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RESUMEN. El teorema de equidistribuciéon de Bilu establece que, dada
una sucesion estricta de puntos en el toro algebraico N-dimensional cu-
ya altura de Weil tiende a cero, las 6rbitas de Galois de los puntos se
equidistribuyen con respecto a la medida de Haar de probabilidad del
policirculo unidad. Para el caso unidimensional, versiones cuantitativas
de este resultado fueron obtenidas independientemente por Petsche y
por Favre y Rivera-Letelier.

Se presenta en esta tesis una versiéon cuantitativa del resultado de
Bilu para el caso de dimensién cualquiera. Dado un punto en el toro al-
gebraico de dimensiéon N de altura de Weil menor que 1, se proporciona
una cota para la integral de una determinada funcion test en P*(C)N
con respecto a la medida signada definida como la diferencia de la me-
dida discreta de probabilidad asociada a la érbita de Galois del punto
y la medida de probabilidad soportada en el policirculo unidad, donde
coincide con la medida de Haar normalizada. Esta cota est4d dada en tér-
minos de una constante que depende tnicamente de la funcién test, de
la altura de Weil del punto, y de una nocién que generaliza a dimensién
superior el grado de un nimero algebraico.

Para la demostracion de este resultado se utiliza el analisis de Fou-
rier para la descomposicion del problema y, a través de proyecciones, se
reduce al caso unidimensional donde aplicamos la versiéon cuantitativa
de Favre y Rivera-Letelier.

REsuM. El teorema d’equidistribucié de Bilu estableix que, donat una
successio de punts en el tor algebraic N-dimensional amb altura de Weil
que tendeix cap a zero, les orbites de Galois dels punts es equidistri-
bueixen respecte de la mesura de Haar de probabilitat del policercle
unitat. Per al cas unidimensional, versions quantitatives d’aquest re-
sultat van ser obtingudes independentment per Petsche, i per Favre i
Rivera-Letelier.

Es presenta en aquesta tesi una versié quantitativa del resultat de
Bilu per al cas de dimensié qualsevol. Donat un punt en el tor algebraic
de dimensié N d’altura de Weil més petita que 1, es proporciona una
fita per a l'integral d’una determinada funci6 test en P*(C)V respecte
de la mesura signada definida com la diferéncia de la mesura discreta de
probabilitat associada a ’0rbita de Galois del punt i la mesura de pro-
babilitat suportada en el policercle unitat, on coincideix amb la mesura
de Haar normalitzada. Aquesta fita ve donada en termes d’una constant
que depén dnicament de la funcié test, de l'altura de Weil del punt, i
d’una nocié que generalitza a dimensié superior el grau d’'un nombre
algebraic.

Per a la demostracié d’aquest resultat s’utilitza I'analisi de Fourier
per la descomposicié del problema i, mitjangant projeccions, es redu-
eix al cas unidimensional on apliquem la versié quantitativa de Favre i
Rivera-Letelier.






ABSTRACT. Bilu’s equidistribution theorem establishes that, given a
strict sequence of points on the N-dimensional algebraic torus whose
Weil height tends to zero, the Galois orbits of the points are equidis-
tributed with respect to the Haar probability measure of the unit poly-
circle. For the case of dimension one, quantitative versions of this re-
sult were independently obtained by Petsche and by Favre and Rivera-
Letelier.

We present in this thesis a quantitative version of Bilu’s result for
the case of any dimension. Given a point on the algebraic torus of
dimension N and Weil height less than 1, we give a bound for the integral
of a suitable test function on P*(C)" with respect to the signed measure
defined as the difference of the discrete probability measure associated to
the Galois orbit of the point and the probability measure supported on
the unit polycircle, where it coincides with the normalized Haar measure.
This bound is given in terms of a constant depending only on the test
function, the Weil height of the point, and a notion that generalizes to
higher dimension the degree of an algebraic number.

For the proof of this result we use Fourier analysis techniques to
decompose the problem and we reduce it, via projections, to the one-
dimensional case where we apply the quantitative version by Favre and
Rivera-Letelier.
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Introduction

1. Historical context of the equidistribution problem

The distribution of the roots of a polynomial and, more generally, the
distribution of the solutions of a system of N polynomial equations in N vari-
ables with rational coefficients have been studied by several authors through
techniques that involve deep mathematical results.

Let us consider some examples in the one-dimensional case to get some
intuition on the problem. For a given non-zero rational number a, consider
the polynomials ¥ — a, with k& > 1. The roots of these polynomials are
uniformly distributed in the circle of radius ak and, as k tends to infinity,
they tend to the equidistribution on the unit circle. In contrast, if consider
the family of polynomials (z — 1)*, with & > 1, we observe that they have
a unique root at 1 of multiplicity k. The most obvious difference between
these two families of polynomials is the growth of their coefficients with
respect to their degree. Indeed, for the second family the coefficients grow
exponentially with the degree, whereas for the first one they do not grow at
all. We will soon see that the size of the coefficients of the polynomials in
these families play a key role on the limit distribution of their roots.

Another interesting example where this asymptotic behavior can be ob-
served is the following. For every k > 1, consider a polynomial fj of degree
k and coefficients in {—1,0, 1}. By computing their roots and plotting them
in the complex plane, one may verify experimentally that they tend to the
equidistribution on the unit circle as k£ tends to infinity. The figure below
shows a plot of the roots of two polynomials of respective degrees 40 and
200, for a random choice of coefficients in {—1,0,1}.

(A) fao(z) =0 (B) fzoo(fc) =

ix
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A significant result justifying this phenomenon and its analogue for the
N-dimensional case is due to Bilu [Bil97]. It establishes the uniform distri-
bution of Galois orbits of points of small Weil height in the algebraic torus
towards the unit polycircle in terms of weak convergence of probability mea-
sures. In fact, we will see that its consequences go beyond the study of the
distribution of the roots of polynomials. Before stating the theorem let us
introduce some notation.

Fix an algebraic closure Q of the field of rational numbers together with
an embedding Q — C. By C* and Q" we denote the multiplicative groups of
C and Q, respectively. Let T C (C*)" be a finite set, the discrete probability
measure on (C*)Y associated to the set T is given by

1
MT:ﬁzéau

acT

where #1 denotes the cardinality of the set T" and &, is the delta Dirac
measure on (C*)N supported on o. The Galois orbit of an element in (Q”)N
is the orbit of the element under the action of the absolute Galois group
Gal(Q/Q). The unit polycircle (S1)V is the set of points (z1,...,2x) in
CN such that |z1] = ... = |zny| = 1, it is a compact subgroup of (C*)V.
We will denote by A1)~ the probability measure on (C*)N supported on
(SHN where it coincides with the normalized Haar measure. A sequence
{ur} of probability measures on (C*)V converges weakly to a probability
measure p on (C*)V if, for every compactly supported continuous function
f:(CHN - R, we have

lim fduk:/ fdu.
k—o0 (CX)N (CX)N

A sequence of finite sets {7} in (C*)" is equidistributed with respect to a
probability measure p if the discrete probability measures associated to the
sets T} converge weakly to u.

Let £ € Q" and fe € Z]x] the minimal polynomial of £ over Z, i.e.: the
polynomial with coprime integer coefficients vanishing at £ of least degree.
Then the degree of £ over Q, denoted by deg(§), is defined as the degree of
its minimal polynomial and its Weil height as

_ m(fe)

where m( f¢) is the (logarithmic) Mahler measure of the polynomial f,

2w
mife) = 5 [ loglfee”)lao.

The definition of Weil height is extended to (@X)N as follows:
h(§) =h(&) + ... + h(én) for every & = (&1, ..., &n).
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A sequence {&,} in (@X)N is strict if, for every proper algebraic subgroup
Y C (@)Y, the cardinality of the set {k: &, € Y} is finite.

THEOREM (|Bil97|, Theorem 1.1). Let {&.} be a strict sequence in

(@X)N such that limy_,o h(&,) = 0. Then the Galois orbits of &, are equidis-
tributed with respect to A(guyn.

As it was mentioned above, this result gives a satisfactory answer for the
distribution of the roots of polynomials with rational coefficients. Indeed,
for the one-dimensional case the theorem may be reformulated as follows.
Let {fx} be a sequence of irreducible polynomials in Q[z]. Assume that
no cyclotomic polynomial is repeated an infinite number of times, and that
m(fx) € o(deg(fx)). Then the roots of the polynomials f}, are equidistributed
with respect to Ag1.

Observe that, for the first and last families of examples stated above
the Mahler measures are m(z* — a) = log™ |a| € o(k), where logt 2 =
max{0,logx}, and m(f;) < log(1 + k) € o(k). Hence, we can deduce the
equidistribution of the roots towards the unit circle.

Other results can be found in the literature regarding the study of the dis-
tribution of roots of polynomials. Among them, there is a classical result due
to Erdos and Turan [ET50] where the distribution of the arguments of the
roots of polynomials with complex coefficients is proved under the assump-
tion that the middle coefficients are not too big with respect to the extremal
ones. This, together with the work of Hughes and Nikeghbali [HNOS|, pro-
vides a proof for the uniform distribution of the roots of these polynomials
on the unit circle. The generalization to the multivariate case is given in
[IDGS14].

Bilu’s equidistribution theorem belongs to a family of results concerning
the distribution of Galois orbits of points of small height on algebraic vari-
eties, a problem that has assumed a significant role over the last twenty years
in Diophantine and Arithmetic Geometry. This result was inspired on a pre-
vious work of Szpiro, Ullmo and Zhang [SUZ97|, where an equidistribution
result for small points on Abelian varieties is stated. For every symmetric
and ample line bundle L on an Abelian variety A we can define a height func-
tion on its algebraic points hy : A(Q) — Ry, called the Néron-Tate height
associated to L. A sequence in A(Q) is generic if every proper subvariety of
A contains finitely many elements of the sequence. In [SUZ97]|, the authors
prove that for every generic sequence in A(Q) whose Néron-Tate height tends
to zero, the Galois orbits of the points of the sequence are equidistributed
with respect to the Haar probability measure on A(C).

This was the first step towards the proof of the generalized Bogomolov
conjecture which was originally stated by Bogomolov [Bog81| for algebraic
curves over Q of genus greater than one embedded in their associated Ja-
cobian variety. The conjecture was later generalized for every non-torsion
subvariety of an Abelian variety over Q, where a torsion subvariety is the
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translation by a torsion point of an Abelian subvariety. It predicted that
given an Abelian variety A over Q together with a symetric ample line bun-
dle L, for every non-torsion subvariety ¥ C A there is a constant cr(Y) > 0
such that the set {P € Y(Q) : h(P) < c(Y)} is not Zariski-dense in Y.
For the toric analogue, the result was proved in [Zha95|, later Bilu gave a
simple proof based on his equidistribution theorem. The proof of the con-
jecture for the case of curves was given by Ullmo [UllI98| and, shortly after,
Zhang demonstrated the general case in [Zha98]|. In his paper, Zhang proved
the equidistribution for strict sequences of algebraic points on Abelian vari-
eties, rather than generic sequences, generalizing the results in [SUZ97|. In
[CLO0|, Chambert-Loir proved a generalization of Bogomolov’s conjecture
for semiabelian varieties.

Bilu’s equidistribution theorem inspired several works on the subsequent
years, specially for the one-dimensional case. Rumely [Rum99| translated
Bilu’s result to the language of complex potential theory and, in this setting,
he gave a generalization for a class of heights on the complex projective line
associated to compact sets of capacity one. Later, Baker and Hsia [BHO3|
proved, for any place of QQ, a general equidistribution property stated in the
dynamical context for normalized canonical heights associated to polynomial
maps with rational coefficients.

The strategy of the interpretation of heights in terms of the potential
theory, which was developed by Rumely, Baker and Hsia, became a strong
machinery for dealing with arithmetic equidistribution problems. This ap-
proach, and its generalization to the v-adic analyfication in the Berkovich
sense for every finite place v, gave rise to the independent results of Favre and
Rivera-Letelier [FRLO6| and Baker and Rumely [BRO6|. In parallel, follow-
ing the so-called variational principle introduced in [SUZ97| and based on
Arakelov Geometry, Chambert-Loir [CLO6| proved a similar result. In these
coetaneous but independent works, equidistribution results were given on the
one dimensional case concerning normalized heights associated to dynamical
systems for all places of Q.

In [CLO6|, Chambert-Loir studies the distribution at non-Archimedean
places of orbits of points on varieties of any dimension considering ample
line bundles with an associated algebraic metric. For the case of curves, he
proves a stronger result considering heights associated to ample line bundles
together with a more general class of adelic metric. Baker and Rumely in
IBROG]| associate to every rational function ¢ over Q a dynamical height h,
on P1(Q). They prove that, for every place p of Q, there is a probability
measure [, on the Berkovich projective line PlBerk (Cp) such that, for every
sequence of distinct points {&} in P1(Q) with hy (&) — 0, the Galois orbits
of &, are equidistributed with respect to p,,. Favre and Rivera-Letelier
[FRLO6| introduce the notion of adelic measures and associate to them an
adelic height. They prove that these adelic heights are indeed Weil heights
and such that they have non-negative essential minimum. They also give the
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following equidistribution result: given an adelic measure p = {pp}pen, and

a sequence {&} of distinct points in P}(Q) such that their adelic height h,,
tends to zero, the Galois orbits of & are equidistributed with respect to p,,
for every place p of Q. In addition, the authors give a quantitative version
of the result.

The generalization, for every place, of the results on the distribution of
the orbits of small points on varieties of any dimension was first given by
[Yua08|. We will introduce some notions and notation before stating his
result.

Let K be a number field and denote by My the set of places of K. For
every v € My, fix an embedding K — C,, where C, is the completion of
the algebraic closure of K.

Let X be a projective algebraic variety over K of dimension n. To every
semipositive metrized line bundle L on X with L ample we can associate a

height function h : X(K) — R. Moreover, we can define h7(X), the height
of X relative to L, through the arithmetic intersection theory introduced in
[GS90] and extended, by a limit process, to the general semipositive case in
[Zha95]. We say that a sequence of points {&} in X (K) is L-small if

hz(X)
n+1)degr(X)

For every Archimedean place v € M, the space X" is the correspon-
ding analytic space X(C,). If v € Mg is non-Archimedean, X" is the
analyfication in the Berkovich sense of the projective scheme X over C,.
Associated to the metrized line bundle L, and for every place v, there is
a v-adic canonical measure c1(L)? of total mass degz(X) called the v-adic
Monge-Ampére measure.

Let £ € X(K) and S its Galois orbit, i.e. the orbit of £ under the action
of Gal(K /K). For every place v € M, since S can be seen as a finite subset
of X", we can define the discrete probability measure associated to the set

S as

i (6 =

1
1Sy = % Z 5(17

a€cs
where d,, is the delta Dirac measure on X" supported on a. A sequence of
probability measures {ux} in X2™ converges weakly to a probability measure
w if, for every continuous function f: X3" — R, we have

lim fdu = fdu.

k—oo Xg,n Xﬁn
We can now state Yuan’s result.

THEOREM ([YuaO8|, Theorem 3.1). Let X be a projective variety of
dimension n over a number field K, and L a semipositive metrized line bundle

on X such that L is ample. Let {§} be an infinite sequence in X (K) such
that it is generic and L-small and let Sy be the Galois orbit of &. Then, for
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every place v € M, the sequence of discrete probability measures {ps, »}

n
v

converges weakly to @cl (L)

The existence of sequences of points in X (K) that are generic and L-
small is a very strong hypothesis. Nevertheless, it is satisfied for the Weil
height in the algebraic torus, the Néron-Tate height in Abelian varieties and,
more generally, for those heights coming from dynamical systems.

Gubler [GubO08]| proved an analogous result when K is a function field.
In the last years, several generalization of Yuan’s result have been given,
such as [Chell]. In [BB10], the equidistribution property is stated for big
line bundles on Archimedean places. For the case of proper toric varieties, a
stronger result is provided in [BRLPS15|.

2. Statement of results and structure of the thesis

As a general fact, the results on the distribution of Galois orbits of points
of small height are formulated in a qualitative way in the sense that no infor-
mation is given about the rate of convergence of the weak limit of probability
measures. An exception is given in [FRLO6]|, where the authors provide, on
every place of Q and for a fixed family of test functions, quantitative esti-
mates for the rate of convergence in the one dimensional case. Independently,
Petsche [Pet05] gives, for the particular setting of Bilu’s result, a quanti-
tative version for the one dimensional case using Erdés and Turan’s result
[ET50], and Fourier analysis techniques.

The aim of this thesis is to give a quantitative version of Bilu’s equidis-
tribution theorem for the case of dimension N. In particular, we provide a
bound for the integral of a suitable test function with respect to the signed
measure defined by the difference of the discrete probability measure asso-
ciated to the Galois orbit of a point in (@X)N and the measure A(g1)v. This
estimate is given in terms of the height of the point, a generalization to
higher dimension of the notion of the degree of an algebraic number and a
constant depending linearly on the test function.

Let us introduce some notation.

Consider coordinates ((x1 : 1), ..., (zx : yn)) on PH(C)Y and define the
subvariety

N
H=V H Cijj
j=1
The set of test functions F is defined as the set of all real-valued functions
in ¢*N+1(PL(C)V) whose 2N-jet vanishes at H. This is, all functions whose
partial derivatives up to order 2N vanish at H, on every chart.

For every n. = (n1,...,ny) in Z", the monomial map y™ : (@X)N - Q"
is defined as

X&) =& - &Y, forany € = (&1,...,6N).
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We define the generalized degree of € € (Q)Y as
2(8) = min{|[n||1 deg(x"(£))},
n#0

where || - ||1 stands for the 1-norm on CV.
We can now state the main theorem of this dissertation

THEOREM 1. There is a constant C = 48.9897 such that for every test
function f € F and every & € (@X)N with (&) < 1, the following holds

log(2(£) + 1))5
dps — ANy OB )
/IP’l((C)N Jdus /1P>1(<C)N JdAsy 70

where S is the Galois orbit of €, pg the discrete probability measure associated
to it and c(f) is a positive constant depending only on the function f.

< e(f) (4 h(g) +C

The dependence of the constant c( f ) in terms of the function f is

c(f) < V2rLip(f) —I-ZZ +1GZ
L! L!

where Lip(f) is the Lipschitz constant of the functlon f with respect to the
spherical distance in P}(C)", || - ||;.1 stands for the L!-norm on the locally
compact Abelian group ZV x R™ and ¢ is the map defined by

¢: (R/Z)N x RN — PYC)V
((01,...,0N), (u1,...,uy)) +— ((1:e2m0tumy (1 e2mntuny),

In order to prove this result, we use Fourier analysis techniques to dis-
cretize the problem. Once this is done, we are able to reduce the situation to
the one dimensional case via monomial maps and, in this setting, we apply
Favre and Rivera-Letelier’s quantitative result.

We will now give an overview of the structure of this dissertation

The first chapter is devoted to the preliminaries needed in the remai-
ning two chapters of the text. As the reader may soon appreciate, we will
introduce very well-known notions. This allows us to fix notations and leads
us to a more self-contained text. In Section 1.1 we give a summary of the
classical measure theory, not only for positive measures but also for complez-
valued ones and, in particular, for signed measures. Section 1.2 comprises
an overview of the theory of Fourier analysis on locally compact Abelian
groups. Later, in Chapter 3, we consider the particular case of (C*)V. In
Section 1.3 we deal with the problem of approximating locally integrable
functions by smooth ones. We recall the notion of convolution and see that,
given an integrable function we can build, by convolution with the so-called
mollifiers, a sequence of smooth functions converging to the original one.
In Section 1.4 we recall the theory of Riemannian manifolds in order to
define the Laplace operator acting on the space of smooth functions. In
the subsequent section, we give the definition of the distributional Laplace
operator and, for this purpose, we summarize the theory of distributions on

)

aul aHl
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Riemannian manifolds. Section 1.6 includes a short introduction to potential
theory on the complex line, where we give the definitions of harmonic and
subharmonic functions and of the potential of a compactly supported finite
positive measure on C. The last section of this preliminary chapter will deal
with the notion and properties of the Weil height of points on P"(C) and, in
particular, of algebraic numbers.

In Chapter 2, we make an exhaustive study of Favre and Rivera-Letelier’s
quantitative equidistribution theorem for infinite places and the particular
case of the Haar probability measure on the unit circle. In addition, we give
an explicit computation of a constant appearing on their result. We follow
essentially the same structure of the article; however, one may notice at first
sight that, in contrast to the language of differential forms and currents that
the authors use in the original paper, we rather work with the language of
distributions.

The main theorem on Chapter 2, which corresponds to Corollary 1.4 in
[FRLO6], is the following:

THEOREM II. There is a positive constant C =~ 14.7628 such that for
every € -function f : PY(C) — R and every £ € Q”, the following holds

/ fdps — / fdXg1| < Lip(f) <Z + <4h(§) + Cl%(d‘i’l)) 2) ’
PL(C) P1(C)

d
where d is the degree of & over Q and S its Galois orbit.
In particular, if h(§) < 1, we have

[, gdns— [ girs
P1(C) P1(C)

with C' ~ 48.9897.

log(d+ 1) ?
d 9

< Lip(f) (4 h(¢) + ¢

In Section 2. a generalization of the theory of potentials to the whole
Riemann sphere is given. As an introduction to the section, we study the
problem of determining under which conditions we can consider a global
potential for a given signed measure on the complex projective line. The
answer to this problem is provided by a well-known result in potential theory.
In the first part of the section, following [FRLO6|, we give the definition of
the mutual energy of signed measures and we study sufficient conditions for it
to be well-defined. The main result of this section establishes hypotheses for
a signed measure to have positive energy. In the second part of the section we
give a way of regularizing compactly supported probability measures on C in
such a way that they have smooth potentials. As a remark to this subsection,
we should mention that in this text we choose a way of regularizing measures
which is not exactly the one introduced by Favre and Rivera-Letelier. In our
case we define the regularization by convolution with mollifiers on C and this
allows us to slightly simplify some proofs.
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In Section 2.2 we reproduce the proof of the quantitative equidistribution
in [FRLO6| for infinite places and the case of the probability Haar measure
on the unit circle. In order to make explicit the constant appearing in their
result, we make a specific choice of the mollifier used for regularizing the
discrete probability measures associated to a finite Galois-invariant set.

The third and last Chapter of this thesis is dedicated to the proof of
Theorem [[] In Section 3.1 we prove some results on Fourier analysis for the
particular case of the locally compact Abelian group (C*)¥. In Section 3.2
we study the set of test functions F. In particular, we see that for every
function f € F, the function f o ¢ and all its first order partial derivatives
are Haar-integrable as well as all their Fourier transforms. In Section 3.3 we
deal with Galois orbits of points in the N-dimensional algebraic torus, their
cardinality and their height. Section 3.4 comprises a study of the generalized
degree, were we see that it is bounded by the minimum of the degrees of each
of the components of the point and that, in dimension one, it coincides with
the algebraic degree of the element. In addition, we state sufficient conditions
for a point to be such that its generalized degree is exactly the minimum of
the degrees of the components. Finally, in the last section, we include a
detailed proof of the main theorem based, as we previously mentioned, on
the quantitative result of dimension one.



CHAPTER 1

Preliminaries

We will devote this first chapter to the introduction of the theory and
techniques that will be used later in this dissertation. We prevent the reader
that they may find, in some cases, definitions and notions that are generally
well-known and assumed. This will give us the opportunity to introduce
notation and it will lead to a more self-contained text.

As a general fact, most of the proofs of the results that will be stated on
this preliminary chapter will not be included. In certain cases, we will give
demonstrations that we either found quite representative or did not find a
reference in the literature. Nevertheless, at the beginning of each section, we
will give several references where detailed proofs can be found.

1. Measure theory

We will introduce here some of the basic concepts about measure theory
and integration that will appear all along the text. There are many detailed
references where all the results to be stated appear, among them [Rud87].

A o-algebra 3 on a set X is a collection of subsets of X such that

(i) X € &,
(ii) For every countable family {E;} € X, we have J; E; € X,
(iii) For every E € ¥, we have X \ E € X.

The elements of 3 are called measurable sets and the pair (X, X) is called a
measurable space. From the definition we deduce that the ) € ¥ and that
any countable intersection of measurable sets is a measurable set. If X is a
topological space, the Borel o-algebra of X, that will be denoted by Z(X),
is the smallest o-algebra containing all the open subsets of X. The elements
in #(X) are called Borel sets.

A positive measure on a measurable space (X, X)) is a set function p : ¥ —
[0, +00] which is not identically +oo and satisfies the o-additivity condition:

1 U E;| = Z w(Ej), V{E;} C X pairwise disjoint countable family.
J=0 Jj=0
From the definition, we deduce that p(0)) = 0 and that, given E, F' € ¥ such
that £ C F, then u(E) < p(F).
We will often use the word measure when referring to positive measures.
For a measure space (X,3) and a measure p on it, the triplet (X, X, u), or
simply (X, u), is called a measure space.

1
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A positive measure p on a measurable space (X, X) is complete if every
subset F of a measurable set £ with u(E) = 0 is measurable. Every measure
i can be extended to a complete measure as follows. Denote by ¥ the family
of elements of the form FUN, where E' € ¥ and N is a subset of a measurable
set of measure 0. It is easy to see that ¥ is a o-algebra and that p can be
extended to ¥ by setting u(E U N) = u(E). Then the extension, that will
also be denoted by p, is a a complete measure on (X, X). This fact will allow
us, whenever it is convenient, to assume that any given measure is complete.

A complex measure on a measurable space (X,X) is a o-additive set
function p : % — C. As for positive measures, one can easily deduce that
(@) = 0. However, observe from the definition that complex measures only
take finite values. A measure is said to be real or signed if it takes values on
the real line R.

Given a complex measure p on a measurable space (X, ), we define its
total variation |u| by

() = sup 3 |u(By)| for every E € 3,
7

where the supremum is taken over all finite collections {E;} of pairwise dis-
joint sets whose union is F. It can be proved that the total variation of a
complex measure is a positive measure on X, which will also be referred to
as the trace measure of u. The total variation of a positive measure is the
measure itself.

Let p be a (positive, complex) measure on (X, Y), its total mass is

[lall:= 1l (X).
A positive measure p is finite if its total mass is finite, i.e.:
[l < oo

An important class of finite positive measures are probability measures which
are those whose total mass is exactly 1. Another example of finite positive
measures are total variations of complex measures.

From now on, we will assume that X is a topological space and we will
consider the Borel o-algebra Z(X). A (positive, complex) measure x in the
measurable space (X, #(X)) is regular if, for every E € Z(X), we have

E) = K) = inf |u|(V).
lu|(E) sup, || (KC) b;gvlul( )

compact open

We will denote by M (X) the set of all complex-valued regular measures on
X. In compact metric spaces every complex or finite positive measure is
regular.

Let u be a (complex, positive) measure on X, and let Y C X be a Borel
set. The restriction py of the measure p to the the set Y is defined as

py (E)=pw(ENY), for all £ € B(X).



1. MEASURE THEORY 3

Given a (complex, positive) measure p on X, we say that it is supported
on a Borel set A € A(X) if p(F) = 0 for every E € Z(X) such that
ENA=10. We define the support of the measure p as the smallest closed
subset F' in X such that u(X \ F) = 0 and we will denote it by supp(u).

A measure i on X is discrete if it is supported on a discrete set of X.

Given a measure p € M (X), there is a unique decomposition of the form

p=pg — pg gy —ipg,
with ud, pg , 4 and py positive measures in M(X) such that

supp(ug ) Nsupp(pg ) = 0 = supp(pi) Nsupp(u ).

This decomposition is called the Jordan decomposition of u.

Let p and v be two positive or complex regular measures on the topo-
logical spaces X and Y, the set function p ® v on #(X) x A(Y') which is
given by

(L@V)(E X F)=pu(E)v(F), forevery E € B(X),F € B(Y)

can be naturally extended to a measure on the product measurable space
(X xY,#B(X xY)) and it is called the product measure.

