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Abstract

As the transistor budgets outpace the power envelope (the power-wall issue), new architectural and
microarchitectural techniques are needed to improve, or at least maintain, the power efficiency of next-
generation processors. Run-time adaptation, including core, cache and DVFS adaptations, has recently
emerged as a promising area to keep the pace for acceptable power efficiency.

However, none of the adaptation techniques proposed so far is able to provide good results when we
consider the stringent power budgets that will be common in the next decades, so new techniques that
attack the problem from several fronts using different specialized mechanisms are necessary. The com-
bination of different power management mechanisms, however, bring extra levels of complexity, since
other factors such as workload behavior and run-time conditions must also be considered to properly
allocate power among cores and threads.

To address the power issue, this thesis first proposes Chrysso, an integrated and scalable model-driven
power management that quickly selects the best combination of adaptation methods out of different core
and uncore micro-architecture adaptations, per-core DVFS, or any combination thereof. Chrysso can
quickly search the adaptation space by making performance/power projections to identify Pareto-optimal
configurations, effectively pruning the search space. Chrysso achieves 1.9× better chip performance over
core-level gating for multi-programmed workloads, and 1.5× higher performance for multi-threaded
workloads.

Most existing power management schemes use a centralized approach to regulate power dissipation.
Unfortunately, the complexity and overhead of centralized power management increases significantly
with core count rendering it in-viable at fine-grain time slices. The work leverages a two-tier hierarchical
power manager. This solution is highly scalable with low overhead on a tiled many-core architecture
with shared LLC and per-tile DVFS at fine-grain time slices. The global power is first distributed across
tiles using GPM and then within a tile (in parallel across all tiles). Additionally, this work also proposes
DVFS and cache-aware thread migration (DCTM) to ensure optimum per-tile co-scheduling of compatible
threads at runtime over the two-tier hierarchical power manager. DCTM outperforms existing solutions
by up to 12% on adaptive many-core tile processor.

With the advancements in the core micro-architectural techniques and technology scaling, the perfor-
mance gap between the computational component and memory component is increasing significantly
(the memory-wall issue). To bridge this gap, the architecture community is pushing forward towards
multi-core architecture with on-die near-memory DRAM cache memory (faster than conventional DRAM).
Gigascale DRAM Caches poses a problem of how to efficiently manage the tags. The Tags-in-DRAM de-
signs aims at efficiently co-locate tags with data, but it still suffer from high latency especially in multi-way
associativity.

The thesis finally proposes Tag Cache mechanism, an on-chip distributed tag caching mechanism with
limited space and latency overhead to bypass the tag read operation in multi-way DRAM Caches, thereby
reducing hit latency. Each Tag Cache, stored in L2, stores tag information of the most recently used DRAM
Cache ways. The Tag Cache is able to exploit temporal locality of the DRAM Cache, thereby contributing
to on average 46% of the DRAM Cache hits.
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Chapter 1
Introduction

For several decades, semiconductor devices have seen tremendous progress in performance and function-
ality due to exponential growth in the number of transistors per chip. In 1971, the Intel 4004 processor
held 2300 transistors. In early 2014, Intel released Xeon Ivy Bridge-Ex with more than 4.3 billion tran-
sistors [6]. This exponential growth in number of transistors is popularly known as Moore’s law [129],
which states that the number of transistors in a chip doubles approximately every two years. Each suc-
ceeding technology generation has introduced new obstacles in taking benefit from the increased chip
transistor count.

First, the power dissipation of the microprocessors started reaching sky high and semiconductor indus-
try hit the power wall, where the performance improvements of microprocessor were limited by power
constraints [72]. It motivated the research in low power computing techniques such as dynamic voltage
and frequency scaling (DVFS), near threshold computing (NTC) and sub-threshold operations. According
to Dennard scaling [43], as transistors get smaller their power density stays constant, so that the power
used stays in proportion with area. The breakdown of Dennard scaling and the failure of Moore’s law
to yield dividends in improved performance [24, 65] prompted a switch among chip manufacturers to
focus on multi-core processors [96]. In the multi-core revolution with increasing number of cores, oper-
ating all cores simultaneously requires exponentially high energy per chip. However, whereas the energy
requirements grow, chip power delivery and cooling limitations remain largely unchanged across tech-
nologies imposing the power wall [79]. As a result we will soon be incapable of operating all transistors
simultaneously, pushing multi-core scaling to an end [52, 71]. This trend is leading us into an era of
dark silicon [52] where we will be able to build denser devices but we will not be able to power them up
entirely.

Second, the rate of improvement in microprocessor speed exceeds the rate of improvement in off chip
memory (DRAM) speed [177]. This—referred as memory wall problem—drives the innovation towards
creating low latency caches and other higher-level techniques such as prefetching [140, 146]. In addition
technique like multi-threading [168] either reduces the memory latency, or keep the processor occupied
for longer latency memory operations.

In this thesis, we address the power-wall and memory-wall issues in the future many-core processors and
propose solutions to mitigate/manage these challenges. Before we dwell in the details of the thesis, we
first describe the issues related to performance and power in multi/many-core processors.

1.1 Performance: Issues and Challenges

Moore’s Law [129] (the doubling of transistors on chip every 2 years) has been a fundamental driver of
computing, see Figure 1.1. In the past four decades, there has been a consistent and exponential increase
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Figure 1.1: Moore’s Law and microprocessor transistor count.

in performance of processors through advancements in transistors, circuits, micro architecture and com-
pilers. Dennard’s scaling theory showed how to reduce the dimensions and the electrical characteristics
of a transistor proportionally to enable successive shrinks that simultaneously improved density, speed,
and energy efficiency. The end of Dennard scaling, process technology scaling can sustain doubling the
transistor count every generation, but with significantly less improvement in transistor switching speed
and energy efficiency. This transistor scaling trend presages a divergence between energy efficiency gains
and transistor density increases. The recent shift to multi-core designs, which was partly a response
to the end of Dennard scaling, aimed to continue proportional performance scaling by utilizing the in-
creasing transistor count to integrate more cores, which leverage application and/or task parallelism,
see Figure 1.2. Even though power and energy have become the primary concern in system design, it is
difficult to predict how severe the power problem will be for multi-core scaling, especially given the large
multi/many-core design space.

Previous studies [79] showed that regardless of chip organization and topology, multi-core scaling is
power limited to a degree underestimated by the computing community. Based on estimates in 2011,
about 21% of a fixed-size chip would be powered off at 22 nm technology. Esmaeilzadeh et al. [52]
estimated that at 8 nm, this number grows to more than 50%. The authors further emphasized that by
2024, only 7.9× average speedup is possible across commonly used parallel workloads, leaving a nearly
24-fold gap from a target of doubled performance per generation. Based on current technology scaling
trend, the full scale commercial implementation of 10 nm technology node is expected to be available in
2017–2019 (based on Intel’s new technology scaling trend, the 5 nm technology node will happen around
2020–2022 [92]). Further investigations also show that beyond a certain point increasing the core count
does not translate to meaningful performance gains. These power and parallelism challenges threaten to
end the multi-core era, defined as the era during which core counts grow appreciably.

1.1.1 Multi/Many-core Processor

The concept of multiple cores may seem trivial at first instance. However, as we will see in the section
about scalability issues there are numerous trade-offs to be considered.

2



1.1. PERFORMANCE: ISSUES AND CHALLENGES

Figure 1.2: 40 years of microprocessor data (or Microprocessor data [1975–2015]) [151].

First of all, we need to consider whether the processor should be homogeneous or expose some hetero-
geneity. Most current general purpose multi-core processors are homogeneous both in instruction set
architecture and/or performance. This means that the cores can execute the same binaries and that it
does not really matter, from functional point of view, on which core a program runs. Recent multi-core
architectures, however, allow for system software to control the clock frequency for each core individ-
ually in order to either save power or to temporarily boost single-thread performance. Most of these
homogeneous architectures also implement a shared global address space with full cache coherency, so
that from a software perspective, one cannot distinguish one core from the other even if the process (or
thread) migrates during run-time.

On the contrary, a heterogeneous architecture features at least two different kinds of cores that may
differ in both the instruction set architecture (ISA) and functionality and performance. The example
of a heterogeneous multi-core architecture is the Cell BE architecture, jointly developed by IBM, Sony
and Toshiba [66] and used in areas such as gaming devices and computers targeting high performance
computing. A homogeneous architecture with shared global memory is undoubtedly easier to program for
parallelism—that is when a program can make use of the whole core—than a heterogeneous architecture
where the cores do not have the same instruction set. On the other hand, in the case of an application
which naturally lends itself to be partitioned into long-lived threads of control with little or regular
communication, it makes sense to manually put the partitions onto cores that are specialized for that
specific task.

Secondly, internally the organization of the cores can show major differences. Most high-performance
designs also have cores with speculative dynamic instruction scheduling done in hardware [160]. These
techniques increase the average number of instructions executed per clock cycle. However, they are
of less importance with modern multi-core architectures because of limited instruction-level parallelism
(ILP) in legacy applications. Besides, these techniques tend to be both complicated and power-hungry
as well as taking up valuable silicon real estate. In some cases these techniques might not compensate
the hardware investment. In fact, some recent architectures such as Intel’s Knights Corner [157] have
reverted to simple in-order cores augmented with specialized accelerators, in an attempt to reduce the
silicon footprint and power consumption of each core. In the next subsection, we highlight the issues in
the era of many-core processor.

3



1.1.2 Issues in the Era of Many-core Processor

So far in this chapter we looked at the current well established technologies used in building multi-core
processors as well as at the emerging technologies that are targeting some of the shortcomings of current
technologies. On fabrication front, major chip manufacturers estimate that it is possible to reach approx-
imately 6 nm using the current CMOS technologies. As the size of transistors will be measured in just a
few tens of atoms at most, quantum effects will have to be taken into account and consequently we will
see an increased unreliability of the hardware, with components failing more often and more importantly
intermittently. The unreliability of future hardware will likely lead to the implementation of redundant
execution mechanisms. Multiple cores could be configuration to perform the same computation, in order
to increase the probability that at least one will succeed; in some cases a voting scheme on the result
(verifying if all the computations yielded the same result) may be used to guarantee correctness of the
calculation. Such mechanisms will likely be invisible to the software, but will impact the complexity of
the design.

Another issue is the scalability bottleneck in future many-core processor.

• Scalability bottleneck issue related to design of cache coherency protocols [148]. Synchronizing ac-
cess to the same memory area from large number of cores will increase the complexity of coherency
design and will lead to increasing delay and latency in accessing frequently modified memory ar-
eas. In our view, it will be an uphill battle to maintain a coherent view across hundreds, let alone a
thousand cores; even if we will be able to do this, it will be hard to justify the cost associated with
it.

• Memory bandwidth will be another scalability bottleneck [135]. The leveling out of the core fre-
quency will lead to reduced latency, but the increase in the number of cores will multiply the amount
of data required by the cores and thus the aggregate memory bandwidth that future chips will re-
quire. If we will indeed see the continuation of Moore’s law, translated into an ever-increasing
number of cores—perhaps following the same trend of doubling core count every two years—a
similar trend would need to be followed by memory bandwidth, something the industry failed to
deliver in the past.

Based on these observed bottlenecks, the following trends will dominate the design of future many-core
processors:

• Shift towards simple, low frequency, low complexity cores, coupled with an increase of the core
count to the level of several hundreds within five to ten years; heterogeneity—not in ISA, but
rather in core capabilities—will play a role simply because it is an easy optimization gain.

• Focus on novel memory technologies that can deliver higher bandwidth access; technologies such
as 3D-stacking [135] and optical interconnects [19] will see an accelerated uptake by mainstream
processor designs; especially optical interconnects have the potential of easing some of the pressure
on how chips are structured and interconnected.

• The size of on-chip memory will also see a dramatic increase and we will see innovations emerging
that will reduce the footprint, power consumption and complexity of designing such solutions,
similar to the development of the embedded DRAM technology; once again 3D-stacking may be
one of the technologies to watch.

• HW accelerators will be abundant—these have low footprint and low power consumption, thus we
will see realizations in HW of an increasing array of algorithms.

• Aggressive power optimization mechanisms—near threshold operation [45], full or selective power
gating [109], dynamic frequency and voltage scaling [104]—will be pervasive not only in tradition-
ally low power domains, but also in most areas where processors are used.

Some of these observations/predictions may fade away, but, in the absence of a revolutionary new method
of designing processors, increasing core count, heterogeneity and reliance on aggressive power optimiza-
tion methods will likely dominate the chip industry for the coming five to ten years.
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1.2. POWER/ENERGY ISSUES

1.2 Power/Energy Issues

Power has become a vital design goal in recent years within the computer architecture and design com-
munity. Previously, low-power circuit, chip, and system design was considered the purview of specialized
communities, but this is no longer the case, as even high-performance chip manufacturers can be blind-
sided by power dissipation problems.

1.2.1 Power Dissipation in Processors

Power dissipation in CMOS circuits arises from two different mechanisms:

• Dynamic power—largely the result of switching capacitive loads between two different voltage
states.

• Static/Leakage power—caused by the transistor not completely turning off.

Dynamic power is dependent on frequency of circuit activity, while static power is independent of the
frequency of activity and exists whenever the chip is powered on. When CMOS circuits were first used,
one of their main advantages was the negligible leakage of current flowing with the gate at DC or steady
state. Practically all of the power consumed by CMOS gates was due to dynamic power consumed during
the transition of the gate. In charging a load capacitor C up ∆V volts and discharging it to its original
voltage:

• A gate pulls an amount of current equal to C ·∆V from the Vdd supply to charge up the capacitor
and then sinks this charge to ground discharging the node.

• At the end of a charge/discharge cycle, the gate/capacitor combination has moved C ·∆V of charge
from Vdd to ground, which uses an amount of energy equal to C ·∆V · Vdd that is independent of
the cycle time.

The average dynamic power of the node, i.e. the average rate of its energy consumption, is given by the
following equation [38]:

Pdynamic = C ·∆V · Vdd · α · f (1.1)

where, f is the clock frequency and α is the expected activity ratio of the node or circuit array.

The dynamic power for the whole chip is the sum of this equation over all nodes in the circuit. Using
Equation 1.1 we know the factors which can reduce the dynamic power of a system. We can either
reduce the capacitance being switched, the voltage swing, the power supply voltage, the activity ratio, or
the operating frequency. Most of these options are available to a designer at the architecture level. For a
specific chip, the voltage swing ∆V is usually proportional to Vdd, so Equation 1.1 is often simplified to
the following:

Pdynamic = C · V 2
dd · α · f (1.2)

Static power or leakage power is due to our inability to completely turn off the transistor, which leaks cur-
rent in the sub-threshold operating region [165]. The gate couples to the active channel mainly through
the gate oxide capacitance, but there are other capacitances in a transistor that couple the gate to a “fixed
charge” (charge which cannot move) present in the bulk and not associated with current flow [136, 137].
If these extra capacitances are large (note that they increase with each process generation as physical di-
mensions shrink), then changing the gate bias merely alters the densities of the fixed charge and will not
turn the channel off. Static/leakage power is proportional to Vdd. For a particular process technology, the
per-device leakage power is given as follows [32]:
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Pstatic = Ileakage · V 2
dd (1.3)

Static energy is the product of static power times the duration of operation. It is clear from Equation 1.3
what can be done to reduce the leakage power dissipation of a system:

• Reduce leakage current Ileakage.
• Reduce the power supply voltage Vdd.

Both options are available to a designer at the architecture level. To lower leakage power and maintain
device operation, voltage levels are set according to the silicon bandgap and intrinsic built-in potentials, in
spite of the conventional scaling algorithm. The rate at which physical dimensions such as gate length and
gate oxide thickness have been reduced is faster than for other parameters, especially voltage, resulting
in higher power densities on the chip surface. Thus, power densities are increasing dramatically for
next-generation chips.

The problem of power and heat dissipation now extends to the DRAM system, which traditionally has
exhibited low power densities and low costs. Due to repeated high-speed access to DRAMs, high-
performance DRAMs are dynamically throttled if their operating temperatures surpass design thresh-
olds [113].

1.2.2 Schemes for Reducing Power and Energy

There are numerous mechanisms in the literature that attack the power dissipation and/or energy con-
sumption problem. Here, we will briefly describe techniques such as dynamic voltage frequency scaling
and power down unused hardware blocks for reducing leakage power.

Dynamic Voltage Frequency Scaling

Recall that total energy is the sum of switching energy and leakage energy, which, to a first approximation,
is equal to the following:

Etot = [(Ctot · V 2
dd · α · f) + (Ntot · Ileakage · Vdd)] · T (1.4)

where, Ctot is the total capacitance, Vdd is the supply voltage, α is the activity ratio, f is clock frequency,
Ntot is the total number of devices leaking current, Ileakage is leakage current and T is the computation
time.

Variations in processor utilization affect the amount of switching activity (the activity ratio α). However,
a light workload produces an idle processor that wastes clock cycles and energy because the clock signal
continues propagating and the operating voltage remains the same. However, none of the approaches
affects Ctot · V 2

dd for the actual computation or substantially reduces the energy lost to leakage current.
Instead, reducing the supply voltage Vdd in conjunction with the frequency f achieves savings in switching
energy and reduces leakage energy. For high-speed digital CMOS, a reduction in supply voltage increases
the circuit delay as shown by the following equation [15]:

Td =
CtotN · Vdd

µ · Cox · (W/L) · (Vdd − Vth)2
(1.5)

where, Td is the delay or the reciprocal of the frequency f , Vdd is the supply voltage, CtotN is the total
node capacitance, µ is the carrier mobility, Cox is the oxide capacitance, Vth is the threshold voltage, and
W/L is the width-to-length ratio of the transistors in the circuit.
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The threshold voltage Vth is closely tied to the problem of leakage power, so it cannot be arbitrarily
lowered. Microprocessors typically operate at the maximum speed at which their operating voltage level
will allow, so there is not much headroom to arbitrarily lower Vdd by itself. However, Vdd can be lowered
if the clock frequency f is also lowered in the same proportion. This mechanism is called dynamic
voltage frequency scaling (DVFS) [104] and it appears in nearly every modern microprocessor. Based on
task under computation, DVFS sets the microprocessor’s frequency to the most appropriate level. Most
research quantifies the effect that DVFS has on reducing dynamic power dissipation because dynamic
power follows Vdd in a quadratic relationship. However, lowering Vdd also reduces leakage power, which
is becoming just as significant as dynamic power.

Note also that even though DVFS is commonly applied to microprocessors, it is perfectly well suited to
the memory system as well. As a processor’s speed is decreased through application of DVFS, it requires
less speed out of its associated SRAM caches, whose power supply can be scaled to keep pace. This will
reduce both the dynamic and the static power dissipation of the memory circuits.

Powering-Down Unused Blocks

A popular mechanism for reducing power is simply to turn off functional blocks that are not needed. This
is done at both the circuit level and the chip or I/O device level.

• At the circuit level, the technique is called clock gating (CG). The clock signal to a functional block
(e.g., an adder, multiplier, or predictor) passes through a gate, and whenever a control circuit
determines that the functional block will be unused for several cycles, the gate halts the clock
signal and sends a non-oscillating voltage level to the functional block instead. The latches in the
functional block retain their information; do not change their outputs; and, because the data is
held constant to the combinational logic in the circuit, do not switch. Note that, the circuits in this
instance are still powered up, so they still dissipate static/leakage power; clock gating is a technique
that only reduces dynamic power [94].

• Power gating (PG) technique aims at reducing static/leakage power along with dynamic power. It
relies on introducing sleep transistors which are placed between the logic circuit and the ground,
thus creating an intermediate virtual-gnd. For example, in caches, unused blocks can be powered
down using Gated− Vdd or Gated-ground techniques [143]. Gated− Vdd puts the power supply of
the SRAM cell in a series with a transistor. With the stacking effect introduced by this transistor, the
leakage current is reduced drastically. This technique benefits from having both low-leakage current
and a simpler fabrication process requirement since only a single threshold voltage is conceptually
required. At the device level, for instance in SRAM array or DRAM chips, the mechanism puts
the device into a low-activity, low-voltage, and/or low-frequency mode such as sleep or doze. For
example, microprocessors can dissipate anywhere from a fraction of a watt to over 100 W of power;
when not in use, they can be put into a low-power sleep or doze mode that consumes few watts to
milli-watts.

Drowsy technique [102] is an alternative technique to reduce static/leakage power in SRAM arrays. This
is similar to Gated− Vdd and gated-ground techniques in that it uses a transistor to conditionally enable
the power supply to a given part of the SRAM. The difference is that this technique puts infrequently
accessed parts of the SRAM into a state-preserving, low-power mode unlike clock gating. A second power
supply with a lower voltage than the regular supply provides power to memory cells in the drowsy mode.
Leakage power is effectively reduced because of its dependence on the value of the power supply.
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1.3 Problem Statement

Regardless of the internal hardware implemented on a chip, it is extremely improbable that all of its re-
sources will be simultaneously used due to program dependences and/or thread’s synchronization. More-
over, designing the thermal envelop for this “worst case” is somewhat expensive and not very efficient.
Computer architects, instead of designing the processor for the worst case scenario, look for the average
case, and face these “special” cases by using both power saving and thermal management techniques.
Dynamic thermal management aims at reducing the processor power consumption (and performance)
during time intervals so it can cool down. One way to achieve this goal is to set a power budget to the
processor.

This processor’s power budget is not only useful to control power and temperature but also in other
situations. For instance, there could be external limitations on the power consumption independent of
the microprocessor (or even the system) that needs to satisfied, without shutting off the whole system.
There are also situations where device power constraints are more restrictive than the power needs of a
processor at full speed. In most of the cases we cannot afford to design a new processor to meet whatever
power constraint because it is too expensive. The problem increases when, as usual, power constraints
are transitory and after some period of time we want all the processor’s performance back. Imagine a
computation cluster connected to one or more UPS units to protect from power failures. If there is a
power cut, all processors will continue working at full speed consuming all of the UPS battery quickly,
and then switching the computers off when the battery is close to running out and, consequently, losing
all the work on fly. During the power failure (many times they are of limited duration), if the processors
are not doing critical work, it might be more interesting to extend the UPS battery duration at the expense
of degrading some performance, than to lose all the work done because the battery runs out.

Another example where setting a power budget could be useful is the case of a computing center that
shares a power supply among all kind of electric devices (i.e., computers, lights, air conditioning, etc.).
In a worst case scenario (e.g., in summer at mid-day with all the computers working at full speed), if
we integrate some kind of power budget management into the processors, during critical day hours or
conditions when the air conditioning is consuming a big part of the total power of the computing center,
we could decrease the power of all processors, lowering the ambient temperature and having more power
for the air conditioning. In this way, we could design the power capacity of the computing center for the
average case, reducing its cost.

As described, the future of many-core processor design not only faces the power-wall challenges but also
need to feed instructions and data to many-tens of cores with reasonable latency (memory-wall). The
thesis addresses the issues described below:

1.3.1 Scalable Power Management on Many-core Processors

In context of power management in multi-core and many-core processors, there exist a number of mech-
anisms, namely dynamic voltage and frequency scaling (DVFS) [42, 80, 167], core microarchitecture
adaptation [12, 49, 59, 139] and cache adaptation [4, 123, 178]. These mechanisms are quite effective
at managing power in isolation at high to moderate power budgets. However, under constrained con-
ditions [109, 110], the existing power management schemes have to revert to power gating the cores.
Ideally on a many-core processor, the power manager should provide an integrated way to provide mul-
tiple adaptation mechanism like adapting the cores’ microarchitecture, cache configuration, and DVFS
setting in an integrated way. Moreover, the power management needs to be scalable to large core counts
and provide adaptations at fine time scale granularities. Finally, the power management needs to be
flexible enough to adapt to various optimization targets or metrics, such as maximize performance within
a given power budget, or minimize overall energy consumption.
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1.4. THESIS SCOPE

1.3.2 Die-stacked Gigascale DRAM Cache Latency

Memory bandwidth is not keeping up with the execution bandwidth as memory bus bandwidth has not
increased in proportion to Moore’s Law. In other words, integrating tens of cores onto a single die would
be futile if all the cores cannot be kept fed with code and data. Mitigating the memory wall issue is the
reason why gigascale on-die DRAM Caches has received considerable industrial and research interest in
recent years. Recent approaches address the fundamental issue of high-latency DRAM Cache tag accesses
by storing the tags along with the data in the DRAM array. Prior work proposing the Tags-in-DRAM
concept include the Loh-Hill Cache [116] and the Alloy Cache [144]. These approaches mitigate the
high latency access issue by avoiding DRAM Cache accesses on misses, either by an additional tracking
structure on the logic die such as Loh-Hill Cache’s MissMap table or through prediction as in the Alloy
Cache. Alloy Cache organizes tags and data together to form a single Tag And Data (TAD) entry in a
direct-mapped DRAM Cache. The Alloy Cache allows transferring a TAD per request to avoid the tag
serialization penalty. Alloy Cache thus optimizes for hit latency instead of hit rate. However, it suffers
from a significant amount of conflict misses as core count increases. On the other hand, the Loh-Hill
Cache preserves a high level of associativity for its stacked DRAM Cache—29 ways in a single DRAM row
buffer to leverage row buffer locality. In the context of many-core processors, the higher associativity
of Loh-Hill Cache is likely to be a more advantageous design. Yet reading the tags from DRAM in a
separate column access still incurs a significant latency cost. Previously proposed tracking solutions use
a centralized entity to either bypass the DRAM Cache on misses, as is the case for the MissMap [116],
or store tag information for faster access [60, 75, 181]. Unfortunately, these centralized structures may
become a bottleneck with increased core count.

