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Resum

Aquesta tesi consta d’un primer caṕıtol introductori, set caṕıtols amb
diferents resultats i una bibliografia.

El primer caṕıtol conté la definició i els resultats previs necessaris per
abordar la resta de la memòria. El caṕıtol 2 i 3 estan molt relacionats. En
el primer es descriu un mètode alternatiu per al còmput de les constants de
Poincaré–Liapunov. A diferència de mètodes anteriors, el mètode presentat
no requereix el càlcul d’integrals i dóna de forma expĺıcita les constants de
Poincaré–Liapunov. En el tercer caṕıtol es descriu com s’ha implementat
aquest nou mètode i els resultats que dóna per a sistemes quadràtics i sistemes
amb termes no lineals cúbics homogenis.

El quart caṕıtol es centra en equacions d’Abel i la seva integrabilitat.
Es descriu la forma d’una integral primera que sigui algebraica en funció
de les variables dependents i es donen múltiples exemples d’equacions d’Abel
integrables en aquest sentit. En el cinquè caṕıtol també s’aborda el problema
de la integrabilitat però per a equacions diferencials en el pla definides per
funcions anaĺıtiques. Es fa un reescalat de les variables dependents i de la
variable independent amb un paràmetre ε que està elevat a potències senceres
(blow-up paramètric) de forma que el sistema resultant sigui anaĺıtic en ε. Es
dóna un mètode que aprofita que una integral primera, si existeix, ha de ser
anaĺıtica en el paràmetre a fi de trobar condicions per a l’existència d’aquesta
integral primera. D’aquesta manera es defineix el que s’anomenen variables
essencials del sistema.

Els darrers tres caṕıtols versen sobre les equacions d’Abel i el problema del
centre. En general es consideren equacions d’Abel trigonomètriques. En el
sisè caṕıtol es donen algunes condicions necessàries i suficients per a que una
equació d’Abel trigonomètrica definida per polinomis trigonomètrics de grau
fins a 3 tingui un centre. Tots els exemples donats en aquest caṕıtol tenen un
centre universal. En el caṕıtol setè es dóna un exemple d’una equació d’Abel
trigonomètrica definida per polinomis trigonomètrics de grau 3 que té un
centre que no és universal. D’aquesta manera es resol un problema obert:
determinar el grau més petit pel qual un equació d’Abel trigonomètrica
amb centre no és de composició. El darrer caṕıtol tracta equacions d’Abel
trigonomètriques i polinomials i dóna un compendi dels darrers resultats
coneguts i conjectures sobre el problema del centre en aquestes equacions.
També es donen exemples nous d’equacions d’Abel amb centre.





Resumen

Esta tesis consta de un primer caṕıtulo introductorio, siete caṕıtulos con
diferentes resultados y una bibliograf́ıa.

El primer caṕıtulo contiene la definición y los resultados previos necesarios
para abordar el resto de la memoria. Los caṕıtulos 2 y 3 están muy relaciona-
dos. En el primero se describe un método alternativo para el cómputo de
las constantes de Poincaré–Liapunov. A diferencia de métodos anteriores, el
método presentado no requiere el cálculo de integrales y da de forma expĺıcita
las constantes de Poincaré–Liapunov. En el tercer caṕıtulo se describe cómo
se ha implementado este nuevo método y los resultados que da para sistemas
cuadráticos y sistemas con términos no lineales cúbicos homogéneos.

El cuarto caṕıtulo se centra en ecuaciones de Abel y su integrabilidad.
Se describe la forma de una integral primera que sea algebraica en función
de las variables dependientes y se dan múltiples ejemplos de ecuaciones de
Abel integrables en este sentido. En el quinto caṕıtulo también se aborda el
problema de la integrabilidad pero para ecuaciones diferenciales en el plano
definidas por funciones anaĺıticas. Se hace un reescalado de las variables
dependientes y de la variable independiente con un parámetro ε que está
elevado a poténcias enteras (blow-up paramétrico) de forma que el sistema
resultante sea anaĺıtico en ε. Se da un método que aprovecha que una integral
primera, si existe, debe ser anaĺıtica en el parámetro con el fin de encontrar
condiciones para la existéncia de esta integral primera. De esta manera se
define lo que se llaman variables esenciales del sistema.

Los últimos tres caṕıtulos versan sobre las ecuaciones de Abel y el prob-
lema del centro. En general se consideran ecuaciones de Abel trigonométricas.
En el sexto caṕıtulo se dan algunas condiciones necesarias y suficientes para
que una ecuación de Abel definida por polinomios trigonométricos de grado
hasta 3 tenga un centro. Todos los ejemplos dados en este caṕıtulo tienen un
centro universal. En la caṕıtulo séptimo se da un ejemplo de una ecuación de
Abel definida por polinomios trigonométricos de grado 3 que tiene un centro
que no es universal. De esta manera se resuelve un problema abierto: deter-
minar el grado mas pequeño por el que un ecuación de Abel trigonométrica
con centro no es de composición. El último caṕıtulo trata ecuaciones de
Abel trigonométricas y polinomiales y da un compendio de los últimos resul-
tados conocidos y conjeturas sobre el problema del centro en estas ecuaciones.
También se dan ejemplos nuevos de ecuaciones de Abel con centro.





Summary

This thesis consists of a first introductory chapter, seven chapters with
different results and a bibliography.

The first chapter contains the definition and the previous results necessary
to address the rest of the memory. Chapters 2 and 3 are closely related.
In the first one, an alternative method is described for the computation of
the Poincaré–Liapunov constants. Unlike previous methods, the presented
method does not require the computation of primitives and gives an explicit
expression of the Poincaré–Liapunov constants. The third chapter describes
how this new method has been implemented and the results that it gives for
quadratic systems and systems with homogeneous, cubic, non-linear terms.

The fourth chapter focuses on Abel equations and their integrability. We
describe the form of a first integral that is algebraic in function of the depen-
dent variables and give more examples of equations of Abel integrable from
this point of view. The fifth chapter also discusses the integrability problem
but for differential equations in the plane defined by analytical functions. A
rescaling of the dependent and the independent variables with a parameter ε
which is elevated to integer powers (parametrical blow up) so that the result-
ing system is analytical in ε. A method is given that takes advantage that a
first integral, if it exists, it must be analytical in the parameter in order to
find conditions for the existence of this first integral. In this way we define
what are called essential variables of the system.

The last three chapters deal with Abel equations and the center problem.
In general, we consider Abel trigonometric equations. In the sixth chap-
ter some necessary and sufficient conditions for an Abel equation defined by
trigonometric polynomials of degree up to 3 have a center are given. All
the examples given in this chapter have a universal center. In the seventh
chapter it is given an example of an Abel equation defined by trigonometric
polynomials of degree 3 with a center which is not universal. In this way an
open problem is solved: to determine the lowest degree such that a trigono-
metric Abel equation has a center which is not a composition center. The last
chapter deals with trigonometric and polynomial Abel equations and gives a
survey of the last known results and conjectures about the center problem for
these equations. Besides some new examples of Abel differential equations
with a center are given.
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1.1 Center problem and Poincaré’s method . . . . . . . . . . . . . 16
1.2 Reversibility in the center problem . . . . . . . . . . . . . . . 18
1.3 Integrability problem . . . . . . . . . . . . . . . . . . . . . . . 19
1.4 Darboux theory of integrability . . . . . . . . . . . . . . . . . 22
1.5 The center problem for Abel differential equations . . . . . . . 24
1.6 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
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Chapter 1

Introduction

This thesis deals with planar differential systems of the form

ẋ = P (x, y), ẏ = Q(x, y), (1.1)

where P (x, y) and Q(x, y) are analytic functions defined in a neighborhood
of the origin. Usually, we will consider that P (x, y), Q(x, y) ∈ R[x, y] are co-
prime polynomials, that is, there is no non-constant polynomial which divides
both P and Q. The dot denotes derivation with respect to the independent
variable t usually called time, that is ˙ = d

dt
.

When P and Q are polynomials, we call d the maximum degree of P and
Q and we say that system (1.1) is of degree d. When d = 2, we say that
(1.1) is a quadratic system . If p is a point such that P (p) = Q(p) = 0, then
we say that p is a singular point of system (1.1).

A periodic orbit is an orbit Γ = {φ(t) ∈ R2 : t ∈ R} different from a
singular point such that φ(t) is a periodic solution of system (1.1), i.e., there
exists a positive time T ∈ R+ called the period and satisfying φ(t+T ) = φ(t)
for all t. Hence, a periodic orbit Γ is a closed invariant curve without singular
points. An isolated periodic orbit Γ is called a limit cycle and always has a
neighborhood free of other periodic orbits. Any non-isolated periodic orbit
belongs always to a period annulus .

The center problem for a singular point p of an analytic differential sys-
tem on the plane (1.1) consists on determining if p is a focus or if it is a
center. We recall that p is a focus if there exists a neighborhood of it such

15
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that each trajectory spirals around p and we say that p is a center if there
exists a neighborhood of it such that each trajectory is closed surrounding p.

We may consider X (x, y) = P (x, y)(∂/∂x)+Q(x, y)(∂/∂y) the vector field
associated to system (1.1) and let us denote by DX (p) the differential matrix
of X at p. It is well-known, see for instance [108], that if both eigenvalues
of DX (p) are nonzero complex conjugates α ± βi then the singular point p
is a center or a focus. In case α 6= 0, then p is a focus (stable if α < 0 and
unstable otherwise). If α = 0, then p may be a center or a focus. In this
case, we say that p is a weak focus for system (1.1). For example, it can be
proved that system ẋ = −y + xy + ay2, ẏ = x has a focus at the origin if
a 6= 0 (stable if a < 0 and unstable if a > 0). If a = 0, this system has a
center at the origin.

The problem of distinguishing between a center and a focus in the case
of purely imaginary eigenvalues is the classical Poincaré–Liapunov center
problem.

1.1 Center problem and Poincaré’s method

Let us consider the Poincaré–Liapunov center problem. We can always make
an affine change of variables and a change of time to system (1.1) and assume,
without loss of generality, that p = (0, 0) and the system is of the form:

ẋ = −y +X(x, y), ẏ = x+ Y (x, y), (1.2)

where X, Y are analytic functions in a neighborhood of the origin of order
greater or equal than 2.

These systems have a linear center at the origin perturbed by analytic
functions of order greater or equal than 2. In the local study of these systems
we find three problems closely related to one another: the determination of
the origin’s stability, the existence and the number of local limit cycles around
the origin and the determination of first integrals when they exist.

H. Poincaré [109] developed an important technique for the general so-
lution of these problems: it consists on finding a formal power series of the
form

H(x, y) =
∞∑
n=2

Hn(x, y), (1.3)
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where H2(x, y) = (x2 + y2)/2 and Hn(x, y) are homogeneous polynomials of
degree n, so that

Ḣ =
∂H

∂x
(−y +X) +

∂H

∂y
(x+ Y ) =

∞∑
k=2

V2k(x
2 + y2)k,

where V2k, k ≥ 1, are real numbers called Poincaré–Liapunov constants . The
determination of these constants allows the solution of the three mentioned
problems. These constants are determined in a recursive way explained, for
instance, in [120].

The vanishing of all Liapunov constants is a necessary and sufficient con-
dition to have a center at the origin for system (1.2). If for some k we have
V4 = V6 = . . . = V2k−2 = 0 and V2k 6= 0 then the origin of system (1.2) is a
focus (stable if V2k < 0 and unstable if V2k > 0). We say that it is a focus
of order k. In case all Liapunov constants are zero, the series H(x, y) would
be a first integral of the system if it was convergent. Poincaré proved that,
if all Liapunov constants vanish, then it is always possible to find a power
series of the form (1.3) convergent in some neighborhood of the origin. Then,
this power series is an analytical first integral defined in some neighborhood
of the origin. However, it is not always possible to express this first inte-
gral (convergent in some neighborhood of the origin) by means of elementary
functions. This result is proved in [109].

Theorem 1.1 System (1.2) has a center at the origin if, and only if, there
exists a local analytical first integral of the form H(x, y) = x2 + y2 + F (x, y)
defined in a neighborhood of the origin, where F (x, y) is an analytic function
of order greater than 2.

For a family of systems (1.2), Liapunov constants are polynomials whose
variables are the coefficients of the terms of the functions X(x, y) and Y (x, y).
Let us consider I =< V2k >k∈N the ideal generated for these Liapunov con-
stants. If X(x, y) and Y (x, y) are polynomials of degree d, then the ideal I
has a finite number of generators by Hilbert’s basis Theorem. Let M(d) be
the minimum number of generators. It was shown by Shi Songling [120] that,
under certain hypothesis about Liapunov generator constants, the number
of limit cycles around the origin is at least M(d).

Poincaré’s method solves the center problem only from a theoretical point
of view. If X(x, y) and Y (x, y) are analytic functions, we have, in general,
an infinite number of Liapunov constants to compute in order to deduce that
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the origin of system (1.2) is a center. If X(x, y) and Y (x, y) are polynomials,
we have that the number of Liapunov constants that must be null to ensure
that all of them are null is finite. Nevertheless, we do not know how many
Liapunov constants must be computed to prove that the origin of system
(1.3) is a center.

In Chapter 2, we consider an arbitrary analytic system which has a lin-
ear center at the origin of the form (1.2) and we compute recursively all its
Poincaré–Liapunov constants in function of the coefficients of the system. In
this way, we give an answer to the classical center problem. We also compute
the coefficients of the Poincaré series in function of the same coefficients. The
algorithm for these computations has an easy implementation. The method
does not need the computation of any definite or indefinite integral. The
algorithm is applied to some polynomial differential systems.

In the last years many papers have been published giving different meth-
ods to compute the Poincaré–Liapunov constants. In Chapter 2 it was given
a new method to compute recursively all the Poincaré–Liapunov constants.
In Chapter 3 we describe its implementation in two different ways, by means
of a Computer Algebra System and making a specific program algorithm in
any computer language. If this second alternative is used, later it is necessary
to translate the results so that they can be manipulated with a Computer
Algebra System. We describe also how the availability of symbolic manipu-
lation procedures has recently led a significant progress in the resolution of
the different problems related with the Poincaré–Liapunov constants as they
are the center problem and the small-amplitude limit cycles.

1.2 Reversibility in the center problem

An analytic involution R : U → R2 is an analytic diffeomorphism different
from the identity such that R ◦R = Id, where Id is the identity map.

From the work of Montgomery and Zippin [101] we have that after a linear
change of coordinates, any analytic involution different from the identity
takes the form R(x, y) = (R1, R2) = (x+r1(x, y),−y+r2(x, y)) with analytic
functions ri without constant nor linear terms. Moreover, the analytic near–
identity change of coordinates φ(x, y) = (u, v) = (x + · · · , y + · · ·) with u =
(x+R1)/2, and v = (y −R2)/2 linearizes the involution, that is, R0(u, v) =
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φ ◦R ◦ φ−1(u, v) = (u,−v).

Definition 1.2 Let R be a diffeomorphism R : U → U which is an involution
such that R∗X = −X ◦ R, where X is the vector field associated to system
(1.1) then the system is called reversible.

The first examples of reversible systems were given by Poincaré, see [109].
Systems which are reversible for the involution R0(x, y) = (x,−y) are called
time–reversible systems. Notice that system (1.1) is time–reversible if and
only if P (x,−y) = −P (x, y) and Q(x,−y) = Q(x, y).

We remark that the analytic near–identity change of coordinates φ(x, y) =
(u, v) that linearizes the involution R(x, y) transforms the reversible system
(1.1) into a time–reversible system

u̇ = vP̃ (u, v2), v̇ = Q̃(u, v2). (1.4)

According to Poincaré, system (1.2) has a center at the origin if, and only
if, there exists a near–identity analytic change of coordinates

(u, v) = φ(x, y) = (x+ o(|(x, y)|), y + o(|(x, y)|)) ,

transforming system (1.2) into the normal form

u̇ = −v[1 + ψ(u2 + v2)] , v̇ = u[1 + ψ(u2 + v2)] , (1.5)

with ψ an analytic function near the origin such that ψ(0) = 0. It is clear that
the transformed system (1.5) is time–reversible. Then, the original system
(1.2) is reversible by means of the involution R = φ−1 ◦R0 ◦φ. Consequently,
it follows that all systems (1.2) having a center are reversible.

1.3 Integrability problem

A Cj function H : U → R such that it is constant on each trajectory of (1.1)
and it is not locally constant is called a first integral of system (1.1) of class
j defined on U ⊆ R2. The equation H(x, y) = c for a fixed c ∈ R gives a
set of trajectories of the system, but in an implicit way. When j ≥ 1, these
conditions are equivalent to

P (x, y)
∂H

∂x
+Q(x, y)

∂H

∂y
= 0,



20 Introduction

and H not locally constant. The problem of finding such a first integral and
the functional class it must belong to is what we call the integrability problem
.

To find an integrating factor or an inverse integrating factor for system
(1.1) is closely related to finding a first integral for it. When considering the
integrability problem we are also addressed to study whether an (inverse)
integrating factor belongs to a certain given class of functions.

Given W an open set of R2, the function µ : W → R of class Cj(W),
j > 1, that satisfies the linear partial differential equation

P (x, y)
∂µ

∂x
+Q(x, y)

∂µ

∂y
= −

(
∂P

∂x
+
∂Q

∂y

)
µ(x, y) (1.6)

is called an integrating factor of system (1.1) defined on W . The expression
∂P
∂x

+ ∂Q
∂y

is called the divergence of system (1.1) and we denote it by div(x, y).
An easier function to find which also gives additional properties for a

differential system (1.1) is the inverse of an integrating factor, that is, V =
1/µ, which is called inverse integrating factor.

We note that {V = 0} is formed by orbits of system (1.1). If V is
defined on W , then the function µ = 1/V defines on W \ {V = 0} an
integrating factor of system (1.1), which allows the computation of a first
integral of the system on W \ {V = 0}. The first integral H associated
to the inverse integrating factor V can be computed through the integral
H(x, y) =

∫
(Q(x, y)dx − P (x, y)dy)/V (x, y), and the condition (1.6) for

µ = 1/V ensures that this line integral is well defined. On the other hand,
system (1.2) has a center at the origin if, and only if, there exists an an-
alytic inverse integrating factor V well defined around the origin and with
V (0, 0) 6= 0, see [111].

One of the simplest ordinary differential equation is a linear one, which
is of the form

dy

dx
= A0(x) + A1(x)y. (1.7)

where A1(x) 6≡ 0 and where Ai are meromorphic functions of x. The inte-
grability of this kind of equations is straightforward. We integrate equation
(1.7) and we have that any solution is given by

y(x) = e
∫ x
0 A1(σ)dσ

(
y0 +

∫ x

0

e−
∫ s
0 A1(σ)dσA0(s)ds

)
,
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where y0 is a real constant. From this expression we can deduce a first inte-
gral of (1.7) by isolating the constant y0 so that H(x, y) = y0.

The following order of difficulty ia a Riccati differential equation

dy

dx
= A0(x) + A1(x)y + A2(x)y2,

where A2(x) 6≡ 0 and where Ai are meromorphic functions of x. For such
equations it is not possible to find an explicit expression of a first integral.
However, if we assume that y = ϕ(x) is a solution of this differential equation,
we are able to write a first integral. We define

D1(x) =

∫ x

0

A1(σ) + 2ϕ(σ)A2(σ)dσ,

D2(x) =

∫ x

0

eD1(s)A2(s)ds.

Any other solution of the Riccati differential equation is of the form

y(x) = ϕ(x) +
eD1(x)

z0 −
∫ x
0
eD1(s)A2(s)ds

, (1.8)

where z0 is a real constant. We get a first integral by isolating the constant
z0 so that H(x, y) = z0.

The following equation to be considered is the celebrated Abel differential
equation , which is of the form

dy

dx
= A0(x) + A1(x)y + A2(x)y2 + A3(x)y3,

where A3(x) 6≡ 0 and where Ai are meromorphic functions of x. There is
no explicit expression of a first integral of this kind of equations. Indeed, in
general, the knowledge of any finite number of solutions does not imply that
this equation can be explicitly integrated.

In Chapter 4 algebro-geometric conditions to have a certain first inte-
gral for an Abel differential equation are given. These conditions establish
a bridge with classical Galois theory because we transform the differential
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problem of finding a first integral for an Abel equation into an algebraic
problem.

The existence of a first integral for a planar differential system of the form
(1.1) in a neighborhood of a singular point gives much information about
the behavior of the orbits in this neighborhood. Chapter 5 is devoted to the
integrability problem of planar nonlinear differential equations. We introduce
a new method to detect local analytic integrability or to construct a singular
series expansion of the first integral around a singular point for planar vector
fields. The method allows to find new variables (essential variables) where
the integrability problem is more feasible. The new method can be used in
different context and is an alternative to all the methods developed up to
now for any particular case.

1.4 Darboux theory of integrability

An invariant algebraic curve of system (1.1) is an algebraic curve f(x, y) = 0
with f ∈ C[x, y], such that for some polynomial M ∈ C[x, y] we have X f =
Mf and M is called the cofactor of the invariant algebraic curve f = 0. Here,
C[x, y] is the ring of polynomials in the variables (x, y) with coefficients in
C. We remark that if the polynomial system (1.1) has degree m, then any
cofactor has at most m − 1 as degree. We say that the curve f = 0 with
f ∈ C[x, y] is an algebraic solution of system (1.1) if and only if it is an
invariant algebraic curve and f is an irreducible polynomial over C[x, y].

An exponential factor of system (1.1) is a function of the form f = eE/C

where E, C ∈ C[x, y] satisfying X f = Mf with M a polynomial of degree
at most m− 1. We term M the cofactor of f as before.

A first integral of system (1.1) of the form fλ11 ....f
λq
q with λi ∈ C and

fi ∈ C[x, y] or fi an exponential factor is called a Darboux first integral .

An integrating factor of system (1.1) of the form fλ11 ....f
λq
q with λi ∈ C

and fi ∈ C[x, y] or fi an exponential factor is called a Darboux integrating
factor.

We note that since polynomial system (1.1) is real, if f = 0 is a complex
invariant curve, then its conjugate f̄ = 0 is also an invariant curve. Moreover
we have the following result.
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Proposition 1.3 Suppose that f ∈ C[x, y] and let f = fn1
1 , . . . , fnrr be the

factorization of f in irreducible factors over C[x, y]. If X f = Mf then
there exist Mi polynomials such that X fi = Mifi for all i = 1, ..., r and∑r

i=1 niMi = M .

We note that if (x0, y0) is a singular point of system (1.1), then either
M(x0, y0) = 0 or f(x0, y0) = 0.

We present now the Darboux method of integrability [47] for system of
the form (1.1).

Theorem 1.4 (Darboux) Suppose that a polynomial system (1.1) of degree
m admits q algebraic solutions fi = 0 with cofactors Mi for i = 1, ..., q.

(a) If q ≥ m(m + 1)/2 + 1, then the function fλ11 ....f
λq
q for appropriate

λi ∈ C not all zero is a first integral and
∑q

i=1 λiMi = 0.

(b) If q = m(m+ 1)/2, then the function fλ11 ....f
λq
q for appropriate λi ∈ C

not all zero is either a first integral and
∑q

i=1 λiMi = 0, or fλ11 ....f
λq
q is

an integrating factor and
∑q

i=1 λiMi = −
(
∂P
∂x

+ ∂Q
∂y

)
.

(c) If q < m(m + 1)/2, and there exist λi ∈ C not all zero such that∑q
i=1 λiMi = 0, then fλ11 ....f

λq
q is a first integral.

(d) If q < m(m + 1)/2, and there exist λi ∈ C not all zero such that∑q
i=1 λiMi = −

(
∂P
∂x

+ ∂Q
∂y

)
, then fλ11 ....f

λq
q is an integrating factor.

Jouanolou proved in [85] that if the number of algebraic solutions is q ≥
m(m+ 1)/2 + 2 then the exponents λi in the statement of Darboux Theorem
may be chosen to be integers and hence we have a rational first integral in this
case. From the Darboux Theorem and Jouanolou result it follows easily that
for a polynomial system (1.1) of degree m one and only one of the following
statements holds:

(a) System (1.1) has a finite number q < m(m + 1)/2 + 2 of algebraic
solutions.

(b) System (1.1) has an infinite number of algebraic solutions and admits

a rational first integral of the form fλ11 ...f
λq
q with λi ∈ Z.

Prelle and Singer proved in [110] that if system (1.1) has an elementary

first integral, then it has an integrating factor of the form fλ11 ...f
λq
q with
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fi ∈ C[x, y] and λi ∈ Z. Moreover each fi = 0 is an algebraic solution.
Roughly speaking an elementary first integral is a first integral which is
composition of exponentials, logarithms and algebraic functions.

Singer [118] has extended the method to characterize the Liouville in-
tegrability. Recently several improvements of these theories of integrability
have been obtained, see for instance [72, 94].

1.5 The center problem for Abel differential

equations

Given a planar differential system of the form (1.2)

ẋ = −y +X(x, y), ẏ = x+ Y (x, y),

one can consider a change to polar coordinates, that is, x = r cos θ, y =
r sin θ. In this way, one obtains an ordinary differential equation of the form

dr

dθ
= F(r, θ),

where F(r, θ) is an analytic function in a neighborhood of r = 0, and where
θ is a periodic variable of period 2π.

There are several equations of the form (1.2), for instance quadratic sys-
tems, which after another change of variables, lead to an ordinary differential
equation of Abel type:

dr

dθ
= a1(θ)r

2 + a2(θ)r
3, (1.9)

with a1(θ) and a2(θ) trigonometric polynomials. We will denote an equation
of the former form Abel trigonometric differential equation.

The center problem for an Abel trigonometric differential equation asks
whether all the solutions in a neighborhood of the constant solution r = 0 are
periodic. That is, if r(θ; r0) denotes the solution of the differential equation
(1.9) with initial condition r(0; r0) = r0, we ask whether r(2π; r0) = r0 for
all |r0| sufficiently small.
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Chapter 6 deals with the center problem for Abel trigonometric differ-
ential equation (1.9). This problem is closely connected with the classical
Poincaré center problem for planar polynomial vector fields.

In Chapter 7 we study the particular case in which a1(θ) and a2(θ) are
cubic trigonometric polynomials in θ. A particular class of centers, the so-
called universal centers or composition centers, is taken into account. An
example of non-universal center and a characterization of all the universal
centers for such equation are provided.

Polynomial Abel differential equations are also considered in the literature
as a model problem. These equations are of the form

dy

dx
= p(x)y2 + q(x)y3, (1.10)

where y is real, x is a real independent variable considered in a real interval
[a, b] and p(x) and q(x) are real polynomials in R[x]. The center problem for
a polynomial Abel equation (1.10) is to characterize when all the solutions in
a neighborhood of the solution y = 0 take the same value when x = a and
x = b, i.e. y(a) = y(b). In this framework, given any real continuous function
c(x), we denote by c̃(x) :=

∫ x
a
c(σ)dσ and we will say that a real continuous

function w(x) is periodic in [a, b] if w(a) = w(b). In Chapter 8 a survey of
the most important results in this context is made and the state of the art of
several related conjectures is provided. Two new results on these conjectures
are also given.
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J. Giné, M. Grau, X. Santallusia, Universal centers in the cubic
trigonometric Abel equation, Electron. J. Qual. Theory Differ. Equ. 2014,
No. 1, 1–7. (5 cites in Google Scholar).

The most important papers citing our paper are:



28 Introduction

A Brudnyi, Universal curves in the center problem for Abel differential
equations, Ergodic Theory Dynam. Systems 36 (2016), no. 5, 1379–1395. (1
cites in Google Scholar).
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Chapter 2

On the Poincaré–Liapunov
constants and the Poincaré
series

2.1 Introduction

Many models of the nature use differential equation systems in the plane and
using the qualitative theory of differential equations, introduced by Poincaré,
it can be known the behavior of these systems in the majority of the cases.
One of the problems that persists to control the behavior of this type of
systems is to distinguish among a focus or a center (the center problem).
The resolution of this problem goes through compute the so called Poincaré–
Liapunov constants . Therefore to have a fast and easy method for the
computation of such constants is of great usefulness to study this type of
systems. Other very important problem is to determine systems that have
centers at some singular points due to the fact that perturbations of these
systems give rich bifurcations of limit cycles .

During the first half-part of this century the mathematicians were losing
interest by these problems due to the computational problems, but after the
facilities of using computers for the calculations these problems become of
maximal interest. In the last years many papers have been published giv-
ing different methods to compute the Poincaré–Liapunov constant. In this
work we compute recursively all the Poincaré–Liapunov constants in function

29
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of the coefficients of the system for an arbitrary analytic system which has
a linear center at the origin, giving in this way an answer to the classical
center problem. We also compute the coefficients of the Poincaré series in
function of the same coefficients. Our method does not need the computation
of any definite or indefinite integral as other methods require. The method
we present is the simplest and easy, as far as we know, to implement on a
computer.

Consider two-dimensional autonomous systems of differential equations
of the form

ẋ = −y +X(x, y), ẏ = x+ Y (x, y), (2.1)

where the nonlinearities are

X(x, y) =
∞∑
s=2

Xs(x, y), and Y (x, y) =
∞∑
s=2

Ys(x, y),

with Xs(x, y) =
∑s

k=0 a
s
kx

kys−k and Ys(x, y) =
∑s

k=0 b
s
kx

kys−k and ask and bsk
are arbitrary real coefficients.

For these systems Poincaré [109] developed an important technique that
consists in finding a formal power series of the form

H(x, y) =
∞∑
n=2

Hn(x, y), (2.2)

where H2(x, y) = (x2 + y2)/2, and for each n, Hn(x, y) =
∑n

k=0C
n
k x

kyn−k

such that the derivative of H along the solutions of system (2.1) satisfies

Ḣ =
∞∑
k=2

V2k(x
2 + y2)k, (2.3)

where V2k are called the Poincaré–Liapunov constants.

