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Abstract

Based on high-frequency price data, this thesis focuses on estimating the realized covariance

and the integrated volatility of asset prices, and applying volatility estimation to price jump

detection. The first chapter uses the LASSO procedure to regularize some estimators of high

dimensional realized covariance matrices. We establish theoretical properties of the regularized

estimators that show its estimation precision and the probability that they correctly reveal the

network structure of the assets. The second chapter proposes a novel estimator of the integrated

volatility which is the quadratic variation of the continuous part in the price process. This

estimator is obtained by truncating the two-scales realized variance estimator. We show its

consistency in the presence of market microstructure noise and finite or infinite activity jumps

in the price process. The third chapter employs this estimator to design a test to explore the

existence of price jumps with noisy price data.

Resum

Basándonos en datos de precios de alta frecuencia, esta tesis se centra en la estimación de la

covarianza realizada y la volatilidad integrada de precios de activos, y la aplicación de la esti-

mación de la volatilidad para la detección de saltos en los precios. El primer capı́tulo utiliza

el procedimiento LASSO para regularizar algunos estimadores de matrices de covarianza real-

izada de alta dimensión. Establecemos propiedades teóricas de los estimadores regularizados

que muestran su precisión de estimación y la probabilidad de que revelen correctamente la es-

tructura de red de los activos. En el segundo capı́tulo se propone un nuevo estimador de la

volatilidad integrada que es la variación cuadrática de la parte continua en el proceso de pre-

cios. Este estimador se obtiene truncando el estimador de varianza realizado en dos escalas.

Demostramos su consistencia en presencia de ruido de microestructura del mercado y saltos de

actividad finitos o infinitos en el proceso de precios. El tercer capı́tulo emplea este estimador

para diseñar un test para explorar la existencia de saltos en los precios con ruido.
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Preface

There is strong evidence from literatures showing that asset price volatilities and jumps in

the price processes play important roles in financial economics. Accordingly, many economet-

ric papers focus on estimating price volatilities and detecting the arrivals of price jumps. On

the other hand, the availability of intra-daily high-frequency price data has contributed much

to the development of financial econometrics over the last decade. Based on high-frequency

price data, this thesis proposes new methodologies to measure price volatilities and test for the

arrivals of price jumps. The thesis also takes the pains to deal with the market microstructure

noise which is quite common in financial markets and makes observed prices different from the

efficient ones.

The first and second chapters are joint papers with my advisors, Christian Brownlees and

Eulalia Nualart. In the first chapter, we apply the LASSO-type shrinkage to regularize some

estimators on the covariance matrix of the asset prices. The entries of the unregularized matrix

estimators are volatility estimators derived from high-frequency price data, which are com-

monly referred to as realized volatility estimators. The regularized matrix is supposed to be

an estimator on the inverse covariance matrix. The regularization can shrink some entries to

zero, and zero entries of the inverse covariance matrix indicate zero partial correlations. The

regularized estimator can help us recover the network structure of the assets, as the linkage

between two assets is defined as non-zero partial correlation of their prices. For the regular-

ized estimators, we establish theories concerning their estimation errors and the probability that

they recover the network structure of the asset prices. Simulations and empirical applications

indicate that when the partial correlation structure of the prices is sparse, the regularization can

significantly improve the estimation precision.

There is a large segment of literatures trying to disentangle the quadratic variation of the

continuous part in the price process, which is the integrated volatility, from the total quadratic

variation when there are price jumps. This problem would be more complicated when there is

market microstructure noise. The second chapter proposes a truncated volatility estimator in

order to deal with this challenge. This estimator is derived by truncating the two-scales realized

volatility (TSRV) estimator which has been widely used as an integrated volatility estimator

robust to the noise. The truncation removes the intervals where jumps occur from the estima-

tor, so that the convergence of the truncated estimator is not affected by jumps. Accordingly,

ix
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we show that the asymptotic distribution of the TSRV is not affected by finite activity jumps.

Moreover, we prove the consistency of our estimator when there are infinite activity jumps.

In Chapter 3, we adopt the truncated volatility estimator derived in the second chapter to

design a test for the arrivals of jumps. We divide the whole period under consideration into

many intervals, and test for each interval, whether there is a jump on it or not. The length of each

interval converges to zero as the sampling frequency increases. Therefore, besides indicating

the existence of jumps on the whole period, this test can also give us inference about the time

when jumps occur. The statistic for a given interval is in the form of a ratio: Its nominator is

the rescaled local average return, and the denominator is a spot volatility estimator which is

constructed based on the proposed estimator in Chapter 2. A jump can significantly increase

the absolute value of the corresponding statistic. Thus the test is such that we believe there is

a jump on the interval if the statistic is larger than some threshold in absolute value. We also

derive the theory to show that the test is consistent, and perform simulations to evaluate the

efficiency of our test.
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Introduction

Volatility estimation based on high-frequency price data is an important topic in financial econo-

metrics, and the estimators are typically called realized volatility estimators. In this thesis we

propose novel realized volatility estimators, and apply a proposed estimator to price jump de-

tection. The first chapter regularizes some covariance matrix estimators of asset prices, whose

entries are realized volatility estimators, with the LASSO-type shrinkage. We show that the

regularization can improve estimation precision when the network of the assets is sparse. The

second chapter assumes the presence of jumps in the price process, and derives a truncated

realized volatility estimator on the volatility of the continuous component of the price pro-

cess. The third chapter adopts the proposed estimator in the second chapter in order to detect

jumps. Throughout the thesis, our methodology is robust to market microstructure noise which

is prevalent in financial markets. Moreover, the papers which yield the first and second chapters

are respectively submitted for the Journal of Applied Econometrics and Scandinavian Journal

of Statistics, and the paper which yields the third chapter is not submitted yet.

In Chapter 1 we adopt the Graphical LASSO procedure (Friedman et al. (2011)) in order

to regularize the covariance matrix estimators whose entries are two-scales realized volatilities

(Zhang et al. (2005)) or the realized kernel estimators (Barndorff-Nielsen et al. (2008), Var-

neskov (2016)). The regularized matrix directly estimates the inverse covariance matrix, and it

can also recover the network structure of the assets. We derive the theory which shows estima-

tion precision and the probability of successful recovery on the graph structure. An empirical

application shows that this regularized estimator can deliver global minimum variance portfolio

that has the smallest average out-of-sample variance compared to portfolios yielded by some

other covariance matrix estimators.

Chapter 2 proposes a truncated realized volatility estimator by applying the truncation tech-

nique in Mancini (2008, 2009) to the two-scales realized variance (TSRV) estimator in Zhang

et al. (2005). In the finite activity jump case, the truncated TSRV has the same asymptotic

1
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distribution as the TSRV which is constructed with the no-jump data, since the truncation re-

moves intervals that may contain jumps from the estimator. We also prove the consistency of

the truncated TSRV when jumps have infinite activity.

Chapter 3 adopts the truncated TSRV in order to test the arrivals of jumps. The statistics

are derived by standardizing the rescaled local average returns with the spot volatility estimator

which is constructed based on the truncated TSRV. As a jump can significantly increase the

value of the statistic, we show that when the threshold is set properly, the probabilities of both

type I and type II will converge to zero as the number of price observations increases. Moreover,

in both Chapters 2 and 3, we perform simulations to evaluate the efficiency of our methodology

and illustrate its advantage compared to some other competitors.

2
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Chapter 1

REALIZED NETWORKS

1.1 Introduction

The covariance matrix of the log–prices of financial assets is a fundamental ingredient in many

applications ranging from asset allocation to risk management. For more than a decade now

the econometric literature has made a number of significant leaps forward in the estimation of

covariance matrices using financial high frequency data. This new generation of estimators,

commonly referred to as realized covariance estimators, measure precisely the daily covari-

ance of log–prices using intra-daily price information. The literature has proposed an extensive

number of procedures that allow to estimate the covariance efficiently under general assump-

tions, such as the presence of market microstructure noise and asynchronous trading in the data

generating process.

Despite the significant leaps forward, the estimation of large realized covariance matrices

has a number of hurdles. First, as it has been put forward by Hautsch et al. (2012) and Nikolaus

et al. (2013), it is hard to estimate precisely the covariance matrix when the number of assets is

large. Second, in large systems it is challenging to synthesize effectively the information con-

tained in the covariance matrix and unveil the cross–sectional dependence structure of the data.

In this chapter we propose a realized covariance estimation strategy that tackles simultaneously

both of these challenges. The estimation approach consists of using LASSO–type shrinkage

to regularize realized covariance estimators. The LASSO procedure detects and estimates the

nonzero partial correlations among the daily log–prices. The set of nonzero partial correlations

can then be represented as a network. Our proposed estimation approach has different high-

3
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lights. If the partial correlation structure of the daily log–prices is sufficiently sparse, then the

regularized estimator can deliver substantial accuracy gains over its unregularized counterpart.

Moreover, detecting the network of interconnections among the daily log prices is interesting in

the light of the recent strand of research on networks in economics by, among others, Acemoglu

et al. (2012), which shows that in highly interconnected systems the most highly interconnected

entities influence the aggregate behaviour of the entire system.

In its more general version, the framework we work in makes a number of fairly common

assumptions on the dynamics of the asset prices (cf Bandi and Russell, 2006; Aı̈t-Sahalia et al.,

2005; Fan et al., 2012). We assume that observed log prices are equal to the efficient log prices,

which are Brownian semi–martingales, plus a noise term that is due to market microstructure

frictions. Prices are observed according to the realization of a counting process driving the

arrival of trades/quotes of each asset and are allowed to be asynchronous. The target estimation

of interest is integrated covariance matrix of the efficient daily log–prices.

We introduce a network definition built upon the integrated covariance, which we call the

integrated partial correlation network. Assets i and j are connected in the integrated partial

correlation network if and only if the partial correlation between i and j implied by the inte-

grated covariance is nonzero. As is well known, the network is entirely characterized by the

inverse of the integrated covariance matrix, which we call hereafter the integrated concentration

matrix. In fact, it has been known since at least Dempster (1972) that if the (i, j)–th entry of

the inverse covariance matrix is zero, then variables i and j are partially uncorrelated, that is,

are uncorrelated conditional on all other assets. Thus, the sparsity structure of the integrated

concentration matrix determines the partial correlation network dependence structure among

the daily log–prices.

We use LASSO to obtain a sparse integrated concentration matrix estimator. The procedure

consists of regularizing a consistent realized covariance estimator. Several realized covariance

estimators have been introduced in the literature in the presence of market microstructure effects

and asynchronous trading. In this chapter we focus in particular on the Two–Scales Realized

Covariance estimators (TSRC) and the Multivariate Realized Kernel (MRK) based on pairwise

refresh sampling (Aı̈t-Sahalia et al., 2005; Barndorff-Nielsen et al., 2011; Fan et al., 2012).

These estimators are then regularized using the GLASSO (Friedman et al., 2011); which shrinks

the off–diagonal elements of the inverse of the covariance estimators to zero. The procedure

allows to detect the nonzero linkages of the integrated partial correlation network. Moreover,

4
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the sparse integrated concentration matrix estimator can be inverted to obtain an estimator of

the integrated covariance.

We study the large sample properties of the realized network estimator, and establish con-

ditions for consistent estimation of the integrated concentration and consistent selection of the

integrated partial correlation network. We develop the theory for the TSRC and MRK estima-

tors based on pairwise refresh–sampling built upon the general asymptotic theory developed by

Ravikumar et al. (2011). The MRK estimator results are obtained by developing a novel con-

centration inequality, while for the TSRC estimator we apply a concentration inequality derived

in Fan et al. (2012). Results are established in a high–dimensional setting, that is, we allow

for the total number of parameters to be larger than the amount of observations available to the

extent that the proportion of nonzero parameters is small relative to the total. Other realized

covariance estimators satisfying an appropriate concentration assumption lead to regularized

estimators with similar properties.

A simulation study is used to investigate the finite sample properties of the procedure.

Different specifications of the integrated covariance matrix of the efficient price process are

used to assess the precision of the realized network estimator. The procedure is also bench-

marked against a set of alternative regularization techniques proposed in the literature, includ-

ing shrinkage (Ledoit and Wolf, 2004) and factor based approaches. Among others results,

simulations show that when the integrated concentration matrix is indeed sparse the realized

network achieves the best performance among the set of candidate regularization procedures

we consider.

We apply the realized network methodology to analyse the network structure of a panel of

US blue chip stocks throughout 2009 using the TSRC, MRK as well as the classic Realized

Covariance (RC) estimators. More precisely, we use the realized network to regularize what

we call idiosyncratic realized covariance matrix, that is the residual covariance matrix of the

assets after netting out the influence of the market factor. Results show that after controlling

for the market factor, assets still exhibit a significant amount of cross–sectional dependence.

The estimated networks are indeed sparse, with the number of estimated links being roughly

5% of the total possible number of linkages. The distribution of the connections of the assets

exhibits power law behavior, that is the number of connections is heterogeneous and the most

interconnected stocks have a large number of connections relative to the total number of links.

The stocks in the industrial and energy sectors show a high degree of sectoral clustering, that

5
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is there is a large number of connections among firms in these industry groups. Technology

companies and Google in particular are the most highly interconnected firms throughout the

year. We investigate the usefulness of our procedure from a forecasting perspective by carry-

ing out a Markowitz type Global Minimum Variance (GMV) portfolio prediction exercise. We

run a horse race among different (regularized) covariance estimators to assess which estima-

tor produces GMV portfolio weights that deliver the minimum out–of–sample GMV portfolio

variance. Results show that the realized network significantly improves prediction accuracy

irrespective of the covariance estimator used.

We build upon the literature on realized volatility and realized covariance estimation. Im-

portant contributions in this area include the work of Andersen et al. (2003), Barndorff-Nielsen

and Shephard (2004a), Aı̈t-Sahalia et al. (2005), Bandi and Russell (2006), Barndorff-Nielsen

et al. (2008), Barndorff-Nielsen et al. (2011), Zhang (2011), and Fan et al. (2012). More pre-

cisely, this chapter is related to the strand of the literature concerned with the estimation and

regularization of possibly large realized covariances. Important research in this field includes

Wang and Zou (2010), Hautsch et al. (2012), Nikolaus et al. (2013), Tao et al. (2013), Corsi

et al. (2014), Lunde et al. (2011). This chapter also relates on the network modelling literature

in statistics and econometrics, which includes Meinshausen and Bühlmann (2006), Billio et al.

(2012), Diebold and Yilmaz (2014), Hautsch et al. (2014a,b), Barigozzi and Brownlees (2013),

Banerjee and Ghaoui (2008). Last, this chapter is related to the literature on covariance matrix

regularization. Contributions in this area include the work of Ledoit and Wolf (2004), Ledoit

and Wolf (2012), Fan et al. (2011) and Fan et al. (2013). Pourahmadi (2013) provides an in-

troduction to high–dimensional covariance regularization, which includes several of the recent

developments of the area.

It is important to observe that in the high-dimensional realized covariance estimation lit-

eratures such as Wang and Zou (2010), Tao et al. (2013) and Kim et al. (2016), the sparsity

assumption is imposed directly to the integrated covariance matrix. While in this chapter, we

assume it on the inverse. Moreover, they use the thresholding technique in order to regularize

the realized covariance matrix, while in this chapter we use the GLASSO technique. We re-

mark that the thresholding technique used in Tao et al. (2013) applied to the realized covariance

estimator yields an estimation error of the same order as ours, which is smaller than the esti-

mation error obtained in Wang and Zou (2010) and Kim et al. (2016). In addition, we believe

that one advantage of employing the GLASSO technique is that we recover the network struc-

6
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ture without requiring zero correlations between asset prices. Instead, we require zero partial

correlations, which is a much weaker condition than zero correlations when the sample size is

large.

The rest of this chapter is structured as follows. In Section 1.2 we introduce the base frame-

work and the realized network estimator. The theoretical properties of the estimation procedure

are analysed in Section 1.3. Section 1.4 introduces a number of important extensions to the

baseline framework. Section 1.5 contains a simulation exercise to study the properties of the re-

alized network estimator. Section 1.6 presents an application to a panel of US blue chip stocks.

Concluding remarks follow in Section 1.7.

1.2 Methodology

In this section we introduce the baseline framework and estimation approach. Important exten-

sions of the baseline methodology, including allowing for market microstructure frictions, are

considered later in Section 1.4.

1.2.1 Model

Let y(t) denote the n-dimensional log–price vector of n assets at time t. We assume that the

dynamics of y(t) are given by

y(t) =

∫ t

0

b(u) du+

∫ t

0

Θ(u) dB(u) , t ∈ [0, 1], (1.1)

where B(t) is an n-dimensional Brownian motion on a filtered probability space (Ω,F ,Ft,P).

The drift b(t) is an n-dimensional process, and the spot covolatility process Θ(t) is an n × n

positive definite random matrix. The entries of b(t) and Θ(t) are assumed to be adapted to Ft
and uniformly bounded on [0, 1], and those of Θ(t) are also assumed to be càdlàg. Like most

of the realized covariance literature, we do not consider jumps in the process of y(t).

We are considering our process over a fixed time interval of length 1, which typically repre-

sents a day. We set y = y(1). Also, we define the i–th entry of y as yi, for i = 1, . . . , n. One of

7
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the main objects of interest in this chapter is the integrated covariance matrix

Σ? =

∫ 1

0

Σ(t)dt = (σ?ij), (1.2)

where Σ(t) = Θ(t)Θ(t)′ = (σij(t)) is the spot covariance matrix. Notice that when B is

independent of (b,Θ), conditional on (b,Θ), Σ? is the covariance matrix of y.

In this chapter we introduce a network representation of y based on the partial linear depen-

dence structure induced by the integrated covariance matrix. We call this network the integrated

partial correlation network. Recall that a network is defined as an undirected graph G = (V , E),

where V is the set of vertices V = {1, 2, . . . , n} and E is the set of edges E ⊂ V × V . In the

integrated partial correlation network the set of vertices corresponds to the set of assets, and

a pair of assets is connected by an edge iff their daily returns are partially correlated given all

other daily returns in the panel, that is,

E = {(i, j) ∈ V × V , ρij 6= 0, i 6= j} ,

where ρij is the partial correlation, a measure of linear cross-sectional conditional dependence

defined as

ρij = Cor(yi, yj|{yk, k 6= i, j}) .

The partial correlations can be characterized by the inverse covariance matrix (Dempster, 1972;

Lauritzen, 1996). That is,

ρij =
−k?ij√
k?iik

?
jj

,

where K? = (Σ?)−1 = (k?ij). Recall that if B is independent of (b,Θ), conditional on (b,Θ),

K? is the inverse integrated covariance matrix, which we call hereafter integrated concentration

matrix. Thus, the integrated partial correlation network can be equivalently defined as

E = {(i, j) ∈ V × V , k?ij 6= 0, i 6= j} .

It is important to emphasize that the integrated partial correlation network definition repre-

sents particular correlation relations among the daily log–prices. Obviously enough, the absence

of correlation between the log–daily prices of two assets does not necessarily imply that the spot

prices are also uncorrelated.

8
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1.2.2 Estimation

We are interested in (i) estimating the integrated covariance and concentration matrices of the

daily log–prices, and (ii) detecting the nonzero entries of the integrated concentration matrix.

The estimation strategy we follow consists of applying LASSO type regularization on the stan-

dard realized covariance estimators proposed in the literature.

We assume that the log-prices yi(t) of all assets i = 1, . . . , n, are discretely observed at a

same time grid T = {t1, t2, . . . , tm} where t0 = 0 < t1 < · · · < tm = 1. We consider a generic

estimator of the integrated covariance Σ? denoted Σ = (σij) based on the observations yi(t`),

i = 1, ..., n, ` = 1, ...,m. We assume that this estimator satisfies the following concentration

inequality.

ASSUMPTION 1.1. There exist positive constants a1, a2 and a3 such that for all i, j ∈ {1, ..., n},

x ∈ [0, a1], and m large,

P
(∣∣σij − σ?ij∣∣ > x

)
≤ a2m

α0 exp(−a3(mβx)a), (1.3)

for some positive exponents β, a and α0 ∈ {0, 1}.

A natural estimator of the integrated covariance of y in this setting is the so called Realized

Covariance (RC) estimator. This estimator is the multivariate extension of the realized variance,

whose working mechanism is that the quadratic variation of the univariate price process can be

approximated by the sum of squared returns over small intervals.

Realized Covariance Estimator. The realized covariance estimator ΣRC is defined as

σRC,ij =
m∑
k=1

(yi k − yi k−1) (yj k − yj k−1) ,

where yi k = yi(tk).

Assume that the time grid satisfies that

sup
`∈{1,...,m}

|t` − t`−1| ≤
c

m
, (1.4)

for some constant c > 0. Then Barndorff-Nielsen and Shephard (2004c) shows that the dif-

ference between σRC,ij and σ?ij is asymptotically mixed normal with mean zero and variance of

9
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order O (m−1). Also, it is proved in Fan et al. (2012, Lemma 3), that under the conditions of

this Section the estimator satisfies Assumption 1.1 with α0 = 0, a = 2 and β = 1
2
.

Given an estimator of the integrated covariance Σ satisfing Assumption 1.1, we use the

Graphical LASSO procedure (GLASSO) to estimate the integrated concentration matrix K?.

Realized Network Estimator. Let Σ be an estimator of the integrated covariance, then we

define the realized network estimator of the integrated concentration matrix as

K̂λ = arg min
K∈Sn

{
tr(ΣK)− log det(K) + λ

∑
i 6=j

|kij|

}
, (1.5)

where λ ≥ 0 is the GLASSO tuning parameter and Sn is the set of n×n symmetric positive def-

inite matrices. The entries of K̂λ are denoted by (k̂λ ij). The corresponding realized covariance

estimator based on the realized network is Σ̂λ = K̂−1
λ .

Observe that (1.5) defines a shrinkage type estimator. If we set λ = 0 in (1.5), we obtain the

normal log-likelihood function of the covariance matrix, which is minimized by the inverse real-

ized covariance estimator (Σ)−1. If λ is positive, (1.5) becomes a penalized likelihood function

with penalty equal to the sum of the absolute values of the non-diagonal entries in the estimator.

The important feature of the absolute value penalty is that for λ > 0, some of the entries of the

realized network estimator are going to be set to zero. The highlight of this estimator is that it

simultaneously estimates and selects the nonzero entries of K?, thus providing an estimate of

the linkages in the network. For this reason we dub the estimator realized network estimator.

Banerjee and Ghaoui (2008) show that the optimization problem in (1.5) can be solved through

a series of LASSO regressions, which motivates an iterative algorithm to solve (1.5) given in

Friedman et al. (2007). For completeness, we provide a description of the algorithm in the ap-

pendix. The highlight of the procedure is that it is straightforward to carry out the minimization

of equation (1.5) even when the number of series is large. Importantly, the algorithm is also

guaranteed to provide a positive definite estimate of the concentration matrix provided that the

initial value of the algorithm is a positive definite matrix. Moreover, the algorithm only requires

the Σ estimator to be positive semi–definite (provided that λ is larger than zero).

In order to apply the estimator in empirical applications we need to use a selection criterion

to pick the value of the tuning parameter λ. In this chapter we resort to a BIC–type criterion

10
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defined as

BIC(λ) = m×
[
− log det K̂λ + tr

(
K̂λΣ

)]
+ logm×#{(i, j) : 1 ≤ i ≤ j ≤ n, k̂λ ij 6= 0} ,

as it is suggested in, among others, Yuan and Lin (2007).

1.3 Theory

In this section, we apply the theory of Ravikumar et al. (2011) to our particular case of an

exponential concentration inequality to establish the large sample properties of the realized

network estimator defined in (1.5).

In order to state the results we need to adopt the following notations. Given a matrix

U = (uij) ∈ R`×m, we set ||U||∞, ||U||1, and |||U|||∞ to denote max
i,j
|uij|,

∑
i,j |uij|, and

max
j

∑m
k=1 |ujk|, where i ∈ {1, 2, . . . , `} and j ∈ {1, 2, . . . ,m}. If A = (aij) is a p× q matrix

and B is an m × n matrix, the Kronecker product of matrices A and B is the pm × qn matrix

given by

A⊗B =


a11B · · · a1qB

... . . . ...

ap1B · · · apqB

 .
We index the pm rows of A⊗B by

R = {(1, 1), (2, 1), ..., (m, 1), (1, 2), (2, 2), ..., (m, 2), ...., (1, p), ..., (m, p)},

and the qn columns by

C = {(1, 1), (2, 1), ..., (n, 1), (1, 2), (2, 2), ..., (n, 2), ...., (1, q), ..., (n, q)}.

For any two subsets R̄ ⊂ R and C̄ ⊂ C, we denote by (A ⊗ B)R̄C̄ the matrix such that

(A⊗B)(i,j)(c,d) is an entry of (A⊗B)R̄C̄ iff (i, j) ∈ R̄ and (c, d) ∈ C̄.

ASSUMPTION 1.2. Consider the n2 × n2 matrix Γ? = Σ? ⊗ Σ?. There exists some α ∈ (0, 1]

such that

max
e∈Sc
||Γ?

eS (Γ?
SS)−1 ||1 ≤ 1− α,

11
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where S = E ∪ {(i, i)|i ∈ V} and Sc =
{

(i, j) ∈ V × V , k?ij = 0
}

.

Assumption 1.2 limits the amount of dependence between the non-edge terms (indexed by

Sc) and the edge-based terms (indexed by S). The limit is controlled by α: the bigger the α the

smaller the dependence. In other words, if we set

X(j,k) = yjyk − E (yjyk) , for all j, k ∈ V ,

then conditional on (b,Θ), the correlation between X(j,k) and X(`,m) is low for any (j, k) ∈ S

and (`,m) ∈ Sc.

In the following, Theorem 1 shows that: (a) the rate at which the realized network estima-

tor converges to the true value as the sample size m increases, and (b) a lower bound on the

probability of correctly detecting the nonzero partial correlations (as well as their signs) as a

function of the sample size m. In particular, the estimator is model selection consistent with

high probability, when n is large.

THEOREM 1.1. Assume Assumptions 1.1 and 1.2 hold, and choose λ = 8
α
m−β

(
log(a2mα0nτ )

a3

) 1
a

in (1.5), where τ > 2 is arbitrary.

(a) Assume that

m >

(
2α0

a3

log

(
a2n

τ

(
a
− 1
aβ

3 c
1
β

0

)α0
)) 1

aβ

c
1
β

0 , (1.6)

where

c0 := max

(
1

a1

, 6(1 + 8α−1)2dmax(CΣ?CΓ? , C
3
Σ?C2

Γ?),
a

1
a
3

aβ2
exp

(
2

a2β

)
1{α0=1},

1

σn

)
.

(1.7)

Here, σn = mini σ
∗
ii, d is the maximum degree of the network, that is, the maximum

number of edges that include a vertex, and we have set CΓ? = |||(Γ?
SS)−1|||∞ and CΣ? =

|||Σ?|||∞.

Then,

P

(
||K̂λ −K?||∞ ≤ 2

(
1 + 8α−1

)
CΓ∗m

−β
(

log(a2m
α0nτ )

a3

) 1
a

)
≥ 1− 1

nτ−2
. (1.8)

(b) Define c0 = max

(
c0,

2CΓ?(1+8α−1)
km

)
, where km is the minimum absolute value of the

12
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non-zero entries of K?. Assume that

m >

(
2α0

a3

log

(
a2n

τ

(
a
− 1
aβ

3 c
1
β

0

)α0
)) 1

aβ

c
1
β

0 .

Then,

P
(

sign(k̂λ ij) = sign(k?ij), ∀i, j ∈ V
)
≥ 1− 1

nτ−2
.

Let us now give the intuition of the proof. Assumption (3.2) implies that m is sufficiently

large in order to use Assumption 1.1. The effect of the parameter σn in (1.7) is to make |σii−σ?ii|

not larger than σn with high probability for all i, so that Σ will have positive diagonal entries. In

this case, (1.5) is an optimization problem for a convex function, and there is a unique solution.

Set K̃λ = (k̃λ ij) be the solution to (1.5) with the additional restriction that k̃λ ij = 0 if k?ij =

0 (see (1.19)). Based on the primal-dual witness construction (see for example Ravikumar

et al. (2011)), when the `∞-norms of K̃λ −K? and Σ − Σ? are not larger than some quantity

determined by CΓ? , CΣ? ,α, d and λ,we have K̃λ = K̂λ. On the other hand, using some matrix

algebra we can bound ||K̃λ − K?||∞ in terms of ||Σ − Σ?||∞, CΓ? , CΣ? , α and λ. Then we

define λ as in Theorem 1.1, and choose m large enough to make ||Σ−Σ?||∞ and ||K̂λ−K?||∞
satisfy the conditions. Therefore, with high probability we have K̃λ = K̂λ, and so the same

bound for ||K̃λ−K?||∞ is also satisfied for ||K̂λ−K?||∞. In part (b) of Theorem 1.1, we need

to introduce the new parameter kn in the lower bound of m. Its effect is to guarantee that with

high probability |k̂λ ij−k?ij| is smaller than km. Then given the definition of km, we can see that

the signs of k̂λ ij and k?ij are the same.

Observe that when Assumption 1.1 holds with α0 = 0, Theorem 1.1 is a direct application

of Theorems 1 and 2 of Ravikumar et al. (2011). We give the proof of Theorem 1.1 for the case

α0 = 1 in the appendix.

The parameter d controls the degree of sparsity of our network. It ranges from 0 (fully

sparse) to n (fully interconnected). To explore its effects, let us assume that the parameters

CΣ∗ , CΓ∗ , α and σn in Theorem 1.1 remain constant as a function (n,m, d). In this case, when

d = 0, condition (3.2) means that m should not be smaller than O
(

(log n)
1
aβ

)
. When d = n,

condition (3.2) means that m should not be smaller than O
(

(log n)
1
aβn

1
β

)
, since in this case

c0 = O(n). In other words, the sparser the network is, the lesser observations are required to

estimate the concentration matrix accurately.

