F-measure trade-off for all methods [Gonçalves et al., 2013].

in which the products belong to four major categories: beauty, book, electronic, and home. Data
collection based on product review and category review is presented in Figures 2.16 and 2.17.
“Those online reviews were posted by over 3.2 million reviewers towards 20,062 products.
Every rating is based on a 5-star scale (see Figure 2.17), resulting in all the ratings ranging
from 1-star to 5-star with no existence of a half-star or a quarter-star” [Fang and Zhan, 2015].

This study gives a detailed description of the steps taken along with the sentiment polarity
categorization process. Three algorithms have been used to run experiments on both, review-
level categorization and sentence-level categorization: Random forest, Naïve Bayes, and SVM.
Figure 2.18 shows the study’s score of review-level categorization.

2.7 Document Classification

Document Classification is “the task of automatically classifying a set of text documents into
different categories from a predefined set” [Wajeed and Adilakshmi, 2009]. More formally,

29

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 30 — #46

Figure 2.16: Data based on product categories [Fang and Zhan, 2015].

Figure 2.17: Data based on review categories [Fang and Zhan, 2015].

given a set of training documents D = {d1, . . . , dn} with known categories C = {c1, . . . , cn}
and a new document d′ we need to predict the category of d′. That is, the methods will associate
with d′ one or more of categories inC [Ikonomakis et al., 2005, Wajeed and Adilakshmi, 2009].

Machine learning and Information retrieval systems are used for text classification. Due
to its importance, text classification grabbed a lot of attention from industry and researchers.
They use these systems due to its content-based document management task, and because it
shares many characteristics among other information retrieval tasks. Text search is an example
of how to choose a set of documents that is most relevant to a particular query. For example,
documents used in classification tasks are indexed using the same techniques as in IR; more-
over, documents are compared and the similarity between them is measured using techniques
originally developed for IR. The evaluation of classification tasks is often done using the same

30

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 31 — #47

Figure 2.18: F1 Score of review-level categorization [Fang and Zhan, 2015].

effectiveness measures as in IR. For industry developers, TC is important because of the large
quantity of documents that need to be properly processed and classified. Even more important
is the fact that automatic TC techniques have advanced to levels of accuracy that can com-
pete with the performance of trained professionals. TC is of interest also for ML researchers,
because applications of TC are a challenging benchmark for their own techniques and method-
ologies. This is because TC applications use very high-dimensional feature spaces and very
large amounts of data [Cachopo, 2007].

Classification tasks can be a single label classification or multi label classification depend-
ing on the application. Single label classification is when the document is classified into exactly
one class, like classification of an email message to spam class or legitimate class. Multi label
classification is when the document is assigned to more than one class, like a news article about
“How Chris spent his vacations” can be classified to both social and politics classes [Wajeed
and Adilakshmi, 2009].

We focus now on the text classification case where each document belongs to a single class,
or single-label classification. Later we apply this case to the binary case (two classes) and the
multi-class case.

Khan and Baharudin [Khan et al., 2010] present a challenge that comes with the increase of
available electronic documents. In this research, they highlighted the important different tech-
niques and methodologies that are used for text documents classification. At the same time,
they provide there are still text representation and machine learning techniques that provide
fodder for some interesting future investigation. The research focused on both text representa-
tion and different machine learning techniques through reviewing the theory and the methods
of document classification and text mining.

Ikonomakis, Kotsiantis, and Tamoakas [Ikonomakis et al., 2005] studied the text classifi-
cation process using machine learning techniques. It also guides through interesting research
directions. They show that the classifier’s performance can be improved by manipulating train-
ing text data also presented two problems in text mining: polysemy and synonymy. They
express how up to now little research work in literature has been seen on how to exploit train-
ing text corpuses to improve classifier’s performance. They mention some of the important
tasks in the classification problem, and present two open problems in text mining: polysemy

31

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 32 — #48

Figure 2.19: The text classification process.

and synonymy.
Figure 2.19 shows the graphical representation of the text classification process that is pre-

sented by Ikonomakis in 2005.
Wajeed and Adilakshmi [Wajeed and Adilakshmi, 2009] presented a problem of having

massive amount of unstructured data and discussed how to explore and analyze this type of
data. Also, it shows the types of classification structures and the ease of using hierarchical
classifiers over non-hierarchical methods in the case of having a large number of documents.
A major part of the paper contributes on insights towards generating the lexicon. The classifier
is trained using a feature vector of the training documents. This feature vector is formed from
a set of lexicons. A lexicon is the set of words the document contains. This way, the words in
the document are the features of classification after passing through a preparation phase. The
classifier then assigns the document to the best label.

32

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 33 — #49

Khan, and Bahurdin [Khan et al., 2009] overviewed how the increase in massive textual
data highlights the need for text mining, machine learning (ML) and natural language pro-
cessing (NLP) to extract knowledge from these documents and be able to use them efficiently.
Therefore, automatic documents classification is being focused on with all its stages like doc-
ument representation, features extraction, and document classifier technique. Multiple classi-
fiers are being studied and compared to choose the best classifier for each application. The
classifiers include K-Nearest Neighbors (KNN), Decision Tree (DT), Support Vector Machine
(SVM), Bayesian, Fuzzy Correlation, Artificial Neural Networks (ANN), and Genetic Algo-
rithms. Over multiple research, SVM and Naïve Bayes are recognized as two of the most
effective classifiers for textual classification which makes them very well suited for supervised
machine learning classification.

33

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 34 — #50

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 35 — #51

Chapter 3

TRADE-OFFS FRAMEWORK

3.1 Introduction
Text processing is of great practical importance today given the massive volume of online
text available. Most recently, the volume of digital text available from sources such as the
World Wide Web, electronic mail, corporate databases, chat rooms, and digital libraries has
exploded. Extracting any type of information is becoming a big challenge because processing
high volumes of data makes it that much harder to classify out smaller more specific texts.

As quality is as important as time efficiency, we need a fair way to compare algorithms
that achieve different quality at a different processing time. Most of the time the best quality
algorithm is the slowest one and is not clear if the extra processing time is worth the quality
improvement. Hence, we need to explore the trade-offs between quality and time in a way that
is independent of the problem being solved as well as the computational infrastructure that is
being used.

Hence in this chapter we first explore how to measure quality and then we propose a per-
formance measure that combines quality and time and the notion of “dominant algorithms”.
Then we explain the methodology that we use in the rest of the thesis and the rationale for the
problems and experiments chosen, where we apply our trade-off analysis framework.

3.2 Measuring Quality
There are several evaluation measures for predictive algorithms. Among them, we will explain
the F-measure which is a gauge for quality and which we will be using in our experiments. In
quality evaluation, we compare model A with model B in terms of their respective F-measure.
To calculate an F-measure we need to use a confusion matrix. From that matrix, we can cal-
culate precision and recall which are the two parameters required to calculate the F-measure.
These concepts are explained below.

3.2.1 Confusion Matrix

The confusion or error matrix is a table that shows the performance of a predictive algorithm,
typically used for supervised ML algorithms [Stehman, 1997]. In the confusion matrix we
show the True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives
(FN) for the classes involved in the problem. The definition for each one of these measures is
the following:

35

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 36 — #52

Predicted Positive Predicted Negative
Actual Positive True Positives (TP) False Negatives (FN)
Actual Negative False Positives (FP) True Negatives (TN)

Table 3.1: Contingency table binary categorization quality for a category.

Document Classification Predicted Class
Sport Economic Policy

Actual Class
Sport 7 4 1

Economic 3 5 0
Policy 0 1 9

Table 3.2: Document classification confusion matrix.

• True Positives (TP): TP is the number of instances when the identifier’s predicted result
has been correctly identified and marked as the same.

• False Negatives (FN): FN is the number of instances when the identifier’s predicted result
has been misidentified and labeled as different when it should have been the same.

• False Positives (FP): FP is the number of instances when the identifier’s predicted result
has been misidentified and labeled as the same when it should have been different.

• True Negatives (TN): TN is the number of instances when the identifier’s predicted result
has been correctly identified and labeled as different.

Table 3.1 shows an example for the case of two classes.
Let us give a specific example. If a document classification algorithm has been trained

to distinguish between sport, economic and policy documents, the results of testing will be
summarized in a confusion matrix to inspect the algorithm more. Assuming a sample of 30
documents, 12 sports, 8 economics, and 10 policies, the resulting confusion matrix could look
like Table 3.2:

The confusion matrix shows that from the eight articles in economics category, the system
successfully predicted five to be in the economics category, but predicted wrongly three as
sports. Also, from the twelve sports articles, the system successfully predicted seven to be in
sports category, but predicted wrongly four as economic and one as policy. From the confusion
matrix, the system can’t distinguish well between sport documents and economic articles, but
can make the distinction between policy documents and other types of documents well. All
correct predictions are located on the diagonal of the table, making it easier to visually inspect
the table for errors, as these will be represented by values outside of the diagonal. Using the
confusion matrix above, the corresponding table of confusion for the sport class is shown in
Table 3.3.

3.2.2 Precision and Recall
Precision and Recall are two performance measures used for evaluating the quality of results.
We use precision to compute exactness, whereas recall is a measure of completeness. In the
classification task, precision is defined as the ratio of correctly identified classes (TP) by the
total number of instances predicted for that class whether correctly labelled or not which is
the sum of the true and false positives TP and FP. As such, precision can be written down as

36

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 37 — #53

7 true positives 5 false negatives
(actual sports that were (sports that were

correctly classified as sports) incorrectly marked as Economics)
3 false positives 15 true negatives

(Economics that were (all the remaining documents,
incorrectly labeled as sports) correctly classified as non-sports)

Table 3.3: Table of confusion for the sport’s class.

equation 3.1 and points to the number of selected items that are relevant. Recall on the other
hand is the ratio of correctly identified classes (TP) by the total number of actual instances for
that class correctly identified or not which is the sum of the true positives and false negatives
TP and FN. As such, recall can be written as equation 3.2 and points to the number of relevant
items that have been selected.

Precision =
#TP

(#TP + #FP)
(3.1)

Recall =
#TP

(#TP + #FN)
(3.2)

3.2.3 F-measure

The F-measure (F1 score) is a measure of a test’s quality. The F-measure computes by both
precision and recall for the test and returns a score. We can consider it as a weighted average
of the precision and recall, with the F-measure reaching its worst value at 0 and best value at 1.

The traditional F-measure or balanced F-measure can be defined in more mathematical
terms as a harmonic mean as shown in Equation 3.3:

F −measure = 2
Precision ∗Recall
Precision+Recall

(3.3)

3.2.3.1 Micro and Macro Average

If one category is represented in the corpus, much more than other categories, the F-measure
may not be a good way to evaluate the result. To calculate a well-representative F-measure,
F-measures across all categories must be averaged. There are two types of averaging, Micro
and Macro averaging. Macro averaging is averaging after calculating the F-measures for all
the categories. To calculate let tpλ, fpλ, tnλ, and fnλ be the number of true positives, false
positives, true negatives and false negatives where λ = {λj : j = 1 . . . q} is the set of all labels
and the binary evaluation measure is B(tpλ, fpλ, tnλ, fnλ) [Asch, 2013]. Then

Bmacro =
1

q

q∑
λ=1

B(tpλ, fpλ, tnλ, fnλ) (3.4)

That is, the Macro average is computed by first calculating the F-measures for all the categories
and then taking their arithmetic mean. It works better on small-sized categories.

Micro averaging is better used on large-sized categories. It is computed by calculating
precision and recall for each category first, then using them to calculate the F-measure. Micro

37

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 38 — #54

Sport Class
Truth: Positive Truth: Negative

Predicted class: Positive 12 8
Predicted class: Negative 5 100

Table 3.4: Sport class.

Economic Class
Truth: Positive Truth: Negative

Predicted class: Positive 80 10
Predicted class: Negative 30 40

Table 3.5: Economic class.

Micro Ave. Table
Truth: Positive Truth: Negative

Predicted class: Positive 92 18
Predicted class: Negative 35 140

Table 3.6: Micro Average Table.

average is computed as follows [Asch, 2013]:

Bmicro = B

(
q∑

λ=1

tpλ,

q∑
λ=1

fpλ,

q∑
λ=1

tnλ,

q∑
λ=1

fnλ

)
(3.5)

Tables 3.4 and 3.5 show the result of computing TP, TN, FP, and FN that was obtained from
a classifier for the classes sport and economics. From Tables 3.4 and 3.5, the macro average
precision is:

MacroAveragedPrecision : (0.6 + 0.88)/2 = 0.74

Using the precision and recall from Table 3.6, the micro average is:

MicroAveragedPrecision : 92/110 = 0.84

Micro averaging can be dominated by more common classes and would therefore work
better for someone who is most interested in identifying as many classes as possible and who
would be unconcerned that they might misidentify potential classes in smaller numbers. Other
people, on the other hand, might be concerned with the less-common languages as the dominant
and would likely employ a macro averaging-based evaluation.

3.3 Time Efficiency
Algorithms in computer science are analyzed by how much resources are required for the algo-
rithm to finish the required task. These resources can be anything like time and space [Ausiello
et al., 2012]. Run time analysis is one of the most popular algorithm analysis methods and
implies how time grows with the input size. Usually it is measure in real time units but also
using the main operation and counting them. Obviously, the correct choice of the algorithm for
the problem can save a lot of time.

38

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 39 — #55

Data size (KB) Algorithm A (in seconds) Algorithm B (in seconds)
5 70 5

10 100 10
50 170 50

100 200 100

Table 3.7: Example running time of two algorithms A and B.

Data size (KB) Algorithm A (in seconds) Algorithm B (in seconds)
5 70 5

10 100 10
50 170 50

100 200 100
250 240 250
500 270 500
· · · · · · · · ·

100,000 500 10,000
1,000,000 600 1,000,000
10,000,000 700 10,000,000
· · · · · · · · ·

63, 072 ∗ 1012 750 31, 536 ∗ 1012 or one year

Table 3.8: Example running time for algorithms A and B.

For example, in Table 3.7, we are comparing two algorithms A and B. By just looking at
Table 3.7 we can conclude that Algorithm B is much faster than Algorithm A.

By increasing the size of data and watching the running time, we understand that our con-
clusion was wrong. Algorithm B is more efficient than algorithm A on small input sizes (10
KB). With the increase of input data to a much bigger and sufficient large number, algorithm A
shows its superiority over algorithm B. Table 3.8 shows the running time both algorithms for
larger data sizes.

Obviously, the reason for change in behavior is that algorithm B running time increases
linearly with the input data size. So, if we double the input data size, the running time doubles.
For algorithm A, running time has logarithmic increase rate. This means that by increasing the
input data size four times, the running time will only increase by a small constant number not
by four times as in algorithm B. From that we conclude that, although algorithm B is better on
small data, algorithmAwill eventually show its superiority on input data sizes that are practical
and for real world problems.

Nevertheless, comparing just running time might not be enough as the result of both algo-
rithms might have different quality. So there are several trade-offs that may appear when we
trade quality for speed and vice-versa. We explore this paradigm in the next section.

3.4 Trade-off Analysis
Can we trade quality and time and at the end improve both quality and time? Many times the
answer is yes. Let us consider the following example that comes from NER. Let us say that
algorithm A finds αn true entities in a text of size n in linear time while algorithm B finds
(α + ε)n true entities in (n log(n)) time. That is, B has better quality by a margin of ε, but

39

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 40 — #56

Data size (KB) Algorithm A Correct Entities Algorithm B Correct Entities
n (in seconds) Algorithm A (in seconds) Algorithm B

n O(n) αn O(n log n) (α + ε)n
5 5 4 3.45 4

10 10 8 10 9
50 50 40 84.94 43

100 100 80 200 85
250 250 200 599.48 213
500 500 400 1,349.48 425

1,000 1,000 800 3,000 850
2,000 2,000 1,600 6,602.05 1,700

Table 3.9: Example running time for Algorithms A and B on the same data size.