In order to solve the problem of the stability at the origin of system (2.1),
it is sufficient to consider the sign of the first Poincaré–Liapunov constant
different from zero. If it is positive we have asymptotic stability for negative
times, and if it is negative we have asymptotic stability for positive times.
If all Poincaré–Liapunov constants are zero, then the origin is stable for all
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times, but there is no asymptotic stability for any time, see for instance [9].
In this last case, we have a center at the origin, i.e. there is an open neighbor-
hood of the origin where all orbits are periodic, except of course the origin.
The origin is said to be a fine focus of order k if V2k+2 is the first non-zero
Poincaré–Liapunov constant. In this case at most k limit cycles can bifurcate
from this fine focus [16]; these limit cycles are called small-amplitude limit
cycles. Therefore to obtain the maximum number of limit cycles which can
bifurcate from the origin for a given system, one has to find the maximum
possible order of a fine focus. It is known that this maximum number is three
for quadratic system [12] and it has been shown recently that it is greater or
equal than eleven for cubic systems [126].

In this work we are going to see that we can always determine Cn
k and V2k

from ask and bsk, but Cn
k are not unique and consequence V2k neither. There-

fore, the Poincaré’s formal series is not unique. Poincaré [109] proved, by
boundedness, that there exists one which is convergent for polynomial sys-
tems, and Liapunov [91] generalized Poincaré’s theorem to analytic systems.
In [31] Chazy demonstrated using the theorem of analytical dependence re-
spect to the initial parameters that there exists one which is convergent
choosing adequately the arbitrary parameters that appear in the construc-
tion of Poincaré’s series. For polynomial systems we have uniqueness for the
V2k in the sense of the following theorem due to Shi Songling [121].

Theorem 2.1 Let A be the ring of real polynomials whose variables are the
coefficients of the polynomial differential system. Given a set of Poincaré–
Liapunov constants V1, V2, . . . , Vi, let Jk−1 be the ideal of A generated by
V1, V2, . . . , Vk−1. If V ′1 , V

′
2 , . . . , V

′
i is another set of Poincaré–Liapunov con-

stants, then Vk ≡ V ′k mod (Jk−1).

As it has said above the origin is a center if and only if all the Vi’s are zero.
Let J = (V1, V2, . . .) be the ideal of A generated by all the Vi’s. For polyno-
mials systems, using the Hilbert’s basis theorem, J is finitely generated; i.e.
there exist B1, B2, . . . , Bq in J such that J = (B1, B2, . . . , Bq). Such a set of
generators is called a basis of J.

Exist different algorithms to compute the Poincaré–Liapunov constants.
The technique used by Bautin [12] is based on computing the derivatives of
the return map from a nonlinear system of recursive differential equations.
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There is another algorithm which involves the solution of a system of linear
equations for the coefficients of Hn in terms of the coefficients of Xs, Ys and
Hk for k = 2, . . . , n − 1, see for instance [95] and [107]. Another method is
to construct a Poincaré’s formal power series in polar coordinates and the
Poincaré–Liapunov constants can be computed from recursive linear formu-
las as definite integrals of trigonometric polynomials (see for example, [4] and
[26, 29, 30]). In [54] the authors give a survey of different ways to compute
the Poincaré–Liapunov constants.

Modifying the standard techniques explained in [9] for obtaining the
Poincaré–Liapunov constants, it is given in [40] the first and the second
Poincaré–Liapunov constants for an arbitrary analytic system using the re-
turn function and some algebraic properties of these constants. In [65] taking
advantage of the complex structure that simplify their effective computation,
have been found by hand V3 and V5. A development of the method presented
in [65] is used in [64] to obtain V7 for an arbitrary analytic system. Using a
method based on the use of the Runge-Kutta-Fehlberg methods and the use
of Richardson’s extrapolation in [66] is given an analytic-numerical method
for the computation of the Poincaré–Liapunov constants. Another algorithm
to compute the Poincaré–Liapunov constants is developed in [56] and [55]
where the method is based in the calculation of the successive derivatives of
the first return map associated to the perturbations of some planar Hamil-
tonian systems. An important generalization of this last method is given in
[123].

The chapter is organized as follows. In the next section we present a
formula to compute the Poincaré–Liapunov constants (see Theorem 2.2) and
we describe the algorithm that we have developed. As a particular case
the formula is applied to quadratic systems. The last section is devoted to
study the center problem for some particular systems as an application of
the method.

2.2 The main result

We present a formula to compute the Poincaré–Liapunov constants and the
Poincaré series for the general system (2.1) as a recurrence form, following
the ideas of Shi Songling in [120] where he found the same expression for the
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Poincaré–Liapunov constants, but he did not found the recursive relation
with the Poincaré series to establish a method to compute at the same time
the Poincaré–Liapunov constants and the Poincaré series.

The advantages of this method are:
(a) In all the process the unique calculations are products and sums without
definite or indefinite integrals like the majority of the others methods.
(b) As a consequence of the first advantage (a) it is very easy and optimizable
its implementation on a computer.
(c) The method gives, as we have said, at the same time the Poincaré–
Liapunov constants and the Poincaré series. This fact allows us to find
systems with a polynomial first integral imposing that the Poincaré series
has a finite number of terms.

In the next chapter we planned to study if our method it is computation-
ally more effective than the others methods and if it allows us to obtain new
theoretical results.

Theorem 2.2 The Poincaré-Liapunov constants of system (2.1) are

Vn =

∑n/2
l=0 (n− (2l + 1))!! (2l − 1)!! dn2l∑n/2

l=0 (n− (2l + 1))!! (2l − 1)!! (
n/2
l

)
, n = 4, 6, 8, . . .

where dnk =
∑n−2

m=1

∑m+1
l=0 (lan−mk−l+1+(m+1−l)bn−mk−l ) Cm+1

l , n ≥ 3, k = 0, . . . , n,
with ask = bsk = 0 for k < 0 or k > s, C2

0 = C2
2 = 1/2 and C2

1 = 0, and

Cn
k =

∑(k−1)/2
l=0 (n− (2l + 1))!! (2l − 1)!!

(
dn2l − (

n/2
l

)Vn

)
(n− k)!! k!!

,

for n ≥ 3, k = 1, 3, 5, . . . and

Cn
k = −

∑[(n−1)/2]
l=k/2 (n− (2l + 2))!! (2l)!! dn2l+1 + λn

(n− k)!! k!!
,

for n ≥ 3, k = 0, 2, 4, . . . where λn are arbitrary constants and Vn and λn are
zero for n odd.

Proof. From the evaluation of the derivate of H(x, y) along the solutions of
system (2.1) we have

Ḣ =
∂H

∂x
ẋ+

∂H

∂y
ẏ
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=

(
∞∑
n=2

∂Hn

∂x

)(
−y +

∞∑
s=2

Xs

)
+

(
∞∑
n=2

∂Hn

∂y

)(
x+

∞∑
s=2

Ys

)
=

∞∑
n=2

(
−y∂Hn

∂x
+ x

∂Hn

∂y

)
+
∞∑
s=2

Xs

∞∑
n=2

∂Hn

∂x
+
∞∑
s=2

Ys

∞∑
n=2

∂Hn

∂y
=

∞∑
n=3

(
−y∂Hn

∂x
+ x

∂Hn

∂y
+

n−2∑
m=1

(
Xn−m

∂Hm+1

∂x
+ Yn−m

∂Hm+1

∂y

))
,

then comparing with (2.3) we have

−y∂Hn

∂x
+ x

∂Hn

∂y
+

n−2∑
m=1

(
Xn−m

∂Hm+1

∂x
+ Yn−m

∂Hm+1

∂y

)
=

{
0 if n is odd,

Vn(x2 + y2)n/2 if n is even,

(2.4)

For the second term of expression (2.4) we have

n−2∑
m=1

(
Xn−m

∂Hm+1

∂x
+ Yn−m

∂Hm+1

∂y

)
=

n−2∑
m=1

(
(
n−m∑
k=0

an−mk xkyn−m−k)(
m+1∑
l=0

lCm+1
l xl−1ym+1−l)

)
+

n−2∑
m=1

(
(
n−m∑
k=0

bn−mk xkyn−m−k)(
m+1∑
l=0

(m+ 1− l)Cm+1
l xlym−l)

)
=

=

n−2∑
m=1

m+1∑
l=0

n−m∑
k=0

lan−m
k Cm+1

l xk+l−1yn+1−l−k

+

n−2∑
m=1

m+1∑
l=0

n−m∑
k=0

(m + 1− l)bn−m
k Cm+1

l xk+lyn−l−k =

=

n−2∑
m=1

m+1∑
l=0

n−m+l−1∑
k=l−1

lan−m
k−l+1C

m+1
l xkyn−k

+

n−2∑
m=1

m+1∑
l=0

n−m+l∑
k=l

(m + 1− l)bn−m
k−l Cm+1

l xkyn−k =
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Taking into account that ask = bsk = 0 for k < 0 or k > s this last
expression takes the form

n−2∑
m=1

m+1∑
l=0

n∑
k=0

(lan−mk−l+1 + (m+ 1− l)bn−mk−l )Cm+1
l xkyn−k =

n∑
k=0

n−2∑
m=1

m+1∑
l=0

(lan−mk−l+1 + (m+ 1− l)bn−mk−l )Cm+1
l xkyn−k.

If we define dnk =
∑n−2

m=1

∑m+1
l=0 (lan−mk−l+1 + (m + 1 − l)bn−mk−l )Cm+1

l , with k =
0, . . . , n. We remark that in the computation of dnk contribute ask, b

s
k and Cs

k

for s = 2, 3, . . . , n− 1. Therefore we obtain

n−2∑
m=1

(
Xn−m

∂Hm+1

∂x
+ Yn−m

∂Hm+1

∂y

)
=

n∑
k=0

dnk x
kyn−k.

For the first term of expression (2.4) we have

y
∂Hn

∂x
− x∂Hn

∂x
= y

∂

∂x

n∑
k=0

Cn
k x

kyn−k − x ∂
∂y

n∑
k=0

Cn
k x

kyn−k =

n∑
k=0

kCn
k x

k−1yn−k+1 −
n∑
k=0

(n− k)Cn
k x

k+1yn−k−1 =

n−1∑
k=0

(k + 1)Cn
k+1x

kyn−k −
n∑
k=1

(n− k + 1)Cn
k−1x

kyn−k =

Cn
1 y

n +
n−1∑
k=1

(
(k + 1)Cn

k+1 − (n− k + 1)Cn
k−1
)
xkyn−k − Cn

n−1x
n.

On the other hand we have

Vn(x2 + y2)n/2 = Vn

n/2∑
k=0

(
n/2
k

)x2kyn−2k =
∑
k = 0
2 | k

(
n/2
k/2

)Vnx
kyn−k.
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Sustituting in expression (2.4) we obtain

Cn
1 + (

n/2
0

)Vn = dn0 ,

(k + 1)Cn
k+1 − (n− k + 1)Cn

k−1 + (
n/2
k/2

)Vn = dnk , k = 1, . . . , n− 1,

−Cn
n−1 + (

n/2
n/2

)Vn = dnn ,

(2.5)

where the term (
n/2
k/2

)Vn for k = 0, . . . , n, are different from zero only for n

and k even. We can rewrite expression (2.5) as follows

Cn
1 = dn0 − (

n/2
0

)Vn, Cn
n−1 = (

n/2
n/2

)Vn − dnn,

Cn
k = 1

k

(
dnk−1 − (

n/2
(k − 1)/2

)Vn + (n− k + 2)Cn
k−2

)
, k = 2, . . . , n,

Cn
k = − 1

n−k

(
dnk+1 − (

n/2
(k + 1)/2

)Vn − (k + 2)Cn
k+2

)
, k = 0, . . . , n− 2,

(2.6)
Expression (2.6) for n odd and k odd is

Cn
1 = dn0 , Cn

k =
1

k

(
dnk−1 + (n− k + 2)Cn

k−2
)
, k = 3, 5, . . . , n.

In this case we claim that

Cn
k =

∑(k−1)/2
l=0 (n− (2l + 1))!! (2l − 1)!! dn2l

(n− k)!! k!!
, for k = 1, 3, 5, . . . , n.

We are going to prove the claim by induction. It is easy to see that is true
for k = 1. Now, we suppose that it is true for k − 2, that is,

Cn
k−2 =

∑(k−3)/2
l=0 (n− (2l + 1))!! (2l − 1)!! dn2l

(n− k + 2)!! (k − 2)!!
,

and then we have

Cn
k =

1

k

(
dnk−1 + (n− k + 2)

∑(k−3)/2
l=0 (n− (2l + 1))!! (2l − 1)!! dn2l

(n− k + 2)!! (k − 2)!!

)
=
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dnk−1
k

+

∑(k−3)/2
l=0 (n− (2l + 1))!! (2l − 1)!! dn2l

(n− k)!! k!!

=

∑(k−1)/2
l=0 (n− (2l + 1))!! (2l − 1)!! dn2l

(n− k)!! k!!
.

Expression (2.6) for n odd and k even is

Cn
n−1 = −dnn, Cn

k =
1

n− k
(
−dnk+1 + (k + 2)Cn

k+2

)
, k = 0, 2, 4, . . . , n−3.

In this case we claim that

Cn
k = −

∑(n−1)/2
l=k/2 (n− (2l + 2))!! (2l)!! dn2l+1

(n− k)!! k!!
, for k = 0, 2, 4, . . . , n− 1.

We are going to prove the claim by induction. It is easy to see that is true
for k = n− 1. Now, we suppose that it is true for k + 2, that is,

Cn
k+2 = −

∑(n−1)/2
l=(k+2)/2(n− (2l + 2))!! (2l)!! dn2l+1

(n− k − 2)!! (k + 2)!!
,

and then we have

Cn
k =

1

n− k

(
−dnk+1 + (k + 2)

−
∑(n−1)/2

l=(k+2)/2(n− (2l + 2))!! (2l)!! dn2l+1

(n− k − 2)!! (k + 2)!!

)
=

−
dnk+1

n− k
−
∑(n−1)/2

l=(k+2)/2(n− (2l + 2))!! (2l)!! dn2l+1

(n− k)!! k!!

= −
∑(n−1)/2

l=k/2 (n− (2l + 2))!! (2l)!! dn2l+1

(n− k)!! k!!
.

Expression (2.6) for n even and k odd is

Cn
1 = dn0 − (

n/2
0

)Vn, Cn
n−1 = (

n/2
n/2

)Vn − dnn,

Cn
k =

1

k

(
dnk−1 − (

n/2
(k − 1)/2

)Vn + (n− k + 2)Cn
k−2

)
, k = 3, 5, . . . , n− 1.
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In this case we claim that

Cn
k =

∑(k−1)/2
l=0 (n− (2l + 1))!! (2l − 1)!!

(
dn2l − (

n/2
l

)Vn

)
(n− k)!! k!!

,

for k = 1, 3, 5, . . . , n − 1. We are going to prove the claim by induction. It
is easy to see that is true for k = 1. Now, we suppose that is true for k − 2,
that is,

Cn
k−2 =

∑(k−3)/2
l=0 (n− (2l + 1))!! (2l − 1)!!

(
dn2l − (

n/2
l

)Vn

)
(n− k + 2)!! (k − 2)!!

,

and then we have

Cn
k =

1

k

(
dnk−1 − (

n/2
(k − 1)/2

)Vn + (n− k + 2)Cn
k−2

)
=

=
dnk−1 − (

n/2
(k − 1)/2

)Vn

k

+

∑(k−3)/2
l=0 (n− (2l + 1))!! (2l − 1)!!

(
dn2l − (

n/2
l

)Vn

)
(n− k)!! k!!

=

∑(k−1)/2
l=0 (n− (2l + 1))!! (2l − 1)!!

(
dn2l − (

n/2
l

)Vn

)
(n− k)!! k!!

.

From this last result we obtain that

Cn
n−1 =

∑(n−2)/2
l=0 (n− (2l + 1))!! (2l − 1)!!

(
dn2l − (

n/2
l

)Vn

)
(n− 1)!!

,

but we know that Cn
n−1 = (

n/2
n/2

)Vn − dnn, then we have

(n−2)/2∑
l=0

(n− (2l + 1))!! (2l − 1)!!

(
dn2l − (

n/2
l

)Vn

)
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+(n− 1)!!

(
dnn − (

n/2
n/2

)Vn

)
= 0,

which is equivalent to

n/2∑
l=0

(n− (2l + 1))!! (2l − 1)!!

(
dn2l − (

n/2
l

)Vn

)
= 0, (2.7)

From expression (2.7) we obtain

Vn =

∑n/2
l=0 (n− (2l + 1))!! (2l − 1)!! dn2l∑n/2

l=0 (n− (2l + 1))!! (2l − 1)!! (
n/2
l

)
, for n = 4, 6, 8, . . .

Finally, expression (2.6) for n even and k even is

Cn
k =

1

n− k
(
−dnk+1 + (k + 2)Cn

k+2

)
, for k = 0, 2, 4, . . . , n− 2.

Now we have only the recurrence between Cn
n , Cn

n−2, C
n
n−4, . . ., C

n
4 , Cn

2 , Cn
0 ,

and one of them is arbitrary. If we chose Cn
n = −λn

n!!
, with λn arbitrary, then

we claim that

Cn
k = −

∑n/2−1
l=k/2 (n− (2l + 2))!! (2l)!!dn2l+1 + λn

(n− k)!! k!!
, for k = 0, 2, 4, . . . , n.

We are going to prove the claim by induction. It is easy to see that is true
for k = n. Now, we suppose that is true for k + 2, that is,

Cn
k+2 = −

∑n/2−1
l=(k+2)/2(n− (2l + 2))!! (2l)!!dn2l+1 + λn

(n− k − 2)!! (k + 2)!!
,

and then we have

Cn
k =

1

n− k

(
−dnk+1 + (k + 2)

−
∑n/2−1

l=(k+2)/2(n− (2l + 2))!! (2l)!! dn2l+1 + λn

(n− k − 2)!! (k + 2)!!

)
=

−
dnk+1

n− k
−
∑n/2−1

l=(k+2)/2(n− (2l + 2))!! (2l)!! dn2l+1 + λn

(n− k)!! k!!
=
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−
∑n/2−1

l=k/2 (n− (2l + 2))!! (2l)!! dn2l+1 + λn

(n− k)!! k!!
,

which completes the proof of the theorem.

The method works as follows. From the first terms of the Poincaré se-
ries (2.2), i.e. C2

0 = C2
2 = 1/2 and C2

1 = 0 it is possible calculated d3k
for k = 0, 1, 2, 3 and from here C3

k for k = 0, 1, 2, 3. Therefore the next
step is calculated d4k for k = 0, 1, 2, 3, 4 and finally we obtain V4 and C4

k for
k = 0, 1, 2, 3, 4. The process continues in an analogous way. The method has
been implemented using the computer algebra system Mathematica.

A particular case: The quadratic systems

We are going to apply the above expressions for quadratic systems . In
this case all ask and bsk are zero except a20, a

2
1, a

2
2 and b20, b

2
1, b

2
2. Therefore in

the expression

dnk =
n−2∑
m=1

m+1∑
l=0

(lan−mk−l+1 + (m+ 1− l)bn−mk−l ) Cm+1
l ,

we have n −m = 2; i.e. m = n − 2, and the previous expression takes the
form

dnk =
n−1∑
l=0

(la2k−l+1 + (n− 1− l)b2k−l) Cn−1
l ,

where we can omit the upper index of a20, a
2
1, a

2
2 and b20, b

2
1, b

2
2 because always

is 2. Taking into account that the subindex of ak−l+1 must be k−l+1 = 0, 1, 2
and the subindex of bk−l must be k− l = 0, 1, 2, we have that l = k+1, l = k,
l = k − 1 and l = k, l = k − 1, l = k − 2 respectively with 0 ≤ l ≤ n − 1.
Then dnk is

dnk = (k + 1)a0C
n−1
k+1 + (ka1 + (n− 1− k)b0)C

n−1
k +

((k − 1)a2 + (n− k)b1)C
n−1
k−1 + (n+ 1− k)b2C

n−1
k−2 ,

and the restriction 0 ≤ l ≤ n− 1 implies that Cn−1
l = 0 if it is not satisfied.

Then the Poincaré–Liapunov constant for quadratic systems is

Vn =

∑n/2
l=0 (n− (2l + 1))!! (2l − 1)!! dn2l∑n/2

l=0 (n− (2l + 1))!! (2l − 1)!! (
n/2
l

)
, n = 4, 6, 8, . . .
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where

dn2l = (2l + 1)a0C
n−1
2l+1 + (2la1 + (n− 1− 2l)b0)C

n−1
2l + ((2l − 1)a2+

(n− 2l)b1)C
n−1
2l−1 + (n+ 1− 2l)b2C

n−1
2l−2,

The application to more general systems is based in to find the expression dnk
and it is easy to see that the contributions to dnk of each homogeneous terms
of the system are independent.

2.3 Applications

When we apply our method to particular cases of system (2.1) we can arrive
further in the determination of the Poincaré–Liapunov constants. The system
of Proposition 2.3 it was studied in [40] and [64] with a4 = b4 = 0 and in
[123] with b2 = a2. Here we present the following result.

Proposition 2.3 Consider the system{
ẋ = −y + a2x

2 + a3x
3 + a4x

4,
ẏ = x+ b2y

2 + b3y
3 + b4y

4,
(2.8)

where ai and bi are real numbers. Then, the origin is a center if and only if
one of the following conditions holds a2−b2 = a3+b3 = a4−b4 = 0, a2+b2 =
a3 + b3 = a4 + b4 = 0, a2 = a3 = a4 = b3 = 0 and b2 = b3 = b4 = a3 = 0.

Proof. (a) Sufficiency. Every group of conditions give the necessary sym-
metries to show that system (2.8) is time-reversible and then the origin is a
center (the symmetry principle, see [102], page 135).

(b) Necessity. The first Poincaré–Liapunov constant is V4 = a3 + b3 so
taking b3 = −a3 we obtain that the second Poincaré–Liapunov constant
takes the form

V6 = 5a22a3 − 6a32b2 − 22a4b2 − 5a3b
2
2 + 6a2b

3
2 + 22a2b4,

If a2 is different from zero we can express b4 in function of the rest of param-
eters. In this case the third Poincaré–Liapunov constant is

V8 =
1

a2
(b2 + a2)(b2 − a2)(−235a32a3 − 1254a3a4 + 84a42b2−
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285a23b2 + 1100a2a4b2 + 357a2a3b
2
2 − 216a22b

3
2),

the vanish of the first factor, that is, b2 = a2 gives the first condition of Propo-
sition 2.3. If b2 = −a2 corresponds to the second condition. From the last
factor of V8 we can isolate a4, if 57a3− 50a2b2 is different from zero, and the
vanishing of the following Poincaré–Liapunov constants imply a2 = b2 = 0.
In case that 57a3−50a2b2 is zero, that is, a3 = 50a2b2/57 the last factor of V8
takes the form a2b2(a

2
2 + b22) which implies b2 = 0, and we obtain the fourth

condition of Proposition 2.3.

If a2 is zero then the second Poincaré–Liapunov constant is V6 = b2(22a4 +
5a3b2). Let 22a4 + 5a3b2 be zero with b2 6= 0, that is, a4 = −5a3b2/22 in this
case V8 = a3b2(235b22 + 1254b4). The case a3 = 0 corresponds to the third
condition of Proposition 2.3. In the case b4 = −235b32/1254 the following
Poincaré–Liapunov constants imply a3 = b2 = 0. Finally, if b2 = 0 the next
Poincaré–Liapunov constant V8 is zero and V10 = a3(a4−b4)(a4+b4). The van-
ishing of the factors a4− b4 and a4 + b4 correspond to particular cases of first
and second conditions respectively. When a3 = 0 with (a4 − b4)(a4 + b4) 6= 0
we have V12 = 0 and V14 = a4b4(a4−b4)(a4+b4). The cases a4 = 0 and b4 = 0
correspond to particular cases of third and fourth conditions respectively.

Now we consider the following system

ẋ = −y + xf(x, y), ẏ = x+ yf(x, y),

with f(x, y) =
∑3

i=1 fi(x, y) where fi(x, y) are homogeneous polynomials
of degree i. Any center at the origin of this type of systems is necessarily
isochronous (the closed orbits of the center have the same period), since, in
polar coordinates (r, ϕ), the angle ϕ satisfies the equation ϕ̇ = 1. This type
of isochronous centers are called uniformly isochronous centers, see [45]. If
f2 = f3 = 0 the origin is automatically a center because the system has
R(x, y) = (1 − a2x + a1y)−3 as integrating factor. These class of systems
have been studied in [44] with f3 = 0. Here we present the center conditions
for f2 = 0 and f3 6= 0.

Proposition 2.4 Consider the system{
ẋ = −y + x (a1x+ a2y + a6x

3 + a7x
2y + a8xy

2 + a9y
3) ,

ẏ = x+ y (a1x+ a2y + a6x
3 + a7x

2y + a8xy
2 + a9y

3) ,
(2.9)
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where ai are real numbers. Then, the origin is a center if and only if

a1(a7+3a9)−a2(a8+3a6) = 0 and (3a1a
2
2−3a32)a6+(3a1a

2
2−a31)a7−2a21a2a8 = 0.

Proof. (a) Sufficiency. Suppose that the two conditions of Proposition 2.4
hold. If a1 = a2 = 0 then the system has an integrating factor of the form

R(x, y) = (1− (a7 + 2a9)x
3 + 3a6x

2y − 3a9xy
2 + (2a6 + a8)y

3)−5/3,

which is defined at the origin and therefore the origin is a center. If a1 = 0
with a2 6= 0 the first condition of Proposition 2.4 results a2(3a6 + a8) = 0,
which implies a8 = −3a6. In this case the second condition is a32a6 = 0 and
therefore a6 = 0. System (2.9) with a1 = a6 = a8 = 0 is invariant by the
change of variables (x, y, t) → (x,−y,−t) and this symmetry ensures that
the origin is a center. If a2 = 0 with a1 6= 0 the first condition of Propo-
sition 2.4 results a1(3a9 + a7) = 0, which implies a7 = −3a9. In this case
the second condition is a31a9 = 0 and therefore a9 = 0. System (2.9) with
a2 = a7 = a9 = 0 is invariant by the change of variables (x, y, t)→ (−x, y,−t)
and this symmetry ensures that the origin is a center also. Finally if a1a2 6= 0
from the first condition of Proposition 2.4 we can isolate a9, and from the
second condition of Proposition 2.4 we obtain a8 in function of the rest of
parameters. In this case making a rotation with tanα = −a2/a1, system
(2.9), in the new variables (X, Y ), is invariant by the change of variables
(X, Y, t)→ (−X, Y,−t) and therefore has a center at the origin.

(b) Necessity. The first Poincaré–Liapunov constant V4 is zero. The second
and the third Poincaré–Liapunov constants are the two conditions of Propo-
sition 2.4.

To prove which is the maximum number of small-amplitude limit cycles
which can bifurcate from the origin, the method used is, like it is habitual, the
one of finding a fine focus of maximum order. From our calculations it is easy
to see that if a2 = b2 = a3 = b3 = 0 we obtain V4 = V6 = V8 = V10 = V12 = 0
and V14 = a4b4(a4 − b4)(a4 + b4) which is different from zero if a4b4 6= 0 and
a4 6= b4 and a4 6= −b4 and therefore we obtain a fine focus of order six for
system (2.8). In the same way if a1 = 0 and a8 = −3a6 we have V4 = V6 = 0
and V8 = a32a6 which is different from zero if a2 and a6 are different from
zero, and therefore we obtain a fine focus of order three for system (2.9).
Therefore we can conclude the following result
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Proposition 2.5 The maximum number of small-amplitude limit cycles which
can bifurcate from the origin is at least six for system (2.8) and three for sys-
tem (2.9).

The Poincaré–Liapunov constants of systems (2.8) and (2.9) can be easily
computed from the algorithm given in the previous section.



Chapter 3

Implementation of a new
algorithm for the computation
of the Poincaré–Liapunov
constants

3.1 Introduction

In chapter 2 have given an easy algorithm for the computation of the Poincaré–
Liapunov constants and at the same time the Poincaré series in order to solve
theoretically the center problem. The knowledge of systems with a center is
very important because perturbations of these systems give rich bifurcations
of limit cycles. The knowledge of systems with limit cycles it is a part of the
second part of the 16th Hilbert problem.

The second part of the 16th Hilbert problem concerns on the qualitative
theory of differential systems of equations and it is the following. Consider
systems of the form

ẋ = P (x, y), ẏ = Q(x, y), (3.1)

where P and Q are polynomials and x and y are real unknown functions.
Systems of the form (3.1) are called polynomial systems. Among trajectories
of a polynomial system one can single out some which correspond to isolated
periodic solutions. These trajectories, as we have said in the introduction,

45
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are called limit cycles . Let π(P,Q) be the number of limit cycles of (3.1)
and define

Hn = sup{π(P,Q); ∂P, ∂Q ≤ n}.

The question of the second part of the 16th Hilbert problem is the maximal
possible number of limit cycles, estimates the value of Hn in terms of n, and
their location. The first part of the 16 Hilbert problem deals with an estima-
tion of number of ovals of an algebraic curve. Very important connections
exist among both parts as the limit cycles of a system with a polynomial in-
verse integrating factor V (x, y) correspond to ovals of the curve V (x, y) = 0,
see [68] . Therefore if we know an estimation for the number of limit cycles
of system (3.1) we can know an estimation for the number of ovals of the
algebraic curve V (x, y) = 0, if this algebraic curve exist, if we control the
degree of the polynomial inverse integrating factor V (x, y) in function of n.

In the present chapter we consider some questions, those that are related
with the Poincaré–Liapunov constants and with the second part of the 16th
Hilbert problem. In fact, there exists a whole area of the subject, it is rather
misleading to think of it as a single problem; its history and present status are
described in detail in [116]. Much of the recent progress has been achieved
by consideration of various kinds of bifurcation. One of them in which the
Poincaré–Liapunov constants intervene is the limit cycles which bifurcate out
of a critical point, as we said, the so-called small amplitude limit cycles.