Let us consider the particular case of signed measures. For a signed
measure pu € M(X), its Jordan decomposition is given by

po=pt—p,
where T and p~ are finite and regular positive measures on X with disjoint
supports. In particular, we have that
)

supp(u) = supp(u™) Usupp(p~ ).

The trace measure of y is
il =p" +p”.

1.1. Measurable functions. Let X be a topological space. A complex-
valued function f in the measurable space (X, #(X)) is measurable if, for
every t € R, the following sets are Borel sets

{z € X :Re(f(x)) <t} and {zr € X :Im(f(zx)) <t}

All algebraic operations with measurable functions are measurable func-
0 o

tions provided they do not include indeterminacies of the form g, > and
oo — 00. Given a sequence of measurable functions {f;}, we have that
limsup f; and liminf f; are also measurable.

Let p be a positive measure on (X, (X)), we say that two measurable
complex-valued functions f and g on the measure space (X, pu) are equal
almost everywhere if there is a Borel set E € #(X), with u(E) = 0, such
that f(z) = g(x) for every x € X \ E. It is easy to verify that this is an
equivalence relation. Given a function f and a sequence of functions { fi},
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all of them being measurable on (X, i), we say that {fi} converges almost
everywhere to f if p({x : limy fr(x) # f(z)}) = 0. We will write

fr ——f.
k—00

1.2. Lebesgue integration. We will first recall the notion of Lebesgue
integral of measurable functions with respect to positive measures on a mea-
surable space. Afterwards, we will extend this definition to all complex-
valued measures using the Jordan decomposition.

Let u be a positive measure on a topological space X, and let f: X —
[0, +00] be a measurable function. A partition of [0, +00] is a finite sequence
of increasing positive real numbers. Given a partition {t1,...,t,}, we define
the corresponding Lebesgue integral sum of the measurable functions f as

m

> tep({z: ty < f(2) < fraa}),

k=1
where t,,1+1 = +00. The Lebesgue integral of f with respect to the measure
u is defined as the supremum of all these Lebesgue integral sums over all
partitions of [0, +oc] and it is denoted by

/X fdu.

Observe that the Lebesgue integral, or simply integral, of a measurable func-
tion with respect to a measure can be infinite.
An extended real-valued measurable function f on the measure space

(X, p) is integrable if
[ 1l < oc.
b's

Given a measurable function f : X — RU{+o0}, its integral with respect
to the measure p is defined by

[ tau= [ fidu- [ s-an
X X X
where fiL = ‘ﬂ%

The set of all integrable functions on a measure space (X, u) is a linear
space and it is noted by L1(X, u). It is easy to see that the integral defines
a linear functional on this function space.

Given a Borel set E € #(X) and an extended real-valued measurable
function f on the measure space (X, i), we have

/E fdp = /X xe i,

where x g is the function that is equally 1 on E and vanishes otherwise.
We will now state a very useful result concerning measurable function
on product measure spaces.
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THEOREM 1.1 (Fubini’s Theorem). Let p and v be two regular positive
measures on the topological spaces X and Y, respectively. If f : X xY — C
is a measurable function such that any of the following holds

/Y < /X |f(:c,y)|du(x)> dv(y) < oo,
/X (/Y |f(x,y)|du(y)) () < o0 or

/ |f(x,y)|d(p@v)(z,y) < co.
XxY

Then we have

/ F(,y)d(u @ v) (2, )
XxY

= J e = [ ([ 6o o

Proor. [Rud87]|, Theorem 8.8. O

Let us finally define the integral of an extended real-valued measurable
function f on X with respect to a complex measure p. Considering the
Jordan decomposition of u, we have

/deuz/xfdué—/xfduo+z’/deu1+—z'/deul.

As in the previous cases, this integral can be unbounded.
We may also extend the definition to measurable complex-valued func-
tions on a measure space f by

/fdu / (f)du+i/X1m(f)du,

where Re(f) and Im(f) are the real and imaginary parts of the function f.

1.3. Convergence theorems. In this part of the section, we will state
some important results that will allow us to consider and exchange limits
under the integral sign. Let X be a topological space and assume that p is
a positive measure on A(X).

It can be shown that given a sequence {f} and a function f, all of them
measurable, if f; converges uniformly on X to the function f, then we have

(1.1) lilgn/)(fkd#:/xli]gnfkdp:/xfdu.

However, uniform convergence is a very strong convergence condition and we
will often have weaker ways of convergence, such as pointwise convergence.
In general, pointwise convergence will not be enough to guarantee , but
the following results will give us sufficient conditions under which it holds.
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THEOREM 1.2 (Monotone convergence theorem). Let { fr} be an increas-
ing sequence of positive measurable functions on X, then

lim/ frdp :/ lim frdpy.
k Jx x k
Proor. [Rud87|, Theorem 1.26. O

THEOREM 1.3 (Dominated convergence theorem). Let {fi} be a sequence
of measurable functions on X such that

(1) there is a positive integrable function g such that |fx(z)] < g(x)
almost everywhere,
(2) the limit limy, fr(x) exists almost everywhere.

lim/ frdp :/ lim frdp.
. x K
Proor. [Rud87|, Theorem 1.34. O

Then we have

1.4. Riesz representation theorem. Assume that X is a locally com-
pact Hausdorff space and let 6,(X) be the set of continuous functions van-
ishing at infinity, this is, the set of all continuous complex-valued func-
tions f on the topological space X such that, for every € > 0, the set
{r € X : |f(z)] > e} is compact. It can be proved that this space is
contained in the space of integrable functions L!(X, |u|), for every complex
measure pu € M(X). Hence, we deduce that the map that associates to each
[ € 6o(X) the value [y fdu is a bounded linear functional. The converse of
this fact is given by the following classical result.

THEOREM 1.4 (Riesz representation theorem). For every bounded linear
functional T : €5(X) — C there is a unique measure yu € M(X) such that

T(f) = /de,u, for all f € 6o(X).

Proor. [Rud87]|, Theorem 6.19. O

From this theorem, we deduce that the space M (X) is a Banach space
with the norm ||u|| = |©|(X). There is another version of the Riesz represen-
tation theorem that will be of interest in the following sections. It is given
for functionals on the set of compactly supported continuous functions on X,
which is denoted by €°(X). Before stating it, recall that a linear functional
T is said to be positive if T'(f) > 0 for every f > 0.

THEOREM 1.5. For every positive linear functional T : €0(X) — C there
is a unique reqular positive measure p on X such that

7(7) = [ fdu. for all § € €2(X).

Proor. |[Rud87|, Theorem 2.14. O
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1.5. LP spaces. In this part of the section we will define some function
spaces that will be of great importance, the LP-spaces. One of them, the
space of integrable functions on a measure space, has already been introduced
in the Lebesgue integration subsection.

For every 1 < p < oo and every measure space (X, i), we define the space
LP(X, p) as the set of equivalence classes of measurable functions f : X — C

such that
1
p
I fllex ) = </X !f\pdu) < 00.

The space L*° (X, p1) consists on the equivalence classes of essentially bounded
measurable functions, this is, measurable functions f : X — C such that

£l ) 1= ess suplf(z)] = nf{C' > 0 p({ : [f(@)] > C}) = O}

It can be shown that || - [[rr(x ) and [ - || e (x ) are norms on LP(X, u) and
L™ (X, ), respectively, and that they are complete with respect to them.
Hence, we have that LP(X, u) is a Banach space for every 1 < p < oo. If
there is no possible misunderstanding, we will write || - ||rr.

For every 1 < p,q < oo such that %—I—% = 1 and every pair of measurable
functions f and g on a measure space (X, u), Héolder’s inquality establishes
that

1fgllLr = /X [fgldp < (| flleellgllne.

Given f and a sequence { fi} of measurable functions on X, we say that
{fk} converges to f in LP-norm, if limy, || fx — fllre(x,,) = 0. We will write

The space L?(X, u) is particularly interesting since its norm is associated
with the inner product

o)z = /X f9du, for every f,g € LA(X, ).

This fact makes L?(X,u) into a Hilbert space. Recall that, in a Hilbert
space there is another notion of convergence, the weak convergence. Let f
and {fx} be functions in L?(X, ), we say that the sequence {f;} converges
weakly to f if

lim (fi, g)p2 = (f,9)12, for every g € L*(X, p).

k—o00

Observe that strong convergence, or convergence in L?-norm, implies weak
convergence.
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1.6. Minkowski’s integral inequality. In this last part of the section,
we will give a proof of Minkowski’s integral inequality, which will be used later
in this chapter.

THEOREM 1.6. Let (X,u) and (Y,v) be two measure spaces and let
F: X xY — R be a measurable function. Then, for every p > 1, the follow-
ing holds

[/Y pdV(y)]; S/X [/Y!F(x,y)v’du(y)rdu(m),

ProoF. c.f. [HLP52]|, Theorem 202.
Let p > 1, we have

J

/ F(z,y)du(z)
X

’ dv(y)

[ F@wute)
X

-,
<),
-/ ! [ | P ane)

Sk

where the last equality is given by Fubini’s theorem.
Let ¢ = -2, for every x € X, by Holder’s inequality we obtain

p—1’
),

p—1

/ Pz, y)du(z)
X

\ [ Pe.autz)

] dv(y)

/ Pz, y)du(z)
X

p—1
/ rF<x,y>|du<x>] v (y)
X

p—1

\F(way)ldu(x)] dv(y)

p—1

/ F(w, y)dp(w)
X

\F(w,y)ldV(y)] dp(z),

p—1
|F(x, y)|dv(y)

" dv<y>>; ([ire y>|pdu<y>>’1’
pdv<y>); (f |F<x,y>rpdu<y>); .

/ F(w, y)dp(w)
X

§</Y

/ F(w, y)dp(w)
X

-

/ F(w, y)d(w)
X
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Hence, putting both expressions together

(| [ Feiu|
g/X[( (| [ Ftouto| anty ) ([irara >)’1’] du(z)
= ([ ] #w | a ) [\ iFapat >] du().

Finally, if the first factor on the right-hand side of the last expression
vanishes, the result follows trivially. Otherwise, we can divide both sides by

it and obtain
" wly) } /[/ P, ) Pdu(y )} ().

| [ Fe e

And the theorem follows since = —|— = O

dv(y)

2. Fourier analysis on locally compact Abelian groups

We will give in this section an introduction to the basic theorems of
Fourier Analysis, following Rudin’s classical reference Fourier Analysis on
Groups, [Rud62]. As it is done there, we will introduce the theory for the
general class of locally compact Abelian groups. Further on this text, in
the last chapter, we will consider the particular cases of the unit circle, the
integers and the real line.

Unless something else is mentioned, we will consider additive locally
compact Abelian groups.

On every locally compact Abelian group GG there exists a positive regular
measure g, called the Haar measure, such that it is not identically 0 and
it is translation-invariant. This is, for every Borel set E € #(G) and every
x € G we have

pe(E) = pe(z + B).
The existence of the Haar measure is proved in a constructive manner by
building a translation-invariant linear functional over the set of compactly
supported continuous functions on the group and then applying Riesz rep-
resentation theorem.

An important fact about the Haar measure is that it is unique up to
multiplication by a positive constant. In particular, when the group G is
compact, we speak of the probability or normalized Haar measure which is
such that pug(G) = 1.

In the locally compact Abelian group (R,+) we consider a particular
choice of Haar measure, called the Lebesgue measure. It is such that the
measure of any interval [a, b] C Ris b—a. For the n-dimensional case (R", +),
we consider the product measure of n-th power of Lebesgue measure, which
is also called the Lebesgue measure.



10 1. PRELIMINARIES

Let G be a locally compact Abelian group, a character on G is a group
homomorphism 7 : G — S! such that y(z+y) = v(x)y(y), for every z,y € G.
The dual group of G in the sense of Pontryagin is the set of all continuous
characters of G, and it is denoted by G. The additive structure of the group
G is given by

(71 4+ 72)(z) = 11 (x)y2(z), for every x € G.

We can endow G with a topology with respect to which it is itself a locally
compact Abelian group. Indeed, for every compact K C G and every r > 0,
the open subsets

N(K,r):={yeG:~(x) e DQ,r) for all z € K}

and their translates determine a basis for this topology of G.
We will mention some classical examples of locally compact Abelian
groups and their duals that will be of interest in the future.
e Let (R,+) be the additive group of the real line with the natural
topology. It can be proved that its dual group is isomorphic to R.
e Let (R/Z,+) be the additive group of the real numbers modulo the
integers, which is homeomorphic to the multiplicative group (S, ).
In this situation, the dual group of R/Z can be identified with Z.
e Let (Z,+) be the additive group of the integers, then its dual group
is isomorphic to R/Z.
Let ug be a Haar measure on G, recall that for every p > 1 the space
LP(G, ug) is defined as the space of functions F' : G — C such that

/ IF (@) Pdpc(z) < +oo.
G

Since the Haar measure is unique up to multiplication by a positive constant,
for any pair of Haar measures pug and pp; on G the spaces LP(G, i) and
LP(G, pg;) coincide and they will be denoted by LP(G). In particular, we will
say that the functions in L'(G) are Haar-integrable.

Given a function F € LY(G), we define its Fourier transform relative to

the Haar measure ug as the function F:G—C given by
F(y) = / F(z)y(—z)duc(z), for every v € G.
G

It can be shown that the set of functions F obtained this way is dense in
CKO(@), the set of continuous functions on G vanishing at infinity.

Let M(G) be the set of complex-valued regular measures on G. We
define Fourier-Stieltjes transform of a measure p € M(G) as the function

7i: G — C given by
(12) Aly) = /G y(@)du(z), v € C.

The set of all functions defined in this manner will be denoted by B(G).
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Our goal now will be to state the so-called Fourier inversion formula.
For this reason, we will introduce some previous concepts that will give us a
hint on how this result is obtained.

Given a complex-valued function ¢ on G, we say that it is positive definite
if it satisfies the inequality

N
Z Cm@¢($n - $m) >0,

n,m=1

for every choice of elements z1,...,zx5 € G and ¢q,...,cy € C. There are
many properties that can be deduced from this definition, among them we
point out that ¢ is bounded and that it is uniformly continuous whenever
¢ is continuous at 0. Every character on G is a positive definite function.
Moreover, every linear combination of characters with positive coefficients is
positive definite. Another significant example of positive definite functions
are given by

o(x) = /afy(a:)du(’y), for every z € G,

~

where p is a positive measure on M (G), the set of complex-valued regular

measures on G.

Bochner’s theorem gives an important characterization of positive defi-
nite functions. It establishes that a continuous function ¢ : G — C is positive
definite if, and only if, there is a positive measure pu € M(é’) such that

o(x) = /@’y(x)du(’y), for every z € G.

Let us define the set B(G) given by all functions F' : G — C such that
there is some measure p € M(G) with

F(z) = /éwx)du(v), reG.

Considering the Jordan decomposition of the complex-valued measure p to-
gether with Bochner’s theorem we are able to deduce that B(G) coincides
with the set of all finite linear combinations, with complex coefficients, of
positive definite functions on G.

We are now able to state the Fourier inversion theorem.

THEOREM 1.7 (Fourier inversion theorem). Let F € LY(G)N B(G), then
the Fourier transform F, relative to a fired Haar measure pg in G, is in

Ll(é). Moreover, there is a unique Haar measure on é, denoted by pg,
such that the following holds

(1.3) F(z) = /éﬁ(v)v(x)du@(v), Vo € G,

for all F € LY(G) N B(G).
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The idea of the proof is to build, for a given function F € L}(G)N B(G),
a positive linear translation-invariant functional 7" on the set of compactly
supported continuous functions on G given by

T(F) = /G b(3)dup(y), for every € €9(E)

~

where up is the measure on M (G) satisfying

F(z) = /éw:)dum).

Thus, by a suitable version of the Riesz representation theorem, we deduce
that there is a Haar measure on G, that we will denote by ug, such that

T(4F) = /aw(v)ﬁ(v)dﬂa(v), for every ¢ € €°(0).

From here we would obtain that up = ﬁué and deduce ([1.3]).
Using further techniques, one is able to prove the following. Fix a Haar
measure i on G, there is a unique Haar measure pgs on G such that, for

every function F € L}(G) whose Fourier transform F relative to ta is in
LY(G), we have

F(z) = /A ﬁ('y)'y(x)dué(*y) almost everywhere in G.

To conclude this short introduction to the Fourier analysis on locally
compact Abelian groups, we will state a result that will be useful afterwards.

THEOREM 1.8 (Plancherel’s theorem). The Fourier transform restricted
to (LYNL2)(G) is an isometry with respect to the L*-norms onto a dense
linear subset space of LQ(G). In fact, it can be uniquely extended to an
isometry of L2(G) onto L2(G).

Proor. [Rud62]|, Theorem 1.6.1. O

As a corollary to this result, we have Parseval’s formula

/ Fy (o) B (@) dpc(z) = /ﬁm)
G G

for every Fy, [ € L(G).

Fy(y)dpg

3. Smoothing of integrable functions

In this section we will introduce a way of approximating integrable func-
tions on R™ by smooth ones. As it will soon be explained, we will do so
by convolution with mollifiers. Before defining the convolution of functions,
let us introduce some notation and recall the definition of certain function
spaces.
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Consider the Cartesian coordinates x1,...,z, on R™. For every multi-
inder a = (a,...,a,) € (Z>0)" and every function f on R", whenever it
makes sense we will write

olelf olelf
ox>  Ox('--- Oz’
where |a| = ag + fa=0 ¢ O0F =
=at+...tap fa=0, weset 55 = f.

For every open subset U C R" and every integer k > 0, the space €*(U)

is the set of all functions f : U — C such that %‘:Lf is continuous for every

|a| < k. The set of smooth functions on U is defined as

¢>(U) = [ ¢*U).
k>0

Let us, for a moment, denote the Lebesgue measure on R™ by A. Given
an open subset U C R", the restriction of A to U is defined as A\y(F) =
AMENVU) for every measurable set E on R™. In the first section, we gave the
definition for the spaces LP(U, A\yy), we will now define the local LP-spaces. For
every 1 < p < oo, the space Lfoc(U, Av) is the set of all equivalence classes
of measurable functions in U such that f € LP(V, \y) for some relatively
compact subset V' C U. Since we are considering U C R", we are considering
the corresponding restriction of the Lebesgue measure and it will induce no
confusion if we write LY (U).

We have the following embeddings
CE(U) — €°(U) = LS,(U), for every k > 0

loc

and
LP

P (U) <= L, (U), for every 1 < p < cc.
The last one is given by Holder’s inequality.

As we said at the beginning of the section, we will approximate functions
in LY(U) and L},.(U) by smooth ones. For this reason we will define the
convolution product of measurable functions. From now on, we will denote
by dx = dz ...dx, the Lebesgue measure on R".

Let f and g be two measurable functions on R™ such that

/ |f(y —x)g(x)|dx < co for every y € R".

Then we define the convolution of f and g as the function on R™ given by

(Faw) = [ /=)

The convolution is a measurable function. It is easy to verify that it is
commutative. This is done by making a suitable change of variables and
recalling that the Lebesgue measure is a Haar measure, i.e. it is invariant
under translations.
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Let £ € R™ and r > 0, we denote the open disc on R"™ of centre & and
radius r by
D(x,r) ={y eR" : [ly —z[| <7},
where || - || is the Euclidean norm on R".
For every open subset U C R", we denote by €>°(U) the set of all
compactly supported smooth functions on U. Recall that the support of a
function f: U — C is given by

supp(f) ={z € U : f(z) # 0}.

The following lemma gives us enough conditions under which the convo-
lution product is well defined. Moreover, these conditions will guarantee the
smoothness of the convolution.

LEMMA 1.9. Let f € L} (R") and ¢ € €°(R"). Then
(1) fxp €= R,
(2) For every multi-index o we have

Hled olal
Fealfxe) =[x axf'

Oox™

(3) If supp(y) C D(0,7), then supp(f * @) is contained in the r-neigh-
borhood of supp(f).

ProoF. [Gri09|, Lemma 2.1. O

A mollifier on R™ is a function ¢ € ¢°°(R") such that ¢ > 0 on R,
supp(p) C D(0,1) and
/ o(x)dx = 1.

Given a mollifier ¢ and € > 0, the function defined by

1 T
pe(x) = ETLSD (g)
is also a mollifier and we have that supp(¢:) C D(0,¢).
Let us give a classical example of mollifiers, for any a € (0, 1]

1 .
(1.4) o(x) = 4 € (_W) , i 2] <a
0, otherwise,
where C is a positive constant such that fR" o(x)dr = 1.

THEOREM 1.10. Let ¢ be a mollifier. Then the following holds

(i) If f is uniformly continuous on R™, then
lim f x . = f uniformly on R"™.
e—0

(ii) If f € €°(C), then

lirr(l)f x e = [ uniformly on compacts on R".
E—>
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(iii) Let 1 <p < oo, if f € LP(R™), then f* ¢ € LP(C) and
1 *@lle < [1fllee-

Moreover,
LP
[ xpe —— f.
e—0
(iv) Let 1 < p < oo, if f € LT (C), then
P

L
f*‘Psl—>f-
e—0

The first part of the theorem is a direct consequence of the uniform con-
tinuity of the function. The second part, after noticing that every continuous
function on a compact subset of R™ is uniformly continuous, follows directly
from the first one. The third part is deduced from Fubini’s theorem and
Hoélder’s inequality. The last part follows from the third one. The complete
proof of this statement appears in [Gri09], Lemma 2.4, Theorem 2.11 and
Exercise 2.18.

Observe that Theorem [1.10] gives us a method to build, from a given
integrable function, a sequence of smooth functions whose (uniform, L)
limit is the function itself. This way we will be able to use several tools and
techniques for integrable functions that where designed for smooth functions.

4. Riemannian manifolds

We will give in this section a short introduction to the theory of Rie-
mannian manifolds, recalling the basic notions and properties, in order to
be able to give the definition of the Laplace operator. Afterwards, we will
consider the particular case of the Riemann sphere: the projective complex
line together with a certain metric, the so-called Fubini-Study metric.

As we have been doing in the previous parts of this preliminary chapter,
in order to shorten this introduction we will omit all the proofs. However,
we refer the reader to [Gri09], [GHLO4|, where all the details can be found.

A smooth manifold of dimension n is a connected Hausdorff second-coun-
table topological space M together with a ¥°°-atlas A of dimension n. Recall
that an atlas of dimension n is a collection of charts {(U;, i) }ier, where
U; C M is open and ¢; is an homeomorphism between U; and an open subset
in R” and they are such that M = J;c; U;. An atlas A is €°° if for every
pair of charts (U}, ¢;), (U, ¢x) € A with U; N Uy, # 0, we have that ¢, o ¢, !
and @y, ocpj.*l are smooth. It can be proved that smooth manifolds are locally
compact. By abuse of notation, we will omit the atlas. Let M be a smooth
manifold and k a positive integer, we denote by €*(M) the set of functions
f: M — R such that, for every chart (U, ) we have fo o=t € €*(p(U)).
We will also denote €°°(M) = (>0 €*(M).

Let M be a smooth manifold of dimension n and p € M a point. The
tangent space of M at p, denoted by T,,M, is the space of R-differentiations
at the point p. This is, the set of maps £ : €°°(M) — R such that & is linear
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and £(fg) = &(f)g(p) + &(g) f(p), for every f,g € €°(M). It is easy to see

that T, M is an R-linear space of dimension n.

Consider a chart (U, ¢) of M such that p € U and let z1, ..., x, its local
coordinates. The partial derivative with respect to x; evaluated at p is an
element in 7}, M defined by

9 of fop™)
— —_ f (M).
| ()= g )3 =g elp). for every £ € (00
It can be proved that 6%1 e % are linearly independent and determine
a basis for T,,M. For anypf e T,M ‘éohere are &1,...,&, € R with
0 0
f = 5187 +...+ gnT
T1lp Tnlp
For every f € €°°(M), we have
of 0 f of
€)= 615 (0) 4o 6 (0) =t G )

Let f € €°°(M) and U be a chart of M containing the point p, we define
the differential at the point p, df(p), as the linear functional on T, M given
by

(df(p)?g) = g(f)v fOI‘ any 5 € TPM
So df (p) is an element on the dual space T, M*, called the cotangent space of
M at p. It is easy to verify that T,,M™ is also an R-linear space of dimension

n and that the dual basis of 8%1 is the basis dz1(p), ..., dz,(p).

9
R
. . . . p p
Using this notation, we can write locally for any f € €°°(M)

) = 50 () + -+ 5 () ).

A Riemannian metric (or metric tensor) g on a smooth n-dimensional
manifold M is a familly {g(p)}penm such that g(p) is a symmetric positive
definite bilinear form on the tangent space T, M that depends smoothly on
p € M. Observe that the bilinear form g(p) defines an inner product (,-)4
on T,M given by

(&,mg = g(p)(&n), for every {,n € T,M

which makes 7, M into an Euclidean space. Locally, on a chart U containing
the point p, we have

Emg = (&, &) (9P, )T,

where g(p) = (9i,;(p))s,j is a n x n symmetric positive definite matrix and
the components g; ; are smooth functions on the corresponding chart.

A Riemannian manifold is a pair (M, g) consisting of a smooth n-dimen-
sional manifold M together with a Riemannian metric g.
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An important fact about the metric tensor g is that it gives a canonical
way of identifying the tangent and the cotangent spaces at a point p. Indeed,
for any & € T,,M, denote by g(p)¢ the covector in T, M* such that, for every
nel,M

(g€ m) = g(@)(&,-)(n) = (M-
Therefore, we can define the linear map g(p) : T,M — T,M*. It is easy to
see that this map is injective and, since both the tangent and the cotangent
space have the same dimension, we deduce that it is a bijection with inverse
map g~ (p) : T,M* — T,M.
The gradient of a function f € €>°(M) at a point p € M is defined as

Vof(0) = g~ (p)df (p).
Note that V,f(p) is an element in T, M and, for every n € T,M, satisfies

(Vo F (), 1)g = () = g;’;@).

Locally, on any chart U of M containing p, we can write

0,
g"'p) ... g""() o ()
Ve f(p) = : : :
gt e . gD L (p)

where g~ (p) = (¢"/ (p))i ;-

The following theorem establishes that any Riemannian manifold (M, g)
has a canonical measure p on B(M), the Borel o-algebra of M. This measure
is called the Riemannian measure.

THEOREM 1.11. For Riemannian manifold (M, g) there is a measure
on B(M) such that, in any chart U we have du = \/det(g)d\, where det(g)
is the determinant of the metric matriz g = (g ;)i,j and X is the Lebesgue
measure on U C R™. Moreover, u is a complete and regular measure.

Note that, since the Riemann measure is finite on compact sets, every
compactly supported continuous function is integrable with respect to u.

A very important fact about Riemannian manifolds is that they can be
seen as metric spaces. For a Riemannian manifold, the geodesic distance
between two points p; and ps is defined as the infimum of the lengths of
all smooth paths in M connecting p; and po. It can be proved that it does
define a distance and that its induced topology coincides with the original
topology of the manifold.

A vector field in a Riemannian manifold (M, g) is a collection {v(p) }pem
such that v(p) € T, M for every p € M. In local coordinates, we have

0

v(p) =vi(p)5—| +---+onl(p)

0xy p Oxy, p

We will say that the vector field is smooth if, on every chart, the functions
vj(p) are smooth.
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Before giving the definition of the divergence of a smooth vector field on
a Riemannian manifold let us recall its definition on the Euclidean space R™

and state the so-called divergence theorem. Choose coordinates 1, ..., T, in
R", for a vector field v = (vy,...,v,) with v; € €L(R™), its divergence is
given by
ovy vy,
diviv) = — 4+ ...+ —.
(v) 0x1 Oxy,

Let U C R" be a relatively compact open subset with smooth boundary 9U,
V C R™ such that U C V and let v a vector field on V of class €. The
divergence theorem states that

/ div(v)dzy ...dx, = / v - ndo,
U oU

where 7 is the outward normal unit vector field on OU, o the volume measure
on QU and - indicates the Euclidean inner product in R"™.

We give now the definition of the divergence of a smooth vector field on
a Riemannian manifold in terms of the following result.