13
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1.4 Extensions

1.4.1 Microstructure Noise and Asynchronycity

Rather than the efficient price, it is customary to assume that the econometrician observes the

transaction (or midquote) price. This differs from the efficient price because trades (quotes) are

affected by an array of market frictions that go under the umbrella term of market microstruc-

ture. Moreover, it is common to assume that the trades (quotes) of different assets are executed

(posted) asynchronously. In this section we extend the baseline framework of Section 1.2 and

introduce a number of realized covariance estimators designed to handle microstructure noise

and asynchronous trading.

We assume that the log-prices of each asset i are observed asynchronously on different time

grids Ti = {ti1, . . . , timi}, i = 1, ..., n. For each asset i = 1, . . . , n the econometrician observes

the transaction (or midquote) prices xi(ti`) defined as

xi(ti`) = yi(ti`) + ui(ti`) ,

where ui(ti`) denotes the microstructure noise associated with the `th trade. We assume that the

microstructure noise satisfies

ui(ti`) ∼ N(0, η2
i ) ,

where η2
i is some positive constant. We assume that the noise process is independent of the effi-

cient price process, and use the same notation (Ω,F ,Ft,P) for the product filtered probability

space of both the efficient price and the noise processes.

A standard technique used to handle asynchronous trading for realized covariance estima-

tion is refresh time sampling, which was introduced by Martens (2004). Several variants of

this technique exist, like the pairwise and groupwise refresh time approaches, used in Fan et al.

(2012), Lunde et al. (2011) and Hautsch et al. (2012). In this work we use pairwise refresh

time sampling, and its procedure is explained in the appendix. Pairwise refresh time sampling

based covariance estimation consists of estimating each entry of the covariance separately. The

i, j–entry of the matrix is computed by first synchronizing the observations of assets i and j

using refresh time and then estimating the covariance between assets i and j using the syn-

chronized data. Notice that this approach does not guarantee that the covariance estimator is

14
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positive definite, as each covariance entry is estimated using different subsets of observations.

Suppose for assets i and j the refresh sample prices are respectively xri = {xi(tri 1), . . . , xi(t
r
im)}

and xrj =
{
xj(t

r
j 1), . . . , xj(t

r
j m)
}

. We use the shorthand notation xr` k, yr` k and ur`, k to denote

x`(t
r
` k), y`(tr` k) and u`(tr` k), respectively. Also, we define M0 as the minimum pairwise refresh

sample size across all pairs of assets.

After the data have been opportunely synchronized, a number of market microstructure

noise robust estimators can be applied. First, we consider the two–scales realized covariance

estimator (TSRC) proposed in Zhang (2011), which is a multivariate extension of the two–scales

estimator introduced by Aı̈t-Sahalia et al. (2005).

Two-Scales Realized Covariance Estimator. The Two-Scales Realized Covariance Estima-

tor ΣTS based on pairwise refresh time is defined as

σTS,ij =
1

K

m∑
k=K+1

(
xri k − xri k−K

) (
xrj k − xrj k−K

)
−mK

mJ

1

J

m∑
k=J+1

(
xri k − xri k−J

) (
xrj k − xrj k−J

)
where mK = m−K+1

K
and mJ = m−J+1

J
.

For this estimator, we assume the noise ui as an i.i.d. process, and the noise processes of

different assets are assumed to be independent of each other.

Zhang (2011) shows that the optimal choice ofK has orderK = O(m
2
3 ), and J can be taken

to be a constant such as 1. The first component of this estimator is the average of K realized

variances, and it converges to σ?ij in the absence of noise. The second component is set to

correct the bias caused by the noise. Under the optimal choice of K and J , the estimation error

is asymptotically mixed normal with mean 0 and variance of order O
(
m−

1
3

)
. If we further

assume that 1
2
m

1
3 ≤ mK ≤ 2m

1
3 , then, under the condition that the syncronized observation

times satisfy condition,

sup
`∈{1,...,m}

|τ` − τ`−1| ≤
c

m
, (1.9)

Fan et al. (2012) show that this estimator satisfies Assumption 1.1 with β = 1
6
, a = 2 and

α0 = 0, and thus Theorem 1.1. Observe that since M0 is defined as the minimum pairwise

refresh sample size across all pairs of assets, we should replace m with M0 when applying

Theorem 1 to TSRC.

In the empirical implementation, for each pair of assets we choose J as 1 and K as the
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(rounded) average of the optimal bandwidth for the realized two-scales volatility estimator of

the two assets, following the procedure detailed in Aı̈t-Sahalia et al. (2005).

Another robust estimator is the Multivariate Generalized Flat-top Realized Kernel estimator

(MGFRK), which is proposed in Varneskov (2016). Compared to the realized kernel estimator

in Barndorff-Nielsen et al. (2008), the MGFRK has the advantage of dealing with dependent

noise series.

Multivariate Generalized Flat-Top Realized Kernel Estimator. The MGFRK ΣK based on

pairwise refresh time is defined as

σK ij = γ0

(
xri , x

r
j

)
+

1

2

H∑
h=1

k

(
h− 1

H

)(
γh(x

r
i , x

r
j) + γ−h(x

r
i , x

r
j) + γh(x

r
j , x

r
i ) + γ−h(x

r
j , x

r
i )
)
,

(1.10)

where for each h ∈ {−H,−H + 1, . . . ,−1, 0, 1, . . . , H − 1, H},

γh(x
r
i , x

r
j) =

m−1∑
p=1

(xri p − xri p−1)(xrj p−h − xrj p−h−1).

The kernel function k : [0, 1] → R satisfies the following conditions: (1) k(x) = 1 for

x ∈
[
0, M

m

]
; (2) k(x) is twice differentiable with bounded derivatives on

(
M
m
, 1
)
; (3) k(1) =

k′
(
M
m

)
= k′(1) = 0. In order to find a suitable kernel function, it is obvious that we can assume

it has the polynomial form k(x) = dpx
p + dp−1x

p−1 + · · · + d1x + d0 when x ∈
(
M
m
, 1
)
, for a

fixed integer p ≥ 3, and work out the values of the coefficients.

For this estimator we assume the same hypothesis on the noise as in Tao et al. (2013). That

is, we assume (ur1 ,k, . . . , u
r
n ,k) as multivariate M -dependent time series for generic k, where

M is a fixed integer. Therefore, for generic {p1, . . . , pn} and {q1, . . . , qn}, {ur1 ,p1 , . . . , u
r
n ,pn}

are jointly independent of {ur1 ,q1 , . . . , u
r
n ,qn} when |p − q| > M for all p ∈ {p1, . . . , pn} and

q ∈ {q1, . . . , qn}.

For a choice of H of O(m
1
2 ), Varneskov (2016) shows that the estimation error is asymptot-

ically mixed normal with mean 0 and variance of order O
(
m−

1
2

)
. In the appendix, we show

that this estimator follows the following concentration inequality.

THEOREM 1.2. If the synchronized observation times satisfy condition (1.4), then there exist
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positive constants a1, a2 and a3 such that for all i, j ∈ {1, ..., n}, x ∈ [0, a1], and M0 large,

P
(∣∣σK ij − σ?ij

∣∣ > x
)
≤ a2M0 exp(−a3M

1/4
0 x).

Therefore, the MGFRK satisfies Assumption 1.1 with β = 1
4
, a = 1 and α0 = 1. Hence, we

can apply Theorem 1.1, and we obtain that the estimation error of K̂λ converges to zero at rate

M
− 1

4
0

√
log n (assuming that all other parameters including α, d, CΓ∗ and CΣ∗ are constants).

Thus, in this case, M
1
2

0 is required to be large compared to log n to make the error small in

probability. Notice that this result is analogous to the one obtained in Tao et al. (2013), where

the same convergence rate M
− 1

4
0

√
log n is obtained for a multi-scales realized covariance esti-

mator. Moreover, according to Tao et al. (2013), this rate is optimal on estimating the integrated

covariance matrix with noisy high-frequency data.

1.4.2 Factor Structure

Classical asset pricing theory models like the CAPM or APT imply that the unexpected rate of

return of risky assets can be expressed as a linear function of few common factors and an id-

iosyncratic component. Factors induce a fully interconnected partial correlation network struc-

ture. In this case, it is natural to carry out network analysis on the partial correlation structure

of the assets after netting out the influence of common sources of variation. In this section we

propose a modification of our network definition for such systems. Also, we propose a modified

covariance estimation strategy analogous to the one put forward in Fan et al. (2008) and Fan

et al. (2011) which is based on the particular structure of the system.

We augment the y process with additional k components representing factors. The dynamics

of the augmented system are assumed to be the same as the one described in (2.1). Moreover,

the factors are assumed to be observed, as it is commonly done in the empirical finance literature

and also as in Fan et al. (2008). The integrated covariance of the augmented system can then be

partitioned as an (n+ k)× (n+ k) matrix

Σ? =

 Σ?
AA Σ?

FA

Σ?
AF Σ?

FF

 , (1.11)

where A and F denote, respectively, the blocks of assets and factors.
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The covariance of the assets can be expressed as the sum of the systematic and idiosyncratic

components, that is

Σ?
AA = BΣ?

FFB′ + Σ?
I ,

where

B = Σ?
AF [Σ?

FF ]−1 and Σ?
I = Σ?

AA −Σ?
AF [Σ?

FF ]−1 Σ?
FA.

If the factors are pervasive (B is not sparse), then the concentration matrix of the assets cannot

be sparse. In these cases, rather than proposing a network definition on the basis of the partial

correlations of the system, we propose a network definition based on the idiosyncratic par-

tial correlations, that is the partial correlations implied by the idiosyncratic covariance matrix

Σ?
I . Precisely, we define the idiosyncratic integrated partial correlation network as the network

whose set of edges is given by

EI =
{

(i, j) ∈ V × V , k?I ij 6= 0, i 6= j
}
,

where k?I ij is the i, j–entry of the matrix K∗I = (Σ∗I)
−1.

Let Σ be an appropriate estimator of the integrated covariance of the augmented system and

consider partitioning the estimated covariance matrix analogously to equation (1.11)

Σ =

 ΣAA ΣFA

ΣAF ΣFF

 .

Then, a natural estimator of the idiosyncratic realized covariance estimator ΣI = (σI ij) is

ΣI = (σI ij) = ΣAA −ΣFA

[
ΣFF

]−1
ΣAF . (1.12)

The following corollary establishes the concentration inequality of the estimator ΣI using the

one for Σ.

COROLLARY 1.1. If Assumption 1.1 holds, then there exist positive constants b1, b2 and b3 such

that for all i, j ∈ {1, ..., n}, x ∈ [0, b1], and M0 large,

P
(∣∣σI ij − σ∗I ij∣∣ > x

)
≤ b2M

α0
0 exp(−b3(Mβ

0 x)a),

where β, a and α0 are the constants from Assumption 1.1.
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The realized network estimator can thus be applied to regularize the idiosyncratic realized

covariance matrix and estimate the idiosyncratic partial correlation network. Moreover, the

covariance matrix of the assets can be estimated as

Σ̂AA = B ΣFF B
′
+ Σ̂I λ,

where Σ̂I λ denotes the realized covariance estimator implied by the realized network. Notice,

that this estimation strategy is analogous to the one proposed in Fan et al. (2011).

1.5 Simulation Study

In this section we carry out a simulation study to assess the finite sample properties of the

realized network estimator. The simulation exercise consists of simulating one day of high

frequency data and to apply the realized network estimator to estimate the integrated covariance

and the integrated concentration matrices. Different specifications of the covariance matrix of

the efficient price process are used to assess the usefulness of the realized network estimator

depending on the underlying cross-sectional dependence structure of the data. The realized

network estimator is also benchmarked against a set of alternative regularization procedures

proposed in the literature.

In our simulation study, the efficient price y(t) is an n–dimensional zero drift diffusion with

n equal to 50. As in Hautsch et al. (2012), the efficient price follows a simple diffusion with

constant covariance Σ,

y(t) =

∫ t

0

Θ dB(u).

where Θ is the Cholesky factorization of Σ. The econometrician observes the microstructure

contaminated version of the efficient price, and we assume that the noise component ui k is an

independent zero mean normal random variable with variance equal to (0.05)2 for all stocks.

Finally, prices of each stock are observed asynchronously, according to the realization Poisson

process with a constant intensity calibrated to have 5 trades per minute on average. In our

numerical implementation, a trading day is 6.5 hours and the simulation of the continuous time

process is carried out using the Euler scheme with a discretization step of 5 seconds.

Three different specifications of the covariance matrix Σ are adopted. In the first simulation

design (Design 1), we pick a specification for Σ which induces a sparse partial correlation
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structure among the assets in the panel. In particular, we choose Σ as a function of a realization

of an Erdös–Renyi random graph. The Erdös–Renyi random graph G = (V , E) is an undirected

graph defined over a fixed set of vertices V = {1, . . . , n} and a random set of edges where the

existence of an edge between any pair of vertices is determined by an independent Bernoulli

trial with probability p. We generate Σ by first simulating an Erdös–Renyi random graph G and

then setting Σ equal to

Σ = [In + D−A]−1 ,

where In is the n dimensional identity matrix, and D and A are respectively the degree matrix

and the adjancy matrix of the random graph G. The model for Σ is such that the underlying

random graph structure determines the sparsity structure of the integrated concentration matrix.

Also, note that Σ is symmetric positive definite by construction. In the simulation we set p

equal to 2/n. In this scenario (i.e. when np is greater than one) the Erdös–Renyi random

graph will almost surely have a giant component, that is a connected component containing a

constant fraction of the entire set of network vertices. Thus, the highlight of the model is that

the generated concentration matrix is sparse while the corresponding covariance matrix is not.

In the second simulation design (Design 2), we pick a specification for Σ based on a factor

model. We set Σ as

Σ = B Ik B′ + In,

where B is an n × k matrix whose entries are iid normal Gaussian draws with mean zero and

unit variance. In the simulation we set the number of factors k to 2. Notice that in this scenario

it is challenging for the realized network estimator in that the inverse covariance matrix implied

by the model is not sparse.

Last, in the third simulation design (Design 3), we set the Σ matrix as

[Σ]ij =

ρ+ ρ|i−j| if i 6= j

1 otherwise
,

and set ρ equal to 0.25. Notice that also in this scenario the inverse covariance matrix is not

sparse and the covariance matrix does not have a factor representation.

Different approaches are used to estimate the integrated covariance and integrated concen-

tration matrices. First, we estimate the integrated covariance using the 5–minute frequency RC,
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the pairwise–refreshed time TSRC and the pairwise–refreshed time MRK. The bandwidth pa-

rameters of the TSRC and MRK are computed using the plug–in rules previously described. It

is important to stress that the TSRC and MRK estimators are not guaranteed to be positive defi-

nite. When the estimators are indefinite we apply eigenvalue cleaning (as described in Hautsch

et al. (2012)), which is introduced in the appendix, to obtain a positive definite estimator. For

each realized covariance estimator, we consider a number of different regularization procedures.

First, we consider the shrinkage estimator proposed by Ledoit and Wolf (2004). Let Σ denote

the unregularized realized covariance (computed using either the RC, TSRC or MRK estimators

and without applying eigenvalue cleaning). The shrinkage estimator is defined as

Σ̂LW = α1In + α2Σ, (1.13)

where α1 and α2 are two tuning parameters chosen to minimize the risk of the estimator that

we set following Ledoit and Wolf (2004) and Nikolaus et al. (2013). The second regularized

estimator is based on a factor approximation of the covariance matrix. It is defined as

Σ̂F =
k∑
i=1

ξ̂iêiê
′
i + R̂k, (1.14)

where ξ̂i and êi denote the eigenvalues (in increasing order) and corresponding eigenvectors

obtained from the spectral decomposition of the unregularized realized estimator Σ, and R̂k is

diag(Σ −
∑k

i=1 ξ̂iêiê
′
i). Notice that the shrinkage and factor regularization procedures are also

not guaranteed to provide a positive definite estimator when applied to the TSRC and MRK

estimators. In these cases we apply eigenvalue cleaning whenever the resulting estimator is

not positive definite (which however happens rarely in the simulation designs we consider).

Last, we use the realized network estimator defined in Section 1.2 using the BIC criterion to

determine the optimal amount of shrinkage to apply. Notice that one of the inputs of the BIC

criterion is the number of observations used to compute the estimator. When using pairwise–

refresh sampling however, this number is different for each entry of the covariance matrix.

Similarly to Hautsch et al. (2012) we opt for a conservative choice of this quantity, and we set

it to the minimum number of refresh time observations across all pairs. The realized network

estimator is guaranteed to be positive definite as long as the pre–estimator Σ is positive semi-

definite. If the unregularized estimator is indefinite, we add to it the identity matrix times the

absolute value of its smallest eigenvalue to obtain a positive semi-definite estimator.
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Different metrics are used to evaluate the performance of the estimators. A classic loss

function used for the evaluation of covariance matrix estimators is the Kullback–Liebler loss

proposed by Stein (Stein, 1956; Pourahmadi, 2013), which is defined as

KL
(
Σ̂
)

= tr(Σ̂K∗)− log |Σ̂K∗| − n .

Following (Hautsch et al., 2012), we also consider a Root Means Square Error (RMSE) type

loss based on the scaled Frobenius norm of the covariance matrix, which is defined as

RMSE
(
Σ̂
)

=

√√√√ 1

n

n∑
i,j=1

(σ̂ij − σ∗ij)2 .

We perform 10’000 Monte Carlo replications of the simulation exercise for each simulation

design and report summary statistics on the performance of the estimators in table 1.1. The

table reports the average of the KL and RMSE losses of the estimators in the three simulation

designs. Results convey that using a regularization technique whose shrinking target is closer to

the true underlying structure of the data produces the best results and large improvements over

the unregularized realized covariance matrix estimator. In particular, it is easy to see that when

the partial correlation structure of the data is sparse (Design 1) the realized network estimator

is the best performing regularization technique. Analogously, the factor based regularization

works best in Design 2 and shrinkage regularization works in Design 3. We note that using

some form of regularization is always advantageous with respect to the unregularized estimator

even when the assumptions of the DGP do not match exactly the structure of the shrinkage.

Thus in general our results show that it is alwasy convinien to apply shrinkages as perfromance

is always better and some times much better. The results convey that the gains by using the

realized network estimator when the partial correlation structure is sparse can be substantial.

1.6 Empirical Application

We use the realized network estimator to analyse the dependence structure of a panel of US

blue chip stocks from the NYSE throughout 2009. We then engage in a Markowitz style Global

Minimum Variance portfolio prediction exercise to highlight the advantages of the methodology

for forecasting.
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1.6.1 Data and Estimation

We consider a sample of 100 liquid US blue chip stocks that have been part of the S&P100

index for most of the 2000’s. We also include in the panel the SPY ETF, the ETF tracking the

S&P 500 index. We work with tick–by–tick transaction prices obtained from the NYSE–TAQ

database. Before proceeding with the econometric analysis, the data are filtered using standard

techniques described in Brownlees and Gallo (2006) and Barndorff-Nielsen et al. (2009). The

full list of tickers, company names and industry groups is reported in table 1.2.

We estimate the integrated covariance of the assets throughout 2009. More precisely, for

each of the 52 weeks of 2009, we use the data on the last weekday available of each week to

construct the realized covariance estimators. On each of these days, we only consider the tickers

that have at least 1000 trades. Exploratory analysis (non reported in this chapter) confirms the

well documented evidence of a CAPM–type factor structure in the panel. To this extent, our

realized covariance estimation strategy consists of first decomposing the realized covariance

in systematic and idiosyncratic covariance components and then regularizing the idiosyncratic

part with the realized network. More precisely, we compute the realized covariance of the

assets in the panel together with the SPY ticker (the proxy of the market), and then obtain

the systematic and idiosyncratic components of the realized covariance of the assets on the

basis of formula (1.12). Finally, we apply the realized network regularization procedure to the

idiosyncratic realized covariance. On each week of 2009, we estimate the realized network

using three (idiosyncratic) realized covariance estimators: MRK, TSRC as well as the classic

RC using data sampled at a 1 minute frequency.

1.6.2 Realized Network Estimates

In this section we present the realized network estimation results. We first provide details for

one specific date only that roughly corresponds to the mid of the sample (June 26, 2009), and

then report summaries for all estimated networks in 2009. In the interest of space we report the

TSRC estimator results only. The MRK and RC provide similar evidence.

We begin by showing in figure 1.1 the heatmap of the idiosyncratic correlation matrix asso-

ciated with the idiosyncratic realized covariance estimator on June 26. Notice that the heatmap

is constructed by sorting stocks by industry group and then by alphabetical order. The picture

clearly shows that after netting out the influence of the market factor, a fair amount of cross–
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sectional dependence is still present across stocks. Inspection of the heatmap reveals that the

majority of estimated correlation coefficients are positive. The correlation matrix exhibits a

block diagonal structure hinting that correlation is stronger among firms in the same industry.

On this date, the intra-industry group correlation is particularly strong for energy companies.

We estimate the realized network using the GLASSO and use the BIC to choose the optimal

amount of shrinkage. To give insights on the sensitivity of the estimated network to the shrink-

age parameter λ, the top panel of figure 1.2 reports the so called trace, which is the graph of

the estimated partial correlations as a function of the shrinkage parameter. The bottom panel

of the same figure also shows the value of the BIC criterion as a function of the shrinkage pa-

rameter. The plot highlights how the sparsity of the estimated network varies substantially over

the range of lambda values considered and that the majority of estimated partial correlations are

positive irrespective of the value of shrinkage imposed on the estimator. The estimated network

corresponding to the optimal λ has 188 edges, which correspond to approximately the 5% of

the total number of possible edges in the network on this date. The number of companies that

have interconnections are 66 (roughly 2/3 of the total) and are all connected in a unique giant

component.

It is useful to provide details on the amount of variability explained by the systematic and

idiosyncratic components of the covariance matrix of the panel. To this extent, we introduce the

systematic coefficient of determination, defined as

R2
F i =

B
′
iΣFFBi

B
′
iΣFFBi + σ̂I ii

,

which measures the amount of variability of asset i explained by the market factor. We also

introduce the idiosyncratic coefficient of determination, defined as

R2
I i =

σ̂I ii − 1/k̂I ii
σ̂I ii

,

which measures the amount of variability of asset i explained by the remaining assets condi-

tional on the market factor. On June 26, the average of the systematic R2
F is equal to 22.8%

while the average of the idiosyncratic R2
I (for those assets with at least one neighbour) is 7.3%.

Overall the systematic component is the most relevant one in terms of explained variability,

however, the idiosyncratic component captures a non negligible portion of variability as well.
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Figure 1.3 displays the idiosyncratic partial correlation network. A number of comments on

the empirical characteristics of the network are in order. First, on this date, Google (GOOG)

emerges as a particularly highly interconnected firm, with linkages spreading to several other

industry groups. The estimated network also shows some degree of industry clustering, that

is linkages are more frequent among firms in the same industry group. In order to get better

insights on the industry linkages in table 1.3 we report the total number of links across industry

groups. The table shows that firms in the industrials, energy, technology and financials groups

are particularly interconnected among each other. On the other hand, consumer discretionary,

cosumer staples and healthcare have few intra-industry linkages. In figure 1.4 we report the

degree distribution of the estimated network and the distribution of the nonzero partial correla-

tions. As far as the degree distribution is concerned, the network exhibits the typical features

of Power Law networks, that is the number of connections is heterogeneous and the most in-

terconnected stocks have a large number of connections relative to the total number of links.

The histogram of the partial correlation shows that the majority of the partial correlations are

positive and that positive partial correlations are on average larger than the negative ones.

Last, we are interested in determining which companies are more interconnected and cen-

tral in the network. We measure the degree of interconnectedness of a firm using different

approaches: (i) the degree of a company in the network (that is, the number of links); (ii) the

sum of nonzero square partial correlations of a company; and (iii) the centrality index of the

page–rank algorithm. The page–rank algorithm is a famous network based centrality index

used by web search engines to rank web pages. It turns out that the indices provide substan-

tially close rankings. The rank correlation among the different measures are all above 0.9. We

report the top ten most central companies in table 1.4 according to page rank. The page rank

algorithm shows that Google is indeed the most central stock on this date.

We report a number of summary statistics for the sequence of networks estimated in 2009.

First, in figure 1.5 we report the proportion of number of links in the network throughout the

year. The picture shows that sparsity is stable a value slightly below 5% of the total possible

number of linkages. The plots show the sparsity rate vis–à–vis the VIX volatility index to show

that no particular time series pattern emerges in the network sparsity and that in particular the

sparsity is unrelated to the level of volatility of the market.

Figure 1.6 shows the total number of links of each industry group divided by the total num-

ber of possible edges. The plot omits the series for materials, telecom and utilities due to their
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small size. Technology, energy, financial and industrials are the most interconnected sectors also

throughout 2009, and the level and cross sectional rankings are fairly stable across the sample.

In order to give more insights on the degree of concentration within each group, in figure 1.7 we

report the concentration of links in each industry group measured using the Herfindahl index.

Again, materials, telecom and utilities are omitted from the graph. Once again, no particular

time series pattern emerges from the plot and cross sectional concentration rankings are quite

stable. The picture shows that the most interlinked sectors have quite different concentration

characteristics. Technology is one of the most highly concentrated sector. Detailed inspection

of the results reveals that this is driven by the fact that in 2009 Google is essentially the most

interconnected ticker in the sample. On the other hand, industrials have the smaller average

concentration, in that the number of links is quite uniformly distributed across firms and no

specific “hub” emerges among these tickers.

Overall results convey that after conditioning on a one factor structure that data still has a fair

amount of cross–sectional dependence and that networks provide a useful device to synthesize

such information. The main empirical features of the network are stable throughout 2009. Firms

in the energy and industrials sectors are strongly interconnected. Technology companies and

Google in particular are the most highly interconnected firms throughout the year.

1.6.3 Predictive Analysis

In order to assess the ability of the regularized network methodology to provide more pre-

cise estimates of the integrated covariance we carry out an asset allocation prediction exercise

(Hautsch et al., 2012; Nikolaus et al., 2013; Engle and Colacito, 2006). The forecasting exercise

is designed as follows. For each week of 2009, we construct the Markowitz Global Minimum

Variance (GMV) portfolio weights using the formula

ŵ =
Σ̂−11

1′Σ̂−11
, (1.15)

where 1 is n–dimensional vector of ones, and Σ̂ is some estimator of the integrated covariance

over day t. The resulting GMV portfolio weights are used to construct a portfolio of the assets

which is held for the following week. At the end of the week, we compute the daily sample

variance of the portfolio return for that period. We repeat the exercise for all the weeks of

2009. The performance of the covariance estimators is evaluated by assessing which estimator
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delivers the smallest average out–of–sample GMV portfolio variance.

The set of estimators we consider are based on the systematic/idiosyncratic decomposition

of the covariance matrix

Σ̂ = B ΣFF B
′
+ Σ̂I , (1.16)

and differ on the choice of the estimator of the idiosyncratic realized covariance matrix Σ̂I . The

set of candidate idiosyncratic realized covariance estimators contains: (i) unregularized covari-

ance estimator; (ii) constrained covariance estimator, obtained by setting all the off–diagonal

elements of the unregularized covariance estimator to zero; (iii) shrinkage covariance estimator

of Ledoit and Wolf (2004) (see equation (1.13)); (iv) factor regularized covariance estimator

(see equation (1.14)) based on three factors; (v) block-factor regularized estimator, obtained

by applying factor regularization of equation (1.14) based on one factor to each industry block

and setting the rest of the covariance matrix to zero; and (vi) realized network estimator. The

exercise is carried out using the MRK, TSRC and RC estimators.

We report summary results on the forecasting exercise in table 1.5. The table shows the

average annualized volatility of the GMV portfolios. The three different covariance estimators

deliver analogous inference. The constrained estimator that ignores cross–sectional dependence

in the idiosyncratic realized covariance matrix typically performs worst than the baseline un-

constrained realized covariance estimators. Interestingly, the factor and block factor regular-

ization schemes do not produce large gains out–of-sample in comparison to the benchmark.

We interpret this as the consequence that after controlling for the market factor there is only

weak evidence of the presence of additional factors. The block-factor regularization might be

not particularly successful because while some sectors exhibit strong dependence (Industrials)

a large number of stocks in other sectors do not (Consumer Discretionary, Consumer Staples

and Healthcare). The shrinkage and realized network regularization schemes provide the best

out–of–sample results, and the realized network estimator in particular achives the lower out–

of–sample variance. Also, it is interesting to point out that among the two market friction robust

estimators, the MRK delivers lower out of sample losses than the TSRC. Last we note that the

difference in the forecasting performance across the different realized volatility estimators is

substantially smaller after carrying out network regularization.
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1.7 Conclusions

In this chapter we propose a regularization procedure for realized covariance estimators. The

regularization consists of shrinking the off–diagonal elements of the inverse realized covari-

ance matrix to zero using a LASSO–type penalty. Since estimating a sparse inverse realized

covariance matrix is equivalent to detecting the partial correlation network structure of the daily

log-prices, we call our procedure realized network. The technique is specifically designed for

the Two–Scales Realized Covariance (TSRC) and the Multivariate Realized Kernel (MRK) es-

timators based on refresh time sampling, which are state–of–the–art consistent covariance esti-

mators that allow for market microstructure effects and asynchronous trading. We establish the

large sample properties of the procedure estimator and show that the realized network consis-

tently estimates the inverse integrated covariance matrix and consistently detects the nonzero

partial correlations of the network. An empirical exercise is used to highlight the usefulness of

the procedure and an out—of–sample GMV portfolio asset allocation exercise is carried out to

compare our procedure against a number of benchmarks. Results convey that realized network

enhances the prediction properties of classic realized covariance estimators and performs well

relative to a set of alternative regularization procedures.
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1.8 Appendix

1.8.1 Figures and Tables

Table 1.1: SIMULATION STUDY

No regular. Shrinkage Factor Network

Design 1

RC KL 65.89 55.13 48.04 46.06

RMSE 55.77 44.98 57.15 40.43

TSRC KL 51.95 48.72 30.32 28.32

RMSE 29.97 29.56 29.13 19.35

MRK KL 53.44 48.64 36.95 30.93

RMSE 32.50 29.56 29.38 16.94

Design 2

RC KL 73.54 52.07 27.85 46.65

RMSE 68.65 54.59 51.98 45.55

TSRC KL 52.30 10.99 3.94 36.67

RMSE 30.09 20.84 19.02 20.11

MRK KL 60.67 46.32 6.19 38.45

RMSE 31.03 22.33 23.43 26.69

Design 3

RC KL 36.29 15.53 17.61 31.16

RMSE 39.46 19.28 37.69 37.28

TSRC KL 40.26 4.64 3.35 9.36

RMSE 15.95 10.65 12.01 12.09

MRK KL 28.34 4.59 5.43 7.10

RMSE 19.38 10.52 19.49 18.38

The table reports the KL and RMSE average losses of the unregularized RC, TSRC, and MRK estimators

(No regular) as well as their regularized versions (Shrinkage, Factor, Network) in the three simulation designs of

Section 1.5.
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Table 1.3: LINKS ON 2009-06-26

Disc Stap Ener Fin Heal Ind Tech Mat Tel Util
Disc 1 2 4 8 1
Stap 2 1 1 1 1 6 1
Ener 1 35 2 2 12 6
Fin 11 2 14 3
Heal 1 2 3 7 3
Ind 4 1 2 2 12 20 4
Tech 8 6 12 14 7 20 14 6 2
Mat 1 1 6 3 3 4 6 3
Tel
Util 2

The table reports the number of estimated links among industry groups on June 26, 2009.