Very briefly, the position is that remarkably little is known about the
value of Hn in terms of n. It has not even been established that there exist
and upper bound for such value. However it has been proved that a given
polynomial system cannot have infinitely many limit cycles by Ecalle [52] and
Ilyashenko [84]. The first major contribution was that of Bautin [12], who
proved that H2 ≥ 3 and this work is classical in the theory of limit cycles
bifurcations and his ideas have been very influential in the development of
the subject. Afterwards, Landis and Petrovskii published two papers, in one
of which it was suggested that H2 = 3 and in the other precise bounds were
given for Hn with n ≥ 3. However, the proofs of these results were soon
withdrawn, but nevertheless it appears to have been widely believed for sev-
eral years that H2 = 3. It was until 1979 that the first examples of quadratic
systems with at least four limit cycles appeared given by Shi Songling [119]
and Cheng and Wang [33]. These developments stimulated renewed interest
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in 16th Hilbert’s problem. Only very recently some lower bounds were also
obtained in the case where P and Q are polynomials of degree three, in what
follows cubic systems. It was showed by Żo la̧dek that H3 ≥ 11. Considerable
results in the direction to prove that H2 is finite were obtained by Dumortier,
Roussarie and Rousseau trying to investigate limit cycles which appear from
singular trajectories, mainly, from a center or focus type equilibrium point
or from a separatrix cycle.

In Section 3.2 we explain the computational problems that appear once
we know the Poincaré–Liapunov constants using the algorithmic procedure
given in Chapter 1. The implementation of this algorithm is described in
Section 3.3. In Section 3.4 we explain the basic idea of the bifurcation of
limit cycles out of critical point and see on that consists the center problem.
Finally, in Section 3.5 we have concentrate on the computational problems
that arise using a Computer Algebra System to solve the above problems
and in Section 3.6 some applications are commented.

3.2 Computation of the Poincaré–Liapunov

constants

In the previous chapter we have given a formula to compute the Poincaré–
Liapunov constants and the Poincaré series for the general systems (2.1) as
a recurrence form following the ideas of Shi Songling in [120] where he found
the same expression for the Poincaré–Liapunov constants, but he did not
found the recursive relation with the Poincaré series to establish a method
to compute them. The advantages of this method are that in all the process
the unique calculations are products and sums without indefinite/definite
integrals as most of the others methods. For instance the original Bautin’s
method is effectively costly in computer time because it involves computa-
tions of indefinite/definite integrals. Consequently this new algorithm it is
very easy and optimizable its implementation on a computer. Others meth-
ods display also this advantage, this is certainly the case of the successive
derivatives approach, see for instance [109] and [56]. But our method gives si-
multaneously the Poincaré–Liapunov constants and the Poincaré series. The
knowledge of the Poncaré series is very useful for applications, for example
the study of systems that have a polynomial first integral, which have a finite
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Poincaré series.

Although there exist different recursive methods for the determination
of the Poincaré–Liapunov constants, as we have see in the previous chapter,
and the development of the algebraic manipulators has allowed to approach
the computation of the first Poincaré–Liapunov constants, other important
computational problems appear as we will see in this section.

Consider system (2.1) and assume that is polynomial. Let A be the ring
of real polynomials whose variables are the coefficients of the polynomial dif-
ferential system (2.1). Let J = (V1, V2, . . .) be the ideal of A generated by all
the Poincaré–Liapunov contants Vi’s. For such polynomial systems, using the
Hilbert’s basis theorem, J is finitely generated; i.e. there exist B1, B2, . . . , Bq

in J such that J = (B1, B2, . . . , Bq) because A is Noetherian. Such a set of
generators is called a basis of J.

Notice that Hilbert’s basis theorem assures us the existence of a generators
basis, but it does not provide us a constructive method to find it. The existent
methods to solve this problem are based in the Buchberger’s algorithm to find
a Gröebner basis , but it is only applicable for very simple cases. Therefore
it is a computational problem of algebraic nature due to the appearance,
already for simple systems, of massive Poincaré–Liapunov constants that
are polynomials with rational coefficients and efficient algorithms do not
exist that allow to determine simple groups of generators. One of the main
difficulties comes ultimately on the decomposition in prime numbers of a big
integer number. Therefore the resolution of the computational problem goes
to have efficient algorithms that work with big integers and in decomposition
in primes numbers of big numbers, a classical problem in computational
mathematics. The procedure is know as decomposition of the ideal J in
primary ideals and sometimes this is possible using modular arithmetic as
we will see along the next chapters.

Now we apply Theorem 2.2 to the most simple polynomial systems.

2.1 The quadratic and cubic homogeneous perturbations

We are going to apply the expressions of Theorem 2.2 to quadratic and
cubic homogeneous perturbations, i.e. systems with a linear center perturbed
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by quadratic polynomials , in what follows quadratic systems , and cubic
homogeneous polynomials respectively. For quadratic systems all ask and bsk
are zero except a20, a

2
1, a

2
2 and b20, b

2
1, b

2
2. Therefore in the expression

dnk =
n−2∑
m=1

m+1∑
l=0

(lan−mk−l+1 + (m+ 1− l)bn−mk−l ) Cm+1
l , (3.2)

we have n −m = 2; i.e. m = n − 2, and the previous expression takes the
form

dnk =
n−1∑
l=0

(la2k−l+1 + (n− 1− l)b2k−l) Cn−1
l .

Taking into account that the subindex of ak−l+1 must be k − l + 1 = 0, 1, 2
and the subindex of bk−l must be k− l = 0, 1, 2, we have that l = k+1, l = k,
l = k − 1 and l = k, l = k − 1, l = k − 2 respectively with 0 ≤ l ≤ n − 1.
Then dnk is

dnk = (k + 1)a20C
n−1
k+1 + (ka21 + (n− 1− k)b20)C

n−1
k

+ ((k − 1)a22 + (n− k)b21)C
n−1
k−1 + (n+ 1− k)b22C

n−1
k−2 ,

and the restriction 0 ≤ l ≤ n− 1 implies that Cn−1
l = 0 if it is not satisfied.

For cubic homogeneous perturbations all ask and bsk are zero except a30, a
3
1,

a32, a
3
3 and b20, b

2
1, b

2
2, b

3
3. Since n−m = 3, i.e. m = n− 3 therefore expression

(3.2) takes the form

dnk =
n−2∑
l=0

(la3k−l+1 + (n− 2− l)b3k−l) Cn−2
l ,

Taking into account that the subindex of ak−l+1 must be k− l+ 1 = 0, 1, 2, 3
and the subindex of bk−l must be k − l = 0, 1, 2, 3, we have that l = k + 1,
l = k, l = k − 1, l = k − 2 and l = k, l = k − 1, l = k − 2, l = k − 3
respectively with 0 ≤ l ≤ n− 2. Then dnk is

dnk = (k + 1)a30C
n−2
k+1 + (ka31 + (n− 2− k)b30)C

n−2
k

+ ((k − 1)a32 + (n− k − 1)b31)C
n−2
k−1

+ ((k − 2)a33 + (n− k)b32)C
n−2
k−2 + (n+ 1− k)b33C

n−2
k−3 ,

and the restriction 0 ≤ l ≤ n− 2 implies that Cn−2
l = 0 if it is not satisfied.
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The application to more general systems is based in to find the expression
dnk and it is easy to see that the contributions to dnk of each homogeneous
terms of system (2.1) are independent.

3.3 Implementation of the algorithm

The implementation of an algorithm can be approached in two different ways.
On one hand they can be used the commercial versions of the algebraic ma-
nipulators as Axiom (the comercial version of Scratchpad), Maple, Math-
ematica, Reduce, Macsyma and specialized programs as Macaulay, Cocoa,
Mas, Magma, Posso and Singular. However, these manipulators are not even
enough powerful for very extensive calculations or the programming of the
algorithms is not foreseen. On the other hand, these programs are of very
general character and written in language LISP generally. They require the
use of big computers or computers specially designed for their use that con-
sume a great quantity of memory and a lot of time of CPU, what hinders
their use considerably for certain problems. Another form of approaching
these problems is by means of the use of algebraic manipulators specially de-
signed for the resolution of concrete problems and not with a general purpose.
Implementing the algorithm using a programming language and building a
specific program for the resolution of the concrete problem.

When we first became involved in computations relating to the center
problem and small-amplitude limit cycles, we used the method that it con-
sists in to construct a Poincaré’s formal power series in polar coordinates
and the Poincaré–Liapunov constants that can be computed from recursive
linear formulas as definite integrals of trigonometric polynomials, see [29] and
[30]. The algorithm was written in C++ and was used to obtain results for
linear centers perturbed by quartic and quintic homogeneous polynomials.
The program’s operation is controlled by a PSP (Poincaré Series Proces-
sor) command file running under the LINUX operating system, and different
files identifier of LINUX are exploited to give the user a simple method of
distinguishing between the various files relating to a particular system of dif-
ferential equations. Initially, the user is required to provide information in
one file. In <filename> LYCONFIG the user enters the degree of the poly-
nomial system, the type of system, i.e. homogeneous or complete, the range
of k for which V2k is computed together with the optional relations between
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the coefficients of the polynomial system that we want to introduce.

The program is organized so that in the kth “round”, the polynomial V2k
is computed. When the nominated terminal value of k is reached, different
files are produced and their contents we are going to describe. On the first,
the initial value of k is 2. The program runs as far as round the terminal
value of k and the Poincaré–Liapunov constants V4, V6, . . . , V2k are stored in
different files <filemanes> PLCVk (Poincaré–Liapunov constant k) and if
there are restrictions introduced in the file LYCONFIG, the constants are
stored in <filenames> SPLCVk (Simplified Poincaré–Liapunov constant k).
The Poincaré series are stored in different files <filenames> TMPnCk (kth
homogeneous part of the Poincaré series for a polynomial system of degree
n). In this way, the calculations can be restarted at k = k + 1. In practice,
the program is first run from k = 2 to k = 2r − 1, then substitutions from
V4, V6, . . . , V2r are decided and the program is called again, but now the initial
value of k is 2r with these relations between coefficients in the LYCONFIG.
This is a valuable facility, for the appropriate substitutions cannot usually
be seen in advance of knowing the first Poincaré–Liapunov constants. It is
a matter of judgement how many Poincaré–Liapunov constants should be
calculated before entering further substitutions. As a rough guide one would
not normally compute more than two or three, and often only one. After
the Poincaré–Liapunov constants are computed, it is possible to do their
translation to Mathematica format by the program translation CONVERT,
which give the Poincaré–Liapunov constants in the general Mathematica for-
mat. The reduction procedure is heavily interactive. We have not sought
to automate it, for experience suggests that some of the information which
we require later would be lost if we did. Like many other computer im-
plementations, it has evolved with changes being made in response to user
requirements as well as the continuing efforts to improve its efficiency.

As it has been seen in the previous section our investigations developed
a more sophisticated algorithm (Theorem 2.2) which we have initially im-
plemented in Mathematica 3.0 on a Pentium III with 450 Mhz and 64 Mb.
RAM. Our current implementation of the algorithm, and that which we de-
scribe here, uses C++ on the same computer. The program’s operation is
also controlled by a PSP (Poincaré Series Processor) command file running
under the LINUX operating system. Initially, the user is required to provide
information. The program ask for if the user wants to stored the dnk and Cn

k
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in different files <filenames> Dk and Ck, respectively. After the user enters
the range of k for which V2k is computed and the degree of the polynomial
system. As the coefficients of the Poincaré–Liapunov constants are rational
numbers, the implementation uses a library for doing number theory. The
NTL library v. 3.6b, freely available for research and educational purposes.
The latest version of NTL is available at www.shoup.net. The output of the
algorithm, the V2k, is directly in Mathematica format. The obtained timings
have been controlled by the function Timing of mathematica and by function
gettimeofday of C++. The implementations versions are available to anyone
who is interested.

We planned to study if our method it is computationally more effective
than others methods. The comparisons among these methods are very diffi-
cult because each method uses different coordinates system and therefore the
number of terms of the coefficients of the Poincaré series and the Poincaré–
Liapunov constants varies according to the used coordinates. Therefore we
present the following tables for quadratic and cubic homogeneous perturba-
tions giving the times of calculation, the width in bytes and the number of
terms for the methods developed in [123], [29], [30] and our algorithm. The
computations of the method developed in [123] have been implemented with
Maple VR4 on a Workstation (SUN Ultra E-450) with three processor Pen-
tium II with 250 Mhz and 256 Mb. RAM, which makes not possible a direct
comparative.

Algorithm constants time width in bytes number of terms

Method [123] k=2 to k=4 1.17 57; 543; 2104 2; 14; 44
Maple V k=5 4.34 6075 110

Method [29] k=2 to k=4 1.20 24; 204; 772 1; 7; 24
C++ k=5 14.45 2240 58

Our Method k=2 to k=4 51.25 87; 1329; 7092 6; 56; 220
mathematica k=5 711.67 25413 628

Our Method k=2 to k=4 2.24 87; 1329; 7092 6; 56; 220
C++ k=5 34.47 25413 628

Table 3.1: Quadratic perturbations
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Algorithm const. time width in bytes number of terms

Method [123] k=2..6 1.71 21; 60; 281; 1214; 2895 2; 2; 14; 30; 82
complex c. k=7 3.92 7540 150
Maple V k=8 15.15 13555 302

Method [29] k=2..6 1.09 10; 24; 163; 382; 1181 1; 1; 7; 14; 41
polar c. k=7 1.81 2427 74
C++ k=8 13.23 5306 151

Our Method k=2..6 197.62 39; 285; 1456; 4650; 13880 4; 16; 60; 160; 396
cartesian c. k=7 1516.15 36321 848
Mathematica k=8 10697.4 85432 1716

Our Method k=2..6 2.64 39; 285; 1456; 4650; 13880 4; 16; 60; 160; 396
cartesian c. k=7 5.53 36321 848
C++ k=8 36.47 85432 1716

Table 3.2: Cubic homogeneous perturbations

3.4 Small-amplitude limit cycles and the cen-

ter problem

In this case we consider systems in which the origin is a critical point of focus
type, and show how to bifurcate limit cycles out of it. Thus we investigate
systems of the form

ẋ = λx− y +X(x, y) , ẏ = x+ λy + Y (x, y) , (3.3)

where the nonlinearities are

X(x, y) =
n∑
s=2

Xs(x, y), and Y (x, y) =
n∑
s=2

Ys(x, y),

with Xs and Ys are homogeneous polynomials of degree s. The linear part is
in canonical form, and the stability of the origin is determined by the sign
of λ. If λ = 0, the origin is a center for the linearized system, and is said to
be a fine focus of the nonlinear system. In order to solve the problem of the
stability at the origin of system (3.3), it is sufficient to consider the sign of
the first Poincaré–Liapunov constant different from zero. The origin is a non-
linear center, i.e. there is an open neighborhood of the origin where all orbits
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are periodic except of course the origin, if and only if all Poincaré–Liapunov
constants are zero. The idea is to perturb the coefficients arising in the Xs

and Ys so that limit cycles bifurcate out of the origin. Such limit cycles are
said to be of small amplitude. The origin is said to be a fine focus of order
k if V2k+2 is the first non-zero Poincaré–Liapunov constant. In this case at
most k limit cycles can bifurcate from this fine focus, see for instance [16].
To maximize the number of limit cycles which can bifurcate, we start with
a fine focus which is as close to being a center for the nonlinear system as
possible. Therefore to obtain the maximum number of limit cycles which can
bifurcate from the origin for a given system, one has to find the maximum
possible order of a fine focus.

Suppose that the origin is a fine focus of order k. The first step is to per-
turb the coefficients in X and Y so that V2k 6= 0 with V2l = 0 for l < 2k and
V2kV2k+2 < 0; if this can be achieved, the stability of the origin is reversed,
and a limit cycle Γ1 bifurcates. Next, further perturbations are introduced
so that V2k−2V2k < 0 with V2l = 0 for l < 2k − 2. The stability of the origin
is again reversed, and another limit cycle Γ2 appears. Provided that V2k−2
is small enough, Γ1 persists, and there are therefore two limit cycles. Pro-
ceeding in this way, k limit cycles bifurcate provided perturbations can be so
arranged that V2kV2k+2 < 0 for 1 ≤ l ≤ k, see [120].

Since it is the first non-zero Poincaré–Liapunov constant that is of signif-
icance, what we really need are the non-zero expressions obtained by calcu-
lating each V2k under the conditions V2 = · · · = V2k−2 = 0. It can happens
that a reduced Poincaré–Liapunov constant was zero, in which case it does
not contribute in the process of bifurcation of limit cycles. For a given class
of systems, the aim is to maximize the number of limit cycles which can
bifurcate from the origin. Thus, it is necessary to find k1, the maximum
possible order of a fine focus. This k1 is characterized by the fact that the
origin is a center if V2k = 0 for k ≤ 1 + k1, but not if any of these con-
stants is non-zero. In practice, one proceeds with the computation of the
Poincaré–Liapunov constants until appears that k1 has been reached. Then
it is necessary to prove independently that the origin is a center. This is
often difficult, and developing criteria for the existence of a center is a sig-
nificant and substantive problem. The different techniques as reversibility of
the system, existence of a first integral or an integrating factors defined in
a neighborhood of the critical point and existence of analytical changes to
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simplified systems are those most used ones.

3.5 Summary of the computational problems

Assisting to the previous section there are four steps to the procedure each
one of them with concrete computational problems.

1. Calculation of the Poincaré–Liapunov constants. In the calculation of
this constants, very large expressions arise. It is here that Computer
Algebra System have proved so valuable. We have a recurrent formula
to compute the polynomials and the limitations that it imposes us the
RAM of the computer.

2. Reduction of the Poincaré–Liapunov constants. In the reduction of the
V2k it can be used the direct substitutions from the relations V2 = · · · =
V2k−2 = 0 which involve rational functions of the coefficients arising in
X and Y . This contrasts with the formal calculation of a basis for
the ideal generated by the Poincaré–Liapunov constants applying the
Buchberger’s Gröbner basis method or variations of this one, where in
that case all substitutions are polynomial. These methods are based
on defining a division algorithm using some monomial ordering, see
[46]. The division algorithm it is used also to make the reduction of
the Poincaré–Liapunov constants. Calculations based on Buchberger’s
algorithm can be done only for sufficient simple polynomials with the
program packages of a Computer Algebra System. Unfortunately, we
deal with very massive polynomials that even if very powerful comput-
ers are used it is not possible to solve the ideal membership problem.
There are variations of the Buchberger’s algorithm taking into account
some special properties of the Poincaré–Liapunov constants, see [113].

3. Establishing the value of k1 by proving that the origin is center if V2k =
0 for k ≤ 1 + k1. In this case different paths have to be analyzed and
also there is a computational cost.

4. Beginning with a fine focus of maximal order, finding a sequence of per-
turbations each of which reverses the stability of the origin. Numerical
values of the variables of the system must be fixed to get the result.
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3.6 Some applications

We give a summary of some of the results which have been obtained using
the techniques described in these two first chapters. Let H̃ denote the max-
imum number of limit cycles which can bifurcate out of a fine focus. It has
has long been known that H̃ = 3 for quadratic systems; this was shown by
Bautin [12]. In [16], Blows and Lloyd proved that H̃ = 5 for cubic systems
in which the quadratic terms are absent. For general cubic systems the last
result due to Żo la̧dek [126] is H̃ ≥ 11.

Certain systems with quartic and quintic homogeneous nonlinearities have
been recently investigated using the described method, see [69]. For systems
of the form

ẋ = −y, ẏ = x+Qn(x, y), (3.4)

where Qn(x, y) is homogeneous polynomial of degree n, for n = 4 and n = 5,
it is proved that the maximum number of small-amplitude limit cycles which
can bifurcate from the origin is at least four for system (3.4) with n = 4 and
five for system (3.4) with n = 5.

Other type of systems which we have studied in detail are the so-called
“homogeneous systems”; these systems are of the form

ẋ = −y + Pn(x, y), ẏ = x+Qn(x, y), (3.5)

where Pn(x, y) and Qn(x, y) are homogeneous polynomial of degree n. These
type of systems have been studied using the method with polar coordinates
for n = 4 and n = 5. The discussion about the number of small-amplitude
limit cycles which can bifurcate from the origin for system (3.5) have given
which is greater or equal seven for n = 4 and greater or equal nine for n = 5,
see [29] and [30].

Much of activity has been concerned with systems of Liénard type. i.e.,
differential systems of the form

ẋ = y − F (x), ẏ = −g(x), (3.6)

where g(0) = 0 and g′(0) < 0. The value of H̃ is obtained in a large number
of cases for such systems, see [16]. The BiLiénard systems are systems of the
form

ẋ = y − F (x), ẏ = −x−G(y). (3.7)
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The case with F (x) = a2x
2 + a3x

3 + a4x
4 and G(y) = b2y

2 + b3y
3 + b4y

4 have
been studied in the previous chapter and the maximum number of small-
amplitude limit cycles which can bifurcate from the origin is at least six.

Other systems recently investigated using the techniques described in this
chapter are the systems of the form

ẋ = y + xf(x, y) , ẏ = −x+ yf(x, y) . (3.8)

This type of systems are called uniformly isochronous centers because they
have an isochronous center at the origin and in polar coordinates (r, ϕ) the
angle ϕ satisfies the equation ϕ̇ = 1. As we have seen in Chapter 1, for
system (3.8) the maximum number of small-amplitude limit cycles which can
bifurcate from the origin is at least three when f(x, y) = f1(x, y) + f3(x, y)
where fi(x, y) are homogeneous polynomials of degree i.



58
Implementation of a new algorithm for the computation of the
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Chapter 4

Abel differential equations
admitting a certain first
integral

4.1 Introduction

In this chapter we study the integrability of the Abel differential equations
i.e., differential equations of the form

dy

dx
= a(x)y3 + b(x)y2 + c(x)y + d(x) , (4.1)

with a(x) 6≡ 0 and where a, b, c and d are meromorphic functions of x. Abel
equations appear in the reduction of order of many second and higher order
differential equations, and hence are frequently found in the modeling of real
problems in varied areas. There are only a few families of Abel equations
in which a complete classification of their solutions is known. For instance,
in [32] a classification of the integrable rational Abel differential equations
according to invariant theory, i.e., the integrable Abel equations where a, b, c
and d are rational functions was presented. As far as we know, this is the most
general method available at the moment to solve Abel equations, already
described by E. Kamke [86], page 26, as sub-method (g) due to M. Chini [36].
The importance of the Abel equations, as we have said, lies in that appear in
the reduction of order of other several differential equations, see [32, 86, 112].
For instance, in [112], Abel equations are analyzed from the point of view of
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the study of the superposition rules. These nonlinear superposition rules are
not derived from the classical Lie’s theorem, see also [60].

4.2 Abel differential equations of second kind

The Abel differential equations of second kind are differential equations of
the form

dỹ

dx
=
ã(x)ỹ3 + b̃(x)ỹ2 + c̃(x)ỹ + d̃(x)

p̃(x)ỹ + q̃(x)
, (4.2)

where q̃(x) 6≡ 0. Obviously, the case p̃(x) ≡ 0 includes the Abel equations
(4.1) of first kind. Moreover, if p̃(x) 6≡ 0 we can transform any Abel equation
of second kind to the first kind through the change ỹ = 1/y − q̃(x)/p̃(x),
where

a =
ãq̃3

p̃4
− b̃q̃

2

p̃3
+
ãq̃

p̃2
− d̃
p̃
, b = −3ãq̃2

p̃3
+

2b̃q̃

p̃2
− c̃
p̃
−
(
q̃

p̃

)′
, c =

3ãq̃

p̃2
− b̃
p̃
, d = − ã

p̃
.

4.3 Algebraic first integral in the dependent

variable

A first integral for a differential equation

dy

dx
= f(x, y), (4.3)

is a non-constant scalar–valued function h = h(x, y) such that d
dx
h(x, y(x)) ≡

0 whenever y = y(x) is a solution of (4.3). We say that such a first integral
h is algebraic first integral in the dependent variable y if it can be expressed
into the form

h(x, y) = (
n∏
i=1

(y − gi(x))αi)h0(x) (4.4)

where αi ∈ C − {0} for i = 1, . . . , n, the functions x 7→ gi(x) are particular
solutions of (4.3) for i = 1, . . . , n and the function h0(x) 6= 0. This type of
first integral was proposed by Painlevé in [103], see also [67]. and references
therein. Notice that, if the differential equation is real then there is a local
first integral which is also real. We can first work for a first integral in C and
find αi, gi(x) and h0(x) complex, but at the end we can look for a real first
integral from the complex one.
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4.4 Algebraic first integral in the dependent

variable for an Abel equation

The following proposition gives the algebraic conditions that must be satisfied
by the particular solutions of an Abel equation (4.1) in order to have a first
integral of the form (4.4).

Proposition 4.1 The Abel equation (4.1) admits a first integral of the form
(4.4) if and only if there are n particular solutions {gi}i=1,...,n of (4.1), and n
non-zero complex numbers {αi}i=1,...,n such that

n∑
i=1

αi = 0, and
n∑
i=1

αigi = 0. (4.5)

Moreover, when this is the case one has h0(x) = α0e
−
∫
(a
∑n
i=1 αig

2
i )dx, where

α0 ∈ C− {0} is an arbitrary constant.

Proof. For f as in (4.3) we introduce the differential operator

D :=
∂

∂x
+ f(x, y)

∂

∂y
.

For any function h = h(x, y) and any solution y = y(x) of (4.3) the chain-rule
gives

d

dx
h(x, y(x)) = Dh(x, y)|y=y(x).

From the definition of first integral h(x, y) is a first integral if h is constant on
each solution y = y(x) of (4.3), i.e. h(x, y(x)) = cte. ThereforeDh(x, y(x)) ≡
0 for all x. Consequently, we see that h is a first integral of (4.3) if and only
if Dh ≡ 0. If g(x) is a particular solution of the Abel equation (4.1) then

D(y − g) = (ay2 + by + c+ (ay + b)g + ag2)(y − g),

where D := ∂/∂x+ (a(x)y3 + b(x)y2 + c(x)y + d(x))∂/∂y, see [60, 61].
If (4.4) is a first integral of (4.1) then we have

Dh = h

[
n∑
i=1

αi(ay
2 + by + c+ (ay + b)gi + ag2i ) +

h′0
h0

]

= h

[
(ay2 + by + c)

n∑
i=1

αi + (ay + b)
n∑
i=1

αigi + a
n∑
i=1

αig
2
i +

h′0
h0

]
≡ 0.
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If we view the bracketed expression as a polynomial in y with coefficients as
a functions of x which must vanish, and this easily leads to conditions (4.5)
and the expression for h0(x). The converse is obvious.

Consider the vector space of functions and the associated affine space
having the zero function as a distinguished point, i.e., we think any function
as a point in this affine space. The geometric interpretation of condition
(4.5) is that we must have n particular solutions gi(x) inside an hyperplane
of dimension n− 2. If we choose n arbitrary points in an affine space of suf-
ficiently high dimension they define a hyperplane of dimension n − 1. Only
when these points verify condition (4.5) they define a subspace of lower di-
mension. In this case we will say that these points are coplanar for dimension
n ≥ 4 and are collinear for n = 3.

Obviously, we cannot talk about coplanarity for n = 1 or n = 2. More-
over, the case n = 1 reduce to α1 = 0 and the case n = 2 implies α1 = α2 = 0.
This fact does not mean it would be impossible to construct a first integral of
an Abel equation using one or two particular solution; only that such a first
integral cannot take the form (4.4). To achieve that form we need n ≥ 3.

4.4.1 Computation of h0(x)

In this subsection we are going to see how to compute the factor h0(x) of
the first integral (4.4) for an Abel equation (4.1) when the independent term
d(x) is null.

Proposition 4.2 For an Abel equation with d(x) = 0 and with n not null
coplanar particular solutions y = gi(x) for i = 1, . . . , n we have h0(x) =
1/
∏n

i=1 g
αi
i .

Proof. From gi
′ = ag3i + bg2i + cgi, we get (ln gi)

′ = ag2i + bgi + c, an
taking into account (4.5), we obtain that

∑n
i=1 αi(ln gi)

′ = (
∑n

i=1 αi ln gi)
′ =

(ln
∏n

i=1 g
αi
i )′ = a

∑n
i=1 αig

2
i , and replacing in the original expression of h0

the claim follows.

Proposition 4.3 For an Abel equation with d(x) = 0 and with n−1 not null
coplanar particular solutions y = gi(x) for i = 2, . . . , n and y = g1(x) = 0,
we have h0(x) = e−α1

∫
c(x)dx/

∏n
i=2 g

αi
i .
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Proof. In the same way as before we have (ln gi)
′ = ag2i + bgi + c, for i =

2, . . . , n, and therefore a
∑n

i=2 αig
2
i + b

∑n
i=2 αigi + c

∑n
i=2 αi = (ln

∏n
i=2 g

αi
i )′,

but for g1 = 0,
∑n

i=2 αigi = −α1g1 = 0, and
∑n

i=2 αi = −α1, from where
a
∑n

i=1 αig
2
i = a

∑n
i=2 αig

2
i = (ln

∏n
i=2 g

αi
i )′ + α1c, and replacing in the origi-

nal expression of h0 the proposition is proved.

Some seminal works had already been studied Abel integral equations
with a first integral of the form (4.4), without reaching the geometric inter-
pretation given in this chapter, see [35, 53]. In particular, the case d(x) = 0
studied in Proposition 4.2 and 4.3, which is equivalent the Abel equation of
second kind (4.2) with ã(x) = 0, is studied in [53].