THEOREM 1.12. Consider a smooth vector field v = {v(p)}pem on a
Riemannian manifold (M,q). There is a unique smooth function on M,
denoted by divy v, such that the following holds

/ (divg v)udp = —/ (v, Vgu)gdp, for any u e €.°(M),
M M
where €2°(M) denotes the set of smooth functions with compact support.

Alternatively, we can give a local definition for the divergence of a smooth
vector field v = {v(p) }penr as follows. On every chart with local coordinates
T1,...,Iyn, we define

, = 1 o)

divgv ; Jaet(y) oz (\/det(g)vz> .

It can be proved that, in the intersection of any two charts, it defines the
same function.

Observe that, for the particular case of R” together with the Euclidean
metric, Theorem [1.12]is a particular case of the divergence theorem. Indeed,
let U C R™ be an open subset, consider a function u € €}(U) and a vector
field v on U of class €. By the divergence theorem applied to the vector
field wv, since u vanishes on OU and div(uv) = Vu - v + udiv v, we obtain

/ div(v)udx = —/ Vu - vdz.
U U

Once the gradient and the divergence have been defined, we can proceed
with the definition of the (classical) Laplace operator for smooth functions,
also called the Laplace-Beltrami operator. Let us recall first the definition of



4. RIEMANNIAN MANIFOLDS 19

the Laplacian on the Euclidean space R™ with coordinates z1, ..., z, acting
on the set of smooth functions ¢°°(R™), namely

A= ! o +...+ o
C2m \0x? T a2 )
In this text, in order to normalize certain expressions, we will consider this
particular multiple of the usual Laplace operator in R™. The reason of this
normalization will be cleared out in section [6l
The Laplace operator on (M, g) is defined as A, = %divg oV,. This

is, for every smooth function f on M, its Laplacian is given by A,f =
% divy(Vyf). In local coordinates, we have

Agf(P

1 — 1 9 tL L Of
= > Vaeilg Y oL
27 ; Vdet(g) 0z; jz; Ox;

From the definition, since the divergence of a smooth vector field is smooth,
we deduce that the Laplacian of a smooth function is necessarily smooth.
Observe that the definition of the Laplacian in a Riemannian manifold (M, g)
depends on the metric, hence we will write A,. The notation A will always
refer to the Laplace operator on the Euclidean space R™.

The following result, which will be of great interest in the future, is a
consequence of Theorem [T.12]

THEOREM 1.13 (Green’s formula). Let u,v € €°°(M) and such that at
least one of them is compactly supported, then

1
/ uAgvd,u:—/ (Vqu, ng>gdu:/ vAgudp.
M 21 Jm M
ProOF. [Gri09], Theorem 3.16. O

As we previously did, we will dedicate a couple of lines to this result for
the particular case of R™ together with the Euclidean metric. Let U C R"”
be an open subset and u,v € €2(U) be such that at least one of them has
compact support. Applying the divergence theorem to the vector fields uVwv
and vVu yields to Green’s formula[1.13}

/vAud:L':—l/ Vu-Vvdm:/uAvd:c,
U 2m Ju U

Let U C R” relatively compact open subset and V' C R™ an open subset
such that U C V. If ¢ and 1 are two functions in ¢?(V), we have that
div(pVy — V) = 2n(pAy) — 1pAp) and, by the divergence theorem, we
obtain the so-called Green’s identity:

1
15 [ wdv—vapis = o [ (90— 0Ve) nde
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4.1. The Riemann sphere. Let us consider the particular case of
P!(C) together with the atlas given by the usual charts (Up, ap) and (Uy, a1),
where the open subsets are

Uo={(z0:21): 20 # 0} and Uy = {(20 : 21) : 21 # 0},
and the homeomorphisms are given by
oo : Uop — R2,
(z20:21) (Rez—é,lm%)

aq U1 — Rg.
(z0:21) (Rei—?,lmj—?)

The Pubini-Study metric g on P}(C) is defined locally on any chart U;
with coordinates x,y by

w0

[

The Riemannian surface P1(C) together with the Fubini-Study metric
g is called the Riemann sphere. It is a well-known fact that the projective
complex line can be identified with the unit sphere S$? in R3. This is done
via the stereographic projection p : S%\ {(0,0,1)} — C, that identifies the
equator of S? with the unit circle S' € C and the point (0,0,1) with the
point at infinity (0 : 1).

As it was mentioned above, there is a geodesic distance associated to
every Riemannian manifold. For the particular case of the Riemann sphere,
it is exactly the spherical distance, which is defined as

A e
N [popp + 11|
d(p,p’) := 2arccos > > = — |
VIpol? + o1/ [ph % + )]

for every p = (po : p1) and p’ = (p, : p}) in P}(C). To simplify the computa-
tions, we will consider an equivalent distance, the chordal distance, defined
as follows. For every p = (po : p1) and p’ = (pf, : p}), we have

2[pop’| — 1wl
d h(pvp,) = .
‘ VIpol? + o1 2/ + 9] 2

Indeed, we have the following result.

LEMMA 1.14. For every p,p’ € P1(C), we have
2 / < d / < d /
;d(pvp) = Ch(pup) = (pvp)
Proor. We will work on the sphere using the stereographic projection.
Since the chordal distance d¢, between two points in the sphere is the length
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of the chord joining them and the spherical distance d is the angle between
the vectors both points define, we have
d(p,p’)

2

den(p,p') = 2sin < , for every p,p’ € PL(C).

For any choice of points we have that d(p,p’) < 7, so we deduce

den(p, p') < d(p,p').

Now, let 8 > 0 be such that 8d(p,p’) < da(p,p’) for all p,p’ € P}(C).
This is equivalent to saying that Sz < 2sin(§) for every 0 < o < 7. By
the convexity of the function 2sin(%), we deduce that the optimal value is
p=2. =

Let us give explicitly the local expression of the Laplacian of a smooth
function on the Riemann sphere. Let f € €°°(P!(C)), on each chart U; with
coordinates x,y, the gradient of f is given by

_ 1 f; Ofi
VQf = det(g) <8$7 8y> )

where f; = fo ai_l. Therefore, the Laplacian of f is

(1.7)
A f— 11 0% f; n i\ _ 1 (42" +¢*)? (0fi n 0* f;
95 o /det(g) \ 022  Oy? Cor 4 ox2  oy? )’

Finally, let us compute the volume of the Riemann sphere with respect
to the Riemannian measure. Let A denote the Lebesgue measure on C, since
p(oo) = 0, we have

U&A@WWZL@WZAVMMWM@

27 +00 4 +o0o 2d
_/ / s 2rdrd9—27r/ 5 5 =A4r.
o Jo (1+7?) o (I+s)

5. Distributions

The aim of this section is to give an introduction to the theory of distri-
butions on a Riemannian manifold and, in particular, to give the definition
of the distributional Laplace operator. This notion will be very relevant in
the second chapter, where we will develop the theory of potentials in the
Riemann sphere.

We will start first by defining the distributions on R™ and we will later
consider the case of general Riemannian manifolds.
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5.1. Distributions on R”. For any open U C R", the set of test func-
tions D(U) is given by the set €2°(U) endowed with the following conver-
gence condition: a sequence {¢} converges to ¢ in D(U) if

(i) for any multi-index o € (Z>0)", limg_00 0%, = 0%¢ uniformly, and
(ii) there is a compact set K C U such that supp(¢r) C K for every k.

We will write ¢ 2, ¢. This notion of convergence defines a topology on
D(U) and it is such that it makes it a linear topological space. Observe that

if ¢ 2 ¢, then 0%y A 0%¢ for every multi-index a.

The space of distributions D'(U) on the open subset U C R™ is defined
as the dual space of D(U), i.e. the space of all linear continuous functionals
on D(U). Given a distribution v € D'(U) and a test function ¢ € D(U),
the action of u on ¢ is denoted by (u,¢). The continuity of v means that

limg (u, pr) = (u, d) whenever ¢ o, ¢. We deduce easily that D'(U) is a
linear space. A sequence of distributions {uy} converges to u in D'(U) if

lillcn(uk, ¢) = (u, @), for every ¢ € D(U).

Let us give some classical examples of distributions.

e Locally integrable functions. A function u € L},.(U) may be iden-
tified as a distribution with the following rule

(u,¢) = / upd), for any ¢ € D(U),
U

where A is the Lebesgue measure on R™. This identification gives
us the inclusion L, (U) < D'(U).

e Any regular complex measure v on U, determines a distribution in
D'(U) which is given by

(v, 0) = /U¢dl/ for any ¢ € D(U).

In particular, any finite linear combination of Dirac deltas: let
ai,y...,as € Uand m; e Rfori=1,...,s, then

<Z midaw ¢> = Zmz(b(al)a for any d) S D(U>
i=1

i=1

For any j = 1,...,n, the distributional partial derivative operator 0; on
D'(U) is defined as follows. Let u € D'(U) be any distribution, then d;u is
a distribution on U given by the identity

(05,6) = —(u, 22}, for any ¢ € D(U),
al’j

which is well defined since 5% € D(U).
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Observe that if we consider u € €1 (U), the integration by parts formula

gives us
au(ﬁdA——/ w2244,
v Ozj

v Ox; Zj
for every ¢ € €>°(U). Hence, the above definition is a generalization for
distributions of the classical partial derivative.
More generally, for any multi-index o = (a,...,a,), we define the
operator 9% on any u € D'(U) as
0%¢

e — (—1)lel i
(0 0.0) = (), o

It is easy to see that a finite linear combination of operators of the form
0% is also an operator on the space of distributions over U. In particular,
we have the distributional Laplace operator A = % (8% +...+ 67%) which is
defined, for every u € D'(U), as

(Au, ) = (u, Ag), for any ¢ € D(U),
Recall that the Laplacian of a function u € €2(U) is defined as
1 [0%u 0%u
Au=—|=—5+...+=— .
YT or <8x% o 8:1:,%)

And, in this situation, Green’s Formula tells us that

1
/ AugpdA = —/ Vu-VodA = / ulA¢pdA, for every ¢ € €°(U)
U 2 Ju U

where Vu and V¢ are the gradient vectors of u and ¢ and - indicates the
standard scalar product in R™. Hence, the definition of the distributional
Laplacian as an operator on D'(U) is a generalization of the classical Lapla-
cian.

), for any ¢ € D(U).

5.2. Distributions on Riemannian manifolds. Consider a Rieman-
nian manifold (M, g), the space of test functions on M, denoted by D(M),
is defined as the set of all compactly supported smooth functions on M
endowed with the following convergence. Let {¢x} and ¢ in €°(M), we say
that ¢ converges to ¢ on D(M) if the following conditions are satisfied:

(i) On every chart U C M and for every multi-index e, we have that

lim 0%¢r = 0%¢ uniformly on U.
k—o00
(ii) All supports supp(¢y) are contained on a compact subset of M.

Under these conditions, we will write ¢y 2 ¢. As in the case of R", this
convergence induces a topology on the space D(M) with respect to which it
is a linear topological space.

A distribution on (M, g) is a continuous linear functional on the space
D(M). It is easy to verify that the set of distributions on M, denoted by
D'(M), is a linear space. Given u € D'(M) and ¢ € D(M), the action of
u on ¢ is denoted by (u,¢). The continuity of a distribution u € D'(M)
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is characterized by limg(u, ¢r) = (u, ) for every ¢y o, ¢. We say that
a sequence of distributions {uy} converges to u in D'(M), if limy(ug, @) =

(u, ¢) for every ¢ € D(M). We will write uy, LA

As it was established by Theorem there is a complete and regular
measure p associated to the metric g, called the Riemannian measure. Thus,
(M, 1) is a measure space and we can speak about measurable and integrable
functions on M. For any 1 < p < oo, recall that LP(M) = LP(M, u) is the
spaces of equivalence classes of measurable functions f : M — R such that

/ |fIPdp < oo.
M

And, for any 1 < p < oo, the spaces Lfoc(M) are the set of equivalence
classes of measurable functions f on M such that f € LP(K) for every
compact subset K C M.

Given a function u € Lj,.(M), we can consider its associated distribution
in D/(M) in the following way

(u, ) = /M updp, for every ¢ € D(M).

It can be proved that u € L},.(M) vanishes almost everywhere if, and only
if, w = 0 in D'(M). Hence, we have that L},.(M) is a subset of D’(M) and,
since convergence in L}, (M) implies convergence in D'(M), we have

Lioe(M) <= D'(M).

We will now define the distributional Laplacian Ay, an operator on the
space of distributions of (M, g). Let u € D'(M), its distributional Laplacian
is given by the identity

(Agu, ) = (u, Ago), for every ¢ € D(M).

The Laplacian Agu of a distribution u € D’(M) is also a distribution. Indeed,
it is a continuous linear functional on D(M) since, for every aj,as € R and
every ¢1,¢o € D(M), we have

(Agu,ar1¢1 + azgs) = / ulg(ar¢1 + azpa)dp
M
=a / ulgprdp + ag/ ulgpadp = ai(Agu, ¢1) + az(Agu, 2).
M M

And, given a sequence {¢r} and a functions ¢ in D(M) such that ¢, o, o,
we have that Ay¢y o, Ay¢ and

lim(Agu7¢k):1im/ uAggzbkd,u:/ ulim Agprdp
k Sy vk

:/ ulgpdp = (Agu, @).
M
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Let u € (M) C L},.(M), by Theorem we have that

(Agu, ¢) = /M Agupdp = /M ulgpdp = (u, Agg), for any ¢ € D(M).

Hence, for smooth functions on M the definitions of the distributional Lapla-
cian and the classical Laplacian defined on the previous section agree.

We will now introduce the vector field versions of the space of test func-
tions and distributions on a Riemannian manifold. 73(]\/[ ) will denote the
space of smooth vector fields on a manifold M endowed with a convergence
analogous to the convergence in D(M). It can be proved that ﬁ(M ) is a
linear space and hence we can consider its dual space D’ (M), which is called
the space of distributional vector fields on M.

We say that a vector field on (M, g) is measurable if, on every chart,
all the components are measurable functions. We can then define, for every
1 < p < 00, the spaces

L"(M) := {v measurable vector field on M : llvullg € LP(M)}
and
L;,.(M) := {v measurable vector field on M : |vllg € LY (M)},

lolly = (v, v)y/%.

-2
The space L (M) is of particular interest since it is a Hilbert space with
the inner product

(v, w)z2 = / (v, w)gdp, for any v,w € I_:2(M)
M

Every vector field v € L (M) defines a distributional vector field in
D'(M) which is given by

(0,0) = [ (w0, for every v € B(M).

For any distribution u € D'(M), the distributional gradient is defined as
the distributional vector field V u given by the identity

(Vgu,v) = —(u,divg(v))), for every ¢ € D(M).

It is clear, by Theorem [I.12] that the distributional gradient of a vector field
extends the definition of the classical gradient of a smooth vector field on a
Riemannian manifold.

The following result will be useful in the future.

LEMMA 1.15. Let {ur} and u in D'(M) such that uy Dy w. Then

D!
Vguk. — Vgu.
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PROOF. For every ¢ € D(M), we have limg(ug,d) = (u,¢) and, by
definition, for k£ > 1 we have (Vgug,v) = —(ug,divy(1))), for every ¢ €
ﬁ(M ). Now, since the divergence of a smooth compactly supported vector
field is in €°(M), passing to the limit we obtain

lim(Vgug, ) = —lim(u, divg(y)) = —(u, dive(¥)) = (Vgu, ¥),
for all ¢ € D(M). 0

6. Potential theory on the complex plane

We will now give a brief introduction to potential theory on the complex
plane. We will start by giving the definitions of harmonic and subharmonic
functions and some of the key results that will be needed later on this text.
Afterwards, we will define the potential of a certain class of measures and
state some important facts about it.

For a more detailed study of the potential theory, where the reader can
find the proofs of the classical results appearing below, we refer to [Ran95|,
[Tsu75].

In the potential theory, the Laplace operator plays a significative role.
As it has been mentioned previously, in order to obtain neat results, we
normalize the Laplacian as follows

1 /0 9
A=—|—+=—].
27 <8x2 * 8y2>
6.1. Harmonic functions. Let U C C be an open subset, a function
h : U — R is harmonic if h € €*(U) and it is a solution of the Laplace
equation, this is
Ah=0on U.

There is a classical result relating harmonic functions and holomorphic
ones. On a domain in the complex plane, the real part of any holomorphic
function is harmonic. Conversely, every harmonic function on a simply con-
nected domain is the real part of a holomorphic function and this function
is unique up to addition of a constant.

In the converse, the assumption of a simply connected domain is required.
However, we have that every harmonic function is locally the real part of a
holomorphic function. Whence, every harmonic function on an open subset
U C C is necessarily smooth.

Let z € C and r > 0, we will denote

D(z,r)={weC:|z—w| <r}.
_ Given a harmonic function h on an open neighborhood of the closed disc
D(z,r), the mean-value property states that

1 2w )
/ h(z + re®)dd.
0

~or

h(z)
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This result is a consequence of Cauchy’s integral formula and the fact that
h is the real part of a holomorphic function on D(z,r + ¢) for some & > 0.

Actually, the mean-value property characterizes harmonic functions in
the following sense. Let U be an open subset of C and h : U — R a continuous
function such that, for every z € U there is some r, > 0 satisfying

he) = 5

Then h is harmonic on U.
As a consequence of the mean-value property and its converse, we have
the following result.

27
/ h(z + €)df, for every 0 <r <r,.
0

COROLLARY 1.16. Let {h,} be a sequence of harmonic functions on a
domain D C C converging locally uniformly to a function h. Then h is
harmonic on D.

Proor. [Ran95|, Corollary 1.2.8. O

Let us consider now two principles that are a direct consequence of their
corresponding holomorphic counterparts.

Let hq and hy be two harmonic functions on a domain D C C. If h; = ho
on a non-empty open subset of D, then h; = he on D. This is the so-called
identity principle of harmonic functions.

The mazximum principle states that given a harmonic function A on a
domain D C C the following holds.

(i) If h attains a local maximum on D, then h is constant.
(ii) If A can be continuously extended to the closure D of D on the Riemann
sphere and h < 0 on the border 0D, then h < 0 on D.

The following result will be of interest in the subsequent chapter. It is
name Liouville’s theorem for harmonic functions and it states that if a har-
monic function on C is bounded either above or below, then it is constant.
The result is a consequence of the maximum principle and Harnack’s inequal-
ity which says that given a positive harmonic function on a disc D(z,7), we

have
r+ s

r—s

Dh(z) < h(z + se?) <

r+ s

for every 0 < s < 7 and every 0 < 0 < 27.
There is much more to be said about harmonic functions, for example the

results about the Dirichlet problem on the disc. However, as we announced

at the beginning of the section, this will be a short introduction to the theory

of potentials.

h(z).

6.2. Subharmonic functions. In this part of the section, we will give
the definition of subharmonic functions on the complex plane. We will later
see that these functions are of special interest in potential theory.

Let X be a topological space, a function v : X — [—o0,+00) is upper
semicontinuous if for every a € R the set {x € X : u(z) < a} is open in X.
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As a direct consequence of the definition, we have that every upper semi-
continuous function u on a topological space X is bounded above on every
compact K C X, and attains its bound.

Let U C C be an open, a function u : U — [—00, +00) is subharmonic if
it is upper semicontinuous and it satisfies that for every z € U there is some
r, > 0 such that

2m

u(z) < %/ u(z 4+ re)df, for every 0 < r < ..
0

This is the so-called local submean inequality.

Observe that the integral on the right-hand side of the later expression is
well defined. This follows from the fact that it is defined as the difference of
two integrals corresponding to the positive and negative parts of the function
u. Since the positive part is bounded, its integral is finite and, even if the
integral of the negative part is infinite, the resulting difference is well-defined.
Note that the function © = —oo is subharmonic.

Given a holomorphic function f on an open U C C, it can be easily
proved that log|f| is subharmonic on U. Moreover, log |f| is harmonic on
the open subset {z € U : f(x) # 0}.

From the definition, we can deduce that any finite linear combination
with positive coeflicients of subharmonic functions is also subharmonic and
that the maximum of two subharmonic functions is subharmonic.

The mazimum principle for subharmonic functions states that a subhar-
monic function v on a domain D C C that attains a global maximum is
necessarily constant. Moreover, if limsup,_,,, u(z) < 0 for all w € 9D, then
u < 0 on D. As for the case of harmonic functions, we are considering the
closure of D on P!(C). Hence, if D is not bounded, we have oo € dD.

There is a generalization of the last part of the maximum principle that
holds for subharmonic function that do not grow too fast at infinity. This
generalization would let us avoid considering the point at infinity as a point
of the border of the domain and leads to the following version of Liouwville’s
theorem for subharmonic functions: every subharmonic function on C that
is bounded above is constant.

From the maximum principle and further results for harmonic func-
tions, one can deduce that subharmonic functions satisfy the global submean
inequality: let w be a subharmonic function on an open U C C and let
D(z,r) CU. Then

1 2m )
u(z) < — u(z 4 re?)dd.
21 0
Given a decreasing sequence {u,} of subharmonic functions on an open
U C C, the pointwise limit u(z) := limy_ o0 up(x) is subharmonic on U.
This is a consequence of the (global) submean inequality.
A significative fact about subharmonic functions is that they are locally
integrable, as long as they are not identically —oo. Recall that this means
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that they are integrable on every compact subset. As a consequence, we have
that given a subharmonic function v on a domain D C C, no identically —oo,
the set {z € U : u(z) = —oo} has Lebesgue measure zero.

Let U C C be an open and u € ¢?(U). Then u is subharmonic if
and only if Au > 0 on U. We will see soon that this also holds for the
distributional Laplacian of any subharmonic function, which is well defined
since subharmonic functions are locally integrable.

The following result will show us how to build, from a given subhar-
monic function, a decreasing sequence of smooth subharmonic functions that
converge pointwisely to the original one. As it was done in the section of
smoothing of integrable functions, this is done by convolution with mollifiers.

THEOREM 1.17. Let u be a subharmonic function on a domain D C C,
with w # —oo. Consider a mollifier ¢ such that p(z) = ¢(|z]) and for
every € > 0 set @:(z) = E%cp (2£). Then u.(2) := u* p=(2) is smooth on
D. ={z € U : dist(z,0D) > €} and for every z € D the following holds

(i) lime 0 ue(2) = u(z),
(71) ue, (2) > uey(2) > u(z) for every 0 < e1 < e3.

Proor. [Ran95|, Theorem2.7.2. O

From this result we can deduce the weak identity principle for subhar-
monic functions: given subharmonic functions u; and us on an open U C C
such that uq; = ue almost everywhere, we necessarily have that u; = use on
the whole U.

Let us see that the distributional Laplacian of a subharmonic function
is indeed positive. Recall that the distributional Laplacian of a locally inte-
grable function w is defined by the identity

/ AugpdA = / uA@dA, for every ¢ € €.°(C),
C C

where dA denotes the Lebesgue measure on C. To prove that, given a sub-
harmonic function u on C, Au > 0 we have to see that

/ uA@dA > 0, for every ¢ € €.°(C) with ¢ > 0.
C

By the previous theorem, there is a decreasing sequence of smooth subhar-
monic functions {u,} such that lim, u,(z) = u(z) on C and, since A¢ is
smooth and compactly supported, by the dominated convergence theorem
we have

/uAQSdA:/limunAQSdA:Iim/unAqbdA.
C cm noJc

Now, by Green’s formula

/ UnAddA = / AuppdA > 0.
C C
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Hence, we can conclude that
/ uApdA > 0.
C

6.3. Potentials. At last, we will give the definition of the potential of
finite compactly supported positive measures on C. We will see that there
is a close relation between potentials and subharmonic functions.

Let p be a finite measure on C with compact support. Its potential is the
function g, : C — [—00, 4+00) defined as

gp(z) = / log |z — w|dp(w), for any z € C.
C
The first remark about potentials is given by the following result.

THEOREM 1.18. Given a finite and compactly supported measure p on
C, its potential g, is subharmonic on C and harmonic on C\ supp(p).

Proor. [Ran95|, Theorem 3.1.2. O

The minimum principle for potentials establishes that given a finite mea-
sure p on C with compact support K, if g, > M on K, then g, > M on
whole complex plane.

At the end of the previous section we saw that the distributional Lapla-
cian of a subharmonic function is positive, whenever it is not identically —oo.
Actually, it can be proved that given a subharmonic function on a domain
D C C, the linear functional on €°(D) defined by

A(g) = /D uA¢dA

is positive and bounded and it can be extended to a linear functional on the
class of compactly supported continuous functions, €2 (D). Hence, by Riesz
representation theorem, there is a unique positive finite regular measure

AudA on D such that
A(g) = / pAudA for every ¢ € €2(D).
D

If, in particular, we consider the potential of a finite compactly supported
measure p on the complex plane we obtain the distributional equalityﬂ Ag, =
p. This is, for every ¢ € €°(C) we have

(1.9) /C¢>AgpdA—/C¢dp.

The proof of this classical result is done by applying Green’s identity (|1.5)),
taking into account that the log |z — w| is harmonic on |z — w| > €.

LEMMA 1.19 (Weyl’s lemma). Let u and v be two subharmonic functions
on a domain D C C, with u,v # —oo. If Au = Awv, then there is a harmonic
function h on D such that w — v = h.

11t is in this context where the normalization of the Laplace operator makes sense.
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Proor. [Ran95|, Theorem 3.7.10. O

This lemma together with the distributional identity that we gave above
yields to the so-called Riesz decomposition theorem: for every subharmonic
function 4 on a domain D C C, with u # —oo and every relatively compact
open subset U C D there is a harmonic function A on U such that

u(z) = / log |z — w|Au(w)dA(w) + h(z), for every z € U.
U

As an illustrative example let us write the potential of Ag1, the Lebesgue
measure restricted to the unit circle, normalized in such a way that it is a
probability measure. We have that
2

Irg (2) = log™ [2] := max{log|z[, 0}.

This is a consequence of the following lemma, which is a particular case of
Jensen’s formula.

LEMMA 1.20. For every z € C and every r > 0 the following holds

1 2m )
— / log |z — re?|d§ = max{log r, log |z|}.
2 0

Riesz decomposition theorem has very deep consequences for subhar-
monic functions, as the following lemma certifies. This result is mentioned
in [FRLO6] and its proof, which we will also include, is outlined in their

paper.

LEMMA 1.21. Let u be a subharmonic function on a domain D C C such
that uw Z —oo. Then the following holds

(i) ue LY (D) for every 1 <p < oo,

loc
(i1) %, % € L;, #(D) for every e > 0.

Observe that, when we consider the partial derivatives of a subharmonic
function, we are actually referring to the distributional partial derivatives.
The fact that these partial derivatives belong to the space LZQO_CE(D) means
that they are equal almost everywhere to a function on this space.

Proor. By Riesz decomposition theorem, for every zy € D and every
R > 0 with D(zp, R) C D, there is a harmonic function h on D(zg, R) such
that

(1.10)  w(z) =— /D( . log |z — w|Au(w)dA(w) + h(2), Yz € D(z0, R).

(i) Let us prove that u € LP(D(zp, R)) for every 1 < p < co. Since, h is
harmonic on D(zp, R) it is clear that h € LP(D(zg, R)) for every 1 < p < c0.
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On the other hand, we have that AudA is a positive finite regular measure
and, by Minkowski’s Integral inequality (c.f. Subsection [1.6]), we obtain

N
(/ dA(z))
D(z0,R)

< / / |log |z — w||PdA(z) | Au(w)dA(w)
D(Zo,R) D(zo,R)

= / / |log |z||PdA(z) | Au(w)dA(w)
D(z0,R) D(z0—w,R)

< / / log|2|PdA(2) | Au(w)dA(w).
D(z0,R) D(0,|20|+2R)

Hence, we only have to see that log |z| is in L?(D(0,r)) for every r > 0
and every finite p > 1. We will then have proved that u is in LP(D(zp, R))
for every disc D(zp, R) C D.