1.4 Thesis Scope

To address the challenges described in the previous section, this thesis focuses on ways to mitigate the
issues of power and memory wall. In the first part of the thesis, the proposed architecture, besides
considering performance as its primary objective, is able to account for the pre-configured power budget
and adapts the many-core architecture using a model-driven global power manager without incurring
significant overheads. It also includes measures to significantly reduce the design complexity of the
global power manager on a many-core architectures. In the second part of the proposal, we propose a
solution to address the memory-wall issue. The idea and benefits of above ideas will be described in
detailed throughout this thesis. The work includes:

• Integrated Power Management approach to many-core processors:
– Integrated Power Management in Constrained Many-Core Processors — An integrated, scal-

able, fine-grain, and low-overhead power management method. It use analytical performance
and power models to dynamically adapt a many-core processor along multiple axes, includ-
ing core microarchitecture adaptation, private cache adaptation and per-core DVFS (voltage
regulator (VR) per core)

– Shared Resource Aware Scheduling on Power-Constrained Tiled Many-Core Processors — A
two-tier hierarchical power management methodology to exploit per-tile voltage regulators
and clustered last-level caches on a tiled many-core processor. It also includes a novel thread
migration layer that analyzes threads running on the tiled many-core processor for shared
resource sensitivity in tandem with core, cache and frequency adaptation, and co-schedules
threads per tile with compatible behavior.

• Mitigating the Memory-Wall by reducing memory latency:
– Tag Caching for Gigascale Die-Stacked DRAM Caches: A High-Performance Many-Core Per-

spective — Explore how associativity affects both latency and hit rate of gigascale die-stacked
DRAM cache in the context of high-performance many-core processor architectures. The work
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proposes on-chip distributed Tag Caching structure that caches DRAM Cache tags, to reduce
hit access latency.

1.5 Thesis Layout

The rest of the thesis is organized as follows. Each contribution has its own dedicated chapter. Chapter 2
discusses in detail the background on power management techniques used in the processors. It also
describes the previously proposed techniques and discusses some important related concepts that are
important to understand the rest of the thesis. Chapter 3 describes in detail the integrated approach
to power management on a many-core processors. In Chapter 4, we expand the scheme proposed in
Chapter 3 and leverage the tiled-architecture and scheduling in tandem with hierarchical power manager
to optimize the overall system performance. In Chapter 5, we show the importance of multi-way near-
memory architecture in a many-core processor and propose a tag-caching mechanism to reduce the hit-
latency of large die-stacked DRAM cache. Finally, we conclude and provide hints towards future work in
Chapter 6.

10



Chapter 2
Background: Overview and Related Work

In this chapter, we provide a background on micro-architectural power management schemes. First, we
describe an overview of the isolated micro-architectural power management techniques. We further de-
scribe the related work on these techniques in general to which we will adhere to for the remainder of the
thesis. Next, we discuss the combination of these techniques with supported related works. Later in this
chapter, we review the concept of “near” memory architecture on future many-core processors. Finally,
we will discuss the essentials related works with respect to DRAM-based “near” memory architecture.

2.1 Power Management Schemes

The power wall is currently the main limiter to achieving high performance in modern CPUs, and has
been one of the most critical problems facing computer architects over the past several years [105].
Unfortunately, this problem will only get worse in the future as process technologies continue to scale
to smaller feature sizes. As such, power efficiency will remain an extremely important design goal,
and will require hardware designers to continue efforts to squeeze wasteful power consumption out of
architectures.

2.1.1 Isolated Mechanisms

2.1.1.1 Dynamic Voltage Frequency Scaling (DVFS)

As described in Section 1.2.2, the combination of supply voltage and frequency has a cubic impact on total
power dissipation because dynamic power consumption has a quadratic dependence on voltage and a
linear dependence on frequency. An intelligent power savings solution would reduce operating frequency
and, at the same time, reduce the supply voltage. Some example commercial implementations of dynamic
voltage frequency scaling (DVFS) technology are Intel’s SpeedStep [133] and AMD’s PowerNow [41].

DVFS has been applied at both hardware and operating system/platform levels. The main idea is to scale
the supply voltage as low as possible for a given frequency while still maintaining correct operation. The
voltage can be dropped only up to a certain critical level, beyond which timing faults occur.

Some hardware mechanisms for DVFS implement timing fault detection in hardware itself using special
“safe” flip flops that detect timing violations. While DVFS methods are effective in addressing the dynamic
power consumption, they are significantly less effective in reducing the leakage power. As minimum
feature sizes shrink, supply voltage scaling requires a reduction in the threshold voltage, which results
in an exponential increase in leakage current with each new technology generation. It has been shown
that the simultaneous use of adaptive body biasing (ABB) and DVFS can be used to reduce power in
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high-performance processors. ABB previously was used to control leakage during standby mode, and has
the advantage of reducing the leakage current exponentially, whereas dynamic voltage scaling reduces
leakage current linearly.

At the operating system level, several OSs now deploy some form of DVFS. For example, Linux uses a
very standard infrastructure called cpu-freq [28] to implement DVFS. The cpu-freq governors provides
a modularized set of interfaces to manage the CPU frequency changes through various low-level, CPU-
specific mechanisms and high-level system policies. The cpu-freq decouples the CPU frequency controlling
mechanisms from the policies and helps in their independent development. Many variations of cpu-freq
governors have been proposed for different kinds of systems, each with their own power and performance
requirements.

Work has been done specifically at the handheld/portable/embedded systems level proposing different
techniques for implementing DVFS in battery constrained devices. One such example is AutoDVS [69],
a system for handheld computers that offers dynamic voltage scaling (DVS). AutoDVS both lowers the
amount of energy used and ensures service quality by estimating user interactivity time, think-time and
computation load, system-wide and for each program.

A second technique involves application-directed DVFS. It’s possible to bypass the difficult problem of
trying to get good results using OS level statistics, given that not all applications behave in a predictable
way. Instead, by making applications with bursty behavior power-aware, these applications can specify
to the scheduler that controls clock speed and processor voltage both their average execution time and a
deadline. An energy priority scheduling algorithm arranges the order for these power-aware tasks based
on deadlines and the frequency of task overlap.

DVFS for multi-core processors is another interesting and challenging area. One major design decision
is whether to apply DVFS at the chip level or at the per-core level. If the per-core DVFS approach is
used, more than one power/clock domain per chip is needed and additional circuitry also is required for
synchronization among the chips. Although per-core DVFS is more costly to implement than per-chip
DVFS for single-chip multiprocessors, per-core has been reported by an academic or commercial entity
to have 2.5× better throughput. The reason is simple: a per-chip approach has to scale down the entire
chip even if only a single core is starting to overheat. In contrast, a per-core approach makes only the
core with a hot spot scale downward; other cores keep operating quickly unless they develop heating
problems.

DVFS is just one of several methods to control dynamic power consumption in CMOS circuits. While its
usage brings a set of verification and implementation challenges, we will continue to see its application
in future designs at both the hardware and operating system/platform levels.

2.1.1.2 Cache Resizing

A key place to look for power savings is in the on-chip cache hierarchy. Caches occupy a large portion
of the CPU’s available die area—upwards of 50% in today’s CPUs—so they contribute significantly to a
processor’s overall power dissipation. In addition, in general the caches are sized for the worst case.
This means an average computation cannot effectively utilize all of the cache capacity. Such cache over-
provisioning can result in significant waste that, if eliminated, can yield large power savings without
sacrificing much performance. The trend for modern CPUs is towards deeper cache hierarchies. However,
deeper cache hierarchies distributes the power consumption across many caching levels. For dynamic
power consumption, the L1 is the greatest culprit, but the L2 and L3 can also consume non-negligible
dynamic power, especially for memory-intensive workloads. For static power consumption, the L3 is by
far the greatest concern due to its large area. But non-trivial static power can also be dissipated in the
L2 as well. By only controlling the size of a single level of cache, existing techniques potentially miss
significant opportunities for power savings.
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2.1. POWER MANAGEMENT SCHEMES

Several researchers have investigated cache resizing techniques [4, 16, 17, 119, 120, 132, 143, 180]
to target this form of waste. Cache resizing is an architecture-level power management technique that
determines the minimum cache a program needs to run at near-peak performance, and then reconfigures
the cache by enabling/disabling cache ways or sets to implement this efficient capacity. Resizing can
reduce the amount of cache activated per access, and also enables circuit-level techniques (i.e. Gated-
Vdd [143]) to shut down unused portions of the cache. This can translate into significant dynamic and
static power savings. On the other hand, cache resizing can lead to the increase in cache miss rate,
resulting in higher power dissipation for the next level of cache and degraded overall performance. Thus,
techniques must achieve a balance between these conflicting factors in order to achieve a net power
efficiency gain. Although there has been significant work on cache resizing, existing techniques are
limited in their optimization scope. In particular, most studies consider resizing a single level of cache
only [4, 119, 120, 132, 143, 180], typically the L1 cache.

The current lack of comprehensive cache resizing is partly due to the availability of other power man-
agement options, especially for caches below the L1. Because these caches are only referenced on an
L1 miss, CPU performance is somewhat insensitive to their actual delay. Hence, it is feasible to trade
off delay for power in the post-L1 caches. This has been exploited extensively by circuit-level techniques
to mitigate static power consumption. In particular, multiple Vth deices [13, 101], adaptive body bias
(ABB) [99, 132], and dynamic voltage scaling (DVS) [58, 102] all convert modest increases in cache
access latency into significant static power reductions. While extremely effective, circuit-level techniques
for mitigating static power do not obviate the need for architectural approaches like cache resizing. Cir-
cuit mitigation only reduces leakage current. In contrast, cache resizing (plus power gating) can suppress
leakage practically to zero for the gated portions of cache. Moreover, circuit- and architecture-level ap-
proaches are orthogonal. So, applying them in concert may ultimately yield the greatest static power
savings.

In addition to flexibility for reducing static power, the low latency sensitivity of post-L1 caches also offer
alternatives for reducing dynamic power. For example, serializing tag and data access ensures only a
single data way is energized regardless of the number of total active ways, thus reducing dynamic power
at the expense of some increased delay. But again, this does not preclude cache resizing. A serial cache
still incurs wasteful tag energy as well as significant interconnect energy that resizing can address. And
in some cases, serial caches may be too slow limiting their application.

Selective cache ways [4] used off-line profiling to drive disabling of cache ways for dynamic power
savings. DRI caches [143, 178] used cache-miss counts to detect over-provisioning, and resize across
either cache sets or ways. In addition, DRI caches also gate the power supply to unused portions of
cache, conserving both dynamic and static power. Madan et al. [119] proposed resizing of L2 caches
by dynamically extending their capacity into stacked DRAM. Balasubramonian et al. [16, 17] proposed
resizing of two levels of cache, either the L1/L2 or the L2/L3, by partitioning a common pool of SRAM
arrays to different caching levels. Because partitioning always utilize all of the available SRAM, only one
cache’s size is controlled independently.

Besides resizing, researchers have studied other adaptive cache techniques as well. Dropsho et al. [46]
proposed accounting caches which divides cache’s ways into primary and secondary groups. Each cache
access searched the two groups sequentially, accessing the secondary only on a primary miss. This saved
power if secondary accesses are infrequent. Zhang et al. [180] proposed way concatenation which per-
mits flexible organization of cache banks to form direct-mapped, 2-way, or 4-way set-associative caches.

Silva-Filho et al. [155] and Gordon-Ross et al. [64] studied design-time techniques for optimizing 2-
level cache hierarchies. These works tried to find the best block size and associativity—as well as cache
capacity—for two caching levels. They considered a complex design space and employ more costly search
techniques that are suitable for design analysis only. Similarly, Zhang et al. [180] searched for the best
cache architecture using a reconfigurable hardware platform, but only optimization at a single cache
level.
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Cache partitioning explicitly allocates shared cache across multiprogrammed workloads, providing cache
to those programs that can best utilize it. The majority of techniques focused on performance [39, 103,
145, 162, 171]. More recently, techniques have also tried to reduce power consumption [97, 164] by
withholding allocation and shutting down portions of the shared cache, similar to cache resizing.

Finally, significant research has explored circuit-level techniques for reducing a cache’s static power con-
sumption. Multi-Vth techniques [13, 101] employ low-Vth devices along critical paths and high-Vth de-
vices along non-critical paths to save power while still maintaining performance. Gated-Vdd [143] uses
high-Vth devices to gate the power supply to unused portions of cache. Adaptive body bias [99, 132]
controls the backgate voltage to place devices in a standby low-leakage mode when not in use, but then
restores the devices to an active high-performance mode when the cache is accessed. Lastly, dynamic volt-
age scaling [58, 102] can similarly transition between standby and active modes by scaling the supply
voltage.

2.1.1.3 Core Resizing

In the past, single-thread performance increased according to Pollack’s law [141], which states that the
performance improves in proportion to the square-root of the processor area. For the past few years, how-
ever, this has no longer been the case, and the performance improvement rate has slowed dramatically,
despite ever increasing transistor budgets. One of the reasons for this lack of performance improvement
is the memory wall, which is the large speed discrepancy between the processors and the main memory.
This severely limits the performance of a computer, because of the long latency in a load if a last-level
cache (LLC) miss occurs. Conventional solutions to this problem have involved incorporation of a large
cache and a hardware prefetcher [11, 93]. Unfortunately, a large cache is very expensive and in many
cases, several megabytes of caches are still insufficient.

Aggressive out-of-order execution is an effective alternative approach to this problem. This method
significantly increases the number of in-flight instructions that are supported by the processor through
extensive instruction window resources (i.e., reorder buffer (ROB), issue queue (IQ), and load/store
queue (LSQ). This allows parallel memory accesses by executing the cache-miss-causing loads as early as
possible, and thereby reducing the effective memory latency. This type of parallelism is called memory-
level parallelism (MLP). One advantage of this approach is that data fetch is carried out by instruction
execution, and not by prediction like a hardware prefetch, and thus the data fetch is accurate. Another
advantage is that it can be implemented by applying a simple extension to a conventional superscalar
processor. However, the downside is that the large resources adversely affect the clock cycle time. Al-
though this can be solved by pipelining the resources, it prevents instruction-level parallelism (ILP) from
being exploited effectively, mainly because of the enlarged IQ. Specifically, pipelining of the IQ makes it
impossible to issue dependent instructions back-to-back, because the wakeup-select issue loop takes more
than a single cycle to complete. As explained above, there is a trade-off involved in enlarging and pipelin-
ing the window resources for exploitation of ILP and MLP. In other words, large pipelined resources are
effective for exploiting MLP, and are thus beneficial for memory-intensive programs or execution phases.
However, they are harmful when exploiting ILP, which offers high performance in compute-intensive
programs or phases.

Apart from performance, power dissipation constitutes as the other primary design objective in aggressive
out-of-order processors in the general-purpose, high performance segments [30, 68, 70]. In the last
decade, high-end processors like the dual-core IBM POWER 4™ [166] were performance-driven designs
where overall power densities [26] were still below acceptable limits, even though the net chip power
was well over 100 Watts [8]. However, as reported by Bose et al. [26], localized hot spots in regions like
the out-of-order issue queues experienced un-gated power densities as high at 70 watts/cm2. Depending
on the affected area and relevant thermal time constants, such a localized hot spot can have a significant
impact on the packaging/cooling cost of the chip. Sustained periods of temperature elevation within such
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a hot spot can also degrade chip reliability.

Several authors [18, 95, 121, 169] have pointed out that the instruction delivery power is higher than
necessary because of the performance-focused design strategy. In such designs, the front-end fetch mech-
anism provides instructions using the peak designed bandwidth, as early as possible, by making use of
sophisticated branch prediction algorithms. This strategy often wastes energy because instructions are
frequently fetched earlier than necessary. These instructions spend many needless cycles in the issue
queue waiting for dependencies to be resolved (or to be aborted following a misprediction event).

Much of the idle energy waste in the front-end is attributable to incorrect control flow speculations. This
can be reduced by using more accurate branch prediction schemes or by using confidence estimation to
control fetch-gating [121]. However, reducing misspeculated fetches alone would not necessarily reduce
the large component of idle energy that results from earlier-than-needed fetch of instructions in the
correct path.

Other methods of fetch gating [18, 95] attempted to reduce idle energy by making the fetch mechanism
more demand-driven; that is, instruction fetch was gated when the down-stream utilization is high or
the flow rate mismatch (between decode and commit) was high. While fetch gating may provide a
level of issue queue utilization appropriate for the application, unused entries will still consume energy.
Dynamic adaptation of the issue queue [33, 34, 46, 59, 142], is another technique for saving energy in
an underutilized issue queue. In this approach, the issue queue is sized to match its level of utilization
or the necessary instruction window demanded by the application. Thus, unnecessary entries are shut
down, saving considerable energy. The combination of issue-aware fetch gating and dynamic issue queue
adaptation, in which the queue is appropriately utilized and unused entries consume negligible energy,
has the potential for both good overall chip and issue queue energy savings.

Manne et al. [121] saved the wasted energy used for fetching, decoding, issuing, and executing in-
structions along mispredicted paths. They estimated the confidence of every branch prediction when
that branch was fetched [82]. Karkhanis et al. [95] proposed to dynamically change the number of in-
flight instructions. Unsal et al. [169] developed a compiler-driven static IPC estimation scheme that is
based on dependence testing in the compiler back-end. This estimation was used to drive fine-grained
fetch-throttling energy saving heuristics. However, dynamic factors such as cache misses and branch
mis-predictions can dilute the efficiency of these static IPC-estimation-based heuristics.

Buyuktosunoglu et al [33, 34] proposed to resize the issue queue based on its utilization. Mar-
culescu [122] proposed a mechanism to dynamically adapt the fetch and execution bandwidth based
on profiling at the basic-block level. Ponomarev et al. [142] and Dropsho et al. [46] proposed to dynamic
allocation of multiple resources, including the issue queue, for low-power. Buyuktosunoglu et al [35] also
explored the combination of issue queue adaptation and fetch gating scheme (PAUTI) that attempted to
match the size of the instruction window resident in the issue queue to application ILP characteristics,
while keeping the utilization of the queue high enough to avoid back-end starvation

Albonesi et al. [5] presented a comprehensive survey of studies on resource resizing to improve power
efficiency. Dynamic adaptation of the issue queue size to match application demands is proposed in [2, 3]
in order to increase performance and reduce power dissipation. However, it was assumed that the best
issue queue size for a given application was known a priori; no attempt was made to adapt within an
individual application, and the circuit-level design issues associated with an adaptive issue queue were
not addressed in detail. Folegnani et al. [59] proposed a resizing scheme for the IQ that deactivates
those parts that contribute little to the performance. Petoumenos et al. [138] proposed an IQ resizing
scheme that takes into account MLP. Their scheme basically uses an ILP-aware resizing scheme like that
proposed in [59], but its resizing decision is overridden by their proposed MLP-aware Brekelbaum et
al. [27], proposed a hierarchical IQ with a large pipelined queue and a small non-pipelined queue. Kora et
al. [106] proposed an adaptive dynamic instruction window resizing scheme that enlarges and pipelines
the window resources only when MLP is exploitable, and shrinks and de-pipelines the resources when ILP
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is exploitable. The proposed scheme changes the size of the window resources by predicting whether MLP
was exploitable based on the occurrence of last-level cache misses. Abella and González [1] proposed a
mechanism that takes resizing decisions based on the time that instructions spend in both the issue queue
and the reorder buffer.

2.1.2 Co-ordinated Approaches

To control power and temperature of processors, there are several proposals that try to merge both DVFS
and micro-architectural techniques in a two-level mechanism to benefit from both coarse and fine-grained
mechanisms.

Eckert et al. [51] proposed new mechanisms to implement P-states that achieve a power-performance
curve closer to DVFS than frequency scaling. The mechanisms leverage previously proposed low-power
techniques like front-end and cache resizing that result in a performance loss. Previously, these tech-
niques might have been dismissed due to the effectiveness of DVFS; however, they become viable al-
ternatives to frequency scaling. The proposal focus on techniques that selectively disable or constrain
micro-architectural performance optimizations, trading performance for power reductions. By using coor-
dinated DVFS with resizing techniques, power savings can be much higher than using isolated techniques
like those described in Section 2.1.1.

Deng et al. proposed a framework that searches the space of per-core and memory frequency settings—
voltage values set according to the selected frequencies—in operating system (OS), called CoScale [42].
CoScale framework used an epoch-based (epoch corresponds to an OS time quantum) policy estimates,
via performance counters and online models, the energy and performance cost/benefit of altering each
component’s (or set of components’) DVFS state by one step, and iterates to greedily select a new fre-
quency combination for cores and memory. The selected combination trades-off core and memory scaling
to minimize full-system energy while respecting a user-defined performance degradation bound.

Ghasemi and Kim, proposed resource and core scaling (RCS) [62] technique that jointly scales the
resources of a processor and the number of operating cores to maximize the performance of power-
constrained multi-core processors. The authors proposed to uniformly scale the resources that are both
associated with each core (e.g., L1 caches and execution units (EUs)) and shared by all the cores (e.g.,
last-level cache (LLC)) as a means to compensate for lack of a V/F scaling range. Under the maximum
power constraint, the RCS technique proposed disabling of resources to increase the number of operating
cores, and vice versa. The technique proposed a runtime system that predict the best RCS configuration
for a given application and adapt the processor configuration accordingly at runtime. The runtime system
only needs to examine a small fraction of runtime to predict the best RCS configuration with accuracy
well over 90%, whereas the runtime overhead of prediction and adaptation is small. The framework
also proposed to selectively scale the resources in RCS (dubbed sRCS) depending on application’s char-
acteristics and demonstrate that sRCS can offer 6% higher geometric-mean performance than RCS that
uniformly scales the resources.

Meng et al. [123] proposed an adaptive, multi-optimization power saving strategy for multi-core power
management with an aim to meet global chip-wide power budget through run-time adaptation of highly
configurable processor cores. The authors proposed analytic modeling to reduce exploration time and
decrease the reliance on trial-and-error methods. In addition, the framework uses a risk evaluation to
balance the benefit of various power saving optimizations versus the potential performance loss along
with a mechanism that integrates multiple power optimizations and globally manages chip multipro-
cessor processor power consumption to honor a chosen power budget. We believe this is timely given
the prominence of multi-core processors and growing interest in run-time optimization. Our approach
addresses concerns related to the large search space in a CMP system with many core-level optimiza-
tions, complex relationships between these optimizations, and transient resource demands due to very
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short-lived global phases.

Sharifi et al. [154], proposed PEPON, a two-level power budget distribution mechanism, especially tar-
geted for NoC-based multi-core processors. At the first level, PEPON distributes the overall power budget
of the multi-core system among on-chip resources like the cores, caches, and NoC. In the second level,
the power budget assigned to cores is further partitioned among individual cores and, similarly, the
power budget assigned to L2 caches is further partitioned across individual L2 caches. Both these distri-
butions are oriented towards maximizing workload performance without exceeding the specified power
budget—chip-wide power cap. The authors proposed to employ a different power distribution strategy at
each level. For the first-level distribution, a regression-based performance model is adopted that decides
the most performance-efficient distribution of power. For the second-level distribution, the PEPON frame-
work uses a different strategies for caches and cores. The power budget assigned to cores is distributed
using a control theoretic approach and is implemented using multiple DVFS adaptations. On the other
hand, for power budget distribution across different L2 banks (selective-way resizing) using utility-based
model. In nutshell, PEPON uses 10 DVFS adaptations for cores and NoC along with selective-way resizing
for L2 cache to provide feasible working configuration for high-moderate power budget constraints.

Sasanka et al. [152] proposed the use of DVS and micro-architectural techniques to specifically reduce the
power consumption in real time video applications. The authors selected micro-architectural techniques
try to reduce the power of functional units and the instruction window. Winter et al. [174] also proposed
the use of a two-level approach that merges DVFS and thread migration to reduce temperature in SMT
processors.

2.2 Near-Memory Architecture

The “memory wall” problem is pretty straightforward, and it’s by no means new to the multi-core era.
The problem arises when the execution bandwidth (i.e., aggregate instructions per second, either per-
thread or across multiple threads and programs) available in a single socket is constrained by the amount
of memory bandwidth available to that socket. As execution bandwidth increases, either because clock-
speeds get faster or because the die contains more cores, memory bandwidth has to increase in order to
keep up.

But memory bandwidth is not keeping up. Memory bus bandwidth (latency and/or throughput) has not
increased quickly enough in proportion to Moore’s Law, a fact that leaves processors starving for bytes. In
this respect, the “memory wall” is a classic producer/consumer problem, and it’s the reason that on-die
cache sizes have ballooned in recent years. As the memory wall gets higher and higher, it takes more and
more cache to get you over it. At this point, it would be fair to say that most modern server processors
are really high-speed memories with some processor core stuck on the die, instead of vice versa.