Time Data size Algorithm A Correct Entities Algorithm B Correct Entities
(KB) (in seconds) Algorithm A (in seconds) Algorithm B

n O(n) O(n log n)
10s - 10 8 10 9
85s - 85 68 85 43
200s - 200 160 200 85

3000s - 3,000 2,400 3,000 850

Table 3.10: Example of correct entities of Algorithms A and B on the same running time.

is slower than the A. Therefore, the two algorithms running time might take something like
the example shown in Table 3.9, where we consider α = 0.8, ε = 0.05. By considering this
data, we can conclude that algorithm B is better than algorithm A because finds more correct
entities. However, we are just looking at quality with respect to the data size.

To compare them fairly, we need to consider the same time. So if both algorithms run time
proportional to T , we have:

Algorithm A: O(αn) ∈ O(T)
Algorithm B: O(α + ε)

n

log2(n)
∈ O(T)

Hence, we can equate the two cases to find n such that:

αn >
K(α + ε)n

log2(n)
for some constant K

log2(n) > K
(
1 +

ε

α

)
n > 2K(1+

ε
α)

That is, for a large enough n, algorithm A finds more correct entities than algorithm B, just
because it can process more data in the same time, despite having less quality [Baeza-Yates,
2013]. Using now time as the parameter there is a value of n where algorithm A can find more
correct entities than algorithm B as shown in Table 3.10, that considers K = 100.

Following this example, we now present the different analyses that we should perform to
compare a set of algorithms on text processing problems. These analyses can be also used for
many other problems.

40

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 41 — #57

Figure 3.1: Running time vs. data size.

3.4.1 Quality and Data Size
We divide a dataset into different sizes of data. We run various models on each data size. Next,
we calculate the quality of models by computing their F-measures. Then we generate a curve
for each model that shows classification accuracy as a function of data size. By evaluation of
the trade-off between quality and data size, we can find a point on the curve where quality
will no longer get better with the increase of data size. This shows the nature of errors that
exist at this point. Figure 2.10 is an example of trade-off between F-measure and data size for
confusable disambiguation.

3.4.2 Time and Data size
With increasing data size, running time will increase. Increasing running time is dependent on
growth rate of the order of a mathematical function. Each method has a different growth rate.
We will review and compare growth rates of different methods. Figure 3.1 is an example of the
growth rate obtained from Table 3.9.

3.4.3 Quality, Time and Data Size
As an example of a comparison in both quality and time, we measure the quality of different
classification methods on various data sizes as well as the running time for classification meth-
ods on a MacBook Pro laptop with processor Core i7 2.5GHz Intel, with 1600 MHz DDR3
cache CPU and 16 GB of RAM memory. Table 2.5 presents the accuracy and running time
on Basic Stanford Dependencies. In the last column we use the ratio Quality×Tokens

T ime
to evaluate

these two factors together as shown in Table 3.11.
By only considering accuracy, Charniak-Johnson has better quality as shown in Figure 3.2.

By considering just running time, Huang is faster. Figure 3.3 shows the result of quality and
running time, where we show a practical case of a lesser quality algorithm is better than the best
quality algorithm just because is much faster. Indeed, considering this ratio Charniak-Johnson
is the before last performing algorithm.

41

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 42 — #58

Stanford dependencies Accuracy Tokens per second Quality per tokens/second
second

Stanford EnglishPCFG 90.06 123.63 11,134
Huang 90.90 616.55 56,044

MSTParser 91.24 239.60 21,861
Full TurboParser 92.29 209.98 19,379
Stanford RNN 93.11 66.57 6,198

Berkeley 93.33 200.00 18,666
Charniak-Johnson 93.91 100.72 9,458

Table 3.11: Accuracy vs. time on computing Stanford dependencies.

Figure 3.2: Accuracy on basic dependencies.

Based on this example we define our performance measure as:

Performance =
Quality ∗ Size

T ime
(3.6)

which combines quality, time, and data size. That is, performance scales with the size of the
data and penalized by the time consumed. This way, high quality on large datasets and low
time will have very high performance, but high quality on large datasets with high time will
decrease the performance and the same for low quality on large datasets with low time. Figure
3.4 is an example of performance change for five well-known classification algorithms applied
to sets of data of different size. Here you can see that slower algorithms like KNN and DT
decrease their performance while linear algorithms keep the performance more stable.

3.4.4 Dominant Algorithms
An important concept related to trade-offs is a dominant algorithm. A trade-off graph is a
powerful tool for making decisions and usually when one measure improves, another decrease.
Using the example given in Figure 3.5, we can show the dominant algorithms by drawing the
frontier for them as in Figure 3.5.

42

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 43 — #59

Figure 3.3: Accuracy vs. tokens per second.

Figure 3.4: Performance vs. data size.

At one extreme, a choice like Huang would be selecting high tokens per second, but smaller
accuracy. At the other extreme, a choice like Charniak-Johnson would be selecting a high level
of accuracy, but less tokens per second. According to the graph, an increase of quality involves
most of the time a loss in speed. However, we need to avoid choices like Stanford EnglishPCFG
or Stanford RNN, that are not dominant in any measure. Efficiency requires that the choice is
in the frontier where the dominant algorithms are.

Dominant algorithms usually are the same for all data sets, that is, the dependency on data
is low. However, this is not always the case. When we include the number of data sets for
which each algorithm is better, the notion of dominant algorithm gets more complicated. We

43

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 44 — #60

Figure 3.5: Example for dominant algorithms.

do not use this more complex notion, but a good example can be found in [Tax et al., 2015].
It is hard to find an algorithm that improves in both measures (in this case, tokens per second

and accuracy quality) together. We usually must make difficult choices between two dominant
algorithms, where one is dominant in tokens per second and the other is dominant in quality.
However, we should prefer to choose an algorithm with high efficiency. That is, the choice is
on the frontier curve rather than inside it. To be able to compare dominant algorithms we need
to define a new measure that relates time and quality. The best algorithm would be the one that
dominates all other algorithms in all the measures considered. However, this seldom exists as
it is hard to improve upon all algorithms on all measures.

3.5 Methodology
Our methodology follows the model that is shown in Figure 1.2. However, we had to adapt this
model to our framework. Our model consists of the steps described next.

3.5.1 Data Collection

This step selects subsets of data from all the available data that we will be working with. We
choose increasing size subsets until reaching the complete dataset. For example, 10, 50, 100,
500, 1000 MB.

3.5.2 Defining the Target Variable

We define a target variable depending on the problem to be solved and documents to be cate-
gorized. We define a target variable that answers a question such as:

• In NER: “Which entity class does a word belong to?”

• In news classification: “Which topic does a document belongs to?”
44

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 45 — #61

• In sentiment analysis: “Does a product have a positive review or a negative one (0/1)?”

• In patent classification: “Is a patent to be accepted or rejected (0/1)?”

Notice that we have chosen two binary class problems and two multi-class problems.

3.5.3 Pre-process Data
After we have selected the data and defining a target variable, a step to change this data in a
usable form is needed. Pre-processing then implies putting the data in a format that is more
user friendly in our system. We can divide this step into the following sub-steps:

3.5.3.1 Document Representation

One of the pre-processing phases is to change the document representation to reduce complex-
ity and the high dimensionality in text features from the documents [Khan et al., 2010]. It
makes it easier to handle by transforming a full text format to a vector.

3.5.3.2 Target Preparation

Before using the dataset in classification, we must prepare the target class first.

3.5.3.3 Data Cleaning

Real world data tends to be noisy, incomplete, and inconsistent. In this step, we remove abnor-
malities in the data in the form of: noise, outliers, missing values, extreme cases, and inconsis-
tencies.

3.5.3.4 Feature Extraction and Selection

First, we extract what can be used as features for the following steps. After feature extraction,
the next important technique we must perform Feature Selection (FS). Since the text features
are high dimensional, Feature selection is used to improve efficiency and scalability of the
classifier by creating, for example, a vector space model.

3.5.4 Classification Methods
Depending on the problem, we use and implement different classification methods. The classi-
fication system can be divided into two sub processes: Learning and Testing. There are several
ways to implement those two steps with Cross-validation and Hold-out test being two of these
ways. The data size and the type of problem to solve will dictate which one of those methods
to use.

3.5.5 Evaluation Metrics and Validation
There are several evaluation methods for classification such as confusion or error matrix sen-
sitivity, specificity, and overall accuracy. Common performance measure just counts errors by
using Precision, Recall, and F-measure. Running time and data size also need to be considered.
We use F-measure, precision, and recall for our evaluation of quality. For the trade-off analysis,
we consider running time and size of data as mentioned earlier.

45

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 46 — #62

Figure 3.6: Example of a 5-fold cross validation scheme.

We use two evaluation techniques. A simple one, holdout, that divides the data randomly in
two sets. One for training with 80% the data and one for testing with 20% of the data. For data
sets with a small number of examples and less attributes, an arbitrary split would result in both
small training and test sets, potentially yielding varied results for different ways of splitting.
Paired t-test is used to measure the significance of accuracy differences [Yu, 2008].

We also use the K-fold technique with exhaustive cross-validation, which takes more time
but it is more robust. Cross-validation splits a data set into K folds and runs the experiment
K times. Each iteration, K − 1 fold of the data is used for the training process, while 1 fold
is used for the testing process. The accuracy is averaged over the results of the K runs. Two
advantages of this technique are:

1. The model will be less prone to overfitting.

2. The model can generalize better to unseen data.

To useK-fold we first need to split the data inK random subsets of size as equal as possible.
Then we iterate over the K subsets from i = 1 to K such that:

1. Dataset partitioning:

• Testing dataset is subset i.

• Training dataset is the union of the other (K − 1) subsets.

2. The “Training Dataset” is used to prepare the model

3. The “Testing Dataset” is used to evaluate the model, hoping that the same performance
will be achieved in unseen data.

3.5.6 Trade-off Analysis

After running different ML algorithms on various data size, we analyze and compare the results
using the framework defined in Section 3.4. The final methodology is shown in Figure 3.7.

46

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 47 — #63

Figure 3.7: Knowledge discovery process.

3.6 Discussion

In this chapter, we have presented our trade-off analysis framework. We talked about trade-
offs between quality, time, and data size. We discuss how these trade-offs can affect when
choosing algorithm. We explained the notion of dominant algorithm and how we can use it to
find effective algorithm. We showed the steps of our analysis methodology. Now we explain
the experimental rationale that we use in the following three chapters for each of the problems
that we selected. As we mentioned before, the three problems have different granularity, from
words to full documents. The datasets used also have different sizes due to the availability
of large public datasets for each problem. We also use two different evaluation techniques,
the simple holdout one or K-folds. Finally, in one case we consider two subsets of the same
dataset (reviews) and two classes; while in the other case we consider two completely different
collections (news and patents) and different prediction problems (multi-class or binary). As we
cannot exhaustively compare all the parameters, this selection has good coverage of all possible

47

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 48 — #64

Dataset Objects Size # Features Evaluation
News Documents & words 2.13 GB 11 6-Folds

Movies & TV Reviews 8.77 GB 10 Training/test
Books Reviews 14.39 GB 10 Training/test & 10-Folds
Patents Documents 7.18 GB 6 Training/test & 6-Folds

Table 3.12: Raw datasets, features, and evaluation techniques used for our experiments.

Problem (Object) Classes Dataset Algorithms
NER (words) Multi News SNER, LingPipe, Illinois

Sentiment Analysis Binary Movies & TV DT, LR, KNN, RF, SVM
(reviews) Binary Books DT, LR, KNN, RF, SVM

Document Classification Multi News DT, LR, KNN, Naïve Bayes, SVM
(documents) Binary Patents DT, LR, KNN, RF, SVM

Table 3.13: Problem, datasets, and algorithms considered.

combinations. For each problem, we choose several algorithms, where we tried to have two
problems with a similar set algorithms to see the effect of the problem on the results. Another
parameter of the experimental space is the number of features, but we decided to keep that one
of the same order of magnitude for all cases as this parameter has a much larger granularity
than the other parameters.

We summarize these experiments using Tables 3.12 and 3.13. In Table 3.12 we show that
the rationale is that we start classifying words, then small documents (reviews) and then doc-
uments. For this reason, we use a news dataset for word classification, the Amazon reviews
dataset (Movies & TV and Book) for sentiment classification (hence two homogenous sub-
sets for a binary prediction problem), and patents and news for document classification (the
first binary and the second multi-class). We also give the maximal size of the datasets and the
evaluation techniques used.

In the next three chapters, we present the results for the experiments in the three problems
that we have selected: Named Entity Recognition, Sentiment analysis, and Document Classi-
fication. The characteristics of each problem, datasets and algorithms used for each one are
shown in Table 3.13. For all the experimental results, we used a MacBook Pro laptop with pro-
cessor Core i7 2.5GHz Intel with 1600 MHz DDR3 cache CPU and 16 GB of RAM memory.

48

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 49 — #65

Chapter 4

NAMED ENTITY RECOGNITION

4.1 Introduction
This chapter introduces the Named Entity Recognition (NER) problem for text, presents the
existing available named entity extractors, and describes the experimental setup and kind of
data that was used for this work. At the end, we present the experiments to compare existing
NER classification methods on different data sizes and the results that were obtained.

There are many proposed technologies for language problems such as Summarization, Pars-
ing, Part-of-Speech-Tagging, Named-Entity-Recognition, Word-Sense Disambiguation, and
Machine-Translation [Dudhabaware and Madankar, 2014]. Recognizing and extracting such
data is a core process of natural language processing. Named Entity Recognition is a popu-
lar domain of natural language processing [Urbansky et al., 2011]. We select Named Entity
Recognition technology because it is one of the main technologies used for prepossessing step
on more advanced technology in NLP and it works on different kinds of corpus. Some NLP
problems that use NER are shown in Figure 4.1.

Figure 4.1: Problems that need NER.

NER is a process that is defined as categorizing and identifying strings of text into different
classes [Urbansky et al., 2011]. Examples of such classes are:

• Persons,

• Locations,

• Organizations,
49

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 50 — #66

• Objects,

• Date and Time,

• Money,

• Percent,

• Currencies,

• etc.

NER task labels sequences of words in a text for different languages such as English, Span-
ish, French, Portuguese, Chinese and Japanese. For this reason, many systems exist and each
designed to perform this type of task differently. Additionally, they also differ in processing
methods [Finkel et al., 2005]. NER systems differ greatly and the task of selecting one for a
specific situation can be difficult due to the variance of the entity types the system can detect,
the nature of the text, and the nature of its input and output.

The next section briefly summarizes the existing available NE systems and then we try to
compare time complexity and performance of these systems in different size of data.

4.2 Algorithms
As mentioned before, it is our intent to evaluate the performance (quality and time) of existing
NER systems by different sizes of data. Many methods and systems were designed for NER
such as Factorie, Illinois NER, Vineet Yadav, Stanford NER, GATE ANNIE, Minor Third,
OpenCalais, Lingpipe, Mallet, Alchemy, and Opener. There are several commercial systems
with good performance, but we focused on those with license for research and public. In
general, NER methods divided into three main families [Mansouri et al., 2008]:

• Hand-made rule-based methods (HRM): HRM use manually constructed finite state
patterns.

• Machine learning-based methods: Machine learning treat NER as a classification pro-
cess.

• Hybrid methods: The hybrid methods use a mix of those two approaches.

Many machine learning techniques have been applied including maximum entropy mod-
els, hidden Markov models, decision trees, conditional random fields, and support vector ma-
chines. Also, different researchers have shown that combining several weak classifiers produce
a stronger single classifier [Urbansky et al., 2011]. Machine learning methods contain three
approaches used to recognize previously unknown entities:

• Supervised: The current powerful technique for addressing the NERC problem is Super-
vised Learning (SL). Supervised learning relies on reading and training large annotated
corpus, memorizes lists of entities, and creating disambiguation rules to recognize pre-
viously unknown data [Nadeau and Sekine, 2007]. There are multiple techniques in
supervised learning for instance: Support Vector Machines (SVM) [Asahara and Mat-
sumoto, 2003], Decision Trees [Sekine, 1998], Hidden Markov Models (HMM) [Bikel
et al., 1997], Conditional Random Fields (CRF) [McCallum and Li, 2003b], and Maxi-
mum Entropy Models (ME) [Borthwick et al., 1998].