We have

/ |log |=||PdA(2)
D(0,r)

/ log |z — w]Au(w)dA(w)
D(z0,R)

A

_ / (— log |=])PdA(z) + / (log |2])PdA(=).
D(0,1)

1<]z|<r

The second summand is clearly finite since log |z| is continuous on the
bounded region 1 < |z] < r. For the first summand, recursively doing
integration by parts we obtain

2
/ (—log |z|)PdA(z) = (1)p27r/ (log r)Prdr
D(0,1) 0

1 1
_p/ (logr)pflrdr
o 2Jo

1
= (—1)p+17rp/ (log r)P~trdr
0

2
= (—1)P2r [2 (logr)?

r2 ! p—1 1
2

(log fr’)p*1 R — (log T’)p27”d7“]

= (=1)P"tap
o 2 Jo

1
_ (_1yp+2T _ oo VP 2rdr
= (25— 1) [ (ogry

= (-

1 !
T _ p!
2p_lp(p—l)---Q/O rdr——Zp.
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(ii) With the notation introduced in (1.10), we will see that the distri-
butional partial derivative of u is equal almost everywhere to a function in
L27¢(D(zg, R)), for every € > 0. Let us note, for z € D(zo, R)

g(z) = /D(zoﬁ) log |z — w]Au(w)dA(w).

Since the distributional partial derivative operator is linear and it coincides
with the classical partial derivative when applied to smooth functions, we
only have to see that there is a function g, in L?7(D(zg, R)) such that

Je = g—g on D'(D(zp, R)).

Consider the function

92(2) = / MAu(w)dA(w), with z € D(zg, R).
D(zo,R) |z — w|

By Minkowski’s integral inequality, we have

( [ ety dA(z))
D(zo0,R)
Re(z — w)

- /D<zo,R> </D<ZO,R) |z—w|pdA(Z)> Au(w)dA(w).

3=

[un

For every w € D(zp, R), we have

/ Re(z =) 1 1(2) < 2Ry / b ga)
D(z0,R)

|2 — w|P D(z0,R) |7 — w[P

— 2R) / L gaz) < @Ry / L ae)
D(z0—w,R) |2IP D(0,z0+2R) |2[P
‘ZO|+2R dT’

_ p _
= 27(2R) /0 g

which is finite if p = 2 — ¢, for every € > 0. Hence, we deduce that the
function g, is in L2~¢(D(z0, R)).



34 1. PRELIMINARIES

At last, we will verify that the distributional equality g, = % holds. Let
¢ be a smooth function with compact support on D(zg, R), we have

Gt =g == a5
06

/ ( / log | — w|Au(w)dA(w)> o0 (2)dA(2)
D(z0,R) \JD(z0,R) T

/ ( / log | — w|g¢(z)dA(z)> Au(w)dA(w)

D(z0,R) \JD(z0,R) T
_ / (- / 63(10g Iz — w|)q§(z)dA(z)> Au(w)dA(w)
D(z0,R) D(zo,R) OF
_ / / Relz =) 5(2)dA(2) | Au(w)dA(w)
D(z0,R) \JD(z0,R) |z — wl

[ Y Auwiiaw) ) 6:)a4) = (02:0)
D(z0,R) \JD(z0,R) |z — wl

O

7. Height of algebraic numbers

In this last part of the chapter, we will introduce the notion of height
of points in the n-th projective space P*(Q), where Q is a fixed algebraic
closure of Q. As a particular case, we will give the definition of the height
of algebraic numbers. After the definitions, we will present some important
properties of the height, which will not be proved. For further detail on the
topic, we refer the reader to [BGO7].

An absolute value | - | on a field K is a real-valued function such that
|z| > 0 for every z € K, || =0 if and only if x = 0, |zy| = |z| - |y| for every
x,y € K and satisfies the triangle inequality |z + y| < ||+ |y| for every pair
of points z and y in K. If, in addition, it satisfies |x + y| < max{|z|, |y|} for
every x,y € K, the absolute value is called non-Archimedean. Otherwise, it
is called Archimedean. An absolute value is trivial if it is identically 1 on
K* =K\ {0}.

We can define a distance on K associated to a given absolute value | - |
by |x — y| for every z,y € K and this metric defines a topology on K. Two
absolute values on K are equivalent if they define the same topology. It can
be proved that this is an equivalence relation.

A place v of K is an equivalence class of non-trivial absolute values. Let
M be the set of all places of K, for a given v € M, ||, denotes an absolute
value on the equivalence class of v. Given a field extension L/K and a place
v € M, we say that a place w € My, extends v if any representative | - |,
restricted to K is a representative of v, we will write w | v.
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We will denote by K, the completion of the field K with respect to the
place v € M. It can be proved that there is a unique place of K, extending
v and such that it induces a topology with respect to which K, is complete
and K is dense in K,. By abuse of notation we shall denote this place also
by v.

Let K be a complete field with respect to an absolute value | - |, and let
L/K be a finite extension. Then there is a unique extension of | - |, to an
absolute value | - |, on L, which is given by

1
|z|w = |Np K () S for every z € L,

where [L : K] is the degree of the extension L/K and Np i the norm.
Moreover, L is complete with respect to |- |,. One can deduce from this fact
that there is a unique extension to an absolute value on the algebraic closure
K of a complete field K. However, since K/K is not finite in general, we
cannot say that K is complete with respect to this absolute value.

In the field of the rational numbers Q, there is only one Archimedean
place co. A representative of 0o is given by the ordinary absolute value |- | on
Q which will also be denoted by | - [o. It can be shown that the remaining
non-Archimedean places are in one-to-one correspondence with the prime
numbers p € Q. Hence, we have

Mg = {p: p prime or p = oco}.

Given a prime number p, the p-adic absolute value | - |, is defined for any
prime g € Z as
1 ifg#p,
|q,p =931 . _

Considering the factorization of any rational number into prime factors an
the multiplicativity of absolute values, we can extend this definition to Q.

From now on, for every non-Archimedean place p € Mg, the representa-
tive | - |, will correspond to the p-adic absolute value that we just defined.
For the infinite place p = 0o, the representative | - |, will always refer to the
ordinary absolute value. As we introduced above, Q, denotes the completion
of the rational numbers with respect to the place p and, by abuse of notation
we will also denote by | - |, the extension of the p-adic absolute value to Q,.
Moreover, since there is a unique extension of | - |, to the algebraic closure
Q,, it will also be denoted by | - |,.

Let us consider the case of a number field K, i.e. a finite extension of the
field of rational numbers Q. Let p € Mg and v € M be such that v | p. The
extension K, /Q, is finite and Q, complete, hence there is a unique extension
of | - |, to K, which is given by

1

(1.11) |z = [Nk, /0, (7) 5 e for every x € K.

For a place v on a number field K, we will denote by |- |, the representative
of v corresponding to the restriction to K of (|1.11)).
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We have chosen a certain normalization of the absolute values ||, repre-
senting a given place v on a number field K. We can now give the definition

of the Weil height of a point P = (zg : ...: x,) in P*(Q),
1
h(P) = ——— Z [K, : Qy) max{log ||y, ..., log |zl },
[K ’ Q] veEM
K
where K is a number field containing xg, ..., z, and Q, is the completion of

Q with respect to the restriction of the absolute value |- |,. It can be proved
that this definition does not depend on the choice of the field extension K/Q.
The product formula states that, for every x € K*

H |x’LK'u:Q'U] -1
vEME

From it we can deduce that the definition of the height of a point in P"(Q)
does not depend on the choice of the coordinates.

Roughly speaking, the height of a point in the projective space P"*(Q)
measures its algebraic complexity. In particular, if the coordinates of a given

point P € P"(Q) can be chosen in Q, there are integers xy, . .., x, with no
common factor such that P = (g :...: z,) and

h(P) = max{log |z¢|,...,log |zn|}.

The definition of height can be extended to the affine space A™(Q). Given

a point in A™(Q), its height is defined as the height of its image under the na-
tural embedding of the affine space into P*(Q). This is, if P = (21,..., ),
then h(P) = h(1: 1 :...:x,). In particular, the Weil height of an algebraic
number « € Q is defined by

h(a) = —

m Z (Ko 2 Q) 10g+ ],

veEMg

where recall log™ |a, = max{0,log |al,}.

It is clear from the definition that the height of a point P € P*(Q)
is always greater or equal than zero. For algebraic numbers, Kronecker’s
theorem gives a characterization of those elements whose height is exactly
zero: let o € Q”, then h(a) = 0 if and only if « is a root of unity.

Given a collection of points Pj, ..., P, in P"(Q), we have that
h(Py+...+P) <h(P;)+...+h(P) +logr.

Consider a point P = (xg : ... : o) in P*(Q) and an element o in the
absolute Galois group Gal(Q/Q), then we have oP = (0z¢ : ... : oxy,) and
h(P) = h(oP). In particular, if o, 3 € Q are algebraic conjugates, their
heights agree.

For two algebraic numbers « and 3, we have that h(af) < h(«) + h(5).
Moreover, if § is a root of unity, then h(af) = h(«). For any integer n, we
have h(a™) = |n|h(c) and, in particular, h(a) = h().

a
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Let S C Q be a finite set, its height is defined as h(S) = > cgh(a). If
S is the Galois orbit of some element av € Q, i.e. the orbit of o under the
action of Gal(Q/Q), since the height of all algebraic conjugates coincide, we
have h(S) = #Sh(«), where #5S is the cardinality of the set S.

Finally, we will give an alternative definition for the Weil height of an
algebraic number. In order to do so, let us introduce first several concepts.
Let f € Q[z] be a non-zero polynomial, its (logarithmic) Mahler measure is

defined as

27
Consider the factorization over Q of the polynomial f(z) = agz® + ...+ ao,

27 )
m(f) =5 [ loxlfe)las.

d
f@) = ag[J(z — ).
j=1

By Jensen’s formula we obtain

d
m(f) =loglag| + > _log™ [ayl.
j=1
Given o € Q, its minimal polynomial over Z is defined as the polynomial
f € Z|z] of least degree such that f(a) = 0. The degree of « (over Q) is the
degree of its minimal polynomial over Z and it will be denoted by deg(«).
Let « be an algebraic number and f its minimal polynomial over Z, it
can be proved that
m(f)

2@) = Jea()

An important result that can be derived from this definition is Northcott’s

theorem. It states that there are only finitely many algebraic numbers with
bounded degree and bounded height.







CHAPTER 2

Quantitative equidistribution in the
one-dimensional case

In this chapter we will study the quantitative result of the equidistri-
bution of Galois orbits of points of small height on the projective complex
line due to Charles Favre and Juan Rivera-Letelier [FRLO06|. In this paper,
they consider adelic measures and associate to them an adelic height. Then,
for every place v € Mg, they give an estimate for the rate of convergence
of the discrete probability measure associated to a finite set towards the
v-component of the adelic measure considered.

As we mentioned on the introduction, in this text we will only focus on
the particular case of the classical Weil height and the Archimedean place.
Before stating the result, which corresponds to Corollary 1.4 in [FRLO6]r,
we will recall some notation.

Let S C C be a finite set, the discrete probability measure associated to
S is a measure on C which is given by

1
us = o 5047
#S QZE(:C
where #S denotes the cardinality of the set S and J, is the delta Dirac
measure supported on .

We denote by Ag1 the probability measure on C supported on the unit
circle, where it coincides with the probability Haar measure.

When considering the Riemann sphere, we will be referring to the com-
plex projective line P!(C) together with the Fubini-Study metric, denoted by
g, and whose local expression is given in . We will consider the natural
embedding C < P!(C), sending z — (1 : 2).

Given a real-valued function f on P!(C), we say that it is a Lipschitz
function if there is some K > 0 such that

|f(p) — f(p)| < Kd(p,p), for every p,p’ € P'(C),

where d(p,p’) is the spherical distance between p and p’ in P'(C). If the
function f : PY(C) — R is a Lipschitz function, its Lipschitz constant is

defined as ,
Lp() = p HO =S
p,p’ €PL(C) (p7p )
p#p’

It is easy to see that every function f in €!(P*(C)) is Lipschitz.

39
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The main result of this chapter is the following.

THEOREM II. There is a positive constant C ~ 14.7628 such that for
every €*-function f : P1(C) — R and every finite Galois-invariant set S C
X

Q"

dpg — dAen
/IP’l(C)f ps /IP’l(C)f s
h(S) Clog(#SH))%)

< Lip(f) (;&Zs+<4#s + 75

In particular, if % <1, we have

[, gdus= [ fire
P1(C) P1(C)
with C' ~ 48.9897.

(2.1)

h(S) | olos(#S + 1))5

< Lip(f) (4 25 75

Let us fix some notation that will be used along the current chapter: dA
will denote the Lebesgue measure on C = R%. We will be considering the
usual charts of the complex projective line (Up, ag) and (Uy, 1), where the
open subsets are

Up={(1:2)ePYC):2€C} and Uy := {(z: 1) € P}(C) : z € C},
and the homeomorphisms

Qo - UO — R2, aq Uy — R?
(1:2) — (Re(z),Im(2)) (z:1) = (Re(z),Im(2)).

On P!(C) we consider the Riemannian measure p associated to g.
As it was mentioned on the preliminaries, we will consider a suitable
normalization of the Laplace operator on R? with coordinates x,y, namely

1 /0 o
A=— (L L2,
27 <8x2+8y2>

1. Potential theory on the Riemann sphere

The aim of this section is to extend the potential theory on the complex
plane to the whole Riemann sphere. Given a signed measure p on P!(C),
the problem of finding an integrable function on an bounded proper open
neighborhood of any point whose Laplacian is equal, as a distribution, to the
measure restricted to the open set is essentially what was studied in Section
1J6l We will study under which conditions it is possible to consider a global
potential for any given signed measure p. This is, when there is an integrable
function h : P1(C) — R such that p = Ajh. The answer to this question is
a well-know result on potential theory that will be stated and proved in this
text (c.f. Theorem [2.3)).
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The first step will be to study the Laplacian of the extension of the
logarithmic kernel to P}(C). Let A := {(z,z) : z € C}, the logarithmic
kernel is the function K : C x C\ A — R defined as

K(z,w) =log|z — w|.
Observe that it can be naturally extended to a function
K :PY{(C) xPY{(C)\ A =R,

by setting K (oo, w) = K(z,00) = oo. In order to study its Laplacian, let
us see that, for any z € C, the function K(z,-) is integrable on the complex
projective plane with respect to the Riemannian measure p. This will allow
us to think of K(z,-) as a distribution and we will then be able to consider
its distributional Laplacian.

LEMMA 2.1. For every z € C, we have that
[ K wldue) < .
P1(C)

PROOF. Recall that locally u = /det(g)dA, and the local expression of
g is given by (1.6). Hence, for every z € C we have

/ K (2, 0) [dja(uw)
P1(C)

4llog = — w] [ 4llogz — 1/w]
= — =2 " dA(w) + dA(w
/D(o,l) P2 AT oy A e A

§4/ \log]z—w|dA(w)+4/
D(0,1) D(0

The first summand on the right-hand side of this last expression is clearly
finite. Indeed, for every z € C, the function log |z — -| is subharmonic on C
and therefore, it is locally integrable. Let us see that the second summand
is also finite. If z = 0 the finiteness follows directly using the previous
argument. Suppose z £ 0, then

/ log |z — 1/wl|dA(w) < /
D(0,1) D(0

<,
D(0

LEMMA 2.2. For any fixed z € C, we have the distributional equation

AQK(Za ) = (5,2 - 50@

|log |z — 1/w||dA(w).
1)

)

5 |log |z[|dA(w)

)

| log |w]||dA(w) —I—/ |log |w — 1/z||dA(w) < 0.
1) 1)

) )

O

in the space of distributions of P*(C).
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PROOF. Let us prove first the result for z = 0. The function ko(w) :=

K (0,w) is integrable on P*(C) and we can consider its distributional Lapla-
cian. For every ¢ € D(P!(C)) we have

<%m@:/ kol b
P1(C)

-/ todgody + [ N
{(1:w):|w|<1} {(w:1):|w|<1}

- / log [w] Ado(w)dA(w) — / log [w] Ay (1) dA(w),
D(0,1) D(0,1)

where the third equality is given by the fact that Aj¢du restricted to the
chart U; coincides with A¢;dA, setting ¢j(w) = ¢ o aj_l.

We will study separately each summand on the previous expression. On
one hand, by Green’s identity and the fact that log |w| is harmonic on
C\ {0}, we have

/ log |w] Ao (w)dA(w) = lim log |w] Ao (w)dA(w)
D(0,1) £20 Jecqu|<1
= lim (log |w|Ado(w) — ¢o(w)Alog [w]) dA(w)
=0 Je<lw|<1
=ty [ 5 og ulVn(u) — du(u) gl - (~Re(), ~Tm))do
1
+/ 5 (log|w|[Veo(w) — do(w)Vlog |w]) - (Re(w), Im(w))do
|lw]=1 470
2
= il_% 2171/0 (qﬁo(reie) —rlog ra;:f)(rew)) T:Edﬁ
2
— % ; ((ﬁo(rew) - rlogragjao(rewo 7«:1d6
1 2T "
= ¢0(0) — % ) ¢0(el )d@,

where o denotes the volume measure on the border of {w € C: ¢ < |w| < 1}.
On the other hand, following an analogous argument, we obtain

/ log |w] Ay (w)dA(w) = lim log |w] Ay (w)dA(w)
D(0,1)

£20 Jecjw|<1
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Now, observe that

1 21 ” 1 21 0
- 040 + — ) dp
) BCICULE = GG
1 21 0 1 27 0
= —— NdO + — ~)do = 0.
3 | ot o [ oo o =0

So, putting everything together, we obtain
(Aoko:d) = [ kolytidn = 60) = 6(09) = (6o — 0,9

Finally, let us prove the lemma for all z € C. Let k,(w) = K(z,w), for
any ¢ € D(P'(C)), since p(0o0) = 0 we have

(Agks, ) = /P o et = /C log | — w| Ado (w)dA(w)

- / log [o](Ado) (v + 2)dA(v) = / log [v|Ado()dA(v) = (Agko, ),
C C

where ¢(w) = ¢(w + z). So, using the previous case, we deduce

(Agks, ) = (Agko, ) = $(0) — p(c0) = ¢(2) — p(0).
O

The next result gives a characterization of the signed measures on the
projective complex plane for which we can consider a global potential.

THEOREM 2.3. Let p be a signed measure on the Riemann sphere. Then
lpll = 0 if and only if there is an integrable function h : P1(C) — R such
that Agh = p. Moreover, if this integrable function exists, it is unique up to
addition of a constant.

In order to prove the unicity of the solution, we need the following lemma.

LEMMA 2.4. Consider two integrable functions u and v on P1(C) such
that Agu = Agv. Then u — v is constant on P(C).

The idea of the proof of this lemma is that there is a harmonic function h
on the Riemann sphere such that u—wv = h almost everywhere. By Liouville’s
Theorem, the only harmonic functions on P*(C) are constants and the lemma
follows.

PROOF. Consider the function h = u — v, which is integrable on P*(C).
It is then easy to verify that h; = hooz;1 is locally integrable on C. Moreover,
Ah; = 0on D'(C). Indeed, every compactly supported smooth function ¢ on
C can be naturally extended to a smooth function gz~5 on the Riemann sphere
and we obtain

Ah;, ) = | hiApdA = hA pdp = Ag(u—v)pdA = 0.
@)= [ mdoaa= [ ndggn= [ Ayt
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Let ¢ be a mollifier and set ¢,,(2) = n?¢(nz). For every n > 1, we define
the functions

hin(z) = /@ hi(z — ) pn(w)dA(w).

These functions are smooth on the complex plane and, for every z € C, they
satisfy

Ahip(z) = /(Chi(w)Acpn(z —w)dA(w) = (Ahj, pn(z —-)) =0.

Hence, they are harmonic on C and, by the mean-value property, for every
R > 0 we obtain
1

TR? D(z,R)

On one hand, we know that h; is locally integrable on C and, by Theorem
we have that h;, — h; in L}, (C). This is, for every compact K C C,
we have

hin(z) = hin(w)dA(w).

| hin — hi||L1(K) —0asn— .
On the other hand, we can define

~ 1
hi(z) = — hi(w)dA(w).
e
Then we have
ine) = R = | [ enwidd@) — s [ h(w)dAw)
o Z TR Jper) TR Jpem)
1
— hin(w) — h;i(w)|dA(w
< [ )= A

1
= thi,n — hillL (p(2,r)) — 0,

uniformly on compact sets as n — oo. By Corollary this implies that
iLZ’ is harmonic on C. .

Finally, since h; is the Llloc—limit of h;n, we can conclude that h; = h;
almost everywhere. O

We can now prove the theorem.

PROOF OF THEOREM 2.3 Observe that the equality Agh = p is ac-
tually referring to an equality of distributions in the sense that, for every
smooth function ¢ on P!(C), the following holds

(2.2) / hAgpdp = / odp.
P1(C) P1(C)

As we mentioned above, the unicity of the solution follows directly from
the previous lemma. Indeed, suppose that there are two different functions
hi,hs : PY(C) — R such that Aghi = p = Aghs. Then by Lemma we
obtain that h; — hy is constant on P(C).
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We will assume now that there is an integrable function h : P1(C) — R
such that Agh = p. Taking in (2.2)) the constant function ¢ = 1 on P*(C),
we obtain

loll = @ ©) = [ ap= [ naodu=o
P1(C) P1(C)

Finally, suppose that ||p|| = 0. For now, we assume that p has compact
support contained on the chart Uy. If p = p™ — p~ is the Jordan decompo-
sition of the signed measure p, we have that the supports of p™ and p~ are
compact in Uy = C. By Theorem and , the functions

e (2) 1= [ oz = wldp*(w)
and

by (2) = [ ozl = wldp™(w)
are subharmonic on C and are such that

Ah, = pT and Ah,- =p—.

Now, consider the function h, given by
ho(z) = / log |z — w|dp(w), for every z € C.
PH(C)

Since the support of p is contained in Uy = C, we have h,(z) = h,+(2) —
h,—(z) for every z € C. We will now extend h, to a function on P*(C).
Observe that, since p(C) = p(P!(C)) = 0, if z # 0 we have

ho(z) = /Clog |z — wldp(w) = /Clog |z|dp(w) + /(clog ‘1 — %’ dp(w)

:/(clog’1 - %‘dp(w) — 0.

Z—00

By setting h,(c0) = 0, we claim that h,, is integrable on the Riemann sphere.
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Assuming the claim is true, we can consider the distributional Laplacian
of the function h,. For every ¢ € D(P!(C)) we have

(Dghp, @) = / PRFCIVECITE

/1?1 (/ log |z — w\dp(w)) Ay (2)du(z)
/ (/ log |z — w\Ag¢(z)du(z)> dp(w)
Pl(C PL(C)

— [ (6w~ s()dplw)
PI(C)

- / bdp — 6(c0) o]l = (p, 6),
P1(C)

where the third equality is given by applying Fubini’s theorem and the fourth
equality is given by Lemma and the fact that we were assuming p with
vanishing total mass.

Let us prove the claim. Since h,(0c0) = 0 and p(c0) = 0, we have

= A=) z |log |z — w]| w ;
/Pl((c)lhp!duzlfc (H‘ZP)QdA( )§4[C isarn: dp(w)dA(z).

We have that p is compactly supported on C, so there is some positive R > 0
such that supp(p) C D(0, R). Let w € D(0, R), then we have

|log |z — wl|
c (T+]27)?

[log |z — wl| [ [log |z — wl]
= =2 " dA(z2) + =2 " dA(z
/MHR PR “AET ) e G e A

On one hand, we have

|log |z — w|]| /
= dA(2) < log |z — w||dA(z
focn e A < [ Honls = wldAG)

- / |log |2/|dA(z) < / | log |2]|dA(=),
D(w,1+R) D(0,2R+1)

)

(2.3) dA(z)

which is finite.
On the other hand, if |z| > 1 + R, we have that |z — w| > 1 for every
w € D(0, R) and

/ llog\z wH /2“/+°°10g]7’e w| rdrdd
r
e>14r (L4 ]2[%)? 1+ 172)2

toor] > rlog(2
§2W/ %j% <2/ UL {COPRPINS
1+r (1472)? r (1+7?)
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Hence, is uniformly bounded for any w € D(0, R) and we deduce
that h, is integrable on P1(C).

Now, we will consider the general situation where p is not necessarily
compactly supported on one of the usual charts of the the Riemann sphere.
We will see that, in this situation, we can decompose p as the sum of two
finite signed measures pp and p; such that supp(p;) is compact in U; and
pi(PY(C)) = 0. Assuming this is true, we know that there are integrable
functions h; : P(C) — R with Aghi = p; for i = 0,1 and

p=po+p1=Agho+ Agh1 = Ag(ho + ha).
Consider the subsets
Do:={(1:2):2€ D(0,1)} and Dy :={(z:1): 2 € D(0,1)}.
We define the signed measures pg and py as the restrictions
Ao(A) == p(A N Do) and ji(A) == p(A N Dy),

for every A in the Borel o-algebra Z(P'(C)). Since P!(C) equals the disjoint
union of Dy and D1, we have that p = jp+ 1 and, in particular, go(P*(C))+
p1(PY(C)) = 0. Hence, we can write

p = po+ p(P(C))d1 + po(P'(C))d1 + .
It is enough to take py = po + p1(P1(C))d; and py = po(PH(C))61 +p1. O

As we previously mentioned, Theorem gives a characterization of
those signed measures on P!(C) for which we can consider the potential. We
say that a signed measure p has continuous potential if there is a continuous
function h : P}(C) — R such that Agyh = p. And, in particular, p has zero
total mass. Observe that positive finite measures on the Riemann sphere or,
more generally, signed finite measures with non-vanishing total mass do not
have a global potential of any type. However, we can consider the potential
of any finite measure locally. We will say that a measure has continuous
potential if for every point, there is a neighborhood U containing it and
there is a continuous function h : U — R such that Ajh = p in D'(U).

COROLLARY 2.5. If p is a signed measure on P(C) with continuous
potential and there is a proper open set U C PY(C) containing supp(p).
Then there is a continuous function h : U — R such that Agh = p on D' (U).

PROOF. Let p € PY(C) \ U, the signed measure on P!(C) defined by
p = p—pU)J, has Vzimishing total mass and, by Theorem there is
an integrable function h on the Riemann sphere such that Ajh = p. On
the other hand, for every ¢ € U there is an open neighborhood U, and a
continuous function hy : U; — R satisfying Ajhy = p on D'(Uy). Since the
restriction of p to U coincides with p, we have that Agﬁ = Aghg on Uy.
Hence h — hg is harmonic on U, and, in particular, h is continuous on Uy.

Therefore, the function h = &, is continuous and such that Ajh = p on
D'(U). O
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1.1. Emnergy. In this section we will define the mutual energy of signed
measures. After introducing an examples that will later appear, we will
state a result establishing sufficient conditions for a measure on the Riemann
sphere to be such that its energy is positive.

Recall that, given a signed measure p, its trace measure is the finite
positive measure given by

ol =p" + 07,
where p = p™ — p~ is the Jordan decomposition of p.

DEFINITION 2.6. Consider two signed measures p and p’ on P!(C) such
that log |z—w]| is integrable on Cx C\ A with respect to the product measure
lp| @ |p'|. We define the mutual energy of p and p’ by

(2.4) (psp) =~ /(CX(C\A log |z — wldp(2)dp' (w).

Whenever it is well-defined, we will define the energy of a signed measure
p by (p,p).

As a remark, observe that this definition of mutual energy does not
coincide with the classical definition. Given two finite compactly supported
measures on the complex plane, their energy is usually defined in a similar
way but considering the whole C x C as the integration domain. Hence, it is
possible to have infinite energy. As an example, every finite set on C is polar
in the sense that the mutual energy of any non-zero measure supported on it
has infinite energy. Therefore, Definition [2.6] will be much more suitable in
our situation since, in particular, we will be considering discrete probability
measures associated to finite sets on the complex plane.

Let S C C be a finite set and ug the discrete probability measure asso-
ciated to it. It is clear that the energy of ug is well-defined and it is given
by

1
(1s,1s) = 7rarg D logla—p.
(#5) ol

The next goal in this section will be to establish some conditions under
which the mutual energy of two signed measures is well-defined. For this
purpose, we will need the following technical result.