Table 1.4: CENTRALITY ON 2009-06-26

Rank Ticker Sector
1 GOOG Information Technology
2 MA Information Technology
3 SLB Energy
4 FCX Materials
5 APA Energy
6 COP Energy
7 OXY Energy
8 APC Energy
9 DVN Energy
10 CVX Energy

The table reports the top tickers by eigenvector centrality on June 26, 2009.

Table 1.5: GMV FORECASTING

No regular Diagonal Network Shrinkange Factor Block-Factor
RC 39.10 40.53 26.16 31.86 31.38 32.68
TSRC 37.22 41.41 26.22 29.38 30.60 31.58
MRK 32.83 35.51 24.52 27.81 28.49 28.02

The table reports the results of the GMV forecasting comparison exercise. The table reports the annualized
out of sample volatilities of the GMV portfolios constructed for the unregularized RC, TSRC and MRK estimators
(No regular.) as well as their regularized versions (Diagonal, Network, Shrinkage, Factor, Block–Factor).
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Figure 1.1: IDIOSYNCRATIC CORRELATION HEATMAP ON 2009-06-26

The figure shows the heatmap of the idiosyncratic realized correlation matrix on June 26, 2009 estimated using
the TSRC estimator. Darker colors indicate higher correlations in absolute value.

Figure 1.2: TRACE ON 2009-06-26

The figure shows the trace and BIC of the realized network estimator on June 26, 2009.
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Figure 1.3: IDIOSYNCRATIC PARTIAL CORRELATION NETWORK ON 2009-06-26
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The figure shows the optimal realized network estimated on June 26, 2009.

Figure 1.4: DEGREE AND PARTIAL CORRELATION DISTRIBUTION ON 2009-06-26

The figure shows the degree distribution and the distribution of partial correlations on June 26, 2009.

33



“ExempleUsPlantillaA4” — 2017/1/25 — 18:37 — page 34 — #52

Figure 1.5: SPARSITY VS. VOLATILITY

The figure shows the sparsity of the estimated network (square) vis–à–vis the level of volatility measured by
the VIX (circle) for each week of 2009.

Figure 1.6: SECTORIAL LINKS

The figure shows the number of linkages of the different industry groups over the total number of possible
linkages for each week of 2009.
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Figure 1.7: SECTORIAL CONCENTRATION

The figure shows the link concentration (measured using the Herfindahl index) of the different industry for
each week of 2009.
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1.8.2 Algorithm

The GLASSO Algorithm

Banerjee and Ghaoui (2008) show that the optimization problem in (1.5) can be solved through

a series of LASSO regressions. Define

Σ =

Σ11 Σ12

Σ
′
12 Σ22

 and K̂−1
λ = Wλ =

Wλ 11 wλ 12

w′λ 12 wλ 22

 , (1.17)

where Σ11 and Wλ 11 are (n− 1)× (n− 1) matrices, and Σ12 and wλ 12 are (n− 1)× 1 vectors.

Suppose that that the values of Wλ 11 and wλ 22 are known and that we are concerned with

finding the wλ 12 which minimizes (1.5). Banerjee and Ghaoui (2008) consider the following

minimization problem

min
β

{
1

2

(
W

1
2
λ 11β − b

)′ (
W

1
2
λ 11β − b

)
+ λ||β||1

}
, (1.18)

where b = W
− 1

2
λ 11Σ12 and ||β||1 is the sum of absolute values of entries in β. The authors

then show that (1.18) is the the dual problem of (1.5) in the sense that if β solves (1.18), then

wλ 12 = Wλ 11β solves (1.5). Note that the optimization problem in (1.18) can be cast as a

LASSO regression estimation problem.

These results motivate the following iterative algorithm to solve (1.5) (Friedman et al.,

2007). Let Ŵ denote an initial estimate of Wλ, for example Ŵ = Σ + λIn, where In is

the identity matrix of order n. In each iteration of the algorithm, for each asset i we permute the

rows and columns of Ŵ so that the n–the column/row of the matrix contains the covariances

with respect to i. We then partition Ŵ as in (1.17) and update the values of ŵ12 and ŵ′12 by

solving equation (1.18). The algorithm is iterated until convergence. Finally, we obtain the K̂λ

estimator by taking the inverse of Wλ.

Pairwise Refresh Time Sampling

Consider two assets i and j observed at times Ti = {ti1, . . . , timi} and Tj = {tj1, . . . , tj mj}

on [0, 1]. The set of pairwise refresh time points is Tij =
{
τ0, τ1, . . . , τm−1, τm, τm+1

}
, where

0 = τ0 < τ1 . . . < τm−1 < τm ≤ τm+1 = 1 and m is the amount of pairwise refresh time
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observations for stocks i and j on [0, 1]. For 0 < k ≤ m, τk is determined by

τk = max {min {t ∈ Ti : t > τk−1} ,min {t ∈ Tj : t > τk−1}} .

The timestamps for assets i and j that correspond to the refresh time τk are respectively tri ,k =

max {t ∈ Ti : t ≤ τk} and trj ,k = max {t ∈ Tj : t ≤ τk}.

Eigenvalue Cleaning

The eigenvalue cleaning technique we use here is the same as that used in Hautsch et al. (2012),

and it is introduced by Laloux et al. (1999). When the correlations between asset returns are

zeros, according to the Marchenko-Pastur law, the maximum eigenvalues of the estimated cor-

relation matrix of asset returns is λmax = σ2
(
1 + n

m
+ 2
√

n
m

)
, as m→∞, where σ = 1 at this

step. If the largest eigenvalue of the estimated correlation matrix is larger than λmax, we believe

this is a market signal of price correlations. Then we reset the value of σ2 as σ2 = 1− λ̂1
n

, and

update the value of λmax accordingly in order to detect smaller signals. In the same way we

compare λmax with the other estimated eigenvalues and update λmax based on the comparison

results. The eigenvalues which are larger than the updated λmax are supposed to reflect market

signals, and those smaller than λmax are believed to be driven by the measurement noise on the

correlation matrix. Thus we update the eigenvalues in the following way:

λ̃i =

λ̂i if λ̂i > λmax

δ otherwise,

where

δ =
trace(R̂+)−

∑
(λ̂i>λmax) λ̂i

n− ( No. of λ̂i > λmax)

and R̂+ is the positive semi-definite projection of the estimated correlation matrix. δ is defined

in order to preserve the trace of the correlation matrix, and the regularized correlation matrix can

be finally obtained by R̃ = Q̂Λ̃Q̂′, where Q̂ is the eigenvector matrix of the original estimated

correlation matrix, and Λ̃ = diag(λ̃i).
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Page-Rank Algorithm

Suppose there are n assets represented asA1, A2, . . . , An, and we denote the page-rank index of

the ith asset by PRi. Then the indices of these assets can be obtained by solving the following

equations: 

PR1 =
(
PR2α1 2

L2
+ PR3α1 3

L3
+ · · ·+ PRnα1n

Ln

)
q + 1− q

PR2 =
(
PR1α1 2

L1
+ PR3α2 3

L3
+ · · ·+ PRnα2n

Ln

)
q + 1− q

· · ·

PRn =
(
PR1α1n

L1
+ PR2α2 3

Ln
+ · · ·+ PRn−1nαn−1n

Ln−1

)
q + 1− q

Here αi j = 1 if there is a link between assets i and j, and αi j = 0 if there is no link. Li is the

number of links of asset i. q is a constant and its effect is to make the solutions nonzero.

1.8.3 Proofs

Following the same notation as in Ravikumar et al. (2011), we set

K̃ = arg min
K∈Sn,KSc=0

{
tr(ΣK)− log det(K) + λ

∑
i 6=j

|kij|

}
, (1.19)

W = (wij) = Σ−Σ?,4 = K̃−K?,R(4) = K̃−K∗ + K?4K?.

We need the following lemma in order to prove Theorem 1 for α0 = 1.

LEMMA 1.1. Assume that m ≥ m0 :=

(
− 2
a3xa

log

(
a

1
aβ
3

a2
x

1
βn−τ

)) 1
aβ

, for some τ > 2, where

ai, a and β are the constants in Assumption 1.1. Then for all x ∈
[
0,min

(
a1,

aβ2

a
1
a
3

exp
(
− 2
a2β

))]
,

P (||W||∞ ≥ x) ≤ 1

nτ−2
.

Proof. According to Assumption 1.1, when x ∈ [0, a1], for generic i, j we have

P (|wij| ≥ x) ≤ a2m exp
(
−a3

(
mβx

)a)
= P1P2, (1.20)

where P1 = a2

a
1
aβ
3

x−
1
β exp

(
−a3(mβx)

a

2

)
, P2 =

(
a3m

aβxa
) 1
aβ exp

(
−a3(mβx)

a

2

)
. P1 is decreas-

ing inm. Thus, whenm ≥ m0, P1 ≤ n−τ . On the other hand, a3m
aβxa ≥ −2 log

(
a

1
aβ
3

a2
x

1
βn−τ

)
.
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Thus, when x ≤ aβ2

a
1
a
3

exp
(
− 2
a2β

)
, a3m

aβxa ≥ −2 log

(
a

1
aβ
3

a2
x

1
β

)
≥ 4

a2β2 .

Consider the function f(y) =
(
y exp

(
−aβy

2

)) 1
aβ . It is easy to see that when y ≥ 4

a2β2 ,

f(y) ≤ 1. As P2 = f
(
a3m

aβxa
)
, and a3m

aβxa ≥ 4
a2β2 , we get that P2 ≤ 1. Since P1 ≤ n−τ ,

we obtain that

P (|wij| ≥ x) ≤ n−τ .

Using this inequality over all n2 entries of W, we conclude that

P (||W ||∞ ≥ x) = P

(
max
i,j
|wij| ≥ x

)
≤ n2−τ .

Proof of Theorem 1.1. First we prove (a). Set h(x) = a2m exp
(
−a3

(
mβx

)a) for x > 0, and

a0 := min

(
a1,

aβ2

a
1
a
3

exp
(
− 2
a2β

))
. In the proof of Lemma 1, we have shown that whenm ≥ m0,

which is true according to (3.2) and (1.7), h(a0) ≤ n−τ . On the other hand, h
(
α
8
λ
)

= n−τ .

Because the function h is decreasing, we get that α
8
λ ≤ a0. Therefore, by Lemma 1.1, we

conclude that

P
(
||W||∞ ≤

α

8
λ
)
≥ 1− 1

nτ−2
. (1.21)

By the same argument, if σm ≤ a0, as m ≥

(
− 2
a3σam

log

(
a

1
aβ
3

a2
σ

1
β
mn−τ

)) 1
aβ

, we have h(σm) ≤

n−τ , so αλ
8
≤ σm. When σm > a0, we still have αλ

8
≤ σm, since αλ

8
≤ a0. Therefore,

P (||W||∞ ≤ σm) ≥ P
(
||W||∞ ≤

α

8
λ
)
≥ 1− 1

nτ−2
, (1.22)

and when the event A :=

{
||W||∞ ≤ α

8
λ = m−β

(
log(a2mnτ )

a3

) 1
a

}
holds, Σ has positive diag-

onal entries, and by Lemma 3 in Ravikumar et al. (2011), K̂ is unique. Proceeding as before,

we can obtain that
(

6 (1 + 8α−1)
2
d max (CΣ?CΓ? , C

3
Σ?C2

Γ?}
)−1

≥ αλ
8

. Thus, we get that, if A

holds, then

2CΓ?(||W||∞ + λ) ≤ 2CΓ?
(
1 + 8α−1

)
m−β

(
log(a2mn

τ )

a3

) 1
a

≤
(
3d max

(
CΣ? , C3

Σ?CΓ?
})−1

.
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Therefore, by Lemma 6 in Ravikumar et al. (2011), it holds that

||4||∞ ≤ 2CΓ?
(
1 + 8α−1

)
m−β

(
log(a2mn

τ )

a3

) 1
a

.

Now, appealing to Lemma 5 in Ravikumar et al. (2011), we obtain that

||R(4)||∞ ≤ 3

2
d||4||2∞C3

Σ? ≤ 6C3
Σ?C2

Γ?d
(
1 + 8α−1

)2

(
m−β

(
log(a2mn

τ )

a3

) 1
a

)2

= 6C3
Σ?C2

Γ?d
(
1 + 8α−1

)2
m−β

(
log(a2mn

τ )

a3

) 1
a αλ

8
≤ αλ

8
.

By Lemma 4 in Ravikumar et al. (2011), we conclude that K̃ = K̂. Thus, ||K̂−K?||∞ satisfies

the same bound as ||4||∞.

Now let us prove (b). Using the same argument as before, it is easy to see hat

km
2CΓ? (1 + 8α−1)

≥ αλ

8
= m−β

(
log(a2mn

τ )

a3

) 1
a

.

Then we have

km ≥ 2CΓ?
(
1 + 8α−1

)
m−β

(
log(a2mn

τ )

a3

) 1
a

≥ 2CΓ?(||W||∞ + λ).

Finally appealing to Lemma 7 in Ravikumar et al. (2011), the proof is completed.

Proof of Corollary 3.1. Notice that Σ∗FF = σ∗n+1,n+1 and ΣFF = σn+1,n+1. Then for all i, j ∈

V ,

σ∗I ij = σ∗ij −
σ∗n+1,iσ

∗
j,n+1

σ∗n+1,n+1

and σI ij = σij −
σn+1,iσj,n+1

σn+1,n+1

.

Therefore,

P(
∣∣σI ij − σ∗I ij∣∣ > x) ≤ P

(∣∣σ∗ij − σij∣∣ ≥ x

2

)
+ P

(∣∣∣∣σn+1,iσj,n+1

σn+1,n+1

−
σ∗n+1,iσ

∗
j,n+1

σ∗n+1,n+1

∣∣∣∣ ≥ x

2

)
.

To the first term, we can apply the concentration inequality (3.22). In order to bound the second
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term, set b1 = σn+1,n+1 − σ∗n+1,n+1, b2 = σn+1,i − σ∗n+1,i, and b3 = σj,n+1 − σ∗j,n+1. Then,

∣∣∣∣σn+1,iσj,n+1

σn+1,n+1

−
σ∗n+1,iσ

∗
j,n+1

σ∗n+1,n+1

∣∣∣∣
=

∣∣∣∣b3σ
∗
n+1,n+1σ

∗
n+1,i + b2σ

∗
n+1,n+1σ

∗
j,n+1 + b2b3σ

∗
n+1,n+1 − b1σ

∗
n+1,iσ

∗
j,n+1

σ∗n+1,n+1(σ∗n+1,n+1 + b1)

∣∣∣∣ . (1.23)

Without loss of generality, we assume that σ∗j,n+1 and σ∗n+1,i are non-zero. Otherwise, the proof

follows similarly. Then,

P
(∣∣∣∣σn+1,iσj,n+1

σn+1,n+1

−
σ∗n+1,iσ

∗
j,n+1

σ∗n+1,n+1

∣∣∣∣ ≥ 8x

)
≤ P

(
|b1| ≥ min

(
σ∗n+1,n+1

2
,
σ∗2n+1,n+1x

|σ∗n+1,iσ
∗
j,n+1|

))
+ P

(
|b2| ≥ min

(
σ∗n+1,n+1x

|σ∗j,n+1|
, 1

))
+ P

(
|b3| ≥

σ∗n+1,n+1x

|σ∗n+1,i|

)
.

Observe that in the last inequality we have used the fact that if |b1| <
σ∗n+1,n+1

2
, then we can

lower bound the denominator in (1.23) by
σ∗2n+1,n+1

2
. Then appealing again to the concentration

inequality (3.22), we conclude the desired result.

Proof of Theorem 1.2. We start proving the concentration inequality for a generic asset i. To

simplify the exposition, we assume that the drift is zero in (2.1), otherwise it is easy to see that

the same result follows. By definition (1.10), the realized kernel estimator of σ∗ii equals

σK ii = γ0(y, y) + A+B + C, (1.24)

where

A =
H∑
h=1

k

(
h− 1

H

)
(γh(y, y) + γ−h(y, y)),

B = 2γ0(y, u) +
H∑
h=1

k

(
h− 1

H

)
(γh(y, u) + γh(u, y) + γ−h(y, u) + γ−h(u, y)),

C = γ0(u, u) +
H∑
h=1

k

(
h− 1

H

)
(γh(u, u) + γ−h(u, u)),

and for each h ∈ {−H, . . . , H}, γh(y, u) =
∑m−1

j=1 (yj − yj−1)(uj−h − uj−h−1).

By Lemma 3 in Fan et al. (2012), there exist constants c1, c2 > 0 such that for large m and
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x ∈ [0, c1],

P (|γ0(y, y)− σ∗ii| ≥ x) ≤ 2 exp(−c2mx
2). (1.25)

Therefore, by (3.9) and (3.11), it suffices to bound the terms A,B and C in probability.

Bound in probability of the term A in (3.9). We decompose A as

A =
m−1∑
j=1

∫ tj

tj−1

θ(u)dB(u)
H∑
h=1

k

(
h− 1

H

)(∫ tj−h

tj−h−1

θ(u)dB(u) +

∫ tj+h

tj+h−1

θ(u)dB(u)

)

= A1 + A2.

We start bounding A1. For any x > 0 and α > 0, we have

P
(
|A1| ≥

x

2

)
≤ P

∣∣∣∣∣∣
m−1∑
j=1

∫ tj

tj−1

θ(u)dB(u)Dj1{
sup

j∈{1,...,m−1}
|Dj |≤m−

1
4+α

}
∣∣∣∣∣∣ ≥ x

4


+ P

(
sup

j∈{1,...,m−1}
|Dj| > m−

1
4

+α

)
,

where

Dj =
H∑
h=1

k

(
h− 1

H

)∫ tj−h

tj−h−1

θ(u)dB(u).

Since k and θ are bounded, it holds that

H∑
h=1

k2

(
h− 1

H

)∫ tj−h

tj−h−1

|θ(u)|2du ≤ cH
C4
m

= cm−
1
2 .

Therefore, appealing to the exponential martingale inequality, we get that

P

(
sup

j∈{1,...,m−1}
|Dj| > m−

1
4

+α

)
≤ 2m exp

(
−cm2α

)
.

On the other hand, since

m−1∑
j=1

∫ tj

tj−1

|θ(u)|2duD2
j1
{

sup
j∈{1,...,m−1}

|Dj |≤m−
1
4+α

} ≤ cm2α− 1
2 ,
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again using the exponential martingale inequality, we obtain that for all x > 0,

P

∣∣∣∣∣∣
m−1∑
j=1

∫ tj

tj−1

θ(u)dB(u)Dj1{
sup

j∈{1,...,m−1}
|Dj |≤m−

1
4+α

}
∣∣∣∣∣∣ ≥ x

4

 ≤ 2 exp
(
−cm

1
2
−2αx2

)
.

Therefore, choosing α > 0 such that m2α = m
1
4x, we conclude that

P
(
|A1| ≥

x

2

)
≤ 2m exp

(
−cm

1
4x
)
. (1.26)

We next bound A2. We write A2 = A21 + A22 + A23, where

A21 =
H−1∑
i=1

∫ ti+1

ti

θ(u)dB(u)
i−1∑
j=0

k

(
i− j
H

)∫ tj+1

tj

θ(u)dB(u)

A22 =
m−1∑
i=H

∫ ti+1

ti

θ(u)dB(u)
i−1∑

j=i−H

k

(
i− j
H

)∫ tj+1

tj

θ(u)dB(u)

A23 =
m+H−1∑
i=m

∫ ti+1

ti

θ(u)dB(u)
m−2∑
j=i−H

k

(
i− j
H

)∫ tj+1

tj

θ(u)dB(u).

We start bounding A22. For a generic i, we have that

i−1∑
j=i−H

∫ tj+1

tj

k2

(
i− j
H

)
|θ(u)|2du ≤ cm−

1
2 .

Thus, according to the exponential martingale inequality, for any α > 0, we obtain that

P

(
sup

i∈{H,...,m−1}
|Fi| > mα− 1

4

)
≤ 2m exp

(
−cm2α

)
,

where Fi =
∑i−1

j=i−H k
(
i−j
H

) ∫ tj+1

tj
θ(u)dB(u). Therefore, using again the exponential martin-

gale inequality, we conclude that for any x > 0 and α > 0,

P
(
|A22| ≥

x

6

)
≤ P

∣∣∣∣∣∣
m−1∑
i=H

∫ ti+1

ti

θ(u)Fi1{
sup

i∈{H,...,m−1}
|Fi|≤mα−

1
4

}dB(u)

∣∣∣∣∣∣ ≥ x

12


+ P

(
sup

i∈{H,...,m−1}
|Fi| > mα− 1

4

)
≤ 2 exp

(
−cm

1
2
−2αx2

)
+ 2m exp

(
−cm2α

)
,
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since
m−1∑
i=H

∫ ti+1

ti

|θ(u)|2F 2
i 1{

sup
i∈{H,...,m−1}

|Fi|≤mα−
1
4

}du ≤ cm2α− 1
2 .

Thus, choosing α as in (1.26), we conclude that A2,2 also satisfies (1.26). Similarly, so do

A2,1, A2,3, and A.

Bound in probability of the term B in (3.9). We decompose B as B = B1 +B2, where

B1 = γ0(y, u) +
H∑
h=1

k

(
h− 1

H

)
(γh(y, u) + γ−h(y, u))

B2 = γ0(u, y) +
H∑
h=1

k

(
h− 1

H

)
(γh(u, y) + γ−h(u, y)).

We start bounding B1. We write

B1 =
m−1∑
j=1

∫ tj

tj−1

θ(u)dB(u)Gj,

where

Gj =
H∑
h=1

k

(
h− 1

H

)
(uj−h − uj−h−1 + uj+h − uj+h−1) + uj − uj−1. (1.27)

Observe that since k(0) = 1, k(1) = 0, we have

Gj ∼ N

(
0, 2η2

H∑
h=1

(
k

(
h

H

)
− k

(
h− 1

H

))2
)
.

Moreover, there exists βh ∈
[
h−1
H
, h
H

]
such that

H∑
h=1

(
k

(
h

H

)
− k

(
h− 1

H

))2

=
1

H

H∑
h=1

1

H
k′(βh)

2 ≤ cm−
1
2 .

Therefore, for all α > 0,

P

(
sup

j∈{1,...,m−1}
|Gj| > mα− 1

4

)
> 2m exp

(
−cm2α

)
.
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Consequently, by the exponential martingale inequality, for any x > 0,

P (|B1| ≥ x) ≤ P

∣∣∣∣∣∣
m−1∑
j=1

∫ tj

tj−1

θ(u)dB(u)Gj1{
sup

j∈{1,...,m−1}
|Gj |≤mα−

1
4

}
∣∣∣∣∣∣ ≥ x


+ P

(
sup

j∈{1,...,m−1}
|Gj| > mα− 1

4

)
≤ 2 exp

(
−cm

1
2
−2αx2

)
+ 2m exp

(
−cm2α

)
,

since
m−1∑
i=H

∫ ti+1

ti

|θ(u)|2G2
j1
{

sup
j∈{1,...,m−1}

|Gj |≤mα−
1
4

}du ≤ cm2α− 1
2 .

Thus, choosing α as in (1.26), we conclude that B1 also satisfies (1.26).

We next bound B2. We write

B2 =
m−1∑
j=1

(uj − uj−1)Sj = −S1u0 +
m−1∑
j=2

(Sj−1 − Sj)uj−1 + Sm−1um−1,

where

Sj =
H∑
h=1

k

(
h− 1

H

)(∫ tj−h

tj−h−1

θ(u)dB(u) +

∫ tj+h

tj+h−1

θ(u)dB(u)

)
+

∫ tj

tj−1

θ(u)dB(u).

Now, for all x > 0 and α > 0, we write

P (|B2| ≥ x) ≤ P

(∣∣∣∣B21{E≤m2α− 1
2

}∣∣∣∣ ≥ x

2

)
+ P

(
E > m2α− 1

2

)
,

where E = S2
1 +

∑m−1
j=2 (Sj−1 − Sj)2 + S2

m−1.

Since the random variables u0, u1, ..., um are iid centered Gaussian with variance η2,

P

(∣∣∣∣B21{E≤m2α− 1
2

}∣∣∣∣ ≥ x

2

)
≤ 2 exp

(
cm

1
2
−2αx2

)
.

In order to bound the second term, we observe that

E = S1(2S1 − S2) +
m−2∑
j=2

Sj(2Sj − Sj−1 − Sj+1) + Sm−1(2Sm−1 − Sm−2).
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Thus,

P
(
E > 7m2α− 1

2

)
≤ P

(
sup

j∈{2,...,m−2}
|2Sj − Sj−1 − Sj+1| > mα− 5

4

)

+ P

(
sup

j∈{1,...,m−1}
|Sj| > mα− 1

4

)
.

Straightforward computations show that both terms are bounded by cm exp (−cm2α). There-

fore, choosing α as in (1.26), we conclude that B2, and thus B also satisfies (1.26).

Bound in probability of the term C in (3.9). We write

C = −u0e1 +
m−2∑
j=1

(ej − ej+1)uj + em−1um−1,

where ej =
∑H

h=2 k
(
h−1
H

)
(uj−h − uj−h−1 + uj+h − uj+h−1) + uj+1 − uj−2.

For all x > 0 and α > 0, we write

P (|C| ≥ x) ≤ P

(∣∣∣∣C1{
F≤m2α− 1

2

}∣∣∣∣ ≥ x

2

)
+ P

(
F > m2α− 1

2

)
,

where F = e2
1 +

∑m−1
j=2 (ej − ej−1)2 + e2

m−1.

Again, straightforward computations show that

P
(
F > 3m2α− 1

2

)
≤ P

(
sup

j∈{2,...,m−1}
(ej − ej−1)2 > m2α− 3

2

)
+ P

(
e2

1 > m2α− 1
2

)
+ P

(
e2
m−1 > m2α− 1

2

)
≤ cm exp

(
−cm2α

)
.

Hence, the rest of the proof follows as for B2, which shows that C also satisfies (1.26).

Conclusion. The bounds obtained for A, B, and C, together with (3.9) and (3.11), show that

there exist constant c1, c2, c3, c4 > 0 such that for large m and x ∈ [0, c1],

P (|σK ii − σ∗ii| ≥ x) ≤ 2 exp(−c2mx
2) + c3m exp

(
−c4m

1
4x
)
.

Now, when m−
3
4 < x ≤ c1, we have x2m ≥ xm

1
4 , and thus, the second term wins. On the other
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hand, when 0 ≤ x ≤ m−
3
4 , we have that

m exp
(
−c4xm

1
4

)
≥ m exp

(
−c4m

− 1
2

)
> 1,

and thus the same bound holds. This concludes the proof of the theorem for the diagonal terms.

We are now going to prove the concentration inequality for two generic assets i and j. By

(2.1), the integrated covariance of the log-returns of assets i and j on [0, 1] is given by

∫ 1

0

Θi(u)Θj(u)′du =
1

4

(∫ 1

0

(Θi(u) + Θj(u)) (Θi(u) + Θj(u))′ du

)
− 1

4

(∫ 1

0

(Θi(u)−Θj(u)) (Θi(u)−Θj(u))′ du

)
,

(1.28)

where Θk(u), k ∈ {1, ..., n} denote the rows of the matrix Θ(u). Therefore, in order to estimate

the integrated covariance, it suffices to estimate the two terms in (1.28).

The MRK estimator of s∗ij =
∫ 1

0
(Θi(u) + Θj(u)) (Θi(u) + Θj(u))′ du is given by

sK ij = γ0(xri + xrj) +
H∑
h=1

k

(
h− 1

H

)
(γh(x

r
i + xrj) + γ−h(x

r
i + xrj)),

where γh(xri + xrj) = γh(x
r
i + xrj , x

r
i + xrj), for all h ∈ {−H, . . . , H}.

Observe that if there is no asynchronicity among the observations, then we can derive the

concentration inequality for sK ij as we did for the case of a single asset. Therefore, it suffices to

split the estimator as sK ij = sK ij +
∑10

q=1 Fq, where sK ij is the analogous of sK ij but replacing

xri + xrj by xi + xj , where x`k := y`(τk) + ur`k, for ` = i, j and k ∈ {1, ...,m}. The terms Fq,

are those that contain the points4y` k := y`(τk)− yr`k, that is,

F1 = γ0(4yi, xi + xj) +
H∑
h=1

k

(
h− 1

H

)
(γh(4yi, xi + xj) + γ−h(4yi, xi + xj)),

F3 = γ0(xi + xj,4yi) +
H∑
h=1

k

(
h− 1

H

)
(γh(x1 + x2,4yi) + γ−h(xi + xj,4yi)),

F5 = γ0(4yi,4yj) +
H∑
h=1

k

(
h− 1

H

)
(γh(4yi,4yj) + γ−h(4yi,4yj)),

F7 = γ0(4yi, uri + urj) +
H∑
h=1

k

(
h− 1

H

)
(γh(4yi, uri ) + γ−h(4yi, uri + urj)),
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F9 = γ0(uri + urj ,4yi) +
H∑
h=1

k

(
h− 1

H

)
(γh(u

r
i + urj ,4yi) + γ−h(u

r
i + urj ,4yi)).