A suitable replacement for the hard-working, but aging synchronous dynamic random-access memory
(SDRAM) standard has been a long time coming. While the current DDR3 memory standards—as well
as offshoots like GDDR5—have been serving the CPU and GPU well, they’re starting to show signs of
being based on early-’90s technology. Essentially, each revision of SDRAM makes use of the same double
data rate (DDR) principle as the original technology, which syncs memory to a system bus (allowing it to
queue up one process while waiting for another), and also transfers data on both the rise and fall of the
clock signal in order to work twice as fast. DDR2 further refined this idea by running its internal clock at
half the speed of the data bus. This trick not only allowed it to produce a total of four data transfers per
internal clock cycle (effectively running twice as fast as DDR), but the slower clock speed also reduced
the voltage requirement to 1.8 V. DDR3 halved the internal clock again, resulting in a quadrupled clock
signal for even faster performance and increased transfer rates of up to 17 GB/s per module, and 1.5 V of
operating voltage. The DDR4 memory makes use of a new bus, higher clock speeds, and denser chips in
order to reach its maximum transfer rate of 25.6 GB/s per module, and a lower 1.2 V of operating voltage.
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DDR4’s lower power consumption and higher density will benefit mobile devices and server farms, but
from a performance point of view, there’s not much to write home about. While there’s long been talk of
hitting the so-called “memory wall” at around 16 CPU cores, that’s not currently much of an issue for the
desktop, where a lower latency is currently preferred over a high-bandwidth solution. In the GPU world,
though, bandwidth is king, which is why you often see another type of SDRAM in graphics card

Increasing the speed and/or bandwidth of the memory component is one of the solutions to mitigate
the memory wall issue. In addition, integrating a memory array onto the CPU/GPU die would provide
an overall reduction in the overall latency. For instance, Intel integrated DRAM onto its CPUs in the
form of on-package (not on-die) eDRAM—Crystalwell Iris Pro graphics. Microsoft’s Xbox 360 and Nin-
tendo Wii U used a similar setup to supplement system memory. However, eDRAM is still an expensive
proposition, and once again, there are significant space limitations on the amount of memory that can be
integrated. Still, moving the memory closer to the CPU/GPU does dramatically increase the bandwidth
and performance.

3D-stacked memory—new, stacked memory design like Hynix’s High Bandwidth Memory (HBM) or Mi-
cron’s Hyper Memory Cube (HMC)—brings the DRAM as close as possible to the logic die. In a traditional
setup, the individual DRAM chips are placed side by side, and connected to the CPU/GPU via long copper
traces on a PCB. On the other hand, 3D-stacked memory stacks the memory chips on top of each other,
dramatically reducing the overall footprint required, allowing for the use of extremely wide data buses
and much slower clock speeds in order to hit the required levels of performance. With stacked memory,
instead of buses being hundreds of bits wide, they can be thousands of bits wide, and because everything
is so close, the power consumption per transported bit is much lower.

For gigascale near-memory architecture, both bandwidth and latency play a vital role in achieving high
performance, which implies that future designs must exploit both opportunities. While today’s servers
need tens to hundreds of gigabytes of DRAM each, the projections for die-stacked DRAM capacity vary
between hundreds of megabytes to several gigabytes [53, 159]. Many research/industrial proposals for
die stacking advocate using the stacked DRAM as a cache [90, 98, 114, 115, 116, 175]. Unfortunately,
the DRAM Cache designs inherently suffers from limitations—significant tag storage requirement due to
their large capacity, whose lookup necessarily adds extra latency to the critical path.

2.2.1 Designing DRAM Caches

To leverage the benefits that the die stacking technology provides as a DRAM cache there are some key
design points to be considered:

• Tag lookup and storage: Since the tag lookups are on the critical path of all requests coming to the
cache, it is of utmost importance that the tag lookup latency must be minimized. This gains more
importance in the context of DRAM caches, due to their tag array size. The total storage dedicated
to tags or other metadata should be minimal as does incur high cost—both latency and area.

• Off-chip traffic: While cache misses are responsible for most of the off-chip bandwidth overhead,
various cache features can adversely impact off-chip bandwidth even further. Examples include the
use of large cache blocks that saturate off-chip bandwidth. Reduction in off-chip traffic is the main
driver for 3D-stacked DRAM adoption, and as such should be among the top priority goals.

• Hit and miss latency: The DRAM caches must optimize for both hit and miss latency using micro-
architectural techniques to either reduce hit latency or predict/bypass misses.

Moreover, to minimize the stacked DRAM and off-chip DRAM access latencies, cache designs must be take
into account the parameters like hit ratio, locality of references, row-buffer management policy, access
scheduling and optimal allocation of space for data. To better understand such challenges, there are two
main DRAM cache designs that optimize for different constraints: block-based caches and page-based
caches.
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2.2. NEAR-MEMORY ARCHITECTURE

2.2.2 Block-Based Caches

On-chip caches have traditionally been designed to primarily exploit temporal locality, and to make the
best use of their limited capacity. Trade-offs between the effective cache capacity, temporal and spatial
locality resulted in 16- to 128-byte cache blocks, 64-byte being the most common block size employed
today. For large DRAM caches, 64-byte blocks would require huge tag storage which is infeasible to build
in SRAM, thereby forcing the tags to be embedded in DRAM [60, 75, 115, 116, 144, 156, 181]. Embed-
ding tags in DRAM, however, results in multiple DRAM accesses per cache request—and, consequently,
in substantially higher hit and miss latencies. Intelligent co-location of data with the corresponding tags
in the same DRAM row [116, 144, 156] accompanied with optimized access scheduling, obviates the
need for multiple DRAM accesses per request. However, the optimization only partially reduces the high
hit latency, because of the need for several operations to be performed within the DRAM row-buffer.
Furthermore, the co-location of tags and data mandates particular data placement policies that diminish
DRAM locality. It also requires a way to determine the presence of a block in the cache prior to access-
ing the tags, as well as additional multi-megabyte storage for that purpose, whose access latency is on
the critical path. Most importantly, block-based designs fall short of exploiting abundant spatial locality.
Instead, they focus on limited temporal locality, experiencing high miss ratios, thus frequently exposing
full off-chip latency to incoming requests. However, due to the small fetch unit and the efficient manage-
ment of cache capacity, block-based designs minimize off-chip traffic, making them a favorable option for
high-throughput servers.

2.2.3 Page-Based Caches

Increasing the block size allows for a proportionate reduction in tag storage. The use of larger allo-
cation/fetch units (e.g., 1-8 KB) makes the placement of tags in SRAM feasible at acceptable storage
overhead [87, 88, 90]. The large fetch unit allows for maximum DRAM access efficiency, fully exploit-
ing locality in both off-chip and stacked DRAM. For instance, a single DRAM row opening is needed per
off-chip DRAM fetch, eviction, or stacked DRAM fill, for a whole page, assuming that the page size does
not exceed the DRAM row size. While large DRAM caches exhibit limited temporal locality, they show
significant spatial locality, which can be easily leveraged by large fetch units providing an order of magni-
tude more hits compared to a block-based cache of the same size. Cache hits are critical to exploiting the
latency advantages of die-stacked DRAM and page-based caches provide them at lower latency. Unfortu-
nately, many of the cached pages contain data that are not used prior to the page eviction, resulting in
excessive data over-fetch and capacity waste. As a result, page-based caches tend to increase the off-chip
traffic of the baseline system without a DRAM cache by up to an order of magnitude in the worst case,
which negates a key benefit of die-stacked DRAM caches.
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Part I

Optimizing Performance under Power
Constraints
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Chapter 3
Integrated Power Management in Constrained
Many-Core Processors

As motivated in previous chapters, modern microprocessors are increasingly power-constrained as a result
of slowed supply voltage scaling (end of Dennard scaling) in conjunction with the continuation of transistor
density scaling (Moore’s Law). Although existing many-core power management techniques such as chip-wide
and per-core DVFS, and core and cache adaptation were shown to be quite effective in isolation at moderate
to high power budgets, they are unable to match stringent power budgets and hence have to revert to core
gating. Overall, existing techniques do not scale well to larger core counts, smaller time scales and more
stringent power budgets in future chip technologies.

In this chapter, we present Chrysso, an integrated, scalable, fine-grain, and low-overhead power management
method using analytical performance and power models to dynamically adapt a many-core processor along
multiple axes, including core microarchitecture adaptation, cache adaptation and per-core DVFS. By inte-
grating multiple power management techniques into a common methodology, Chrysso outperforms isolated
mechanisms by significantly improving system performance within a given power budget.

3.1 Introduction

Modern microprocessors are very much power-constrained as a result of two prominent trends in chip
technology. Moore’s Law [129] refers to the doubling of transistors on chip every 18 months, and has
been a fundamental driver of computing. Unfortunately, because of the end of Dennard scaling [43]
(slowed supply voltage scaling), we may become so power-constrained that we will no longer be able to
power on all transistors at the same time—a problem referred to as dark silicon [52]. Moreover, run-time
factors such as thermal emergencies [29] and power capping [57] further constrain the available chip
power. We thus need to be smart about which transistors are helpful to performance and which are not,
and only power on those transistors that actually help us maximize performance within a given power
budget at any given time.

There exist a number of mechanisms to manage power, including Dynamic Voltage and Frequency Scaling
(DVFS) [42, 80, 167], core microarchitecture adaptation [12, 49, 59, 139], and cache adaptation [4, 123,
178]. Although these mechanisms are quite effective at managing power in isolation at high to moderate
power budgets, we need an integrated approach moving forward. Each of the above techniques are
limited in scope and are unable to meet stringent power budgets when applied in isolation, and hence
have to revert to core gating under constrained conditions [109, 110]. Ideally, we want to adapt the
many-core processor by adapting the cores’ microarchitecture, cache configuration, and DVFS setting in
an integrated way. Moreover, we also want power management to be scalable to large core counts and
fine time scale granularities. Prior work is either limited to adapting resources in isolation, operates at a

23



fairly coarse time scale granularity, incurs relatively large run-time overhead, and/or relies on heuristics
and/or sampling to search the optimization space.

We propose Chrysso1, an integrated many-core power management methodology to quickly adapt the
processor architecture and settings to workload characteristics and run-time conditions. Chrysso lever-
ages analytical performance models along with table-based power models to explore the complex op-
timization space comprising core and cache adaptation along with per-core DVFS, at small time scale
granularities (e.g., 10 ms) and at large core counts (multiple tens of cores). Chrysso uses run-time statis-
tics of a past time slice, and predicts both core performance and power for a wide range of many-core
configurations for the next time slice to identify a configuration that yields (near-) optimal performance
within a given power budget. By doing so, Chrysso exploits both inter-workload variability as well as
intra-workload phase behavior to optimize energy-efficiency over time under varying workload condi-
tions. To reduce the search space to be explored at run-time, Chrysso uses a two-tier process: it first
performs a Pareto-optimal design space exploration for each core/thread, and then performs a global,
chip-wide search over these design points. In addition, Chrysso uses utility-based optimization to give
a larger fraction of the total power budget to cores/threads that benefit the most, in particular critical
threads in multi-threaded workloads and power-hungry programs in multi-program workloads.

We experimentally evaluate the efficacy of Chrysso by simulating a 64-core system with adaptation op-
portunities inside the cores (changing pipeline width and buffer resources in a balanced way), the caches
(selecting ways in the last-level caches), as well as through per-core DVFS. We report that Chrysso outper-
forms DVFS, core gating, core adaptation, and cache adaptation in isolation by a significant margin over
a broad range of power envelops. At stringent power budgets (40% of TDP and less), none of the iso-
lated power management mechanisms are able to find configurations that match the power envelop and
thus have to revert to core gating. On the contrary, Chrysso can improve system throughput by 1.9× on
average over core gating for SPEC CPU2006 multi-program workloads. For a collection of multi-threaded
workloads from NPB, PARSEC and SPEC OMPM2001, Chrysso outperforms core gating by 1.5×. Further-
more, Chrysso improves the average per-thread progress rate by 75% over core gating, and is shown to
be able to adapt to time-varying workload and run-time conditions. Chrysso incurs little execution time
overhead (less than 1%), while requiring limited hardware overhead as well (roughly 3 KB per core to
assist adaptation decisions), which makes it a scalable solution both in time (at small time scales) and
space (at large core counts).

We make the following contributions:

• We make the case that power saving techniques such as core and cache adaptation, and per-core
DVFS, when employed in isolation, are insufficient to meet stringent power budgets on many-core
processors.

• We propose simple, yet effective analytical performance and power models for steering many-core
adaptation. The inputs required for these models can be collected at low overhead.

• We propose a global optimization algorithm to quickly and effectively search the adaptation space,
and partition the available power budget among cores/threads. Besides leveraging analytical mod-
els, the key features of the search algorithm include:

– identifying per-core Pareto-optimal configurations to prune the search space for global explo-
ration, and

– utility-driven optimization by budgeting more power to cores/threads that benefit the most.
• We propose and evaluate the Chrysso framework and demonstrate that Chrysso outperforms iso-

lated power saving techniques by a significant margin. Chrysso improves system performance by
1.9× and 1.5× over core gating at stringent power budgets for multi-program and multi-threaded
workloads, respectively.

1Chrysso is a spider genus whose color is variable. By analogy, Chrysso adapts the many-core processor configuration to variable
workload and run-time conditions.
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3.2. CHRYSSO OVERVIEW
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Figure 3.1: Adaptive many-core architecture with Chrysso, featuring per-core power/performance moni-
toring units (PMU) and a global power manager (GPM).

3.2 Chrysso Overview

3.2.1 Many-core power management

Chrysso is evaluated in the context of a many-core processor, as shown in Figure 3.1. Each core has a
number of configuration knobs that together define distinct operating points, each with a different power-
performance trade-off. A per-core power/performance monitoring unit (PMU) keeps track of core activity
and controls the core configuration in response to requests made by the global power manager (GPM).
This global manager combines information from all cores, and performs the global power/performance
optimization. By being knowledgeable about differences in per-core behavior, the available power budget
can be dynamically distributed across cores.

In commercial designs, both the per-core PMU and global GPM are already present in some form, see for
example [149]. The PMU typically collects power consumption and junction temperatures, and performs
control functions such as P-state (DVFS) and C-state (various levels of core gating) transitions. The GPM
is implemented as an integrated microcontroller and runs firmware algorithms that interface with the
PMUs and both on-chip and off-chip voltage regulators.

3.2.2 Chrysso adaptation

Figure 3.2 depicts the Chrysso event flow. Time is divided into fixed-sized time slices, typically several
milliseconds. During each time slice, cores keep track of activity statistics using the hardware counters
in the per-core PMUs. At the end of a time slice, the PMU uses analytical performance models along
with table-based power models to predict/project the performance and power of all possible core con-
figurations (48 configurations in total in our setup). Each core then sends a list of Pareto-optimal core
configurations to the GPM, which globally optimizes the many-core configuration within the given power
budget. Finally, the GPM instructs each core to adapt itself based on the configuration that was decided
upon. Using a 10 ms time slice, we find the Chrysso flow to be very low overhead (less than 1%) of which
the projection and optimization parts can be overlapped with workload execution, to reduce overhead
even further.
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Figure 3.2: Event flow in Chrysso.

3.3 Chrysso Optimization Algorithm

The aim of Chrysso’s optimization algorithm is to find a combination of per-core configuration settings
that maximizes performance within the imposed chip-wide power budget. The search space is multi-
dimensional with local minima that is not trivially navigated. However, by combining per-core Pareto
frontier generation with a utility-driven power budget allocation, Chrysso can quickly navigate this search
space and converge to a (near-)optimal configuration at small time granularities. Chrysso’s scalability and
adaptivity depends on two key features: Pareto-optimal search and utility-based optimization.

3.3.1 Per-core prediction and Pareto-optimal search

Chrysso first predicts performance and power for all possible configuration tuples (w, c, f) for each core,
with w denoting the core’s width, c the number of cache ways enabled, and f the core’s frequency. This
is done by the PMUs for the respective cores using the projection models which we discuss in detail in
Section 3.4.

Once each core’s PMU has computed the projected performance and power values for each possible
configuration, we then discard all non Pareto-optimal configurations. The Pareto frontier consists of
those points for which no other point can at the same time provide higher performance and lower power
consumption. This significantly reduces the number of configurations that have to be taken into account
in the global optimization round: out of a total of 48 per-core configurations, typically only 5 to 10 are
Pareto-optimal, depending on the workload characteristics. These points are then sent to the GPM for
global optimization.

3.3.2 Utility-driven optimization

The global optimization algorithm uses the current many-core configuration as a starting point. As long
as the projected power consumption of the current configuration exceeds the power budget, cores are
successively selected to step down their configuration. All settings occur only along each core’s Pareto
frontier—by using Pareto-optimal points only, we have already linearized the per-core selection process
without loss in optimality.

At each iteration, the core that is selected to perform a step-down is the one that will provide the highest
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3.3. CHRYSSO OPTIMIZATION ALGORITHM
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Figure 3.3: The Chrysso algorithm consists of Pareto frontier selection followed by utility-based optimiza-
tion.

utility—this is the core that is able to achieve the highest reduction in power consumption while giving
up the least amount of performance along the core’s Pareto frontier. To speed up the algorithm, and to
reduce the chance of ending up in local minima, cores can also be selected to step-down by multiple steps
at once. The algorithm works by constructing a list of down-steps, between 1 and M steps along the
Pareto frontier for each core. It then sorts these steps by utility (power savings divided by performance
loss). The first step-down in this list is applied to the current configuration, after which the algorithm
performs the next iteration with another step-down as long as the predicted power consumption exceeds
the available power budget.

Once the power limit has been reached, or if the initial configuration already falls below the power limit,
the step-up phase of the algorithm starts in which cores can be stepped up. This allows Chrysso to take
up any spare power budget that was made available by the last step-down phase, if any.

Figure 3.3 illustrates this process: for two cores #0 and #1, it shows the various configurations with the
Pareto-optimal design points shown as black dots. Down-steps are selected based on utility, i.e., by the
largest reduction in power for the least reduction in performance—which corresponds to the available
configuration change with the shallowest slope: Chrysso selects down-steps 1, 2, 3 and 4 for cores #0,
#1, #1, and #0, respectively.

3.3.3 Critical-thread aware Chrysso

The utility-driven global optimization strategy as just described allows for giving a larger share of the total
power budget to cores/threads that benefit more than others. In a multi-program workload environment
this helps overall system performance by giving a relatively larger power budget to compute-intensive
applications over memory-intensive applications (as we will quantify in the results section). For multi-
threaded workloads, it makes sense to give a larger share of the power budget to critical threads to
improve overall application performance. A thread is considered critical at a given point in time if it
determines the progress of the whole application. In particular, a serial thread is the critical thread as all
other threads wait for the serial thread to finish. Likewise, threads that have reached a barrier wait for
the lagging critical thread to also reach this barrier. Similarly, a thread holding a lock is the critical thread
while other threads wait for the lock to be released.

Chrysso leverages the notion of thread criticality to allocate power among the cores/threads: it computes
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thread criticality as proposed by [47]. The criticality value quantifies how much time a thread is perform-
ing useful work (active/running) and how many threads are concurrently waiting within a given time
slice. Intuitively, a thread that is actively running while other threads are waiting due to synchronization
is more critical and therefore receives a larger criticality value. We make Chrysso critical-thread aware by
identifying the thread with the largest criticality value and we prevent the critical thread from entering a
step-down phase, i.e., we do not want the critical thread to be slowed down. Instead, during the step-up
phase, we allocate a higher power budget to the critical thread (of course, we remain within the given
power budget). By preventing the critical thread from being slowed down, and by even speeding it up
(if possible), we achieve a more balanced execution, and hence we reduce overall application execution
time. Note that we recompute the criticality values for all threads in each time slice, and we thus dy-
namically determine the most critical thread and repartition the power budget accordingly. Computing
thread criticality can be done in hardware with minimal overhead (65 bits per core [47]) or in the OS
kernel [48].

3.3.4 Optimizing for other criteria

While we implement and evaluate Chrysso to optimize performance under a given power budget, it can
easily be adapted to other optimization criteria, as long as (i) a per-core Pareto frontier can be constructed
to reduce the number of candidate configurations, and (ii) a utility metric can be constructed that allows
the effectiveness of different configurations to be compared.

One alternative optimization criterion could be to minimize energy for a given performance threshold, as
might be of interest in battery-powered devices with performance guarantees (such as video playback).
Here, Pareto points would be constructed using energy and performance, rather than power and perfor-
mance. Utility of different configurations is compared by computing the slope of energy savings versus
performance loss, while the optimization algorithm would step-up cores as long as the performance tar-
get is not met. In addition, the optimization algorithm can be tuned to skip the step-down phase for
high-priority applications at the cost of low-priority applications.

3.4 Chrysso Projection Models

As mentioned earlier, Chrysso uses model-based prediction to explore the optimization space at run time.
This allows Chrysso to scale much more easily to architectures with multiple configuration knobs, while
incurring little run-time overhead. In contrast, sampling-based methods used in prior work [12, 59, 139]
have to measure power/performance in selected operating points, potentially leading to sampling errors
introduced by application phases, interpolation errors due to the non-linearity of the search space, and
higher overheads to try out a number of suboptimal configurations. The inputs to Chrysso’s prediction
models are the activity statistics collected using hardware counters during the current time slice. As-
suming workload behavior is relatively constant over time (and at least representative for the next time
slice), this information is then used to predict performance and power for all possible core configurations
(w, c, f) during the next time slice.

3.4.1 Performance projection

Performance of a candidate configuration is modeled based on the notion of a CPI stack, which breaks
down the average number of cycles executed per instruction into individual CPI components representing
cycles ‘lost’ due to branch and memory stalls, in addition to a base component.
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3.4. CHRYSSO PROJECTION MODELS

Knob Parameter Values

Core (w)

Width 1 2 3 4
ROB size 16 32 64 128
Reservation station entries 4 8 16 32
Load queue entries 6 12 24 48
Store queue entries 4 8 16 32

Cache (c)
L2 cache ways 4 8 12 16
Capacity (KB) 128 256 384 512

DVFS (f)
Frequency (GHz) 0.8 1.0 1.2 —
Vdd (V) 0.7 0.75 0.8 —

Table 3.1: Configuration knobs and corresponding architectural parameters and values.

CPI = CPIcore + CPImem (3.1)

CPIcore = CPIbase + CPIbranch (3.2)

CPImem = CPIL1 + CPIL2 + CPIdram (3.3)

To take into account frequency changes, we introduce the seconds per instruction (SPI) metric. SPI is a
function of CPI and clock frequency f :

SPI = CPI/f. (3.4)

We use the CPI stack of the Current (C) configuration to predict performance of other configurations
by rescaling individual CPI stack components. In the discussion to follow, we will compute the perfor-
mance of a Target (T ) configuration tuple (wT , cT , fT ), given performance information obtained from
the previous slice which ran at the Current (C) configuration tuple defined by (wC , cC , fC).

As mentioned before, we consider three degrees for adaptation: within the core, within the last-level
cache, and through per-core DVFS (see Table 4.1). We now describe in detail the performance models
for each of these adaptations.

3.4.1.1 Core knob

The core knob affects the core’s execution width and the size (quadratically with core width) of various
supporting structures (ROB, reservation station, load/store queues). None of the memory-related com-
ponents nor the branch predictor are assumed to be affected, so their CPI components are kept constant.

We observe in our experiments that changing the core width along with the respective buffers has a
saturating effect on ILP. Using the relation between processor width and ILP, the effect of changing the
core knob is predicted by:

CPITbase = CPICbase ·
wC

wT
(3.5)

3.4.1.2 Cache knob

Cache projections are based on data obtained from auxiliary tag directories (ATDs) [145], which we use
to estimate the cache miss rate would be for each of the possible Target (T ) configurations. To gauge
the performance impact incurred by a change in miss rate, we assume constant DRAM access time and
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memory-level parallelism. The CPIdram component can therefore be assumed to scale with the miss rate
estimated by the ATDs:

CPITdram = CPICdram · ATD(cT )

ATD(cC)
(3.6)

When the current miss rate ATD(cC) is zero—for certain application phases in which the working set
fits in cC—we avoid a division by zero by assuming a fixed cost per DRAM access. CPITdram is then
estimated by multiplying the (uncontended) DRAM access latency with the number of expected LLC
misses per 1,000 instructions (MPKI).

3.4.1.3 Frequency and voltage knob

When changing a core’s clock frequency and voltage, this affects the behavior of the core itself as well
as that of the L1 and L2 caches—which in our architecture are tied to the core clock. The speed of
operations taken by the core or caches, when measured in clock cycles, will therefore not change. DRAM
access latency, however, will stay constant only when measured in absolute time. Thus, we can predict
total core performance as:

SPIT = (SPIcore + SPIL1 + SPIL2) ·
fC

fT
+ SPIdram (3.7)

3.4.1.4 Putting it all together

To estimate performance (in instructions per second, IPS) for a configuration of interest, Equations 3.5–
3.7 are first applied to rescale the performance components of the current configuration to the new
configuration; subsequently, application of Equations 3.1–3.4 yields a prediction for overall core perfor-
mance.

The baseline IPS calculated before is rescaled using the ratio of measured IPS versus estimated IPS for
the Current (C) configuration. This step dynamically corrects the modeling inaccuracies and adapts to
application variability. It helps in improving the prediction accuracy for future time slices.

IPST
estimated−scaled = IPST · (IPS

C
measured

IPSC
) (3.8)

3.4.1.5 Accuracy versus complexity

Note that for each of these knobs, more elaborate models can be constructed that may reduce modeling
error. For instance, by taking average dependency distance into account, the saturating effect of processor
width on ILP extraction could potentially be estimated. Likewise, the current model ignores the effect
that larger ROBs can expose more MLP; also, the model assumes that memory access latency is not
affected by DRAM nor NoC bandwidth. However, more complex models would incur more overhead
(which would compromise scalability for many-core system) for both collecting the required statistics
and for running the projection models, while not necessarily enabling the reconfiguration algorithm to
make better decisions.

In the evaluation section, we will compare reconfiguration decisions based on our models with oracle-
based decisions, and show that these simple models provide a good balance between accuracy and com-
plexity; a trade-off opted to improve scalability for many-core systems. Moreover, because we rescale
performance and power projections relative to the current configuration’s measured performance and
power numbers, as just described, good relative accuracy suffices for the purpose of identifying appropri-
ate core configurations during utility-based optimization.
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3.4. CHRYSSO PROJECTION MODELS

3.4.2 Power projection

Power consumption prediction uses a table-based approach. For each core configuration (w, c, f), the
table contains the static power consumption Pstatic, the dynamic energy consumption based on activity
costs per instruction (Einstr), and the dynamic energy consumption per L2 cache access (EL2). The
values in this look-up table are obtained through offline analysis using a broad set of applications. This
is a one-time cost and can be done ‘at the factory’. Due to process variability, each processor chip might
have slightly different table values.