4.5 Admissible invariant change of variables

for Abel equations

Two Abel equations are defined to be equivalent if one can be obtained from
the other through the transformation

{x = t(X), y(x) = R(X)Y + S(X)}, (4.6)

whereX and Y are respectively the new independent and dependent variables
and t, R and S are arbitrary meromorphic functions of X satisfying t′ 6= 0
and R 6= 0. These transformations form a non abelian group. We can break
down these transformation into two consecutive changes. The first one {x =
x, y(x) = r(x)Y+s(x)} which is a dilatation plus a translation and the second
one a scaling of the independent variable {x = t(X), Y = Y }. Integration
strategies were discussed in [93, 10, 32], around objects called invariant under
the transformation (4.6) which can be built with the coefficients {a, b, c, d}
of the Abel equation (4.1) and their derivatives. The transformation (4.6)
preserves the structure of the Abel equation (4.1) and also the coplanarity
condition (4.5) of any set of functions. Moreover, in the new variables the
coplanarity condition admits the same coefficients αi ∈ C − {0}. These
coefficients are unique except a not null multiplicative constant factor as the
following proposition shows.

Proposition 4.4 If n is the minimum number of coplanar particular solu-
tions of an Abel equation then αi ∈ C−{0} are unique except for a non–zero
constant multiplicative factor.
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Proof. Suppose that n is the minimum number of coplanar particular
solutions gi(x) and there exist αi ∈ C − {0} and βi ∈ C − {0}, such that∑n

i=1 αi = 0,
∑n

i=1 αigi = 0,
∑n

i=1 βi = 0, and
∑n

i=1 βigi = 0. From these
relations we have

∑n
i=2(αi/α1 − βi/β1) = 0 and

∑n
i=2(αi/α1 − βi/β1)gi = 0.

If there are no null coefficients inside {αi/α1−βi/β1}, we will have a smaller
subset of coplanar particular solutions in contradiction with the hypothesis.
Hence, we have that all the coefficients αi/α1 − βi/β1 must be null, i.e.,
βi = β1αi/α1 and the claim follows.

4.6 An illustrative example

Consider the Abel equation of second kind

dỹ

dx
=

3ỹ2 − 3ỹ − x
8xỹ − 9x

,

which possesses the first integral

h̃(x, ỹ) =
x3(4x2 + (8ỹ2 − 36ỹ + 27)x+ 4ỹ4 − 4ỹ3)

(x2 + 2x(ỹ2 − 3ỹ) + ỹ4)3
.

We can transform this Abel equation of second kind to the first kind
through the change y = 1/(8ỹ − 9) and we get

dy

dx
=

(
8− 27

8x

)
y3 − 15

4x
y2 − 3

8x
y, (4.7)

which correspond to a case with d(x) = 0 and the transformed first integral
is

h(x, y) =
x3y8((4096x2 − 3456x + 729)y4 + (972− 2304x)y3 + (128x + 270)y2 + 28y + 1)

((4096x2 − 17280x + 6561)y4 + (2916− 768x)y3 + (128x + 486)y2 + 36y + 1)3
.

This first integral is composed by 9 particular solutions, one solution is y =
g1(x) = 0, four particular solutions g2(x), g3(x), g4(x), g5(x) coming from the
algebraic curve in the numerator and four particular solutions g6(x), g7(x),
g8(x), g9(x) coming from the algebraic curve in the denominator. Moreover,
we have α1 = 8, α2 = α3 = α4 = α5 = 1, α6 = α7 = α8 = α9 = −3.
Obviously, the condition

∑n
i=1 αi = 0 is satisfied. Hence, the Abel equation
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(8.1) is a case with n = 9. It is straightforward to see that
∑n

i=1 αigi = 0,
because using the Cardano–Vieta formulae we obtain that

g2 + g3 + g4 + g5 =
2304x− 972

4096x2 − 3456x+ 729
,

g6 + g7 + g8 + g9 =
768x− 2916

4096x2 − 17280x+ 6561
,

and therefore we have that 8g1 + g2 + g3 + g4 + g5 − 3(g6 + g7 + g8 +
g9) = 0. The computation of h0(x), is through the expression h0(x) =
e−α1

∫
c(x)dx/

∏n
i=2 g

αi
i (x) because d(x) = 0 and g1(x) = 0 and we must apply

Proposition 4.3. Taking into account the Cardano–Vieta formulae, we know
that

g2 g3 g4 g5 =
1

4096x2 − 3456x+ 729
, g6 g7 g8 g9 =

1

4096x2 − 17280x+ 6561
.

Hence, the computations give

h0(x) =
e−α1

∫
c(x)dx∏n

i=2 g
αi
i (x)

=
x3(4096x2 − 3456x+ 729)

(4096x2 − 17280x+ 6561)3
,

which is the correct h0(x) because the polynomials of fourth degree in the
first integral are not monic. Although the Abel equation (4.7) is an example
of n = 9, it can serve as an example for n < 9 if such a set of particular
solutions exist. From this example it is natural to consider whether there
exist examples of other values of n and what is more important, how to find
necessary and sufficient conditions to establish that an Abel equation admits
a first integral of the form (4.4) for a given n.

4.7 Reduced, Bernoulli and Resolvent Abel

equations

4.7.1 Reduced Abel equation

The reduced Abel equation is obtained through the change of dependent
variable y = Y − b(x)/(3a(x)) which is an admissible transformation accord-
ing to Section 4.5 and preserves the coplanarity condition (4.5) of any set of
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particular solutions. The Abel equation (4.1) becomes

dY

dx
= a(x)(Y 3 + p(x)Y + q(x)), (4.8)

where p(x) = c(x)/a(x)− b2(x)/(3a2(x)), and

q(x) = 1
a3(x)

[
a2(x)d(x) + 1

3
(a(x)b ′(x)

−a′(x)b(x)− a(x)b(x)c(x)) + 2
27
b3(x)

]
.

4.7.2 Bernoulli Abel equation

The reduced Abel equation with q(x) = 0 is a Bernoulli equation, and there-
fore it is integrable. We call this type of equations as Bernoulli Abel equations.
This case has an algebraic first integral and consequently has coplanar par-
ticular solutions. We are going to see that the value of n is always 3. Notice
that Bernoulli Abel equations always have the particular solution Y = 0,
and if Y = G(x) is a particular solution then Y = −G(x) is also a particular
solution. Hence, we have a set of three coplanar particular solution choosing
G1 = 0, G2 = G(x), an arbitrary solution of the considered Bernoulli Abel
equation, and G3 = −G2, with α1 = −2 and α2 = α3 = 1, and from here we
can build the algebraic first integral (4.4). In the following we consider the
case q(x) 6≡ 0. We also remark that Bernoulli Abel equation is a particular
example of Lie system (see e.g. [25]) with associated Lie group isomorphic
to the affine group: the vector fields X1 = y∂/∂y, X2 = y3∂/∂y are such that
[X1,X2] = 2X2. Therefore solvable by quadratures.

4.7.3 Resolvent Abel equation

In the case q(x) 6≡ 0, we can construct the resolvent Abel equation. It is

obtained through the change of dependent variable Y = q
1
3 (x)Y which is

an admissible transformation according to Section 4.5 and also preserves the
coplanarity condition (4.5) of any set of particular solutions. The reduced
Abel equation (4.8) with q(x) 6≡ 0 becomes

dY
dx

= J(x)(Y3 −K(x)Y + 1), (4.9)

with J(x) = a(x)q
2
3 (x), and K(x) = q−

5
3 (x) [q′(x)/(3a(x))− p(x)q(x)]. No-

tice, that in the resolvent Abel equation we only have two functions of x,
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but they are, in general, irrational functions. In the following, we will
work when convenient with the reduced Abel equation or with the resol-
vent Abel equation. For the reduced Abel equation we will use the fol-
lowing notation pi(x) := pi−1

′(x)/a(x), where p0(x) := p(x) and qi(x) :=
qi−1

′(x)/a(x), where q0(x) := q(x). For the resolvent Abel equation we also
define L(x) = K ′(x)/J(x), M(x) = L′(x)/K ′(x) = L′(x)/(J(x)L(x)) and
N(x) = M ′(x)/J(x) when K ′(x) 6≡ 0. Moreover, if y = g(x) is a particu-
lar solution in the original Abel equation (4.1), we define by Y = G(x) the
corresponding particular solution in the reduced Abel equation (4.8) and by
Y = G(x) the particular solution in the resolvent Abel equation (4.9) and
similarly for other built elements from the mentioned particular solutions.
Finally, depending on the context, if we are working with the original Abel
equation (4.1) we will understand D := ∂/∂x + (ay3 + by2 + cy + d)∂/∂y,
if we are working with the reduced Abel equation (4.8) we will understand
D̂ := ∂/∂x+ a(Y 3 + pY + q)∂/∂Y and if we are working with the resolvent
Abel equation (4.9) we will understand D := ∂/∂x+ J(Y3 −KY + 1)∂/∂Y .

4.8 Abel equations with three collinear par-

ticular solutions

The next theorem characterizes when an Abel equation with q(x) 6= 0 (i.e.,
which is not a Bernoulli Abel equation) has three collinear particular solu-
tions and consequently has an algebraic first integral (4.4) with n = 3.

Theorem 4.5 An Abel equation with q(x) 6= 0 has three distinct collinear
particular solutions if and only if K(x) is a constant (K ′ = 0) and K3 6=
27/4. Moreover, on the context of the resolvent Abel equation, these three
solutions are constants Y = G1(x) = k1, Y = G2(x) = k2 and Y = G3(x) = k3,
where k1, k2 and k3, are the simple roots of the cubic algebraic equation
k3 −Kk + 1 = 0.

Proof. Sufficiency: If K ′ = 0 and K3 6= 27/4, the three roots k1, k2 and
k3 of the equation k3−Kk+ 1 = 0 are constants and simple. Hence, are also
particular solutions of the resolvent Abel equation. They are also collinear,
because taking α1 = k2 − k3, α2 = k3 − k1 and α3 = k1 − k2, then we have
α1 + α2 + α3 = 0 and α1k1 + α2k2 + α3k3 = 0.



68 Abel differential equations admitting a certain first integral

Necessity: We consider that we have three particular solutions Y = G1(x),
Y = G2(x) and Y = G3(x) of the resolvent Abel equation (4.9) and there
exist α1, α2, α3 ∈ C− {0}, such that

α1 + α2 + α3 = 0 and α1G1 + α2G2 + α3G3 = 0. (4.10)

The derivative of the last equality is α1G ′1 + α2G ′2 + α3G ′3 = 0. Taking into
account that G ′i = J(G3i −KGi + 1) and the conditions (4.10) we get α1G31 +
α2G32 + α3G33 = 0. Hence, we obtain the homogeneous system

α1 + α2 + α3 = 0,

α1G1 + α2G2 + α3G3 = 0,

α1G31 + α2G32 + α3G33 = 0.

To have a non trivial solution it must happen that∣∣∣∣∣∣
1 1 1
G1 G2 G3
G31 G32 G33

∣∣∣∣∣∣ = (G1 − G2)(G3 − G1)(G2 − G3)(G1 + G2 + G3) = 0,

which implies G1 + G2 + G3 = 0. The derivative of this last equality is
G ′1 + G ′2 + G ′3 = 0, and substituting each derivative G ′i = J(G3i −KGi + 1), we
get G31 +G32 +G33 + 3 = 0. Taking into account that G1 +G2 +G3 = 0 we have
G31 + G32 + G33 = 3G1G2G3, which implies G1G2G3 = −1. The derivative of this
last equality is G ′1G2G3+G1G ′2G3+G1G2G ′3 = 0, and substituting each derivative
G ′i, we obtain G31G2G3+G32G1G3+G33G1G2−3KG1G2G3+G1G2+G1G3+G2G3 = 0.
On the other hand G31G2G3 + G32G1G3 + G33G1G2 = −2G1G2G3(G1G2 + G1G3 +
G2G3), due to G1 + G2 + G3 = 0. Hence, we have −2G1G2G3(G1G2 + G1G3 +
G2G3) − 3KG1G2G3 + G1G2 + G2G3 + G2G3 = 0, and from G1G2G3 = −1, we
arrive to G1G2 + G1G3 + G2G3 = −K.

Hence, the three solutions G1,G2,G3 are simple roots (because are differ-
ent by hypothesis) of the cubic algebraic equation Y3−KY+1 = 0, but if we
recall that G ′i = J(G3i −KGi + 1), we get that G ′i = 0. Therefore, the three Gi
are not null constants due to G1G2G3 = −1. Moreover, since K = (G31 +1)/G1,
then K is also a constant. Moreover, the discriminant of the cubic algebraic
equation K3 − 27/4 6= 0, because G1,G2,G3 are the simple roots of it, which
completes the proof.
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The condition K ′(x) = 0 expressed in terms of the coefficients of the
reduced Abel equation is

9p1q
2 − 6pqq1 + 5q21 − 3qq2 = 0 (4.11)

This condition, if q 6≡ 0 allows us to determine if we have or not a case with
n = 3. Obviously, we must also compute K to verify if K3 6= 27/4. For n = 3

the collinear solutions of the reduced Abel equation are Gi(x) = ki q
1
3 (x) and

for the original Abel equation are given by gi(x) = ki q
1
3 (x) − b(x)/(3a(x)).

While G1 + G2 + G3 = k1 + k2 + k3 = 0 and G1 + G2 + G3 = 0, we will have
that g1 + g2 + g3 = −b(x)/a(x).

Notice, that the conditions q(x) ≡ 0 and K ′(x) = 0 already appear in
the classical book of Kamke [86] page 26 as integrability conditions for an
Abel equation. The first case, q(x) ≡ 0 corresponds to Φ(x) = q(x)a3(x) ≡ 0
and there exist a transformation into a Bernoulli equation. The second case
K ′(x) = 0 is K(x) = α, where α is an arbitrary constant, and in this case
there exist a transformation into a separated variables equation. Hence, we
have reobtained these cases, but in a new general framework where we have
reinterpreted these conditions in an algebro–geometric way which allow us to
generalize these conditions to obtain new cases of integrable Abel equations.

4.8.1 Algebraic first integral for the case n = 3

From what we have seen in Section 4.4 and in Section 4.8, for K ′ = 0 and
K 6= 27/4, the first integral of the resolvent Abel will be

H(x,Y) = (Y−k1)(k2−k3)(Y−k2)(k3−k1)(Y−k3)(k1−k2)e(k2−k3)(k3−k1)(k1−k2)
∫
J(x)dx,

where we have used that k21(k2 − k3) + k22(k3 − k1) + k23(k1 − k2) = −(k2 −
k3)(k3−k1)(k1−k2). Recall that k1, k2 and k3 are roots of the cubic algebraic
equation k3 −Kk + 1 = 0. The first integral for the reduced Abel equation
is given by

H(x, Y ) = (Y − k1q
1
3 (x))(k2−k3)(Y − k2q

1
3 (x))(k3−k1)(Y − k3q

1
3 (x))(k1−k2)

× e(k2−k3)(k3−k1)(k1−k2)
∫
a(x)q

2
3 (x)dx.
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4.8.2 First integral for the case K3 = 27/4

For K ′(x) = 0, the resolvent Abel equation is of separable variables, and
therefore integrable. But, if K3 = 27/4, there are not three collinear par-
ticular solutions. Let ω0 = 1, ω1 = −1

2
+ i

2

√
3, and ω−1 = −1

2
− i

2

√
3 be,

the three cubic roots of unity. The possible cubic algebraic equations in k
are k3 − 3

2
3
√

2ωjk + 1 = 0, for j = −1, 0, 1. For each one, the simple root

is ks = − 3
√

4ω−j and the double root is kd =
3√4
2
ω−j, being satisfied that

ks = −2kd. The first integral in this case is

H(x,Y) =
(Y − kd)e

3kd
Y−kd e9k

2
d

∫
J(x)dx

Y + 2kd
. (4.12)

It is important to note that, in this degenerate case a Darboux exponen-
tial factor appears due to the appearance of a multiple algebraic curve,
see definitions in [27, 28]. For K3 = 27/4, the resolvent Abel equation is
dY/dx = J(x)(Y − ks)(Y − kd)

2. We have three Darboux factors F1 =

Y − ks, F2 = Y − kd and F3 = e
− 1
Y−kd with cofactors K1 = J(x)(Y − kd)2,

K2 = J(x)(Y − ks)(Y − kd) and K3 = J(x)(Y − ks). Keeping in mind that
−K1 +K2 − 3kdK3 + 9k2dJ(x) = 0 this prove that (4.12) is a first integral in
this case. Consequently, the first integral for the reduced Abel equation is

H(x, Y ) =
(Y − kdq

1
3 (x))e

3kdq
1
3 (x)

Y−kdq
1
3 (x) e9k

2
d

∫
a(x)q

2
3 (x)dx

Y + 2kdq
1
3 (x)

.

4.9 Abel equations with four coplanar partic-

ular solutions

4.9.1 Characterization of the Abel equations with four
coplanar particular solutions

Let us assume that q(x) 6≡ 0. Given four particular solutions not necessary
different between them, Y = G1(x), Y = G2(x), Y = G3(x) and Y = G4(x),
we can consider the associated elementary symmetric polynomials given by
S1 = G1 + G2 + G3 + G4, S2 = G1G2 + G1G3 + G1G4 + G2G3 + G2G4 + G3G4,
S3 = G1G2G3 +G1G2G4 +G1G3G4 +G2G3G4 and S4 = G1G2G3G4. Next theorem,
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the most important result of this chapter, gives the characterization of the
Abel equations with four different coplanar particular solutions.

Theorem 4.6 An Abel equation with q(x) 6≡ 0 and K ′(x) 6≡ 0, has four
different coplanar particular solutions Y = G1(x), Y = G2(x), Y = G3(x)
and Y = G4(x), if and only if, there exist one root of the quintic algebraic
equation

315Y5− 35(10K+M)Y3 + 63Y2 + 5(15K2− 7L+ 5KM)Y + 7M − 11K = 0,
(4.13)

which is a particular solution of the resolvent Abel equation, and all the roots
of the quartic algebraic equation Y4 − S1Y3 + S2Y2 − S3Y + S4 = 0 are
simple, where S1 = G1 + G2 + G3 + G4 is the particular solution of (4.13)
and S4 = 3L/(35S3

1 − 25KS1 − 7) − S1, S2 = (5S1(S1 + S4))/3 − K and
S3 = S1S2 − 1. The four different roots of the quartic algebraic equation are
the coplanar particular solutions, and therefore, the quartic algebraic equation
is an algebraic invariant curve of the resolvent Abel equation even if the four
roots are not different.

The condition that all the roots of the quartic algebraic equation are
simple is given by the discriminant ∆ = S2

1S2
2S2

3−4S3
2S2

3−4S3
1S3

3+18S1S2S3
3−

27S4
3−4S2

1S3
2S4+6S4

2S4+18S3
1S2S3S4−80S1S2

2S3S4−6S2
1S2

3S4+144S2S2
3S4−

27S4
1S2

4 + 144S2
1S2S2

4 − 128S2
2S2

4 − 192S1S3S2
4 + 256S3

4 6= 0. To verify if one
root of (4.13) is a particular solution of the resolvent Abel equation (4.9) can
be done by computing the algebraic resultant

res(V ,DV ,Y), (4.14)

where V = 315Y5 − 35(10K + M)Y3 + 63Y2 + 5(15K2 − 7L + 5KM)Y +
7M − 11K. We recall that the resultant of two polynomials P and Q over a
field k is defined as the product

res(P,Q, y) = cdegQ1 cdegP2

∏
(y1,y2):P (y1)=0, Q(y2)=0

(y1 − y2),

of the differences of their y-roots, where y1 and y2 take on values in the
algebraic closure of k and c1 and c2 are the leading coefficients of P and Q,
respectively. In fact the resultant is the determinant of the Sylvester matrix,
see for instance [125]. If resultant (4.14) is null we have found four distinct
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coplanar solutions. Subsequently, we must determine what root of (4.13) is
also solution of (4.9) and then to construct the quartic algebraic equation
to see if all its roots are simple. If all its roots are not simple, i.e., multiple
roots appear, then at most three roots will be solutions of (4.9). In this
degenerate case, we do not have a similar situation to the one described in
Section 4.8.2. A multiple root does not imply, in general, the existence of
a multiple Darboux factor of the form F = Y − G(x), when Y = G(x) is a
solution of (4.9). If there is only one root of (4.13) which is solution of (4.9)
then the four simple roots of the quartic algebraic equation are the unique
coplanar particular solutions.

Proof. Necessity: Consider that the resolvent Abel equation (4.9) has
four different particular solutions Y = G1(x), Y = G2(x), Y = G3(x) and
Y = G4(x), and there exist α1, α2, α3, α4 ∈ C− {0}, such that

α1 + α2 + α3 + α4 = 0, and α1G1 + α2G2 + α3G3 + α4G4 = 0.

Following the same reasonings as in the case n = 3 we have

α1 + α2 + α3 + α4 = 0,

α1G1 + α2G2 + α3G3 + α4G4 = 0,

α1G31 + α2G32 + α3G33 + α4G34 = 0,

α1(G51 + G21) + α2(G52 + G22) + α3(G53 + G23) + α4(G54 + G24) = 0.

To have a non trivial solution it must happen that∣∣∣∣∣∣∣∣
1 1 1 1
G1 G2 G3 G4
G31 G32 G33 G34

G51 + G21 G52 + G22 G53 + G23 G54 + G24

∣∣∣∣∣∣∣∣ = 0.

which implies, eliminating the 6 factors of the form Gi−Gj, that −1+G21G2 +
G1G22 + G21G3 + 2G1G2G3 + G22G3 + G1G23 + G2G23 + G21G4 + 2G1G2G4 + G22G4 +
2G1G3G4+2G2G3G4+G23G4+G1G24+G2G24+G3G24 = 0. In terms of the elementary
symmetric polynomials defined previously, we get S1S2 − S3 − 1 = 0. The
derivative of this expression is S ′1S2 + S1S ′2 − S ′3 = 0. If we compute S ′1, S ′2,
S ′3 i S ′4 we obtain

S ′1 = J(S3
1 − 3S1S2 + 3S3 −KS1 + 4),

S ′2 = J(S2
1S2 − 2S2

2 − S1S3 + 4S4 − 2KS2 + 3S1),
S ′3 = J(S2

1S3 − 2S2S3 − S1S4 − 3KS3 + 2S2),
S ′4 = J(S2

1S4 − 2S2S4 − 4KS4 + S3).

(4.15)
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Using that S3 = S1S2 − 1 the first two equations of (4.15) are

S ′1 = J(S3
1 −KS1 + 1),

S ′2 = J(4S4 − 2S2
2 − 2KS2 + 4S1).

(4.16)

Notice that the sum of the four coplanar solutions S1 = G1 + G2 + G3 + G4
of the resolvent Abel equation is also a particular solution. This condition
is also true in the context of the reduced Abel equation, i.e., Y = S1 =
G1 + G2 + G3 + G4 is also a particular solution of (4.8), and in the original
Abel equation the condition has the form y = g1+g2+g3+g4+b/a = s1+b/a,
which is also particular solution of (4.1). Another way to obtain (4.15) is
to think that if Y = Gi(x), are particular solutions of (4.9) then the quartic
algebraic equation U = Y4 − S1Y3 + S2Y2 − S3Y + S4 = 0 is an invariant
algebraic curve of (4.9). Consequently, the Euclidean division of DU and
U must have a null polynomial remainder. This polynomial remainder is a
polynomial whose coefficients are exactly the equations described in (4.15).

Substituting the derivatives S ′1, S ′2, S ′3 and S ′4 in S ′1S2 + S1S ′2 − S ′3 = 0,
eliminating the factor J which is not null because q(x) 6≡ 0, and using
S3 = S1S2 − 1, we get 5S2

1 − 3S2 + 5S1S4 − 3K = 0. The derivative of
this last expression is 10S1S ′1 − 3S ′2 + 5S ′1S4 + 5S1S ′4 − 3K ′ = 0, dividing
by J , using the computed derivatives, the conditions S3 = S1S2 − 1 and
S2 = (5S1(S1 +S4))/3−K, we get (−7− 25KS1 + 35S3

1 )(S1 +S4)− 3L = 0.
Taking into account that K ′ 6≡ 0, which implies L 6≡ 0, we conclude that the
factor −7− 25KS1 + 35S3

1 6≡ 0 and we can isolate S4, which takes the form
S4 = 3L/(−7− 25KS1 + 35S3

1 )− S1.

Derivating (−7−25KS1+35S3
1 )(S1+S4)−3L = 0, we obtain (−25K ′S1−

25KS ′1+105S2
1S ′1)(S1+S4)+(−7−25KS1+35S3

1 )(S ′1+S ′4)−3L′ = 0, and do-
ing the opportune substitutions we arrive to 315JLS5

1−35(10JKL+L′)S3
1 +

63JLS2
1 + 5(15JK2L− 5K ′L− 2JL2 + 5KL′)S1 + 7L′ − 11JKL = 0 which

dividing by J L is V = 0 or condition (4.13). This proves that S1 is a root of
this quintic algebraic equation (4.13). Moreover, due to the construction of
the quartic algebraic equation with four different solutions, obviously it can-
not have multiple roots. This condition (4.13), in general cannot be solvable
by radicals, unless the Galois group is solvable. Hence, we have transformed
the differential problem of finding solutions for an Abel differential equation
into an algebraic problem.
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Sufficiency: Consider now that when we solve equation (4.13), we obtain a
root which is also a particular solution of (4.9), we construct the quartic
algebraic equation U = Y4 − S1Y3 + S2Y2 − S3Y + S4 = 0, where S1 is the
root of (4.13), and where Si are the ones enunciated in the theorem. First, we
want to prove that this quartic algebraic equation is an invariant algebraic
curve. Hence, we compute DU , using that K ′ = JL and L′ = JLM , and
also that S ′1 = J(S3

1 −KS1 + 1). If we compute the polynomial remainder of
the Euclidean division between DU and U with respect to Y we will obtain

JL(−5S1Y2 + 5S21Y − 3)(315S51 − 35(10K +M)S31 + 63S21 + 5(15K2 − 7L+ 5KM)S1 + 7M − 11K)

(−7− 25KS1 + 35S31 )2
,

which is obviously null because S1 is a root of (4.13). Therefore the quartic
algebraic equation has four roots Y = G1(x), Y = G2(x), Y = G3(x) and
Y = G4(x) which are also solutions of the resolvent Abel equation (4.9). By
construction the elementary symmetric polynomials associated to the four
roots are S1,S2,S3 and S4 the coefficients of the quartic equation. If these
four roots are coplanar, there should exist αi ∈ C− {0} such that

α1 + α2 + α3 + α4 = 0,
α1G1 + α2G2 + α3G3 + α4G4 = 0,
α1G31 + α2G32 + α3G33 + α4G34 = 0,

α1(G51 + G21) + α2(G52 + G22) + α3(G53 + G23) + α4(G54 + G24) = 0.

(4.17)

Moreover, if this system has a non trivial solution then S1S2 − S3 − 1 = 0
which is verified by hypothesis. Notice also that the minor of the form∣∣∣∣∣∣

1 1 1
G1 G2 G3
G31 G32 G33

∣∣∣∣∣∣ ,
is not null, because in the opposite case we will have G1 +G2 +G3 = 0 and we
will remain into a case with n = 3 which implies K ′(x) ≡ 0 in contradiction
with the hypothesis. Taking into account that the determinant of the homo-
geneous system (4.17) is null, we can consider the last equation is a linear
combination of the rest. Hence, we must find a vector (α1, α2, α3, α4) or-
thogonal to the vectors (1, 1, 1, 1), (G1,G1,G3,G4), (G31 ,G31 ,G33 ,G34). This vec-
tor must be of the form (α1, α2, α3, α4) = λ(x)(A1(x), A2(x), A3(x), A4(x)),
where A1(x), A2(x), A3(x), A4(x) are these not null determinants

A1 =

∣∣∣∣∣∣
1 1 1
G2 G3 G4
G32 G33 G34

∣∣∣∣∣∣ , A2 = −

∣∣∣∣∣∣
1 1 1
G1 G3 G4
G31 G33 G34

∣∣∣∣∣∣ ,
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A3 =

∣∣∣∣∣∣
1 1 1
G1 G2 G4
G31 G32 G34

∣∣∣∣∣∣ , A4 = −

∣∣∣∣∣∣
1 1 1
G2 G2 G3
G31 G32 G33

∣∣∣∣∣∣ .
Since A1+A2+A3+A4 = 0 and A1G1+A2G2+A3G3+A4G4 = 0, to guarantee
the coplanarity of the roots we only need to prove that λ is not null and that
αi are constants. Taking into account that

d

dx
(Gi − Gj) = J(G2i + GiGj + G2j −K)(Gi − Gj),

we have that

dAi
dx

= J(3(S2
1 − S2)− 4K)Ai, for i = 1, 2, 3, 4.

Since αi = λAi, if we want to prove that dαi/dx = 0, it should happen that
λ′Ai + λA′i = 0, but this fact is guaranteed taking

λ = λ0e
−
∫
J(3(S21−S2)−4K)dx,

where λ0 ∈ C − {0} is an arbitrary constant, which completes the proof of
the sufficiency of the theorem.

In this case it is possible that more than one root of (4.13) is a particular
solution of (4.9), and also to have more than one quartic algebraic equation
which is an invariant algebraic curve of (4.9). We recall that to see if a
root of (4.13) is a particular solution of (4.9) it is necessary and sufficient
that the algebraic resultant (4.14) to be null. If we define W = J−1DV =
1575Y7− 105(25K +M)Y5 + 1701Y4 + 5(225K2− 77L+ 26KM − 7N)Y3−
21(56K + 5M)Y2 + (126− 75K3 + 185KL− 25K2M − 10LM + 25KN)Y +
75K2−46L+25KM+7N . If the algebraic resultant (4.14) is null this implies
that the polynomials V and W with respect to Y have common factors. The
first one is of fifth degree and the second of seventh degree. If we apply the
Euclidean division algorithm we obtain a remainder of degree at most 4. In
particular, the remainder is of degree 4 and the coefficient of Y4 is 12474.
Hence, this remainder never vanishes and consequently the common divisor is
never (4.13). Therefore, (4.13) is never an invariant algebraic curve of (4.9),
which implies that 5 roots cannot be particular solutions of the resolvent
Abel equation (4.9).
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If we continue applying the Euclidean division the next remainder is of
third degree. It is straightforward to see, using algebraic resultants between
the coefficients, that the vanishing of this remainder implies K ′ = 0 in con-
tradiction with the hypothesis of Theorem 4.6 (in fact, we would be in a
case with n = 3). Hence, the previous remainder of fourth degree cannot
be the common divisor and the common divisor will be this last remainder
of degree 3 or the following remainders of lower degree. The conclusion is
that condition (4.13) can have at most three roots which are also particular
solutions of (4.9). It is necessary to point out that S1 will be also a root of
the mentioned remainder of degree at most 3 whose coefficients are algebraic
expressions in K, L, M and N . Hence, S1 will be, in general, also algebraic
in K, L, M and N . Following the classical Galois theory, we can think with
the extension Q[K,L,M ], which is the field of the coefficients of (4.13), where
Q is the field of rational numbers, and Q[K,L,M ] is the field obtained from
Q by adjoining K, L and M . Moreover, the extension of the previous field
Q[K,L,M,N ] contains the roots of (4.13) which are also solutions of (4.9)
if the common divisor is of first degree. If the common divisor is of degree 2
or 3 we should use an algebraic extension of Q[K,L,M,N ].