50

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 51 — #67

System Language Interface License Entity Types
SNER Java Console, Java GPI. V2 People, Location,

Organization,
Money, Percent,
Date, Time

INET Java Console, Java Research and
Academic use

license

People, Locations,
Organization,
plus 15 other
types based on
Ontonotes

LIPI Java Console, Java Free and
commercial

Licenses

People, Locations,
Organizations

Table 4.1: Summary of NER systems.

• Unsupervised: Unsupervised learning relies on statistics and lexical patterns to identify
certain rules on large unknown data. One very popular example of unsupervised learn-
ing is clustering where data must be clustered into groups based on common similarity
features. To be able to train an unsupervised learning, a learned unannotated corpus is
needed [Nadeau and Sekine, 2007].

• Semi-supervised: Semi-supervised learning or Weakly supervised is the best of two
worlds. It relies on a large unannotated corpus with a small annotated part called a set of
seeds. The main idea behind semi-supervised learning is to use the set of seeds to build
the basic knowledge then search the unannotated part of the corpus to find the items
matching the seed or having similar features and context to the seed. When the system
finds similar features, it uses this information to expand its knowledge and the learning
process is repeated until no new knowledge is added. At the end of the learning process,
many items matching the seed would be identified [Nadeau and Sekine, 2007].

We selected three supervised NER systems that are publicly available, well known, free for
research, and are based on Machine learning methods for comparison:

• Stanford Named Entity Recognizer (SNER)

• Illinois Named Entity Tagger (INET)

• LingPipe (LIPI)

The summary comparison of the systems is shown in Table 4.1.

4.2.1 Stanford NER
Stanford NER (SNER) [Finkel et al., 2005] is a Java implementation of a Named Entity Rec-
ognizer. This popular Java-based system is based on linear chain Conditional Random Fields
which is a supervised learning method. It provides several predefined models for the English
language. Even if these models are not useful for our purposes, we can use dictionaries during
the training phase.

51

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 52 — #68

The first model SNER1 is based on the CoNNL03 training set, and can recognize person,
location and organization entities, and a generic type called Misc [Finkel et al., 2005]. The
second, SNER2 is prepared and trained with the MUC6 and MUC7 corpora, and can handle
seven entity types: Time, Location, Organization, Person, Money, Percent and Data. The
third, SNER3 is trained on all corpora plus ACE, and is able to recognize person, location and
organization entities. Each of these three models can be found in a plain and augmented version
which includes distributional similarity features. Therefore, we used only SNER3.

4.2.2 Illinois Named Entity Tagger

This Java-based system [Ratinov and Roth, 2009] is based on three supervised learning meth-
ods: multilayered neural networks, hidden Markov models, and other statistical methods [Rati-
nov and Roth, 2009]. It also uses manually annotated dictionaries for lookup and word clusters
generated from unlabeled text to improve performance. A few word clusters and dictionaries
are distributed with the system, and it is possible to build new ones, such as word clusters,
models, and output encoding. This system has been trained in several models to provide En-
glish texts from the CoNLL03 corpus. Thus, they can detect person, organization, location, and
miscellaneous. entities. INET allows for training new ones. The first model (INET1) was gen-
erated to have a lower bound when compared to the performances of the other configurations.
The second (INET2) is the result of a single-pass process. The third (INET3) was obtained
through a two-pass process; it is supposed to be better, but remains slower. The fourth model
(INET4) is based on the same process, but it was trained on both CoNLL03 training and devel-
opment sets. By comparison, the three other models relied only on the training set. The Illinois
is based on conditional random fields [Atdağ and Labatut, 2013].

4.2.3 LingPipe

This system -Alias-i2008- is commercial and can handle various other NLP tasks besides NER.
It has free licensing available for academic use and it is open source. It relies on n-gram
character language models, trained through hidden Markov models [Mansouri et al., 2008,
Labatut, 2013]. Three different models are provided for the English language. Two of them are
dedicated to genetics-related texts, which have very little interest to us. The third is built on the
MUC6, CoNLL03 corpus and can detect Organizations, Locations and person’s entities. Many
aspects of the process, such as the chunking method, can be controlled via a configuration file.
Named entity recognition model in LingPipe involves multiple methods that are designed to
work together smoothly. These methods can be a supervised training or regular expression
matching or even dictionary matching. [Atdağ and Labatut, 2013]

In the next section, first we explain available datasets for NER. Then we explain a selected
dataset for our experiment. The experimental setup is presented in section 4.3.

4.3 Dataset: News
NER requires a big amount of data for training and testing the systems. Most research uses
some standard corpora which was designed for conferences or competitions. These corpora
focus on certain types of text, such as news, military, emails, and terrorism. Table 4.2 shows
the comparison of the available corpora for NER and their properties such as the language that
corpora support, Number of Entity types, domain and availability of corpora.

52

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 53 — #69

Corpus Size Language Entity Domain Access
in words Types

NYTAC N/A English 4 News Commercial
MUC1 N/A N/A N/A Military

messages
Unavailable

MUC2 N/A Chinese,
Japanese

10 Military
messages

Public

MUC3 N/A English 18 Terrorism
reports

Public

MUC4 N/A English 24 Terrorism
reports

Public

MUC5 N/A English,
Japanese

47 International
trade

Unavailable

MUC6 N/A English 6 Negotiators,
manage-
ment

Commercial

MUC7 N/A English 7 Aeronautics,
weaponry

Commercial

NIST IE-ER 99 N/A English 6 News Unavailable
CoNLL02 N/A Dutch, Span-

ish
4 News Commercial

CoNLL03 N/A English, Ger-
man

4 News Commercial

Email Corpora N/A English 1 Emails Unavailable
ACE1 225 k English 5 News Commercial
ACE2 270 k English 5 News Commercial

ACE2003 150 k Arabic, Chi-
nese, English

5 News Commercial

ACE2004 200 k Arabic, Chi-
nese, English

7 News Commercial

ACE2005 310 k Arabic, Chi-
nese, English

7 News Commercial

Table 4.2: Comparison of the corpora properties [Atdağ and Labatut, 2013].

Most editions of the conference on Computational NL Learning (CoNLL) host a NLP re-
lated competition, and provide data sets to evaluate the proposed systems. In 2002 and 2003,
this shared task was NER. Both corresponding corpora are composed of news texts, which are
annotated using the entity types: Organization, Person, Location and Misc. Texts are divided
into three groups: a training set and two test sets. The first test set is used for training the
Machine Learning algorithm, whereas the second one is reserved for the final evaluation of the
system and is supposed to be more difficult to process. CoNLL02 only contains Dutch and
Spanish texts, but CoNLL03 focused on the German and English languages as shown in Table
4.2 on the line labeled [Erik and Fien, 2003].

The annotations are publicly available, but their use requires access to commercial corpora
[Lewis et al., 2004]. Figure 4.2 shows part of CoNLL03 dataset, directories and XML files.

This data set is a collection of newswire articles from the Reuters Corpus [Lewis et al.,
2015] and is distributed via web download containing about 810, 000 XML Reuters in the

53

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 54 — #70

Figure 4.2: Example of the CoNLL03 dataset.

Figure 4.3: Sample of tokenized output generated by a system.

English Language. It takes approximately 2.5 GB of uncompressed file storage space. The
data files start with a line containing the keyword -DOCSTART- to identify the beginning of
each article. Empty lines are used to make sentence boundaries. The data files contain four
columns. The first column is used for the word. The second column is used for Part-Of-Speech
(POS) tag. The third column is used for syntactic chunk tag which can be either I-TYPE (Inside
a phrase), B-TYPE (Beginning of a phrase), O-TYPE (Other). The fourth column is used for a
named entity tag.

Each non-empty line contains the following tokens shown in Figure 4.3:

• Current word

• Lemma of the word (German only)

• Part-Of-Speech (POS) tag generated by a text tokenizer

• Named entity tag given by human annotators

54

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 55 — #71

4.4 Experimental Setup
First and foremost, NER needs to build a knowledge base which will contain the known named
entities. Then it tries to link an entity to a knowledge base entity node or no match. This process
can be separated into three main components: extractors, searchers and disambiguation.

4.4.1 Extractor
In the extraction phase, different techniques are used to detect the named entities. These
techniques include tokenization, part of speech tagging, finding sentence boundaries, and in-
document co-reference. From these techniques, some can be general such as tokenization and
capitalization, However, some of these can be very problem specific like in-document co-
reference where the extractor is trying to detect named entities that point at the same entity.
For example, NBA stands for National Basketball Association.

4.4.2 Searcher
Searcher is the process of generating a set of candidates for a named entity to be linked to. This
is done by querying an index over these aliases (potential mention strings that can refer to an
entity for each article). This index can be disambiguation pages, titles, and other Wikipedia-
derived aliases to capture synonyms. A good searcher should create a small set of candidates
for each mention string. This is done by balancing precision and recall. Maintaining a small
set of candidates is beneficial later in the disambiguation phase by reducing the computation
required.

4.4.3 Disambiguator
After the searcher has created a set of candidates for each mention, the disambiguator chooses
the best entity for each mention bearing in mind that the best candidate is not always the first
one returned by the searcher.

The entity types we chose to focus on are PERson (PER), LOCation (LOC) and ORGani-
zation (ORG). First all the XML tags were removed from XML files and then we made a new
text file. We divided data into different sizes (e.g. 1 MB, 5 MB, 10 MB, 50 MB, 100 MB, and
500 MB, 1 GB).

The NER systems that we selected all have different heap sizes and different types of input
data. We increased the heap size and changed the source codes so we could upload the same
data set for all systems. We ran the selected systems on different data sizes. Every system has
a different output. We updated the source codes to have the same output. Then we cleaned
the results obtained from the algorithms and extracted the information we needed as shown in
Figure 4.4.

In NER, to evaluate how good the system is, human linguists are asked to identify the named
entities and then compare their output with the model output to decide how good the system is.
For example, Figure 4.5 shows an annotated text marked up as a solution to use to evaluate the
model [Nadeau et al., 2007] and one of the systems producing this output is shown in Figure
4.6. The systems produce five different errors, explained in Table 4.3.

The scoring protocol is “Exact-match evaluation” where the system only scores a guess as
correct if it’s an exact match of the entity in the solution. To compare systems, we use Micro-
Average F-measure (MAF). To be able to calculate MAF, we need to calculate precision and

55

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 56 — #72

Figure 4.4: Sample clean tokenized.

Figure 4.5: Sample of output solution [Nadeau and Sekine, 2007].

Figure 4.6: Sample of output from a system [Nadeau and Sekine, 2007].

Correct solution System output Error
Unlike Unlike as Location False Positive, the system predicted

an entity but there is not one.
Robert as Person - False Negative, the system could

not predict an entity.
Jone Briggs Jr as
Person

Jone Briggs Jr as
Organization

False Negative, the system pre-
dicted an entity, but generated the
wrong type.

Wonderful stockbro-
kers inc as Organiza-
tion

Stockbrokers as
Organization

False Negative, the system pre-
dicted an entity, but could not get
its boundaries correctly.

New York as Loca-
tion

In New York as
Person

False Negative, the system pre-
dicted both the type and boundaries
of the entity wrong.

Table 4.3: Example errors that were found by a NER system.

recall. For precision, we get the percentage of correct guesses out of all guesses. For recall, we
get the percentage of correct guesses out of actual entities in the solution [Nadeau and Sekine,
2007].

For the previous example, the solution contains five entities. The system guessed five enti-
ties in which only one is exact match (ACME as Organization). The precision is 1/5 = 20%
and coincidentally the recall is also 1/5 = 20%, so the MAF is also 20%.

56

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 57 — #73

Word Prediction Correct Solution Evaluation
MEXICO LOCATION LOCATION TP

Henry PERSON PERSON TP
Federal ORGANIZATION ORGANIZATION TP
James ORGANIZATION PERSON FP
look PERSON - FN

Table 4.4: NER error types.

Figure 4.7: Comparison of recognizer based on different data sizes on CoNLL.

4.5 Experimental Results

There are various methods that determine effectiveness in classification problems, The common
performance measure method just counts errors by using Precision, Recall, and F-measure. In
this experiment, we used F-measure, Precision, and Recall. So, in the next subsections we
show our results, following the proposed methodology.

4.5.1 Quality Comparison

To determine precision and recall, each term that the system classified must be rated as True
Positive (TP) meaning it was correctly classified, False Positive (FP) meaning it incorrectly
classified the term, or False Negative (FN) meaning it did not classify the term when it should
have. Table 4.4 shows a sample of NER error types obtained from the CoNLL dataset.

Figure 4.7 shows the overall comparison of quality for the three NERs when used on dif-
ferent data sizes on the CoNLL data. Our result shows SNER had clearly better results than
LIPI and INET in all data sizes. SNER has more capability to recognize and categorize the
words correctly compared to LILP and INET. SNER has less FN and FP than other systems
and that makes SNER perform better. In general, with increased data size, quality (F-measure)
is increased. Once reaching 500 MB data size, the quality has stabilized and increasing the data
did not improve the quality.

57

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 58 — #74

Size of data NER systems
LIPI SNER INET

1 MB 0m38.6s 0.m22.8s 3m14.0s
10 MB 5m59.2s 1m21.01 32m27.8s
50 MB 28m54.3s 19m.36.5s -

100 MB - 48m.0s -
≥ 500 MB - - -

Table 4.5: Scalability evaluation.

Data Sizes NER systems
LIPI SNER INET

1 MB 0m38.2s 0m22.9s 3m6.7s
10 MB 5m53.7s 3m3.7s 21m33.8s
50 MB 22m17.8s 19m30.8s 81m43.3s

100 MB 59m10.4s 40m35.0s 145m33.8s
500 MB 291m16.2s 210m30.6s 831m48.2s

1 GB 575m57.4s 402m9.8s -

Table 4.6: Improved version for handling larger data.

4.5.2 Time Efficiency Comparison

Table 4.5 shows the running time versus data size. The results show that the systems cannot
run on bigger data sizes. By increasing the size of data, the time consumed (running time) is
not efficient anymore. SNER has better speed than other systems on increasing size of data and
can handle the size of data up to 100 MB. Once the size has reached 500 MB the SNER was
killed. LIPI can work on up to 100 MB and after 21m18s of running time was killed. Illinois
could run up to 10 MB, but after spending 74m40s in running time this system stopped on 50
MB data size.

We optimized the source code so the systems could handle larger data. Table 4.6 shows
how the systems were now capable of running on larger data size. Unfortunately, we are still
facing a large time complexity that make these systems inefficient. The results in Table 4.6
show that SNER has better speed than other systems and can handle a data size up to 1 GB. We
can conclude that SNER can handle bigger data sizes than the other two systems. After SNER,
LIPI is the second fastest and INET crashed after 500 MB data.

Figure 4.8 shows the running time of these systems in different size of data. SNER has the
best running time compared with other systems. After 100 MB, running time increased by five
times.

4.5.3 Dominant Algorithm

Figures 4.9 and 4.10 present a comparison between running time and accuracy in NER systems.
In this experience SNER has better result in both axes. It is faster and has better quality.
LingPipe and Illinois are not dominant in any measure. This comparison shows that SNER is
more efficient than the any of the other systems in this experiment, being the unique dominant
algorithm.

58

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 59 — #75

Figure 4.8: Running time vs. data size for all NER systems.

Figure 4.9: Dominant algorithm for NER systems on 100 MB.

4.5.4 Overall Comparison
Now we use our performance measure defined in Equation 3.4. Quality is scaled by size of
data and compensated by the running time. The result of this equation is that a system that has
high quality on large datasets while using less time is shown to be the more efficient system.
However, high quality on a large dataset with more running time is less efficient, and low
quality on a large dataset with less running time is also less efficient.

As you can see in the Figure 4.11, overall SNER has better performance, considering all
three factors.

By drawing a chart for each size of data, we end up with a chart that shows the best system
for each different data size. SNER has the best performance in all different sizes of data except
for 50 MB. For 50 MB data, LIPI shows better performance, as this system is faster than SNER
for that data size.

59

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 60 — #76

Figure 4.10: Dominant algorithm for NER systems on 500 MB.