Now, to estimate power consumption for the next time slice, we need an estimate for the dynamic in-
struction count and cache access count during the next time slice. This is estimated using the following
equations. The dynamic instruction count is estimated by multiplying the time slice length (in seconds)
with the projected IPS; the cache access count is computed by scaling the dynamic instruction count with
the cache access rate of the current time slice.

IcountT = time slice · IPST
estimated−scaled (3.9)

L2accessT = (L2accessC/IcountC) · IcountT (3.10)

Computing projected power is done by multiplying the projected instruction and L2 access counts with
their respective energy costs, divided by the time slice length, and added to the static power for a given
configuration T .

PT
estimated = PT

static +
(ET

instr · IcountT ) + (ET
L2 · L2accessT )

time slice
(3.11)

This estimate is subsequently rescaled using the ratio of measured versus estimated power for the
Current (C) configuration:

PT
estimated−scaled = PT

estimated · (PC
measured/P

C
estimated) (3.12)

PC
estimated is computed using Equation 3.11 with the table values corresponding to the Current (C)

configuration, while PC
measured is obtained from hardware energy counters.

3.4.3 Hardware support

Core-level projections rely on hardware support for collecting CPI stacks. On out-of-order cores, hard-
ware collection can be complicated because of various overlap effects between miss events. Recent com-
mercial processors such as the IBM Power5 [124] and current generation Intel processors [77, 179] do
have support for computing memory stall components, making most of the required information already
available.

Cache projections are based on data obtained from auxiliary tag directories (ATDs) [145], which we use
to keep track of what the cache miss rate would be given each of its configuration settings. Since we use
selective ways, only a single array of tags has to be maintained per cache set, corresponding to the largest
possible configuration. Assuming LRU replacement policy, an access would be a hit when the cache was
configured to be n ways iff its LRU position is less than N (with 0 being MRU and N − 1 being LRU in
an N -way cache). Set sampling can be employed to reduce hardware overhead with minimal impact on
accuracy. In our experiments, we sample 32 randomly selected sets out of 512 sets in the LLC, which
incurs an overhead of 2,688 bytes per core2.

For power projections, we employ simple models that predict the relative difference between the current

242-bit tags and 16-way maximum associativity.
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configuration and other configurations of interest. Input to the models are activity statistics that count the
total number of instructions and the number of LLC accesses. In addition, the current power consumption
is used as a correction factor, which can be obtained from energy counters as available in current gener-
ation Intel processors [149]. The power characterization table itself is populated using data obtained at
design time, or could be filled in with per-core specific values after chip fabrication to take into account
process variation. The table consists of three 16-bit numbers per configuration; for 48 configurations in
total, this amounts to 288 bytes of storage.

In summary, hardware overhead is limited. Either the required information is already available in existing
systems; or can be obtained at low cost—less than 3 KB per core (ATDs, power table, and critical thread
calculation).

3.5 Experimental Setup

3.5.1 Simulator

3.5.1.1 Performance simulator

We use the Sniper multi-core simulator [36], version 6.0, and added support for dynamically changing
core and cache parameters. Core reconfiguration and DVFS transitions take 2 µs [104]. Because voltage
regulators have to stabilize, we assume no computations can be performed during this transition. When
reducing the number of cache ways, dirty lines are written back through the simulated memory subsys-
tem, consuming NoC and DRAM bandwidth. Since cache reconfiguration is relatively infrequent, these
write-backs take up no more than 0.6% of total DRAM bandwidth.

3.5.1.2 Power consumption

McPAT version 1.0 is used to estimate static and dynamic power consumption [112]. Power savings
incurred by reconfiguration are modeled by running McPAT with the modified target parameters as per
Table 4.1. Running McPAT along with the performance simulation allows us to emulate the behavior of
hardware energy counters at simulated time slices of 10 ms.

3.5.1.3 Chip temperature

Temperature values were obtained using HotSpot [76]. A floorplan was generated at core-level granu-
larity, by arranging cores (including their L1 and L2 caches) in a 16×4 layout. Each core has an area of
10.3 mm2 as estimated by McPAT in the 22 nm technology. For every time slice, per-core power is calcu-
lated by McPAT and fed to HotSpot which then computes temperature distribution. We report maximum
and average temperature across all cores.

3.5.2 Workloads

3.5.2.1 Multi-program workloads

We run a number of multi-program workloads composed of SPEC CPU2006 benchmarks; there are 29
CPU programs in total, which along with all of their reference inputs leads to 55 benchmarks in total.
We select representative simulation points of 750 million instructions each using PinPoints [134]. Four
multi-program workloads are constructed by combining these 55 benchmarks as indicated in Table 5.3.
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3.5. EXPERIMENTAL SETUP

Workload Description Benchmarks

WL0 SPEC average all 55 + 9 uniform random
WL1 Compute 8 compute bound, ×8
WL2 Mixed 8 compute + 8 memory, ×4
WL3 Memory 8 memory bound, ×8

Table 3.2: Multi-programmed workloads.

Suite Benchmark/Workload Inputset

NPB BT, CG, FT, MG, SP, UA class A

blackscholes, bodytrack, facesim
PARSEC ferret, fluidanimate, swaptions simlarge

raytrace, canneal, streamcluster

wupwise_m, swim_m, mgrid_m
SPEC OMPM2001 applu_m, equake_m, apsi_m reference

gafort_m, fma3d_m, ammp_m

Table 3.3: Multi-threaded workloads.

Each benchmark is pinned to a core. We run the simulation for a fixed amount of simulated time (500 ms).
When a benchmark completes before this time, it is restarted on the same core. We quantify system
throughput using the STP metric [54] (also called weighted speedup [158]) which quantifies the aggre-
gate throughput achieved by all cores in the system.

3.5.2.2 Multi-threaded Workloads

We use multi-threaded benchmarks from PARSEC [21], SPEC OMPM2001 [10] and NAS Parallel Bench-
marks (NPB) [14], as described in Table 3.3. As realistic working sets are required to make the analysis
meaningful, we use the simlarge input set for PARSEC, the reference input set for SPEC OMPM2001, and
the class A input set for NPB (with reduced number of iterations to keep simulation time manageable).
Each benchmark is executed with 64 threads in our 64-core processor. Each thread is pinned to a core.
We run each benchmark until completion and report total execution time.

3.5.3 Adaptive many-core architecture

The architecture on which we evaluate Chrysso is a large 64-core processor; see Table 3.4 for more
details. The configuration knobs for core adaptation, cache adaptation and DVFS (Table 4.1) are down-
scaled versions of the baseline architecture.

We define the chip’s maximum thermal design power (TDP) using the average power consumption of
a full-feature chip (each core at maximum width, maximum number of cache ways, and highest fre-
quency/voltage setting) while running the average SPEC workload (WL0), which was 120 W. Results will
be shown for power budgets as a percentage of this value.
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Component Parameters

Core count 64
Core type 4-way issue OOO, 128-entry ROB
Load/store queue 48 load entries, 32 store entries
L1-I cache 32 KB, 4-way, 3 cycle access time
L1-D cache 32 KB, 4-way, 3 cycle access time
L2 cache 512 KB, 16-way, 10 cycle access time, private per core
L2 prefetcher stride-based, 8 independent streams
Coherence protocol directory-based MESI, distributed tags
Network On-chip 16×4 mesh, 32 GB/s/link
Main memory 8 controllers, 80 ns latency, 128 GB/s total
Technology 22 nm, 660 mm2 total area
Frequency 1.2 GHz
Vdd 0.8 V
TDP 120 W

Table 3.4: Base configuration.

3.5.3.1 Core configuration

The first configuration knob adapts the core itself. The core width can be adapted, along with the size
of various structures. We maintain a quadratic relation between execution width and size of microar-
chitectural buffers [55]. Unused components are power-gated to reduce both static and dynamic power
consumption.

3.5.3.2 Cache configuration

For cache adaptivity, we use a flushing, selective-way LLC implementation as described by [4]. By control-
ling which ways are on and off, we can power-gate portions of the cache to reduce its capacity and lower
power usage. We use selective-ways because of their simple design, as selective-sets require changes to
the number of tag bits used [178]. By using the flushing cache policy when shrinking to a smaller number
of ways, we can turn off the corresponding cache ways sooner, reducing the static power consumption of
the cache.

3.5.3.3 DVFS configuration

Finally, we assume the availability of on-die voltage regulation [31, 108] to enable fast per-core DVFS [80,
104] with a range between 800 MHz at 0.7 V to 1.2 GHz at 0.8 V, which is in line with Intel Xeon Phi
settings [86].

3.5.4 Alternate power management policies

For comparison against Chrysso, we implemented two DVFS-based power management policies. Chip-
wide DVFS (DVFS-CW) runs all cores at the same frequency. In some commercially available processors,
this is referred to as P-states [109]. Minimum-power DVFS (DVFS-minPower) represents state-of-the-art
per-core DVFS, which iteratively reduces frequency and voltage for the core with the lowest power [80].
The intuition is that these cores are likely memory-bound and will not give up much performance when
their frequency is reduced.

In addition, we also compare Chrysso against power-gating cores until the power budget is met. Under
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Figure 3.4: Per-knob modeling error of Chrysso’s performance (left) and power (right) projection models.

core gating, an equal-time scheduler is used to time-share all 64 application threads on the active cores.
We assume a time slice of 10 ms, unless mentioned otherwise.

3.6 Results and Discussion

Before presenting overall results for Chrysso during dynamic execution, we first evaluate two critical
Chrysso components in isolation through offline analysis, namely projection model accuracy and opti-
mization algorithm effectiveness.

3.6.1 Offline Analysis

3.6.1.1 Projection model accuracy

Figure 3.4 shows the (absolute) modeling error distribution for performance (left) and power (right) for
all benchmarks and across all architecture configurations at a 10 million instruction granularity. Each box
plot shows the 5 to 95 percentile; the horizontal line inside the box shows the mean error; the outliers are
shown using the dashed line. On average, both the performance and power effects of changes made to
each knob can be predicted within 6% accuracy, and 95% of all predictions are within 13%. The largest
errors occur for the Core knob, which arguably has the simplest model, and for configurations that are
far away from the current one. Still, the projections allow the reconfiguration algorithm to make the
correct decision due to Chrysso’s ability to run at small time slices and to quickly correct from errors by
leveraging projection rescaling in subsequent time slices, as discussed in Section 3.4.

3.6.1.2 Optimization algorithm effectiveness

To measure how closely Chrysso approaches the actual global optimum, we set up a trace-based exper-
iment in which we implement an oracle scheme. Single-program runs were done for all benchmarks
and all possible configurations in order to measure the actual performance and power consumption at
a granularity of 10 million instructions. Because finding the global optimum through exhaustive search
is infeasible—64 cores with 48 possible configurations each, leads to a search space of 4864 entries—we
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Figure 3.5: Effectiveness of Chrysso compared to pOracle through offline analysis for multi-program
workloads.

consider a pseudo-oracle (pOracle) scheme, which we found to be within 96–100% of the true oracle for
4–6 cores.

Figure 3.5 plots the results of Chrysso in comparison to pOracle. Chrysso uses performance counter
information from the previous time slice, applies the projection models from Section 3.4, and uses the
search algorithm described in Section 3.3 to find a solution that satisfies the power budget. pOracle-
prev forgoes the modeling step and uses actual performance and power data from the trace for the
previous time slice. This allows us to isolate the effect of time-varying workload behavior. pOracle uses
actual performance and power from the trace for the next time slice, removing both projection error and
workload variability from the equation.

In the figure, solid lines plot STP relative to the full-feature base configuration (on the left vertical axis)
obtained by each algorithm for the different power budgets, while dashed lines report the difference with
pOracle (on the right vertical axis). Chrysso is able to find a solution that is within 7% of the optimum.
The largest errors occur for lower power settings; these are the regions in the optimization space in which
there are more degrees of freedom and it is easier to end up in a local minimum. The error for pOracle-
prev is even lower and never exceeds 3%—showing that improving the projection models can further
increase effectiveness—whereas workload variability at this time scale is of less importance.
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Figure 3.6: Relative STP vs. power budget: comparing Chrysso against alternative power management
techniques for multi-program workloads.

3.6.2 Chrysso Evaluation

Having evaluated its two most critical components, we now evaluate Chrysso through online simulation.

3.6.2.1 Multi-program performance

Figure 3.6 plots system throughput (STP) at different power budgets for the four multi-program work-
loads. The horizontal axis plots the available power budget relative to the TDP (120 W). On the vertical
axis we plot STP relative to a full-feature chip. Note that some workloads (most notably the compute-
bound WL1) have a full-feature chip power consumption that is higher than 120 W; they therefore show
performance degradation for any of the evaluated mechanisms even at 100% TDP. At the other extreme,
the memory-bound workload needs only 70% TDP at full configuration, so it does not incur any perfor-
mance penalty even at a power budget of only 70%. Using DVFS alone, power consumption cannot be
reduced below 60% (or even below 70% for WL1; only 80% with DVFS-CW). By leveraging additional
power saving mechanisms next to DVFS, Chrysso is able to outperform both chip-wide and per-core DVFS
even for more modest power reduction settings.

Compared to core gating, both Chrysso and DVFS are able to obtain power savings that are larger than
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Figure 3.7: Performance vs. power budget of the evaluated power management techniques for multi-
threaded benchmarks.
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Figure 3.8: Critical-thread aware Chrysso for the thread-imbalance workloads NPB (MG), PARSEC
(blackscholes) and SPEC OMPM2001 (gafort_m).

the relative loss in STP. While core gating is able to limit power consumption to any desired budget, it
does so at a linear decrease in performance. In contrast, Chrysso is able to detect which parts of the chip
do not contribute to performance as much and down-steps these cores first. At stringent power budgets
(40%), core gating achieves a relative STP around 0.34 for WL0, while Chrysso achieves a relative STP
of 0.64, or 1.9× higher.

3.6.2.2 Multi-threaded performance

Chrysso is also effective for multi-threaded workloads. Figure 3.7 plots performance (inverse of execution
time relative to full-feature chip) at different power budgets. The graphs show average performance per
benchmark suite. Compared to core gating, both Chrysso and DVFS are able to obtain power savings
that are larger than the relative loss in execution time. In other words, while core gating is able to limit
power consumption to any desired budget, it does so at the cost of a non-uniform increase in execution
time (due to inter-thread dependencies). In contrast, Chrysso is able to give a relatively smaller power
budget to cores that do not contribute to performance as much. Making Chrysso critical-thread aware
(’Chrysso-Critical’) clearly improves performance for a number of benchmarks: by 2–5% on average
for NPB, 1.5–7.2% for PARSEC, and 1–5% for SPEC OMPM2001 at medium to stringent power budgets.
Benchmarks that are most sensitive to workload imbalance benefit the most from making Chrysso critical-
thread aware. See for example PARSEC’s blackscholes in Figure 3.8: overall application performance
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Figure 3.9: Isolated versus integrated optimization using Chrysso for the WL0 multi-program workload.

greatly improves (up to 18%) by giving a relatively larger fraction of the chip power budget to the
most critical thread. Critical-thread awareness provides almost 5% and 4% reduction in execution time
for applications like NPB’s MG and SPEC OMPM2001’s gafort_m respectively (Figure 3.8). Overall, we
observe a reduction in application execution time of around 1.5× at stringent power budgets through
(critical-thread aware) Chrysso over core gating.

3.6.2.3 Integrated vs. isolated optimization

As mentioned before, the key benefit of Chrysso’s model-based approach is that it easily allows different
adaptation methods to be combined and achieve higher performance within the same power budget.
Figure 3.9 confirms this by plotting results for Chrysso in comparison to isolated adaptation (core, cache
and DVFS) for the WL0 multi-program workload. Using adaptation techniques in isolation, the power
budget can be reduced by 40% at most; on the other hand, combining all three knobs can reduce power
budget by 70%. Even at moderate power budgets Chrysso outperforms isolated adaptation: at 80% of
TDP, Chrysso improves system throughput by 16.8% over cache adaptation, by 17% over core gating, by
6.3% over chip-wide DVFS, by 4.5% over core adaptation, and by 2% over per-core DVFS. Furthermore,
at modest power budgets, e.g. 60%, isolated adaptation (e.g., DVFS) incurs a performance hit of at least
5.5% compared to combined adaptation using Chrysso.
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Figure 3.11: Average normalized turnaround time (ANTT) of Chrysso and core gating for the WL0 multi-
program workload. (Lower is better.)

3.6.2.4 Power allocation

It is interesting to explore where the power savings come from using Chrysso. Figure 3.10 shows the
number of cores (out of the 64) that are adapted by a specific knob at least once during its execution
time. At high to moderate power budgets, we observe that most cores have their frequency and voltage
adapted. At reduced power budgets, a higher number of cores have their microarchitecture adapted,
followed by cache adaptation at even lower power budgets. This suggests that Chrysso redistributes
power from memory-intensive applications to provide a higher relative power budget to power-hungry,
compute-intensive applications, thereby increasing overall chip performance (STP).

The fact that Chrysso reallocates power among cores/threads implies that some threads may make faster
progress than others. We quantify this effect using the average normalized turnaround time (ANTT)
metric [54], also called the harmonic mean of speedups [117], which measures the average progress
rate relative to isolated execution for all threads in the workload. Figure 3.11 shows ANTT for Chrysso
compared to core gating: clearly, Chrysso achieves a much better average progress rate than core gating,
up to 75% at stringent power budgets. The reason is that Chrysso is able to efficiently redistribute
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Figure 3.12: Energy per instruction versus performance at various power settings.

power based on core/threads requirements; on the contrary, since core gating is agnostic to the threads’
characteristics, individual threads make limited progress due to time-sharing across the remaining, non
power-gated cores.

3.6.2.5 Energy efficiency

Although Chrysso does not directly optimize for energy, it is still able to save a significant amount
of energy. Figure 3.12 plots the resulting STP versus the energy per instruction (EPI, in nano-
Joules/instruction) for each of the power budgets shown in Figure 3.6. The right-most (highest STP,
highest EPI) points for each workload correspond to the 100% setting, while moving to the left corre-
sponds to progressively lower power settings down to 30%. For most workloads, an energy reduction of
over 1.5× is possible, while the STP cost for achieving this reduction is always under 50%. Note also
that the highest energy savings are not necessarily achieved when simply running the whole chip at its
minimum configuration. For instance, running WL0 at the lowest configuration costs 3.5% more energy
than using Chrysso at a 30% power budget, while providing 5.4% lower performance.

3.6.2.6 Dynamic behavior

The dynamic behavior of Chrysso over a 100 ms execution interval is shown in Figure 3.13, at a 50%
power setting. For each configuration knob (core, frequency and cache), the minimum, average and
maximum settings over all 64 cores are shown at each 1 ms time slice, in addition to the number of
cores for which each knob was changed in that time slice. At this power level, most cores have their
frequency reduced to the lowest setting. Core reconfiguration is not used much since it usually has a
high performance impact and isn’t yet needed at this power setting. In contrast, cache reconfiguration
is performed often since it has the most power impact, and is also most affected by application phase
behavior.
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3.6. RESULTS AND DISCUSSION

3.6.2.7 Reconfiguration time slice

Chrysso is designed to enable fast reconfiguration. Figure 3.14 explores the characteristics of time slices
between 100 µs and 10 ms. The left plot displays the distribution of actual power consumption relative
to the specified power limit in 1 ms intervals. Due of workload variability, a 10 ms reconfiguration time
slice is often too slow to ensure the limit is always met. Using 1 ms and 100 µs time slice progressively
reduces the number of violations.

However, when looking at relative STP (Figure 3.14, right), it turns out that faster reconfiguration can
be detrimental to performance. The main reason is that, especially at this power setting, frequent cache
configuration changes result in a large amount of invalidations and writebacks from the L2 cache, and
subsequent misses once the application needs this data again later. This phenomenon occurs when the
reconfiguration time slice becomes shorter that the typical time between reuse of data in the caches:
whereas the ATDs predicted that a smaller cache will not harm performance for a given time slice, the
application does exhibit reuse at longer time scales causing the caches to be resized too aggressively. Core
and frequency reconfiguration do not have this problem, as their reconfiguration cost is much smaller (we
model both with 2 µs penalties).

We conclude from this experiment that for efficient execution, the reconfiguration time slice should never
be shorter than the corresponding time scales of application behavior on a per-knob basis. At time scales
of 1 ms and shorter, a single reconfiguration time slice no longer suffices as some knobs (core, frequency)
can be re-tuned every time slice whereas other knobs (caches) will need to be kept constant for a number
of time slices to avoid excessive switching costs.

3.6.2.8 Adapting to time-varying workload conditions

A key asset of Chrysso is its ability to quickly adapt to time-varying workload conditions, and automat-
ically redistribute power. This is illustrated in Figure 3.15, which shows power and performance for all
64 threads (solid lines plotted along left vertical axis) of the swaptions benchmark when run at 50%
TDP (total power and performance plotted against right vertical axis with dashed line and markers). All
but one of the threads finish execution between 150 ms to 180 ms, i.e., the application transitions from
a parallel phase into a serial phase. Chrysso is able to seamlessly allocate more resources to the serial
thread (solid line and ‘×’ marker)—tuples (w, c, f) at each 10 ms time slice shows the configuration for
the serial thread decided by Chrysso’s adaptation algorithm.

To achieve even higher power-efficiency, we can power-gate the cores that have finished execution, which
we identify by polling the core’s issue queue and power-gate the entire core when the issue queue is empty
for more than 1 ms. This additional optimization further reduces total power consumption during serial
execution from 41.5 W to 2.2 W.

3.6.2.9 Chrysso complexity and scalability

The computational cost of Chrysso reconfiguration is composed of two parts: projection models and
global optimization. The projection models amount to less than 1,000 operations to be implemented
using fixed-point arithmetic and run on each core’s PMU, in parallel with normal execution. Filtering for
Pareto-optimal points is done on the PMU as well, resulting in 5–10 points in practice to be sent to the
GPM.

The global optimization algorithm has complexityO(N logN), whereN is the number of cores, as we sort
all the per-core Pareto-optimal configurations by utility. In our experiments, however, we have observed
that, in most cases, less than half of the cores need a configuration change at any point in the execution.
To support this, Figure 3.16 shows the average number of core adaptations that Chrysso performs per
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Figure 3.15: Total and per-core power (top) and performance (bottom) for swaptions at 50% TDP.
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Figure 3.16: Average number of adaptations per time slice (10 ms) for the 64 cores running WL0.

time slice, for different power budgets. Moreover, the adaptation is typically a minor modification from
the current configuration.

Overall, the Chrysso workflow including projection (in parallel) and optimization (centralized) takes
less than 100 µs, even on modest hardware, and should be easily implementable using existing power
management agents as seen in modern-day processors [149]. With a reconfiguration time slice of 10 ms,
this amounts to an overhead in execution time of at most 1%.

3.7 Related Work

3.7.1 Micro-architecture Adaptation

A variety of prior work has explored how to improve power-efficiency by adapting microarchitecture
structures. Folegnani et al. [59] and Bahar et al. [12] proposed to adapt the instruction window and
issue logic to provide greater power/energy efficiency while showing a small reduction in application
performance. Gibson et al. [63] proposed the ForwardFlow core as a way to trade off core performance
for power. Albonesi [4] and Yang et al. [178] evaluated shutting down portions of the cache, either a
number of ways or a combination of ways and sets for improved energy efficiency. These techniques
evaluate adapting micro-architectural structures to trade off performance for power and energy. Eckert
et al. [51] proposed to combine drowsy caches with front-end pipeline gating and demonstrate better
performance-power scaling than dynamic frequency scaling, and even DVFS in some cases. Although
their work shows that one can reconfigure the system to perform better than DVFS, they do not perform
run-time optimizations of large many-cores in power-constrained environments. Dubach et al. [49] use
machine-learning models (trained using profiling) to perform online adaptation of a single core at a
time. On the contrary, Chrysso handles online adaptations in a many-core scenario and adapts core,
caches and DVFS settings simultaneously. None of these previous works have evaluated integrated power
management including fine-grain adaptation of the core microarchitecture, cache, and per-core DVFS
settings for many-core processors at stringent power budgets.

3.7.2 Dynamic Power Management

Isci et al. [80] investigated a global power controller to determine different per-core DVFS settings to
maximize chip-wide MIPS. Teodorescu and Torrellas [167] proposed variation-aware power-management
DVFS algorithms for application scheduling in a CMP to save power or improve throughput at a given
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power budget. CoScale [42] deals with co-optimizing DVFS settings for both the CPU and DRAM. Our
goal is different as we try to optimize many-core performance by adapting both the core, the cache, and
per-core DVFS settings. Both CoScale and Chrysso use utility-based optimization, but our models are
different (we adapt core and cache next to DVFS) and we leverage per-core Pareto-optimal design points.

Jayaseelan et al. [84] proposed global DVFS with per-core adaptation based on neural networks to reach
the power budget. On similar grounds, Bitirgen et al. [22] formulated global resource allocation using
machine learning. Ghasemi et al. [62] proposed RCS, a mechanisms to uniformly change core resources
with the number of cores (8/10/12) to exploit application variability at a fixed power budget. The pro-
posed scheme uses a SVM-based machine-learning mechanisms to obtain the number of active cores (with
corresponding microarchitectural variation) for each interval. In contrast, Chrysso uses simple projection
models providing better scalability towards larger core counts even in power-constrained environment
with lower overhead. Meng et al. [123] proposed DVFS adaptation along with cache adaptation for 4-
core system. The key difference is that their search algorithm does not scale to large number of cores:
it does not prune the global search space by first identifying per-core Pareto-optimal points; and it does
not make performance/power predictions relative to the current configuration but relative to no power
optimization (maximal power mode), which requires more accurate models. Furthermore, this work
does not consider core adaptation, nor does it evaluate the applicability to many cores (64 cores) nor
multi-threaded applications.