Condition (4.13) expressed in terms of the coefficients of the reduced Abel

equation (4.8), doing the change Y = Y q−
1
3 (x), is

V = (2835p1q
2 − 1890pqq1 + 1575q21 − 945qq2)Y

5 + (3150pp1q
2 − 315p2q

2

−2100p2qq1 − 420p1qq1 + 1960pq21 − 840pqq2 − 245q1q2 + 105qq3)Y
3

+(567p1q
3 − 378pq2q1 + 315qq21 − 189q2q2)Y

2 + (675p2p1q
2 + 315p21q

2

−225pp2q
2 − 450p3qq1 − 420pp1qq1 + 75p2qq1 + 465p2q21 + 275p1q

2
1

−75p2qq2 − 210p1qq2 − 185pq1q2 + 35q22 + 75pqq3 − 25q1q3)Y + 99pp1q
3

+63p2q
3 − 66p2q2q1 − 159p1q

2q1 + 175pqq21 − 135q31 − 75pq2q2
+130qq1q2 − 21q2q3 = 0

(4.18)
In the same way that for the resolvent Abel equation (4.9), computing the
resultant with respect to Y between this quintic polynomial V and its deriva-
tive D̂V , we can check if there is a root of (4.18) which is also a particular
solution of (4.8). If this root r0 exists we can construct the quartic equation
Y 4 − S1Y

3 + S2Y
2 − S3Y + S4 = 0, where S1 = r0 and

S4 =
105q2S4

1+25(3pq2−qq1)S2
1−21q3S1+9p1q2−6pqq1+5q21−3qq2

−105qS3
1+25(q1−3pq)S1+21q2

,

S2 =
5S1S4+5qS2

1+3pq−q1
3q

,

S3 = S1S2 − q,
(4.19)
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where the denominators are different of zero because we are in the case
q 6= 0 and K ′ 6= 0. We recall that Si = q

i
3 (x)Si. Once the quartic algebraic

equation is built, if it has not multiple roots, we know that its simple roots are
coplanar. Let G1, G2, G3 and G4 be these roots, the coplanarity coefficients
are

αi = (−1)iq−
4
3

( ∏
1≤j<k≤4, j,k 6=i

(Gj −Gk)

)
(S1 −Gi)e

−
∫
a(3(S2

1−S2)+4p− 4q′
3aq

)dx,

(4.20)
for i = 1, 2, 3, 4. These 4 coefficients αi and the 4 particular solutions Gi(x)
allow us to construct the first integral (4.4) taking into account what we have
seen in Subsection 4.4. Another way to compute the αi from the knowledge
of the Gi(x) is by using the homogeneous linear system with respect to the
αi

α1 + α2 + α3 + α4 = 0,
G1α1 +G2α2 +G3α3 +G4α4 = 0,
G3

1α1 +G3
2α2 +G3

3α3 +G3
4α4 = 0,

(4.21)

where the Gi(x) can be evaluated in an arbitrary value of x for which they
are simultaneously defined. When particularizing the value of x we must
look for a value such that the rank of the homogeneous linear system (4.21)
is 3, because in an opposite case we would be in the case K ′ = 0.

Finally, if we know a quartic invariant algebraic curve of a reduced Abel
equation, we can consider the coefficient of the cubic term divided by the
coefficient of the quartic term and changed of sign. If this function (located,
in principle, in the resolvent or in the reduced Abel equation or adapted as it
has already been seen if we are in the original Abel equation) is a particular
solution of the Abel equation and is a root of the quintic algebraic condition
((4.13) if we are working in the resolvent Abel equation or (4.18) if we are
working in the reduced Abel equation) and the quartic algebraic curve has
not multiple roots, then we are in the case described by Theorem 4.6. In this
case we can construct the coplanar coefficients and the first integral.

For the illustrative example given the Subsection 4.6, none of the two
algebraic invariant curves satisfies these conditions and consequently this
example does not fall in this case.
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4.10 Abel equations with more than four copla-

nar particular solutions

It seems natural the extension of the method of the previous section to Abel
equations with more than four coplanar particular solutions, i.e. for n > 4.
First, we must construct the system linear in the coplanarity coefficients
(like system (4.17) for n = 4) that allows us to find the first integral by
successive derivation. Later, we must demand that this system has null
determinant. This condition is symmetric with respect to the candidates
coplanar particular solutions and therefore expressible in terms of elementary
symmetric polynomials of these coplanar particular solutions.

Derivating this condition, taking into account the derivatives of the el-
ementary symmetric polynomials, we arrive to n equations in function of
the elementary symmetric polynomials. Eliminating each symmetric poly-
nomial until arriving to a unique condition (as condition (4.13) for n = 4)
with a supplementary condition (in the case n = 3 that the first elementary
symmetric polynomial (S1) is null or in the case n = 4 that the first elemen-
tary symmetric polynomial (S1) is a particular solution of the resolvent Abel
equation). These two conditions allows us to establish when we have n dif-
ferent coplanar particular solutions. We recall here the illustrative example
given in Subsection 4.6 which is a case with n = 9. They will also appear
degenerate cases that correspond to the case that the equation of degree n

Yn +
n∑
i=1

(−1)i Si Yn−i = 0, (4.22)

constructed from the elementary symmetric polynomials, which is an invari-
ant algebraic curve of the resolvent Abel equation, has multiple roots (as the
cubic equation for n = 3 and the quartic equation for n = 4). Obviously,
this technique to approach this differential problem has a great analogy with
the algebraic problems solved with the classical Galois theory. Hence, the
method developed in this work constitute a new approach different from the
non linear Galois differential theory recently developed by Malgrange, see
[96, 97].
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4.11 The Chini Equation

In [36], Chini studied the equations of the form

dY

dx
= a(x)(Y m + p(x)Y + q(x)). (4.23)

For m = 3 we have the reduced Abel equation. Doing the change Y = q1/mY ,
we have dY/dx = J(Ym −KY + 1). If Y = G(x) is a particular solution of
equation (4.23) then Dm(Y − G) = (a(x)(

∑m−1
i=0 Y m−1−iGi + p(x))(Y − G),

where Dm := ∂/∂x + a(x)(Y m + p(x)Y + q(x)). Imposing to have a first
integral of the form (4.4), we obtain m− 1 conditions

n∑
i=1

αi = 0,
n∑
i=1

αigi = 0,
n∑
i=1

αig
2
i = 0, . . . ,

n∑
i=1

αig
m−2
i = 0. (4.24)

For K ′ = 0 (except for some values of K which correspond to res(Ym−KY+
1,mYm−1 − K,Y) = 0), we have that the equation Ym − KY + 1 = 0 has
m constant roots, and therefore we will have m different particular solutions
which satisfy (4.24). This implies that the minimum number of coplanar
solutions must be m and perhaps it is also the maximum. For instance,
for m = 4, it is easy to see that it is not possible to have n = 5 solutions
satisfying (4.24) without implying that they contain a subset of four solutions
n = 4 satisfying (4.24). Therefore, a straightforward generalization of our
method for Abel equations can be done for the Chini equations.

4.12 Concluding remarks

We have reinterpreted the known cases of solvable Abel equations which ap-
peared in Kamke’s book and other works (see [32, 75, 86]) reducing all the
cases to a unique case from a geometric point of view. Using this new ap-
proach we obtain new cases of solvable Abel equations.

This unique case correspond for n = 3 to have three collinear solutions
in the affine space of solutions of the Abel equation which is characterized
in Theorem 4.5. We have also solved the degenerate case when two of these
three solutions coincide, see Subsection 4.8.2. We have characterize the case
n = 4 i.e., the case when we have four coplanar solutions in the affine space
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of solutions of the Abel equation, see Theorem 4.6. The degenerate case for
n = 4, which is the case when the quartic algebraic equation (4.22) has not
all its roots simple, is still open and may be an achievable objective for a
future investigation. Obviously, we can also consider the case when we have
more than four coplanar solutions, i.e. the case n > 4, which remains open
its full characterization. In characterizing the cases with n > 4 can receive
the same limitations as in the classical Galois theory. A possible continuation
of this line of research is to find similar characterizations for higher-degree
equations such as the Chini’s equations.

4.13 Examples

It is straightforward to construct examples in the context of Theorem 4.6
because given four different arbitrary functions y = g1(x), y = g2(x), y =
g3(x) and y = g4(x), with the unique condition of being coplanar, we can
solve the following linear system with respect to functions a(x), b(x), c(x)
and d(x)

g31a+ g21b+ g1c+ d = g′1,

g32a+ g22b+ g2c+ d = g′2,

g33a+ g23b+ g3c+ d = g′3,

g34a+ g24b+ g4c+ d = g′4.

which has a unique solution. The associated Abel equation will be an exam-
ple of Theorem 4.6 except if q = 0 or K ′ = 0 and it can also happen that the
associated quartic has not simple roots. The examples are described working
with the reduced Abel equation to avoid fractional exponents.

Example 1. Consider the Abel equation

dy

dx
= a(x)y3 + b(x)y2, (4.25)

with (a/b)′ = γb, and γ ∈ C − {0}, equivalent to have b(x) = B′(x) and
a(x) = γB(x)B′(x) with B(x) an non constant arbitrary function. This Abel
equation is studied in [86], page 26, as sub-method (f). Through the change
of dependent variable y = Y − b(x)/(3a(x)) = Y − 1/(3γB(x)), we obtain
the reduced Abel equation (4.8) with p(x) = −1/(3γ2B(x)2) and q(x) =
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(2− 9γ)/(27γ3B(x)3). For γ = 2/9 is a Bernoulli equation, hence from now

on we consider γ 6= 2/9. If we compute K we get K = (3(1− 3γ))/(9γ− 2)
2
3

which is a constant (K ′ = 0) and we are in the conditions of Theorem 4.5 if
K3 6= 27/4. For simplicity we consider the case γ = 1/3 and B(x) = x which
has K = 0 and q = −1/x3. The resolution of the cubic algebraic equation
gives k1 = −ω0 = −1, k2 = −ω1 and k3 = −ω−1, where ωj are the cubic
roots the unity, see Section 4.8.2. From Section 4.8.1, a first integral for the
reduced Abel equation is

H(x, Y ) =
x2(Y − ω1

x
)(Y − ω−1

x
)

(Y − 1
x
)2

(
Y − ω−1

x

Y − ω1

x

)√3i

=
x2(Y 2 + 1

x
Y + 1

x2
)

(Y − 1
x
)2

(
Y + 1

2x
+
√
3i

2x

Y + 1
2x
−
√
3i

2x

)√3i
.

Going back to the original Abel equation through the inverse change Y =
y + 1/x, the first integral of the Abel equation (4.25) with γ = 1/3 and
B(x) = x is

h(x, y) = x2y2+3xy+3
y2

(
2xy+3+

√
3i

2xy+3−
√
3i

)√3i
= x2y2+3xy+3

y2
e
−2
√
3 arctan

( √
3

2xy+3

)
.

The case K3 = 27/4, which implies in this case γ = 1/4, is a degenerate case
studied in Section 4.8.2.

In [57], the Abel equation (4.25) where a(x) and b(x) are polynomials in x
is considered. For two given points a and b in C, the “Poincaré mapping” of
the above equation transforms the values of its solutions at a into their val-
ues at b. In [57], the global analytic properties of the Poincaré mapping are
studied, in particular, its analytic continuation, its singularities and its fixed
points (which correspond to the periodic solutions such that y(a) = y(b)).
In Section 5 and 6 of [57] the equation dy/dx = γxy3 + y2 is studied as a
local model of the previous Abel equation near a simple fixed singularity, and
for the discriminant value γ = 1/4 it is proved the existence of an infinite
number of periodic solutions. This particular case is easier investigate than
that of generic γ.

Example 2. We construct an example using the introduction of this section.
We can take g1(x) = x − 2, g2(x) = x, g3(x) = 1 and g4(x) = 0, which are
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coplanar particular solutions taking α1 = 1, α2 = −1 α3 = 2 and α4 = −2.
The Abel equation turns out to be

dy

dx
=

(−2x+ 3)y3 + (3x2 − 6x+ 3)y2 + (−3x2 + 8x− 6)y

x(x− 1)(x− 2)(x− 3)
, (4.26)

and taking into account what we have seen in Subsection 4.4 and 4.4.1, a
first integral for the Abel equation (4.26) is

h(x, y) =
x3(x− 2)(y − 1)2(y − x+ 2)

(x− 3)3(x− 1)y2(y − x)
.

Now we are going to check how our method works for the Abel equation
(4.26). Computing p(x), q(x) following Subsection 4.7.1 and also pi(x) for
i = 1, 2 and qi(x) for i = 1, 2, 3, and substituting in (4.18), eliminating a
common factor in x, we get the quintic equation V = 0 with V = ((2x −
3)Y + 1)((2x− 3)Y + x2 − 4x+ 4)((2x− 3)Y + x2 − 2x+ 1)((4x4 − 24x3 +
57x2−63x+27)Y 2 +(−4x5 +30x4−96x3 +162x2−144x+54)Y +x6−9x5 +
35x4−75x3 +95x2−69x+23). The resultant with respect to Y between this
quintic polynomial V and its derivative D̂V is null which implies that there is
a root of (4.18) which is also a particular solution of (4.26). The polynomial
remainder of the Euclidean division between D̂V and V with respect to Y
is the product of the first linear factors of V . In this case we have that the
maximum common divisor is the highest possible. Hence, we have 3 roots
of the quintic polynomial which are also particular solution of (4.26). These
roots are r0 = Y = −1/(2x − 3), r1 = Y = −(x2 − 4x + 4)/(2x − 3) and
r2 = Y = −(x2 − 2x + 1)/(2x − 3). For each particular solution we can
construct the quartic invariant algebraic Y 4− S1Y

3 + S2Y
2− S3Y + S4 = 0,

where S1 is the root and S2, S3 and S4 are given in (4.19). Taking the first
root S1 = r0, the roots of this quartic polynomial are G1(x) = (x2 − 5x +
5)/(2x− 3), G2(x) = (x2−x− 1)/(2x− 3), G3(x) = −(x2− 4x+ 4)/(2x− 3)
and G4(x) = −(x2 − 2x + 1)/(2x − 3). Through the inverse change Y =
y − (x2 − 2x + 1)/(2x + 3) (to pass from the reduced Abel equation to the
original Abel equation (4.26)) we obtain the four coplanar particular solutions
g1(x) = x − 2, g2(x) = x, g3(x) = 1 and g4(x) = 0. Moreover, r1 = G3 and
r2 = G4. Using r1 or r2 to construct the quartic invariant algebraic curve we
arrive to similar results. To determine the coplanar coefficients we can use
(4.20) or the homogeneous linear system (4.21) evaluating the Gi(x) in an
arbitrary value of x for which they are defined simultaneously. In this case
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we get G1 −G2 + 2G3 − 2G4 = 0 and using the Subsection 4.4 and 4.4.1, we
obtain the first integral of the Abel equation (4.26).
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Chapter 5

Essential variables in the
integrability problem of planar
vector fields

5.1 Introduction

Differential equations appear naturally in the description of many phenomena
of nature. Once the local equations are formulated in a particular context,
the next problem is to solve these equations. The first attempt to solve
differential equations either explicitly or by series expansions goes back to
Euler, Newton and Leibniz and the subsequent works of Lagrange, Poisson,
Hamilton and Liouville. The notion of integrability was introduced to de-
scribe the property of equations for which all local and global information
can be obtained either from the solutions or implicitly from the constants of
motion. The local analysis of the differential equations, close to its complex
time singularities by Kovlevskaya and Painlevé and its phase space singulari-
ties by Poincaré allows us to find global properties of the differential systems
and the research has shifted its interest away from the theory of integrability.
In fact, the innovative idea of Painlevé was to generalize the notion of small
parameters in perturbation theory by introducing an artificial parameter α in
the equation in such away that, if the equation is single-valued for all α 6= 0,
then it is also single-valued for α = 0 (the Painlevé α-method). The main
difficulty is to choose a good parameter α such that the equation for α = 0
can be immediately integrated (find its solution). This can be achieved, for
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instance, by using a scaling symmetry. The exact solution of the equation for
α = 0 provides a starting point in a perturbative expansion of the solution
in powers of α. This idea is applied in this chapter but in a different context
to find the perturbative expansion or the singular series expansion of the
first integral (not necessarily perturbative) of a planar differential system. In
[83] it was studied the connection between the existence of first integrals (in-
variants) and the Painlevé property in two-dimensional Lotka-Volterra and
quadratic systems. The conclusion was that the Painlevé property is a too
strong condition for the existence of the first integrals (invariants).

The success of dynamical systems theory was so overwhelming that ex-
acts methods of integration were considered for years useless and non-generic.
However last years, solitons, pattern formation and ordered structures are
the key features of systems with infinite degrees of freedom and have show
how crucial is the understanding of the phenomena of integrability and non-
integrability in dynamical systems. For dynamical systems a universal defi-
nition of integrability seems elusive. Integrability in dynamical systems has
different meanings for different contexts, see [79]. In this chapter we focus
our attention in the the integrability problem of planar nonlinear differential
equations and in this context the notion of integrability is based on knowl-
edge of a first integral which can be represented by the combination of known
functions or by its series expansion.

In [27] it was proved that every local flow on a two-dimensional manifold
M has continuous first integral on every canonical region. Moreover in [90]
it was improved this result establishing that every Cr local flow on a two-
dimensional manifold M has a Cr (respectively C∞, Cw) first integral for
r ∈ N (respectively r = ∞, ω) on every canonical region. Hence, around
every regular point of a planar analytic differential system there exists an
analytic first integral. This is not in general true for a singular point and the
objective of present chapter is to investigate when this happens or to obtain
information about the singular series expansion of the first integral.

5.2 The method

We consider two–dimensional autonomous systems of real differential equa-
tions of the form

ẋ = P (x, y), ẏ = Q(x, y), (5.1)
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where P (x, y) and Q(x, y) are analytic functions defined in a neighborhood of
the origin such that P (0, 0) = Q(0, 0) = 0 and there is no d(x, y), non–unit
element of the ring of analytic functions defined in a neighborhood of the
origin, which divides both P (x, y) and Q(x, y).

Definition 5.1 A point (x0, y0) ∈ R2 is a singular point for system (5.1) if
both P (x0, y0) = 0 and Q(x0, y0) = 0.

Without loss of generality, by translating to the origin any singular point,
we may assume (x0, y0) = (0, 0). It is clear that the origin is a singular point
for (5.1) and since P (x, y) and Q(x, y) are coprime elements of the ring of
analytic functions defined on a neighborhood of the origin, the set of singular
points for (5.1) is a discrete set in the domain of (5.1). Thus, we may always
assume that the neighborhood of the origin considered contains no singular
points except for the origin.

To implement the method we introduce a scaling of the variables and the
time given by (x, y, t) → (εpx, εqy, εrt) where ε > 0 and p, q and r ∈ Z and
system (5.1) takes the form

ẋ = εr−pP (εpx, εqy), ẏ = εr−qQ(εpx, εqy), (5.2)

We choose p, q, r in such away that system (5.2) will be analytic in ε. Hence,
by the classical theorem of the analytic dependence with respect to the pa-
rameters we have that system (5.2) admits a first integral which can be
developed in power series of ε because it is analytic with respect to this
parameter. Hence we can propose the following development for the first
integral

H(x, y) =
∞∑
k=0

εkhk(x, y), (5.3)

where hk(x, y) are arbitrary functions. We notice that P (x, y) and Q(x, y)
are analytic functions, none of them can be null and P (0, 0) = Q(0, 0) = 0,
so we can develop them, in a neighborhood of the origin, as convergent series
of x and y of the form

P (x, y) = pn(x, y) + pn+1(x, y) + . . .+ pj(x, y) + . . . ,
Q(x, y) = qn(x, y) + qn+1(x, y) + . . .+ qj(x, y) + . . . ,

(5.4)

with n = min{subdeg|(0,0)P (x, y), subdeg|(0,0)Q(x, y)} ≥ 1. We recall that
given an analytic function f(x, y) defined in a neighborhood of a point
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(x0, y0), we define subdeg|(x0,y0)f(x, y) as the least positive integer j such
that some derivative (∂jf/∂xi∂yj−i)(x0, y0) is not zero. We notice that this
computation depends on the variables (x, y) which the function f(x, y) de-
pends on, so we will explicit the variables used in each computation of subdeg.
For instance, subdeg|(x0,y0)f(x, y) = 0, if and only if, f(x0, y0) 6= 0. In (5.4),
pj(x, y) and qj(x, y) denote homogeneous polynomials of x and y of degree
j ≥ n. It is possible that pn(x, y) or qn(x, y) is null but, by definition, not
both of them can be null.

As the simplest case we consider the case with p = q = 1. To develop the
method we introduce the rescaling of the variables (x, y, t)→ (εx, εy, ε1−nt)
and system (5.4) takes the form

ẋ = P (x, y) = pn(x, y) + εpn+1(x, y) + · · ·+ εj−npj(x, y) + · · · ,
ẏ = Q(x, y) = qn(x, y) + εqn+1(x, y) + · · ·+ εj−nqj(x, y) + · · · . (5.5)

Now we propose a formal series in ε as a first integral of the form (5.3) and
we obtain the following straightforward result:

Proposition 5.2 If system (5.5) has the formal series (5.3) as a formal first
integral in ε, i.e., imposing the condition Ḣ = PHx+QHy ≡ 0 and developing
in power series expansion of ε, we obtain that h0 is the first integral of the
homogeneous system

ẋ = pn(x, y), ẏ = qn(x, y). (5.6)

and the functions hk(x, y) satisfy the following recursive differential equations

pn
∂hk
∂x

+ qn
∂hk
∂y

+
k∑

m=1

(
pn+m

∂hk−m
∂x

+ qn+m
∂hk−m
∂y

)
= 0. (5.7)

In fact, the method works at the same form that if we impose that system
(5.4) has a first integral which can be expanded as a formal series of homoge-
neous parts, imposing Ḣ ≡ 0 we arrive also to condition (5.7). The difference
is that now, using the parameter ε, the functions need not be homogeneous
parts and we can construct also a singular series expansion in the variables
x and y. What it is also important is that we can use different scalings of
variables (x, y, t) → (εpx, εqy, εrt) where ε > 0 and p, q and r ∈ Z. On the
other hand, the method depends strongly on h0 the first integral of the homo-
geneous system (5.6) and as more simpler is h0 more we can go beyond with



5.2 The method 89

the method. However, h0 can be chosen using different scalings of variables
(x, y, t)→ (εpx, εqy, εrt) where ε > 0 and p, q and r ∈ Z, in such a way that
h0 will be as simple as possible. The following straightforward result gives
the form of this h0.

Proposition 5.3 The first integral h0 of the homogeneous system (5.6) is of
the form

h0 = x exp

(
−
∫

du

φ(u)− u

)
, (5.8)

where φ(u) = qn(1, u)/pn(1, u) and u = y/x.

Moreover, we will see through the examples that the form of h0 suggests
the natural changes where the initial system (5.4) takes the simplest form.
We remark that not always we obtain, after the scaling of variables and time,
a homogeneous system for ε = 0. The method gives necessary conditions to
have analytic integrability or a singular series expansion around a singular
point and information about what we call the essential variables of a system.

Definition 5.4 The essential variables of system (5.4) at a singular point
translated to the origin, are the variables where h0 takes its simplest form.

The more easy situation is that once the first term h0 is computed, the
change of variables (x, z) = (x, h0(x, y)) reduces the system into a new one
for which the scaling method presented in this chapter is more effective. In
these essential variables, the system also takes its simplest form. In some
cases, when we write system (5.4) in its essential variables, the system re-
duces to a linear equation or to a Riccati equation . Therefore, the method
is also an alternative method to detect if a system reduces to some integrable
equation. The essential variables of a given system are not unique because
the choice of the values p, q and r is neither unique nor automatic. Therefore,
when we apply the scaling method presented and we transform the system
into its essential variables, or the system reduces to an integrable equation
or we have recursive differential equations for the functions hk that give us
information about the series expansion that admits system (5.6) as a first
integral. See the examples presented in the following sections.

In a similar way that in the analysis of the Painlevé α-method, see for
instance [89], we have the following result respect to our method for the case
when ε is a small parameter and the series (5.3) is a perturbative expansion.
We omit the proof which is formally the same that in the Painlevé case.
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Theorem 5.5 Let Ẋ = F(X; ε) the transformed system of (5.1) via the
scaling of variables and time, which is analytic in a path connected domain
(X, ε) ∈ (DX ⊂ R2, Dε ⊂ R). For a given singular point and δ ∈ R+

sufficiently small, the first integral (5.3) is single-valued for all ε such that
|ε| < δ if and only if each hk(x, y) of (5.3) is single-valued for all k.

However, for the method developed in this chapter the parameter ε needs
not be small. The parameter ε may be relatively large (for instance ε→ 1).
The convergence of series (5.3) must be analyzed in each particular case, and
the convergent rate depends upon the nonlinear terms of the system (5.4).

In the following sections we present how works the method to obtain the
essential variables where the original equation takes the most simplified form
and to obtain the necessary conditions of analytic integrability or how to
obtain a singular series expansion of the first integral.

In our analysis when we consider the above expansions from a formal per-
spective, we will ignore questions of convergence. As system (5.6) is analytic,
according with the result of Mattei and Moussu [98], once the existence of a
formal first integral has been established, we can ensure that there is also an
analytical first integral around the isolated singular point.

When the authors had a first version of the present work they received a
version of the paper [1]. In [1], it is considered the perturbations of quasi-
homogeneous planar Hamiltonian systems, where the Hamiltonian function
does not contain multiple factors. For such a kind of systems it is character-
ized the integrability problem, by connecting it with the normal form theory.
The authors of [1] remark that the most interesting cases (linear saddle, lin-
ear center, nilpotent case, etc) fall into the category studied in their work. In
[1] quasi-homogeneous systems are considered, but as they remark in their
work any vector field F can be expanded in quasi-homogeneous terms of
type t of successive degrees. The key idea is to introduce a parameter ε by
means of the the scaling x = E x̃, with x̃ ∈ R2 and where E is the diagonal
matrix E = diag{εt1 , εt2}. Then, they get the system ˙̃x = E−1F(E x̃) and
expanding in ε, it is possible to write the system into the form

˙̃x = Fr(x̃)εr + Fr+1(x̃)εr+1 + · · · (5.9)

where each term Fk ∈ P tk is quasi-homogeneous of type t and degree k.
Finally, it is enough to put ε = 1 to recover the original vector field F.
Hence, in some sense, the key idea is the same but here using directly the
scaling of variables and also a time rescaling and using the method not only
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to detect formal integrability but also to construct singular series expansion
of the first integral and the inverse integrating factor. The main result in [1]
is stated as follows:

Theorem 5.6 Assume that system (5.9) satisfies that the lowest degree term
Fr in (5.9) is Hamiltonian, that is, Fr = Xh for certain h ∈ P tr+|t| and the

decomposition of h has only simple factors (they are x, y and yt1 − αxt2

with α ∈ C). Then (5.9) is formally integrable if and only if it is formally
conjugated to a Hamiltonian system.

This theorem shows the important results that can be found using the
scaling method presented in this chapter.

5.3 The abel equation

In [32] a classification of the Abel equations known as solvable in the lit-
erature was presented. In [75] it is showed that all the integrable rational
Abel differential equations that appear in [32] can be reduced to a Riccati
differential equation or to a first–order linear differential equation through
a change defined by a rational map. The change is given explicitly for each
class and it is found in a unified way from the knowledge of the explicitly
first integral. We will see in this section through an example how the method
presented in this chapter gives the rational map which reduces to a Riccati
differential equation or to a first–order linear differential equation. In [32],
it appears for instance the Class 2, given first by Liouville [92], which is the
Abel equation

dy

dx
= y3 − 2xy2. (5.10)

Equation (5.10) has the associated differential system

ẏ = y3 − 2xy2, ẋ = 1.

Now, doing the rescaling of variables (x, y) → (εpx, εqy) with p, q ∈ Z we
have

ẏ = ε2qy3 − 2εp+qxy2, ẋ = ε−p,

which has the associated Abel equation

dy

dx
= εp+2qy3 − 2ε2p+qxy2.
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Taking q = −2p and p = −1 we have

dy

dx
= ε3y3 − 2xy2. (5.11)

Now we propose a formal series in ε as a first integral of the form (5.3)
where h0 is the first integral of the system ẏ = −2xy2, ẋ = 1. Imposing
the condition Ḣ ≡ 0 and developing in power series expansion of ε, the first
equation for ε0 is a partial differential equation for h0 given by

∂h0
∂x
− 2xy2

∂h0
∂y

= 0,

whose solution is h0(x, y) an arbitrary function of (x2y − 1)/y. Just taking
this value as a new variable z = (x2y − 1)/y we obtain that the original
equation (6.14) is transformed to the Riccati equation dx/dz = −x2 − z.
Therefore the essential variables in this case are (x, z) = (x, (x2y − 1)/y).