LEMMA 2.7. Let u be a subharmonic function on C and let p be a finite
positive measure with continuous potential on the complex plane. Then u is
locally integrable on C with respect to p.

Proor. By Corollary we know that there is a continuous subhar-
monic function h : C — R such that Ah = p on D'(C).

Since the functions h and w are subharmonic, we can build sequences
{hm} and {u,} of smooth subharmonic functions whose decreasing point-
wise limits are h and wu, respectively. Moreover, by the continuity of the
function h, the sequence {h,,} converges to h uniformly on compacts.
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Let ¢ be a positive smooth function with compact support on C and
denote Ky = supp(¢). The monotone convergence theorem and the fact
that ¢ > 0 imply that

/uqﬁdp:/limun¢dp:lim/un¢dp.
C cnm noJc

Since Ah = p on D'(C) and u,¢ is smooth and compactly supported on
C, for every n > 1 we have

/(Cun¢dp:/(Cun(;SAhdA:/CA(uncj))hdA:/(CA(U,@) liT]’anhmdA

= lim/ A(un¢)hmdA—lim/ UndAhydA,
m Jc m Jc

where the fourth equality is given by the fact that A(upd)hy, converges
uniformly to A(u,¢$)h on the support of ¢.
Hence, we have

/uqbdp:limlim/ungbAhmdA.
C n.om Jc

We claim that there is ¢4 > 0 such that, for every m,n > 1, we have

(2.5)

/Cgi)unAhmdA’ < cg.

Therefore, for every positive smooth function ¢ with compact support we

deduce that
‘ / u¢dp‘ < 00.
C

This is enough to obtain that w is locally integrable on C with respect
to p. Indeed, For any compact K we can find a positive smooth function
¢x with compact support on C and such that ¢ = 1 on K. Since u is
subharmonic and ¢ is a positive function with compact support, there is
some real constant m such that u¢r < m on C and

[ tuldp < [ fuéncldp < [ fuonc —mldp+ | midp
K C C C
= [Lm = oo+ [ pmlap < = [ wodp+2lmijo|

< ‘ / wdrcdp
C

We will finally prove the claim. Applying the divergence theorem to the
smooth vector fields ¢u, Vh,, and ¢h,,Vu,, for every m,n > 1 we obtain

/ Un (V, Vi )dA + / OV hm, Vun)dA + 21 / PUnAhdA =0,
C C C

+ 2[mlpl] < oo.

/ hon(V &, Vi, )dA + / G(V A, Vun)dA + 27 / PhmAupdA = 0.
C C C
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This implies that

/ P Ahpmd A
C

1

= — | hp(Ve, Vu,)dA + / Sl AtindA — / U (Vp, Vo )dA.
2 C C 2T C

We will study the summands on the right-hand side of this last expression.
Since the first and last of these summands are analogous, we will only study
the boundedness of one of them. We have that ¢ is smooth and its support
K4 is compact on C, hence its first order partial derivatives are bounded on
C, say by ¢1 > 0, and we have
aa+ [
C

/ hm<V¢,Vun>dA‘ < /
C C
b Oouy,

<c/ % -
_1qu O m8y

p, 20 9un
" ox Ox

dA+Cl/
Ky

Oun
oz

p, 22 9un

2.
(2.6) 9y 0y

dA

hm, dA

ouy,

Pt
y

LY(Ky)

hom +c

L' (Ky)

Now, by Lemma since h,, and u, are subharmonic functions, we have

oup, Ou 9
hm € LP (C), —&:, —ay" eL: °(C)
for every 1 < p < oo and every ¢ > 0. This implies, by Theorem that
Lhe(© o Oup L S(© Ou  Oup LiS(C) Ou
hm h, — and — —.
m—00 or n—oo Oz 0y n—oo Oy

Hence, by (2.6) and Holder’s inequality for some 1 < p < oo and some € > 0
such that ;1) + 27:5 =1, we have

/hm<v¢,Vun>dA' < e || 22 ey ||y, 2
c Ox LY(Ky) Oy L1(Ky)
ouy, Ouy,
<ecillbmllir ) |5 +e1llhmllek,) ||
( ¢) 81’ L2—5(K¢) ( ¢) 8:1/ L2—E(K¢)
ou ou
s allhllieagy) (|50 +allhllra,) |5, < 0.
m,n—o0 X szg(K@ Y szg(K@

Finally, observe that Au, converges to Au on D’(C) and we have that
¢h,y, is smooth and compactly supported. Therefore,

/thmAundA‘ §/¢|hm|AundA—>/¢|hm|AudA

< c()/ PAudA < oo,
C
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where ¢ > 0 is such that |h,,(2)] < ¢ for every z € Ky and every m > 1.

The existence of such ¢y is guarantied by the fact that h,, is a sequence

of smooth functions converging uniformly on a compact set to a continuous
function.

We can conclude that holds for some ¢4 > 0 and the lemma follows.

O

Let us introduce a result providing sufficient conditions under which the
energy of two signed measures is well defined.

PROPOSITION 2.8. Let p and p' be two signed measures on P1(C). Sup-
pose that |p| has continuous potential and p' is either finitely supported on C
or such that |p'| has continuous potential. Then

(2.7) / K (p, )| dlo| (p)dlo| (') < o,
P1(C)xP1(C)

where K : P}(C) x PY(C) — R is the logarithmic kernel.
Moreover, the mutual energy (p, p') is well-defined and we have

(pos) = [ tom|z = uldp(z)ap ().

PROOF. Since every signed measure can be decomposed as the difference
of two finite positive measures, it will be enough to prove the result for p
and p’ finite positive measures. The idea of the demonstration is to apply
the previous lemma, where we saw that subharmonic functions are locally
integrable with respect to positive measures with continuous potential. By
the compacity of the Riemann sphere, we only need to study the integrability
on a bounded neighborhood of every point.

Observe that once the first part of the result is proved, the rest follows
directly since we necessarily have (p ® p’)(A) = 0.

Let us denote by p; and p} the restrictions of the measures p and p’
to the charts Uj, for j = 0,1. It is clear that p; and p;- are finite positive
measures on C with continuous potential.

First suppose that p is such that its trace measure has continuous poten-
tial and p’ has finite support S C C, i.e.:

p = Z Mada

a€eS
Then we have

dp' (p Ma /
/191 /Pl | Z P1(C)

a€eS

b1
— -
Do

log dp(po : p1)

In order to prove that this last integral is finite it will be enough to see that
for every ¢ = (qo : ¢1) € P'(C) there is an open neighborhood V; such that

Js

dp(po : p1) < 00

’pl
log |— — «
Po
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Let ¢ = (1 : 29) and R > 0. For every o € S, we have that log|z — ¢|
is a subharmonic function on C and, since pg has continuous potential, by
Lemma 2.7 we obtain

/ |log |z — af|dpo(z) < oc.
D(z0,R

Suppose ¢ = (0 : 1) and consider its neighborhood V; = {(z : 1) : |2]| < 1}.
From Lemma we deduce

J.

B_a log dp1(2)

bo

log - —«

z

dp(po : p1) = /

|z|<1

g/( |1ogrz\|dp1<z>+/( o1 zaldpa () < o

) )

Finally, suppose that both p and p’ are finite positive measures with
continuous potential. We will study the integrability of log|z — w| with
respect to p® p’ on neighborhoods of points in P*(C) x P!(C). This is, given
a point (¢,q') € P1(C) x P}(C), we will find open neighborhoods V, and V,
of ¢ and ¢/, respectively, such that

/V/ |K (p,p")|dp’ (p")dp(p) < o0

Assume that ¢,¢' € Up and let R, R’ > 0 be such that g € V; = {(1: 2) :
|z] <R} and ¢ € Vy = {(1: w) : |w| < R'}. We have

/V/ (b Pl (2')dpp /OR)/ o 108 b (w)don(2),

which is bounded since log |z — +| is locally integrable with respect to p{ by
Lemma and py is finite.

Suppose now that ¢ € Uy and ¢ = (0 : 1). Let R > 0 be such that
geVo={(1:2):]z]| <R} and Vy = {(w: 1) : |w| < 1}, we have

/Vq /q, K (p,p")ldp’ (p)dp(p) =/|Z|<R/|w|<1
< /Z|<R /|w|<1 [log [w= — 1][dp} (w)dp(2)

+ / / | log [wlldp’ (w)dp(2),
D(0,R) JD(0,1)

which is also finite by an analogous argument as in the previous case.

log

1
— —||dp] d
= o iyt
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At last, suppose ¢ = ¢ = (0:1) and let V; =V = {(z : 1) : |2| < 1},
then

// (p,p")|dp’ (p")dp(p / /
Vg Vg |z|<1 J|w|<1
< / / |og |2 — wllde (w)dpr (2)
|z]<1 J|w|<1
L < / / | og |2l dp} (w)dps (=)
|z]<1 J|w|<1

4 / / [ log [w]|dp, (w)dp1 (=) < o0
|z|<1 Jw|<1
]

Lo 1H g (w)dp (=)

z

As an example, we will see that the energy of the measure Ag:1 vanishes.
Recall that Ag: is the measure on P!(C) supported on S' and such that
its restriction to this compact subgroup coincides with the Haar probability
measure. By Lemma |1.20, we have

1 2 )
log™ |z| = / log |z — €%|d.
2T 0
Hence, by Lemma [2.8 and Fubini’s theorem, we have
(Mgt Agt) = —/ log |2 — w|dAg: (w)dAg () —/ log* [2[dAg: (2) = 0.
CxC C

The following result will provide us sufficient conditions on the regularity
of a signed measure on P*(C) to be such that is has positive energy. It will
be one of the key results for the proof of the main theorem of the chapter.

THEOREM 2.9. Let p be a signed measure on P1(C) with ||p|| = 0. Sup-
pose that its trace measure |p| has continuous potential. Then the following

holds
(1) There is a continuous function h : P1(C) — R such that Agh = p.

(2) Vyh € L' (L(C)).
(3) The energy of p is well-defined and we have

1
(2.8) (p,p) = 2/ (Vgh,Vgh)edp > 0,
m lP’l((C)
where (-, )4 is the inner product defined by the Fubini-Study metric
g on the Riemann Sphere.

PRrROOF. (1) By Theorem there is an integrable function h on P!(C)
satisfying the distributional equation Ajh = p. And, without loss of gene-
rality, we can assume that h(oco) = 0.

Consider the Jordan decomposition p = pt — p~. We are assuming
that the trace measure |p| has continuous potential. This is, for every point
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p € P1(C), there is a proper open neighborhood V,, C P!(C) and a continuous
subharmonic function A, : V, — R such that

Aghy = |p| in D'(V}).

Without loss of generality we may assume that the neighborhood V}, is rela-
tively compact in one of the open subsets Uy or Us.

On the other hand, we can consider the local potentials of the measures
pT and p~ by restricting them to V. Hence, there are subharmonic functions
u,f and u, on Vj, such that

Agut = p* and Agu, = p~ in D'(V,).
Therefore, in D’'(V,,) we have
Aghp = |pl = p" +p7 = Bguy + Dguy = Ag(uy +uy).

By Weyl’s Lemma we deduce that (u} + u, ) — h, is harmonic in
Vp. From the continuity of h, we deduce that, in particular, uz‘f +u, is
continuous on V,,. Now, if the sum of two upper semicontinuous functions is
continuous, then both are necessarily continuous and we obtain that u; and
u,, are continuous on Vj,.

Finally, in D’(V,) we have

Agh=p=pt—p~ =Agut — Aguy = Ag(uf —uy).

And, again by Weyl’s Lemma, we deduce that h is continuous on V,,. Hence,
we can conclude that h is continuous on P1(C).

(2) Let us see now that V h € I_:2(]P’1((C)). We claim that, with the
notation introduced above, for any p € P(C)

_ 2
Vouy, Vauy € Ly (Vp).

2
Since h — u,; +u,, is harmonic on V}, the claim implies that Vgh € Lj,.(Vp).

Then we obtain that V h € i (P1(C)) from the compactness of the Riemann
sphere.

Let us prove the claim. Without loss of generality we may assume that
V) is a connected relatively compact subset in R2. Since u; is subharmonic
on the domain V,,, Theorem tells us that we can build by convolution
a decreasing sequence of smooth functions {u,} with pointwise limit u;f .
Moreover, since u;{ is continuous, by Theorem we have that the con-
vergence is uniform on compacts.

Let ¢ € D(V},) be a positive function and set Ky = supp(¢), by the The-
orem applied to the smooth vector field Vu,, and the smooth compactly
supported function ¢u,,, we obtain

29) [ 6(Vun, VunddAd = —21 | upAupdA — / Un(V, Vi) dA.
Vp Vp Vp
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Since u; is bounded on K and the sequence {u,} converges uniformly

to uf on compacts, we have that there is ¢ > 0 such that |u,(z)| < ¢ for
every z € Ky and every n > 1. We obtain

(2.10) Pun AupdA

Vo

<c [ ¢Au,dA= c/ upApdA —— c/ u;rAcbdA < 00
V, Vp n—r00 K,

where the first inequality is given by the fact that ¢ is positive and wu,
subharmonic. When considering the limit it is enough to see that w,A¢
converges uniformly to u; A¢ on Ky.

Now, we will study the second summand on the right-hand side of .
Using a similar argument as in the proof of Lemma [2.7], we can prove that
there is ¢4 > 0 such that, for every n > 1

< &

/ un(Vo, Vu,)dA
Vi

Hence, this together with (2.10) implies that, for every positive ¢ €
D(V},), there is a positive constant ¢, such that

0< &(Vun, Vuy)dA < cg, for every n > 1.
Vp

Let K C V, compact. Then there is a compact K’ C V, such that
K C K’ and a positive smooth function ¢ on V), such that ¢ =1 on K and
supp(¢) C K'. Hence, for every n > 1

P

) )
So we have that the sequence {Vuy,} is bounded in L (K') and, since L' (K)
is a Hilbert space, there is a subsequence {Vu,, } converging weakly to some
)
v € L' (K). In particular, this implies that

Vg, m v

But, since u, converges to u} in D'(K), by Lemma we have

Vug M Vu;.

2
Hence, we necessarily have Vu,t = v which is in L"(K) and the claim is

proved.
(3) By Proposition the energy of p is well-defined and we have

(prp) = — /(C _log = = uldp(:) ® dp(a),
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As we mentioned in the beginning of the proof, we may assume without loss
of generality that h(co) = 0 and we have

h(z) = / log |z — w|dp(w) for every z € C.
C
Hence, by Fubini’s theorem, we can write
(2.11) (o)== [ h(:)dn(e)
P1(C)

Let hg = ho oy 1 We will see that, for every R > 0, the following holds
(2.12)
1 1
/ hodp = —— (Vho, Vho)dA + / ho(Vho,n(z))do,
l2|<R T JI21<R 2T J|21=R

where n(z) is the outward pointing unit normal vector to the curve |z| = R
and o the corresponding volume measure.

We saw that h is continuous on the Riemann sphere and hence so is hg on
C. We can then build, by convolution, a sequence {h,} of smooth functions
on C such that h,, converges locally uniformly to hg. And we can write

/ hodp = lim hndp
|z|<R " J)z|<R
= lim hpAhodA = lim hoAh,dA
" J|z|<R " Jiz|<R
= lim lim h,, Ah,dA = lim hmAh,dA.
"o Jlz|<R ™ N Sz <R

For every m,n > 1, the divergence theorem applied to the smooth vector
field h,,,Vh,, gives

1 1
/ hi AhpdA = —— (Vhim, Vhy)dA+— / hun (Vhn, n(2))do.
l2|<R 21 J121<r 27 J\21=r

Consider the limit as m goes to infinity. We have that h,, Zoh and,

by Lemma [1.15] this implies Vh,, 2, Vh. Hence, since Vh, € D and
(Vhp,n(z)) € D, we obtain

lim hm Ahp,dA
M J|z|<R
1 1
=—— (Vho,Vhyp)dA + — ho(Vhn,n(z))do.
21 J121<r 27 J12=r

2
Part (ii) of the theorem implies, in particular, that Vhg is in L;,.(C).
This is equivalent to saying that %}? and % are in L} (C). Let ¢ be the

mollifier such that h, = hg * @,. We have
Ohy, Opn  Ohg

Dr 0t gy T gy Ko
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By Theorem [1.10} this implies that
Ohy, L2.(C) Ohg

loc
— =5 —— asn — oo.

ox Ox el
The same holds for the partial derivative with respect to y and thus we
obtain
-2
L;,.(C
th loc( ) Vh()

We know that ﬂQ(D(O, R)) is a Hilbert space and therefore strong conver-

gence implies weak convergence. Since Vhy and h - n(z) are in EQ(D(O, R)),
we have

lim N\
™M Jz|<R
1 1
=3 (Vho, Vho)dA + —— ho(Vho, n(z))do.
T Jlz|<R T J|z|=R

Therefore (2.12)) holds for every R > 0. Considering now the limit as R

tends to infinity, since h(co) = 0, we obtain

1
/ hdp = —— (Vgh,Vgh)gdpu.
PL(C) 27 PL(C)
This last expression together with (2.11)) concludes the proof of the theorem.
O

1.2. Regularization of measures. In this section we present a method
to reqularize signed measures in such a way that they have smooth potential.
This regularization is slightly different from the one appearing in [FRLOG|
and it will be done using convolutions with a mollifier on C. For the record,
a mollifier ¢ is a positive smooth function on C with support contained on
the unit disc and such that

/ pdA = 1.
C

In addition, we will assume that ¢(z) = ¢(|z]).
Let f : P1(C) — R be a continuos function and ¢ > 0, we define

fg(z):{f*%(z) if z € C,

f(o0) if z = c0.

where
1 z
pe(2) = 50 <g> :
We know, by Lemma [I.9] and Theorem [I.10} that f. is smooth on C and
converges uniformly to f as ¢ — 0. The continuity on the whole sphere
follows directly from the definition of the function f. at the point at infinity.
Let us define now the convolution of finite measures on P!(C).
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DEFINITION 2.10. Let p be a signed measure on P}(C) and £ > 0. We
define its convolution p. = @, * p by

/ fdpe :=/ (fws)dpz/ f=dp,
P1(C) P1(C) P1(C)

for every real-valued continuous function f on P!(C).

LEMMA 2.11. Consider a reqular signed measure p in P1(C). Then for
every € > 0, the convolution p. is a regular signed measure. Moreover, if p
s a probability measure, so is pe.

PROOF. By linearity, we may assume p is a finite regular positive mea-
sure. For € > 0, consider the functional

A.: €°(PYHO)) — R
/ — fp1((c)fadp-

First of all, let us see that it is a linear functional. Let f, f’ € €°(P'(C))
and \, N € R, we can write

AN + N = / (Af + N f')odp

P1(C)

-/ " ([ =0+ X1 = wectwidate) ) ants)
T\ /P o /C 12 = w)p- (w)dA(w)dp()
Y /P o /C F(z = w)pe(w)dA(w)dp(2)

N[ Fdpr X [ fldp= M)+ NS,
P1(C) P1(C)

Now, we will prove that it is positive. Let f € €°(P!(C)) such that f > 0.
Then since . > 0, we have

) = [ £ = wigulw)aaw) > 0
>0

and thus, we deduce A (f) >
By Riesz representation theorem, there is a unique finite regular positive
measure, that we will denote by p., such that

A= [ oo

Moreover, if p is a probability measure, then

/ dpe = / dp =1.
P1(C) PL(C)

Hence, p. is a probability measure on P!(C). O
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LEMMA 2.12. Let p be a probability measure on P'(C) with bounded sup-
port contained in C and € > 0. Then

(i) The convolution p. has bounded support contained in C,
(ii) For every subharmonic function u on P*(C) we can write

/ udps = / usdp.
P1(C) P1(C)

PRrROOF. (i) Let K = supp(p) C C, which is compact. We define the
subset

K, :={z € C:dist(z,K) < ¢},
where dist(z, K') = min|z — w|.
~ weK B
Let K. C C compact and such that K. C K.. Consider a non-zero

continuous function f : P'(C) — [0,1] such that supp(f) € K. and f = 1
on K.. Since, for every z € K we have D(z,e) C K., we obtain

fol(2) = /D el —wdAGw) = / ez — w)dA(w) = 1.

D(z,e)

Hence,

1= [ gdp= [ gdp= [ san
K P1(C) PL(C)
— [ sapo< [ dp< [ dp-t
K. K. P1(C)

Therefore, we necessarily have that supp(pe) C K. which is bounded in C.
(ii) We just saw that, if p is compactly supported on the complex plane
then so is p.. Therefore, we can restrict the integration domain to C.
For any subharmonic function u on C there is a sequence of smooth
subharmonic functions {u,} whose pointwise limit is u by decreasing. By
the monotone convergence theorem, we can write

[udoe) = [l wn(z)ape(2)

= lim [ up(2)dpe(z) = im [ w,(2)dp(2).
Now observe that, since for every € > 0 we have ¢. > 0, the sequence
{@sun} converges pointwisely to p.u by decreasing. Thus, we are still under
the hypothesis of the monotone convergence theorem and we obtain

lm up.(2) = Im [ up(z — w)p:(w)dA(w)

n—oo n—oo C

= / lim up(z — w)pe(w)dA(w) = / u(z — w)p(w)dA(w) = us(2).
C C

n—oo
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Finally, since uj ¢(2) > ug.(2) > ... > u.(z), we have
/ u(2)dpe(z) = Im | upe(2)dp(2)
C n—oo C
= / lim uy,(2)dp(z) = / ue(2)dp(2).
C C

n—o0

O

PROPOSITION 2.13. Let p be a probability measure on P*(C) with compact
support contained in C and € > 0. Then p. has smooth potential.

Before proving this result, let us make some remarks. As for the case
of signed measures with continuous potential, those with smooth potential
satisfy a local condition. We say that a signed measure p on P!(C) has
smooth potential if for every point p € P}(C) there is a neighborhood U,
and a smooth function h, : U, — R such that Ajh, = p. An analogous
result to Corollary [2.5] also holds for signed measures with smooth potential.

As a second comment to this proposition, we mention that in order to
prove the main theorem of this chapter, the authors in [FRLO6| only ask
for a regularization with continuous potential. Hence, it would be enough to
regularize by convolution with a continuous function.

PRrROOF. By the previous lemma, the probability measure p. is compactly
supported on C and therefore we can consider its potential, which is given
by

. (2) = [ 1oglz — wldp.(w).

For any fixed z € C, the logarithmic kernel K(z,-) = log|z — +| is sub-
harmonic on C and, by Fubini’s theorem, we can write

w.(2) = [ Kw)dpatu) = [ Kelw)dp(w

= [ ([ xGuw-vewaaw ) dotw

- < / 1og\z_w+vydp<w>> pe()dA()

— /(Cup<z + q;)gpa(v)dA(U) = Up * (Ps(z)a

where u,, is the potential associated to p. This implies that u,, is smooth. []

Consider a finite set S C C and the discrete probability measure associ-
ated to it, pg. Since it is a finitely supported measure, we can consider its
potential, which is given by

1
us(z) = %5 Zlog\z —al.

a€esS
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Observe that this is a non-continuous subharmonic function on C. The
previous proposition establishes that, for any € > 0, the probability measure
Hs,e = s * @. has smooth potential.

2. Quantitative equidistribution

As we just saw, for any finite set S C C, the potential of the measure pg
is not even locally bounded and thus little can be said about the energy of the
measure pug — Agi. However, once a mollifier has been fixed, for every € > 0
the regularization pg. — Ag1 is such that its trace measure has continuous
potential and, by Theorem [2.9] we have that

(MS,& - Asuﬂs,a - )‘Sl) > 0.

The first step towards the proof of the main theorem of this chapter will
be to give an estimate of the difference of the energies of g — Ag1 and its
regularization. In order to make the estimations explicit, we will consider a
specific mollifier ¢ given by

1 .
=Y < 1,
oz) = { CP = if2]
0 if [z| > 1,
where ¢ is such that [ @dA = 1. This is,

1 -1 -1

We would like to point out that all the explicit constants appearing from
now on will depend on the particular choice we made for .
Let us consider two technical lemmas.

LEMMA 2.14. For every finite set S C C and every € > 0 we have

(2.13) |(s, A1) — (1se, Agr)| < e.

ProoF. For any o € C, the measure d, . is compactly supported on C
and has smooth potential. Since Ag1 is also a compactly supported signed
measure on C and it has continuous potential, from Proposition we de-
duce that (04, Ag1) and (dqe, Agt) are well-defined. This, together with Fu-
bini’s theorem leads to

(Gasrsi) = = [ ([ 10wl — wlarei(w) ) dia(z) = ~1og* o

and

(ocrst) = [ ([ 108l = wlirsi(w)) dsoc(2)

= [orog* lldtace) =~ [ (10" 2 = wlptw)datw) ) dbaz)
- /C log* | — wlip. (w)dA(w).
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We will see that for any € > 0 and any w € D(0,¢), we have
|log™ |a — w| — log™ ||| < e.
Suppose there is w € D(0,¢) such that o — w| < 1. Then we have
[log™ Jor — w|  log™ Jaf] = log™ a].

If |a] <1 it follows trivially. If |a| > 1, since we are assuming there is
w € D(0,¢e) such that |o — w| < 1, we have |a] < 1+ ¢ and therefore
log® |a| =log|a| < log(l +¢) < e.

Assume now that there is w € D(0,¢) such that | —w| > 1. If a is in
the unit disc, we have |log™ |a —w| —1log™ |a|| = log |a —w| < log(1+¢) < e
and we are done. Finally, suppose « is not in the unit disc so we have

| log™ o — w| — log* [a| = |log |a — w| — log |a]| < [u] < <.

Putting everything together, we obtain

|(6a,sa )‘Sl) - (504?)‘5'1” =

/ log™ o — wlpe (w)dA(w) — log* |af
C

< / llog* o — w] — log™ || - (w)dA(w)
D(0,e)
< / epe(w)dA(w) = e.
D(0,e)
At last, for any finite set S C C we can conclude

<e.

25 2 (e As) = 2 Y (arAs)

a€eS a€esS

[(s.es Ag1) — (1, Agr)| =

LEMMA 2.15. For every € > 0 and every finite set S C C, we have

1 1
2.14 < — | 27 log -
218 (usenso) < (usins) + g (2nlon ] +C).

where C' ~ 1.10559.

PRrROOF. Let o, 3 € C with a # 3. Since, for every € > 0, do, and dg
are compactly supported on the complex plane and have smooth potentials,
by Proposition 2.8 their mutual energy is well-defined and we have

(0o, 08e) = — K(w, 2)ddqe(2)ddg.e(w),
CxC

where recall K(z,w) = log |z — w|.



2. QUANTITATIVE EQUIDISTRIBUTION 63

By Theorem we have

K (2, 0)d6 o (2)d65. (1) = /C XC(K(-,w) ¥ 02)(2)d00 (2)d5.. (w)

=/(K(ww)*soa)( 0)dd - (w /Ka )b o(w)
C
- /C (K (0, ) * p2) (w)db(w) = (K (0, ) * 9)(8) > K (a, B).

CxC

So, we can write

(504,6756,5) < —logla— 8| = (5a75ﬂ)-

On the other hand, by Proposition for every a € C we have that
K (z,w) in integrable with respect to 04 ® 0o, and by Fubini’s theorem we
have

— (Oaes Oae) = e K(z,w)ddg ¢ (2)ddq (W)
- / (K (- w) * 92) (2)d6a ()dg, (1) = / (B (- 1) # p2) (@) b e (1)
CxC C

> /C K (00 ) b o (10) = /C (K (0 ) * 02) (w)dba () = (K (00, )  02) (a)
- /C log |2]ipe(2)dA(2).