F2, F4, F6, F8 and F10 are equal to F1, F3, F5, F7 and F9, respectively, by replacing4yi by4yj
and viceversa.

The proof of the concentration inequality for a single asset i shows that |sK ij − σ∗ij| satisfies

(1.26). Starightfoward computations show that the same bound is satisfied for all |Fq|. Finally,

proceeding similarly, we obtain the same estimate for the MRK estimator of the second term in

(1.28), which concludes the desired proof.
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Chapter 2

A TRUNCATED TWO–SCALES

REALIZED VOLATILITY ESTIMATOR

2.1 Introduction

The volatility of asset prices is a fundamental ingredient for asset pricing, risk management and

portfolio allocation. Over the last decade, the financial econometrics literature has developed

a new generation of estimators of the daily volatility of asset prices based on intra–daily data

typically referred to as realized volatility estimators. The classic realized volatility estimator of

Andersen et al. (2003) for example is defined as the sum of the squares of high–frequency intra–

daily returns. Under appropriate assumptions, this estimator provides a consistent estimate of

the quadratic variation of asset prices when prices follow a continuous stochastic model and are

directly observed (see e.g. Barndorff-Nielsen and Shephard (2002) and Andersen et al. (2003)).

It is well acknowledged in the literature that asset prices exhibit discontinuities in their

sample paths and that are also contaminated by market microstructure noise (see e.g. Barndorff-

Nielsen and Shephard (2006) and Hansen and Lunde (2012)). The presence of discontinuities

has motivated modelling prices as a combination of a continuous and a jump process. However,

allowing for a jump component makes it more challenging to estimate the quadratic variation of

the continuous part, which is typically the object of interest from an economic perspective. The

presence of market microstructure noise also poses challenges to the estimation of the quadratic

variation. In fact, in the presence of noise standard realized volatility estimators are inconsistent

as the sampling frequency of the data increases.
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These two important stylized facts of asset prices have motivated the development of a

number of estimators which are consistent in the presence of jumps, noise or both. An estimator

that is robust to price jumps is the truncated realized volatility estimator introduced by Mancini

(2008, 2009), which deals with both finite and infinite activity jumps. Moreover, different

realized power and multipower variation estimators that are also robust to price jumps have

been introduced, see e.g. Barndorff-Nielsen and Shephard (2004b) and Corsi et al. (2010) for

the case of finite activity jumps, and Barndorff-Nielsen et al. (2006), Woerner (2006), Jacod

(2008), and Jacod and Todorov (2014) for infinite activity jumps. Consistent estimators in

the presence of noise are the two-scales realized volatility (Zhang et al. (2005)) and the realized

kernels (Barndorff-Nielsen et al. (2008), Barndorff-Nielsen et al. (2011)). Finally, contributions

that propose estimators that are consistent in the presence of both finite activity jumps and noise

include, among others, Podolskij and Vetter (2009), Fan and Wang (2007), Barunik and Vacha

(2015) and Christensen et al. (2010).

This chapter contributes to this latter strand of the literature by developing a novel realized

volatility estimator that is consistent in the presence of both finite or infinity activity jumps and

noise. We do so by combining a truncation technique in the spirit of Mancini (2008, 2009) to

deal with the jumps, together with the idea of local average of intra-daily returns developed

in Zhang et al. (2005) to deal with the market microstructure noise. The standard truncation

technique introduced by Mancini (2008) consists of excluding the intra-daily returns larger than

a threshold (in absolute value) from the estimation of the quadratic variation, as these are likely

to contain a realization of a jump. However, this jump truncation strategy fails if the efficient

price process is contaminated by market microstructure noise. We overcome this hurdle by

introducing a truncation technique based on a local average of intra-daily returns. We show that

such local average smooths away the effect of the noise and retains the property of being large

when a jump is realized. We then estimate the quadratic variation using the two–scales realized

volatility estimator after truncating the intervals in which the local average is larger than a

threshold. We call our estimator the truncated two–scales realized volatility estimator (TTSRV).

We show that this estimator is consistent in the presence of finite or infinite activity jumps. In

the case where jumps have finite activity, we derive its asymptotic distribution. A simulation

study is used to assess the finite sample properties of the TTSRV estimator. The study shows

that when the price process is affected by both jumps and noise, our proposed estimator delivers

a significant improvement over other commonly employed realized volatility estimators: the
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truncated realized volatility (Mancini, 2008, 2009), the two-scales realized volatility (Zhang

et al., 2005), the bipower variation (Barndorff-Nielsen and Shephard, 2004b), and the modulated

bipower variation (Podolskij and Vetter, 2009).

This chapter is primarily related to the contributions of Podolskij and Vetter (2009), Fan and

Wang (2007), Barunik and Vacha (2015) and Christensen et al. (2010). The estimator proposed

in Podolskij and Vetter (2009) is a modified version of the modulated bipower variation (MBV)

obtained using an estimator of the variance of the market microstructure noise. The resulting

estimator is shown to be consistent in the presence of finite activity jumps and noise, but no

asymptotic distribution or convergence rate is established. The simulation study of this chapter

shows that our estimator is significantly more efficient than this new MBV. The estimators pro-

posed in Fan and Wang (2007) and Barunik and Vacha (2015) are based on wavelet techniques.

They first use wavelets to detect the locations and sizes of price jumps and then remove those

jumps from the price series. The authors then apply noise robust realized volatility estimators to

the jump adjusted data. The asymptotic distribution of the wavelet-based two-scales estimator

is derived in Fan and Wang (2007). Our truncated two-scales estimator is similar in spirit to

this approach since both estimators are based on detecting the jumps first and then applying a

noise robust estimator to the jump adjusted data. In fact, the TTSRV has the same asymptotic

distribution of the estimator proposed in Fan and Wang (2007). Our estimator however is eas-

ier to compute than the wavelet-based one, and we also show that it is robust to both infinite

activity jumps and noise. Moreover, we are able to derive a technique to estimate the asymp-

totic variance of the estimation error, which is absent in Fan and Wang (2007). The estimator

proposed in Christensen et al. (2010) is based on intra–daily quantile ranges. It achieves the

optimal convergence rate of a realized volatility estimator in the presence of noise and finite

activity jumps. However, its efficiency relies on specific assumptions on the dynamics of the

spot volatility that are quite restrictive. In fact, the other estimators cited in this section as well

as the estimator proposed in this chapter do not rely on such assumptions. It is important to

emphasize that the analysis of all of these estimators has been developed under finite activity

jumps only, while in this chapter we establish the properties of our estimator under both finite

and infinite activity jumps. This chapter is also related to the contributions of Jacod and Protter

(2012) and Aı̈t-Sahalia and Jacod (2014) who propose truncated estimators on volatilty func-

tionals, including the truncated bipower and multipower estimators. These estimators however

do not consistently estimate the integrated volatility in the presence of noise. Besides volatil-
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ity estimation, truncation techniques are widely used, for instance, to explore the relationship

between jumps and spot volatility (Jacod and Todorov, 2010) and to estimate the covariation

between asset returns and changes in volatility (Aı̈t-Sahalia et al., 2016). Another strand of

the literature relevant to this chapter is the one that concerns testing for the presence of price

jumps and cojumps (with or without noise), as e.g. in Jacod and Todorov (2009), Jacod et al.

(2010), Aı̈t-Sahalia et al. (2012), Lee and Mykland (2012) and Li et al. (2016). These papers

have inspired the jump detection indicator based on local averages used in this chapter.

The outline of this chapter is as follows. Section 2 introduces basic notation and the def-

inition of the TTSRV estimator. In Section 3 we establish the asymptotic properties of the

estimator when price jumps have finite activity. In Section 4 we derive the consistency of the

estimator when jumps are of infinite activity. Section 5 contains the result of the simulation

study.

2.2 Methodology

We denote by (yt, t ∈ [0, 1]) the efficient log–price process of an asset, where 0 typically

represents the opening of the trading day and 1 the closing. The process starts at an initial

value y0 ∈ R and its dynamics are given by

dyt = atdt+ σtdBt + dJt, t ∈]0, 1], (2.1)

where B is a standard Brownian motion and J is a pure jump Lévy process, both defined on

a filtered probability space (Ω, (Ft)t≥0,F ,P). We assume that the coefficients a and σ are

progressively measurable processes, which ensures that (yt, t ∈ [0, 1]) is adapted and càdlàg

(see e.g. Ikeda and Watanabe, 1981).

We assume that the efficient log–price is contaminated by market microstructure noise. That

is, rather than the efficient price yt the econometrician observes at discrete times its contami-

nated counterpart xt. Specifically, we assume that the observed price xt is measured at equally

spaced timestamps 0 = t0 < t1 < · · · < tm = 1 where h = ti − ti−1 = 1
m

and is generated as

xti = yti + uti , i = 1, ...,m,

where uti denotes the microstructure noise associated to the i–th trade. We assume that uti is a
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discrete i.i.d. process, independent of the efficient price process and such that uti ∼ N(0, η2)

where η is a positive constant. In order to simplify the exposition, we denote by xi, yi and ui

the processes xti , yti and uti .

The theory developed in this chapter differs depending on whether the pure jump Lévy

process J has finite activity (FA), that is, it jumps a.s. a finite number of times on each finite

time interval, or it has infinite activity (IA). It is well-known (see e.g. Sato (1999)), that we can

always decompose J as Jt = J1,t + J2,t, where

J1,t =

∫ t

0

∫
|z|>1

z µ(dz, ds), and J2,t =

∫ t

0

∫
|z|≤1

z (µ(dz, ds)− ν(dz)ds) , (2.2)

where µ is the Poisson random measure associated to the jumps of J , µ(dz, ds) − ν(dz)ds is

the compensated measure and ν is the Lévy measure. Observe that J2 is a square integrable

martingale with IA, and for each t, var(J2,t) = t
∫
|x|≤1

x2ν(dx) < ∞. On the other hand, J1 is

a compound Poisson process with FA, so we can write J1,t =
∑Nt

i=1 Yi, where N is a Poisson

process with constant intensity λ > 0, and Yi are i.i.d. random variables independent of N .

Recall that Nt counts the number of jumps occurred in the interval [0, t], and the Yi’s are the

different jump sizes. We set 4Nt = Nt − Nt− and Ni = Nti , for i = 1, ...,m. Observe that

we can also consider a slightly more general jump process Jt = J1,t + J2,t, where J2 is an IA

Lévy pure jump process and J1 is a general FA jump process, that is, J1,t =
∑Nt

i=1 Yi, where

N is a non-explosive counting process with not necessarily constant intensity, and the random

variables Yi are not necessarily i.i.d., nor independent of N .

The aim of this chapter is to provide a consistent estimator of the integrated volatility

IV =

∫ 1

0

σ2
t dt.

In case of no microstructure noise nor price jumps, IV is the quadratic variation of the price

process, and it is well-known that the realized volatility
∑m

i=1(yi − yi−1)2 is a consistent esti-

mator of IV (see e.g. Barndorff-Nielsen and Shephard (2002)). Several strategies have been

put forward in the literature to estimate IV in case of jumps. The approach introduced by

Mancini (2008, 2009) consists of excluding from the realized volatility the intervals (ti−1, ti]

where jumps are likely to have occurred. In order to identify such intervals, Mancini proposes a

truncation method that consists of comparing the value of the squared return over each interval

with a given threshold. If this value is larger than the threshold, then it is likely that the interval
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contains a jump. However, in the presence of microstructure noise this method does not con-

sistently detect jumps since large returns can be observed over short intervals because of the

noise.

In order to obtain a consistent estimator of IV in the presence of jumps and noise we propose

the following estimation strategy. We first introduce a jump signaling device that is able to detect

the location of jumps in the presence of microstructure noise. We then use the jump signaling

device to truncate a noise robust realized volatility estimator.

In order to detect the presence of a jump in a given time interval (ti−1, ti], we consider the

following measure

βi =
1

K1

i+K1−1∑
j=i

(xj − xj−K1) , for i = 1, . . . ,m,

where K1 = K1(m) satisfies lim
m→∞

K1

m
= 0 and lim

m→∞
K1 =∞. The βi measure is a local average

of overlapping returns. In the interval (ti−K1 , ti+K1−1] we construct K1 overlapping intervals of

the form of (tj, tj+K1 ]. The βi measure is the average of the returns on these K1 intervals. A

jump realized on (ti−1, ti] will affect all the returns and will make |βi| large. On the other hand,

if no jump is realized on (ti−1, ti] the local averaging smooths away the effect of the noise and

|βi| will be small. In fact, Theorem 2.1 below quantifies these facts in terms of a threshold r(h)

as m is large. Notice the intervals (ti−K1 , ti+K1−1] are not likely to contain jumps for large m

since its length K1h is assumed to be small for large m.

A classic estimator of IV that is consistent in the presence of microstructure noise is the

two-scale realized volatility (TSRV) estimator, which is defined as (see Zhang et al. (2005))

σ̂2 =
1

K

m∑
j=K

(xj − xj−K)2 − m−K + 1

mK

m∑
j=1

(xj − xj−1)2 ,

whereK = cm2/3 and c is a positive constant. When there is no microstructure noise nor jumps,

the first term converges to IV in probability. In the presence of microstructure noise, the second

term corrects the bias and σ̂2 becomes a consistent estimator of IV. However, this estimator is

not consistent in the presence of jumps. Our strategy consists of truncating the TSRV estimator

using the βi measure to obtain a consistent estimator in the presence of microstructure noise as

well as jumps. However, the TSRV estimator is difficult to truncate due to the different scale of
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both sums. Therefore, we work with the following modified version of the TSRV estimator

σ̂2
TS =

1

K

m∑
j=K

(xj − xj−K)2 − 1

K

m∑
j=K

(xj − xj−1)2.

We observe that σ̂2
TS is also a consistent estimator of IV in the presence of microstructure noise

since the second term is of the same order as the second term in the TSRV. Moreover, it is easy

to show that both estimators σ̂2
TS and σ̂2 have the same asymptotic distribution derived in Zhang

et al. (2005) for σ̂2.

We finally introduce the truncated two-scales realized volatility estimator (TTSRV)

σ̂2
TTS =

1

K

m∑
j=K

(xj − xj−K)21Ej −
1

K

m∑
j=K

(xj − xj−1)21Ej , (2.3)

where Ej = {|βi| ≤ r(h), for all i = j −K + 1, . . . , j}, where r(h) is the threshold intro-

duced in Theorem 2.1. In Section 3 we study the asymptotic properties of this estimator when

J2 ≡ 0 so that J has FA, while in Section 4 we allow J2 to be non-zero.

2.3 Theory: Finite Activity Jumps

2.3.1 Jump Detection

In this section, we consider the case where J has FA. That is, J = J1 and J1 is a compound

Poisson process with FA or a more general FA jump process as above. In this case, the quadratic

variation of y on [0, 1] is given by

[y]1 = IV +

N1∑
i=1

Y 2
i .

The following theorem shows that the absolute values of βi can be used to identify the

intervals where no jumps occured.

THEOREM 2.1. Suppose that

(1) For all t ∈ [0, 1], P (4Nt 6= 0, YNt = 0) = 0.

(2) lim sup
h→0

sup
i∈{1,...,m+K1−1}

∣∣∣∣∫ titi−K1
as ds

∣∣∣∣
√
K1h log 1

h

≤ C(ω) <∞ a.s.
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(3) lim sup
h→0

sup
i∈{1,...,m+K1−1}

∣∣∣∣∫ titi−K1
σ2
sds

∣∣∣∣
K1h

≤M(ω) <∞ a.s.

(4) r(h) is a deterministic function such that

lim
h→0

r(h) = 0, lim
h→0

√
log 1

h

K1

r(h)
= 0, and lim

h→0

√
K1h log 1

h

r(h)
= 0.

Then, for P-almost all ω, there exists h(ω) > 0 such that for all h ≤ h(ω) we have for all

i = 1, . . . ,m,

1{Ni+K1−1−Ni−K1
=0}(ω) ≤ 1{|βi|≤r(h)}(ω) and 1{|βi|≤r(h)}(ω) ≤ 1{Ni−Ni−1=0}(ω).

REMARK 2.1. (i) Assumption (1) says that the sizes of the price jumps are a.s. non-zero.

Note that any FA Lévy process satisfies this condition, since ν({0}) = 0.

(ii) Assumptions (2) and (3) are satisfied by common assumptions on a and σ such as being

a.s. bounded on [0, 1]. In particular, they are satisfied as soon as a and σ have càdlàg

paths.

(iii) Assumption (4) indicates how to choose the threshold. If e.g. K1 = mα1 with 0 < α1 < 1,

then we can choose r(h) = hα2 with 0 < α2 < min
(
α1

2
, 1−α1

2

)
.

(iv) As in Mancini (2009) and Zhang et al. (2005), the results of this chapter can be extended

to not necessarily equally spaced observations, but for the sake of conciseness, we leave

it to the interested reader.

Theorem 2.1 quantifies the intuition of the βi measure given after its definition in terms of a

threshold. The first inequality implies that when there are no jumps on the interval (ti−K1 , ti+K1−1]

(which recall it is likely to occur when m is large), |βi| will be smaller than the threshold for

large m. This is because condition (4) implies that the absolute value of the local average of

the returns over that interval when there are no jumps goes faster to zero than the threshold. On

the other hand, the second inequality implies that if there is a jump on the interval (ti−1, ti], |βi|

will be larger than the threshold for large m. Therefore, in this case, the intervals (tj−K , tj] that

contain (ti−1, ti] will be removed from the estimator to eliminate the impact of the jump.
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2.3.2 Consistency and Asymptotic Mixed Normality

When there are no price jumps, the next result shows that σ̂2 and σ̂2
TS have the same asymptotic

distribution (derived in Zhang et al. (2005, Theorem 4) for σ̂2).

PROPOSITION 2.1. Consider the framework of Section 2 with J = 0, and assume the drift

coefficient a and the diffusion coefficient σ are a.s. continuous on [0, 1], and σ is a.s. bounded

away from 0. Then, as m→∞,

m1/6

(
σ̂2
TS −

∫ 1

0

σ2
t dt

)
L−→
(

8c−2η4 +
4

3
c

∫ 1

0

σ4
t dt

)1/2

N(0, 1),

where the convergence is stable in law, and c is the constant such that K = cm2/3.

As in Zhang et al. (2005), stable convergence means that the left-side converges to the right-

side jointly with the x process, and the N(0, 1) random variable is independent of x.

We now turn to the analysis of the TTSRV estimator defined in (2.3). We first show that it

is a consistent estimator of IV.

THEOREM 2.2. Consider the assumptions of Theorem 2.1, and those of Proposition 2.1 on a

and σ. Assume also that lim
m→∞

K1 logm
m1/3 = 0. Then as m→∞,

σ̂2
TTS

P−→
∫ 1

0

σ2
t dt.

The proof of this Theorem is divided into two steps. First, since by Theorem 2.1 price

jumps can be detected as m is large and are removed from the computation of the TTSRV

estimator, we first show that the difference between the TTSRV computed when there is a jump

component in the price and when there is not is a.s. zero when m is large (see the proof of

(2.11) below). Second, we show that when there are no price jumps, the difference between the

TTSRV and σ̂2
TS is OP(K1m

−1/3 logm) (see the proof of (2.12) below). Thus, the assumption

that lim
m→∞

K1 logm
m1/3 = 0 gives the desired result. We can e.g. choose K1 = mα1 and r(h) = hα2

with 0 < α1 <
1
3

and 0 < α2 <
α1

2
.

Using Proposition 2.1 and the same steps of the proof of Theorem 2.2 we obtain that asymp-

totic distribution of the TTSRV, which is the same as in Proposition 2.1.

THEOREM 2.3. Consider the assumptions of Theorem 2.1, and those of Proposition 2.1 on a
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and σ. Assume also that lim
m→∞

K1 logm
m1/6 = 0. Then as m→∞,

m1/6

(
σ̂2
TTS −

∫ 1

0

σ2
t dt

)
L−→
(

8c−2η4 +
4

3
c

∫ 1

0

σ4
t dt

)1/2

N(0, 1),

where the convergence is stable in law.

We can e.g. choose K1 = mα1 and r(h) = hα2 with 0 < α1 <
1
6

and 0 < α2 <
α1

2
.

2.3.3 Estimating the Asymptotic Variance

In this section we follow similar steps as in Zhang et al. (2005) in order to estimate the asymp-

totic variance of the TTSRV estimator, which by Theorem 2.3 equals 8c−2η4 + 4
3
c
∫ 1

0
σ4
sds.

More specifically, we apply our truncation technique to the estimator proposed in Zhang et al.

(2005).

First, we begin by noting that η2 can be estimated by η̂2 =
∑m
i=1(xi−xi−1)2

2m
. In our setting it

can be easily checked that η̂2 is still a consistent estimator of η2. The reason is that since we

have finite price jumps on [0, 1], they will only affect finite terms in
∑m

i=1(xi − xi−1)2, so the

jump effect will vanish as m→∞.

Next, following the notation in Section 6 of Zhang et al. (2005), we divide [0, 1] into seg-

ments (Tn, Tn+1], where Tn = nM
m

, for n = 1, . . . ,m/M . The value of M will be specified

later and for simplicity we assume m/M is an integer. We define the TTSRV estimator for the

period [0, Tn] as

̂< X,X >
K

Tn =
1

K

Mn∑
j=K

(xj − xj−K)21Ej −
1

K

Mn∑
j=K

(xj − xj−1)21Ej .

Consider the following truncated version of an estimator introduced in Zhang et al. (2005)

ŝ2
0 = m1/3

m/M∑
n=1

(
̂< X,X >

K2

Tn − ̂< X,X >
K2

Tn−1
−
(

̂< X,X >
K3

Tn − ̂< X,X >
K3

Tn−1

))2

,

where K2 = c2m
2/3, K3 = c3m

2/3, and c2, c3 are positive constants. Zhang et al. (2005) show

that the untruncated version of ŝ2
0 converges in probability when there are no price jumps as

m→∞ to

V =
4

3

(
c

1/2
2 − c1/2

3

)2
∫ 1

0

σ4
sds+ 8η4(c−2

2 + c−2
3 − c−1

2 c−1
3 ).
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In the presence of jumps, we obtain the analogous result in our setting

THEOREM 2.4. Assume the hypotheses of Theorem 2.3, and that

lim
m→∞

K1(logm)2

m1/6
= 0, lim

m→∞

M

m2/3
=∞, and lim

m→∞

M

m5/6 logm
= 0.

Then as m→∞, ŝ2
0

P−→ V.

Finally, in order to estimate the asymptotic variance of the TTSRV estimator it suffices to

combine the estimators η̂2 and ŝ2
0 using the formula provided in Zhang et al. (2005). Notice that

we can choose K1 = mα1 and M = mα2 with 0 < α1 <
1
6

and 2
3
< α2 <

5
6
.

2.4 Theory: Infinite Activity Jumps

In this section, we allow J2 to be a non-zero IA Lévy pure jump process, and J1 is assumed to

be a general FA jump process with counting process N . As J = J1 +J2, the quadratic variation

of the process y up time 1 becomes

[y]1 = IV +
∑
t≤1

(∆J1,t)
2 +

∑
t≤1

(∆J2,t)
2 . (2.4)

The following theorem shows that in this IA jumps setting, the TTSRV estimator still consis-

tently estimates IV.

THEOREM 2.5. Assume the hypotheses of Theorem 2.3, and that

lim
m→∞

K3
1 logm

r2(h)m1/3
= 0. (2.5)

Assume also that P (Ni −Ni−1 > 0) = O
(

1
m

)
and that J2 is independent of N . Then as

m→∞, σ̂2
TTS

P−→
∫ 1

0
σ2
t dt.

For example, we can set K1 = mα1 and r(h) = hα2 , with 0 < 3α1 + 2α2 < 1
3

and

0 < α2 <
α1

2
. The structure of the proof of this theorem is similar to that of Mancini (2009,

Theorem 4). On one hand, we use the measure βi and the threshold r(h) in order to cut off

the jumps from J1. On the other hand, we truncate the jumps in J2 with absolute value larger

than
√
δ + 16r2(h), where δ > 0 is arbitrary, and show that the information loss caused by the

truncation is negligible.
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It is more challenging to establish a central limit theorem result in the infinite activity case,

and we leave this problem open for future research. We point out that in Cont and Mancini

(2011) a central limit theorem for the truncated realized volatility estimator in the case of infinite

activity jumps and no noise is established. However, their result relies on an argument which

we are not able to use when prices are contaminated by microstructure noise. In particular, their

asymptotic result relies on choosing a threshold low enough such that the error caused by the

infinite jumps is negligible. In our framework, because of the noise component, the threshold

has to be sufficiently large.

2.5 Simulation Study

In this section we perform a simulation study to assess the performance of the TTSRV estima-

tor. The simulation exercise consists of simulating one day of high frequency data and then

applying the TTSRV estimator to estimate the integrated volatility. We consider two different

specifications of the prices process, the first one has finite active jumps while in the second the

jump activity is infinite. The TTSRV estimator is also benchmarked against a set of alternative

estimators proposed in the literature.

We simulate the observed price xt according to

xt =

∫ t

0

σsdBs + Jt + ut.

The spot volatility σs follows a CIR process

dσs = κ(v − σs) + τ
√
σsdWs,

where v = 9 is the long run mean of the process, τ = 2.74 is its volatility, κ = 0.1 is the mean

reversion parameter, and W is a standard Brownian motion independent of B. The noise ut is

a discrete i.i.d. N(0, η2), where η > 0. Two different specifications for the jump process J

are used. In first case, labelled as model 1, J is a compound Poisson process with a constant

intensity λ = 2. The jump sizes are i.i.d. N(0, ξ2), where ξ > 0. In the second case, labelled

as model 2, J is a variance gamma (VG) process, which is a pure jump process with infinite
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activity and finite variation. The process is defined as

Js = d1Gs + d2WGs ,

where Gs is a Gamma random variable with shape parameter s/b and scale parameter b > 0,

and W is a standard Brownian motion independent of B, W and G. We fix the values of d1

and d2 to respectively −0.8 and 0.8. We assume that a trading day is eight hours long and the

observed price xt is measured each second (that is, m = 28, 800). The simulation is carried out

using the Euler simulation scheme. Throughout this section we compute the TTSRV for K1 set

to 4 (which is approximately m1/7) and K set to 30. For each model and parameter setting the

simulation is replicated 1000 times.

Figures 2.2 and 2.3 show the plot of the MSE of the TTSRV estimator as a function of r(h)

in, respectively, model 1 and model 2 for different magnitudes of η (0.05, 0.10, 0.15). For model

1, ξ is fixed to 2 while for model 2, b is fixed to 2. The figures show that in both cases the MSE

is a decreasing function of r(h) when r(h) is small. This is because when the threshold is too

small, many intervals that do not contain jumps are truncated, and this increases the variance of

the TTSRV estimator. On the other hand, the MSE is an increasing function of r(h) when r(h)

is large. This is because when the threshold is too large, the intervals that contain price jumps

are not truncated, and this increases the bias of the the TTSRV estimator.

Figures 2.4 and 2.5 show the plot of the MSE of the TTSRV estimator as a function of r(h)

in, respectively, model 1 and model 2 for different magnitudes of the jump component. For

model 1, ξ is set to 1, 2 or 3 while for model 2, b is set to 1, 2 and 3. In both sets of simulations

η is fixed to 0.1. The MSE has the same convex shape documented in Figures 2.2 and 2.3.

Next we investigate the finite sample distribution of the TTSRV estimator. We do this under

model 1 only and for different values of ξ. We define the standardized estimation error as

z =
m1/6

(
σ̂2
TTS −

∫ 1

0
σ2
sds
)

(
8c−2η4 + 4

3
c
∫ 1

0
σ4
sds
)1/2

.

Theorem 2.3 implies that if the sample size is sufficiently large, z should be approximately

normally distributed. We compute z keeping the value of the threshold r(h) fixed at 0.75 and

η = 0.1. As mentionned in Mancini (2009, Remark in p.278) the optimality of the threshold

varies for each model and one usually chooses the one that performs better the simulations.

61



“ExempleUsPlantillaA4” — 2017/1/25 — 18:37 — page 62 — #80

Figure 2.6 shows the histogram and the normal qqplot of z while Table 2.1 reports summary

statistics. The TTSRV has a bias that increases with the standard deviation of the jumps’ size.

We note that, comparing with the results of the simulation study of Mancini (2009), the bias is

roughly of the same order of the one of the TRV estimator when no noise is present (see also

Mancini, 2008). Overall, the approximation provided by the asymptotic theory is adequate.

Last, we compare the efficiency of the TTSRV with other estimators of the integrated

volatility: The truncated realized volatility (TRV), the bipower variation (BPV), the modu-

lated bipower variation (MBV) and the TSRV. In this exercise the threshold r(h) of the TTSRV

estimator is fixed to 0.75.

The TRV proposed by Mancini (2008, 2009) is a truncatated version of the classic realized

volatility estimator. It is defined as

σ̂2
TRV =

m∑
i=2

(xi − xi−1)21{|xi−xi−1|≤r(h)}.

As we have previously pointed out this estimator is not consistent in the presence of noise.

Moreover, the truncation devices used by this estimator does not truncate jumps with high

probability in this setting. To minimize the impact of the noise, we use the optimal sampling

scheme proposed by Zhang et al. (2005), which shows that the optimal amount of equidistant

observations for constructing σ̂2
RV is given by

m =

(
1

4η4

∫ 1

0

σ4
sds

)1/3

.

Note however that this is only optimal in case jumps are absent. Also, as mentionned before

it is not clear from the literature how to set r(h). Here, we set it to 0.7 as this approximately

minimizes the MSE of the estimator in the scenarios considered in this study.

Another important jump robust estimator proposed in the literature is the bipower variation

(BPV), introduced by Barndorff-Nielsen and Shephard (2004b). It is defined as

σ̂2
BPV =

π

2

m∑
j=3

(xj − xj−1) (xj−1 − xj−2) .