Figure 4.11: Performance and data size in NER.

4.6 Discussion
SNER shows the best quality and speed between all the NER systems that were compared in
different data sizes. Hence SNER is the only dominant algorithm for all data sizes. Indeed,
SNER shows the best quality and Megabyte/second between all the algorithms in different data
sizes in the NER domain. Therefore, we can say clearly it is an efficient algorithm.

Considering the results obtained for 1 GB, SNER has the best performance, quality, and
speed between the other systems. SNER is faster and shows better quality on CoNLL03 dataset.
SNER took about 3.5 hours to run on 500 MB data and about 6.5 hours on the 1 GB dataset.
INET crashed for 500 MB after several hours. LingPipe and INET have almost the same quality,
but LingPipe is faster than INET in all data sizes.

60

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 61 — #77

Chapter 5

SENTIMENT ANALYSIS

5.1 Introduction

In the past few years, as the amount of customer reviews have grown rapidly on online product
service websites, reviews earned their place as very effective for the decision making process.
People tend to decide a purchase if the product is supported with good customer reviews. This
fact encouraged a lot of research to extract the opinion from the online reviews. From here
came the rise of sentiment analysis or opinion mining and it took its place to be one of the most
important tasks of NLP gaining much focus from researchers and application developers [Fang
and Zhan, 2015].

Sentiment analysis is used for identifying whether the query text is positive or negative and
sometimes can be used to find the degree of positivity or negativity. The increase of online
shops (Amazon, Ebay, Google Play, etc.) resulted in having a massive amount of text product
reviews. These reviews are usually accompanied by a 1 to 5 rating. This made these reviews
extremely useful and fruitful in classification tasks to be able to predict sentiment of unseen
data. Also with the presence of such good datasets, the assessment of classification algorithms
for this task became possible [Wallin, 2014]. In this work, they gave comparisons and recom-
mendations for sentiment analysis algorithms through working on one of the largest existing
datasets (Movies & TV) from Amazon review collections.

In this chapter, we first explored the Movies & TV reviews dataset and its validity for the
sentiment analysis problem, and then we used bag of words models and the TF-IDF algorithm
to extract features from the text of the reviews. Next, we prepared the review for the classi-
fication problem. At the end, we evaluated the classification using F-measure and compared
different classifiers on different data sizes. Then we did a similar study with a Book reviews
dataset. Figure 5.1 present all the steps or workflow we followed for semantic analysis.

5.2 Dataset: Amazon Reviews

The dataset [Leskovec, 2013] that we are using in this problem is SNAP (Stanford Network
Analysis Platform) Amazon reviews that were collected from amazon.com. With almost 35
million reviews, Amazon reviews is one of the biggest datasets for product reviews. These
reviews were collected for 18 years up to March 2013. The dataset includes more enriching
data like the rating of the review and product and user information. The rating is based on one
to five stars where one means that the user did not like the product and five means that the user
loved the product. In Figure 5.2 shows the details of the reviews star rating system.

61

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 62 — #78

Figure 5.1: Semantic analysis workflow.

Figure 5.2: Rating system for Amazon.com.

Amazon review dataset statistics contains:

• Number of reviews 34, 686, 770

• Number of users 6, 643, 669

• Number of products 2, 441, 053

• Users with > 50 reviews 56, 772

• Median no. of words per review 82

• Timespan Jun 1995 - Mar 2013

The overall data spans over 30 categories with a total size of about 35 GB. From them we
selected the two largest subsets: Books and Movies & TV.

5.3 Movies and Television

5.3.1 Dataset: Movies & TV Reviews
In our first experiment for sentiment analysis, we are using the “Movies & TV” dataset. The
“Movies & TV” dataset consists of 2, 408, 693 reviews from 70, 385 products. Size of this data

62

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 63 — #79

Features Sample1 Sample1
product/productId B00006HAXW B0001Z3TLQ
product/title Rock Rhythm & Doo

Wop: Greatest Early Rock
By the Sea [VHS]

product/price unknown unknown
review/userId A1RSDE90N6RSZF A3421LTBSWSPXK
review/profileName Joseph M. Kotow KML
review/helpfulness 9/9 5/6
review/score 5.0 4.0
review/time 1042502400 1089417600
review/summary Pittsburgh - Home of the

OLDIES
A romantic zen baseball
comedy

review/text I have all of the doo wop
DVD’s and this one is as
good or better than the
1st ones. Remember once
these performers are gone,
we’ll never get to see them
again. Rhino did an excel-
lent job and if you like or
love doo wop and Rock n
Roll you will LOVE this
DVD... !!

When you hear folks say
that they do not make’em
like that anymore, they
might be talking about
“BY THE SEA”;. This is
a very cool story about a
young Cuban girl search-
ing for identity who stum-
bles into a coastal resort
kitchen gig with a zen mo-
torcycle ...!

Table 5.1: Sample of Movies & TV reviews.

is about 2.92 GB compressed and 8.77 GB uncompressed. Each review includes the following
information:

• product/productId: Asin, e.g. amazon.com/dp/B00006HAXW

• product/title: Title of the product

• product/price: Price of the product

• review/userId: Id of the user, e.g. A1RSDE90N6RSZF

• review/profileName: Name of the user

• review/helpfulness: Fraction of users who found the review helpful

• review/score: Rating of the product

• review/time: Time of the review (unix time)

• review/summary: Review summary

• review/text: Text of the review

Table 5.1 shows two samples of the Movies & TV dataset.
63

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 64 — #80

5.3.2 Experimental Setup
5.3.2.1 Target Variables

The goal of this experiment is classifying a product by positive review or negative reviews. For
this reason we use review stars given in the range one to five as shown in Figure 5.2, where
one indicates very low score and five indicates very high score. One way to provide better
sentiment analysis is to represent the problem in only two classes: Positive and Negative. A
negative review has a score less than 3 and a positive review has a score larger than 3. We chose
to ignore the middle score due to its high neutrality.

5.3.2.2 Document Representation

In the data pre-processing, we used parallel computation where we divided the data into parti-
tions to make the processing fast. We divided the file to 158 partitions. Each partition contained
546524 lines. We only used the first 74 partitions to make the final selected dataset. Those first
74 partitions gave me 3.2 GB of data. Below is summary of final selected dataset.

In the Movies & TV dataset we have 2, 408, 692 reviews with:

• Number of users: 672, 083

• Number of products: 70, 385

• Users with more than a one review: 294, 974

• Median no. of words per review: 82.0

• Timespan Jun 1995 - Mar 2013

• Data size = 3.2 GB

• Avg# reviews/each product: 34.22.

5.3.2.3 Target Preparation

Before using the dataset in classification, we must prepare the target class. The reviews tend to
be higher than lower causing a J shaped distribution. This distribution can make the classifier
more tending to classify reviews as positive than negative. Figure 5.3 shows score distributed
before normalization.

Online customers tend to give more positive reviews than negative reviews. This means
customers are driven by purchasing bias and underreporting bias. A lot of care should be taken
when handling such distribution to avoid having such bias in the classifier.

One method to handle unbalanced scores was to choose an equal portion from each score
so that each score participates equally in the dataset. This will increase the relevance of un-
derrepresented scores and decrease the relevance of over represented scores. This distribution
is called rectangular distribution. This has a downside in that it decreases the size of the data,
but leads to a much more balanced classification which leads to better classification and better
results.

We used random sampling to avoid skewing the results. The count of products before this
step is 70, 385 products and after this step reduced to 50, 881 products.

By using a J shape/rectangular distribution we reduced the data size from 3.2 GB to 1.2 GB.
Movies & TV dataset we have 675, 070 reviews with:

64

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 65 — #81

Figure 5.3: Score distribution before normalization.

• Number of users: 258, 911

• Number of products: 50, 943

• Users with > reviews: 79, 590

• Median no. of words per review: 97.0

• Timespan Jun 1995 - Mar 2013

• Data size = 1.2G

• Avg# reviews/each product: 13.27.

Now we have 13 reviews/product after normalization down from the 34 reviews/product
before. normalization.

Reviews score are given in the range one to five, where one indicates a very low score and
five indicates a very high score. One way to provide better sentiment analysis is to represent the
problem in only two classes: Positive and Negative. We chose one and two ratings to present
Negative samples. Four and five to represent Positive samples. We chose to ignore three due to
its high neutrality and subjectivity.

After these two normalizations on Movies & TV dataset, we had 270, 028 positive and
270, 028 negative reviews.

5.3.2.4 Feature Extraction and Feature Selection

As previously said, Datasets have violations and removing these violations will produce more
accurate results in any classification experiments made using any dataset. In this section, we
describe the procedures necessary to remove these errors. We call the resulting corrected text
categorization test collection Amazon-even.

Empty values can pollute the classification process. Removing them is a very critical step
in the data preparation. The sentiment analysis is done on the review/text column. So, it cannot
be null. There was only one row with empty review/text and it had to be deleted.

The different case of text affects the accuracy of the text Classification. Converting all
text to lowercase so all words are treated the same wherever they are in the sentence solves

65

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 66 — #82

Figure 5.4: Sample of dataset after normalization.

that. Punctuation signs and the stop words (the, a, am, I, are, at, etc) do not contribute in the
classification process. Removing them early in the process produces better results. Tokenizing
the text in which the documents are treated as strings and then partitioning the tokens into lists
is the last step before feature selection.

In our problem, to analyze the text more, we chose to create our feature list from bigrams
and unigrams, not only unigrams. This results in more features per review. For example, the
sentence “I love NLP” has 3 unigrams (i, love, nlp) and 2 bigrams (I love, love NLP).

So for a three word sentence, unigrams generate three features while unigrams and bigrams
generate five features. This increases heavily based on the length of the review text. For feature
selection, we used Term Frequency and Inverse Document Frequency (TF_IDF) which were
explained on Section 2.3.

5.3.2.5 Classification Methods and Evaluation Metrics

We used five algorithms for the classification task: Decision Trees (DT), Support Vector Ma-
chines (SVM), Random Forest (RF), Naïve Bayes (NB), and K-nearest neighbors (KNN). All
of them were explained in Section 2.2.

In this experiment, we want to classify if a review is positive or negative. First we start by
cleaning all the review text to remove punctuation and stop words changing all the letters to
lowercase. Then we use Term Frequency-Inverse Document Frequency for feature extraction
where each word is converted into a score representing its contribution in the positivity or
negativity. After that, the classifier is trained using these features on 80% of the data where the
remaining 20% of the data is left to evaluate the classifier.

5.3.3 Experimental Results
We divided the dataset into 80% training and 20% testing. Precision, recall and F-measure
were used as the performance measures as defined in formulas (3.1), (3.2), and (3.3). We
used a confusion matrix where we calculated the true positive, true negative, false positive and
false negative from which we calculated the precision and recall. After that, we calculated the
F-measure.

66

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 67 — #83

Figure 5.5: Comparison of algorithms quality on different data sizes.

In semantic analysis, we did not have to use any type of averaging (micro or macro) because
we have a binary classification problem (two classes only). Averaging is only used for multi-
classes.

In this section, we provide a comparison between the performances of classifiers when used
on different sizes of data. We do not have Naïve Bayes due to the high number and sparsity of
features.

5.3.3.1 Quality Comparison

Figure 5.5 shows the comparison of the quality of the algorithms when run on different data
sizes. Through this experiment, we see that generally there is an increase of F-measure with
increase of data size. SVM and Logistic Regression have very close scores, but SVM performs
better with the increase of data.

Decision trees performed worse than them averaging around 60% F-measure. KNN started
very low, but the problem with KNN is that the sparsity of the textual data made it very hard to
train on the big sizes of data, consuming very huge amounts of data, as we can see later.

5.3.3.2 Time Efficiency Comparison

In this experiment, we wanted to see how much training time is required for each classifier on
each data size. As we can see in the Figure 5.6, there is a general linearity in the sentiment
analysis problem between the time needed to train and the data size. Also, it is clear that KNN
stopped after 100 data size due to sparsity of the features as mentioned above.

5.3.3.3 Dominant Algorithms

Logistic Regression has the best quality on 10 MB, 50 MB data size. After that SVM has better
quality and is a bit faster than Logistic Regression. KNN is the fastest algorithm on small data
size to 50 MB data. In 10 MB data size, Logistic Regression and KNN are dominant. Figure

67

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 68 — #84

Figure 5.6: Time efficiency vs. data size.

Figure 5.7: Dominant algorithms on Sentiment Analysis for 50 MB.

5.7 shows that Log regression, SVM, and KNN are the dominant algorithm in 50 MB data size.
Therefore, depending on whether you choose speed or quality either algorithm can be selected
as the dominant algorithm. Because of their inefficiency, to selecting Random forest and DT
are poor choices.

On the other hand, KNN could not handle larger data sizes. Also, SVM performs better in
quality and time in large data sizes as shown in Figures 5.8 and 5.9. Logistic regression and
SVM are very close to each other in small data size to 500 MB data size. But by growing the
data size this distance decreased.

68

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 69 — #85

Figure 5.8: Dominant algorithms on Sentiment Analysis for 500 MB.

Figure 5.9: Dominant algorithms on Sentiment Analysis for 1.2 GB.

5.3.3.4 Overall Comparison

First, we show a standard comparison for some of the algorithms considering 500 MB data
size. As shown in Figure 5.10, SVM and Log regression share almost the same the quality,
with SVM being slightly better, while decision tree has a much lower quality.

On the training time scale, SVM has the lowest training time, due to its easy support vec-
tors compared to Log regression mathematical equations. The Decision tree had a much higher
training time due to the sparsity in the text features. As we explained in equation (3.4), perfor-
mance can be considered as a combination of two factors: Quality and Time. Overall, SVM has
the best performance for increasing data size. Logistic regression performance also increased

69

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 70 — #86

Figure 5.10: Comparing three algorithms in time and quality.

Figure 5.11: Performance comparison of the algorithms on different data sizes.

by increasing the data size. Random forest, Decision tree, and KNN all had performance de-
creases as the size of data increased. Logistic regression has better performance than SVM in
semantic analysis when the data size is small as shown in Figure 5.11.

Finally, we obtain the graph in Table 5.2 that shows the best algorithm quality, speed, and
performance on 1.2 GB data size. As we can see, SVM has better performance for big data. In
small size of data KNN and Logistic Regression have a better performance than SVM.

70

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 71 — #87

Data size Quality Speed Performance
1.2 GB SVM SVM SVM

Logistic Regression Logistic Regression Logistic Regression
Random Forest DT DT

DT Random Forest Random Forest

Table 5.2: Algorithms that had the best quality, speed, and performance on 1.2 GB data size.

5.4 Books
In this section, we use the Amazon reviews books dataset to test and study the classification
algorithms. We use bag of words models and TF-IDF for feature selection and six algorithms
for the classification task: Decision Trees (DT), Random Forest (RF), Naïve Bayes (NB), Sup-
port Vector Machines (SVM), K-nearest neighbors (KNN) and Logistic regression. Then we
followed document classification process for target preparation, document representation, fea-
ture extraction and selection that was explained in Section 5.3.2. At the end of this section, we
present the results of the experiments and discuss them.

5.4.1 Dataset: Books Reviews
The dataset we use for this experiment is part of the dataset from Amazon reviews that was
divided into separate files for individual product categories and which have already had dupli-
cate item reviews removed. Here we use the biggest data category, “Books”. The size of this
dataset is about 4.69 GB for the zipped file and about 14.39 GB for the unzipped file. The Book
dataset consists of 12, 886, 488 reviews with 10 features each from 929, 264 products. Other
characteristics of this dataset are:

• Number of users: 2, 588, 991

• Median no. of words per review: 92.0

• Timespan Jun 1995 - Mar 2013

• Average number of reviews per product: 13.87.

This dataset includes product metadata (brand, category information, descriptions, price,
and image features), reviews (ratings, helpfulness votes, text), and links (viewed/bought graphs).
[Leskovec, 2013]

As we explained earlier in chapter 6, the reviews were labeled based on one to five stars
where one means a lower rate and five means a higher rate. Below is an example of features
that we extracted for our experiment:

• reviewer ID - ID of the reviewer, e.g. A2SOAM1J3KNN3B

• asin - ID of the product, e.g. 0000012714

• reviewer Name - name of the reviewer

• helpful - helpfulness rating of the review, e.g. 2/3

• review Text - text of the review
71

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 72 — #88

Figure 5.12: Score distribution of Amazon reviews.