Sometimes the process must be repeated because the essential variables
are not any of the original ones. Hence, the change is given by a rational
map in both variables.

5.4 Some examples of nonlinear differential

systems

Example 1. Consider the following system

ẋ = −y, ẏ = ax+ by + y2. (5.12)

First we are going to see what happens if we do the rescaling of variables
(x, y)→ (εx, εy) which is equivalent to impose that system (5.12) has a first
integral which can be expanded as a formal series of homogeneous parts. The
system after the rescaling (x, y)→ (εx, εy) takes the form

ẋ = −y, ẏ = ax+ by + εy2.

We now propose a formal series in ε as a first integral of the form (5.3) where
h0 is the first integral of the homogeneous system ẏ = −y, ẋ = ax + by.
Imposing the condition Ḣ ≡ 0 and developing in power series expansion of
ε, the first equation for ε0 is a partial differential equation for h0 given by

−y∂h0
∂x

+ (ax+ by)
∂h0
∂y

= 0,
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whose solution is h0(x, y) an arbitrary function of

−
b arctan

[
b+2y/x√
4a−b2

]
√

4a− b2
+

1

2
log
[
a+ b y/x+ y2/x2

]
+ log x,

and it is no possible go further. Therefore the homogeneous rescaling does
not give information about the integrability problem of system (5.12).

Now we apply the following rescaling of variables (x, y)→ (εpx, εqy) with
p, q ∈ Z we have

ẏ = a εp−qx+ b y + εq y2, ẋ = −ε−p+qy,

which has the associated orbital equation

dy

dx
= −b εp−q − a ε2p−2qx

y
− εp y.

Taking p = 0 and q = −1 we have

dy

dx
= −b ε− a ε2x

y
− y. (5.13)

We propose a formal series in ε as a first integral of the form (5.3) where h0
is the first integral of the system ẏ = −y, ẋ = 1. Imposing the condition
Ḣ ≡ 0 and developing in power series expansion of ε, the first equation for
ε0 is a partial differential equation for h0 given by

−∂h0
∂x

+ y
∂h0
∂y

= 0,

whose solution is h0(x, y) an arbitrary function of exy. Just taking this
value as a new variable z = exy we obtain that the original system (5.12) is
transformed to

ż = −ex(a exx+ b z), ẋ = z. (5.14)

In these new essential variables (x, z), the system becomes simpler. It is
straightforward to see that if a = 0 the orbital equation is of separate vari-
ables and a first integral is H(x, z) = z + b ex, and if b = 0 the orbital
equation is also of separate variables and a first integral is given H(x, z) =
z2/2 + a e2x(2x− 1)/4. Hence in the following we consider the case ab 6= 0.
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Now, we apply the another rescaling of variables (x, z) → (εk1x, εk2z)
with k1, k2 ∈ Z and we obtain

ż = −a e2εk1xεk1−k2x− b eεk1xz, ẋ = εk2−k1z,

which has the associated orbital equation

dz

dx
= −b eεk1xεk1−k2 − a e2ε

k1xε2k1−2k2x

z
.

Taking k1 = 0 and k2 = −1 we have

dz

dx
= −ε e

x(a ε exx+ bz)

z
. (5.15)

Now we propose a formal series in ε as a first integral of the form

H(x, z) = h0(x, z) + εh1(x, z) + · · ·+ εjhj(x, z) + · · · , (5.16)

where h0 is the first integral of the homogeneous system ż = 0, ẋ = 1, i.e.,
h0(x, y) = z. Imposing the condition Ḣ ≡ 0 and developing in power series
expansion of ε, we obtain the recursive partial differential equation given by

z
∂hk
∂x

= a e2x
∂hk−2
∂z

+ b exz
∂hk−1
∂z

.

Hence, we have

hk =
1

z

∫ (
a e2x

∂hk−2
∂z

+ b exz
∂hk−1
∂z

)
dx.

In fact, it is easy to see that hk has the form hk = aekxPk(x)/zk−1 where Pk
is a polynomial of degree ≤ k. Therefore the first integral for system (5.14) is
H(x, z) =

∑∞
k=0 ae

kxPk(x)/zk−1 and taking into account that z = exy system
(5.12) has a singular first integral of the form

H(x, y) =
∞∑
k=0

a ex

yk−1
Pk(x).

Example 2. Consider the following differential system

ẋ = −y [2x2 + y2 + (x2 + y2)2] ,
ẏ = x [2x2 + y2 + 2(x2 + y2)2] .

(5.17)
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System (5.17) appears in the book of Nemytskii and Stepanov in [102, p.122]
and it has a degenerate center at the origin because for this system we know
the C∞ first integral

H(x, y) = (2x2 + y2) exp(−1/(x2 + y2)), (5.18)

and this first integral determines a family of closed curves each of which
surrounds the origin. Notice that system (5.17) has the symmetry (x, y, t)→
(x,−y,−t). But this system is not analytically (nor formally) integrable
in a neighborhood of the origin because the equation Ḣ ≡ 0 implies that
H = H2m +H2m+2 + · · ·, where H2m = (x2 + y2)m with m ≥ 1, and this is in
contradiction with the terms of degree 2m+ 4 of Ḣ ≡ 0. On the other hand
system (5.17) has the simple inverse integrating factor V = (x2+y2)2(2x2+y2)
defined in the whole plane. We are going to see how the method developed
in this work gives the above first integral and the above inverse integrating
factor. System (5.17) after the rescaling (x, y) → (εx, εy) and the adequate
time rescaling takes the form

ẋ = −y
[
2x2 + y2 + ε2(x2 + y2)2

]
, ẏ = x

[
2x2 + y2 + 2ε2(x2 + y2)2

]
.

We now propose a formal series in ε as a first integral of the form (5.3)
where h0 is the first integral of the homogeneous system ẏ = −y(2x2 + y2),
ẋ = x(2x2 + y2), i.e. h0 = x2 + y2. Imposing the condition Ḣ ≡ 0 and
developing in power series expansion of ε, the next equation for ε1 is a partial
differential equation for h1 given by

−y(2x2 + y2)
∂h1
∂x

+ x(2x2 + y2)
∂h1
∂y

= 0,

whose solution is h1(x, y) an arbitrary function of x2 + y2. Taking h1(x, y) ≡
0, the next equation for ε2 is a partial differential equation for h2 given by

−y(2x2 + y2)
∂h2
∂x

+ x(2x2 + y2)
∂h2
∂y

+ 2xy(x2 + y2)2 = 0,

whose solution is given by h2(x, y) = (x2 + y2) log(2x2 + y2) + f2(x
2 + y2)

where f2 is an arbitrary function. Taking all the arbitrary functions equal
zero, we obtain the following results for the recursive differential system

h2s−1 ≡ 0, h2s = (x2 + y2)s+1(log(2x2 + y2))s.



96 Essential variables in the integrability problem of planar vector fields

Hence we obtain the formal series

H(x, y) = (x2 + y2)
∞∑
s=0

(x2 + y2)s(log(2x2 + y2))s,

which for (x, y) near the origin gives

H(x, y) =
x2 + y2

1− (x2 + y2) log(2x2 + y2)
=

1
1

x2+y2
− log(2x2 + y2)

. (5.19)

From here we have that

H̃(x, y) =
1

x2 + y2
− log(2x2 + y2),

is also a first integral and taking exponentiation we obtain the first integral
(5.18) given also in the book of Nemytskii and Stepanov for this case.

It is also possible, instead of use a development of the first integral (5.3),
a development of the inverse integrating factor of the form

V (x, y) = V0(x, y) + εV1(x, y) + · · ·+ εjVj(x, y) + · · · , (5.20)

where V0 is the inverse integrating factor of the homogeneous system (5.6).
Imposing the condition PVx + QVy − (Px + Qy)V ≡ 0, and developing in
power series expansion of ε, we obtain a recursive differential equations for
the Vk(x, y) in the same way that for a first integral.

Hence, system (5.17) after the rescaling (x, y) → (εx, εy) and the ade-
quate time rescaling takes the form given above. If we now propose a formal
series in ε as an inverse integrating factor of the form (5.20) where V0 is
the inverse integrating factor of the homogeneous system ẏ = −y(2x2 + y2),
ẋ = x(2x2 + y2), i.e., V0 = 2x2 + y2. Now, imposing the condition PVx +
QVy − (Px + Qy)V ≡ 0 and developing in power series expansion of ε, the
next equation for ε1 is a partial differential equation for V1 given by

−y(2x2 + y2)
∂V1
∂x

+ x(2x2 + y2)
∂V1
∂y

= −2xyV1,

whose solution is given by V1(x, y) = (2x2 + y2)g1(x
2 + y2) where g1 is an

arbitrary function of x2 + y2. Taking V1(x, y) ≡ 0, the next equation for ε2

is a partial differential equation for V2 given by

−y(2x2 + y2)
∂V2
∂x

+ x(2x2 + y2)
∂V2
∂y

= −2xyV2 + 4xy(x2 + y2)(2x2 + y2),
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whose solution is given by V2(x, y) = −2(x2 + y2)(2x2 + y2) log(2x2 + y2) +
(2x2+y2)g2(x

2+y2) where g2 is an arbitrary function. Taking g2(x, y) ≡ 0, the
next equation for ε3 is a partial differential equation for V3 whose solution is
given by V3(x, y) = (2x2+y2)g3(x

2+y2) where g3 is an arbitrary function. We
take g3(x, y) ≡ 0 and the next equation for ε4 is a partial differential equation
for V4 whose solution is given by V4(x, y) = (x2 + y2)2(2x2 + y2)(log(2x2 +
y2))2 + (2x2 + y2)g4(x

2 + y2) where g4 is an arbitrary function. We also take
g4(x, y) ≡ 0. Taking all the arbitrary functions equal zero, we obtain the
following results for the following recursive differential system Vi(x, y) ≡ 0
for i ≥ 5. Hence we obtain the formal series

V (x, y) = (2x2 + y2)(−1 + (x2 + y2) log(2x2 + y2))2,

which is indeed and inverse integrating factor of system (5.17). Finally, we
obtain a polynomial inverse integrating factor doing the computation

Ṽ = V H2 = (x2 + y2)2(2x2 + y2)

where H is given by (5.19).

Example 3. In [99] Moussu gives another example of a real polynomial
differential system having a degenerate center for which a local analytic first
integral does not exists. The example of Moussu is

ẋ = y3, ẏ = −x3 +
x2y2

2
. (5.21)

The above system has a center at the origin because the origin is a mon-
odromy singular point and the system is invariant under the symmetry:
(x, y, t) → (x,−y,−t). However, system (5.21) is not analytically (nor for-
mally) integrable in a neighborhood of the origin. This conclusion is obtained
quickly if one tries to impose that system (5.21) has a first integral that will
be developed in power series. First, it is important to remark that the map
(x, y)→ (x, z2) transforms system (5.21) into the system

ẋ = −z, ż = 2x3 + x2z ,

which has a nilpotent singular point at the origin of node type.
We now apply the method to system (5.21). Hence, doing the rescaling

of variables (x, y)→ (εpx, εqy) with p, q ∈ Z we have

ẋ = ε3q−py3, ẏ = −ε3p−qx3 + ε2p+q
x2y2

2
,



98 Essential variables in the integrability problem of planar vector fields

which has the associated orbital equation

dy

dx
= − ε4p−4qx

3

y3
+ ε3p−2q

x2

2y
.

Taking p = 2q/3 and q = −3/4 we have

dy

dx
= − εx

3

y3
+
x2

2y
. (5.22)

We propose a formal series in ε as a first integral of the form (5.3) where h0
is the first integral of the system ẏ = x2, ẋ = 2y. Imposing the condition
Ḣ ≡ 0 and developing in power series expansion of ε, the first equation for
ε0 is a partial differential equation for h0 given by

2y3
∂h0
∂x

+ x2y2
∂h0
∂y

= 0,

whose solution is h0(x, y) an arbitrary function of 3y2 − x3. Just taking this
value as a new variable z = 3y2−x3 we obtain that the original system (5.21)
is transformed to

ż = −18x3, ẋ = x3 + z. (5.23)

In these new essential variables (x, z), the system becomes simpler. Now, we
apply the another rescaling of variables (x, z)→ (εk1x, εk2z) with k1, k2 ∈ Z
and we obtain

ż = −18ε3k1−k2x3, ẋ = ε2k1x3 + εk2−k1z,

which has the associated orbital equation

dz

dx
=
−18ε3k1−k2x3

ε2k1x3 + εk2−k1z
.

Taking k1 = k2 = 1 we have

dz

dx
=
−18ε2x3

ε2x3 + z
. (5.24)

Now we propose a formal series in ε as a first integral of the form

H(x, z) = h0(x, z) + εh1(x, z) + · · ·+ εjhj(x, z) + · · · , (5.25)
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where h0 is the first integral of the system ż = 0, ẋ = z, i.e. h0(x, y) = z.
Imposing the condition Ḣ ≡ 0 and developing in power series expansion of
ε, we obtain the recursive partial differential equation given by

6z
∂hk
∂x

= 18x3
∂hk−1
∂z

− x3∂hk−1
∂x

,

for k even because it is possible to choose hk ≡ 0 for k odd. Hence, we have

hk =
1

6z

∫ (
18x3

∂hk−1
∂z

− x3∂hk−1
∂x

)
dx,

for k even. In fact, it is easy to see that hk has the form

hk =
Ck−1 x

2k

zk−1
+
Ck−2 x

2k−1

zk−2
+ · · ·+

Ck/2 x
3k/2+1

zk/2
,

for k even and where Ck are fixed constants. Therefore the first integral for
system (5.23) is

H(x, z) =
∞∑
k=0

(
Ck−1 x

2k

zk−1
+
Ck−2 x

2k−1

zk−2
+ · · ·+

Ck/2 x
3k/2+1

zk/2

)
.

for k even. Taking into account that z = 3y2 − x3 system (5.21) has the
singular first integral

H(x, y) =
∞∑
k=0

(
Ck−1 x

2k

(3y2 − x3)k−1
+

Ck−2 x
2k−1

(3y2 − x3)k−2
+ · · ·+

Ck/2 x
3k/2+1

(3y2 − x3)k/2

)
.

5.5 On the center problem

Consider a real quadratic system of ordinary differential equations on R2

with an isolated singular point at the origin, at which the linear part are
non-zero pure imaginary numbers. By analytic change of coordinates and a
constant time rescaling the system takes the form

u̇ = −v + · · · , v̇ = u+ · · · . (5.26)

The classical Poincaré–Liapunov center theorem states that the origin is a
center if and only if the system admits an analytic first integral of the form
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φ(u, v) = u2 + v2 + · · ·, see for instance [70, 76, 77, 78, 122] and references
therein. The method developed in this work can also be applied in this case,
where h0 = u2 + v2 and we obtain a recursive differential equation for the hk
of the form (5.7). Clearly the method described in this chapter can also be
used to detect nilpotent centers and also degenerate centers. In this way, in
[1], it is used to rediscover the Poincaré theorem for nondegenerate centers
and the Strozyna and Zoladek theorem for nilpotent centers with analytic
first integral.

5.6 On the resonant center problem

If system (5.26) is complexified in a natural way by setting z = u + iv then
we have a differential equation of the form ż = iz + · · ·. In this case one
constructs, step-by-step, the formal first integral Φ = zz̄ + · · · satisfying the
equation Φ̇ = v3|z|4 + v5|z|6 + · · ·, where the coefficients vi called the focus
quantities are polynomials of the coefficients of the original system. The
theorem of Poincaré–Liapunov [91, 109] says that when all the vi = 0 then
the point z = 0 is a center. Existence of a first integral φ is equivalent to
existence of an analytic first integral for the complexified equation of the form
Φ = zz̄+· · ·. Taking the complex conjugated equation there arises an analytic
system of ordinary differential equations on C2 of the form ż = iz + · · ·,
ẇ = −iw + · · ·. Hence, after the complexification the system is transformed
into an analytic system with eigenvalues +i and −i. This is the [1 : −1]
resonant singular point and the numbers vi become the coefficients before
the resonant terms in its orbital normal form. This was the way chosen by
Dulac [51] to approach the center problem for quadratic systems, see also
[38, 117].

The next natural generalization of the above theory is to consider the case
of a polynomial vector field in C2 with [p : −q] resonant elementary singular
point

ẋ = p x+ · · · , ẏ = −q y + · · · , (5.27)

where p, q ∈ Z. These facts motivate the generalization of the concept of real
center to certain classes of systems of ordinary differential equations on C2.
In this case we have the following definition of a resonant center or focus,
coming from Dulac [51] see also [127].

Definition 5.7 A [p : −q] resonant elementary singular point of an analytic
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system is a center if, an only if, there exists a local meromorphic first integral
Φ = h0 + · · ·, with h0 = xpyq. This singular point is a resonant focus of order
k if, an only if, there is a formal power series Φ = xpyq+· · · with the property
Φ̇ = gkh

k+1
0 + · · ·.

The saddle–node case, i.e., the [1 : 0] resonance, and the node case, i.e.,
the case with q < 0 < p, were studied in [127]. We focus our attention in the
resonant saddle case, i.e., 1 ≤ p < q assuming (p, q) = 1. In this case we have
that p > 0, q > 0. Hence, the linear part has analytic first integral h0 = xqyp

and we can seek the conditions for the existence of an analytic first integral of
the form Φ = h0+· · · such that Φ̇ = g1h

2
0+g2h

3
0+· · · and the [p : −q] resonant

focus numbers gi are also polynomials of the coefficients of the system. The
resonant saddle case is also studied in [39, 59, 82, 115, 127]. The method
developed in this work can also applied in this case, where h0 = xqyp and we
also obtain a recursive differential equation for the next hk. The obstructions
to the analyticity of each hk are the necessary conditions to have an analytic
first integral.
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Chapter 6

Composition conditions in the
trigonometric Abel equation

6.1 Introduction and statement of the main

results

We consider the ordinary differential equation

dρ

dθ
= a1(θ)ρ

2 + a2(θ)ρ
3, (6.1)

where ρ is a real variable and ai(θ) are trigonometric polynomials in θ for
i = 1, 2. When a1(θ) and a2(θ) are identically zero, we say that (6.1) is a
trivial center. We shall denote the derivative of ρ with respect θ by dρ/dθ or
ρ ′. We can solve equation (6.1) by the Picard iteration and find a solution
which is unique with the prescribed initial value ρ(0) = ρ0. We say that
equation (6.1) determines a center if for any sufficiently small initial values
ρ(0) the solution of (6.1) satisfies ρ(0) = ρ(2π). The center problem for
equation (6.1) is to find conditions on the coefficients ai under which this
equation determines a center.

The original center problem arises from the study of the planar analytic
differential systems first studied by Poincaré [109] and later by Liapunov [91]
and other authors, see [13, 51, 58, 87, 88]. In the case of a non-degenerate
singular point the system can be written into the form

ẋ = −y + P (x, y), ẏ = x+Q(x, y), (6.2)

103
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where P and Q are analytic functions without constant and linear terms,
i.e., P (x, y) =

∑∞
i=2 Pi(x, y) and Q(x, y) =

∑∞
i=2Qi(x, y), where Pi and Qi

are homogeneous polynomials of degree i. Poincaré proved that the origin
of system (6.2) is a center if and only if the coefficients of P and Q satisfy a
certain infinite system of algebraic equations called the Poincaré–Liapunov
constants . We note that taking polar coordinates x = r cos θ and y = r sin θ
system (6.2) takes the form

ṙ =
∞∑
s=2

fs(θ)r
s, θ̇ = 1 +

∞∑
s=2

gs(θ)r
s−1, (6.3)

where

fi(θ) = cos θPi(cos θ, sin θ) + sin θQi(cos θ, sin θ),

gi(θ) = cos θQi(cos θ, sin θ)− sin θPi(cos θ, sin θ).

We remark that fi and gi are homogeneous polynomials of degree i+1 in the
variables cos θ and sin θ. In the region R = {(r, θ) : θ̇ > 0} the differential
system (6.3) is equivalent to the differential equation

dr

dθ
=

∑∞
s=2 fs(θ) r

s

1 +
∑∞

s=2 gs(θ) r
s−1 =

∞∑
i=1

ai(θ) r
i+1, (6.4)

where, since P and Q are analytic functions, we have expanded as an analytic
series in r to obtain equation (6.4) whose coefficients ai(θ) are trigonometric
polynomials. This reduces the center problem for the planar differential
system (6.2) to the center problem for the class of equations (6.4).

In the particular case that P and Q are homogeneous polynomials of
degree n then equation (6.4) takes the form

dr

dθ
=

f(θ)rn

1 + g(θ)rn−1
, (6.5)

using the Cherkas transformation (see [34])

ρ =
rn−1

1 + rn−1g(θ)
, whose inverse is r =

ρ1/(n−1)

(1− ρg(θ))1/(n−1)
, (6.6)

the differential equation (6.5) becomes the Abel differential equation

dρ

dθ
= ((n− 1)f(θ)− g′(θ)) ρ2 − (n− 1)f(θ)g(θ)ρ3. (6.7)
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which corresponds to equation (6.1) with a1(θ) = ((n− 1)f(θ)− g′(θ)) and
a2(θ) = − (n − 1)f(θ)g(θ). Notice that in this case a1(θ) and a2(θ) are
trigonometric polynomials of degree n + 1 and 2(n + 1) respectively. By
the regularity of the Cherkas transformation and its inverse at r = ρ = 0,
equation (6.5) has a center if and only if equation (6.7) has a center.

In [21, 23, 71] it is studied the center problem for the analytic ordinary
differential equation

dρ

dθ
=
∞∑
i=1

ai(θ)ρ
i+1, (6.8)

on the cylinder (ρ, θ) ∈ R × S1 in a neighborhood of ρ = 0 and where ai(θ)
are trigonometric polynomials in θ. An explicit expression for the first return
map of equation (6.8) is given in [21], see also [23]. The expression of the
first return map is given in terms of the following iterated integrals of order
k,

Ii1,...,ik(a) :=

∫
· · ·
∫
0≤s1≤···≤sk≤2π

aik(sk) · · · ai1(s1) dsk · · · ds1,

where, by convention, for k = 0 we assume that this equals 1. Actually,
iterated integrals appear historically in the study of Abel equations, see for
instance [3, 49, 48]. Let ρ(θ; ρ0; a), θ ∈ [0, 2π], be the solution of equation
(6.8) corresponding to a with initial value ρ(0; ρ0; a) = ρ0. Then P (a)(ρ0) :=
ρ(2π; ρ0; a) is the first return map of this equation and in [21, 23] it is proved
the following result.

Theorem 6.1 For sufficiently small initial values ρ0 the first return map

P (a) is an absolute convergent power series P (a)(ρ0) = ρ0 +
∞∑
n=1

cn(a)ρn+1
0 ,

where
cn(a) =

∑
i1+···+ik=n

ci1,...,ikIi1,...,ik(a), and

ci1,...,ik = (n− i1 + 1) · (n− i1 − i2 + 1) · (n− i1 − i2 − i3 + 1) · · · 1.

By Theorem 6.1 the center set C of equation (6.8) is determined by the system
of polynomial equations cn(a) = 0, for n = 1, 2, . . ..

In [23] it is given the definition of universal center in terms of the mon-
odromy group associated to equation (6.8). In fact we have a universal center
when the monodromy group is trivial. Hence, the set U of universal centers



106 Composition conditions in the trigonometric Abel equation

is, in a sense, a stable part of the center set C. It is also well-known that, in
general, U 6= C, see for instance [71]. The following proposition establishes
the characterization of the universal centers in terms of iterated integrals and
it is also given in [23].

Proposition 6.2 Equation (6.8) determines a universal center if and only if
for all positive integers i1, . . . , ik with k ≥ 1 the iterated integral Ii1,...,ik(a) =
0.

In [23] it is also considered the case when equation (6.8) has a finite
number of terms, i.e.

dv

dθ
=

n∑
i=1

ai(θ)v
i+1. (6.9)

It is proved that equation (6.9) with all ai trigonometric polynomials has
a universal center if and only if there are trigonometric polynomials q and
polynomials p1, . . . , pn ∈ C[z] such that

ãi = pi ◦ q, 1 ≤ i ≤ n, ãi(x) =

∫ x

0

ai(s)ds. (6.10)

Conditions (6.10) are called composition conditions. The vanishing of all
iterated integrals Ii1,...,ik(a) = 0 for all positive integers i1, . . . , ik with k ≥ 1
is equivalent to composition conditions for equation (6.9), as it is proved in
[23]. This result is generalized to equation (6.8) in [71] where the following
theorem is established.

Theorem 6.3 Any center of the differential equation (6.8) is universal if
and only if equation (6.8) satisfies the composition condition.

The composition conditions have been studied in several papers in the
last years in different contexts, see for instance [8, 2, 5, 6, 7, 20, 37, 42] and
references therein.

Given an angle α ∈ [0, π), we say that the differential equation (6.8) is
α-symmetric if its flow is symmetric with respect to the straight line θ = α.
Obviously, this is equivalent to that equation (6.8) is invariant under the
change of variables θ 7→ 2α − θ. Any differential equation (6.8) which is
α-symmetric has a center, due to the symmetry.
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We say that the differential equation (6.8) is of separable variables if the
function on the right-hand side of equation (6.8) splits as product of two
functions of one variable, one depending on ρ and the other on θ, that is,

dρ

dθ
= a(θ) b(ρ).

In such a case there is only one center condition which is
∫ 2π

0
a(θ) dθ = 0.

In [71] it is also proved the following result for equation (6.8).

Theorem 6.4 If the differential equation (6.8) has a center which is either
α-symmetric, or of separable variables, then it is universal.

This last result gives two big families of universal centers also for the Abel
equation (6.1).

6.2 Universal centers of the Abel equation

(6.1)

In this section we study the universal centers of equation (6.1). It is well-know
that not all the centers of equation (6.1) are universal due to the following
fact. Any quadratic system in the plane, i.e., system (6.2) with homogeneous
P and Q of degree at most 2, can be transformed to an Abel equation of the
form (6.7) where a1(θ) and a2(θ) are trigonometric polynomials of degree 3
and 6 respectively. Moreover in [71] it is proved that there are centers of
the quadratic system (6.2) which are not universal (for instance the Dar-
boux component except its intersection with the symmetric one). In [71] it
is proved that these non-universal centers of the quadratic system (6.2) give
non-universal centers of the associated Abel equation (6.7). In [41] there
is another example of a center of an Abel equation which is not universal
and where a1(θ) and a2(θ) are trigonometric polynomials of degree 3 and 6
respectively. Hence, the following open problem can be established:

Open problem: To determine the lowest degree of the trigonometric poly-
nomials a1(θ) and a2(θ) such that the Abel equation (6.1) has a center which
is not universal .
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Blinov in [14] proved the following result which shows that the lowest
possible degree such that an Abel equation can have a non-universal center
is at least 3.

Proposition 6.5 All the centers of equation (6.1) when a1(θ) and a2(θ) are
trigonometric polynomials of degree 1 and 2 are universal centers and, in
consequence, verify the composition condition.

For sake of completeness we give a short proof of Proposition 6.5 in the
appendix. The proof given in [14] and ours consist in solving the center
problem for equation (6.1) with a1(θ) and a2(θ) of degree at most 2 and to
check that all the center cases are universal. However, this procedure is un-
approachable for higher degrees due to the cumbersome computations needed
to solve the center problem.

In this paper we study the centers of equation (6.1) when a1(θ) and a2(θ)
are trigonometric polynomials of degree 3, i.e.,

a1(θ) = b00 + b10 cos θ + b01 sin θ + b20 cos(2θ) + b02 sin(2θ)
+b30 cos(3θ) + b03 sin(3θ),

a2(θ) = c00 + c10 cos θ + c01 sin θ + c20 cos(2θ) + c02 sin(2θ)
+c30 cos(3θ) + c03 sin(3θ),

(6.11)

where bij and cij are real constants. We remark that if a1(θ) and a2(θ) are
both identically null, then we have a trivial center. If a1(θ) or a2(θ) is iden-
tically null, then all the centers are of separable variables and, consequently,
all the centers are universal. Thus, we can assume that none a1(θ) or a2(θ)
is identically null. Indeed, the first two center conditions c1(a) = 0 and
c2(a) = 0 imply that b00 = c00 = 0, see Theorem 6.1. In order to make a
systematic study of the problem for the Abel equation (6.1) with a1(θ) and
a2(θ) of the form (6.11), we assume that the subdegree of a1(θ) is either 1,
2 or 3. In each case, we can make an affine change of the variable θ and a
rescaling of ρ such that a1(θ) takes one of the following forms:

Case I. a1(θ) = sin θ + h.o.t.,

Case II. a1(θ) = sin(2θ) + h.o.t.,

Case III. a1(θ) = sin(3θ) + h.o.t.,
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where h.o.t. means higher order terms. We have not been able to completely
study Case I. Theorem 6.6 deals with Cases II and III.

The procedure is to compute a set of necessary conditions cn(a) = 0 for
n = 3, . . . ,M , with M large, which are the coefficients of the first return
map, see Theorem 6.1. In general, these necessary conditions are very long.
Therefore, it is computationally very difficult to determine the irreducible
components of the variety V := V (〈c3, c4, . . . , cM〉). We are using the classi-
cal notation of computational algebra given for instance in the textbook [46].
If the center conditions are smaller, as for instance in the proof of Proposi-
tion 6.5 given in the appendix, one can use resultants between polynomials of
several variables to find the points of this variety. When this computations
cannot be overcome, we look for the irreducible decomposition of the variety
V . This is an extremely difficult computational problem. We have followed
the algorithm described in [114] which makes use of modular arithmetics.
The last step of this algorithm has not been verified. This step ensures that
all the points of the variety V have been found. That is, we know that all the
encountered points belong to the decomposition of V but we do not know
whether the given decomposition is complete. We remark that, nevertheless,
it is practically sure that the given list is complete, see for instance [11, 114].
Therefore, in the following we provide sufficient conditions to have a center,
which are practically necessary. We denote this situation by the expression
with probability close to 1.