The performance of σ̂2
BPV is also compromised in the presence of noise. Again, in this case

reducing the sampling frequency can relieve the problem, and we use the same low frequency
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sampling scheme used for computing σ̂2
TRV.

We also consider the MBV proposed by Podolskij and Vetter (2009). The estimator is

defined as

σ̂2
MBV =

e1e2
µ21
σ̃2 − v2η̂

2

v1

,

where

σ̃2 =
M∑
n=1

∣∣∣X(K)

n X
(K)

n+1

∣∣∣ , η̂2 =
1

2m

m∑
i=1

(xi − xi−1)2,

X
(K)

n =
1

m/M −K + 1

mn
M
−K∑

i=
(n−1)m
M

(xi+K − xi),

e1 > 0, e2 > 1, µ1 =
√

2
π

, M = n
e2K

= n1/2

e1e2
, K = e1m

1/2, v1 = e1(3e2−4+max((2−e2)3,0))
3(e2−1)2

and

v2 = 2 min(e2−1,1)
e1(e2−1)2

(which is an estimator of η2). As pointed out by Podolskij and Vetter (2009),

the computation of the optimal values of e1 and e2 involves solving polynomial equations of

degree higher than two. Following Podolskij and Vetter (2009), we set e1 = 0.8 and e2 = 2.3.

For reference purposes, we also consider the TSRV estimator. Note that when jumps are

present this estimator converges in probability to (see Zhang et al., 2005)

∫ 1

0

σ2
t dt+

∑
0≤t≤1

(∆Jt)
2.

Figures 2.7 and 2.8 show the plot of the MSE of the estimators in models 1 and 2 as function

of η. In model 1, ξ is 0.7 and in model 2, b is also 0.7. Tables 2.2 and 2.3 report the MSE of the

estimators for selected values of η. The pictures show that the TTSRV estimator dominates the

competing estimators almost uniformly over the range of η considered. It only performs worse

than the BPV and slightly worse than the TRV estimators when the magnitude of the noise is

negligible. The MSE of the TRV and BPV estimators increases steadily as η increases as these

estimators are not consistent in the presence of noise. The MSE of the TSRV estimator does not

change as the variance of the noise increases, however it is much larger as it is not consistent

in the presence of jumps. In this setting, the MBV estimator does not perform particularly well

(especially in model 1) despite being robust to both noise and jumps.

Figures 2.9 and 2.10 show the plot of the MSE of the estimators under model 1 as function

of ξ and in model 2 as a function of b. In both models η is fixed to 0.05. Tables 2.4 and 2.5

63



“ExempleUsPlantillaA4” — 2017/1/25 — 18:37 — page 64 — #82

report the MSE of the estimators for selected values of, respectively, ξ and b. Again, the TTSRV

achieves the best performance overall. The TSRV performs well in this setting only when the

standard deviation of the jump size or the scale of the VG process are so small that the impact

of the jump component in negligible. The TRV, MBV and BPV estimators roughly have the

same performance and are not affected by the variability of the jump component.

2.6 Conclusions

In this chapter we introduce a novel estimator of the integrated volatility of asset prices that is

consistent in the presence of both finite or infinite activity price jumps and market microstruc-

ture noise. We first introduce a jump detection indicator which consistently detects jumps in

the presence of noise. We then use our jump detection methodology to construct a truncated

version of the two–scales realized volatility estimator that we call truncated two–scales realized

volatility (TTSRV) estimator. In the finite activity jumps case, we show that this estimator is

consistent as well as asymptotically normal. Because the intervals that contain price jumps will

be a.s. truncated from the estimator and the information loss is negligible, the estimator has the

same asymptotic properties as the standard two–scales realized volatility estimator in the case

of no jumps. Moreover, we introduce an estimator of the asymptotic variance. In the infinite ac-

tivity jumps case, we show that the TTSRV estimator is consistent. A simulation study is used

to compare our proposed approach to other important realized volatility estimators proposed

in the literature. The study shows that the TTSRV estimator performs favorably relative to its

competitors when the price process contains jumps and is contaminated by noise.
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2.7 Appendix

2.7.1 Figures and Tables

Figure 2.1: COMPUTING THE LOCAL AVERAGE RETURN

ti−K1 ti−K1+1 ... ...ti−1

βi

ti ti+1 ti+K1−1

ti−K1 ti

ti−K1+1 ti+1

...
ti−1 ti+K1−1

The figure provides a schematic representation of the computation of the βi measure.

Figure 2.2: MSE CURVES OF THE TTSRV ESTIMATOR (I)

The figure shows the plot of the MSE of the TTSRV estimator in model 1 as a function of the threshold r(h)

for different values of the market microstructure noise standard deviation η (η = 0.05, 0.10, 0.15).
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Figure 2.3: MSE CURVES OF THE TTSRV ESTIMATOR (II)

The figure shows the plot of the MSE of the TTSRV estimator in model 2 as a function of the threshold r(h)

for different values of the market microstructure noise standard deviation η (η = 0.05, 0.10, 0.15).

Figure 2.4: MSE CURVES OF THE TTSRV ESTIMATOR (III)

The figure shows the plot of the MSE of the TTSRV estimator in model 1 as a function of the threshold r(h)

for different values of the jump size standard deviation ξ (ξ = 1, 2, 3).
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Figure 2.5: MSE CURVES OF THE TTSRV ESTIMATOR (IV)

The figure shows the plot of the MSE of the TTSRV estimator in model 2 as a function of the threshold r(h)

for different values of VG process scale parameter b (b = 1, 2, 3).

Figure 2.6: ASYMPTOTIC NORMALITY

The figure shows the histograms and qqplots of the standardized estimation errors of the TTSRV estimator in

model 1 for different values of the jump size standard deviation ξ (ξ = 1, 2, 3).
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Figure 2.7: MSE CURVES OF THE DIFFERENT ESTIMATORS (I)

The figure shows the plot of the MSE of the TTSRV, TSRV, TRV, MBV and BPV estimators in model 1 as a

function of the market microstructure noise standard deviation η.

Figure 2.8: MSE CURVES OF THE DIFFERENT ESTIMATORS (II)

The figure shows the plot of MSE of the TTSRV, TSRV, TRV, MBV and BPV estimators in model 2 as a

function of the market microstructure noise standard deviation η.
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Figure 2.9: MSE CURVES OF THE DIFFERENT ESTIMATORS (III)

The figure shows the plot of MSE of the TTSRV, TSRV, TRV, MBV and BPV estimators in model 1 as a

function of the jump size standard deviation ξ.

Figure 2.10: MSE CURVES OF THE DIFFERENT ESTIMATORS (IV)

The figure shows the plot of MSE of the TTSRV, TSRV, TRV, MBV and BPV estimators in model 1 as a

function of VG process scale parameter b.
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Table 2.1: STATISTICS OF THE STANDARDIZED ESTIMATION ERRORS

ξ = 1 ξ = 2 ξ = 3

Mean -0.148 -0.324 -0.456

Std Dev 1.247 1.177 1.170

Skewness 0.243 0.036 0.114

Kurtosis 3.126 2.988 3.079

JB test 0.065 0.113 0.546

The table reports the mean, standard deviation, skewness, kurtosis and p–value of the Jarque–Bera normality

test of the standardized estimation errors of the TTSRV estimator in model 1 for different values of the jump size

standard deviation ξ.

Table 2.2: COMPARISON OF THE MSE (I)

η = 0 η = 0.01 η = 0.02 η = 0.03 η = 0.04 η = 0.05

TTSRV 0.220 0.212 0.218 0.207 0.219 0.211

TSRV 1.594 1.570 1.392 1.580 1.531 1.695

TRV 0.167 0.404 0.727 1.125 1.375 1.940

MBV 1.878 1.868 2.023 1.848 2.180 1.735

BPV 0.012 0.319 0.812 1.425 1.964 2.670

The table reports the MSE of the TTSRV, TSRV, TRV, MBV and BPV estimators in model 1 for different

values of the market microstructure noise standard deviation η.

Table 2.3: COMPARISON OF THE MSE (II)

η = 0 η = 0.01 η = 0.02 η = 0.03 η = 0.04 η = 0.05

TTSRV 0.203 0.237 0.250 0.226 0.221 0.227

TSRV 4.850 4.733 4.598 5.362 4.003 4.469

TRV 0.177 0.489 0.836 1.187 1.539 1.814

MBV 1.966 1.991 1.854 2.159 1.899 1.889

BPV 0.010 0.408 0.877 1.638 2.133 2.646

The table reports the MSE of the TTSRV, TSRV, TRV, MBV and BPV estimators in model 2 for different

values of the market microstructure noise standard deviation η.

Table 2.4: COMPARISON OF THE MSE (III)

ξ = 0 ξ = 0.2 ξ = 0.4 ξ = 0.6 ξ = 0.8 ξ = 1

TTSRV 0.173 0.175 0.192 0.215 0.209 0.155

TSRV 0.167 0.179 0.261 0.943 1.493 4.780

TRV 1.462 1.393 1.673 1.894 1.719 1.600

MBV 1.876 1.815 1.763 1.718 2.063 2.335

BPV 1.788 1.556 1.877 2.583 2.554 3.355

The table reports the MSE of the TTSRV, TSRV, TRV, MBV and BPV estimators in model 1 for different

values of the jump size standard deviation ξ.
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Table 2.5: COMPARISON OF THE MSE (IV)

b = 0.01 b = 0.2 b = 0.4 b = 0.6 b = 0.8 b = 1

TTSRV 0.454 0.401 0.280 0.244 0.223 0.182

TSRV 0.454 1.089 3.278 4.397 6.085 9.025

TRV 1.405 2.528 2.131 1.970 1.811 1.629

MBV 1.786 1.721 1.744 1.456 2.033 2.121

BPV 3.004 2.868 2.929 2.673 3.009 2.553

The table reports the MSE of the TTSRV, TSRV, TRV, MBV and BPV estimators in model 2 for different

values of the VG process scale parameter b
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2.7.2 Technical Appendix

Proof of Theorem 2.1. We start proving the first inequality of Theorem 2.1. For each ω, set

J0,h = {i ∈ {1, ...,m} : Ni+K1−1 −Ni−K1 = 0}. It suffices to prove that a.s. for small h

supi∈J0,h |βi|
r(h)

≤ 1. (2.6)

To evaluate this sup, using the definition of βi, we have that a.s.

sup
i∈J0,h

|βi| ≤ sup
i∈J0,h

∣∣∣∣∣ 1

K1

i+K1−1∑
j=i

∫ tj

tj−K1

asds

∣∣∣∣∣+ sup
i∈J0,h

∣∣∣∣∣ 1

K1

i+K1−1∑
j=i

∫ tj

tj−K1

σsdBs

∣∣∣∣∣
+ sup

i∈J0,h

∣∣∣∣∣ 1

K1

i+K1−1∑
j=i

(uj − uj−K1)

∣∣∣∣∣
≤ sup

i∈{1,...,m+K1−1}

∣∣∣∣∣
∫ ti

ti−K1

asds

∣∣∣∣∣+ sup
i∈{1,...,m+K1−1}

∣∣∣∣∣
∫ ti

ti−K1

σsdBs

∣∣∣∣∣
+ sup

i∈{1,...,m}

∣∣∣∣∣ 1

K1

i+K1−1∑
j=i

(uj − uj−K1)

∣∣∣∣∣ .
We evaluate the three terms separately. We first write

sup
i∈{1,...,m+K1−1}

∣∣∣∫ titi−K1
asds

∣∣∣
r(h)

=

sup
i∈{1,...,m+K1}

∣∣∣∫ titi−K1
asds

∣∣∣√
K1h log 1

h

×

√
K1h log 1

h

r(h)
.

Then, by assumptions (2) and (4), a.s. for small h the left hand side is bounded by 1.

For the second term, we write

sup
i∈{1,...,m+K1−1}

∣∣∣∫ titi−K1
σsdBs

∣∣∣
r(h)

≤ sup
i∈{1,...,m+K1−1}

∣∣∣∫ titi−K1
σsdBs

∣∣∣√
2
∫ ti
ti−K1

σ2
sds log 1∫ ti

ti−K1
σ2
sds

×

sup
i∈{1,...,m+K1−1}

√
2
∫ ti
ti−K1

σ2
sds log 1∫ ti

ti−K1
σ2
sds√

2K1hM log 1
K1hM

×

√
2K1hM log 1

K1hM√
2K1h log 1

K1h

×

√
2K1h log 1

K1h

r(h)
,

(2.7)

where M is the random constant of assumption (3).

Since
∫ ti
ti−K1

σsdBs is a time changed Brownian motion, by Karatzas and Shreve (1999,
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p.114 theorem 9.25), we have that a.s.

lim sup
h→0

sup
i∈{1,...,m+K1−1}

∣∣∣∫ titi−K1
σsdBs

∣∣∣√
2
∫ ti
ti−K1

σ2
sds log 1∫ ti

ti−K1
σ2
sds

≤ 1.

Moreover, by assumption (3) and the monotonicity of the function f(x) = x log 1
x
, we get that

a.s.

lim sup
h→0

sup
i∈{1,...,m+K1−1}

√
2
∫ ti
ti−K1

σ2
sds log 1∫ ti

ti−K1
σ2
sds√

2K1hM log 1
K1hM

≤ 1.

Finally, since K1h→ 0 as h→ 0, and M(ω) <∞, we have that a.s.

lim
h→0

√
2K1hM log 1

K1hM√
2K1h log 1

K1h

=
√
M.

Therefore, using assumption (4), we conclude that a.s. for small h the left hand side of (2.7) is

bounded by 1.

For the last term, we write

sup
i∈{1,...,m}

∣∣∣∣ 1
K1

∑i+K1−1
j=i (uj − uj−K1)

∣∣∣∣
r(h)

=

sup
i∈{1,...,m}

∣∣∣∣ 1
K1

∑i+K1−1
j=i (uj − uj−K1)

∣∣∣∣√
log 1

h

K1

×

√
log 1

h

K1

r(h)
. (2.8)

Now, since 1
K1

∑i+K1−1
j=i (uj − uj−K1)

L
= N

(
0, 2η2

K1

)
, we have that for all x > 0,

P

(
sup

i∈{1,...,m}

∣∣∣∣∣ 1

K1

i+K1−1∑
j=i

(uj − uj−K1)

∣∣∣∣∣ ≥ x

)
≤ 2m exp

(
−x

2K1

2η2

)
.

Therefore, for all ε > 0,

∑
m≥1

P


sup

i∈{1,...,m}

∣∣∣∣ 1
K1

∑i+K1−1
j=i (uj − uj−K1)

∣∣∣∣√
logm
K1

≥
√

(2 + ε)2η2

 ≤ 2
∑
m≥1

m−(1+ε) <∞.
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Thus, using Borell-Cantelli Lemma and letting ε ↓ 0, we obtain that a.s.

lim sup
h→0

sup
i∈{1,...,m}

∣∣∣∣ 1
K1

∑i+K1−1
j=i (uj − uj−K1)

∣∣∣∣√
log 1

h

K1

≤ 2η,

which together with assumption (4) implies that a.s. for h small the left hand side of (2.8) is

bounded by 1. This concludes the proof of (2.6).

We next show the second inequality of Theorem 2.1. For each ω, set J1,h = {i ∈ {1, ...,m} :

Ni −Ni−1 > 0}. It suffices to prove that a.s. for small h

infi∈J1,h |βi|
r(h)

> 1. (2.9)

In order to evaluate this infimum, observe that for all i ∈ J1,h, |βi| = |Ai +Bi|, where

Ai =
1

K1

i+K1−1∑
j=i

(∫ tj

tj−K1

asds+

∫ tj

tj−K1

σsdBs + (uj − uj−K1)

)
and

Bi =
1

K1

i+K1−1∑
j=i

Ntj−Ntj−K1∑
`=1

Y`.

In the first part of the theorem we have shown that a.s. the term Ai
r(h)

tends to 0 as h → 0

uniformly with respect to i. On the other hand, we observe that

ti+K1−1 − ti−K1 ≤ 2K1h→ 0 as h→ 0.

Therefore, a.s. for h small we have that for each i, Ni+K1−1 −Ni−K1 ≤ 1. Thus, a.s.

lim
h→0

infi∈J1,h |βi|
r(h)

≥ lim
h→0

infi∈J1,h |Bi|
r(h)

≥ lim
h→0

infi∈N1 |Yi|
r(h)

=∞,

where in the last equality we have used assumptions (1) and (4). This proves (2.9).

Proof of Proposition 2.1. For simplicity, we assume that the dirft is zero. Since we are assum-

ing that J = 0, we have that

σ̂2
TS −

∫ 1

0

σ2
sds = A+B + C,
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where

A =

 1

K

m∑
i=K

(∫ ti

ti−K

σsdBs

)2

−
∫ 1

0

σ2
sds

− 1

K

m∑
i=K

(∫ ti

ti−1

σsdBs

)2

,

B =
2

K

m∑
i=K

(∫ ti

ti−K

σsdBs

)
(ui − ui−K)− 2

K

m∑
i=K

(∫ ti

ti−1

σsdBs

)
(ui − ui−1),

C =
1

K

K−2∑
i=0

u2
i −

1

K

m−1∑
i=m−K+1

u2
i −

2

K

m∑
i=K

ui−Kui +
2

K

m∑
i=K

ui−1ui.

According to Zhang et al. (2005, Theorem 3), we have that as m→∞

m1/6

 1

K

m∑
i=K

(∫ ti

ti−K

σsdBs

)2

−
∫ 1

0

σ2
sds

 L−→

√
4c

3

∫ 1

0

σ4
s dsN(0, 1), (2.10)

where the convergence is stable in law.

On the other hand, since
∑m

i=K

(∫ ti
ti−1

σsdBs

)2

= OP(1) and K = cm2/3, we get that as

m→∞,

m1/6 1

K

m∑
i=K

(∫ ti

ti−1

σsdBs

)2
P−→ 0.

Moreover, equations (A.8) and (A.13) in Zhang et al. (2005) imply that as m→∞,

m1/6 2

K

m∑
i=K

(∫ ti

ti−1

σsdBs

)
(ui − ui−1)

P−→ 0,

and

m1/6 2

K

m∑
i=K

(∫ ti

ti−K

σsdBs

)
(ui − ui−K)

P−→ 0.

Finally, straightforward computations as in Zhang et al. (2005) show that as m→∞,

m1/6C
L−→ 2
√

2c−1η2N(0, 1).

Since A and C are independent, this concludes the desired result.

Proof of Theorem 2.2. For simplicity we assume that the dirft is zero. Set

xt = xt − J1,t =

∫ t

0

σsdBs + ut,

75



“ExempleUsPlantillaA4” — 2017/1/25 — 18:37 — page 76 — #94

and consider the corresponding estimators

σ2
TS =

1

K

m∑
j=K

(xj − xj−K)2 − 1

K

m∑
j=K

(xj − xj−1)2,

and

σ2
TTS =

1

K

m∑
j=K

(xj − xj−K)21Ej −
1

K

m∑
j=K

(xj − xj−1)21Ej ,

where recall that Ej = {|βi| ≤ r(h), for all i = j −K + 1, . . . , j} and

βj =
1

K1

j+K1−1∑
i=j

(xi − xi−K1) .

Since as m→∞, σ2
TS converges in probability to IV, it suffices to show that as m→∞,

σ2
TTS − σ̂2

TTS
P−→ 0, (2.11)

and

σ2
TS − σ2

TTS
P−→ 0. (2.12)

Proof of (2.11). By the second inequality of Theorem 2.1, we have that a.s. as m→∞, for

all j ∈ {K, ...,m},

1Ej = 1{|βj−K+1|≤r(h)}1{|βj−K+2|≤r(h)} · · ·1{|βj |≤r(h)} ≤ 1{Nj−Nj−K=0}.

Thus, a.s. as m→∞, for all j ∈ {K, ...,m},

(
(xj − xj−K)2 − (xj − xj−K)2

)
1Ej = 0.

Similarly, a.s. as m→∞

(
(xj − xj−1)2 − (xj − xj−1)2

)
1Ej = 0.

Therefore, a.s. as m→∞, σ2
TTS − σ̂2

TTS = 0, which proves (2.11).
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Proof of (2.12). We have

σ2
TS − σ2

TTS =
1

K

m∑
j=K

(
(xj − xj−K)2 − (xj − xj−1)2)1Ecj ,

where

1Ecj = 1{
sup

i∈{j−K+1,...,j}
|βi|>r(h)

}

= 1|βj−K+1|>r(h) +

j∑
i=j−K+2

(
1|βi|>r(h)

i−1∏
p=j−K+1

1|βp|≤r(h)

)
.

Therefore,

|σ2
TS − σ2

TTS| ≤ sup
i∈{K,...,m}
`∈{0,...,K−1}

∣∣∣∣∣∣ 1

K

min(i+`,m)∑
j=i

(
(xj − xj−K)2 − (xj − xj−1)2)∣∣∣∣∣∣

m∑
i=1

1|βi|>r(h).

By the first inequality of Theorem 2.1, a.s. as m→∞,

m∑
i=1

1|βi|>r(h) ≤
m∑
i=1

1{Ni+K1−1−Ni−K1
>0} ≤ (2K1 − 1) (Nm+K1−1 −N1−K1) ,

and Nm+K1−1 −N1−K1 is a.s. finite.

Without loss of generality, we assume that i ∈ {K, ...,m −K + 1}. Otherwise, the proof

follows along the same lines. In this case, for all i ∈ {K, . . . ,m−K+ 1} and ` ∈ {0, . . . , K−

1}, min(i+ `,m) = i+ `. Moreover, we have that

1

K

i+∑̀
j=i

(
(xj − xj−K)2 − (xj − xj−1)2) = D1 +D2 +D3,

where

D1 =
1

K

i+∑̀
j=i

(∫ tj

tj−K

σsdBs

)2

−

(∫ tj

tj−1

σsdBs

)2
 ,

D2 =
2

K

i+∑̀
j=i

((∫ tj

tj−K

σsdBs

)
(uj − uj−K)−

(∫ tj

tj−1

σsdBs

)
(uj − uj−1)

)
,

D3 =
1

K

i+∑̀
j=i

(
(uj − uj−K)2 − (uj − uj−1)2

)
.
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We now claim that for all k = 1, 2, 3, as m→∞,

K1 sup
i∈{K,...,m−K+1}
`∈{0,...,K−1}

|Dk|
P−→ 0.

We start with D1. Since ` < K, |D1| is not larger than sup
j∈{K,...,m}

(∫ tj
tj−K

σsdBs

)2

which is

OP

(
m−1/3 logm

)
. Because u is independent of σ and B, and 4

K2

∑i+`
j=i

(∫ tj
tj−K

σsdBs

)2

is

OP (m−1), we get that sup |D2| is OP

(
m−1/2 logm

)
. Finally, since ui is a N(0, η2) i.i.d se-

quence, sup |D3| is OP

(
m−1/3 logm

)
. Therefore, since K1m

−1/3 logm → 0 as m → ∞,

(2.12) holds true.

Proof of Theorem 2.3. Using the same notation as in the proof of Theorem 2.2, we have that

Proposition 2.1 applies to σ2
TS. Thus, it suffices to show that as m→∞,

m1/6(σ2
TTS − σ̂2

TTS)
P−→ 0, (2.13)

and

m1/6(σ2
TS − σ2

TTS)
P−→ 0. (2.14)

(2.13) follows the fact that a.s. σ2
TTS−σ̂2

TTS = 0 asm→∞, as shown in the proof of (2.11). On

the other hand, in the proof of (2.12), we have shown that σ2
TS−σ2

TTS = OP

(
K1m

−1/3 logm
)
,

which implies (2.14) since K1m
−1/6 logm→ 0 as m→∞.

Proof of Theorem 3.3. As in the proof of Theorem 2.2, we denote by < X,X >
K

Tn and s2
0 the

estimators ̂< X,X >
K

Tn and ŝ2
0, where x is replaced with x (no jumps), and by ˜< X,X >

K

Tn and

s̃2
0 where x is replaced with x and there is no truncation.

Following similarly as in the proof of (2.11), we can easily check that a.s. as m → ∞,

ŝ2
0 = s2

0. Moreover, by Zhang et al. (2005) s̃2
0

P−→ V as m→∞. Thus, it suffices to show that

s2
0 − s̃2

0
P−→ 0 as m→∞.

Following similarly as in the proof of (2.12), we have that

∣∣∣< X,X >K
Tn − < X,X >K

Tn−1
−(< X̃,X >K

Tn − < X̃,X >K
Tn−1

∣∣∣
≤ sup

i∈{M(n−1)+1,...,Mn}
`∈{0,...,K}

∣∣∣∣∣ 1

K

i+∑̀
j=i

X
K

j

∣∣∣∣∣
Mn∑

i=M(n−1)+1

1|βi|>r(h),
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where X
K

j = (xj − xj−K)2 − (xj − xj−1)2, and a.s. as m→∞

Mn∑
i=M(n−1)+1

1|βi|>r(h) ≤ 2K1(NMn+K1−1 −NM(n−1)+1−K1).

Therefore,

|s2
0 − s̃2

0| ≤ m1/3

7∑
k=1

Ak,

where

A1 = sup
i∈{K2,...,m}
`∈{0,...,K2}

∣∣∣∣∣ 1

K2

i+∑̀
j=i

X
K2

j

∣∣∣∣∣
2

4K2
1

m/M∑
n=1

(NMn+K1−1 −NM(n−1)+1−K1)
2

A2 = sup
i∈{K3,...,m}
`∈{0,...,K3}

∣∣∣∣∣ 1

K3

i+∑̀
j=i

X
K3

j

∣∣∣∣∣
2

4K2
1

m/M∑
n=1

(NMn+K1−1 −NM(n−1)+1−K1)
2

A3 = 2 sup
n∈{1,...,m/M}

∣∣∣< X̃,X >K2
Tn
−X̃,X >K2

Tn−1

∣∣∣ sup
i∈{K2,...,m}
`∈{0,...,K2}

∣∣∣∣∣ 1

K2

i+∑̀
j=i

X
K2

j

∣∣∣∣∣
× 2K1

m/M∑
j=1

(NMj+K1−1 −NM(j−1)+1−K1)

A4 = 2 sup
n∈{1,...,m/M}

∣∣∣< X̃,X >K2
Tn
−X̃,X >K2

Tn−1

∣∣∣ sup
i∈{K3,...,m}
`∈{0,...,K3}

∣∣∣∣∣ 1

K3

i+∑̀
j=i

X
K3

j

∣∣∣∣∣
× 2K1

m/M∑
j=1

(NMj+K1−1 −NM(j−1)+1−K1)

A5 = 2 sup
n∈{1,...,m/M}

∣∣∣< X̃,X >K3
Tn
−X̃,X >K3

Tn−1

∣∣∣ sup
i∈{K2,...,m}
`∈{0,...,K2}

∣∣∣∣∣ 1

K2

i+∑̀
j=i

X
K2

j

∣∣∣∣∣
× 2K1

m/M∑
j=1

(NMj+K1−1 −NM(j−1)+1−K1)

A6 = 2 sup
n∈{1,...,m/M}

∣∣∣< X̃,X >K3
Tn
−X̃,X >K3

Tn−1

∣∣∣ sup
i∈{K3,...,m}
`∈{0,...,K3}

∣∣∣∣∣ 1

K3

i+∑̀
j=i

X
K3

j

∣∣∣∣∣
× 2K1

m/M∑
j=1

(NMj+K1−1 −NM(j−1)+1−K1)

A7 = 2 sup
i∈{K2,...,m},`∈{0,...,K2}

∣∣∣∣∣ 1

K2

i+∑̀
j=i

X
K2

j

∣∣∣∣∣ sup
i∈{K3,...,m}
`∈{0,...,K3}

∣∣∣∣∣ 1

K3

i+∑̀
j=i

X
K3

j

∣∣∣∣∣
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× 4K2
1

m/M∑
n=1

(NMn+K1−1 −NM(n−1)+1−K1)
2.

Also similarly as in the proof of (2.12), we have that

sup
i∈{K2,...,m}
`∈{0,...,K2}

∣∣∣∣∣ 1

K2

i+∑̀
j=i

X
K2

j

∣∣∣∣∣
2

= OP

(
m−2/3(logm)2

)
.

As m is large, there will be at most 1 jump in (tM(n−1)+1−K1 , tMn+K1−1], which is contained in

at most 2 intervals of this form. Thus,

m/M∑
n=1

(NMn+K1−1 −NM(n−1)+1−K1)
2 =

m/M∑
n=1

(NMn+K1−1 −NM(n−1)+1−K1)

≤ 2(Nm+K1−1 −N1−K1).

which is a.s. finite. Finally, since K2
1 = o

(
m1/3

(logm)2

)
, we conclude that m1/3A1

P−→ 0 as

m→∞. A similar argument holds for A2.

In order to treat the other terms, observe that by Fan et al. (2012, Theorem 1), for all x ∈

[0, a1] and m large,

P

(
sup

n∈{1,...,m
M
}

∣∣∣∣< X̃,X >K2
Tn
− < X̃,X >K2

Tn−1
−
∫ Tn

Tn−1

σ2
sds

∣∣∣∣ ≥ x

)
≤ a2m exp

(
−a3x

2m1/3
)
.

Since [Tn−1, Tn] = O
(
m−1/6 logm

)
, we conclude that

sup
n∈{1,...,m/M}

∣∣∣< X̃,X >K2
Tn
− < X̃,X >K2

Tn−1

∣∣∣ = OP(m−1/6 logm).

Finally, since K1 = o
(

m1/6

(logm)2

)
, we obtain that m1/3A3

P−→ 0 as m→∞. A similar argument

holds for the rest of the terms, which concludes the desired result.

We need the following preliminary lemma for the proof of Theorem 3.4.

LEMMA 2.1. Under the assumptions of Theorem 3.4, there exists a subsequence mk such that

a.s. for any δ > 0, as k →∞,

sup
i∈{1,...,mk}

sup
t∈]ti−1,ti]

(4J2,t)
21Ai,k ≤ δ + 16r2(hk),
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where Ai,k :=
{∣∣∣ 1

K1

∑i+K1−1
j=i (J2,j − J2,j−K1)

∣∣∣ ≤ 2r(hk)
}

and hk = 1
mk

.