• overall - rating of the product

• summary - summary of the review

• unix Review Time - time of the review (unix time)

• review Time - time of the review (raw)

Figure 5.12 shows the ratings distributed according to a J-shaped distribution with an over-
whelming majority being positive reviews on the Book dataset.

Table 5.3 shows two sample of the Books dataset that include the following information:

5.4.2 Experimental Setup

5.4.2.1 Target Variables

In this section we used the same target variables as in Section 5.3.2.1. Figure 5.13 shows a
sample of data after representing the problem in three classes: 0, 1 and 2 (positive, negative,
middle).

Figure 5.13: Sample of data after target variables.

72

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 73 — #89

Features Sample 1 Sample 2
product/productId 1882931173 0826414346
product/title It is Only Art If It is Well

Hung!
Dr. Seuss: American Icon

product/price unknown unknown
review/userId AVCGYZL8FQQTD A30TK6U7DNS82R
review/profileName Jim of Oz Kevin Killian
review/helpfulness 7/7 10/10
review/score 4.0 5.0
review/time 940636800 1095724800
review/summary Nice collection of Julie

Strain images
Really Enjoyed It

review/text This is only for Julie Strain
fans. It is a collection
of her photos – about 80
pages worth with a nice
section of paintings by
Olivia. If you are look-
ing for heavy literary con-
tent, this is not the place
to find it – there is only
about 2 pages with text and
everything else is photos.
Bottom line: if you only
want one book, the Six
Foot One is probably a bet-
ter choice,...

I do not care much for
Dr. Seuss, but after read-
ing Philip Nel’s book. I
changed my mind–that is
a good testimonial to the
power of Rel’s writing and
thinking. Rel plays Dr.
Seuss the ultimate compli-
ment of treating him as a
serious poet as well as one
of the 20th century’s most
interesting visual artists,
and after reading his book
I decided that a trip to the
Mandeville...

Table 5.3: Samples of books reviews.

Star Level Ratings before cleaning Rating after cleaning
? 875, 226 875, 226

?? 653, 838 653, 838

? ? ? 1, 096, 459 1, 096, 459

? ? ?? 2, 522, 477 2, 522, 477

? ? ? ? ? 7, 738, 488 7, 738, 474
Sum(1-5) 12, 886, 488 12, 886, 474

Table 5.4: Number of ratings per category before and after removing null reviews.

5.4.2.2 Target Preparation

Before using this dataset, we need to normalize a target class. A J-shaped distribution is pre-
sented in Figure 5.14.

Table 5.4 is obtained after removing empty reviews from our dataset. Before normalization,
we have (12, 886, 474, 10) dimension of data. After normalization this dimension changed to
(3, 269, 190, 10).

After normalization we have:
73

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 74 — #90

Figure 5.14: Score distribution before normalization.

• Number of reviews: 3, 269, 190

• Number of users: 964, 485

• Number of products: 520, 396

• Median no. of words per review: 101.0

• Data size = 3.35 GB

• Average number of reviews per product: 6.28

After normalization, the number of ratings per categories rate is 653, 838 for all of them.
We have 1, 307, 676 positive and 1, 307, 676 negative reviews.

5.4.2.3 Feature Extraction and Selection

We cleaned a dataset by removing all nulls and converted all the text to lowercase. Also,
punctuation signs and the stop words were removed. At this point, tokenizing the text was
done. For feature selection, we used TF-IDF which was explained in chapter 2.

5.4.2.4 Classification Methods and Evaluation Metrics

For classification, we use DT, Naïve Bayes, SVM, KNN, Random forest, and Logistic regres-
sion classification algorithms. These algorithms are explained in Chapter 2. For the classifica-
tion evaluation, we used again a confusion matrix, precision, recall, and F-measure. We used
80% of the data for training and 20% of the data for testing in our experiment.

74

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 75 — #91

Figure 5.15: Comparison for quality on different data sizes.

5.4.3 Experimental Results
5.4.3.1 Quality Comparison

As we expected, with increasing data size, quality increased. RF started very slowly. SVM has
shown to have had the best quality on big sizes of data. SVM and Logistic regression has the
best quality on small data sizes. DT performed with less quality than the other algorithms most
of the time.

5.4.3.2 Time Efficiency Comparison

By increasing data, running time will increase. RF is a lot more time consuming than the other
algorithms. As we expected, after Random forest, Decision tree and then Logistic regression
are the next most time consuming. SVM had the best running time among all algorithms for all
the data sizes.

5.4.3.3 Dominant Algorithms

In this section, we determine the dominant algorithm for the 10 MB, 50 MB, 500 MB, 2GB and
3GB data sizes. SVM is the dominant algorithms in 10 MB data. In 50 MB, KNN and Logistic
regression are dominant. SVM has better quality and running time on large data compared to
the rest of the algorithms. Therefore, SVM is the dominant algorithm in large data sizes. As
occurred for the Movies and TV dataset, Random forest and DT are not efficient algorithms.

5.4.3.4 Overall Comparison

Figure 5.20, shows the comparison of the classifiers on three main factors, quality, time, and
data size, using the formula (3.4) to compare all three factors together. Logistic regression and
KNN show the best performance on small data size. KNN crashed when increasing data. SVM

75

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 76 — #92

Figure 5.16: Comparison for time efficiency on different data sizes.

Figure 5.17: Dominant algorithms on Sentiment Analysis for 10 MB.

shows the best performance on large data sizes narrowly beating Logistic Regression. DT has
shown stable performance. KNN and Random forest’s performance drops down at 50 MB, but
only Random forest after that increases again.

5.5 Discussion
In this chapter, we tested different algorithms on the sentiment analysis problem with two
different subsets of the Amazon Reviews dataset. We got the same result in both experiments,
corroborating our intuition that the results should not change because the subsets were similar.

76

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 77 — #93

Figure 5.18: Dominant algorithms on Sentiment Analysis for 50 MB.

Figure 5.19: Dominant algorithms on Sentiment Analysis for 3 GB.

The results show that quality increased by adding more data. All the algorithms had the same
learning curves in quality. However, our results show that in both cases increasing the training
data does not always helps to improve the performance. Performance curves were different in
both cases.

If we order the algorithms by quality, we have: SVM, Logistic regression, Random forest,
and DT in larger than 100 MB data size. By considering only speed (fast-slow), the order
changes to: SVM, Log regression, KNN, DT and Random forest in all data sizes. KNN crashed
after several hours on 100 MB. Ordering by performance we have: SVM, Logistic regression,

77

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 78 — #94

Figure 5.20: Performance comparison for different data sizes.

Data size Quality Speed Performance
3.3 GB SVM SVM SVM

Logistic Regression Logistic Regression Logistic Regression
Random Forest DT DT

DT Random Forest Random Forest

Table 5.5: Algorithms that had the best quality, speed, and performance on 3.3 GB data size.

and KNN for less than 50 MB. The order for larger data sizes (more than 100 MB) is SVM,
Logistic regression, Decision Trees, and Random forest.

Logistic regression has better performance in small data sizes. However, for larger data
SVM shows better performance. Table 5.5 shows the best performing algorithm for quality,
speed, and performance on the 3.3 GB data size (largest).

Regarding dominant algorithms, our results show that SVM is the dominant algorithm in
data sizes over 50 MB. KNN, Logistic regression, and SVM are dominant in smaller data sizes.

In conclusion, if we are interested in quality or speed, we would recommend using SVM,
Logistic regression or KNN for text classification or categorization in small data sizes. KNN
could not handle data sizes larger than 100 MB and it crashed after 9 hours. For large data,
the recommendation is to use SVM. Typically, SVM is not as favored for large-scale machine
learning because the size of the dataset impacts the training complexity. Here we show SVM
has the best performance (quality-running time) compared to the other algorithms that we have
been investigated in this study. As occurred on the Movies and TV dataset, Random forest
and DT are not efficient algorithms and hence they are not the dominant algorithms. From 500
MB to 3.3 GB quality did not change much. For instance, SVM’s quality was 0.86 and 0.90
in 500 MB and 3.3 GB, and in 3.3 GB the running time was seven times higher than 500 MB.
Therefore, it can be concluded that a 500 MB data size is a threshold point when performance
no longer improves by adding more data.

78

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 79 — #95

Chapter 6

DOCUMENT CLASSIFICATION

6.1 Introduction

As the volume of information in digital form increases, the use of text categorization techniques
aimed at finding relevant information becomes more necessary. Since the emergence of digital
documents, there has been a requirement to automatically classify these documents. In recent
years, the amounts of text documents have increased rapidly. This has made text classification a
very important application and research topic [Ikonomakis et al., 2005, Khan et al., 2009, Khan
et al., 2010].

The goal of categorization is to automatically assign an appropriate classification to each
document that needs to be classified. Text classification is widely used in applications like find-
ing answers to similar questions, finding whether an email is spam or legitimate email, finding
the right category for a news piece, organizing documents into the correct folder, finding pages
similar to a query, and much more. To build a classifier that can predict unseen documents, it
must be trained using annotated documents assigned to each category that the classifier should
be able to predict against [Wajeed and Adilakshmi, 2009]. For example, if you want to build a
classifier that can classify whether a document is a sport, political, or fashion article, the clas-
sifier must see pre-classified articles in each of these three categories. Due to the nature of the
classification process, several classification techniques are studied in the information retrieval
field. For instance, both classification and information retrieval study how to get the best result
for a certain query [Khan et al., 2009].

Due to the strong need for classification, classification is extensively studied and has ad-
vanced rapidly. Machine learning approaches are extensively used in classification whether su-
pervised, semi-supervised, or unsupervised learning. Machine learning approaches are widely
used and experimented on for classification. These approaches showed different results for
each use case in classification. The most popular machine learning approaches used in classi-
fication are: Support Vector Machines (SVM), Decision Trees, K-Nearest Neighbors (KNN),
Artificial Neural Networks (ANN), Bayesian Classifier, and Latent Semantic Analysis (LSA)
[Gandhi and Prajapati, 2012, Ikonomakis et al., 2005, Khan et al., 2009, Khan et al., 2010].

A lot of research focuses on comparing the performance of different classifiers to choose the
best classifier for the required task. Performance can be evaluated using different evaluations.
Performance can be evaluated by training efficiency which is the time used by the classifier
to learn the training data. Applications that learn online must have high training efficiency.
Performance can also be evaluated using classification effectiveness, which is how correct the
classifications are. Applications are critical like cancer classifiers must have high classification
effectiveness. Performance can also be evaluated using classification efficiency which is the

79

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 80 — #96

time used by the classifier to classify a document. Applications that classify on the go must have
high classification efficiency. To measure the performance correctly, the annotated documents
are separated into training and testing set. The classifier is trained using the training set then
tested using the testing set to prevent the test from suffering from overfitting.

Classifier performance can be improved on different axes like: Training the classifier to
predict more documents correctly, Finishing the learning phase faster, Classifying the unseen
documents faster, or requiring a smaller number of annotated documents for the training phase.

In this chapter, we focus on supervised learning. We used Decision Trees, Logistic Re-
gression, K-nearest neighbors, Support Vector Machines, and Bayesian classifier and provide
different experiments to compare between the classifiers on different aspects and find the best
single-label classifier using these different axes:

1. By comparing quality between five different classifiers using different sizes of RCV1
dataset.

2. By comparing running time five different classifiers using different sizes of RCV1 dataset.

3. By comparing all three factors, quality, data size, and time.

In the introduction of this chapter we explained the area of text categorization. This chapter
is divided into two different experiments; News classification and Patent classification. In each
section, we present some text classification algorithms, and then we explain a dataset and the
contributions of this work, and describe the outline of this part of this dissertation. We explain
each step as we go through it.

6.2 Algorithms

In News classification, we used the following classifiers such as:

• Logistic Regression

• Decision Tree

• K-Nearest Neighbors

• Support Vector Machines

• Naïve Bayes Random forest

The same classifiers are used in the Patent classification, but we used Random forest instead
of Naïve Bayes for scalability reasons. In the Section 2.2, we looked at these algorithms and
the differences they have.

80

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 81 — #97

6.3 News Classification
For News classification, we used the same dataset as used for NER in Chapter 4. Nevertheless,
as here we use that dataset for a different task, we give more details. We classified documents
using their content into predefined classes following our proposed methodology.

6.3.1 Dataset: News
Datasets are collections of pre-classified documents. They are essential to develop and evaluate
a text classification (TC) system, that is, to train the system and then to test how well it behaves,
when given a new document to classify.

The dataset consists of a set of documents, along with the category or categories that each
document belongs to (target). In a first step, called the training phase, some of these documents
(called the training documents) are used to train the TC system, by allowing it to learn a model
of the data. Afterwards, in a step called the test phase, the rest of the documents (called the test
documents) are used to test the TC system, to see how well the system behaves when classifying
previously unseen documents.

To allow for a fair comparison between several TC systems, it is desirable that they are
tested in equivalent settings. With this goal in mind, several data collections were created
and made public, generally with a standard train/test split, so that the results obtained by the
different systems can be correctly compared.

Some of the publicly available collections are more used than others. In the TC field,
and in the single-label sub-field the most commonly used collections are the 20-Newsgroups
collection, the Reuters-21578 collection (RCV1), and the WebKB collection.

Comparing the datasets together, RCV1 shows better documents in both quantity and struc-
ture. For example. RCV1 consists of more than 800k documents (806, 791 for RCV1-v1, and
804, 414 for RCV1-v2) which is 35 times as many as Reuters-21578 and 60 times as many
datasets with reliable coding and 2.5 times as many as OHSUMED [Lewis et al., 2004] where
the later has another disadvantage that it does not contain the full text of documents. This
disadvantage is not present in RCV1 where the full text. RCV1 documents also have unique
document ID, which will be useful in our work [Lewis et al., 2004].

For this section, we chose the RVC1 dataset. RCV1 is an archive of over 800, 000 manually
categorized newswire stories recently made available by Reuters, Ltd. for research purposes.
Use of this data for research on text categorization requires a detailed understanding of the real
world constraints under which the data was produced” [Lewis et al., 2004]. The data comes in
365 folders each containing thousands of XML files representing news articles in each day of
the year. One of the XML news files is shown in Figure 6.1.

We needed a parser to convert XML to a format that can be easily used in analysis. The
total amount of data is 806, 791 articles. Figure 6.2 is a sample of RCV1 after parsing to a CSV
format.

6.3.2 Experimental Setup
6.3.2.1 Target Variables

RCV1 documents contain three variables that can be categorized against. These variables are:
Industries, Regions, and Topics. From these variables, we used Topics variable because it
variable is more completed than the other variables, less missing value and we can use content
of news for subject classification. [Lewis et al., 2004]

81

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 82 — #98

Figure 6.1: Sample of XML file.

6.3.2.2 Topic Codes

RCV1 dataset [Lewis et al., 2004] comes with file “topic_codes.txt” which acts as a legend for
topic codes. This file contains 126 codes, while only 103 codes are present in the dataset. All
the 103 codes appear more than one time. These codes range from five occurrences for GMIL
(MILLENNIUM ISSUES) to 374, 316 for CCAT (CORPORATE/INDUSTRIAL).

The structure of the codes is designed to provide two useful features:

1. Create a hierarchy to support automated assignment of more general topic codes.

2. Group related codes. These groups have an alphanumeric sort order to support manual
lookup. For example: The code C31 (MARKETS/MARKETING) is the ancestor of the
code C311 (DOMESTIC MARKETS). Also the code C311 also appears near related
codes, such as C32 (ADVERTISING/PROMOTION).

The hierarchy of topic codes automated assignment can be found as follows:

1. Use the following four codes as single letters as follows: CCAT as C, ECAT as E, GCAT
as G, and MCAT as M. These four letters are the parent root of the tree.

82

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 83 — #99

Figure 6.2: Sample of data after parsing.