Theorem 6.6 All the centers of equation (6.1) when a1(θ) and a2(θ) are
trigonometric polynomials of degree 3 of the form (6.11) with either
• b10 = b01 = b20 = 0 and b02 = 1 (Case II), with probability close to 1, or;
• b10 = b01 = b20 = b02 = b30 = 0 and b03 = 1 (Case III)
are universal centers and, consequently, verify the composition condition.

Proof of Theorem 6.6. To proof this result we have computed eleven nec-
essary conditions cn(a) = 0 for n = 3, . . . , 13. These necessary conditions
are very long, so we do not present them here. However, one can check our
computations with the help of any available computer algebra system. In
this case, in order to obtain the families of centers we look for the irreducible
decomposition of the variety V (I) of the ideal I = 〈c3, c4, . . . , c13〉. We have
used the routine minAssGTZ of the computer algebra system Singular [81]
and we have found the irreducible decomposition of the variety of the ideal
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I over the field of rational numbers for (Case III) and over the finite field
Z/(p), with p = 32003, for (Case II).

The obtained decomposition for the case b10 = b01 = b20 = 0 and b02 = 1
(Case II) consists of 3 components defined by the following ideals

1) 〈b03, c03, c20, c01〉;

2) 〈b30, c30, c20, c10〉;

3) 〈c20, c01, c10, b03c02 − c03, c02b30 − c30〉;

In the first case 1) we have a1(θ) = sin(2θ) + b30 cos(3θ) and a2(θ) =
c10 cos θ + c02 sin(2θ) + c30 cos(3θ). Therefore equation (6.1) is invariant un-
der the change of variables θ 7→ π − θ and the differential equation (6.1) is
α-symmetric with α = π/2 and, thus, it is universal by Theorem 6.4.
In the second case 2) we have a1(θ) = sin(2θ) + b03 sin(3θ) and a2(θ) =
c01 sin θ+c02 sin(2θ)+c03 sin(3θ). Therefore equation (6.1) is invariant under
the change of variables θ 7→ −θ and the differential equation (6.1) is also
α-symmetric with α = 0.
The third case 3) corresponds to a particular case studied in Theorem 6.7
given by b10 = b01 = c10 = c01 = 0.

Finally, we take the eleven necessary conditions cn(a) = 0 for n =
3, . . . , 13 and we impose the case b10 = b01 = b20 = b02 = b30 = 0 and
b03 = 1 (Case III). Here we can obtain the irreducible decomposition of the
variety V (I) over the field Q. To show that all the obtained families are
universal centers for equation (6.1) we refer to the case studied in Theorem
6.7 given by b10 = b01 = b30 = 0. �

Moreover, although we cannot completely solve Case I, we present the
following result.

Theorem 6.7 All the centers (with probability close to 1) of equation (6.1)
when a1(θ) and a2(θ) are trigonometric polynomials of degree 3 of the form
(6.11) with either

• b10 = b01 = c10 = c01 = 0 or;

• b20 = b02 = c20 = c02 = 0 or;

• b10 = b01 = b30 = 0 or;
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• b10 = b01 = b03 = 0

are universal centers and, consequently, verify the composition condition.

Proof of Theorem 6.7. To proof this result we have followed the same com-
putations than in the previous theorem to obtain eleven center conditions
cn(a) for n = 3, . . . , 13, and we have proceeded analogously.

The obtained decomposition for the case b10 = b01 = c10 = c01 = 0
consists of 3 components defined by the following ideals

1) 〈c30, c03, b20, b02, b30, b03〉;

2) 〈b03c30 − b30c03, b02c20 − b20c02, b02c30 − b30c02〉;

3) 〈b03c30− b30c03, b02c20− b20c02,−3b202b
2
03b20 + b203b

3
20 + 2b302b03b30

−6b02b03b
2
20b30 + 3b202b20b

2
30 − b320b230〉.

We now show that equation (6.1) has a universal center under these condi-
tions. In the first case 1) we have that a1(θ) = 0 and a2(θ) = c20 sin(2θ) +
c02 cos(2θ). Therefore equation (6.1) is in this case of separable variables
and by Theorem 6.4 it has a universal center. In the second case we have
b20a2(θ) = c20a1(θ). Hence we have composition condition and equation
(6.1) has a universal center. In the third case 3) we take b20 = r0 sin β and
b02 = r0 cos β and it is easy to see that equation (6.1) is invariant under the
change of variables θ 7→ π − β − θ. Hence the differential equation (6.1)
is α-symmetric with α = (π − β)/2 and by Theorem 6.4 it has a universal
center.

The obtained decomposition for the case b20 = b02 = c20 = c02 = 0
consists of 4 components defined by the following ideals

1) 〈b03c30 − b30c03, b01c10 − b10c01, b01c03 − b03c01〉;

2) 〈b03c30− b30c03, b01c10− b10c01,−3b201b03b10 + b03b
3
10 + b301b30− 3b01b

2
10b30〉;

3) 〈b03c30 − b30c03, b10, b01,−b30c301 + 3b03c
2
01c10 + 3b30c01c

2
10 − b03c310〉;

4) 〈b01c10 − b10c01, b30, b03,−3b201b10c03 + b310c03 + b301c30 − 3b01b
2
10c30〉;

We now show that equation (6.1) has a universal center under these condi-
tions. In the first case 1) we have that b01a2(θ) = c01a1(θ). Hence we have
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composition condition and equation (6.1) has a universal center. In the sec-
ond case 2) and fourth case 4) we take b10 = r1 sin β1 and b01 = r1 cos β1 and
it is easy to see that equation (6.1) is invariant under the change of variables
θ 7→ −2β1 − θ. Hence the differential equation (6.1) is α-symmetric with
α = −β1 and by Theorem 6.4 it has a universal center. In the third case 3),
if we take c10 = r2 sin β2 and c01 = r2 cos β2, it is easy to see that equation
(6.1) is invariant under the change of variables θ 7→ −2β2− θ. Therefore the
differential equation (6.1) is also α-symmetric with α = −β2 and by Theorem
6.4 it has a universal center.

The decomposition for the case b10 = b01 = b30 = 0 consists of 4 compo-
nents defined by the following ideals

1) 〈b03, b02, b20〉;

2) 〈b03, b02c20 − b20c02,−3c201c03c10 + c03c
3
10 + c301c30 − 3c01c

2
10c30〉;

3) 〈c30, c01, c10, b02c20 − b20c02, c20b03 − b20c03〉;

4) 〈c30, c20, c10, b20〉.

In the first case 1) we have that a1(θ) = 0. Therefore equation (6.1) is
of separable variables and by Theorem 6.4 it has a universal center. In the
second case 2) we take c10 = r4 sin β4 and c01 = r4 cos β4 and it is easy to see
that equation (6.1) is invariant under the change of variables θ 7→ −2β4 − θ.
Hence the differential equation (6.1) is α-symmetric with α = −β4 and by
Theorem 6.4 it has a universal center. The third case 3) correspond to case
2) of the decomposition studied in the case b10 = b01 = c10 = c01 = 0 (first
paragraph of this proof). In the last case 4) we have a1(θ) = b02 sin(2θ) +
b03 sin(3θ) and a2(θ) = c01 sin θ+ c02 sin(2θ) + c03 sin(3θ). Therefore equation
(6.1) is invariant under the change of variables θ 7→ −θ and the differential
equation (6.1) is also α-symmetric with α = 0.

The decomposition for the case b10 = b01 = b03 = 0 also consists of 4
components defined by the following ideals

1) 〈b30, b02, b20〉;

2) 〈b30, b02c20 − b20c02,−3c201c03c10 + c03c
3
10 + c301c30 − 3c01c

2
10c30〉;

3) 〈c03, c01, c10, b02c20 − b20c02, c20b03 − b20c03〉;

4) 〈c03, c20, c01, b20〉.
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The first case 1) and the second case 2) are studied in the decomposition
of the case b10 = b01 = b30 = 0 (previous paragraph of this proof). The
third case 3) corresponds to case 2) of the decomposition studied in the case
b10 = b01 = c10 = c01 = 0 (first part of this proof). In the last case 4) we have
a1(θ) = b02 sin(2θ)+b30 cos(3θ) and a2(θ) = c10 cos θ+c02 sin(2θ)+c30 cos(3θ).
Therefore equation (6.1) is invariant under the change of variables θ 7→ −θ−π
and the differential equation (6.1) is again α-symmetric with α = −π/2. �

Appendix

Proof of Proposition 6.5. First we study the case when a1(θ) and a2(θ) are
trigonometric polynomials of degree 1, therefore we have

a1(θ) = b00 + b10 cos θ + b01 sin θ,

a2(θ) = c00 + c10 cos θ + c01 sin θ,

where bij and cij are real constants. We recall that the first two center
conditions imply that b00 = 0 and c00 = 0. The next center condition is
c3(a) = 0 with c3(a) = b01c10 − b10c01. We take b10 = kc10 and c01 = kc01,
with k ∈ R, and some of the next center conditions are zero. In this case
equation (6.1) takes the form

ṙ = r2(k + r)(c10 cos θ + c01 sin θ). (6.12)

Equation (6.12) is of separable variables and by Theorem 6.4 has a universal
center.

Second, in the case where a1(θ) and a2(θ) are trigonometric polynomials
of degree 2 we have

a1(θ) = b00 + b10 cos θ + b01 sin θ + b20 cos(2θ) + b02 sin(2θ),

a2(θ) = c00 + c10 cos θ + c01 sin θ + c20 cos(2θ) + c02 sin(2θ),

where bij and cij are real constants. The first conditions to have a center are,
as before, that b00 = 0 and c00 = 0. Applying a rotation and a rescaling we
can divide the study in two separate cases:

(i) b10 = 1 and b01 = 0 and (ii) b10 = b01 = 0.
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We begin to study case (i). In this case the next center condition is c3(a) = 0
with c3(a) = −2c01 − b20c02 + b02c20 = 0. From this condition we isolate
c01 = (b02c20 − b20c02)/2. The next center conditions take the form

c4(a) = b02b20c02 − 2b20c10 + 2c20 − b202c20,
c5(a) = −12b20c02 − 5b202b20c02 + 3b320c02 − 4b20c

2
02 + 2b320c

2
02 + 16b02b20c10

+8b02b20c02c10 − 8b20c
2
10 − 4b02c20 + 5b302c20 − 3b02b

2
20c20

+4b02c02c20 − 4b02b
2
20c02c20 + 8c10c20 − 8b202c10c20 + 2b202b20c

2
20.

The resultant between these two polynomials with respect to c10 gives the
following result

res(c4(a), c5(a), c10) = b20(b20c02 − b02c20)C56,

where C56 = −12b20 +3b202b20 +3b320−4b20c02 +2b202b20c02 +2b320c02 +4b02c20−
2b302c20 − 2b02b

2
20c20.

a) Case b20 = 0. In this case the condition c4(a) = 0 with c4(a) = (b202 −
2)c20. The cases b02 = ±

√
2 do not satisfy the next center conditions,

so they do not give rise to centers. In the case c20 = 0 equation (6.1)
takes the form

ṙ = r2 cos θ(1 + c10r + 2(b02 + c02r) sin θ). (6.13)

System (6.13) has an α-symmetric center, with α = π/2, because it has
the symmetry θ → π − θ and in virtue of Theorem 6.4 it is a universal
center.

b) Case b20c02 − b02c20 = 0 and b20 6= 0. In this case we take b20 = c20k
and b02 = c02k and the next center condition is c4(a) = 0 with c4(a) =
c20(c10k − 1). The case c02 = 0 implies b20 = 0 which is out of our
assumptions in this case. Hence we must take c10 = 1/k. In this case
equation (6.1) has the form

ṙ = r2(k + r)(cos θ + c20k cos 2θ + c02k sin 2θ)

which is of separable variables and by Theorem 6.4 it has a universal
center.
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c) Case C56 = 0 with b20c02 − b02c20 6= 0 and b20 6= 0. In this case we
compute the following resultants:

res(c4(a), c6(a), c10) = b20(−b20c02 + b02c20)C57,

res(c4(a), c7(a), c10) = b20(−b20c02 + b02c20)C58,

res(c4(a), c8(a), c10) = b20(−b20c02 + b02c20)C59,

res(c4(a), c9(a), c10) = b20(−b20c02 + b02c20)C510,

where C57, C58, C59 and C510 are polynomials in the variables b20, b02,
c20 and c02. The next step is to make the following resultants with
respect to c02.

res(C56, C57, c02) = b20C67, res(C56, C58, c02) = b220C68,

res(C56, C59, c02) = b220C69, res(C56, C510, c02) = b320C610,

where C67, C68, C69 and C610 are polynomials in the variables b20, b02
and c20. Now we perform the following resultants with respect to b02.

res(C67, C68, b02) = b1020C78,

res(C67, C69, b02) = b820(b
2
20 − 2)c20C79,

res(C67, C610, b02) = b1220C710,

where C78, C79 and C710 are polynomials in the variables b20 and c20.
The cases b220 − 2 = 0 and c20 = 0 give no common root. Hence, we
make the following resultants with respect to c20.

res(C78, C79, c02) = b4820(b20 + 2)2(b20 − 2)2C89,

res(C78, C710, c02) = b7220(b20 + 2)2(b20 − 2)2C810,

where C89, and C810 are polynomials uniquely in the variable b20. The
cases b220 − 4 = 0 give no common root. Therefore we make the last
resultant with respect to b20 which gives the result

res(C89, C810, b20) 6= 0.

Therefore, there is no common root and consequently there are no more
cases.
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Now we study the case (ii) b10 = b01 = 0. In this case the first center
condition has the form c3(a) = 0 with c3(a) = b02c20 − b20c02. We take
b20 = c20k and b02 = c02k and the next center conditions are c4(a) = 0 and
c5(a) = k(−2c01c02c10 + c201c20 − c210c20).

a) Case k = 0. In this case a2(θ) = 0 and (6.1) is of separable variables
and by Theorem 6.4 it has a universal center.

b) Case −2c01c02c10 + c201c20 − c210c20 = 0. We take c20 = 2c01c10m and
c02 = (c201 − c210)m, with m ∈ R, and equation (6.1) takes the form

ṙ = r2ψ(θ)(r + 2ψ′(θ)m(k + r)), (6.14)

where ψ(θ) = c10 sin θ + c01 cos θ. In this case equation (6.14) has
an α-symmetric center, with α = −τ , because it has the symmetry
θ → −2τ − θ where τ = arctan(c01/c10). Hence, by Theorem 6.4 it is
also a universal center.



Chapter 7

Universal centers in the cubic
trigonometric Abel equation

7.1 Introduction and statement of the main

results

In this chapter we also consider the Abel trigonometric differential equation

dρ

dθ
= a1(θ) ρ

2 + a2(θ) ρ
3, (7.1)

defined on the cylinder (ρ, θ) ∈ R × S1 and where a1(θ) and a2(θ) are real
trigonometric polynomials in θ of degree max{deg a1, deg a2} = d.

Equation (7.1) is a particular case of the analytic ordinary differential
equation

dρ

dθ
= F(ρ, θ) =

∑
i≥1

ai(θ) ρ
i+1, (7.2)

defined on the cylinder (ρ, θ) ∈ R×S1 and where ai(θ) are real trigonometric
polynomials in θ. We denote by ρ = ρ(θ; ρ0) the general solution of (7.2) with
initial condition ρ(0; ρ0) = ρ0. We remark that ρ = 0 is a particular solution
and that, as a consequence, we have that ρ(θ; ρ0) is defined for all θ ∈ S1 for
|ρ0| small enough.

We recall that equation (7.2) has a center when ρ(2π; ρ0) = ρ0 for |ρ0|
small enough, that is, when all the orbits in a neighborhood of the particular
solution ρ = 0 are 2π-periodic. The center problem for equation (7.2) is to

117
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find conditions on the coefficients ai(θ) under which this equation determines
a center. The original center problem arises from the study of the planar
analytic differential systems, see for instance [73] and references therein.

Classically, there exist two ways to characterize centers in equation (7.2).
The first one is to prove the existence of a first integral H(ρ, θ) which is 2π-
periodic in θ. A function H(ρ, θ) defined in a neighborhood of ρ = 0, of class
C1 and non locally constant, is a first integral of equation (7.2) if H(ρ(θ; ρ0), θ)
does not depend on θ. Equivalently, (∂H/∂ρ)F(ρ, θ) + ∂H/∂θ ≡ 0.

The second way is to consider the first return map P (a) associated to
equation (7.2) P (a)(ρ0) := ρ(2π; ρ0) and to verify that it is the identity
map for |ρ0| small enough. In [21] (see also [23]), an explicit expression
for the first return map P (a)(ρ0) was given. We remark that P (a)(ρ0) is
an absolute convergent power series for sufficiently small initial values |ρ0|
whose development takes the form

P (a)(ρ0) = ρ0 +
∑
n≥1

cn(a)ρn+1
0 . (7.3)

We recall here the expression of this first return map and the definition of
universal center.

Theorem 7.1 [23] For sufficiently small initial values |ρ0| the first return
map P (a) is an absolute convergent power series (7.3), where

cn(a) =
∑

i1+···+ik=n

ci1,...,ikIi1,...,ik(a), and

ci1,...,ik = (n− i1 + 1) · (n− i1 − i2 + 1) · (n− i1 − i2 − i3 + 1) · · · 1,

and where Ii1...ik(a) is the following iterated integral of order k

Ii1...ik(a) :=

∫
· · ·
∫
0≤s1≤···≤sk≤2π

aik(sk) · · · ai1(s1) dsk · · · ds1.

Of course, equation (7.2) has a center if and only if cn(a) = 0, for all n ≥ 1.
From the form of the first return map P (a), the following definition, given
in [23], follows in a natural way.

Definition 7.2 [23] The differential equation (7.2) has a universal center if
for all positive integers i1, . . . , ik with k ≥ 1 the iterated integral Ii1...ik(a) =
0.
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The expression of the coefficients of the first return map P (a)(ρ0) := ρ(2π; ρ0)
for the Abel differential equation dρ/dθ = a0(θ)ρ + a1(θ)ρ

2 + a2(θ)ρ
3, and

thus for equation (7.1), was given by [48, 49, 3].

We also recall that differential equation (7.2) satisfies the composition
conditions if there is a nonconstant trigonometric polynomial q and there are
polynomials pi ∈ R[z], for i ≥ 1 such that

ãi = pi ◦ q, i ≥ 1, where ãi(θ) =

∫ θ

0

ai(s)ds.

The first time that this definition appears was in the work Alwash and Lloyd
[7]. The composition conditions have been studied by several authors in
different contexts, see for instance [6, 7, 73] and references therein.

Universal centers of equation (7.2) were characterized in [71] through the
following result.

Theorem 7.3 [71] Any center of the differential equation (7.2) is universal
if and only if equation (7.2) satisfies the composition conditions.

In [23] the same result was proved when equation (7.2) has a finite number
of terms.

The aim of this chapter is to study universal and non-universal centers of
an Abel differential equation (7.1) in relation with the degree of the trigono-
metric polynomials a1(θ) and a2(θ). From the results of the previous chapter
it appears to infer that if the degree is less or equal three all the centers are
universal centers. But we are going to see that this is not true.

Recall that equation (7.1) has a universal center when all the iterated in-
tegrals Ii1...ik(a) = 0, for all i1, . . . , ik. Now, each of the indexes i1, . . . , ik can
only take the values 1 or 2. Besides the characterization of universal centers
as composition centers for the Abel trigonometric equation (7.1) proved in
[23, 71], in [43] another characterization is provided in terms of the vanishing
of a finite set of double moments. We assume that the minimal common
period of a1 and a2 is 2π/k, with k ∈ N+.

Theorem 7.4 [43] Equation (7.1) has a universal center if and only if for
all i, j ∈ N satisfying i+ j ≤ 4d/k − 3,∫ 2π

0

ãi1(s)ã
j
2(s)a2(s) ds =

∫ 2π

0

a1(s) ds = 0.

These type of integrals are known as the double moments.
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It is well-known that not all the centers of equation (7.1), and thus of
equation (7.2), are universal, see [2]. Any quadratic system in the plane can
be transformed to an Abel equation of the form (7.1) where a1(θ) and a2(θ)
are trigonometric polynomials of degree 3 and 6 respectively. Moreover in
[71] it is proved that there are centers of a quadratic system which are not
universal (for instance the Darboux component except its intersection with
the symmetric one). Indeed, in [71] it is proved that these non-universal cen-
ters of some quadratic systems give non-universal centers of their associated
Abel equation. A previous and different example of a center of an Abel equa-
tion which is not universal and where a1(θ) and a2(θ) are also trigonometric
polynomials of degree 3 and 6 respectively, is provided in [41]. Hence, the
following open problem is established in the previous chapter.

Open problem: To determine the lowest degree of the trigonometric poly-
nomials a1(θ) and a2(θ) such that the Abel equation (7.1) has a center which
is not universal.

In this paper we solve this open problem, see Theorem 7.6. We recall
that Blinov in [14] proved that the lowest possible degree such that an Abel
equation can have a non-universal center is at least 3.

Proposition 7.5 [14] All the centers of equation (7.1) when a1(θ) and a2(θ)
are trigonometric polynomials of degree 1 and 2 are universal centers and, in
consequence, verify the composition condition.

The proof given in [14] (see also the Appendix Chapter 6) consists in
solving the center problem for equation (7.2) with a1(θ) and a2(θ) of degree
at most 2 and to check that all the center cases are universal. However, this
procedure is unapproachable for higher degrees due to the cumbersome com-
putations needed to solve the center problem. Indeed, Blinov’s result solves
the center and the universal center problem for Abel differential equations
(7.1) up to degree 2. The next equations to be studied are the cubic ones,
i.e., d = 3. This was made partially in the previous chapter.

The following result concludes that the lowest degree of a trigonometric
Abel equation (7.1) with a non-universal center is 3.

Theorem 7.6 The cubic (d = 3) trigonometric Abel differential equation

dρ

dθ
= (cos θ + 2 cos 2θ) ρ2 + (sin θ − sin 2θ + sin 3θ) ρ3, (7.4)

has a center which is not universal.
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The proof of this result is given in Section 8.2.

We recall that there are two big families of universal centers of equation
(7.2) as the following result establishes.

Theorem 7.7 [71] If the differential equation (7.2) has a center which is
either α-symmetric , or of separable variables, then it is universal.

For the case of the Abel trigonometric equation (7.1), we give the following
result about the universal centers which belong to the classes of α-symmetric
or of separable variables differential equations. To simplify notation, we
consider 1 as a prime number.

Proposition 7.8 If the degrees of a1(θ) and a2(θ) are both prime numbers
or they are coprime and the Abel differential equation (7.1) has a universal
center then the differential equation is either α-symmetric or of separable
variables.

As a direct consequence of this result, we have that any universal center
of equation (7.1) with d = 3 is either α-symmetric or of separable variables.

The chapter is organized as follows. Section 7.2 contains the proofs of
the two main results, namely Theorem 7.6 and Proposition 7.8, together with
some preliminary results.

7.2 Preliminary results and proofs of the main

results

As we have stated in the previous section, a way to characterize that equation
(7.2) has a center is to prove the existence of a first integral H(ρ, θ) which
is defined in a neighborhood of ρ = 0 and it is 2π-periodic in θ. A function
which is closely related to a first integrals is the inverse integrating factor.
A function V (ρ, θ) defined in a neighborhood of ρ = 0, of class C1 and non
locally null, is an inverse integrating factor of equation (7.2) if

∂V

∂ρ
F(ρ, θ) +

∂V

∂θ
=

∂F
∂ρ

V (ρ, θ)

and V (ρ, θ) is 2π-periodic in θ. Given an inverse integrating factor V (ρ, θ) of
(7.2), one can construct a first integral H(ρ, θ) of (7.2) through the following
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line integral:

H(ρ, θ) =

∫ (ρ,θ)

(ρ0,θ0)

dρ−F(ρ, θ)dθ

V (ρ, θ)

along any curve connecting an arbitrarily chosen point (ρ0, θ0) (such that
V (ρ0, θ0) 6= 0) and the point (ρ, θ). The following result reads for Corollary
5 in [62] written with our notation and our assumptions, see also [63].

Lemma 7.9 [62] Let V (ρ, θ) be an inverse integrating factor of equation
(7.2) whose leading term in the development around ρ = 0:

V (ρ, θ) = ρµ v(θ) + o(ρµ),

where v(θ) 6≡ 0, is such that either µ = 0 or µ > 1 and µ is not a natural
number, then equation (7.2) has a center, that is ρ = 0 belongs to a continuum
of periodic orbits.

Now we are in conditions to prove our first result.

7.2.1 Proof of Theorem 7.6

For the particular Abel differential equation (7.4), we denote by a1(θ) :=
cos θ + 2 cos 2θ, a2(θ) := sin θ − sin 2θ + sin 3θ and

ã1(θ) :=

∫ θ

0

a1(s)ds, ã2(θ) :=

∫ θ

0

a2(s)ds.

We have that the iterated integral

I221(a) =

∫
0≤s1≤s2≤s3≤2π

a2(s3) a2(s2) a1(s1) ds3 ds2 ds1

= −
∫ 2π

0

ã1(s) ã2(s) a2(s) ds =
π

2
.

Therefore and on account of Theorem 7.3, if equation (7.4) has a center, it
cannot be universal. Moreover, the function

H(ρ, θ) :=
g2 − (cos θ + sin θ − 1)g + 1− cos θ

g2 + (cos θ + sin θ − 1)g + 1− cos θ
· e−4g+2arctan

(
(cos θ−sin θ−1)g

g2+cos θ−1

)
,
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with

g(ρ, θ) =

√
1

ρ
− sin θ + sin 2θ

is a first integral of equation (7.4). This is because the function H(ρ, θ), for
ρ > 0 small enough, is of class C1; is not constant; is periodic in θ of period
2π; and satisfies (∂H/∂ρ)F(ρ, θ) + ∂H/∂θ ≡ 0. Therefore, equation (7.4)
has a center.

Another way to prove this statement is to note that the algebraic function

V (ρ, θ) =
ρ3/2 [2 + 2 sin(2θ)ρ+ (2− 3 cos θ + 2 cos(2θ)− cos(3θ)) ρ2]

2
√

1− (sin θ − sin(2θ)) ρ
,

is an inverse integrating factor of equation (7.4). On account of Lemma 7.9
and since the leading term of the development of V (ρ, θ) around ρ = 0 is
V (ρ, θ) = ρ3/2 + o(ρ3/2) (that is µ = 3/2) we have that equation (7.4) has
a center.

Our second result, Proposition 7.8, relies on the degrees of trigonometric
polynomials. The following result is Lemma 16 of [71] deals with the relation
between degrees of trigonometric polynomials.

Lemma 7.10 [71] Let A(θ) and B(θ) be two trigonometric polynomials of
degrees d and d̄, respectively. The following statements hold.

(a) The trigonometric polynomial A′(θ) is of degree d.

(b) The trigonometric polynomial A(θ)B(θ) is of degree d+ d̄.

(c) Let N(z) be a polynomial in R[z] of degree k, then N(A(θ)) is a trigono-
metric polynomial of degree k d.

7.2.2 Proof of Proposition 7.8

If the Abel differential equation (7.1) has a universal center then we have
that ã1(θ) and ã2(θ) satisfy the composition conditions, i.e., there exist a
nonconstant trigonometric polynomial q(θ) and two real polynomials p1, p2 ∈
R[z] such that ã1(θ) = p1 (q(θ)) and ã2(θ) = p2 (q(θ)). Let di = deg ai for
i = 1, 2. By Lemma 7.10(a), we have that di = deg ãi for i = 1, 2.

Assume first that d1 and d2 are both prime numbers. Then, by Lemma
7.10(c) we have that either deg q = 1 or deg p1 = deg p2 = 1. In the
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case that deg q = 1 the differential equation (7.1) has a center which is α-
symmetric, see [71]. In the case that deg p1 = deg p2 = 1, we have ã1(θ) =
α1q(θ) + β1 and ã2(θ) = α2q(θ) + β2 with αi and βi real numbers, i = 1, 2.
As we can take without loss of generality that q(0) = 0, and since ã1(0) =
ã2(0) = 0, we get that β1 = β2 = 0. Hence in this case equation (7.1) takes
the form

dρ

dθ
= q ′(θ)(α1 ρ

2 + α2 ρ
3),

which is an equation of separable variables.
Assume now that d1 and d2 are coprime. Again by Lemma 7.10(c), we

have that deg q = 1 (or it would be a common divisor of d1 and d2). Thus,
the differential equation (7.1) has a center which is α-symmetric, see [71].



Chapter 8

The composition condition for
Abel differential equations

8.1 Introduction

Consider a planar differential system

ẋ = −y + P (x, y), ẏ = x+Q(x, y), (8.1)

where the dot denotes derivation with respect to an independent real variable
t, x and y are real and where P and Q are real analytic functions without
constant nor linear terms. We recall that a singular point is a center if
in a neighborhood of the singular point all the solutions are periodic. In
this chapter we only consider the singular point at the origin of coordinates
in system (8.1). The center problem consists in determining necessary and
sufficient conditions on P and Q such that system (8.1) has a center at the
origin.

In the particular case that P and Q are homogeneous polynomials system
(8.1) can be transformed into an Abel trigonometric differential equation.
More specifically if P and Q are homogeneous polynomials of degree n, with
n ≥ 2, the process is to take polar coordinates (r, θ) and system (8.1) becomes

ṙ = f(θ)rn, θ̇ = 1 + g(θ)rn−1,

where

f(θ) = P (cos θ, sin θ) cos θ +Q(cos θ, sin θ) sin θ,

g(θ) = Q(cos θ, sin θ) cos θ − P (cos θ, sin θ) sin θ.

125
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Now, as we have made in previous chapters, applying the Cherkas transfor-
mation [34] given by

ρ =
rn−1

1 + g(θ)rn−1
whose inverse is r =

ρ1/(n−1)

(1− ρg(θ))1/(n−1)
,

system (8.1) becomes the Abel trigonometric differential equation

dρ

dθ
= ((1− n)f(θ) + g ′(θ)) ρ2 + ((1− n)f(θ)g(θ)) ρ3.