Proof. Set Rm(t) =
∑m

i=1

(
J2,t∧ti − J2,t∧ti−1)

)2. Then according to Metivier (1982, Theorem

25.1), there exists a subsequence mk for which a.s. as k →∞,

Rmk(t)→ [J2]t uniformly in t ∈ [0, 1],

where [J2]t =
∑

s≤t(4J2,s)
2 (see Cont and Tankov (2004)). Thus, defining fk(t) = Rmk(t) −

[J2]t, we have a.s. as k →∞

sup
i∈{1,...,mk}

∣∣∣∣∣∣(J2,i − J2,i−1)2 −
∑

s∈]ti−1,ti]

(4J2,s)
2

∣∣∣∣∣∣ = sup
i∈{1,...,mk}

|fk(ti)− fk(ti−1)|

≤ 2 sup
t∈[0,1]

|fk(t)| → 0.

Therefore, given arbitrary δ > 0, as k →∞, we have

sup
i∈{1,...,mk}

∣∣∣∣∣ (J2,i − J2,i−1)2 −
∑

s∈]ti−1,ti]

(4J2,s)
2

∣∣∣∣∣ < δ.

Therefore, we are left to show that a.s. as k →∞,

sup
i∈{1,...,mk}

(J2,i − J2,i−1)2 1Ai,k ≤ 16r2(hk). (2.15)

We write,

|J2,i − J2,i−1|1Ai,k
(
1{|J2,i−J2,i−1|≤4r(hk)} + 1{|J2,i−J2,i−1|>4r(hk)}

)
≤ |J2,i − J2,i−1|

(
1{|J2,i−J2,i−1|≤4r(hk)} + 1{|J2,i−J2,i−1|>4r(h)}

(
1Bci,k + 1Bi,k1Ai,k

))
,

where

Bi,k =

 sup
`∈{i−K1+1,...,i+K1−1}

` 6=i

|J2,` − J2,`−1| ≤
r(hk)

K1

 .

Observe that for any j ∈ {i, ..., i+K1 − 1} it holds that

|J2,j − J2,j−K1| ≥ |J2,i − J2,i−1| −K1 sup
`∈{i−K1+1,...,i+K1−1}

` 6=i

|J2,` − J2,`−1|.
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Thus, on the event {|J2,i − J2,i−1| > 4r(hk)} ∩Bi,k we have that

|J2,j − J2,j−K1 | ≥ 4r(hk)−
r(hk)

K1

·K1 = 3r(hk).

On the other hand, on that same event, it holds that

|J2,i − J2,i−1| >
∣∣ ∑
`∈{j−K1+1,...,j}

6̀=i

(J2,` − J2,`−1)
∣∣,

which implies that all the increments J2,j − J2,j−K1 have the same sign as J2,i − J2,i−1.

Thus, we conclude that on the event {|J2,i − J2,i−1| > 4r(hk)} ∩Bi,k,

∣∣∣∣∣ 1

K1

i+K1−1∑
j=i

(J2,j − J2,j−K1)

∣∣∣∣∣ =
1

K1

i+K1−1∑
j=i

|J2,j − J2,j−K1| ≥ 3r(hk).

This implies that 1{|J2,i−J2,i−1|>4r(h)}1Bi,k1Ai,k = 0.

On the other hand, since J2 has independent and stationary increments with zero expectation

and variance ch, using Chebyshev’s inequality, we get that

P

(
sup

i∈{1,...,mk}
1{|J2,i−J2,i−1|>4r(h)}1Bci,k = 1

)
≤ C

K3
1hk

r4(hk)
= C

(
K3

1 logm

r2(h)m1/3

)2
1

K3
1m

1/3 log2m
,

which tends to zero as k →∞ by hypothesis (2.5). Therefore, a.s. as k →∞,

sup
i∈{1,...,mk}

|J2,i − J2,i−1|1Ai,k ≤ sup
i∈{1,...,mk}

|J2,i − J2,i−1|1{|J2,i−J2,i−1|≤4r(hk)},

which shows (2.15).

COROLLARY 2.1. Under the assumptions of Theorem 3.4, as m→∞

Zm :=
1

K

m∑
j=K

(J2,j − J2,j−K)21Rj,K
P−→ 0.

where Rj,K =

{
sup

i∈{j−K+1,...,j}

∣∣∣ 1
K1

∑i+K1−1
j=i (J2,j − J2,j−K1)

∣∣∣ ≤ 2r(h)

}
.
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Proof. By Lemma 2.1, there exists a subsequence mk such that a.s. for any δ > 0, as k →∞,

sup
t∈]tj−Kk ,tj ]

|4J2,t|1Rj,Kk ≤
√
δ + 16r2(hk),

where Kk = cm
2/3
k . Therefore, a.s. for any δ and large k,

Zmk ≤
1

Kk

mk∑
j=Kk

(J2,j − J2,j−Kk)
21 sup

t∈]tj−Kk
,tj ]
|4J2,t|≤

√
δ+16r2(hk)


.

Define the process Y by

Yt =

∫ t

0

∫
|x|≤
√
δ+16r2(hk)

x (µ(dx, ds)− ν(dx)ds)− t
∫
√
δ+16r2(hk)≤|x|≤1

xν(dx).

Then, we have that a.s. for any δ and large k,

Zmk ≤
1

Kk

mk∑
j=Kk

(Yj − Yj−Kk)
2 .

On the other hand, observe that

1

Kk

mk∑
j=Kk

(Yj − Yj−Kk)
2 ≤ sup

i∈{0,...,Kk−1}

cimk∑
j=0

(
Yi+jKk − Y(i+(j−1)Kk)∨0

)2
,

where cimk is the largest positive integer not larger than mk−i
Kk

.

For any 0 ≤ t ≤ 1, define dtmk as the largest positive integer not larger than tmk
Kk

, Πtmk =

{0, t− dtmk
Kk
mk
, t− (dtmk − 1)Kk

mk
, . . . , t− Kk

mk
, t}, and

Lmk(t) =
∑

si∈Πtmk

(
Ysi − Y(si−

Kk
mk

)∨0

)2

.

Observe that the partition Πtmk is different from Metivier (1982, Theorem 25.1), but since

si− (si− Kk
mk

)∨ 0→ 0 uniformly in si ∈ [0, 1] as k →∞, we have the same conclusion as that

theorem, that is, there exists a subsequence mk` such that a.s. as `→∞

sup
t∈[0,1]

(Lmk` (t)− [Y ]t)→ 0.
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This implies that a.s. as `→∞

sup
i∈{0,...,Kk`−1}

∣∣∣∣∣∣
cimk`∑
j=0

(
Yi+jKk` − Y(i+(j−1)Kk` )∨0

)2

− [Y ]ti+cimk`
Kk`

∣∣∣∣∣∣→ 0.

Since δ is arbitrary and r(hk`)→ 0 as `→∞, we get that a.s. as δ → 0 and `→∞,

[Y ]ti+cimk`
≤
∫ 1

0

∫
|x|≤
√
δ+16r2(hk` )

x2µ(ds, dx)→ 0.

Therefore, a.s. as `→∞ and δ → 0,

sup
i∈{0,...,Kk`−1}

cimk`∑
j=0

(
Yi+jKk` − Y(i+(j−1)Kk` )∨0

)2

→ 0.

Thus, we have shown that there exists a subsequence mk` such that as ` → ∞, Zmk` tends to

zero in probability. So we can extract a subsequence for which it tends to zero a.s. Reapeating

our reasoning, from each subsequence Zmk` we can extract a subsequence tending to zero a.s.

Thus, Zmk tends to zero in probability as k → ∞. Repeating again the same reasoning, we

conclude that Zm tends to zero in probability as m→∞.

Proof of Theorem 3.4. For simplicity we assume the drift is zero. Set xt = xt − J2,t, βj =

1
K1

∑j+K1−1
i=j (xi − xi−K1), x̂t = xt − J1,t, β̂j = 1

K1

∑j+K1−1
i=j (x̂i − x̂i−K1), x̃t = xt − J1,t, and

β̃j = 1
K1

∑j+K1−1
i=j (x̃i − x̃i−K1).

Then, ∣∣∣∣σ̂2
TTS −

∫ 1

0

σ2
t dt

∣∣∣∣ ≤ Y1 + Y2 + Y3 + Y4,

where

Y1 =
1

K

m∑
j=K

(
(xj − xj−K)2 − (xj − xj−1)2

)
1Aj −

∫ 1

0

σ2
t dt

∣∣∣∣
Y2 =

∣∣∣∣∣ 1

K

m∑
j=K

(
(xj − xj−K)2 − (xj − xj−1)2

) (
1Ej − 1Aj

)∣∣∣∣∣
Y3 =

2

K

m∑
j=K

(J2,j − J2,j−K)21Ej +
2

K

m∑
j=K

(J2,j − J2,j−1)21Ej

Y4 =

∣∣∣∣∣ 2

K

m∑
j=K

(xj − xj−K)(J2,j − J2,j−K)1Ej

∣∣∣∣+

∣∣∣∣ 2

K

m∑
j=K

(xj − xj−1)(J2,j − J2,j−1)1Ej

∣∣∣∣∣ ,
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Aj =

{
sup

i∈{j−K+1,...,j}
|βi| ≤ 2r(h)

}
and Ej = {|βi| ≤ r(h), i = j −K + 1, . . . , j}.

According to Theorem 2.3, Y1
P−→ 0 as m → ∞. We are left to proof that the other terms

also converge to zero in probability as m→∞.

Proof that Y2
P−→ 0. Observe that

1Ej − 1Aj = 1Ej∩Acj − 1Aj∩Ecj .

Now, using the fact that

|β`| ≥ |β`| −
1

K1

∣∣∣∣∣
`+K1−1∑
i=`

(J2,i − J2,i−K1)

∣∣∣∣∣ ,
on the event Ej ∩ Acj , we get that

sup
`∈{j−K+1,...,j+K1−1}

|J2,` − J2,`−K1| ≥ r(h),

which implies the event

Cj =

{
sup

`∈{j−K−K1+1,...,j+K1−2}
|J2,`+1 − J2,`| ≥

r(h)

K1

}
.

Therefore, we have shown that

Ej ∩ Acj ⊂ Cj ∩ Acj. (2.16)

By the first inequality of Theorem 2.1, we have a.s. as m→∞ for all j ∈ {K, . . . ,m}

Acj ⊂ Dj = {Nj+K1−1 −Nj−K+1−K1 > 0} . (2.17)

Next, using Chebyshev’s inequality, the fact that J2 is independent of N and that K > K1 for

large m, we get that

P

(
sup

j∈{K,...,m}
1Cj∩Dj = 1

)
≤ m−1/3 K2

1

r2(h)
=

K3
1 logm

r2(h)m1/3

1

K1 logm
, (2.18)

which tends to zero as m→∞ by hypothesis (2.5).
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Consequently, we conclude that as m→∞∣∣∣∣∣ 1

K

m∑
j=K

(
(xj − xj−K)2 − (xj − xj−1)2

)
1Ej∩Acj

∣∣∣∣∣ P−→ 0.

Thus, we are left to show that as m→∞∣∣∣∣∣ 1

K

m∑
j=K

(
(xj − xj−K)2 − (xj − xj−1)2

)
1Aj∩Ecj

∣∣∣∣∣ P−→ 0. (2.19)

By the second inequality of Theorem 2.1, a.s. as m→∞ for all j ∈ {K, . . . ,m},

Aj ⊂ {Nj −Nj−K = 0} , (2.20)

which implies that a.s. as m→∞

1

K

m∑
j=K

(
(xj − xj−K)2 − (xj − xj−1)2

)
1Aj∩Ecj

=
1

K

m∑
j=K

(
(x̃j − x̃j−K)2 − (x̃j − x̃j−1)2

)
1Aj∩Ecj

(
1Dj + 1Dcj

)
.

Similar computations as in the proof of Theorem 2.2 show that

sup
j∈{K,...,m}

1

K

∣∣(x̃j − x̃j−K)2 − (x̃j − x̃j−1)2
∣∣ = OP

(
m−2/3 logm

)
.

On the other hand, using (2.20), we obtain that

m∑
j=K

1Aj∩Ecj∩Dj ≤
m∑
j=K

1{Nj−Nj−K=0}1Dj

≤
m∑
j=K

1{Nj+K1−1−Nj>0} +
m∑
j=K

1{Nj−K−Nj−K−K1+1=0}

≤ K1(Nm+K1 −NK) +K1(Nm−K −N1−K1).
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Therefore,

1

K

m∑
j=K

(
(x̃j − x̃j−K)2 − (x̃j − x̃j−1)2

)
1Aj∩Ecj∩Dj

≤ sup
j∈{K,...,m}

1

K

∣∣(x̃j − x̃j−K)2 − (x̃j − x̃j−1)2
∣∣ m∑
j=K

1Aj∩Ecj∩Dj

= OP

(
K1m

−2/3 logm
)

= OP

(
K3

1 logm

r2(h)m1/3

r2(h)

K2
1m

1/3

)
,

which tends to 0 as m→∞ by hypothesis (2.5).

Thus, we are left to show that as m→∞

1

K

m∑
j=K

(
(x̃j − x̃j−K)2 − (x̃j − x̃j−1)2

)
1Aj∩Ecj∩Dcj

P−→ 0. (2.21)

By (2.17), we have that a.s. as m→∞ for all j ∈ {K, ...,m},

Aj ∩ Ec
j ∩Dc

j = Ec
j ∩Dc

j .

We next show that a.s. as m→∞ for all j ∈ {K, ...,m},

Ec
j ∩Dc

j = Fj :=

{
sup

i∈{j−K+1,...,j}
|β̂i| > r(h)

}
. (2.22)

Observe that

Fj = (Ec
j ∩Dc

j) ∪ (Fj ∩Dj).

Moreover,

sup
j∈{K,...,m}

(Fj ∩Dj) ≤

{
sup

j∈{1,...,m}
|β̃j| >

r(h)

2

}
∪

sup
j∈{K,...,m}

({
sup

i∈{j−K−K1+1,...,j+K1−2}
|J2,i+1 − J2,i| ≥

r(h)

2K1

}
∩Dj

)
.

Therefore, from the second inequality of Theorem 2.1 and (2.18), we obtain (2.22).
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Following similarly as in the proof of (2.12), we have that∣∣∣∣∣ 1

K

m∑
j=K

(
(x̃j − x̃j−K)2 − (x̃j − x̃j−1)2

)
1Fj

∣∣∣∣∣
≤ sup

i∈{K,...,m}
`∈{0,...,K}

∣∣∣∣∣∣ 1

K

min(i+`,m)∑
j=i

(
(x̃j − x̃j−K)2 − (x̃j − x̃j−1)2

)∣∣∣∣∣∣
m∑
i=K

1{|β̂i|>r(h)},

and as m→∞,

sup
i∈{K,...,m}
`∈{0,...,K}

∣∣∣∣∣∣ 1

K

min(i+`,m)∑
j=i

(
(x̃j − x̃j−K)2 − (x̃j − x̃j−1)2

)∣∣∣∣∣∣ = OP

(
m−1/3 logm

)
.

Moreover, by the definition of β̂i, we have a.s. as m→∞ that

m∑
i=K

1{|β̂i|>r(h)} ≤
m∑
i=K

1{ 1
K1
|∑i+K1−1

`=i (J2,`−J2,`−K1)|> r(h)
2

}

≤
m∑
i=K

1{
sup

`∈{i−K1,...,i+K1−2}
|J2,`+1−J2,`|> r(h)

2K1

}

≤ 2K1

m+K1−2∑
i=K−K1

1{|J2,i+1−J2,i|> r(h)
2K1

}.

(2.23)

Next, using Chebyshev’s inequality, we get that

E

(
K1m

−1/3 logm

m+K1−2∑
i=K−K1

1{|J2,i+1−J2,i|> r(h)
2K1

}
)
≤ C

K3
1 logm

m1/3r2(h)
,

which tends to zero as m→∞ by hypothesis (2.5). This shows (2.21) and Y2
P−→ 0.

Proof of Y3
P−→ 0. We only treat the first term since the second can be treated similarly.

Consider the event Rj,K of Corollary 3.2. We write

(Ej ∩Rc
j,K) ⊂ (Ej ∩Rc

j,K ∩Dc
j) ∪ (Rc

j,K ∩Dj).
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Hence, by the definition of βi and β̃i,

sup
j∈{K,...,m}

(Ej ∩Rc
j,K) ≤ sup

i∈{1,...,m}
{|β̃i| > r(h)}∪

sup
j∈{K,...,m}

({
sup

`∈{j−K−K1+1,...,j+K1−2}
|J2,`+1 − J2,`| ≥

r(h)

2K1

}
∩Dj

)
.

Therefore, by the first inequality of Theorem 2.1 and (2.18), we obtain that as m→∞,

P

(
sup

j∈{K,...,m}
1Ej∩Rcj,K = 1

)
−→ 0. (2.24)

Thus, we conclude that a.s. as m→∞

1

K

m∑
j=K

(J2,j − J2,j−K)21Ej∩(Rcj,K∪Rj,K) ≤
1

K

m∑
j=K

(J2,j − J2,j−K)21Rj,K ,

which converges to zero in probability as m→∞ according to Corollary 3.2.

Proof of Y4
P−→ 0. We only treat the first term since the second can be treated similarly. By

Cauchy-Schwarz inequality,∣∣∣∣∣ 1

K

m∑
j=K

(∫ tj

tj−K

σu dBu

)
(J2,j − J2,j−K)1Ej

∣∣∣∣∣
≤

√√√√ 1

K

m∑
j=K

(∫ tj

tj−K

σudBu

)2
√√√√ 1

K

m∑
j=K

(J2,j − J2,j−K)2 1Ej
P−→ 0,

as m→∞, since the first term converges in probability to
√∫ 1

0
σ2
udu according to (3.12), and

the second term converges to zero in probability as shown in the proof of Y3
P−→ 0.

By (2.24), we have a.s. as m→∞,∣∣∣∣∣ 1

K

m∑
j=K

(uj − uj−K)(J2,j − J2,j−K)1Ej

∣∣∣∣∣ =

∣∣∣∣∣ 1

K

m∑
j=K

(uj − uj−K)(J2,j − J2,j−K)1Ej∩Rj,K

∣∣∣∣∣
≤ |I1|+ |I2| ,
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where

I1 =
1

K

m∑
j=K

(uj − uj−K)(J2,j − J2,j−K)1Rj,K

I2 =
1

K

m∑
j=K

(uj − uj−K)(J2,j − J2,j−K)1Ecj∩Rj,K .

Now, for each j ∈ {K, . . . ,m}, set dj K as the largest positive integer not larger than j
K

,

and we separate the sum in I1 between odd and even terms. Because the ui are i.i.d. N(0, η2)

independent of J2, the random variable

1
K

∑
odd dj K

(uj − uj−K)(J2,j − J2,j−K)1Rj,K√
1
K2

∑
odd dj K

(J2,j − J2,j−K)21Rj,K

is N(0, η2). By Corollary 3.2, as m→∞,

1

K2

∑
odd dj K

(J2,j − J2,j−K)21Rj,K
P−→ 0.

Therefore, as m→∞,

1

K

∑
odd dj K

(uj − uj−K)(J2,j − J2,j−K)1Rj,K
P−→ 0.

A similar arugment follows for the even terms. Thus, we conclude that as m→∞, I1 tends to

zero in probability. We next treat I2. Following similarly as in the proof of (2.12), we have that

|I2| ≤ sup
i∈{K,...,m}
`∈{0,...,K}

∣∣∣∣∣∣ 1

K

min(i+`,m)∑
j=i

(uj − uj−K)(J2,j − J2,j−K)1Rj,K

∣∣∣∣∣∣
m∑
i=1

1{|βi|>r(h)}.

Because the ui are i.i.d. N(0, η2) independent of J2, and using Corollary 3.2, we have that as

m→∞,

sup
i∈{K,...,m}
`∈{0,...,K}

∣∣∣∣∣∣ 1

K

min(i+`,m)∑
j=i

(uj − uj−K)(J2,j − J2,j−K)1Rj,K

∣∣∣∣∣∣ = OP

(√
logm

K

)
.
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On the other hand, using (2.23), we get that

m∑
i=1

1{|βi|>r(h)} ≤
m∑
i=1

(
1{Ni+K1−1−Ni−K1

>0} + 1{|β̂i|>r(h)}
)

≤ 2K1(Nm+K1−1 −N1−K1) + 2K1

m+K1−2∑
i=K−K1

1{|J2,i+1−J2,i|> r(h)
2K1

}.

Next, using Chebyshev’s inequality, we have that

E

(
K1

√
logm

K

m+K1−2∑
i=K−K1

1{|J2,i+1−J2,i|> r(h)
2K1

}
)
≤ C

√
logm

K

K3
1

r2(h)
= C̃

K3
1 logm

m1/3r2(h)

1√
logm

,

which tends to zero as m→∞ by hypothesis (2.5). Since K1

√
logm
K

also converges to zero as

m → ∞ by hypothesis (2.5), we conclude that I2 tends to 0 in probability as m → ∞. Thus,

we have shown that as m→∞,

1

K

m∑
j=K

(uj − uj−K)(J2,j − J2,j−K)1Ej
P−→ 0.

We are left to show that as m→∞

1

K

m∑
j=K

(J1,j − J1,j−K)(J2,j − J2,j−K)1Ej
P−→ 0.

This follows easily since on the event Ej ∩ Acj it tends to zero by (2.16), (2.17) and (2.18), and

on Ej ∩ Aj all the terms of the sum are zero by (2.20). Hence, we conclude that Y4
P−→ 0.
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Chapter 3

DETECTING PRICE JUMPS IN THE

PRESENCE OF MARKET

MICROSTRUCTURE NOISE

3.1 Introduction

Discontinuities in the path of asset prices are typically modeled with jumps, and jumps are the

focus of a large segment of the literature. For example, Bakshi et al. (1997) show how jumps

affect option values. Moreover, Tauchen and Zhou (2011) study the influence of the jump risk

factor on the variation of the credit default swap spreads. Accordingly, several contributions

in the literature focus on detecting jumps based on high-frequency data, and some examples

include the works by Andersen et al. (2007), Aı̈t-Sahalia and Jacod (2009), Corsi et al. (2010),

Lee and Mykland (2008), Aı̈t-Sahalia and Jacod (2011) and Li et al. (2016).

In this chapter, we propose a novel non-parametric jump detection technique. We assume

the presence of market microstructure noise in the observed high-frequency prices. In order

to explore the jump arrival time, we divide the whole period under consideration into small

intervals. Then for each interval we derive a statistic to detect whether there is a jump on it.

The statistic is defined in terms of the TTSRV estimator proposed in Chapter 2. We compare

the absolute value of the statistic with a threshold. The choice of the threshold depends on the

significance level and the asymptotic distribution of the statistic when no jump is present in the

interval. If the threshold is small, we reject the null hypothesis and conclude that there is a jump
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in the interval. A generic jump is likely to be detected, since it significantly increases with the

magnitude of the statistic. Once we have identified an interval as containing a jump, the jump

size can be consistently estimated by averaging the overlapping local returns that include the

interval. The test proposed by Lee and Mykland (2008) has the same goal as ours, since we both

aim to detect jump arrival times. Our advantage is that this method is vulnerable to the noise

which is common in financial markets according to the work by Hansen and Lunde (2012).

The simulations indicate that when the sampling frequency increases, the test becomes more

efficient, and when the sampling frequency is high enough, the test reaches satisfactory perfor-

mance. This supports our theory that the test is consistent. Moreover, the simulations show that

jumps with larger size are easier to detect, which is in line with the intuition. The simulations

also demonstrate the superiority of our test compared to the tests by Lee and Mykland (2008)

and Jiang and Oomen (2008) when assuming a moderate size of the variance of the noise.

In the literature there are essentially two approaches for testing jumps: parametric and non-

parametric. The parametric approach typically assumes a specific model to characterize jumps.

Such models can then be estimated on the basis of observed data. For example, Chernov et al.

(2003), and Pan (2002) adopt the Efficient Method of Moments (EMM) and the Generalized

Method of Moments (GMM) to measure the jump-related parameters, respectively. Other para-

metric approaches related to jump models can be found, among others, in Bakshi et al. (1997),

Bates (2000), and Piazzesi (2005) . Since jump occurence in financial markets is quite ir-

regular, parametric approaches are likely to commit misspecification errors, and results can be

unreliable. Accordingly, the results obtained can be counterintuitive and insignificant. The non-

parametric jump tests typically propose statistics to detect the existence of realized jumps, since

the jumps can significantly affect the behavior of the statistics. For example, Andersen et al.

(2007) consider the difference between the bipower variation (BPV) and the realized volatility

(RV) as the statistic to test jumps. When there are no jumps, both the BPV and the RV are

consistent estimators of the quadratic variation of the asset price process. Jumps can increase

the difference between the BPV and the RV, since the BPV is immune to jumps and the RV

is not. Jiang and Oomen (2008) explore jumps also by comparing the RV to another volatility

measure, since their difference is sensitive to jumps. Some other non-parametric jump detection

methods can be found, among others, in Aı̈t-Sahalia and Jacod (2009), Aı̈t-Sahalia et al. (2012),

Corsi et al. (2010) and Lee and Mykland (2008).

However, most of the approaches concerning non-parametric jump tests are not able to pin
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down the precise jump arrival time or size. That is, they can only test whether there are jumps

on a given period, without further information on their number, arrival time or size. Another

obstacle of jump detection is market microstructure noise. It makes the observed price different

from the efficient one, and it turns out that most non-parametric jump tests are invalid in this

sense. A notable exception appears in Aı̈t-Sahalia et al. (2012), where a statistic robust to noise

is proposed. Jiang and Oomen (2008) also propose a noise robust statistic, but they require the

spot volatility to be constant, which is hardly true in reality. In this chapter, we introduce a

methodology that allows to detect jump times and sizes in the presence of noise.

The rest of this chapter is organized as follows: In Section 3.2 we define the basic setting,

the statistic and discuss its asymptotic distribution. In Section 3.3 we obtain the limiting prob-

abilities of testing errors. In Section 3.4 we perform Monte Carlo simulations to evaluate the

efficiency of our test and compare it to the tests proposed by Lee and Mykland (2008) and Jiang

and Oomen (2008). Section 3.5 concludes.

3.2 Framework and Asymptotic Theory

We use yt to denote the value of the efficient log–price of some asset at time t, where t ∈ [0, 1].

The process yt starts at y0 ∈ R, and is defined on a filtered probability space (Ω, (Ft)t≥0,F ,P).

Its dynamics are characterized by

dyt = atdt+ σtdBt + dJt, t ∈]0, 1]. (3.1)

Here Bt is a standard Brownian motion. The drift at and the spot volatility σt are progressively

measurable processes on [0, 1]. Jt is a finite activity jump process independent of (σ,B), of the

form Jt =
∑Nt

i=1 Yi. Nt is a non-explosive counting process, and Yi are i.i.d. random variables

and independent of N . Thus the solution (yt, t ∈ [0, 1]) to equation (3.1) is unique in the strong

sense, adapted and càdlàg (see for example Ikeda and Watanabe (1981)).

In addition, we assume that due to the presence of microstructure noise in the market, the

efficient price yt is not observable. That is, the observed transaction price denoted as xt is

different from yt. To this extent, we assume that the timestamps when we observe the transaction
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prices are 0 = t0 < t1 < · · · < tm = 1 where ti = i
m

, and xti and yti are related by

xti = yti + uti , i = 1, ...,m,

where uti is the noise component for the ith trade. uti is assumed to be a discrete i.i.d process,

independent of the process yt and such that uti ∼ N(0, η2), where η is a positive constant. We

use xi, yi and ui to denote respectively the processes xti , yti and uti to simplify the notation.

Moreover, we assume the following conditions on the dynamics of at and σt.

ASSUMPTION 3.1. σt is positive, and there exists constants a > 0, σ+ > σ− > 0 such that

|at| < a, σ− < σt < σ+ for all t ∈ (0, 1].

ASSUMPTION 3.2. For any constants c > 0, ε > 0, 0 < α < 1,

sup
i

sup
ti≤u≤ti+cmα−1

|σu − σti| = OP(m
1
2

(α−1)+ε), (3.2)

as m→∞.

Intuitively, Assumption 3.2 implies that the spot volatility σt does not change much over a

short time interval. It is reasonable in view of Lemma 2 in Mykland and Zhang (2006), which

shows that (3.2) holds when σt is a general Itô process. For example, in Podolskij and Vetter

(2009) and Christensen et al. (2010), they assume that the dynamics of σt are:

dσt = btdt+ ctdWt + dtdVt, (3.3)

where bt, ct, dt are bounded and adapted processes, and Wt, Vt are independent Brownian mo-

tions.

3.2.1 The statistic

In this subsection we define the statistic that will be used in order to test jumps. As mentioned,

we divide the whole period into many small intervals, and detect whether there is a jump on

each interval.Specifically, as shown in Figure 3.1, the period (0, 1] is splitted into m
2K1

intervals,

and the ith interval is
(

2(i−1)K1

m
, 2iK1

m

]
, where K1 = mα1 and α1 ∈ (0, 1). The value of α1 will

be choosen later, and for simplicity, we assume m
2K1

is an integer.
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In order to construct the statistic for the interval
(

2(i−1)K1

m
, 2iK1

m

]
, we first define the rescaled

sum of returns that will smooth away the effect of the noise by:

Ai = M

2K1∑
j=K1

(
xj+2(i−1)K1 − xj−K1+2(i−1)K1

)
, (3.4)

where M =
√

3m
K1(K1+1)(2K1+1)

. As shown in Figure 3.2, Ai is obtained by rescaling the sum

of the returns over the intervals that lie inside
(

2(i−1)K1

m
, 2iK1

m

]
. Each of these intervals has

the form
(

2(i−1)K1+j−1
m

, (2i−1)K1+j−1
m

]
, for j ∈ {K1, K1 + 1, . . . , 2K1}. For large m, since the

contribution toAi by the drift at and the noise uj is negligible, Ai is dominated by the dynamics

of (σt, Bt). When there is no jump on
(

2(i−1)K1

m
, 2iK1

m

]
, it can be checked that

Ai ≈ σ 2(i−1)K1
m

· Z, (3.5)

where Z is a standard normal random variable.