2. Remove the minimal suffix till you find another code to find the parent of a code.

This hierarchical structure is not the only one. Another version can be formed for example:
we can create another hierarchy by adding 13 artificial codes: C1-C4, E1-E7, G1, M1 and
repeat the previous method.

Editors were allowed to assign any of the 103 topic codes, not just the leaves topic codes.
They were asked to choose the most applicable and informative topic code wherever it’s in the
hierarchical structure. The result of this is that documents can have multiple categories: The
most applicable code and all its ancestors. The ancestors’ categories act as “Other” categories.

6.3.2.3 Document Representation

Text representation is the important aspect in documents classification. Documents are complex
and hard to handle in their full text format. A pre-processing step is required to make them
easier to handle. Documents representation is a pre-processing technique used to transform
the documents from their complex text format to a document vector. This document vector
consists of word features (vector of term weights). Each word is represented as a weight: for
example, the count of occurrences of the word. One challenge in text classification is the high
dimensionality of the textual features. Most of the times, the number of these features is greater
than the documents present in the training data. “Text classification is an important component
in many informational management tasks, however with the explosive growth of web data,
algorithms that can improve the classification efficiency while maintaining accuracy are highly
desired” [Khan et al., 2009].

Figure 6.3 shows the steps in document classification.

6.3.2.4 Target Preparation

Before using the dataset in classification, we must prepare the target class first. In this work,
the target class is the Topics field. As we discussed earlier, Topics has 126 unique code. Figure
6.4 shows the frequency of each topic.

83

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 84 — #100

Figure 6.3: Document classification process.

Figure 6.4: Frequency of topics in RCV1.

Some topics are used more than others and we captured the five most used topics (Count >
100, 000) and used them as our target in the classification process. However, there are topics
that are used in multiple news articles. So, we chose the topic of the article that is used the least
among our five most used topics. Table 6.1 shows the count of articles after target preparation.

As previously noted, datasets have violations and removing these violations will produce
more accurate results in any classification experiments made using RCV1. In this section, we
describe the procedures necessary to remove these errors. We call the resulting corrected text
categorization test collection RCV1-v2.

Empty values can pollute the classification process, removing them is a very critical step in
84

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 85 — #101

Topic Topic Name Article Counts
C15 Performance 149,124
CCAT Corporate/Industrial 163,804
ECAT Economics 117539
GCAT Government/Social 189,048
MCAT Markets 184,901
Total 804,416

Table 6.1: Selected topics and article counts.

Figure 6.5: Frequency of selected topics in our dataset.

the data preparation. Removing nulls can happen by removing the entire column or populating
the empty value. In our work, columns industry (454, 983), dateline (50, 744), byline (697, 360)
have huge number of nulls and probably will pollute the data if used in classification. They do
not have a specific trend so the best solution is to remove them. Also, there were 14 articles with
empty text or title, which must be removed as the features, which will be extracted from them,
as we will discuss later. Also 22 articles were found with an empty region, but with region data
present in the title column, so the best solution is to replace the null in empty regions with the
region from the title column.

The different case of text affects the accuracy of the text classification. Converting all text to
lowercase allows all words to be treated the same regardless of where they are in the sentence.

Punctuation signs and the stop words (the, a, am, I, are, at, etc.) do not contribute to the
classification process. Removing them early in the process produces a better result.

Tokenizing the text that the documents are treated as strings and then partitioned into lists
is the last step before feature selection.

1. Delete rows with empty text or title, since the features will be extracted mainly from
them, So they cannot be empty (total count of deleted rows = 14)

2. Explore rows with empty topics

• The rows are diverse and random, no pattern can be withheld to substitute for the
lack of topics data.

85

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 86 — #102

• Since topics will be the target data, it cannot be null.

3. Delete rows with empty topics (total count of deleted rows = 2, 363)

4. Explore rows with empty regions

• Region data is found in title column

5. Replace the null in empty regions with the region from the column with respect to the
region codes.

6. The features matrix after cleaning is: 804, 416 rows × 8 columns

6.3.2.5 Feature Selection

Feature selection is the next step after feature extraction. Feature selection is a very important
step in pre-processing of text classification due to the high dimensionality problem of textual
features. Feature selection is only good if it considers the nature of classification algorithm
and the domain. Feature selection in text classification is done by keeping the most important
words for the classification through evaluating each word and giving them scores. The selected
words should provide meaning and a better understanding for the data and learning process.
The challenge facing feature selection is the presence of noise and stop words and a lot of non-
meaningful words which can reduce the classification efficiency strongly [Khan et al., 2009]

Feature selection in machine learning is one of two types: Wrappers and filters. Wrappers
create feature subsets and train the classifier on each of these subsets to be evaluated using the
classification accuracy. This process is expensive and time consuming when the number of
features is high which is the case in text documents. Therefore, wrappers are not the best case
for text classification [Khan et al., 2009].

On the contrary, Filters use evaluation metrics to evaluate the feature ability to differentiate
between each class. This means that filters are independent on the learning algorithm. In text
classification, a document can partially be classified into many classes. Therefore we need to
find the best class that matches a document. Term frequency inverse document frequency (TF-
IDF) is is a commonly used feature selection algorithm for text classification. TF-IDF measures
how unique the word is in the document and how important this word is in this document against
all the corpus. Thus, TF-IDF converts the text data into Vector Space Model (VSM) reducing
the complexity of the data and decreasing the noise of the text features helping to increase the
accuracy of the classification [Khan et al., 2010, Khan et al., 2009, Frakes and Baeza-Yates,
1992].

For feature selection, we used Term Frequency and Inverse Document Frequency (TF_IDF)
which are explained on Section 5.3.1.6-8.

6.3.3 Experimental Results
For our quality evaluation, we used Precision, Recall and F-measure that were explained in
Chapter 3. Because we have more than one class, we need to combine multiple quality mea-
sures into one quantity. Macro Averaging is to compute quality for each class (precision and
recall) and then average all of them. Micro Averaging is to collect decisions for all classes,
compute the contingency table, and evaluate. For the evaluation we use the simple case of 80%
of the data for training and 20% of the data for testing. Our experiment is divided into three
parts as described below, following our methodology.

86

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 87 — #103

Figure 6.6: Quality vs. Data size.

6.3.3.1 Quality Comparison

After training, we used F-measure to measure the quality of the classifiers as explained in 3.2.3.
We choose F-measure because accuracy is not always a good performance metric and usually
high accuracy can be achieved by predicting the most common class. On the other hand, F-
measure captures both sensitivity and specificity.

We vary the amount of training data and compare the classification quality of each classifier,
the result shows in Figure 6.6.

SVM performs better on small sizes of data; however, when there is a big amount of data.
Logistic Regression jumps to be equally efficient. Decision trees and Naïve Bayes perform
badly compared to SVM and Logistic Regression. KNN is near to Logistic Regression on
small and medium data sizes, but the problem with KNN is that the sparsity of the textual data
made it very hard to train on the big sizes of data consuming very huge amount of data as we
can see later.

6.3.3.2 Time Efficiency Comparison

Time factor is very critical in text classification. Since many applications are using text clas-
sification in real time operations, classifiers that take too much time will not be efficient for
the task. For that we measured running time for each classifier on the different data sizes. The
result of this experiment shows in Figure 6.7.

As we mentioned earlier, KNN taking highest time due to sparsity. Also the Decision tree,
took the second place for time consumed to make classifications. SVM, Logistic Regression
and Naïve Bayes are very close to each other in a very acceptable range to real time operations.
Even on a big size of data, they could do the classification task in milliseconds range.

87

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 88 — #104

Figure 6.7: Time efficiency vs. Data size.

Figure 6.8: Dominant algorithms on news classification for 500 MB data size.

6.3.3.3 Dominant Algorithms

Figures 6.8, 6.9, and 6.10 show one of best dominant algorithm that we achieved to show a
trade-off between quality and Megabytes/seconds. SVM and Naïve Bayes are in the dominant
algorithm in data size less than 1.3 GB. Logistic regression, KNN and DT are not efficient
algorithm in Figures 6.8, 6.9, and 6.10. SVM is a choice that would be selecting high quality,
but a bit slower than Naïve Bayes. Naïve Bayes is a choice that would be selected not for high
quality, but rather as fast algorithm. The speed difference between SVM and Naïve Bayes is
close in large data size around 1.2 GB. SVM shows faster than Naïve Bayes in 1.5 GB data
size. We can conclude that SVM is dominant and efficient clearly in all data size.

88

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 89 — #105

Figure 6.9: Dominant algorithms for news classification for 1.2 GB data size.

Figure 6.10: Dominant algorithms for news classification for 1.5 GB data size.

6.3.3.4 Overall Comparison

We have two main factors for comparison, quality and time, both are measured per classifier on
different size of data as shown in the Figure 6.11. We use the formula (3.4) an equation that can
compare between quality, time and size. Quality is scaled by the size of the data and penalized
by the time consumed. This way, High quality on a large dataset and low time will have very
high quality. Likewise, high quality on a large dataset with high time will have less quality and
of course low quality on a large dataset with low time, will also have less quality. Therefore,
we can determine which classifier is performing better on both quality and time scale and how
much the size variable is affecting these values.

As expected, overall SVM performed the best, since it has the highest quality and lowest
time. Also, Decision Trees and KNN performance decreased as we increased the size of the
data due to the huge amount of time used in the training process. The confusing part is the
comparison between Logistic Regression and Naïve Bayes. Although Logistic Regression per-

89

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 90 — #106

Figure 6.11: Comparing the performance of all algorithms for news classification.

formed better on quality metric, on the proposed metric Naïve Bayes performed better. This is
because Logistic regression is better on the quality metric by 7% but worse on the time metric
by 12%. So it makes sense that Naïve Bayes performed better than Logistic regression on the
proposed metric by 4%.

Manual rules do not require training data, but generally need hand-tuning on the develop-
ment data. An appealing aspect of decision trees (relative to SVMs and logistic regression) is
that they are easily interpreted and modified. Naïve Bayes does require training data, but it is
comparatively fast to train.

6.3.4 Analysis
If we want to order the algorithms by quality, they would be: SVM, Logistic regression, KNN,
DT, and Naïve Bayes in small data sizes. In the size 1.2 GB, the order would change to SVM,
Logistic regression, Naïve Bayes, and DT. By considering time (fast-slow) we would order
them as, Naïve Bayes, SVM, Log regression, DT, and KNN in smaller data sizes. This order
would be the same without KNN in the larger data sizes as data grows. In this situation, KNN
does not work anymore. SVM is the fastest algorithm in 1.5 GB data size and larger.

Logistic regression shows the best performance on 1 MB data sizes, after that KNN in 10
MB and SVM in 50 MB and Naïve Bayes in 100 MB and SVM shows best performance on 1
GB and larger data sizes. Table 6.2 shows the best algorithm in quality, speed, and performance
in 1.2 and 1.5 GB data sizes.

SVM has better performance overall in the all data sizes. Naïve Bayes is fastest because
of the model parameters of the algorithm. Naïve Bayes uses very basic operations to calculate
apriori and conditional probability. Log regression has a bit less quality than SVM in all the
data sizes. SVM is faster than Log regression. This involves trivial arithmetic operations, like
addition and multiplication and further normalization is only a division by a scalar. KNN is
prohibitively expensive for large datasets. It takes a long time to run on a bit big data size.
KNN crashed on 500 MB after hours of running.

SVM and Naïve Bayes are dominant algorithms in data sizes less than 1.3 GB. Naïve Bayes
90

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 91 — #107

Data size Quality Speed Performance
1.2 GB SVM Naïve Bayes SVM

Logistic Regression SVM Naïve Bayes
Naïve Bayes Logistic regression Logistic regression

DT DT DT
1.5 GB SVM SVM SVM

Logistic regression Naïve Bayes Naïve Bayes
Naïve Bayes Logistic regression Logistic regression

Table 6.2: Algorithms that had the best quality, speed, and performance of all algorithms on
1.2 and 1.5 GB.

is fastest and SVM has the best quality among of the other algorithms. The speed difference
between Naïve Bayes and SVM is close in larger sizes (around 1.2 GB). In 1.5 GB data size,
SVM shows faster than Naïve Bayes. We can clearly say SVM and Naïve Bayes are dominant
in smaller data sizes and SVM is dominant clearly in all data sizes.

6.4 Patents Classification

PAIR (Patent Application Information Retrieval) Bulk Data (PBD) is responsible for the USA
Patent and Trademark Office’s (USPTO) obligation for advancing the culture of open govern-
ment as described by the 2013 Executive Order to make open and machine-readable data the
new default for government information. PAIR Bulk Data is also responsible for customer
requests for this data. PAIR Bulk Data allows customers to recapture and download multiple
records of USPTO patents and other patent filing statuses at no cost. PBD contains published
documents as well as bibliographic, and patent term extension date tabs in Public PAIR from
1981 to now. There is also some data going back to 1931. Customers can download an entire
dataset for all index documents. Currently there are over 9.4 million Records inside PBD. PAIR
Bulk Data (PBD) allows a client to browse the USPTO Public PAIR data, requesting one-time
bulk download, and formulating queries. This allows client users to interface and build atop a
RESTful Application Program Interface (API) supporting full-text and field-specific searches
on patent data [USPTO.gov, 2017].

The PBD API helps the developers take advantage of custom search syntax beyond that
provided by the client. Innovators and entrepreneurs worldwide are being encouraged by the
US Patent and Trademark office to publish their inventions for worldwide use and adoption. For
this reason, they have opened the PBD API to some third party developers inside and outside of
government. This allows them to benefit the most from the data and allows them to try create
their own application [USPTO.gov, 2017].

Up until now, the PBD API has taken advantage of COTS semantics whenever possible.
The PBD clients manage an open architecture. The query syntax follows the same standard
Apache Solr Search syntax, and the Json documents returned also follow the Solr response
formats [USPTO.gov, 2017].

6.4.1 Dataset: USA Patents

The patent claims research dataset includes thorough information on claims from U.S Patents
acknowledged between 1976 and 2016 and U.S. patent applications were published between

91

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 92 — #108

Figure 6.12: Example of patent metadata.

"{\"applicationPublication\":{\"patentPublicationIdentification\":

{\"publicationNumber\":\"US20110173719A1\",\"publicationDate\":

\"2011-07-14\"},\"webURI\":\"http://titan.etc.uspto.gov:9050/netacgi/

nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=/netahtml/PTO/srchnum.

html&r=1&f=G&l=50&s1=20110173719.PGNR.&OS=DN/20110173719&RS=DN/

20110173719\"},\"grantPublication\":{\"patentGrantIdentification\":

{\"patentNumber\":\"8604275\"},\"webURI\":\"http://titan.etc.uspto.gov:

9000/netacgi/nph-Parser?patentnumber=8604275\"}}"

Table 6.3: Data structure for published document.

2001 and 2016. This dataset was derived from the Patent Application Publication Full-Text and
Patent Grant Full Text files [USPTO.gov,].

The PBD API is designed to be leveraged for many purposes. At the beginning, it was
designed to facilitate the download of bulk bibliographic data. At the end, the RESTful archi-
tecture revolved around a query as the core resource [USPTO.gov,]. We used POST/queries
several times while refining the desired filters and constraint which will store a set of query
filters and constraints and return a preview of the results. Once the correct set of parameters
has been identified, we request that the complete set of results be bundled for download using
a PUT /queries/queryId/package.1 [USPTO.gov,].

This link provides us with downloaded patent data that have all the fields in the Patent
class by using the API and web scraper to collect all requisite information in JavaScript Object
Notation (JSON) format. JSON is an open standard format. It uses human-readable text to
transfer data objects consisting of attribute value pairs. It is the main format for API responses
and parameters. Figure 6.12 describes some of the mapping from data type to index fields
[USPTO.gov, 2017].

The published documents contain structured data in JSON format, including publication-
Number, publicationDate, and links at which the publication and/or grant information may be
obtained. Table 6.3 shows this data structure [USPTO.gov, 2017].

The Patent terms also contain JSON format structured data. Table 6.4 shows an example of
the data structure patent [USPTO.gov, 2017].