Petrica et al. [139] proposed Flicker, a scheme to dynamically adjust the capabilities of an out-of-order
core at coarse-grained time slice (100 ms) using sampling-based global genetic algorithm to improve
performance compared to core power gating at moderate power budgets. This approach has at least
three limitations. First, a trade-off has to be made between the length of each sample and the number
of sampled configuration points to reduce sampling overhead—during which the processor runs at a
suboptimal configuration. Second, each sample is obtained by running a different part of the application;
workload variability and samples are essentially not comparable. Finally, sampling may be hard to scale
to large configuration spaces. In contrast, Chrysso uses projection models to provide a better scalable
adaptation scheme while exploring a broader adaptation space (including cache and DVFS along with
core adaptation).

3.7.3 Critical Thread Acceleration

Several prior works have proposed techniques to identify critical threads for acceleration, either by run-
ning serial parts at higher clock frequency [9, 127], by running serial code and synchronization bottle-
necks on a big core in a heterogeneous multi-core [91, 130, 163]; or by speeding up critical threads
in barrier-synchronized applications based on cache behavior [20]. Chrysso integrates the concept of
criticality stacks [47] to accelerate critical threads and improve multi-threaded application performance
under constrained conditions.

3.8 Summary

Integrated and scalable many-core power management is clearly needed as we move towards even tighter
power budgets. Chrysso leverages its scalability and effectiveness from (i) using analytical performance
models and table-based power models for core, cache, and per-core DVFS adaptation, (ii) a search process
that identifies Pareto-optimal per-core configurations to prune the global optimization space, and (iii)
utility-based optimization which reallocates power to the cores/threads that benefit the most, e.g., critical
threads in multi-threaded workloads and power-hungry applications in multi-program workloads.

Chrysso outperforms isolated power adaptation techniques by a significant margin at moderate power
budgets, and outperforms core gating in system performance by 1.9× and 1.5× for multi-program and

46



3.8. SUMMARY

multi-threaded workloads at stringent power budgets, respectively. Chrysso incurs limited run time over-
head (less than 1%) and hardware overhead (roughly 3 KB per core).
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Chapter 4
Shared Resource Aware Scheduling on
Power-Constrained Tiled Many-Core Processors

Power management through dynamic core, cache and frequency adaptation is becoming a necessity in today’s
power-constrained many-core environments. Unfortunately, as core count grows, the complexity of both
the adaptation hardware and the power management algorithms increases exponentially. This calls for
hierarchical solutions, such as on-chip voltage regulators per-tile rather than per-core, along with multi-level
power management. As power-driven adaptation of shared resources affects multiple threads at once, the
efficiency in a tile-organized many-core processor architecture hinges on the ability to co-schedule compatible
threads to tiles in tandem with hardware adaptations per tile and per core.

In this chapter, we propose a two-tier hierarchical power management methodology to exploit per-tile voltage
regulators and clustered last-level caches. In addition, we include a novel thread migration layer that (i)
analyzes threads running on the tiled many-core processor for shared resource sensitivity in tandem with
core, cache and frequency adaptation, and (ii) co-schedules threads per tile with compatible behavior.

4.1 Introduction

Industry-wide adoption of chip multiprocessors (CMPs) is driven by the need to maintain the performance
trend in a power-efficient way on par with Moore’s law [129]. With continued emphasis on technology
scaling for increased circuit densities, controlling chip power consumption has become a first-order design
constraint. Due to the end of Dennard scaling [43] (slowed supply voltage scaling), we may become
so power-constrained that we are no longer able to power on all transistors at the same time — dark
silicon [52]. Runtime factors such as thermal emergencies [29] and power capping [57] further constrain
the available chip power. Owing to all the above factors, power budgeting on many-core systems has
received considerable attention recently [62, 110, 118, 128, 167, 173].

Dynamic voltage and frequency scaling (DVFS) for multiple clock domain micro-architectures has been
studied extensively in prior work [42, 73, 80, 167, 176]. Current commercial implementations of fully
integrated voltage regulators (FIVR) [31, 108] support multiple on-chip frequency/voltage domains with
fast adaptation, although per-core voltage regulators incur significant area overhead — 12.5% of core
area [31, 107, 161]. Other techniques such as core micro-architecture adaptation [12, 49, 59, 89, 139],
cache adaptation [4, 123, 154, 178] and network-on-chip adaptation [154] have been shown to be quite
effective at managing power in isolation at high to moderate power budgets. Under more stringent power
conditions, core gating [109, 110] along with the above techniques can be used at the potential risk of
starving threads.

Most existing power management schemes use a centralized approach to regulate power dissipation
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based on power monitoring and performance characteristics. Unfortunately, the complexity and over-
head of centralized power management increases significantly with core count [50]. Moreover, the area
overhead of on-chip voltage regulators is significant which limits the number of voltage/frequency do-
mains one can have on the chip. Hence, it becomes a necessity to employ a hierarchical approach as we
scale fine-grain power management to large many-core processors at increasingly stringent power bud-
gets. We therefore propose a two-tier hierarchical power manager for tile-based many-core architectures;
each tile consists of a small number of cores and a shared L2 cache within a single voltage-frequency
domain. The two-tier power manager first distributes power across tiles, and then across cores within
a tile. The architecture also provides support for core, cache and frequency adaptations to avoid core
gating at moderate to stringent power budgets.

Tiled many-core processors pose an interesting challenge when it comes to hardware adaptation and
scheduling. Changing frequency and reconfiguring the shared L2 cache affects all threads running in the
tile. It therefore becomes important to migrate threads, such that threads with compatible behavior are
co-scheduled onto the same tile. Since the execution behavior varies over time, periodic re-evaluation
and dynamic thread migration is also required. We therefore classify threads based on their sensitivity to
both cache and frequency dynamically at runtime. We propose DVFS and Cache-aware Thread Migration
(DCTM): a scheduler running on top of the two-tier hierarchical power manager to ensure an optimal
co-schedule for all threads running on the power-constrained tiled many-core processor while accounting
for the effects of hardware adaptation.

We make the following contributions:

• We propose integrated two-tier hierarchical power management for tiled many-core architectures, in
which we first manage power across tiles and then within a tile.

• For a collection of multi-program and multi-threaded workloads, we report that our two-tier hier-
archical power manager outperforms a centralized power manager by 3% on average, and up to
20% for a 256-core setup.

• We make the observation that thread scheduling is essential in a tiled many-core architecture to ac-
count for thread sensitivity towards shared resources. We classify threads based on their sensitivity
to both cache and frequency adaptation, and we propose DVFS and Cache-Aware Thread Migration
(DCTM) to optimize per-tile co-scheduling of compatible threads.

• We provide a comprehensive evaluation of DCTM on a tiled many-core processor. We use multi-
program workloads consisting of both single-threaded and multi-threaded applications, and we
report that DCTM improves system performance by 10% on average, and up to 20%. DCTM outper-
forms existing solutions by 4.2% on average (and up to 12%).

4.2 Motivation

4.2.1 Limitations of a Centralized Approach

In the context of power management in many-core processors, prior works [42, 110, 123] have relied on
a central entity to manage power using one or more micro-architectural techniques to trade off perfor-
mance at high to moderate power budgets. At stringent power budgets, neither of power management
schemes like DVFS nor core adaptation nor cache resizing in isolation can provide a viable solution. As
a result, prior work [109, 110] had to resort to core gating at stringent power envelops. Previously pro-
posed state-of-the-art frameworks [89, 123, 139] provide an integrated framework for multi/many-core
architectures by combining and coordinating core adaptation, cache resizing and/or per-core DVFS to
maximize system performance across a wide range of power budgets. These frameworks provide some
form of global power management that operates on the runtime statistics of each core to decide on
an optimal per-core working configuration. During each time slice, a per-core Performance Monitoring
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Figure 4.1: Generic tiled many-core architecture with centralized (top) versus hierarchical (bottom)
power management.

Unit (PMU) tracks activity statistics using hardware counters, and predicts/projects the performance and
power of all possible configurations. Each core’s PMU sends a list of optimal configurations to the Global
Power Manager (GPM), which globally optimizes the many-core configuration within the given power
budget. The GPM instructs each core to reconfigure itself based on the global optimization.

In commercial designs, both the per-core PMU and global GPM are already present in some form [149].
The PMU typically collects power consumption and junction temperatures, and performs control functions
such as P-state (DVFS) and C-state (various levels of power gating) transitions. The GPM is implemented
as an integrated micro-controller and runs firmware algorithms that interface with the PMUs and on-
chip voltage regulators. The PMU keeps track of a core’s activity and controls the micro-architectural
configuration in response to requests made by the GPM; the GPM combines information from all cores
and performs the global power/performance optimization, see Centralized Approach in Figure 4.1. But
as core count continues to grow, the centralized approach becomes inviable: Deng et al. [42] report
quadratic computational complexity, while Li and Martinez [110] suggest the computational complexity
to be logarithmic to core count. In future many-core processors [25], a centralized GPM — even with
logarithmic complexity — would be a severe bottleneck.

Because a centralized power manager does not scale favorably towards large many-core processors and
fine-grain hardware adaptations, we propose two-tier hierarchical power management (see Section 4.3).

4.2.2 Cache-aware Thread Migration (Cruise)

When threads are co-scheduled on a multi-core processor with a shared last-level cache (LLC), conflicting
thread behavior can lead to suboptimal performance. For instance, when a thread whose working set fits
in the shared cache is co-scheduled with a streaming application, the quick succession of cache misses
from the streaming application may push the working set of the first application out of the shared cache,
thereby significantly degrading its performance. Jaleel et al. [83] propose Cruise: a hardware/software
co-designed scheduling methodology that uses knowledge of the underlying LLC replacement policy and
application cache utility information to determine how best to co-schedule applications in multi-core
systems with a shared LLC.

Cruise monitors the number of LLC accesses per kilo instructions (APKI) and miss rate (MR) for each ap-
plication. Application classification based on these metrics along with co-scheduling rules then optimize
overall system performance. The applications are classified in the following categories:

• Core Cache Fitting (CCF): CCF applications fit in the smaller levels of the cache hierarchy and hence
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the LLC size has little impact on performance.

• LLC Trashing (LLCT): LLCT applications are mostly streaming applications with large working sets
— larger than the available LLC size. The LLCT applications degrade performance of any application
that benefits from the shared LLC.

• LLC Friendly (LLCFR): LLCFR applications are sensitive to the shared LLC size. They benefit from
additional LLC capacity, but performance degrades when co-executed with LLCT applications.

The co-scheduling rules in Cruise are as follows1:

1. Group LLCT applications onto the same tile/LLC.

2. Spread CCF applications across all tiles/LLCs.

3. Co-schedule LLCFR with CCF applications.

The performance of LLCFR/LLCF applications degrades significantly when they do not receive the bulk
of the shared LLC, hence Cruise schedules LLCFR applications with CCF applications whenever possible.

Cruise assumes that all cores run at the same clock frequency. In other words, it does not take DVFS
sensitivity into account. This is a limitation as LLCT and (especially) LLCFR applications, being mixed
compute- and memory-bound, may be quite sensitive to frequency. We overcome this limitation by
proposing DCTM (see Section 4.4).

4.3 Two-Tier Hierarchical Power Management

The Centralized approach as described in Section 4.2.1 is inappropriate for large-scale many-core pro-
cessors, for two reasons. First, it assumes per-core DVFS adaptation which is infeasible for many-core
processors as it requires on-chip voltage regulators for all cores, which would incur fairly high chip area
overhead [31, 107]. Second, the runtime complexity and overhead of a Centralized approach increases
considerably with core count.

To address these two limitations, we group cores per tile and add an intermediate layer for power man-
agement, the Tile Power Manager (TPM); see Two-Tier Hierarchy Approach in Figure 4.1. Chip power is
managed via a hierarchical power manager with a GPM steering the per-tile TPMs. This organization
reduces the runtime overhead of the power manager dramatically. To quantify the power manager’s run-
time overhead, we set up the following experiment. We consider an average multi-program workload on
a many-core processor with varying core count (we run workload WL0, see Section 5.4 for more experi-
mental details). The power manager is invoked every 1 ms. Figure 4.2 quantifies the worst-case overhead
of the power manager normalized to an idealized run without power management overhead. We observe
that the overhead increases substantially with core count. However, when considering a tiled architecture
and a two-tier hierarchical power manager, we are able to significantly reduce the runtime overhead of
the power manager. In other words, by keeping the GPM relatively simple and passing more functionality
to the TPMs, we avoid GPM to be a bottleneck at high core count. Moreover, as all TPMs can work in
parallel, the complexity of the two-tier approach equals O(G) + O(TclogTc), with Tc denoting the number
of physical cores per tile, and G the complexity of the GPM (constant in our case). One could adopt an
even deeper hierarchy, which would be beneficial in a design with more arbitration levels (intermediate
nodes acting as arbitrators for a group of tiles).

1In addition to the above mentioned categories, the authors also identify LLC fitting (LLCF) applications by mon-
itoring the miss rate of the application with half the capacity of LLC. In general, these applications exhibit cache
characteristics that are similar to LLCFR. In our implementation, we classify LLCF as LLCFR to limit additional hard-
ware overhead especially pertaining to the smallest shared LLC size (see Table 4.1).
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Figure 4.2: Normalized runtime overhead for hierarchical power management with varying tile size at
1 ms time slice.

4.4 DVFS and Cache-aware Thread Migration (DCTM)

A tiled many-core processor architecture with hierarchical power management, as we just established in
the previous section, poses a new challenge as threads running on the same the tile share the L2 cache
(LLC) and a common clock frequency. In other words, and in contrast to Cruise, threads running on the
same tile not only share the LLC but also share a common clock frequency. Therefore, it is important to
take both cache size sensitivity and frequency sensitivity into account when mapping threads to tiles, i.e.,
the thread migration layer needs to be aware of the sensitivity to both DVFS and LLC size.

4.4.1 DVFS and LLC Sensitivity Analysis

To understand an application’s sensitivity to clock frequency and LLC size, we set up the following off-line
analysis. We run simulations with 55 SPEC CPU2006 application traces for 750 million instructions to
observe the performance sensitivity with respect to both LLC and frequency settings. Figure 4.3 plots
application performance sensitivity to frequency changes, expressed as the ratio between its performance
reduction and the reduction in frequency that was applied. Applications are clustered by their LLC-aware
classification type (following Cruise), and plotted in ascending order of sensitivity within each cluster
based on Equation 4.1:

sensitivityfreq =
(MIPSfreqA/MIPSfreqB )

(freqA/freqB)
. (4.1)

Intuitively, memory-bound applications (LLCT) should have low sensitivity to a change in frequency,
while workloads that are completely core-cache fitting (CCF) would see a linear degradation as they are
compute-bound. We observe that LLCT applications can still be affected by frequency variations (see the
extreme end of LLCT region). The performance of these applications could be significantly affected at
stringent power budgets.

We categorize applications into the following DVFS-aware classes, according to their performance sensi-
tivity to DVFS based on Equation 4.1:

• High Sensitivity (HS, > 66%): These applications are highly sensitive to DVFS. The performance of
these applications is severely affected when migrated to a tile running at low frequency, whereas
performance improves significantly if they can be migrated to a higher-frequency tile. These appli-
cations are generally compute-bound.
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Figure 4.3: Application classification based on LLC and DVFS sensitivity.

• Moderate Sensitivity (MS, 35–66%): These applications are moderately affected by DVFS. Applica-
tions with a mix of compute-bound and memory-bound operations are grouped in this category.

• Low Sensitivity (LS, < 35%): These applications degrade slightly when running at a low DVFS
setting. It is therefore beneficial to reduce frequency as much as possible to save power. These
applications are typically memory-bound.

When co-scheduling applications, the application categorization based on LLC usage (see Cruise, Sec-
tion 4.2.2) needs to work in tandem with the DVFS sensitivity categorization as just described. Hence,
combining the LLC and DVFS classifications, we have 3×3 categories of applications. Not all combinations
occur in practice though, as there is some correlation between LLC and DVFS behavior; for instance, CCF
applications are almost always compute-bound and hence have high DVFS sensitivity (HS). Figure 4.3
identifies five categories: LLCT with LS and MS, LLCFR with MS and HS, and CCF with HS.

4.4.2 DCTM Scheduling Rules

DVFS and Cache-aware Thread Migration (DCTM) leverages these classifications to steer scheduling of
threads to tiles. The power manager will then assign the appropriate adaptation per tile (for frequency
and LLC size) and per core (for core configuration). Intuitively speaking, DCTM maps threads with the
same classification onto the same tile. Tiles with only LS threads will naturally be configured to run at
low frequency (saving power without sacrificing performance much), while tiles with only HS threads
preferably use a larger fraction of the total power budget to run at a higher frequency and boost overall
system performance. In contrast, mixing LS, MS and HS threads on a single tile leads to a suboptimal
situation: either the tile is set to run at low frequency, penalizing performance for the HS threads; or it
runs at high frequency which accommodates the HS threads, but wastes power as it does not improve
performance of the LS threads. Combining this intuition with the cache-aware scheduling, we create the
following scheduling rules for DCTM:

1. Co-schedule LLCT-LS applications on the same tile.

2. Co-schedule LLCT-MS applications on the same tile.

3. Co-schedule CCF-HS applications on tiles with LLCT-MS applications to account for performance
impact due to shared LLC contention.

4. Co-schedule the remaining LLCFR-MS and LLCFR-HS applications on the remaining tiles. If possi-
ble, co-schedule them with LLCFR-HS applications that are in the CCF-HS category to avoid perfor-
mance degradation due to shared LLC contention.
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The intuition behind co-scheduling all the LLCT-LS applications together onto a tile is that with relatively
little allocated power, the co-running applications would incur minimal performance loss. Since the
behavioral characteristics of all LLCT-LS applications are similar, the resource requirement would also
be similar. The same intuition can be applied to LLCT-MS applications as well; being more sensitive to
DVFS, these applications would have better performance than LLCT-LS applications and hence the GPM
would allocate a larger fraction of the total power budget to these tiles compared to the LLCT-LS tiles.
The applications in the LLCFR-MS and LLCFR-HS categories are co-scheduled or combined with CCF-HS
to avoid the performance impact due to the shared LLC. Since the applications in these three categories
have moderate to high performance along with much higher sensitivity to DVFS change than LLCT-LS
and LLCT-MS applications, the GPM will allocate a relatively larger fraction of the power budget to these
tiles, thereby limiting the performance degradation.

4.4.3 Putting It All Together

The DCTM power manager runs at two time scales. The coarse-grain timescale, at 20 ms in our setup,
groups threads to tiles using the DCTM scheduling rules as just described in the previous section. One
solution to classifying workloads in terms of LLC and DVFS sensitivity may be to employ sampling, i.e.,
by running a workload’s performance at different frequency settings and different LLC sizes for short
durations of time. The limitation is that it incurs significant overhead as we would need to monitor
performance for various combinations of LLC size and frequency setting. Instead, we leverage the simple,
yet effective analytical performance models proposed in [89] to estimate the performance impact of clock
frequency and LLC size on overall performance.

The fine-grain timescale, at 1 ms in our setup, distributes power across tiles: the GPM distributes power
across all tiles, and within each tile, the TPM regulates the hardware adaptations as per the allocated
power. Our processor architecture allows three adaptations: core adaptation, LLC resizing, and per-tile
DVFS, as we will describe in more detail in Section 4.5.2. The first fine-grained time slice (1 ms) assumes
no power capping, and runs each thread at the maximum configuration (largest core configuration,
largest LLC size, highest frequency). We compute the performance of each tile as a ratio of total system
performance, i.e., per-tile MIPS divided by chip-wide MIPS. The GPM distributes the total available power
budget across all tiles for the next time slice per the MIPS ratios of the tiles in the previous slice, i.e., a
high-performance tile is given a larger fraction of the available power budget. The intuition is that
compute-intensive tiles need a larger fraction of the total power, boosting overall system performance.
Once total power is distributed across the tiles, the TPMs then decide on the optimal configuration for
the core, LLC and DVFS setting in each tile. TPM steers adaptation using the performance/power models
proposed in [89], with the goal of optimizing performance within the available power budget. Note that,
the adaptation and monitoring can be achieved using other frameworks as well with modifications.

4.4.4 Quantifying DVFS Sensitivity: DCTM vs. Cruise

To illustrate the importance of being DVFS aware, we now compare the performance of DCTM against
Cruise for one particular workload consisting of four LLCT SPEC CPU2006 benchmarks running on a tiled
architecture with two cores per tile. (For Cruise, we replace the DCTM scheduling rules by Cruise’s at the
coarse-grain timescale, while considering the same two-tier power manager at the fine-grain timescale.)
Figure 4.4 illustrates how DCTM obtains higher overall performance compared to Cruise. The applica-
tions are arranged in a random fashion at the start of the execution. The top graphs show per-thread
performance for both DCTM and Cruise, while the bottom graphs show the power and frequency settings
of both tiles. All graphs have time on the horizontal axis, and run over the course of 100 ms.

To Cruise, all four threads belong to the same category, hence no thread migrations are needed. Taking
DVFS sensitivity into account as we do in DCTM, however, we find that threads th0 and th2 have low
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4.5. EXPERIMENTAL SETUP

Parameter Values

Core adaptations
ROB size 16 32 64 128
Reservation station entries 4 8 16 32
Load queue entries 6 12 24 48
Store queue entries 4 8 16 32

DVFS adaptations per-tile
Frequency (GHz) 0.8 1.0 1.2 —
Voltage (V) 0.7 0.75 0.8 —

Shared LLC adaptations per-tile
Cache ways 4 8 12 16
Capacity (KB) 512 1024 1536 2048

Table 4.1: Micro-architectural adaptations

sensitivity (LLCT-LS) while th1 and th3 have medium sensitivity (LLCT-MS). DCTM will therefore swap
threads th1 and th2 to co-schedule threads with LLCT-MS behavior together (Rule #2 in Section 4.4.2).
After migration, Tile-0 will run both LLCT-MS threads while Tile-1 runs both LLCT-LS threads. Hence,
the power budget for Tile-0 can be increased which, due to running threads with high DVFS sensitivity,
translates into a significant performance boost. At the same time, the power and frequency of Tile-1 can
be reduced at limited performance cost, given that it runs both of the LS threads. The end result is an
improvement in total system performance by 2.5% while staying within the same power budget.

4.5 Experimental Setup

4.5.1 Simulation Framework

Performance simulator We use the Sniper multi-core simulator [37], version 6.0, and added support
for dynamically changing core and cache parameters. The core adaptation and DVFS transitions com-
bined take 2 µs during which no computations can be performed — a conservative approach. When
reducing the number of cache ways, dirty lines are written back through the simulated memory subsys-
tem, consuming NoC and DRAM bandwidth (observed to account for no more than 5% of total DRAM
bandwidth).

Power consumption McPAT version 1.0 is used to estimate static and dynamic power consump-
tion [111] for a 22 nm technology. Power savings incurred by reconfiguration are modeled by running
McPAT with the modified target parameters (Table 4.1). Running McPAT along with the performance
simulation allows us to emulate the behavior of hardware energy counters at simulated time slices of
1 ms. Note that, changing V/F setting while keeping the other micro-architecture knobs unchanged, we
observe that the array layout/size of SRAM and CAM structures does not change in McPAT.

4.5.2 Adaptive Micro-Architecture

To keep all the cores active even at stringent power budgets, we incorporate core micro-architectural
adaptation, LLC adaptation and DVFS adaptation simultaneously, thereby providing various operational
points in our adaptive tiled many-core processor. As described before, we use the notion of a Globally
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Component Parameters

Core configuration
Core type 4-way issue OOO, 128-entry ROB
Load/store queue 48 load entries, 32 store entries
L1-I cache 32 KB, 4-way, 3 cycle access time
L1-D cache 32 KB, 4-way, 3 cycle access time

Tile configuration
Tile size 4 cores
Core count 64, 128, 256
Tile count 16, 32, 64
L2 cache (per-tile) 2048 KB, 16-way, 10 cycle access time
L2 prefetcher stride-based, 8 independent streams
Coherence protocol directory-based MESI, distributed tags

Network on Chip
mesh 16×1, 16×2, 16×4
32 GB/s/link

Main memory
8, 16, 32 controllers
80 ns latency, 128 GB/s total

Chip wide configuration
Frequency-Vdd 1.2 GHz @ 0.8 V
Technology 22 nm
TDP 100 W, 190 W, 350 W

Table 4.2: Tile-based many-core architecture.

Asynchronous Locally Synchronous (GALS) design [81], in which each tile maintains its own voltage-
frequency domain. The adaptive core/tile configuration is expressed as a tuple [core, ft, llct], denoting
that the core is configured as core, running at frequency ft and llct cache ways enabled for the given
tile t (see also Table 4.1).

Core Core adaptation pertains to reconfiguring the core micro-architecture. The core width can be
adapted, along with the size of various structures (see ‘Core adaptation’ in Table 4.1). We maintain a
quadratic relation between execution width and size of micro-architectural buffers [55]. Unused com-
ponents are power-gated to reduce both static and dynamic power consumption, providing for an inter-
esting opportunity for power savings for memory-bound or otherwise low-ILP applications. In our tiled
architecture, we assume each core’s micro-architecture can be adapted individually.