In order to get rid of the spot volatility σ 2(i−1)K1
m

in the asymptotic distribution of Ai, we

need to construct an estimator of σ 2(i−1)K1
m

. We will use the TTSRV introduced in Chapter 2 to

define an estimator of
∫ 2(i−1)K1

m
2(i−1)K1−K2

m

σ2
t dt. Here K2 = cmα2 and α2 ∈ (0, 1) whose value will

be specified later. Because of Assumption 1,
∫ 2(i−1)K1

m
2(i−1)K1−K2

m

σ2
t dt ≈ K2

m
σ2

2(i−1)K1
m

. Then we can

estimate σ 2(i−1)K1
m

by taking the square root of the rescaled TTSRV. That is,

σ̂ 2(i−1)K1
m

=

√
m

K2

σ̂2
TTS i. (3.6)

Observe the TTSRV in the interval
[

2(i−1)K1−K2

m
, 2(i−1)K1

m

]
, we have

σ̂2
TTS i =

1

K3

2(i−1)K1∑
j=2(i−1)K1−K2+K3

(xj − xj−K3)
21Ej −

1

K3

2(i−1)K1∑
j=2(i−1)K1−K2+K3

(xj − xj−1)21Ej ,(3.7)

where Ej = {|βi(K4)| ≤ r(m), for all i = j −K3 + 1, . . . , j}. Here K3 = mα3 , K4 = mα4

and r(m) = m−α5 , and α3, α4, α5 ∈ (0, 1).
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Then the statistic Si can be obtained by standardizing Ai with σ̂ 2(i−1)K1
m

, that is,

Si =
Ai

σ̂ 2(i−1)K1
m

. (3.8)

The following lemma shows how to choose the values of α2, α3, α4, α5 in order to make the

denominator a consistent estimator of σ 2(i−1)K1
m

.

LEMMA 3.1. Assume 0 < α3 < α2 < 1, α5 <
α4

2
and 0 < α4 <

1
4
. Then for any ε > 0, we have

sup
i∈{1,..., m

2K1
}

∣∣∣∣ mK2

σ̂2
TTS i − σ2

t2(i−1)K1

∣∣∣∣ = OP

(
mα̃+ε

)
, (3.9)

as m→∞, where α̃ = max(1
2
(α3 − α2), 1− 1

2
α2 − α3,

1
2
(α2 − 1), 2

3
+ α4 − α2).

The proof of Lemma 3.1 is similar to the proof of the consistency of the TTSRV in Chapter

2. First we show that since the returns affected by jumps are removed from σ̂2
TTS i, the difference

between σ̂2
TTS i constructed with the jump-involved price data and the TSRV based on the no-

jump data is caused only by the information loss due to the truncations. Then we compute the

magnitude of the information loss, and the difference between the TSRV and
∫ t2(i−1)K1
t2(i−1)K1−K2

σ2
t dt.

Given (3.9), in order to minimize the difference between m
K2
σ̂2
TTS i and σ2

t2(i−1)K1
, it is natural

to minimize α̃ over the values of α2, α3, α4. It is easy to check that the minimum of α̃ is − 1
12

,

which is achieved when α2 = 5
6
, α3 = 2

3
, 0 < α4 <

1
12

and 0 < α5 <
α4

2
. In the rest of the

chapter we will assume this set of values for α2, α3, α4, α5 unless stated otherwise.

3.2.2 Under the null hypothesis

In this subsection we compute the asymptotic distribution of Si under the null hypothesis that

there is no jump on
(

2(i−1)K1

m
, 2iK1

m

]
. Since for large m, Ai is roughly σ 2(i−1)K1

m

times a standard

normal random variable, and σ̂ 2(i−1)K1
m

is approximately σ 2(i−1)K1
m

, Si is asymptotically standard

normal, as shown in the following theorem where

Bm =

{
i ∈
{

1, . . . ,
m

2K1

}
, such that Nt2iK1

−Nt2(i−1)K1
= 0

}
. (3.10)

98



“ExempleUsPlantillaA4” — 2017/1/25 — 18:37 — page 99 — #117

THEOREM 3.1. For any ε > 0, as m→∞,

sup
i∈Bm
|Si − Ŝi| = OP

(
mβ+ε

)
, (3.11)

where β = max
(

1
2
− α1,

1
2
α1 − 1

2
,− 1

12

)
, and

Ŝi = M

K1∑
j=0

(
Bt(2i−1)K1+j

−Bt2(i−1)K1+j

)
. (3.12)

Moreover, Ŝi is a standard normal random variable.

Let α1 ∈
(

1
2
, 1
)

as a constant on
(

1
2
, 1
)
. Then Theorem 3.1 asserts that the difference

between Si and Ŝi is oP(1), which means that asymptotically, Si is also standard normal. In

addition, the Ŝi’s are pairwise independent. Thus asymptotically, so are the Si’s.

3.2.3 Under the alternative hypothesis

In this subsection we study the property of Si under the alternative hypothesis that there is a

jump on (t2(i−1)K1 , t2iK1 ]. Then the following Theorem 3.2 can help us check whether a jump

can significantly affect the behavior of Si, which is important for jump detection.

THEOREM 3.2. Suppose there is a jump at time τ and i is the integer such that τ ∈ (t2(i−1)K1 , t2iK1 ].

Then for any ε > 0 we have

Si = Ŝi +M
Dm(τ)

σt2(i−1)K1

Y (τ) + oP

(
mβ+ε +MDm(τ)

)
, (3.13)

where Ŝi is defined in Theorem 3.1, Y (τ) is the jump size at time τ , and

Dm(τ) = min

([(
τ − 2(i− 1)K1

m

)
m

]
+ 1, K1,

[(
2iK1

m
− τ
)
m

]
+ 1

)
,

where [x] means the largest integer not larger than x.

Dm(τ) shows how the jump time τ affects the contribution by the jump to Si. In order to

know the magnitude of Dm(τ) when τ is random, we assume the following condition for Nt:

P
(
Nti −Nti−1

> 0
)

= O

(
1

m

)
, (3.14)
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for all i ∈ {1, . . . ,m}. Notice that this condition holds for the Poisson process, and it is also

adopted by Mancini (2009). Then we have the following corollary:

COROLLARY 3.1. For any ε > 0,
Dm(τ)

K1−ε
1

P→∞, (3.15)

as m→∞.

Corollary 3.1 implies that Dm(τ) is approximately of the same order as K1. The intuition

is that when K1 is large, Dm(τ) will also be large unless τ is close to t2(i−1)K1 or t2iK1 , but

the probability that τ is near t2(i−1)K1 or t2iK1 is small. Given the second component on the

right-side of (3.13), the contribution to Si by the jump is approximately of order m
1
2
− 1

2
α1 . As

α1 ∈
(

1
2
, 1
)
, the jump is likely to make the value of |Si| large for large m.

3.2.4 Selection of rejection region

From Theorems 3.1 and 3.2, when there is a jump on (t2(i−1)K1 , t2iK1 ], |Si| is likely to be larger

than |Sj| for a generic j such that there is no jump on (t2(i−1)K1 , t2iK1 ]. From the next lemma,

we can see that |Si| is also likely to be larger than the maximum of |Sj| across different values

of j such that there is no jump on (t2(i−1)K1 , t2iK1 ].

LEMMA 3.2. As m→∞,
max
i∈Bm
|Si| − Cm

Lm
→ X, (3.16)

where P(X ≤ x) = exp (−e−x),

Cm =

(
2 log

m

2K1

) 1
2

−
log π + log

(
log m

2K1

)
2
(

2 log m
2K1

) 1
2

and Lm = 1(
2 log m

2K1

) 1
2
.

The principle of our test is that if |Si| is too large compared with the asymptotic distribution

of max
i∈Bm
|Si|, we reject the null hypothesis that there is no jump on (t2(i−1)K1 , t2iK1 ]. Thus the

value of the threshold for the test is determined by the significance level and the asymptotic

distribution of max
i∈Bm
|Si|. For example, if we define the significance level as 5%, because the

95% quantile of the random variable X is 2.97, as exp (−e−2.97) = 0.95, we believe there is a

jump on (t2(i−1)K1 , t2iK1 ] if |Si|−cm
Lm

> 2.97.
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3.3 Misclassifications

We consider four types of misclassifications. The first is such that a jump occurs in inter-

val (t2(i−1)K1 , t2iK1 ], but the test does not detect it. We call this a failure to detect actual

jump in (t2(i−1)K1 , t2iK1 ] (FTDi). The second is such that the test indicates there is a jump

in (t2(i−1)K1 , t2iK1 ], but actually there is not. We call this a spurious detection of jump in

(t2(i−1)K1 , t2iK1 ] (SDi). If we commit an FTDi for any i ∈
{

1, . . . , m
2K1

}
, a global failure to

detect actual jump (GFTD) happens. In other words, we commit a GFTD unless we detect

all the jumps in (0, 1]. If we commit an SDi for any i ∈
{

1, . . . , m
2K1

}
, a global spurious

detection of jump (GSD) happens. Thus we commit a GSD unless we correctly identify all

the intervals (t2(i−1)K1 , t2iK1 ] where i ∈ Bm as not containing a jump. We define J i as the event

that there is a jump in (t2(i−1)K1 , t2iK1 ], and Ei as the event that based on the value of |Si|, we

declare there is a jump in (t2(i−1)K1 , t2iK1 ]. Then the four types of misclassifications can be

expressed as:

failure to detect actual jump in (t2(i−1)K1 , t2iK1 ](local property)(FTDi) = Ji
⋂

Ec
i ,

spurious detection of jump in (t2(i−1)K1 , t2iK1 ](local property)(SDi) = J ci
⋂

Ei,

failure to detect actual jumps(global property)(GFTD) =

m
2K1⋃
i=1

(
Ji
⋂

Ec
i

)
,

spurious detection of jumps(global property)(GSD) =

m
2K1⋃
i=1

(
J ci
⋂

Ei,
)
.

Define αm as the significance level of our test, γm as the (100 − 100αm)th quantile of the

distribution ofX in Lemma 3.2, and F (y) as the cumulative distribution function of the absolute

value of jump size. Then Theorem 3.3 shows the limiting probability of GFTD as m→∞.

THEOREM 3.3. Assume 1−αm bounded away from zero. Let {τ1, τ2, . . . , τN1} be the time points

when jumps occur on (0, 1]. Then

P(GFTD|{τ1, τ2, . . . , τN1})→ 1−
N1∏
i=1

(1− F (Gim)) (3.17)
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as m→∞, where

Gim =
1

M

σt2(i−1)K1

Dim

(γmLm + Cm),

Dim = min

([(
τi −

2(bim − 1)K1

m

)
m

]
+ 1, K1,

[(
2bimK1

m
− τi

)
m

]
+ 1

)
,

and bim =
[
mτi
2K1

]
+ 1.

Now we assume for each i, Yi is a.s. nonzero. Then the following corollary shows how to

set the value of γm such that the probability of GFTD converges to zero as m→∞.

COROLLARY 3.2. Set γm such that there exists ε > 0 such that

γm√
log(m)

m−
1
2

+ 1
2
α1+ε → 0 (3.18)

as m→∞. Then we have

P(GFTD)→ 0, (3.19)

as m→∞.

The event that GFTD does not occur means that for the S ′is corresponding to the intervals

that contain a jump, their absolute values are all larger than the threshold γmLm + Cm. On

the right-side of (3.13), the main contribution by the jump is the second term, and Ŝi would be

negligible compared to the threshold for large m. Thus the probability that |Si| is larger than

the threshold approximately equals to the probability that the second term is larger than the

threshold Lmγm + Cm.

From (3.17) we can see that when Gim → 0 as m → ∞, the probability of GFTD con-

verges to 0. Same as Dm(τ) in Theorem 3.2, Dim shows how the position of the jump affects

its contribution to |Si|. From Corollary 3.1 we can see that the order of Dim is approximately

the same as K1. Thus (3.19) can be obtained by setting the value of γm as, for example, any

constant or mε for any 0 < ε < 1
2
− 1

2
α1.

By definitionGSD is the same as the event that max
i∈Bm
|Si| is larger than the threshold Lmγm+

Cm. Then from the asymptotic distribution of max
i∈Bm
|Si|, we can obtain the limiting probability

of GSD as follows.
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THEOREM 3.4. As m→∞,

P(GSD)→ 1− exp
(
−e−γm

)
= αm. (3.20)

Theorems 3.3 and 3.4 suggest that if lim
m→∞

γm = ∞, and there exists ε > 0 such that

lim
m→∞

γm√
log(m)

m−
1
2

+ 1
2
α1+ε = 0, then both probabilities of GFTD and GSD converge to zero

as m→∞. For example, we can set γm = mα for any 0 < α < 1
2
− 1

2
α1.

If we find there is a jump on (t2(i−1)K1 , t2iK1 ], the jump size can be estimated by tak-

ing the average of the returns over the intervals that contain (t2(i−1)K1 , t2iK1 ]. For example,

there are 2K1 + 1 intervals in the form of (tj, tj+4K1 ] that contain (t2(i−1)K1 , t2iK1 ], which are

(t2iK1−4K1 , t2iK1 ], . . . , (t2(i−1)K1 , t2iK1+2K1 ] (see Figure 3.3). Then we can consistently estimate

the jump size by taking the average of the 2K1 +1 returns over these intervals. It can be checked

that the contribution to the average return from the diffusion process isOP

(
m

1
2

(α1−1)
)

, and that

from the noise is OP

(
m−

1
2
α1

)
. Thus for large m, the effect from the noise and the diffusion

will vanish, and the value of the average return will be approximately equal to the jump size.

3.4 Monte Carlo Simulation

In this section we perform Monte Carlo simulations to explore the efficiency of our jump test,

and we compare it with the tests by Lee and Mykland (2008) and Jiang and Oomen (2008).

We assume there are 8 hours in a trading day. Thus for example, if the sampling frequency is

1 second, we have 4t = ti − ti−1 = 1
3600×8

. We assume that there is one price jump in the

entire day, and its occurence time is uniformly distributed on [0, 1]. Moreover, we set the drift

term at = 0 and the standard deviation of the noise as 0.1, unless stated otherwise. We also set

K1 = m
7
12 , K2 = m

5
6 , K3 = 0.25m

2
3 , K4 = 2m

1
12 , which is in line with our theory to make

the test consistent. We use the Euler scheme to approximate the continuous-time process yt

which is assumed to satisfy (3.1), with the discretization being 0.0625 seconds. We assume two

conditions for the spot volatility σt. In the first setting, σt is a constant whose value is 0.6. In

the second condition, σt follows the CIR process:

dσt = κ(υ − σt)dt+ θ
√
σtdWt, (3.21)
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where the mean reversion parameter κ = 0.1, the long run mean of the process υ = 0.6, and the

volatility θ = 0.3. The sampling frequency we consider ranges from 0.125 second to 1 second,

and for each sampling frequency, we simulate 1000 different series of price observations. Table

3.1 shows the probability of spurious detection for a generic interval (t2(i−1)K1 , t2iK1 ]. The

significance level is set as α = 5%. From Table 3.1 we can see that more frequent observations

can reduce the probability of spurious detection.

Table 3.2 shows the probability of correctly detecting a jump on (t2(i−1)K1 , t2iK1 ] with re-

spect to different jump sizes and sampling frequencies, with the significance level α = 5%. We

set the jump size relative to the spot volatility σt, since in the stochastic volatility condition, υ is

the long-run mean of σt. From Table 3.2 we can see that it would be easier to detect large jumps

than small ones, and sampling more frequently improves the chance of successful detection.

We define the event global misclassification (GM ) such that it happens if and only if either

GSD or GFTD occurs. Table 3.3 shows the probability of GM under the condition where

σt = 0.6. Like the results of Table 3.2, from Table 3.3 we can also see that more frequent

sampling makes the test more efficient, and larger jumps are easier to detect, which reduces the

probability of GM by decreasing the likelihood of GFTD.

We also compare the probabilities of GFTD, GSD and GM for our test and the tests by

Lee and Mykland (2008) (LM test) and Jiang and Oomen (2008) (JO test). Now let us introduce

LM and JO tests. The statistic proposed by Lee and Mykland (2008) to detect whether there is

a jump on (ti−1, ti] is defined as follows:

Li =
xi − xi−1

σ̂i
, (3.22)

where

σ̂2
i =

1

K5 − 2

i−1∑
j=i−K+2

(xj − xj−1)(xj−1 − xj−2). (3.23)

Lee and Mykland (2008) set K5 = mδ and δ is a constant on (0, 1
2
). They do not show how to

choose the optimal value of δ. We have tried many values on δ, and we will show the results

when δ = 1
2
, because the results for other values of δ are not better. Lee and Mykland (2008)

justify the test in the absence of the noise. In this case, under the null hypothesis that there is

104



“ExempleUsPlantillaA4” — 2017/1/25 — 18:37 — page 105 — #123

no jump on (ti−1, ti],

√
m(xi − xi−1) ≈ σtiUi, (3.24)

where Ui is a standard normal random variable generated by the Brownian motion on (ti−1, ti].

Moreover, in the noiseless setting,
√
mσ̂i is approximately equal to the local volatility σti . Thus

without the impact of the noise and jump, Li follows asymptotically a standard normal distribu-

tion and they are independent of each other. Still in the noiseless setting, a jump on (ti−1, ti] can

significantly increase the value of |Li|. Thus the principle that Lee and Mykland (2008) adopt

to determine the threshold based on the significance level is similar to ours. However, neither

the nominator nor the denominator on the right-side of (3.22) are immune to the noise, so the

efficiency of LM test decreases with the presence of noise.

The statistic proposed by Jiang and Oomen (2008) to detect jumps on (0, 1] is as follows:

Sm =
SwVm −RVm√

Ω̂
, (3.25)

where SwVm = 2
∑m

i=1 (exi−xi−1 − 1− (xi − xi−1)), RVm =
∑m

i=1 (xi − xi−1)2, and Ω̂ is

some approximation of

Ω = 4mη6 + 12η4

∫ 1

0

σ2
t dt+ 8η2 1

m

∫ 1

0

σ4
t dt+

5

3

1

m2

∫ 1

0

σ6
t dt.

We use the procedure described by Jiang and Oomen (2008) to construct Ω̂. Under the null

hypothesis that there is no jump on (0, 1], Sm has approximately zero expectation and variance

1. In order to obtain acceptable results from the test, as shown in Jiang and Oomen (2008), we

need to impose several conditions. For example, σt is a constant, η2 � σ2
t and mσ4

t is small.

Here recall that η is the standard deviation of the noise. The first two conditions are basically

true in our simulations, since we define σt = 0.6 and η2 = 0.01 or 0.0144, much smaller than

σ2
t = 0.36. The last condition implies that m cannot be too large, so it may not be proper to

sample frequently for JO test with noisy data, and we will see that the simulation results also

illustrate it. Thus we sample much less frequenly in performing JO test than the other two tests.

Moreover, unlike our and LM tests, for a fixed period (0, T ], JO test can only indicate whether

there is a jump on that period, without further indication on the jump arrival time, like locating

the jump arrival within a small interval. Thus in order to make the results comparable, we use
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the JO test to detect jump respectively on
(
0, 1

2

]
and

(
1
2
, 1
]

in one simulation.

For all the tests, the significance level is set as 5%, and the jump size is subject to normal

distribution with mean 0 and standard deviation 1.2. Table 3.4 reports the results. We can

see that across different levels of sampling frequency and η, our test is less likely to commit

misspecifications than LM and JO test, since the probability of GM is uniformly lower for our

test. Further investigation reveals that this is because the probability of GFTD of our test is

always smaller than LM and JO tests. It is obvious that relative to our and LM tests, we use

much less frequent price observations to construct the JO test. This is because for JD test, when

m is large, the absolute value of the statistic will be significantly increased by the noise, so it

is likely to generate a misleading result when there is no jump on the interval. For example,

when the sampling frequency is 10 seconds, over 90 percent of the JO tests will commit a

spurious detection. Unreported results suggest that for JO test, the optimal sampling frequency

is around 120 seconds. In addition, when η = 0.12, more frequent sampling does not reduce

the likelihood of misspecification for LM test. This implies that the consistency of LM test,

which is established in the noiseless setting, is not immune to the noise. However, sampling

more frequently can always improve the efficiency of our test.

Table 3.5 displays the values of the mean squared errors (MSE) on estimating the jump size

by considering the local average return as the estimator. The procedure to construct the estima-

tor is the same as we have explained in the last paragraph of Section 3. That is, for any jump on

(0, 1], it is contained in an interval in the form of (t2(i−1)K1 , t2iK1 ] for some i ∈
{

1, . . . , m
2K1

}
.

Then we take the average of the returns over the intervals (t(2i−4)K1 , t2iK1 ], (t(2i−4)K1+1, t2iK1+1],

. . . , (t(2i−2)K1 , t(2i+2)K1 ] as the estimator on the jump size. We consider 4 combinations in terms

of the spot volatility σt and jump size Yi. σt can be either a constant 0.6 or follows the stochas-

tic process as specified in (3.21). Yi can be either a constant 1.2 or subject to the distribution

N(0,1.44). From Table 3.5 we can see that sampling more frequently increases the precision of

estimating the jump size.

3.5 Conclusions

In this chapter we propose a novel test on detecting jumps in the process of the efficient asset

price. This test is based on high-frequency price data that are affected by market microstructure

noise. We perform multiple tests over the whole period, and each single test checks whether
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there is a jump in a small interval. The statistic is the rescaled local average return standardized

by an estimator of spot volatility. The volatility estimator is derived from the truncated two-

scales realized variance (TTSRV), because the TTSRV consistently estimates the integrated

volatility in the presence of noise and jumps. Since a jump can greatly imcrease the absolute

value of the statistic, we will reject the null hypothesis that there is no jump in the interval, if

the corresponding statistic is large in its absolute value. We show that when the threshold is

defined properly, the probability of testing errors will converge to zero as the number of price

observations increases. Simulations also illustrate the consistency of our test, and show that

our procedure performs well. Simulations also indicate that our test performs well compared to

some other prevalent jump tests which are not immune to the noise.

107



“ExempleUsPlantillaA4” — 2017/1/25 — 18:37 — page 108 — #126

3.6 Appendix

3.6.1 Figures and Tables

Figure 3.1: DIVISION OF THE WHOLE PERIOD

0 2K1

m
4K1

m
... m−2K1

m
1

The figure shows how we divide the whole horizon (0, 1] into m
2K1

intervals. Then test can be performed on

each interval to detect jumps.

Figure 3.2: CONSTRUCTION OF THE NOMINATOR

ri 1

2(i−1)K1

m
(2i−1)K1

m

2iK1

m

2(i−1)K1

m
(2i−1)K1

m

2(i−1)K1+1
m

(2i−1)K1+1
m

ri 2

...
2(i−1)K1

m

2iK1

m

ri K1+1

The figure provides a schematic representation of how we compute the nominator of Si

Figure 3.3: THE OVERLAPPING INTERVALS

t(2i−4)K1 t(2i−2)K1 t2iK1 t(2i+2)K1

t(2i−4)K1 t2iK1

t(2i−4)K1+1 t2iK1+1

...
t(2i−2)K1 t(2i+2)K1

The figure shows there are 2K1+1 intervals in the form of (tj , tj+4K1 ] that contain the interval (t2i−2K1, t2iK1 ]

in red color.
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Table 3.1: PROBABILITY OF SPURIOUS DETECTION

freq σt = 0.6 (SE) SV (SE)

1-second 3.89× 10−3 (3.54× 10−4) 4.44× 10−3 (3.89× 10−4)
0.5-second 3.13× 10−3 (2.71× 10−4) 3.08× 10−3 (2.36× 10−4)

0.25-second 2.19× 10−3 (1.99× 10−4) 1.56× 10−3 (1.65× 10−4)
0.125-second 1.53× 10−3 (1.36× 10−4) 1.41× 10−3 (1.26× 10−4)

The table shows means and standard errors (in parentheses) of probability of spurious detection P(SDi). The
significance level α is 5%. SV means the spot volatility follows the process of (3.21), and freq denotes the

sampling frequency.

Table 3.2: PROBABILITY OF DETECTING ACTUAL JUMP

Jump Size 2σt σt 0.5σt
constant volatility σt at 0.6

freq=1-second 0.78 0.67 0.34
(1.32× 10−2) (1.49× 10−2) (1.51× 10−2)

freq=0.5-second 0.85 0.72 0.48
(1.13× 10−2) (1.43× 10−2) (1.59× 10−2)

freq=0.25-second 0.89 0.75 0.55
(9.94× 10−3) (1.38× 10−2) (1.58× 10−2)

freq=0.125-second 0.94 0.77 0.64
(7.55× 10−3) (1.34× 10−2) (1.53× 10−2)

Jump Size 2υ υ 0.5υ
stochastic volatility

freq=1-second 0.81 0.64 0.19
(1.25× 10−2) (1.53× 10−2) (1.25× 10−2)

freq=0.5-second 0.79 0.66 0.30
(1.29× 10−2) (1.51× 10−2) (1.46× 10−2)

freq=0.25-second 0.82 0.70 0.36
(1.22× 10−2) (1.46× 10−2) (1.53× 10−2)

freq=0.125-second 0.86 0.71 0.55
(1.10× 10−2) (1.44× 10−2) (1.58× 10−2)

This table shows means and standard errors (in parentheses) of probability of detecting actual jump
(1− P(FTDi)). The significance level α is 5%. Stochastic volatility means the spot volatility follows the

process of (3.21), and freq denotes the sampling frequency.
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Table 3.3: PROBABILITY OF GLOBAL MISCLASSIFICATION

Jump size 2σt σt 0.5σt

freq=1-second 0.32 0.40 0.70

(1.48× 10−2) (1.56× 10−2) (1.46× 10−2)

freq=0.5-second 0.26 0.33 0.61

(1.39× 10−2) (1.49× 10−2) (1.55× 10−2)

freq=0.25-second 0.20 0.34 0.50

(1.27× 10−2) (1.51× 10−2) (1.59× 10−2)

freq=0.125-second 0.17 0.30 0.43

(1.19× 10−2) (1.46× 10−2) (1.57× 10−2)

This table shows means and standard errors (in parentheses) of probability of global misclassifications by either

global spurious detection of jumps (GSD) or global failure to detect actual jumps(GFTD). The significance

level α is 5% and σt = 0.6. freq denotes the sampling frequency.
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Table 3.4: COMPARISON OF THE MISCLASSIFICATION PROBABILITIES

η=0.1 Our test
freq P(GM ) (SE) P(GFTD) (SE) P(GSD) (SE)

0.5-second 0.38 (1.54× 10−2) 0.30 (1.46× 10−2) 0.15 (1.13× 10−2)
0.25-second 0.36 (1.53× 10−2) 0.28 (1.43× 10−2) 0.15 (1.13× 10−2)

0.125-second 0.27 (1.41× 10−2) 0.20 (1.27× 10−2) 0.10 (9.53× 10−3)

η=0.1 LM test
freq P(GM ) (SE) P(GFTD) (SE) P(GSD) (SE)

0.5-second 0.52 (1.59× 10−2) 0.52 (1.59× 10−2) 0.013 (3.16× 10−3)
0.25-second 0.40 (1.56× 10−2) 0.39 (1.55× 10−2) 0.028 (5.42× 10−3)

0.125-second 0.39 (1.55× 10−2) 0.38 (1.54× 10−2) 0.011 (3.16× 10−3)

η=0.1 JO test
freq P(GM ) (SE) P(GFTD) (SE) P(GSD) (SE)

120-second 0.41 (1.56× 10−2) 0.34 (1.50× 10−2) 0.11 (9.89× 10−3)
60-second 0.43 (1.57× 10−2) 0.35 (1.51× 10−2) 0.17 (1.19× 10−2)
10-second 0.95 (6.89× 10−3) 0.15 (1.13× 10−2) 0.93 (8.07× 10−3)

η=0.12 Our test
freq P(GM ) (SE) P(GFTD) (SE) P(GSD) (SE)

0.5-second 0.49 (1.59× 10−2) 0.37 (1.53× 10−2) 0.14 (1.10× 10−2)
0.25-second 0.45 (1.58× 10−2) 0.29 (1.44× 10−2) 0.19 (1.25× 10−2)

0.125-second 0.41 (1.56× 10−2) 0.28 (1.43× 10−2) 0.17 (1.19× 10−2)

η=0.12 LM test
freq P(GM ) (SE) P(GFTD) (SE) P(GSD) (SE)

0.5-second 0.53 (1.59× 10−2) 0.51 (1.59× 10−2) 0.032 (5.42× 10−3)
0.25-second 0.52 (1.59× 10−2) 0.52 (1.59× 10−2) 0.014 (3.16× 10−3)

0.125-second 0.58 (1.57× 10−2) 0.56 (1.58× 10−2) 0.023 (4.45× 10−3)
η=0.12 JO test
freq P(GM ) (SE) P(GFTD) (SE) P(GSD) (SE)

120-second 0.51 (1.58× 10−2) 0.42 (1.56× 10−2) 0.16 (1.16× 10−2)
60-second 0.54 (1.58× 10−2) 0.42 (1.56× 10−2) 0.25 (1.37× 10−2)
10-second 0.99 (3.15× 10−3) 0.19 (1.24× 10−2) 0.98 (4.43× 10−3)

This table shows means and standard errors of probabilities of GFTD, GSD and GM for our test and the tests
by Lee and Mykland (2008) (LM test) and Jiang and Oomen (2008) (JO test). The significance level α is 5% and
σt = 0.6. The volatility of the jump size is set as 1.2. freq denotes the sampling frequency, and η is the standard

deviation of the noise.
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Table 3.5: MSE OF ESTIMATING THE JUMP SIZE

freq Y = 1.2, σt = 0.6 Y = 1.2, SV Y ∼ N(0, 1.2), σt = 0.6 Y ∼ N(0, 1.2), SV
1-second 1.46× 10−2 2.53× 10−2 1.68× 10−2 2.40× 10−2

0.5-second 1.34× 10−2 2.09× 10−2 1.42× 10−2 1.72× 10−2

0.25-second 8.16× 10−3 1.94× 10−2 9.40× 10−3 1.32× 10−2

0.125-second 7.38× 10−3 1.11× 10−2 7.16× 10−3 1.00× 10−2

The table shows the MSE values of estimating the jump size for different conditions on the spot volatility σt and
the jump size Y . SV means σt follows the process of (3.21), and freq denotes the sampling frequency.