Since supp(¢:) C D(0,¢) and ¢-(z) = ¢:(|z|), we obtain

2
/log|z|g05 / /logrgps )rdrdf

= 27T/ — log rgo rdr = 27r/ (loge + log s)p(s)sds
0

=2mloge — C,
where
C = —/Clog |z|p(2)dA(z) =~ 1.10559.
So we can write

1
(Oaes 0ae) < 2mlog — + C
€
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Finally, for every finite set S C C we have

(NSE:NSE = 2 Z . ,85 #522 ey aa
o,BeS a€cs
a#p
> (0as ) L > <27710g1 +C>
2 sy ﬁ 2 -
(#5) e T #S) = £

1 1
- " (2r1og - .
(MS,HS)+#S<7TOgE+C>
]

We can now give an estimate for the difference of the energy pg — Ag1
and its regularization.

PROPOSITION 2.16. For every € > 0 and every finite set S C C, we have

1 1
(se — Agt, pis,e — Agr) — (ps — Agt, ps — Agr) < %5 (27710g6 +C> + 2,

where C' ~ 1.10559.

Proor. We know that both Ag:1 and g, are probability measures with
compact support on C and continuous potential. Hence, by Theorem [2.9]
the measure p15. — Ag1 is such that its energy is well-defined and positive.

Since (Ag1,Ag1) = 0, we have

(1s — As1, s — Agi) = (ps, s) — 2(ps, Agt)

and, by the previous lemmas, we obtain
1 1
(hs—As1, s —Ag1) = (Hs,e, ps,e) — %5 2mlog = +C | =2(pse, Ag1) +2¢

1 1
= (MS,E — )\51,/,6575 — )\51) — % <27T10g g + C> — 2¢.
(]

We will now define a pairing for ¢'-functions on the Riemann Sphere.
It is a generalization to P!(C) of the Dirichlet form of functions of Class €™
in an open bounded domain in the complex plane.

DEFINITION 2.17. For any two real-valued functions f,h € € (P!(C)),

we define their Dirichlet form as

1
=50 [ (Tl Vb
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Let us see that the Dirichlet form is well-defined. Recall that locally on
any chart U; with coordinates x,y, the Fubini-Study metric is given by

TR 0
glz,y) = ( et ) :
0 werer
When restricted to Uj, we have that p = \/det(g(z,y))dzdy and
(1 + 2132 + y2)2 8fz 8hz 4 8]2 8h1
4 Ox Oz Oy Oy )’

where f; = fo ai_l and h; =ho ai_l.
Hence, we obtain

8fO ahO 8f0 aho
h)gdp = —— = 22— ) dad
/[P’l((c)<Vf’v Jadh /D(O,l) <833 ox * Oy Oy) ray

+/ <8f1(9hl . 81“13’11) drdy < oo
D(0,1)

(va vh’>£] =

Or Ox dy Oy

As it was mentioned on the beginning of the chapter, it is easy to see that
¢ '-functions are Lipschitz. The following proposition will provide us with
a relation between the Dirichlet form of a given function and its Lipschitz
constant.

PROPOSITION 2.18. For every real-valued f € €1 (P*(C)) we have

(f, f) < 2Lip(f)%

PROOF. Let us assume the following claim:

1
(2.15) (Vg f(p),Vyf(p))§ <Lip(f), for every p € P*(C).
Hence, by , we deduce

) 1/ (Vo f (0). Vo () g (p) < — / Lip(f)dy
PL(C) P1(C)

:% 2T

i 2
_ LU pi(cy)) = 2Lip(f)2.

27
So we are only left with the proof of (2.15).
Let p € P1(C), we will see that

(Vo f(p),€)g < Lin(f)ll€]lg for every & € T,P'(C),

where ||€]|g = (§,§>g%. Hence, taking & = V, f(p) would prove the claim.
Without loss of generality, we may assume p = (1 : z9) € Up. Let
¢ € T,PYC), with & = 518% + 526% and consider the path g : [0,1] — R?
given by
Yo(s) = (zo + s&1, Y0 + s&2),
where zy = xg + 1yo. It is then obvious that v = aal 07 is a smooth path
in Uy such that v(0) = p and §(0) = &.
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For every t € [0, 1], by the mean value theorem, there is some ¢ € (0,t)
such that

fo(r(t)) = fo(2(0)) = (fo ©10)'(c) = (Vfo(r0(c)), (&1, €2)),

where fo = fooq Dand (-,-) denotes the Euclidean inner product in R
Note that fogovy = f o and

<Vf0(’}’0(0)), (617 52)> = <v9f(7(c))7 f)g

Therefore, we can rewrite

(@) = F(v(0)) = (Vg f (7(€)), E)g-

On the other hand, since f is a Lipschitz function of Lipschitz constant
Lip(f) with respect to the spherical distance, and the spherical distance is
the infimum of the lengths of all smooth paths joining two points in the
sphere, we obtain

[f(v(#)) = f(7(0))] < Lip(f) d(v(¢),7(0)) < Lip(f) length(y, )

=MMﬁAuwwW&

Putting everything together and letting ¢ — 0, we can conclude

(Vof(p),€)g = Im(V, f(7(c)), €)g < }i_r)r(l)Lip(f)/O 17 (s)llgds = Lip(f)lI¢]lg-

li
t—0
U

We will now give a bound for the integral of a function in ¢*(P!(C))
with respect to a signed measure satisfying the hypothesis of Theorem [2.9]
In fact, the bound is given in terms of the Dirichlet form of the function and
the energy of the measure.

PROPOSITION 2.19. For every function f : PY(C) — R of class €' and
every signed measure p on the Riemann sphere with vanishing total mass and
such that its trace measure has continuous potential, we have

2
/ fdp
P(C)

< {f: /) (p, p).
PROOF. By Theorem there is a continuous real-valued function A on
2
the Riemann sphere such that Ayh = p, Vyh is in L (P1(C)) and

1
(0) = 57 [, (Vb V)i
27 Pl ((C)

Since f is in €1 (P'(C)), we have that V, f is in fQ(IPl (C)). Therefore, if we
proceed as in the proof of the last part of Theorem 2.9, we obtain

1
[, gdo=—5 [ (9. Voh)gin
P1(C) T JPL(C)
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Finally, by Cauchy-Schwartz inequality, we have

/ fdp
PL(C)
1
! / (L (V gh, Vgh)yd
<L (VP / , "
27'(' ]pl((c)< g g >g 27'(' ]Pl(C) g g g

= (f, /)% (p,p)?.
]

(NI

Let us, before giving the proof of Theorem [T} state a very nice result
that relates the energy of the signed measure pg — Ag1 and the height of the
elements in the finite set S.

Recall that, given a finite set S C Q, its height is given by

h(S) = h(a).

a€esS

LEMMA 2.20. Let S C @X be a finite Galois-invariant set. Then we have

(s — As1, s — Ag1) < 2:(5;,)-

PROOF. Since S is a finite Galois-invariant set in @X, it is a finite union
of different Galois orbits. This is, S = 571 U...U S, where .S; is the orbit of
an algebraic number under the action of the absolute Galois group.

For every i = 1,...,r, we will denote by Pj(xr) € Z[x]| the minimal
polynomial over Z of the orbit S; and a; its leading coefficient. We can then
write

Pyx)=a; [] (z - o),
aES;
and we have deg(F;) = #5;.

Now, consider the polynomial P(x) = Pi(z)--- Pr(z) = Al eq(z — a),
where A = [[;_; a;, and observe that it has degree d := #5S. Recall the
definition of the discriminant of the polynomial P(z),

Ap = (_1)d(d71)/2A2d72 H (a - 5)
a,BES,a#SB

Since it is a symmetric function in the roots of P(x), which are all different,
it can be expressed in terms of its coefficients and hence, we deduce that Ap
is a non-zero integer.

Let us study the mutual energy of ug—Ag1. By Proposition 2.8 we know
that (us, pus) and (ug, Ag1) are well-defined and, since the mutual energy of
Ag1 vanishes, we can write

(s — Agt, s — A1) = (s, prs) — 2(ps, Agt)-
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On one hand, we have that

(ssvs) == [ logle~ uldus(w) @ dus(:)
CxC\A

1
:_(#S)QZIOg‘O‘_m:_(#g)QIOg H o — B

OC,BGS CX,EGS

a#p a#p
1 Ap 1 1 2
= —ﬁlog ‘A2d2 = —ﬁlog\Aﬂ + ?(Zd_ 2)log|A| < Elog|A|.

On the other hand,

(ishs) == [ Togle— wldus() @ dha (w)
CxC\A

1
=——— [ Y log|z — aldrs(2)
C

acs
H (z — )

aesS
P(z)
A

#S Jc

_ 1
#S Jc

1 1
=~ [ T8 IR Padsi(2) + 5 logl A
d Jo d

d)\sl (Z)

log dAgi(z)

= —% (/C log |P1(2)|dAg1(2) + ...+ /Clog|Pr(z)]d)\S1(z)> + élog|A|

1 1
= —(m(Py) + ...+ m(P)) + - log|Al,

where m(P;) is the Mahler measure of the polynomial P;.
Putting everything together, we obtain

(s — Ast s — Ast) < S(m(Py) + ..+ m(Py)
- %(h(Sl) +.. +h(S)) = 21:&).

We will now give the proof of the main theorem of the chapter.
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PrOOF OF THEOREM [[Il Let £ > 0, then we have

/ fdus — / fdrg: :‘ / fd(us — As)
PL(C) P1(C) P1(C)

/ fd(ps — pse) + / fd(pse — Agt)
P1(C) PL(C)

/ fd(ps — ps,e) / fd(pse — As1)] -
P1(C) P1(C)

The proof of the result will be divided into two parts, corresponding to
each one of the summands on the right-hand side of .

We will begin with the second summand. For every ¢ > 0, the measure
1S is a probability measure with compact support on C and smooth po-
tential. Hence, the signed measure pg. — Ag1 on P}(C) has vanishing total
mass and its trace measure has continuous potential. By Proposition [2.19]
we have

(2.16)

<

+

w\»—A

/ fipse — Ast)| < (£ (se — Mgt pise — Agi)E.
P(C)

Let us study the energy of us. — Ag1. By Proposition and Lemma
there is a positive constant Cy =~ 1.10559 such that

1 1
(Hse—Agts pse = Agt) < (Hs—Ag1, s — A1) +2e+ <27710g o Co)

#S

h(.S) 1 1
< 27 2e + — | 2w log — .
=25 —i-#s(ﬂogg—kCo)

Letting ¢ = %, we obtain
h(S 2

(k5 = Astshse = Ast) < 25 4 2o o (2mlog 5+ Co)
h(S) log(#S+1)
<2—= _—
25 PO g

2427 log 6+Co
where Cq = B e
Hence, we obtain

N[

( RGNS 1og(#s+1)>%

(2.17) 45 TO— o5

(£, 1)

/ fd(use — re)| <
P(C)
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We will study now the first summand in (2.16). Let fo = foaq ! since
S C C, for every € > 0 we can write

/ fd(pus — pse)| = ‘/ fodps — / fodps
P1(C) C C

- ‘ /C fodps — / foedus| = ‘ / (o — for)dus
< # 5 D fola) = foc(o)

aesS

(2.18)

£

a€es

[ (@) = e = w) g<w>dA<w>]

_#Szjuo ~ ol = w)] p(w)dA(w)

a€sS
Let 2,2’ € C, by Lemma we have
d((1:2),(1:2)) < gdch((l c2),(1: 7))

|z - 4|

<
T VTR R

Hence, for every o € S and every w € C we have

|z — 2.

[fola) — fola —w)| __[f(1:a) — f(1:a—w)
|w - d((1ra),(l:a—w))

< 7 Lip(f).

So, from (2.18) and the fact that we are taking ¢ = %, we deduce

19 |[ s —ps2)

<25 2 [ 1) = o= w)lp.w)dw)

a€esS
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Therefore by (2.16)), (2.17), (2.19) and Proposition we obtain

/ fdps / fdrg:
P1(C) P1(C)

< WL;IZ(SJC)

N

<2h(S) L, loB(#S + 1))5

D (253 i

vt ( Fg + (145 S o)

where C' = 2C =~ 14.7628.
Finally, if we assume that % is bounded by 1, taking

7w+ Cilog2 + 2m/4+ Cylog 2
N log 2

we obtain (2.1)). O

N
N——

' ~ 48.9897







CHAPTER 3

Quantitative equidistribution in the N-dimensional
case

In this final chapter we will give a generalization to the N-dimensional
case of the quantitative equidistribution of Galois orbits of small height. As
it was done in the previous chapter, for a certain set of test functions, we will
give a bound for the rate of convergence in terms of a constant depending on
the function, the height of the Galois orbit, and a generalization to higher
dimension of the degree of an algebraic number.

Before stating the main result, we will introduce some notations. Con-
sider the subvariety

H:= {(p1,...,pn) € PL(C)N : pp, = (0: 1) or pp = (1 :0) for some k}.

The set of test functions will be denoted by F. We will say that a
function f : P*(C)N — R is in F if it satisfies the following

(i) f is of class €2V *1L

(i) The 2N-jet of f vanishes on H. This is, on every chart of P1(C)¥, the
partial derivatives of f up to order 2N vanish on H. In particular, f
vanishes on H.

For any n = (ny,...,ny) € ZN we will consider the monomial map
given by
=X =X
X" (@)Y — Q
z=(z1,...,2n) — X"(2)=z"... 2.

Given an element £ € (@X)N , we define its generalized degree by

(3.1) 2(¢) = min{In | deg(x"(€))}.

where || - ||1 is the 1-norm in CV and deg(x™(&)) stands for the degree of the
algebraic number ™ (&) over Q.

These notions that we just introduced will be studied in detail in the
following sections.

Consider a finite set S C CV, we recall that the discrete probability

measure associated to S is given by pg = % Y acs 0o We will also consider

the measure A1y~ in CV supported on the unit polycircle (S 1)N , Where it
coincides with the normalized Haar measure.
We can now state the main theorem of the chapter.

73
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THEOREM 1. There is a constant C = 48.9897 such that for every test
function f € F and every & € (@X)N with h(€) < 1, the following holds

1 3
/ fus - / Fdrgiw| < e(f) <4h<§>+cog(9<€>+1>> |
PL(C)N PL(C)N

()

where S is the Galois orbit of &€ as a subset of (C*)N, ug the discrete pro-
bability measure associated to it, and c(f) is a positive constant depending

on the function f, to be specified in (3.3)).

To show the dependence of ¢(f) with respect to the function f, we iden-
tify (R/Z)N x RN with (C*)" via the isomorphism

(0,u) = ((01,...,0N), (uy,...,uy)) — (e2™01tu  2mifntuny,

and set

¢: (R/Z)N xRN — PYC)N
(07 u) N ((1 . e27ri01+u1)7 . (1 . 627ri0N+uN))'

Let F':= f o ¢, this is, F' is the function
F: (R/Z)N xRN % R
(O,U) — f((l . 627ri91+u1)’_“7(1 . 627”'9N+UN>)_

We will see in Section QQAthat if f is a test function in F, then both F
and its Fourier transform F' are Haar-integrable as well as all the first order
partial derivatives of F' and also their Fourier transforms.

In P}(C)Y we consider the spherical distance d, given by

(3.2)

a¥(p,P') =

for every P = (p1,...,pn) and P’ = (p}, ..., D))
With the notation as above, the constant in Theorem [[| can be bounded
by

N || 55 N || 555
. OF OF
(3.3) c(f) < V2rLip(f) +2) Jul T 16 ) |
=1 Lt =1 Lt

where Lip(f) is the Lipschitz constant of f with respect to the spherical
distance d¥ on P'(C)N and | - ||;1 stands for the L'-norm on the locally
compact Abelian group ZV x RV,

As a corollary to Theorem [[] we obtain Bilu’s equidistribution theorem:

COROLLARY 3.1. Let {£.} C (Q°)N be a strict sequence such that
limg h(€,) = 0. Then the Galois orbits of &, are equidistributed with re-
spect to Mgy .
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1. Fourier analysis on (C*)V

In the preliminaries of this dissertation, we dedicated a section to the
theory of Fourier Analysis on locally compact Abelian groups. Now, we will
consider the particular case of the group (C*)". As we described above, it
will be identified with (R/Z)™ xR" via the isomorphism mapping z € (C*)¥
to its logarithmic-polar coordinates (0,u) € (R/Z)N x RN, In (C*)N, we
will consider the Haar measure induced by the product of the probability
Haar measure on (R/Z)™ and the Lebesgue measure on RY.

The dual group of (C*)¥ = (R/Z)" x R¥ in the sense of Pontryagin is

(C)N = 7ZN xRV,
which implies that for any v € (C*)V, there is a unique (n,t) € ZV x RV
such that
7(97 u) _ 627rin-0€27rit~u,

with the notation
n-0= (nl,...,nN) . (91,...,0]\/) =l +...+nnOn

and similarly for ¢ - u.

The measure on (C*)" induces a unique Haar measure on its dual group
ZN x RN which is given by the product of the discrete measure on Z" and
the Lebesgue measure on RV,

For any complex-valued Haar-integrable function F on (R/Z)N x RY | its

Fourier transform F : ZV x RN — C is given by

~

F(n,t) = / F(0,u)e” 2min0e=2mitugg gy,
(R/Z)N xRN

If, in addition, we assume that Fis Haar-integrable, then for every (6, u) €

(R/Z)N x RN, the Fourier inversion formula (T.3)) gives
FO,u)= > / F(n,t)e?™0mne2riut gy
nezZN R

By abuse of notation, we will write
|F|IT» = / |F(6,u)PdOdu,
(R/Z)N xRN
for any I € LP((R/Z)N x RY) and

P P
Gl = 3 [ 16ttt

nezZN

for any G € LP(ZN x RY).
We will now study some general results that will be useful for the proof
of the main result of this chapter.
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LeEMMA 3.2. Let F : (C*)N — C be a Haar-integrable function such

that its Fourier-transform F is also Haar-integrable. For any finite regular
measure X on (C*)N such that F is integrable with respect to \, we have that

FX is Haar-integrable. Moreover, the following holds

Fd)\ = / F(n,t)\ ntdt
/(x Z RN )

neZN

PROOF. Let A be a finite regular measure on (C*). Recall that the
Fourier-Stieltjes transform of the measure A is defined by

~

A(n,t) :/ e~ Imitu=2minb g\ (9 ).
(R/Z)N xRN

Since both F and F are Haar-integrable, we can apply the Fourier inversion
formula that, together with Fubini’s theorem, leads to

/ Fd\ = / F(6,u)d\6, u)
(CX)N (R/Z)N xRN

:/ Z F(n,t)e?™wte?m0n gt | g0, u)
(R/Z)N xRN

nezZN RY

= Z F (n,t) ( / 62”1'"’%2”9'"&(9,@) dt
(R/Z)N xRN
= > / (n, )\ (n, t)dt.
RN

O

LEMMA 3.3. Let F : (C*)N — C be a Haar-integrable function such

that its Fourier transform F s also Haar-integrable and let \ be a finite
regular measure on (C*)N. Then

/ FdA — / Fd g1y
(©)N (©)N

/RN F(0,t) (W - 1) dt‘ + go /RN F(n,t)A(n, t)dt

Proor. First of all note that, since A(g1yn is the measure on (CHN

supported on (S DN where it coincides with the normalized Haar measure,
for any (n,t) € Z¥ x RY we have

S . 1 ifn=0
Asryn(n,t) = / e~ 2min0 g0 — { s
(R/Z)N

<

0 otherwise.
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Hence, by Lemma [3.2] we obtain
(M)/ mew:zl/ﬁmw%EMﬁﬁ:/ﬁ@ﬁﬁ

Then we have

/ Fd — / Fd g1y
(©)N (©)N

- Z/ ﬁ(n,t)%,t)dt/ F(0,t)dt
RN RN

ncZN

/]RN ﬁ((),t) (X(O,t) - 1) dt‘ + %;()/RN ﬁ(n,t)/)\\(n,t)dt '

<

O

For every function F : (C*) — C and every w € (C*)", the transla-
tion of F' by w is the function 7, F : (C*)N — C given by

(3.5) TwF(2) := F(w - 2), for any z € (C*)V,
Let us fix some notation, for w = (w1, ..., wy) in (CX)V, we will write
lw| = (Jwil,..., lwn]), arg(w) = (arg(wr), ..., arg(wy))
and, for every t = (t1,...,tx) in RY, we will note
N
wlt = [T .
j=1

LEMMA 3.4. Let w € (C)N and let F : (C*)N — C be a Haar-
integrable function. Then for any (n,t) € ZV x RN, the following holds

7;,\}7(,’% t) _ ‘w|27ritein-arg(w)ﬁ(n’ t)

PROOF. By abuse of notation, which is justified by the identification
(CHN =2 (R/Z)N x RN, we can write

TwF(0,u) =F <9+ alri(w),u—i—log ]w\) .
T
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Hence, after some suitable change of variables, we obtain

—

TwF(n,t) = / TwF (0, u)e” it te=2mm0 1o 0y,
(R/Z)N xRN

— / F <0 + argz(w)’u + log |'w\) e 2mit U =2min6 1g g,
(R/Z)N xRN Q0

arg(w)

_ / F(O, u)6—27rit-ue—27rin~0627rit~(log |w|)e27rin- o dOdu
(R/Z)N xRN

arg(w) ~

= 2mit-(loglwl) 2min- =57 By, 1),

0

2. The set of test functions

On the beginning of the chapter, we defined the set of test functions F
that was later used for the statement of the main result. The aim of this
section will be to give a justification for this definition which, at first sight,
might seem rather unnatural.

As it has been already mentioned, Fourier Analysis is among the tech-
niques used on the proof of Theorem [} For this reason, we will need to make
some assumptions on the Haar-integrability of the function and its Fourier
transform, as well as for the first order partial derivatives. Let us first recall
the definition of the set of test functions and make some significant remarks
about them. Afterwards, we will be able to state a result for these test
functions establishing the desired properties.

Let us recall the definition of the set of test functions. Every function
f € F is such that

(i) f:PYC)N — Ris €2V+H,
(ii) The 2N-jet of f vanishes on H, where the subvariety H is given by
H:= {(p1,...,pn) € PHC)Y :pr = (0: 1) or pp = (1 : 0) for some k}.

Consider a point P € P1(C)" and a system of local coordinates of P*(C)V
around it. We say that the 2/N-jet of f vanishes on P if all the partial
derivatives up to order 2N of the coordinate expression of f vanish at P.

Under the natural inclusion

L (CHY s PO
(z1,-.52n) = ((L:z1),...,(1:2n)),
we can think of the functions in F as functions supported on (C*)". Identify-
ing R/Z xR and C* via the logarithmic-polar coordinate map and composing

with the previous inclusion, we can define the map ¢ given by (3.2]).
With this notation, we can now state the main theorem of this section.

THEOREM 3.5. For any f € F, the function F': (R/Z)N x RN — R,
given by F = f o ¢, satisfies the following properties
(i) F is Haar-integrable,
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(ii) F is Haar-integrable,

(iii) For everyl=1,...,N, g—f; and % are Haar-integrable,
(iv) For everyl=1,... N, g—i and g—g are Haar-integrable,

The proof of this result will be divided in several propositions and lem-
mas. But, before doing so, we will state some important facts of F' = f o ¢,
with f € F.

REMARK 3.6. The differentiability of the natural inclusion ¢ together
with the differentiability of the logarithmic-polar coordinate change-of-variables
implies that the map ¢ is differenciable

R/Z)N xRN — %, pLC)N

(C)N.
Hence, the function F = fo ¢ is in €V ((R/Z)Y x RY).

We will recall the notation that has been previously given for the usual
charts and their homeomorphisms in the projective complex line. Let

Up:={(1:2):2€C} and Uy :={(2:1) : z € C},

be the usual open subsets on P*(C) and consider the homeomorphisms,

aqQ Uo — RQ, aq U1 — RQ
(1:2) — (Re(z),Im(2)) (z:1) = (Re(z),Im(2)).
For any choice of indexes ji,...,jn € {0,1}, we will consider the open
subset Uj, X ... x U;, in P*(C)" and the homeomorphism
Qjy . in = (Oéjl,. . .,osz) : Uj1 X ... X UjN — RZN.
Observe that, for any (0,u) € R/Z x R, the point (1 : e2™0*%) ¢ Uy N Uy.
Hence, for every (ji,...,jn) € {0,1}", the image of ¢ is contained in the

open subset Uj;, x ... x Uj,. As a consequence, we can define

¢j1,~-~,jN = Q.. N © o,

and we have the following diagram

where
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We set
¢j1,...,jN (07 U) = (¢]1 (017 ul)a ey ¢]k (ekv uk‘))a
where, for any j € {0,1} and any (6,u) € R/Z x R, we have
9j(0,0) = (6}(0, 1), 63(8,u)) = (7" cos(26), (~1) el "1 " sin(2n0)).
REMARK 3.7. From the diagram we deduce

F = fj1,.--,jN © ¢j17---ajN7

for any choice of indexes j1,...,jny € {0,1}.

We will now write explicitly the second property on the definition of
the set F using the coordinate expression fj, . ;, of the function f on
every chart of P'(C)Y. On R? x ... x R?, choose a coordinate system
((x1,91),...,(zNn,yn)). Let @ = (a1,...,an) and b = (b1,...,by) be
two multi-indexes, this is two N-tuples with positive integer entries. Let
la| =a1+...+an, |b| =01 + ...+ by. We will denote

b b
O i QOIS ..o
dxrdyb NG Ml 1Y N T
for any j1,...,jn € {0,1}, whenever it makes sense.

Hence, condition (ii) on the definition of F can be written as follows.
For every a,b € (Z>o)" such that |a| + |b| < 2N, every P € H and every
Jis---,Jn € {0,1} such that P € Uj, x ... x Uj,

a|a,|-|—|b\f,1 i,

We will prove in the following lemmas that, for every f € F, the functions
F = f o ¢ satisfy very strong properties. Among them, we will see that all
the partial derivatives of F' up to a certain order tend to zero when any of
the coordinates approach either —oo or +00. We will also prove that these
partial derivatives are bounded. These two important facts will allow us to
prove Theorem [3.5

LEMMA 3.8. Let F = f o ¢, for some f € F. Then, for every a,3 €
(Zs0)N such that ||+ |8| < 2N and everyl =1,...,N
) olal+8l p
B Bgagys 0w =0
PrROOF. We will study the limit
) olal+8l p
W o s O =0
The limit when u; — —oo can be done with a similar argument.

When considering u; — 400, we are approaching a point in H whose [-th
coordinate is (0 : 1). Hence, we will work on some chart Uj, x ... x Uj, with
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J = (j1,...,j~5) € {0,1}" such that j; = 1. To simplify the notations, we
will write
fr=Jii,.in a0d O3 = @5, _jn-

The partial derivatives up to a certain order |a| 4+ |3] < 2N of the
function F' = fj o ¢y are computed by recursively applying the chain rule.
It is easy to see that when we do so, we obtain an expression on the partial
derivatives up to order |a| + |3| of the function fy evaluated on ¢;(0,u)
and coefficients concerning partial derivatives up to the same order of the
coordinate functions of ¢ .

On one hand, the limit of the partial derivatives of order less than or
equal to 2N of the function fy evaluated on ¢(6,u) vanishes due to the
fact that the 2IN-jet of f vanishes on H. Thus, if we verify that the limit of
the partial derivatives of the coordinate functions of ¢ s are finite, we would
have proved the lemma.

The only coordinate functions of ¢y depending on the variable wu; are

gbjl-l (01, uy) = ("1 tu cos(2m6;),

(b?l(el,ul) = (—1)j’e(_1)jl“l sin(276;).

Hence, we only have to study the behavior when uw; — 400 of the partial
derivatives of qﬁ}l and gb?l up to order 2N. Recall that j; = 1, so all these
partial derivatives are of the form

+(2m) e cos(2n0;) or + (27)Fe % sin(276;),
for some positive integer k. Therefore, their limit when u; — 400 is zero. [

LEMMA 3.9. Let F = fo ¢, for some f € F, and let o, 3 € {0,1}V.
Then there is a positive constant K (e, 3, f), depending on the multindezes
a, B and the function f, such that

ol max{ay,B }
SK(aaﬂaf)H<> ;

olal+IBl
0,u) 5
e 14 e=w

90 ouP ©,

for any (0,u) € (R/Z)N x RN,
Moreover, there are positive constants Ky (k,c, B3, f) and Ko(k, o, 3, f)
such that

led+B1+1

0 ek e max{a;,5 }
_— <K B — -
00~ 0uP ol )| < Kk e B, f) (1 + eQUk) 11;1 (1 + 62“l>
and
plal+181+1

u)

ok g\ max{aBi)
< Ks(k, e, B, f) <1+62uk> I1 (1_|_62w> :
14k

for any (8,u) € (R/Z)N xRN and any k=1,...,N.