DVFS DVFS adaptation is a widely used technique for enforcing power budgeting. In the proposed
architecture, we assume the availability of on-die voltage regulators [31, 108] per-tile to enable DVFS
from 0.8 GHz at 0.7 V to 1.2 GHz at 0.8 V (see also Table 4.1), which is in line with the Intel Xeon Phi [86].
In the tiled architecture, the TPM needs to enforce a DVFS setting per-tile (affecting both cores and
shared LLC). Choosing an appropriate DVFS setting per-tile is non-trivial as a single DVFS for all threads
scheduled on the given tile might not be optimal for performance. Applications with higher sensitivity
to DVFS changes are more likely to be affected by imposing a single DVFS setting per tile. Hence, we
choose the DVFS setting so as to minimize the severity of the performance impact on the applications
with high sensitivity to DVFS. If this setting over-provisions the per-tile power allocated by the GPM, we
subsequently down-scale the core micro-architecture until the allocated tile budget is reached.

Shared LLC For cache adaptation, we use a flushing selective-way LLC implementation [4], i.e., a
shared LLC per-tile in our setup. By controlling which ways are active, we can power-gate portions of the
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4.5. EXPERIMENTAL SETUP

(a) Multi-program workloads (SPEC CPU2006)

Workload Description Benchmarks

WL0 SPEC average all 55 + 9 uniform random
WL1 Compute 8 compute bound, ×8
WL2 Mixed 8 compute + 8 memory, ×4
WL3 Memory 8 memory bound, ×8

(b) Multi-program multi-threaded workloads

Workload Benchmarks Input set #Threads

NAS Parallel Benchmark suite
NPB1 BT, CG, FT, MG class A 16 each

SPEC OMPM 2001 suite

OMPM
fma3d, swim, mgrid,

reference 8 eachapplu, equake, apsi,
gafort, wupwise

Table 4.3: Workloads.

cache to reduce its capacity and static power. We use selective ways (see also Table 4.1) because of its
simple design — selective sets on the other hand require changes to the number of tag bits used [178].
By using the flushing cache policy when shrinking to a smaller number of ways (writing back dirty cache
lines), we can turn off the corresponding cache ways sooner, reducing static power consumption of the
cache. To estimate the effect of cache capacity changes, we use auxiliary tag directories (ATDs) [145],
which estimate the miss rates (32 randomly selected sample sets) for different shared cache configu-
rations. To project the performance impact of threads sharing the LLC, we create ATDs per core and
annotate cache tags with a core identifier. This is only required for those sets that are part of the ATD’s
sample set.

4.5.3 Workloads

Multi-program Workloads We run a number of multi-program workloads composed of SPEC CPU2006
benchmarks; 29 programs in total, which along with all reference inputs leads to 55 benchmarks. We
select representative simulation points of 750 million instructions each using PinPoints [134]. Four multi-
program workloads with 64 benchmarks each are constructed by combining these 55 benchmarks as
indicated in Table 5.3(a). We replicate each workload by 2× and 4× for the 128-core and 256-core setups,
respectively. Each benchmark is pinned to a core unless mentioned otherwise. We run the simulation for
200 ms to keep total simulation time within feasible limits. When a benchmark completes before this time,
it is restarted on the same core. We quantify weighted speedup [158] or system throughput (STP) [54]
which quantifies the aggregate throughput achieved by all cores in the system.

Multi-program Multi-threaded Workloads We create workloads by combining multiple multi-
threaded applications from the SPEC OMPM2001 [10] and NPB benchmark suites [14], see Table 5.3(b).
For meaningful analysis, we use the reference input set for SPEC OMPM2001, and the class A input set
for NPB. We construct two workloads, each running 64 threads in total: NPB1 consists of four different
NAS applications running concurrently with 16 threads each, while OMPM combines eight SPEC OMPM
applications running 8 threads each. When running on the 128-core setup we replicate these workloads
by 2×, and by 4× for the 256-core setup. Execution of all multi-threaded applications in a workload
begins after the last application has reached the region of interest (ROI). Again, we run each workload
for 200 ms to keep total simulation time manageable.
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Figure 4.5: STP (normalized to Centralized) for Hierarchical and DCTM at 60% power budget vs. core
count.

4.6 Evaluation

We now evaluate DCTM on our power-constrained tiled many-core architecture. Unless mentioned oth-
erwise, results are obtained using fine-grained hardware adaptation at 1 ms intervals, while thread mi-
gration is performed at 20 ms intervals. Each experiment fixes the available power budget to a fraction
of the chip’s nominal power consumption (see TDP in Table 4.2). We quantify performance in terms of
system throughput (STP), which includes power management overhead.

The evaluation is done in a number of steps. We first evaluate the scalability of two-tier hierarchical power
management compared to centralized power management. We next compare DCTM against Cruise,
demonstrating the importance of being frequency-aware. We then evaluate the importance of dynamic
thread migration, followed by a number of sensitivity analyses with respect to the thread migration
interval and power distribution.

4.6.1 Hierarchical vs. Centralized Power Management

We first evaluate the scalability of two-tier hierarchical power management versus a centralized approach.
We consider the following power management policies: (i) Centralized which assumes centralized power
management along with per-core DVFS; (ii) Hierarchical which is our two-tier hierarchical power man-
ager, with random mapping of threads to tiles, and per-tile DVFS; and (iii) DCTM which is our two-tier
hierarchical power manager that migrates threads across tiles in a DVFS and LLC aware manner.

Figure 4.5 quantifies relative STP (normalized to the Centralized approach) for the various workloads as
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Figure 4.6: STP improvement (percentage) for DCTM and Cruise over Hierarchical for the 64-core setup.

a function of core count at a 60% power budget. The Centralized approach is quite effective at 64 cores.
The overhead of the centralized power manager is limited, and the ability to exploit per-core DVFS yields
a performance benefit over the two-tier Hierarchical approach with per-tile DVFS, by 7% on average. At
larger core counts however, the overhead of the centralized power manager is not offset by the benefit
from per-core DVFS, yielding a performance benefit for two-tier hierarchical power management, up to
24% for 256 cores (see WL1). The interesting insight here is that at large core counts, per-tile DVFS is
in fact beneficial over per-core DVFS, which may seem counter-intuitive at first sight because there is
less opportunity for fine-grain adaptation. The reason however is that per-tile DVFS facilitates a two-tier
hierarchical power manager which incurs less overhead compared to a centralized power manager for a
per-core DVFS architecture.

The results in Figure 4.5 also show that being able to migrate threads such that compatible threads
co-execute per tile, as done using DCTM, yields a substantial performance benefit over random thread
assignment with Hierarchical, see for example WL1: 32.4% for DCTM versus 24% for Hierarchical. We
observe the performance benefit to be consistent across all workloads.

Overall, we find two-tier hierarchical power management, and DCTM to be beneficial across all work-
loads. The performance benefit seems to be proportional to the number of compute-intensive benchmarks
in the workload, see for example WL1 (compute-intensive) versus WL2 (mixed) versus WL3 (memory-
intensive). The reason is that the power manager groups threads based on their sensitivity to LLC size
and clock frequency, and allocates a larger fraction of the available power budget to tiles that benefit the
most, which are typically the ones running compute-intensive benchmarks.
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Figure 4.7: STP improvement (percentage) for DCTM and Cruise over Hierarchical for the 128-core setup.

4.6.2 Two-Tier Approach: Performance vs. Power Budget

As we mentioned in Section 4.4.4, application’s sensitivity to DVFS could provide better performance
than just considering LLC sensitivity. To illustrate this, Figure 4.8 shows the STP improvement (as per-
centage) of a 256-core setup at different power budgets for Cruise and DCTM, relative to the Hierarchical
performance. Both Cruise and DCTM employ a two-tier hierarchical power manager. Hierarchical power
management shown as a baseline assumes random benchmark/thread placement on tiles.

The bottomline is that DCTM outperforms Hierarchical by 10% on average (across all workloads) and by
up to 20%. DCTM outperforms DVFS-agnostic Cruise by 4.2% on average and by up to 12%.

There are a couple interesting trends to be observed for a number of individual workloads. For WL0
(average SPEC CPU), DCTM shows an increasing trend at increasingly smaller power budgets. The reason
is that WL0 includes a wide range of applications with varying characteristics, which can be efficiently
exploited using both DVFS and LLC sensitivities. For WL1 (compute-intensive SPEC CPU), DCTM yields
a consistent improvement over Cruise, but is limited by the available power budget. For WL3 (memory-
intensive SPEC CPU), we observe that both DCTM and Cruise are able to prevent excessive LLC trashing,
which leads the STP improvement over Hierarchical to increase at smaller power budgets. However, by
being DVFS-aware, DCTM still outperforms Cruise by 7% on average.
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Figure 4.8: STP improvement (percentage) for DCTM and Cruise over Hierarchical for the 256-core setup.

4.6.3 Static Assignment vs. Dynamic Migration

An alternative to performing on-line thread migration could be to statically select a thread schedule a
priori based on known average application characteristics. However, in addition to the potential problem
of jobs periodically entering and leaving the system, a single application exhibits phase behavior that
may cause its classification to change over time. Using an average class leads to suboptimal scheduling,
showing that on-line migration is a necessary component of our approach.

4.6.3.1 Workload Behavior Through Time

Before exploring the overall performance benefits of thread migration on the GALS architecture, we
illustrate the classification of SPEC CPU2006 application traces based on LLC and DVFS sensitivity. 6
applications exhibit CCF behavior, 18 applications exhibit LLC access patterns that fall in LLCT category
and 40 applications are classified in LLCFR category. These classifications are used in thread migration
scheme when threads are moved to different tiles based on LLC characteristics only (Cruise). In the DCTM
approach, the application classifications are based on both LLC-aware and DVFS-sensitivity as described
in Section 4.4. All CCF applications are also HS leading to 6 applications in the CCF-HS category. 11
application traces are categorized as LLCT-LS and 8 as LLCT-MS. The LLCFR-MS category consist of 8
applications and the remaining 32 are classified as LLCFR-HS category (also see Figure 4.3).

We ran simulation by pre-classifying the applications traces based on above mentioned classification and
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Figure 4.9: Static assignment and DCTM through time for selected SPEC CPU2006 applications on 64-core
setup at 80% Power Budget.

rules in Section 4.4 without thread migration. Results are shown in Figure 4.9 for a selection of applica-
tions, both using static classification (Static) and when performing runtime thread migration (DCTM).

LLCT with LS and MS phase The number of application traces with LLCT cache behavior show runtime
DVFS sensitivity as LS or MS based on application behavior. Based on entire trace estimates, these
application can be classified as LLCT-LS, but it can be observed for these application traces like astar,
exhibit clear sets of phase behavior. Figure 4.9(a) plots the MIPS though time for application trace astar
at 80% power budget (64-core setup). It can be observed that astar initially shows moderate DVFS
sensitivity followed by a phase of low sensitivity to DVFS variations. Application traces with these phases
benefit from DCTM due to runtime re-scheduling based on DVFS-sensitivity unlike Static co-scheduling.
The experimental logs suggest that such application traces with distinct phase behavior switches from
LLCT-MS to LLCT-LS phase. Being aware on these phases, the DCTM is able to initially co-schedule astar
with LLCT-MS or CCF-HS applications (Section 4.4, Rule 2) and provide better MIPS. The Static approach,
being unaware of phases, does co-schedule this application trace with other LLCT-LS threads. Hence we
observe lower performance for a significant fraction of time in Figure 4.9(a).

LLCT-MS with LLCFR-MS phases Figure 4.9(b) plots the MIPS though time for application trace milc at
80% power budget (64-core setup). When averaging characteristics over the entire application trace, this
workload is classified as LLCT with moderate sensitivity to DVFS. The Static approach co-schedules these
application traces with other LLCT-MS or CCF applications based on co-scheduling policy in Section 4.4.
Although the generic classification is LLCT (streaming behavior), milc shows phases in execution where
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Figure 4.10: Static versus DCTM relative to Hierarchical for WL0.

it can be classified as LLCFR due to a reduced working set which does fit into the LLC. During this phase,
if the application remains co-scheduled with an LLCT application which will cause milc’s working set to
be evicted, performance will suffer compared to a situation where the LLCT thread is migrated away in
favor of another LLCFR or a CCF application. Application traces with variations in cache access behavior
can be benefit if the cache access patterns are evaluated at runtime. Unlike the Static approach, DCTM
is able to observe changes in cache access behavior at runtime and re-schedule accordingly, leading to
higher performance of milc during its LLCFR phase.

LLCFR-MS with LLCFR-HS phases A number of LLCFR applications show runtime phases where the
accesses to cache are reduced sufficiently (not as low as CCF), making them increasingly compute bound.
Figure 4.9(c) plots the MIPS though time for one such application, perlbench, at 80% power budget on a
64-core setup using both Static and DCTM. After appropriately 80 million instructions, the computation-
bound phase is observed and based on DCTM, perlbench is re-classified as highly sensitivity to DVFS
variation. From that point on, DCTM co-schedules it with other LLCFR-HS or CCF-HS applications. The
GPM can subsequently redistribute power to these tiles as these application traces are able to provide
better power-performance ratio than other tiles, on which groups of LS applications have been clus-
tered and which can now safely reduce power without affecting performance. This can be observed in
Figure 4.9(c), where DCTM is able to provide significantly higher performance than Static. Unable to
change the application trace classification at runtime, the Static co-schedules this application with other
LLCFR-MS. Hence the Static approach cannot increase the DVFS setting for perlbench while remaining
inside the total power budget.

4.6.3.2 System Performance

We now evaluate the performance benefit of DCTM against static classification in a more systematic way.
Static classification follows the same classification and scheduling rules as DCTM; the only difference is
that static classification does so based on the application’s average execution behavior. Figure 4.10 shows
the performance improvement of static assignment and DCTM over Hierarchical. At moderate to low
power budgets, static assignment provides some improvement over random assignment as the restricted
power budget requires significant reductions in both DVFS and LLC size, which can be tolerated better
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Figure 4.11: Sensitivity to DCTM’s thread migration interval for WL0 on 64 cores and L2 invalidates:
Hierarchical vs DCTM for single-thread WL0 workload.

when compatible applications are co-scheduled. At higher power budgets, however, the architecture op-
erates much closer to its full configuration, and static assignment fails to provide a significant advantage.
In contrast, DCTM is able to exploit phase behavior in the applications, and can obtain the optimum
co-schedule at each point in time. This gives DCTM a significant margin over both Hierarchical and static
assignment, showing that runtime migration can greatly improve power efficiency of large many-core
systems.

4.6.4 Sensitivity to Migration Interval

Previous experiments considered a coarse-grain thread migration interval of 20 ms, while hardware adap-
tation was performed every millisecond. This is consistent with an implementation where adaptations
are performed in a hardware power manager, while thread migrations is done by the operating system
(with input from the power manager and/or performance counters to do the classification).

In Figure 4.11, we vary the DCTM thread migration interval between 1 and 20 ms, while leaving the
power-aware hardware adaptation interval fixed at 1 ms. Migration itself is assumed to take 1,000 cycles
to transfer register state and restart execution at a remote core, in addition to potential cold misses
that transfer the thread’s working set to the local caches (using the standard coherency protocol, which
our simulations model in detail). Figure 4.11 plots STP (relative to full configuration), when running the
SPEC average multi-program workload WL0 on a 64-core system at various power settings. No significant
difference in performance is observed, showing that a 20 ms migration interval is sufficient. It is therefore
possible to implement this layer in the operating system: hardware thread migration is not required and
it is even possible to spend a significant amount of time and effort to compute the best schedule.

In contrast, doing thread migration too frequently can in fact be harmful, as Figure 4.11(b) illustrates.
For short migration intervals (below 5 ms), the amount of cache-to-cache transfers increases significantly,
showing that working sets frequently have to be transferred across the chip, trailing the migrating threads.
These cache-to-cache transfers cause both a reduction in thread performance and consume additional
power, which has to be amortized by the improved schedule.
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Figure 4.12: Fine-grain (Hierarchical) versus coarse-grain (CPM) power redistribution for the two-tier
hierarchical power manager for WL0 on 64-core setup.

4.6.5 Fine-grained Power Redistribution

Our Two-Tier Hierarchy Approach reallocates power between the tiles in each hardware adaptation inter-
val (1 ms timescale), in addition to making adaptations local to each tile. An alternative would be to run
the global component (GPM) less frequently, while running TPM at a small timescale. Such approach is
in fact proposed by Coordinated Power Management (CPM) [128], where a fast per-tile DVFS controller
performs local optimization constrained to each tile’s power budget, and a global manager redistributes
power across the tiles every ten adaptation intervals. We implement a similar design with 1 ms and 10 ms
time scales for the local (TPM) and global (GPM) power management, respectively. Figure 4.12 shows
STP (relative to full configuration) as a function of the available power. Our Hierarchical design (GPM
and TPM adaptation at 1 ms timescale) outperforms CPM by 1–8% in STP, in addition to providing better
fairness between the running threads (measured in average normalized turnaround time, ANTT [54]).
This is because in CPM, each tile needs to manage power over- and undershoots using a fixed power bud-
get over a 10 ms interval. In contrast, when doing global adaptation at 1 ms time scales, power can be
redistributed across tiles much faster, allowing compute-bound threads to borrow power from memory-
bound threads running on different tiles within just 1 ms, so the system can respond much more quickly
to changes in workload behavior.

4.7 Related Work

4.7.1 Micro-architecture Adaptation

A variety of prior work has explored techniques to improve power-efficiency by adapting micro-
architecture structures on a per core basis. Some proposals adapt the instruction window [12] and
the issue logic [59] to provide greater power/energy efficiency while showing a small reduction in ap-
plication performance. ForwardFlow core [63] is proposed as a way to trade off core performance for
power. Albonesi [4] and Yang et al. [178] evaluated shutting down portions of the cache, either a number
of ways or a combination of ways and sets for improved energy efficiency or to trade off performance
for power and energy. Eckert et al. [51] combined drowsy caches with front-end pipeline gating and
demonstrate better performance-power scaling than dynamic frequency scaling, and even DVFS in some
cases. Although their work shows that one can reconfigure the system to perform better than DVFS, they
do not perform runtime optimizations of large many-cores in power-constrained environments. Finally,
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Dubach et al. [49] used machine-learning models (trained using profiling) to perform online adaptation
of a single core at a time.

4.7.2 Centralized Dynamic Power Management

Several prior works explore centralized dynamic power management. For example, Isci et al. [80] in-
vestigated a global power controller to determine different per-core DVFS values to maximize chip-wide
MIPS. Teodorescu and Torrellas [167] proposed variation-aware power-management DVFS algorithms for
application scheduling on a CMP to save power or improve throughput at a given power budget. Deng et
al. [42] proposed CoScale, a mechanism that deals with co-optimizing DVFS settings for both the CPU and
DRAM. Other proposals used machine learning and neural networks to perform global DVFS with per-core
adaptation [84] or global resource allocation [22]. Meng et al. [123] proposed DVFS adaptation along
with cache adaptation for a 4-core system. Chrysso (see Chapter 3) dynamically adjusts the capabilities
of an out-of-order core, private cache and per-core DVFS at fine-grained time slice (10 ms) using simple
analytical models and a centralized power manager to improve performance under given power budgets.
Finally, Flicker [139] dynamically adjusts the capabilities of an out-of-order core at coarse-grained time
slice (100 ms) using sampling-based global genetic algorithm to improve performance compared to core
gating at moderate power budgets.

4.7.3 Tiled Architecture and Hierarchical Power Manager

In RCS [62], the authors proposed mechanisms to uniformly change core resources with the num-
ber of cores (up to 12) to exploit application variability at a fixed power budget. The proposed
scheme uses SVM-based machine-learning mechanisms to obtain the number of active cores (with
corresponding micro-architectural variation) for each interval. PEPON [154] used 10 DVFS adapta-
tions for core and NoC along with selective-way resizing of a single shared LLC to provide feasible
working configuration till moderate power budgets. Other proposals [61, 128] used the concept of
two-level power management schemes, viz. master-slave and global-local, respectively. Mishra et
al. [128] used one of the 10 DVFS values per island (2/4 cores per island) under the given power
budget. The mechanism uses a 2-level power manager — GPM-LPIC (digital controller per LPIC)
called every 25/50 ms and 2.5/5 ms, respectively. Prior work has explored power management
techniques on network-on-chip [170] to provide significant reduction in power dissipation of NoCs.
A hierarchical control-theory based power manager [131] employs multiple PID controllers (one for
each cluster and one for each application) in a synergistic fashion and manages to achieve optimal
power-performance efficiency while respecting the TDP budget. This approach has poor scalability
with increasing number of clusters and price-theory based demand-supply approach. Additionally, the
coarse-grain power management could ensue thermal-throttling due to instantaneous power over-shoots.

To the best of our knowledge, none of the above works have evaluated three-way micro-architectural
adaptation along with a thread migration layer for optimal shared resource utilization using a hierarchical
power manager on a power-constrained tiled many-core architecture.

4.8 Summary

An integrated and scalable many-core power management is clearly needed as we move towards increas-
ingly tighter power budgets. In this work, we leverage a two-tier hierarchical power manager due to its
low overhead and high scalability on a tiled many-core architecture with shared LLC and per-tile DVFS
at fine-grain time slices. We use (i) analytical performance and power models for the shared architecture
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and its adaptation, and (ii) we distribute power across tiles using GPM and then within a tile (in par-
allel across all tiles). We observe that thread scheduling is essential in such an architecture to account
for thread sensitivity towards shared resources. We leverage DVFS and cache-aware thread migration
(DCTM) to ensure optimum per-tile co-scheduling of compatible threads at runtime over the two-tier
hierarchical power manager. Based on our evaluations, we show that DCTM outperforms Cruise [83] by
4.2% on average (and up to 12%) for both multi-program and multi-threaded workloads. Compared to
a centralized power manager, DCTM improves performance by 10% on average (and up to 20%) while
using 4× less on-chip voltage regulators.
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Part II

Reducing Die-Stack DRAM Hit Latency
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Chapter 5
Tag Caching for Gigascale Die-Stacked DRAM
Caches: A High-Performance Many-Core
Perspective

Whereas core count in high-performance processors continues to grow, off-package memory bandwidth has
been growing at a much slower pace. This has led to the emergence of large amounts of on-package memory,
often implemented as die-stacked gigascale DRAM Caches, providing much higher memory bandwidth at
lower energy. Yet, managing these large DRAM Caches has proven challenging, as it is unfeasible to keep all
cache tags in fast, on-chip SRAM storage. Practical designs therefore suffer from high latencies as tags need
to be fetched from DRAM.

In this chapter, we analyze the hit and miss latencies of several recently proposed DRAM Cache designs, and we
comprehensively explore how associativity affects both latency and hit rate in the context of high-performance
many-core processor architectures. We then propose Tag Cache, an on-chip distributed structure that caches
DRAM Cache tags, to reduce hit access latency.

5.1 Introduction

Off-chip memory accesses have become a performance-limiting factor with increasing core count on a
single die, from both a latency and bandwidth perspective. The off-chip DRAM-DIMMs have not scaled to
match the demands of modern servers leading to the well-known bandwidth wall problem [147]. Recent
memory technologies such as 3D-stacked DRAM [23] have emerged as a promising alternative wherein
DRAM memory dies are stacked on top of, or next to, a processor die using high-bandwidth through-
silicon-vias (TSVs) [100]. A typical 3D stacked DRAM has multiple (4–8) data channels that can access
many banks (8–16 per channel). This technology offers gigascale DRAM capacity at very high bandwidth
and low energy, alleviating the off-chip memory wall constraint. For instance, AMD’s recent GPU Radeon
Fury X replaces all GDDR5 memory with 4 GB of on-package high-bandwidth memory (HBM) [53], while
Intel’s Knights Landing uses 8–16 GB of HMB configured as a cache in front of traditional off-package
DDR4 memory [7, 74, 78, 159].

Designing gigascale DRAM as a hardware-managed cache faces several challenges, including designing
a tag storage of several tens of megabytes. For example, a 1 GB cache with 64 B blocks would need
64 MB of storage for the tag array. Provisioning such a large tag array using on-chip SRAM is impractical.
Increasing cache block size to reduce the tag overhead is generally not a good solution as it increases
pressure on an already saturated off-chip memory link, while wasting bandwidth when workloads have
low spatial locality. Sectored caches [150] can avoid the bandwidth wastage and tag area cost, but often
lead to poor performance due to higher miss rates [60, 172]. Tags therefore need to be stored in DRAM,
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yet a naive approach will significantly increase access latency as each request now involves two DRAM
accesses, one for the tags and, in case of a hit, one for the data.

Recent approaches address the fundamental issue of high-latency DRAM Cache tag accesses by storing
the tags along with the data in the DRAM array [116, 144]. Prior work proposing the Tags-in-DRAM
concept include the Loh-Hill Cache [116] and the Alloy Cache [144]. Both these approaches mitigate the
high latency access issue by avoiding DRAM Cache accesses on misses, either by an additional tracking
structure on the logic die such as Loh-Hill Cache’s MissMap table or through prediction as in the Alloy
Cache. In particular, Alloy Cache organizes tags and data together to form a Tag And Data (TAD) entry
in a direct-mapped DRAM Cache, and transfers a TAD per request to avoid the tag serialization penalty.
Alloy Cache thus optimizes for hit latency instead of hit rate. However, it suffers from a significant amount
of conflict misses as core count increases. On the other hand, the Loh-Hill Cache preserves a high level of
associativity for its stacked DRAM Cache — 29 ways in a single DRAM row buffer to leverage row buffer
locality, hence it is likely to be a more advantageous design in the context of many-core processors. Yet
reading the tags from DRAM in a separate column access still incurs a significant latency cost. Moreover,
existing tracking solutions use a centralized entity to either bypass the DRAM Cache on misses, as is the
case for the MissMap [116], or store tag information for faster access, see for example [60, 75, 181].
Unfortunately, these centralized structures may become a bottleneck with increased core count.