By the regularity of the Cherkas transformation and its inverse at r = ρ = 0,
system (8.1) has a center at the origin if and only if the former ordinary dif-
ferential equation has a center. Hence we have transformed the center-focus
problem of system (8.1) into a center problem for an Abel differential equa-
tion. Other examples of systems of the form (8.1) which can be transformed
into an Abel differential equation can be found in [50].

In this context a trigonometric Abel differential equation is an ordinary
differential equation of the form

dρ

dθ
= a1(θ)ρ

2 + a2(θ)ρ
3, (8.2)

where ρ is real, θ is a real and periodic independent variable with θ ∈ [0, 2π],
and a1(θ) and a2(θ) are real trigonometric polynomials. We recall that the
center problem for a trigonometric Abel differential equation (8.2) is to char-
acterize when all the solutions in a neighborhood of the solution ρ = 0 are
periodic of period 2π.

Some authors also consider polynomial Abel differential equations as a
model to tackle the center problem for a trigonometric Abel differential equa-
tion, see [17, 18, 19]. We denote as a polynomial Abel differential equation
an ordinary differential equation of the form

dy

dx
= p(x)y2 + q(x)y3, (8.3)

where y is real, x is a real independent variable considered in a real interval
[a, b] and p(x) and q(x) are real polynomials in R[x]. The center problem
for a polynomial Abel equation (8.3) is to characterize when all the solutions
in a neighborhood of the solution y = 0 take the same value when x = a
and x = b, i.e., y(a) = y(b). In this framework, given any real continuous
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function c(x), we denote by c̃(x) :=
∫ x
a
c(σ)dσ and we will say that a real

continuous function w(x) is periodic in [a, b] if w(a) = w(b).
Alwash and Lloyd in [7] provided a sufficient condition for an equation

(8.2) to have a center in [0, 2π]. Inspired by this work, Briskin, Françoise and
Yomdin in [17] provided the following sufficient condition for the polynomial
Abel equation (8.3).

Theorem 8.1 [17] If there exists a real differentiable function w periodic in
[a, b] and such that

p̃(x) = p1(w(x)) and q̃(x) = q1(w(x))

for some real differentiable functions p1 and q1, then the polynomial Abel
equation (8.3) has a center in [a, b].

In [43] it is shown that if the sufficient condition stated in Theorem 8.1 is
satisfied then there is a countable set of definite integrals which need to
vanish. In [43] it is also shown that this is equivalent to the existence of
a real polynomial w(x) with w(a) = w(b) and two real polynomials p1(x)
and q1(x) such that p̃(x) = p1(w(x)) and q̃(x) = q1(w(x)). This sufficient
condition is known as the composition condition.

To see that the composition condition implies that equation (8.3) has
a center in [a, b] one can consider the transformation y(x) = Y (w(x)) in
equation (8.3) in order to obtain the following Abel differential equation

dY

dw
= p′1(w)Y 2 + q′1(w)Y 3. (8.4)

Hence, there is a bijection between the solutions Y = Y (w) of equation (8.4)
and the solutions y = Y (w(x)) of equation (8.3). Since w is periodic in [a, b],
we get that equation (8.3) has a center in [a, b] because y(a) = Y (w(a)) =
Y (w(b)) = y(b).

It turns out that all the known polynomial Abel differential equations
which have a center in [a, b] satisfy the composition condition. The compo-
sition conjecture, see Conjecture 8.3, is that the sufficient condition given in
Theorem 8.1 is also necessary. That is, if a polynomial Abel equation (8.3)
has a center in [a, b], the conjecture states that the composition condition is
satisfied.

For a trigonometric Abel differential equation (8.2), Alwash in [2] showed
that this conjecture is not true, see also [6, 41]. The composition condition
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for a trigonometric Abel differential equation (8.2) is that there exist real
polynomials p1(x), p2(x) ∈ R[x] and a trigonometric polynomial ω(θ) such

that ãi(θ) = pi(ω(θ)), for i = 1, 2. Recall that ãi(θ) :=
∫ θ
0
ai(s)ds. The

fact that ω(θ) and p1, p2 can be taken to be polynomials is proved in [43,
71]. There exist several counterexamples of the fact that the composition
conjecture is not satisfied in the trigonometric case. The authors of [2, 6, 41]
provide examples of trigonometric polynomials a1(θ) and a2(θ) for which the
corresponding trigonometric Abel differential equation (8.2) has a center and
does not verify the composition condition.

The chapter is organized as follows. The following section contains a
summary of some conjectures related to the composition conjecture and the
corresponding results. Section 8.3 is devoted to the known results about the
composition conjecture together with two new statements, cf. Theorems 8.5
and 8.7. These statements are proved in sections 8.4 and 8.6, respectively.
The last section 8.7 contains an appendix with the code of two programs,
written in the language of Mathematica and used in these proofs.

8.2 Some other composition conjectures

In this section we consider the polynomial Abel differential equation

dy

dx
= p(x)y2 + εq(x)y3, (8.5)

where y is real, x is a real variable considered on the real interval [a, b], ε ∈ R
and p(x) and q(x) are real polynomials. We also assume that

∫ b
a
p(s)ds = 0.

One of the problems that can be tackled is to characterize when equation
(8.5) has a center in [a, b] for all ε with |ε| small enough. This type of centers
are called infinitesimal centers or persistent centers , see [6, 41].

The following computations were first performed in [17]. We include
them for the sake of completeness. Given real values ε and y0, we denote by
Yε(x; y0) the solution of equation (8.5) for the value of the parameter ε and
with initial condition y0, that is, the real function Yε(x; y0) satisfies

∂

∂x
Yε(x; y0) = p(x)Yε(x; y0)

2 + εq(x)Yε(x; y0)
3, Yε(a; y0) = y0. (8.6)

We remark that, with this notation, a persistent center is when Yε(b; y0) = y0
for all ε with |ε| small enough and for all y0 with |y0| small enough.
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Recall that we denote p̃(x) =
∫ x
a
p(s)ds. We note that when ε = 0,

equation (8.5) has a center in [a, b] because

Y0(x; y0) =
y0

1− y0p̃(x)
,

and clearly for all |y0| < µp, where

µp := min
x∈[a,b]

1

|p̃(x)|
,

we have that Y0(x; y0) is continuous in [a, b] and Y0(a; y0) = Y0(b; y0) = y0
due to the assumption p̃(b) =

∫ b
a
p(s)ds = 0. Note that µp > 0 and therefore

all the solutions in a neighborhood of y = 0 are defined for all x ∈ [a, b].
Equation (8.5) with ε = 0 has a center in [a, b]. As we have said, this means
that there exists a family of periodic orbits in [a, b] for equation (8.5) with
ε = 0 in a neighborhood of the solution y = 0. The underlying idea when
considering equation (8.5) is to determine which orbits in this family persist
for values of ε with |ε| small enough. Since the dependence of equation (8.5)
in ε is analytic (indeed linear), we have that the dependence of Yε(x; y0) in
ε is analytic. Thus, we can develop this function in ε in a neighborhood of
ε = 0 as

Yε(x; y0) = Y0(x; y0) + π1(x; y0)ε + o(ε).

Since, from (8.6), Yε(a; y0) = y0 and Y0(a; y0) = y0, we deduce that π1(a; y0) =
0. Indeed, we can develop the first equation of (8.6) in powers of ε and equat-
ing the coefficients of ε1 we deduce that

∂

∂x
π1(x; y0) = 2p(x)Y0(x; y0)π1(x; y0) + q(x)Y0(x; y0)

3.

Integrating this linear ordinary differential equation for π1(x; y0) we get that

π1(x; y0) =
y30

(1− y0p̃(x))2

∫ x

a

q(σ)

1− y0p̃(σ)
dσ. (8.7)

Therefore, the necessary and sufficient condition for equation (8.5) to have a
center in [a, b] at first order in ε is that π1(b; y0) = 0. From (8.7), we deduce
that this is to say that ∫ b

a

q(σ)

1− y0p̃(σ)
dσ ≡ 0,
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for all y0 with |y0| close enough to 0. We can develop this integral in powers
of y0 in a neighborhood of y0 = 0 and we get that this condition is equivalent
to ∫ b

a

q(σ) p̃ n(σ) dσ = 0, (8.8)

for all natural numbers n ∈ N ∪ {0}, see [6]. Conditions (8.8) are called
the moment conditions. The composition conjecture for moments is that the
moments conditions imply the composition condition. Moreover, in [20] it is
proved that “at infinity” the center conditions are reduced to the moment
conditions.

A counterexample to the composition conjecture for moments in the poly-
nomial case was given in [104]. We reproduce here this example, see also
[5, 6, 41].

In equation (8.5) we take p(x) = T ′6(x) and q(x) = T ′2(x) + T ′3(x) where
Ti(x) denotes the i-th Chebyshev polynomial and T ′i (x) its derivative. We
have that T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x and T6(x) = (T3 ◦ T2)(x) =
(T2◦T3)(x) = 32x6−48x4+18x2−1. We take also a = −

√
3/2 and b =

√
3/2.

Under these conditions the moment conditions (8.8) are zero taking into
account that T2(

√
3/2) − T2(−

√
3/2) = T3(

√
3/2) − T3(−

√
3/2) = 0. We

note that if an equation (8.5) satisfies the composition condition then the
moment conditions are satisfied. Indeed, if an equation (8.5) satisfies the
composition condition then the following conditions∫ b

a

p(σ)q̃ n(σ)dσ = 0, (8.9)

are satisfied for all natural numbers n ∈ N∪{0}. This is due to the fact that
if p(x) and q(x) satisfy the composition condition then the integrands of the
integrals (8.8) and (8.9) are functions of w(σ) multiplied by w′(σ) and since
w(σ) is periodic in [a, b], we deduce that they all need to be zero. Now we
see that there are integrals in (8.9) for this example that are not zero. For
instance, ∫ b

a

p(σ)q̃ 2(σ)dσ =

∫ √3/2
−
√
3/2

T ′6(σ)(T2(σ) + T3(σ))2dσ 6= 0.

Hence, equation (8.5) with p(x) = T ′6(x) and q(x) = T ′2(x) + T ′3(x) does not
satisfy the composition condition.
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We even have a stronger result. If one considers the differential equa-
tion of this example with ε = 1, this equation does not have a center in
[−
√

3/2,
√

3/2]. Easy computations show that the sixth Poincaré–Liapunov
constant is v6 = 432

√
3/385. We have used the method explained in sec-

tion 8.4 to compute the Poincaré–Liapunov constants v2, v3, v4, v5 and v6.
Therefore, this example shows that if the equation has a center at first order
of ε, then it is not necessary that the equation has a center when ε = 1.

In the trigonometric case, that is, if one considers a trigonometric Abel
differential equation of the form

dρ

dθ
= a1(θ)ρ

2 + εa2(θ)ρ
3, (8.10)

where ρ is real, θ is a real and periodic independent variable with θ ∈ [0, 2π]
and ε is a real value close to 0, one can define the composition conjecture
for moments analogously to the polynomial case. The moment conditions in
this case write as ∫ 2π

0

ãn1 (θ)a2(θ)dθ = 0, (8.11)

with n ∈ N ∪ {0}. It is also possible to construct a counterexample of
the composition conjecture for moments as the following example shows.
We take in equation (8.10) a1(θ) = sin 3θ and a2(θ) = cos θ. In this case
ã1(θ) = (1−cos 3θ)/3. It is easy to see that ãn1 (θ) will be a linear combination
of the trigonometric functions 1, cos 3θ, cos 6θ, . . . all of them orthogonal to
a2(θ) = cos θ. Hence all the moment conditions (8.11) are satisfied. However
the integrals ∫ 2π

0

a1(θ)ã
n
2 (θ)dθ, (8.12)

with n ∈ N ∪ {0}, are in general not zero.

In [100], the characterization of all the pairs of real polynomials p(x) and
q(x) for which the moment conditions (8.8) are satisfied is given. We note
that this result characterizes all the Abel differential equations (8.5) with a
center at first order of ε.

Theorem 8.2 [100] Given p(x) and q(x) ∈ R[x] and a < b ∈ R. The
moment conditions ∫ b

a

q̃(σ) p n(σ) dσ = 0,
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for all n ∈ N ∪ {0} are satisfied if and only if there exist w1(x), w2(x), . . .,
wm(x) ∈ R[x] with m ≥ 1 and wi(a) = wi(b) for i = 1, 2, . . . ,m such that

p̃(x) = p1(w1(x)) = · · · = pm(wm(x)) and q̃(x) =
m∑
i=1

qi(wi(x)),

where pi(x) and qi(x) ∈ R[x] for i = 1, 2, . . . ,m.

In [100] several examples are given for which the conditions stated in Theorem
8.2 are given and the composition condition is not satisfied.

However, in [41] it is shown that the natural translation of Theorem 8.2
to the trigonometric case does not hold. That is, it can be shown that there
are differential equations of the form (8.10) with a center at first order of ε
which do not satisfy the thesis of Theorem 8.2. The characterization of the
trigonometric Abel differential equations (8.10) with a center at first order
of ε is an open problem.

In [41] it is proved that the existence of a center in [a, b] for all ε small
enough of equation (8.5) (that is, a persistent center) implies the conditions
(8.8) and (8.9). In the trigonometric case, it is also shown that if equation
(8.10) has a persistent center then the conditions (8.11) and (8.12) need to
be verified.

Recently in [106] it is proved that if conditions (8.8) and (8.9) for a
polynomial Abel differential equation (8.5) are verified, then the composition
condition is satisfied.

In the trigonometric case, that is for equation (8.10), if all moments con-
ditions (8.11) and (8.12) are satisfied then equation (8.2) does not necessarily
satisfy the composition condition, see [41]. However, under these hypothe-
sis, it may happen that the equation (8.10) with ε = 1 has a center as the
example of section 3 in [41] shows, see also [42].

The generalized moment conditions are∫ b

a

p̃ n(σ)q̃ m(σ)q(σ)dσ = 0 and

∫ b

a

p̃ n(σ)q̃ m(σ)p(σ)dσ = 0

for all n,m ∈ N∪{0}. A proof that the generalized moment conditions imply
that the polynomial Abel equation satisfy the composition condition is given
in [24, 105, 41]. A proof of the translation of this fact for the trigonometric
Abel equation is given in [42].
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In [43] the authors provide an explicit bound of the number of generalized
moments (also called double moments) that have to vanish to ensure that
an Abel differential equation, either in the trigonometric form (8.2) or in
the polynomial form (8.3), satisfies the composition condition. This result
allows to recognize the centers which satisfy the composition condition or
simply composition centers for polynomial and trigonometric Abel differential
equation. This last result is used in the next section to computationally
approach the composition conjecture. In [22] the definition of universal center
was introduced, which coincides with the definition of composition center, see
[23, 71].

8.3 Composition conjecture

Given a polynomial Abel differential equation (8.3), the center variety is
the set of polynomials p(x) and q(x) for which the equation has a center in
[a, b] and the composition center variety is the set of polynomials p(x) and
q(x) for which the equation has a universal or composition center (that is
the composition condition is verified) in [a, b]. After all that we have said
in the previous sections the statement of the composition conjecture is the
following.

Conjecture 8.3 For any polynomial Abel differential equation (8.3) the cen-
ter variety and the composition center variety coincide.

We recall that this conjecture is not true for trigonometric Abel differ-
ential equations, see [2, 6, 41, 71, 73, 74]. Moreover in [74] was proved that
the lowest degree of a trigonometric Abel differential equation (8.2) with a
non-composition center is 3. Conjecture 8.3 is satisfied under certain restric-
tions of the coefficients of the polynomial Abel differential equation, see for
instance Theorem 2 in [6] and Theorem 2 in [15].

However a systematic verification of Conjecture 8.3 has not been done.
The aim of this section is to verify if all the centers of the polynomial Abel
differential equation (8.3) for lower degrees of p and q are composition centers.
We also analyze the case in which the number of monomials in p(x) and q(x)
is up to 2.

As we have said, in [42] another characterization of the composition cen-
ters is provided in terms of the vanishing of a finite set of generalized moments
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or double moments. As usual for a polynomial p(x) ∈ R[x], δp denotes the
degree of p.

Theorem 8.4 [43] Given p, q ∈ R[x] with max(δp, δq) = n, equation (8.3)
has a composition center if and only if for all i, j ∈ N∪{0} satisfying i+ j ≤
2n− 3, ∫ b

a

p̃i(x)q̃j(x)q(x) dx =

∫ b

a

p(x) dx = 0. (8.13)

This characterization of the composition centers allows to discriminate
the composition centers from other centers and approaches the conjecture
from a computational point of view. The main results of the paper are the
following.

Theorem 8.5 For any polynomial Abel differential equation with degree given
by max(δp, δq) ≤ 3 the center variety and the composition center variety co-
incide.

The proof of Theorem 8.5 is given in section 8.4.

We have also dealt with the case in which max(δp, δq) = 4. In this case
we cannot end up with all the computations to ensure that the center variety
and the composition center variety coincide. In section 8.5, we will make use
of modular arithmetics and the algorithm described in [114] which provide
the center variety with a probability close to 1. All the pairs p(x) and q(x)
that we find using this algorithm give rise to composition centers. Therefore,
we can state the following conjecture.

Conjecture 8.6 For any polynomial Abel differential equation with degree
max(δp, δq) = 4 the center variety and the composition center variety coin-
cide.

The computations motivating this conjecture are given in section 8.5.

Given a polynomial Abel differential equation (8.3) defined in the real
interval [a, b], with a < b, we can make the following change of the indepen-
dent variable x→ (x−a)/(b−a). This leads to an Abel differential equation
defined on the real interval [0, 1].
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Theorem 8.7 Consider a polynomial Abel differential equation (8.3) defined
on the real interval [0, 1]. Assume that p and q only have two monomials,
that is,

p(x) = aix
i + ajx

j and q(x) = amx
m + anx

n,

with ai, aj, am, an ∈ R and i, j,m, n ∈ N ∪ {0}. Then the center variety and
the composition center variety coincide.

The proof of Theorem 8.7 is given in section 8.6.

8.4 Proof of Theorem 8.5

Given an ordinary differential equation of the form (8.3), there is a well known
general method to compute center conditions which was proved by Poincaré.
We will denote the center conditions as the Poincaré–Liapunov constants for
equation (8.3). In order to compute them we propose a formal first integral
of the form H(y, x) = y +

∑∞
k=2 hk(x)yk, where hk(x) are polynomials. We

recall that a first integral for an equation (8.3) satisfies that Ḣ = ẏ ∂H/∂y+
ẋ ∂H/∂x ≡ 0, where ẏ = p(x)y2 + q(x)y3, ẋ = 1. By imposing that Ḣ = 0,
we obtain the following recursive system of linear differential equations

h′k(x) + (k − 1)p(x)hk−1(x) + (k − 2)q(x)hk−2(x) = 0, (8.14)

for k ≥ 2 and with h0(x) ≡ 0 and h1(x) ≡ 1. From the recursive system (8.14)
we compute the polynomials hk(x) and we obtain the Poincaré–Liapunov
constant vk := hk(b) − hk(a). The equation has a center in [a, b] if vk = 0
for all k ≥ 2. We note that vk is a polynomial in the coefficients of p(x) and
q(x).

We denote the coefficients of p(x) and q(x) in the following way p(x) =∑3
i=0 bix

i, q(x) =
∑3

i=0 cix
i.

In order to proof the result we have computed fifteen necessary conditions
vk = 0 for k = 2, . . . , 16. These necessary conditions are very long, so we
do not present them here. However, one can check our computations with
the help of any available computer algebra system. In this case, in order
to obtain the families of centers we look for the irreducible decomposition
of the variety V (I) of the ideal I = 〈v2, v3, . . . , v16〉. This is an extremely
difficult computational problem. We have used the routine minAssGTZ of
the computer algebra system Singular [81] and we have found the irreducible
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decomposition of the variety of the ideal I over the field of rational numbers
when max(δp, δq) ≤ 3.

The obtained decomposition consists of 2 components defined by the fol-
lowing ideals

1) 〈2c2 + 3c3, 4c0 + 2c1 − c3, 2b2 + 3b3, 4b0 + 2b1 − b3〉;

2) 〈b3c2 − b2c3, b3c1 − b1c3, b2c1 − b1c2, 12c0 + 6c1 + 4c2 + 3c3, 12b0 + 6b1 +
4b2 + 3b3〉;

The generalized moment conditions ui are obtained computing the inte-
grals (8.13) and in this case we have found the irreducible decomposition of
the variety of the ideal J = 〈u1, u2, . . . , u17〉 over the field of rational numbers.
To deduce if all the centers are composition centers we must only compare
both decompositions and in both cases they are the same.

8.5 On the Conjecture 8.6

As before, we denote the coefficients of p(x) and q(x) in the following way
p(x) =

∑4
i=0 bix

i, q(x) =
∑4

i=0 cix
i. We have computed fifteen necessary

conditions vk = 0 for k = 2, . . . , 16, that we do not present here. In order
to obtain the families of centers we look for the irreducible decomposition of
the variety V (I) as in the previous section. In this case, however, we cannot
find the irreducible decomposition of the variety of the ideal I over the field
of rational numbers due to the computational difficulty. We try to find this
irreducible decomposition over a finite field. We take the prime p = 32003
and we have found this decomposition over the finite field Z/(p). We have
chosen this prime because the algorithm turned out to be very efficient and
goes to a reasonable speed when using it.

We have followed the algorithm described in [114] which makes use of
modular arithmetics. The modular approach used to obtain center conditions
consists on the following five steps.

Step 1. Choose a prime number p and from the ideal I compute the minimal
associated primes Ĩ1, . . . , Ĩs with coefficients in Zp,

Step 2. Using the rational reconstruction algorithm of Wang et al. [124], we
obtain the ideals Ii, i = 1, . . . , s, with coefficients in Q,



8.5 On the Conjecture 8.6 137

Step 3. For each i, using the radical membership test, check whether the poly-
nomials vk for k = 2, . . . , 16 are in the radicals of the ideals Ii, that is,
whether the reduced Gröbner basis of the ideal < 1−wvj, Ii > is equal
to {1}, where w is a mute variable. If yes, then go to Step 4, otherwise
take another prime p and go to Step 1.

Step 4. Compute the intersection over the rational numbers Q = ∩si=1Ii,

Step 5. Check that
√
Q =

√
I, that is, that for any qi ∈ Q, the reduced Gröbner

basis of the ideal < 1−wqi, I > is equal to {1} and for any vj ∈ I, the
reduced Gröbner basis of the ideal< 1−wvj, Q > is equal to {1}. Recall
that I = 〈v2, v3, . . . , v16〉. If this is the case, then V (I) = ∪si=1V (Ii). If
not, then go to Step 1 and choose another prime p.

We note that whenever we compute the Gröbner basis of an ideal, we must
to do it over the field of rational numbers.

The last step of this algorithm has not been verified into the field of
rational numbers. However, we have checked it over finite fields Z/(p), with
different prime numbers p. This last step ensures that all the points of the
variety V (I) have been found. That is, we know that all the encountered
points belong to the decomposition of V (I) but we do not know whether
the given decomposition is complete. We remark that, nevertheless, it is
practically sure that the given list is complete, see for instance [11, 80, 114].
Therefore, in the following we provide sufficient conditions to have a center,
which are practically necessary. We denote this situation by the expression
with probability close to 1.

The obtained decomposition for the case max(δp, δq) = 4 consists of 2
components defined by the following ideals

1) 〈c4, 2c2 + 3c3, 4c0 + 2c1 − c3, b4, 2b2 + 3b3, 4b0 + 2b1 − b3〉;

2) 〈b4c3−b3c4, b4c2−b2c4, b3c2−b2c3, b4c1−b1c4, b3c1−b1c3, b2c1−b1c2, 60c0+
30c1 + 20c2 + 15c3 + 12c4, 60b0 + 30b1 + 20b2 + 15b3 + 12b4〉;

The generalized moment conditions ui are obtained computing the inte-
grals (8.13) and in this case we have found the irreducible decomposition of
the variety of the ideal J = 〈u1, u2, . . . , u17〉 over the field of rational numbers.
To deduce if all the centers are composition centers we must only compare
both decompositions and in both cases they are the same.
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For the case max(δp, δq) = 5 without loss of generality we can divide the
study in two cases: either b5 = 1 or b5 = 0 and c5 = ±1. We get these
cases by a rescaling of the form y = kY with k 6= 0. Even in the simple case
that b5 = 0 and c5 = ±1, and using modular arithmetics, we have not been
able to find the irreducible decomposition of the variety V (〈v2, v3, . . . , v16〉).

8.6 Proof of Theorem 8.7

In equation (8.3) we write p(x) = aix
i + ajx

j and q(x) = amx
m + anx

n.
Using the method of construction of a formal first integral described at the
beginning of section 8.4, we obtain that the first Poincaré–Liapunov constant
is v2 = −(1+j)ai−(1+i)aj. All the Poincaré–Liapunov constants computed
in this section have been obtained by using the algorithm described in the
appendix. The vanish of v2 gives us ai = (1 + i)aj/(1 + j). The second
Poincaré–Liapunov constant is v3 = −(1 + n)am − (1 + m)an. Vanishing
this constant we obtain an = (1 + n)am/(1 + m). We note that at this
moment we have that p̃(x) =

∫ x
0
p(σ)dσ and q̃(x) =

∫ x
0
q(σ)dσ satisfy that

p̃(0) = p̃(1) = 0 and q̃(0) = q̃(1) = 0.

The third Poincaré–Liapunov constant is given by v4 = −ajam(i−j)(m−
n)(i + j + ij −m− n−mn). We divide the study of the vanishing of v4 in
three cases.

First case: ajam = 0. When aj = 0 we have that ai = 0 and then
p(x) ≡ 0. This case gives a differential equation with separated variables
which forms a composition center (recall that q̃(0) = q̃(1) = 0). In the case
that am = 0 we get an analogous result.

Second case: (i−j)(m−n) = 0. If i = j then p(x) has a single monomial
p(x) = ajx

j and then p̃(x) = ajx
j+1/(j + 1). The condition p̃(1) = 0

implies that aj = 0 and, hence, p(x) ≡ 0. We get again a differential
equation with separated variables which forms a composition center (recall
that q̃(0) = q̃(1) = 0). In the case that m = n we get an analogous result.

Third case: i + j + ij −m − n −mn = 0. We take i = (−j + m + n +
mn)/(1 + j). The next Poincaré–Liapunov constant is

v5 = −2a2jam(j −m)(j − n)(m− n)(2j + j2 −m− n−mn)2.

Excluding the previous cases, we get that either j = n or (2j + j2 − m −
n − mn) = 0. In the case that j = n we get that there exists a constant
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C such that p(x) = Cq(x) which forms a composition center. In the latter
case (2j + j2 −m− n−mn) = 0, we obtain that i = j and, thus, p(x) ≡ 0.

8.7 Appendix

Program to compute the Poincaré–Liapunov constants for an equation (8.3)
defined in the interval [0, 1] and with p and q polynomials up to degree 5.

p = b0 + b1x + b2x2 + b3x3 + b4x4 + b5x5;
q = c0 + c1x + c2x2 + c3x3 + c4x4 + c5x5;
h = −Apply[Plus, Integrate[Cases[Expand[p], ], x]];
Numerator[Factor[(h/.x− > 1)− (h/.x− > 0)]] >> v2.txt
hh = h;h = −Apply[Plus, Integrate[Cases[Expand[2 ∗ p ∗ hh + q], ], x]];
Numerator[Factor[(h/.x− > 1)− (h/.x− > 0)]] >> v3.txt
For[k = 4, k < 16, k + +, hhh = hh;hh = h;
h = −Apply[Plus, Integrate[Cases[Expand[(k − 1) ∗ p ∗ hh
+(k − 2) ∗ q ∗ hhh], ], x]];
Put[Numerator[Factor[(h/.x− > 1)− (h/.x− > 0)]],
StringJoin[”v”, T oString[k], ”.txt”]]]

Program to compute the moment conditions for an equation (8.3) defined
on [0, 1].

p = b0 + b1x + b2x2 + b3x3 + b4x4 + b5x5;
q = c0 + c1x + c2x2 + c3x3 + c4x4 + c5x5;
P = Integrate[p/.x− > z, z, 0, x];
Q = Integrate[q/.x− > z, z, 0, x];
Numerator[Factor[Integrate[p, x, 0, 1]]] >> u1.txt;
Numerator[Factor[Integrate[q, x, 0, 1]]] >> u2.txt;
For[i = 1, i < 8, i + +, For[j = 1, j < i + 1, j + +,
Put[Numerator[Factor[Apply[Plus, Integrate[Cases[
Expand[P∧(i− j) ∗Q∧j ∗ p], ], x, 0, 1]]]],
StringJoin[”u”, T oString[2 + (i− 1)i/2 + j], ”.txt”]]]]
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[51] H. Dulac, Détermination et intégration d’une certaine classe d’équa-
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Mathematical Topics] Hermann, Paris, 1992.

[53] Z. Elliot, Sur les invariants d’une classe d’équations du premier ordre,
C. R. Acad. Sci. Paris (1890) 110, 629–632.

[54] W.W. Farr, C. Li, I.S. Labouriau, W.F. Langford, Degenerate
Hopf-bifurcation formulas and Hilbert’s 16th problem, SIAM J. of Math.
Anal. 20 (1989), 13-29.

[55] J.P. Françoise, Successive derivatives of a first return map, Ergodic
Theory Dynam. Systems 16 (1996), no. 1, 87–96.



146 BIBLIOGRAPHY

[56] J.P. Françoise, R. Pons, Computer algebra methods and the stability
of differential systems, Random Comput. Dynam. 3 (1995), no. 4, 265–
287.

[57] J.P. Françoise, N. Roytvarf, Y. Yomdin, Analytic continuation
and fixed points of the Poincare mapping for a polynomial Abel equation,
J. Eur. Math. Soc. 10 (2008), 543-570.
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and the Poincaré map, Trans. Amer. Math. Soc., 362 (2010), 3591–3612.
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