For this reason we use the query below:
data = { "searchText": "*", "qf": "patentTitle" , "fq":["appFilingDate:[2015-1-1T00:00:00Z

TO *]"]}

1The API is available at https://pairbulkdata.uspto.gov/#/apidocumentation

92

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 93 — #109

{patentTermJson":"{\"patentTermExtensionData\":

{\"filingDate\":\"2010-05-12\",\"adjustmentTotalQuantity\":

0,\"ipOfficeDayDelayQuantity\":212,\"applicantDayDelayQuantity\":

188,\"extensionTotalQuantity\":24,\"patentTermExtensionHistoryData\":

[{\"recordedDate\":\"2014-03-09\",\"caseActionDescriptionText\":

\"AdjustmentofPTECalculationbyPTO\",\"ipOfficeDayDelayQuantity\":

212},{\"recordedDate\":\"2014-03-09\",\"caseActionDescriptionText\":

\"AdjustmentofPTECalculationbyPTO\",\"applicantDayDelayQuantity\":

188}]}}}

Table 6.4: Data structure for patent.

We wrote a program which would search the US patent database for the patents filed in the
past twenty years. For each patent, the program can get basic data about the patent and a link to
a website containing the patent abstract. By parsing the existing webURI data for each patent,
we extract an abstract of the patent and write the result to an output file in JSON format. This
file gives a list of patents along with the patent abstracts.

The model class for an output patent format is as follow:

class Patent {

private String id;

private String title;

private String status;

private Date filingDate;

private String[] inventors;

private String abstract;

}

At the end, we write a program to convert the output file to CSV format and we extract the
information above to make our dataset.

6.4.2 Experimental Setup
6.4.2.1 Target Variables and Target Preparation

The goal of this experiment is to generate some training data that can help us to predict the an-
swer to the question “ Will the patent be accepted or rejected?” by using the patent information
that we extracted on the website. For this reason, we labeled the status as binary granted ver-
sus not granted or classified the patents to accepted and rejected. The patent’s status contains
values below. Due to Table 6.5 we represent the status feature in only two classes as Accepted
or Rejected. A reject status has a score 0 and accept status has score 1.

6.4.2.2 Documents Representation

We used IPA and query requests to download data. The data that we collected was about 7.18
GB in size. Figure 6.13 is an example of the dataset.

Number of records in our dataset: 7, 063, 399
93

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 94 — #110

Status Reject or accept (0-1)
Notice of Allowance Mailed –

Application Received in Office of
Publications

0

Docketed New Case - Ready for
Examination

0

Response to Non-Final Office Action
Entered and Forwarded to Examiner

0

Publications – Issue Fee Payment
Received

1

Non-Final Action Mailed 0
Final Rejection Mailed 0

Awaiting TC Resp., Issue Fee Not Paid 0
Advisory Action Mailed 0

Response after Final Action Forwarded
to Examiner

1

Publications – Issue Fee Payment
Verified

1

Awaiting TC Resp, Issue Fee Payment
Verified

1

Table 6.5: Target value preparation.

Figure 6.13: Data sample example.

6.4.2.3 Feature Extraction and Feature Selection

Our dataset did not have any null values. All the text was converted to lowercase; therefore
all the words are treated the same. All stop words and punctuation signs are removed from the

94

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 95 — #111

Figure 6.14: Quality vs. Data size.

text. Then tokenizing the text in which the documents are treated as strings and then are parti-
tioned into lists is the last step before feature selection. Term Frequency and Inverse Document
Frequency are applied for feature selection.

6.4.3 Experimental Results

As data size is big we used 80 : 20 training-testing spit. We used 80% of data for training and
20% of data for testing. To obtain precision, recall and F-measure, as well as confusion matrix
was used to calculate TP, TN, FN, FP.

6.4.3.1 Quality Comparison

Figure 6.14 shows the comparison of classification algorithm on various data sizes. As we saw
in the experience before KNN crashed after 100 MB data and could not handle working on
large data sizes. Random forest and SVM presented good quality, but after increasing data to
3.5 GB Random forest crashed. Logistic regression did not perform with good quality in this
kind of dataset.

6.4.3.2 Time Efficiency Comparison

As Figure 6.15 shows SVM and Log regression were the fastest algorithms in this experiment.
As experienced before, Random forest was one of the slower algorithms in our experience. DT
looks better than Log regression in this example.

6.4.3.3 Dominant Algorithms

SVM is the only algorithm which is dominant in all the charts as shown in Figures 6.16-6.21.
Logistic regression did not have as good quality, but it was fast, just not as fast as SVM.

95

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 96 — #112

Figure 6.15: Time Efficiency vs. Data size.

Figure 6.16: Dominant algorithms on patents classification for 100 MB.

By increasing data, quality is increased. In data size 1 GB, Random forest, Logistic Regres-
sion and SVM are dominant algorithms as is shown in Figure 6.18. Random forest shows best
quality with slow speed and Logistic Regression was fast, but not good quality. SVM shows
good quality and good speed.

For 4 GB data size, Random forest crashed. Therefore, SVM showed best quality and
Logistic Regression was best in speed. SVM and Logistic Regression are dominant algorithms
for 4 GB data sizes.

For 4 GB data sizes, Random forest crashed. Therefore, SVM showed best quality and
Logistic Regression was best in speed. SVM and Logistic Regression are dominant algorithm

96

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 97 — #113

Figure 6.17: Dominant algorithms on patents classification for 500 MB.

Figure 6.18: Dominant algorithms on patents classification for 1 GB.

in 4 GB data size.
For 6 GB, SVM perform faster than Log regression. SVM in 7 GB still has best quality,

and It is the only algorithm that is dominant.

6.4.3.4 Overall Comparison

In the overall comparison, Figure 6.21, SVM shows good performance in large data sizes. In
the small sizes of less than 100 MB, Logistic Regression had the best performance. KNN. In
our previous experiments, KNN could not handle large data and most of the time after 100
MB crashed. Logistic Regression shows good performance. It did not have good quality, but

97

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 98 — #114

Figure 6.19: Dominant algorithms on patents classification for 4 GB.

Figure 6.20: Dominant algorithms on patents classification for 7.18 GB.

because it was a fast algorithm, the performance was high. DT had better quality than Logistic
Regression, but slower time. Once that data size was over 400 MB, Log regression surged way
ahead.

6.4.4 Analysis
For our evaluation, we also used 5-fold cross validation, we almost got the same result as 80:20
training-test. If we order the algorithms by quality, we have: SVM, Random forest, DT, KNN
and Logistic regression in smaller data sizes. In the size 500 MB to 3.5 GB, this order would
be Random forest, SVM, DT, and Logistic regression. Logistic regression was worst in quality
in patent classification. By only considering a running time (fast-slow) the order would be:

98

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 99 — #115

Figure 6.21: Comparing the performance of all algorithms for patents classification.

Data size Quality Speed Performance
7.18 GB SVM SVM SVM

DT Logistic Regression Logistic Regression
Logistic regression DT DT

Table 6.6: Algorithms that had the best quality, speed, and performance on 7.18 GB data size.

SVM, Logistic regression, KNN, DT, and Random forest in all data sizes. KNN crashed after
ten hours on 100 MB. Random forest shows better quality than SVM in larger data sizes, but it
is so much slower than SVM. For example, SVM is 27 times faster than Random forest in the
3.5 GB data size.

SVM has better performance overall in the all data sizes. And after SVM, Logistic regres-
sion, DT, and Random forest show better performance. Random forest has good quality, but
because of slow speed it stands in last place for performance. Random forest crashed after
several hours the 3.5 GB data size. The best algorithm for quality, speed, and performance in
these experiments is shown in Table 6.6.

Another experiment that can be done is using our extracted data set, and trying to classify
patents by their content. Each patent belongs to a class and subclass as shown in Figure 6.13.
By using the abstract of a patent, we can find to which class the patent belongs.

6.5 Discussion
This chapter is divided into two different document classification problems on different datasets
(news classification and patents classification). In both cases, quality increased by adding more
data. All the algorithms had the same learning curves in quality. But the shape of perfor-
mance curves was different. In addition, algorithms showed different behavior on different
data sizes. The result shows again that adding more data does not always helps to improve the

99

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 100 — #116

performance.
In this chapter we also did a K-fold evaluation for both cases, books and patents. However

the results did not changed and that is why were not included in detail.
SVM and Logistic regression in news classification and Random forest and SVM in patents

classification are the best algorithms. Random forest and DT show good quality because of the
kind of data structure the patent dataset has.

SVM and Naïve Bayes are dominant algorithms in smaller data sizes. SVM is dominant
in large data sizes. Random forest, KNN, and DT in order (slow-fast) are a lot more time
consuming algorithms. SVM, Naïve and Logistic regression are the fastest algorithms for text
classification problems.

SVM shows the best performance in larger datasets. Logistic regression and SVM have
close performances. Logistic regression was twice as fast as DT and six times as fast as Random
forest in 100 MB. With increasing data, time will increase. Now if we use the same time
frame for both algorithms, DT and Logistic regression, or Logistic regression and Random
forest, the quality of Logistic regression will increase more than the quality obtained from
other algorithms.

KNN did not work in 500 MB and larger. Random forest did not work on larger than 3.5
GB data size.

100

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 101 — #117

Chapter 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions
Now that there is so much availability of digital documents on the World Wide Web and the
rapid growth of the volume of data, the task of extracting information from documents in an au-
tomatic way, also known as knowledge discovery, has become very important and challenging.
The key method for extracting information or knowledge discovery is using a combination of
ML, NLP, and data mining. There are some problems which are solved with different methods
and a lot of research has been done on different problems/tasks using small datasets to try to im-
prove quality and comparing methods on problems. However, not enough research exists that
compares the quality of these methods when considering quality and running time on various
data sizes. With the ever growing volume of data with increasingly large data sizes, research
will have to consider testing and comparing methods on larger datasets.

We selected three problems in text processing that are usually solved with supervised ma-
chine learning. We compared the performance of several methods based on the quality of
the results returned, the running time of the algorithms, and the size of the dataset used. We
discussed the trade-offs between quality and time efficiency, defining a simple performance
measure as quality multiplied by data size and divided by running time. In this way, we can
compare more fairly different algorithms. We also find the dominant algorithms on the each of
the problems in different data sizes.

The problems considered here included Named Entity Recognition, Sentiment Analysis,
and Document Classification. Depending on the problem, kind of data, and number of samples
as well as features, the algorithms exhibited different behaviors. For example, SVM had the
best performance in larger data sizes. Naïve Bayes and KNN showed better performance on
smaller data sizes rather than larger sizes. However, KNN could not work on large data.

Through our work, we found qualitative differences between performance of methods on
smaller data sizes and larger data sizes. We described the effect that dataset size has on a
classifier accuracy. We examined how algorithms have different behaviors when data size is
increased, and noted that the high dimensionality of the features extracted from text documents
makes classification of text documents a difficult task.

Table 7.1 shows the summary of three problems, datasets, data size, number of features,
evaluation metrics used on each problem, after the cleaning and normalization process.

In conclusion, depending on the interest in quality or speed, we would recommend the use
of SVM or Naïve Bayes for text classification or categorization when the data size is small.
Naïve Bayes requires only a small amount of training data to estimate the constraints parame-
ters necessary for classification. If the number of samples is huge, we would recommend the

101

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 102 — #118

Dataset Object Size Folds # Features
News 806, 791 documents 1.2 GB 6-Folds 8

Movies and TV 1, 756, 268 reviews 1.50 GB Training/test 10
Book 2, 615, 352 reviews 3.35 GB Training/test & 10-Folds 10

Patents 7, 063, 399 documents 7.18 GB Training/test & 6-Folds 6

Table 7.1: Summary of problems, final datasets, evaluation metrics, and features.

Problem Dominant Algorithm Best Performance
Named Entity Recognition SNER (CRF) SNER (CRF)

Semantic Analysis SVM SVM
Document Classification SVM SVM

Table 7.2: Dominant algorithm and best performance for all problems in the largest data size.

use of SVM. Table 7.2 shows that SVM was the only algorithm that was dominant and had the
best performance in the largest data size in both experiments. If the data has many duplicates,
DT and Random forest might be a reasonable choice, as it worked well in datasets which in-
cluded a significant amount of duplicate data. However, these methods are time consuming. It
is worth noting, however, that even here they were outperformed by SVM.

7.2 Future Work
The first immediate way to extend our work is to do more experiments to cover better the
parameter space of the problem of comparing ML algorithms. That implies try more datasets
where the notion of dominant algorithm can be extended [Tax et al., 2015], as well as trying all
possible evaluation techniques. Another extension would be to vary the number of features and
consider more algorithms.

As we explained in this thesis, very large data sources tend to contain a lot of detail in
the data. Therefore, it is necessary to extract information, process, and organize this large
data. One of the problems we face is finding large size datasets. Now it is time to make
new datasets by gathering some large data that can be used for research instead of using the
available small datasets over and over. This research can continue on different kinds of data
with semi-supervised and unsupervised learning methods.

There is a new view that methods can be improved in performance by comparing them with
large datasets. Everybody can submit a new method and compare it with previous methods on
different datasets. Therefore, we should find a way to verify the performance by considering the
quality, running time, and data size. Other work that could be continued would be finding the
threshold point where performance no longer improves by adding more data. To find the best
performance levels, we must be able to estimate the size of the annotated sample required to
reach the best performance. In order to generate efficient models, supervised learning methods
need annotated data. When dealing with huge datasets we must know what machine learning
algorithm limitations we face. There is a need to understand the limitations of machine learning
algorithms at scale while dealing with massive datasets.

Additional questions are: Why does the performance change with adding more data? Can
we obtain better quality by adding more features? How do the different methods behave with
increasing noise, sparsity and redundancy of data? All of the above subjects, open new inter-
esting trade-off challenges in algorithm analysis and design for NLP and ML. SVM shows best

102

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 103 — #119

result in overall classification, can we use SVM in NER?
Finally, more work can be done using the dataset that we extracted to classify patents by

their content. Each patent belongs to a class and subclass. By using the abstract of a patent,
we can find to which class patents belong. Having patents classified in different ways might be
invaluable to people trying to start new ventures.

103

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 104 — #120

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 105 — #121

Bibliography

[Asahara and Matsumoto, 2003] Asahara, M. and Matsumoto, Y. (2003). Japanese named en-
tity extraction with redundant morphological analysis. In Proceedings of the 2003 Confer-
ence of the North American Chapter of the Association for Computational Linguistics on
Human Language Technology - Volume 1, NAACL ’03, pages 8–15, Stroudsburg, PA, USA.
Association for Computational Linguistics.

[Asch, 2013] Asch, V. V. (2013). Macro-and micro-averaged evaluation measures.

[Atdağ and Labatut, 2013] Atdağ, S. and Labatut, V. (2013). A comparison of named entity
recognition tools applied to biographical texts. In Systems and Computer Science (ICSCS),
2013 2nd International Conference on, pages 228–233. IEEE.

[Ausiello et al., 2012] Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-
Spaccamela, A., and Protasi, M. (2012). Complexity and Approximation: Combinatorial
Optimization Problems and Their Approximability Properties. Springer Berlin Heidelberg.

[Baeza-Yates, 2013] Baeza-Yates, R. (2013). Big data or right data? In Alberto Mendelzon
Workshop 2013.

[Baeza-Yates and Ribeiro-Neto, 2011] Baeza-Yates, R. and Ribeiro-Neto, B. (2011). Modern
information retrieval: The concepts and technology behind search. Addison-Wesley, Pear-
son.

[Bakshi, 2012] Bakshi, K. (2012). Considerations for big data: Architecture and approach. In
2012 IEEE Aerospace Conference, pages 1–7.

[Banko and Brill, 2001] Banko, M. and Brill, E. (2001). Scaling to very very large corpora for
natural language disambiguation. In Proceedings of the 39th Annual Meeting on Association
for Computational Linguistics, ACL ’01, pages 26–33, Stroudsburg, PA, USA. Association
for Computational Linguistics.

[Bhalla, 2016] Bhalla, D. (2016). http://www.listendata.com/2014/11/
random-forest-with-r.html.