To combine high associativity with low hit latency, we propose Tag Cache, an on-die distributed struc-
ture that caches tags that otherwise need to be read from the DRAM Cache. The Tag Cache utilizes the
DRAM Cache replacement policy to store the tag information of the most recently used DRAM Cache
ways to exploit temporal locality and increase the number of low-latency DRAM Cache hits. Being dis-
tributed in nature, the Tag Cache not only avoids being a bottleneck in a many-core processor, it also
prevents tag information from being polluted by memory-intensive applications when co-running with
other applications. We make the following contributions:

• We explore different variations of DRAM Caches with conventional cache block size on a tiled
many-core processor architecture.

• We propose Tag Cache, a distributed mechanism to alleviate the hit latency of multi-way set-
associative DRAM Caches.

• We perform a sensitivity analysis on the distributed Tag Cache structure with respect to caching
associativity in terms of hit rate, overall memory access latency, performance and energy.

• We provide a comprehensive evaluation of Tag Cache using multi-program and multi-threaded
workloads on a tiled many-core processor architecture and compare it against prior solutions and
an ideal Tags-in-DRAM Cache (with zero-latency Oracle Tag).

We evaluate the distributed Tag Cache on a tiled many-core processor with 64 cores (16 tiles, 4 cores
per tile) with a 2 GB on-die stacked DRAM Cache running multi-programmed single-threaded and multi-
programmed multi-threaded workloads. When combined with the Loh-Hill Cache, we find that it provides
an on average 6.4% performance increase over the Loh-Hill Cache with MissMap, and 20.6% higher
performance compared to the Alloy Cache (with an ideal memory access predictor). For a 2 GB Tags-
in-DRAM Cache, the distributed Tag Cache uses 1-way per shared-per-tile L2/LLC cache (2 MB in total),
while the MissMap table needs approximately 8 MB — a 4× reduction in occupied LLC space. The Loh-Hill
Cache with a distributed Tag Cache also enables 20.6% lower energy compared to the MissMap-enabled
Loh-Hill Cache. Compared to ATCache [75], Tag Cache provides on average 2.6% higher performance
with 7.5% lower energy consumption.

5.2 Background and Motivation

In pursuit of mitigating the memory wall issues in the many-core era, processor designers face a key
design decision on how to optimally utilize the large capacity in heterogeneous memory systems. An
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Figure 5.1: Tags-in-DRAM Cache Design: Loh-Hill Cache (left) and Alloy Cache (right).

attractive proposition is to use high-bandwidth memory as a cache, also referred to as DRAM Cache, as
it can be designed to be transparent to the software stack. Software-agnostic high-performance DRAM
Caches have received considerable attention over the past few years. For the 3D-stacked DRAM Cache,
previous works have assumed that the DRAM array has a lower latency than off-chip memory. (Some
prior proposals use the 3D-stacked DRAM Cache timing latencies as approximately half of that compared
to conventional off-chip DRAM [75, 116, 144], whereas other previous works have assumed ratios of
1:3 [44] and 1:4 [56, 181].) In addition, stacked DRAM also supports more channels, more banks and
wider buses per channel [100], providing increased memory bandwidth.

5.2.1 Impact of Associativity

Some prior works have advocated direct-mapped DRAM Caches to reduce the hit latency [40, 144],
while others have advocated multi-way set-associative designs [67, 75, 90, 116, 181]. Direct-mapped
caches have a fast hit time compared to set-associative caches, due to the restricted look-ups in tag and
data. However, they incur more conflict misses compared to a set-associative cache, because of various
addresses competing for the same cache line. For example, Zhao et al. [181] report that an 8-core
CMP setup with a 16-way DRAM Cache reduces the miss rate by 20–40% over a direct-mapped DRAM
Cache. One of the objectives of this work is to explore to what extent DRAM Cache associativity affects
performance in a many-core processor architecture setting.

5.2.2 Cache Designs with Tags-in-DRAM

The Loh-Hill Cache [116] proposes a set-associative Tags-in-DRAM Cache. The Loh-Hill Cache imple-
ments a 29-way cache in a single DRAM row buffer, as shown in Figure 5.1 (left). The authors propose
storing the tags for the 29 cache ways in the first three cache ways of the 2 KB row buffer. To service a
cache hit, the Loh-Hill Cache first reads and checks the tags using Compound Access Scheduling to access
both the tag and data via multiple column accesses once the row has been activated. Upon a tag match,
the data is read from the row buffer and sent to the respective core. This proposal targets improving
cache hit rate using higher associativity at the expense of increased hit latency.

Qureshi and Loh propose the direct-mapped Alloy Cache [144] to tackle the hit latency issue, see Fig-
ure 5.1 (right). Alloy Cache targets optimizing both cache access latency and bandwidth by integrating
the tag and data to form a Tag And Data (TAD) entry. This proposal stores 28 TAD entries on a 2 KB row
buffer. To service a cache hit, the Alloy Cache reads the TAD entry from the DRAM Cache row buffer and
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checks for a tag match. If the tags match, the associated data entry within the TAD is forwarded to the
requesting core. The Alloy Cache improves hit latency at the expense of a lower hit rate.

5.2.3 Latency Mitigation Methods

To optimize the overall DRAM Cache access latency, Loh and Hill [116] propose the MissMap table, which
keeps track of all blocks residing in the DRAM Cache. Before accessing the DRAM Cache, they first access
the MissMap, which allows them to bypass the DRAM Cache and directly access off-chip memory upon
on a MissMap (and DRAM Cache) miss. The MissMap lookup provides full coverage of the DRAM Cache,
e.g., 2 MB to track 650 MB of DRAM Cache. The MissMap table is stored in the LLC, thereby reducing the
effective LLC size. Qureshi and Loh [144] propose the Memory Access Predictor (MAP) table, 96 B per
core, to predict whether an LLC miss is likely to result in a DRAM Cache hit or off-chip memory access.
Chou et al. [40] further reduce bandwidth consumption in the Alloy Cache by using structures to store
neighboring tags, and a bypass mechanism on an 8-core setup (collective size of 19.2 KB). ATCache [75]
leverages the Loh-Hill Cache architecture and proposes a small SRAM cache that stores the DRAM Cache
tags. To keep the size of the ATCache small, a predefined caching ratio of 256 is used to cache 1 K DRAM
Cache sets — e.g., for a 256 MB DRAM Cache, the ATCache uses 46 KB. The size of the ATCache increases
proportionally to the number of sets in the DRAM Cache. Moreover, ATCache suffers from lower hit rate
as the associativity of ATCache tags is the same as for the DRAM Cache. Tag Tables [60] use ‘base-plus-
offset’ encoding to compact on-chip DRAM Cache tag arrays. Tag Tables occupy a portion (as cache ways)
of the L3 (LLC) cache using a set-dueling policy, thereby limiting the effective capacity of the LLC.

Most of the above proposed structures are designed to bypass the DRAM Cache in case of a miss, or
reduce the access latency by either storing partial tags or full tags on-chip, while focusing on a multi-core
setup with a relatively small number of cores (4–8 cores). In most proposals, such as MissMap, ATCache,
and Tag Tables, the size of the on-die tag-storage structures is proportional to the size of the DRAM
Cache. And, in addition, these structures are centralized. This leads to a design that may be feasibly
implemented for a small to moderately sized DRAM Cache in a multi-core architecture with a relatively
small number of cores. However, in a many-core architecture — 64 cores and beyond with gigascale
die-stacked DRAM Cache — these centralized structures would not only suffer from scalability issues but
also act as a source of bottleneck and contention for all memory requests going to the die-stacked DRAM
Cache. Moreover, many-core processors also lack a large shared LLC, the location where structures such
as MissMap and Tag Tables reside. This calls for a distributed approach with minimal resource utilization.

5.2.4 Ideal Tags-in-DRAM Cache

Before introducing our solution, we first discuss an ideal Tags-in-DRAM Cache organization. An ideal
Tags-in-DRAM Cache design would combine the best features of both the Alloy Cache and Loh-Hill Cache.
The memory requests would incur the latency equivalent to the time taken to access the data block only
from the DRAM Cache row buffer (i.e., closed-page access latency), which is similar to a direct-mapped
Alloy Cache. On the other hand, the ideal Tags-in-DRAM Cache would provide the hit rate of a multi-way
associative Loh-Hill Cache.

In practice, creating an ideal Tags-in-DRAM Cache (Loh-Hill Cache with zero-latency Oracle Tag) is obvi-
ously unfeasible. For a gigascale DRAM Cache, a large SRAM tag array (several MBs) would be needed,
which eventually would suffer from high access latency overhead due to its size. The practical alternative
is to create a small but fast (few cycles) tag lookup structure that avoids the expensive DRAM Cache
tag lookup operation. We propose a distributed tag caching mechanism in the next section as the mid-
dle ground between the multi-way Tags-in-DRAM Cache and an ideal Tags-in-DRAM Cache (multi-way
set-associative with Oracle Tag) — our contribution in this work.
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Figure 5.2: Tiled Many-core Architecture with an on-package DRAM Cache and an on-die distributed Tag
Cache.

5.3 Tag Cache

We propose an on-chip SRAM-based Tag Cache structure with the main objective to cache tag information
and avoid expensive tag lookup operations in the DRAM Cache, thereby reducing the hit access latency
for multi-way Tags-in-DRAM Caches. The organization of the Tag Cache is governed by the following
objectives: (i) Tag Cache is a distributed structure in order not to be a source of hot-spot contention
in many-core architectures; (ii) Tag Cache uses existing SRAM-based cache resources without incurring
additional area overhead; and (iii) Tag Cache exploits temporal locality for providing near-zero tag lookup
latency for DRAM Caches.

To avoid the Tag Cache from being a single source of contention in a many-core processor architecture
(first objective), we use a distributed Tag Cache array, on a per-tile basis. This is similar to the idea used
in the distributed tag directory (TD) implementation seen in existing tile-based many-core processors like
Intel Xeon Phi [159]. Each segment of the distributed Tag Cache is co-located with the shared-per-tile
L2 Cache (LLC) in a tile-based many-core architecture, see Figure 5.2. Each segment of the distributed
Tag Cache is designed to handle a segment of the DRAM Cache capacity. The segmented access to the
DRAM Cache limits the unwanted tag misses due to tag pollution caused by applications’ memory patterns
(especially cache trashing applications).

To keep the area of the chip constant (second objective), we store each segment of the distributed Tag
Cache in the respective L2 (LLC). Because the Tag Cache stores tag information (6 B for tag information
plus additional bits — described later in this section), it becomes unviable to store all the tag information
in L2. We employ way partitioning in L2 — 15 ways for data blocks and 1 way for Tag Cache entries —
because of its simple hardware design. In contrast, using selective sets for storing tag information would
require changing the number of L2 tag bits [178] — this would lead to higher hardware complexity.

Owing to space constraints, the Tag Cache selectively stores tag information by leveraging the workload’s
memory access patterns (third objective). Leveraging the memory replacement policy of the (multi-
way) DRAM Cache, it can be expected that a significant fraction of DRAM Cache hits occur at the most
recently used (MRU) ways. This observation is used to populate the Tag Cache structure to store the
tag information pertaining to data blocks in the most recently accessed ways in the DRAM Cache. The
MRU way information can be obtained from the tree-based or state-based MRU tracking mechanism used
by the replacement policy in the DRAM Cache. The MRU way information is then passed along when
the data is sent back from the DRAM Cache to the memory controller. To keep track of the MRU way
information of the DRAM Cache data block, each Tag Cache entry thus needs to store 5 bits as the DRAM
Cache way identifier (5 bits to identify up to 32 ways in the DRAM Cache). Considering the 6 bytes for
the DRAM Cache tag along with the above mentioned 5 bits, the size of each Tag Cache entry would be
6 bytes and 5 bits; this means that within a 64-byte cache block size, we can keep track of 8 MRU DRAM
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Cache ways. Maintaining 8 MRU DRAM Cache ways in the Tag Cache effectively only requires 53 bytes of
storage out of the 64-byte cache block; the remaining bytes are used to keep track of the MRU positions
of the respective tags, as we will describe later.

Tag Cache accesses can easily be done in parallel with the LLC tag accesses (speculating on an LLC miss)
because the Tag Cache, the LLC slices, and the tag directories are all distributed in the same fashion.
By doing so, the Tag Cache structure would not add any additional latency. Note though that in the
evaluation in this work we consider serialized Tag Cache accesses, i.e., we first access the LLC, and upon
a miss, we then access the Tag Cache — this is the worst operational condition to report conservative
performance numbers.

Finally, it is important to note that Tag Cache not only reduces the hit latency of a multi-way DRAM
Cache. It also reduces energy consumption by avoiding the first CAS operation related to a tag lookup on
a DRAM Cache hit.

5.3.1 Tag Cache Operations

Having described Tag Cache based on its key features, we now describe the operation of the Tag Cache.

5.3.1.1 Memory Requests

The Tag Cache performs a fast lookup of the tag corresponding to the requested address and forwards the
message to the memory controllers. In case of a Tag Cache hit, the forwarded message contains additional
information about the requested memory request. The additional information contains the way identifier
information pertaining to the requested address in the DRAM Cache. At the DRAM Cache, the message
is parsed, and the data is retrieved. In case of a Tag Cache miss, the memory access request to the DRAM
Cache is sent without any additional information (null). At the DRAM Cache, this request is treated as a
normal memory operation where a tag lookup operation is carried out before data can be located.

5.3.1.2 Tag Updates

Updating the tag information in the Tag Cache is done as follows. In case of a Tag Cache hit, the Tag
Cache updates the MRU bits of the tags accordingly. (Note that the tags nor the way identifiers need to be
updated, only the MRU bits need to be updated.) In case of a Tag Cache miss, we leverage the memory
response message received from the memory controller. The memory controller sends the request to the
DRAM Cache and keeps record of this memory request. The DRAM Cache, upon returning the data,
includes the way identifier of the cache block in the DRAM Cache. The cache block and the (5-bit) way
identifier are then forwarded to the memory controller, which in turn forwards it to the Tag Cache (along
with the corresponding tag). The Tag Cache now needs to replace the least recently used tag with the
new tag — the least recently used tag is easily identified using the MRU bits. This mechanism ensures
that the Tag Cache keeps track of the, in our case 8, most recently used cache blocks in the DRAM Cache.

5.3.2 DRAM Cache Access Latency with Tag Cache

A typical DRAM access requires activating a row of cells, sensing the charge and finally transmitting the
sensed data over the bus. Since row activation has drained the corresponding capacitors, and to restore
the charge back, a precharge operation is required to disconnect the cells from the bitlines and prepare
the sense amplifiers and bitlines for subsequent activation.
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Figure 5.3: Closed-page latency with Tag Cache (TC) hit/miss. (DRAM Cache tag accesses are shown in
gray.)
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Figure 5.4: Open-page latency with Tag Cache (TC) hit/miss and row buffer (RB) hit/miss. (DRAM Cache
tag accesses are shown in gray.)

5.3.2.1 Closed-page Policy

A closed-page policy ensures that a DRAM Cache row-buffer (RB) is closed after every read or write. This
may not allow for maximum memory bandwidth, but makes the access latency predictable. The closed-
page policy can be effective in situations where many different DRAM Cache rows are accessed frequently.
Figure 5.3 highlights the DRAM Cache access latency with Tag Cache overhead. Although the Tag Cache
access latency overhead of 10 cycles is added to each DRAM Cache access — the 10 cycles equals the
access latency to L2 in our setup — the overall effect is minor. The main benefit can be observed in case
of a Tag Cache hit where the DRAM Cache access latency can be reduced from 45 ns to 30 ns.

5.3.2.2 Open-page Policy

In an open-page policy, the DRAM Cache row-buffer is left open for a fixed amount of time after a
read/write. This allows for both row-buffer hits and misses. The row-buffer hit signifies that the DRAM
Cache row is already present in the bank row-buffer, hence neither precharge nor row activation opera-
tions are needed. On the contrary, the row-buffer miss signifies that the requested DRAM Cache row is
different from the DRAM Cache row that is currently present in the bank row-buffer. To get the requested
row to the bank row-buffer, the row-buffer cells are disconnected and row bitline sense amplifiers are pre-
pared (precharge) followed by activation. Allowing the row buffer to be left open permits the possibility
of row-buffer hits due to spatial locality of data, thereby reducing the overall access latency. Figure 5.4
shows all the valid combinations of row-buffer status along with Tag Cache hit/miss. In case of a Tag
Cache miss, the overall access latency is not affected. A Tag Cache hit in conjunction with a row-buffer

79



Core
Core type 4-way issue OOO, 128-entry ROB
Load/store queue 48 load entries, 32 store entries
L1-I cache 32 KB, 4-way, 64 B line, 3 cycles
L1-D cache 32 KB, 4-way, 64 B line, 3 cycles

Tile
Tile size 4 cores
Core count 64
Tile count 16
L2 cache 2 MB, 16-way, 64 B cache line

10 cycle access time
L2 prefetcher stride-based

8 independent streams

Chip wide configuration
Coherence protocol directory-based MESI

distributed tags
Network on Chip mesh 4×4, 32 GB/s/link
DRAM Cache 0.5 GB, 1 GB, 2 GB

PRE-ACT-CAS: 15-15-15 ns
ACT-CAS: 15-15 ns
LRU replacement policy
64 B cache line, 2 KB row buffer
512 GB/s total

Memory controllers 8
Main memory 80 ns latency, 64 GB/s total
Frequency 1.2 GHz
Vdd 0.8 V
Technology 22 nm

Table 5.1: Simulated architecture configuration.

hit reduces the DRAM Cache access latency to 15 ns.

5.4 Experimental Setup

5.4.1 Simulation Framework

We use the Sniper multi-core simulator [37], version 6.0 for evaluating the Tag Cache mechanism on
a tiled 64-core architecture. Each tile consists of 4 cores with a shared L2, see Table 5.1. We consider
two Tags-in-DRAM Cache organizations, Loh-Hill Cache and Alloy Cache, see Table 5.2. We use McPAT
v1.0 [111] to estimate power and energy consumption for a 22 nm technology node. We extend our
simulation infrastructure to model a DRAM Cache in detail, assuming that the DRAM Cache is a memory-
side cache and hence is not considered within the coherence space/traffic. Similar to previous works, we
assume that die-stacked DRAM array has lower latency than off-chip main memory using conventional
DIMM technology. The DRAM Cache is implemented in a interleaved manner in accordance to the mem-
ory controllers (8 memory controllers in our setup) to enable concurrent accesses across channels. The
energy/power of the DRAM Cache is estimated using DDR3 technology [126] and scaled as per HMC
v1 [85].
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5.4. EXPERIMENTAL SETUP

Component Parameters

Alloy Cache (AC)

direct-mapped
30 ns hit latency (close-page)
(80 B, one bulk access)
Extra cycles for bulk transfer

Loh-Hill Cache (LHC)
29-way associative
30 ns + 15 ns hit latency (close-page)
tag + data, compound access

Table 5.2: Tags-in-DRAM Cache Configurations.

(a) Multi-program workloads (SPEC CPU2006)

Workload Description Benchmarks

WL0 SPEC Average all 55 + 9 uniform random
WL1 Compute 8 compute bound, ×8
WL2 Mixed 8 compute + 8 memory, ×4
WL3 Memory 8 memory bound, ×8

(b) Multi-program multi-threaded workloads

Workload Benchmarks Input set #Threads

NAS Parallel Benchmark suite
NPB1 BT, CG, FT, IS

Class B 16 each
NPB2 LU, MG, SP, UA

Table 5.3: Workloads.
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Component Parameters

Tag Cache (TC)

Distributed, co-exist on L2
1-way per L2 (128 KB)
4/8-way; 16 K entries
LRU replacement policy

Table 5.4: Tag Cache Configuration.

5.4.2 Workloads

5.4.2.1 Multi-program Workloads

We run a number of multi-program workloads composed of SPEC CPU2006 benchmarks; there are 29 pro-
grams in total, which along with all reference inputs leads to 55 benchmarks in total. We select repre-
sentative simulation points of 750 million instructions each using PinPoints [134]. Four multi-program
workloads with 64 benchmarks each are constructed by combining these 55 benchmarks as indicated in
Table 5.3 (a). Each benchmark is pinned to a core unless mentioned otherwise. We run the simulation
for 1000 ms to keep total simulation time under feasible limits. When a benchmark completes before
this time, it is restarted on the same core. We quantify weighted speedup [158] or system throughput
(STP) [54] which quantifies the aggregate throughput achieved by all cores in the system.

5.4.2.2 Multi-program Multi-threaded Workloads

We create workloads by combining multiple multi-threaded applications from the NAS Parallel Bench-
marks (NPB) [14] suite, see Table 5.3 (b). We use the class B input set for NPB. We construct two
workloads, each running 64 threads in total: NPB1 consists of four NPB applications (16 threads each)
running concurrently; NPB2 consists of a different set of NPB applications. Execution of all multi-threaded
applications in a workload begins after the last application has reached the region of interest (ROI). We
run each workload for 1000 ms to keep total simulation time under feasible limits.

5.5 Evaluation and Results

We now evaluate the efficacy of the Tag Cache. This is done in a number of steps. We first evaluate Tags-
in-DRAM Cache designs in the context of our tiled many-core processor. We then show the effectiveness
of the Tag Cache in the context of the Loh-Hill Cache. Next, we show sensitivity analyses of the Tag Cache
with respect to associativity and DRAM Cache size. Finally, we evaluate the DRAM Cache access policies,
namely closed-page versus open-page policies, for the direct-mapped Alloy Cache (with ideal MAP) and
the multi-way Loh-Hill Cache (LHC). And we evaluate the impact on energy consumption.

Unless mentioned otherwise, we consider a Tag Cache configuration of associativity of 8, i.e., it caches
tags for the 8 MRU blocks in the DRAM Cache, and the Tag Cache occupies one way of the shared
L2, see also Table 5.4. The Tag Cache contribution to the overall DRAM Cache hit rate is marked by
contrasting shades in the figures. Further, we consider a closed-page DRAM Cache with 2 GB capacity,
unless mentioned otherwise.

5.5.1 Tags-in-DRAM Cache Performance

We first evaluate different Tags-in-DRAM Cache designs on a many-core processor.
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Figure 5.5: Hit rate (%) for the Alloy Cache and Loh-Hill Cache.
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Figure 5.6: STP (relative to no DRAM Cache) for the Alloy Cache and Loh-Hill Cache.

5.5.1.1 Direct-Mapped versus Multi-Way Associative

We evaluate the Alloy Cache (with ideal MAP) versus the Loh-Hill Cache (without MissMAP) for different
DRAM Cache sizes. Figure 5.5 reports hit rate. On average, the multi-way associative Loh-Hill Cache
shows about 2× higher hit rate than the direct-mapped Alloy Cache. Even though the direct-mapped Alloy
Cache provides a lower hit rate due to a larger number of conflict misses, it provides much lower access
latency. Lower access latency does amortize the performance loss to some extent due to a significantly
higher miss rate. We can observe this in particular for average SPEC CPU2006 workload, WL0, see
Figure 5.6. Overall, we observe that in the context of a many-core architecture, the Loh-Hill Cache
shows a 17% higher relative system throughput compared to the direct-mapped Alloy Cache. This trend
increases with DRAM Cache size. The key take-away here is that in a many-core architecture context,
multi-way associativity in the DRAM Cache is more important than short DRAM Cache hit latency. This
conclusion contradicts prior results by Qureshi and Loh [144] which considered a multi-core setups with
a limited number of cores, which leads to far fewer conflict misses in a direct-mapped DRAM Cache.
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Figure 5.7: Performance comparison with tag lookup and Oracle Tags for Loh-Hill Cache.

5.5.1.2 Tags-in-DRAM Cache with Oracle Tags

To understand the potential performance improvement from tag caching, we now consider an oracle tag
mechanism. Figure 5.7 plots the relative STP (with respect no DRAM Cache) for the unassisted Loh-
Hill Cache with tag lookup (LHC) versus the Loh-Hill Cache with zero-latency Oracle Tags (LHC-OT) for
all multi-programmed workloads on a 64-core setup. LHC-OT provides the access latency of the direct-
mapped Alloy Cache with the hit rate of the 29-way Loh-Hill Cache. LHC-OT outperforms LHC by 9%
on average on a 2 GB DRAM Cache. Compared to the Alloy Cache, a 2 GB 29-way set-associative DRAM
Cache with Oracle Tags provides on average 26.5% higher system throughput compared to the Alloy
Cache of the same size with an ideal MAP.

5.5.2 Effectiveness of Tag Cache

To show the effectiveness of the Tag Cache mechanism, we compare the performance of the Tag Cache
enabled Loh-Hill Cache (LHC-TC) versus the Loh-Hill Cache with MissMap (LHC-MM) and the Loh-Hill
Cache with ATCache (LHC-ATC). As a point of reference, we also show results for the unassisted Loh-
Hill Cache (LHC) and the Loh-Hill Cache with Oracle Tags (LHC-OT). To represent the entire content
on a 2 GB of DRAM Cache, a total of 8 MB is used for the MissMap in LHC-MM. The MissMap table is
distributed across all the L2 caches per tile, thereby decreasing the effective capacity of the available L2
by 4 ways or 512 KB (only 12 ways out of 16 ways are available for data blocks). Alike MissMap, the
Tag Cache is stored in L2, but it only occupies one way per L2 (15 ways out of 16 ways are available for
data blocks). The ATCache structure (caching ratio of 256) is also distributed across all the L2 caches per
tile. Alike Tag Cache, the ATCache structure reduces the effective capacity of the available L2 by one way
(15 ways are available for data blocks).