00 0uBouy, 0,
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PROOF. As it was done in the previous proof, by recursively applying the

. . . . . . |ee+B]
chain rule, we can obtain an expression for the partial derivative 6@904 8u§ ,

whenever |a|+|3| < 2N +1. For any choice of J € {0,1}¥, this expression is
a sum of partial derivatives of the function fy up to order |a|+ |3| evaluated
on ¢y(0,u) times a certain suitable product of partial derivatives of the
coordinate functions of ¢y of order 1 or 2.

Let us consider the first case, with o, 3 € {0,1}" and a, 3 # 0. In this
situation, it is easy to see that

olel+1Bl
—(0
plal-+lel £, N
= 2 W(%(@,u)) [0
a,be{0,1}VV =1
a+b=5
a|a\+\b|+|a’\+\b'|fJ N
> dzata Hyb+v (¢(8,w)) [Tva(0),
a',b/G{O,l}N =1
a;—f—bg:al
where b
4 82¢1- ap 82¢} 1 .
<aulajél> <8’U4[8Jél> lf Oél = Bl == 17
6!\ [ 9g2 \ " _
TZJO(Z) = <8ujll> <(9’U,Jll> if g :O?Bl = 1,
And

a(f)ll a 8¢21 by 8¢1~l a; P 2'l b]
ao=(5) (&) () (5)

For a given (8,u) € (R/Z)N x R¥ the idea is to chose the right multi-
index J € {0,1}" in such a way that ¢s(0,u) € [~1,1]?". Since the
partial derivatives of the function fjy up to order 2N are continuous, there

are positive constants K (a, b, f) such that

olaltlbl £

W SK(CL,baf)-

(¢s(0,u))

Let us define the map J : RY — {0, 1} given by
J(u) = (j(u1), ..., j(un)),

where

0 ifu<0
3.7 i(u) = =5
(3.7) i) {1 ifu> 0.
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We will choose J depending on the point (8, u) by taking J = J(u). Observe
that, once this choice has been made, we obtain

—1)J —1)9(uy) _
0 < eDu — (D) — ol <

for every [ = 1,...,N. And, consequently, we can deduce
65 (01, u) = (V" cos(2m6)), (—1)71el D" sin(276))) € [-1, 1]
Then we would only be left to study the functions ¥y and 1, for every
I =1,...,N. For any (0,u) € (R/Z) x R, taking j = j(u), the partial

derivatives of first and second order of the functions ¢; and (b? are of the
form

+(2m)Fe " cos(270) or + (2m)Fe 1 sin(270),
for some k € {0,1}, and they can all be bounded by 2re~“l. Note that

e_lu‘ e_‘u‘ eu

< _ ,
2 T 14e 2l 14 e2u

Hence, we can write

olal+8l p 0
90%0us Y
olal+dl ¢, N ol max{oy,fr}
< OL21T (456, w))| (4m)8 ( )
a,be%):,l}N dzaoy® lHl 1+ e2u
a+b=0

8|a+a’\+|b+b’|fJ N et max{oy, B}
|oe|+8]
b Y g es0w) (o T ()
a’ b'e{0,1} I=1
aj+bj=ay

eUl max{alvﬁl}
SK(a,ﬁ,f)H<1+€2ul> )

=1
taking
K(a,B,f) = (4m) BN K(a,b,f)+ Y. K(atd b+b,f).
a,bc{0,1}V a’,b'e{0,1}VV
a;+b=p5 aj+bj=qy

Finally, we will prove the last part of the lemma. Observe that now we
are allowed to differentiate twice with respect to the same variable. Consider
some k=1,..., N, we will study

Hlal+Bl+1

g ")
96°9upag, O

Without loss of generality, we may assume that oy # 0. Otherwise we would
be on the previous situation taking o' instead of a, with a] = o for every
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| # k and o) = 1. Deriving the expression in (3.6]), we obtain

Hlal+Bl+1
90%0uP gy,
plal+bl+1 7 a¢1 il
= 2 oz, 27 (0 W) 5 - Ors H
a,bc{0,1}V =1
a;j+b;j=p;
lal+bl+1 £ s N
(0, u)) 55" Uk)zHl%(l)

t Sz oyboy,

a b
8|a‘+‘b|fJ 02 Jlk ' aqujl'k '

glal+lbl+la’|+b/|+1 ¢ 8¢1
+ Z Qpata G+ 9 J(‘b (6,u)) 90, U, H¢1
a,be{0,1}N Y k =1
aj+bj=a;

olal+bl+la’|+[b|+1 ¢, D2 N
(7] Ik l
dxata Gyb+b 9y, J(0,u)) 90, (O, ur,) le( )

plal+bl+a[+16'| 7 awl
Hw

oxata 3yb+b’ J » U

14k

Following an analogous argument as before, the result can be easily obtained.
Observe that in this situation, since we are deriving twice with respect to 0y,
we should consider a bigger bound for the partial derivatives of the functions
qb]l and d)? of orders 1 and 2. Namely, they can all be bounded by 472e~14l. O

The following proposition implies part (i) and (iii) of Theorem [3.5]

PROPOSITION 3.10. Let F = f o ¢, for some f € F. Then for any
o, B € {0,1}Y we have

olal+8l p

00*0uP

Moreover, for any k =1,..., N, we have

c (L'NL?)((R/Z)N x RY).

glel+Bl+1p  plel+Bl+1
00“0uPob;’ 00 OuPduy

PRrROOF. First of all, observe that if we are considering any partial de-
rivative of the function F' such that we are, at least, deriving once with
respect to either 6; or u; for every j, then the integrability of the absolute
value or the square of the function is a direct consequence of Lemma
Indeed, let a = (ay,...,ay) and B = (B1,...,Bn) in {0,1}M and suppose

e (L'NL2)((R/2)N x RN).
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that a; + 8; # 0 for every j = 1,...,N. Then for some positive constant
K(a, B, f) we have

olel+1Bl p

N uy

=1
In this cases, the proposition follows from Fubini’s theorem and the fact that

u U 2
1
/eQdU:Tr and / 67 du = —.
Rl—i—e“ 2 R 1+€2u 2

Let us consider now the remaining cases where the partial derivatives of
F are such that there is at least some k € {1,..., N} for which we are not
deriving with respect to neither 6; nor ug. It is easy to see that in these
situations, Lemma [3.9]is not enough to guarantee the integrability.
We will prove the result for the partial derivative
glel+1Bl
00*0uP’
where o, 3 € {0,1}" are such that a; + 3 = 0 for some [. The same
argument can be used for proving the integrability of
gled+Bl+1p  glal+Bl+1 p
00*0uBol;’ 00*0uPouy,’
with a; + 5; = 0 for some [ # k.
Fix some a = (ay,...,ay) and B = (B1,..., ) in {0,1}¥ such that
a; + B = 0 for some [. Define the set Z = {l : oy + ; = 0}, which is
non-empty, and take 3’ = (8,...,8Y), where 8] = 1 for every | € Z and
B/ = B otherwise. We claim that, for every (8,v) € (R/Z)N x RN

Hlel+18l g / Qv
025,83 —_ —lvil
90 0uB (6,v) §K(a7,3’f)l1;£<1+62w)garctane U,

Assuming this is true, since both e”/(1+¢%") and arctan eI are in (L' N L2)(R),
we have

olel+IBl
——a—7 € (L'NL)(R/Z)Y x RY).
505958 < L NLO(R/Z)T x RT)
Hence, we only have to prove the claim. Suppose Z = {ly,...,ls} and

consider the sets
V= {(_Oovvl] if j(v) =0,
[vg, +00) if j(v) =1

We can write

lal+18
/ ———duy, .. .du,
Vl1><-~~><VlS 890‘8’11,5

a‘aH"BH-SF p ]
- /Vz1 XX Vi, 39a8uﬁ[~)ul1 O, ULy -+ AU .
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Since |a| + |8'| < 2N — 1, by Lemmawe have
Hlel+18l+s g

o,(... .o))d
v, 00°0uBdu,, ... 0w, (0, (g, ))duy,
lal+IBl+s—1 g
= 0,...,Us’,.,
d0aouPau, . ou 0L te) .
) |a|+[B]+s—1
= (—1)7v) 0 F 0, (...,u,,...)).

900uP Oy, ... 0uy,_,

Hence, applying recursively what we just obtained, we deduce
Hlel+8l p olal+18'

Ao 3 (0, v / 7,d duzs
90 0uB Vi, x..xVi, 00%0uP

vy S eulj
Ko 1 (1) ()du
( ﬁ f) H 1 + 62’Ul ‘/21 X...XWS J_Hl 1 + ezulj ll ls

1¢1

:K(a’ﬁ/’f)H<1+e2w>H/w <1+62“l> -

1¢1

Finally, observe that

e
/ ———.— | du; = arctan eIl
v 1 + e<w

In order to prove parts (i) and (iv) of Theorem we will need the
following lemma.

LEMMA 3.11. Let F = f o ¢, for some f € F. Then for every (n,t) €
ZN x RN and every o, B € {0, 1}N, the following holds

O

8|04m,3\\+1F N 5}
20%0upas, Y = Lr[1<zmm>az<2ml)m] (st
and

a\awlp N 5.?
m(n,t} - [H(%ml)al@mtl)ﬁl] a—uk(n, t).

PROOF. The idea of the proof is to do integration by parts. This and
the fact that the function F' and all its partial derivatives up to order 2NV
tend to zero as any of the wu; goes to either —oo or +o00 will be enough to

prove the result.
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We will give a detailed proof for partial derivatives of first order, the
remaining cases are obtained by applying the same argument recursively.

Let us start first with a partial derivative of the function F with respect
to the variable ;. In Proposition [3.10] we saw that any of these partial
derivatives are indeed Haar-integrable and, consequently, we can consider
their Fourier transform. For any (n,t) € Z¥ x RV, we have

OF / OF omin —omit.
—(n,t) = —(0,u)e "™ e MU 40du.
391( ) (R/Z)N xRN 891( )
Integrating by parts, we obtain
r . .
8—(9, w)e 20 dg, = (2ring) F(0,u)e” b,
r/z 001 R/Z

Hence, from the definition of the Fourier transform of the partial deri-
vative 275 together with Fubini’s theorem, we deduce

8—F(n,t) :/ (2ming ) F (0, u)e~ 2T 0e=2mitu g gy,
89[ (R/Z)N xRN

~

= (2ming)F(n,t).

We will now consider the partial derivative of the function F' with respect
to u;. Since it is Haar-integrable, we can consider its Fourier transform, which
is given by

OF OF . .
7(n,t) — / 7(67u)672mn-0672mt-ud0du,
aul (R/Z)N xRN 8Ul

for any (n,t) € ZN x RV,
As it was done in the previous case, using integration by parts, we have
OF .
— (0, u)e_%m“l duy
R 0wy

+oo
— F(07 u)6727l'itl’ul

+ (2mit;) / F(0,u)e 2™ gy,
R

—0o0

= (2mit;) / F(0,w)e 2™y,
R

The last equality is given by the fact that, by Lemma [3.8] for every ¢; € R
we have
lim F(O,u)e 2™ =0 = lim F(6,u)e 27m,
U] ——00 u;—r—+00

Therefore, by Fubini’s theorem we obtain

oF o
g (1:8) = it E(n, 1)
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Before, we mentioned that the remaining cases would be done by recur-
sively applying this method. Note that it is possible since we would always
be under the hypothesis of Lemma and Proposition [3.10 U

The following result completes the proof of the main theorem of this
section.

PROPOSITION 3.12. Let F' = fo ¢, with f € F. Then we have
F e LYZN x RY)
and

OF OF

c LYzZN x RN
9 96, € (@7 xRT),

foranyl=1,... N.

PROOF. Let us prove the Haar-integrability of the Fourier Transform F:
Z / (n, t dt < +o00.
nezZN RY

In order to do so, we will divide the integration domain in 22V pairwise
disjoint subspaces. Let «, 5 € {0,1} and consider the sets

o if a =0, -1y ifp=o,
W(a)_{Z\{O} it o= 1. andv(ﬁ)_{ﬂx\(q,n itg=1.

For a = (a1,...,ayx) and B = (B1,...,Hn) in {0,1}V, let us define
W) =W(a1) x ... x W(ay) and V(B) = V(p1) x ... x V(Bn).
With this notation, it is easy to verify that
N xRN = || W(a)xV(8).
a,B3€{0,1}V
Therefore, we can write
(3.8) Z/ nt dt= > > / dt.
nezN /RY a,B{0,1}N neW (a

Fix a and B in {0,1}". By Lemma/|3.11| for every (n,t) € W(a)xV(3)
we have
8|0¢|+|5|F

Fnso] =TT Crng™ TT Crin™ | Gagsm

l:aﬁéO lﬁﬁéO

If aj # 0 and B; # 0, we have 0 ¢ W(«;) and 0 ¢ V(5;). Thus, this last
expression is well-defined.

)| -
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From Lemma [3. 10|7 we know that 2. fa‘ﬁ‘g is in (L' NLY)((R/Z)N x RY)
and Plancherel Theorem [L.8| implies that

Hlal+18l S+l
XHub X IHuB ’
007 0u L2(ZN xRN) 067 0u L2((R/Z)N xRN)

In particular, % in L2(ZN x RN).

By Cauchy-Schwartz’s inequality, we have

2

> /V dt

new (a
2
|a|+|ﬂ|F
= > / II @)= T @)~ 8a —aan g (. t)|dt
v(B) . 00%0u
nEW l:a#0 1:5;#0
| X / o 11 gpt
new ()’ V(B 1,0 nllﬁ;ﬁ Tt
a\a|+\ﬁ\F
2 / g5 gup ™)
new («a
On the one hand,
1
> o L s I e
new (o) L 1:8,#0 l
-| ¥ 1 Jo T g
new( )lal#04ﬂ- lﬁ;rs047T &
— HZ pe H/R“M%dtn/dt
laﬁéOnGZ\{O} 1:8,#0 1:8,=0
_ i x| i 1B 2N
12 47?2
And, on the other hand
— 2 — 2
5 / ala\+|ﬁ|F( | olal+8l
e — n e —
o ﬁ ’ o B
new(a)’ V8 007 0u 007 u L2(ZN xRN)

Putting everything together we can conclude

Z / dt<oo

new (a
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for every a, 3 € {0,1}" and therefore, by , we deduce that F is Haar-
integrable.

For proving the Haar-integrability of the transform of the partial deriva-
tives of F' of first order, we follow the same technique. Observe that this is
possible since, on Lemma [3.8| and Proposition [3.10, we obtained the desired
properties. O

As a final observation about the set of test functions F, we will see that
every compactly supported continuous function on (C*)V is the limit of a
sequence of functions { fro¢} with fr € F. Thanks to this result, we are able
to deduce from the main theorem in the N-dimensional case Bilu’s classical
equidistribution theorem.

LEMMA 3.13. Let F : (C*)N — R be a compactly supported continuous
function. Then there is a sequence {fp,} C F such that

li_1>n fm o ¢ = F uniformly.

PROOF. Every compactly supported function F : (C*)¥ — R can be
naturally extended to a continuous function F : CV — R with compact
support on (C*)V by setting F(z1,...,2y) = 0 whenever z; = 0 for some j.
Let ¢ be a mollifier on CV and, for every m > 1, set

om(z) = mQNgo(mz) with z € CV.

The mollifier ¢, is supported on the disc D(0, %) so, by I;emma the
m
of the support of F, which is compact and contained in (C*)". Therefore,
there is M > 0 such that for all m > M, the function F x ¢, is compactly
supported on (C*)V.

For every m > M, let fn, : PY(C)V — R such that f,,(z1,...,25) = 0
whenever z; = 0 or z; = oo for some j and f, = Fj, otherwise. Hence,
fm is a smooth function on P}(C)Y with compact support on (C*)V. In
particular, {fm}m>n C F.

The function F is uniformly continuous on CV hence, by Theorem [1.10]
we deduce that F' x ¢, converges uniformly to F. ([

function F'* p,, is smooth and its support is contained in a —--neighborhood

3. Galois orbits and heights of elements in (Q )Y

Consider an element & = (£1,...,&x) in (Q7)N. Recall that the Galois
orbit of £ is the orbit under the action of the absolute Galois group Gal(Q/Q).
We say that a finite set in (Q)" is Galois-invariant if it is invariant under
the action of Gal(Q/Q). In particular, every finite Galois-invariant set is a
finite union of Galois orbits.

Given a finite set § C (Q™)Y, its height is given by the sum of the
heights of all its elements, h(S) = > . gh(§). In particular, given a Galois

orbit § c (Q)N of cardinality D, we have h(S) = Dh(¢), for any £ € S.
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LEMMA 3.14. Let &€ = (&1,...,&n) in (Q)N, S its Galois orbit and set
D :=+#S5. Then

(1) D =[Q(&,---,&n) : Q)

(2) For every m = (ny,...,ny) in ZN, consider the monomial map
X X
@)Y — Q
z=(2z1,...,2n) — X"™(2) =" 2.

Then deg(x™(€)) divides D.

PROOF. Let M be the normal closure of the extension Q(&1, . ..,&n) of Q,
i.e. the smallest normal extension of Q containing Q(&1,...,&y). Since the
extension M over Q is Galois, we have that its Galois group G = Gal(M/Q)
has cardinality [M : Q). B
The orbit S of £ under the action of the absolute Galois group Gal(Q/Q)
coincides with the orbit of £ under the action of G,
S ={o&=(c&,...,0én): 0 € G}.
For any element o € S, its isotropy group is defined as
Ga ={0€G:0a=a}.

Since the set S is an orbit, the isotropy subgroups of its elements are
conjugate and whence, they have the same cardinality. From this fact, we
can easily deduce the classical orbit-stabilizer theorem that states

#S = #G/#Gq, for any o € S.
Since M <> Q is a normal extension, for any intermediate extension
M <+ L +> Q we have that M <> L is normal. Thus, M <> Q(&1,...,&nN) is
a Galois extension whose Galois group has cardinality
7 Gal(M/Q(£17 oo agN)) = [M : @(517 <o ,gN)]'
We claim that G¢ = Gal(M/Q(&q,...,&v)) and, assuming this claim, we
have
= # Gal(M/Q(&1, -+, 6N)) - [Q(&1, .-+, €n) : Q)
= #Ge - [Q(&, .-, &n) - Q.
We can then deduce
#G
D=#S=-—= : Q).
# 4G [Q(&1, .-+, ¢én) 1 Q)
Let us prove the claim.
o€ Geg <= o€ (G issuch that 0§ =&
< occGando§;=¢&, Vj=1,....N
< oce€Gando(a) =aVaeQ&,...,EN)

<~ 0 € Gal(M/Q(fl, . .,fN)).
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Finally, we will see that the second part of the lemma is a direct con-

sequence of what we just proved. For any n € Z%, the element x™(&) =

1 &Y s an element in the field extension Q(¢1,...,&n). Hence, we

have an intermediate extension Q(&1,...,&n) < Q(x™(&)) = Q and, by the
multiplicative formula for the degree of field extensions, we have

D =[Q(&,.-,én) : Q= [Q1,-- -, én) : Q(X™(E))] - [Q(x™(8)) : Q]
=[Q(&, -+ &) - Q(X™(€))] - deg(X™(€))-
[l
LEMMA 3.15. Let £ € Q”, d = deg(§) and S its Galois orbit. Then
53" ftog lal] < 21(c).
a€esS
PrOOF. We have

1 1
=3 loglal] = 5> max{~log]al, log o]}
a€esS a€eS

1 1 1
= d;logmax {M7 |O[|} = g C;S'],Ogmax{ly |Oé|2} o ].Og |a’

Let P¢(x) = agz® + ...+ ap € Z[z] be the minimal polynomial of ¢ over Z.
Since S is the orbit of £, we have

Pe(2) = aq [ (@ - o)

aeS

(—1)%ay H a = ap.

a€esS

and hence

Since |ag| is a non-zero positive integer, we can write

1 1
7 Z log max{1, |a|*} — log |a| = p Z log max{1, |a|*} + log Jad]

acs a€s |ao

1 1
< - Z log max{1, |a|?} + log |ag| <2 | = Z log max{1, |a|} + log|ag|
daeS daeS

_om(F)
B 2deg(f)

— 21(¢),
O

LEMMA 3.16. Let & € (Q )N and consider its Galois orbit {€,,...,€p},
where §; = (§51,..-,&N), for every j=1,...,D. Then

D

1 N
5 2.2 Hoggjull < 2h(,).
=1

J=1
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PRroOF. Observe that, for every [ = 1,--- , N, the elements {;; and &
are algebraic conjugates. Let us denote by S; the Galois orbit of & ;. By
Lemma we have that #S5; = deg(&,;) divides D. This is, there is a
positive integer k; such that D = deg(&;)k;, were k; is exactly the number

of times each element of the orbit is repeated in {&14,...,{p,;}. We obtain,
1 N D N 1 D
el 1 ] = - 1 .
522 ogliall =3 eres > o &l
=1 j=1 =1 =1
N 1 N
= e 2 Noglall < ) 2h(61) = 2h(€),
= des(&1) 2 —
where the inequality follows from Lemma [3.15 O

LEMMA 3.17. Let S C @X be a Galois-invariant set of cardinality D.
For every 0 < 6 < 1, we have

1\ !
#S55 <2 <log 5> h(S),

where S5 = {a € S : |log|al| > log 3}.
PRrROOF. We know that S is a finite disjoint union of Galois orbits, say
S=5U...US,.
And observe that, by definition, for any « € S5 we have that

1\ L
1<<10g6> | log |f].

Hence, we obtain

1\ L 1\ !
#5< 3 (1os3) Poglall < (1og ) 3 oglal

a€ESs a€esS

_ <10g ;) _li S Jlog a]| < <10g §>_lg2h(&)

=1 a€S;
L
=2 log 5 h(S),

where the last inequality holds by Lemma [3.15] O

4. The generalized degree

In this section, we will study what we previously defined as the general-
ized degree. Recall that, given a non-zero algebraic N-tuple € = (&1,...,&N),
its generalized degree is given by

2(¢) = min{In | deg(x"(€))}.
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As a first remark, we note that the set {deg(&1),...,deg({n)} is con-
tained in the set {||n||; deg(x™(&)) : n # 0}. Hence, we deduce that

(3.9) 2(8) < min{deg(&1), . .., deg(én)}-

This upper bound for the generalized degree implies that it can be computed
after a finite number of operations, considering all n # 0 such that ||n|/; <

min{deg(&1),...,deg(én)}-

The following example shows that we can have the strict inequality in
(3-9). In dimension 2, let £ = (o, ') for some a € Q* with deg(a) > 2.
Then taking n = (1,1), we obtain Z(§) < ||n||1 deg(x™(£)) = 2 < deg(a).

Let us see now that it is indeed a generalization to higher dimension of
the notion of the degree of an algebraic number over QQ. Consider £ € @X,
in the one-dimensional case we have

2(§) = gﬂ;g{lnl deg(£™)}

For every non-zero integer n, denote by @Q,,(z) the minimal polynomial of ¢”!

over Q, of degree deg(¢/") = deg(£™). By setting R, (z) = Qn(zI") € Q[z]
we obtain that R, (£) = 0 and this implies that

deg(§) < deg(Rn()) = [n|deg(¢").

Then, we can conclude that Z2(&) = deg(§).

On the following, we will study some properties about the generalized
degree. Recall that a strict sequence in the algebraic torus (@X)N is a se-
quence such that every proper algebraic subgroup on (@X )N contains finitely
many elements of the sequence.

In the one dimensional situation, a strict sequence {£x} in @X such that
limg o h(&x) = 0 satisfies that limg_,o, deg(&x) = co. Indeed, suppose there
is ¢ > 0 such that deg &, < ¢, for every k > 0. By Northcott’s theorem, there
are only finitely many algebraic numbers with bounded degree and bounded

height. Whence, there is some a € @X such that & = « for infinitely many
k’s. Since limy h(&) = 0, we necessarily have h(«) = 0 which implies that «

is a root of unity. In particular, there is a proper algebraic subgroup in @X
containing an infinite subsequence of {&}.
The following lemma is a generalization to higher dimension of this fact.

LEMMA 3.18. Let {&€,} be a strict sequence in (Q)N such that h(€;) — 0
as k — oo. Then

lim 2(§;,) = oc.
k—o0

PROOF. First of all, observe that for every n # 0 the sequence {x™(&;)}

. . . X
is a strict sequence in Q" .
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Now, set &, = (&1, .-, &k,n) and let n # 0, then we have
h(x™(&x)) = h(&h -+ &) S h(&h) + -+ higy)
= [l h(&e) + - v h(En) < [l h(€) ——— 0.
Thus, as we saw before, we have that for every n # 0
Tim deg(x"(&,)) = oc.
—00

Finally, we know that for every k > 0 there is some m, # 0 such that
P(&1,) = |Ink|| deg(x™* (&;)) and hence

k—o0
O

We will now state some partial results that give sufficient conditions for
the generalized degree to be maximal.

LEMMA 3.19. Let &1,...,6n € Q" such that (deg(&;), deg(&x)) = 1 for
every j # k. Then

[Q(&1, .-+, &n) : Q] = deg(&1) - - - deg(én)-

PROOF. It is easy to see that, for any algebraic numbers &1, ..., &N, not
necessarily of pairwise coprime degree, we have
(3.10) [Q(&1, - -+ ¢én) - Q) < deg(&r) - - - deg(En)-

For every j =1,..., N, we have

[Q(&1- -+ 6n) - QI = [Q(&1, - -+, Ev) : QUENIQ(E) = Q)
from where we deduce that deg({;) divides [Q(&1,...,&n) @ Q]. Since,
for all j # i, we have (deg(&;),deg(&;)) = 1, the degree of the extension

Q(&1, ..., &) is a multiple of deg(&1,) . . . deg(én) and, by (3.10]), the lemma
follows. O

LEMMA 3.20. Let & = (&1,...,&n) in (Q)N and set pj = deg(&;). If
the p;’s are all pairwise different primes, we have

2(&€) = min{py,...,pn}-

PRrROOF. Without loss of generality, suppose p; = min{py,...,pn}. We
will see that, for every n # 0 such that ||n||; < p1, the degree of x™ (&) over
Q is at least p;. This is enough to prove the result.

Suppose there is some 0 < ||n||; < p; such that deg(x™(£)) < p1. Since
x™(&) is in the field extension Q(&q,...,&xN), which has degree p; - - - p over
@, we deduce that

deg(x™(€)) [ p1---pN-
Thus, we necessarily have deg(x™(€)) = 1. We will see that this is not
possible and we will be done. For every n € Z satisfying |n| < p1, we have

deg(&}) = deg({}n‘) =pj;, withj=1,...,N.
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If deg(x™(&)) = 1 for some n = (ny,...,ny) # 0 with ||n||; < p1. Then
there is some a € Q satisfying &' - - - 37 = a. Since m # 0, there is at least
some k such that ny # 0 and we have

n a n;
p = deg(§,*) = deg ('rz]) = deg H &’
[Tz § pon

Observe that Hj#k 5;” € Q&1 &k-1,&+1,---,EN), which is a field ex-

tension of degree py - - pp_1pr+1 - - - pn over Q. Hence, deg <H#k 5;”) = pg
divides [] K Pj> which is not possible.

LEMMA 3.21. Let o € Q, if there is some o € Gal(Q/Q) such that
o(a) = —a, then deg(a) is even.

PROOF. Let a € @X, we have the tower of field extensions

Q = Q(a”) = Q(a)
and hence
[Q(e) : @ = [Q(e) : Qa?)][Q(a”) : Q.
The degree of the field extension Q(a?) — Q(«) is at most 2 since the
polynomial 22 — o2 is in Q(a?)[z] and vanishes at . Suppose there is o €
Gal(Q/Q) such that o(a) = —a, then o(a?) = o(a)? = a? and o) = id.