[Bikel et al., 1997] Bikel, D. M., Miller, S., Schwartz, R., and Weischedel, R. (1997). Nymble:
A high-performance learning name-finder. In Proceedings of the Fifth Conference on Ap-
plied Natural Language Processing, ANLC ’97, pages 194–201, Stroudsburg, PA, USA.
Association for Computational Linguistics.

[Borthwick et al., 1998] Borthwick, A., Sterling, J., Agichtein, E., and Grishman, R. (1998).
Nyu: Description of the mene named entity system as used in muc-7. In In Proceedings of
the Seventh Message Understanding Conference (MUC-7.

105

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 106 — #122

[Breiman and Cutler, 2016] Breiman, L. and Cutler, A. (2016). https://www.stat.
berkeley.edu/~breiman/RandomForests/cc_home.htm.

[Brownlee, 2016] Brownlee, J. (2016). Python machine
learning. http://machinelearningmastery.com/
metrics-evaluate-machine-learning-algorithms-python/. 2016-
05-25.

[Cachopo, 2007] Cachopo, A. M. d. J. C. (2007). Improving methods for single-label text
categorization. PhD thesis, Universidade Técnica de Lisboa.

[Carpenter, 2013] Carpenter, B. (2008–2013). Alias-i lingpipe 4.1.0. http://alias-i.
com/lingpipe.

[Cer et al., 2010] Cer, D. M., de Marneffe, M.-C., Jurafsky, D., and Manning, C. D. (2010).
Parsing to stanford dependencies: Trade-offs between speed and accuracy. In Calzolari, N.,
Choukri, K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S., Rosner, M., and Tapias, D.,
editors, LREC. European Language Resources Association.

[Charniak, 2001] Charniak, E. (2001). Unsupervised learning of name structure from coref-
erence data. In Proceedings of the Second Meeting of the North American Chapter of the
Association for Computational Linguistics on Language Technologies, NAACL ’01, pages
1–7, Stroudsburg, PA, USA. Association for Computational Linguistics.

[Chen et al., 2004] Chen, C., Liaw, A., and Breiman, L. (2004). Using random forest to learn
imbalanced data. volume 110.

[Chen and Zhang, 2014] Chen, C. P. and Zhang, C.-Y. (2014). Data-intensive applications,
challenges, techniques and technologies: A survey on big data. Information Sciences,
275:314 – 347.

[Cios et al., 2007] Cios, K., Pedrycz, W., Swiniarski, R., and Kurgan, L. (2007). Data Mining:
A Knowledge Discovery Approach. Springer US.

[Dimitrov, 2005] Dimitrov, M. (2005). A lightweight approach to coreference resolution for
named entities in text marin dimitrov, kalina bontcheva, hamish cunningham and diana may-
nard. Technical report.

[Dudhabaware and Madankar, 2014] Dudhabaware, R. S. and Madankar, M. S. (2014). Re-
view on natural language processing tasks for text documents. In Computational Intelli-
gence and Computing Research (ICCIC), 2014 IEEE International Conference on, pages
1–5. IEEE.

[Ekbal et al., 2010] Ekbal, A., Sourjikova, E., Frank, A., and Ponzetto, S. P. (2010). Assessing
the challenge of fine-grained named entity recognition and classification. In Proceedings
of the 2010 Named Entities Workshop, pages 93–101, Uppsala, Sweden. Association for
Computational Linguistics.

[Erik and Fien, 2003] Erik, T. K. S. and Fien, D. M. (2003). Availble: http://www.cnts.
ua.ac.be/conll2003/ner/000README.

[Fang and Zhan, 2015] Fang, X. and Zhan, J. (2015). Sentiment analysis using product review
data. Journal of Big Data, 2(1):5.

106

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 107 — #123

[Finkel et al., 2005] Finkel, J. R., Grenager, T., and Manning, C. (2005). Incorporating non-
local information into information extraction systems by gibbs sampling. In Proceedings
of the 43rd Annual Meeting on Association for Computational Linguistics, ACL ’05, pages
363–370, Stroudsburg, PA, USA. Association for Computational Linguistics.

[Florian et al., 2003] Florian, R., Ittycheriah, A., Jing, H., and Zhang, T. (2003). Named entity
recognition through classifier combination. In Proceedings of the Seventh Conference on
Natural Language Learning at HLT-NAACL 2003 - Volume 4, CONLL ’03, pages 168–171,
Stroudsburg, PA, USA. Association for Computational Linguistics.

[Frakes and Baeza-Yates, 1992] Frakes, W. B. and Baeza-Yates, R., editors (1992). Informa-
tion Retrieval: Data Structures and Algorithms. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA.

[Gandhi and Prajapati, 2012] Gandhi, V. C. and Prajapati, J. A. (2012). Review on compar-
ison between text classification algorithms. International Journal of Emerging Trends &
Technology in Computer Science, 1(3).

[Gonçalves et al., 2013] Gonçalves, P., Araújo, M., Benevenuto, F., and Cha, M. (2013). Com-
paring and combining sentiment analysis methods. In Proceedings of the First ACM Con-
ference on Online Social Networks, COSN ’13, pages 27–38, New York, NY, USA. ACM.

[Han et al., 2011] Han, J., Kamber, M., and Pei, J. (2011). Data Mining: Concepts and Tech-
niques. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd edition.

[Ikonomakis et al., 2005] Ikonomakis, M., Kotsiantis, S., and Tampakas, V. (2005). Text clas-
sification using machine learning techniques. WSEAS Transactions on Computers, 4(8):966–
974.

[Isoni, 2016] Isoni, A. (2016). Machine Learning for the Web. Packt Publishing Ltd.

[Jeff Robble, 2008] Jeff Robble, Brian Renzenbrink, D. R. (2008). Multilayer neural net-
works. https://www.cs.rit.edu/~rlaz/PatternRecognition/slides/
NeuralNetworks.pdf.

[Ji and Grishman, 2006] Ji, H. and Grishman, R. (2006). Data selection in semi-supervised
learning for name tagging. In Proceedings of the Workshop on Information Extraction Be-
yond The Document, pages 48–55. Association for Computational Linguistics.

[Jiang et al., 2012] Jiang, J., Teichert, A., Daumé, III, H., and Eisner, J. (2012). Learned pri-
oritization for trading off accuracy and speed. In Proceedings of the 25th International
Conference on Neural Information Processing Systems, NIPS’12, pages 1331–1339, USA.
Curran Associates Inc.

[Jurafsky and Martin, 2000] Jurafsky, D. and Martin, J. H. (2000). Speech and Language Pro-
cessing: An Introduction to Natural Language Processing, Computational Linguistics, and
Speech Recognition. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition.

[Khan et al., 2010] Khan, A., Baharudin, B., Lee, L. H., Khan, K., and Tronoh, U. T. P. (2010).
A review of machine learning algorithms for text-documents classification. In Journal of
Advances In Information Technology, VOL.

107

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 108 — #124

[Khan et al., 2009] Khan, A., Bahurdin, B. B., and Khan, K. (2009). An overview of e-
documents classification. In International Conference on Machine Learning and Computing,
Singapur.

[Kobsa, 2007] Kobsa, A. (2007). The adaptive web. chapter Privacy-enhanced Web Personal-
ization, pages 628–670. Springer-Verlag, Berlin, Heidelberg.

[Kong and Smith, 2014] Kong, L. and Smith, N. A. (2014). An empirical comparison of pars-
ing methods for stanford dependencies. CoRR, abs/1404.4314.

[Labatut, 2013] Labatut, V. (2013). Improved named entity recognition through svm-based
combination.

[Leskovec, 2013] Leskovec, J. (2013). Amazon product data. https://snap.
stanford.edu/data/web-Amazon.html.

[Lewis et al., 2004] Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. (2004). Rcv1: A new
benchmark collection for text categorization research. J. Mach. Learn. Res., 5:361–397.

[Lewis et al., 2015] Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. (2015). http://trec.
nist.gov/data/reuters/reuters.html.

[Liaghat, 2016] Liaghat (2016). The effect of corpora size on performance of named entity
recognition. BIDMA 2017 : International Symposium on Big Data Management and Ana-
lytics.

[Liu, 2012] Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis lectures on
human language technologies, 5(1):1–167.

[Ma and Ji, 1999] Ma, S. and Ji, C. (1999). Performance and efficiency: recent advances in
supervised learning. Proceedings of the IEEE, 87(9):1519–1535.

[Mann and Yarowsky, 2003] Mann, G. S. and Yarowsky, D. (2003). Unsupervised personal
name disambiguation. In Proceedings of the Seventh Conference on Natural Language
Learning at HLT-NAACL 2003 - Volume 4, CONLL ’03, pages 33–40, Stroudsburg, PA,
USA. Association for Computational Linguistics.

[Mansouri et al., 2008] Mansouri, A., Affendey, L. S., and Mamat, A. (2008). Named entity
recognition approaches.

[Mayer-Schönberger and Cukier, 2013] Mayer-Schönberger, V. and Cukier, K. (2013). Big
Data: A Revolution that Will Transform how We Live, Work, and Think. An Eamon Dolan
book. Houghton Mifflin Harcourt.

[McCallum and Li, 2003a] McCallum, A. and Li, W. (2003a). Early results for named entity
recognition with conditional random fields, feature induction and web-enhanced lexicons. In
Proceedings of the seventh conference on Natural language learning at HLT-NAACL 2003-
Volume 4, pages 188–191. Association for Computational Linguistics.

[McCallum and Li, 2003b] McCallum, A. and Li, W. (2003b). Early results for named entity
recognition with conditional random fields, feature induction and web-enhanced lexicons.
In Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL
2003 - Volume 4, CONLL ’03, pages 188–191, Stroudsburg, PA, USA. Association for
Computational Linguistics.

108

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 109 — #125

[Moens, 2006] Moens, M. (2006). Information Extraction: Algorithms and Prospects in a
Retrieval Context. The Information Retrieval Series. Springer Netherlands.

[Nadeau and Sekine, 2007] Nadeau, D. and Sekine, S. (2007). A survey of named entity recog-
nition and classification. Lingvisticae Investigationes, 30(1):3–26.

[Nguyen et al., 2016] Nguyen, N.-T., Iliadis, L., Manolopoulos, Y., and Trawiński, B.
(2016). Computational Collective Intelligence: 8th International Conference, ICCCI 2016,
Halkidiki, Greece, September 28-30, 2016. Proceedings, volume 9876. Springer.

[Pang et al., 2002] Pang, B., Lee, L., and Vaithyanathan, S. (2002). Thumbs up?: Sentiment
classification using machine learning techniques. In Proceedings of the ACL-02 Conference
on Empirical Methods in Natural Language Processing - Volume 10, EMNLP ’02, pages
79–86, Stroudsburg, PA, USA. Association for Computational Linguistics.

[Pasca et al., 2006] Pasca, M., Lin, D., Bigham, J., Lifchits, A., and Jain, A. (2006). Orga-
nizing and searching the world wide web of facts-step one: the one-million fact extraction
challenge. In AAAI, volume 6, pages 1400–1405.

[Perone, 2011] Perone, C. S. (2011). Machine learning :: Cosine similarity for vector space
models. http://blog.christianperone.com/tag/tf-idf/. Accessed: 2011-
09-21.

[Qu et al., 2010] Qu, L., Ifrim, G., and Weikum, G. (2010). The bag-of-opinions method for
review rating prediction from sparse text patterns. In Proceedings of the 23rd International
Conference on Computational Linguistics, COLING ’10, pages 913–921, Stroudsburg, PA,
USA. Association for Computational Linguistics.

[Radev, 1998] Radev, D. R. (1998). Mann:2003-dependent descriptions of entities. In Pro-
ceedings of the 17th International Conference on Computational Linguistics - Volume 2,
COLING ’98, pages 1072–1078, Stroudsburg, PA, USA. Association for Computational
Linguistics.

[Ratinov and Roth, 2009] Ratinov, L. and Roth, D. (2009). Design challenges and misconcep-
tions in named entity recognition. In Proceedings of the Thirteenth Conference on Compu-
tational Natural Language Learning, CoNLL ’09, pages 147 – 155.

[Sagiroglu and Sinanc, 2013] Sagiroglu, S. and Sinanc, D. (2013). Big data: A review. In 2013
International Conference on Collaboration Technologies and Systems (CTS), pages 42–47.

[Schmidt and Okt, 2000] Schmidt, A. and Okt, M. (2000). https://www.teco.edu/
~albrecht/neuro/html/node18.html.

[Sekine, 1998] Sekine, S. (1998). Nyu: Description of the japanese ne system used for met-2.
In Proc. of the Seventh Message Understanding Conference (MUC-7).

[Smith, 2002] Smith, D. A. (2002). Detecting and browsing events in unstructured text. In
Proceedings of the 25th Annual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, SIGIR ’02, pages 73–80, New York, NY, USA. ACM.

[Srihari and Li, 1999] Srihari, R. and Li, W. (1999). Information extraction supported question
answering. In In Proceedings of the Eighth Text REtrieval Conference (TREC-8, pages 185–
196.

109

“ExempleUsPlantillaA4” — 2017/2/8 — 7:54 — page 110 — #126

[Stehman, 1997] Stehman, S. V. (1997). Selecting and interpreting measures of thematic clas-
sification accuracy. Remote Sensing of Environment, 62(1):77 – 89.

[Sun, 2010] Sun, B. (2010). Named entity recognition: Evaluation of existing systems.

[Sutton and McCallum, 2006] Sutton, C. and McCallum, A. (2006). An introduction to con-
ditional random fields for relational learning. Introduction to statistical relational learning,
pages 93–128.

[Swan and Allan, 1999] Swan, R. and Allan, J. (1999). Extracting significant time varying
features from text. In Proceedings of the Eighth International Conference on Information
and Knowledge Management, CIKM ’99, pages 38–45, New York, NY, USA. ACM.

[Tarekegn and Munaye, 2016] Tarekegn, G. B. and Munaye, Y. Y. (2016). Big data: Secu-
rity issues, challenges and future scope. International Journal of Computer Engineering &
Technology (IJCET), 7(0976-6367):12–24.

[Tax et al., 2015] Tax, N., Bockting, S., and Hiemstra, D. (2015). A cross-benchmark compari-
son of 87 learning to rank methods. Information processing & management, 51(6):757–772.

[Urbansky et al., 2011] Urbansky, D., Thom, J. A., Schuster, D., and Schill, A. (2011). Train-
ing a named entity recognizer on the web. In Bouguettaya, A., Hauswirth, M., and Liu,
L., editors, Web Information System Engineering – WISE 2011: 12th International Confer-
ence, Sydney, Australia, October 13-14, 2011. Proceedings, pages 87–100. Springer Berlin
Heidelberg, Berlin, Heidelberg.

[USPTO.gov,] USPTO.gov. research datasets. https://www.uspto.
gov/learning-and-resources/ip-policy/economic-research/
research-datasets. Accessed: 2013-04-24.

[USPTO.gov, 2017] USPTO.gov ((accessed Feb. 2017)). Pair bulk data. https://
pairbulkdata.uspto.gov/#/api-documentation. Accessed: 2016-11-23.

[Wajeed and Adilakshmi, 2009] Wajeed, M. A. and Adilakshmi, T. (2009). Text classifica-
tion using machine learning. Journal of Theoretical and Applied Information Technology,
7(2):119–123.

[Wallin, 2014] Wallin, A. (2014). Sentiment analysis of Amazoan reviews and perception of
product features.

[Wikipedia, 2017a] Wikipedia ((accessed Feb. 2017)a). k-nearest neighbors algorithm.
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm.

[Wikipedia, 2017b] Wikipedia ((accessed Feb. 2017)b). Support vector machine. https:
//en.wikipedia.org/wiki/Support_vector_machine.

[Yu, 2008] Yu, B. (2008). An evaluation of text classification methods for literary study. Lit-
erary and Linguistic Computing, 23(3):327–343.

[Zhang et al., 2004] Zhang, L., Pan, Y., and Zhang, T. (2004). Focused named entity recogni-
tion using machine learning. In Proceedings of the 27th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’04, pages 281–
288, New York, NY, USA. ACM.

110