5.5.2.1 Effect on Shared LLC

Before we delve into the overall performance numbers of the Tag Cache enabled Loh-Hill DRAM Cache,
let us first look into the impact of using the Tag Cache, ATCache and MissMap table on the shared L2.
Figure 5.8 plots the average shared L2 cache miss rate normalized to LHC. As mentioned above, the
MissMap table occupies 4 ways whereas the ATCache and Tag Cache occupies only 1 way in L2. The
reduction in L2 capacity affects the miss rate, in particular for applications with cache friendly and cache
fitting behavior. This trend is observed for workloads WL1, WL2, NPB1 and NPB2. The average L2 miss

84



5.5. EVALUATION AND RESULTS

WL0 WL1 WL2 WL3 NPB1 NPB2 AVG
0

1

2

3

4
M

is
s

R
at

e
In

cr
ea

se
(%

)

LHC-MM LHC-ATC LHC-TC

Figure 5.8: Shared L2 miss rate (LHC normalized).

rate for these workloads increases by 2.5% on average for LHC-MM compared to LHC, and up to 3.8%. In
contrast, Tag Cache and ATCache do not increase the L2 cache miss rate as much; we measure an average
increase by 0.95% and 0.65% only, and by at most 1.15% and 0.95%, respectively.

5.5.2.2 LLC Miss Latency Breakdown

Figure 5.9 shows the average LLC miss latency breakdown for average SPEC CPU2006 workload WL0
(top) and average for all workloads (bottom). The latency breakdown plot includes the latency val-
ues due to remote cache operations along with accesses to the tag directory, NoC, DRAM Cache and
off-chip DRAM. The ideal LHC-OT incurs zero-latency tag lookup for each DRAM Cache request (Dram-
CacheTag=0). The Loh-Hill Cache variations, LHC, LHC-MM, LHC-ATC and LHC-TC, suffer from tag
lookup operations. The latency contribution due to tag lookup operation in DRAM Cache reduces in
LHC-TC compared to LHC and LHC-MM by 11.8 ns on average, see DramCacheTag in Figure 5.9. This
reduction in DRAM Cache Tag lookup operation is attributed due to DRAM Cache tag lookup bypassing
thanks to the Tag Cache (on average 45.4% of the DRAM Cache hits are contributed by the Tag Cache).
For ATCache, latency is reduced by 3.4 ns on average compared to LHC, which is significantly lower than
LHC-TC due to a much lower DRAM Cache hit contribution (8% on average).

5.5.2.3 Overall Memory Miss Latency

To understand the effect of reduced shared L2 capacity along with Tag Cache assisted tag lookup bypass-
ing, we analyze the average memory miss latency for all Loh-Hill DRAM Cache variants. In Figure 5.10,
we plot the average miss latency observed at the L1 D-cache. The D-L1 miss latency includes the la-
tency incorporated due to all un-core components such as the shared L2, TD, NoC, DRAM Cache and
off-chip DRAM. Across all workloads, the average D-L1 miss latency for LHC equals 57.3 ns. In an ideal
DRAM Cache configuration, Loh-Hill Cache with Oracle Tags LHC-OT, the average miss latency reduces
to 51.8 ns, which is about 5.5 ns smaller than LHC which is in accordance with the LLC miss latency
breakdown, as shown in the previous section. Unlike LHC and LHC-OT, the other Loh-Hill Cache variants
use a portion of the L2 cache to reduce the overall DRAM Cache access latency. This increases the miss
rate of the L2 (as seen in Section 5.5.2.1) thereby adding more latency to each memory miss request from
the core. Using the Tag Cache (LHC-TC), we observe an average miss latency of 54.1 ns which is 3.2 ns
lower than LHC. ATCache reduces the average miss latency of LHC by 0.6 ns only. On the other hand,
LHC-MM incurs the average latency of 60.45 ns, which is 3.11 ns higher than LHC, due to a significantly
higher miss rate in the L2 caches.
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Figure 5.9: Average LLC miss latency breakdown.
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Figure 5.10: Average DL1 miss latency for the 2 GB Loh-Hill Cache variants.
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Figure 5.11: Relative STP for the 2 GB Loh-Hill Cache variants.
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Figure 5.12: Hit rate for the 2 GB Loh-Hill Cache variants.

5.5.2.4 Overall Performance

Figure 5.11 shows relative STP (with respect to no DRAM Cache) for 5 variations of the Loh-Hill DRAM
Cache. We observe that LHC-MM experiences an average performance loss of 3.1% compared to LHC.
This is due to an increase in the number of L2 misses as the MissMap occupies one fourth of the L2.
The increase in the number of L2 misses causes an increase in overall miss latency, as described in
the previous section. LHC-ATC yields 0.6% higher performance (on average) compared to LHC. On
the contrary, LHC-TC yields 3.3% higher performance (on average) compared to LHC, and 6.4% higher
performance compared to LHC-MM. The increase in performance due to the Tag Cache can be attributed
to a reduction in the tag lookup latency in the Loh-Hill Cache, which in its turn leads to a reduction in
the overall memory access latency, as reported in the previous sections.

Overall, LHC-TC is within 6% compared to LHC-OT. The largest gap is observed for workload WL3, which
is due to the large working set of the memory-intensive applications in WL3 which results in a relatively
modest benefit from the Tag Cache mechanism.

The performance gain using Tag Cache can thus be attributed to lower DRAM Cache latency as a result
of Tag Cache hits. Figure 5.12 reports DRAM Cache hit rate and, for the Tag Cache, it also reports the hit
rate in the Tag Cache (shaded gray). The latter is the fraction of DRAM Cache accesses that bypass the
tag lookup in the DRAM Cache, thereby shortening the overall DRAM Cache access latency. Overall, the
Tag Cache contributes to on average 45.4% of the overall DRAM Cache hits. The lowest hit rate (16.6%)
is observed for WL3 as this workload is composed of a number of memory-trashing applications.

5.5.3 Tag Cache Sensitivity

5.5.3.1 Sensitivity to Associativity

We now conduct a sensitivity study to understand the effect of tag caching for 2, 4, 8 and 16 MRU DRAM
Cache ways while using 1-way of the L2 for the Tag Cache (containing 16 K entries), see Figure 5.13. The
associativity configurations are highlighted as TC-Ax, where Ax denotes the above mentioned associativity
values of the Tag Cache. Using this nomenclature, Figure 5.13(a) plots the total DRAM Cache hit rate (%)
along with the Tag Cache hits (as a percentage of the total DRAM Cache hit rate) on the left y-axis and
relative STP on right y-axis, averaged across all workloads. The values for unassisted LHC and LHC-OT are
also included to show the minimum and maximum performance range. The Tag Cache hit contribution
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Figure 5.13: Tag Cache sensitivity wrt. associativity for a 2 GB DRAM Cache.
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Figure 5.14: Relative STP versus DRAM Cache size.

to the overall DRAM Cache hit rate increases from 19% to 52% for 2-way versus 16-way associativity. We
observe a significant rise in hit rate between 2-way and 4-way, namely by 2×. However, we observe a
saturating trend, and the overall rise in Tag Cache hit rate with increasing associativity does not provide
corresponding benefits in reducing average miss latency and gain in overall performance. The relative
STP shows a saturating effect with increasing Tag Cache associativity. Figure 5.13(b) corroborates this
finding as it shows the Tag Cache associativity trade-off as a function of efficiency (hits in Tag Cache) and
Tag Cache contribution to the DRAM Cache hit rate (LHC-TC). Lowering the associativity of Tag Cache
increases its efficiency at the cost of lower DRAM Cache hits, and vice versa. We consider the associativity
of 8 as it provides a reasonable trade-off overall.

5.5.3.2 Sensitivity to DRAM Cache Size

We also conduct a sensitivity study by varying the size of the DRAM Cache while keeping the Tag Cache
structure constant. Figure 5.15 plots the DRAM Cache hit rate for all multi-programmed workloads; the
shaded part accounts for the Tag Cache’s contribution. We observe that overall DRAM Cache hit rate (%)
increases from 74.1% to 91.6% on 0.5 GB to 4 GB DRAM Cache. The increase in hit rate is attributed to
fewer capacity misses. The same effect is observed with the Tag Cache contribution on the total DRAM
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Figure 5.15: DRAM Cache (w/ Tag Caching) hit rate sensitivity to size.

Cache hit rate. On average, the Tag Cache contribution to DRAM Cache hit rate increases from 32.7% to
54.5% on 0.5 GB to 4 GB DRAM Cache, respectively. This increase in Tag Cache contribution to DRAM
Cache hit rate translates into a performance improvement as shown in Figure 5.14. Although the Tag
Cache size is constant, the Tag Cache contribution to DRAM cache hits shows an increasing trend with
DRAM Cache size; the DRAM Cache is experiencing more capacity hits which the Tag Cache is more likely
to keep track of by maintaining the MRU tags. Workload WL3, which is composed of a set of memory-
intensive applications, is affected most by DRAM Cache size. STP improves by 31% and up to 80% for a
0.5 GB and 4 GB DRAM Cache, respectively, compared to no DRAM Cache; DRAM Cache hit rate increases
from 42.9% to 76.8% for a 0.5 GB and 4 GB DRAM Cache, respectively. The Tag Cache still contributes
about 12.9% to 20.7% of the overall DRAM Cache hit rate.

5.5.4 Closed versus Open Policy

We now evaluate Tag Cache in the context of an open-page policy. The DRAM Cache is assumed to have a
row buffer of size 2 KB with 8 channels and 8 banks per channel. We compare closed-page and open-page
policies for the Alloy Cache with ideal MAP (AC), unassisted Loh-Hill Cache (LHC), Loh-Hill Cache with
MissMap (LHC-MM), Loh-Hill Cache with ATCache (LHC-ATC), and the Loh-Hill Cache with Tag Cache
(LHC-TC). Figure 5.16 reports relative STP (with respect to no DRAM Cache). In spite of having the
shortest hit latency, Alloy Cache’s performance is worse than the Loh-Hill Cache for both the closed and
open-page policies (see Figure 5.17). This is due to its much lower DRAM Cache hit rate. On average, AC
provides 6.6% and 3% higher system throughput than an architecture without DRAM Cache for the closed
and open-page policies, respectively. On the other hand, the 29-way LHC provides on average 17.4% and
14.8% higher performance, respectively. Using the distributed Tag Cache mechanism, the performance
of the Loh-Hill Cache (LHC-TC) improves by 6.4% and 5.8% on average over LHC-MM, respectively, and
by 20.6% and 17.7% on average over Alloy Cache, respectively. On the contrary, LHC-ATC provides 2.6%
and 2.2% lower performance on average compared to LHC-TC, respectively.

It is interesting to note that the Alloy Cache yields the highest performance increase for workload WL0,
which is the average SPEC CPU workload. The reason is that this workload includes a wide range of
applications with varying memory characteristics, which the Alloy Cache is well capable of exploiting.
Yet, still, high associativity in the DRAM Cache, in spite of incurring a higher hit latency, is key to further
improve performance, especially for workloads that are more memory-intensive.
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5.6. RELATED WORK

5.5.5 Energy Consumption

Tag Caching not only helps improving performance, it also helps reduce energy consumption. As men-
tioned in Section 5.3.2, the CAS operation to fetch the tag lines in the Loh-Hill Cache to read the tag
is eliminated upon a Tag Cache hit. This not only reduces DRAM Cache access latency, it also reduces
energy consumption. Based on the numbers provided in [85, 126], we calculate the static and dynamic
energy (excluding refresh energy) of a 2 GB DRAM Cache for LHC, LHC-MM, LHC-ATC and LHC-TC. In
Figure 5.18, we show the reduction in energy consumption (both static and dynamic) normalized to LHC
for LHC-MM, LHC-ATC and LHC-TC for the closed and open-page policies. On average, LHC-TC reduces
DRAM Cache energy consumption by 20.6%, 10.4% and 7.4% over LHC-MM, LHC and LHC-ATC, respec-
tively. The reason is twofold: (i) LHC-TC achieves better performance and thus shorter execution time,
which in turn reduces energy consumption, and (ii) no need to read the tags in the DRAM Cache in case
of a Tag Cache hit. In contrast, the MissMap-enabled Loh-Hill Cache, LHC-MM, experiences a slowdown
in overall performance which causes an increase in energy consumption by 8.8% on average over LHC.

The highest reduction in energy consumption is observed for WL1, which is the compute-intensive SPEC
CPU2006 workload. Energy is reduced by 19.6% compared to LHC and by 38.5% compared to LHC-
MM, because of the high hit rate in the Tag Cache, as previously reported in Figure 5.12. The smallest
reduction in energy is observed for WL3 (4.7% compared to LHC, and 7.2% compared to LHC-MM),
which is the memory-intensive SPEC CPU2006 workload. This is due to the fact that the Tag Cache is too
small to capture the large working set for this workload.

While energy consumption is reduced in the DRAM Cache, energy consumption increases in L2 because
of the Tag Cache lookups. According to our measurements this amounts to an average increase in L2
energy by 7.3% on average. It is important to note that the total energy consumption in the DRAM Cache
is 5 to 6 times higher than in L2, hence it is safe to conclude that Tag Cache leads to net energy savings.

5.6 Related Work

Prior works in DRAM Caches with conventional cache block sizes have mostly focused on managing tag
storage overhead, cache hit rate, and/or cache access latency. For small-sized DRAM Caches, Zhao et
al. [181] proposed on-die partial tags as a lookup for full tags in the DRAM Cache. With significantly
larger die-stacked DRAM Cache size, the size of partial tags grows proportionally large. The Loh-Hill
Cache [116], as mentioned before, proposed to use a MissMap table to bypass the requests to off-chip
DRAM in case of DRAM Cache misses. The size of the MissMap grows proportionally with DRAM Cache
size. For example, for a 2 GB of die-stacked DRAM Cache, the MissMap occupies 8 MB of LLC space,
nearly half the size of an L3 typically supported in modern processors. Our distributed Tag Cache on Loh-
Hill Cache occupies less then 2 MB and is not affected by DRAM Cache size. An extension of the Loh-Hill
Cache is the Mostly-Clean DRAM Cache [156], which uses a miss predictor to reduce the MissMap storage
overhead, and which uses parallel accesses to avoid the tag access serialization penalty. Tag Tables [60]
used an on-demand page-table structure to store cache tag information for the DRAM Cache. The number
of entries in Tag Table grows proportionally with DRAM Cache size at the cost of reduced LLC capacity.
ATCache [75] proposes a single entity SRAM array to store set information of a multi-way associative
DRAM Cache based on caching ratio. While keeping the caching ratio the same and increasing the DRAM
Cache capacity, the size of ATCache grows proportionally.

Prior approaches toward reducing tag data storage overhead have managed the DRAM Cache using large
cache lines on the order of kilobytes [44, 90]. Seznec [153] proposed to eliminate the need to store full
tag data by using a smaller sector of a large cache block as a bit vector. These techniques still store tag
data for all of DRAM, increasing bandwidth consumption and pollution of the DRAM Cache, increasing
false-sharing probability, and limiting scalability. Meza et al. [125] proposed tags in DRAM and caching
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5.7. SUMMARY

full tag information in a small direct-mapped buffer to exploit row buffer spatial locality. Footprint cache
is also another DRAM Cache design, which is a sector cache design with prefetcher [88]. It uses SRAM
storage to store the tag arrays; however, this is not a scalable solution, since the tag storage of 1 GB
DRAM Cache can be as large as 6 MB. Also, enabling prefetch requests might exacerbate the bandwidth
bloat problem in DRAM Cache due to the extra bandwidth consumed by inaccurate prefetches. Unison
Cache’s [87] embedded tags (like Alloy Cache) in Footprint Cache-like large allocation units are used
to exploit spatial locality. Gulur et al. [67] proposed to embed tags for co-located conventional block
and large block on separate tag bank of DRAM Cache to increase row-buffer hits at the cost of multiple
precharge and activation operations for each read/write operations (leading to higher dynamic energy).
It also proposes a centralized way locater on DRAM Cache to reduce hit latency. Unfortunately, the
latency, energy and bandwidth consumption increases when large blocks are evicted and replaced in case
of misses.

The existing prior works on gigascale DRAM Caches have focused on relatively small multi-core setups
with 4 to 8 cores. In many-core processors, a DRAM Cache solution needs to be scalable towards larger
core counts, which calls for a distributed solution. Our distributed Tag Cache mitigates these issues on a
many-core processor while reducing the DRAM Cache hit latency and incurring limited space overhead.
Moreover, the area overhead of distributed Tag Cache mechanism is independent of the DRAM Cache size
unlike previously proposed mechanisms.

5.7 Summary

Large die-stacked DRAM Caches are clearly needed for many-core processors to bridge the memory wall
problem. This poses a problem of how to efficiently manage the tags associated with gigascale DRAM
Caches. Prior works have proposed innovative Tags-in-DRAM designs to efficiently co-locate tags with
data. Unfortunately, Tags-in-DRAM designs with multi-way associativity suffer from high latency. To
mitigate the latency, prior works have proposed structures that either mitigate tag lookup latency in
DRAM Cache or bypass the request to off-chip DRAM. We observe that in many-core processor with
gigascale die-stacked DRAM Cache, these approaches would not only require more resources but could
potentially become a source of contention, thereby limiting overall system performance.

We propose Tag Cache, an on-chip distributed mechanism with limited space and latency overhead to
bypass the tag read operation in multi-way DRAM Caches, thereby reducing hit latency. Each Tag Cache,
stored in L2, stores tag information of the most recently used DRAM Cache ways. We show that the Tag
Cache is able to exploit temporal locality of the DRAM Cache, thereby contributing to on average 46%
of the DRAM Cache hits while running multi-programmed workloads. Our experimental results show
that we achieve 6.4% higher performance and 20.6% lower energy compared to the previously proposed
Loh-Hill Cache with MissMap on a 2 GB DRAM Cache, while using 4× less LLC resources. Our approach
provides on average 2.6% higher STP with 7.5% lower energy consumption than ATCache-based Loh-Hill
Cache. Compared to the direct-mapped Alloy Cache, our approach provides on average 20.6% higher
performance.
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Chapter 6
Conclusions and Future Work

6.1 Overview

With high performance many-core processors gaining much traction, it is imperative to have a power
management mechanism that is low cost, less complex, scalable and capable of analyzing the complex
behaviors and interactions across applications to optimize performance at different power envelopes.

On the other hand, successive technological advances in micro-architecture and process technology have
sustained tremendous performance scaling, while the memory performance has not scaled to the same
level. The proposal of near-memory architecture aims at mitigating the memory wall issue. While near-
memory DRAM-based architecture aims to reduce the latency of memory operations by reducing the
critical distance, it still suffers from high latency.

The work of this thesis introduces, develops, and analyses a novel method to address the issue of power
wall and memory wall of a state of the art many-core high performance processors. The goal of the thesis
was to provide a low overhead, low computational complexity and scalable mechanism to address the
above mentioned issues. Although there exists many solutions that provide micro-architectural mech-
anisms to address the power wall and memory wall issues, none of them has solved the problem of
providing full operability at constrained power envelops.

With high performance many-core processors gaining much traction, it is imperative to have a power
management mechanism that is low cost, less complex, scalable and capable of analysing the complex
behaviors and interactions across applications to optimize performance at different power envelopes.

On the other hand, successive technological advances in micro-architecture and process technology have
sustained tremendous performance scaling, while the memory performance has not scaled to the same
level. The proposal of near-memory architecture aims at mitigating the memory wall issue. While near-
memory DRAM-based architecture aims to reduce the latency of memory operations by reducing the
critical distance, it still suffers from high latency.

6.2 Summary of Research

In the first part of the thesis, we have addressed the power-wall issue with respect to many-core pro-
cessors. As transistor budgets outpace the power envelope, various techniques have been previously
introduced that allow for run-time adaptation to improve power efficiency. Yet the combination of sev-
eral of these techniques, including core adaptation, cache adaptation and per-core DVFS, will be required
to meet ever more stringent power budgets. This quickly increases power management complexity which
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must dynamically allocate power among cores and threads based on workload behavior and run-time
conditions.

To address this problem we introduce Chrysso in Chapter 3, an integrated and scalable model-driven
power management that quickly select the best combination adaptation method out of core and uncore
micro-architecture adaptation, per-core DVFS, or any combination thereof. This decision is based on
workload behavior for each core on a large many-core system, while optimizing the chip’s total perfor-
mance and defined power usage. Chrysso’s global optimization algorithm can quickly search the adap-
tation space by making performance and power projections to identify Pareto-optimal configurations,
effectively pruning the search space. This makes Chrysso scale favorably to large numbers of cores and
configurations, significantly outperforming isolated adaptation techniques in isolation w.r.t. total system
throughput under a broad range of power budgets. At stringent power budgets, Chrysso achieves 1.9×
better chip performance over core-level gating for multi-programmed workloads, and 1.5× higher per-
formance for multi-threaded workloads. The critical/bottleneck thread identification in Chrysso-Critical
is able to reduce the execution time further by 0.2–10% on the average over Chrysso.

Most existing power management schemes use a centralized approach (like Chrysso) to regulate power
dissipation based on power monitoring and performance characteristics. Unfortunately, the complexity
and overhead of centralized power management increases significantly with core count rendering it in-
viable at fine-grain time slices (sub 10 ms time quanta). Moreover, per core on-chip voltage regulators
adds significant area overhead leading to a sub-optimal chip design. In Chapter 4, we leverage a two-tier
hierarchical power manager due to its low overhead and high scalability on a tiled many-core architecture
with shared LLC and per-tile DVFS at fine-grain time slices (1 ms time quanta for micro-architectural
adaptations). We use the Chrysso analytical performance and power models and tune it for the shared
architecture and its adaptation. The power is distributed using two-tier power manager where global
power is first distributed across tiles using GPM and then within a tile (in parallel across all tiles). We also
show that thread scheduling is essential in such an architecture to account for thread sensitivity towards
shared resources. We leverage DVFS and cache-aware thread migration (DCTM) to ensure optimum per-
tile co-scheduling of compatible threads at runtime over the two-tier hierarchical power manager. Using
simple two-tier hierarchical power manager and DCTM in tandem, we report that system performance
improves by 10% on average, and up to 20%. DCTM outperforms existing solutions by 4.2% on average
(and up to 12%) while using the same underlying two-tier hierarchical power manger on adaptive many-
core processor.

In the second part of the thesis, we have addressed the memory-wall issue with respect to many-core
processors. With the advancements in the core micro-architectural techniques and technology scaling,
the performance gap between the computational component and memory component is increasing sig-
nificantly. To bridge this gap, the architecture community is pushing forward towards multi-core architec-
ture with on-die near-memory DRAM cache memory (faster than conventional DRAM). Large die-stacked
DRAM caches are clearly needed for many-core processors to bridge the memory wall problem. This
poses a problem of how to efficiently manage the tags associated with gigascale DRAM Caches. Prior
works have proposed innovative Tags-in-DRAM designs to efficiently co-locate tags with data. Unfor-
tunately, Tags-in-DRAM designs with multi-way associativity suffer from high latency. To mitigate the
latency, prior works have proposed structures that either mitigate tag lookup latency in DRAM Cache or
bypass the request to off-chip DRAM. In Chapter 5, we have shown that in many-core processor with
gigascale die-stacked DRAM Cache, these approaches would not only require more resources but could
potentially become a source of contention, thereby limiting overall system performance. We propose Tag
Cache, an on-chip distributed tag caching mechanism with limited space and latency overhead to bypass
the tag read operation in multi-way DRAM Caches, thereby reducing hit latency. Each Tag Cache, stored
in L2, stores tag information of the most recently used DRAM Cache ways. We show that the Tag Cache
is able to exploit temporal locality of the DRAM Cache, thereby contributing to on average 46% of the
DRAM Cache hits while running multi-programmed workloads.
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6.3. POTENTIAL FUTURE WORK

6.3 Potential Future Work

In this section we discuss the potential future work. With the results obtained an based on our analysis
in the previous section, we find numerous opportunities for further research. In this section, we discuss
briefly our proposal for further work.

6.3.1 Adaptive SMT Cores

In the first part of the thesis presented the analytical performance and power models for adaptive micro-
architecture. We evaluated these models for cores without simultaneous multi-threading (SMT). A pos-
sible extension of this work could be to extend the core performance and power model for simultaneous
multi-threading (SMT) cores. This is particularly interesting as most high performance core support si-
multaneous multi-threading. The adaptation of SMT core in a power constrained scenario would open
challenges in optimising performance. This would also call for a more advanced thread migration scheme
on a many-core tiled architecture. The thread migration module would need to optimize thread place-
ment based on three available shared resources, namely, core (SMT), DVFS and shared LLC, to maximize
overall performance.

6.3.2 Power Management

We have shown that runtime micro-architectural adaptations provide various operation power-
performance points for various power envelopes without shutting down the cores. This provide bet-
ter overall performance with much higher operational flexibility. Perhaps an implementation of an
FGPA/firmware-based power manager would provide the first hand insight towards scope and opera-
tional properties. Moreover, an experimental prototype can also help to improve the analytical models
to provide better accuracy. This would assist the power manager to converge faster thereby increasing
scalability. Additional die temperature values as controlled information can be added as feedback to the
PI/PID controller to improve the power distribution. This would also enable temperature-aware micro-
architectural adaptation to not only manage heat dissipation but also prevent hot-spots for increasing the
lifetime of the many-core processor. Moreover, further work can be carried towards making the analytical
model-driven power management (both centralized and hierarchical) more generic. For instance, ex-
tending the scope to not only include variations of CPUs but also on-die GPUs, accelerators, large DRAM
Caches, etc.

6.3.3 Resizeable DRAM Cache

Although the near-memory architecture is aimed to reduce the performance gap between the computing
component and memory component, it still dissipate a substantial amount of power. Further research
could be focused towards creating analytical models to project core/application performance and power
values during DRAM Cache adaptation at different power envelopes.
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Lieven Eeckhout "Shared Resource Aware Scheduling on Power-Constrained Many-Core Tiled Processors", in
proceedings of the ACM International Conference on Computing Frontiers (CF 2016 Poster).
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