3.6.2 Proofs

Proof of Lemma 3.1. For simplicity we assume at = 0. We define

xi =

∫ ti

0

σsdBs + uti ,

σ2
TTS i =

1

K3

2(i−1)K1∑
j=2(i−1)K1−K2+K3

(xj − xj−K3)
21Ej −

1

K3

2(i−1)K1∑
j=2(i−1)K1−K2+K3

(xj − xj−1)21Ej ,

and

σ2
TS i =

1

K3

2(i−1)K1∑
j=2(i−1)K1−K2+K3

(xj − xj−K3)
2 − 1

K3

2(i−1)K1∑
j=2(i−1)K1−K2+K3

(xj − xj−1)2.

Following similar steps as those justifying equations (2.11) and (2.12), it can be checked that

a.s.,

σ̂2
TTS i = σ2

TTS i, (3.26)

for all i ∈
{

1, . . . , m
2K1

}
, as m→∞, and for any ε > 0,

sup
i∈
{

1,..., m
2K1

} ∣∣σ2
TTS i − σ2

TS i

∣∣ = OP

(
m−

1
3

+α4+ε
)
. (3.27)

Therefore,

sup
i∈
{

1,..., m
2K1

} ∣∣σ̂2
TTS i − σ2

TS i

∣∣ = OP

(
m−

1
3

+α4+ε
)
. (3.28)
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σ2
TS i can be seen as a two-scales realized volatility estimator on [t2(i−1)K1−K2 , t2(i−1)K1 ]. Based

on the proof of Theorem 1 in Fan et al. (2012), we have that there exists positive constants c

and c′ such that for all x ∈ [0, c] and large m,

P

(∣∣∣∣∣σ2
TS i −

∫ t2(i−1)K1

t2(i−1)K1−K2

σ2
sds

∣∣∣∣∣ ≥ x

)
≤ c′ exp

(
−cx2mmin(2−α2−α3,2α3−α2)

)
, (3.29)

from which we can see that for any ε > 0 we have

sup
i∈
{

1,..., m
2K1

+1
}
∣∣∣∣∣σ2

TS i −
∫ t2(i−1)K1

t2(i−1)K1−K2

σ2
sds

∣∣∣∣∣ = OP

(
mmax( 1

2
(α2+α3)−1, 1

2
α2−α3)+ε

)
. (3.30)

From Assumption 3.2 for all i ∈
{

1, . . . , m
2K1

}
we have

∫ t2(i−1)K1

t2(i−1)K1−K2

σ2
sds = σ2

t2(i−1)K1
(t2(i−1)K1 − t2(i−1)K1−K2) +

∫ t2(i−1)K1

t2(i−1)K1−K2

(σ2
s − σt22(i−1)K1

)ds

=
K2

m
σ2
t2(i−1)K1

+OP

(
m

3
2

(α2−1)+ε
)
, (3.31)

for ε > 0. Therefore,

sup
i∈
{

1,..., m
2K1

}
∣∣∣∣∣ mK2

∫ t2(i−1)K1

t2(i−1)K1−K2

σ2
sds− σ2

t2(i−1)K1

∣∣∣∣∣ = OP

(
m

1
2

(α2−1)+ε
)
. (3.32)

From (3.27) (3.30) (3.32), we get that

sup
i∈
{

1,..., m
2K1

}
∣∣∣∣ mK2

σ̂2
TS i − σ2

t2(i−1)K1

∣∣∣∣ = OP

(
mmax( 2

3
+α4−α2,

1
2
α3− 1

2
α2,− 1

2
α2−α3+1, 1

2
(α1−1))+ε

)
,(3.33)

for ε > 0.

Proof of Theorem 3.1. For simplicity we assume at = 0. Define

Ai1 =

K1∑
j=0

∫ t(2i−1)K1+j

t2(i−1)K1+j

σtdBt, (3.34)

113



“ExempleUsPlantillaA4” — 2017/1/25 — 18:37 — page 114 — #132

and

Ai2 =

K1∑
j=0

(u(2i−1)K1+j − u2(i−1)K1+j). (3.35)

Then when i ∈ Bm,

Ai =

√
3m

K1(K1 + 1)(2K1 + 1)
(Ai1 + Ai2).

For Ai1, we have

Ai1 =

(2i−1)K1∑
j=2(i−1)K1

∫ tj+K1

tj

(σt − σt2(i−1)K1
)dBt + σt2(i−1)K1

(2i−1)K1∑
j=2(i−1)K1

(Btj+K1
−Btj).

By Assumption 3.2, across i ∈
{

1, . . . , m
2K1

}
, for any ε > 0 we have

sup
i

sup
t∈[t2(i−1)K1

,t2iK1
]

(σt − σt2(i−1)K1
) = OP

(
m

1
2

(α1−1)+ε
)
.

Then it can be checked that

sup
i

(2i−1)K1∑
j=2(i−1)K1

∫ tj+K1

tj

(σt − σt2(i−1)K1
)dBt = OP

(
m2α1−1+ε

)
, (3.36)

for ε > 0. For Ai2, we have sup
i
|Ai2| = OP

(
m

1
2
α1+ε

)
. Therefore,

sup
i

∣∣∣∣∣∣M
Ai1 + Ai2 − σt2(i−1)K1

(2i−1)K1∑
j=2(i−1)K1

(Btj+K1
−Btj)

∣∣∣∣∣∣
is OP

(
mmax(1−2α1,

1
2
−α1)+ε

)
, as M =

√
3m

K1(K1+1)(2K1+1)
. Then we have

sup
i

∣∣∣∣Si√ m

K2

σ̂2
TTS i − σt2(i−1)K1

Ŝi

∣∣∣∣ = OP

(
mmax(1−2α1,

1
2
−α1)+ε

)
, (3.37)

for any ε > 0. Since we have set α2 = 5
6
, α3 = 2

3
, based on Lemma 3.1, it can be obtained that

sup
i

∣∣∣∣√ m

K2

σ̂2
TTS i − σt2(i−1)K1

∣∣∣∣ = OP

(
m−

1
12

+ε
)
, (3.38)
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for any ε > 0. Then we have

sup
i

∣∣∣(σt2(i−1)K1
+ εi

)
Si − σt2(i−1)K1

Ŝi

∣∣∣ = OP

(
mmax(1−2α1,

1
2
−α1)+ε

)
, (3.39)

where sup
i
|εi| is OP

(
m−

1
12

+ε
)

. As we will prove later, Ŝi is subject to the standard normal

distribution. Then sup
i
|Ŝi| is OP(logm). Thus given that σt2(i−1)K1

> σ−, according to (3.39),

we can see that sup
i
|Si| is OP

(
logm+mmax(1−2α1,

1
2
−α1)+ε

)
, because

sup
i
|Si| ≤ sup

i

∣∣∣∣∣ σt2(i−1)K1

σt2(i−1)K1
+ εi

Ŝi

∣∣∣∣∣+OP

(
mmax( 1

2
−α1,

1
2
α1− 1

2
,)+ε
)
. (3.40)

Also from (3.39), we have that

sup
i

∣∣∣σt2(i−1)K1
Si − σt2(i−1)K1

Ŝi

∣∣∣ ≤ OP

(
mmax(1−2α1,

1
2
−α1)+ε

)
+ sup

i
|εiSi|. (3.41)

As sup
i
|εiSi| is OP

(
mmax( 1

2
−α1,

1
2
α1− 1

2
,− 1

12)+ε
)

= OP

(
mβ+ε

)
and σt2(i−1)K1

> σ−, proof for

(3.11) is completed. Now we are going to show that Ŝi = M
∑(2i−1)K1

j=2(i−1)K1
(Btj+K1

− Btj) is

subject to the standard normal distribution.

(2i−1)K1∑
j=2(i−1)K1

(Btj+K1
−Btj) =

K1−1∑
j=0

(K1 − j)(Bt(2i−1)K1−j
−Bt(2i−1)K1−j−1

)

+

K1−1∑
j=0

(K1 − j)(Bt(2i−1)K1+j+1
−Bt(2i−1)K1+j

). (3.42)

As 12 + 22 + · · ·+K2
1 = K1(K1+1)(2K1+1)

6
,

(2i−1)K1∑
j=2(i−1)K1

(Btj+K1
−Btj) ∼ N

(
0,
K1(K1 + 1)(2K1 + 1)

3m

)
. (3.43)

As K1(K1+1)(2K1+1)
3m

= 1
M2 , Ŝi ∼ N(0, 1).
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Proof of Theorem 3.2. For simplicity we assume at = 0. Recall that we have defined xi =∫ ti
0
σsdBs + uti . It can be checked that

Si =
M
∑K1

j=0

(
x(2i−1)K1+j − x(2i−2)K1+j

)√
m
K2
σ̂2
TTS i

+
MDm(τ)Yτ√

m
K2
σ̂2
TTS i

. (3.44)

From the proof of Theorem 3.1, we can see that

M
∑K1

j=0

(
x(2i−1)K1+j − x(2i−2)K1+j

)√
m
K2
σ̂2
TTS i

= Ŝi + oP

(
mmax( 1

2
−α1,

1
2
α1− 1

2
,− 1

12)+ε
)
, (3.45)

where Ŝi is standard normal. From Lemma 3.1, we have

√
m

K2

σ̂2
TTS i = σt2(i−1)K1

+ oP (1) . (3.46)

Therefore,

MDm(τ)Yτ√
m
K2
σ̂2
TTS i

=
MDm(τ)Yτ
σt2(i−1)K1

+ oP

(
MDm(τ)

σt2(i−1)K1

)
.

(3.47)

Now the proof is completed given (3.44) (3.45) (3.47).

Proof of Corollary 3.1. When Dm(τ) ≤ K1−ε
1 , we have

τ ∈

m
2K1
−1⋃

j=0

(
t2K1j, t2K1j+K

1−ε
1

)
or τ ∈

m
2K1
−1⋃

j=0

(
t2K1(j+1)−K1−ε

1
, t2K1(j+1)

)
.

Therefore,

P
(
Dm(τ) ≤ K1−ε

1

)
≤

m
2K1
−1∑

j=0

P
(
τ ∈ (t2K1j, t2K1j+K

1−ε
1

)
)

+

m
2K1
−1∑

j=0

P
(
τ ∈ (t2K1(j+1)−K1−ε

1
, t2K1(j+1))

)

≤

m
2K1
−1∑

j=0

P
(
Nt

2K1j+K
1−ε
1

−Nt2K1j
> 0
)

+

m
2K1
−1∑

j=0

P
(
Nt2K1(j+1)

−Nt
2K1(j+1)−K1−ε

1

> 0
)

= O

(
m

K1

· K
1−ε
1

m

)
= O

(
K−ε1

)
, (3.48)
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where the second to the last equation is obtained from (3.14). Thus for any ε ∈ (0, 1) it is a.s.

that Dm(τ) > K1−ε
1 for large m and any ε > 0, so we have

Dm(τ)

K1−ε
1

>
K

1− ε
2

1

K1−ε
1

= K
ε
2
1 , (3.49)

for large m. Thus the proof is completed given that K
ε
2
1 →∞ as m→∞.

Proof of Lemma 3.2. From Theorem 3.1 we can see that as m → ∞, the limiting distribution

of max
i∈Bm
|Si| is the same as the distribution of the maximum absolute value of m

2K1
−N1 standard

normal variables. Lemma 1 in Lee and Mykland (2008) shows the distribution of the maximum

absolute value of m−N1 standard normal variables, as m→∞. Thus given that m
2K1
→∞ as

m→∞, Lemma 1 in Lee and Mykland (2008) directly leads to the results of Lemma 3.2.

Proof of Theorem 3.3. For simplicity we assume at = 0. For a generic i, consider the ith

jump which happens at time τi with size Yi. Without loss of generality, we assume τi /∈

{t2K1 , t4K1 , . . . , tm−2K1 , tm}. Then the ith jump happens on the interval (t2(bim−1)K1 , t2bimK1 ]

where bim =
[
mτi
2K1

]
+ 1. Now we study the probability that |Sbim | is larger than the threshold

Lmγm + Cm, conditional on the value of τi. Similarly as (3.44) we have

Sbim =
M
∑K1

j=0

(
x(2bim−1)K1+j − x(2bim−2)K1+j

)√
m
K2
σ̂2
TTS bim

+
MDimYi√
m
K2
σ̂2
TTS bim

. (3.50)

Define

S1
bim

=
M
∑K1

j=0

(
x(2bim−1)K1+j − x(2bim−2)K1+j

)√
m
K2
σ̂2
TTS bim

,

S2
bim

=
MDimYi
σt2(bim−1)K1

,

and

S3
bim

=
MDimYi√
m
K2
σ̂2
TTS bim

− S2
bim
.

From the proof of Theorem 3.1, we can see that S1
bim

is asymptotically standard normal as

m→∞. Since Lmγm + Cm
m→∞→ ∞, we have as m→∞,

lim
m→∞

S1
bim

Lmγm + Cm

P→ 0. (3.51)
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Given (3.46), S3
bim

is oP

(
S2
bim

)
. As

P (|Sbim | > Lmγm + Cm) = P
(
|S1
bim

+ S2
bim

+ S3
bim
| > Lmγm + Cm

)
, (3.52)

for any positive constants c1, c2 we have

P
(
|S1
bim

+ S2
bim

+ S3
bim
| > Lmγm + Cm

)
≥ P

(
|S1
bim
| < c1(Lmγm + Cm), (1− c2)|S2

bim
| > (1 + c1)(Lmγm + Cm), |S3

bim
| < c2|S2

bim
|
)

≥ 1− P
(
|S1
bim
| ≥ c1(Lmγm + Cm)

)
− P

(
(1− c2)|S2

bim
| ≤ (1 + c1)(Lmγm + Cm)

)
− P

(
|S3
bim
| ≥ c2|S2

bim
|
)
. (3.53)

Since S1
bim

is oP (Lmγm + Cm) and S3
bim

is oP

(
S2
bim

)
,

P
(
|S1
bim
| ≥ c1(Lmγm + Cm)

)
→ 0 and P

(
|S3
bim
| ≥ c2|S2

bim
|
)
→ 0, (3.54)

as m → ∞. Since c1, c2 can be any positive constants, when c1 → 0, c2 → 0, the right-side of

the second inequality of (3.53) converges to 1−P
(
|S2
bim
| ≤ Lmγm + Cm

)
= P

(
|S2
bim
| > Lmγm + Cm

)
,

as m→∞. In addition,

P
(
|S1
bim

+ S2
bim

+ S3
bim
| > Lmγm + Cm

)
≤ P

(
(1 + c2)|S2

bim
| > (1− c1)(Lmγm + Cm)

)
+ P

(
|S3
bim
| ≥ c2|S2

bim
|
)

+

P
(
|S1
bim
| > c1(Lmγm + Cm)

)
. (3.55)

Following a similar analysis, it can be checked that when c1 → 0, c2 → 0, the right-side

of (3.55) also converges to P
(
|S2
bim
| > Lmγm + Cm

)
as m → ∞. Therefore, we have that

P
(
|S1
bim

+ S2
bim

+ S3
bim
| > Lmγm + Cm

)
converges to P

(
|S2
bim
| > Lmγm + Cm

)
as m → ∞,

and

P
(
|S2
bim
| > Lmγm + Cm

)
= P

(
|Yi| >

σt2(bim−1)K1

MDim

(Lmγm + Cm)

)
= 1− F (Gim). (3.56)
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Similarly, conditional on the occurence times of all the jumps on (0, 1] we have

P
(
|Sb1m| > Lmγm + Cm, |Sb2m| > Lmγm + Cm, . . . , |SbN1m

| > Lmγm + Cm
)

→ P
(
|S2
b1m
| > Lmγm + Cm, |S2

b2m
| > Lmγm + Cm, . . . , |S2

bN1m
| > Lmγm + Cm

)
=

N1∏
i=1

P
(
|S2
bim
| > Lmγm + Cm

)
=

N1∏
i=1

(1− F (Gim)),

(3.57)

as m→∞. Therefore, by the definition of GFTD,

P (GFTD|{τ1, τ2, . . . , τN1})

= 1− P
(
|Sb1m| > Lmγm + Cm, |Sb2m| > Lmγm + Cm, . . . , |SbN1m

| > Lmγm + Cm
)

→ 1−
N1∏
i=1

(1− F (Gim)), (3.58)

as m→∞.

Proof of Corollary 3.2. As Yi is a.s. nonzero, we have F (0) = 0. Thus given (3.58), (3.19) is

proved if we show that Gim
P→ 0 as m→∞. We have

Gim =

√
K1(K1 + 1)(2K1 + 1)

3m

σt2(i−1)K1

Dim

γmLm +

√
K1(K1 + 1)(2K1 + 1)

3m

σt2(i−1)K1

Dim

Cm.

(3.59)

For the first part on the right-side of (3.59), recall that there exists ε > 0 such that γm√
log(m)

m−
1
2

+ 1
2
α1+ε →

0, as m→∞. We have√
K1(K1 + 1)(2K1 + 1)

3m

σt2(i−1)K1

Dim

γmLm

= σt2(i−1)K1

γmm
− 1

2
+ 1

2
α1+ε√

log(m)
(Lm

√
log(m))

√
K1(K1+1)(2K1+1)

3m

m
3
2
α1− 1

2

mα1−ε

Dim

P→ 0, (3.60)

as m → ∞, given that Lm
√

log(m),

√
K1(K1+1)(2K1+1)

3m

m
3
2α1−

1
2

are O(1) and based on Corollary 3.1,
mα1−ε

Dim
is oP(1). It can be also checked that the second part on the right-side of (3.59) converges

to zero in probability as m→∞. Thus Gim
P→ 0 as m→∞.
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Proof of Theorem 3.4. Recall the definition of X in Lemma 3.2. We have

P (GSD) = 1− P

max
i∈Bm
|Si| − Cm

Lm
≤ γm


→ 1− P(X ≤ γm)

= 1− exp
(
−e−γm

)
= αm. (3.61)

120



“ExempleUsPlantillaA4” — 2017/1/25 — 18:37 — page 121 — #139

Bibliography

Acemoglu, D., Carvalho, V., Ozdaglar, A., and Tahbaz-Salehi, A. (2012). The Network Origins of
Aggregate Fluctuations. Econometrica, 80:1977–2016.

Aı̈t-Sahalia, Y., Fan, J., Laeven, R. J., Wang, C. D., and Yang, X. (2016). Estimation of the Continuous
and Discontinuous Leverage Effects. Journal of the American Statistical Association, in press.

Aı̈t-Sahalia, Y. and Jacod, J. (2009). Testing for Jumps in a Discretely Observed Process. The Annals of
Statistics, 37(1):184–222.

Aı̈t-Sahalia, Y. and Jacod, J. (2011). Testing whether Jumps Have Finite or Infinite Activity. The Annals
of Statistics, 39(3):1689–1719.

Aı̈t-Sahalia, Y. and Jacod, J. (2014). High-Frequency Financial Econometrics. Princeton, N.J.: Princeton
University Press, first edition.

Aı̈t-Sahalia, Y., Jacod, J., and Li, J. (2012). Testing for Jumps in Noisy High-Frequency Data. Journal
of Econometrics, 168(2):207–222.

Aı̈t-Sahalia, Y., Mykland, P. A., and Zhang, L. (2005). How often to sample a continuous-time process
in the presence of market microstructure noise. Review of Financial Studies, 18(2):351–416.

Andersen, T. G., Bollerslev, T., and Diebold, F. X. (2007). Roughing it up: Including jump components
in the measurement, modeling, and forecasting of return volatility. The Review of Economics and
Statistics, 89(4):701–720.

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2003). Modeling and Forecasting Realized
Volatility. Econometrica, 71:579–625.

Bakshi, G., Cao, C., and Chen, Z. (1997). Empirical Performance of Alternative Option Pricing Models.
The Journal of Finance, 52(5):2003–2049.

Bandi, F. M. and Russell, J. R. (2006). Separating microstructure noise from volatility. Journal of
Financial Economics, 79:655–692.

Banerjee, O. and Ghaoui, L. E. (2008). Model Selection Through Sparse Maximum Likelihood Estima-
tion for Multivariate Gaussian or Binary Data. Journal of Machine Learning Research, 9:485–416.

Barigozzi, M. and Brownlees, C. (2013). NETS: Network Estimation for Time Series. Technical report,
Barcelona GSE.

Barndorff-Nielsen, O. and Shephard, N. (2004a). Econometric analysis of realized covariation: High
frequency based covariance, regression, and correlation in financial economics. Econometrica,
72(3):885–925.

Barndorff-Nielsen, O. and Shephard, N. (2004b). Power and Bipower Variation with Stochastic Volatility
and Jumps. Journal of Financial Econometrics, 2(1):1–48.

121



“ExempleUsPlantillaA4” — 2017/1/25 — 18:37 — page 122 — #140

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., and Shephard, N. (2008). Designing Realized
Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise. Econometrica,
76:1481–1536.

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., and Shephard, N. (2009). Realised kernels in prac-
tice: Trades and quotes. Econometrics Journal, 12:1–32.

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., and Shephard, N. (2011). Multivariate Realised
Kernels: Consistent Positive Semi-Definite Estimators of the Covariation of Equity Prices with Noise
and Non-Synchronous Trading. Journal of Econometrics, 162(2):149–169.

Barndorff-Nielsen, O. E. and Shephard, N. (2002). Econometric Analysis of realized volatility and
Its Use in Estimating Stochastic Volatility Models. Journal of the Royal Statistical Society, Ser. B,
64:253–280.

Barndorff-Nielsen, O. E. and Shephard, N. (2004c). Econometric analysis of realized covariation:
High frequency based covariance, regression, and correlation in financial economics. Econometrica,
72(3):885–925.

Barndorff-Nielsen, O. E. and Shephard, N. (2006). Econometrics of Testing for Jumps in Financial
Economics Using Bipower Variation. Journal of Financial Econometrics, 4(1):1–30.

Barndorff-Nielsen, O. E., Shephard, N., and Winkel, M. (2006). Limit Theorems for Multipower Varia-
tion in the Presence of Jumps. Stochastic Processes and their Applications, 116(5):796–806.

Barunik, J. and Vacha, L. (2015). Realized Wavelet-Based Estimation of Integrated Variance and Jumps
in the Presence of Noise. Quantitative Finance, 15(8):1347–1364.

Bates, D. S. (2000). Post-’87 Crash Fears in the S& P 500 Futures Option Market. Journal of Econo-
metrics, 94(1-2):181–238.

Billio, M., Getmansky, M., Lo, A., and Pellizzon, L. (2012). Econometric Measures of Connectedness
and Systemic Risk in the Finance and Insurance Sectors. Journal of Financial Economics, 104:535–
559.

Brownlees, C. T. and Gallo, G. M. (2006). Financial econometric analysis at ultra–high frequency: Data
handling concerns. Computational Statistics and Data Analysis, 51:2232–2245.

Chernov, M., Gallant, R., Ghysels, E., and Tauchen, G. (2003). Alternative Models for Stock Price
Dynamics. Journal of Econometrics, 116(1-2):225–257.

Christensen, K., Oomen, R., and Podolskij, M. (2010). Realised Quantile-Based Estimation of the Inte-
grated Variance. Journal of Econometrics, 159(1):74–98.

Cont, R. and Mancini, C. (2011). Nonparametric tests for pathwise properties of semimartingales.
Bernoulli, 17(2):781–813.

Cont, R. and Tankov, P. (2004). Financial Modelling with Jump Processes. Chapman & Hall/CRC,
Bocaraton.

Corsi, F., Peluso, S., and Audrino, F. (2014). Missing in asynchronicity: a kalman-em approach for
multivariate realized covariance estimation. Journal of Applied Econometrics.

Corsi, F., Pirino, D., and Reno, R. (2010). Threshold Bipower Variation and the Impact of Jumps on
Volatility Forecasting. Journal of Econometrics, 159(2):276–288.

122



“ExempleUsPlantillaA4” — 2017/1/25 — 18:37 — page 123 — #141

Dempster, A. P. (1972). Covariance selection. Biometrics, 28:157–175.

Diebold, F. and Yilmaz, K. (2014). On the Network Topology of Variance Decompositions: Measuring
the Connectedness of Financial Firms. Journal of Econometrics, 182:119–134.

Engle, R. and Colacito, R. (2006). Testing and valuing dynamic correlations for asset allocation. Journal
of Business and Economic Statistics, 24:238–253.

Fan, J., Fan, Y., and Lv, J. (2008). High Dimensional Covariance Matrix Estimation using a Factor
Model. Journal of Econometrics, 147:186–197.

Fan, J., Li, Y., and Yu, K. (2012). Vast volatility matrix estimation using high-frequency data for portfolio
selection. Journal of the American Statistical Association, 107(497):412–428.

Fan, J., Liao, Y., and Mincheva, M. (2011). High Dimensional Covariance Matrix Estimation in Approx-
imate Factor Models. The Annals of Statistics, 39:3320–3356.

Fan, J., Liao, Y., and Mincheva, M. (2013). Large Covariance Estimation by Thresholding Principal
Orthogonal Complements. Journal of the Royal Statistical Society, Series B.

Fan, J. and Wang, Y. (2007). Multi-Scale Jump and Volatility Analysis for High-Frequency Financial
Data. Journal of the American Statistical Association, 102(480):1349–1362.

Friedman, J., Hastie, T., and Tibshirani, R. (2011). Sparse inverse covariance estimation with the graph-
ical lasso. Biostatistics, 9(3):432–441.

Friedman, J., Hastle, T., Hofling, H., and Tibshirani, R. (2007). Pathwise Coordinate Optimization. The
Annals of Applied Statistics, 1:302–332.

Hansen, P. R. and Lunde, A. (2012). Realized Variance and Market Microstructure Noise. Journal of
Business and Economic Statistics, 24(2):127–161.

Hautsch, N., Kyj, L. M., and Oomen, R. C. A. (2012). A blocking and regularization approach to high
dimensional realized covariance estimation. Journal of Applied Econometrics, 27(4):625–645.

Hautsch, N., Schaumburg, J., and Schienle, M. (2014a). Financial network systemic risk contributions.
Review of Finance.

Hautsch, N., Schaumburg, J., and Schienle, M. (2014b). Forecasting Systemic Impact in Financial
Networks. International Jounal of Forecasting, 30(3):781–794.

Ikeda, N. and Watanabe, S. (1981). Stochastic Differential Equations and Diffusion Processes. North
Holland, Amsterdam.

Jacod, J. (2008). Asymptotic Properties of Realized Power Variations and Related Functionals of Semi-
martingales. Stochastic Processes and their Applications, 118(4):517–559.

Jacod, J., Podolskij, M., and Vetter, M. (2010). Limit Theorems for Moving Averages of Discretized
Processes plus Noise. The Annals of Statistics, 38(3):1478–1545.

Jacod, J. and Protter, P. (2012). Discretization of Processes. New York: Springer-Verlag, first edition.

Jacod, J. and Todorov, V. (2009). Testing for Common Arrivals of Jumps for Discretely Observed Mul-
tidimensional Processes. The Annals of Statistics, 37(4):1792–1838.

Jacod, J. and Todorov, V. (2010). Do Price and Volatility Jump Together? The Annals of Applied
Probability, 20(4):1425–1469.

123



“ExempleUsPlantillaA4” — 2017/1/25 — 18:37 — page 124 — #142

Jacod, J. and Todorov, V. (2014). Efficient Estimation of Integrated Volatility in Presence of Infinite
Variation Jumps. The Annals of Statistics, 42(3):1029–1069.

Jiang, G. J. and Oomen, R. C. (2008). Testing for Jumps when Asset Prices are Observed with Noise-a
”Swap Variance” Approach. Journal of Econometrics, 144(2):352–370.

Karatzas, I. and Shreve, S. (1999). Brownian Motion and Stochastic Calculus. New York: Springer.

Kim, D., Wang, Y., and Zou, J. (2016). Asymptotic Theory for Large Volatility Matrix Estimation based
on High-frequency Financial Data. Stochastic Processes and Their Applications, forthcoming.

Laloux, L., Cizeau, P., Bouchaud, J.-P., and Potters, M. (1999). Noise Dressing of Financial Correlation
Matrices. Phisical Review Letters, 83(7):1467–1470.

Lauritzen, S. L. (1996). Graphical Models. Oxford University Press, USA.

Ledoit, O. and Wolf, M. (2004). A Well-Conditioned Estimator for Large–Dimensional Covariance
Matrices. Journal of Multivariate Analysis, 88:365–411.

Ledoit, O. and Wolf, M. (2012). Nonlinear Shrinkage Estimation of Large–Dimensional Covariance
Matrices. Annals of Statistics, 40:1024–1060.

Lee, S. S. and Mykland, P. A. (2008). Jumps in Financial Markets: A New Nonparametric Test and Jump
Dynamics. Review of Financial Studies, 21(6):2535–2563.

Lee, S. S. and Mykland, P. A. (2012). Jumps in Equilibrium Prices and Market Microstructure Noise.
Journal of Econometrics, 168(2):396–406.

Li, J., Todorov, V., Tauchen, G., and Lin, H. (2016). Rank tests at Jump Events. preprint.

Lunde, A., Shephard, N., and Sheppard, K. (2011). Econometric analysis of vast covariance matrices
using composite realized kernels. Technical report.

Mancini, C. (2008). Large deviation principle for an estimator of the diffusion coefficient in a jump-
diffusion process. Statistics and Probability Letters, 78(7):869–879.

Mancini, C. (2009). Non-parametric Threshold Estimation for Models with Stochastic Diffusion Coeffi-
cient and Jumps. Scandinavian Journal of Statistics, 36(2):270–296.

Martens, M. (2004). Estimating Unbiased and Precise Realized Covariances. Econometric Institute,
Eramus University Rotterdam.
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