If there was 8 € Q(a?) such that a + 8 = 0, applying o we would obtain

—a + =0 and necessarily a = 0, which is not possible. Hence, 22 — a? is

the minimal polynomial of a over Q(a?), [Q(a) : Q(a?)] = 2 and the result
follows. g

LEMMA 3.22. Let o, 3 € Q" be such that (deg(c),deg(8)) = 1 and FyN
Fg = Q, where Fy, and Fg are the splitting fields of the minimal polynomials
of a and B over Q. Then

deg(aB) = deg(a) deg(f3).

PRrROOF. Denote by F' the splitting field of the product of the minimal
polynomials of o and 8 over Q. Then F' is a finite Galois extension over Q
of Galois group G = Gal(F/Q). We have the tower of field extensions

Q= Q(apf) = Q(a, B) = F,

from where we deduce that F//Q(a, 3) and F/Q(«f3) are Galois with respec-
tive Galois groups

Gaop = Gal(F/Q(a, ) ={c € G:0(a) =a,0(p) = B},
Gop = Gal(F/Q(af)) = {o € G:o(af) = af}.

And we have

#Gap = [F: Qa, B)], #Gap = [F: Q(apf)].
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We claim that G, g = G, hence by Lemma we obtain

e FQ  [F:Q)
[Q(aB) : Q] = [F: Q(ap)] B [F: Q(a, B)]

= [Q(a, B) : Q] = deg(ar) deg(f).

Let us prove the claim. The inclusion G, g C Gug is trivial so we are
left with the reciprocal. Consider an element o € G, of order m > 1, then

we have a8 = o(af) = o(a)o (). Define k := UTQ) = % and observe that

o) ¢ g, and ;5 € Fy, thus k € Fo N Fp = Q.

«

On the other hand, since o acts trivially on Q and ¢™ = id, we obtain

2 m—1
km:k'g(k)"'am_l(k’):U(a)a(a)"'g _(a) _Oé - 1.
a ola) o™ 2(a) o™ Ha)
So necessarily we have £ = £1. If ¥ = —1, we have o(a) = —a and

o(B8) = —p which, by Lemma implies that both deg(a) and deg(3)
are even. This is not possible since the degrees are coprime. Hence we have
k=1 and o(a) = a, 0(8) = . So we can conclude that o € G, g. O

Observe that this result is no longer true if we drop the hypothesis of
the linearly disjoint splitting fields. Indeed, if o = ¥/2 and $ is a primitive
root of unity of order 3. Then we have that deg(a) = 3 and deg(5) = 2
are coprime, F, = Q(«, ) and Fg = Q(B) do not intersect trivially and

deg(ap) = 3.
LEMMA 3.23. Let &€ = (€1,...,¢n) € (Q)N be such that
(i) (deg(§;), deg(éx)) = 1 for all j # k,

(ii) There is a permutation T € Sn, with

Fe )N Fkl;[§7<k) =Q forall j <N,
J

where the field F' €y 1 the splitting field of the minimal polynomial

k>j

of T1& ) over Q.

k>j
Then

2(§) = min{deg(&1), . - ., deg(En)}-

PROOF. We may assume without loss of generality that (ii) holds for
7 = id, otherwise we can re-order the components of &.

Let k € {1,...,N} be such that deg(&;) < deg(&;) for all j # k and
suppose Z(§) < deg(&k).

Then, there is at least some non-zero n = (n1,...,ny) € Z" such that
Imlls deg(x™(€)) < deg(€). In particular |[n ]y = |ny |+ ..+ |ny| < deg(€x).
Let us study the degree of x™(&) = & -+ - {3 over Q.
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For all 7 < N we have 579 € Q(¢;) and ﬁy_ﬁl N € Q&g -5 EN),
which is an extension over Q of degree deg(&j4+1) - --deg(&n). Then we de-

duce that deg(¢”) | deg(¢;) and deg(¢/71"---€x¥) | deg(&j1) - - - deg(En)

respectively. By condition (i), we obtain

(deg(S?j),deg(éyiT - 6\)) =1, forall j < N.

Hence, by (ii) and Lemma
deg (&7 - - ExY) = deg(&]7) deg(&]17" -+ - &3Y), for all j < N.
Therefore, applying this method recursively, we can conclude that

deg(x™(§)) = deg (&) - - - deg(&x7)-

Observe that for every j = 1,...,N, the polynomial z™l — §J‘.nj| €
@(fjm )[x] vanishes at &; and thus
deg(€)) = [Q(€) : @) = — e T, deals)
[Q(&5) : Q(&;7)] ]
Putting everything together, we obtain
Infly deg(x™(€)) = (Ina| + ... + [nn]) deg(&f") - - deg(E}Y)
de de
> (na] + ...+ ) SBED)  AOBEN) ey,
[na Iny|
which cannot hold. Therefore, we necessarily have 2(€) = deg(&). O

5. Bounds for the Lipschitz constant of the function f5

In this section, we will give a bound for the Lipschitz constant of the
function f5 : P}(C) — C defined by

£500:1) =0, f5(1:2) = ps(|2])— for any z € C,

2|

where ps : R — [0, 1], with 0 < 6 < 1, is given by

W if $<r<s
(=24 06r)2(~1+26r) ifd<r<?

The first thing we will do is to prove that f; is in €1 (P!(C)). Afterwards,
we will study the Lipschitz constant of its real and imaginary parts.

It is easy to see that the function f5 is compactly supported on the
intersection of the usual charts, Uy N U;. In fact, we have that

supp(fy) = { (1) § <lel < 5}
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For this reason, in order to prove that fs is in €*(P'(C)), it will be enough
to prove that the function p5(|z|)é is of class 4! in a neighborhood of the
set {z: % <|z| < 2}

The piecewise-defined function ps is continuous, as well as its derivative,
which is given by

~50-2r)(-r) if5<r<s
py(r) = 66(=2+0r)(~1+4r) ifL<r<?2
0 otherwise.

Hence, since |z| and z/|z| are smooth at C*, we can conclude that p5(|z|)§
is indeed of class €.

Let us compute now a bound for the Lipschitz constants, with respect
to the spherical distance, of the real and imaginary parts of the function fj,
that will be denoted by ugs and vs respectively. In order to do so, we will

choose coordinates (z,y) in R? = C. Let
us(r,y) = wug(l:x+iy) = — —=-1,
Va4 y?

Os(z,y) i=wvs(l:x+1y) = —J——=—y
NG
Since the computations are symmetric for both the real and imaginary parts
of fs, it will be enough to study the Lipschitz constant of one of them.

To simplify these computations, we will study the Lipschitz constant
with respect to the chordal distance in the Riemann Sphere. Once this is
done, and since both the spherical and the chordal distance are equivalent,
we will be done.

First of all, recall that the chordal distance restricted to the open subset
Uy C P1(C) is given by

‘ ) 2|(x yYo) — X1, Y
dch((l X+ Zy0)7 (1 tx1+ Zyl)) - \/1 + n!((xo yo))Z\/(l —1|- ﬂ"llz-i Yy )2’
0’ 0 17 1

where || - || denotes the Euclidean metric on R? and m(z,y) = /22 + 2.
Now, since the function ug is supported on Uy, we have

lus(1: 29) —ugs(1: 21)|
sup
20,21 €C dch((l : ZO), (1 : Zl))
= sup [tis(0, y0) — tis(1,y1)| /1 +m(wo,90)° /1 + m(w1,y1)
(@owo)(@ry)er? (o, 0) — (z1,91) || 2

We will consider different cases.
L. If (20, 90), (z1,y1) ¢ D(0, %), we trivially obtain

|tis (0, yo) — Us(x1, y1)|
den((1 = 2o +1y0), (1 - 1 + iy1))
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2. Suppose (x9,y0), (x1,y1) € D(O0, %) For ¢t € [0,1], consider the function

g(t) = us((1—t)(xo,y0) +t(z1,y1)). By the mean value theorem, we know
that there is some ¢ € (0,1) such that ¢g(1) — g(0) = ¢'(c). Applying the
chain rule, we obtain
ts(w1,y1) — s(wo, yo) = Vis((1 = ¢)(wo, yo) + c(z1,91)) - (w1 — Zo, y1 — ¥o)-
Hence, we deduce
|ﬂ5($0’ yO) - ﬂ(S(gjla y1)|
(o, 50) — (z1,y1)ll — (z,y)€D(0,2)

(3.11) < sup [[Vas(z,y).

Let us study the gradient of #s. For every (z,y) € R? we have

s = (i) dbtmtea + () 220,

m(z,y) )  m(z,y)
Ous v wy (o ps(m(z,y))
O ) = s (htonta ) - 22,

Without loss of generality we may restrict ourselves to the situation were
(x,y) is such that g < m(z,y) < %, otherwise both partial derivatives
would vanish. It can be easily shown that |pj(r)| < 2 for every r > 0.
This, together with the fact that 0 < ps < 1, x < m(z,y), y < m(x,y)
and m(z,y) > g, leads to
Ot

Ot
0 il <
o (x,y)‘, By (w,y)’ <

We can then conclude that, for any (z,y) € R?

_ 42
Vst o)l < 2.
On the other hand, given (xo,vo), (z1,y1) € D(0, %) we have that
\/1 + m(.%'(], y0)2\/1 + m($17 3/1)2 < 52 +4
2 - 262

Therefore, we obtain

~ = 2
‘U6($0a3/0.) u5($17y1)|. S 2\/55 _;—4
den((1 : 2o + dyo), (1 : z1 +iy1)) )
3. Suppose now that (zo,y0) € D(0, %) and (z1,11) € D(0,2)\ D(0, 3). As
we did in the previous case, we can deduce that
@5 (0, yo) — ds(21,91)| _ 4v2
[(wo,90) = (z1,91)[] — &

and

V14 m(zo, y0)2/1 +m(x1,y1)? < 2+9
2 - 242
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Hence, we obtain

|5 (0, yo) — Us(w1, Y1) 5249
. — < 2V2 .
den((1 = o + yo), (1 : x1 +iy1)) 63

4. Finally suppose that (z0,y0) € D(0,%) and (z1,41) ¢ D(0,2). In this
situation, we have 4s(z1,y1) = 0 and

|0l

us(x1, = m(xo, —— < 1.
s, )| = los(m(o. so))| s
Since
2 3 20
den ((1: zg+1yg), (1 : x1 +1 >dn((1:=),(1:=)) = ,
we can conclude
|5 (0, y0) — Us(x1, y1)| < ) 05,

den((1 = zo +1y0), (L1 +iy1)) — /(02 + 9)(6% + 4)

After all this cases have been studied, we can deduce that

- A 2
sup |U6(l’0,3/0.) Ué(fElayl”. S 2\/56 —!))_9
(@0,0),(z1,y1)er? den((1 2 2o +iyo0), (1 : 21 +iy1)) B

However, as we mentioned above, we were looking for a bound of the
Lipschitz constant of us with respect to the spherical distance. By Lemma
we know that d(P, P') > du, (P, P') for any pair of points P, P’ € P1(C)

and we obtain

: lus(P) — us(P')|
Lip(us) =  sup
ppepicy AP P)
U 5 2
< sup ‘U5(33‘0, yO') U5(x1,y1)|' < 2\/5(5 —;—9
(%0,y0),(x1,y1)ER? dCh((l P xo + Zyo), (1 1T+ Zyl)) o

Analogously, we deduce that
6249
T

Lip(vs) < 2V2 5

6. Quantitative equidistribution in dimension N

In this last section we will give the proof for Theorem I} It will be done by
applying Fourier analysis techniques that allow us to discretize the problem.
Then, we reduce the problem, via projections, to the one-dimensional case
where the result follows from Favre and Rivera-Letelier’s Theorem [l

Let £ be an element in (@X)N , S be its Galois orbit and pug the discrete
probability measure on (C*)" associated to S. By Lemma for every
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Haar-integrable function F : (C*)¥ — R whose Fourier transform F is also
Haar-integrable, we have

A;”dius—:A;waqugN

(4Nﬁm¢MﬁﬂQw—4>aw%zgégﬁghﬂmm%ﬂﬁ_

(3.12)

<

We will divide the proof of the main result into two parts corresponding
to the estimates of the two terms on the right-hand side of this inequality.

First, we will consider the integral not depending on the angle. Before
studying it, we will introduce a technical result.

-1
LEMMA 3.24. For every x > 0, |logx| > \';”H?L
PROOF. Set
1 .
oz _{10gx—\/’i+? ifx>1,
o l1—x :
—logx — 7 ifo<z <l
Then .
R TR
g'(z) = x(1+2m+212 2)}
- AR if 0 <a < 1
z(1+x2)2

It is easy to see that (1 + 1:2)% — 2z — 2?2 has no real roots. Hence, the
function ¢ is monotonic on each interval (0,1) and (1,+o00). Since we have
g(1) =0, lim,_,o+ g(z) = +o0 and lim,_, 4~ g(z) = +00, we know that g is
monotonically decreasing on (0, 1) and monotonically increasing on (1, 4+00).
Thus, we deduce that g(z) > 0 for every = € (0, 400). O

Now, we can proceed with the study of the first term on the right-hand
side of (3.12)).

PROPOSITION 3.25. Let & € (Q°)N and S its Galois orbit. For every
Lipschitz function f : PY(C)N — R such that F = f o ¢, and F are Haar-
integrable we have

[ Fo.n (@00 -1) dt\ < VarLin(/) h(g).

RN

where Lip(f) is the Lipschitz constant of f with respect to the spherical dis-
tance in PL(C)V.

PROOF. For any (n,t) € Z¥ x RY, the Fourier-Stieltjes transform (1.2
of ug is given by

(3.13)

D

—~ 1 . e
(314) #S(n, t) — B Z e—27rzt-uj 6—271—111.9]7
=1
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where S = {&;,...,€p} and

Ej — eQT(’LHj-‘rUj — (827”'9]',1-1—’&]"1’ el eQT(’LAGj,N—i—u]',N)

forevery j=1,...,D.
In this s1tuat10n by Lemma and ., we obtain

(3.15) / F(0,t) (ﬁs(o,t) - 1) dt‘
RN
LD
— | = o 2mitu;
-7 Z/RN F(0, ) (2t _ 1)dt
7j=1
D o~
Z (e F(o.6) = F(o.¢)) dt
| D
= 52 (C)N (Tlsj\F( ) — F( )) dA(s1yn (2)
Z/ e, | F' ( )‘d)\(su (2)
— J(cx)
- Z /C F(&,12) ~ F(=)] dAsipn (2),
where 7¢ |F' is the translation of F' by the element €1 = (I&5al,-- -5 15~ 1)
defined by .

Since f is a Lipschitz function on P'(C)" of constant Lip(f) with respect
to the spherical distance d”, for any z, 2’ € (C*)Y we have

(3.16)  |F(z) — F(2)] = f(6(2)) — f(¢(z)| < Lin(f) ¥ (6(2), ¢(2")),

where recall ¢(z) = ((1: 21),...,(1: zn)).
For any z = (z1,...,2y) and 2’ = (2],...,2}) in (C*)V, by Lemma

[[14] we have

N N
d"(¢(z),(2") = \lzd((l ), (1 2)))? < gJ D dan((1: ), (12 2)2.
=1 I=1

So, for z € (C*)N and every j =1,...,D

N
a¥ (0(1€;12), 6(2)) < ;TJ S dan(15 €120, (1 2))2.
=1

Since A(g1yv is supported on (SH)N, it will be enough to consider z =
(z1,...,2n) such that |z| =1 for every [ =1,..., N.
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By Lemma if z; € S! we obtain
2| |&alz — &l
V11621221 + |22
V2l -1
VI+I[§2
forj=1,...,D.

Hence, for z € (S1)Y and j =1,..., D, we have

den((1:1&020), (12 2)) =

< V2 |log ¢,

N
(817) d¥(6(1&12), 6(2)) < 5| 2 denl(L s [gal=), (12 2))2
=1

N N
T T
< oY o dan((1: €l (12 21) < —2 Z log [&;.]l-
24 SV
So we can conclude from (3.15)), (3.16)) and (3.17) that
[ o000 - 1>dt\
RN
< Lip(/f Z /@x B(1€;12), 6(2))dA 51y (2)
1 D N
< —= Llp ZZ |log |€;.4]] < V2r Lip(f) h(€),
j=1 1=1
where the last inequality is given by Lemma O

Let us study now the second term in (3.12)).

PROPOSITION 3.26. There is a constant C = 48.9897 such that for every
€€ (@X)N with h(€) < 1, every 0 < 6 <1 and F = f o ¢, with f € F, the
following holds

/\

N

;ﬂ)/ﬂw ntugntdt<2h Zlau[
1 [ —2  4y2(82+9) log(2(€) + 1)\ ? < ||oF
+27T<10g5+ 53 ><4h(£)+09(£) > ZZ; i

where S is the Galois orbit of €, pg the discrete probability measure associated
to it and P(€) the generalized degree of &.

To prove Proposition [3.26] we will first state and prove some previous
results.
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LEMMA 3.27. Let £ € (Q)N and S its Galois orbit. Denote by g the
discrete probability measure associated to S. Then, for every t,t' € RN and
for every m € ZN \ {0}, we have

(3.18) [fs(n,t) — fis(n, )] < 4|t — '][1 h(€).
PROOF. Let us write S = {&;,...,&p}, with D = #5S.

As we saw in (3.14), if we write §; = 1?95 for some u; € RY and
some 0, € (R/Z)"N, then
1 2
ﬁs(n’ t) — 5 Z 6727rzt-u,j 672mn-9j )
j=1
Therefore, we can write
1 D
’ﬁs(,’% t) - //ZS(na t/)| _ 5 (6—27riuj-t6—27ri0j-n o 6—27riuj-t’e—27ri0j~n)
j=1

u;-t )
—271 / e 2T

!
u;-t

Sl

Il
i

D
2 :‘ —2miu;t e—27riu]-~t" _

D
%Z uj-t—uj-t'| 57['

J

”MU

N
Z |t — t)]

N
1
< 2t —t’||1522110g\£j,l\| < drit = [ h(g),
j=11=1

where the last inequality is given by Lemma [3.16] ([

PROPOSITION 3.28. There is a constant C =~ 48.9897 such that for every
£ e (@X)N, every 0 < 6 < 1 and every m # 0 the following holds

~

|,u5(n, 0)’

_ 2 o 3
< Il (1;5 g+ 22D (ang)+ T D) ) ,

where S is the Galois orbit of & and pg the discrete probability measure
associated to it.

PROOF. Let D be the cardinality of S and set S = {&;,...,&p}, where
5 — ol 27r10

for some u; € RN and 0; € (R/Z)N
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Observe that, for any n € Z" such that n 75 0, we have
1 & (&)
ﬁS(na 0) _ 727rzn h ]
By 1> X

For 0 < § < 1, let f5 : PY(C) — C be the %l—functlon defined in
Section Bl and write fs = us + ivs. It was there proved that

21/2(82 + 9)
63

Lip(us), Lip(vs) <
Then, for n # 0, we have that

D
(3.19) |fig(n,0) — % D fs(1x™ME))
j=1

n

1 & X
D;!xn(

||Mu

Pl T mre )

n

1SN X™(E;)
-I5%

X™(&;)

1
(1 =rs(IX™E)N)| < 5 Z 11— ps(IX™(€;)])]
j=1
For n € ZV \ {0} and 0 < § < 1, define the set

Ins={i:0 < "€ < 5 |-

If j € Jns, then by definition of the function ps we have ps(|x™(§;)[) = 1.
If j ¢ Jn s, then we have 0 < p(;(\x"(fj)\) < 1. Hence,

(3.20) Z|1—p5 X" (€)D] = Z 1—p5(!><”(€j)\)<l L.

Let S, be the Galois orbit in Q~ of x™(£), of cardinality deg(x™(£)).
By Lemma [3.14] we know that there is an integer l,, such that #Sy,l, = D.
If we set Sp5:= {a € Sp: \log|a|\ > log 1}, we have

1 —1
(3.21) 5 oi=—c Y 1<2<log ) h(x™(£)),

j%Jnﬁ OcES ¥

where the last inequality is given by Lemma
As we saw in the proof of Lemma for n # 0 we have

h(x™(€)) < [Inf1 h(§).
Hence, putting this together with (3.19)), (3.20)) and (3.21]), we obtain

1 & 1\
320 |isn0) - 530 ()| <2 (1os3)  Inlin(e).



6. QUANTITATIVE EQUIDISTRIBUTION IN DIMENSION N 107

On the other hand, we have

1 & n 1 o
32) YA = e 3 tnfll ) = s

where j1g,, is the discrete probability measure on P!(C) associated to the
Galois orbit Sj,.

Let Ag1 be the measure on C* supported on the unit circle, where it co-
incides with the Haar probability measure. By the definition of the function
fs, we have that fs(1: z) = z if |z] = 1 and thus, we have

/ f(;d)\sl = / Zd)\sl (Z) =0.
P1(C) Cx
By Theorem [[I] there is a constant Cj &~ 14.7628 such that

=| / Jsdus, — / Fsdhe:
PL(C) P1(C)

/ usdpr,, —/ usdAgt | + / vsdur, —/ v§dAg1
P1(C) P1(C) P1(C) P1(C)

(3.24) |/ fsdps,
PL(C)

<

< (Lip(us) + Lip(vs)) ((M + <4 h(x™(&)) + Co log(ciieegg(( (( ))))-1' 1)> >
4\/5(62+9) - n log(deg(x
ST (deg<xn<e>> (1@ + G ) )

Since h(x™(£)) < ||n|j1 h(€) for every n € Z™ \ {0}, we can write

(4 h(x™(€)) + Co log((iieegg(&i((?)))‘f‘ 1)> ’
Inll1 log(deg(x™(€)) + 1) )%
71 deg(x™(€))
log(||n||1 deg(x™(&)) + 1)) 2
7|1 deg(x™(&))

< <4HnH1h(£) ey

< Inx <4h<s> e

Hence, this fact together with (3.23) and ((3.24])

D
Z (1: X™(&))

w”“” T
53 "\ Inlr deg(x™(€))

(3.25)

<

log (|[n||; deg(x™(£)) + 1>>5
Inl deg(x™(€)) |

+ (4 h(§) + Co
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We have ||n||; deg(x™(&)) > 1 for every n # 0 and, since we are assuming
that h(&) < 1, there is a constant C' > 0 such that

(3.26) |~

-]

D
DS x™(E)
j=1

- 2P +9) log(|n[l; deg(x™(6)) + 1))5
- &3 [n[[1 deg(x™(€)) '

As it was done in the proof of Theorem [[I| we can take

O 72 + Cplog 2 + 2mv/4 + Cylog 2
N log 2

Il (4h<e> e

~ 48.9897.

Finally, note that the function % defined for > 1 is monotonically

decreasing on its domain and hence, we deduce that for every n # 0

log([|n ][ deg(x™(£)) +1) _ log(Z(£) +1)
[nlldeg(x™(€)) = 2(§)

This together with (3.26]) implies that

44/2(6% 4 9)

; 2
J=1

()

for every n # 0.
We can then finish the proof of the proposition:

~ —~ 1
lis(n,0)] < |hs(n, 0) —

>]

D D
D Ss(Lx(E)| + |55 D f(1: X" (€))

44/2(5% 4+ 9)

log(2(€) + 1)) :
&3 ’

< 2 nllih(e) +

<o Il (4166 + €

COROLLARY 3.29. There is a constant C' = 48.9897 such that for every
e (@X)N with h(€) < 1, every 0 < 6 < 1 and every (n,t) € ZY x RN with
n # 0, the following holds

As(n. )] < 4xlt] h(€) + 2 [Inf1 h(E)

log 6§
W2 +9) log(2(¢) + 1)\ ?
+ DDl (an(g) + cETEED)

where S is the Galois orbit of & and pg the discrete probability measure
associated to it.
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PROOF. Note that, for any (n,t) € ZV x RY
|ﬁ5(nv t)| < |ﬁ5’(n7 t) - //A\S(’I’L, 0)| + |ﬁ5(n7 O)’
So the result follows directly from Lemma and Proposition [3.28 O

PROOF OF PROPOSITION B.26. Let (n,t) € ZV x RY be such that n #
0. Corollary together with the fact that we are assuming h(§) < 1,
implies that there is a constant C' ~ 48.9897 with

[Ais(n, )] < 4 t]1 b()
. ( -2 4\/5(52+9)> inl, <4h@ L ol 2(€) +1>>2

log & 53 7(8)

By Theorem [3.3] given f € F, we know that the function F' = fo ¢ is
Haar-integrable as well as its Fourier transform F. Hence, we can write

(3.27) Z/ (n,t)is(n, t)dt

n#0
< Z/ (r,)|[fis (n, £)|dt < 47 h(& Z/ (o, )| ]|t
n#0 n#0

— 2 o
+<1og25 22 +9>) <4h(£)+01 = H ) Z/ el

By Lemma for every [ = 1,..., N we have that

— —

OF ~ OF
il — omit, F el
o (n,t) = 2mit;)F(n,t) and 2,

Using this, we obtain

Z/ (n, )] - [t = - ZZ/ |- 2ty dt

(n,t) = 2min F(n, t).

n#0
N —_—

1 1 oF

il Cmt)dt=—S ||

2 Z Z /RN ouy (m, 27 ou ||,

=1 L
and
Z/ (n,t)] - ||n|1dt = Z Z/ | - |27y |dt
n#0
—_— N —_—

1 oF 1 oF
< P )| dt=— S ||
<or 2 /RN 2, ™Y 7m O a6,

=1 nezZN =1 L1
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Finally, by (3.27)), we can conclude

Z/ Fntugntdt <2h£2

n#0

1 [ —2  4y2(82+9) log(2 : X | aF
+2ﬂ'<10g5+ 5 ><4h<5)+0 ) ; ael

8’11,1

O

PROOF OF THEOREM [l Let f € F and set F = f o ¢. The measures
ps and Agryn are measures in PY(C)N and they are compactly supported

n (C*)N — PY(C)N. Therefore, we can write

‘/ fd/,LS - / fd)\(sl)N / Fd,ug - / Fd)\(sl)N
POV POV (C9)N (C9)N

By Theorem , the function F and its Fourier transform F are Haar-
integrable and thus, as we already saw in equation (3.12)), we have

/ Fdus — / Fd) g1y
(©)N (©)N

/RN F(0.1) (7is(0,6) — 1) dt‘ + ?;)/RN Fln, t)ig(n. t)dt

<

Since any test function f € F is Lispchitz, by Propostions [3.25 and [3.26]
there is a constant C' ~ 48.9897 such that

/ fd,us — / fd)\(sl)N
Pl(@)N [P’l((C)N

N
< V27 Lip(f) h(€) + 2h(& Z

/\

6ul
1 [ —2  4y2(82+9) 1og(9(g)+1) : X |oF
T <1og5+ 5 )(“ww 7(€) ) 2 |a, .

4/2(6249)

We search numerically for the minimum of the function 1;;5 + =5
for 0 < § < 1, and we obtain 94.9591, attained at 6 ~ 0.9071. Hence, we




6. QUANTITATIVE EQUIDISTRIBUTION IN DIMENSION N 111

/ fd,us — / fd)\(sl)N
JP’I((C)N ]pl((c)N

+ 16 (4 h(§) + Clog%%Jr 2 >2 > 39l
1 =1

1og<.@<s>+1> :
)( o)+ )

O

< V2r Lip(f) h(£)

L
oF
U

N
< (\@WLip(f)+2Z —
=1

/\

o

a6,

Finally, let us deduce from this result Bilu’s equidistribution Theorem.

PROOF OF COROLLARY B.Il Let Sy be the Galois orbit of & for every
k > 0. By Theorem [ and Lemma [3.18] for every f € F we have

/ fd,usk — / fd)\(sl)N
PL(C)N PL(C)N

Since, by Lemma [3.13] for every continuous compactly supported func-
tion F: (C*)V — R there is a sequence in F whose uniform limit is F, the
Corollary follows. (|
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